
Linux E-mail
Set up, maintain, and secure a small office
e-mail server

Ian Haycox
Alistair McDonald
Magnus Bäck
Ralf Hildebrandt
Patrick Ben Koetter
David Rusenko
Carl Taylor

 BIRMINGHAM - MUMBAI

Linux E-mail
Set up, maintain, and secure a small office e-mail server

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2005

Second edition: November 2009

Production Reference: 1051109

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-64-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Authors
Ian Haycox

Alistair McDonald

Magnus Bäck

Ralf Hildebrandt

Patrick Ben Koetter

David Rusenko

Carl Taylor

Reviewers
Patrick Chan

Aric Pedersen

Acquisition Editor
David Barnes

Development Editor
Ved Prakash Jha

Technical Editors
Gaurav Datar

Neha Patwari

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Poorvi Nair

Proofreader
Lesley Harrison

Indexer
Rekha Nair

Graphics
Nilesh Mohite

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Authors

Ian Haycox is a freelance IT consultant based in France and actively contributes to
open source projects. He has twenty-five years of software development experience
in the enterprise integration, telecommunications, banking, and television sectors.

Ian has a degree in Computer Science from the University of Hertfordshire, UK, and
now runs his own web design company (http://www.ianhaycox.com/) and Linux
programming consultancy.

My thanks to Debbie for supplying me with copious amount of
coffee and cheese sandwiches.

Alistair McDonald is a software developer and IT consultant. He has worked as
a freelancer in the UK for 15 years, developing cross-platform software systems in C,
C++, Perl, Java, and SQL. He has been using open source software for over 20 years
and implementing systems using it for the past 10 years.

Last year, he gave up his freelance career and joined JDA Software, working in a
technical role in their Service Industries division.

Alistair is also the author of the book SpamAssassin: A practical guide to integration and
configuration, published by Packt .

I would like to thank my wife Louise for the support she has given
me throughout the writing of all my books.

Magnus Bäck has been playing and working with computers since his childhood
days. He is interested in everything in the computer field, from digital typography
and compilers, to relational databases and UNIX. His interests also include e-mail
services, and he is an active contributor to the Postfix mailing list. Besides computers,
he enjoys photography, cars, and bicycling.

Magnus holds a Master's degree in Computer Science and Engineering from Lund
Institute of Technology, Sweden, and currently works with software configuration
management for mobile phone software at Sony Ericsson Mobile Communications.

Ralf Hildebrandt is an active and well-known figure in the Postfix community,
working as a Systems Engineer for T-Systems, a German telecommunications
company.

He speaks about Postfix at industry conferences and hacker conventions, and
contributes regularly to a number of open source mailing lists. Ralf Hildebrandt
is the co-author of The Book of Postfix.

Patrick Ben Koetter is an active and well-known figure in the Postfix community,
working as an Information Architect. Patrick Koetter runs his own company,
consulting and developing corporate communication for customers in Europe
and Africa.

He speaks about Postfix at industry conferences and hacker conventions, and
contributes regularly to a number of open source mailing lists. Patrick Koetter
is the co-author of The Book of Postfix.

David Rusenko was born in Paris, France, and spent most of his childhood
overseas. He began working as a freelance Web Designer in 1996 and had his first
experience with open source, a box copy of Red Hat 5.2, shortly after in 1999. After
six years and as many versions of Red Hat, he now creates appealing web pages and
devises solutions implementing high availability through clustering and alternate
security models.

He founded Aderes (http://www.aderes.net) in 2001, a company that provides
e-mail and web-based security solutions. His search for an appropriate Webmail
Platform for the company led him to SquirrelMail. Initially managing all aspects
of the business—from the technical concerns to customer support—gave him the
experience that he now contributes to the Webmail chapter of this book.

David has studied both, Information Sciences and Technology (IST) and
Management Information Systems (MIS) at the Pennsylvania State University. He
speaks English and French fluently, and is conversational in Arabic. During his free
time and vacations, he enjoys scuba diving, backpacking, playing racquetball, and
playing electronic music records.

Carl Taylor has worked over 20 years in the IT industry and has spent the
majority of that time working on UNIX type systems, mainly communications or
office automation projects. He was an early user of the UseNet network and taught
himself to program in C through working on a variety of open source software. His
experience covers roles including pre and post sales support, product development,
end user training and management.

Carl now runs his own web solutions development company "Adepteo", where
they specialize in intranet and workflow products building on the best open source
applications available. Whilst not working or looking after his children, Carl is
something of a dance addict and is currently learning Latin Ballroom and Salsa.

About the Reviewers

Patrick Chan is a programmer at Computer Bank, a not-for-profit organization
that recycles and distributes donated computers to disadvantaged individuals and
community groups.

He has used Linux for quite a number of years, and has fond memories of starting off
learning Linux as a newbie using the Gentoo distribution. His favorite tools include
vim, GNU Screen, Z shell (zsh), Secure Shell (SSH), and Mutt.

Aric Pedersen is the author of cPanel User Guide and Tutorial (ISBN 978-1-904811-
92-3) and Web Host Manager Administration Guide (ISBN 978-1-904811-50-3), both
written for Packt Publishing. He also served as a reviewer for CUPS Administrative
Guide (ISBN 978-1-84719-258-5), published by Packt Publishing.

Aric has over 8 years of experience working as a System Administrator. He
currently works for Hostdime.com, the world-class web host; and also for
Netenberg.com, makers of Fantastico, the world's most popular web script
installer for cPanel servers.

I would like to thank Mike Kahn for all of his assistance over the
past few years and also my good friend, Capt John "Jack" Grimes,
Esq. USAF JAG Corps, who is the best friend a fellow could hope
for, and his new wife, Kristin, who has shown incredible fortitude by
marrying Jack (*smile*). I don't want to forget Francene Brown who
is a good friend and a straight shooter (so rare to find these days).

Finally, I'd like to thank my mother and Allen, because without
them, nothing I've done would have been possible.

Table of Contents
Preface 1
Chapter 1: Linux and E-mail Basics 5

Why manage your own e-mail server 6
What you need to host an e-mail server 7
Sizing the hardware of your e-mail server 8
Main e-mail protocols: SMTP, POP, and IMAP 10

Overview 10
POP protocol 10
IMAP protocol 11
The SMTP protocol 11

E-mail and DNS 14
DNS record types used by e-mail applications 14

Backup mail servers 16
Summary 17

Chapter 2: Setting up Postfix 19
Introduction to Postfix 19

What is Postfix 19
Postfix architecture: An overview 20

New message arrival 21
Scheduling message deliveries 21
Message delivery 22
Supporting programs 23

Installation and basic configuration 24
Choosing the Postfix version 24
Installing from a package 25
Installing from source code 25
The Postfix configuration 27

main.cf 28
master.cf 30
Lookup tables 30

Table of Contents

[ii]

Getting Postfix up and running 33
Domains and hostnames 33
Indirect mail delivery through your ISP 35
Choosing network interfaces 35
Choosing mailbox format for local deliveries 36
Error reporting 37
Other useful configuration parameters 38
Starting Postfix and sending the first message 39

Stopping spam and other unwanted messages 41
Postfix's anti-spam methods: An overview 41
Understanding SMTP restrictions 42

Access maps 46
Access map examples 48
Implementing new policies 50

Using DNS blacklists 51
Choosing DNS blacklists 52

Stopping messages based on content 53
Configuring header and body checks 54
Header and body checks examples 55
Caveats 57

Virtual alias domains and local aliases 58
Virtual alias domains 58

Many virtual alias domains mapping to one local domain 59
One virtual alias domain mapping to many local domains 60
Group addresses 61
Introducing MySQL lookups 62

Local aliases 65
Command deliveries 66

Common pitfalls 67
Other address rewriting mechanisms 68

Troubleshooting Postfix problems 68
Reading and interpreting the log files 69

Message queue ID 69
SMTP submission and local delivery 70
Local submission and SMTP delivery 72
Connection problems upon SMTP delivery 73
Getting more detailed log messages 73

Troubleshooting lookup tables with Postmap 74
Getting help from the Postfix mailing list 75

Summary 76
Chapter 3: Incoming Mail with POP and IMAP 77

Choosing between POP and IMAP 77
Downloading and installing Courier-IMAP 78

Installing Courier-IMAP from a distribution repository 79
Installing Courier-IMAP from RPM 79

Table of Contents

[iii]

Installing Courier-IMAP using the Debian package format 80
Installing Courier-IMAP from source 80

Prerequisites 80
Building the Courier Authentication Library 81
Configuring the Courier Authentication Library 84
Resolving errors 87

Building Courier-IMAP 87
Handling errors 90

Using POP3 91
Configuring Courier-IMAP for POP3 92
Testing the POP3 Service 94
Retrieving E-mail via POP3 with Windows Live Mail 95

Using IMAP 98
Configuring Courier for IMAP 99
Testing the IMAP service 101
Retrieving mail via IMAP with Mozilla Thunderbird 102

Summary 106
Chapter 4: Providing Webmail Access 107

The webmail solution 107
The benefits 108

Easy and quick access 108
Easy remote access 109
No need to maintain clients 109
Configuring mail server interface via the user interface 110
Possible security benefits 110

The disadvantages 111
Performance 111
Compatibility with large e-mail volumes 112
Compatibility with e-mail attachments 112
Security issues 113

The SquirrelMail webmail package 114
SquirrelMail installation and configuration 115

Prerequisites to installation 115
Basic requirements 116
Perl 117
Review configuration 117

Installing SquirrelMail 118
Source installation 119

Configuring SquirrelMail 120
SquirrelMail plugins 122

Installing plugins 122
Example plugin installation 123

Downloading and unpacking the plugin 123
Performing custom installation 124

Table of Contents

[iv]

Enabling the plugin in conf.pl 124
Useful plugins 126

Securing SquirrelMail 129
Summary 129

Chapter 5: Securing Your Installation 131
Configuring Postfix network maps 132

SMTP-after-POP 132
Virtual Private Networks 133
SMTP Authentication 134
Static IP ranges 134

Generic relay rules 134
Explicit relay rules 134

Dynamic IP ranges 135
Cyrus SASL 135

SASL layers 136
Authentication interface 136
Mechanism 137
Method 139
Password verification service 139

Installing Cyrus SASL 141
Configuring Cyrus SASL 144

Selecting a password verification service 146
Choosing a log level 146
Choosing valid mechanisms 147

Testing Cyrus SASL authentication 157
Configuring Postfix SMTP AUTH 159

Preparing the configuration 159
Enabling SMTP AUTH 160
Setting the security policy 160
Including broken clients 161

Testing SMTP AUTH 161
Enabling relaying for authenticated clients 163
Securing plaintext mechanisms 163

Enabling Transport Layer Security 163
Configuring security policy 165

Dictionary attacks 166
Recipient maps 166

Checking local domain recipients 166
Checking relay domain recipients 167

Rate-limiting connections 167
Summary 169

Table of Contents

[v]

Chapter 6: Getting Started with Procmail 171
Introduction to Procmail 171

Who wrote it and when 172
How can a filtering system help me? 172

Potential uses of mail filtering 174
Filtering and sorting mail 174
Forwarding mail 175
Processing the mail in an application 175
Acknowledgements and out of office/vacation replies 175

File locking and integrity 176
What Procmail is not suitable for 176

Downloading and installing Procmail 177
Installing via a package manager 177
Installing from source 177
Installation options/considerations 178

Individual installation 178
System-wide installation 179

Integration with Postfix for system-wide delivery 179
Creating an alias for system accounts 179
Adding Procmail to the Postfix configuration 180
Postfix-provided environment variables 180

Basic operations 181
Configuration file 181

File format 181
Configuration file dissection 182

Analyzing a simple rule 183
The rule structure 183

Variable analysis 184
Rule analysis 184

Creating and testing a rule 185
A "hello world" example 185
Creating rc.testing 186
Performing static testing of the script 187
Configuring Procmail to process rc.testing 188
Testing the setup 188

Configuration debugging 188
Checking for typos in the scripts 188
Looking at the log file for error messages 189
Checking file and directory permissions 189
Turning on Full Logging 190
Taking steps to avoid disasters 190

Table of Contents

[vi]

Understanding e-mail structure 191
Message body 191
E-mail headers 191
Header structure 192
Official definitions for headers 192

Example rule sets 192
From header 193
Return-Path Header 193

Filtering by Return-Path 193
To and Cc headers 194

Filtering by To or Cc 194
Subject header 194

Filtering by subject 194
System-wide rules 195

Removing executables 195
Large e-mails 196

Summary 197
Chapter 7: Advanced Procmail 199

Delivering and non-delivering recipes 200
Non-delivering example 200

Formail 202
Advanced recipe analysis 202

Adding comments 204
Assigning variables 204

Performing substitutions 205
Pseudo-variables 206

Recipes 215
Colon line 215
Conditions 219
Action line 223

Regular expressions 227
Introduction to regular expressions 227

The dot 228
Quantifier operation 228
The asterisk 229
The plus sign 229
Restrictive matches using parentheses 230
Creating a simple spam filter 230
Character classes 231
Start of line 232
End of Line 232

Further reading 233
^TO and ^TO_ 233
^FROM_MAILER 233

Table of Contents

[vii]

^FROM_DAEMON 234
Advanced recipes 235

Creating a vacation auto reply 235
Organizing mail by date 237
 Informing users about large mail 238

Procmail Module Library 240
Putting it all together 240

Creating a structure to base your own rules upon 240
Rc.system 242
 Rc.lists 242
Rc.killspam 243
Rc.vacation 244
Rc.largefiles 244
Rc.viruses 245
Rc.spamfilter 245

Summary 246
Chapter 8: Busting Spam with SpamAssassin 247

Why filter e-mail 248
Spam is a moving target 248
Spam filtering options 250

Introduction to SpamAssassin 252
Downloading and installing SpamAssassin 253

Using CPAN 254
Configuring CPAN 254

Installing SpamAssassin using CPAN 255
Using the rpmbuild utility 257
Using pre-built RPMs 258
Testing the installation 259

Modified e-mails 260
Using SpamAssassin 261

Using SpamAssassin with Procmail 262
Global procmailrc file 263
Using SpamAssassin on a per-user basis 264

Using SpamAssassin as a daemon with Postfix 266
Using SpamAssassin with amavisd-new 267

Installing amavisd-new from package 267
Installation prerequisites 268
Installing from source 268
Creating a user account for amavisd-new 269
Configuring amavisd-new 269
Configuring Postfix to run amavisd-new 270

Configuring e-mail clients 271
Microsoft Outlook 271

Table of Contents

[viii]

Microsoft Outlook Express 275
Mozilla Thunderbird 277

Customizing SpamAssassin 279
Reasons to customize 279
Rules and scores 279
Altering rule scores 281
Using other rulesets 282
Whitelists and blacklists 283
Bayesian filtering 285

Other SpamAssassin features 287
Summary 288

Chapter 9: Antivirus Protection 289
Introduction to ClamAV 290
Document types supported 290
Downloading and installing ClamAV 291

Adding a new system user and group 291
Installing from a package 292
Installing from source code 292

Requirements 292
Building and installing 293
Quick test 293

Editing the config files 294
clamd 294

Examining the sample config file 295
freshclam 297

Closest mirrors 297
Examining the sample config file 298

File permissions 299
Post installation testing 300

EICAR test virus 300
Testing clamscan 301
Testing clamd 301
Testing freshclam 302

Introduction to ClamSMTP 302
Building and installing 303
Configuring into Postfix 304
Configuring clamSMTP 305

Examining the sample config file 305
Testing e-mail filtering 307

Testing mail-borne virus filtering 307
Thorough e-mail-borne testing 308

Table of Contents

[ix]

Automating update of virus data 309
Setting up auto updating 309

Automating startup and shutdown 310
ClamSMTP 311
ClamAV 311

Monitoring log files 312
Disinfecting files 313
Summary 313

Chapter 10: Backing Up Your System 315
Backup options 315

RAID 316
Image backups 316
File system backups 317
Ad hoc backups 318

What to back up 319
System inventory 319
Obtaining a list of installed software 320
System configuration files 321
Authentication data 321
The users' mailboxes 321
Log files 321
The mail queue 322

What not to back up 322
Backing up users' e-mail 323

Mail storage 323
Using dump 324

Full dump 325
Incremental dumps 328

Using restore 329
Interactive restore 330
Non-interactive restore across the network 331

Backing up configurations and logs 333
Transferring configurations and logs to backup media 333
Restoring the configuration 334

Automating backups 334
Backup script 336
Adding crontab entries 338

Verifying restoration procedures 338
Summary 339

Index 341

Preface
Many businesses want to run their e-mail servers on Linux for greater control and
flexibility of corporate communications, but getting started can be complicated. The
attractiveness of a free-to-use and robust e-mail service running on Linux can be
undermined by the apparent technical challenges involved. Some of the complexity
arises from the fact that an e-mail server consists of several components that must be
installed and configured separately, then integrated together.

This book gives you just what you need to know to set up and maintain an e-mail
server. Unlike other approaches that deal with one component at a time, this book
delivers a step-by-step approach across all the server components, leaving you with
a complete working e-mail server for your small business network.

What this book covers
Chapter 1: Linux and E-mail Basics takes you through the essential elements of a
Linux e-mail server and the network and mail protocols that make e-mail possible.
Like it or not, running a Linux e-mail server does require some understanding
of the underlying networking, and this chapter is where you will start to get that
understanding. This chapter explains the benefits and disadvantages of running
your own e-mail server and provides some guidance on hardware sizing for a
typical organization.

Chapter 2: Setting Up Postfix speaks about basic Postfix setup. Postfix is our chosen
Mail Transfer Agent (MTA), which forms the heart of any e-mail server. The MTA
is responsible, among other things, for moving messages between the various mail
servers on the Internet.

Chapter 3: Incoming mail with POP and IMAP covers what to do with incoming
e-mails. It will show you how to set up IMAP and POP access to mailboxes.
This means users will be able to send and receive messages using their familiar
e-mail clients.

Preface

[2]

Chapter 4: Providing Webmail Access shows how to set up webmail access using
SquirrelMail. This will give users an easy, out-of-office access to their e-mail.

Chapter 5: Securing Your Installation looks at how your installation can be secured to
prevent misuse of your users' data and the e-mail facility itself.

Chapter 6: Getting Started with Procmail discusses the basics of Procmail and gets you
familiar with the various files that Procmail uses to load recipes, the core principles
of filtering, and the options available.

Chapter 7: Advanced Procmail explores Procmail and explains a large number of
services and a large amount of functionality that it can provide in getting mail under
control. It also discusses the advanced features of Procmail and their benefits.

Chapter 8: Busting Spam with SpamAssassin shows the use of SpamAssassin in
conjunction with Procmail to filter out the wide range of spam that afflicts the
modern e-mail user.

Chapter 9: Antivirus Protection shows another way to protect users from rogue
e-mail—this time the spread of e-mail viruses. Using ClamAV you can scan mail
for viruses and schedule tasks to maintain an up-to-date antivirus database.

Chapter 10: Backing up your System will show you how to protect all your hardwork
by backing up not only the e-mail itself, but also all of the configuration options that
make up your e-mail server. Examples are provided to create an automated backup
schedule to minimize data loss. Of course, you'll also learn how to restore data from
these backups.

Who this book is for
This book is aimed at beginner or intermediate level System Administrators in small
businesses, who want to set up a Linux-based e-mail server without spending a lot of
time in becoming expert in individual applications.

Basic knowledge of Linux is also expected.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, along
with an explanation of their meaning.

Code words in text are shown as follows: " The configuration file entry that you need
to modify is DatabaseMirror.

Preface

[3]

A block of code is set as follows:

##
Example config file for freshclam
Please read the freshclam.conf(5) manual before editing this file.
This file may be optionally merged with clamd.conf.
##

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$ grep score.*BAYES /usr/share/spamassassin/* /etc/mail/spamassassin/*
~/.spamassassin/local.cf

Any command-line input or output is written as follows:

ls -al /etc/init.d/clamsmtpd

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Save the
file using the browser (normally, the File menu has a Save as option)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Linux and E-mail Basics
If you are one of those thousands of system administrators who manage the
networks and computers of small to medium-sized companies and you are thinking
of hosting your own e-mail service, this book is for you.

We will start with the most basic components of an e-mail system. Together those
components will allow your users to send or receive mail to or from anyone on the
Internet. This might be all you need, but many companies also want to provide their
users with an accessible webmail service that people can use from home or when
they are on the road. Another feature that many people unfortunately cannot be
without today is proper protection against viruses spread via e-mail as well as the
filtering of spam messages.

We will also cover the most important aspects of security to prevent unauthorized
or malicious use of the server. We will then discuss how to retain an archive of all
e-mails received or sent by the server. Finally, we shall describe a process to backup
and restore the server to protect all messages against data loss.

This book will cover the major features of the software in question, which will give
you a solid foundation to work from.

By the end of this book, you will have a functioning e-mail server suitable for most
small companies.

As the technical platform for our endeavor, we have chosen the GNU/Linux
operating system and a proven selection of free software tools that will help us
achieve the goal of a secure and reliable e-mail server for smaller companies. The
tools we have chosen are widely known and used, written by software professionals,
and are supported by a large community of users.

Linux and E-mail Basics

[6]

In this very first chapter of the book, we start with what you need to know before
you even start working on your server.

We discuss the advantages and disadvantages of running your own
e-mail server.
Guidance is given for choosing the appropriate hardware and network
connection needed for the server.
We give a brief introduction to the protocol used for exchanging mail
over the Internet and the main protocols available to allow users to access
their e-mails.
In order to correctly route e-mail, we discuss the configuration options
required on the server connected to the Internet.
Finally, we provide a brief introduction to backup e-mail servers.

By the end of this chapter, you will have a basic understanding of the main
components required to run an e-mail server.

Why manage your own e-mail server
Most Internet Service Providers (ISPs) already give customers the ability to send
and receive e-mail on their servers, so why would we want to own and manage it
by ourselves? As you are after all reading this book, you may already have your
reasons, but let us examine this question and some possible answers to it.

The most important reason for hosting and managing your own e-mail server is
control. For many organizations, e-mail is an important part of the Information
Technology infrastructure. Keeping control over your e-mail has many advantages.

If a company has offices in multiple places, you have full freedom when
choosing how to connect them. A virtual private network between the offices,
Transport Layer Security (TLS) connections between the offices, a single
server for all offices, one server per office, and so on.
By keeping your own messaging in-house, you can send messages to each
other without having them travel across unsecured lines to and from the ISP.
This also gives you a more reliable service if your Internet connection fails,
and it avoids unnecessary latencies.
You are not dependent on the competence of the provider's staff. If you
manage your own server and need to solve a difficult problem or implement
a custom solution for something, you can. Or if necessary, you can hire a
consultant to help you.

•

•

•

•

•

•

•

•

Chapter 1

[7]

If the provider goes bankrupt, all of your data resides safely in your server
room and on your backup media.
You are not subject to the limitations that our provider may set regarding,
say, use of disk space or the maximum size of messages.
You can implement any policies for message archiving, antispam, or
antivirus that you choose.

More control requires more responsibility and more knowledge, and that is where
this book comes in.

These hopefully compelling arguments aside, there are also downsides to hosting
your own e-mail server. This is a task that requires a certain level of knowledge and
commitment, and so should not be undertaken by everyone. With your own server,
you are not only responsible for the service you provide to your users, but you also
have a responsibility towards the whole Internet community. An ill-configured
e-mail server can help worms and spam to spread, which is not only is a disservice
to the community but can also get your server blacklisted. Even though a properly
set up server can run for years without requiring much maintenance, you must keep
yourself reasonably updated and be prepared to act upon new threats that may
arise. This is not meant to scare you off, but just to make you think carefully before
embarking on this project.

What you need to host an e-mail server
Your server needs to be available through a permanent Internet connection with
a fixed IP address. In theory, it is possible to run an e-mail server with a non-fixed
(dynamic) IP address but it will not be reliable when the IP address is changed, and
you will risk losing messages. With a dynamic IP address, you will also face a bigger
risk of being put on one of the blacklists for dynamic IP address ranges.

If you are serious about running an e-mail server, get a decent business-class Internet
connection. These are relatively inexpensive these days, and investing in one will
save a lot of trouble later on. E-mail traffic does not depend on high bandwidth, so
the capacity of a simple DSL line should be more than adequate.

Even though you will need a fixed IP address, you do not necessarily need a public
IP address dedicated to the mail server. If your company only has a few external IP
addresses and uses private RFC 1918 addresses (192.168.x.y) on the inside with
a Network Address Translation (NAT) router, this is not a problem. The NAT
router connects the private network to the rest of the world, and it is possible to set
up the router to forward the ports required by the e-mail services to the internal
e-mail server.

•

•

•

Linux and E-mail Basics

[8]

The next table shows which TCP ports are most likely to be used for this.

Port Service
25 Simple Mail Transfer Protocol (SMTP)
110 Post Office Protocol (POP)
143 Internet Message Access Protocol (IMAP)
993 IMAP over TLS

If employees want to access their messages from home or from the road, all that is
required is to make sure that no firewall is blocking access to the required ports, and
that the NAT router (if any) forwards these ports correctly. If users want to send
messages via the e-mail server, some extra configuration will be necessary to allow
the host to perform authentication to prevent unregistered users sending e-mail.

Sizing the hardware of your e-mail server
When choosing a computer to use as an e-mail server, a lot of people have
misconceptions regarding the hardware required to perform this task well. The
constantly increasing performance of computers seems to lead people into thinking
that they really need the latest and most buzzword-compliant stuff, even if they only
want to handle a few thousand messages per day.

Although a certain expertise is required to assess the hardware needs for an
organization, common sense goes a long way. For a company with 100 users, a
reasonably high upper limit for the number of messages per day would be 5,000.
That would allow each user to send or receive 50 messages every day. Even if we say
that each and every message is sent within the eight hours of the working day, on an
average, the system will not have to cope with more than 10 messages per minute.
It is reasonable that a modern computer can receive and act upon a single e-mail
message, often only a few kilobytes in size, in less than six seconds.

This little back-of-the-envelope exercise is obviously very rough and does not, for
example, take into account the fact that messages typically do not arrive uniformly
distributed in time, but it is still a pretty good way of estimating.

Chapter 1

[9]

Let us now take a deeper look into what to think about when choosing the server.
For an e-mail server that does not perform any content scanning (viruses, spam,
and so on), the performance is typically not bound by the CPU but by the I/O
performance, specifically the seek time of the hard disk(s) and the quality and
configuration of the I/O controller. Throwing more CPU horsepower at the problem
will not help. Modern computers are relatively better equipped CPU wise than
I/O wise, so investing in a multiple gigahertz multi-core CPU configuration is
probably useless. For any reasonably modern 1 GHz-class PC, a handful of messages
per second is no problem. That load equates to almost 20,000 messages every hour.

Adding content scanning will probably increase the CPU load quite a lot, and the
I/O system will also require more power to keep up. Still, one or two messages per
second should not place a noticeable load on the system.

What we have been discussing so far is just the e-mail server. All it does is receive
messages and deliver them to other hosts or local mailboxes. When choosing a
server, you should not forget that people are going to want to read their e-mail
too. This service is provided by additional server software. Just like the message
handling software, the key requirement is I/O and not CPU. The number of users of
the system is by itself an irrelevant figure; what is important are the usage patterns.
How often will the users poll their mailboxes? If 100 users poll their mailboxes once
every five minutes, on average there will be one every three seconds. Checking if a
mailbox has any new messages, takes a fraction of a second, so the burden will not
be significant.

The final, and arguably the hardest thing to consider, is disk storage. Using the
expected traffic numbers, we can make some rough estimates. Let us assume 80%
of our messages are under 1 KB, 15% have document attachments of 200 KB with
the remainder being videos and other large files of 1 MB. Therefore, using a 200
day working year, that equates to a storage requirement of approximately 80 GB
per year. A typical 1 TB disk drive would have the capacity for more than 12 years
messages assuming no messages are deleted.

These guidelines may appear vague and non specific, but it is impossible to give
exact figures. The performance one would expect from a given piece of hardware
depends on so many factors that trying to give anything but general guidelines
would be misleading. Use common sense and simple back-of-the-envelope
calculations; do not buy the fanciest server you can find unless you are sure you
really need it, but also do not use any old abandoned desktop machine you can find.
Even if the performance of the old desktop machine may suffice, the components
may be old and the service agreement or warranty may be out of date.

Linux and E-mail Basics

[10]

Main e-mail protocols: SMTP, POP,
and IMAP
Why are we discussing basic network communication protocols in this book?
Are we not running advanced software? Indeed we are, but knowing one's way
around the protocols cannot only assist debugging a possibly non-working system
but also increases the understanding of a mail system's behavior. We will start with
a rather non-technical overview of the protocols, after which we will focus on the
protocol details.

Overview
In the UNIX environment, traditional mail applications did not use any network
protocol at all. They have instead accessed the locally stored mailbox files directly
through the file system. Typically, the inbox of each user is stored in a single file in
either the /var/mail or the /var/spool/mail directory with the same name as that
of the user (for example, /var/spool/mail/joe). The focus of this book is to discuss
Linux based e-mail solutions for a small office where users do not wish to log on to a
central server with a terminal application in order to access their mail, so local mail
storage will be covered only briefly.

The most important protocol in Internet mailing is the Simple Mail Transfer
Protocol (SMTP). Its purpose is to transport e-mail messages between two systems.
Both these computers may either be servers, or one of them may be a client machine
on which the user runs the mail application—Outlook, Thunderbird, Eudora, or
whatever. To collect new messages, the end user does not utilize SMTP. This is
where the Post Office Protocol (POP) and the Internet Message Access Protocol
(IMAP) come in.

Some proprietary systems such as Microsoft Exchange and Lotus Notes use their
own protocols to access messages, and we will not discuss them here.

POP protocol
POP is the older and more widely used protocol of the two. It focuses on giving the
users access to their inboxes, from which the users can download the new messages
to their local computers and then delete them from the server. POP servers are not
meant to be used for permanent storage of messages. The POP services of some
Internet providers even prohibit users from leaving messages on the server after
they have been downloaded once. The chief disadvantage of POP is that it only
provides an intermediary storage medium and the users must store their messages
permanently someplace else (for example, on their local hard drives). This is not

Chapter 1

[11]

only impractical for users who want to access their e-mail messages from multiple
locations, but it is also a hassle for the System Administrator who may have to
implement a backup solution for the users' messages on their local hard drives. POP
also does not have any notion of providing multiple folders for every user; with POP
a user can access his/her inbox only.

IMAP protocol
IMAP is meant as an access method to a first class mail store, that is, it is designed
to allow the user to store the messages permanently on the server. This solves the
System Administrator's backup problem and allows the user to access all messages
from any place in the world (firewall restrictions aside). IMAP also has a more
widespread implementation of TLS-secured connections, making IMAP safe to use
in hostile environments. To improve performance and allow users to work with
their mailboxes while not being connected to the mail server, most mail applications
with IMAP support caching the downloaded mailboxes and messages in the local
hard drive.

Unlike POP, IMAP supports multiple folders and stores message state information
(whether or not the message has been read, replied to, or deleted) on the server.
This means that a user accessing their message store from different locations, with
possibly different e-mail clients, will be presented with a consistent, up-to-date view
of their messages. IMAP also supports server-side searching, so the client application
does not need to download all the messages to search for an e-mail.

The SMTP protocol
SMTP is a line-oriented text protocol that runs over TCP, which makes it trivial to
decode SMTP transcripts and to initiate SMTP sessions using the regular telnet client
found on just about any computer. An SMTP client starts a session by connecting
to port 25 on the SMTP server. After the server has greeted the client, the client
must respond by saying hello, or actually HELO or EHLO, followed by the client's
hostname. If the server accepts the cordial greeting, the client may begin the first
mail transaction.

An SMTP mail transaction consists of three parts—a sender, one or more recipients,
and the actual message contents. The sender is specified with the MAIL FROM
command, each recipient with an RCPT TO command, and the start of the message
contents with a DATA command. If the server accepts the message, the client may
continue with additional transactions or issue the QUIT command to terminate the
SMTP session.

Linux and E-mail Basics

[12]

Let's be less abstract and look at an actual SMTP session to illustrate the protocol.
The bold face print represents what the client sends to the server.

220 mail.example.com ESMTP Postfix (2.12.6.2)
EHLO gw.example.net

250-mail.example.com
250-PIPELINING
250-SIZE
250-VRFY
250-ETRN
250 8BITMIME
250-STARTTLS
250-ENHANCEDSTATUSCODES
MAIL FROM:<jack@example.net> SIZE=112

250 Ok
RCPT TO:<jill@example.com>

250 Ok
RCPT TO:<jack@example.com>

250 Ok
RCPT TO:<joe@example.com>

550 <joe@example.com>: Recipient address rejected: User unknown in
local recipient table
DATA

354 End data with <CR><LF>.<CR><LF>
Subject: Test mail

To: <root@example.com>

Date: Sun, 15 May 2009 20:23:22 +0200 (CEST)

This is a test message.

.

250 Ok: queued as B059D3C2B
QUIT

221 Bye

This example shows a host that claims to be named gw.example.net connecting
to an SMTP server that calls itself mail.example.com. Because the server's first
response contains ESMTP, the client decides to try Enhanced SMTP (ESMTP) and
greets the server with EHLO instead of HELO. The server accepts this greeting and
responds with a list of the supported ESMTP extensions.

Chapter 1

[13]

Together with the sender address, the client sends the SIZE attribute to indicate the
size of the message to the server. This is allowed because the server has stated that
it supports the SIZE extension. If the size specified by the client exceeds the message
size limit set by the server, the message can be rejected at once rather than after the
whole message has been received and the server can assess the size.

An SMTP message can obviously have more than one recipient. This has a few
consequences that must be remembered while implementing a mail system and
inventing policies. In the previous example, the mail server accepts the first two
recipients but rejects the third one. As two recipients have been accepted by the
server, the client will try to send the message contents. Here the message is accepted
by the server and queued for delivery (250 Ok: queued as B059D3C2B), which
means that the SMTP server has taken over the responsibility for the delivery of the
message to the accepted recipients. If the message cannot be delivered, the server
will send a non-delivery message (bounce) back to the sender. The server could
also have chosen to reject the whole message. If so, it would have rejected it for all
recipients and not delivered it at all. In other words, in response to the message
contents the server must either reject the message for all recipients or accept it for
all recipients.

It is vital to understand the difference between the envelope and the header. The
envelope of a message consists of the information given in the MAIL FROM and RCPT
TO commands, that is, the sender and recipient information that are used to deliver
the message. An SMTP server pays no attention what so ever to the From, To, and Cc
message headers. In our example the To header contains just a single address with
no other relation to the actual recipient addresses than the domain, but that is just
a coincidence. Bounces are always sent to the envelope sender address, in this case
jack@example.net. The sender address of bounce messages is the empty sender
address, often called the null sender. However tempting it may be for some people,
the null sender address must not be blocked.

So far, we have not commented on the numerical codes given by the server at the
beginning of each line. Each number has a specific meaning and it is important to
learn the correct interpretation of the first digit.

Digit Meaning

2 Server has accepted the previous command and is awaiting your next
command.

3 Used only in response to the DATA command, and means that the
server is ready to accept the message contents.

4 Temporary error: The request cannot be performed at the moment, but
it may be successfully serviced later.

5 Permanent error: The request will never be accepted.

Linux and E-mail Basics

[14]

In SMTP, error conditions can be either temporary or permanent. Both 4 and 5
are used to signal errors. A client that receives a temporary error designated by 4
should disconnect, keep the message in the queue, and retry at a later time. Typical
temporary error conditions include a full mail queue disk, a server configuration
error that must be resolved before messages can be accepted, or a temporary DNS
lookup error. Permanent errors are indicated by the first digit being 5 and mean that
the request will never be accepted, so a client will have to remove the message from
the queue and send a bounce to the sender telling him or her that the message could
not be delivered.

There is a lot more to SMTP than this quick introduction has covered. For further
reading there are a number of documents that cover Internet networking related
topics known as Request for Comments (RFC). RFCs are memorandums published
by the Internet Engineering Task Force (IETF), which are generally adopted as
standards. For SMTP the most important ones are RFC 821 (Simple Mail Transfer
Protocol) and RFC 822 (Standard for the format of ARPA Internet text messages).

E-mail and DNS
The Domain Name System (DNS) plays an important role in e-mailing. The DNS is
used by both, e-mail clients and e-mail servers. Even if you do not intend to maintain
your own DNS server, a thorough understanding of DNS's role in e-mailing is a
necessity for the mail server operator. This section assumes that the reader has basic
knowledge of how DNS works in general.

DNS record types used by e-mail applications
In many networking scenarios, only two DNS record types are used—the A
record and PTR record. These map hostnames to IP addresses and IP addresses to
hostnames respectively. These record types are also used for e-mail, but there is also
a third DNS record type that is uniquely available for e-mail.

How does an SMTP server discover to which host a message for a certain domain
should be delivered? The recipient domain is, not surprisingly, used as the key in
one or more DNS lookups. The first lookup that is made is for the mail-specific MX
record—the mail exchanger record type. The MX entry allows the DNS operator
to specify the hostname or hostnames of servers that can receive mail for a certain
domain. For example, MX records can be used to specify that messages to someone at
example.com should be sent to mail.example.com. If the recipient domain does not
have an MX record, an attempt is made to find an A record for the recipient domain.
If the A record lookup succeeds, the mail will be delivered to the host. If both the MX
and A lookups do not return any results, the message is deemed undeliverable and
is returned to the sender.

Chapter 1

[15]

There are two good reasons to having MX records:

Firstly, it might not be desirable to be forced to map the A record of a domain
to the mail server. For example, Company Inc. with the WWW address
http://www.example.com/ wants to allow visitors to use the shorter
http://example.com/ URL, but does not want to run the web server
application on the mail server (or vice versa).
The more important reason is that the result of an MX lookup not only
contains a list of hostnames, but rather a list of (hostname, priority) tuples.
The priority field is an integer describing the priority of the hostname within
the list. The absolute magnitude of the priority number does not matter,
but it is used in relation to the priority of any other hostnames to create an
ordered list of hostnames to try when delivering a message. The list is in
ascending order, so the hostname with the lowest priority number will be
contacted first. If two hostnames have equal priority, they will be tried in
random order.

Equal-priority MX records can be used as a very crude form of load balancing
between two or more servers. This is also possible with A records that map to
multiple IP addresses. A hierarchy of backup mail servers with different priorities
can be set up for a domain using MX records that cannot be made to happen with A
records. Let us look at a constructed example of an organization that uses a lot of
mail servers.

Priority Hostname
10 mx1.example.com

10 mx2.example.com

20 mx3.example.com

30 mx4.example.com

If this DNS configuration is set for the domain example.com, SMTP servers are
expected to try to deliver messages for example.com to mx1.example.com or
mx2.example.com first. If both connections fail, mx3.example.com should be tried,
and if even that server does not respond in a timely way, mx4.example.com is
the last resort. Should that fail too, the message is kept and delivery is retried at
a later time.

•

•

Linux and E-mail Basics

[16]

Backup mail servers
Having a backup mail server that can receive messages if the primary server is
unavailable sounds like a really good idea, but today's reliable Internet connections
together with spam, worms, and other rubbish have for the most part made backup
mail servers unnecessary and often even harmful. The rationale for having a backup
server is that it can receive messages while your primary server is down, and then
deliver them to the primary server when it is up again. However, the advantage of
this is very small, as all SMTP servers are required to queue undeliverable messages
for at least five days before they are returned to the sender. Granted, by having a
backup server it is possible to store unavailable messages for longer time than five
days. However, if the main SMTP server is unavailable for longer than five days at
a stretch then there are probably bigger problems than a few lost messages.

Because a backup mail server typically does not have the same spam-thwarting
configuration as the primary server, spammers often specifically target backup
servers in order to bypass the stricter rules of the primary server.

Another strong reason to avoid backup mail servers is that they typically do not
perform recipient validation. This means that they do not know which recipient
addresses are valid for the domains they act as backup servers for. This requires
a backup server to accept all messages for the backed-up domains and attempt to
deliver them to the primary server. The primary server will reject invalid recipients,
causing the backup server to bounce such message back to the sender. This is known
as backscatter and is bad for two reasons:

Sender addresses are often spoofed, so the bounces may be sent to an
innocent bystander.
It may fill the mail queue with bounced messages that cannot be delivered
because the receiving server is unavailable.

A busy server that does not perform recipient validation and is hit heavily with
spam may have thousands or tens of thousands of undeliverable messages residing
in the queue.

•

•

Chapter 1

[17]

Summary
In this chapter, we started by discussing why you should even consider hosting your
own e-mail server. Then, we looked at some questions that need to be answered
before starting work with the server—the kind of network connection, computer
power and disk space requirements that are expected.

To manage an e-mail server successfully, an understanding of the network
communication protocols used is important. We gave an overview of POP and
IMAP, and delved more deeply into the most important of them all, SMTP.

Finally, we looked at the vital role that the DNS plays in routing messages to the
correct server or a backup server if one is available.

Setting up Postfix
The Mail Transfer Agent (MTA) is perhaps the most important part of a mail
system. It is responsible for receiving messages from the Internet or from your
own users and doing what it can to make sure that the messages arrive at their
destinations—other mail servers or mailboxes of your users.

Postfix has been chosen as the mail transfer agent to be covered in this book.
Postfix has a large feature set, it has an excellent security track record, it is fast,
easy to configure, and under active development.

This book assumes that you are running Postfix 2.0 or later. Any feature or behavior
of Postfix that is specific to releases later than 2.0 will be noted.

Introduction to Postfix
This first section gives a brief introduction to Postfix, how it works, and describes
how its behavior can be controlled.

What is Postfix
Postfix is a modular mail transfer agent developed by IBM researcher Wietse
Venema. It is free software and was released publicly for the first time in 1998
under the name VMailer. It is written in C and currently consists of about 105,000
lines of code (comments excluded), which makes it fairly small. It works on most
non-historic variants of UNIX and Linux.

As a pure mail transfer agent, Postfix does not provide any service for allowing
users to collect their mail via the POP or IMAP protocols. That task must be carried
out by some other piece of software. The software discussed in this book for
facilitating retrieval of mail from the host is Courier IMAP.

Setting up Postfix

[20]

All official Postfix documentation, as well as the source code and links to third-party
software and archives of the very active mailing list can be found at the Postfix
website at http://www.postfix.org/.

Postfix architecture: An overview
This section will describe the different parts of the Postfix mail transfer agent and
explain what really goes on when you send a message through the system. Although
this might not be the most exciting text you have ever read, understanding the basics
of how Postfix works is essential if you wish to successfully manage a Postfix server.

Postfix is divided into a number of separate daemons, or background processes, that
communicate with each other. The daemons have distinct areas of responsibility,
may run in different security contexts, and may have different rules for the number
of processes of their type that may be created. All daemon processes are created as
needed and are supervised by a mother daemon, the master. Some daemons are
rarely or never restarted, but most of them will commit suicide after having served
a configurable number of requests or after they have been idle for a configurable
duration of time. The following figure shows how messages flow through a Postfix
system, and can be used to accompany the text that follows. The solid lines show the
path of the message content while dotted lines show other forms of communication.

sendmail postdrop

smtpd

pickup

qmqpd

cleanup qmgr

trivial-
rewrite

smtp

Imtp

local

virtual

pipe

spawn

...

Not all Postfix daemons will be described here, just the important ones. A complete
rundown of all daemons can be found in the Postfix Architecture Overview document
at http://www.postfix.org/OVERVIEW.html.

Chapter 2

[21]

New message arrival
New messages can arrive into the Postfix system in three ways. The most common
way is, of course, via the Simple Mail Transfer Protocol (SMTP). The daemon
responsible for receiving messages via SMTP is named smtpd. The uncommon
QMQP Submission Protocol, introduced in Daniel J. Bernstein's MTA qmail, is also
supported with the qmqpd daemon. However, this book will not discuss QMQP.

The third way in which a message can arrive is via local submission with the
sendmail program. This is the standard way to submit mail messages from
programs and scripts running on a UNIX host. Postfix provides a sendmail program
that in most regards is compatible with the sendmail program of the sendmail mail
transfer agent (http://www.sendmail.org/). Many UNIX mail user agents such as
Mail, Pine, and Mutt, as well as webmail software such as SquirrelMail and IMP use
the sendmail interface to submit new messages, although some software offer the
option to submit messages via SMTP instead.

The sendmail program hands messages on to the postdrop program, which places
message files in the maildrop directory within the Postfix queue directory. The
pickup daemon waits for messages to arrive into the maildrop directory, and passes
them on to the cleanup daemon. From there on, sendmail-submitted messages
take the same road as messages submitted via SMTP or QMQP. Messages can be
submitted via sendmail even if Postfix is not running on the machine at the moment.
When Postfix starts the next time, pickup will discover the queued-up message files
and process them.

When smtpd, qmqpd, or pickup receives a new message, it hands it to the cleanup
daemon. This daemon enforces restrictions on the message's size, acts on any content
restrictions configured by the user, rewrites sender and/or recipient addresses as
required by the configuration, adds any required headers that are missing, and does
a few other things. The cleanup daemon uses the trivial-rewrite daemon for
some address rewriting operations. When done with its business, cleanup puts the
queue file in the incoming queue and notifies the queue manager.

Scheduling message deliveries
The queue manager, qmgr, is responsible for scheduling the delivery of messages.
To decide how a message should be delivered to each recipient (namely the delivery
method and the next destination), qmgr gets help from trivial-rewrite. The queue
manager requests delivery agent processes from the master daemon and collects the
results of the deliveries.

Setting up Postfix

[22]

The queue manager is responsible for all messages from the point when the cleanup
daemon hands them over until they are removed from the queue. The removal
can be either because they have been successfully delivered to all recipients or
because they have been in the queue for so long that Postfix decides that they are
undeliverable. By default, messages will remain in the queue for a maximum of five
days. The queue manager calls upon the bounce daemon to send a bounce message
to the sender.

The queue manager uses a number of directories for different purposes. The
incoming queue is monitored for new messages, and the next stop is the active
queue. The active queue contains the messages that are ready for delivery and are
waiting to be dispatched to a delivery agent. If a delivery attempt fails, the message
is moved to the deferred queue. That queue will be scanned periodically and, if it is
time to retry the delivery of a message, the queue file for the message will be moved
back into the active queue. Whether a delivery of a message should be reattempted
when the queue is scanned depends on two factors—how much time has passed
since the message arrived and the two configuration parameters that set a minimum
and maximum time interval between the reattempts.

In addition to these queues, there is also a special-purpose queue named hold. This
queue contains messages that have been put on hold by the system administrator
using the postsuper command. Postfix will not touch these messages at all until
they are taken off hold with the same command. The hold queue can be used to
temporarily stall the delivery of certain messages, for example because they are
large and need to be delivered during off-peak hours, or because they are deemed
suspicious and need to be inspected before they are allowed to be delivered.

The different queues used by Postfix are described in detail in the
QSHAPE_README document (http://www.postfix.org/QSHAPE_README.html).
This document also describes qshape, a script that ships with Postfix and analyzes
the contents of the queues, and helps you identify bottlenecks.

Message delivery
Postfix comes with a number of delivery agents that are used to deliver messages
using various means and protocols. The delivery agents are the last daemons that
touch the messages before they leave your system.

The Postfix SMTP client, smtp (not to be confused with the SMTP server, smtpd), is
used to deliver messages to other hosts via the SMTP protocol. It is very similar to
the LMTP client, lmtp, which delivers messages via the Local Mail Transfer Protocol
(LMTP). As a network protocol, LMTP is very similar to SMTP, but where SMTP is
used to transport messages between MTAs, LMTP is used for the final delivery of
messages to the mail store from which users can access the messages.

Chapter 2

[23]

The local delivery agent, local, delivers messages to users with normal accounts on
the system. It supports aliases for simple mailing lists or role addresses as well as
.forward files so that users themselves can set up forwarding of their messages.

If you have virtual mailbox users—users that do not have real accounts (for example,
shell accounts) on the system—their messages are delivered with virtual
Postfix daemon.

If Postfix's standard delivery agents do not suffice, you can write your own delivery
agent and have Postfix invoke it for some (or all) messages. In that case, you can
either use the pipe daemon to have the message bodies given to your delivery agent
via the standard input stream, or you can use the spawn daemon if you want to write
a delivery agent that accepts messages via some network protocol.

Supporting programs
Postfix contains a number of supporting programs that you can use to control, test,
and debug your Postfix system. This list is not exhaustive and gives only a brief
description of each program, but some of the programs will be used later in the
chapter. It is a good idea to get acquainted with them so that you at least know
what sort of problems they can help you solve.

Program Description
mailq Views the current contents of the Postfix queue. The output includes the

size, time of arrival, sender address, and recipient address/addresses of
each message. Internally mailq just invokes the postqueue command
and exists only for backwards compatibility with the sendmail mail
transfer agent.

newaliases Uses the postalias command to rebuild all local alias files. Local
aliases will be covered in the Virtual alias domains and local aliases section.

postalias Rebuilds a single alias file or queries an alias lookup table.
postcat Shows the contents of a binary queue file residing in the Postfix queue.
postconf Shows the current or default values of Postfix's configuration parameters.

Can also modify the main configuration file, which can be useful in scripts.
postfix Starts, stops, or restarts Postfix, or reloads its configuration. Can also

be used to check the integrity of the queue directories and a few other
seldom-used administrative tasks.

postmap Rebuilds an indexed database file used for table lookups or queries
any lookup table. The Troubleshooting lookup tables with postmap section
discusses how this can be used to debug a Postfix setup.

Setting up Postfix

[24]

Program Description
postqueue Apart from carrying out the work for the mailq program, postqueue

can also be used to flush the queue. Flushing a queue means moving all
messages in the deferred queue to the active queue. This can be useful
to schedule immediate message delivery, but be careful. If your server is
heavily loaded and performing badly, flushing the queue will only make
matters worse. The sendmail program can also be used to flush the
queue, again for compatibility reasons.

postsuper Allows you to take actions on already queued messages, for example
deleting or re-queuing them. It can also perform a structural check on
the queue directories and fix problems such as queue files having the
wrong names. Such a check is, for example, necessary if the whole queue
directory has been moved or restored from a backup.

Installation and basic configuration
In this section, we will take a look at how to obtain and install Postfix as well as how
to make basic configuration changes. By the end of this section, you will be able to
use Postfix to send and receive e-mail messages.

Choosing the Postfix version
There are two separate branches of Postfix development— the official release and
the experimental release. The official release is sometimes referred to as the stable
release, but that is somewhat misleading as it implies that the experimental release
is unstable. That is not the case. The experimental release is used to introduce all
new Postfix features. When the implementations of the features and their interfaces
(for example, their configuration parameters) have stabilized sufficiently, they are
brought into the official release. Normally, the only changes made to the official
release are bug fixes and fixes for portability problems.

The experimental release is usable in production environments, but the code is of
course less tested, and configuration parameters and their semantics may change
between releases. If you run the experimental builds, you are more likely to run into
bugs and other oddities that the stable release should not have. On the other hand,
you get access to new features before those using stable builds. If you choose to
use the experimental release, you should build and install Postfix from source code
instead of using some package management system (say RPMs). This will allow you
to easily apply any patches for newly discovered problems.

Chapter 2

[25]

The experimental release has a version number that indicates the number of the
upcoming official release together with the release date of the experimental release in
question. For example, at the time of writing the current official release was 2.6.3 and
the current experimental release was 2.7-20090807.

Installing from a package
Most Linux distributions include Postfix as a package that can easily be installed.
You are better off with the distribution's package unless you are comfortable
building software from source and, if required, debugging any build problems that
might occur. Most packages come prebuilt with some extra features that would
otherwise require a more complicated build process.

Because there are many different packaging systems, the actual process of
installing the Postfix package(s) will not be covered in this book. Please consult
the documentation of your package management system for details.

A word of caution for users of distributions that allow multiple mail
transfer agents to be installed at the same time: If you are installing
Postfix to replace another mail transfer agent, you should make sure the
previous software is properly removed from your system. As probably
all mail transfer agents provide a sendmail program, this file is installed
with a name such as sendmail.postfix, and a symbolic link points
from sendmail to sendmail.postfix or whatever mail transfer
agent's sendmail program is chosen to be the main one. If that symbolic
link does not point to Postfix's sendmail program, you might get
surprised when you attempt to send a message.

Installing from source code
Installing Postfix from the original source code is not very difficult and enables
you to run any version you want and not just the version chosen by the
package maintainer of your Linux distribution. The Postfix source code can be
downloaded from a number of mirrors accessible from the main Postfix website
http://www.postfix.org/download.html.

Once you have downloaded and unpacked the archive in a suitable directory
(for example)/usr/local/src, you will notice that the Postfix build system does
not use GNU autotools and therefore does not have the configure script that one
normally finds in the root directory of the unpacked source code archive. The Postfix
build system will automatically take care of this step. Do not worry if you want to
install Postfix in some non-standard location, you will have an opportunity to set
various installation directories later.

Setting up Postfix

[26]

If you need to enable non-standard features such as support for MySQL or LDAP
lookups, you must inform the build system about this and where to find the
libraries and header files for each feature. For exact instructions and details about
each non-standard feature, please review the README file for each and every one of
them. For example, the MySQL instructions found in README_FILES/MYSQL_README
tell you to run the following command to enable MySQL support when
building Postfix:

$ make -f Makefile.init makefiles \
 'CCARGS=-DHAS_MYSQL -I/usr/local/mysql/include' \
 'AUXLIBS=-L/usr/local/mysql/lib -lmysqlclient -lz -lm'

Adjust the paths to where the MySQL header files and shared libraries are located
on your system. You must have the development header files and libraries for
MySQL installed. Depending on your Linux distribution these may have to be
installed separately.

If you need more than one extra feature, you will have to combine the commands
given in each of the README files. Pay close attention when doing this. All quotes,
equal signs, and spaces need to go at precisely the right places. The CCARGS and
AUXLIBS variables must be set only once, so the general form of combining several
configuration commands is this:

$ make -f Makefile.init makefiles \
 'CCARGS=<feature 1 CCARGS setting> <feature 2 CCARGS setting>' \
 'AUXLIBS=<feature 1 AUXLIBS setting> <feature 2 AUXLIBS setting>'

After this, you are all set to build Postfix using the following command:

$ make

When the build is complete (hopefully without errors), it is time to create a user
and some groups that Postfix can use for many of its daemons. Start by adding
two groups—postfix and postdrop. For example, you can use the groupadd
tool that probably is available in your Linux distribution.

$ groupadd postfix
$ groupadd postdrop

Verify this by checking the contents of /etc/group. It should by now contain lines
similar to this:

postfix:x:123:
postdrop:x:321:

Chapter 2

[27]

The next step is to create a user named postfix. This user requires neither shell
access nor a valid home directory. The primary group of this new user should be
the newly created postfix group. Here is how to do it using the useradd tool:

$ useradd –c postfix -d /tmp –g postfix –s /bin/false postfix

Again, verify by checking the contents of /etc/passwd:

postfix:x:12345:123:postfix:/tmp:/bin/false

The next and final step is to install your newly built Postfix. If you are
installing Postfix for the first time in this particular Linux installation, run
the following command:

$ make install

This command will guide you through an interactive installation procedure where
you get to choose various installation directories and file locations.

If you are upgrading Postfix from a previous release, run the following
command instead:

$ make upgrade

All right! Postfix is now installed on your system and you will soon be ready to
use it.

To make sure that Postfix starts when your system boots, some extra measures are
needed. Most Linux systems have a SysV-style init, so you need to construct an
init script and make proper links in the runlevel directories.

The Postfix configuration
Like most UNIX software, Postfix reads its configuration from text files stored in the
/etc directory or a subdirectory thereof. Postfix configuration files are usually stored
in /etc/postfix, but you can configure Postfix to use any other directory. Postfix
uses two main configuration files, master.cf and main.cf, and any auxiliary files
that you set up yourself.

After a change to any of these files, Postfix must be reloaded. This can be done with
the same program that started Postfix, either via the init scripts or via some other
service management tool that your distribution provides.

postfix reload

/etc/init.d/postfix reload

/etc/rc.d/init.d/postfix reload

Setting up Postfix

[28]

Postfix restart required after changing inet_interfaces:
If the inet_interfaces parameter is changed, a reload is not enough.
Postfix must be stopped and restarted for the changes to take effect. This
is also true for the inet_protocols parameter introduced in Postfix 2.2.

main.cf
The file you will be editing most frequently is main.cf. This file defines the
parameters that control the behavior of Postfix's daemon processes. Each line
has the following form:

parameter = value

This simply means that the configuration parameter named parameter is assigned
the contents value. A parameter may only be specified once in main.cf. If you
mistakenly give the same parameter different contents at different places in
main.cf, the last occurrence will be the one used by Postfix. Apart from this, the
order in which parameters are listed in main.cf is insignificant. However, within
the parameter contents the order of the keywords may matter. For example, the
following two parameter settings are not necessarily equivalent:

parameter = A, B
parameter = B, A

If the value of a parameter is not specified in main.cf, Postfix will use a default. The
default for most parameters is hardwired in the source code, but some default values
are determined at build time and a few of them at run time.

Lines in main.cf can be marked as comments by starting them with #.

These two lines are comments. They can be used to temporarily
disable parameters, or to explain the configuration.
mydomain = example.com
mydestination = $mydomain, localhost

This short example also shows how the current value of another parameter can be
inserted when setting a parameter value; simply type a dollar sign directly followed
by the name of the parameter whose value you wish to obtain. The last line in the
previous code snippet is equivalent to the following:

mydestination = example.com, localhost

Chapter 2

[29]

Sometimes it is not convenient to have everything on one line. By starting a line with
whitespace, you tell Postfix that the line is a continuation of the previous line. For
example, the following two are equivalent:

smtpd_recipient_restrictions = permit_mynetworks, reject
smtpd_recipient_restrictions =
 permit_mynetworks,
 reject

Starting with Postfix 2.1, the format of the main.cf configuration file is
documented in the postconf(5) manual page that also describes all available
configuration parameters. The manual page is available online from
http://www.postfix.org/postconf.5.html.

The postconf program is very useful for examining the current and default value
of main.cf parameters. Start the program with one or more parameter names as
options and it will report the values that Postfix would use. If you use the -d option,
postconf will report the default value of the parameter(s) you list.

For example, here is how to compare the current value of mydestination with its
default value:

$ postconf mydestination

mydestination = $mydomain, localhost.$mydomain

$ postconf -d mydestination

mydestination = $myhostname, localhost.$mydomain, localhost

Using this method is often quicker than looking in main.cf or wading through
a huge manual page to find the default value. It also reveals the actual value that
Postfix thinks a parameter has, making it easier to spot typing errors.

In addition to displaying main.cf configuration parameters, the postconf
program can edit main.cf for you. This is especially useful if you want to automate
configuration changes in scripts. This is done with the -e option that expects one or
more parameter assignments to follow.

$ postconf relay_domains

relay_domains =

$ postconf –e relay_domains=example.com

$ postconf relay_domains

relay_domains = example.com

Setting up Postfix

[30]

master.cf
The master.cf file configures the Postfix master daemon that was discussed earlier.
For most simple Postfix setups, master.cf does not need to be touched at all.

Each line in master.cf defines a service that a certain program carries out. For
example, the daemon that receives and processes SMTP connections, smtpd, is one
service. The program that delivers messages to the local users, local, is another
service. In addition to the 15–20 services that Postfix defines from the start, you can
add your own services.

The fifth column in master.cf controls whether each service should be run in a
chroot environment. chroot is a UNIX feature that changes the root of the file
system, making it impossible to access a file outside the new root directory even if
a running process is compromised by an evildoer with root privileges. The source
distribution of Postfix disables chroot completely by default, but some Linux
distributions have it enabled. Although chroot is a security feature that can be quite
useful as an extra safety net, it makes Postfix more difficult to maintain and is more
or less useless unless the rest of your system is tightly secured.

In Postfix 2.2 and later, the format of the master.cf configuration file is documented
in the master(5) manual page. In earlier releases, most of that information can be
found in comments in the master.cf file itself.

Lookup tables
Some information cannot be conveniently represented in main.cf or master.cf.
Postfix's concept of lookup tables allows information to be stored in external files,
relational databases, or LDAP directories.

To Postfix, a lookup table is an abstract entity that maps one string, the lookup key,
to another string, the lookup result. Those who are mathematically inclined may
look upon it as a function or as a collection of (key, value) tuples, and programmers
may recognize it as a hash table. Basically, it functions like a phonebook; you look
up a name and get a phone number or an address back.

Postfix supports many different kinds of lookup tables. Some of them are referred
to as indexed, meaning that the postmap command is used to compile the input file
written by the user to a binary format the Postfix reads. This is done for performance
reasons and allows the tables to contain tens of thousands or even hundreds of
thousands of entries without affecting performance. This means you need to
remember to use postmap after editing the file.

Chapter 2

[31]

The following table describes the most important lookup table types:

Type Description
cdb An indexed map type that uses the CDB library. Very fast for large number

of entries. Supported by Postfix 2.2 and later versions.
cidr Allows lookups of IP addresses using the CIDR notation. Supported by

Postfix 2.1 and later versions.
dbm DBM is a classic UNIX indexed database format that is available on Linux

too, but its use is discouraged because it uses two files to represent the
database. This increases the risk of inconsistencies as the two files cannot be
updated atomically. Use hash or cdb instead.

hash This indexed lookup table type is probably the most commonly used, and
utilizes the Berkeley DB library.

ldap LDAP directories are often used in corporate and university environments
to store user databases. Microsoft's Active Directory is also accessible
through LDAP, simplifying the use of Postfix in a heterogeneous
environment.

mysql The well-known MySQL relational database engine is supported, allowing
you to make almost any type of SQL query.

pcre Allows matching the looked-up strings against a list of regular expressions
where the first matching expression wins. Uses the widespread Perl
Compatible Regular Expressions (PCRE) library.

pgsql The PostgreSQL relational database engine is also supported.
proxy The proxy type is a special lookup table type that is used to wrap other

lookup tables. This is useful for reducing the number of concurrent
connections when lookup tables are being used from services with a high
process count. For example, accessing LDAP directories from the SMTP
server can cause the maximum number of connections in the LDAP server
to hit the roof, but accessing the LDAP directory through the proxy lookup
table will reduce the concurrency.

regexp Works such as pcre but without the dependency to the PCRE library. The
regular expression grammar supported is limited and the performance may
be worse than with pcre. If possible, choose pcre rather than regexp.

static This type is a special-purpose one that always returns a given string
regardless of what is being looked up. This can be used in cases where
Postfix expects a lookup table reference instead of a fixed string, but you
really want to specify a fixed string.

You can use any type of lookup table for any purpose; Postfix does not impose any
limitations except that security considerations require that some features of regular
expression tables are disabled under some circumstances. That said, not all lookup
table types make sense to use for each and every purpose.

Setting up Postfix

[32]

Many of the lookup table types are always supported by Postfix, but some of them
are optional and require support to be compiled into Postfix. Many Linux vendors
provide additional packages that you can install to obtain, for example, LDAP
support. To find out which lookup table types your Postfix installation supports,
use the postconf command.

$ postconf -m

static
cidr
nis
regexp
environ
proxy
btree
unix
hash
pcre
ldap
sdbm

In most cases, the simple indexed lookup table types will be the most convenient
ones. An indexed lookup table is nothing more than a text file that you can edit
using your favorite text editor. The first part of each line, up to the first space
or tab, will be taken as a lookup key and the rest of the line will be taken as the
corresponding value.

key value

One possible drawback with indexed lookup table types is that you do have to
remember to run postmap when you have updated the table. You do not have to
reload or restart Postfix after updating an indexed file with postmap. Postfix will
discover the updated file itself and restart its daemon processes as required.

The topic of lookup tables could fill a whole chapter by itself, so this section will just
touch upon them. We will use lookup tables in a few places later in this chapter, for
example, when we set up policies for spam control.

For a more elaborated discussion of lookup tables and a list of all available lookup
table types, see DATABASE_README (http://www.postfix.org/DATABASE_README.
html) and the manual pages that document the use of some of the more complex
lookup table types.

Chapter 2

[33]

Getting Postfix up and running
Now that you have installed Postfix, let's make some basic configuration changes,
fire it up, and take it for a test drive. If you installed Postfix from a package you may
already have answered some configuration questions and have had Postfix started
for you.

Domains and hostnames
Before starting Postfix, let's review some fundamental settings in main.cf. The first
ones concern the names of your domain and your mailhost. The mydomain parameter
should be set to your main Internet domain. If you run Example Inc. having the
domain http://www.example.com/, the following setting would be reasonable:

mydomain = example.com

The value of mydomain will affect how Postfix transforms hostnames that are not
fully qualified. This means that all bare hostnames encountered in places such as
sender and recipient addresses will be qualified with this domain—a hostname
such as jeeves will, in this case, be turned into jeeves.example.com. We will also
refer to mydomain in other parameters using the $parameter notation described
earlier. Note that the feature of appending mydomain can be disabled by setting the
append_dot_mydomain parameter to NO, and some Linux distributions make this
modification by default. In general, the value should be left as YES.

A related parameter is myhostname that incidentally tells Postfix the hostname of
the machine. The hostname is among other things used as default when the Postfix
SMTP server greets a client and when the SMTP client says HELLO to a server.
Postfix is normally able to determine this by itself, but sometimes you want to
override this. Use the postconf command to see if the current value looks good.

$ postconf myhostname

myhostname = jeeves

Yes, this looks fine. Note that this hostname is not fully qualified, so the actual
hostname used in various places will include mydomain.

A parameter that is related to mydomain is myorigin. This parameter specifies the
domain that should be used to qualify e-mail addresses that have no domain part
at all. This may seem highly irregular, but it is actually pretty common. Messages
submitted with the sendmail program will by default get the current username as
the sender address and, because usernames do not have domains, the username will
be qualified with myorigin before the message is delivered anywhere. By default,
myorigin is set to the same value as myhostname.

$ postconf –d myorigin

myorigin = $myhostname

Setting up Postfix

[34]

This should be fine, but you might want to set it to mydomain instead.

myorigin = $mydomain

The next parameter that we will give attention to is mydestination. This parameter
is quite important because it tells Postfix which domains are considered local, that
is, which domains should be delivered to UNIX accounts on this machine. Unlike
mydomain and myorigin, mydestination may contain multiple domains separated
by space or commas. By listing example.com here, Postfix will accept messages
addressed to joe@example.com and deliver them to the UNIX user "joe".

One important property of local domains is that they are all considered equal. If
example.com and example.net are both listed in mydestination, joe@example.
com will be equivalent to joe@example.net. If you need additional domains where
the users are not equal, that is joe@example.com and joe@example.net should lead
to different mailboxes, you need to implement virtual alias domains, described in the
Virtual alias domains section.

Returning to Example Inc. you will want to have example.com listed in
mydestination as it is your primary domain. The old domain, example.net, should
also work for the time being so that one should be included too. Additionally, it is
wise to list the value of myhostname in mydestination as well as make sure that
mail addressed to localhost gets delivered properly. This yields the following
complete list of local domains for Example Inc.:

mydestination = $mydomain, example.net, $myhostname,
localhost.$mydomain

So why localhost.$mydomain instead of just localhost if we want messages
to root@localhost to be delivered locally? Remember that mydomain is used
to qualify all hostnames that are not already fully qualified (one may argue that
localhost in fact already is a fully qualified hostname, but Postfix does not make
a special case for that hostname). The address root@localhost will be rewritten to
root@localhost.example.com, so localhost.example.com is what we want to
list in mydestination.

Two very important Postfix parameters, mynetworks and mynetworks_style,
control which hosts are allowed to use your server as a relay. Setting these
incorrectly may allow your server to be abused by spammers and the likes, so it
is important that you get them right. By default, all hosts on the subnets that your
server is directly connected to will be allowed access. This should be secure in most
cases. These parameters and other methods of allowing relay access will be discussed
in depth in Chapter 5.

Chapter 2

[35]

Indirect mail delivery through your ISP
Some Internet Service Providers (ISP) do not allow their customers to directly
access remote mail servers via the standard SMTP port (25). Instead they provide a
relay server that all outbound messages must go through. This policy is common for
residential cable or DSL connections, but some providers have the same policy for
commercial-grade connections. If such is the case, you need to configure Postfix to
deliver all outbound messages indirectly via your ISP's relay server.

This is done with the relayhost parameter that contains the hostname or IP address
of the relay server to use. The following forms are allowed:

relayhost = example.com
relayhost = [mail.example.com]
relayhost = [1.2.3.4]

The first form will cause Postfix to perform an MX lookup on the hostname, just as it
would do for a normal message delivery. Enclosing the hostname in square brackets
as in the second example suppresses the MX lookup. The square brackets are also
required in the third case when an IP address is specified.

Optionally, the hostname or address can be followed by :port to specify an
alternative TCP port. Note that you cannot specify multiple hostnames or addresses
to achieve fallback or load balancing behavior. If you need fallback hosts when the
normal relay server is unreachable, take a look at the fallback_relay parameter.
Refer the Other useful configuration parameters section for additional information on
other parameters.

Choosing network interfaces
The inet_interfaces parameter decides the network interfaces that Postfix will
use for both listening to new connections and sending out messages. If you have
multiple network interfaces and you do not want Postfix to use all of them, you can
adjust this parameter to list the addresses or hostnames of the interfaces you do want
Postfix to use.

Some Linux distributions set inet_interfaces to localhost by default, which
means that Postfix will listen only on the loopback interface. This makes at least
some sense for workstations, but it is obviously completely unusable for servers that
need to receive messages from foreign hosts. If the Postfix packaging of your Linux
distribution has this feature, just delete or comment the inet_interfaces line from
main.cf to disable it. Postfix will then use the default value of all, which of course
means that all interfaces should be used.

Setting up Postfix

[36]

Changing inet_interfaces requires Postfix to be restarted.
A reload is not enough.

Choosing mailbox format for local deliveries
By default, Postfix delivers local messages (messages to domains listed in
mydestination) into files in mbox format. The mbox format for mailboxes stores all
messages of a mailbox in a single text file. These files are named after the user and
go into the directory specified by mail_spool_directory (normally /var/mail
or /var/spool/mail). If the user desires additional mailboxes to store messages,
those files are stored somewhere in the user's home directory (often in $HOME/mail
or $HOME/Mail).

The mbox format has a few flaws that make it rather undesirable. The single-file
format makes message deletion expensive as the whole file must be rewritten
completely unless the message deleted is the last one, in which case the file can just
be truncated. mbox also puts up hurdles when multiple processes need to access
the same mailbox concurrently, which happens when a user uses a POP server to
retrieve and delete messages while new mail is being delivered. This requires that
some method of exclusive locking is used to avoid the concurrent access that might
corrupt the files. Such locking is not a big problem if all software run on the same
machine, access the same local file system, and agree on which locking method
to use, but it is a royal pain if mailboxes need to be accessed over the network via
network file systems such as NFS where reliable file locking can be a problem.
Finally, mbox causes problems if used together with disk quotas. While the mailbox
is being rewritten, it will use up to twice the original storage.

To avoid these problems, D. J. Bernstein, the author of software such as qmail and
djbdns, designed the maildir format for mailboxes. As the name implies, maildir
uses directories and one file per message. Deletion of messages is always very fast,
but on the other hand it may take longer to scan a mailbox and produce a list of all
messages as all message files have to be opened and read. maildir is safe to use
with NFS. In the maildir delivery format, the inbox of a user is typically found
in $HOME/Maildir.

To configure Postfix to deliver new messages to local users to $HOME/Maildir, set
the home_mailbox parameter like this:

home_mailbox = Maildir/

Chapter 2

[37]

Note the slash at the end of the line; it is important! Postfix follows the convention
used by many other programs that a mailbox location ending with a slash denotes
maildir. If you omit the slash, Postfix will try to deliver messages to the mbox file
$HOME/Maildir.

The home_mailbox parameter is only effective for local domains when Postfix
performs the delivery itself. If delivery is made by some other delivery agent such
as Procmail or Maildrop, you have to configure that software for maildir delivery.

The rest of this book assumes that you have chosen maildir delivery. The
IMAP/POP server you will be introduced to later, Courier IMAP, does not support
the mbox format at all. Converting mailboxes between mbox and maildir is not
difficult, so if you want to switch formats later that would not be a problem.

Error reporting
The final step is to make sure that Postfix and real people around the world can
notify you as a postmaster about error conditions. Internet standards require all
domains to have a postmaster address, but you do not need to create an account with
that name. Instead you can use the aliasing feature of Postfix to redirect messages
addressed to the postmaster address to yourself and any other people that manage
the mail system. Also, you should redirect messages to the root account.

Aliases will be discussed in more detail in the Local Aliases section, but this step
should be done right now so we will take a quick look anyway. To make Postfix
redirect root's messages and accept messages addressed to postmaster even though
no such user account exists, the local alias table must be modified. The configuration
parameter alias_maps controls the location of the lookup tables that define
such mappings:

$ postconf alias_maps

alias_maps = hash:/etc/aliases

On this particular system, the local aliases are stored in the file /etc/aliases. Edit
that file so that it contains two lines similar to these:

postmaster: root
root: jack, jill

This means that messages addressed to the postmaster will be sent to the root user,
and messages to the root user will be redirected to the users, "jack" and "jill". Save
the file and run the newaliases command so that Postfix will pick up the changes
to the file.

Setting up Postfix

[38]

Note that alias lookups are recursive—Postfix does not stop when the
postmaster lookup has succeeded, it continues to look up root, and
finally jack and jill. jack and jill may not have alias entries, in
which case Postfix stops the lookup recursion.

The type of problems that Postfix will report to the postmaster is configurable
with the notify_classes parameter. By default, only resource issues such as
out-of-disk-space problems and software problems will be reported, but you may
configure Postfix to report more types of problems. For example, you might also
want to know about SMTP protocol violations:

notify_classes = resource, software, protocol

When Postfix reports a problem, a transcript of the SMTP session is included. This
can be a valuable debugging aid.

Opt for more extensive error reporting rather than terse reporting. If you receive too
many error reports, see if you can use the filtering features of your delivery agent or
your mail client to remove the error reports that you are not interested in. Protocol
violations by incoming spam mail generated by badly written spam software can
typically be ignored, but if one of your own computers behaves badly you will want
to know about it.

Other useful configuration parameters
In addition to the configuration parameters covered so far, a few others that can
be useful to know about will be mentioned. You will most likely do fine using
their default values. If you want more information about them, please consult the
documentation that came with your version or Postfix or read the documentation
online at http://www.postfix.org/documentation.html.

Parameter Description
always_bcc Sends a copy of each message to a specified recipient.

This can be used for e-mail archiving. If you need more
fine-grained control over which messages are copied, take a
look at sender_bcc_maps and recipient_bcc_maps. The
latter two parameters require Postfix 2.1 or later.

defer_transports Contains names of transports (delivery agents, more or less)
whose deliveries should be temporarily deferred. This allows
you to suspend local message deliveries if the file system for
the home directories is broken or unavailable but the rest of
the system works fine.

Chapter 2

[39]

Parameter Description
delay_warning_time By default, Postfix does not send a warning if a message

cannot be delivered for some time. Setting this parameter to a
particular duration, say 5h for five hours, will cause Postfix to
send a single warning message for each message that has been
undeliverable for that period of time.

A word of caution, though: Your users may not be able to
interpret this warning message correctly. Even though Postfix
clearly states that it is only a warning and that the message
does not need to be resent, many users do not understand this
and resend their delayed message anyway.

mailbox_size_limit This parameter controls the maximum size of a local mailbox
or maximum size of a message when using maildir
mailboxes. Nowadays the default of 50 MB may be too
low, especially if you are using the default mbox format for
mailboxes.

maximal_queue_
lifetime

Specifies how long Postfix will retry failed deliveries of
messages before they are returned to the sender. The default
of five days is reasonable and should not be changed without
good reasons. From Postfix 2.1 onwards, there is also
bounce_queue_lifetime that is the same thing, but for
bounce messages with an empty sender address.

message_size_limit This parameter controls the maximum size of a message.
The default value of 10 MB is reasonable (mail is not the best
transport method for large files), but may need to be adjusted.
Remember that messages are sent using only 7 bits, so if you
want to allow 20 MB binary files, you must add about 35% to
compensate for the overhead of the 7 bit encoding of the file.

proxy_interfaces If your server is connected to the Internet via a proxy or NAT
device so that Postfix cannot determine all network addresses
that can be used to reach the server, add those addresses to
this parameter.

Starting Postfix and sending the first message
With these settings in place, it is time to start Postfix. Use the following Postfix
command to do this:

$ postfix start

postfix/postfix-script: starting the Postfix mail system

Setting up Postfix

[40]

To verify that Postfix is running, take a look in the log file. Postfix logs via the
standard syslog interface, and the exact location of the log files depends on the
syslog daemon configuration. The mail logs will typically be named /var/log/
maillog, /var/log/mail.info, or something similar. The configuration of your
syslog daemon, typically found in /etc/syslog.conf, contains the details. This
is what you will find at the end of the mail log after you have started Postfix:

Jan 3 21:03:28 jeeves postfix/postfix-script: starting the Postfix
mail system
Jan 3 21:03:29 jeeves postfix/master[22429]: daemon started --
version 2.1.5

Postfix is now ready to receive and deliver messages. To try it out, use your favorite
mail client and send a test mail to yourself. If your mail client uses SMTP, remember
to reconfigure it to use your server.

If you get an error message from your mail client when you try to send the test
message, read your log again. Does it show any traces of a connection from the host
on which you run your mail client? If so, is any error message logged? To get hints
on how to debug Postfix problems, see the Troubleshooting Postfix problems section.

Once you have sent the message successfully, you will also want to check that it is
delivered properly. As you have not yet configured a POP or IMAP server, that road
is not an option. But if you have installed a mail client on your server that reads mail
directly from the file system (mail, Pine, Mutt, and many more) things should work
fine as long as your mail client is configured to look for new messages in the same
place as Postfix delivers them. If you have chosen maildir delivery, the default
settings of your mail client probably won't do.

In any case, reading the mailbox directly from the file system is always an option.
With normal mbox delivery, the mailbox file has the same name as the user and
resides in the directory pointed to by the mail_spool_directory configuration
parameter. With maildir delivery, the message will typically be found in a file of
its own in the $HOME/Maildir/new directory.

If all has gone well, the message was delivered to the expected place. Whatever
delivery method you choose, make sure you know where delivered messages end
up. That knowledge will be valuable when you have to debug delivery problems.

Chapter 2

[41]

Stopping spam and other unwanted
messages
This section will discuss the various methods Postfix provides to help stop unwanted
messages. Spam, or unsolicited commercial e-mail, is perhaps the biggest problem
that e-mail server administrators face, but there may also be other kinds of messages
that one does not want to receive.

Postfix by itself will not stop all spam, but it can catch many spam messages. For
some people this may be adequate, but if you need to fight large volumes of spam
you may need a tool such as SpamAssassin, described in Chapter 8. Even if you use
SpamAssassin, Postfix's own lightweight methods can help reduce the load on the
server by rejecting the messages before they even reach SpamAssassin.

Postfix's anti-spam methods: An overview
There is no silver bullet to stop all spam, but Postfix provides a number of methods
that you can use to help the situation:

SMTP restrictions: SMTP restrictions let you define rules that control
whether or not a message is accepted by Postfix. The rules cannot take into
account the content of the message, just the envelope information. The SMTP
restrictions are not merely a tool for stopping spam, but a general way of
defining policies for the usage of the mail system.
DNS blocklists: DNS blocklists are globally published blocklists containing
IP addresses of known spammers and other likely sources of junk mail.
Postfix lets you use this information to reject messages.
Matching header expressions: The header fields and message bodies can
be matched against regular expressions, allowing you to reject certain types
of e-mail.
After-queue content filtering: After Postfix has accepted a message, it will
not be delivered to the destination right away. Instead, it will be fed to a
content filter that can do anything with the message—delete it, scan it for
viruses, strip unwanted attachments, and so on. It is the responsibility of the
content filter to resubmit messages back into Postfix which will then treat
them as any other message.

•

•

•

•

Setting up Postfix

[42]

Before-queue content filtering: The drawback with after-queue
content filtering is that Postfix always accepts the message before the
message is sent to the content filter. This means Postfix cannot reject a
message based on the verdict of the content filter. Before-queue content filters
receive the messages during the SMTP session and can choose to reject them.
Because one before-queue content filter connection is required for each open
SMTP session, this type of content filter is harder to scale for high-traffic sites
and requires extra capacity to deal with traffic bursts. This feature requires
Postfix 2.1 or later.
Milters: Starting with Postfix 2.3, the Milter plug-in protocol for e-mail
content-inspection is supported. Milters were introduced in the sendmail
mail transfer agent, and there are many available milters for spam protection,
antivirus checks, message authenticity and signing in accordance with, for
example, the DKIM standard. Third-party Milters can be downloaded from
http://www.milter.org/milters.
Access policy delegation: If the SMTP restrictions are not sufficiently
expressive, you can construct your own access policy server that Postfix can
contact during each SMTP session. Using this tool, you can enforce just about
any specialized policy you want, as long as the policy can be enforced by
looking at the message envelope. Access policy servers will not be supplied
with any of the message contents. Postfix comes with a very simple policy
daemon for use to implement greylisting, but several other policy daemons
have been made by other people. Links to these daemons and other Postfix
add-on software can be found at http://www.postfix.org/addon.html.

Understanding SMTP restrictions
Postfix has a simple but still expressive notation for defining rules that will be
applied to messages that arrive via SMTP. For example, you can express a policy
to reject messages sent from certain networks, clients who say HELO with certain
hostnames, or clients that have no reverse records in DNS unless they are one of
your own clients.

Postfix defines a number of configuration parameters, each of which can contain a
list of restrictions. Each restriction list may contain zero or more restrictions, and
each restriction may or may not return something when evaluated. As in a few other
places in Postfix, the "first match wins" principle reigns here too. This means that the
restrictions are evaluated in the order they are specified, and the first restriction that
returns something terminates the evaluation of the current restriction list.

•

•

•

Chapter 2

[43]

The restriction lists get evaluated during the SMTP session. The following table
contains the restriction lists that Postfix uses and shows at what stage in an SMTP
session they are evaluated:

Parameter Point of evaluation
smtpd_client_restrictions Directly upon connection.
smtpd_data_restrictions When the client has sent the DATA command.
smtpd_end_of_data_restrictions When the client has sent the complete message.

This restriction list is available in Postfix 2.2 and
later versions.

smtpd_etrn_restrictions When the client has sent the ETRN command.
This command is not used in a normal SMTP
session.

smtpd_helo_restrictions When the client has sent its greeting with HELO
or EHLO.

smtpd_recipient_restrictions When the client has sent a recipient address with
RCPT TO.

smtpd_sender_restrictions When the client has sent the sender address with
MAIL FROM.

The default value of the smtpd_delay_reject parameter is yes, which means that
all rejections will be postponed until after RCPT TO. The reason for this is that some
client software do not like being rejected before RCPT TO, so they will disconnect and
try again. Another good reason is that a postponed rejection gives Postfix a chance
to log more information. This makes it easier for the administrator to determine
whether a message was rejected even though it should not have been.

A common misunderstanding is that only restrictions on the recipient address can be
placed in smtpd_recipient_restrictions, only restrictions on the sender address
can be placed in smtpd_sender_restrictions,and so on, but because of the default
value of smtpd_delay_reject, that is not true. The name of the restriction list only
indicates at what stage in the SMTP session the listed restrictions will be applied.

Let's explore what restrictions Postfix imposes by default. We can use the postconf
command to inspect the default values of the most commonly used restriction lists.

$ postconf –d smtpd_client_restrictions smtpd_helo_restrictions \

 smtpd_sender_restrictions smtpd_recipient_restrictions

smtpd_client_restrictions =
smtpd_helo_restrictions =
smtpd_sender_restrictions =
smtpd_recipient_restrictions = permit_mynetworks, reject_unauth_
destination

Setting up Postfix

[44]

This tells us that Postfix by default does not have any client, HELO, or sender
restrictions. However, it does have two recipient restrictions. The first one,
permit_mynetworks, permits the current recipient if the connecting client is within
the networks specified by mynetworks. It is this restriction that gives your own
clients relay access. If the connecting client is not within mynetworks, the next item
in the restriction list will be evaluated. reject_unauth_destination will reject
recipients whose domain is not one of the domains that Postfix will accept mail for.
In other words, reject_unauth_destination rejects relay attempts. If no rejection
takes place here, the end of the restriction list has been reached. If that happens,
Postfix accepts the message.

A permit result in one restriction list will not cause the message as a whole to be
accepted. Only the remaining restrictions in the same list will be bypassed. This is
not true for restrictions that return reject—that result is always terminal and stops
the evaluation of all restriction lists.

There are more than 50 standard SMTP restrictions to choose from, and there is no
room to cover them all here. This table will present a little smorgasbord with useful
restrictions. Additional restrictions will be covered later in this chapter.

Restriction Description
permit_inet_interfaces Permit if the connecting client resides in one of the

networks listed in inet_interfaces, which typically
covers all network that the server running Postfix is
connected to.

permit_mynetworks Permit if the connecting client is listed in mynetworks.
permit_sasl_
authenticated

Permit if connecting client has authenticated itself. (SMTP
authentication is covered in Chapter 5.))

reject Reject the request, unconditionally.

reject_invalid_hostname Reject if the syntax of the HELO/EHLO hostname given by
the client is incorrect.

reject_non_fqdn_
hostname

Reject if the HELO/EHLO hostname given by the client is not
a fully qualified domain name.

reject_non_fqdn_
recipient

Reject if the domain part of the recipient address is not a
fully qualified domain name.

reject_non_fqdn_sender Reject if the domain part of the sender address is not a fully
qualified domain name.

reject_unauth_
destination

Reject the request unless the recipient domain is one of the
domains that the Postfix server hosts, or for some reason,
will accept mail for.

Chapter 2

[45]

Restriction Description
reject_unknown_client_
hostname

Reject if the connecting client's hostname cannot be
determined. This happens if either of the following
conditions is true:

a) The client's IP address cannot be resolved to a
hostname, that is the PTR lookup fails.

b) The A record lookup of the resulting hostname(s)
fails.

c) None of the IP addresses obtained from the A record
lookup matches the input IP address.

Prior to Postfix 2.3, this restriction was named
reject_unknown_clientt.

reject_unknown_
recipient_domain

Reject if the domain part of the recipient address has no A
or MX record in DNS.

reject_unknown_reverse_
client_hostname

Reject if the connecting client's IP address cannot be resolved
to a hostname, that is the PTR lookup fails to return a result.
This feature is available in Postfix 2.3 and later.

reject_unknown_sender_
domain

Reject if the domain part of the sender address has no A or
MX record in DNS..

reject_unlisted_
recipient

Reject if the domain part of the recipient address is a
domain hosted by Postfix and the complete address is
not a valid recipient address. By default, this restriction is
implicitly evaluated at the end of smtpd_recipient_
restrictions. This behavior is controlled by the
smtpd_reject_unlisted_recipient parameter. By
using reject_unlisted_recipient, you can put the
restriction into effect earlier on. This restriction is available
in Postfix 2.1 and later. Previous versions of Postfix can use
the check_recipient_mapss parameter..

reject_unlisted_sender Reject if the domain part of the sender address is a domain
hosted by Postfix and the complete address would not
be acceptable as a recipient address. The idea behind this
feature is that there is no reason to accept messages with
sender addresses known to be incorrect. This restriction
is available in Postfix 2.1 and later. See also the
smtpd_reject_unlisted_senderr parameter..

Setting up Postfix

[46]

Access maps
In addition to the restrictions already discussed, Postfix defines a number of
restrictions that look up information in access maps. An access map is a lookup
table with contents that affects whether a message will be accepted. The name of
the restriction controls what information is used as the lookup key.

For example, the check_client_access restriction looks up the client IP address
and hostname in a lookup table, allowing you to, say, ban certain clients that are
known to send spam. Together with the restriction name you also state the type
and name of the lookup table.

smtpd_client_restrictions =
 check_client_access hash:/etc/postfix/client_access

Although not an exhaustive list, the following are the most important restrictions
that use access maps:

Restriction name Lookup key
check_client_access Client IP address and hostname.
check_sender_access The sender address.
check_sender_mx_
access

The hostname(s) of the mail exchangers for the sender
domain, that is the result of an MX lookup. This feature was
added in Postfix 2.1.

check_sender_ns_
access

The hostname(s) of the name servers for the sender domain,
that is the result of an NS lookup. This feature was added in
Postfix 2.1.

check_recipient_
access

The recipient address.

check_helo_access The HELO/EHLO hostname.

For all lookup table types except regexp and pcre, Postfix makes multiple lookups
for each of these restrictions, slightly dependent on what type of data is being looked
up (e-mail address or hostname, for example). This makes it possible to make inexact
wildcard matches, for example matching all e-mail addresses in a domain.

For check_client_access, Postfix makes separate lookups for the client IP address,
the client hostname, and parts of the IP address, the latter making it possible to
match whole A-, B-, or C-class networks (for better granularity and full CIDR
notation use the cidr lookup table type). For a client with the address 1.2.3.4 and
the hostname mail.example.com, the following lookup keys are attempted, in the
following order:

Chapter 2

[47]

• mail.example.com
•	 example.com
•	 com
•	 1.2.3.4
•	 1.2.3
•	 1.2
•	 1

Items 2 and 3 assume that the default value of the parent_domain_matches_
subdomains parameter is used. The Postfix author has indicated that this behavior
may change in the future.

For restrictions where the lookup key is an e-mail address, such as check_sender_
access, Postfix looks up the whole e-mail address, the domain part only,
followed by the localpart and @. The full list of lookups for the e-mail address
user@example.com then becomes:

1. user@example.com

2. example.com

3. com

4. user@

Again, items 2 and 3 assume that default value of parent_domain_matches_
subdomains.

Lookups for IPv6 addresses and e-mail addresses containing recipient delimiters
have been omitted from these lists for brevity reasons.

The following results are recognized for a given lookup key (this is again not an
exhaustive list).

Result Description
OK Permit the request.
REJECT [optional
text]

Reject the request with a permanent error code and either the
specified error message or a generic message.

DUNNO Pretend that the lookup key was not found, and do not
continue with additional lookup keys. For example, if a lookup
of user@example.com returns DUNNO, Postfix will not look up
example.com or user@ like it normally would.

DISCARD [optional
text]

If the message eventually gets accepted, it will be discarded
and not delivered.

Setting up Postfix

[48]

Result Description
HOLD [optional
text]

Place the message in the hold queue. Messages that are held
will not be delivered and can be inspected with the postcat
program and subsequently released for delivery or deleted.
This can be used as a simple way of quarantining messages that
might be unwanted.

REDIRECT email
address

Scrap all the current message recipient(s) and send the message
to the specified address only. This feature was added in
Postfix 2.1.

PREPEND header:
text

Add an additional header to the message. This feature wasThis feature was
added in Postfix 2.1.

WARN [optional
text]

Place a warning message in the log file. This feature was added
in Postfix 2.1.

restriction,
restriction, …

Apply one or more restrictions and use their result. Only simple
restrictions that do not refer to any lookup tables are allowed
here unless you use restriction classes. Those are not covered in
this book, but you can read about them in the RESTRICTION_
CLASS_README document available at http://www.
postfix.org/RESTRICTION_CLASS_README.html.

Full documentation of the access map lookup keys and possible
result values can be found in the access(5) manual page or at
http://www.postfix.org/access.5.html.

Access map examples
Here are a series of examples with access maps to discuss how they can be used, both
alone and along with other restrictions in order to form pretty expressive policies:

smtpd_client_restrictions =
 check_client_access hash:/etc/postfix/client_access

In this first example, the lookups will be made against the hash-type lookup table
/etc/postfix/client_access. This file is not created by Postfix and you may give
it any name. From the Lookup tables section we recall that hash-type lookup tables are
just text files from which binary files (in this case with the file extension .db) should
be built with the postmap command whenever the source file changes.

postmap hash:/etc/postfix/client_access

Here is an example client_access file:

Block RFC 1918 networks
10 REJECT RFC 1918 address not allowed here
192.168 REJECT RFC 1918 address not allowed here

Chapter 2

[49]

Known spammers
12.34.56.78 REJECT
evil-spammer.example.com REJECT

What does all this mean? The first two non-comment lines are used to reject clients
that appear to connect from the networks 10.0.0.0/8 and 192.168.0.0/16. These
are not valid Internet addresses, so no legitimate client will connect from any of these
addresses. The rejection will be made with the error message RFC 1918 address not
allowed here. If your own clients have such RFC 1918 addresses you need to place
a permit_mynetworks restriction before the check_client_access. Otherwise you
will reject your own clients.

smtpd_client_restrictions =
 permit_mynetworks,
 check_client_access hash:/etc/postfix/client_access

Indexed access maps support network block matching on octet boundaries, but
CIDR notation (as in 10.0.0.0/8) is not supported. If you need to specify network
blocks with CIDR notation, consider the CIDR lookup table type available in Postfix
2.1 and later. Earlier releases can use a script such as cidr2access by Rahul Dhesi
(http://www.rahul.net/dhesi/software/cidr2access) that expands CIDR
blocks to a notation that is acceptable for indexed access maps.

Note how comments are used to explain why and when entries were added. This can
be valuable if more than one person is maintaining the files.

The last lines are used to match a couple of notorious spammers (fictional, of course)
and demonstrate that both complete IP addresses and hostnames are acceptable here.
These rejections will be made with a generic error message.

Here is another example:

smtpd_sender_restrictions =
 check_sender_access hash:/etc/postfix/sender_access

Contents of /etc/postfix/sender_access:

hotmail.com reject_unknown_client
example.com permit_mynetworks, reject

If someone attempts to send a message with a hotmail.com sender address, the client
attempting to deliver the message will be subject to the reject_unknown_client
restriction which, as you might recall, rejects client that do not have a valid mapping
between IP address and hostname.

Setting up Postfix

[50]

The second line exemplifies a useful policy that allows clients only from your
networks to use your domain in the sender address.

Finally, if you only use Postfix internally within your network and have no need to
allow anyone else to connect, the following two restrictions enforce this policy:

smtpd_recipient_restrictions = permit_mynetworks, reject

Implementing new policies
Be careful when you implement new policies. Some of Postfix's restrictions are far
too strict for general use and may reject significant amounts of legitimate e-mail. For
each new restriction you plan to implement, examine the conditions under which
messages are rejected and try to come up with cases where legitimate messages
fulfill these conditions. To help you determine whether a restriction is safe to use, the
warn_if_reject restriction can be used. This restriction affects the restriction that
immediately follows it in the restriction list and, if the following restriction should
have resulted in a rejection, it will be converted to a rejection warning. A rejection
warning places a line in the mail log, but does not reject the message.

For example, you may want to evaluate the reject_unknown_client restriction
because you have noticed that many spam messages are received from clients that do
not have a reverse pointer in DNS, that is, there is no mapping from their IP address
to a name that maps back to the IP address in question.

Here is one way of doing it:

smtpd_client_restrictions = warn_if_reject reject_unknown_client

This will result in log messages like this one:

Dec 31 16:39:31 jeeves postfix/smtpd[28478]: NOQUEUE: reject_warning:
RCPT from unknown[222.101.15.127]: 450 Client host rejected: cannot
find your hostname, [222.101.15.127]; from=<jdoe@example.com> to=<me@
example.com> proto=SMTP helo=<222.101.15.127>

This log messages contain all known information about the envelope of the message,
and this should hopefully be enough for you to decide whether a message was
legitimate or not. After a few days, inspect your mail logs and try to determine
whether the ratio between would-be rejected unwanted messages and would-be
rejected legitimate messages is acceptable.

There are many spam countermeasures with good accuracy, some of which are
covered in this book. Others will emerge in the future depending on how the
spammers behave. Be very careful when inventing your own ways to identify
spam—picking characteristics from a small number of spam messages and drawing

Chapter 2

[51]

the conclusion that those characteristics are good spam indicators is dangerous and
is likely to lead to loss of legitimate e-mails. Choose wisely and avoid methods with
low accuracy. Do not forget to examine legitimate e-mails to make sure they do not
have the characteristics that you associate with spam.

Using DNS blacklists
Since 1997, the Domain Name System (DNS) has been used to thwart spam. The
method, DNS-based Blackhole List (DNSBL) or Real-time Blackhole List (RBL),
also known as blacklist or blocklist, uses the DNS to publish information about
certain clients or sender domains. When a mail server such as your own is contacted
by a client, your server can combine the client's IP address or the given sender
address with the domain of one or more DNSBLs and perform a DNS lookup. If the
address is listed by the DNSBL, the lookup succeeds, and your server may choose to,
for example, reject the client.

For example, let's say that you have configured Postfix to use the widely used zen.
spamhaus.org blacklist. If a client with the address 1.2.3.4 connects, Postfix will look
in DNS for an A record for the address 4.3.2.1.zen.spamhaus.org. If such a record
exists, Postfix will not accept a message from the client.

Postfix supports three types of DNSBL lookups—client host address, client
hostname, and sender domain. Each lookup type has a restriction of its own,
and they all require that you specify the name of the DNSBL domain after the
restriction name.

DNSBL type Syntax Description
Client host address reject_rbl_client

rbl_domain
The IP address of the connecting client
is looked up. This is the original and
by far most common DNSBL type.

Client hostname reject_rhsbl_client
rbl_domain

The hostname of the connecting client
is looked up.

Sender address
domain

reject_rhsbl_sender
rbl_domain

The domain of the given sender
address is looked up.

Feel free to list multiple DNSBL restrictions. Make sure you use the restriction that
corresponds to the DNSBL type—using reject_rbl_client with a sender address
domain DNSBL does not make sense.

Setting up Postfix

[52]

The following code shows one way of configuring Postfix to use the zen.spamhaus.
org standard-type DNSBL and the dsn.rfc-ignorant.org sender domain-DNSBL:

smtpd_recipient_restrictions =
 permit_mynetworks,
 reject_unauth_destination,
 reject_rbl_client relays.ordb.org,
 reject_rhsbl_sender dsn.rfc-ignorant.org

Notice how these restrictions are listed after both permit_mynetworks and
reject_unauth_destination. This is because DNSBL lookups are comparatively
expensive, and there is no use in wasting time on such lookups for your own clients
or for clients that might get rejected anyway. To avoid unnecessary delays, be sure to
list the DNSBLs that block the most messages, first among your DNSBL restrictions.

Choosing DNS blacklists
In the beginning, the DNSBLs listed only open relays, that is, SMTP servers that
accept all messages from all clients to all destinations. Open relays once were the
primary source of spam, but this has changed in recent years. Today, a lot of spam
is sent from the hijacked home computers of innocent and unknowing people.

Different blacklists have different policies for listing hosts and removing listed hosts.
Naturally, the bigger the blacklist, the more legitimate messages you are likely to
reject. Before starting to use a particular DNSBL to reject messages, you should
examine these policies carefully and preferably also try them out for a while without
actually rejecting any messages. The warn_if_reject restriction can help you
with this.

The blacklists that work great for some people and reject huge amounts of spam
but no legitimate messages may have little value for other people and may actually
reject more legitimate messages than spam. Take great care when choosing blacklists
and avoid blindly copying allegedly good sets of DNSBLs from others. Another
good reason for being cautious is that DNSBLs sometimes go out of service because
they have been repeatedly attacked by spammers and forced to shut down. This
happened to the well-known relays.ordb.org DNSBL in 2006. Blacklists that are
shut down may, after a while, be reconfigured to always indicate an IP address as
listed in the blacklist, that is, you will reject all mail if configured to use that blacklist.

The probably best general-purpose DNSBL out there for use with reject_rbl_
client is, at the moment, zen.spamhaus.org. The false-positive rate, that is the
share of incorrectly rejected genuine e-mail, can be expected to be extremely low
while the accuracy of catching spam stays high. Unless you have special needs,
this may be the only DNSBL that you need to use.

Chapter 2

[53]

Before implementing any DNSBL at all, make sure you know how to exempt certain
clients or domains from rejections. Sooner or later, and no matter which DNSBL you
choose to use, you will have cases of legitimate messages being blocked. When that
happens, it is too late to start digging in the documentation trying to find out what
you can do about it.

The solution to the problem is to have whitelisting access maps before your
DNSBL restrictions. Which type of access map you should use depends on the
DNSBL type, but in most cases check_client_access will be suitable, although
check_sender_access is more appropriate if you use reject_rhsbl_sender.

Continuing the previous example, this is what you can do to exempt certain clients
and sender addresses from rejection by any following restrictions:

smtpd_recipient_restrictions =
 permit_mynetworks,
 reject_unauth_destination,
 check_client_access hash:/etc/postfix/rbl_client_exceptions,
 check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions,
 reject_rbl_client zen.spamhaus.org,
 reject_rhsbl_sender dsn.rfc-ignorant.org

In /etc/postfix/rbl_client_exceptions:

Added 2005-01-10 to avoid blocking legitimate mail. /jdoe
1.2.3.4 OK
example.net OK

In /etc/postfix/rhsbl_client_exceptions:

mybusinesspartner.com OK

Stopping messages based on content
Often, unwanted messages cannot be spotted without looking at their contents.
Postfix provides some unsophisticated but still very useful tools for this purpose. The
idea is that the lines in a message are matched against a set of regular expressions
that you supply and, if there is a match, an action will be carried out. This is called
header checks or body checks, depending on what part of the message is being
inspected. Most often you use header and body checks to reject messages, but
messages can also be discarded or redirected to another recipient. Header and body
checks can help you solve the following problems, all of which will be discussed in
the following sections:

Reacting to messages containing attachments with forbidden filenames
Quickly stopping big virus outbreaks

•

•

Setting up Postfix

[54]

Custom logging of certain header fields
Removing certain message headers

An introduction to regular expressions is beyond the scope of this book. If you
do not have that knowledge already, there are many regular expression resources
and tutorials on the net, for example http://gnosis.cx/publish/programming/
regular_expressions.html and http://www.codeproject.com/KB/dotnet/
regextutorial.aspx. If you are looking for a book on the topic, Jeffrey E. F. Friedl's
Mastering Regular Expressions (O'Reilly, 2006) is quite comprehensive.

Configuring header and body checks
The main.cf parameters for header and body checks—body_checks,
header_checks, mime_header_checks, and nested_header_checks—can contain
one or more references to regular expression lookup tables (regexp or pcre), which
will be considered when a message is being received. Technically you could use any
other lookup table type for this, but only regular expression tables are really useful.
The following parameters are used for different parts of the message:

Parameter Part of message it applies to
body_checks The body of each message part.
header_checks All non-MIME top-level headers.
mime_header_checks All MIME headers found in any message part. The following

headers are considered to be MIME headers:
Content-Description
Content-Disposition
Content-ID
Content-Transfer-Encoding
Content-Type
MIME-Version

•
•
•
•
•
•

nested_header_
checks

All non-MIME message headers in messages that are attached to
the received message.

This means for each header line, a lookup will be made against the lookup tables
specified in header_checks, each line in the message body will cause a lookup
against the lookup tables in body_checks, and so on.

The format of regular expression lookup tables is very similar to ordinary indexed
ones. One big difference is that they are not indexed and should not be run through
the postmap program. Postfix will read regular expression lookup tables again when
the daemons are restarted, which is often enough in many cases. If you want an
immediate update, you must reload Postfix.

•

•

Chapter 2

[55]

Regular expression lookup tables are not exclusively for header and body checks.
They can be used wherever Postfix expects a lookup table.

The right-hand side of lookup tables used for header and body checks can contain
many of the previously described actions allowed in access maps, but one action,
IGNORE, is available only here. The IGNORE action simply removes the matched line
from the message.

Message headers such as the ones in the following example that are wrapped to form
multiple physical lines, will be joined together before being used as a lookup key.

Received: by jeeves.example.com (Postfix, from userid 100)
 id 2BB044302; Sat, 1 Jan 2005 20:29:43 +0100 (CET)

Header and body checks examples
Now, let's get concrete and take a look at how header and body checks can be used.
Unless otherwise noted, all these examples work with both the regexp and the
pcre lookup table type.

Many computer viruses spread by e-mail, and most of them through programs
or scripts attached to the messages. Although reacting to messages containing
attachments with forbidden filenames is a blunt and inexact tool, it is a simple way to
take care of these unwanted messages even before they reach any antivirus scanner.
By avoiding large overhead scanning, your server can cope with much larger virus
outbreaks. There is no complete list of the filenames that can be banned, but just
blocking .exe, .scr, .pif, .bat, and a few more will probably suffice for most people.
If your users have a need to send or receive files with these filename extensions,
you may need to relax the policy somewhat. To implement this in Postfix, you need
to recognize that the filename of an attachment is found in Content-Disposition or
Content-Type headers. These are MIME headers, so the expression needs to go in
mime_header_checks. In this example, the message is rejected with text that indicates
the offending filename. If a legitimate mail is rejected, the sender will hopefully be able
to interpret the error message and resend the message.

/^Content-(Disposition|Type).*name\s*=\s*"?(.*\.(
 ade|adp|bas|bat|chm|cmd|com|cpl|crt|dll|exe|hlp|hta|
 inf|ins|isp|js|jse|lnk|mdb|mde|mdt|mdw|ms[cipt]|nws|
 ops|pcd|pif|prf|reg|sc[frt]|sh[bsm]|swf|
 vb[esx]?|vxd|ws[cfh]))(\?=)?"?\s*(;|$)/x
 REJECT Attachment not allowed. Filename "$2" may not end with
".$3".

Setting up Postfix

[56]

Note the indentation on all but the first line. It is needed to have the lines be treated
as a single line. Lookup tables work in the same way as the main.cf and master.
cf configuration files in this respect. The /x modifier will cause all whitespace to be
ignored. This expression, originally constructed by Russell Mosemann and further
refined by Noel Jones, requires a pcre lookup table, but it is possible to rewrite the
expression to use regexp.

body_checks can be a useful tool in quickly stopping big virus outbreaks. A number
of the previous virus outbreaks have had messages with certain characteristics that
made them pretty easy to block. If filename blocking is not an option, you can try to
find lines that are unique to these messages and construct suitable expressions.

/^Hi! How are you=3F$/ REJECT SirCam virus detected.
/^ I don't bite, weah!$/ REJECT Bagle.H virus detected.

If you are unsure whether an expression will be too broad and catch legitimate
messages, you can use HOLD or WARN instead of REJECT. HOLD will put the messages
on hold, allowing you to examine them and either release the messages or delete
them. WARN will accept the message but log the incident.

This method of blocking viruses can also be useful when a new virus is just starting
to spread and the antivirus software you are using has not yet been updated to
catch it.

The WARN action can also be used to get custom logging of certain header fields.

/^Subject: / WARN

Having this expression in header_checks will result in all subject headers being
logged as a warning message similar to this:

Jan 2 00:59:51 jeeves postfix/cleanup[6715]: 6F8184302: warning:
header Subject: Re: Lunch? from local; from=<jack@example.com>
to=<jill@example.com>

Sometimes it can be useful to remove certain message headers. For example, some
programming libraries that provide SMTP clients add an X-Library header to
all messages sent. Apparently, many spammers use these libraries and therefore
SpamAssassin gives a pretty high score for messages that contain this header. If
you need to use such a library and you cannot or will not modify the source code to
avoid having the header added in the first place, Postfix can help you remove it. This
header_checks expression will remove all X-Library headers in messages passing
through Postfix:

/^X-Library: / IGNORE

Chapter 2

[57]

Caveats
Header and body checks are simple and blunt tools for inspecting message contents.
They are useful for a number of things, but do not attempt to overuse use them for
general-purpose spam fighting. Many people try to use these tools incorrectly, and
this book will try to dispel some common misconceptions.

Header and body checks will inspect only one line at a time, and no state is kept
between different lines. This means you cannot reject messages that contain one bad
word on one line and another bad word elsewhere in the message. Do not be fooled
by the if...endif construct allowed in regular expression lookup tables! You
cannot use them in this way:

if /^From: spammer@example\.com/
/^Subject: Best mortgage rates/ REJECT
endif

Remember, lookups are made one line at a time. Obviously, a line that starts with
From cannot possibly start with Subject.

Many spam messages have the mail body in Base64 encoding. Because of how
Base64 works, a word has many possible Base64 representations. Postfix does
not perform any decoding before the message content is fed to the header and
body checks.

This means that using body_checks to block messages containing bad words doesn't
work universally. If body_checks is your only tool to fight spam, you will spend a
couple of hours every day maintaining your regular expressions so they will catch
the spam of the day, but you will still not have high accuracy.

Header and body checks apply to all messages. You cannot whitelist a certain
sender or a certain client. If you host multiple domains you have the option of using
different header and body checks for your hosted domains by running multiple
cleanup daemons and multiple smtpd daemons listening on different IP addresses,
or you can run multiple instances of Postfix. The latter means that you have multiple
queue directories and multiple copies of Postfix running at the same time. This is
required for some complex setups, but can actually simplify setups that are possible
with a single instance.

You cannot use header and body checks to check for the nonexistence of something,
so you cannot reject messages that have an empty body or messages that do not
contain a secret password.

Setting up Postfix

[58]

Having a large number of regular expressions in body_checks is not only a
maintenance nightmare but may also seriously degrades the performance of
your server. A reasonable configuration should not need more than, say, 10–20
expressions. If you have too many expressions, Postfix's cleanup processes will
use a lot of CPU time.

Virtual alias domains and local aliases
In this section, some of Postfix's features for address rewriting to allow hosting
multiple domains and implementing group addresses (or distribution lists) will
be discussed.

Additionally, this section will take a look at how to find information in MySQL
databases using Postfix. The goal of the exercise will be to use MySQL lookups
for alias lookups, but the knowledge you can gain will be applicable for all other
situations where you might want to use MySQL together with Postfix. It will be
assumed that you have basic SQL knowledge and that you are able to set up
and operate a MySQL server.

Virtual alias domains
As was explained earlier, even though you can have several local domains
(several domains listed in mydestination), they will always be equivalent—they
share a single localpart namespace. In other words, joe@localdomain1.com is
joe@localdomain2.com is joe@localdomain3.com. Obviously, this is not good
enough. In order to host multiple domains with distinct localpart namespaces,
you need virtual alias domains.

A virtual alias domain is a domain where each valid address maps to
one or more other e-mail addresses, possibly in other domains. Compare
this to local domains where an address typically maps directly to a UNIX
system account. joe@virtualdomain1 and joe@virtualdomain2
can lead to completely different mailboxes.
Virtual alias domains are sometimes just called virtual domains, but to
avoid confusion with virtual mailbox domains, which are also sometimes
called virtual domains, the full term will be used.

To show how virtual alias domains work in Postfix, let's return to our friends at
Example Inc. for a couple of examples of how they can enhance their mail system
by using virtual alias domains.

Chapter 2

[59]

Many virtual alias domains mapping to one
local domain
The directors of Example Inc. have now expanded their business significantly and
want to have subdomains for their branch offices to avoid name clashes when
two people in different offices share the same name. For their offices in London,
Paris, and Berlin they want the domains gb.example.com, fr.example.com, and
de.example.com respectively. They have a single Postfix server that receives
all messages.

The solution to Example Inc's problem is to let gb.example.com, fr.example.
com, and de.example.com all be virtual alias domains. The original example.com
domain should remain a local domain. Postfix looks for virtual alias domains in the
virtual_alias_domains parameter.

virtual_alias_domains = gb.example.com, fr.example.com, de.example.com

Make sure that you do not list any of these domains in mydestination. The next step
is to tell Postfix which addresses in the virtual alias domains map to which addresses
in the example.com domain. This is done by specifying one or more lookup tables in
the virtual_alias_maps parameter. For starters, Example Inc. will just use a simple
hash type lookup table. When things work as we expect them to, they will create an
equivalent configuration that looks up data in a MySQL database.

virtual_alias_maps = hash:/etc/postfix/virtual

Now, Postfix will use the virtual aliases they put in /etc/postfix/virtual. The
format of a virtual alias lookup table is very simple; the recipient address is the
lookup key and the address/addresses to which the recipient address should be
rewritten is the result.

joe@gb.example.com joe1@example.com
joe@de.example.com joe2@example.com
jane@fr.example.com jane@example.com

After editing the /etc/postfix/virtual file, postmap must be run in order to
transform the file into /etc/postfix/virtual.db.

$ postmap /etc/postfix/virtual

The format of virtual alias lookup tables is described in the virtual(5)
manual page.

Setting up Postfix

[60]

In the above example, all messages to joe@gb.example.com will end up in the
mailbox of the user "joe1", all messages to joe@de.example.com will end up in the
mailbox of the user "joe2", and all messages to jane@fr.example.com will end up in
the mailbox of the user "jane". Note that introducing virtual alias domains does not
cause the original local domain to stop accepting messages.

Jane and our two Joes will also receive messages addressed to their actual usernames
at example.com. (joe1@example.com, joe2@example.com, and jane@example.com).
If this is undesirable, you can use smtpd_recipient_restrictions and
check_recipient_access to reject attempts to send messages to these recipients.
Add the restriction to the smtpd_recipient_restrictions setting (if any)
in main.cf:

smtpd_recipient_restrictions =
 ...
 check_recipient_access hash:/etc/postfix/recipient_access
 ...

Then put the following in /etc/postfix/recipient_access and run postmap on
the file:

example.com REJECT Email to this domain prohibited

One virtual alias domain mapping to many
local domains
After running the previous setup for a while, the staff at Example Inc. decide that
they want to return to the old setup with a single domain for all employees. The
name clashes can be resolved by including the users' last names in the address. They
also want to have one mail server per branch office to avoid latency and network
load when the users are accessing their mailboxes. All London users will have their
accounts residing on the London server, Paris users on the Paris server, and Berlin
users on the Berlin server. This problem is an opportunity to look at a different way
of using virtual alias domains.

The idea in this setup is that example.com will be the virtual domain and that each
Postfix server will have a local domain of its own. The server at the London office
will have gb.example.com listed as a local domain. Virtual aliasing will be used
to map from the example.com addresses to the office-specific subdomains. This
mapping can either be done exclusively on a master server or on the servers for
each of the branch offices. Having a single master server introduces the problem of
synchronizing the data between the servers, but that problem can be solved easily by
storing the data in a relational database. How to use MySQL for alias lookups will be
discussed in the Introducing MySQL lookups section later in the chapter.

Chapter 2

[61]

To implement this, start by removing example.com from mydestination and add it
to virtual_alias_domains instead. This needs to be done on all servers. The branch
office servers—one of which could easily be the master server—should have their
own domain (gb.example.com, and so on) listed in mydestination. Do not forget to
set up the DNS server so that messages to the branch office domains will be routed to
the branch office servers. Finally, the virtual alias table should look like this:

joe.smith@example.com joe1@gb.example.com
joe.schmidt@example.com joe2@de.example.com
jane.doe@example.com jane@fr.example.com

This problem illustrates an important point; the address/addresses in the right-hand
side of a virtual alias table do not have to be local. Any domain can be put there. This
is what happens when the master server receives a mail to joe.smith@example.com:

1. Postfix looks in virtual_alias_domains to see if example.com is a virtual
alias domain, and the result is positive.

2. Next, it looks up joe.smith@example.com in virtual_alias_maps. The
lookup returns joe1@gb.example.com.

3. Postfix on the master server decides that gb.example.com is not a domain
that it hosts, and uses DNS to resolve the destination of the message, and
finally delivers it to the London branch office server.

Group addresses
This third and final virtual alias example will do little more than state that the
right-hand side of virtual alias tables may contain several addresses, which can
be the names of other aliases rather than actual account names.

all@example.com managers@example.com,finance@example.com
managers@example.com joe.smith@example.com,joe.schmidt@example.com
finance@example.com jane.doe@example.com,jack.black@example.com

In this example, a message sent to all@example.com will be sent to all in
management and all in finance, which in turn means Joe Smith, Joe Schmidt,
Jane Doe, and Jack Black.

Setting up Postfix

[62]

It may not be desirable to let anyone send messages to large distribution lists.
Luckily, you can use Postfix's SMTP restrictions to restrict the access to the sensitive
addresses. If you only want your own users (clients within mynetworks) to be
allowed to send messages to an address, the solution is very simple. In main.cf, use
the check_recipient_access restriction to disallow access to the address, but use
permit_mynetworks to exempt your own clients.

smtpd_recipient_restrictions =
 permit_mynetworks,
 check_recipient_access hash:/etc/postfix/restricted_recipients,
 reject_unauth_destination

If you already use smtpd_recipient_restrictions in your main.cf, you will
have to modify that parameter rather than just adding what is listed in the example
above. The key feature is to list the check_recipient_access restriction after the
permit_mynetworks restriction.

Contents of /etc/postfix/restricted_recipients:

all@example.com REJECT

In more complex scenarios, like when you want to disallow a recipient address for all
but a few sender addresses or clients, you may need to use Postfix's restriction class
feature. It is described in RESTRICTION_CLASS_README (http://www.postfix.org/
RESTRICTION_CLASS_README.html) along with an example for this particular case.

Introducing MySQL lookups
If your organization is large, maintaining a flat text file with aliases can be tedious.
Storing the data in a real database comes with many advantages—many users can
edit the data simultaneously, the users themselves can be allowed to perform some
tasks via web interfaces, the data can be easily shared over the network, and so on.

Postfix supports looking up data in a number of complex lookup table types. These
include MySQL, PostgreSQL, and LDAP. It is complex not because it is very difficult
to set up, but because there are inherently more things that can go wrong and, yes,
simple indexed files (hash, dbm, btree, cdb) are easier to get right. If you want to
solve a problem with a lookup table, always start with an indexed file. When you get
things working and understand why and how they work, try to transform the same
idea to the complex lookup table type.

Chapter 2

[63]

Postfix does not require you to conform to some specific database schema. For each
lookup table where you use MySQL, you can use a separate configuration that
given whatever schema you have chosen to use (more or less—the current version
of Postfix does not quite allow arbitrary MySQL queries), returns the desired result.
Each configuration is stored in a separate file that can have restrictive permissions as
they contain database passwords. To use MySQL for looking up virtual aliases, the
following setting in main.cf will do:

virtual_alias_maps = mysql:/etc/postfix/mysql-virtual.cf

The configuration file follows the same format as main.cf and contains all information
required to make a lookup—in this case, a virtual alias lookup. The following table
describes the parameters that you can put in the configuration file. The parameters
will be used to construct the SELECT query. In Postfix 2.1 and later, the format of such
configuration files can be found in the mysql_table(5) manual page.

Parameter Description
hosts A list of the MySQL hosts that Postfix will contact to perform the query.

Can contain either IP addresses, hostnames or, when prefixed with
unix:, the path to a local UNIX domain socket. If you specify multiple
hosts, they will be tried in random order. Any UNIX domain socket
hosts will be tried first.

user The username that should be used to log in to the MySQL server.
password The password that should be used to log in to the MySQL server.
dbname The name of the database to use.
select_field The name of the column from which the lookup result will be taken.
table The table that will be searched for the data.
where_field The table column with which the lookup key will be compared.
additional_
conditions

If you require some additional conditions to be tacked on at the end of
the constructed query, you can put them here.

query The SQL query to perform, with %s being a placeholder for the string
being looked up. This parameter is mutually exclusive with select_
field, table, where_field, and additional_conditions. This
parameter was introduced in Postfix 2.2 and is the recommended way
of configuring the MySQL query.

Setting up Postfix

[64]

Let's start with a simple example. You have a table alias with two columns—alias
and address. The alias column is the left-hand side of the virtual lookup table
(the address with the virtual alias domain) and the address column is the right-hand
side (the new address).

mysql> SELECT * FROM aliases;

+---------------------+------------------+

| alias | address |

+---------------------+------------------+

| joe@gb.example.com | joe1@example.com |

| joe@de.example.com | joe2@example.com |

| jane@fr.example.com | jane@example.com |

+---------------------+------------------+

3 rows in set (0.00 sec)

The following simple SQL query is needed to find out whether an address in one
of the virtual domains exists and should be rewritten to some other address:

SELECT address FROM aliases WHERE alias = 'lookup key'

Translating this into a Postfix MySQL lookup table configuration yields
the following:

hosts = localhost
user = postfix
password = secret
dbname = mail
select_field = address
table = aliases
where_field = alias
additional_conditions =

An alternative solution, using the query parameter of Postfix 2.2, would look
like this:

hosts = localhost
user = postfix
password = secret
dbname = mail
query = SELECT address FROM aliases WHERE alias ='%s'

For brevity, the hosts, user, password, and dbname parameters will hereon be
omitted from the example configurations.

Chapter 2

[65]

Sometimes reality is a bit more complicated than this trivial example, so we will
move on to something a bit more difficult.

The select_field, table, where_field, and additional_conditions parameters
are really just inserted directly into the following SELECT query template, together
with the lookup string:

SELECT select_field FROM table WHERE where_field = 'lookup key'
additional_conditions

This means select_field does not have to be a single column; it could specify
multiple columns combined into one value, and table could be multiple tables with
the join conditions in additional_conditions. For example, consider this slightly
more complex query:

SELECT CONCAT(aliases.user, '@example.com') FROM aliases, domains
WHERE CONCAT(aliases.name, '@', domains.name) = 'lookup key'
AND aliases.domain = domains.id

The following lookup table configuration would be required to execute it:

select_field = CONCAT(aliases.user, '@example.com')
table = aliases, domains
where_field = CONCAT(aliases.name, '@', domains.name)
additional_conditions = AND aliases.domain = domains.id

Or, using the query parameter:

query = SELECT CONCAT(aliases.user, '@example.com')
 FROM aliases, domains
 WHERE CONCAT(aliases.name, '@', domains.name) = '%s'
 AND aliases.domain = domains.id

Before putting a new MySQL lookup table configuration to work, you should make
sure that it returns the desired result for all lookup keys. This can be done with the
postmap program, the procedure for which is described in the Troubleshooting lookup
tables with postmap section.

Local aliases
Local aliases are an alternative to virtual aliases. Local aliases pretty much work in
the same way, but they apply only to local domains. Local alias tables also provide a
couple of extra features. We took a brief look at local aliases even before we started
Postfix the first time in the Error reporting section.

Setting up Postfix

[66]

Lookup tables for local aliases are specified in the alias_maps parameter. These
lookup tables have a slightly different format than virtual aliases, and the reason is
to stay compatible with the file format of the sendmail mail transfer agent. Because
of this, you should not use the postmap command to rebuild the alias file but
postalias instead. You may also find the newaliases command to be convenient.

Many people are confused by the two similar parameters, alias_maps and
alias_database. The difference between the two of them is that alias_maps
contains the lookup tables that Postfix will use to do local alias rewriting, and
alias_database contains the lookup tables that the newaliases command will
rebuild when invoked. Only indexed lookup tables (hash, btree, dbm, cdb) need
to be rebuilt, so it does not make sense to list MySQL lookup tables there.

Often, you will want alias_maps and alias_database to refer to the same
lookup table(s):

alias_maps = hash:/etc/aliases
alias_database = $alias_maps

Compared to virtual alias tables, the lookup key in local alias tables does not include
the domain part. That information would be useless as all local domains have the
same localpart namespaces. When indexed files are used for local aliases, the lookup
key must end with a colon, for example see the follwoing:

$ cat /etc/aliases

postmaster: jack, jill
$ postalias /etc/aliases

This will send messages addressed to the postmaster address in any local domain
to the two users, jack and jill, assuming that the domain in myorigin is local.
The next section explains why this assumption is important.

The right-hand side of alias tables does not necessarily have to point to local users.
In fact they may point to any valid address in any domain. The format of local alias
tables is described in the aliases(5) manual page.

Command deliveries
Up until now, everything that could have been done with a local alias could just as
well have been done with a virtual alias. So, what is the point of local aliases? One
big difference is that local aliases support delivering messages to commands. This
is typically required by mailing list manager software. Postfix delivers messages to
commands by passing the contents of the messages on the standard input stream.

Chapter 2

[67]

To run a command when a message is delivered, the following syntax is used:

mylist: |"/usr/local/mailman/bin/wrapper post mylist"

The double quotes are necessary only if the command, as in this case,
contains spaces.

But what if you want to run a mailing list on a virtual domain? You will have to use
virtual aliases to rewrite the addresses in the virtual domain to local aliases. Say you
want messages sent to the address mylist@virtual.example.com to be posted to
the mylist mailing list, which accepts messages via command delivery. To enable
this you will need a virtual alias such as the following:

mylist@virtual.example.com mylist@localhost

Pay attention to what user the programs will run as. Postfix normally uses the owner
of the alias file, but not if the owner is the root user. In that case, the user in the
default_privs parameter (typically "nobody") will be used to run the program.

If you write your own program that you want Postfix to deliver messages to, make
sure you return an appropriate exit status when errors occur. Postfix uses the error
status constants in sysexits.h to determine what to do if the program exits with
a non-zero exit status. Depending on the exit status, Postfix will either return the
message to the sender or let it remain in the queue and retry delivery later.

Common pitfalls
Virtual aliases not only apply to virtual alias domains but also to all messages that
pass through Postfix. Not recognizing this may lead to surprises. For example, if you
host many virtual alias domains that all should have some aliases in common—say,
root, postmaster, and abuse—you might be tempted to use a regular expression
lookup table (regexp or PCRE) to alias these addresses for all of your virtual alias
domains to yourself.

Warning! Does not work!
/^abuse@/ abuse@example.com

Do not do this! As virtual aliases apply to all messages, any messages that you or
your users send to, for instance, abuse@aol.com or abuse@mindspring.com will be
sent to you instead of the intended recipient.

Setting up Postfix

[68]

A very common pitfall is believing that a non-qualified address on the right-hand
side implicitly refers to a local user. For example, joe would always mean the local
user joe. This is equally untrue for both virtual aliases and local aliases. Recall from
the beginning of this chapter when the myorigin parameter was discussed. Just as in
all other places, Postfix will qualify bare usernames with myorigin. If your value of
myorigin happens to be a local domain listed in mydestination, which it probably
would be, joe will indeed refer to the local user joe. To avoid surprises, if you at
some time set myorigin to a non-local domain, it is a good idea to always qualify the
right-hand side addresses with a local domain. As localhost.$mydomain almost
always is listed in mydestination, a good candidate might be localhost.

postmaster@example.com jack@localhost, jill@localhost

Other address rewriting mechanisms
Virtual and local aliases are not the only mechanisms for address rewriting that
Postfix provides. Most notably, canonical rewriting can be used to rewrite sender
and/or recipient addresses in both the envelope and the headers. This type of
rewriting is provided by the parameters canonical_maps, sender_canonical_maps,
and recipient_canonical_maps and can among other things be useful to rewrite
sender addresses such as joe@example.com to Joe.User@example.com if you do not
want to expose the actual usernames of the users.

How Postfix rewrites addresses and in what order rewriting happens is described
in ADDRESS_REWRITING_README available at http://www.postfix.org/
ADDRESS_REWRITING_README.html.

Troubleshooting Postfix problems
Postfix provides many tools to simplify problem solving. While implementing new
features in your Postfix mail system, do it step by step. The more unsure you are in
what you are doing, the smaller should be the steps that you take. If you run into
problems, you will discover them early and it will be easier to figure out what went
wrong. This is especially true when implementing complex lookup tables using
MySQL databases.

If you are even slightly uncomfortable with complex lookup tables,
never introduce a new feature and a complex lookup table configuration
at the same time. If something breaks, you will have much more trouble
figuring out where to start.

Chapter 2

[69]

When trying out new configurations, it does not hurt to be on the cautious side until
the configuration is fully tested. By setting the following feature all permanent errors
will be turned into temporary errors:

soft_bounce = yes

This means the transmission of any messages rejected by your server will be retried,
and that Postfix will retry sending any messages that get rejected by a remote server.
With this setting in effect, closely monitor the logs and look for rejections that do not
seem normal. Do not forget to turn this feature off when you have finished testing!

Reading and interpreting the log files
One key element in troubleshooting Postfix problems is being able to read and
interpret the log messages that Postfix produces. Because they are plain text
files with one log message per line, they do not require any special programs for
inspection. Logs have been looked at a few times before, but this section will explain
the messages and give examples of both successful mail deliveries and failures.
When reading the examples, refer to the figure in the Postfix architecture: An overview
section and note how the order of the log entries closely follows the path of the mail
through Postfix.

Understanding Postfix's logging is also discussed in Kyle Dent's article
Troubleshooting with Postfix Logs at http://www.onlamp.com/pub/a/
onlamp/2004/01/22/postfix.html.

Message queue ID
An important property of each message, received and processed, is the queue ID.
The queue ID is a hexadecimal number of varying lengths that identifies a message.
Log messages that have a message context will also log the queue ID. This makes it
easy for you to find all log messages that pertain to a message if you have the queue
ID (the path to the log file needs to be adjusted for your system).

$ grep 92AFD4302 /var/log/maillog

The queue ID is assigned when the cleanup daemon creates a queue file in one of
the Postfix queue directories. The queue file remains in the system until all recipients
have been delivered to or the message expires, after which the qmgr daemon removes
the queue file. In recent releases of Postfix, this removal event is logged, as we will
see in the examples.

Setting up Postfix

[70]

Sometimes you will find that there is no queue ID but instead the word NOQUEUE in
the log, as in this example that we have seen before:

Dec 31 16:39:31 jeeves postfix/smtpd[28478]: NOQUEUE: reject_warning:
RCPT from unknown[222.101.15.127]: 450 Client host rejected: cannot
find your hostname, [222.101.15.127]; from=<jdoe@example.com> to=<me@
example.com> proto=SMTP helo=<222.101.15.127>

The reason is that this message has not yet been given a queue file and thus has not
been assigned a queue ID. The queue file is created by the cleanup daemon when
the first recipient has been accepted. This helps in performance optimization.

Do not confuse the queue ID with the message ID. The latter is contained in the
Message-ID header of each message and is normally added by the mail client before
the message is handed over to Postfix. If no such header field is present, the cleanup
daemon of Postfix will add one for you. The cleanup daemon will always log the
message ID of received messages.

Jan 5 23:49:13 jeeves postfix/cleanup[12547]: 92AFD4302:
message-id=<20041214021903.243BE2D4CF@mail.example.com>

The Message-ID header contains the hostname of the computer and typically the
current date and time, and it will be unique for each message. Do not fall in the trap
of thinking that the queue IDs also are unique. Queue IDs can and will be reused for
different messages, theoretically as often as every second (but that would have to be
on an incredibly busy system).

SMTP submission and local delivery
Let's start by looking at two examples of successful mail transactions. The first one
shows a message being received by SMTP and delivered to a local mailbox, and the
second example will show a locally submitted message that is delivered to a foreign
mailbox via SMTP.

The first example shows what the logs contain after a message has been received via
SMTP and delivered to a local user.

Jan 5 23:49:13 jeeves postfix/smtpd[12546]:
connect from mail.example.com[1.2.3.4]

The smtpd daemon has received a connection from a client.

Jan 5 23:49:13 jeeves postfix/smtpd[12546]: 92AFD4302:
client=mail.example.com[1.2.3.4]

Chapter 2

[71]

Postfix has now accepted the first recipient of this message and requested a queue
file from the cleanup daemon. This is the first log entry for this message that
contains the queue ID.

Jan 5 23:49:13 jeeves postfix/cleanup[12547]: 92AFD4302:
message-id=<20041214021903.243BE2D4CF@mail.example.com>

The cleanup daemon has received the whole message from the smtpd daemon and
logs the message ID.

Jan 5 23:49:13 jeeves postfix/smtpd[12546]:
disconnect from mail.example.com[1.2.3.4]

The client disconnected from the SMTP server.

Jan 5 23:49:13 jeeves postfix/qmgr[22431]: 92AFD4302:
from=<joe@example.com>, size=4258, nrcpt=1 (queue active)

The message has entered the active queue and is thus eligible for delivery
(unless the queue is congested, delivery will start more or less immediately). The
queue manager logs the sender address, the message size in bytes, and the total
number of recipients. The reported size will be slightly larger than the actual number
of bytes in the message and the size of the message when stored on disk. This is
because the reported size is the total size of the message content records in the
queue file, and this gives a little overhead.

Jan 5 23:49:14 jeeves postfix/local[12653]: 3C21A4305:
to=<jack@example.net>, orig_to=<postmaster@example.net>,
relay=local, delay=0.1, delays=0.04/0.03/0/0.03, dsn=2.0.0,
status=sent (delivered to maildir)

The local delivery agent successfully delivered the message to the maildir of the
local user "jack". The message was originally addressed to postmaster@example.
net, but some address rewriting mechanism (typically a local or virtual alias)
rewrote the recipient address. Finally, the message was delivered about one tenth
of a second after it was received (the delay keyword).

Note that this message is logged when the delivery is completed. If the delivery
agent invokes another program during the delivery and that program logs messages
of its own, these will end up in the log before this delivery completion message.

Each recipient delivered to will emit a log message:

Jan 5 23:49:26 jeeves postfix/qmgr[22431]: 92AFD4302: removed

This final message signals that all recipients have been delivered to so that the queue
file is removed.

Setting up Postfix

[72]

Local submission and SMTP delivery
Our next example is somewhat the opposite of the previous example. Here, a message
submitted via the sendmail command is delivered to another host via SMTP:

Jan 6 01:41:29 jeeves postfix/pickup[12659]:
CBA844305: uid=100 from=<jack>

The submitted message has been taken care of by the pickup daemon. The message
was submitted by the user having user ID 100, and the sender was the unqualified
address jack:

Jan 6 01:41:30 jeeves postfix/cleanup[13190]: CBA844305:
message-id=<20050106004129.CBA844305@example.net>

Again, the message has been read by the cleanup daemon and the message ID
is logged:

Jan 6 01:41:30 jeeves postfix/qmgr[12661]: CBA844305:
from=<jack@example.net>, size=1309, nrcpt=1 (queue active)

Note how the previously unqualified sender address has now been rewritten to
a fully qualified address, probably because the myorigin parameter is equal to
example.net.

Jan 6 01:41:31 jeeves postfix/smtp[13214]: CBA844305:
to=<joe@example.com>, relay=mail.example.com[1.2.3.4],
delay=1.3, delays=0.03/0.03/0.97/0.22, dsn=2.0.0,
status=sent (250 Ok: queued as DD8F02787)

The message was successfully delivered to the recipient joe@example.com via
the mail.example.com SMTP relay. When accepting the message, the remote
server said:

 250 Ok: queued as DD8F02787

So now we know the queue ID that our message got at the other end. This
information may be useful if we need to contact the postmaster at example.com
regarding this message:

Jan 6 01:41:31 jeeves postfix/qmgr[12661]: CBA844305: removed

Delivery completed, queue file removed.

Hopefully you are starting to get a grip on the general format of the log entries
emitted for a message, so the next example will show only log fragments.

Chapter 2

[73]

Connection problems upon SMTP delivery
The following example shows what happens when multiple hosts are set up in DNS
to receive messages for a domain but some of the hosts are temporarily unreachable
causing Postfix to try a few of them before the delivery can be made. We will only
look at the logs of the delivery agent:

Jan 2 14:19:46 poseidon postfix/smtp[998]: connect to
mx4.hotmail.com[65.54.190.230]: Connection timed out (port 25)

Jan 2 14:20:16 poseidon postfix/smtp[998]: connect to
mx1.hotmail.com[64.4.50.50]: Connection timed out (port 25)

Jan 2 14:20:46 poseidon postfix/smtp[998]: connect to
mx3.hotmail.com[64.4.50.179]: Connection timed out (port 25)

Jan 2 14:20:47 poseidon postfix/smtp[998]: 940C132ECE:
to=<postmaster@hotmail.com>, relay=mx4.hotmail.com[65.54.167.230],
delay=92, delays=92/0/0.27/0.28, dsn=2.0.0,
status=sent (250 <20050102131914.B7C4B32ECF@example.com> Queued mail
for delivery)

Clearly, three of the receiving mail hosts for hotmail.com were unreachable when
Postfix attempted the delivery. Notice how the connection attempts are evenly
spread out at 30-second intervals. This is not a coincidence; the default value of the
smtp_connect_timeout parameter that controls how long Postfix will wait for a
connection is indeed 30 seconds. These three 30-second timeouts also explain why
the delivery delay logged by the last message is 92 seconds. Also do notice that the
acceptance message that Hotmail gives us does not contain any queue ID but instead
the message ID—the format of the text message following the 250 status code has not
been standardized.

Getting more detailed log messages
In most cases, Postfix's default logging is enough to resolve a problem but sometimes
more details are needed. For those rare cases, you can ask Postfix's daemon processes
to log more detailed messages by making sure they are given at least one -v startup
option. This is done by editing master.cf, and adding -v to the end of the line for
the daemon from which you want to get more detailed logging. For example, to get
verbose logging from the SMTP server, smtpd, change the line:

smtp inet n - n - - smtpd

To this:

smtp inet n - n - - smtpd –v

Setting up Postfix

[74]

Depending on your configuration, the first line may look slightly different, but the
important part is what is in the last column, the name of the daemon. In the case of
the SMTP server, busy servers may produce insane amounts of logging with this
setting. If such is the case, the debug_peer_list parameter can come in handy.

This parameter accepts one or more hostnames or network addresses for which the
level of logging will be increased. This makes sense only in contexts where there is
a network peer such as in the SMTP server and SMTP client.

If you are having problems sending messages to a particular remote server, say
mail.example.com, you can set the following rule:

debug_peer_list = mail.example.com

You can then watch the increased logging when Postfix connects to that particular
host. When using debug_peer_list, there is no reason to touch master.cf.

Troubleshooting lookup tables with Postmap
The postmap command is not only useful for rebuilding indexed lookup tables,you
can also use it to query lookup tables in order to check if the lookups work as you
expect them to. This is especially useful for regular expression lookup tables and
complex lookup table types such as MySQL, LDAP, and PostgreSQL. Before taking
new lookup tables into use in Postfix, you should test them with postmap first. To
perform lookups with postmap, use the -q option:

$ postmap -q postmaster@example.com mysql:/etc/postfix/
mysql-aliases.cf

jack@example.com

This will query the MySQL lookup table described by the configuration in /etc/
postfix/mysql-aliases.cf for the string postmaster@example.com, simulating
a virtual alias lookup by Postfix.

You can also examine the exit status of the command to determine whether the
lookup succeeded. As always, a zero exit status indicates success. The UNIX shell
stores the exit status of the last process in the $? environment variable. You can
use the echo shell command to view the contents of the $? variable after you have
run postmap:

$ postmap -q badaddress@example.com mysql:/etc/postfix/mysql-aliases.cf

$ echo $?

1

Chapter 2

[75]

If a lookup does not work as you expect, you can (just as with the Postfix daemons)
use one or more -v startup options to increase the verbosity of the messages.

Note that postmap performs raw queries. For example, if you want to know whether
the IP address 1.2.3.4 is matched by the following access map line:

1.2.3 REJECT

You cannot test it with the following command:

$ postmap –q 1.2.3.4 hash:/etc/postfix/client_access

The postmap command does not know about Postfix's rules for how IP addresses
are matched in access map context, and even if it did, it has no way of knowing
that 1.2.3.4 is an IP address.

Getting help from the Postfix mailing list
The mailing list for Postfix, called Postfix-users, is a very valuable resource when one
is stuck with a Postfix problem. Links to the archives of the list as well as instructions
for how to subscribe can found at http://www.postfix.org/lists.html.

Although the people on the list are very helpful, they do expect you to do your
homework before requesting help. This means that you should search the list
archives to see if your question has been asked before, and most importantly,
you should read the documentation first.

When asking a question, do not forget to state the bigger goal you are trying to
achieve. This is often forgotten, and the question is just too specific. Not only will an
understanding of the bigger picture make it easier to help you, but it will also reveal
if the solution method you have chosen is completely wrong. However, do not be
too verbose in your description! After all, the people reading the Postfix-users list
are humans too, and they do get bored with over-long posts.

Because they are humans, they are also not psychic. Therefore, be sure to provide
complete configuration and any log messages that may be relevant to your question.
Obtain your configuration by running postconf -n. That command will print
the values of all parameters that your have set in your main.cf. Do not post the
complete contents of your main.cf, or the output of postconf (without the -n).
The content of master.cf is rarely needed.

Setting up Postfix

[76]

Summary
The time has come to summarize what has been learned in this chapter. We began
with a quick look at how the Postfix mail transfer agent works and then looked at
how to install the software and prepare the basic configuration.

We then examined various methods to stop spam and other unwanted messages.
We introduced virtual alias domains to fully enable your mail server to host many
domains. Finally, we took a look at a few structured techniques to help you analyze
and solve Postfix problems.

Incoming Mail with POP
and IMAP

Now that you have a functioning e-mail server, the next stage is to give users access
to their e-mail. In this chapter, you will learn the following:

What POP and IMAP are, and how to choose which of them you
should implement
How to install and configure Courier-IMAP, which can provide both POP
and IMAP functionality
How to configure e-mail servers to be accessible to clients
How to configure popular e-mail clients to use the services provided by your
e-mail server

Choosing between POP and IMAP
Postfix will receive e-mail and deliver it to the user's inbox, but additional software
is required to allow users to read their e-mail with ease. There are two standards for
retrieval of e-mail from a host. The first is called Post Office Protocol (POP). POP3
is the most commonly used version of POP. This is normally used to download
e-mail from the server, store it in a client application, and remove the e-mail from the
server. This is often used by Internet Service Providers. The e-mail is subsequently
manipulated by the client application, for example, Windows Live Mail or
Mozilla Thunderbird.

•

•

•

•

Incoming Mail with POP and IMAP

[78]

The second protocol is called Internet Message Access Protocol (IMAP).The IMAP
system is usually used when you want a copy of each e-mail to stay on the server.
IMAP allows users to create folders for e-mail and to move or copy e-mail between
the folders. The client application accesses the e-mail on the server, but does not
have to store it on the client machine.The e-mail server must be able to store all of
the e-mails for all of its users, and the amount of data will generally grow larger over
time. Users rarely delete e-mail. Therefore, IMAP is more frequently used in large
organizations with centralized IT facilities.

A program called e-mail client handles retrieving mail from a mail server on behalf
of a user, and the program that the e-mail client talks to is called an e-mail server.
There are many POP3 and IMAP servers. Some perform only one of the tasks. The
Courier-IMAP suite of software contains both, a POP3 and an IMAP server, and is
covered in detail in this chapter.

Courier-IMAP operates by accessing the maildir of the user. An overview of the
operation is shown in the following image:

Incoming e-mail

E-MAIL SERVER

Postfix

POP3 Access

IMAP Access

E-mail Client
Courier-POP3

Courier-IMAP

Local/Network
File system/Maildir

database

/home/user
.maildir

Downloading and installing Courier-IMAP
Courier is a suite of programs and includes a full-fledged MTA. This book assumes
that the MTA used is Postfix. It is important that only the POP3 and IMAP
components of Courier are installed and configured—an e-mail system would
be very unstable if there were two MTAs operating at once.

The term "Courier" is often used to refer to the complete suite of
Courier software, including the MTA. Courier-IMAP is normally
used to refer to the IMAP and POP3 portions of the server. The
Courier Authentication Library is another Courier module that is
required by Courier-IMAP. Ensure that you install only the Courier
Authentication Library and Courier-IMAP.

Chapter 3

[79]

There are a couple of ways to install Courier-IMAP. Courier-IMAP Redhat Package
Managers (RPMs) for several different distributions of Linux are available. These
will either be available from the manufacturer of the distribution, or may have been
built by a third party, typically an enthusiast or developer of Courier. If your Linux
distribution is based on RPM, but a package of Courier-IMAP is not available in
RPM, then it has to be built from source.

If your distribution of Linux is based on the Debian software package format, a
package of Courier-IMAP will probably be available. If not, then Courier-IMAP
will have to be built from source.

Installing Courier-IMAP from a distribution
repository
It is best to use a package built by your Linux distributor, if at all possible. Any
package they provide should be stable, perform well, and use the default paths and
file locations to suit the rest of your software. If your distribution has a package
manager, then you should use that as it will install any packages that Courier-IMAP
requires automatically.

It is important to get a package that matches the distribution in use. Packages meant
for a different distribution may not work correctly and may also make existing
software unstable.

Installing Courier-IMAP from RPM
It is important to get an RPM that matches the distribution in use. An RPM meant
for another distribution may not work correctly, and may also make existing
software unstable.

If your Linux distribution includes a graphical frontend to manage packages (such
as gnorpm), it is best to use that because it will manage any dependencies between
packages automatically.

To locate an RPM of Courier-IMAP, first check if one is provided by your Linux
distributor. If so, then download and use it. If the distributor does not provide
a package, it is possible that a suitable package may be provided by another
organization or individual. To check this, search the Web. There is a database of
RPMs available at www.rpmfind.net, and searching for courier-imap coupled
with the name of the distribution (for example, Fedora or Mandriva) will locate any
suitable packages. It is best to use a package designed for a particular version of a
distribution. For example, a package for Mandriva Linux 2008.1 should not be used
for Mandriva Linux 2009.1. If you are not sure then it is best to install Courier-IMAP
from source as described in the next section.

Incoming Mail with POP and IMAP

[80]

If you are not able to use a frontend to RPM, then to install Courier-IMAP from RPM,
firstly download the RPM and change to the directory containing the file using the
command prompt. As root, use the rpm command to install the RPM.

rpm -ivh courier-imap-4.4.1-1mdv2009.1.i586.rpm

The RPM command may fail if all of the prerequisite software is not present. In
this case, the output will name the software required. The appropriate package can
be downloaded and installed using the rpm command as seen earlier. Once all the
prerequisite software has been installed, you can install Courier-IMAP using the
rpm command as explained before.

If the rpm command was used to install Courier-IMAP, it can also be used to
uninstall it. The command will be as follows:

rpm -e Courier-IMAP

Installing Courier-IMAP using the Debian
package format
If your Linux distribution includes a graphical frontend to manage packages (such as
gnorpm), then you can use that, if you are comfortable doing so.

You can use the following command on any Debian-based system to install
Courier-IMAP:

apt-get install courier-imap

Installing Courier-IMAP from source
Installing Courier-IMAP from source is not a difficult task on a modern Linux
distribution. On older versions of Linux, and on other UNIX platforms such as
AIX, Solaris, and HP-UX, problems may arise, particularly if the rest of the system's
software is not up to date.

Prerequisites
The following are the prerequisites to install Courier-IMAP:

A working C++ compiler: We recommend the GNU C++ Compiler, which
is a part of the GNU Compiler Collection (GCC), which in turn is part of
virtually every Linux distribution and is available free for most platforms. If
an RPM or other package of GCC is available (and it almost certainly will be),
it should be used in preference to building GCC from source.

•

Chapter 3

[81]

A make utility: We recommend the GNU make utility, which will be
available with most Linux distributions or can be downloaded from
http://gcc.gnu.org/.
The GNU linker: This is available at www.gnu.org/software/binutils/.
GNU Libtool: This is available at www.gnu.org/software/libtool/.
Berkeley DB library or gdbm library: These are libraries that allow
programs to make databases in files. Again, these should be available in
packaged form, but can be downloaded from www.sleepycat.com/ and
http://www.gnu.org/software/gdbm/gdbm.html respectively. One or
both of these will almost certainly be installed already.
The Courier-IMAP source code.

To install Courier-IMAP successfully, all these prerequisites must be installed first.

Building the Courier Authentication Library
There are two phases to installing Courier-IMAP. First, the Courier Authentication
Library, often called Courier-authlib, must be built. Once this is done,
Courier-IMAP can be installed.

Although instructions to install Courier-IMAP are given here, it is always
a good idea to read the README, READ.ME or INSTALL files that are
supplied with the package. If problems are encountered while installing
the software, then always check that the problem is not mentioned in any
of the supplied documentation.

The Courier-authlib source can be downloaded from www.courier-mta.org/
authlib/. As with many open source packages, the Courier Authentication Library
uses a configuration script to detect system capabilities, then uses the make command
to build and install the software.

To build the Courier Authentication Library, enter the following commands. You
should see responses similar to the following:

$ cd /tmp

$ tar xfj /path/to/courier-authlib-0.62.4.tar.bz2

$ cd courier-authlib-0.62.4/

$./configure

checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk

•

•

•

•

•

Incoming Mail with POP and IMAP

[82]

... (lots more output appears)
configure: creating ./config.status
config.status: creating Makefile
config.status: creating config.h
config.status: executing depfiles commands
config.status: executing libtool commands

$

$ make

$ make
/bin/sh ./config.status --file=authlib.html
config.status: creating authlib.html
echo "#define AUTHLDAPRC \"\"" >authldaprc.h
...(lots more output)
/bin/sh ./config.status --file=authlib.3
config.status: creating authlib.3
make[2]: Leaving directory `/tmp/courier-authlib-0.62.4'
make[1]: Leaving directory `/tmp/courier-authlib-0.62.4'

$ su -c make install (enter the root password)

make install

make install-recursive
make[1]: Entering directory `/tmp/courier-authlib-0.62.4'
Making install in libltdl
make[2]: Entering directory `/tmp/courier-authlib-0.62.4/libltdl'
make install-am
...(lots more output)
make[4]: Leaving directory `/tmp/courier-authlib-0.62.4'
make[3]: Leaving directory `/tmp/courier-authlib-0.62.4'
make[2]: Leaving directory `/tmp/courier-authlib-0.62.4'
make[1]: Leaving directory `/tmp/courier-authlib-0.62.4'
#

After the commands execute successfully, the Courier Authentication Library will be
installed. Before it can be started, some configuration is required.

Note that if you are using Red Hat Linux or one of its derivatives such as Fedora
Core or CentOS, then the ./configure script detects this and suggests that you
use an RPM or the --with-redhat parameter:

$./configure

configure: WARNING: === I think you are trying to run this configure
script
configure: WARNING: === on Red Hat/Fedora. You're doing too much
work!

Chapter 3

[83]

configure: WARNING: === It's much faster to create installable binary
RPMs
configure: WARNING: === like this: http://www.courier-mta.org/FAQ.
html#rpm
configure: WARNING: === When you do this you may find that RPM will
tell you
configure: WARNING: === to install some other software first, before
trying to
configure: WARNING: === build this one, and even tell you the name of
RPMs you
configure: WARNING: === build this one, and even tell you the name of
RPMs you
configure: WARNING: === need to install from the distribution CD.
That's much
configure: WARNING: === easier than trying to figure out the same from
some
configure: WARNING: === cryptic error message.
configure: WARNING:
configure: WARNING: === Even if you don't intend to use everything you
need to
configure: WARNING: === have in order to build via RPM, you should
still do as
configure: WARNING: === you're told. All the extra stuff (LDAP, SQL,
etc...)
configure: WARNING: === goes into RPM sub-packages, which do not need
to be
configure: WARNING: === installed.
configure: WARNING: === But, if you insist, you can simply add '--
with-redhat'
configure: WARNING: === parameter to this configure script and not see
this
configure: WARNING: === error message. You should also do this when
upgrading
configure: WARNING: === and you didn't use RPM with the older version.
configure: error: ... in either case you better know what you're
doing!

In this case, pass the --with-redhat parameter to ./configure:

$./configure --with-redhat

Incoming Mail with POP and IMAP

[84]

Configuring the Courier Authentication Library
Several decisions need to be made once the authentication library is installed.

The Courier Authentication Library provides the system administrator with
flexibility in authenticating users. Authentication is when a user proves his/her
identity, typically by providing a valid username and corresponding password.
The following authentication methods are available:

Authentication method Description
authshadow By default, most Linux distributions hold user passwords

in the /etc/shadow system file. Using authshadow for
authentication validates passwords against system accounts.
This is suitable only when users have system accounts, that is,
they can log onto the machine using telnet or ssh.

authpwd On older systems, passwords were stored in the /etc/passwd
file. The authpwd module allows users to be authenticated
against their system password. Again, users must have system
accounts.

authuserdb Unlike authshadow where each user needs a system account,
authuserdb stores user details separately from the system
accounts. This allows a virtual mailbox facility, where users
can be defined without having real accounts on the machine. A
number of scripts are used to administer the database, which is
usually held in /etc/userdb. (Many distributions place it in
/etc/courier/authlib/userdb.)

authmysql This is similar to authuserdb, but uses a MySQL database
instead of the files used in authuserdb. MySQL is a popular
relational database provided by most Linux distributions,
and offers both advantages and disadvantages over the other
methods. Using a relational database such as MySQL adds
complexity to an e-mail server, but it is possible that the
authentication will be quicker and a relational database will
allow the data to be shared with other applications (if required).

authpam Authentication is provided by the Programmable Access
Method (PAM) library. PAM is a commonly used library and is
provided by most Linux distributions. PAM is flexible, and can
in turn authenticate users from a variety of sources, including
the system password database (typically the /etc/passwd file).

authcustom This allows the system administrators to develop their own
custom authentication method.

Chapter 3

[85]

Choosing an authentication method can be a difficult decision. Here are
some guidelines:

If all users have system accounts, then authshadow, authpwd, or authpam
can be used. If PAM is already installed and configured, it should be used
in preference to the others.
If a virtual e-mail system is required, use either authdb or authmysql. For
small sites, there is little advantage in choosing authmysql over authdb.

In this book, only simple authentication with authshadow or authpwd is covered.
Although if PAM is installed and configured, no additional configuration will
be required. authuserdb and authmysql require further configuration, which is
described in the documentation for the authentication library.

The /usr/local/etc/courier/authlib directory contains the configuration files
for the Courier Authentication Library. For security purposes, it's best to make the
whole directory readable only by users who are members of the mail group. The
default authdaemonrc file can be copied from the installation directory.

mkdir -p /usr/local/etc/courier/authlib

chown mail:mail /usr/local/etc/courier/authlib/

chmod 755 /usr/local/etc/courier/authlib/

cp /tmp/courier-authlib-0.52/authdaemonrc /usr/local/etc/courier/
authlib

To complete the configuration as the root user, edit the /usr/local/etc/courier/
authlib/authdaemonrc file and alter the following entries:

authmodulelist="authshadow"
daemons=3
authdaemonvar=/var/lib/courier/authdaemon
DEBUG_LOGIN=0
DEFAULTOPTIONS=""

In the line beginning with authmodulelist, enter the module(s) that you wish
to use.

The daemons= line lists how many processes should run, waiting to authenticate
users. Unless there are a very high number of users, a value between 3 to 5 should
suffice. The larger the number of daemons, the more memory will be used by the
authentication library. There will also be less memory available for other processes,
which may affect overall system performance.

•

•

Incoming Mail with POP and IMAP

[86]

The authdaemonvar line lists where the Courier Authentication Library places
its runtime files, in particular the socket used to connect to it. The directory listed
here (in this example it is /var/lib/courier/authdaemon) should exist and be
only readable by the root user. Use the following commands as root to create
the directory:

mkdir -p /var/lib/courier/authdaemon

chmod 750 /var/lib/courier/authdaemon

chown mail:mail /var/lib/courier/authdaemon

For security purposes, it's best to make the authdaemonrc file readable only by
certain users.

chown mail:mail /usr/local/etc/courier/authlib/authdaemonrc

The authentication daemon needs to be started when the system boots. Typically, a
script is placed in /etc/init.d/ to enable easy starting and stopping of a daemon.
A sample script is included with the source of the authentication library in
/courier-authlib.sysvinit. This file should be placed in /etc/init.d.

cd /tmp/courier-authlib-0.52

cp courier-authlib.sysvinit /etc/init.d/courier-auth

The service can, in future, be started and stopped with the following commands:

/etc/init.d/courier-auth start

/etc/init.d/courier-auth stop

Initially, the daemon should be run directly from the command line. If there are any
errors, they will be displayed.

/usr/local/sbin/authdaemond start

/usr/local/sbin/authdaemond: line 16: /usr/local/etc/authlib/
authdaemonrc: No such file or directory

In the example just shown, the /usr/local/etc/authlib/authdaemonrc file
was missing because the default authdaemonrc file was not copied from the
installation directory.

If the service was started correctly, it can be stopped by passing the stop parameter.

/usr/local/sbin/authdaemond stop

Consult the documentation for distribution to get the service to start automatically
when Linux boots. On Red Hat systems, the service command can be used to
configure a service to start automatically.

service courier-auth add default

Chapter 3

[87]

For other distributions, the chkconfig command might be used.

chkconfig -add imapd

Resolving errors
Errors can be generated at each phase of the build. Errors while running the
configure script will probably relate to a missing dependency. Check the README
and INSTALL files supplied with the software and ensure that all dependencies are
installed. If the problem is not obvious from the error message generated, an Internet
search for the exact error message may find a solution.

An error at build time is unusual, as most errors will be prevented by the configure
script. Again, the error message should provide a good clue to the source of the error
and use of an Internet search engine may pay off.

Runtime errors are generally due to erroneous configuration. There are few
configuration options with the Courier Authentication Library, but errors can occur.

If an answer can't be found, there is a Courier mailing list that can be approached
for help. As always, first search list archives for your problem and consult the
FAQ. For Courier-IMAP, the mailing list is at http://lists.sourceforge.net/
lists/listinfo/courier-imap/, searchable list archives are available at:
http://sourceforge.net/mailarchive/forum.php?forum_id=7307/, and
the FAQ is available at http://www.courier-mta.org/FAQ.html.

Building Courier-IMAP
The Courier-IMAP source code is available in a tarball— a package of all the files,
similar to a ZIP file. This can be downloaded from http://www.courier-mta.org/
imap/, but be careful to download the source for Courier-IMAP and not for
the Courier MTA.

Although details are given here on how to install Courier-IMAP, it is
always a good idea to read the README, READ.ME or INSTALL files
that are supplied with the package. If problems are encountered when
installing the software, always check that the problem is not mentioned
in any of the supplied documentation.

To install Courier-IMAP, a few commands must be entered. As with much software
provided in source form, a configuration script is run first. The configuration script
checks the software installed on our machine and configures the software so that it
will build correctly.

Incoming Mail with POP and IMAP

[88]

When Courier-IMAP is used as an IMAP server, by default it assumes that its
clients are going to follow the IMAP standard exactly. Unfortunately this is generally
not the case and, if Courier-IMAP expected the clients to conform to the IMAP
standard exactly, mail may not be delivered to the e-mail client. The Courier-IMAP
developers recognize this, and have built the capability to work with non-standard
clients by passing the --enable-workarounds-for-imap-client-bugs flag to the
configure script.

Courier-IMAP includes a special check functionality while building it.
Unfortunately, using --enable-workarounds-for-imap-client-bugs prevents the
check from working successfully. As the check functionality is useful, we will build
the software twice. First without the --enable-workarounds-for-imap-client-
bugs, then run check, and then build again with the flag, and install the software.

To build Courier-IMAP, enter the following commands. Choose a suitable directory
to build the software. In this example, we choose /tmp, and the software unpacks
itself into the courier-imap-3.0.8 directory. As noted in the case of the Courier
Authentication Library, the configure script will detect when a Red Hat-derived
Linux Distribution is being used and the --with-redhat flag can be passed
to configure.

$ cd /tmp

$ tar xfj /path/to/courier-imap-4.5.1.tar.bz2

$ cd /tmp/courier-imap-4.5.1

$./configure --with-redhat

checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
... (a lot more output follows)
config.status: creating config.h
config.status: executing depfiles commands
config.status: executing libtool command

$ make check

Making check in numlib
make[1]: Entering directory `/tmp/courier-imap-4.5.1/numlib'
make[1]: Nothing to be done for `check'.
make[1]: Leaving directory `/tmp/courier-imap-4.5.1/numlib'
Making check in md5
... (a lot more output appears)
make[2]: Leaving directory `/tmp/courier-imap-4.5.1/imap'
make[1]: Leaving directory `/tmp/courier-imap-4.5.1/imap'

Chapter 3

[89]

make[1]: Entering directory `/tmp/courier-imap-4.5.1'
make[1]: Nothing to be done for `check-am'.
make[1]: Leaving directory `/tmp/courier-imap-4.5.1'

$./configure –-enable-workarounds-for-imap-client-bugs

checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
... (a lot more output follows)
config.status: creating config.h
config.status: executing depfiles commands
config.status: executing libtool command

$ make

$ make
make all-recursive
make[1]: Entering directory `/tmp/courier-imap-4.5.1'
make all-gmake-check FOO=BAR
--
(lots more output appears)
cp imap/imapd.cnf .
cp imap/pop3d.cnf .
cp -f ./maildir/quotawarnmsg quotawarnmsg.example
make[2]: Leaving directory `/tmp/courier-imap-4.5.1'
make[1]: Leaving directory `/tmp/courier-imap-4.5.1'

$ su -c "make install"

Password: (enter password for root)

Making install in numlib
make[1]: Entering directory `/tmp/courier-imap-4.5.1/numlib'
make[2]: Entering directory `/tmp/courier-imap-4.5.1/numlib'
make[2]: Nothing to be done for `install-exec-am'.
make[2]: Nothing to be done for `install-data-am'.
(lots more output appears)
Do not forget to run make install-configure
test -z "/usr/lib/courier-imap/share" || /bin/mkdir -p "/usr/lib/
courier-imap/share"
 /usr/bin/install -c mkimapdcert mkpop3dcert '/usr/lib/courier-imap/
share'
make[2]: Leaving directory `/tmp/courier-imap-4.5.1'
make[1]: Leaving directory `/tmp/courier-imap-4.5.1'

Incoming Mail with POP and IMAP

[90]

$ su -c "make install-configure"

Password: (enter password for root)

make[1]: Entering directory `/tmp/courier-imap-4.5.1/numlib'
make[1]: Leaving directory `/tmp/courier-imap-4.5.1/numlib'
make[1]: Entering directory `/tmp/courier-imap-4.5.1/md5'
make[1]: Leaving directory `/tmp/courier-imap-4.5.1/md5'
(lots more output appears)
make install-configure-local DESTDIR=
make[1]: Entering directory `/tmp/courier-imap-4.5.1'
make[1]: Leaving directory `/tmp/courier-imap-4.5.1'

$

If the output appears similar to that shown, Courier-IMAP has been successfully
installed and you may skip the next section on error handling.

Handling errors
It is possible that the configure command will fail. Configuration attempts to detect
existing software, and ensures that Courier-IMAP works with it, but occasionally
there are errors.

In this example, the configure command assumed that vpopmail was installed, and
failed when it couldn't find parts of vpopmail. In reality, vpopmail was not installed,
and could not be detected. We get the following from the INSTALL file:

...configure should automatically detect if you use vpopmail, and
compile and install the authvchkpw authentication module.

This suggests that the authvchkpw is used for vpopmail. Further up the INSTALL file
we read:

 * authvchkpw - this module is compiled by default only if the
vpopmail account is defined.

Chapter 3

[91]

Upon checking the /etc/passwd file, we find that there is an account for vpopmail
which explains the detection. The lack of vpopmail files explains the failure of the
configure script. In the INSTALL file, the parameters to the configure script
are described.

 Options to configure:
 ...
 * --without-module - explicitly specify that the authentication
module named "module" should not be installed. See below for more
details.
 Example: --without-authdaemon.

The solution, therefore, is to use the --without-authvchkpw option:

$./configure –without-authvchkpw

Most problems can be solved in a similar way. It is best not to be put off by terms
and names that aren't understood. Without understanding anything about vpopmail
and just by searching for the term "vpopmail" (which was mentioned in the original
error message), it is possible to resolve the error by reading the documentation.

If you can't find an answer, there is a Courier mailing list that can be approached for
help. Details are given in the Resolving errors section.

Using POP3
As mentioned in the introduction, POP3 is typically used when e-mail is to be
stored on a client computer. It is most often used when there is an intermittent
connection to the e-mail server, for example, while using a dial-up line to access an
e-mail account at an ISP. This approach has the advantage that the e-mail is always
available to the client, who can work when not connected to the e-mail server.
E-mails can be read, and replies created for, when the user is next on line.

The main disadvantage of using POP3 is that e-mail is generally only available on
the client PC. If the client PC fails, or is stolen, the e-mail is lost, unless a backup
has been made.

POP3 clients can be configured to keep e-mail on the POP3 server for other clients to
access, but IMAP is more often used in this situation.

Incoming Mail with POP and IMAP

[92]

Configuring Courier-IMAP for POP3
The configuration files are located in /usr/lib/courier-imap/etc/courier-
imap/, if Courier-IMAP was built from source. If you are using a packaged
distribution, they may be located in /etc/courier-imap. The pop3d file
contains the settings for the POP3 server.

If you are using a packaged distribution of Courier-IMAP, the configuration files can
be found with the following command:

find / -name pop3d 2>/dev/null

/usr/lib/courier-imap/etc/pop3d
/usr/lib/courier-imap/bin/pop3d

Edit the file and locate and alter the following settings:

Setting Description
PIDFILE The pop3d daemon keeps track of the process ID that it uses. It specifies

a valid path and a name that suggests the use of the file. Typically, this
might be /var/run/pop3d.pid. Ensure that the variable points to an
existing directory (such as /var/run) or create the directory specified.

MAXDAEMONS This specifies the maximum number of pop3d process that can run at
one time. This number limits the number of users that can connect at
one time. A number higher than the expected number of users may
be wasteful, but users attempting to connect are also included in this
number. Set this to a number around the maximum number of users
who may connect at one time, or a little higher. Note that this is the
maximum number of processes started, not the initial number of
processes.

MAXPERIP This specifies the maximum number of connections from each IP
address. A low number such as 4 prevents malicious acts such as
denial-of-service attacks, where an attempt is made to use up all the
connections on the mail server.

POP3AUTH If the Courier Authentication Library daemon is used, set this to blank,
otherwise set it to indicate the type of login authentication performed.
For versions prior to 4.0, this should be set to LOGIN.

PORT This specifies the port that the daemon listens on. The standard port is
110, and a different one should only be chosen if all client software is
configured to use the non-standard port.

ADDRESS This specifies the IP address to listen on. If the machine has multiple
network interfaces, Courier-IMAP can be configured to listen only on
one of the addresses. A value of 0 indicates that all network interfaces
should be used.

Chapter 3

[93]

Setting Description
TCPDOPTS These are options to be used. Typical ones used include nodnslookup

that prevents the POP3 daemon from attempting to resolve the name
of each connection, and -noidentlookup that prevents it from
attempting an ident query for the incoming connection. Specifying
both of these settings can decrease the time taken to authenticate a
user connection.

MAILDIRPATH This is the path to a typical user's maildir. Specify the appropriate
value for your system, for example, .maildir.

A sample pop3d configuration file is shown here:

PIDFILE=/var/run/pop3d.pid
MAXDAEMONS=40
MAXPERIP=4
POP3AUTH=""
PORT=110
ADDRESS=0
TCPDOPTS="-nodnslookup -noidentlookup"
MAILDIRPATH=.maildir

Once the POP3 server has been configured, it is time to test it. If you are using a
distribution-supplied version of Courier-IMAP, use the distributors' startup script
called /etc/init.d/courier-imap. This will attempt to start imapd as well as
pop3d, but as most of the configuration will have been done by the distributors,
IMAP should start successfully.

If you are using Courier-IMAP version 4.0 or later, then courier-
authdaemon must be running before the POP3 or IMAP services.
Ensure that you start them as described previously.

To start the POP3 service for testing, run the following command:

/usr/lib/courier-imap/libexec/pop3d.rc start

Once the POP3 and IMAP services are configured correctly, they can be started
automatically when the machine boots. This is explained in the Testing the IMAP
service section. The instructions can be followed, even if IMAP is not required.

Incoming Mail with POP and IMAP

[94]

Testing the POP3 Service
The easiest way to test a service such as POP3 is by using the telnet utility and
connecting to the appropriate port. This avoids any problems there may be with
network connectivity or client configuration. POP3 uses port 110, so connect telnet
to port 110 on the local machine.

$ telnet localhost 110
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
+OK Hello there.

USER username
+OK Password required.
PASS password
+OK logged in.

STAT
+OK 82 1450826

LIST
+OK POP3 clients that break here, they violate STD53.
1 5027
2 5130
3 6331
4 3632
5 1367
... all e-mails are listed, with their sizes in bytes
82 6427
.

RETR 1
+OK 5027 octets follow.
Return-Path: <user@domain.com>
X-Original-To: user@localhost
Delivered-To: user@machine.domain.com
Received: from isp (isp [255.255.255.255])
... e-mail is listed
.

QUIT
+OK Bye-bye.

Connection closed by foreign host.

The POP3 protocol is based on text commands, and so it is easy to emulate a client
with telnet. Initially, use the USER and PASS commands to authenticate a user. If
the user is authenticated correctly, the STAT command lists all e-mails and their
combined size in bytes. LIST lists each e-mail and its size. The RETR command

Chapter 3

[95]

retrieves (or lists) an e-mail when the e-mail number is specified with the command.
The DELE command (not shown in the example) will delete an e-mail from the server.

Now that POP3 is working, it is time to configure an e-mail client to collect e-mails.

Retrieving E-mail via POP3 with Windows
Live Mail
Windows Live Mail is a popular e-mail client, available for download for versions
of Windows from XP onwards. It includes the ability to connect to POP3-and IMAP-
enabled servers. It is available for download at http://download.live.com/wlmail.

The following are the steps to configure it:

1. Start Windows Live Mail by locating it in the Start menu hierarchy: Start |
All Programs | Windows Live | Windows Live Mail. When it is run for the
first time, the interface will automatically display the wizard to create new
account. Otherwise, click on Add e-mail account in the navigation bar.

Incoming Mail with POP and IMAP

[96]

2. The first page of the new account wizard will be displayed.

3. Enter the full e-mail address in username@domain format. You may decide
whether you want to enter the password—if you do not check Remember
password, you will be prompted for the password every time you start
Windows Live Mail. The Display Name should be your first and last
name—this will appear on outgoing e-mails. There is no need to check
the Manually configure server settings for e-mail account checkbox.

Chapter 3

[97]

4. Click on Next. The next page of the wizard requires some server details.

5. The default is for a POP3 server. The Incoming server should be the name
(or IP address) of the mail server. The default Port of 110 can be kept
unchanged. Do not check the box for an SSL connection, and keep the
authentication method as Clear text authentication. The Login ID should
be kept as the username part of the e-mail address entered in the first screen.
The Outgoing server should be as provided for Incoming server, and the
remainder of the form can be left with the default values.

Incoming Mail with POP and IMAP

[98]

6. Press Next. You will be presented with a confirmation screen.

7. When you click on Finish, Windows Live Mail will attempt to connect to the
e-mail server and download e-mail.

8. If there are any errors, then right-click the account in the navigation pane,
and select Properties. You can then check and modify any settings.

Now that POP3 has been successfully configured, it is time to move on to IMAP.

Using IMAP
As mentioned in the introduction, with IMAP, the mail is held on the server and
might not be held on the client. This makes it ideal for organizations with a central
administrative function, as it eases backups and also allows users to change the
client computers they work at. However, this also means that the disk storage
required to store an entire organizations e-mail will inevitably increase over time.
This is particularly true when large attachments are sent or received. If users rely
on being able to access their mailbox, they will be inconvenienced if the mail server
is unavailable during their working hours. Some e-mail clients can be configured
to make copies of e-mails, and so avoid interruption. By using IMAPs ability to
create folders and move e-mails between them, this can sometimes be achieved in
a relatively straightforward manner.

Chapter 3

[99]

Configuring Courier for IMAP
After Courier-IMAP has been installed, either from package or from source as
described earlier, it needs to be configured before it can be used.

If you have configured and tested POP3 as described earlier, you should
stop the Courier-IMAP daemons while you configure IMAP. If you are
using a version of Courier-IMAP greater than 4.0, then you can leave the
authentication daemon running.

If Courier-IMAP was built from source, the configuration files are located in
/usr/lib/courier-imap/etc/courier-imap/. In a packaged distribution, they
may be located in /etc/courier-imap. The imapd file contains the settings for the
IMAP server.

If you are using a packaged distribution of Courier-IMAP, the configuration files can
be found with this command:

find / -name imapd 2>/dev/null

/usr/lib/courier-imap/etc/imapd
/usr/lib/courier-imap/bin/imapd

Once the file has been located, it can be modified as appropriate. Here are the main
configuration directives:

Setting Description
PIDFILE The imapd daemon keeps track of the process ID that it uses. It

specifies a valid path and a name, which suggests the use of the
file. Typically, this might be /var/run/imapd.pid. Ensure
that the setting points to a valid directory.

MAXDAEMONS This specifies the maximum number of imapd processes that
can run at a time. This number limits the number of users that
can connect at one time. A number higher than the expected
number of users may be wasteful, but users attempting to
connect are also included in this number. Set this to a number
around the maximum number of users who may connect at
one time, or a little higher.

PORT This specifies the port that the daemon listens on. The standard
port is 143, and a different one should only be chosen if all
client software is configured to use the non-standard port.

ADDRESS This specifies the IP address to listen on. If the machine has
multiple network interfaces, Courier-IMAP can be configured
to listen only on one of the addresses. A value of 0 indicates
that all network interfaces should be used.

Incoming Mail with POP and IMAP

[100]

Setting Description
TCPDOPTS These are options to be used. Typical ones include

-nodnslookup that prevents the IMAP daemon from
attempting to resolve the name of each connection, and
-noidentlookup that prevents it from attempting an ident
query for the incoming connection. Specifying both of these
settings can decrease the time taken to authenticate a
user connection.

MAILDIRPATH This is the path to a typical user's maildir. Specify the
appropriate value for your system, for example, .maildir.

MAXPERIP This specifies the maximum number of connections from
each IP address. A low number prevents malicious acts such
as denial-of-service attacks, where an attempt is made to use
up all the connections on the mail server. Some e-mail clients
make multiple connections to a server, and so a low value
such as 5 may affect operation of client software.

IMAP_CAPABILITY This describes the IMAP capabilities that the server reports to
clients. It should be left on the default setting.

IMAP_EMPTYTRASH This specifies how long e-mail messages should be kept in
certain folders. Messages older than the date specified are
automatically deleted when the user logs in or logs out. This
can be used to automatically delete e-mail from the Trash
folder after a certain period. This works for all folders, so
e-mail in the Sent items folder could be deleted after a longer
period has expired.

For example, IMAP_EMPTYTRASH=Trash:7,Sent:30
specifies that e-mails in the Trash folder are deleted after 7
days, and those in the Sent folder will be deleted after 30 days.

If very large numbers of e-mails are present in the folders
specified, performance will suffer, as each file will be checked
every time the user logs in or logs out of the IMAP server. In
this case, it would be better to disable this setting and run a
separate script regularly to remove old files.

IMAP_IDLETIMEOUT This is the length of time (in seconds) that a client can be idle
for (not make any request to the server), before the connection
is closed. Values lower than the default of 60 may result in
client connections being terminated prematurely, but a well-
written client will reconnect without notifying the user. Higher
values should be used if users report problems.

IMAP_TRASHFOLDERNAME This specifies the folder to be used when e-mail is deleted.
SENDMAIL This specifies the path to sendmail, for sending e-mail. You

should ensure that this points to the executable file installed by
Postfix in Chapter 2.

Chapter 3

[101]

Here is a sample imapd configuration file:

ADDRESS=0
IMAP_CAPABILITY="IMAP4rev1 UIDPLUS CHILDREN NAMESPACE
THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA IDLE"
IMAP_EMPTYTRASH=Trash:7
IMAP_IDLE_TIMEOUT=60
IMAP_TRASHFOLDERNAME=Trash
MAILDIRPATH=.maildir
MAXDAEMONS=40
MAXPERIP=10
PIDFILE=/var/run/imapd.pid
PORT=143
SENDMAIL=/usr/sbin/sendmail
TCPDOPTS="-nodnslookup -noidentlookup"

Testing the IMAP service
To start the IMAP service for testing, run the following command:

/usr/lib/courier-imap/libexec/imapd.rc start

The easiest way to test a service such as IMAP is by using the telnet utility and
connecting to the appropriate port. This avoids any problems with network
connectivity or client configuration. IMAP uses port 143, so telnet to port 143
on the local machine:

$ telnet localhost 143

Connected to localhost.
Escape character is '^]'.
* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE
THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION
STARTTLS] Courier-IMAP ready. Copyright 1998-2004 Double Precision,
Inc. See COPYING for distribution information.

1 capability

* CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE
THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION
STARTTLS
1 OK CAPABILITY completed

2 login "username" "password"

2 OK LOGIN Ok.
3 namespace

* NAMESPACE (("INBOX." ".")) NIL (("#shared." ".")("shared." "."))
3 OK NAMESPACE completed.

Incoming Mail with POP and IMAP

[102]

Each command is prefixed with an identifier—here we use incremental numbers.
The first command asks the IMAP server to list its capabilities. The second command
is a user login, and includes the username and password. If this is successful, then
the final namespace command shows that the server has accepted the login and the
client can determine where in the folder hierarchy the user is placed.

This is enough to confirm that the user can log in and issue commands. The whole
IMAP command set is quite large and complex, and does not lend itself to be used
by telnet.

Once the POP3 and IMAP services are configured correctly, they can be started
automatically when the machine boots. If you have installed from a package, then
the distributor will probably have created a suitable startup script in /etc/init.d.
Depending on the distribution, this may start when the machine boots. For Red Hat
Linux, the command will be:

service courier-imap add default

For other distributions, the chkconfig command might be used:

chkconfig -add imapd

Now that IMAP is configured correctly, it is time to configure an e-mail client.

Retrieving mail via IMAP with Mozilla
Thunderbird
Mozilla Thunderbird is a popular open source e-mail client and can be downloaded
from http://www.mozilla.org/. It can be used with a variety of operating systems,
including Windows and Linux.

Chapter 3

[103]

Here are steps to configure it to connect to a Courier-IMAP server:

1. From the main Thunderbird screen, select Tools | Account Settings.

2. Click on the Add Account... button. On the next screen, choose E-mail
Account and then click Next. The identity screen opens. Enter your user
name and e-mail address, then click Next.

Incoming Mail with POP and IMAP

[104]

3. On the Server Information screen, select IMAP as the server type, and enter
the name or the IP address of the server for incoming e-mail. Then click the
Next button.

4. On the next screen, enter the Incoming User Name. This will normally be the
Linux account name.

Chapter 3

[105]

5. Finally, provide a useful tag for the e-mail account in the Account Name
field, in case another account is defined in the future. Click Next.

6. On the next screen, the details are summarized. Click Finish to save the
account details and to exit the Account Wizard.

Incoming Mail with POP and IMAP

[106]

7. Finally, the Account Settings screen is shown, listing the account you just
defined. Click OK.

To retrieve messages, click on File | Get New Messages, and select the account you
just created from the menu.

Thunderbird will prompt you for the password. Enter the correct password and
press Enter. Thunderbird will then connect to Courier-IMAP and retrieve details
of all the e-mail. If you click on an e-mail, Thunderbird will retrieve it using the
IMAP protocol.

Summary
In this chapter we saw the two mail protocols for retrieving e-mail, POP3 and IMAP,
and explained some strengths and weaknesses. We then covered Courier-IMAP,
which can provide both POP3 and IMAP services, and advised you to use a package
from your Linux distributor. We also described how to build it from source, should
this be required. We then discussed how to configure and test both the POP3 and
IMAP services, including configuration of popular e-mail clients.

Providing Webmail Access
You learned how to set up and configure an e-mail server in the previous chapters.
Now that your e-mail server is ready to serve, how will your users access it? In this
chapter, you will learn about the following:

The benefits and disadvantages of a webmail access solution
The SquirrelMail webmail package
Setting up and configuring SquirrelMail
What SquirrelMail plugins are and what they can do
How to make SquirrelMail more secure

In the next section, we will introduce the SquirrelMail software package and examine
the pros and cons of this and other webmail access solutions. After that, we will
follow the installation and configuration of SquirrelMail step by step. Next, we will
examine the installation of plugins and include a reference of useful plugins. Finally,
we'll include some tips on how to secure SquirrelMail.

The webmail solution
A webmail solution is a program or a series of scripts that is run on a server,
is accessible over the web, and provides access to e-mail functions similar to a
conventional mail client. It is used by Yahoo! Mail, Microsoft Hotmail, Microsoft
Outlook Web Access, and Gmail as the primary interface to their e-mail solutions.
You may already be familiar with various forms of webmail.

Though we will be examining the SquirrelMail webmail solution specifically,
the benefits and drawbacks of SquirrelMail apply to most webmail systems in
the market. From this point of view, we will approach the issue from a general
perspective, and then in detail for the SquirrelMail package.

•

•

•

•

•

Providing Webmail Access

[108]

The benefits
This section will focus on the advantages offered by installing and maintaining a
webmail solution. As with any list, it is not entirely comprehensive. Many benefits
will be specific to a particular case; it is important to carefully examine and consider
how the following qualities impact your individual situation.

The main benefits we will explore in this section are as follows:

Easy and quick access with little or no setup
Easy remote access
No need to maintain client software or configuration
Provision of a user interface to configure mail server options
Possible security benefits

Easy and quick access
Although well suited to certain situations, traditional mail access solutions can often
be difficult to set up and maintain. Generally, this involves installing software on a
client's local computer and configuring it. This can be difficult, especially in cases
where users need to set up the software themselves. Configuration can often be
even more problematic as some users may not be competent enough to follow even
a very detailed set of instructions. These instructions also need to be provided and
maintained for many different mail clients on many different platforms.

However, a webmail solution does not have most of these problems. All of the user's
settings can be configured on the server as the application itself resides on the server.
This translates to almost zero set up time for the user. Once they have received their
login credentials, they can visit the webmail site and instantly have access to all of
their mail. The user is able to access the site instantly to send and receive e-mail.

As the Internet is so common now, many users will be familiar with webmail sites
such as Google Mail and Windows Live Hotmail, which offer free e-mail services.
However, the user interface provided by an open source package may be more
primitive and lack some visual features. Squirrelmail provides access to e-mail,
including the ability to send and receive attachments, and offers a good user interface.

It is also worth mentioning that a webmail solution can offer what certain traditional
mail clients call groupware features. These features let groups communicate and
coordinate in ways that complement e-mail communication. Examples of groupware
components are private calendars, shared calendars, meeting scheduling, To-do lists,
and other similar tools.

•

•

•

•

•

Chapter 4

[109]

These applications can be preconfigured so that a user can instantly begin using
them without having to configure them on their own. Several SquirrelMail plugins
which implement these features are available from the SquirrelMail website.

Easy remote access
Another problem with traditional mail access software is that it is not portable, as
an e-mail client needs to be installed and configured on a computer. Once it has been
downloaded, installed, and configured on a particular computer, it is accessible only
on that computer. Without webmail, users on the road will not be able to access
e-mail from friends' computers, mobile devices, or Internet booths at airports.

However, in a webmail solution, e-mail can be accessed from any location with an
Internet connection. Employees can access their work e-mail from any computer
with an Internet connection and a suitable browser.

As the administrator, you can choose to permit or deny users from accessing
e-mail in insecure situations. By requiring the connection to be encrypted, you can
ensure that when a user is in a remote location, their communication with the server
is secure.

No need to maintain clients
Even if software mail clients have been installed and properly configured, they must
be maintained. When a new version is released, all clients must be updated. This is
not necessarily an easy task. Software that does not work as expected can result in a
large number of support-desk calls.

Updating the software on each client can be a very large administrative burden. In
fact, many expensive software packages are designed for the specific purpose of
updating software on individual machines automatically. Despite this, problems
specific to each local machine often arise and must be solved individually. It may
also be difficult to convey instructions or notifications to remote branch locations
or remote workers. With a webmail solution, this is not necessary.

In contrast to this, a webmail solution is centrally maintained and administered.
The webmail application resides on the server. With webmail, only the web server
and the webmail package need to be upgraded. Any exceptions or problems that
arise can be dealt with before or during the upgrade. The software upgrade itself
can be run through on a test system before it is deployed on a live system. Although
changes in settings are rare with SquirrelMail, it is possible to update a user's settings
to make them compatible with the changes introduced in an updated version.

Providing Webmail Access

[110]

Additionally, while upgrading or changing a mail server platform, testing effort
can be greatly reduced as only supported browser versions need to be tested. It
is advisable to mandate particular browser versions for corporate computers. In
contrast with e-mail clients, there is no need to test on all of the possible clients
and software platforms.

Configuring mail server interface via the user
interface
Many traditional desktop e-mail clients provide only e-mail functionality and nothing
more. Often there is no support for other essential tasks (such as changing the access
password) that are performed on behalf of a mail user. Certain configuration options
that reside on the server may require additional software applications or external
solutions to provide for these needs. Examples of mail server options that may need
to be configured include each user's password and junk mail filtering settings.

In the case of the SquirrelMail webmail application, many plugins have been
developed that provide these features. For example, a user is able to change his/her
password directly from the webmail interface. Also, there are plugins and systems
that allow users to easily sign up without any direct human intervention. This may
be useful if you are interested in providing a service where users can sign up
without needing an administrative overhead.

Possible security benefits
This issue can be seen in two different ways—it is for this reason that the title is listed
as "Possible" security benefits. Nonetheless, this is still an interesting point to examine.

In the software client access model, e-mail is traditionally downloaded onto the
local user's computer, being stored in one or more personal folders. From a security
perspective, this may be a bad thing. Users of the system may not be as conscientious
or knowledgeable about computer security as a trained computer administrator
might be. It is often much easier to gain unauthorized access to an end user's
computer than a properly configured and secured server. The implication is that
someone who stole a company laptop might be able to access all the e-mail stored
on that computer.

There is one more disadvantage associated with the client access model. Even if
an employee is terminated, he/she may still have access to all of the e-mail that
resides on his/her local office computer. It may take a certain amount of time before
important information may be secured. A disgruntled worker might easily connect
an external storage source to their local office computer and download any data
they desire.

Chapter 4

[111]

It is also worth noting that in a webmail model, all e-mail is centrally stored. If an
attacker were to gain access to the central e-mail server, he/she might access all the
e-mail stored on that server. However, it is possible that an attacker will gain access
to all the e-mail if the central mail server is compromised even if a webmail system
is not used.

The disadvantages
This section focuses on the disadvantages resulting from providing and supporting
a webmail solution. The warning given in the previous section applies: This
list is not entirely comprehensive. Each situation is unique, and may bring its
unique disadvantages.

We will go over the following disadvantages of a webmail solution:
Performance issues
Compatibility with large e-mail volumes
Compatibility with e-mail attachments
Security issues

Performance
The traditional e-mail client is designed in the client-server model. One mail server
accepts and delivers e-mail to and from other mail servers. However, a desktop mail
client can offer many additional productivity-enhancing features such as message
sorting, searching, contact list management, attachment handling, along with more
recent ones such as spam filtering and message encryption.

Each of these features may require a certain amount of processing power. The
required level of processing power may be negligible when it comes to storing
one user's e-mail on a desktop computer, but providing these features may be
problematic when applied on a larger scale to a single server.

When examining the performance issue, it is important to consider the number of
potential users that will access the webmail application and size a server accordingly.
A single server may be able to easily handle something like 300 users, but if the
number of users increases significantly, server load may become an issue.

For example, searching through several years' archived mail may take a few seconds
on a client's computer. When one user performs this task using webmail, the load
will be similar. However, if many clients request this operation at short intervals
or concurrently, it may be difficult for the server to process all the requests in a
timely manner. This may result in pages being served at a slower rate or, in
extreme circumstances, the server failing to respond.

•
•
•
•

Providing Webmail Access

[112]

Optimally, load testing in the appropriate conditions should be performed if there is
any concern that a server may not be able to handle a particular load of users.

Compatibility with large e-mail volumes
The webmail solution is not well suited to large mail volumes. This disadvantage
is related to the previous one, but is more related to the amount of data sent. Even
with a relatively low number of users, a large volume of e-mails may be difficult
to manage in a webmail application. There are mainly the following two reasons
for this:

Firstly, every e-mail viewed and every folder listed must be sent from
the server each time. With a traditional e-mail client, the client software
can manage e-mail messages, creating lists and views to suit the user.
However, with a webmail solution, this is performed on the server. So, if
there are many users, this overhead may use a significant proportion of the
server's resources.
Secondly, each interaction with the webmail application requires a Hypertext
Transfer Protocol (HTTP) request and response. These messages will
typically be larger than those between an e-mail server and a desktop e-mail
client. There may also be less parallelism when using a webmail client, in
other words, fewer things going on at the same time. A desktop e-mail client
may be able to check for new e-mails in several folders at the same time, but
a webmail client will typically perform these tasks one after the other, if they
occur automatically at all.

Compatibility with e-mail attachments
The webmail solution is not well suited to e-mail attachments. By virtue of the fact
that a webmail application resides on a remote server, any and all e-mail attachments
must first be uploaded onto that server. For a couple of reasons, it may be difficult
or impossible to accomplish this operation with too many attachments or with
attachments that are large in size.

Difficulties uploading large attachments may arise due to limited storage space on
the webmail server. Large attachments may take a long time to upload over the
HTTP protocol and even longer over HTTPS. Additionally, many file size limits
may be imposed on uploaded files. PHP, the programming language used with
SquirrelMail, imposes a 2MB limit on uploaded files in its default configuration.

•

•

Chapter 4

[113]

The solution to the above problem may lie in the nature of the webmail access
solution—e-mail and the mail access software reside on the server. In a traditional
mail client, e-mail is often downloaded before the user is aware of the contents or
size of the particular e-mail message. As opposed to this, in the case of webmail,
the user is able to view e-mail with large attachments without downloading the
attachments—a particular benefit to those without high-speed internet connections.

Finally, downloading and uploading large e-mail attachments from the server may
cause a performance issue with the user interface. Many users are frustrated by
an attachment's upload time in the webmail application, especially as the message
cannot be sent until the attachment is uploaded. In a traditional mail client, the
attachment is attached instantly, while the message takes time to send.

Security issues
The last issue we will examine is the potential for security shortcomings. One
important feature of a webmail access solution also creates a potential problem. The
benefit of remote access gives way to the potential insecurity of the local machines
upon which the user accesses his/her mail.

A computer that is not directly under your control may be controlled by a
third-party intent on accessing your information. Normally, a computer does not
record a user's individual keystrokes. Internet cafes and kiosks, and even the home
computers of employee's could be running malicious software. This malicious
software may monitor keystrokes and websites visited. A user must type in his/her
password or login credentials to gain access to the system. When these credentials
are captured and stored on the computer with malicious software, they can be
intercepted and used by third parties for unauthorized access.

Even if we take malicious intent out of the picture, there are still certain situations
that may prove to pose security risks. For example, many modern web browsers
offer the option of saving a password whenever it is entered. This password is stored
on the local computer where the website is visited. If a user logs in to the webmail
application and accidentally saves their password on the local computer, this
password may be accessible to any user with access to that local computer.

Finally, users may inadvertently leave themselves logged in to the webmail
application. Without logging out, any user with access to that specific computer
might be able to gain access to the user's mail account.

Providing Webmail Access

[114]

The SquirrelMail webmail package
The following screenshot shows the SquirrelMail login screen:

SquirrelMail was chosen based on the combination of the following features
it provides:

It is a proven, stable, and mature webmail platform.
It has been downloaded over two million times.
It is standards-based and renders pages in pure HTML 4.0 without requiring
the use of JavaScript.

SquirrelMail also includes the following features (and many more, via the flexible
plugin system):

Strong MIME support
Address book functionality
A spell checker
Support for sending and receiving HTML e-mail
Template and theme support
Virtual host support

•

•

•

•

•

•

•

•

•

Chapter 4

[115]

The following screenshot shows an inbox where you can see some of these features:

SquirrelMail installation and
configuration
SquirrelMail installation and configuration may seem daunting if you are not
familiar with installing web applications. But by following the instructions to be
discussed next, SquirrelMail can be installed without difficulty.

Prerequisites to installation
SquirrelMail requires both PHP and a web server that supports PHP scripts to be
installed before proceeding. In our case, we will be using the Apache2 web server,
although others will work as well.

First, we will go over the basic requirements, and what to do if you do not meet
them. Then, we will go over some more advanced requirements that may impact on
certain features within SquirrelMail.

Providing Webmail Access

[116]

Basic requirements
At the time of writing, the most current stable version of SquirrelMail available
is 1.4.19. The following instructions apply to this version. There are two basic
requirements for a SquirrelMail installation.

Installing Apache2
Any modern version of Apache that supports PHP, either the 1.x or 2.x series, will do
the trick. Here we provide instructions for using Apache2. To query for an Apache
installation on an RPM package management-based system, issue the following
command at the prompt:

$ rpm -q apache

apache-1.3.20-16

If, as in the example just seen, a version of Apache is returned, then the Apache web
server is installed on your system.

To query for an Apache installation on a Debian package management-based system,
issue the following command at the prompt:

$ apt-cache search --installed apache2 | grep HTTP

libapache2-mod-evasive - evasive module to minimize HTTP DoS or brute
force attacks
libpoe-component-server-http-perl - foundation of a POE HTTP Daemon
libserf-0-0 - high-performance asynchronous HTTP client library
libserf-0-0-dbg - high-performance asynchronous HTTP client library
debugging symbols
libserf-0-0-dev - high-performance asynchronous HTTP client library
headers
nanoweb - HTTP server written in PHP
php-auth-http - HTTP authentication
apache2 - Apache HTTP Server metapackage
apache2-doc - Apache HTTP Server documentation
apache2-mpm-event - Apache HTTP Server - event driven model
apache2-mpm-prefork - Apache HTTP Server - traditional non-threaded
model
apache2-mpm-worker - Apache HTTP Server - high speed threaded model
apache2.2-common - Apache HTTP Server common files

Similar commands are available for other distributions using other package
management systems.

Chapter 4

[117]

If you do not have an Apache installation present, it is best to first look into your
distribution for a copy of Apache—such as on your operating system installation
CDs or using an online package repository. Alternatively, you may visit the home
page for the Apache foundation at http://www.apache.org.

PHP
The PHP programming language (version 4.1.0 or greater, including all PHP 5
versions) is required in order to install SquirrelMail. To check if your system has
PHP installed, simply attempt to run it with the following command:

$ php -v

If the command succeeds, you will see a message describing the version of PHP
that is installed. If PHP version 4.1.0 or higher is present, then your system has
the required software. Otherwise, you will need to install or upgrade your current
installation. As with Apache, it is best to look to your distribution for a copy to
install. Alternatively, you may also visit http://www.php.net.

Perl
The Perl programming environment is not required for SquirrelMail, but having
it available makes configuration of SquirrelMail much simpler. In this chapter,
we assume that you will have Perl accessible to enable easy configuration
of SquirrelMail.

To query for a Perl installation on an RPM-based system, simply attempt to run it
with the following command:

$ perl -v

If the command succeeds, you will see a message describing the version of Perl that
is installed.

If any version of Perl is present, your system has the required software. Otherwise,
you will need to install or upgrade your current installation. As with Apache, it is
best to look into your distribution for a copy to install. Alternatively, you may also
visit http://www.perl.com/get.html.

Review configuration
You will need to review the PHP configuration file php.ini to ensure that settings
are correct. On most Linux systems, this file may be found at /etc/php.ini.

Providing Webmail Access

[118]

php.ini is a text file and can be edited with a text editor such as Emacs or vi.
Firstly, if you want users to be able to upload attachments, make sure that the
option file_uploads is set to On:

; Whether to allow HTTP file uploads.

file_uploads = On

The next option within the php.ini file you may want to change is
upload_max_filesize. This setting applies to uploaded attachments and
determines the maximum file size of an uploaded file. It may be helpful to
change this to something reasonable, such as 10M.

; Maximum allowed size for uploaded files.

upload_max_filesize = 10M

Installing SquirrelMail
SquirrelMail may be installed either though a package or directly from source. While
no source code compilation takes place in either method, upgrades are made easier
using the packages.

Many of the various Linux and Unix distributions include the SquirrelMail package.
Install the appropriate package from your distribution to use the binary method. On
many Linux distributions, this may be an RPM file that begins with squirrelmail….

However, an updated version of SquirrelMail may not be included or available for
your specific distribution.

The following are the advantages of using the version of SquirrelMail provided with
a Linux distribution:

It will be very simple to install SquirrelMail.
It will require much less configuration as it will be configured to use the
standard locations chosen by your Linux distributer.

Updates will be very easy to apply, and migration issues may be dealt with
by the package management system.

The following are the disadvantages of using the version of SquirrelMail provided
with a Linux distribution:

It may not be the latest version. For example, a more recent version that may
fix a security vulnerability may have been released, but Linux distributors
may not have created a new package yet.

•

•

•

•

Chapter 4

[119]

Sometimes Linux distributions alter packages by applying patches. These
patches may affect the operation of the package, and may make getting
support or help more difficult.

Source installation
If you do not install SquirrelMail through your distribution, you will need
to obtain the appropriate tarball. To do so, visit the SquirrelMail website at
http://www.squirrelmail.org, and click download it here. At the time of
writing, this link is http://www.squirrelmail.org/download.php.

There are two versions available for download, a stable version and a development
version. Unless you have specific reasons for choosing otherwise, it is generally best
to choose the stable version. Download and save this file to an intermediate location.

$ cd /tmp

$ wget http://squirrelmail.org/countdl.php?fileurl=http%3A%2F%2Fprdownloa
ds.sourceforge.net%2Fsquirrelmail%2Fsquirrelmail-1.4.19.tar.gz

Next, unpack the tarball (.tar.gz) file. You may use the following command:

$ tar xfz squirrelmail-1.4.19.tar.gz

Move the folder just created to your web root folder. This is the directory from which
Apache serves pages. In this case, we will assume that /var/www/html is your web
root. We will also rename the clumsy squirrelmail-1.4.3a folder to a more simple
mail folder. You will need to have superuser root privileges in order to do this on
most systems.

mv squirrelmail-1.4.19 /var/www/html/mail

cd /var/www/html/mail

Here we have used the name mail, so the URL that users will use will be
http://www.sitename.com/mail. You can choose another name, such as webmail,
and use that directory name instead of mail in the commands that you enter.

It is also useful and secure to create a data directory for SquirrelMail that is outside
the main web root, so that this folder will be inaccessible from the Web.

mv /var/www/html/mail/data /var/www/sqmdata

It is important to make this newly created folder writable by the web server. To
be able to do this, you must know the user and group that your web server runs
under. This may be nobody and nobody, apache and apache, or something else.
You will want to verify this; it will be listed in your httpd.conf file as the User
and Group entries.

chown -R nobody:nobody /var/www/sqmdata

•

Providing Webmail Access

[120]

Finally, we will create a directory to store attachments. This directory is special in
that, although the web server should have write access to write the attachments,
it should not have read access. We create this directory and assign the correct
permissions with the following commands:

mkdir /var/www/sqmdata/attachments

chgrp -R nobody /var/www/sqmdata/attachments

chmod 730 /var/www/sqmdata/attachments

SquirrelMail has now been properly installed. All of the folders have been set up
with correct permissions that will secure intermediate files from prying eyes.

If a user aborts a message that contains an uploaded attachment, the
attachment file on the web server will not be removed. It is a good
practice to create a cron job on the server that erases excess files from
the attachment directory. For example, create a file called remove_
orphaned_attachments and place it in the /etc/cron.daily
directory. Edit the file to have these lines:
#!/bin/sh

#!/bin/sh

rm `find /var/www/sqmdata/attachments -atime +2 | grep -v
"\."| grep -v _`

This will run daily and search the SquirrelMail attachments directory for
files which are orphaned, and delete them.

Configuring SquirrelMail
SquirrelMail is configured through the config.php file. To aid the configuration,
a conf.pl Perl script has also been provided. These files are located within the
config/ directory in the base installation directory.

cd /var/www/html/mail/config

./conf.pl

Chapter 4

[121]

Once you have run this command, you should see the following menu:

To select an item from the menu, enter the appropriate letter or number, followed
by the Enter key. As SquirrelMail has been developed, it has been noticed that IMAP
servers don't always behave in the same way. To get the most out of your setup,
you should tell SquirrelMail which IMAP server you are using. To load a default
configuration for your IMAP server, enter the D option and type the name of the
IMAP server that you have installed. This book covers the Courier IMAP server, so
you should choose that. Press Enter again, and you will return to the main menu.

We will be moving through the various subsections of the menu and configuring the
appropriate options.

Type 1 and then press Enter to select the Organization Preferences. You will get
a list of items you can change. You may wish to edit the Organization Name,
Organization Logo, and Organization Title fields. Once you have modified these
to your satisfaction, enter R to return to the main menu.

After this, type 2 to visit the Server Settings. This allows you to set the IMAP server
settings. It is important that you update the Domain field to the proper value.

Providing Webmail Access

[122]

In our case, the Update IMAP Settings and Update SMTP Settings values should
be correct. If you would like to use an IMAP or SMTP server that is located on a
different machine, you may wish to update these values.

Press R followed by the Enter key to return to the main menu.

Next, type 4 to visit the General Options. You will need to modify two options in
this section.

Data Directory to be /var/www/sqmdata.
Attachment Directory to be /var/www/sqmdata/attachments.
Type in R followed by the Enter key to return to the main menu.
Enter S followed by the Enter key twice to save the settings to the
configuration file. Finally, enter Q followed by the Enter key to exit
the configuration application.

We have finished configuring the SquirrelMail settings needed for basic operation.
You may return to this script at any time to update any settings you have set. There
are many other options to set, including those regarding themes and plugins.

SquirrelMail plugins
Plugins are pieces of software that extend or add functionality to a software package.
SquirrelMail was designed from the ground up to be very extensible, and includes a
powerful plugin system. Currently, there are over 200 different plugins available on
the SquirrelMail website. They may be obtained at http://www.squirrelmail.org/
plugins.php.

The functionality they provide includes administration tools, visual additions,
user interface tweaks, security enhancements, and even weather forecasts. In the
following section, we will first go over how to install and configure a plugin. After
that, we'll go over some useful plugins, what they do, how to install them, and more.

Installing plugins
These SquirrelMail additions were designed to be simple to set up and configure.
In fact, the majority of them follow exactly the same installation procedure.
However, a few require custom setup instructions. For all plugins, the installation
process is as follows:

1. Download and unpack the plugin.
2. Perform custom installation if needed.
3. Enable the plugin in conf.pl.

•

•

•

Chapter 4

[123]

Example plugin installation
In this section, we will go over the installation of the Compatibility plugin.
This plugin is required in order to install plugins created for older versions of
SquirrelMail. No matter how bare-bones your installation, the Compatibility
plugin will most likely be part of your setup.

Downloading and unpacking the plugin
All available plugins for SquirrelMail are listed on the SquirrelMail website at
http://www.squirrelmail.org/plugins.php.

Certain plugins may require a specific version of SquirrelMail. Verify that you have
this version installed. Once you have located a plugin, download it to the plugins/
directory within the SquirrelMail root folder.

You may locate the Compatibility plugin by clicking on the Miscellaneous category
in the plugins page on the SquirrelMail plugins web page. This page has a list of
plugins in the Miscellaneous category. Locate Compatibility and click on Details
and downloads, and then download the latest version.

Providing Webmail Access

[124]

Download tarball to your SquirrelMail plugin directory.

cd /var/www/mail/plugins

wget http://squirrelmail.org/countdl.php?fileurl=http%3A%2F%2Fwww.
squirrelmail.org%2Fplugins%2Fcompatibility-2.0.14-1.0.tar.gz

Once you have downloaded the plugin to the plugins directory, unpack it using the
following command:

tar zxvf compatibility-2.0.14-1.0.tar.gz

If a plugin of the same name has already been installed, its files may
be overwritten. Verify that you either do not have a plugin of the
same name, or save the files before you unpack the tarball.

Performing custom installation
The current version of the Compatibility plugin does not require any additional
configuration. However, you should always check the documentation for a plugin,
as certain other plugins may require custom installation. Once you have unpacked
the plugin package, the installation instructions will be listed in the INSTALL file
within the newly created plugin directory. It is advisable to check the installation
instructions before enabling the plugin in the configuration manager, as some
plugins may require custom configuration.

Enabling the plugin in conf.pl
Within the main menu of the configuration editor, option number 8 is used to
configure and enable plugins. Start conf.pl and select option 8.

cd /var/www/mail/plugins

cd ../config

./conf.pl

SquirrelMail Configuration : Read: config_default.php (1.4.0)

Main Menu --
[...]
7. Message of the Day (MOTD)
8. Plugins
9. Database
[...]

Command >>

Chapter 4

[125]

You should get the following display when you select this option for the first time::

All the plugins that have been installed and enabled are listed under the Installed
Plugins list. All the plugins that have been installed but not enabled are listed under
the Available Plugins list.

Once you have unpacked a plugin within the plugins/ directory, it will show up
under Available Plugins. As you can see in the previous figure, there are a number
of installed plugins, but none of them are enabled. As a malfunctioning or wrongly
configured plugin can cause SquirrelMail to stop functioning properly, it is advisable
to enable plugins one by one, and verify that SquirrelMail works after each one.
To enable the Compatibility plugin, locate it in the list Available Plugins (in this
case, number 4) and press the Enter key. The Compatibility plugin is now installed.
Plugins can be disabled by locating them in the Installed Plugins list and entering
their number and pressing Enter.

Providing Webmail Access

[126]

Useful plugins
We'll now see some useful SquirrelMail plugins that you may consider installing.

The information has been compiled to provide a helpful reference while deciding
whether to install a plugin. Each plugin contains four specific categories:

Category: The category in which the plugin is listed on the SquirrelMail site
Authors: Authors who wrote the plugin, in chronological order
Description: A short description of the plugin's functionality
Requirement: A list of prerequisites for the plugin's successful installation

 Plugin name Category Author(s) Description Requirement
Compatibility
plugin

Miscellaneous Paul
Lesneiwski

This plugin allows
any other plugin
access to the functions
and special variables
needed to make
it backward (and
forward) compatible
with most versions of
SM in wide use. This
eliminates the need for
duplication of certain
functions throughout
many plugins. It also
provides functionality
that helps in checking
whether the plugins
have been installed and
set up correctly.

Nothing

Secure login Logging in Graham
Norbury,
Paul
Lesneiwski

This plugin
automatically enables
a secure HTTPS/SSL-
encrypted connection
for the SquirrelMail
login page if it hasn't
already been requested
by the referring
hyperlink or bookmark.
Optionally, the secure
connection can be
turned off again after
successful login.

SquirrelMail
version 1.2.8
or above,
HTTPS/SSL-
capable web
server with
encryption
already
working
on your
SquirrelMail
installation.

•

•

•

•

Chapter 4

[127]

Plugin name Category Author(s) Description Requirement
HTTP
authentication

Logging in Tyler
Akins, Paul
Lesniewski

If you keep
SquirrelMail behind
a password-protected
directory on your web
server and if PHP has
access to the username
and password used
by the web server, this
plugin will bypass
the login screen and
use that username/
password pair.

SquirrelMail
>= 1.4.0

Password
forget

Logging in Tyler
Akins, Paul
Lesneiwski

This plugin provides
a workaround for the
potential vulnerability
of browsers,
automatically storing
usernames and
passwords entered into
web pages.

SquirrelMail
>= 1.0.1

HTML mail Compose Paul
Lesneiwski

This plugin allows
users with IE 5.5 (and
up) and newer Mozilla
(Gecko-based browsers
such as Firefox)
browsers to compose
and send their e-mail in
HTML format.

SquirrelMail
>= 1.4.0

Quick save Compose Ray Black
III, Paul
Lesneiwski

This plugin
automatically saves
messages as they
are being composed,
in order to prevent
accidental loss of
message content due to
having browsed away
from the compose
screen or more serious
problems such as
browser or computer
crashes.

SquirrelMail
>= 1.2.9, the
Compatibility
plugin,
JavaScript-
capable
browser

Providing Webmail Access

[128]

 Plugin name Category Author(s) Description Requirement
Check quota
usage (v)

Visual
additions

Kerem
Erkan

This plugin will check
and display users' mail
quota status.

SquirrelMail
1.4.0+;
Compatibility
plugin, version
2.0.7+, UNIX,
IMAP or cPanel
quotas installed
and configured

Sent
confirmation

Miscellaneous Paul
Lesneiwski

Displays a confirmation
message after a
message is successfully
sent, as well as other
features.

SquirrelMail
>= 1.2.0, the
Compatibility
plugin

Timeout user Miscellaneous Ray Black
III, Paul
Lesneiwski

Automatically logs out
a user if they are idle
for a specified amount
of time.

The
Compatibility
plugin

E-mail footer Miscellaneous Ray Black
III, Paul
Lesneiwski

This plugin
automatically
appends a custom
footer onto the end of
messages sent using
SquirrelMail.

SquirrelMail
>= 1.4.2

Change
password

Change
password

Tyler
Akins, Seth
E. Randall

Allows a user to
change their password
using PAM or Courier
authentication
modules.

SquirrelMail
>= 1.4.0

Address book
import-export

Address book Lewis
Bergman,
Dustin
Anders,
Christian
Sauer,
Tomas
Kuliavas

Allows the importing
of address books
from a CSV (comma
separated values) file.

SquirrelMail
>= 1.4.4

Plugin updates
(v0.7)

Administrator's
Relief

Jimmy
Conner

Checks for updates to
your currently running
plugins.

SquirrelMail
>= 1.4.2

Many other plugins exist that handle vacation messages, calendars, shared calendars,
notes, to-do lists, exchange server integration, bookmarks, weather information,
and much more. Check the Plugins section in the SquirrelMail website for all of the
available plugins.

Chapter 4

[129]

Securing SquirrelMail
The SquirrelMail package, in and of itself, is fairly secure. It is well written and does
not require JavaScript to function. However, there are a few precautions that may be
taken to allow SquirrelMail to run as a secured mail handling solution.

Have an SSL connection: By using an SSL connection, you may be certain
that all communications will be encrypted, and so usernames, passwords,
and confidential data cannot be intercepted during transmission. This may be
accomplished through the installation of the Secure Login plugin. Obviously
a web server configured for secure SSL access will also be required;
certificates will most likely need to be generated or acquired.
Time out inactive users: Users may leave themselves logged in and neglect to
log out once they are finished. To fight this, inactive users should be logged out
after a certain amount of time. The Timeout User plug-in accomplishes this.
Fight "Remembered Passwords": Many modern-day browsers offer to
remember a user's password. Although a convenience, this may be a large
security vulnerability, especially if the user is located at a public terminal.
To fight this, install the Password Forget plugin. This plugin will change the
names in the username and password input fields, to make it more difficult
for a browser to suggest them to future users.
Do not install security-compromising plugins: Plugins such as Quick Save,
HTML Mail, and View As HTML may compromise security.

Summary
Now that you've finished this chapter, you should have a working SquirrelMail
installation as well as a greater understanding of the benefits and disadvantages
of a webmail solution. You should be familiar with the benefits and drawbacks of
a webmail solution. The benefits include remote access, a single central point to be
maintained, and simpler testing; while disadvantages include potential performance
problems and the security risk of allowing remote access from potentially
compromised computers.

You are now aware of the main features of SquirrelMail, including its flexibility
and the availability of plugins, along with what the prerequisites for installing
SquirrelMail are, and how to identify if they are already installed.

You also have learned how to configure SquirrelMail, including locating, installing,
and configuring plugins. You have been walked through the installation of a key
plugin; the Compatibility plugin. Several other useful plugins have also been
introduced. Finally, you have learned about some ways to improve the security of
SquirrelMail, including web server configuration and some appropriate plugins.

•

•

•

•

Securing �our Installation�our Installation Installation
Of all the things that can happen to your SMTP server, probably the worst is having
it abused as an open relay—a server that relays mail to third parties without your
permission. This will consume a lot of bandwidth (which can be costly), eat up
server resources (possibly slowing down or stopping other services), and can
be expensive in both time and money. A more serious consequence is that your
e-mail server will probably end up on one or more blacklists, and any e-mail
server that refers to those lists will refuse to accept any mail from your server until
you have proven it to be relay safe. If you need to use e-mail in order to carry out
business, you will have a big problem.

This chapter will explain how to:

Protect Postfix from relay abuse
Differentiate between statically and dynamically assigned IP addresses
Configure relay permissions using Postfix for static IP addresses
Use Cyrus SASL for authentication from unpredictable and dynamic
IP addresses
Use the Secure Sockets Layer to prevent usernames and passwords from
being sent in plaintext
Configure Postfix to defeat or at least slow down dictionary attacks, where
e-mails are sent to many e-mail addresses within a domain, in the hope that
a few will reach a valid recipient

•

•

•

•

•

•

Securing Your Installation

[132]

Configuring Postfix network maps
When the Internet was mainly used by academics, no one had to protect their
mail servers from relay abuse. In fact, not many people had a mail server, and so
permitting others who did not have an e-mail server to relay e-mail using your
server was considered a service to them.

This changed with the advent of people who soon became known as spammers.
They would abuse open relays to send advertisements to large numbers of remote
recipients leaving the owner of the mail server to pay for the traffic.

This is when postmasters started to handle relay permissions restrictively. They
used to permit relaying only for trusted IP addresses, refusing messages from other
IP addresses. A trusted IP address in this context was an IP address that could be
associated statically (refer the Static IP Ranges section) with a host that belonged to
a known user, or a range of IP addresses known to belong to a trusted network.
It worked well as most computers would have static IP addresses (the IP address
wouldn't change over time).

However a new approach had to be found when users became mobile and would
use dial-up providers to access the Internet and wanted to use a mail server in an
unknown location. Access providers would give these users dynamic IP addresses,
that is, their IP address would change every time they dialed in.

Suddenly the criteria used to distinguish good users from bad users were gone.
Postmasters would either have to loosen their relay permissions to permit a whole
network of potentially untrusted IPs to use the relay, or would have to find another
way to handle relaying for dynamic IP addresses. Over time, several approaches to
handle relaying for dynamic IP addresses emerged, such as:

SMTP-after-POP
Virtual Private Networks
SMTP Authentication

All of the three approaches differ in their requirements and how they work. The
following sections provide more detail on each approach.

SMTP-after-POP
Historically, many internet connections were dial up; if one wished to send an
e-mail, he/she would have to compose it offline, start the dial-up connection, and
then tell the e-mail client to "send and receive" mails. In this case, the mail client first
sends mail (via SMTP) and then checks the server (via POP) to see if there is any new
mail—the SMTP part happens before the POP part.

•

•

•

Chapter 5

[133]

This makes it impossible for the SMTP server to find out if the sender should be
permitted to relay, because the dynamic IP is in no relation with any other criteria
that would make the sender's one a trusted host. ISP's would be able to recognize
the IP address of the dial-up connection as one of their own, and permit relaying.
Any connection from outside their own network would typically be rejected. For
a small organization with users outside the corporate network, it is impossible to
keep track of all potential valid source IP addresses.

However, the transactions can be turned on their head, and the checking for mail can
be performed before sending mail. Checking for mail requires a password, which
means that the user can be authenticated. Popular e-mail clients can now check for
e-mail as soon as they are started, and check for new e-mails periodically. If the
SMTP server can be told that the user at a particular IP address is authenticated by
the POP server, it can allow relaying. This is the essence of SMTP-after-POP. The
SMTP server needs to know if a particular IP address has an authentic POP user
connected to it.

There has to be a time limit on how long the user connection is valid after the
last connection to the POP server, otherwise a traveling salesman might leave a
hundred different IP addresses as valid relay hosts a week, one of which might
later be occupied by a spammer. These days e-mails are often composed while the
user is online and sent between periodic, automatic checks for new mail. Therefore,
any composed e-mails sent to the SMTP server will normally be sent within a few
minutes of a POP3 request, so the time period can be short, typically tens of minutes.

The disadvantages of SMTP-after-POP are that you need a POP server even if you
only want to allow relaying of messages. A POP server will complicate the setup on
a server if you don't need it. It might also bind updates of your SMTP server to your
POP server to keep compatibility. And POP is not a secure method of authentication,
as it can be spoofed.

Virtual Private Networks
Virtual Private Networks (VPNs) assign the client another private IP address if
authentication to the VPN succeeds. The VPN server will allocate IP addresses in a
known block. The SMTP server can be configured to permit relaying for a mail client
coming from a VPN-allocated IP address.

Again, running a VPN just for the sake of relaying mails involves a lot of effort.
It only pays off if additional resources and services are provided via the VPN, for
example access to shared storage, databases, intranet sites, or applications.

Securing Your Installation

[134]

SMTP Authentication
SMTP Authentication, also known as SMTP AUTH, uses a different method to
identify valid relay users. It requires mail clients to send a username and password
to the SMTP server during the SMTP dialogue, and if the authentication succeeds,
they may relay.

It is less complex than running a full-blown POP server or a VPN, and it solves the
problem where it arises—in the SMTP server. You will learn what it takes to offer
SMTP AUTH, after you've learned how to configure your server to handle a range
of trusted static IP addresses.

Static IP ranges
By default, Postfix will allow only hosts from its own network(s) to relay messages.
Trustworthy networks are those you configured for your network interfaces. Run
ifconfig -a to get a list of what has been configured on your system.

If you want to change the default, you can either use some generic values using the
mynetworks_style parameter or provide explicit ranges of IP addresses noted as
values for the mynetworks parameter in main.cf.

Generic relay rules
To configure generic relay rules, you need to add one of the following values to the
mynetworks_style parameter in main.cf:

host: If you configure mynetworks_style = host, Postfix will permit
only the IP addresses of the host it runs on to send messages to remote
destinations. If you provide only a webmail interface, this may be acceptable,
but no desktop clients would be able to connect.
class: If you configure mynetworks_style = class, Postfix will allow
every host in the network class (Network class A/B/C) it serves to relay.
A network class specifies a range of IP addresses, either approximately 255
(class C), 65,000 (class B), or 16,000,000 (class A) addresses.

Explicit relay rules
Explicit relay rules allow for finer-grained relay permissions. To use this, you need
to understand the notation used to specify network address ranges. If your network
spans the range from 192.168.1.0 to 192.168.1.255, then this can be specified as
192.168.1.0/24. The 24 is used as the first 24 bits of the 32-bit network address are the
same for each client. If you use a DHCP server (for example, in your Linux server or
a firewall serving a DSL connection), your network address range will probably be

•

•

Chapter 5

[135]

defined by that device, and you should use appropriate values in your Postfix settings.
If you allocate IP addresses manually and hard-code them, you can either specify each
IP address individually as a /32 range, or you can ensure that each IP address falls in
an easily identifiable range once you allocate them. The class A network 10.0.0.0/8,
the 16 class B networks in the range 172.16.0.0 to 172.31.255.255 and the 256 class C
networks in the range 192.168.0.0 to 192.168.255.255. These are all available for
private network addresses and can be used for internal network addresses.

You can add a list of remote and local hosts and/or networks to the mynetworks
parameter in main.cf. If you want to permit localhost, all hosts in your LAN (in the
following example the IP addresses 10.0.0.0 to 10.0.0.254), and your static IP
from home (here 192.0.34.166) should be noted as a list in CIDR notation as
shown in this example:

mynetworks = 127.0.0.0/8, 10.0.0.0/24, 192.0.34.166/32

Once you reload Postfix, the new settings will take effect.

Dynamic IP ranges
In the previous section, you saw how to permit relaying for static IP addresses.
This section will show how you can configure Postfix to permit relaying for
dynamic IP addresses.

Although, as mentioned in this chapter's introduction, there are several ways to
achieve this, we are only going to describe the method of SMTP authentication. It
provides a simple and stable mechanism, but the setup is not trivial. The reason for
this is that SMTP AUTH isn't processed by Postfix on its own. Another software
module, Cyrus SASL, is required to offer and process SMTP AUTH to mail clients.
You will need to configure Cyrus SASL, Postfix, and how they interoperate.

Cyrus SASL
Cyrus SASL (http://cyrusimap.web.cmu.edu/) is Carnegie Mellon
University's implementation of SASL. SASL (Simple Authentication and
Security Layer), is an authentication framework described in RFC 2222
(http://www.ietf.org/rfc/rfc2222.txt).

SASL was written to provide an application-independent authentication framework
for any application that needs to use or offer authentication services.

Securing Your Installation

[136]

Cyrus SASL isn't the only SASL available today, but was the first to emerge and is
used in various applications such as Postfix, Sendmail, Mutt, and OpenLDAP. In
order to use Cyrus SASL, you need to understand its architecture, how the various
layers are made to work together, and how the layers' functionalities are configured.

SASL layers
SASL consists of three layers—authentication interface, mechanism, and method.
Each of these takes care of a distinct job when an authentication request is
being processed.

An authentication process usually goes through the following steps:

1. A client connects to an SASL server.
2. The server announces its capabilities.
3. The client recognizes the option to authenticate among the listed capabilities.

It also recognizes a list of mechanisms it can choose to process authentication.
4. The client chooses one of the mechanisms and computes a coded message.

The exact content of the message depends on the mechanism used.
5. The client sends the command AUTH <mechanism> <coded message>

to the server.
6. The server receives the authentication request and hands it over to SASL.
7. SASL recognizes the mechanism and decodes the coded message. The

decoding depends on the mechanism chosen.
8. SASL contacts an authentication backend in order to verify the

information given by the client. What it exactly looks for, depends
on the mechanism used.

9. If it can verify the information it will tell the server and the server should
permit the client to relay a message. If it can't verify the information, it will
tell the server and the server may reject the client's wish to relay a message.
In both cases, the server will tell the client whether authentication was
successful or it failed.

Let's take a closer look at the three SASL layers in the following sections.

Authentication interface
In steps 1 to 5 and step 9 that we just discussed, you can see client and server
exchange data to process authentication. This part of communication takes
place in the authentication interface.

Chapter 5

[137]

Though SASL defines what data must be exchanged, it does not specify how it must
be communicated between the client and the server. It leaves this to their specific
communication protocol, which is why SASL can be used by various services
such as SMTP, IMAP, or LDAP.

SASL is not as old as the SMTP protocol (see: RFC 821). It was added later
in RFC 2554 (http://www.ietf.org/rfc/rfc2554.txt), which
describes the SMTP Service Extension for Authentication.

An SMTP conversation where the server offers SMTP authentication among its other
capabilities looks like this:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix
EHLO client.example.com

250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-ENHANCEDSTATUSCODES
250-AUTH PLAIN LOGIN CRAM-MD5 DIGEST-MD5 1)

250-AUTH=PLAIN LOGIN CRAM-MD5 DIGEST-MD5 2)
250 8BITMIME

QUIT

250-AUTH PLAIN LOGIN CRAM-MD5 DIGEST-MD5 1): This line tells the client
that the server offers SMTP AUTH. It consists of two logical parts. The first part,
250-AUTH, announces SMTP AUTH capability and the rest of the line is a list of
available mechanisms from which the client may choose the one it prefers.
250-AUTH=PLAIN LOGIN CRAM-MD5 DIGEST-MD5 2): This line repeats the
line above, but differs in the way it announces SMTP authentication. Instead
of whitespace after 250-AUTH, it adds an equal sign like this 250-AUTH=. This
is for broken clients that do not follow the final specification of SASL.

Mechanism
Mechanisms (as described in steps 4 through 7) represent the second layer of SASL.
They determine the verification strategy used during authentication. There are
several mechanisms known to SASL. They differ in how they transmit data and their
level of security during transmission. The most commonly used mechanisms can be
grouped into plaintext and shared secret mechanisms.

•

•

Securing Your Installation

[138]

One mechanism you should never have Postfix offer to clients is the anonymous
mechanism. We will have a look at this first.

anonymous: The anonymous mechanism requires a client to send any string
it wants to. It was designed to allow anonymous access to, say, global
IMAP folders, but not for SMTP. An SMTP server offering ANONYMOUS in
the AUTH line will eventually be abused. You should never offer this in
an SMTP server! Postfix does not offer anonymous access in out of the
box configuration.
plaintext: Cyrus SASL knows the PLAIN and LOGIN plaintext mechanisms.
LOGIN is pretty much the same as PLAIN, but is used for mail clients that don't
follow the final SASL RFC by the books, such as Outlook and Outlook Express.
Both mechanisms require the client to calculate a Base64 encoded string of the
username and password and transmit it to the sever for authentication. The
great thing about plaintext mechanisms is that they are supported by nearly
every mail client in use today. The bad news is that plaintext mechanisms are
not secure if used without Transport Layer Security (TLS). This is because a
Base64 encoded string is merely encoded, but not encrypted—it can easily be
decoded. It is safe though to use plaintext mechanisms to transmit one during
a Transport Layer encrypted session. However, if you use TLS, it will protect
the Base64 encoded string from eavesdroppers.
shared secret: The shared secret mechanisms available in Cyrus SASL are
CRAM-MD5 and DIGEST-MD5. Shared secret based authentication has a
totally different strategy to verify a client. It is based upon the assumption
that client and server both share a secret. A client choosing a shared secret
mechanism will only tell the server the name of the specific shared secret
mechanism. The server will then generate a challenge, based on their secret
and send it to the client. The client then generates a response, proving that
it knows the secret. During the whole authentication process neither a
username nor a password is sent over the wire. That's why shared secret
mechanisms are a lot more secure than the ones mentioned before. However,
the most popular mail clients Outlook and Outlook Express do not support
shared secret mechanisms.

On a heterogeneous network, you will probably end up offering plaintext
and shared secret mechanisms side by side.

Now that the mechanisms have been covered, there's only one layer left—the method
layer. This is where lookups to data stores that hold credentials are configured and
processed. The next section will tell you more about methods.

•

•

•

Chapter 5

[139]

Method
The last layer SASL refers to is the method layer. Methods are represented by
libraries in the Cyrus SASL install directory. They serve to access data stores, which
Cyrus SASL not only refers to as methods but also as authentication backends. Out
of the number of methods SASL has, the most commonly used are:

rimap: The rimap method stands for remote IMAP and enables SASL to log
in to an IMAP server. It uses the username and password given by the client.
A successful IMAP login is a successful SASL authentication.
ldap: The ldap method queries an LDAP server to verify a username and
password. If the query succeeds the authentication succeeds.
kerberos: The kerberos method uses the popular Kerberos method, and
checks a Kerberos ticket.
Getpwent/shadow: The getpwent and shadow methods access your system's
local user password databases to verify an authentication request.
pam: The pam method accesses any PAM module you configure in your PAM
settings to verify an authentication request.
sasldb: The sasldb method reads and even writes to Cyrus SASL's own
database called sasldb2. Usually this database is used in conjunction with
Cyrus IMAP, but you can use it without the IMAP server.
sql: This method uses SQL queries to access various SQL servers. Currently
these are MySQL, PostgreSQL, and SQLite.

Now that you know about the three layers of the SASL architecture, it's time to take
a look at the SASL service that handles all the requests between them. It is called the
password verification service and will be described in the following section.

Password verification service
A password verification service handles an incoming authentication request
from a server, does mechanism-specific calculations, calls a method to query an
authentication backend, and finally returns the result to the server that sent the
authentication request.

In the case of Postfix, the server that hands over the authentication
request is the smtpd daemon. In the Postfix SMTP AUTH configuration
section you will learn how you can configure the smtpd daemon to
choose the right password verification service.

•

•

•

•

•

•

•

Securing Your Installation

[140]

Cyrus SASL version 2.1.23, the latest version at the moment, provides us with three
different password verification services:

saslauthd

auxprop

authdaemond

Mechanisms that your mail clients may use successfully and the methods that
Cyrus SASL can access during authentication depend on the password verification
service you tell Postfix to use.

saslauthd: saslauthd is a standalone daemon. It can be run as root, which
gives it the privileges needed to access sources accessible to root only.
However, saslauthd is limited in the range of mechanisms it supports;
it can handle only plaintext mechanisms.
auxprop: auxprop is the short name for auxiliary property plugins, a
term used in the Project Cyrus mail server architecture. auxprop represents
a library that is used by the server offering authentication. It accesses sources
with the privileges of the server that uses it. Unlike saslauthd, auxprop
can handle every mechanism available within the Cyrus SASL
authentication framework.
authdaemond: authdaemond is a password verification service written
especially to use Courier's authdaemond as password verifier. This way
you can access any authentication backend that Courier can deal with.
This auxprop plugin can deal only with plaintext mechanisms.

The following table gives you an overview of the mechanisms the password
verification services (methods) can handle:

Method/mechanisms PLAIN LOGIN CRAM-MD5 DIGEST-MD5
saslauthd yes yes no no
auxprop yes yes yes yes
authdaemond yes yes no no

Only the auxprop password verification service is able to handle the more secure
mechanisms; saslauthd and authdaemond can process only plaintext mechanisms.

Now we have covered some of the Cyrus SASL theory, it is about time to install it.
This is exactly what we do in the next sections.

•

•

•

•

•

•

Chapter 5

[141]

Installing Cyrus SASL
The chances are that you already have Cyrus SASL on your system. However,
various Linux distributions have begun to install Cyrus SASL in a different location
from the typical default one of /usr/lib/sasl2. To check if Cyrus SASL is installed
on your server, either run your package manager and query for cyrus-sasl or run
find. A query to the Red Hat package manager (on Fedora Core 11) would return
something like this if SASL is installed:

$ rpm -qa | grep sasl

cyrus-sasl-2.1.18-2.2
cyrus-sasl-devel-2.1.18-2.2
cyrus-sasl-plain-2.1.18-2.2
cyrus-sasl-md5-2.1.18-2.2

A query to dpkg (on Ubuntu) would return something like this if SASL is installed:

$ dpkg -l | grep sasl

ii libsasl2-2 2.1.22.dfsg1-23ubuntu3
 Cyrus SASL - authentication abstraction libr
ii libsasl2-modules 2.1.22.dfsg1-23ubuntu3
 Cyrus SASL - pluggable authentication module2

A find looking for libsasl*.* looks like this:

$ find /usr -name 'libsasl*.*'

/usr/lib/libsasl.so.7.1.11
/usr/lib/libsasl2.so
/usr/lib/libsasl.la
/usr/lib/libsasl2.so.2.0.18
/usr/lib/libsasl.a
/usr/lib/libsasl2.a
/usr/lib/libsasl2.la
/usr/lib/sasl2/libsasldb.so.2.0.18
/usr/lib/sasl2/libsasldb.so.2
/usr/lib/sasl2/libsasldb.so
/usr/lib/sasl2/libsasldb.la
/usr/lib/libsasl.so.7
/usr/lib/libsasl.so
/usr/lib/libsasl2.so.2

Securing Your Installation

[142]

This proves that you have SASL installed on your system. To verify the location of
the SASL libraries simply do an ls like this:

As mentioned earlier, your distribution might put them somewhere else. In
this case, the find method will locate the correct location, or your distribution's
documentation should give you this information.

If you don't have Cyrus SASL installed, you will have to either use your package
manager to get it, or install it manually.

Chapter 5

[143]

The latest version of Cyrus is normally available to download from
http://cyrusimap.web.cmu.edu/downloads.html. To download version 2.1.23
(always choose the latest stable release, not a developer release), issue these commands:

$ cd /tmp

$ wget ftp://ftp.andrew.cmu.edu/pub/cyrus-mail/cyrus-sasl-2.1.23.tar.gz

$ tar xfz cyrus-sasl-2.1.23.tar.gz

$ cd cyrus-sasl-2.1.23

After you have downloaded and unpacked the source files, change into the source
directory and run configure. A typical configuration of the sources goes like this:

$./configure \

 --with-plugindir=/usr/lib/sasl2 \

 --disable-java \

 --disable-krb4 \

 --with-dblib=berkeley \

 --with-saslauthd=/var/state/saslauthd \

 --without-pwcheck \

 --with-devrandom=/dev/urandom \

 --enable-cram \

 --enable-digest \

 --enable-plain \

 --enable-login \

 --disable-otp \

 --enable-sql \

 --with-ldap=/usr \

 --with-mysql=/usr \

 --with-pgsql=/usr/lib/pgsql

This will configure Cyrus SASL to give you plaintext and shared secret mechanisms,
and will build saslauthd and give you the SQL method including support for
MySQL and PostgreSQL.

After the configure script has finished, run make, become root, and then run
make install.

$ make

$ su -c "make install"

Password:

Securing Your Installation

[144]

Cyrus SASL will install itself to /usr/local/lib/sasl2, but it will expect to find the
libraries in /usr/lib/sasl2. You need to create a symbolic link like this:

$ su -c "ln -s /usr/local/lib/sasl2 /usr/lib/sasl2"
Password:

Finally you need to check if SASL log messages will be caught and written to a log
file by syslogd. Cyrus SASL logs to the syslog auth facility. Check your syslogd
configuration, usually /etc/syslog.conf, to see if it contains a line that catches
auth messages.

$ grep auth /etc/syslog.conf

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
 auth,authpriv.none;\
 auth,authpriv.none;\

If you don't find an entry, add the following, save the file, and restart syslogd:

auth.* /var/log/auth.log

Once you've got all this done, you are ready to configure SASL.

Configuring Cyrus SASL
It is vital that you always configure and test Cyrus SASL before you return to Postfix
and work on Postfix-specific SMTP AUTH settings.

The reason to follow this procedure is quite simple. An authentication framework
that cannot authenticate will be of no assistance to any other application using it. It's
quite possible that you will end up debugging Postfix for hours when the problem is
Cyrus SASL-related.

To understand how and where you must configure SASL, recall that it is an
authentication framework and was designed to offer its service to many applications.
These applications might have totally different requirements for not only the
password verification service to be used but also the mechanisms to be offered,
along with the method used to access an authentication backend.

Cyrus is configured using application-specific files. The configuration for each client
application is in a separate file. When an application connects to the SASL server, it
sends its application name. Cyrus uses this name to look for the correct configuration
file to use.

Chapter 5

[145]

In our scenario, the application requiring SMTP AUTH is the smtpd daemon within
Postfix. When it contacts SASL, it not only sends authentication data but also its
application name, smtpd.

The application name smtpd is a default value that is sent to Cyrus SASL
from Postfix. You can change it using the smtpd_sasl_application_
name, but usually this is not required. You need it only if you run
different Postfix daemons that need different Cyrus SASL configurations.

When Cyrus SASL receives the application name, it will append a .conf and start to
look for a configuration file containing configuration settings.

By default, the location for smtpd.conf is /usr/lib/sasl2/smtpd.conf but for
various reasons some Linux distributions have started to put it in other locations.
On Debian Linux you will have to create the configuration at /etc/postfix/sasl/
smtpd.conf. Mandrake Linux expects the file to be located at /var/lib/sasl2/
smtpd.conf. All others are known to expect it at /usr/lib/sasl2/smtpd.conf.

Check your system and find out if smtpd.conf has already been created. If not, a
simple touch command (as root) will create it:

touch /usr/lib/sasl2/smtpd.conf

All of the configuration that follows now will center on smtpd.conf. Here's a quick
rundown of what we will put in there:

The name of the password verification service we want to use
The log level at which SASL should send log messages to the log output
A list of mechanisms Postfix should advertise when offering SMTP AUTH
to clients
Configuration settings specific to the password verification service chosen

Finally we will configure how the password verification service should access
the authentication backend. How this needs to be done depends on the password
verification service we choose and will be explained when we get there.

•

•

•

•

Securing Your Installation

[146]

Selecting a password verification service
The first configuration step is to choose the password verification service that SASL
should use during authentication. The parameter that tells SASL which password
verification service should handle authentication is pwcheck_method. The values
you may provide are:

saslauthd
auxprop
authdaemond

Depending on the password verification service you've chosen, you will have
to add the correct value. The names should speak for themselves and tell you
which password verification service will be called. A configuration that would
use saslauthd would add the following line to smtpd.conf:

pwcheck_method: saslauthd

Choosing a log level
Cyrus SASL does not handle logging consistently. What Cyrus SASL will log
depends on the password verification service and the method that is being used.
The parameter to define a log level is log_level. A reasonable setting during setup
would be log level 3.

log_level: 3

This line should be added to smtpd.conf.

Here is a list of all the log levels Cyrus SASL knows:

log_level value Description
0 No logging
1 Log unusual errors; this is the default
2 Log all authentication failures
3 Log non-fatal warnings
4 More verbose than 3
5 More verbose than 4
6 Log traces of internal protocols
7 Log traces of internal protocols, including passwords

•

•

•

Chapter 5

[147]

Choosing valid mechanisms
Your next step will be to choose the mechanisms that Postfix may offer when it
advertises SMTP authentication to clients. The parameter in Cyrus SASL to configure
a list of valid mechanisms is mech_list. The names of the mechanisms are exactly
like the ones we used when we introduced them in the Mechanism section.

It is important to set the mech_list parameter and list only the mechanisms your
password verification service can handle. If you don't do it, Postfix will offer all
mechanisms SASL provides and authentication will fail if your mail client chooses
a mechanism that the SASL password verification service cannot handle.

Recall that the password verification services saslauthd and
authdaemond can handle only two plaintext mechanisms—PLAIN and
LOGIN. Consequently a mech_list for those password verification
services must hold only the values PLAIN and LOGIN. Any mail client
capable of stronger mechanisms will always prefer the stronger over the
weaker ones. It will do its calculation and send the result to the server.
The server will fail to authenticate because neither saslauthd nor
authdaemond is capable of handling non-plaintext mechanisms.

The following example would define valid mechanisms for saslauthd
in smtpd.conf:

mech_list: PLAIN LOGIN

A list of valid mechanisms for any of the auxprop password verification services
could go further and list the following mechanisms:

mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5

The order of mechanisms in this list has no influence on the mechanism
the client will choose. Which mechanism is selected depends on the client;
it will usually choose the one that provides the strongest cryptography.

In the sections that follow, we will take a look at how you configure the password
verification service to choose an authentication backend and how to provide
additional information to pick the relevant data. As mentioned before, this is
handled differently by the three password verification services. We will have a
look at each password verification service separately.

Securing Your Installation

[148]

saslauthd
Before you can use saslauthd, you need to check whether it is able to establish a
socket in a directory that saslauthd refers to as state dir. Check this carefully
because there are two common problems related to the socket:

The directory does not exist: In this case, saslauthd will quit running and
you will find a log message indicating the missing directory.
The directory is not accessible to applications other than saslauthd: In this
case, you will find log messages in the mail log indicating that smtpd was
unable to connect to the socket.

To get around these problems, you first need to find out where saslauthd would
like to establish the socket. Just fire it up as root, like in the example (shown next)
and look out for the line that has run_path in it:

saslauthd -a shadow -d

saslauthd[3610] :main : num_procs : 5
saslauthd[3610] :main : mech_option: NULL
saslauthd[3610] :main : run_path : /var/run/saslauthd
saslauthd[3610] :main : auth_mech : shadow
saslauthd[3610] :main : could not chdir to: /var/run/
saslauthd
saslauthd[3610] :main : chdir: No such file or directory
saslauthd[3610] :main : Check to make sure the directory
exists and is

saslauthd[3610] :main : writeable by the user, this
process runs as—If you get no errors, the daemon will start, but the
-d flag means that it will not start in the background; it will tie
up your terminal session. In this case, press Ctrl+C to terminate the
process.

As you can see in the previous example, saslauthd would want to access
/var/run/saslauthd as run_path. As it cannot access the directory, it quits
immediately. Now there are two ways to deal with this. It depends whether you
acquired saslauthd from a package or installed it from the source.

In the first case, it is quite likely that the package maintainer built saslauthd
with the default settings; choose a different location as state dir and
configure the init-script to override the default path by giving the
-m /path/to/state_dir option.

•

•

Chapter 5

[149]

On Debian systems, you would typically find command-line options in /etc/
default/saslauthd. On Red Hat systems, you would typically find command-line
options passed to saslauthd in /etc/sysconfig/saslauthd. The following listing
gives you an overview of the settings for Fedora Core 2:

Directory in which to place saslauthd's listening socket, pid file,
and so
on. This directory must already exist.
SOCKETDIR=/var/run/saslauthd
Mechanism to use when checking passwords. Run "saslauthd -v" to get
a list
of which mechanism your installation was compiled to use.
MECH=shadow

Additional flags to pass to saslauthd on the command line. See
saslauthd(8)
for the list of accepted flags.
FLAGS=

Speaking for most Linux distributions, typical locations for the state dir would be
either /var/state/saslauthd or /var/run/saslauthd.

Now consider the case where you built saslauthd manually. You should then create
a directory that matches the value of the --with-saslauthd parameter you used
when you executed the configure script.

In the SASL configuration example, the value for --with-saslauthd was
/var/state/saslauthd. Create this directory and make it accessible to user
root and group postfix like this:

mkdir /var/state/saslauthd

chmod 750 /var/state/saslauthd

chgrp postfix /var/state/saslauthd

Once you have verified saslauthd can create a socket and pid file in your
state dir, you can start configuring saslauthd to access the authentication
backend of your choice.

The following examples presume that you don't have to provide an
extra run path to saslauthd. If you need to do so, just add it to the
examples given.

Securing Your Installation

[150]

Using an IMAP server as authentication backend
Specify the -a option together with the value rimap to have Cyrus SASL log in to an
IMAP server with the credentials given by the mail client. Additionally you must use
the -O option to tell saslauthd which IMAP server it should turn to, like this:

saslauthd -a rimap -O mail.example.com

Upon successful login into an IMAP server, saslauthd will report an authentication
success to Postfix and Postfix may permit the mail client to hand over the credentials
to the relay.

Using an LDAP server as authentication backend
Verifying credentials with an LDAP server is a little more complex than with an
IMAP server. It requires far more configuration and that's why you don't give all
the options to saslauthd on the command line but put them into a configuration
file instead. By default, saslauthd expects the LDAP configuration to be located at
/usr/local/etc/saslauthd.conf. If you choose a different location, you need to
state it on the command line.

saslauthd -a ldap -O /etc/cyrussasl/saslauthd.conf

In the previous example, the value ldap tells saslauthd to turn to an LDAP server
and the -O option provides the path to the configuration file. Your configuration file
might hold the following parameters:

ldap_servers: ldap://127.0.0.1/ ldap://172.16.10.7/
ldap_bind_dn: cn=saslauthd,dc=example,dc=com
ldap_bind_pw: Oy6k0qyR
ldap_timeout: 10
ldap_time_limit: 10
ldap_scope: sub
ldap_search_base: dc=people,dc=example,dc=com
ldap_auth_method: bind
ldap_filter: (|(&(cn=%u)(&(uid=%u@%r)(smtpAuth=Y)))
ldap_debug: 0
ldap_verbose: off
ldap_ssl: no
ldap_start_tls: no
ldap_referrals: yes

As you might have expected, you will have to accommodate the settings to suit your
LDAP tree and other settings specific to your LDAP server. For a complete list of all
LDAP-related parameters (there are many more than listed here), take a look at the
LDAP_SASLAUTHD readme that comes with the Cyrus SASL sources and is located in
the saslauthd subdirectory.

Chapter 5

[151]

Using the local user accounts
This is the configuration that most people use saslauthd for. You can either
configure saslauthd to read from the local password file or the local shadow
password file on systems that support shadow passwords.

To have it read from /etc/passwd, use the -a getpwent option like this:

saslauthd -a getpwent

Most modern Linux distributions do not store passwords in /etc/passwd, but
in /etc/shadow. If you want saslauthd to read from /etc/shadow, run it as
root like this:

saslauthd -a shadow

Using PAM
It is also possible to use PAM (Pluggable Authentication Modules) as the
authentication backend, which in turn has to be configured to access other
authentication backends. Start by running saslauthd like this:

saslauthd -a pam

Then create a /etc/pam.d/smtp file or a section in /etc/pam.conf and add
PAM-specific settings to it. If you installed Cyrus SASL from a package, the chances
are that you already have such a file. For example, on Red Hat it looks like this:

#%PAM-1.0
auth required pam_stack.so service=system-auth
account required pam_stack.so service=system-auth

The name of the configuration file must be smtp. This has been defined in
RFC 2554, which says that the service name for SASL over SMTP is smtp.
The postfix smtpd daemon passes the value smtp as the service name to
Cyrus SASL. saslauthd in turn passes it to PAM, which then looks in
the smtp file for authentication instructions.

auxprop
Auxiliary Property Plugins (or auxprop) are configured differently from saslauthd.
Instead of passing command-line options, you simply add auxprop-specific settings
to your smtpd.conf. Any auxprop configuration that you set up in your smtpd.conf
should begin with these three lines:

log_level: 3
pwcheck_method: auxprop
mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5

Securing Your Installation

[152]

To tell Cyrus SASL which plugin you want to use, you need to add an additional
parameter to the configuration. The parameter is called auxprop_plugin and we
will examine its use in the following sections.

Configuring the sasldb plugin
The auxprop plugin sasldb is the default plugin that Cyrus SASL will use even if
you don't set the auxprop_plugin parameter. sasldb is SASL's own database that
is manipulated with the saslpasswd2 utility.

This tends to irritate people who try to set up a different plugin and have
something wrong in their configuration. Cyrus SASL will fail if it uses
the default configuration instead of the desired one. When you get an
error message that says Cyrus SASL can't locate sasldb, it is probably
an error in your configuration (unless you chose to configure sasldb
deliberately), and the first step should be to check your configuration files.

To use sasldb, first of all you need to create an sasldb database. Use the following
command as root to create an sasldb2 file and add a user.

saslpasswd2 -c -u example.com username

This command will create an sasldb2 file and will add a user username with the
realm of example.com. It is important that you pay special attention to the realm
you add, as it will be part of the username the mail client will have to send later.

The realm is part of the concept of Kerberose infrastructure. Kerberose is
a distributed, encrypted authentication protocol. By adding a realm you
can define a context (for example, a domain or host) in which the user
may do something. If you don't add a realm, saslpasswd2 will add the
hostname of your server by default.

Now that you have created the database and added a user, you need to change
access permissions on sasldb to have Postfix access the database as well. Simply
give access to the group postfix to sasldb2 like this:

chgrp postfix /etc/sasldb2

Don't get confused because the sasldb is called sasldb2. The format of sasldb
changed when Cyrus SASL major version 2.x came out. For reasons of compatibility,
the new sasldb file is called sasldb2. Once you've created the database, you need
to tell Cyrus SASL to use it. Add the auxprop_plugin parameter to smtpd.conf
like this:

auxprop_plugin: sasldb

Chapter 5

[153]

That's all you need to do and you should be ready to start testing (see the Testing
Cyrus SASL authentication section). If, for any reason, you need to put sasldb in a
location that differs from the default, you can use the following additional parameter:

sasldb_path: /path/to/sasldb2

Configuring the sql plugin
The sql auxprop plugin is a generic plugin that gives you access to MySQL,
PostgreSQL, and SQLite. As an example we will show you how to configure the sql
plugin to access a MySQL database. Configuring access to the other two databases is
pretty much the same, with one exception that we will note.

First of all, you need to create a database. This, of course, is specific to the database
you use. Connect to MySQL and create a database if you don't have one already.

mysql> CREATE DATABASE `mail`;

Then add a table that holds everything you need to SASL-authenticate users. It will
look similar to this:

CREATE TABLE `users` (
 `id` int(11) unsigned NOT NULL auto_increment,
 `username` varchar(255) NOT NULL default '0',
 `userrealm` varchar(255) NOT NULL default 'example.com',
 `userpassword` varchar(255) NOT NULL default 't1GRateY',
 `auth` tinyint(1) default '1',
 PRIMARY KEY (`id`),
 UNIQUE KEY `id` (`id`)
) TYPE=MyISAM COMMENT='Users';

The table has fields for username, userrealm, userpassword, and an additional field
auth that we will use later to determine if a user may relay or not. This way we can use
the table for other authentication purposes as well—for example, for granting access to
specific folders over httpd in conjunction with the mysql module for Apache.

Don't forget to set a default value for the userpassword, as shown in the
previous example, or all that would be required to get relay permissions
would be sending a valid username.

Once you've created the table, add a user like this for testing purposes:

INSERT INTO `users` VALUES (1,'test','example.com','testpass',0);

Securing Your Installation

[154]

Then add a user for Postfix to access the database to the user database of MySQL
like this:

mysql> CONNECT mysql;
mysql> INSERT INTO user VALUES ('localhost','postfix','','Y','Y','Y','
Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');
mysql> UPDATE mysql.user SET password=PASSWORD("bu0tt^v") WHERE
user='postfix' AND host='localhost';
mysql> GRANT SELECT, UPDATE ON mail.users TO 'postfix'@'localhost';
mysql> FLUSH PRIVILEGES;

Once you're done setting up MySQL, you need to add sql auxprop-specific
parameters to your smtpd.conf. The following parameters are available:

sql_engine: Specifies the database type. You can pick mysql, pgsql, or
sqlite. We use mysql in this example. If you choose a different database,
you will need to change this value as appropriate.
sql_hostnames: Specifies the database server name. You can specify one
or more FQDNs or IP addresses separated by commas. Even if you pick
localhost, the SQL engine tries to communicate over a socket.
sql_database: Tells Cyrus SASL the name of the database to connect to.
sql_user: The value you set here must match the name of the user that
connects to the database.
sql_passwd: The value you set here must match the password of the user
that connects to the database. It must be a plaintext password.
sql_select: The sql_select parameter defines the SELECT statement to
authenticate a user.
sql_insert: The sql_insert parameter defines an INSERT statement that
would allow Cyrus SASL to create users in the SQL database. You would
use the saslpasswd2 program to do so.
sql_update: The sql_update parameter defines the UPDATE statement that
would allow Cyrus SASL to modify existing entries in your database. If you
choose to configure this you will have to use it in combination with the
sql_insert parameter.
sql_usessl: You can set either yes, 1, on, or true to enable SSL to access the
MySQL over an encrypted connection. By default this option is off.

•

•

•

•

•

•

•

•

•

Chapter 5

[155]

A straightforward configuration bringing all parameters together would look
like this:

Global parameters
log_level: 3
pwcheck_method: auxprop
mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5
auxiliary Plugin parameters
auxprop_plugin: sql
sql_engine: mysql
sql_hostnames: localhost
sql_database: mail
sql_user: postfix
sql_passwd: bu0tt^v
sql_select: SELECT %p FROM users WHERE username = '%u' AND userrealm =
'%r' AND auth = '1'
sql_usessl: no

As you can see, macros have been used in the sql_select statement. Their
meaning is:

%u: This macro is a placeholder for the username that is to be queried for
during authentication.
%p: This macro is a placeholder for the password.
%r: The r stands for realm and whatever was given as realm by the client will
be inserted at %r.
%v: This macro is only used in combination with the sql_update or sql_
insert statement. It represents the submitted value that should replace an
existing value.

Take special notice of the notations. Macros must be quoted using single
quotation marks (').

That completes the configuration. If you are using auxprop and followed the
instructions to this point, you are ready to start testing and can skip the next section
on authdaemond.

•

•

•

•

Securing Your Installation

[156]

authdaemond
authdaemond was created especially to work together with Courier IMAP. If you
configure Cyrus SASL to use authdaemond, it will connect to Courier authlib's
authdaemond socket asking Courier authlib to verify the credentials of the mail client
sent in. On one hand Cyrus SASL benefits from the various backends Courier authlib
can turn to for user verification, but on the other hand Cyrus SASL's authdaemond
password verification service is limited to plaintext mechanisms, which doesn't give
you the mileage you get when you use auxprop plugins.

Setting up the authdaemond password verification service is pretty straightforward.
We will take a look at it in the following sections.

Setting the authdaemond password verification service
Your first step is to configure Postfix to use the authdaemond password verification
service. Just as with saslauthd or auxprop, you add the pwcheck_method parameter
to your smtpd.conf and choose it to be authdaemond.

log_level: 3
pwcheck_method: authdaemond
mech_list: PLAIN LOGIN

Due to the limitations of authdaemond, you must also limit the list of mechanisms to
PLAIN and LOGIN—the only plaintext mechanisms available.

Configuring the authdaemond socket path
You need to tell Cyrus SASL where it can find the socket that has been created by
Courier authlib's authdaemond.

Use the authdaemond_path parameter to provide the full path including the
socket name.

authdaemond-path: /var/spool/authdaemon/socket

Finally check the permissions of the authdaemond directory and verify that at least
the user postfix may access the directory. Once this is done you are ready to
start testing.

Chapter 5

[157]

Testing Cyrus SASL authentication
There are no testing utilities, but you can use the sample applications sample-
server and sample-client to test authentication without any other application
(example Postfix) interfering with the test. If you built Cyrus SASL from source, you
can find them in the sample subdirectory of the Cyrus SASL sources. Fedora-based
Linux distributions include the samples as part of the cyrus-sasl-devel package,
so if available, you should install that package. Debian-based Linux distributions do
not have a similar package, so you will now have to build them yourself.

To build just the samples, locate, download, and extract the release of Cyrus SASL
that matches your installation from your package manager. To locate and install the
source, follow the instructions as described in the Cyrus SASL installation section.
Then instead of issuing the make install command, issue these commands:

cd sample

make

We will use these samples to test the Cyrus SASL configuration we've created
in smtpd.conf. However, the programs don't expect to find their configuration
in smtpd.conf, but in sample.conf. We will simply create a symbolic link from
sample.conf to smtpd.conf to meet the requirements:

ln -s /usr/lib/sasl2/smtpd.conf /usr/lib/sasl2/sample.conf

Next we need to start the server application to have it listen for incoming
connections. Start the server like this:

$./server -s rcmd -p 8000

trying 2, 1, 6
trying 10, 1, 6
bind: Address already in use

Do not be concerned about the message bind: Address already in use. The
fact that the server has continued to run indicates that it has managed to listen on
the specified port. The message is because the application is IPv6 enabled and the
underlying system does not support IPv6.

If you receive an error such as ./server: No such file or directory, check that
you have installed the cyrus-sasl-devel package from your distribution, or that
your build from source worked correctly and that you are in the correct directory.

Securing Your Installation

[158]

The server will listen on port 8000 for incoming connections. Next open a new
terminal and start the client using the same port and the mechanism PLAIN and point
to localhost where your server utility should be listening. When prompted, enter
test, test, and testpass, which are valid values provided by the test server. A
successful authentication looks like this:

You should be able to see some logging in the auth log. If you are going to use
saslauthd, start it on a separate terminal in debug mode and you will be able to
follow the authentication like this:

saslauthd -m /var/run/saslauthd -a shadow -d

saslauthd[4547] :main : num_procs : 5
saslauthd[4547] :main : mech_option: NULL
saslauthd[4547] :main : run_path : /var/run/saslauthd
saslauthd[4547] :main : auth_mech : shadow
saslauthd[4547] :ipc_init : using accept lock file: /var/run/
saslauthd/mux.accept
saslauthd[4547] :detach_tty : master pid is: 0
saslauthd[4547] :ipc_init : listening on socket: /var/run/saslauthd/
mux
saslauthd[4547] :main : using process model
saslauthd[4548] :get_accept_lock : acquired accept lock

Chapter 5

[159]

saslauthd[4547] :have_baby : forked child: 4548
saslauthd[4547] :have_baby : forked child: 4549
saslauthd[4547] :have_baby : forked child: 4550
saslauthd[4547] :have_baby : forked child: 4551
saslauthd[4548] :rel_accept_lock : released accept lock
saslauthd[4548] :do_auth : auth success: [user=test] [service=rcmd]
[realm=] [mech=shadow]
saslauthd[4548] :do_request : response: OK

saslauthd[4548] :get_accept_lock : acquired accept lock

If you were able to authenticate successfully, proceed to configure SMTP AUTH
in Postfix. If your authentication fails, follow the log and iterate through the
instructions on how to set up and configure SASL as discussed earlier.

Configuring Postfix SMTP AUTH
Configuring SMTP AUTH in Postfix is pretty straightforward now that you have
managed to set up and configure Cyrus SASL. The first thing you need to do is to
check if Postfix was built to support SMTP authentication. Use the ldd utility to
check if the Postfix smtpd daemon has been linked to libsasl:

ldd /usr/libexec/postfix/smtpd | grep libsasl

 libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0x00002aaaabb6a000)

If you don't get any output, you will probably have to rebuild Postfix. Read the
SASL_README from the Postfix README_FILES directory to get detailed information
on what you must include in the CCARGS and AUXLIBS statements.

Preparing the configuration
Once you've verified that Postfix supports SMTP AUTH, you need to verify that the
smtpd daemon does not run chrooted while you configure SMTP AUTH. Many people
spend hours with a chrooted Postfix that cannot access the saslauthd socket before
they realize that the reason is the chroot jail. A Postfix smtpd daemon that does not
run chrooted has an n in the chroot column in /etc/postfix/master.cf:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
smtp inet n - n - - smtpd

Reload Postfix if it was running chrooted after you changed the chroot settings for
smtpd and turn to main.cf.

Securing Your Installation

[160]

Enabling SMTP AUTH
The first thing you will do is enable SMTP AUTH by adding the smtpd_sasl_auth_
enable parameter and setting it to yes:

smtpd_sasl_auth_enable = yes

This will make Postfix offer SMTP AUTH to clients that use ESMTP, but you still need to
configure a few settings before you can start testing.

Setting the security policy
You will have to decide which mechanisms Postfix should offer using the smtpd_
sasl_security_options parameter. This parameter takes a list of one or more of
the following values:

noanonymous: You should always set this value or Postfix will offer
anonymous authentication to mail clients. Allowing anonymous
authentication makes you an open relay and should not be used for
SMTP servers.
noplaintext: The noplaintext value will prevent Postfix from offering the
plaintext mechanisms PLAIN and LOGIN. Usually you don't want that because
the most widespread clients support only LOGIN. If you set this option, we
won't be able to authenticate some clients.
noactive: This setting excludes SASL mechanisms that are susceptible to
active (non-dictionary) attacks.
nodictionary: This keyword excludes all mechanisms that can be broken by
means of a dictionary attack.
mutual_auth: This form of authentication requires the server to authenticate
itself to the client as well as the other way around. If you set it, only servers
and clients capable of doing this form or authentication will be able to
authenticate. This option is hardly ever used.

A common setting for the smtpd_sasl_security_options parameter adds the
following line to main.cf:

smtpd_sasl_security_options = noanonymous

This prevents anonymous authentication and permits all others.

•

•

•

•

•

Chapter 5

[161]

Including broken clients
Next you have to decide if Postfix should offer SMTP AUTH to broken clients. Broken
clients, in the context of SMTP AUTH, are clients that will not recognize a server's SMTP
AUTH capability if authentication has been offered the way RFC 2222 requires.
Instead they adhere to a draft of the RFC that had an additional = in the line that
shows SMTP AUTH capability during SMTP communication. Among the clients that
are broken are several versions of Microsoft Outlook Express and Microsoft Outlook.
To get around this problem, just add the broken_sasl_auth_clients parameter to
main.cf like this:

broken_sasl_auth_clients = yes

Postfix will print an additional AUTH line when it lists its capabilities to the mail
client. This line will have the extra = in it and the broken clients will notice the SMTP
AUTH capability.

Finally, if you want to limit the users that may relay to a group with the same realm,
add the smtpd_sasl_local_domain parameter and provide the realm as value
like this:

smtpd_sasl_local_domain = example.com

Postfix will append the value to all usernames that get sent by mail clients
successfully limiting relaying to those users whose username contains the
smtpd_sasl_local_domain value in their username.

Once you're done with all the configuration steps, reload Postfix to let the settings
become active and start testing. As root, issue the command:

postfix reload

Testing SMTP AUTH
When you test SMTP authentication, don't use a regular mail client as the mail client
may introduce some problems. Instead use the Telnet client program and connect
to Postfix in an SMTP communication. You will need to send the username and
password of your test user in a Base64-encoded form so the first step will be to create
such a string. Use the following command to create a Base64 encoded string for the
user test using the password testpass:

$ perl -MMIME::Base64 -e 'print encode_base64("test\0test\0testpass");'

dGVzdAB0ZXN0AHRlc3RwYXNz

Securing Your Installation

[162]

Note that the \0 separates the username from the password, and the
username will have to be repeated twice. This is because SASL expects
two, possibly different usernames (userid, authid) to support
additional functionality that isn't used for SMTP authentication.
Also keep in mind that if your username or password contains the @
or $ characters you will need to escape them with a prepended \, or
Perl will interpret them and this will result in a non-functional Base64
encoded string.

Once you have the Base64 encoded string at hand, use the Telnet program to connect
to port 25 on your server like this:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

EHLO client.example.com

250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-AUTH=LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME

AUTH PLAIN dGVzdAB0ZXN0AHRlc3RwYXNz

235 Authentication successful

QUIT

221 Bye

You can see that in the previous example the authentication was successful. First the
mail client sent an EHLO during the introduction and Postfix responded with a list of
capabilities. If you set the broken_sasl_auth_clients parameter to yes as we did
in our example, you will also have noted the additional AUTH line containing the =.

Authentication took place when the client sent the AUTH string along with the
mechanism it wanted to use and, in the case of plain mechanism, appended the
Base64 encoded string. If your authentication did not succeed, but you were able to
authenticate during the SASL testing, take a look at the parameters in main.cf and
double-check the chroot status of smtpd in master.cf.

Chapter 5

[163]

Enabling relaying for authenticated
clients
If authentication has been successful, we just have to tell Postfix to allow relaying of
messages for those who have been authenticated. This is done by editing main.cf
and adding the permit_sasl_authenticated option to your list of restrictions in
smtpd_recipient_restrictions like this:

smtpd_recipient_restrictions =
 ...
 permit_sasl_authenticated
 permit_mynetworks
 reject_unauth_destination
 ...

Reload Postfix and start testing with a real mail client. If possible, ensure that its
IP address is not part of mynetworks, as Postfix might be allowed to relay for that
reason and not because SMTP AUTH worked out. You might want to limit relaying
to the server only during the test. Change the mynetwork_classes = host setting
so that clients from other machines automatically will not be a part of the
Postfix network.

If you still experience problems with SMTP AUTH, take a look at saslfinger
(http://postfix.state-of-mind.de/patrick.koetter/saslfinger/). It's a
script that gathers all kinds of useful information about SMTP AUTH configuration
and gives you output that you can append to your mail when you ask on the
Postfix mailing list.

Securing plaintext mechanisms
We already noted that SMTP AUTH using plaintext mechanisms isn't really safe
because the string that is sent during authentication is merely encoded and not
encrypted. This is where Transport Layer Security (TLS) comes in handy because
it can shield the transmission of the encoded string from curious eyes.

Enabling Transport Layer Security
To enable TLS you must generate a key pair and a certificate, and then alter the
postfix configuration to recognize them.

To generate an SSL certificate, and to use SSL, you need to have the OpenSSL
package installed. This will be installed in many cases, otherwise use your
distribution's package manager to install it.

Securing Your Installation

[164]

To create a certificate, issue the following commands (as root):

This will create certificates in /etc/postfix/certs called smtpd.key and
smtpd.crt. Add the smtpd_use_tls parameter to main.cf and set it to yes:

smtpd_use_tls = yes

Then you will need to tell smtpd where it can find the key and the certificate by
adding the smtpd_tls_key_file and smtpd_tls_cert_file parameters:

smtpd_tls_key_file = /etc/postfix/certs/smtpd.key
smtpd_tls_cert_file = /etc/postfix/certs/smtpd.crt

A mail server that sends a certificate to prove its identity must also keep a copy of
the certification authority's public certificate on hand. Presuming that you've already
added it to your server's local CA root store in /usr/share/ssl/certs, use the
following parameter:

smtpd_tls_CAfile = /usr/share/ssl/certs/ca-bundle.crt

Chapter 5

[165]

If the CA certificates aren't all in one file, but in separate files in the same directory,
for example /usr/share/ssl/certs, use the following parameter instead:

smtpd_tls_CApath = /usr/share/ssl/certs/

Once you have all this configured, you're done with the basic TLS configuration and
you can take care of securing plaintext authentication.

Configuring security policy
There are several ways you can secure plaintext authentication using TLS. The most
radical approach is to use smtpd_tls_auth_only parameter and set it to yes. If
you use it, SMTP AUTH will be announced only once the mail client and mail server
have established an encrypted communication layer. By doing this, all username/
password combinations will be encrypted and not vulnerable to eavesdropping.

However, this punishes all the other mail clients that are capable of using other safer
mechanisms such as shared secret mechanisms. If you want to handle this a little
more selectively you should go for the following approach that disables plaintext
authentication over an unencrypted wire, but permits it as soon as an encrypted
communication has been established.

First of all you need to reconfigure your smtpd_sasl_security_options parameter
to exclude plaintext mechanisms from being offered to mail clients:

smtpd_sasl_security_options = noanonymous, noplaintext

Then you set the additional smtpd_sasl_tls_security_options parameter that
controls the same settings, but applies to TLS sessions only:

smtpd_sasl_tls_security_options = noanonymous

As you can see, the smtpd_sasl_tls_security_options parameter will not exclude
plaintext mechanisms. This way clients that can use other non-plaintext mechanisms
don't have to go for TLS and those that can only do plaintext mechanisms can do it
safely once they have established an encrypted session.

Once you've reloaded Postfix, you are ready to test.

Don't forget to add the certificate of the certification authority that signed
your server's certificate request to your mail client's CA root store, or
it will at the very minimum complain that it cannot verify the server's
identity when it presents its server certificate.

Securing Your Installation

[166]

Dictionary attacks
Dictionary attacks are attacks where clients try to send mail to countless potential
recipients, whose e-mail addresses are derived from words or names in a dictionary:

anton@example.com
bertha@example.com
...
zebediah@example.com

If your server doesn't have a list of valid recipient addresses, it must accept these
mails regardless whether the recipient actually exists. Then, this onslaught of e-mails
needs to be processed as usual (virus check, spam check, local delivery) until, at
some stage, the system realizes that the recipient does not even exist!
Then a non-delivery report will be generated and sent back to the sender.

So, for every non-existing recipient, one mail is being accepted and processed,
and additionally another e-mail (the bounce) is generated, and is subject to
delivery attempts.

As you can see, this course of action wastes precious resources on your servers.
Because the server is busy trying to deliver mail that it should never have accepted
in the first place, legitimate mail is falling behind in the flood of spam. Spammers
can also use the bounce messages to determine legitimate e-mail addresses for
further attacks. Bounce messages can also give a hint at which SMTP server is used,
allowing them to target any known vulnerabilities in particular versions.

Recipient maps
Postfix is able to verify recipient addresses before it accepts a message. It can run
checks for local domains (listed in mydestination) and for relay domains (listed in
relay_domains).

Checking local domain recipients
The local_recipient_maps parameter controls which recipients Postfix will hold to
be valid local recipients. It defaults to the following:

local_recipient_maps = proxy:unix:passwd.byname, $alias_maps

With this setting, Postfix will check the local /etc/passwd file for recipient names
as well as any map that has been assigned to the alias_maps parameter in main.cf.
Adding virtual users is beyond the scope of this book, but if you needed to expand
this list, you would create a database with the users and add the path to the map that
holds additional local recipients.

Chapter 5

[167]

Checking relay domain recipients
The relay_recipient_maps parameter controls which recipients are valid for relay
domains. It is empty by default, and in order to have Postfix get more control, you
need to build a map where Postfix can look up valid recipients.

Let's say your server relays mail to and from example.com, then you would create
the following configuration:

relay_domains = example.com
relay_recipient_maps = hash:/etc/postfix/relay_recipients

The relay_domain parameter tells Postfix to relay mail for recipients in the
example.com domain and the relay_recipient_maps parameter points to a map
that holds valid recipients. In the map you would create a list like this:

adam@example.com OK
eve@example.com OK

Then run the postmap command to create an indexed map like this:

postmap /etc/postfix/relay_recipients

To get postfix to recognize the new database, reload it:

postfix reload

postfix/postfix-script: refreshing the Postfix mail system

This will allow only adam@example.com and eve@example.com as recipients for the
domain example.com. Mail to snake@example.com would be rejected with a User
unknown in relay recipient table error message.

Rate-limiting connections
Rejecting mail for non-existing recipients helps a lot, but when your server is subject
to a dictionary attack, it will still accept all the client's connections and produce an
appropriate error message (or accept the mail, should a valid recipient address have
been hit by chance).

Postfix's anvil server maintains short-term statistics to defend your system against
clients that hammer your server with either of the following cases within a
configurable period of time:

Too many simultaneous sessions
Too many successive requests

•

•

Securing Your Installation

[168]

As the hardware and the software you use limit the number of mails your server is
able to process per given time unit, it makes sense not to accept more mail than your
server can handle.

anvil_rate_time_unit = 60s

The previous line specifies the time interval used for all the following limits:

smtpd_client_connection_rate_limit = 40: This specifies the
number of connections a client can make during the period specified by
anvil_rate_time_unit. In this case, it's 40 connections per 60s.
smtpd_client_connection_count_limit = 16: This gives the maximum
number of simultaneous connections any client is allowed to make to this
service per anvil_rate_time_unit.
smtpd_client_message_rate_limit = 100: This is an important limit, as a
client could reuse an established connection and send many mails using just
this single connection.
smtpd_client_recipient_rate_limit = 32: This gives the maximum
number of recipient addresses that any client is allowed to send to this
service per anvil_rate_time_unit regardless of whether or not Postfix
actually accepts those recipients.
smtpd_client_event_limit_exceptions = $mynetworks: This can be
used to exempt certain networks or machines from the rate limiting. You
may want to exempt your mailing list server from the rate limiting, as it will
undoubtedly send lots of mails to many recipients during a short period.

The anvil will emit detailed log data about the maximum connection rate (here:
5/60s) and which client reached that maximum rate (212.227.51.110) and when
(Dec 28 13:19:23)

Dec 28 13:25:03 mail postfix/anvil[4176]: statistics: max connection
rate 5/60s for (smtp:212.227.51.110) at Dec 28 13:19:23

This second log entry shows which client established the most concurrent
connections and when:

Dec 28 13:25:03 mail postfix/anvil[4176]: statistics: max connection
count 5 for (smtp:62.219.130.25) at Dec 28 13:20:19

•

•

•

•

•

Chapter 5

[169]

If any limit is being exceeded, anvil will log this as well:

Dec 28 11:33:24 mail postfix/smtpd[19507]: warning: Connection rate
limit exceeded: 54 from pD9E83AD0.dip.t-dialin.net[217.232.58.208] for
service smtp

Dec 28 12:14:17 mail postfix/smtpd[24642]: warning: Connection
concurrency limit exceeded: 17 from hqm-smrly01.meti.
go.jp[219.101.211.110] for service smtp

Any client that exceeds these limits will be given a temporary error code, thus
signaling it to retry at a later time. Legitimate clients will honor that and retry.
Open proxies and trojaned machines will most likely not retry.

Summary
In this chapter, we discussed how to secure your installation. There were several
different topics covered, firstly, the configuration of Postfix to only accept e-mail
from certain IP addresses, which is useful if all your users are office based. Next, the
chapter covered using SASL to authenticate users who might connect from any IP
address. Then, we looked at using TLS to encrypt the authentication between client
and server. Finally, we looked at limiting clients which behave badly, using the
anvil daemon to limit clients that connect too often within a certain time period,
and clients that open too many connections at one time.

The measures shown in this chapter will make your life as a postmaster easier,
and also help to limit the amount of spam that your users endure, and if you had
inadvertently configured an open relay, limit the amount of spam passed on to other
Internet users too. For more details on limiting spam, move on to Chapter 8 that
describes using the open source spam filtering tool SpamAssassin. Or read on to
Chapter 6 that covers using Procmail to manipulate e-mail messages as they arrive.

Getting Started with Procmail
Procmail is a versatile e-mail filter that is typically used to process messages before
they are delivered to a user's inbox.

This chapter includes the following topics:
A brief introduction to Procmail
The typical filtering tasks that can be performed by Procmail
How a mail filtering system can be installed and set up on the server to
handle the repetitive sorting and storing tasks that you would rather not
spend your time on every day
The basic structure of the rules and actions within a Procmail recipe
How to create and test the rules within our recipe
Finally, some example recipes to perform filtering

By the end of the chapter, you will understand the basics of the filtering process—
how to set up the system to perform filtering and how to perform a number of very
simple but extremely useful filtering operations on your own mail. All of which will
help you keep on top of all the mail you have already or will soon be receiving.

Introduction to Procmail
Procmail is a mail filter that is executed after messages have arrived on the mail
server but before final delivery to the intended recipient. The behavior of Procmail
is controlled by a number of user written recipes (or scripts). Each recipe can
contain a number of pattern matching rules to select messages based on at least, the
recipient, the subject, and the message content. If the match criteria in a rule selects
the message as a candidate, the recipe may perform a number of actions to move the
message to a folder, reply to the sender, or even discard the message before delivery.
As with the rules, actions are user written in the recipe and can perform almost any
operation on a message.

The Procmail home page is located at http://www.procmail.org.

•
•
•

•
•
•

Getting Started with Procmail

[172]

Who wrote it and when
Version 1.0 was released in the late 1990's and has evolved to represent one of the
best and most commonly used mail filtering solutions for UNIX-based mail
systems. Procmail was originally designed and developed by Stephen R. van den
Berg (srb@cuci.nl). In the fall of 1998, recognizing that he didn't have the time
to maintain Procmail on his own, Stephen created a mailing list for discussion of
future development and deputized Philip Guenther (guenther@sendmail.com)
as a maintainer.

Procmail has been stable since Version 3.22, which was released in September 2001,
so most recent installations will have this latest version installed, and this is the
version we will be using throughout this book.

How can a filtering system help me?
By now you should have an e-mail system up and running, and sending and
receiving e-mails. You have probably registered with a number of useful mailing lists
with messages arriving at varying intervals. You should also be receiving messages
informing you of the status of the system. All this extra, low priority information
can easily distract and get in the way of the important e-mails that you need to read
ahead of others.

How you organize your mail is up to your own personal taste; if you are very
organized you may have already set up some folders in your e-mail client and move
messages into appropriate locations when you have read them. Nevertheless, one
thing you have probably realized is that it would be very useful to be able to have
some messages stored automatically by the system in a different location than your
important e-mail.

What you will need to think about while setting up an automatic process, is how
you identify what the mail item is about. The most important indicators are to whom
it was sent, the title or subject line, and also the sender details. If you take a few
minutes now to make a few notes on how you already handle your mail, the types
of messages that arrive and what you do with them, you will have a clearer idea of
what automatic processes you may want to set up.

Chapter 6

[173]

In general terms there are several different classes of messages that you
might receive.

Membership of mailing lists: Mail arriving from a mail group, or mailing
list, is normally easy to identify from the sender information or possibly from
the subject line. A number of groups send messages every few minutes while
others may only send a couple of messages a month. Typically different mail
group items are identified by different pieces of information. For example,
some groups send messages with the "From" address being that of the real
sender while others add a fake or system-generated "From" address. Some
groups may, for example, automatically add a prefix to the "Subject" field.
Automated system messages: Your server generates a number of messages
each day. Although normally they are sent only to the system administrator
or root user, one of the first things to do is to make sure that you receive
a copy of the mail so that you are kept informed of the system status and
events. This you would do by editing the default destinations in the
/etc/mail/aliases or /etc/aliases file depending on how your system
is set up. These system-generated messages are nearly always identifiable
as originating from a small number of specific system user IDs. These are
typically root and cron.
Unsolicited bulk e-mail: Messages identified as spam would normally be
considered unimportant. As such you may choose to move these items to
a separate folder for later review or even discard them completely.
Discarding spam automatically is not advised, as any mail misidentified
would be lost forever.
Individual messages: Mail arriving from clients, colleagues, or friends
would generally be considered as important. As such it would normally be
delivered to your Inbox giving you the opportunity to provide a more timely
response. Individual messages are more difficult to identify with a filter,
especially those from new clients or colleagues, so messages that do not fit
into one of the categories just discussed should be delivered normally.

After completing the work in this chapter, you should have the tools and knowledge
to start to examining mail in more detail and set up some basic filtering operations.

•

•

•

•

Getting Started with Procmail

[174]

Potential uses of mail filtering
The basic mail system you have already set up has some inbuilt abilities of its own
to process incoming mail according to a user setup. The default operation would be
for messages to go to your Inbox; other options are to automatically forward all your
mail to another user. Consider you have multiple mail accounts on different systems
and want all your mail to end up in one particular mail account. You can then have
that mail sent to a particular file, or have it passed to a program or application to
allow it to do its own work.

The downside of this setup is that all your mail has to follow one particular route,
so over time a number of options have been created to intelligently filter mail. One
of the most powerful and popular of these is Procmail.

Filtering and sorting mail
Procmail is designed to handle a wide variety of processing and filtering tasks on
mail being received by users within the system. Filtering only applies to users who
have an account on the system—not to virtual users—and may be applied system
wide to all users or individual users may add their own filters.

For system administrators, Procmail offers a range of facilities for applying rules and
operations to all the mail being received by users of the system. Such actions may
include making a copy of all mail for historical purposes or in businesses where the
content of e-mail messages may be used in some form of legal or business situation.

Elsewhere in this book, we will be discussing ways of identifying e-mail-borne
viruses and spam. Procmail can take the information provided by these processes
and perform actions based on the information added by these processes, such as
storing all mail items containing a virus in a secure mail folder that is checked by
system administrators.

For a system user, the most common operation to perform on incoming mail is to sort
it into some organized layout so that you can easily find the items you are looking
for, based on the topic area that you are interested in. A typical organizational layout
could be a hierarchical one similar to the following:

/mailgroups/Procmail
/mailgroups/postfix
/mailgroups/linux
/system/cron
/system/warnings
/system/status
/inbox

Chapter 6

[175]

If you plan on keeping mail in store for long periods of time for historical reference,
it may be worth adding an extra layer or two to separate the mail into years and
months. This makes it easier in the future to archive or purge older e-mail, and it
also means that searching and sorting will be quicker.

Forwarding mail
Sometimes you may get lots of e-mail that is easily identified as needing to be sent
to another user at another e-mail address. In this case, rather than storing the file on
the system, you may set up a rule that will forward the e-mail to one or more other
e-mail addresses. Of course you need to be careful to make sure that the forwarding
does not end up coming back to you, creating a never-ending loop.

Forwarding of mail in this way has a big advantage over the manual forwarding
of mail from within your mail client software, quite apart from not needing any
manual intervention. Mail forwarded by Procmail is transparent, it appears to the
recipient as if the mail has arrived directly from the original sender. Whereas, if it
was forwarded using a mail client, it would appear as though it had been sent by
the person or account doing the forwarding.

Where all mail items for a single address need forwarding to a single other address,
a more efficient way to achieve this is using the aliasing mechanism of the Postfix
mailing system. Procmail should only be used where an intelligent filtering of the
mail is required dependent upon factors that can only be determined at the time of
receipt of the message.

Processing the mail in an application
Some mail items could be suitable for passing through to an application where
the application program does some work on the e-mail. Perhaps it could read the
contents and then store the information in a bug-tracking database or update the
company history log for a client activity. These are more advanced topics that are
briefly covered in the following chapter.

Acknowledgements and out of office/vacation
replies
If you wanted to send an automatic reply to certain messages, a filter or rule could be
set up to send such a message. When you are away from the office for a prolonged
period of time on holiday, vacation, or perhaps illness, it is possible to set up a reply
service to inform the sender that it will be some time before you are able to respond
to their mail and perhaps give them alternative contact details or ask them to contact
another person.

Getting Started with Procmail

[176]

It is important that you organize such a feature carefully. You shouldn't send such
a reply to a mailing group or keep sending repeated replies to people who already
know that you are away but need to send you information for after your return. This
requires that a log of the addresses that the message is sent to is kept to avoid repeat
messages being sent. We will investigate the setting up of such a service in the
next chapter.

File locking and integrity
An important concept to keep in mind during all your work with Procmail is that
it is always possible for multiple mail messages to be arriving at the same time, all
vying to be processed. Therefore, it is quite possible that two or more messages are
going to be stored in the same location at the same time—a recipe for disaster exists.
Assume the simple example of two items arriving at the same time. The first mail
opens the storage location and starts to write the contents of the message, and then
the second process does the same. A variety of possible results could occur from this,
ranging from one message being lost totally through, to both messages being stored
intertwined and totally illegible.

To make sure that this doesn't happen, a strict locking protocol needs to be observed
to ensure that only one process can write at a time and all other applications need
to wait patiently for their turn. Procmail itself has the ability to enforce a locking
protocol appropriate to the type of process being applied and will, by default, lock
the physical file in which a mail is being stored.

In some cases, the mail is being processed by an application and Procmail can
be instructed by the use of flags within the rule to use an appropriate locking
mechanism. This is covered more completely in Chapter 7.

What Procmail is not suitable for
There are some very specific mail filtering and processing requirements for which
Procmail may be considered to be suitable. In most cases, it is flexible and capable
enough to perform the task at least at a rudimentary level. Such tasks could be
filtering of spam-related e-mails or filtering out viruses or running a mailing list
operation. For each of these, there are a number of solutions available that go beyond
the capabilities of using just Procmail filters. We will be looking at SpamAssassin for
performing spam filtering and a virus filtering solution later in Chapter 8.

Chapter 6

[177]

We have already mentioned that Procmail is suitable only for users having accounts
on the system that Procmail runs on. Nevertheless, it is worth reinforcing that
Procmail is unable to process mail that is being delivered to a virtual user and such
mails will end up on another system. If it is necessary to process mail for such a
user, it is possible to create a real user account on the system and then use Procmail
to perform the final forwarding as part of its filtering processes. This is not an ideal
use as the Postfix system is much more efficient if it is allowed to do this work rather
than using Procmail.

Downloading and installing Procmail
As the software is now reasonably mature, Procmail is usually available for
installation on most Linux distributions and can be installed by using the package
manager. This is the recommended way to install Procmail. If it is not available via
a package manager in your Linux distribution, it can also be installed from the
source code.

Installing via a package manager
For Fedora users, the simple way to install Procmail if it isn't already installed is to
use the yum command as follows:
yum install procmail

For Debian-based users you could use the following command:
apt-get install procmail

This will ensure that the binary of Procmail is correctly installed on your system and
you can then decide how you want it to integrate into your Postfix system.

Installing from source
Procmail may be obtained from a number of sources but the official distribution
is maintained and available from www.procmail.org. There you will find links to
a number of mirror services from which you can download the source files. The
version used in this book can be downloaded from http://www.procmail.org/
procmail-3.22.tar.gz.

It can be downloaded by using the wget command as follows:
wget http://www.procmail.org/procmail-3.22.tar.gz

Once you have downloaded and unpacked the archive, cd to the directory,
example procmail-3.22. Before starting to build and install the software, it
is well worthwhile reading through the INSTALL and README documents.

Getting Started with Procmail

[178]

For most Linux systems, the simplest installation method can be reduced by
following the steps listed here:

1. Run the configure utility to create the right build environment by running
the configure command:
$./configure

2. After the configuration script is completed, you can run the make command
to build the software executables:
$ make

3. The final step, as root, is to copy the executables into the correct position for
operation on the system:
make install

In the last step, the software is installed into the /usr/local directory.

At all stages, you should check the processes output for any significant errors
or warnings.

Installation options/considerations
For most people following the instructions, throughout this book you will be the
system administrator of the machine or machines you are managing and will
probably be applying the installation to process all mail for all users on the system.
If you are not an administrator, or you wish only a limited number of people on the
system to take advantage of the features of Procmail, you can install Procmail for
individual users.

Individual installation
If you are installing Procmail for your own use or for only a few people on your
server, the most common method is to call the Procmail program directly from
the .forward file in your home directory on the server (this file needs to be
world-readable).

The entry in .forward when using Postfix as an MTA should be like this:

"|IFS=' ' && exec /usr/bin/procmail -f- || exit 75 #username"

The quotes are required and the username should be substituted for your username.
The syntax for other MTAs may be different so consult the MTA documentation.

You will also need to install a .procmailrc file in the home directory—this is the file
that holds the rules that Procmail will use to filter and deliver your e-mail.

Chapter 6

[179]

System-wide installation
If you are a system administrator, you can decide to install Procmail globally. This
has the advantage that users do not need to have a .forward file anymore. Simply
having a .procmailrc file in each user's HOME directory will suffice. The operation is
transparent in this case—if no .procmailrc file is present in the HOME directory, the
mail will be delivered as usual.

A global .procmailrc file can be created that takes effect before the user's own file.
In this case, you need to be careful to ensure that the configuration has the following
instruction included so that messages are stored with the end user's privileges rather
than the root user's privileges.

DROPPRIVS=yes

This also helps protect against weaknesses in your system security. This file is
normally stored in the /etc directory as /etc/procmailrc where it is intended to
provide a default set of personal rules for all users as they are added to the system.
It will be worth configuring a .procmailrc file in the skeleton account that is used
by the add user capabilities of your system. Consult your Linux documentation for
information on how this can be set up.

Integration with Postfix for system-wide
delivery
To integrate Procmail into the Postfix system is simple but, as with any other
configuration change, care must be taken. Postfix runs all external commands such
as Procmail with the user ID of nobody. So it would be unable to deliver mail to the
user root. To ensure that important system messages are still received, you should
make sure that an alias is configured so that all mail intended for the root user is
forwarded to a real user who will read the mailbox.

Creating an alias for system accounts
To create an alias for the root user, you must edit the appropriate alias file,
normally found in /etc/aliases or /etc/mail/aliases.

If you are unable to find the file, use the following command:

postconf alias_maps

The entry in the alias file should be as follows with just a single tab character
between the colon (:) and the start of the e-mail address and no trailing spaces:

root: user@domain.com

Getting Started with Procmail

[180]

After creating the text entry, you should run the newaliases command to convert
the text file into a database file ready for Postfix to read.

It is worthwhile to add additional aliases for any other system accounts that
may receive mail. For example you may end up with an aliases file similar
to the following:

/etc/aliases
postmaster: root
nobody: root
hostmaster: root
usenet: root
news: root
webmaster: root
www: root
ftp: root
abuse: root
noc: root
security: root
root: user@example.com
clamav: root

Adding Procmail to the Postfix configuration
For system-wide delivery of mail by Procmail, it is necessary to modify the Postfix
main.cf file to specify the application that will be responsible for the actual delivery.

Edit the /etc/postfix/main.cf file and add the following line:

mailbox_command = /path/to/procmail

When the change has been made, you need to instruct Postfix that the file has
changed using the following command:

postfix reload

Postfix-provided environment variables
Postfix exports information regarding the mail package by use of a number of
environment variables. The variables are modified to avoid any shell expansion
issues by replacing all characters that may have special meaning to the shell,
including whitespace with the underscore character. The following is a list of
variables that are exported and their meaning:

Chapter 6

[181]

Variable Meaning
DOMAIN The text to the right-hand side of the @ in the recipient address
EXTENSION Optional address-extension part
HOME The recipient's home directory
LOCAL The text to the left-hand side of the @ in the recipient address, for

example, $USER+$EXTENSION
LOGNAME The recipient username
RECIPIENT The entire recipient address, $LOCAL@$DOMAIN
SENDER The complete sender address
SHELL The recipient's login shell

Basic operations
When a mail item arrives and is passed to the Procmail program, the sequence of
operations follows a set format. It starts by loading the various configuration files
to obtain the rules that have been set up for that particular user. The message is
then tested by each of these rules in turn and when a suitable match is made, the
rule is applied. Some rules terminate when they have completed, while others
return control so that the message can be assessed against remaining rules for
potential processing.

Configuration file
The system-wide configuration is normally made in /etc/procmailrc, while
personal configuration files are normally stored in the user's home directory and
called .procmailrc. Individual rules can be stored in separate files or grouped
together into a number of files and then included as part of the mail filtering process
by the main .procmailrc file. Typically these files would be stored in the Procmail
subdirectory of your home directory.

File format
Entries in the configuration file are made in a simple text format according to a basic
layout. Comments are allowed and are formed by the text following a # character;
empty lines are simply ignored. Rules themselves do not have to be laid out in any
particular format, though for ease of maintenance and readability, it is well worth
writing the rules in a consistent and simple format.

Getting Started with Procmail

[182]

Configuration file dissection
The Procmail configuration file contents can be classified into three main sections:

Variables: Information necessary for Procmail to do its work may be
assigned to variables within the configuration file in a manner similar to
how they are used in shell programming. Some of the variables are obtained
from the shell environment that Procmail is running in, others are created
by Procmail itself for use within the scripts, while other variables can be
assigned within the script itself. An additional use for variables is to set
flags as to how Procmail itself should operate.
A few useful variables can be set in most scripts:
PATH=/usr/bin: /usr/local/bin:.
MAILDIR=$HOME/Maildir # Make sure it exists
DEFAULT=$MAILDIR/ # Trailing / indicates maildir
format mailbox
LOGFILE=$HOME/procmail.log
LOG="
"
VERBOSE=yes

The VERBOSE variable is used to affect the level of logging that is
performed, while the NEWLINE embedded in the LOG variable is
deliberate and intended to make log files easier to read.
Chapter 7 also includes a short script that displays all the
variables assigned within Procmail.

Comments: A # character and all the following characters up to a
NEWLINE are ignored. This does not apply to condition lines that cannot be
commented. Blank lines are ignored and may be used in conjunction with
comments to document your configuration and to aid readability. You
should comment your rules as what makes obvious sense today as you are
writing your rules may well defy explanation in six months time without
checking the manual.
Rules or recipes: Recipe is a common name for rules we create. A line
starting with a colon (:) marks the beginning of a recipe. A recipe has the
following format:

:0 [flags] [: [locallockfile]]
<zero or more conditions (one per line)>
<exactly one action line>

•

°

°

•

•

Chapter 6

[183]

The :0 is a hangover from earlier versions of Procmail. The number
following the : was originally intended to indicate the number of actions
contained within the rule, this is now calculated automatically by the
Procmail parser. However, the :0 is required for compatibility purposes.

Analyzing a simple rule
Let us assume that we are receiving large amounts of mail from a particular mail
group that we subscribed to. The mail is interesting, but isn't important and we
would prefer to read it at our leisure. The subject is "mythical monsters" and all
e-mail arriving from this mailing list has a "To" address of mythical@monsters.com.
We have decided that we will create a special folder just for these items of mail, and
copy all the mail into this folder. This is a simple rule that you will be able to easily
copy and modify to process your own mail in the future.

The rule structure
The following is an example copy of a very simple .procmail file taken from a user's
home directory and is intended to explain some of the basic features of a Procmail
configuration. The rule itself is designed to store all mail sent to a certain e-mail
address, mythical@monsters.com, in a special folder called monsters. Most mail will
be sent to multiple people including yourself and the "To" address can hold a useful
indication of the mail contents. For example, mail may be sent to a distribution list at
info@yourcompany.com and you need to prioritize this e-mail.

Take a few moments to read the contents of the file and then we will break down
each section in turn and analyze what its function is.

#
Here we assign variables
#
PATH=/usr/bin: /usr/local/bin:.
MAILDIR=$HOME/Maildir # Make sure it exists
DEFAULT=$MAILDIR/ # Trailing / indicates maildir
format mailbox
LOGFILE=$HOME/procmail.log
LOG="
"
VERBOSE=yes

#
This is the only rule within the file
#

Getting Started with Procmail

[184]

:0: # Anything to mythical@monsters.com
* ^TO_ mythical@monsters.com
monsters/ # will go to monsters folder. Note the
trailing /

Variable analysis
To examine this file in detail, we can start with the definition statements where the
variables are assigned with specific values. These values will override any values
that Procmail has already assigned. By doing this manual assignment, we can ensure
that paths are optimized for the script operation and that we are certain of what
values are being used rather than assuming the values that Procmail may assign.

PATH=/usr/bin: /usr/local/bin:.
MAILDIR=$HOME/Maildir
DEFAULT=$MAILDIR/
LOGFILE=$HOME/procmail.log
LOG="
"
VERBOSE=yes

These set up instructions to Procmail to define some basic parameters:

The PATH instruction specifies where Procmail can find any programs it may
need to execute as part of the processing.
MAILDIR specifies the directory that all the mail items will be stored in. This
directory should exist.
DEFAULT defines where mail will be stored if a specific location is not defined
for the individual rule. Following the recommendation in the chapter on
Postfix about selecting the mailbox format, the trailing / (slash) indicates to
Procmail that it should deliver mail in Maildir format.
LOGFILE is the file where all tracking information will be stored so that we
can see what is happening.

Rule analysis
Next we have the recipe instructions beginning with :0. The second : instructs
Procmail to create a lock file to ensure only one mail message is written to the file at
a time, in order to avoid corruption of the message store. The single line rule may be
broken down as follows:

•

•

•

•

Chapter 6

[185]

*: All rule lines begin with an *. This is the way Procmail knows that they are
rules. There may be one or more rules per recipe.
^TO_: This is a special Procmail built-in macro that searches most
headers that can carry your address in them, such as To:, Apparently-To:,
Cc:, Resent-To:, and so on, and will match if it finds the address
mythical@monsters.com.

The final line is the action line and by default specifies a mail folder in the directory
specified by the MAILDIR variable.

The trailing slash is required on folder names for Maildir format
mailboxes, otherwise mail is delivered in unix mbox format which is
not supported by Courier-IMAP. If you are using IMAP, folder names
should also be prefixed with a . (period) because the period character is
designated as a hierarchy separator.

Creating and testing a rule
Procmail allows you to organize your rules and recipes into multiple files and then
process each file in turn. This makes it much easier to manage the rules and also to
switch rules on and off as the needs change. For this first test case, we will create a
special rule set for testing and organize all our rules in a subdirectory of our home
directory. Typically, the subdirectory is called Procmail but you are free to use your
own name.

We will start off by looking at a simple personal rule and testing it for a single user.
Later in the chapter, when we have covered all of the basics and you are comfortable
with the process of creating and setting up rules, we will show how to start applying
rules to all system users.

A "hello world" example
Almost all books on programming start off with a very simple "hello world" example
to show the basics of the programming language. In this case, we will create a simple
personal rule that processes all e-mails received by a user and checks to see if the
subject contains the words "hello world". If the mail subject contains these particular
words, the mail message will be stored in a special folder. If it does not contain these
magic words, the mail will be stored in the user's normal inbox.

•

•

Getting Started with Procmail

[186]

Creating rc.testing
When you are working in a production environment, it is important to make sure
that the rules being written and tested do not interfere with your normal day-to-
day mail activities. One way of controlling this is to create a special file specifically
for testing new rules and only include it in the Procmail processing when you are
actually doing the testing work. When you are happy with the rule operation, you
can move it to a specific file of its own, or add it to other similar or related rules. In
this example, we will create a new file for testing rules called rc.testing. In the
$HOME/Procmail directory, use your favorite editor to create the file rc.testing
and enter the following lines:

LOGFILE should be specified early in the file so
everything after it is logged
LOGFILE=$PMDIR/pmlog

To insert a blank line between each message's log entry,
Use the following LOG entry
LOG="
"
Set to yes when debugging; VERBOSE default is no
VERBOSE=yes

#
Simple test recipes
#
:0:
* ^Subject:.*hello world
TEST-HelloWorld

By now, you are hopefully beginning to recognize the structure of the rules. This one
is broken down as follows.

The first few lines set up variables that are applicable to our testing environment.
As they are assigned within the testing script, they will only apply while the script
is being included in the processing. As soon as we exclude the test script, the testing
settings will, of course, not be applied.

Match all lines that begin (^) with the string Subject: and containing the string
hello world. We have deliberately not used a string such as test, as a small number
of systems can strip out messages that appear to be test messages. Remember that
default operation of Procmail is to be case independent so we don't need to test for
all variations such as Hello World.

The last line directs Procmail to store the output in the TEST-HelloWorld file.

Chapter 6

[187]

Create testmail.txt in the $HOME/Procmail directory, use your favorite editor to
create the file testmail.txt and enter the following lines:

From: me@example.com
To: me@example.com (self test)
Subject: My Hello World Test

BODY OF TEST MESSAGE SEPARATED BY EMPTY LINE

The subject line is mixed case compared to our rule in rc.testing that contains the
candidate string in order to demonstrate case-insensitive matching.

Performing static testing of the script
Running the following command from the Procmail directory will generate the
debugging output:

formail -s procmail -m PMDIR=. rc.testing < testmail.txt

During static testing, we have defined the variable PMDIR in the
previous command to be our current directory.

After running the command, you can look at the log file for error messages. If
everything worked fine, you would see the creation of the file TEST-HelloWorld
with the contents of testmail.txt and following output in the log.

procmail: [9060] Mon Jun 8 17:52:31 2009
procmail: Match on "^Subject:.*hello world"
procmail: Locking "TEST-HelloWorld.lock"
procmail: Assigning "LASTFOLDER=TEST-HelloWorld"
procmail: Opening "TEST-HelloWorld"
procmail: Acquiring kernel-lock
procmail: Unlocking "TEST-HelloWorld.lock"
From me@example.com Mon Jun 8 17:52:31 2009
 Subject: My Hello World Test
 Folder: TEST-HelloWorld 194

If the Subject line had not contained the relevant matching phrase, you might have
seen the following output in the log:

procmail: [9073] Mon Jun 8 17:53:47 2009
procmail: No match on "^Subject:.*hello world"
From me@example.com Mon Jun 8 17:53:47 2009
 Subject: My Goodbye World Test
 Folder: **Bounced** 0

Getting Started with Procmail

[188]

Configuring Procmail to process rc.testing
You will need to edit your .procmailrc configuration file. There may well be some
entries in there already, so it is worth making a backup of the file before you make
any changes. Ensure that the following lines are included in the file:

Directory for storing procmail configuration and log files
PMDIR=$HOME/Procmail

Load specific rule sets
INCLUDERC=$PMDIR/rc.testing

Some lines are deliberately commented out using #. These may be required if we
need to do some more detailed debugging later.

Testing the setup
Using the following command, send yourself two messages:

echo "test message" | mail -s "hello world" $USER

One should include the string hello world in the subject line and one should not
include this particular string.

When you check your mail, you should find that the message with the key word
in the subject has been stored in the TEST-HelloWorld mail folder, while the other
message was left in the normal mail inbox.

Configuration debugging
If this has all worked correctly—congratulations! You are well on the way to
organizing your mail.

If it didn't quite work as expected, there are a number of simple things we can do to
find out what the problem is.

Checking for typos in the scripts
As with any programming process, if at first it doesn't work, check the code to make
sure that there were no obvious typos introduced during the editing phase.

Chapter 6

[189]

Looking at the log file for error messages
If that doesn't highlight anything, you can look at the log file created by Procmail. In
this case, the log file is called pmlog in the ~/Procmail directory. To look at just the
last few lines, use the following command:

tail ~/Procmail/pmlog

In the following example there is a missing :0 so that the rule lines are
being skipped:

 * ^Subject:.*hello world

 TEST-HelloWorld

This would give the following errors:

procmail: [10311] Mon Jun 8 18:21:34 2009
procmail: Skipped "* ^Subject:.* hello world"
procmail: Skipped "TEST"
procmail: Skipped "-HelloWorld"

Here there is no storage instruction to follow the rule :0:

:0:

 * ^Subject:.*hello world

This would give the following errors:

procmail: [10356] Mon Jun 8 18:23:36 2009
procmail: Match on "^Subject:.* hello world"
procmail: Incomplete recipe

Checking file and directory permissions
Use the ls command to check the permissions on the ~/.procmailrc and ~/
Procmail/* files and the ~/ home directory. The rules files should be writable by
users other than the owner and should have permissions similar to the following:

rw-r--r—

The home directory should have permissions such as the following where the ? may
be either r or –:

drwx?-x?-x

Getting Started with Procmail

[190]

Turning on Full Logging
When you are creating more complex rules, or if you still have a problem, you need
to enable the Full Logging capability of Procmail. To do this, you need to remove
the comment # from the lines in the ~/.procmailrc file so that they are enabled
as follows:

Directory for storing procmail configuration and log files
PMDIR=$HOME/Procmail

LOGFILE should be specified early in the file so
everything after it is logged
LOGFILE=$PMDIR/pmlog

To insert a blank line between each message's log entry,
add a return between the quotes (this is helpful for debugging)
LOG="
"

Set to yes when debugging; VERBOSE default is no
VERBOSE=yes

Load specific rule sets
INCLUDERC=$PMDIR/rc.testing

Now resend the two sample messages and check the log file for the output
information. The log file should indicate some areas of problems for you to investigate.

Taking steps to avoid disasters
The following recipe inserted early in the .procmailrc file will ensure that the
last 32 messages received are each stored in the backup directory, ensuring that
valuable mail is not lost in cases where a recipe contains a fault or has an unexpected
side effect.

Create a backup cache of 32 most recent messages in case of
mistakes.
For this to work, you must first create the directory
${MAILDIR}/backup.
:0 c
backup

:0 ic
| cd backup && rm -f dummy `ls -t msg.* | sed -e 1,32d`

For now we will assume that this works, and in the next chapter we will analyze the
recipe in detail to see how exactly it works and what it does.

Chapter 6

[191]

Understanding e-mail structure
In order to make full use of the capabilities of Procmail, it is worth taking some
time to understand the basic structure of a typical e-mail message. Over time,
the structure has grown in complexity, but it can still be broken down into two
discrete blocks.

Message body
The message body is separated from the headers by a single blank line (all the
headers must be on consecutive lines, as any headers following a blank line will be
assumed to be part of the message body).

The message body itself may be either a simple text message composed normally of
simple ASCII characters or it may be a complex combination of parts encoded using
something known as MIME. This has allowed e-mail to be able to transfer all forms
of data ranging from simple text, HTML, or other formatted pages, and to include
information such as attachments or embedded objects such as images. Discussion
of MIME encoding is beyond the scope of this book, and is not necessary for most
processes that you are likely to come across in mail filtering.

If you decide to try to process the data held in the message body, it is important
to remember that what you see as the output of the mail program, may be very
different from the actual data transmitted in the raw mail message.

E-mail headers
The headers are the tags that an e-mail contains that permit the various mailing
components to send and process messages. The typical format of a mail header
is a simple two-part construction composed of a keyword terminated by a : and
followed by the information assigned to the keyword. The headers provide a lot
of information about how the e-mail was created, what form of mail program
created the message, from whom it came, to whom it should go, and how it
reached your mailbox.

Getting Started with Procmail

[192]

The following mail headers relate to an e-mail received from one of a number of
mailing lists at freelancers.net. The most useful identifying feature of the e-mail
is the subject line as most of the other mail groups use the same values for the other
headers discussed.

Header structure
The previous example contains a large number of headers inserted by a number of
processes that the mail has been through on its journey from sender to recipient.
There is, however, a small number of key headers that are very useful for processing
e-mail and are used in a significant number of recipes.

Official definitions for headers
All headers that do not begin with X- are assigned specific functions by the relevant
standards authority. More information about them may be found in the RFC (Request
for Comment) Document 822 at http://www.ietf.org/rfc/rfc0822.txt.

Headers beginning with X- are user defined and are applicable to a specific
application only. However, some applications may use the same header tag as
other applications, but for different reasons and with a different format for the
information provided.

Example rule sets
In order to help you understand the way Procmail rules work, we will go through
the design and setup of several simple but very useful rule sets. This should help
to get you into the swing of designing your own rule sets as you find more specific
needs to filter your incoming mail items.

Chapter 6

[193]

All these examples are based on the mail messages received from the Freelancers
Mailing List from which the previous example headers were taken. They all achieve
the same result and once again prove that there is no one correct solution to a
programming problem.

From header
This header explains who the originator of the e-mail was. There are a variety
of formats that may be used and are formed of various combinations of human-
readable and computer-readable items of information. When you have looked at a
few e-mails, you will begin to see the various patterns that can be used by differing
mail systems and software. The actual formatting of this header is not necessarily
important, as you are looking to generate rules to match specific e-mails.

From: Do Not Reply <do-not-reply@freelancers.net>

Return-Path Header
This field is added by the final transport system that delivers the message to its
recipient. The field is intended to contain definitive information about the address
and route back to the message's originator.

Return-Path: <do-not-reply@freelancers.net>

Filtering by Return-Path
The majority of mailing lists use the Return-Path header:

:0:
* ^Return-Path: <do-not-reply@freelancers.net>
freelancers//

This is a useful way of easily filtering mailing list items. Here, the ^ character
performs a special function that instructs Procmail to start the match process at the
beginning of a new line. This means that lines that contain the phrase embedded
in the middle of the line are not matched. The default operation for Procmail is to
return a match if the string is found anywhere within the header or anywhere within
the mail body, depending on where the script has been set to search.

Getting Started with Procmail

[194]

To and Cc headers
Messages are normally sent to one or more people who are listed in the To: or Cc:
headers of the e-mail. Like the From: header, these addresses may be formatted in
several ways. These headers are visible to all mail recipients and allow you to see all
the public recipients listed.

To: projects@adepteo.net

There is a third recipient header that is not quite as common as the To: and Cc:
but is used quite a lot in bulk mailings. This is the Bcc: (Blind Carbon Copy).
Unfortunately, as the name implies, this is a blind header and so the information is
not included in the actual header information and hence not available for processing.

Filtering by To or Cc
Procmail has a number of special built-in macros that can be used to identify
mail items. The special rule ^TO_ is intended to search all the destination headers
available. The rule must be written as exactly four characters with no spaces and
with both T and O in capitals. The phrase being matched must follow immediately
after the _ again without a space.

:0:
* ^TO_do-not-reply@freelancers.net
freelancers/

Subject header
The subject line is usually included in the e-mail headers unless the sender has
decided not to include a subject line at all.

Subject: FN-PROJECTS Freelance Web Designers

In this example, all the mail items sent to this particular list start with the phrase
"FN-PROJECTS" and so are sometimes suitable for filtering.

Filtering by subject
When mailing lists add a prefix to subject lines, this prefix may be suitable
for filtering:

:0:
* ^Subject: FN-PROJECTS
freelancers//

Chapter 6

[195]

System-wide rules
Now that we have covered all the basics of setting up rules, analyzing e-mails, and
generally seeing how all of the processing operations interact, we will look through
a couple of examples for system-wide filtering, testing, and operations.

Removing executables
In Chapter 9, we will see how to integrate a complete virus checking system into
the Postfix mail architecture. This will perform accurate virus signature recognition
and add suitable flags to the mail headers to indicate if a virus is present in the
mail. However, if it is not possible to set up such a system, this rule will provide an
alternative but more brutal approach to block all e-mails with executable attachments.

If you place the following in /etc/procmailrc, it will affect all mail traveling
through the system that contains certain types of documents as attachments.

Note: The whitespace in the [] in the code comprises a space and a
tab character
:0
* < 256000
* ! ^Content-Type: text/plain
{
 :0B
 * ^(Content-(Type|Disposition):.*|[]*(file)?)name=("[^"]*|[^
]*)\.(bat|cmd|com|exe|js|pif|scr)
 /dev/null
}

The rule starts with the customary :0 instruction.

The conditions are applied as follows:

Firstly, ensure that we are only going to filter messages less than 256 KB in size.
This is primarily for efficiency and most spam is smaller than this size. You could
obviously increase it if you are getting viruses that are bigger, but there could be a
higher load on your system.

The next line says that we also only look at those messages that are MIME types
(that is, not plain text), as attachments, by definition, cannot be included in a plain
text message.

Getting Started with Procmail

[196]

We have a subfilter between the curly braces. The :0B says we are processing
the body of the message, rather than the headers. We have to do this because
attachments come in the body, not the headers. We then look for lines that have
the signature of being a MIME heading for an executable file. You can amend the
filename extensions if you wish; these are simply the ones that are commonly used
to transmit viruses.

The action in this case is to send this message to /dev/null if it matches. Note that
this means no message bounce or error message to the sender; the message is simply
dropped, never to be seen again. You may of course store the messages in a secure
location and nominate someone to monitor the account for valid messages that do
not contain viruses. For a more elegant solution to this problem, remember to check
Chapter 9.

Large e-mails
With the ever increasing use of high speed, always-on Internet connections, people
are starting to send larger and larger e-mail messages. Once upon a time, it was
considered rude to have more than four lines in your signature file, nowadays people
happily include images and wallpapers, and send both HTML and text versions of
the e-mail all without realizing the size of message they are sending.

Storing such large messages in your Inbox adds considerably to the processing
overhead to search through your mail messages. One simple solution is to move all
messages over a certain size into an oversize folder. This can be achieved very simply
by using the following rule that looks for messages over 100,000 bytes in size and
stores them in the largemail folder.

:0:
* >100000
largemail/

The downside of this rule is that your users need to remember to check on a
regular basis both their Inbox and the largemail folder. A more elegant solution
will allow you to copy the first few lines of the message together with the headers
and subject line, and store that in the Inbox and inform you that the complete version
needs to be checked for. Such a solution can be seen in the examples at the end of the
next chapter.

Chapter 6

[197]

Summary
In this chapter, we have discovered some of the basics of Procmail. By now you
should be familiar with the various files that Procmail uses to load recipes, the core
principles of filtering, and the options available. We have also analyzed e-mails,
set up individual and system wide filters, and looked at some of the simple testing,
logging, and debugging options that will help us manage a company's mail
more effectively.

We have just scratched the surface of what is possible, but hopefully this little taste
has already provided you with a whole load of ideas about how you could go about
processing and filtering your daily overload of e-mail. It may well have given you
ideas for more advanced filters and the next chapter will provide more advice and
explanations of how to go about setting these up.

Advanced Procmail
Now that we have got the basics of Procmail under our belt, we can move on
and start putting together a more complete mail-handling system. The advanced
techniques in this chapter are required only if you need a very specialized handling
for your mail and are not needed for setting up a basic e-mail server. You may
wish to skip this chapter and return to it once your server is fully configured
and operational.

We will be using a number of more advanced Procmail capabilities in this chapter.
This chapter will cover:

The differences between delivering and non-delivering recipes
The usage of variables, substitutions, and pseudo-variables in
advanced recipes
Locking and the use of various flags to control execution
How conditions can be applied to test various parts of a message
Advanced actions to forward, save, or pass a message on to an external
program for processing
An introduction to regular expressions
Using Procmail macros to simplify e-mail header analysis
Detailed analysis of some advanced recipes with a number of
example recipes

By the end of this chapter, you should have a useful tool chest of routines for putting
together your own set of Procmail recipes and getting your mail under control.

•

•

•

•

•

•

•

•

Advanced Procmail

[200]

Delivering and non-delivering recipes
So far we have covered only those recipes that either do a final delivery of the mail
to a program or a file, or forward a message to another mail user. There is another
option available, and to quote from the Procmail documentation:

There are two kinds of recipes—delivering and non-delivering recipes. If a
delivering recipe is found to match, Procmail considers the mail (you guessed it)
delivered and will cease processing the .procmailrc file after having successfully
executed the action line of the recipe. If a non-delivering recipe is found to match,
processing of the .procmailrc file will continue after the action line of this recipe
has been executed.

Non-delivering example
We introduced an example in the previous chapter that was intended to make
backups of mail items, in case a recipe that is being tested deletes all mails. This
is a very useful non-delivering recipe example and may be found in the Procmail
manual page procmailex.

If you are fairly new to Procmail and plan to experiment a little, it often helps to have
a safety net of some sort. Inserting the two recipes mentioned before, all other recipes
will make sure that the last 32 arriving mail messages will always be preserved. In
order to make this work as intended, we have to create a directory named backup in
$MAILDIR prior to inserting these two recipes:

:0 c
backup
:0 ic
cd backup && rm -f dummy `ls -t msg.* | sed -e 1,32d`

The second recipe uses several features of Procmail, which we will be exploring in
more detail in later sections of this chapter.

If we work step by step through this recipe, we will end up with a useful archive
utility that records the last 32 mail items to be received and allows us to manually
recover mail if we ever create a recipe that ends up destroying mail rather than
storing it. On a busy mail server, it might be prudent to increase this number to
keep a larger archive of messages.

The first recipe performs a simple backup operation by delivering a copy or clone of
the mail into the backup directory:

:0 c
backup

Chapter 7

[201]

Before adding the second recipe, create the above recipe in the .procmailrc file and
send a couple of mail messages to yourself. We can see that each mail item is stored
in the backup directory (provided it exists and has the correct permissions).

The second recipe is just as simple, but uses some more complex features of Linux
system commands to delete all but the mail items in the backup directory, except
the most recent 32 items.

:0 ic
| cd backup && rm -f dummy `ls -t msg.* | sed -e 1,32d`

Let's look at how this recipe works. Firstly, we will see the rule flags and
their meanings:

Flag Meaning
i Ignore the return code of the subsequent pipeline command
c Clone or copy the incoming data so that the original data is not

affected

The | instructs Procmail to pass the data matched to the following pipeline
command. Each of these commands performs a specific action.

Command Action
cd backup Moves to the backup directory.
ls –t msg.* Obtains a list of files beginning with msg and sorts them in to time

order.
sed –e 1,32d Deletes all but the last 32 lines—that is, the 32 most recent mail items.
rm –f dummy... The parameter dummy is to stop error messages in case there are no

files to be deleted, and then the rm command continues to remove
the files listed by the sed filter.

These two recipes are examples of unconditional recipes that are run on every
incoming mail message. The fact that there are no conditional lines, that is, the
lines beginning with an asterisk symbol (*), infers that the recipes are unconditional.
As both the recipes include a c flag in the recipe, they are also defined as
non-delivering recipes.

Once we have collected a number of Procmail recipes, we will find that the order
in which the recipes are processed can be important. By setting the order of
processing correctly, we can improve performance and reduce the time taken to
process incoming mails. We can also make sure that more critical rules are applied
to important messages before the more general rules that are intended to act on
bulk messages.

Advanced Procmail

[202]

A typical scenario could be to apply rules in the following order:

1. Process daemon or server messages first.
2. Mailing lists should be handled as early as possible, but after the server

messages, as we want our services handled first.
3. Apply kill file to block any known spammers.
4. Do not send vacation replies before we have handled mailing lists to prevent

annoying vacation replies to mailing lists.
5. Save private messages.
6. Check for Unsolicited Bulk E-Mail (UBE)—spam. This avoids the high

overhead of processing spam checks on known valid e-mail.

Formail
Formail is an external utility program (from Procmail) that is nearly always available
on systems where Procmail is installed. Its function is to process mail messages and
extract information from within the headers of the messages. It acts as a filter that can
be used to force mail into a format suitable for storing in a Linux mail system. It can
also perform a number of other useful functions such as 'From' escaping, generating
auto-replying headers, simple header extracting, or splitting up a mailbox/digest/
articles file.

The input data mail/mailbox/article contents need to be provided using the
standard input. Therefore, formail is ideally suited for use in pipeline command
chains. Output data is provided on the standard output.

We are not going to go into the subtleties of formail in this chapter, but as it is
a useful tool, we will make reference to some of its functionality in some of our
examples. More information can be obtained from the system manual pages.

Advanced recipe analysis
Here we have a much more complicated recipe that implements a form of vacation
service to inform senders that you are away and unable to reply to e-mails. At first
thought this could be a simple non-delivering recipe to send a message back to all
messages received. However, this is not ideal as some people may end up receiving
multiple delivery confirmation messages and you may also end up sending messages
back to system utilities that have no way of understanding your well-meant reply.

Chapter 7

[203]

The example is based on the "vacation example" from the Procmail procmailex
manual page.

The vacation.cache file is maintained by Formail. It maintains a vacation database
by extracting the name of the sender and inserting it in the vacation.cache file. This
ensures that it always contains the most recent names. The size of the file is limited
to a maximum of approximately 8192 bytes. If the name of the sender is new, an auto
reply will be sent.

The following recipe implements a vacation auto reply:

SHELL=/bin/sh # for other shells, this might need adjustment

:0 Whc: vacation.lock
Perform a quick check to see if the mail was addressed to us
$TO_:.*\<$\LOGNAME\>

Filter out the mail senders we don't want to send replies to - Ever
* !^FROM_DAEMON

Make sure that we do not create an endless loop that keeps
replying to the reply by checking to see if we have already
processed
this message and inserted a loop detection header
* !^X-Loop: your@own.mail.address
| formail -rD 8192 vacation.cache

:0 ehc
We are pretty certain it's OK to send a reply to the sender of this
message
| (
 formail -rA"Precedence: junk" \
 -A"X-Loop: your@own.mail.address" ; \
 echo "Hi, Your message was delivered to my mailbox,"; \
 echo "but I won't be back until Monday."; \
 echo "-- "; cat $HOME/.signature \
) | $SENDMAIL -oi –t

We will come back to this recipe at the end of this section and work through creating
a slightly updated version using some of the things we have learned about Procmail.
For now, the example will help as a reference to understand some of the concepts we
explore in the following breakdown of a general recipe structure.

Advanced Procmail

[204]

Adding comments
Documentation or adding comments to our rules and recipes is always an important
task. All comments begin with a # character and continue till the end of the line. In
most cases, it is useful to place comments at the beginning of a line or with one or
two tabs after a single line that we wish to document.

However, there is one section of the rule file where comments must be included on
their own lines and that is in the Conditions section.

Here is a full line comment
MAILDIR=${HOME}/Maildir # This comment spans multiple
 # lines for clarity.
:0: # Comment OK here
* condition # BAD comment. NOT allowed.
Old versions of Procmail don't understand this.
* condition
{ # Comment OK
 # Comment OK
 do_something # Comment OK
}

Assigning variables
In order to keep track of settings, results from tests, default values, and so on, we
can store this information in variables. The assignment operation is simple and
follows the same format as other Linux scripting languages. The basic format is
VARIABLENAME=VALUE.

There must be no spaces within the variable name. If there are spaces
within the value being assigned, the whole of the variable should be
stored between double quotes.

The correct way to access a variable is by enclosing the VARIABLENAME within braces
{}, and prefixing it all with a dollar ($) sign. It is quite acceptable to use variables
within other assignments. Some examples are as follows:

MAILDIR=${HOME}/Maildir # Set the value of the MAILDIR
LOGFILE=${MAILDIR}/log # Store logfiles in the MAILDIR

Notice in the previous example that ${HOME} takes the value of the shell environment
setting as it was set when the process was started.

Careful use of variables and their naming can make a recipe much easier to read and
also to maintain.

Chapter 7

[205]

Performing substitutions
Sometimes it will be necessary or useful to be able to replace a literal element with
a variable that can be calculated or evaluated only at run time. Procmail allows the
author to replace most literal elements with variable substitutions or command
substitutions in most places. The simplest way to use a variable is to make use of
the $varname format, which is common to a number of scripting languages.

Variable/Command Substitution
$VAR Wherever $VAR occurs in the recipe, replace it with the value

held by this variable.
${VAR}iable * When we need to concatenate a variable with literal text, use {}

to enforce the fact that the name is ${VAR} and not $VARiable.

If it is necessary to combine variables with fixed text or values, the {}
elements allow absolute definition of the variable name to be established.
Notice that this will not happen in condition lines unless we include the
$ modifier.

Assigning variable with default values
Procmail borrows some standard shell syntax for variable initialization.

If we wish to be able to assign a default value to a variable to be used in cases where
the variable has not been set or could not be calculated for some reason, it is possible
to use the – or :- separator. If we wish to apply an alternative value where the
variable has been set or is non null, use the + or :+ separator.

Separator Action
${VAR:-value} If VAR is unset or null, the expansion of value is substituted;

otherwise, the value of VAR is substituted.
${VAR-value} If VAR is unset, the expansion of value is substituted; otherwise,

the value of VAR is substituted.
${VAR:+value} If VAR is set or non-null, the expansion of value is substituted;

otherwise, the value of VAR is substituted.
${VAR+value} If VAR is set, the expansion of value is substituted; otherwise, the

value of VAR is substituted.

Advanced Procmail

[206]

Some examples are as follows:

VAR = "" # Set VAR to null
VAR = ${VAR:-"val1"} # VAR = "val1"
VAR = ""
VAR = ${VAR-"val2"} # VAR = ""

VAR = ""
VAR = ${VAR:+"val3"} # VAR = ""
VAR = ""
VAR = ${VAR+"val4"} # VAR = "val4"

VAR = "val"
VAR = ${VAR:+"val3"} # VAR = "val3"
VAR = "val"
VAR = ${VAR+"val4"} # VAR = "val4"

VAR # unset VAR
VAR = ${VAR:-"val1"} # VAR = "val1"
VAR
VAR = ${VAR-"val2"} # VAR = "val2"

VAR
VAR = ${VAR:+"val3"} # no action
VAR
VAR = ${VAR+"val4"} # no action

Assigning command output to variables
It is possible to assign the output of a command to a variable by use of the (back
tick) ` operator—the back tick (`) is ASCII value 96 and not a normal apostrophe ('),
which has the ASCII value 39.

`cmd1 | cmd2`

This example will assign the output from the pipeline between the two back ticks to
the variable or inline in the code as applicable.

Pseudo-variables
There are a number of special variables or pseudo-variables assigned directly
by Procmail. Changing some of these values can actually change the way
Procmail operates.

Chapter 7

[207]

Mailbox variables
The following variables are used by Procmail to determine where it will store any
delivered mail.

Name Action
MAILDIR The default value for MAILDIR is taken from the value of the $HOME

environment variable. It is also the value used for the current
working directory for Procmail during execution. Unless the output
file names include a path component, they will be created in this
default directory.

MSGPREFIX This option is used when we want files to be written sequentially
to a directory. The MSGPREFIX is prefixed to the name of the file
created using this option. The default prefix is msg., so the file will
be named msg.xyz. The option is not used when delivering to a
maildir or an MH directory.

DEFAULT This is the location of the default mail storage area on our system.
Normally we would not modify this variable.

ORGMAIL This is used as a disaster recovery location for cases where
DEFAULT is unavailable for any reason. This should definitely not
be modified.

Program variables
Procmail has reasonable defaults written in at the compile time. Mostly these do not
need to be changed.

Name Action
SHELL This is a standard environment variable that specifies the shell

environment within which Procmail needs to invoke sub-processes.
The value assigned to it should be Bourne shell-compatible such as
/bin/sh.

SHELLFLAGS This specifies any optional flags that should be passed to the SHELL
when starting it.

SENDMAIL This instructs Procmail where to find the sendmail program used
for sending mail on to other users. (Usually not to be fiddled with).

SENDMAILFLAGS Like SHELLFLAGS, this specifies any flags or command-line
arguments that should be passed to the SENDMAIL program when it
is executed.

Advanced Procmail

[208]

System interaction variables
During the execution of recipes, Procmail may need to run external commands,
handle errors, or create files. These variables control how Procmail interacts with
the shell.

Name Action
UMASK This gives the file permissions mode used when creating any files.

See man umask for details.
SHELLMETAS The shell pipeline is compared with the contents of SHELLMETAS

before execution. If any characters from SHELLMETAS are found
in the pipeline command, the command is considered too
complicated for Procmail to manage itself and a sub-shell process
is spawned. If we know that a particular pipeline will always be
simple enough for Procmail to manage itself but contains characters
held in SHELLMETAS, we can temporarily assign an empty string
to SHELLMETAS while processing the pipeline and then restore
SHELLMETAS. This will avoid the overhead of spawning a sub-shell.

TRAP Here we can assign a code segment to be executed at the end of
execution of Procmail. A use of it, for example, could be to delete
temporary files created during execution of the recipes.

TEMPORARY=$HOME/tmp/pmail.$$
TRAP="/bin/rm -f $TEMPORARY"

EXITCODE This value is given back to the process that started Procmail, when
Procmail exits. Typically the value of 0 is returned for success and
non-zero values indicate some form of failure. By modifying the
EXITCODE value, we can return specific information about the
processing performed.
The exit code of a program started by Procmail is stored in the
variable $?

Chapter 7

[209]

Logging variables
The verbosity and location of any log output required during recipe execution is
controlled by the following variables:

Name Action
LOGFILE This specifies the location to which Procmail should write all its

logging and debugging information. If this value is empty, output
is sent to the standard error output, which means it will be lost
unless the program is running interactively or stderr is redirected
somewhere.

LOG If we wish to write something directly to the log file ourselves, we
can assign a value to the LOG variable, and it will be appended to
LOGFILE. If we want to format the output and include a blank line
after our log message, we must remember to include a blank line in
the message that is output.

LOG="Procmail is great"

VERBOSE This allows the output to be the basic default or provide detailed
information. Setting VERBOSE=1 will include detailed logging
information that will aid in debugging our recipes. To reduce the
amount of output information, remember to set VERBOSE=0 after the
recipe has been run.

LOGABSTRACT If LOGABSTRACT is set to all, all the deliveries will have information
regarding the sender, subject, and size of the mail delivered. If you
wish to stop this logging, set LOGABSTRACT=no.

COMSAT If set to yes, Procmail will generate comsat/biff notifications. For
more information, see the comsat and biff manual pages.

Procmail's state variables
During the processing of a recipe, Procmail updates the following variables with the
current state of the recipe:

Name Action
PROCMAIL_OVERFLOW If Procmail finds any lines in the Procmail recipe file that are

longer than the buffer size while reading the file at startup,
it will set the value of PROCMAIL_OVERFLOW as yes. If the
line being read is a condition or action line, the action will
be considered to have failed. However, if it is a variable
assignment or recipe start, Procmail will stop reading the file
and exit with an abnormal termination.

HOST This holds the name of the host on which the process
is running.

Advanced Procmail

[210]

Name Action
DELIVERED If the mail message was delivered successfully, this is set to

yes and the calling process will be informed by Procmail. If
we manually set this to yes and the message is not delivered,
it will be lost without trace but the calling process will still
believe that it was successfully delivered.

LASTFOLDER This gives the name of the last file or directory to which a
message was written.

MATCH This holds the information extracted by the last regular
expression operation.

$= This holds the result of the latest scoring recipe. See the
procmailsc manual page for more information.

$1, $2, ...; $@; $# Just like the standard shell, this specifies the command-line
arguments that Procmail was started with.

$1 is the first command-line argument,
and so on.
$@ contains all arguments.
$# contains the number of arguments.

Also see the SHIFT pseudo-variable.

•

•

•

$$ This holds the current process ID. This can be useful for
creating temporary files unique to the process.

$? This holds the exit code of the previous shell command.
$_ This holds the name of the current Procmail file that is being

processed.
$- This is an alias for LASTFOLDER.

$= and $@ can't be used directly; we have to assign the value
to another variable before it can be used for anything useful.

Message content variables
The main use for these variables is to access data held in the appropriate section
but where the recipe has a flag that restricts the processing to the other part of the
message. By using HB, we can access information across the whole of the message.

Name Action
H This holds the header information for the message being

currently processed.
B This holds the body of the message being currently processed.

Chapter 7

[211]

Locking variables
Each of the variables in the following table control the names of any lock files and
how long the recipe should wait for a lock to become free.

Name Action
LOCKFILE Assigning a value to this variable creates a global lock file that

remains until LOCKFILE is assigned another value. This value
may be either the name of another lock file to create or a null value
to remove any lock.

LOCKEXT Assigning a value to this allows us to override the extension used
as part of the lock filename. This can be useful in identifying the
process that has created the lock file.

LOCKSLEEP If Procmail wants to create a lock on a file that is already locked
by another process, it will go into a retry loop. The LOCKSLEEP
variable specifies the number of seconds to sleep and wait before
retrying to obtain the lock.

LOCKTIMEOUT This specifies an age in seconds that the lock file must be of
before it will be assumed that the lock file is invalid and will
be overridden. If the value is 0 then the lock file will never be
overridden. The default value is 1024 seconds.

Error-handling variables
In the event of an error in our recipe, we can decide what action to take by using any
of these variables.

Name Action
TIMEOUT This specifies how long to wait for a child before telling the child

process to terminate. The default is 960 seconds.
SUSPEND This specifies how long to wait between NORESRETRY retries.

Default is 16 seconds.
NORESRETRY The number of times Procmail will retry before giving up when a

serious system resource shortage occurs, such as out of disk space
or the system has reached the maximum number of processes.
The default value is 4 and, if the number is negative, Procmail
will retry forever. If the resources do not become available during
the retry period, the message will be discarded and classified as
undeliverable.

Advanced Procmail

[212]

Miscellaneous variables
The following table contains information about various Procmail variables that may
be of use within our recipes:

Name Action
LINEBUF This sets a limit for the length of recipe lines that Procmail is ready

to cope with. If we need to process very large regular expressions
or store lots of data into MATCH, increase this value.

SHIFT This is similar to the shift feature in normal shell processing.
Assigning a positive number to this variable moves down
Procmail's command-line arguments.

INCLUDERC This instructs Procmail to load another file containing Procmail
recipes. This new file is loaded and processed before Procmail
continues processing the current file.

DROPPRIVS This ensures that no root privileges are available when Procmail
is executing as setuid or setgid. Setting this value to yes will
make Procmail drop all its special privileges.

Printing Procmail variables
The following example will print most of the environment settings in response and
will provide some information that could be helpful while trying to debug problems
with Procmail. It is not expected that this is included in any production files,
otherwise our log file could grow to be extremely large very quickly.

Create a file called rc.dump in the same directory as the other Procmail recipe files
and place the following lines in the file:

Please note that the quotes (") that appear at the start and end of the next
example are required to ensure that the recipe operates correctly.

#
Simple Procmail recipe to dump variables to a log file
#
LOG="Dump of ProcMail Variables
MAILDIR is currently :${MAILDIR}:
MSGPREFIX is currently :${MSGPREFIX}:
DEFAULT is currently :${DEFAULT}:
ORGMAIL is currently :${ORGMAIL}:
SHELL is currently :${SHELL}:

Chapter 7

[213]

SHELLFLAGS is currently :${SHELLFLAGS}:
SENDMAIL is currently :${SENDMAIL}:
SENDMAILFLAGS is currently :${SENDMAILFLAGS}:
UMASK is currently :${UMASK}:
SHELLMETAS is currently :${SHELLMETAS}:
TRAP is currently :${TRAP}:
EXITCODE is currently :${EXITCODE}:
LOGFILE is currently :${LOGFILE}:
LOG is currently :${LOG}:
VERBOSE is currently :${VERBOSE}:
LOGABSTRACT is currently :${LOGABSTRACT}:
COMSAT is currently :${COMSAT}:
PROCMAIL_OVERFLOW is currently :${PROCMAIL_OVERFLOW}:
TODO is currently :${TODO}:
HOST is currently :${HOST}:
DELIVERED is currently :${DELIVERED}:
LASTFOLDER is currently :${LASTFOLDER}:
\$= is currently :$=:
\$1 is currently :$1:
\$2 is currently :$2:
\$$ is currently :$$:
\$? is currently :$?:
\$_ is currently :$_:
\$- is currently :$-:
LOCKFILE is currently :${LOCKFILE}:
LOCKEXT is currently :${LOCKEXT}:
LOCKSLEEP is currently :${LOCKSLEEP}:
LOCKTIMEOUT is currently :${LOCKTIMEOUT}:
TIMEOUT is currently :${TIMEOUT}:
NORESRETRY is currently :${NORESRETRY}:
SUSPEND is currently :${SUSPEND}:"

Run the following command:

procmail ./rc.dump

<CTRL-D>

Advanced Procmail

[214]

This will create the following output:

procmail ./rc.dump
<CTRL-D>
"Dump of ProcMail Variables
MAILDIR is currently :.:
MSGPREFIX is currently :msg.:
DEFAULT is currently :/var/spool/mail/root:
ORGMAIL is currently :/var/spool/mail/root:
SHELL is currently :/bin/bash:
SHELLFLAGS is currently :-c:
SENDMAIL is currently :/usr/sbin/sendmail:
SENDMAILFLAGS is currently :-oi:
UMASK is currently ::
SHELLMETAS is currently :&|<>~;?*[:
TRAP is currently ::
EXITCODE is currently ::
LOGFILE is currently ::
LOG is currently ::
VERBOSE is currently :1:
LOGABSTRACT is currently ::
COMSAT is currently :no:
PROCMAIL_OVERFLOW is currently ::
TODO is currently ::
HOST is currently :delta.adepteo.net:
DELIVERED is currently ::
LASTFOLDER is currently ::
$= is currently :0:
$1 is currently ::
$2 is currently ::
$$ is currently :9014:
$? is currently :0:
$_ is currently :./rc.dump:
$- is currently ::
LOCKFILE is currently ::
LOCKEXT is currently :.lock:
LOCKSLEEP is currently ::
LOCKTIMEOUT is currently ::
TIMEOUT is currently ::
NORESRETRY is currently ::
SUSPEND is currently ::

Chapter 7

[215]

Recipes
Procmail recipes follow a simple format. However, there are a number of ways that
Procmail can be instructed to interpret or implement the instructions in the rules
based on a number of flags and the way that the rules and recipes are written.

Colon line
As we have already discovered, all rules so far have started with a :0 followed by
one or more flags and instructions. Historically a number followed the colon (:) to
specify the number of conditions that were present in the rule. Current versions of
Procmail determine the number of conditions automatically, and hence the value 0
is always used.

Locking
We have already discussed that we need to use a locking mechanism in order to stop
more than one process trying to write to the same file at the same time. Of course this
requirement varies with the type of process that the filter is attempting to invoke. For
example, a filter that merely changes or assigns a value has no affect on any physical
file and so no locking is required. Similarly, a filter that merely forwards the data on
to another process or another recipient inherently does not need a lock to be applied.
In most cases, automatic locking will be applied when Procmail realizes that it is
writing to a file and will provide locking of the file itself. In some cases, it may be
necessary to explicitly lock a resource.

To give some insight into when locking is applied automatically, not required at all,
or requires manual locking to be enforced, here are some examples.

Automatic locking
Any rule that begins with :0: will apply automatic file locking. In this case, Procmail
will automatically determine the name of the file that the mail is being delivered to
and create a lock file. If the lock file already exists, it will wait for a period of time
and retry to create the lock. When it finally creates the lock file, it will continue with
processing. If it is unable to create the lock file, it will report an error and continue
with the next rule.

The following rule uses automatic locking:

:0 <flags>:

Advanced Procmail

[216]

Enforced locking
There may be a time, especially when processing mail by an external script, where
enforced locking is required. In most cases, Procmail will determine the name of the
file that the ultimate data is being written to by examining the process command line
and looking where output is directed to. However, if the script takes care of choosing
the output location itself, or if it relies on a file that may be altered by another
Procmail process, a lock file must be specifically requested as follows:

:0 <flags> :scriptname.lock

You are unlikely to need to enforce locking in most of the scripts you write.

No locking
When forwarding to a pipeline that performs its own file or record-locking processes,
such as storing a problem report in a database, no record locking is required.
Similarly if the message is being forwarded to another user, the final delivery
will take care of the record locking. The simple rule definition is:

:0 <flags>

Flags
In the examples we have looked at so far, we have allowed the default settings of
Procmail to take effect. However, there are a number of flags that may be set to
control how Procmail works.

:0 aAeE HBD fhb wWir c: LOCKFILE

(c)ontinue or (c)lone flag last.

(w)ait and other flags

(f)ilter flag and to filter what:
(h)ead or (b)ody

(H)eader and (B)ody match,
possibly case sensitive (D)

The 'process' flags first.
(A)nd or (E)lse recipe

Default flags
If no flags are stated on the colon line of the recipe, Procmail will assume that the
following flags (H, hb) have been used as default values.

Flag Action
H Only mail headers are scanned.
hb Action line is passed both, headers and body of the mail data.

Chapter 7

[217]

Scope of matching: HB
Normally, matching will take place across the whole of the mail package including
both, the headers and the body of the mail. If the mail body could potentially be
large and we know that we require the matches to be made against just the headers,
it would be sensible to use the H flag to restrict the scope of the matching action to be
across the headers only.

Conversely, it may sometimes be that we are looking for items of information, perhaps
a repeated footer or signature that appears only in the body of the document, in which
case we can use the B flag to restrict matching to the body only.

Flag Action
H Performs matching only across the mail headers.
B Performs matching only across the mail body.
HB Performs matching across the whole of the mail item including headers

and body.

Scope of action: hb
By default, the action line processes the whole e-mail item including the headers
and body. If it is required to process only one part of the mail data, it is possible
to specify which part is passed to the action line.

Flag Action
h Pass only the headers to the action line for processing.
b Pass only the body of the message to the action line for processing.
hb Pass both, the headers and the message body, for processing. This is the

default scope.

It is important to notice the difference between "scope of matching" and
"scope of action". The value of the flag in the first case determines which
part of the mail—header, body, or the entire mail—has to be scanned for
matching. The value of the flag in the second case determines which part
of the mail needs to be processed.

Advanced Procmail

[218]

Flow control: aAeEc
This is probably the most complex set of flags to understand of all the Procmail flags.
Examples later in the chapter will explain various ways of using these flags. Briefly
the following may be assumed about each of the flags:

Flag Action
A The recipe will be processed only if the conditions of the previous recipe

were met.
a The recipe will be processed if the previous recipe's conditions were met and

the operation was completed without error.
E This is the opposite of A. The recipe will be processed if the previous recipe

conditions were not met.
e The recipe will be processed if the previous recipe conditions were met but

the processing did not complete successfully.
c This instructs the recipe to create a copy or clone of the original message

and process this copy with any actions in a subprocess. The parent process
continues processing the original copy of the message.

The c flag should be read as Clone or Copy. It is a common misconception that
this flag should be interpreted as Continue. The Clone or Copy operation creates
a separate copy of the data and a separate flow of execution is created to process
that data, sometimes as a totally separate child process. When this clone recipe is
complete, the parent continues execution with the original data intact.

Case sensitivity: D
Diehard Linux users are very much aware of case sensitivity and always view
Capitals as being entirely different to capitals. However, the default operation of
Procmail is to be case insensitive when matching strings. This means, for Procmail
Capitals and capitals are identical, unless it is told that case sensitivity should be
applied by means of the D flag.

Execution mode: fwWir
We can instruct Procmail how to process or execute the recipe and what actions
to take if errors are encountered during the processing. Errors might not occur for
smaller mail messages when the processing takes place only on the first few lines
of data. However, for larger messages, the Linux shell may believe there is an error
when the pipeline has read only a part of the available data.

Chapter 7

[219]

The Filtering Mode of execution is important to understand. This terminology
could be confusing as all that Procmail is designed to do is to filter mail. Think of the
execution mode "filter" in the following way: The mail message we are processing
would be piped through whatever is on the action line before it is actually piped on
to Procmail (or at least the rest of our recipe). Another way of viewing the filter mode
is as a conversion mode where the data is modified in some way and returned back
to the controlling Procmail recipe for further execution.

Flag Action
f Pass the message contents through the recipe to an external pipeline process

for processing and then take the output of the process line ready to replace the
original message contents.

i If a Linux pipeline process reads only part of its input and then terminates,
the shell will send a SIGPIPE error signal to the Procmail program—the i
flag instructs Procmail to ignore this signal. This should be used where it is
expected that the pipeline process will return after processing only a part of
the message.

r The data passed to the pipeline process should be passed just as it is without
any modifications.

w By default, the Procmail process will spawn off a subprocess and continue
its own processing. The w flag instructs Procmail to wait for the subprocess
pipeline to complete before continuing with its own processing.

W This works the same as w, but also hides any error or other output messages
from the pipeline process.

Conditions
There are a number of condition types that could be applied to decide if a given
recipe applies to a particular mail item. The idea of applying conditions correctly
is to reduce the amount of unnecessary processing that is performed.

Condition lines always begin with an asterisk (*) character followed by one or more
spaces. It is possible to apply multiple condition lines within a recipe, but they must
all be grouped together on consecutive lines. The logical operation of the grouping is
to perform an AND operation such that all the conditions must be applied before the
action is executed.

:0
* condition1
* condition2
action_on_condition1_and_condition2

Advanced Procmail

[220]

Applying a rule unconditionally
It may be required that a rule has to be applied to all messages regardless of any
conditions. Such a rule could, for example, make a backup copy of the mail message
to a mail folder or archive all mail for legal or corporate policy reasons.

The unconditional rule is implied by the lack of a conditional line. That is, the rule
will always match.

Save all remaining messages to DEFAULT
:0:
${DEFAULT}/

The unconditional rule is often used at the end of a nested chain of recipes to
perform a final default action if the recipe has not delivered the mail. Remember
that processing stops once a message has been delivered.

Tests with regular expressions
Those of us that are familiar with simple pattern-matching operations such as ? or
* used commonly in matching of files in a file listing operation, may wonder if it is
possible to create similar tests to match parts of a mail header or body. The good
news is that there is an excellent feature known as regular expressions or regex for
short. These provide a mechanism for very complex pattern-matching operations
to be performed. In general, this feature matches very closely with the egrep
command-line regular expressions. However, there are some important differences
that experienced regex users should definitely be aware of, in order to understand
how to write expressions tailored for Procmail operation. There is a complete section
on writing regex later in this chapter.

Regular expressions may be run against the data portion of the mail message
(header, body, or both) as defined by the flags or may be used to test a previously
assigned variable.

Condition Action
* regex Tests the part of the message passed according to the flags

against the regular expression. Normally this will process
just the headers unless a B flag is given to indicate that the
scope of matching was to process the body of the message.

* variable ?? regex This is to compare the assigned variable against the regex
for comparison.

Various pseudo-variables were listed earlier in the chapter and represent ways
to access information that is contained within the Procmail application. These
pseudo-variables can be compared in the same way as normal variables.

Chapter 7

[221]

The following example will make a copy of all the mail items that contain a key
phrase in the message body.

VERBOSE=1
:0cB:
* [0-9]+ Linux Rules [ok!]
${MAILDIR}/linuxrules/
VERBOSE=0

The following is a quick explanation of the operation of the previous example:

We specify :0cB: to make sure that we search only through the body, and
to make a copy so we still get the original message processed.
If anywhere in the body there is a phrase that has one or more numbers
followed by a <SPACE>Linux Rules<SPACE> followed by either o, k, or !,
then a copy will be stored in the linuxrules folder.

Setting and unsetting the VERBOSE option before a rule is processed allows just that
rule to be displayed in the log in more detail, which means less log file to search
through while debugging.

Testing the size of a message part
In some cases, we may not want large messages to be processed by a recipe. In this
situation, we can set a limit that the recipe will not match messages over a certain
size. If we have users that use a slow data connection, perhaps using connectivity
over a mobile phone connection, it can be useful to move all large items of mail into
a separate folder for retrieval when the users are back at a better Internet connection.

Condition Action
* > number Will return true if the message size is larger than the given number

of bytes.
* < number Will return true if the message size is smaller than the given

number of bytes.

Testing the exit code of an external program
If an external program is run to provide a part of the processing, the exit code may
need to be checked to make sure that the process completed correctly or to perform a
secondary operation to complete the overall processing.

? /unix/command/line | another/command

•

•

Advanced Procmail

[222]

The ? instructs Procmail to pass the current message data to the Linux command line
as standard input. The condition is successfully met if the command line exits with
a zero exit code. While the command line is a pipeline of several processes, the exit
code returned is that of the last program in the pipeline.

Any output printed to standard error by the pipeline is displayed in the log.

In this example, the body of the message is passed to the command pipeline and,
if the phrase is found in exactly the third line (exit code 0), the message is filed in
the folder.

The action of lines between the VERBOSE=1 and the VERBOSE=0 will be logged, but all
lines outside this range will not be logged. This allows us to control the amount of
logging taking place, and hence makes it easier to follow the log file activity.

VERBOSE=1
:0B:
* ? /bin/sed -n 3p | /bin/egrep "Linux Rules"
${MAILDIR}/linuxrules/
VERBOSE=0

Negation
Sometimes it is useful to be able to check if a particular condition does not exist in
order to continue processing in a certain way. The Exclamation (!), or Bang as it
is sometimes referred to, is used to reverse the value of the condition so that false
becomes true and vice versa.

* ! condition

This tests for a negative result in the condition and returns true if the condition is
not met.

Here we are looking for any item that was not sent directly to us and will be stored
in a folder for later viewing.

:0:
* !^TO.*cjtaylor
${MAILDIR}/not_sent_to_me/

Variable substitution in conditions
Multiple $ flags may be used to force multiple substitution passes to be applied.

* $ condition

Chapter 7

[223]

The $ instructs Procmail to process the condition with the normal sh rules to
perform variable and back tick substitution before actually evaluating the condition.
The substitution process will resolve variables ($VAR) into their values rather than
processing them as literals. Any quoted strings will have their quotes removed and
all other shell meta characters will also be evaluated. To have any of these characters
passed through this substitution process, they should be escaped using the standard
backslash (\) escape mechanism.

The following example is taken from the procmailex manual page, and even there it
is described as being rather exotic, but it does serve as an example. Suppose you
have a file in your home directory called .urgent, and the (one) person named in
that file is the sender of an incoming mail. You would like that mail to be stored in
$MAILDIR/urgent instead of in any of the normal mail folders it would have been
sorted in. Then this is what you could do (beware, the file length of $HOME/.urgent
should be well below $LINEBUF; increase LINEBUF if necessary):

URGMATCH=`cat $HOME/.urgent`

:0:
* $^From.*${URGMATCH}
$MAILDIR/urgent/

Action line
This is the line that does all of the processing activity. In most cases, this will mean
writing to a physical file or folder. But it can also include forwarding mail to other
users, passing data to a command or pipeline of commands or, in some cases, a
number of successive actions to be performed as part of a compound recipe. If
you want to perform more than one action, you can't just stack them one after the
other—you need multiple recipes (possibly unconditional, and/or grouped in a pair
of braces) and a colon line (and optionally conditions, of course) for each.

Also note that flags that affect the action line are not actually taking effect until the
action is actually attempted. In particular, a c flag doesn't generate a clone of the
message until its conditions have all been met.

Forwarding to other addresses
Global forwarding of all messages for a user account to another user account is a
process that can be handled much more efficiently by Postfix itself. However, if
some logic needs to be applied to decide what or where to send the message,
then Procmail can assist.

Advanced Procmail

[224]

Most mail transports will allow us to pass multiple e-mail addresses for
onward transmission.

! user1@domain2.net user2@domain1.com user3 ...

The above action is functionally the same as passing the message to the
following pipeline:

| $SENDMAIL "$SENDMAILFLAGS"

This is a special case for forwarding mail and instructs Procmail to extract the list of
recipients from the original message's actual headers:

! -t

Here we will forward mail to our support team rather than handle it ourselves. The
mail includes the phrase support in the subject line.

:0:
* ^Subject.*support
! support@adepteo.net

Feeding to a shell or command pipeline
Procmail allows a virtually unlimited amount of freedom in what can be done to
an e-mail. One of the more powerful features of working with Procmail is its
ability to forward an e-mail based on given criteria to an application program
or script. A possible example would be to track support requests and have the
entries stored directly into a database system where they can be tracked within
a dedicated application.

The pipeline process is responsible for saving its output. The recipe's flags are able
to tell Procmail to expect something else. By using the >> syntax, Procmail can
determine a lock file to use. It is important to always use locking when writing to
a file so as to avoid two operations writing to the same file at the same time and
corrupting each other's data.

| cmd1 param1 | cmd2 –opt param2 >>file

It is possible to have the output of the command pipeline stored in a variable. This,
by its own action, makes the recipe a non-delivering recipe.

VAR=| cmd1 | cmd2 ...

Chapter 7

[225]

Please note that this syntax is allowed only on the action line. For the same result in a
plain assignment, we could use back tick (`) operator.

VERBOSE=1
#Copy the data and pass the headers to the process
:0hc:
* ^Subject: Book Pipeline Example
#Copy so that the next recipe will still work
| cat - > /tmp/cjt_header.txt

#Final recipe so do not copy here, but pass the body
:0b:
| cat - > /tmp/cjt_body.txt

VERBOSE=0

Saving to a folder
This saves the output to a plain file. If only a filename is provided, the file will be
created in the directory specified in the MAILDIR setting. Always make sure that
you use some form of locking when writing to a plain file.

/path/to/filename

When saving to a directory, files will be created with sequentially numbered files
within the directory.

Using a trailing (/) slash at the end of the path name instructs Procmail to store
the item in a maildir formatted folder. The subfolders, cur, new, and tmp are
created automatically.

directory/

Using /. at the end of the path name instructs Procmail to store the item in an MH
formatted folder.

directory/.

If we want to store the data into several MH or maildir folders, we can list them all
at the same time. The result will be that only one file will actually be written, the rest
will be created as hard links.

Advanced Procmail

[226]

Compound recipes
If we want to perform a number of conditional processes or actions on a matched
item, then instead of a single action line we can specify a block of recipes to be used
using the { and } characters. There must be at least one space after the { and before
the } characters.

 {

 # ... more recipes

 }

The code between the braces can be any valid Procmail construct.

Note that an action that is a variable assignment always has to go
inside a set of braces: { VAR=value }. Using just VAR=value
without the braces would result in the data being saved to a folder
named VAR=value.

If we want a recipe that does not actually do any processing, perhaps as part of
an if…else operation, we can use an empty set of { }, but the rules regarding the
whitespace still apply and we need to ensure that there is at least one whitespace
character between the two braces.

The following example takes the previous example and modifies it slightly so that
only one test is performed and then a series of unconditional tests are run if the
test passes:

VERBOSE=1
:0:
* ^Subject: Book Pipeline Example
 {
 #Copy so that the next recipe will still work
 :0hc:
 | cat - > /tmp/cjt_header.txt

 #Final recipe so do not copy here
 :0b:
 | cat - > /tmp/cjt_body.txt
 }
VERBOSE=0

Chapter 7

[227]

Regular expressions
Procmail implements a form of regular expressions that operates slightly
differently than other UNIX utilities. Here we cover the basic differences and
guide the new user into the powerful world of regular expressions, their meanings,
implementations, and uses.

We have already seen that Procmail matches are case insensitive unless the D flag is
used. This is also true for regular expressions. Procmail also uses multiline matches
by default.

Introduction to regular expressions
New users to the world of Linux and programming in general, may not be aware
of the powerful features that regular expressions bring to processing data. In its
simplest form, regular expressions can be understood as searching for a phrase
or pattern anywhere in a body of data. The following simple example shows how
we can match all mail items where the header and/or body contains the phrase
mystical monsters and place the mail in a relevant folder.

:0 HB:
* mystical monsters
${MAILDIR}/monsters/

However, this filter would not match items that contained the phrase mystical
monster or mystical-monsters, for example. So, the real power of regular
expressions can be seen in the ability to describe text or data patterns in a simplified
format and then search for matches to those patterns in a body of data. However,
you should be careful not to be misled by the word simplified. The majority of regular
expressions that you will come across in real life may well be anything but simple to
read if written in the native format. Take the following example, which is intended to
determine if a mail item is MIME encoded and store it in a suitable folder if it is:

:0:
* ^Content-Type: multipart/[^;]+;[]*boundary="?\/[^"]+
${MAILDIR}/mime/

The characters ., [, ^, ;,], +, ?, \, /, and " are special instructions rather than the
literal ASCII character they normally portray. To understand these characters and
their meanings, we will take a whirlwind tour through the most important examples.

Advanced Procmail

[228]

The dot
This is the simplest and most common form of regular expression and simply means
match any single character, (excluding a newline character, which is considered a
special case). Consider the following expression:

:0
* Dragons ... mystical monsters
${MAILDIR}/result/

This would match any of the following phrases:

Dragons are mystical monsters
Dragons and mystical monsters
Dragons but mystical monsters

In fact, it will match any phrase with a three-character word between Dragons and
mystical. If we wanted to match any length of word with three or more characters
between Dragons and mystical, we could use the ? or quantifier operation.

In case we want to match a literal '.' or more than one '.', we can escape any
character that has special significance to a regular expression string by preceding it
by a backslash '\' so that '\.' will literally match a '.' (period) and '\\' will literally
match a '\' (backslash) character.

Quantifier operation
The question mark indicates that the preceding character should be matched zero
times or one time only. So, the following lines of code will meet our requirements:

 :0
 * Dragons? Mystical monsters
 ${MAILDIR}/result/

This expression could be read as, "Match any word consisting of three or more
characters followed by nothing or any one character".

The character preceding the ? may also be a simple ASCII character in which case the
expression would match as follows:

:0
* Dragons ..d? Mystical monsters
${MAILDIR}/result/

This could be read as, "Any two characters followed by either nothing or a letter d."
Therefore this would match both an and and but not are.

Chapter 7

[229]

The asterisk
The asterisk modifier works in a way similar to the quantifier operator, but means
match zero or more of the preceding character except, of course, a newline. The .* is
a very common sequence that you will find in a large number of recipes.

The following example will match all the messages that include the word choose
followed by some other words followed by the word online:

:0
* ^Subject: Choose.*online
${MAILDIR}/result/

Subject: Choose discount pharmacy and expedite the service online.
Subject: Choose hassle free online shopping
Subject: Choose reliable online shopping site for reliable service and
quality meds
Subject: Choose reliable service provider and save more online.
Subject: Choose the supplier for more hot offers online
Subject: Choose to shop online and choose to save

The next example will look for "anything" (.*) followed by two or more exclamation
marks (!!) and (!*):

:0
* ^Subject: .*!!!*
${MAILDIR}/result/

Subject: Breathtaking New Year sale on now!!! Get ready for it!!
Subject: Hey Ya!! New Year Sale on right now!!
Subject: It Doesn't Matter!!

The plus sign
The plus sign is very similar to the * except that it requires that there must be at least
one instance of the character preceding the + in the regular expression.

If we consider our previous example, the next example will look for "anything" .*
followed by two !! and at least one more (!+) exclamation marks.

:0
* ^Subject: .*!!!+
${MAILDIR}/result/

This would now give us a more restricted output where at least three ! in a row
would be required.

Subject: Breathtaking New Year sale on now!!! Get ready for it!!

Advanced Procmail

[230]

Restrictive matches using parentheses
So far, the matching patterns that we have been able to create are powerful but
work in a rather unfocused way. For example, we can easily write a rule to find
any three-letter word ending in t but cannot limit the matches to only a given set
of words ending in t. To overcome this, we can replace the . or single character
with a group of characters or sets of groups of characters in a list and then apply
the quantifier operations to say exactly how many times these can be applied.

By careful use of the parentheses (), we can create groups of strings that we will
use in the pattern matching rules. For instance, let us assume we are trying to split
e-mails that are sent by a system script on a frequent basis. The script formats the
subject line to have one of the following phrases in the subject line.

There is only one problem

There are 10 problems

The following regular expression will match the specific string we are looking for
by matching any string that has one or more occurrences of the phrase is only one
between there and problem.

There (is only one)+ problem

If we wanted to filter a list of words or phrases, we would need to use the
Alternation feature.

There (is only one|are)+ problem

The | character separates lists of words that could be used to match against
the pattern.

The following simple spam filter uses the alternation feature to search for text
substitutions regularly used in a bid to avoid the simple word-based filters.

Creating a simple spam filter
With the growing number of spam messages that we receive every day, I am sure
that some of you reading so far will have figured out that we could start to filter
some of the regular messages that we receive on a daily basis. There are a number
of specific spam filters that are designed to work closely with Procmail and offer
a far larger set of tests and coverage for spam filtering. One such application,
SpamAssassin, is covered in Chapter 8.

Chapter 7

[231]

Take for example online casinos—a popular subject for spammers who encourage
us to explore them. It is something that we are not usually interested in, and so we
feel happy to filter all messages that contain the words "Online" and "Casinos" into
a separate folder.

Subject: Online Casino

Part of the challenge for spammers is to write subject lines that we can read while
spam filters find difficult to process. A simple way of doing this is to substitute
commonly mistyped characters such as Zero (0) for letter O or letter o, 1 for L or l,
and 4 for A or a.

So we could progress and write the rule as:

Subject: (o|0)n(1|l)ine casin(o|0)

The final iteration of this recipe is shown next where we are specifically looking for
subject lines that contain both the words "online" and "casino" but to include the
occasions where the word may be in different order each word is tested separately.

:0
* ^Subject: (o|0)n(1|l)ine
* ^Subject: casin(o|0)
${MAILDIR}/_maybespam/

While this would work quite well, it is not really efficient to have rules that
work in this way and, as this sort of substitution is a common requirement for
regular expressions, there is a special way of expressing these terms in the
Character classes.

Character classes
Any sequence of characters contained in square brackets [] indicates that the listed
characters are each to be checked in the expression. For common occurrences of
sequences of characters such as the letters of the alphabet or a range of numbers,
it is possible to use [a-z] or [0-9]:

[a-e] means match all the letters a, b, c, d, e inclusive.
[1,3,5-9] means match any of the numbers 1, 3, 5, 6, 7, 8, or 9.

•

•

Advanced Procmail

[232]

The following example will find messages that embed numbers 0 and 1 within text
strings so that they look like O and L or I.

:0
* ^Subject: [a-z]*[01]+[a-z]*
${MAILDIR}/_maybespam

Subject: Hot Shot St0ckInfo VCSC loadstone
Subject: M1CR0S0FT, SYMANNTEC, MACR0MEDIA, PC GAMES FROM $20 EACH
Subject: R0LEX Replica - make your first impressions count!
Subject: Small-Cap DTOI St0cks reimburse
Subject: TimelySt0ck DTOI Buy of the Week evasive

Start of line
If we want to match all of a wide range of characters and not match a small number
of ranges, it is easier to specify the negative match using the ^ character.

[^0-9]

This means to match any string that begins with anything that is not a number
between 0 and 9.

It is useful to add a start of line anchor to patterns we are searching for when we
know that the pattern should start the line. For example, all headers must start on
the beginning of the line, so searching for the following phrase:

Subject: any subject message

would also match headers that begin with a phrase such as:

Old-Subject:

To stop this, we can add the Start of Line Anchor character (^) and change the
regular expression to:

^Subject: any subject message

End of Line
When we are planning to match strings that we know we should terminate, we can
add the End of Line Anchor character, $, to the pattern to ensure that we match right
to the end of the string as follows:

^Subject:.* now$

This will match any subject line that ends in the word now.

Chapter 7

[233]

Further reading
Regular expressions are an enormous subject, but well worth learning as they are
used by a large number of Linux tools and applications. There are many online
resources related to regular expressions. Here are a few links to get started:

http://www.regular-expressions.info/

http://en.wikipedia.org/wiki/Regular_expression

As we briefly covered in the previous chapter, Procmail has a number of useful
"pre-prepared" regular expressions or macros that provide a range of matches
that are commonly used in Procmail recipes.

^TO and ^TO_
^TO was the original Procmail macro for handling "To" addresses. This has been
superseded by the newer ^TO_ macro that was introduced in Procmail version
3.11pre4.

This catchall includes most headers that can include your address in them, such
as To:, Apparently-To:, Cc:, Resent-To:, and so on.

In most cases, you should use the ^TO_ option as it has much better coverage.

Although it would seem logical to have a similar macro to cover the
source address details, note that there is no corresponding ^FROM or
^FROM_ macro.

Here is the regular expression string from the Procmail source code:

"(^((Original-)?(Resent-)?(To|Cc|Bcc)|\
(X-Envelope|Apparently(-Resent)?)-To):(.*[^-a-zA-Z0-9_.])?)"

^FROM_MAILER
This macro recognizes a wide range of mail generation programs and is a useful
catchall. However, new programs are being created all the time, so additional filters
will nearly always be required.

•

•

Advanced Procmail

[234]

Procmail expands this short macro into the following regular expression as taken
from the Procmail source code.

"(^(Mailing-List:|Precedence:.*(junk|bulk|list)|\
To: Multiple recipients of |\
(((Resent-)?(From|Sender)|X-Envelope-From):|>?From)([^>]*[^(.%@a-z0-
9])?(\
Post(ma?(st(e?r)?|n)|office)|(send)?Mail(er)?|daemon|m(mdf|ajordomo)|
n?uucp|\
LIST(SERV|proc)|NETSERV|o(wner|ps)|r(e(quest|sponse)|oot)|b(ounce|bs\
\.smtp)|\
echo|mirror|s(erv(ices?|er)|mtp(error)?|ystem)|\
A(dmin(istrator)?|MMGR|utoanswer)\
)(([^).!:a-z0-9][-_a-z0-9]*)?[%@>][^<)]*(\\(.*\\).*)?)?$([^>]|$))
)"

^FROM_DAEMON
This takes a similar approach to the ^FROM_MAILER but is intended to identify
messages from the more common Linux daemons and system processes.

Regular expression string from Procmail source code is given as:

"(^(((Resent-)?(From|Sender)|X-Envelope-From):|\
>?From)([^>]*[^(.%@a-z0-9])?(\
Post(ma(st(er)?|n)|office)|(send)?Mail(er)?|daemon|mmdf|n?uucp|ops|\
r(esponse|oot)|(bbs\\
.)?smtp(error)?|s(erv(ices?|er)|ystem)|A(dmin(istrator)?|\

MMGR)\
)(([^).!:a-z0-9][-_a-z0-9]*)?[%@>][^<)]*(\\(.*\\).*)?)?$([^>]|$))
"

The following example will store the daemon messages received in a folder
that includes the year and month as part of the path. These variables ${YY} and
${MM} are assigned previously in the Procmail file and the necessary directories
are also created.

:0:
* ^FROM_DAEMON
${YY}/${MM}/daemon

Chapter 7

[235]

Advanced recipes
Here we are going to assemble the various items of Procmail capability into a few
useful recipes that we can use as the basis for tools within our own organization.
The first example is based on the traditional Vacation recipe that informs senders
of the e-mail that may not be read by the recipient for some time. The second shows
how to create the support to automatically file messages based on the date and the
possible time of being processed. Finally, we will complete the rule started in the
previous chapter to inform the user of large mail items that have been filtered into
a separate folder.

Creating a vacation auto reply
This example is based upon the vacation example given in man procmailex and
referred to briefly earlier in this chapter.

As we have already discussed, blindly and automatically responding to an e-mail is
a very bad idea and has significant ramifications. First we must decide whether to
send an auto reply. To do this, we need to make sure that conditions make sense and
are satisfied. If so, headers (signified by the h flag) of the current message are fed to
formail, a utility program that is part of the Procmail suite of utilities. formail then
checks the vacation.cache file to find out if the sender has already received an auto
reply. This is to make sure we are not sending multiple reports to a user. While this
part of the processing is going on, our recipe will create a lock as vacation.lock.

The main reason for this is to avoid clashes when updating the cache, which could
result in corruption of the cache information.

The recipe actually comprises two individual recipes. The first one provides the
checks and recording of replies sent to ensure that we don't send duplicate or
repetitive replies.

This recipe W, waits for a return from formail. Without the c, Procmail would stop
processing after completing this recipe because it is a delivery recipe. It delivers
headers to formail.

There is more to the TO_ and ^FROM_DAEMON conditions than what meets the eye.

TO_ $<logname> is satisfied if the user's login name appears in any recipient header
To:, Cc:, Bcc:. This avoids sending auto replies to messages that were addressed to an
alias or mail list, but not explicitly to our user.

Advanced Procmail

[236]

!^FROM_DAEMON makes sure we do not auto reply to messages from any of the wide
variety of daemons.

!^X-Loop: $RECIPIENT avoids replying to our own auto reply; notice that this
X-Loop header is inserted into the auto replies we send out.

:0 Whc: vacation.lock
Perform a quick check to see if the mail was addressed to us
* $^To_:.*\<$\LOGNAME\>
Don't reply to daemons and mailinglists
* !^FROM_DAEMON
Mail loops are evil
* !^X-Loop: $RECIPIENT
| formail -rD 8192 vacation.cache

The second part of the recipe takes place if the first one did not find a match in the
cache. There are two reasons that the address may not have been found—either it
has never been seen and so no reply has been sent, or it was seen so long ago that the
entry has been forced out of the cache. In either case, a copy of the vacation message
will be sent. The sender will never receive an automatic reply for every single
message that they send—something that can really upset a prolific mail writer.

:0 ehc
if the name was not in the cache
| (
 formail -rA"Precedence: junk" \
 -A"X-Loop: $RECIPIENT" ; \
 cat $HOME/.vacation_message \
) | $SENDMAIL -oi –t

Due to e, the previous recipe is executed if the preceding one returns an error status.
In this case, it is not really an error, it is just the signal from formail that the address
didn't exist in the cache file and we can go ahead with the auto reply. Notice that if in
the preceding recipe the conditions are not met causing the formail cache check to
be skipped, Procmail is clever enough to skip this recipe.

The headers of the current message are fed to the formail in this recipe, in order to
construct the headers for the auto reply.

The c in this recipe causes the entire current message to be processed after this
recipe. Typically, this means that it will be processed with no further recipes and that
is how we get a copy in our mailbox. There is no need for a lock while executing this
recipe, so none is used.

Chapter 7

[237]

All that is required to send back to the sender of the original message is a copy
of the message, and that is held in the file .vacation_message in the user's
home directory.

Storing the message information outside the Procmail recipe makes it easy to allow
your system users to easily update the message that they send out without risk of
them breaking the actual recipe itself.

Organizing mail by date
You may not want to delete mail that you feel may be useful one day. This can easily
lead to gigabytes of data being stored in a variety of locations. It is possible to filter
some or all of our incoming mails into folders based on a combination of the year,
month, and topic so that they can be tracked down easily.

A generic rule that is applied to every mail process ensures that the necessary
directory structure exists.

#Assign the name of the folder by extracting the year and month
parts from the external date command.
 MONTHFOLDER=`date +%y/%m`

#Unconditional rule to create the folder. Using the test
#command. we create the monthly folder if it does not exist.
 :0 ic
 * ? test ! -d ${MONTHFOLDER}
 | mkdir -p ${MONTHFOLDER}

#Alternative way of creating the folder using an assignment operation
 DUMMY=`test -d $MONTHFOLDER || mkdir $MONTHFOLDER`

#Now store any email matching 'meeting' in an appropriate folder
 :0:
 * meeting
 ${MONTHFOLDER}/meeting/

If you would prefer slightly more control over the output format or location, you
may use these rules instead:

#This obtains the date formatted as YYYY MM DD, e.g. 2009 09 08
 date = `date "+%Y %m %d"`
#Now assign the Year YYYY style
 :0
 * date ?? ^^()\/
 { YYYY = $MATCH }

Advanced Procmail

[238]

#Now assign the Year YY style
 :0
 * date ?? ^^..\/
 { YY = $MATCH }
#Now assign the Month MM style
 :0
 * date ?? ^^.....\/
 { MM = $MATCH }
#Now assign the Day DD style
 :0
 * date ?? ()\/..^^
 { DD = $MATCH }

#Create the various directory formats you are going to use
 DUMMY=`test -d ${YYYY}/${MM}/${DD} || mkdir –p ${YYYY}/${MM}/
${DD}`
 DUMMY=`test -d ${YY}/${MM} || mkdir –p ${YY}/${MM}`

#Now store the data in an appropriate folder using the variables
#YYYY, MM and DD setup above.
 :0:
 * ^FROM_DAEMON
 ${YYYY}/${MM}/${DD}/daemon/

Informing users about large mail
In the previous chapter, we introduced a very simple rule that stored all incoming
mail over 100 KB in size in a largemail folder. This was useful in keeping the size
of individual incoming mail folders from growing too large, but meant that a special
check had to be made regularly to see if any mail had been filtered.

In this rule, we will now extract the headers and subject line, plus the first few lines
of the original large e-mail message, and create a new message with a modified
subject line. This modified message will be stored in the user's inbox at the same
time as filtering the large original item into its separate largemail folder.

The main part of the test will be applied only if the size of the message is over
100,000 bytes in size, so we will need a structure similar to the following recipe
to do the initial testing and decide if this is a large item or not:

:0:
* >100000
{
 MAIN PROCESS WILL GO HERE
}

Chapter 7

[239]

Assuming that we do have a large item, we need to make a copy of the message
using the c flag and store this copy in the largemail folder:

#Place a copy in the largemail folder
:0 c:
largemail/

Extracting the first part of the body of the message comes next and this can be done
using a variety of options. In this case, we are going to strip off the first 1024 bytes of
the message by waiting for the results of passing only the body of the message only
to the system head command and telling it to return only the first 1024 bytes. The
flags used here tell Procmail to wait for the results of the command-line process and
to ignore any pipeline errors as the head command will only read part of the data
being offered to it.

#Strip the body to 1kb
:0 bfwi
| /usr/bin/head -c1024

Now we need to rewrite the subject line, which is done using the formail program.
This time, we pass just the headers to the command line and wait for the response.

In this case though, we need to obtain the current subject line so that we can pass it
to the formail program as part of the modified subject line. We do this by doing a
simple match on the subject contents and then passing the $MATCH variable, which
now holds the subject line contents as an argument to the formail program. For
neatness, we add the {* -BIG- *} wording before the original subject line to make
it easy to sort and identify these messages.

#ReWrite the subject line
:0 fhw
* ^Subject:\/.*
| formail -I "Subject: {* -BIG- *} $MATCH"

Normal delivery of the message will then take place and the new shorter message
will be stored in the inbox.

If we put all of this together, we end up with the following complete recipe.

:0:
* >100000
{
 #Place a copy in the largemail folder
 :0 c:
 largemail/

Advanced Procmail

[240]

 #Strip the body to 1kb
 :0 bfwi
 | /usr/bin/head -c1024

 #ReWrite the subject line
 :0 fhw
 * ^Subject:\/.*
 | formail -I "Subject: {* -BIG- *} $MATCH"
}

Procmail Module Library
As part of a community effort to avoid reinventing the wheel, the Procmail Module
Library provides a collection of useful recipes contributed by Procmail users. The
following introduction from the Procmail Module Library http://freshmeat.net/
projects/procmail-lib describes the package as:

Procmail Module Library is a collection of many plug-in modules for the Procmail
mail processing utility. The modules allow common tasks like parsing dates, times,
MIME, and email addresses, forwarding mail, dealing with POP3, spam shielding,
running email cron jobs, handling daemon messages, and more.

Each of the modules, or Procmail included files, are comprehensively documented
and show example usage. They can be used as supplied, with various configurable
options or used as a basis of your own recipes. Many of the techniques we have
illustrated in this chapter are used in the library along with some more sophisticated
filtering methods based on the type of content within a message.

Putting it all together
We have covered a wide range of topics in this chapter, which we can now pull
together. The following examples use each of the techniques shown in this chapter
and are commonly used for e-mail processing. I hope that you find it useful in
creating your own mail filtering strategy.

Creating a structure to base your own
rules upon
Grouping related aspects of the Procmail rules and configuration will make
your installation easier to maintain and less likely to create problems when
making changes.

Chapter 7

[241]

Within the main Procmail directory, create individual files following a consistent
naming convention such as rc.main, rc.spam, rc.lists, and so on. Then include
each of these into your main .procmailrc file as follows.

#This obtains the date formatted as YYYY MM DD
 date = `date "+%Y %m %d"`

#Now assign the Year YYYY style
 :0
 * date ?? ^^()\/
 { YYYY = $MATCH }
#Now assign the Year YY style
 :0
 * date ?? ^^..\/
 { YY = $MATCH }
#Now assign the Month MM style
 :0
 * date ?? ^^.....\/
 { MM = $MATCH }
#Now assign the Day DD style
 :0
 * date ?? ()\/..^^
 { DD = $MATCH }
#Create the various directory formats you are going to use
 DUMMY=`test -d ${YYYY}/${MM}/${DD} || mkdir –p ${YYYY}/${MM}/
${DD}`
 DUMMY=`test -d ${YY}/${MM} || mkdir –p ${YY}/${MM}`

#Make a backup copy of all incoming mail
 :0 c
 backup/
#Restrict the history to just 32 mail items
 :0 ic
 | cd backup && rm -f dummy `ls -t msg.* | sed -e 1,32d`
#Make sure that all mails have a valid From value
 :0 fhw
 | formail -I "From " -a "From "
#
Don't include this unless we need to
INCLUDERC=${HOME}/Procmail/rc.testing
##
Now include the various process listings
INCLUDERC=${HOME}/Procmail/rc.system
INCLUDERC=${HOME}/Procmail/rc.lists
INCLUDERC=${HOME}/Procmail/rc.killspam
INCLUDERC=${HOME}/Procmail/rc.vacation
INCLUDERC=${HOME}/Procmail/rc.largefiles
INCLUDERC=${HOME}/Procmail/rc.virusfilter
INCLUDERC=${HOME}/Procmail/rc.spamfilter

Advanced Procmail

[242]

Now for each of the listed include files, create the file as named and include the
rules related to the container in that file. It then becomes a matter of commenting an
INCLUDERC reference for temporarily isolating a section of processing for incoming
mail. Be careful not to blindly cut and paste these examples without checking if each
recipe performs as expected, especially in a production environment.

Rc.system
File informational system and daemon messages in a dated folder structure can be
given as:

Filter system mail messages into a dated folder structure.
The variables YY and MM are defined in the calling recipe
and each of the directories will have been created if necessary.
:0:
* ^From:.*root@delta.adepteo.net
${YY}/${MM}/daemon/

:0:
* ^From:.*root@ramsbottom.adepteo.net
${YY}/${MM}/daemon/

:0:
* ^TO_pager@adepteo.net
${YY}/${MM}/daemon/

:0:
* ^From:.*MAILER-DAEMON@delta.adepteo.net
${YY}/${MM}/daemon/

:0:
* ^From:.*me@localhost.com
${YY}/${MM}/daemon/

Rc.lists
Save all our subscribed mailing lists in dated folders for reading later.

Mailing lists
Store by date folder
The variables DD and MM are defined in the calling recipe.
and each of the directories will have been created if necessary.
:0:
* ^From:.*mapserver-users-admin@lists.gis.umn.edu
${YY}/${MM}/mapserver/

Chapter 7

[243]

:0:
* ^TO_mapserver-users@lists.gis.umn.edu
${YY}/${MM}/mapserver/

:0:
* ^From:.*yourtopjob@topjobs.co.uk
${YY}/${MM}/jobs/

:0:
* ^Subject: silicon Jobs-by-Email Alert
${YY}/${MM}/jobs/
:0:
* ^Reply-To: Axandra Search Engine Facts <facts@Axandra.com>
${YY}/${MM}/lists/

:0:
* ^Subject: A Joke A Day
${YY}/${MM}/lists/

:0:
* ^List-Owner: <mailto:owner-tribune@lists.sitepoint.com>
${YY}/${MM}/lists/

:0:
* ^Reply-To: newsletter@192.com
${YY}/${MM}/lists/

:0:
* ^Subject: Developer Shed Weekly Update
${YY}/${MM}/lists/

Rc.killspam
Delete any mail from senders that match an address in our kill file.

#Kill file for known spammers
If the sender is in the killfile then discard the mail into the bit
bucket
Here we use the external command 'grep' to search our killfile for a
matching sending sending by testing the return status from grep.
:0:
* ? grep -i `formail -rtzxTo:` $HOME/.killfile
/dev/null

Advanced Procmail

[244]

Rc.vacation
Our holiday auto reply recipe:

#Vacation Replies
:0 Whc: vacation.lock
Perform a quick check to see if the mail was addressed to us
* $^To_:.*\<$\LOGNAME\>
Don't reply to daemons and mailinglists
* !^FROM_DAEMON
Mail loops are evil
* !^X-Loop: $RECIPIENT
| formail -rD 8192 vacation.cache

:0 ehc
if the name was not in the cache reply with the contents
of our vacation message in the body of the email.
| (
 formail -rA"Precedence: junk" \
 -A"X-Loop: $RECIPIENT" ; \
 cat $HOME/.vacation_message \
) | $SENDMAIL -oi –t

Rc.largefiles
To avoid clogging up our inbox with large messages, we file the large message in a
folder and send ourselves a notification that we have received an oversized message.

#Assume that files larger than 100k are not spam
 :0:
 * >100000
 {
 #Place a copy in the largemail folder
 :0 c:
 largemail/

 #Strip the body to 1kb
 :0 bfwi
 | /usr/bin/head -c1024

 #ReWrite the subject line
 :0 fhw
 * ^Subject:\/.*
 | formail -I "Subject: {* -BIG- *} $MATCH"
 }

Chapter 7

[245]

Rc.viruses
Anything with an e-mail header indicating the message as a virus, file in a folder.

#Virus Filter
 #X-Virus-Status: Infected
 :0:
 * ^X-Virus-Status: Infected
 _virus/

Rc.spamfilter
Anything with an e-mail header indicating the message is spam, file in a folder.

#Spam Filter
:0fw
* < 256000
| spamc

Mails with a score of 15 or higher are almost certainly
spam (with 0.05% false positives according to
rules/STATISTICS.txt). Let's put them in a
different mbox. (This one is optional.)
#
The regular expression below matches the SpamAssassin
header with 15 asterisks or more.
#
:0:
* ^X-Spam-Level: ***************
_almost-certainly-spam/

All mail tagged as spam (eg. with a score higher than the
set threshold)
 is moved to "probably-spam".
:0:
* ^X-Spam-Status: Yes
_probably-spam/

Advanced Procmail

[246]

Summary
In this chapter, we have explored Procmail to discover a large number of services
and a large amount of functionality that it can provide to help with getting our mail
under control. Using the advanced features of Procmail we have discovered:

The differences between delivering and non-delivering recipes
How to order each recipe to avoid slow delivery times
The use of Procmail variables and condition flags to control delivery
Using regular expressions for sophisticated pattern matching
The large number of available Procmail macros and their usage
And finally, a number of example recipes to manage our mail effectively

While we have covered a lot, there is still a lot to be learned and there are
a large number of resources available on the Web dedicated to this one
particular application.

Hopefully you will now have a strong grasp of the core functionality of Procmail,
how to implement it, and also how to go about exploring your real-life needs,
and creating recipe sets that you can combine to create your own unique mail
filtering strategy.

•

•

•

•

•

•

Busting Spam with
SpamAssassin

Spam, or unsolicited commercial e-mail (UCE) as it is sometimes called, is the
scourge of the Internet. Spam has increased relentlessly over the last ten years and
now accounts for over half of all Internet bandwidth. One in six consumers have
acted on spam e-mails, so there is a strong business case for keeping spam out of
your users' inboxes. There are a variety of different spam solutions, ranging from
outsourcing your spam entirely to no action at all. However, if you have your own
e-mail server, you can add spam filtering very easily.

SpamAssassin is a very popular open source anti-spam tool. It won a Linux New
Media Award-2006 as the "Best Linux-based Anti-spam Solution", and is considered
by many to be the best free, open source, anti-spam tool, and better than many
commercial products. In fact, several commercial products and services are based
on SpamAssassin or previous versions of it.

In this chapter, you will learn:

Why spam is difficult to deal with and why spam filters requires
regular updates
How to download, install, and configure SpamAssassin
How to filter incoming e-mails with SpamAssassin.
How to configure SpamAssassin to work on per-user or per-server basis
How to configure popular e-mail clients to recognize the tags that
SpamAssassin places in e-mails
How to customize SpamAssassin to update new rules set automatically to
keep your system's spam detection well tuned.
How to integrate spam filtering with virus recognition using amavisd

•

•
•
•
•

•

•

Busting Spam with SpamAssassin

[248]

Why filter e-mail
If you don't receive any spam, there may be no need to filter spam. However, once
one spam message has been received, it is invariably followed by many more.
Spammers can sometimes detect if a spam e-mail is viewed, using techniques such
as Web bugs, which are tiny images in HTML e-mails that are fetched from web
servers, and then know that an e-mail address is valid and vulnerable. If spam is
filtered, the initial e-mail may never get seen, and consequently the spammer may
not then target the e-mail address with further spam.

Despite legal efforts against spam, it is actually on the increase. In Europe and the
US, the recent legislation against spam (Directive 2002/58/EC and bill number S.877
respectively) have had little effect and spam is still on the increase in both regions.

The main reason for this is that spam is a very good business model. It is very cheap
to send spam, as little as one thousandth of a cent per e-mail, and it takes a very
low hit rate before a profit is made. The spammer needs to turn just one spam in
a hundred thousand or so into a sale to make a profit. As a result, there are many
spammers and spam is used to promote a wide range of goods. Spamming costs are
also negligible due to use of malware that uses innocent computers to send spam on
their behalf.

In contrast, the costs of spam to the recipient are remarkably high. Estimates have
varied, from 10 cents per spam received, through 1,000 dollars per employee per
year, up to a total cost of 140 billion dollars globally in 2007 alone. This cost is mainly
labor—distracting people from their work by clogging their inboxes and forcing
them to deal with many extra e-mails. Spam interferes with day-to-day work and can
include material that is offensive to most people. Companies have a duty to protect
their employees from such content. Spam filtering is a very cheap way of minimizing
the costs and protecting the workforce.

Spam is a moving target
Spam isn't static. It changes on a day-to-day basis, as spammers add new methods
to their arsenal and anti-spammers develop countermeasures. Due to this, the
anti-spam tools that work best are those that are updated frequently. It's a similar
predicament to antivirus software—virus definitions need to be updated regularly
or new viruses won't be detected.

SpamAssassin is regularly updated. In addition to new releases of the software, there
is a vigorous community creating, critiquing, and testing new anti-spam rules. These
rules can be downloaded automatically for up-to-date protection against spam.

Chapter 8

[249]

Let's discuss some of the measures used by SpamAssassin to fight spam:

Open relays: These are e-mail servers that allow spammers to send e-mails
even though they are not connected to the owner of the server in any way. To
counter this, the anti-spam community has developed blocklists, also known
as blacklists, which can be used by anti-spam software to detect spam. These
were mentioned in Chapter 5 as a list that your e-mail server should not
appear on, as it may limit legitimate e-mail traffic. Any e-mail that has passed
through a server on a blocklist is treated more suspiciously than one that has
not. SpamAssassin uses a number of blocklists to test e-mails.
Keyword filters: These are useful tools against spam. Spammers tend to
repeat the same words and phrases again and again. Rules to detect these
phrases are used extensively by SpamAssassin. These make up the bulk of
the tests, and the user community rules mentioned previously are normally
of this form. They allow specific words, phrases, or sequences of letters,
numbers, and punctuation to be detected.
Blacklists and whitelists: These are used to list known senders of spam and
sources of good e-mail respectively. E-mails from an address on a blacklist
are probably spam and are treated accordingly, while e-mails from addresses
on a whitelist will be less likely to be treated as spam. SpamAssassin allows
the user to enter blacklists and whitelists manually, and also builds up an
automatic whitelist and blacklist based on the e-mails that it processes.
Statistical filters: These are automated systems that give the probability
that an e-mail is spam. This filtration is based on what the filter has seen
previously as both spam and non-spam. They generally work by finding
words that are present in one type of e-mail but not the other, and using
this knowledge to determine which type a new e-mail is. SpamAssassin
has a statistical filter called the Bayesian filter that can be very effective
in improving detection rates.
Content databases: These are mass e-mail detection systems. A lot of
e-mail servers receive and submit e-mails to central servers. If the same
e-mail is sent to thousands of recipients, it is probably a spam. The content
databases prevent confidential e-mails from being sent to the server, by
using a technique called hashing that also lowers the amount of data sent
to the server. SpamAssassin can integrate with several content databases,
notably Vipul's Razor (http://razor.sourceforge.net/), Pyzor
(http://sourceforge.net/apps/trac/pyzor/), and the Distributed
Checksum Clearinghouse, that is, DCC (http://www.rhyolite.com/dcc/).

•

•

•

•

•

Busting Spam with SpamAssassin

[250]

URL blocklists: These are similar to open relay blocklists, but list the
websites used by spammers. In nearly all spams, a web address is given. A
database of these is built so that spam e-mails can be quickly detected. This
is a very efficient and effective tool against spam. By default, SpamAssassin
uses Spam URI Realtime BlockLists (SURBLs), without any further
configuration required.

Spam filtering options
Spam can be filtered on the server or the client. The two approaches are explained
next. In the first scenario, spam is filtered on the client.

1

3 4 5

Client PC

E-mail Client

Spam Filter

2

E-mail Server

InboxMTA

1. Mail is processed by the MTA.
2. The e-mail is then placed in the appropriate user's inbox.
3. The e-mail client reads all new e-mail from the inbox.
4. The e-mail client then passes the e-mail to the filter.
5. When the filter returns the results, the client can display the valid e-mail and

either discard spam or file it in a separate folder.

In this approach, the spam filtering is always done by the client and is always done
when new e-mail is processed. Often when the user may be present, so he or she
may either experience a delay before e-mail is visible or there may be a period where
spam e-mail is present in the inbox before the client software can filter the spam
from view. The amount of spam filtering that can be performed on the client may
be limited. In particular, the network tests such as open relay blocklists or SURBLs
might be too time consuming or complex to perform on the user's PC. As spam is a
moving target, updating many client PCs can become a difficult administrative task.

•

Chapter 8

[251]

In the second scenario, the spam filtering is performed on the e-mail server.

1

3

4a

5a Client PC

E-mail Client

Spam Filter

2

E-mail Server

InboxMTA

Spam
5b

4b

1. Incoming e-mail is received by the MTA.
2. It is then passed on to the spam filter.
3. The results are then sent back to the MTA.
4. Depending on the results, the MTA places the e-mail in the appropriate

user's inbox (4a), or in a separate folder for spam (4b).
5. The e-mail client accesses e-mails in the user's inbox and it can also access the

spam folder if required.

This approach has several advantages:

The spam filtering is done when the e-mail is received, which may be any
time of the day. The user is less likely to be inconvenienced by delays.
The server can specialize in spam filtering. It may use external services such
as open relay blocklists, online content databases, and SURBLs.
Configuration is centralized, which will ease setup (for example, firewalls
may need to be configured to use online spam tests) and also maintenance
(updating of rules or software).

On the other hand, the disadvantages include:

A single point of failure now exists. However, with care, a broken spam
filtering service can be configured around. If the service is not available,
e-mail will still be delivered but spam will not be filtered.
All spam must be processed by one service. If this service is not scalable,
large volumes of e-mail may affect mail delivery times, resulting in poor
or intermittent filtering, or possibly even the loss of e-mail service.

•

•

•

•

•

Busting Spam with SpamAssassin

[252]

Introduction to SpamAssassin
Spam filtering actually involves two phases—detecting the spam and then doing
something with it. SpamAssassin is a spam detector and it modifies the e-mail it
processes by putting in headers to mark whether it is spam. It is up to the MTA
or the mail delivery agent in the e-mail system to react to the headers that
SpamAssassin creates in an e-mail, to filter it out. However, it's possible that
another part of the e-mail system could perform this task.

Statistical
Database

Other
Database

SpamAssassin

Bayesian
Filter

Network
Tests

Blacklist
Whitelist

Tests

Rules
Engine

Manual

Rules

User
Rules

Auto
Blacklist/
Whitelist

The previous figure gives a schematic representation of SpamAssassin. At the heart
of SpamAssassin is its Rules Engine that determines which rules are called. Rules
trigger whether the various tests are used, including the Bayesian Filter, the network
tests, and the auto-whitelists.

SpamAssassin uses various databases to do its work, and these are shown too.
The rules and scores are text files. Default rules and scores are included in the
SpamAssassin distribution and, as we will see, both system administrators and
users can add rules or change the scores of existing rules by adding them to files in
specific locations. The Bayesian filter (which is a major part of SpamAssassin, and
will be covered later) uses a database of statistical data based on previous spam and
non-spam e-mails. The Auto-Blacklist/Whitelist also creates its own database.

Chapter 8

[253]

Downloading and installing
SpamAssassin
SpamAssassin is slightly different from most of the software that is used in this
book. It is written in a language called Perl, which has its own distribution method
called CPAN (Comprehensive Perl Archive Network). CPAN is a large website of
Perl software (normally, Perl modules), and the term CPAN is also the name of the
software used to download those modules and install them. Though SpamAssassin
is provided as a package by many Linux distributions, we strongly recommend that
you install it from source rather than use a package. This way, you will get the latest
version of SpamAssassin rather than the one that was current when your Linux
distributer created its release.

Most Perl users will build Perl modules using CPAN and experience no difficulties.
CPAN can automatically locate and install any dependencies (other components
that are required to make the desired component work properly). From a Perl
point of view, using CPAN to install Perl modules is like using the rpm or apt-get
commands in Linux. The basics are very simple and, once a system is configured,
it generally works every time.

However, learning and configuring a new way of installing software may put
off some people. A SpamAssassin release is distributed in source form, but
administrators of Red Hat Package Manager (RPM) based systems can easily
convert the latest SpamAssassin release into rpm format and then the regular rpm
command can be used to install the package. The Debian repository is updated fairly
quickly when SpamAssassin is updated and the regular apt-get commands can be
used to install SpamAssassin. We strongly advise you to install via apt-get, CPAN,
or using the rpmbuild command as described next, in preference to using an RPM
provided by a distributor.

As SpamAssassin is a Perl Module, it appears on CPAN first. In fact, it is only
released when it arrives at CPAN. Users of CPAN can download the latest version
of SpamAssassin literally minutes after it has been released.

Support is also easier to obtain if SpamAssassin is built from source. Some
distributors make unusual decisions when creating their RPM of SpamAssassin or
may modify certain default values. These make obtaining support more difficult.

RPMs also take time to be delivered. Distributors need time to build and test new
versions of software before they release them, and most software packages are not
updated as quickly as SpamAssassin. So, Linux distributions may not provide the
latest software, and what is provided can be several versions out of date.

Busting Spam with SpamAssassin

[254]

Using CPAN
The prerequisites for installing SpamAssassin 3.2.5 using CPAN are as follows:

Perl version 5.6.1 or later: Most modern Linux distributions will include this
as a part of the base package.
Several Perl modules: The current version of SpamAssassin needs the
Digest::SHA1, HTML::Parser, and the Net::DNS modules. CPAN will
install these if you configure it to follow dependencies, but there are many
additional Perl modules that are optional and should be installed to get the
best spam detection. CPAN will issue warnings with the module names,
which will enable you to identify and install them.
C compiler: This may not be installed by default and may have to be added
using the rpm command. The compiler used will normally be called gcc.
Internet connection: CPAN will attempt to download the modules using
HTTP or FTP, so the network should be configured to allow this.

Configuring CPAN
If you've used CPAN before, you can skip to the next section, Installing SpamAssassin
Using CPAN.

If a proxy server is required for Internet traffic, CPAN (and other Perl modules
and scripts) will use the http_proxy environment variable. If the proxy requires a
username and password, these need to be specified using environment variables.
As CPAN is normally run as root, these commands should be entered as root:

HTTP_proxy=http://proxy.name:80

export HTTP_proxy

HTTP_proxy_user=username

export HTTP_proxy_user

HTTP_proxy_pass=password

export HTTP_proxy_pass

Next, enter this command:

perl -MCPAN -e shell

If the output is similar to the following, the CPAN module is already installed
and configured, and you can skip to the next section, Installing SpamAssassin
Using CPAN.

cpan shell -- CPAN exploration and modules installation (v1.7601)
ReadLine support enabled

•

•

•

•

Chapter 8

[255]

If the output prompts for manual configuration, as shown next, the CPAN module is
installed but not configured.

Are you ready for manual configuration? [yes]

During configuration, the CPAN Perl module prompts for answers to around
30 questions. For most of the questions, selecting the default value is the best response.
This initial configuration must be completed before the CPAN Perl module can be
used. The questions are mainly about the location of various utilities, and the defaults
can be chosen by pressing Enter. The only question for which we should change the
default is the one about building prerequisite modules. If we configure CPAN to
follow dependencies, it will install the required modules without prompting.

Policy on building prerequisites (follow, ask or ignore)? [ask] follow

Once CPAN is configured, exit the shell by typing exit and pressing Enter. We are
now ready to use CPAN to install SpamAssassin.

Installing SpamAssassin using CPAN
To install SpamAssassin, enter the CPAN shell by typing the following command:

cpan

If the CPAN module is correctly configured, the following output (or something
similar) will appear:

cpan shell -- CPAN exploration and modules installation (v1.7601)
ReadLine support enabled

Now, at the cpan prompt, enter the following command:

cpan> install Mail::SpamAssassin

The CPAN module will query an online database to find the latest version of
SpamAssassin and its dependencies, and then install them. Dependencies will
be installed before SpamAssassin. The following is the sample output:

cpan> install Mail::SpamAssassin

CPAN: Storable loaded ok (v2.18)
Going to read '/root/.cpan/Metadata'
 Database was generated on Mon, 03 Aug 2009 04:27:49 GMT
Running install for module 'Mail::SpamAssassin'
CPAN: Data::Dumper loaded ok (v2.121_14)
'YAML' not installed, falling back to Data::Dumper and Storable to
read prefs '/root/.cpan/prefs'
Running make for J/JM/JMASON/Mail-SpamAssassin-3.2.5.tar.gz

Busting Spam with SpamAssassin

[256]

CPAN: Digest::SHA loaded ok (v5.45)
CPAN: Compress::Zlib loaded ok (v2.015)
Checksum for /root/.cpan/sources/authors/id/J/JM/JMASON/Mail-
SpamAssassin-3.2.5.tar.gz ok
Scanning cache /root/.cpan/build for sizes
...
.......DONE
CPAN: Archive::Tar loaded ok (v1.38)
Will not use Archive::Tar, need 1.00
Mail-SpamAssassin-3.2.5
Mail-SpamAssassin-3.2.5/t
Mail-SpamAssassin-3.2.5/sql
Mail-SpamAssassin-3.2.5/lib
....
 CPAN.pm: Going to build F/FE/FELICITY/Mail-SpamAssassin-3.00.tar.gz

SpamAssassin may require the user to respond to a few questions. The responses
provided might affect the module configuration or only be part of the testing
performed before installation.

 CPAN.pm: Going to build J/JM/JMASON/Mail-SpamAssassin-3
What e-mail address or URL should be used in the suspected-spam report
text for users who want more information on your filter installation?
(In particular, ISPs should change this to a local Postmaster contact)
default text: [the administrator of that system] postmaster@myfomain.
com

NOTE: settings for "make test" are now controlled using "t/config.
dist".
See that file if you wish to customise what tests are run, and how.

checking module dependencies and their versions...

SpamAssassin, as with many Perl modules, is very flexible. It can make use of
features if they are available, and will work even if they are not. When using CPAN,
you may see messages such as the following:

optional module missing: Mail::SPF
optional module missing: Mail::SPF::Query
optional module missing: IP::Country
optional module missing: Razor2
optional module missing: Net::Ident
optional module missing: IO::Socket::INET6
optional module missing: IO::Socket::SSL
optional module missing: Mail::DomainKeys
optional module missing: Mail::DKIM
optional module missing: DBI
optional module missing: Encode::Detect

Chapter 8

[257]

If you install the modules mentioned, SpamAssassin will make use of them and this
will improve e-mail filtering. You can abort the installation of SpamAssassin and
install the modules using cpan install Module::Name commands.

If you let the build process complete, it will test the capabilities of the C compiler,
configure and build the module, create documentation, and test SpamAssassin. At
the end of the build, the output should be similar to the following:

chmod 755 /usr/share/spamassassin
 /usr/bin/make install -- OK

cpan>

This indicates that SpamAssassin has been installed correctly. If SpamAssassin
installation was successful, you can skip to the Testing the Installation section.

If the installation failed, the output may look like this:

Failed 17/68 test scripts, 75.00% okay. 50/1482 subtests
failed, 96.63% okay.
make: *** [test_dynamic] Error 29
/usr/bin/make test -- NOT OK
Running make install
make test had returned bad status, won't install without force
cpan>

If the output does not end with the /usr/bin/make install -- OK message, an
error has occurred. Firstly, you should examine all the output for possible warnings
and error messages, especially for prerequisite packages. If this does not assist, then
avenues for support are described in the section Testing the installation.

Using the rpmbuild utility
If a version of Linux based on the Red Hat Package Manager format is used,
SpamAssassin can be installed using the rpmbuild command. Download the
SpamAssassin source from http://www.cpan.org/modules/01modules.index.html
into a working directory, then issue the following command to build SpamAssassin:

rpmbuild -tb Mail-SpamAssassin-3.2.5.tar.gz

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.ORksvX
+ umask 022
+ cd /root/rpmbuild/BUILD
+ cd /root/rpmbuild/BUILD
+ rm -rf Mail-SpamAssassin-3.2.5
+ /usr/bin/gzip -dc /root/Mail-SpamAssassin-3.2.5.tar.gz
+ /bin/tar -xf -

Busting Spam with SpamAssassin

[258]

+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd Mail-SpamAssassin-3.2.5
+ /bin/chmod -Rf a+rX,u+w,g-w,o-w .
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.zgpcdd
...
... (output continues)
...
Wrote: /usr/src/redhat/RPMS/i386/spamassassin-3.0.4-1.i386.rpm
Wrote: /usr/src/redhat/RPMS/i386/spamassassin-tools-3.0.4-1.i386.rpm
Wrote: /usr/src/redhat/RPMS/i386/perl-Mail-SpamAssassin-3.0.4-1.i386.
rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.65065
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd Mail-SpamAssassin-3.0.4
+ '[' /var/tmp/spamassassin-root '!=' / ']'
+ rm -rf /var/tmp/spamassassin-root
+ exit 0

It is possible that the installation will fail due to missing dependencies. These are Perl
modules that SpamAssassin uses, and which are installed separately. Error messages
often hint at the name of the dependency, as in the following installation:

rpmbuild -tb Mail-SpamAssassin-3.2.5.tar.gz

error: Failed build dependencies:
 perl(Digest::SHA1) is needed by spamassassin-3.2.5-1.i386
 perl(HTML::Parser) is needed by spamassassin-3.2.5-1.i386
 perl(Net::DNS) is needed by spamassassin-3.2.5-1.i386

In this case, the Perl modules Digest::SHA1, HTML::Parser, and Net::DNS are
needed. The solution is to install it using CPAN. In some cases, SpamAssassin may
require particular versions of packages, which may require the installed versions to
be upgraded.

When installing SpamAssassin using CPAN, all the dependencies are installed
automatically. However, while using the rpmbuild command, the dependencies need
to be installed manually. Using CPAN is generally less troublesome than rpmbuild.

Using pre-built RPMs
SpamAssassin is packaged with many Linux distributions, and packages of new
releases of SpamAssassin are often made available from other sources. As mentioned
earlier, RPMs are not the recommended method of installing SpamAssassin but are
more reliable than building from source on unusual platforms.

Chapter 8

[259]

To install an RPM, simply download or locate it on the distribution CD, and install it
using the rpm command. The following command can be used to install the RPM for
SpamAssassin:

rpm -ivh /path/to/rpmfile-9.99.rpm

Graphical installers can also be used to install SpamAssassin RPMs. The RPMs listed
on the SpamAssassin website are usually the latest version of SpamAssassin and are
complete. If these cannot be installed, the RPM provided by the Linux distribution
should be installed instead.

Testing the installation
It is worth performing a few tests to ensure that SpamAssassin is installed correctly
and the environment is complete. If you want to test a particular user account, you
should log in to that account to perform the test.

SpamAssassin includes a sample spam e-mail and a sample non-spam e-mail. It
can be tested by processing the sample e-mails. These e-mails are in the root of the
SpamAssassin distribution directory. If you used CPAN to install SpamAssassin using
the root user, then the path to this directory may be similar to ~root/.cpan/build/
Mail-SpamAssassin-3.2.5/, where 3.2.5 is the version of SpamAssassin installed.
If the files cannot be located, download the SpamAssassin source from http://www.
cpan.org/modules/01modules.index.html and unpack the source into a temporary
directory. The sample e-mails are in the root of the unpacked source.

To test SpamAssassin, change to the directory containing sample-spam.txt and use
the following commands. Example results are shown after each command.

$ spamassassin -t < sample-nonspam.txt | grep X-Spam

[22674] warn: config: created user preferences file: /home/user/.
spamassassin/user_prefs
X-Spam-Checker-Version: SpamAssassin 3.2.5 (2008-06-10) on
X-Spam-Level:
X-Spam-Status: No, score=0.0 required=5.0 tests=none autolearn=haX-

$ spamassassin -t < sample-spam.txt | grep X-Spam

X-Spam-Flag: YES
X-Spam-Checker-Version: SpamAssassin 3.2.5 (2008-06-10) on
X-Spam-Level: **
X-Spam-Status: Yes, score=1000.0 required=5.0 tests=GTUBE,NO_RECEIVED,
X-Spam-Report:
X-Spam-Prev-Subject: Test spam mail (GTUBE)

Busting Spam with SpamAssassin

[260]

The output from the command using sample-nonspam.txt should have
X-Spam-Status: No, and that using sample-spam.txt should have
X-Spam-Flag: YES and X-Spam-Status: Yes.

SpamAssassin can verify its configuration files with the --lint flag and report any
errors. By default, a clean installation of SpamAssassin should not have any errors,
but once a site is customized, some rules may fail. In the following example, a score
entry does not match a rule:

$ spamassassin --lint

warning: score set for non-existent rule RULE_NAME
lint: 1 issues detected. please run with debug enabled for more
information

If the output includes warnings, something has gone wrong. It's worth fixing
SpamAssassin before going on and using it. The best places to visit are the
SpamAssassin Wiki (http://wiki.apache.org/spamassassin/), the archives
of the SpamAssassin mailing lists (http://wiki.apache.org/spamassassin/
MailingLists), and your favorite search engine. As with most open source
projects, the developers are volunteers and appreciate users who search for the
solution to their problem before posting a plea for help, as most problems have
been encountered many times before.

Modified e-mails
In addition to the e-mail headers mentioned, SpamAssassin will modify an e-mail
if it is thought to be spam. It takes the original e-mail and converts it to an e-mail
attachment with a simple e-mail around it. SpamAssassin always wraps an e-mail if
it detects a potential virus or other dangerous content. In its default configuration, it
will add an envelope e-mail around the spam, but this can be turned off if desired.
Consult the SpamAssassin documentation regarding the report_safe directive.
The envelope e-mail looks like this:

Chapter 8

[261]

Using SpamAssassin
Now that SpamAssassin is installed, we need to configure the system to use it.
SpamAssassin can be used in many ways. It can be integrated into the MTA
for maximum performance; it can run as a daemon or a simple script to avoid
complexity; it can use separate settings for each user or use a single set of settings
for all users; and it can be used for all accounts or just for the chosen ones. In this
book, we will discuss using SpamAssassin in three ways.

The first method is with Procmail. This is the simplest method to configure and is
suitable for low-volume sites, for example, less than 10,000 e-mails a day.

The second method is to use SpamAssassin as a daemon. This is more efficient, and
can still be used with Procmail, if desired.

Busting Spam with SpamAssassin

[262]

The third method is to integrate SpamAssassin with a content filter such as
amavisd. This offers performance advantages, but occasionally the content filter
does not work with the latest release of SpamAssassin. Problems, if any, are usually
resolved quickly.

To help you get the most out of SpamAssassin, Packt Publishing
has published SpamAssassin: A practical guide to integration and
configuration, (ISBN 1-904811-12-4) by Alistair McDonald.

Using SpamAssassin with Procmail
Procmail was covered in Chapters 6 and 7. If you have at least a basic understanding of
Procmail, then what follows here should be easy to understand. If you jumped to this
chapter and you don't know about Procmail, then it would probably be worthwhile
reading Chapter 6, which discusses the basics of Procmail before continuing here.

Before we configure the system to use SpamAssassin, let's consider what
SpamAssassin does. SpamAssassin is not an e-mail filter. A filter is something that
changes the destination of an e-mail. SpamAssassin adds e-mail headers to an e-mail
message to indicate if it is spam or not.

Consider an e-mail with headers like this:

Return-Path: <user@domain.com>
X-Original-To: jdoe@localhost
Delivered-To: jdoe@host.domain.com
Received: from localhost (localhost [127.0.0.1])
 by domain.com (Postfix) with ESMTP id 52A2CF2948
 for <jdoe@localhost>; Thu, 11 Nov 2004 03:39:42 +0000 (GMT)
Received: from pop.ntlworld.com [62.253.162.50]
 by localhost with POP3 (fetchmail-6.2.5)
 for jdoe@localhost (single-drop); Thu, 11 Nov 2004 03:39:42 +0000
(GMT)
Message-ID: <D8F7B41C.4DDAFE7@anotherdomain.com>
Date: Wed, 10 Nov 2004 17:54:14 -0800
From: "stephen mellors" <gregory@anotherdomain.com>
User-Agent: MIME-tools 5.503 (Entity 5.501)
X-Accept-Language: en-us
MIME-Version: 1.0
To: "Jane Doe" <jdoe@domain.com>
Subject: nearest pharmacy online
Content-Type: text/plain;
 charset="us-ascii"
Content-Transfer-Encoding: 7bit

Chapter 8

[263]

SpamAssassin will add header lines.

X-Spam-Flag: YES
X-Spam-Checker-Version: SpamAssassin 3.1.0-r54722 (2004-10-13) on
 host.domain.com
X-Spam-Level: *****
X-Spam-Status: Yes, score=5.8 required=5.0 tests=BAYES_05,HTML_00_10,
 HTML_MESSAGE,MPART_ALT_DIFF autolearn=no
 version=3.1.0-r54722

SpamAssassin doesn't change the destination of the e-mail, all it does is add headers
that enable something else to change the destination of the e-mail.

The best indication that an e-mail is spam is the X-Spam-Flag. If this is YES,
SpamAssassin considers the mail to be spam and it can be filtered by Procmail.

SpamAssassin also assigns a score to each e-mail—the higher the score, the more
likely that the e-mail is spam. The threshold that determines if an e-mail is spam can
be configured on a system-wide or per-user basis. The default of 5.0 is a sensible
default if you are using an unmodified installation of SpamAssassin without any
custom rulesets.

Global procmailrc file
Let's suppose that we want to check all incoming e-mail for spam using
SpamAssassin. Commands in the /etc/procmailrc file are run for all users,
so executing SpamAssassin here is ideal.

The following simple recipe will run SpamAssassin for all users when placed
in /etc/procmailrc:

:0fw
| /usr/bin/spamassassin

To place all spam in an individual spam folder, ensure that the global/etc/
procmailrc file has a line specifying a default destination. For example:

DEFAULT=$HOME/.maildir/

If not, then add a line specifying DEFAULT. To filter spam into a folder, add a recipe
similar to the following:

* ^X-Spam-Flag: Yes
.SPAM/new

This assumes that each user has a folder called SPAM already configured.

Busting Spam with SpamAssassin

[264]

To place all the spam in a single, central folder, use an absolute path to the
destination in the recipe:

* ^X-Spam-Flag: Yes
/var/spool/poss_spam

This will place all spam in a single folder, which can be reviewed by the system
administrator. As regular e-mail may occasionally be wrongly detected as spam, the
folder should not be world-readable, which leads to a more generalized statement.

SpamAssassin will be run under the system account used by Postfix.
This means that the Bayesian database and the auto-whitelists and
blacklists will be shared by all users. From a security point of view, it's
important that the various databases that SpamAssassin creates are not
world-writable.

SpamAssassin stores user-specific files in the ~/.spamassassin/ directory. Here is a
list of files that may be present for a user:

Files Contents
auto-whitelist
auto-whitelist.db
auto-whitelist.dir
auto-whitelist.pag

SpamAssassin creates a database of users who send ham
(non-spam messages) and uses it to predict whether an
e-mail from a particular sender is spam or ham. These files
are used to track users.

bayes_journal
bayes_seen
bayes_toks

SpamAssassin uses a statistical technique called Bayesian
analysis. These files are used for this feature.

user_prefs This file allows global settings to be overridden for a
particular user. This file can contain configuration settings,
rules, and scores.

Some of them may contain confidential data—for example, regular contacts will
appear in the auto-whitelist files. Careful use of permissions will ensure that the
files are not readable by regular user accounts.

Using SpamAssassin on a per-user basis
Perhaps some users don't receive spam, or there may be issues with users sharing
whitelists and Bayesian databases. SpamAssassin can be run on an individual
basis by moving the recipes to the ~/.procmailrc of specific users. This should
increase the filtering performance for each user, but increases disk space usage
for each user and requires setting up each individual user account by modifying
its ~/.procmailrc.

Chapter 8

[265]

A typical user's .procmailrc might look like this:

MAILDIR=$HOME/.maildir
:0fw
| /usr/bin/spamassassin
:0
* ^X-Spam-Flag: Yes
.SPAM/cur

As suggested, e-mail may sometimes be wrongly detected as spam. It's worthwhile
reviewing spam to ensure that legitimate e-mails have not been wrongly classified.
If the user receives a lot of spam, then wading through it all is time consuming,
tedious, and error prone. Procmail can filter spam by checking the spam score
written in the e-mail headers by SpamAssassin.

The low-scoring spam (for example, scoring up to 9) can be placed in one folder
called Probable_Spam, while higher scoring e-mails (which are more likely to be
spam) can be placed a folder called Certain_Spam.

To do this, we use the X-Spam-Level header, which SpamAssassin creates. This is
simply the number of asterisks, related to the X-Spam-Level value. By moving
e-mail with more than a certain number of asterisks to the Certain_Spam folder, the
remaining spam is "Probable Spam". E-mail that is marked with X-Spam-Flag: NO,
is obviously not spam.

The following .procmailrc file will filter high scoring spam separately from low
scoring spam and non spam:

MAILDIR=$HOME/.maildir
:0fw
| /usr/bin/spamassassin
:0
* ^X-Spam-Level: **************
.Certain_Spam/cur
:0
* ^X-Spam-FLAG: YES
.Probable_Spam/cur

Busting Spam with SpamAssassin

[266]

Using SpamAssassin as a daemon
with Postfix
A daemon is a background process; one that waits for work, processes it, and then
waits for more work. Using this approach actually improves performance (as long
as there is sufficient memory) because responsiveness is improved—the program is
always ready and waiting and does not have to be loaded each time spam tagging
is required.

To use SpamAssassin as a daemon, a user account should be added—it's dangerous
to run any service as root. As root, enter the following commands to make a user
and a group called spam:

groupadd spam
useradd -m -d /home/spam -g spam -s /bin/false spam
chmod 0700 /home/spam

To configure Postfix to run SpamAssassin, use SpamAssassin as a daemon. The
Postfix master.cf file must be changed. Edit the file and locate the line that begins
with 'smtp inet'. Amend the line to add -o content_filter=spamd to the end.

smtp inet n - n - - smtpd -o content_
filter=spamd

Add the following lines to the end of the file:

spamd unix - n n - - pipe
 flags=R user=spam argv=/usr/bin/spamc
 -e /usr/sbin/sendmail -oi -f ${sender} ${recipient}

If the text is spread across several lines, any continuing line must begin with spaces
as shown. The changes to the file define a filter called spamd that runs the spamc
client for each message and also specifies that the filter should be run whenever
an e-mail is received via SMTP.

On this line, spamd is the name of the filter and matches the name used in the
content_filter line. The user= portion specifies the user context that should be
used to run the command. The argv= portion describes the program that should be
run. The other flags are used by Procmail and their presence is important.

Chapter 8

[267]

Using SpamAssassin with amavisd-new
amavisd-new is an interface between MTAs and content checkers. Despite its name,
amavisd-new is a well-established open source package that is well maintained.
Content checkers scan e-mail for viruses and/or spam. amavisd-new is slightly
different. Just like like spamd, it is written in Perl and runs as a daemon, but
instead of accessing SpamAssassin via the spamc or spamassassin clients, it loads
SpamAssassin into memory and accesses the SpamAssassin functions directly. It is
therefore closely coupled to SpamAssassin and may need to be upgraded at the same
time as SpamAssassin.

Unlike other Perl-based applications and utilities, amavisd-new is not available from
CPAN. However, it is available in source form and RPM form for many distributions
of Linux, and is also available for debian-based repositories. Details of versions
available are listed on http://www.ijs.si/software/amavisd/#download. We
recommend that if the version of SpamAssassin that your distributor offers is
up-to-date, then you should use their package of both SpamAssassin and amavisd.

Installing amavisd-new from package
To install amavisd-new from package, use the rpm command for RPM-based
distributions. amavisd-new has many dependencies, all of which are Perl modules.
Each version may have different dependencies, which are listed in the install file that
is a part of the package. The Perl prerequisites for version 2.6.2 are as follows:

Archive::Zip
BerkeleyDB
Convert::BinHex
Convert::TNEF
Convert::UUlib
Crypt::OpenSSL::Bignum
Crypt::OpenSSL::RSA
Digest::HMAC
Digest::Sha1
IO::Multiplex
IO::Stringy
MIME::Tools
Mail::DKIM
Net::CIDR
Net::DNS
Net::IP
Net::Server
Unix::Syslog

Busting Spam with SpamAssassin

[268]

To view the prerequisites for a particular version of amavisd-new, download the
source and unpack it as shown here, and read the install file.

$ cd /some/dir

$ wget http://www.ijs.si/software/amavisd/amavisd-new-2.6.2.tar.gz

$ tar xfz amavisd-new-2.6.2.tar.gz

$ cd amavisd-new-2.6.2

$ vi INSTALL

Several of the dependencies may be installed already, as they are also used
by SpamAssassin.

Installation prerequisites
Some RPM-based Linux distributions may automatically install the prerequisites
as dependencies. For other distributions, all the prerequisites must be downloaded
from CPAN and installed. This is easiest to accomplish with the cpan command. An
alternative method is to download the source code for each prerequisite individually
and install it with the following commands:

$ cd /some/directory

$ gunzip -c source-nn.tar.gz | tar xf -

$ cd source-nn

$ perl Makefile.pl

$ make test

$ su

make install

Installing from source
amavisd-new has no makefile, configuration script, or installation routine. To install
it, the sole executable script is copied to /usr/local/bin, and its attributes modified
to ensure it cannot be modified by non-root users:

cp amavisd /usr/local/sbin/

chown root /usr/local/sbin/amavisd

chmod 755 /usr/local/sbin/amavisd

The sample amavisd.conf file should be copied to /etc and its attributes should
also be modified.
cp amavisd.conf /etc/

chown root /etc/amavisd.conf

chmod 644 /etc/amavisd.conf

Chapter 8

[269]

amavisd-new must be configured to run as a daemon, and so the sample init script
should be copied to the appropriate directory.

cp amavisd_init.sh /etc/init.d/amavisd-new

The init script should also be added to the system startup. Most Linux distributions
use the chkconfig command to do this.

chkconfig --add amavisd-new

Creating a user account for amavisd-new
To create a user account, first create a dedicated group using the groupadd command
and then use the useradd command to add the user.

groupadd amavis
useradd -m -d /home/amavis -g amavis -s /bin/false amavis

Configuring amavisd-new
Several changes need to be made to the /etc/amavisd.conf file. This file will be
parsed as Perl source, and syntax is important. Each line should end in a semicolon,
and the casing is important. The following variable declaration lines should be
changed to contain the following values:

$MYHOME = '/home/amavis';
$mydomain = 'domain.com';
$daemon_user = 'amavis';
$daemon_group = 'amavis';
$max_servers = 5; # number of pre-forked children
(default 2)

Ensure that the correct domain is specified for $mydomain. The number 5 specified
for $max_servers is the number of daemons that will be run concurrently. If you
have a modest amount of e-mail, for example less than ten messages a second, the
default will be sufficient.

Within /etc/amavisd.conf, there is a section on SpamAssassin-related
configuration settings:

$sa_tag_level_deflt = 2.0;
$sa_tag2_level_deflt = 6.2;
$sa_kill_level_deflt = 6.9;

Busting Spam with SpamAssassin

[270]

These three settings are used with the SpamAssassin score level associated with the
e-mail being processed. The $sa_tag_level_deflt setting is the threshold at which
ham is separated from spam and the X-Spam-Status and X-Spam-Level headers are
added to an e-mail.

E-mails that score below this threshold do not have headers added, while e-mails
above the threshold will have headers added. The $sa_kill_level_deflt setting
is the threshold at which spam e-mail is rejected.

The default configuration is to reject spam. To forward spam to another e-mail
address, locate the line specifying $final_spam_destiny or add one if it is not
present, and make it read as follows:

$final_spam_destiny = D_PASS; # (defaults to D_REJECT)

The recipient of the spam has to be defined. Locate the line that specifies
$spam_quarantine_to, and alter it or add one to contain an e-mail address. The
$mydomain variable, which was configured earlier in this step, can be used to refer
to the domain—remember to prefix the @ symbol with a backslash.

$spam_quarantine_to = "spam-quarantine\@$mydomain";

Now, amavisd-new should be started. Most Linux distributions use the
following command:

/etc/init.d/amavisd-new start

Configuring Postfix to run amavisd-new
Edit /etc/postfix/master.cf and locate this line:

smtp inet n - n - - smtpd

Add these lines after it:

smtp-amavis unix y - 5 smtp
 -o smtp_data_done_timeout=1200
 -o disable_dns_lookups=yes

127.0.0.1:10025 inet n y-- smtpd
 -o content_filter=
 -o local_recipient_maps=
 -o relay_recipient_maps=
 -o smtpd_restriction_classes=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject
 -o mynetworks=127.0.0.0/8
 -o strict_rfc821_envelopes=yes

Chapter 8

[271]

In the smtp-amavis line, the number 5 specifies the number of instances that can
be used at once. This should correspond to the $max_servers entry specified in
the amavisd.conf file.

Edit /etc/postfix/main.cf and add the following line near the end of the file:

content_filter = smtp-amavis:[localhost]:10024

Restart Postfix with the postfix reload command:

postfix reload

Configuring e-mail clients
Instead of placing spam in a separate folder by using Procmail, this can be performed
by the e-mail client. Most e-mail clients allow rules or filters to be created. These
typically come into action when new e-mail is read or a folder is opened.

Rules in an e-mail client run on the value of an e-mail header. It is best to use the
X-Spam-Flag and search for the value YES. The procedure to move tagged messages
to a separate folder is outlined as follows:

1. Create a folder or mailbox for holding spam e-mail. The folder name should
be intuitive, for example Spam.

2. Create a rule to be run when e-mails arrive. The rule should look for the text
X-Spam-Flag in the message headers.

3. The action on the rule should be to move the e-mail to the Spam folder created
in the first step.

4. Once the filter is created, send test messages, both spam and non-spam, to
check that the filter works properly.

Microsoft Outlook
Microsoft Outlook is popular in large organizations. It integrates well with IMAP
servers. Follow the next steps to configure Outlook to filter spam, based on the
X-Spam-Flag in e-mail headers:

These instructions are based on Outlook as shipped with Microsoft Office
XP; other versions have similar configuration details.

Busting Spam with SpamAssassin

[272]

1. Create a folder to store the spam. Click on the Inbox in the folder list to
select it, right-click and select New Folder from the menu. Choose Spam, or
another meaningful name and then click OK.

2. Click on the Tools menu and select Rules and Alerts. Click on New Rule to
create a new rule.

Chapter 8

[273]

3. Select Check messages when they arrive from under Start from a blank
rule. Click Next.

4. Check with specific words in the message header. This will allow Outlook
to check the X-Spam-Flag e-mail header. Click on specific words to select the
correct phrase.

5. In the next dialog, carefully enter X-Spam-Flag: YES and click Add. Then
press OK, and click Next.

Busting Spam with SpamAssassin

[274]

6. The next window offers a choice of actions. Choose move it to the specified
folder and click on specified, which will display a list of folders.

7. Choose the folder created earlier and press OK. Click Finish. There are no
exceptions, so click Next again.

8. The Rules Wizard allows the rule to be run immediately on any existing
messages in the Inbox. To do this, make sure that the checkbox next to Turn
on this rule is checked.

9. Finally, click Finish and the rule is created and run on all messages in
the Inbox.

Chapter 8

[275]

Microsoft Outlook Express
Outlook Express is shipped with most versions of Windows up to and including
Windows XP. It provides POP3 connectivity and many features such as HTML
e-mail. Some e-mail clients, including Outlook Express, do not allow filtering on
every e-mail header, but only on certain specific headers such as the From: and
Subject: headers. By default, SpamAssassin writes only additional headers, but it
can be configured to alter the Subject, From, or To headers of an e-mail. To do this,
the /etc/spamassassin/local.cf file should be altered. This change can also be
made on a per-user basis by editing ~user/.spamassassin/user_prefs.

Add the following line to the file:

rewrite_header Subject *****SPAM*****

This will change the header of the e-mail to *****SPAM*****. The tag can be altered
if desired.

Now that SpamAssassin configuration is complete, Outlook Express can be
configured to act on the modified message subject. Follow these steps:

1. Create a folder for the Spam. To do this, select the File menu, click on Folder,
and then on New. Type in Spam, or another descriptive name, as the folder
name, and then click OK.

2. Select the Tools menu, then select Message Rules, and then New. On the next
window, ensure that the conditions include Where the Subject line contains
specific words, and the actions include Move it to the specified folder.

Busting Spam with SpamAssassin

[276]

3. Click on contains specific words, and enter *****SPAM*****, or the
alternative phrase chosen when configuring SpamAssassin. Click OK.

4. Click on specified in the next line of the Rule Description. Select the folder
created and click OK.

5. The rule is summarized. Give it a meaningful name, such as Spam, then click
OK to save it.

Chapter 8

[277]

Mozilla Thunderbird
Mozilla Thunderbird is a free, open source e-mail client with most of the features
of Microsoft Outlook. It is available free at www.mozilla.org/products/
thunderbird/. It has full filtering capabilities. To configure it, follow these steps:

1. Create a folder to store the spam. Click on the File menu and select
New | Folder. Choose a location (the inbox should be fine) and a name,
such as Spam. Click OK.

2. Click on the Tools menu and select Message Filters. Click on the New button
to create a new filter.

Busting Spam with SpamAssassin

[278]

3. In the next dialog, choose a name for the filter such as Spam. Then select the
Match any of the following button. In the left list, type X-Spam-Status, in
the middle list select is, and in the right select Yes. In the box below, click on
Move Message to, and select the folder created in the first step.

4. Click OK, and the rule summary will show the rule. Press Run Now to test
the rule.

Chapter 8

[279]

Customizing SpamAssassin
SpamAssassin is very configurable. Almost every setting can be configured on a
system-wide or user-specific basis.

Reasons to customize
If SpamAssassin is so good, then why configure it? Well, there are several reasons
why it's worth improving spam filtering with SpamAssassin.

SpamAssassin by default (that is, when installed but not customized)
typically manages to detect over 80% of spam. After adding a few
customizations, the detection rate can be greater than 95%.
Everyone's spam is different and one user's spam might look like another
user's ham. By trying to be general, SpamAssassin may fail to filter spam
for every user.
Some of the features of SpamAssassin are disabled by default. By enabling
them, the spam recognition rate is increased.

The following configuration options are discussed in this chapter:

Altering the scores for rules: This allows rules to be disabled, poor rules to
be given less weight, and better rules to be given a higher weight.
Obtaining and using new rules: This can improve spam detection.
Adding e-mail addresses to white and blacklists: This allows the e-mail
from specified senders to always be treated as ham, no matter what the
content is, or the opposite.
Enabling SpamAssassin's Bayesian filter: This can increase filtering
accuracy from 80% to 95% or more.

Rules and scores
The configuration files for standard, sitewide, and user-specific settings are saved in
different directories as follows:

Standard configuration settings are stored in /usr/share/spamassassin.
Site-wide customizations and settings are stored in /etc/mail/
spamassassin/. All files matching *.cf are examined by SpamAssassin.
User-specific settings are stored in ~/.spamassassin/local.cf.

•

•

•

•

•
•

•

•
•

•

Busting Spam with SpamAssassin

[280]

The bulk of the standard configuration files is devoted to simple rules and
their scores.

A rule is typically a match for letters, numbers, or other printing characters. Rules
are written using a technique called regular expressions, or regex for short. This is a
shorthand method of specifying that certain combinations of characters will trigger
the rule. A rule might try to detect a particular word, such as "Rolex", or it might
look for particular words in certain orders, such as "buy Rolex online". The rules
are stored in text files.

Default files are stored in /usr/share/spamassassin. These are files that are
shipped with SpamAssassin and may change with each release. It's best not to
modify these files or place new files in this directory, as an upgrade to SpamAssassin
will overwrite these files. Most of the rules that SpamAssassin uses, and the scores
applied to each rule, are defined within files in this directory.

The defaults can be overwritten by sitewide configuration files. These are placed in
/etc/mail/spamassassin. SpamAssassin will read all files matching *.cf in this
directory. Settings made here can overrule those in the default files. They can include
defining new rules and new rule scores.

User-specific customizations can be placed in the ~/.spamassassin/local.
cf file. Settings made here can override sitewide settings defined in /etc/mail/
spamassassin, and default settings in /usr/share/spamassassin/. New rules
may be defined here, and scores for existing rules can be overridden.

SpamAssassin first reads all the files in /usr/share/spamassassin in
alphanumerical order; 10_misc.cf will be read before 23_bayes.cf. SpamAssassin
then reads all the .cf files in /etc/mail/spamassassin/, again in alphanumeric
order. Finally, SpamAssassin reads ~user/.spamassassin/user_prefs. If a rule or
score is defined in two files, the setting in the last file read is used. This allows the
administrator to override the defaults and a user to override the sitewide settings.

Each line in a rules file can be blank or contain a comment or a command. The hash
or pound (#) symbol is used for comments. Rules generally have three parts, the rule
definition, a textual description, and the score or series of scores. Convention dictates
that all rule scores for rules provided by SpamAssassin should be located together in
a separate file. That file is /usr/share/spamassassin/50_scores.cf.

Chapter 8

[281]

Altering rule scores
The simplest configuration change is to change a rule score. There are two reasons
why this might be done:

A rule is very good at detecting spam, but the rule has a low score. E-mails
that fire the rule are not being detected as spam.
A rule is acting on non spam. As a result, e-mails that fire the rule are
wrongly being detected as spam.

The rules that give a positive result when SpamAssassin is run are listed in the
X-Spam-Status: header of the e-mail:

X-Spam-Status: Yes, score=5.8 required=5.0 tests=BAYES_05,HTML_00_10,
 HTML_MESSAGE,MPART_ALT_DIFF autolearn=no
 version=3.1.0-r54722

The rules applied to the e-mail are listed after tests=. If one continually appears in
e-mail that should be marked as spam, but isn't, then the score for the rule should be
increased. If a rule often fires in e-mail that is wrongly classified as spam, the score
should be decreased.

To find the current score, use the grep utility in all the locations where a score
can be defined.

grep score.*RULE_NAME
$ grep score.*BAYES /usr/share/spamassassin/* /etc/mail/spamassassin/*
~/.spamassassin/local.cf

/etc/mail/spamassassin/local_scores.cf:score RULE_NAME 0 0 1.665 2.599
/etc/mail/spamassassin/local_scores.cf: 4.34

In the previous example, the rule has a default score that is overridden in
/etc/mail/spamassassin/local_scores.cf.

The original score for the rule had four values. SpamAssassin changes the scores it
uses, depending on whether network tests (for example, those that test open relays)
are in use and whether the Bayesian Filter is in use. Four scores are listed, which are
used in the following circumstances:

Bayesian filter not in use Bayesian filter in use

External tests not in use 1st score 3rd score

External tests in use 2nd score 4th score

•

•

Busting Spam with SpamAssassin

[282]

If only one score is given, as overridden in /etc/mail/spamassassin/
local_scores.cf, it is used in all circumstances.

In the previous example, the system administrator has overridden the default
score in /etc/mail/spamassassin/local_scores.cf with a single value in
/etc/mail/spamassassin/local_scores.cf. To change this value for a particular
user, their ~/.spamassassin/local.cf might read:

score RULE_NAME 1.2

This changes the score used from 4.34, set in /etc/mail/spamassassin/
local_scores.cf, to 1.2. To disable the rule entirely, the score can be set to zero.

score RULE_NAME 0

Endless hours can be spent configuring rule scores. SpamAssassin includes tools to
recalculate optimal rule scores, by examining existing e-mails, both spam and non
spam. They are covered in detail in the book SpamAssassin published by Packt.

Using other rulesets
SpamAssassin has a large following, and the design of SpamAssassin has made it
easy to add new rulesets, which are sets of rules and default scores for those rules.
There are many different rulesets available. Most are based on a particular theme, for
example finding the names of drugs often sold with spam or telephone numbers found
in spam e-mails. Most custom rulesets are listed on the Custom Rulesets page of the
SpamAssassin Wiki at http://wiki.apache.org/spamassassin/CustomRulesets.

As the battle against spam is so aggressive, rulesets have been developed that may
possibly be uploaded daily. SpamAssassin provides this ability with the sa-update
utility. You can choose to use sa-update on a regular basis, or to download a
particular ruleset and keep it, or to manually update the rulesets that you choose.
To obtain the best results in filtering spam, use of sa-update is recommended.

If you wish to install rulesets manually, the Wiki page gives a general description of
each ruleset and a URL to download it. Once a ruleset has been chosen, we install it
as follows:

1. In a browser, follow the link on the SpamAssassin Wiki page. In most cases,
the link will be to a file with a name matching *.cf, and a browser will open
it as a text file.

2. Save the file using the browser (normally, the File menu has a
Save as option).

Chapter 8

[283]

3. Copy the file to /etc/mail/spamassassin—the rules will be automatically
run if the file is placed in this location.

4. Check that the file has scores in it, otherwise the rules will not be used.
5. Monitor spam performance to ensure that legitimate e-mail is not being

detected as spam.

Adding rules to SpamAssassin will increase the memory used by SpamAssassin, and
the time that it takes to process e-mails. It is best to be cautious and add new rulesets
gradually, to ensure that the effect on the machine is understood.

You may manually monitor the ruleset and update it on your system using the
same process.

If you choose to use sa-update, you should plan your use of it. sa-update can use
several channels, which are basically sources of rulesets. By default, the channel
updates.spamassassin.org is used; another popular channel is the OpenProtect
channel, called saupdates.openprotect.com.

To enable sa-update, it must be run regularly, for example via cron. Add a cron
entry to your system calling the following commands, to update the base rulesets:

sa-update

If you use an additional channel, the command might look like:

sa-update –channel saupdates.openprotect.com

To protect against DNS poisoning and impersonation, SpamAssassin
allows digital signing of rulesets. To use a signed ruleset, use the
–gpgkey parameter to sa-update. The correct value to use with the
–gpgkey parameter will be described in the SpamAssassin wiki page
for the ruleset.

Whitelists and blacklists
SpamAssassin is very good at detecting spam, but there is always a risk of errors.
By using a list of e-mail addresses that are known spam producers (a blacklist),
e-mails from spammers who consistently use the same e-mail addresses or domains
can be filtered out. With a list of e-mail addresses that are legitimate e-mail senders
(a whitelist), e-mails from regular or important correspondents are guaranteed to
be filtered as ham. This prevents the delay or non delivery of important e-mails that
may otherwise be marked as spam.

Busting Spam with SpamAssassin

[284]

Blacklists that list individual e-mail addresses have limited use—spammers
normally use different or random e-mail addresses for each spam run. However,
some spammers use the same domain for multiple runs. As SpamAssassin allows
wildcards in its blacklisting, entire domains can be blacklisted. This is more useful
for filtering out spam.

Manual whitelisting and blacklisting involves adding configuration directives
to the global configuration file /etc/mail/spamassassin/local.cf and/or
in ~/.spamassassin/user_prefs.

The whitelist and blacklist entries allow the ? and * characters to be used to match
a single character or many characters respectively. So, if a whitelist entry read *@
domain.com, then joe@domain.com and bill@domain.com would both match. For
an entry that read *@yahoo?.com, joe@yahoo1.com and bill@yahoo2.com would
match, but billy@yahoo22.com would not match. *@yahoo*.com would match all
three examples.

The whitelist and blacklists rules do not immediately cause an e-mail to be tagged
as spam or ham, even though the scores are heavily weighted. The default score
for the USER_IN_WHITELIST rule is -100.0. It is technically possible that an e-mail
may match a whitelist entry and still trigger enough other tests to result in it being
marked as spam. Although in practice, this is unlikely to occur, unless the scores
have been changed from the defaults.

To blacklist an e-mail address or whole domain, use the blacklist_from directive.

blacklist_from user@spammer.com
blacklist_from *@spamdomain.com

To whitelist an e-mail address or domain, use the whitelist_from directive.

whitelist_from user@mycompany.com
whitelist_from *@mytradingpartner.com

SpamAssassin has more complex rules for managing white and blacklists, as well
as an automatic whitelist/blacklist. Both blacklists and whitelists can be specified
as discrete items (blacklist joe@domain.com and bill@another.com) or as
wildcards (blacklist every joe, and blacklist everyone from domain.com). The
wildcards are particularly powerful, and care should be taken to ensure that
legitimate e-mail is not rejected.

Chapter 8

[285]

Bayesian filtering
This uses a statistical technique to determine if an e-mail is spam, based on previous
e-mails of both types. Before it will work, it needs to be trained with e-mail that is
known spam and also e-mail that is known non spam. It is important that the e-mail
is correctly categorized, otherwise the effectiveness of the filter will be reduced.
The learning process is done on the e-mail server, and the sample e-mails should
be stored in an accessible location.

The sa-learn command is used to train the Bayesian filter with e-mail messages
that are known ham or spam. The SpamAssassin installation routine will have
placed sa-learn in the path, normally in /usr/bin/sa-learn.

It is used on the command line and is passed a directory, file, or series of files. For
this to work, the e-mail has to be stored on the server or exported from the client in
a suitable format. SpamAssassin recognizes mbox format, and many e-mail clients
use a compatible format. To use sa-learn, a directory or series of directories can be
passed in to the command:

$ sa-learn --ham ~/.maildir/.Trash/cur/ ~/.maildir/cur

Learned from 75 message(s) (175 message(s) examined).

If the mbox format is used, the mbox flag should be used so that SpamAssassin
searches the file for more than one e-mail.

$ sa-learn -mbox --spam ~/mbox/spam ~/mbox/bad-spam

Learned from 75 message(s) (175 message(s) examined).

If SpamAssassin has already learned from an e-mail, sa-learn detects this and will
not process it twice. In the example above, 100 of the 175 e-mails had been processed
already and were ignored on this run. The remaining 75 e-mails had not been
processed before.

If sa-learn is passed a number of messages, there may be no feedback for some
time. The --showdots flag provides feedback in the form of dots (.) whenever an
e-mail is processed.

$ sa-learn --spam --showdots ~/.SPAM/cur ~/.SPAM/new

.........................

Learned from 20 message(s) (25 message(s) examined).

Once SpamAssassin has learned enough e-mails, it will begin to use the Bayesian
filter automatically. It can be kept up-to-date by using the auto-learn feature.

Busting Spam with SpamAssassin

[286]

Auto-learning should not be used without additional user input. There are two
reasons for doing this.

SpamAssassin occasionally gets spam detection wrong, and e-mail that is
spam may be learned as an example of non spam. Auto-learning would
confuse the Bayesian filter and decrease its effectiveness.
The score threshold that an e-mail is auto-learned at is higher than that for
detection as spam. In other words, an e-mail may be detected as spam, but
not auto-learned. In this case, the rest of SpamAssassin is doing a fairly good
job of detecting border-line spam (those with scores close to the threshold for
spam), but the Bayesian filter is not being taught the e-mails.

To use automatic learning, set the bayes_auto_learn flag to 1. This can be
configured sitewide in the /etc/mail/spamassassin/local.cf file, or can be
overridden in a user's ~/.spamassassin/user_prefs file. Two other configuration
flags also affect auto-learning, and are the thresholds for learning ham and spam.
These values are in the same units as SpamAssassin's score for each e-mail.

bayes_auto_learn 1
bayes_auto_learn_threshold_nonspam 0.1
bayes_auto_learn_threshold_spam 12.0

When auto-learning is enabled, any e-mail that is assigned a score of less than
bayes_auto_learn_threshold_nonspam, is learned as ham. Any e-mail that is
assigned a value greater than bayes_auto_learn_threshold_spam, is learned
as spam.

It is recommended that the bayes_auto_learn_threshold_nonspam threshold is
kept low (close to or below zero). This will avoid the situation where a spam e-mail
that escapes detection is used as an example to train the Bayesian filter. Keeping the
bayes_auto_learn_threshold_spam threshold high is to some extent a matter of
choice; however, it should be above the scores of any e-mails that have been wrongly
classified as spam in the past. This may occur up to a score of 10 for the default
spam threshold of 5. Therefore, using an auto-learn threshold of less than 10 for
spam may cause non spam to be accidentally learned as spam. If this happens, the
Bayesian database will begin to lose effectiveness, and future Bayesian results will
be compromised.

•

•

Chapter 8

[287]

SpamAssassin keeps the Bayesian database in three files in the .spamassassin
directory within a user's home directory. The format used is usually Berkeley DB
format and the files are named as follows:

bayes_journal
bayes_seen
bayes_toks

The bayes_journal file is used as a temporary storage area. Sometimes it is not
present. This file is generally relatively small, with a size of around 10 KB. The
bayes_seen and bayes_toks files can each be several megabytes in size.

Other SpamAssassin features
This chapter has only scratched the surface of SpamAssassin's capabilities. If spam is
a problem for an organization, SpamAssassin will reward further study. Some of the
other features that it contains are as follows:

Network tests: SpamAssassin can integrate with Open Relay Databases.
(The 3.x distribution contains tests for over 30 databases, although not all of
them are enabled by default.) Open Relay tests do not require a fast machine
or lots of RAM, and so are relatively cheap tests to use. They have a fairly
successful detection rate.
External content databases: SpamAssassin can integrate with external
content databases. These work in a participating network. All the participants
send details of all the e-mails they receive to central servers. If the e-mails
have been sent many times before, the e-mail is probably a spam that has
been sent to many users. The services are designed so that no confidential
data is sent.
Whitelist and blacklist: SpamAssassin includes an automatic whitelist and
blacklist, which work in a similar way to the manual lists described earlier.
This is particularly effective at preventing regular correspondents from
having their e-mail wrongly detected as spam.
Creating new rules: New rules can be written and developed. Creating rules
is not particularly difficult, with a little imagination and a suitable source of
spam. System Administrators can rid their users of any persistent spam that
fails to be detected with the default SpamAssassin rules.

•

•

•

•

Busting Spam with SpamAssassin

[288]

Customizable headers: The headers that SpamAssassin adds to e-mails
can be customized, and new headers can be written. SpamAssassin will
also attempt to detect viruses and Trojan software, and will wrap an e-mail
address like that in a special envelope e-mail.
Multiple installations: SpamAssassin can be installed on multiple machines,
serving one or more e-mail servers. In very high volume e-mail systems,
many spam servers may be run, each only processing spam. This leads
to a high-throughput, high-availability service.
Customizable rule scores: SpamAssassin includes tools to customize rule
scores, based on samples of the spam and legitimate e-mail received at an
organization. This helps to improve the filtering rate. With SpamAssasin 3.0,
the tools were improved significantly, and the procedure to perform this is
much less time consuming than it was in earlier versions.

Summary
In this chapter, you have seen how SpamAssassin can be obtained and installed.
Three different methods of using SpamAssassin were presented, with suggestions
on which option to choose for a particular installation.

Configuration of popular e-mail clients was also covered, namely Microsoft Outlook,
Microsoft Outlook Express, and Mozilla Thunderbird.

•

•

•

Antivirus Protection
A common view is that Linux is not vulnerable to viruses, so why install an antivirus
solution? While it is true that there are very few viruses for Linux, the primary
objective is not to protect the mail server from infection, but to reduce or eliminate
any risk to recipients. Your organization may have client PCs running Windows that
are susceptible to viruses, or you could receive a virus laden e-mail that you may
forward to a customer or business partner.

One of the many options for filtering with Procmail is to remove executable
attachments from e-mails in order to protect your system from possible virus attacks.
This will be, at best, a crude operation; at worst, it will remove files that do not
contain viruses and possibly leave other infected documents such as scripts that
are not executables.

It is also possible to scan e-mails on the client side. But in a company environment, it
is not always possible to rely on every individual having their machines up-to-date
and correctly installed with suitable virus checking software. The obvious solution is
to run an efficient process on the server to ensure that all e-mail sent or received by
the organization is correctly scanned for viruses.

There are a number of antivirus solutions available for Linux-based systems. We
have chosen to focus on Clam AntiVirus, usually known as ClamAV. This is an
open source software and regularly updates the database of viruses to be checked
for before download.

In this chapter, we will learn about:

The types of documents which may contain viruses that ClamAV can detect
Installing and configuring the ClamAV components for detecting viruses
Setting up procedures to maintain an up-to-date antivirus database
Integrating ClamAV with Postfix to scan all incoming e-mail messages
and attachments

•

•

•

•

Antivirus Protection

[290]

Extensively testing our installation with sample files containing test virus
signatures and by using test e-mail bourne viruses
Adding each ClamAV component into our system startup and
shutdown procedures

Introduction to ClamAV
Clam AntiVirus is an open source antivirus toolkit for Linux, Windows, and Mac
OS X. The main design feature of ClamAV was to integrate it with mail servers
to perform attachment scanning and help filter out known viruses. The package
provides a flexible and scalable multithreaded daemon (clamd), a command-line
scanner (clamscan), and a tool for automatic updating via the Internet (freshclam).
The programs are based on a shared library, libclamav, distributed with the Clam
AntiVirus package, which you can also use with your own software.

The version of ClamAV we are going to use in this chapter is the latest stable version,
0.95.2, that has an up-to-date virus database and signatures to enable detection of
over 580,000 viruses, worms, and Trojans including Microsoft Office macro viruses,
mobile malware, and other threats. Although not covered in this book, it is also
able to perform on-access scanning under Linux with suitable installation into the
Linux kernel.

Document types supported
A wide range of document types can contain or spread viruses and ClamAV
provides protection from the majority of them:

ELF (Executable and Linking Format) files used by UNIX and UNIX-like
operating systems such as Linux, Solaris, and OpenBSD.
Portable Executable (PE) files (32/64-bit) compressed with UPX, FSG, Petite,
WWPack32, and obfuscated with SUE, Yoda's Cryptor, and others. This is
the standard format for Microsoft Windows Executables and one of the
most common transports for viruses.
Many forms of Microsoft documents can contain scripts or executables. The
following document and archive types can be processed by ClamAV:

MS OLE2
MS Cabinet files
MS CHM (Compressed HTML)
MS SZDD
MS Office Word and Excel documents

•

•

•

•

•

°
°
°
°
°

Chapter 9

[291]

Support for other special files and formats include:
HTML
RTF
PDF
Files encrypted with CryptFF and ScrEnc
uuencode
TNEF (winmail.dat)

Other common archive formats that may contain any form of document and
that ClamAV can process include:

RAR (2.0)
ZIP
gzip
bzip2
tar
BinHex
SIS (SymbianOS packages)
AutoIt

Scanning of archives also includes the scanning of supported document formats held
within the archives.

Downloading and installing ClamAV
As viruses are being discovered on an almost daily basis, it is well worth installing
the latest stable version of ClamAV software. If your system already has ClamAV
installed, it is possible that the installation may be based on an out of date
installation package. It is highly recommended that you download and install the
latest version from the ClamAV website to ensure the highest level of security
against viruses on your systems.

Adding a new system user and group
You will have to add a new user and group to your system for the ClamAV system
to use.

groupadd clamav

useradd -g clamav -s /bin/false -c "Clam AntiVirus" clamav

•

°

°

°

°

°

°

•

°

°

°

°

°

°

°

°

Antivirus Protection

[292]

Installing from a package
There are a number of installation packages available for ClamAV and details can be
found on the ClamAV website at http://www.clamav.net/download/packages/
packages-linux.

Due to licensing restrictions, most binary packages don't have a
built-in RAR support. For this reason, we recommend that you install
ClamAV from source until any licensing issues are resolved.

If you are using a Red Hat-based system, the installation may be performed using
either of the following options, depending on which distribution you have installed:

yum update clamav

or

up2date -u clamav

If you are using a Debian-based system, the installation may be performed using the
following command:

apt-get install clamav clamav-daemon clamav-freshclam

Make sure you are installing version 0.95.2 or higher as there are
significant enhancements over previous versions. In general, you
should always install the latest stable version available.

Installing from source code
Installing ClamAV from the original source code is not very difficult, and
enables you to run any version you want and not just the version chosen by the
package maintainer of your Linux distribution. The ClamAV source code can be
downloaded from a number of mirrors accessible from the main ClamAV website
(http://www.clamav.net/download/sources).

Requirements
The following elements are required to compile ClamAV:

zlib and zlib-devel packages
gcc compiler suite

•

•

Chapter 9

[293]

The following packages are optional but highly recommended:
bzip2 and bzip2-devel library
UnRAR package

Building and installing
Once you have downloaded and unpacked the archive, cd to the directory,
example, clamav-0.95.2. Before starting to build and install the software, it
is well worthwhile reading through the INSTALL and README documents.

For most Linux systems, the simplest installation method can be reduced by
following the steps listed here:

1. Run the configure utility to create the right build environment by running
the configure command:
$./configure --sysconfdir=/etc

2. After the configuration script is complete, you can run the make command to
build the software executables.
$ make

3. The final step, as root, is to copy the executables into the correct position for
operation on the system.
make install

In the last step, the software is installed into the /usr/local directory and the config
files into /etc as specified by the –sysconfdir option as shown.

At all stages you should check the processes output for any significant errors
or warnings.

As with all packages built from the source code, you may wish to delete the
unpacked archive after completion of the building, installing, and testing steps
in this chapter.

Quick test
We can verify that the software is correctly installed, by trying the following test to
scan the example test virus files in source directory recursively:

The supplied test virus files do not contain real viruses and are harmless.
They contain an industry agreed virus signature specifically designed for
test purposes.

$ clamscan -r -l scan.txt clamav-x.yz/test

•

•

Antivirus Protection

[294]

It should find some test files in the clamav-x.yz/test directory. The scan result
will be saved in the scan.txt log file. Check the log file, paying particular attention
to any warnings indicating that support for a particular file or archive format has
not been compiled in. The tail of the log file should contain a summary similar
to the following:

Editing the config files
After installation of the software, two configuration files need to be edited. The
first file, /etc/clamd.conf, is for the actual virus scanning software. Most of the
important configuration options for this file are discussed in the following sections.
The second configuration file, /etc/freshclam.conf, is covered later in this
chapter. This is where we add the configuration options for the automatic virus
database updates.

clamd
You have to edit the configuration file in order to use the daemon, otherwise clamd
won't run.

$ clamd

ERROR: Please edit the example config file /etc/clamd.conf.

This shows the location of the default configuration file. The format and options of
this file are fully described in the clamd.conf(5) manual. The config file is well
commented and configuration should be straightforward.

Chapter 9

[295]

Examining the sample config file
The sample config file that is provided is very well documented with comments
at every significant configuration value. Here are some key values that you may
wish to modify:

##
Example config file for the Clam AV daemon
Please read the clamd.conf(5) manual before editing this file.
##

Comment or remove the line below.
#Example

The Example line will cause the program to halt with a configuration error and is a
deliberate inclusion to force you to edit the file before the software operates correctly.
Placing a # at the beginning of the line will be enough to resolve this problem after
you have finished editing the file.

Uncomment this option to enable logging.
LogFile must be writable for the user running daemon.
A full path is required.
Default: disabled
LogFile /var/log/clamav/clamd.log

It is well worth setting up a log file to enable you to check for errors and monitor
correct operation over the first few weeks of operation. Thereafter, you can decide
whether to stop the logging or leave it operational.

Log time with each message.
Default: disabled
LogTime yes

Enabling time stamping in the log files ensures that you can track down the time of
the event being logged to aid in debugging problems and matching events to entries
in other log files.

Path to the database directory.
Default: hardcoded (depends on installation options)
#DatabaseDirectory /var/lib/clamav
DatabaseDirectory /usr/local/share/clamav

Antivirus Protection

[296]

Make sure that the database directory is correctly configured so that it is known
exactly where the virus signature information is being stored. The installation
process will have created the file main.cvd, and possibly daily.cld, as the
database files containing the virus signatures.

The daemon works in a local OR a network mode. Due to security
reasons we recommend the local mode.

Path to a local socket file the daemon will listen on.
Default: disabled
LocalSocket /var/run/clamav/clamd.sock

Using local mode is an important configuration change and is required to ensure the
security of the system on which ClamAV is installed.

This option allows you to save a process identifier of the listening
daemon (main thread).
Default: disabled
PidFile /var/run/clamav/clamd.pid

This is useful to start and stop scripts. As shown in the previous example, the
ClamAV directory must be writable.

TCP address.
By default we bind to INADDR_ANY, probably not wise.
Enable the following to provide some degree of protection
from the outside world.
Default: disabled
TCPAddr 127.0.0.1

This is another security related configuration item to ensure that only local processes
can gain access to the service.

Execute a command when virus is found. In the command string %v
will
be replaced by a virus name.
Default: disabled
#VirusEvent /usr/local/bin/send_sms 123456789 "VIRUS ALERT: %v"

This could be a useful feature to consider in some situations. However, with the wide
range and frequency of virus delivery, this could prove to be a significant annoyance
to have messages arriving throughout the night or day.

Run as a selected user (clamd must be started by root).
Default: disabled
User clamav

Chapter 9

[297]

By creating a user especially for ClamAV, we can assign ownership of files and
processes to this user ID and help improve security of the files by restricting access
to only this user ID. Also, when running processes are listed on the system, it is easy
to identify those owned by the ClamAV system.

freshclam
You have to edit the configuration file, otherwise freshclam won't run.

$ freshclam

ERROR: Please edit the example config file /etc/freshclam.conf

A sample freshclam configuration file is also included in the source distribution. If
you need more information about the configuration options and format, you should
refer to the freshclam.conf(5) manual page.

Closest mirrors
A number of mirror servers are available on the Internet from which you can
download the latest antivirus database. To avoid overloading any one server, the
configuration file should be set up to make sure that the download is being taken
from the nearest available server. The included update utility makes use of the DNS
system to locate a suitable server based on the country code you are requesting.

The configuration file entry that you need to modify is DatabaseMirror. You
may also specify the parameter MaxAttempts—number of times the database is
downloaded from the server.

The default database mirror is clamav.database.net, but you are able to apply
multiple entries in the configuration file. The configuration entry should be made
using the format db.xx.clamav.net, where xx represents your normal two-letter
ISO country code. For example, if your server is in the United States, you should add
the following lines to freshclam.conf. The full list of two-letters country codes is
available at http://www.iana.org/cctld/cctld-whois.htm.

DatabaseMirror db.us.clamav.net
DatabaseMirror db.local.clamav.net

If the connection to the first entry fails for any reason, an attempt will be made to
download from the second mirror entry. You should not just use the default entry, as
it may result in your server or IP address being blacklisted by the ClamAV database
administrators for overloading and you may not able to obtain any updates at all.

Antivirus Protection

[298]

Examining the sample config file
The sample config file that is provided is very well documented with comments
at every significant configuration value. Here are some key values that you may
wish to modify:

##
Example config file for freshclam
Please read the freshclam.conf(5) manual before editing this file.
This file may be optionally merged with clamd.conf.
##

Comment or remove the line below.
#Example

Make sure that this line is commented to allow the daemon to operate.

Path to the log file (make sure it has proper permissions)
Default: disabled
UpdateLogFile /var/log/clamav/freshclam.log

Enabling the log file is useful to track the ongoing updates that are being applied and
to monitor the correct operation of the system during early testing stages.

Enable verbose logging.
Default: disabled
LogVerbose

The previous option enables more detailed error messages to be included in the
update log file.

Use DNS to verify virus database version. Freshclam uses DNS TXT
records to verify database and software versions. We highly
recommend enabling this option.
Default: disabled
DNSDatabaseInfo current.cvd.clamav.net
Uncomment the following line and replace XY with your country
code. See http://www.iana.org/cctld/cctld-whois.htm for the full
list.
Default: There is no default, which results in an error when running
freshclam
DatabaseMirror db.us.clamav.net

Chapter 9

[299]

This is an important configuration to reduce network traffic overheads and ensure
that you are obtaining updates from a geographically close server.

database.clamav.net is a round-robin record which points to our
most
reliable mirrors. It's used as a fall back in case db.XY.clamav.net
is not working. DO NOT TOUCH the following line unless you know
what you are doing.
DatabaseMirror database.clamav.net

As the instruction says—leave this line alone.

Number of database checks per day.
Default: 12 (every two hours)
Checks 24

For busy servers with lots of traffic, it is worthwhile to update the virus database at
a more frequent interval. However, this is recommended only for systems running
version 0.8 or higher of the ClamAV software.

Run command after successful database update.
Default: disabled
#OnUpdateExecute command

Run command when database update process fails..
Default: disabled
#OnErrorExecute command

To aid monitoring of the updates to configuration files, the options you have just
seen are available to apply suitable actions if updates do or do not occur correctly.

File permissions
Following the previous recommendation, clamd will be run as the clamav user
and by default, when started, freshclam drops privileges and switches to the
clamav user. Therefore, ownership of the socket, PID, and log files specified in the
configuration files seen in the previous example should be set up using the following
commands to allow correct access:

mkdir /var/log/clamav /var/run/clamav

chown clamav:clamav /var/log/clamav /var/run/clamav

The user under which freshclam and clamd run can be changed in freshclam.conf
and clamd.conf. However, you should verify that the ClamAV processes
have access to the virus definition database if you change these parameters.

Antivirus Protection

[300]

Post installation testing
Now that we have the main components of ClamAV installed, we can verify the
correct operation of each component.

clamscan—the command line scanner
clamd—the ClamAV daemon
freshclam—virus definitions updater

For these tests, we are going to need a virus or at least a non-destructive file that
looks like a virus.

EICAR test virus
A number of antivirus researchers have already worked together to produce a file
that their (and many other) products detect as if it were a virus. Agreeing on one
file for such purposes simplifies matters for users.

This test file is known as the EICAR (European Institute for Computer Anti-virus
Research) standard antivirus test file. The file itself is not a virus, it does not contain
any program code at all, and is therefore safe to pass on to other people. However,
most antivirus products will react to the file as though it really is a virus, which can
make it a rather tricky file to manipulate or send via e-mail if you or the recipient has
good virus protection systems in place.

The file is a text file consisting entirely of printable ASCII characters so that it can
easily be created with a regular text editor. Any antivirus product that supports the
EICAR test file should detect it in any file that starts with the following 68 characters:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

When you are creating this file, you should take note of the following facts. The file
uses only upper case letters, digits, and punctuation marks, and does not include
spaces. There are a couple of common mistakes that can be made when recreating
this file. These include ensuring that the third character is the capital letter O, not the
digit zero (0), and that all 68 characters are one line, which must be the very first line
in the file.

For more information on the EICAR antivirus test file, visit
http://www.eicar.org/anti_virus_test_file.htm.

•

•

•

Chapter 9

[301]

Testing clamscan
The first test we need to run is to make sure that the virus scanner is installed and
that the virus definitions database is configured and included correctly. A virus
database is supplied as part of the installation process.

The simplest way to do this is to create a copy of the EICAR test file on your server
and then run the clamscan program. We are using the –i flag so that only infected
files will be shown. You should get output like this:

Note the warning about an out-of-date virus database. This is normal and will be
rectified during freshclam testing.

Testing clamd
By using the clamdscan program, we can again scan the test file, but do this by
instructing the clamd process to do the scanning. This is an excellent test to make
sure that the clamd daemon process is running.

The expected output should look something like the following:

$ clamdscan testvirus.txt

/home/ian/testvirus.txt: Eicar-Test-Signature FOUND
----------- SCAN SUMMARY -----------
Infected files: 1
Time: 0.000 sec (0 m 0 s)

If the clamd daemon is not running it can be started using the # clamd command.

You should also check the clamd log file, as configured in clamd.conf, for any
unexpected errors or warnings after running this test.

Antivirus Protection

[302]

Testing freshclam
Using the freshclam program interactively we can update the virus database with
the latest definitions. This test will update the database only once. We shall see later
how to perform automatic updates. Using the following command (as superuser) we
would expect output similar to the following:

From the output, we can see that the update process downloaded two differential
updates successfully and failed with a network problem on the third. Downloading
the differences between the latest and current database helps to reduce network
traffic and server load. In this case freshclam detected the failure and downloaded
the latest daily update to bring the virus database up-to-date with an increased
number of virus signatures.

Now if you run the clamscan test again, you will notice that the out-of-date warning
is no longer displayed.

You should also check that the freshclam log file contains output similar to the
previous code after running this test.

Introduction to ClamSMTP
In order to scan all e-mail passing through the server, a software interface is required
between Postfix and ClamAV. The interface we are going to use is ClamSMTP. The
following introduction from the ClamSMTP site (http://memberwebs.com/stef/
software/clamsmtp/) describes the SMTP virus filter as:

Chapter 9

[303]

ClamSMTP is an SMTP filter that allows you to check for viruses using the
ClamAV antivirus software. It accepts SMTP connections and forwards the SMTP
commands and responses to another SMTP server. The 'DATA' email body is
intercepted and scanned before forwarding. ClamSMTP aims to be lightweight,
reliable, and simple rather than have a myriad of options. It's written in C without
major dependencies.

Postfix is designed to allow external filters to be called to process mail messages
and to return the processed data back to Postfix for onward delivery. ClamSMTP
has been designed to work directly between Postfix and ClamAV to ensure
efficient operation.

Some Linux distributions may have maintained packages for ClamSMTP, which
can be installed via the relevant package manager. However, you should still
complete the instructions that follow to configure and integrate ClamSMTP
into Postfix.

The latest source code may be downloaded from http://memberwebs.com/stef/
software/clamsmtp/, directly onto your Linux system using the wget command.
Change to a suitable location to download and build the software. The command
option for the current version (1.10) would be wget <url>.

$ wget http://memberwebs.com/stef/software/clamsmtp/clamsmtp-1.10.tar.gz

You should check the website for the latest version that you can download. After you
have downloaded the file, unpack the contents of the file using the tar command.

$ tar xvfz clamsmtp-1.10.tar.gz

This will create a directory structure with all the relevant files contained below the
current directory.

Building and installing
Before building and installing the software, it is well worthwhile reading through the
INSTALL and README documents.

For most Linux systems, the simplest installation method is as follows:

1. Run the configure utility to create the right build environment by running
the configure command.
$./configure --sysconfdir=/etc

2. After the configuration script is complete, you can run the make command to
build the software executables:
$ make

Antivirus Protection

[304]

3. The final step, as root, is to copy the executables into the correct position for
operation on the system:

make install

In the last step, the software is installed into the /usr/local directory and the
config files into /etc.

At all stages, you should check the processes output for any significant errors
or warnings.

Configuring into Postfix
Postfix provides support for mail filtering by passing mail items through external
processes. This operation can be performed either before or after the mail has
been queued. The way communication between Postfix and clamsmtp works is by
pretending that clamsmtp is itself an SMTP server. This simple approach provides
an easy way to create a distributed architecture whereby different processes could
be working on different machines to spread the load in very busy networks. For our
use, we will assume that we are using only one machine with all software running
on that machine.

The clamsmtp filter interface was designed specifically to provide an interface
between ClamAV and the Postfix mail system. The filter is implemented as an
after-queue filter for antivirus scanning.

The first configuration option requires adding lines to the Postfix main.cf file:

content_filter = scan:127.0.0.1:10025
receive_override_options = no_address_mappings

The content_filter instruction forces Postfix to send all mail through the service
named scan on port 10025. The scan service will be the one that we set up using
clamsmtpd. The instruction for receive_override_options configures Postfix to
perform no_address_mappings. This prevents Postfix from expanding any e-mail
aliases or groups, which otherwise would have resulted in duplicate e-mails
being received.

The second configuration change needs to be made to the Postfix master.cf file.

AV scan filter (used by content_filter)
scan unix - - n - 16 smtp
 -o smtp_send_xforward_command=yes
 -o smtp_enforce_tls=no
For injecting mail back into postfix from the filter
127.0.0.1:10026 inet n - n - 16 smtpd
 -o content_filter=

Chapter 9

[305]

 -o receive_override_options=no_unknown_recipient_checks,no_
header_body_checks
 -o smtpd_helo_restrictions=
 -o smtpd_client_restrictions=
 -o smtpd_sender_restrictions=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject
 -o mynetworks_style=host
 -o smtpd_authorized_xforward_hosts=127.0.0.0/8

The formatting of the files is very important. You should ensure that
there are no spaces around the = (equal) sign or , (commas) in the
text you added.

The first two lines, do the actual creation of the scan service. The remaining lines
set up a service for accepting mail back into Postfix for delivery. The rest of the
options are there to prevent a mail loop occurring and to relax address checking.
When these changes have been made, you need to get Postfix to reread the modified
configuration files by using the following command:
postfix reload

Configuring clamSMTP
You have to create the configuration file, /etc/clamsmtpd.conf, otherwise
clamsmtpd won't run:
$ clamsmtpd

clamsmtpd: configuration file not found: /etc/clamsmtpd.conf

A sample clamsmtp.conf configuration file is included in the source distribution
doc directory. This needs to be copied to the correct location and edited before the
clamsmtp software will operate correctly.
cp clamsmtpd.conf /etc/clamsmtpd.conf

The format and options of this file are fully described in the clamsmtpd.conf(5)
manual.

Examining the sample config file
The sample config file that is provided is very well documented with comments
for each significant configuration value. Here are some key values that you may
wish to modify.

The address to send scanned mail to.
This option is required unless TransparentProxy is enabled
OutAddress: 127.0.0.1:10026

Antivirus Protection

[306]

As we are using just one machine in this configuration, we should specify the
OutAddress option as 127.0.0.1:10026 to match the option specified in master.cf.

The maximum number of connection allowed at once.
Be sure that clamd can also handle this many connections
#MaxConnections: 64

Amount of time (in seconds) to wait on network IO
#TimeOut: 180

Keep Alives (ie: NOOP's to server)
#KeepAlives: 0

Send XCLIENT commands to receiving server
#XClient: off

Address to listen on (defaults to all local addresses on port 10025)
#Listen: 0.0.0.0:10025

This address matches the option specified in main.cf.

The address clamd is listening on
ClamAddress: /var/run/clamav/clamd.sock

This should match the LocalSocket option in the clamd.conf file.

A header to add to all scanned email
#Header: X-Virus-Scanned: ClamAV using ClamSMTP

Directory for temporary files
#TempDirectory: /tmp

What to do when we see a virus (use 'bounce' or 'pass' or 'drop'
Action: drop

Throw away the message.

Whether or not to keep virus files
#Quarantine: off

Enable transparent proxy support
#TransparentProxy: off

User to switch to
User: clamav

Chapter 9

[307]

It is important to make sure that the processes are run as the same user as you use
to run clamd or you may find that each process has problems accessing the other's
temporary files.

Virus actions: There's an option to run a script every time a virus
is found.
!IMPORTANT! This can open a hole in your server's security big
enough to drive
farm vehicles through. Be sure you know what you're doing.
!IMPORTANT!

#VirusAction: /path/to/some/script.sh

We are now ready to perform the start up of the clamsmtpd process. You should
start this as root and verify that the process is present and running with the user
id of clamav.

clamsmtpd

If you have problems starting the service, make sure that the clamd (the ClamAV
daemon) is running, and that it is listening on the socket you specified. You can set
this in clamd.conf using the LocalSocket or TCPSocket directives (be sure that you
only uncomment one of those lines). You should also make sure that the ScanMail
directive is set to on.

Testing e-mail filtering
Viruses, by definition, are things that we would prefer to avoid having any contact
with at all. But in order to be certain that our filtering and detection processes are
working correctly and that we are fully protected, we need to have access to a virus
for testing purposes. Using real viruses for testing in the real world in a production
ready environment is rather like setting fire to the trash can in your office to see
whether the smoke detector is working. Such a test will give meaningful results, but
with unappealing risks and unacceptable side effects. Therefore, we need our EICAR
test file that can safely be mailed around and which is obviously non-viral, but which
your antivirus software will react to as if it were a virus.

Testing mail-borne virus filtering
The first test is to check that you can still receive mail.

$ echo "Clean mail" | sendmail $USER

You should receive your mail with the addition of the following line in the header:

X-virus-scanned: ClamAV using ClamSMTP

Antivirus Protection

[308]

If you did not receive the mail, check the system, postfix, and clamd log files. If
necessary, you can also stop and restart the clamsmtpd daemon with the -d 4
option for extra debugging output.

The second simple test of scanning for mail-borne viruses can be performed by
simply sending yourself a copy of the EICAR virus as an e-mail attachment.

The sample EICAR virus file must be created as an attachment to an e-mail. The
following command chain from the Linux command prompt will send a very
simple uuencoded attachment copy of the virus-infected file.

$ uuencode testvirus.txt test_virus | sendmail $USER

If everything is working and configured correctly, you should not receive the mail,
as clamsmtp was instructed to drop the message. The absence of the message does
not prove everything is working, so check the system or postfix log files for an entry
similar to the following:

Jul 8 19:38:57 ian postfix/smtp[6873]: 26E66F42CB: to=<ian@example.
com>, orig_to=<ian>, relay=127.0.0.1[127.0.0.1]:10025, delay=0.1,
delays=0.06/0/0.04/0, dsn=2.0.0, status=sent (250 Virus Detected;
Discarded Email)

This proves the simple case of detecting a straightforward attachment containing
a virus.

Of course, in the real world, viruses are slightly more clever than your average e-
mail attachment. Thorough testing is required to be sure that the filtering is set up
correctly. Luckily, there is a website (http://www.gfi.com/emailsecuritytest/)
available to send e-mails to you that contain the EICAR virus encoded within e-mails
in a wide range of ways. Currently it supports 17 individual tests.

Thorough e-mail-borne testing
The site http://www.gfi.com/emailsecuritytest/ requires you to register the
e-mail address you wish to test and sends a confirmation e-mail to that address. In
this e-mail is a link to follow that confirms that you are the valid user in control of
that e-mail address. You are then able to send any or all of the 17 virus and e-mail
client exploit tests to this e-mail address. If any of the virus bearing e-mails end up
unfiltered in your inbox, then the installation has failed.

Chapter 9

[309]

However, there are some test messages on the site that are not strictly
viruses and so are not detected by the ClamAV process. This is because
the messages do not themselves contain viruses and so there is nothing
to find and therefore, nothing to stop.
By definition, ClamAV traps only malicious code. The gfi
(http://www.gfi.com/emailsecuritytest/) site sends this type
of test messages. The nature of these messages is that they have some
malformed MIME tags that can fool Outlook clients. It is not the job of an
antivirus program to detect such messages.

Automating update of virus data
ClamAV is provided by volunteers, and the servers and bandwidth that are used
to enable the software and virus database to be distributed are voluntarily funded.
As such, it is important to ensure that there is a balance between the frequency
of checking for updates to maintain an up-to-date database and overloading the
various servers.

The ClamAV group recommends the following: If you are running
ClamAV 0.8x or higher, you can check for database updates as often
as four times per hour provided you have the following option in
freshclam.conf: DNSDatabaseInfo current.cvd.clamav.net.
If you don't have that option, you must stick with one check per hour.

Setting up auto updating
The virus database files for ClamAV can be downloaded from the ClamAV servers
in a variety of ways. This includes using automated or manual tools such as
wget. However, this is not the preferred way of doing the updates.

The freshclam utility we installed earlier with ClamAV is the preferred method to
perform updates. It will download the latest antivirus database automatically on a
regular basis. It can either be set up to work automatically from a cron entry or from
the command line, or it can run as a daemon process and handle its own scheduling.
When freshclam is started by a user with root privileges, it drops the special
privileges and switches user ID to the clamav user.

Antivirus Protection

[310]

freshclam uses the capabilities of the DNS system to obtain details of the latest
version of virus database that is ready to be downloaded and where it can be
obtained from. This can significantly reduce the load on your own as well as remote
systems, as in most cases the only action performed is a check with the DNS server.
Only if a newer version is available, it will attempt to perform a download.

We are now ready to start the freshclam process. If you have decided to run it as a
daemon process, then simply execute the following command:

freshclam –d

Then check that the process is running and that the log file is being
updated correctly.

The other method available is to use the cron daemon to schedule the freshclam
process to run at a regular period. To do this, you will need to add the following
entry to the crontab file for either the root or the clamav user:

N * * * * /usr/local/bin/freshclam –quiet

N can be any number of your choice between 1 and 59. Please don't
choose any multiple of 10, because there are already too many servers
using those time slots.

Proxy settings are only configurable via the configuration file, and freshclam
will require strict read-only permissions for the owner of the config file when
HTTPProxyPassword is enabled. For example,

chmod 0600 /etc/freshclam.conf

The following is an example of proxy settings:

HTTPProxyServer myproxyserver.com
HTTPProxyPort 1234
HTTPProxyUsername myusername
HTTPProxyPassword mypass

Automating startup and shutdown
If you installed any or all of the ClamAV and ClamSMTP components via a package
manager rather than from source, the necessary startup scripts may have been
provided. Check to see if the necessary scripts have been included in the boot
startup sequence.

Chapter 9

[311]

If you have installed ClamAV from the source code, the following scripts are
examples for starting and stopping the necessary daemons at boot time. Depending
on your distribution, the file locations may vary and you may need to execute
additional commands to set run levels for each script. Please consult your
distributions documentation.

ClamSMTP
One of the contributed scripts that are available in the ClamSMTP sources is a script
to be used for automatically starting and stopping the operating daemon when the
system is booted. Check that the path names in the script match those in the config
file and the installed directory, and then execute the following command from the
root of the ClamSMTP source tree:

cp scripts/clamsmtpd.sh /etc/init.d/clamsmtpd

After copying the file, make sure that the script has execute permissions and is not
modifiable by anyone other than the system root user.

ls -al /etc/init.d/clamsmtpd

-rwxr-xr-x 1 root root 756 2009-07-09 15:51 /etc/init.d/clamsmtpd

Add the script to the system startup.

update-rc.d clamsmtpd defaults

ClamAV
Next is an example script to start and stop the clamd and freshclamd daemons at
boot time. As before, verify the path names, adapt the script to your needs, and copy
the script to the system initialization directory before adding it to the system startup.

If freshclam is run as a cron job, rather than as a daemon, then remove the lines that
start and stop the freshclam process from the script.

#!/bin/sh

Startup script for the Clam AntiVirus Daemons

[-x /usr/local/sbin/clamd] || [-x /usr/local/bin/freshclam] ||
exit 0

See how we were called.
case "$1" in
 start)

Antivirus Protection

[312]

 echo -n "Starting Clam AntiVirus Daemon: "
 /usr/local/sbin/clamd
 echo -n "Starting FreshClam Daemon: "
 /usr/local/bin/freshclam -d -p /var/run/clamav/freshclam.pid
 ;;
 stop)
 echo -n "Stopping Clam AntiVirus Daemon: "
 [-f /var/run/clamav/clamd.pid] && kill `cat /var/run/clamav/
clamd.pid`
 rm -f /var/run/clamav/clamd.socket
 rm -f /var/run/clamav/clamd.pid
 echo -n "Stopping FreshClam Daemon: "
 [-f /var/run/clamav/freshclam.pid] && kill `cat /var/run/
clamav/freshclam.pid`
 rm -f /var/run/clamav/freshclam.pid
 ;;
 *)
 echo "Usage: clamav {start|stop}"
 ;;
esac

Monitoring log files
It is important to monitor the log file on a regular basis. Here you will be able to
track the regular updating of the virus database and make sure that your system
is as well protected as possible.

Regular update messages should appear similar to the following:

Occasionally new software will be released and will need to be updated. In this case,
you will get warning messages in the log file, such as the following:

Chapter 9

[313]

In cases when there are Internet connection problems or the remote files themselves
are unavailable while being updated, the process may log transient error messages.
No action needs to be taken provided that these errors do not persist.

Disinfecting files
A common request is for files to be disinfected automatically before being forwarded
on to the final recipient. In the current version (0.95), ClamAV cannot disinfect files.
The following information is available from the ClamAV documentation.

We will add support for disinfecting OLE2 files in one of the next stable releases.
There are no plans for disinfecting other types of files. There are many reasons for
it: cleaning viruses from files is virtually pointless these days. It is very seldom that
there is anything useful left after cleaning, and even if there is, would you trust it?

Summary
We have now installed and configured a very efficient antivirus system for checking
all incoming e-mails for infected attachments, and have significantly secured our
systems—both the server and the workstation—against attack.

Our Mail Transport Agent, Postfix, can now filter all messages using the ClamAV
daemon via the ClamSMTP content filtering interface, to scan and detect a wide
range of threats against a database of virus signatures. Using freshclam, we have
ensured that our detection database has been kept up-to-date to guard against
the latest threats and any new viruses released. Constant vigilance is still required
to make sure that software and files are always kept totally up-to-date in this
ongoing battle.

Backing Up �our System
In order to recover from catastrophic loss of service in case of a major hardware
or software malfunction, it is absolutely essential to have a backup. The backup is
supposed to let you restore the software (or rather the software's configuration) and
other data that you need to reestablish your service. This includes the users' mails,
the system's mail queue, and their authentication data among other things.

This chapter will guide you through the steps necessary to safeguard your system
from failure and, if failure occurs, how to recover from it. After reading through this
chapter you will know:

What backup options are available
What data we need to back up
The storage considerations for our backup media
How to perform incremental and full backups for the mailboxes
The steps required for a complete file system restore
How to restore an individual e-mail
How to backup our server configuration
Setting up automated backup schedules

Backup options
Choosing the most appropriate backup option is always a trade-off. You have to
juggle the cost of downtime to a business, the price and availability of backup media
and hardware, the value of user data (in our case, users' e-mails), and the staffing
costs to manage the backup operations.

•

•

•

•

•

•

•

•

Backing Up Your System

[316]

For our small office e-mail server, we are going to present a simple but reliable
solution, using tried and trusted techniques and tools employed by numerous
administrators over many years.

Any backups we take need to be stored on backup media. The most convenient
solution is to have a spare Linux machine, with a number of hard drives, networked
to our e-mail server, preferably located in another building. Storing backups off site
is essential if we want to protect ourselves from a catastrophic event such as fire.

If a remote server is not available, an alternative could be some hot-swappable
external hard drives connected to the server, or even, in a pinch, a DVD burner.
Magnetic tape drives are also an option, but often the cost of the tape drive and
media is greater than the server. If removable media is the only option then don't
leave the backups stacked on top of the server or in a desk drawer, move them to a
safe off site location. It may be convenient to retain a local copy of the latest backup
media on site to respond more quickly to urgent recovery situations.

RAID
RAID is an acronym for a Redundant Array of Inexpensive (or Independent)
Disks. By using multiple disks in a RAID setup, data is spread across the disks, but
the array is viewed by the operating system as a single device. By replicating and
dividing the data throughout the array, the tolerance to disk failure can be reduced
significantly, increasing data reliability and possibly I/O performance. If a hard disk
fails in the array, the old disk can be swapped out and replaced with a new disk. The
RAID controller, either a hardware or software controller, then reconstructs the data.
For more information on RAID and the various configuration options available, visit
http://en.wikipedia.org/wiki/RAID.

However, RAID, by itself, is not a backup solution. A file or e-mail that has been
deleted, whether accidentally or maliciously, cannot be recovered. RAID does not
protect from user error or serious hardware failure such as a power surge that fries
the server or even fire damage.

Increasing data availability using RAID is a good thing, but is not an alternative to a
proper backup and recovery strategy.

Image backups
A disk image backup program will copy data from a hard disk, sector by sector with
no regard to any files or structure on the disk. The backup is an exact image of the
disk—the master boot record, partition tables, and all data.

Chapter 10

[317]

In the event of a major hardware failure, the steps to restore a system are as follows:

1. Replace or repair failed hardware.
2. Boot a Linux live CD containing the disk image restore program.
3. Write the image of each disk from the backup.
4. Reboot.

Superficially, this looks like an attractive and quick approach to restore service
quickly and easily. However, there are number of problems inherent in using disk
images for backup.

Restoring a disk image to a new disk of a different size or geometry is often
not possible.
The new hardware will almost certainly be of a different configuration
(motherboard, network card, disk controllers, and so on.), and the restored
Linux kernel may not have the necessary drivers to boot successfully.
Disk images are big. The image is the total size of the disk, not just the size
of the data stored on it. The space requirements of multiple disk images
soon adds up.
Recovery of an individual user file is quite cumbersome. The disk image
would need to be restored to a spare disk, mounted on a running system
and, once found, copied to the desired location.

Total system failures happen rarely and the perceived convenience and speed of an
image restore is often outweighed by the flexibility of file system backups.

File system backups
Unlike image backups, file system backups understand the structure of the file
system and consequently the data on the hard disk. Therefore, only the allocated
portions of the disk are copied and the free space is not copied. The backup is for
all files in the file system rather than sector by sector.

Because file system backups are done this way, it means that it is possible to
copy only the files that have changed since the last backup, resulting in smaller
subsequent backup files.

•

•

•

•

Backing Up Your System

[318]

In the event of a major hardware failure, the steps to restore a system are as follows:

1. Replace or repair failed hardware.
2. Install the Linux distribution.
3. Install the mail server applications in this book.
4. Apply any patches.
5. Restore application configuration data backups.
6. Restore user data backups.
7. Reboot

Compared to image backups, this approach will take slightly longer and involves
more steps, but does have a number of advantages.

Replacement disks need not be of the same size or geometry.
As long as your Linux distribution supports the new hardware, there are no
compatibility issues.
Backup file sizes are much smaller.
Restoration of individual files is much simpler.

As mentioned before, major system failures are not that common. Although the steps
to complete a full restore are a little more cumbersome than image backups, the
advantages of smaller and faster backups along with the ease of selective restoration
of user data are significant.

To reduce the likelihood of an unexpected disk failure, system tools are
available to monitor the health of disk drives. For more information, visit
http://en.wikipedia.org/wiki/S.M.A.R.T..

Ad hoc backups
File system backups back up whole file systems only, not individual files or
directories. Occasionally we may wish to take a copy of just a few files after a
significant configuration change to one of our applications.

Using standard Linux tools such as tar or cp, important changed files can be copied
to a directory on a file system that is part of the normal backup schedule.

•

•

•

•

Chapter 10

[319]

What to back up
The big question always associated with backups is, "What should we back up?"

There are many things that contribute to our final decision. Of course, we want to
back up our server's configuration because it is essential to our server's functionality.
But we also want to back up the users' data because it is a valuable asset to our
business. Is there a company policy that says people may use e-mail for private
communication? If there is, should we back up those messages as well?

We should only back up what we need to restore the system to a functional state.
This saves space on the backup media and shortens the time required to perform
a backup and restore if necessary.

After all, the space on any backup media is limited and thus precious. It is more
important to back up all the users' mails than to have a complete backup of the /tmp
directory. Also, the less data we back up, the less time is required to perform the
backup, thus returning our system's resources (CPU cycles, I/O bandwidth) more
quickly to their main purpose—handling users' mails.

The following is list of items we need to backup to get a working system:

System inventory
Installed software that the services require
Software configuration files
Users' credentials
Users' mailboxes
Log files (for billing purposes and end user requests)
Postfix mail queue

The following sections describe each of these items discussed.

System inventory
In the event of a partial or total hardware failure, it is useful to make a note of our
current system layout. In most cases, replacement hardware will often be as good as,
if not better, than our current setup. In order to restore our system, we will need to
know how disks are partitioned and how the mount points organized. It would be
difficult to restore our users' data onto a disk that is too small.

•

•

•

•

•

•

•

Backing Up Your System

[320]

Using the output from following commands, we will have enough information to
recreate our disk layout:

fdisk -l > disk_layout.txt

This command prints out the partition table for each disk and saves the output
to a file.

df -h >> disk_layout.txt

This command appends the capacity and usage of each mount point to our file.

mount >> disk_layout.txt

The mount command lists the current mount points, which we append to the file.

Additional information may be in the file /etc/fstab, which we will backup later.

Obtaining a list of installed software
In order to restore our installed software, we need to have a list of software
currently installed.

In Debian, this is given by the following command. The installed_software.txt file
contains the current state of which software on the system is installed/not installed.

dpkg --get-selections > installed_software.txt

With an RPM-based distribution, that would be:

rpm -qa > installed_software.txt

In a Debian-based system, this file can later be used to install the same set
of software.

dpkg --set-selections < installed_software.txt

dselect

In the dselect utility, select i for install and then confirm the installation.

With an RPM-based distribution, that would be:

yum -y install $(cat installed_software.txt)

The commands just discussed list only the software installed via a
package manager. If you have installed software from source, then
make a note of the application and version you installed.

Chapter 10

[321]

System configuration files
The server will not perform its expected duties without these. As a minimum, the
configuration files that need to be backed up are:

/etc/courier: This directory holds Courier-IMAP's configuration data.
/etc/postfix: This directory holds Postfix's configuration data.

The directory tree /etc includes items such as network settings, routings, and much
more, which we would otherwise need to memorize. It is recommended to backup
the whole /etc tree.

If you have installed software from source with configuration files
in non-standard locations, be sure to include those configuration
files in your backup candidate list.

Authentication data
Users cannot authenticate themselves using their username and password
combination without this. The data that needs to be backed up depends on the way
the authentication is done and would include three files—/etc/passwd, /etc/
shadow, and /etc/group, along with a MySQL database (if the users' credentials
are stored in that database).

The users' mailboxes
This is where the users' mails are stored. This includes the whole directory tree
of /home and below. This is the bulk of our backup—vast amounts of data.

Log files
We should at least store the logs generated by Postfix and Courier. These will be
needed to process user requests such as, "Where did my mail go?". If users are billed
based on mail volume sent and/or received, we will definitely need a backup of
Postfix's logs.

As Postfix's and Courier's logs are normally written by the system's syslogd
daemon, we need to check the /etc/syslog.conf file to see where these logs go.
Both programs log their messages with the syslog mail facility.

To ensure complete coverage, it is wise to back up the whole directory tree
of /var/log.

•

•

Backing Up Your System

[322]

The mail queue
It may or may not make sense to back up the Postfix queue of a working system,
depending on the situation.

With Postfix, e-mail messages hit the disk at least twice.

The first time that the e-mail messages hit your drive is when they are being
accepted by Postfix; they are written to Postfix's queue_directory before
delivery continues.

More disk I/O may be generated by a virus scanner or a program
that detects spam (for example, clamav and spamassassin).

If it's mail for local domains, our server is the final destination for these mails
and their lifespan in the queue_directory is extremely short. They hit the
queue, just to be delivered to the user's mailbox immediately afterwards.
That's the second time they hit the disk.
If it's mail that goes to other domains (because the server acts as a relay), then
Postfix will immediately contact the recipient's mail server and try to deliver
the message there. Only in case of problems will the queue ever contain a
significant number of e-mails not yet delivered. These problems are:

The content_filter is slow or not operational: For example,
clamsmtp or any other product.
Remote sites have problems: Large free e-mail providers
often have problems and thus may not be able to accept our
e-mails immediately.

In both these cases, the deferred queue will fill up with mail that's still to be
delivered and that should obviously be backed up in case of a failure. If the server
is very busy, there may be quite a bit of deferred mail in the queue.

The Postfix mail queue includes the directory tree /var/spool/postfix and below.

What not to back up
We do not need to back up all of the installed binaries as these can simply be
reinstalled using the aforementioned "list of installed software". Of course this
assumes that the installation media is available when we need to reconstruct our
system. As security conscious administrators, we keep our system up-to-date by
installing the vendors' patches. Over the course of time, the versions of the installed

•

•

•

°

°

Chapter 10

[323]

and subsequently patched software will differ significantly from the versions that
came on the installation media. If these updates can be installed via the Internet
(for example using Red Hat's up2date or Debian apt-get), we don't have to keep
them on site.

So, we don't just need the installation media, but also a complete set of updates, as
the configuration of our installed software may work only with the latest, greatest
patched version.

Backing up users' e-mail
We will be using dump to backup the whole partition containing our mailboxes. The
dump command copies files on a file system to a specified disk, tape, or other media.

Some of the reasons for using it are:

It is incredibly fast (in my tests, the network is the bottleneck)
It is simple (one command suffices)
It can run unattended (for example, as cron job)
It does not need any additional software to be installed
It does not need a GUI
It is very mature having been around since AT&T UNIX Version 6,
circa 1975

The restore command performs the opposite of dump. A backup of a file system
taken using dump can be restored as the complete file system or you can selectively
restore certain files or directories.

Mail storage
We recommend putting the mailboxes (/home) on a separate partition for
many reasons.

File system maintenance can be performed independently from other parts
of the system (simply unmount /home, perform an fsck, mount it again).
It is possible to put that partition on a separate disk or on a RAID, thus
separating the users' I/O (on that partition) from the system's I/O
(logs, mail queue, virus scanner).

•

•

•

•

•

•

•

•

Backing Up Your System

[324]

Most important of all:

Using dump/restore, we can dump whole partitions. (OK, that's not entirely
true, but a dump/restore is done easily only with whole partitions.)
An overfull partition containing the mailboxes will not negatively influence
the system's ability to write log files or other important system information.
If all the data (logs, mailboxes, the system files) were on a single partition,
filling this partition would cause logging to stop.

Both Courier and Postfix use the Maildir format for users' mailboxes. They store each
piece of mail as a separate file allowing easy restore operations even for single mails.

Backup operations are very easy with the Maildir format.

"Back up an e-mail" corresponds to "back up a file to the backup media".
"Restore an e-mail" corresponds to "restore a file from the backup media".
"Back up a mailbox" corresponds to "back up a Maildir and all its
subdirectories to the backup media".
"Restore a mailbox" corresponds to "restore a Maildir and all its
subdirectories from the backup media".

Using dump
There are basically two approaches to backing up data. The simple method stores
all data, whenever we perform a backup. This is called a full backup. Its advantage
is the simplicity, and its main disadvantage is the sheer amount of data that needs
to be stored on the backup media. This problem is addressed by the concept of the
incremental backup. An incremental backup saves the changes only since the last
incremental (or full) backup.

If the space on the backup media allows for a full backup everyday, we can do that
for the sake of simplicity. That way we only need to look at the last intact backup to
restore all the data.

Incremental backups are simple. The backup software needs to back up only those
files and directories that have recently been created or changed since the last backup.

If the space doesn't allow for that simple solution, we could use this scheme instead:

Perform a full backup every week
Do six incremental backups, one each day

•

•

•

•

•

•

•

•

Chapter 10

[325]

If we need to restore from scratch, restore the last full backup, then restore up to six
incremental backups. That way we lose at most one day of mail—which is as close
as we can get with a daily backup interval. Later we shall see more sophisticated
incremental backup strategies to reduce the number of incremental restorations
required after restoring a full dump.

For detailed information on dump(8) and restore(8) see the system manual pages.

We shall now look at the actual task of backing up the mailboxes using the
dump command.

Full dump
We're now about to perform a full backup of the partition containing our users'
Maildirs. In this example, this partition will be /dev/sdb1 (the first partition of
our SATA disk). So, we will want to back up /dev/sdb1.

To find out which partition we need to back up on our system, we need to examine
the output of the mount command:

mount

/dev/sda1 on / type ext3 (rw,relatime,errors=remount-ro)
tmpfs on /lib/init/rw type tmpfs (rw,nosuid,mode=0755)
/proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
varrun on /var/run type tmpfs (rw,nosuid,mode=0755)
varlock on /var/lock type tmpfs (rw,noexec,nosuid,nodev,mode=1777)
udev on /dev type tmpfs (rw,mode=0755)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=620)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
lrm on /lib/modules/2.6.27-14-generic/volatile type tmpfs
(rw,mode=755)
/dev/sdb1 on /home type ext3 (rw,relatime)

As we can see, /home is the partition of /dev/sdb1.

Our plan is to use the dump tool to create the backup for this partition. This backup
data needs to go to our backup medium, which could be another disk, a tape or, in
our case, a disk in the remote backup server.

There are various methods to get data across the network, one of them being ssh. It
is a network protocol that facilitates secure communications between two devices.

To get our backup data across the network onto another disk in the backup server,
we use the power of Linux to marry the dump program and ssh protocol.

Backing Up Your System

[326]

The output of the dump program will be fed into gzip to compress the dump, then
fed to ssh, which in turn spawns another program dd on the backup server to finally
write that data onto its disk.

The following lines of code give a full dump of the partition containing the
mailboxes to a file on a remote system. We are assuming that the mailboxes
are on the partition /dev/sdb1 mounted as /home.

As root, run the following commands:

dump -0 -u -b 1024 -f - /dev/sdb1 | \
 gzip -c | \
 ssh user@backup-host.domain.com \
 dd of=/backupdirectory/$(date +%Y%m%d%H%M%S).home.dump.0.gz

The command looks complicated, so let's break it down in each of the steps:

dump -0 -u -b 1024 -f - performs a level 0 (full) dump of the partition
/dev/sdb1 (which contains /home in our example) using a block size of 1024
(for maximum performance) and updates (-u) the file /var/lib/dumpdates
after the dump had been successful. The -u option is important because it
records the date and time of this dump, so subsequent incremental dumps
can determine which files have been changed or created since the last dump.
The output of the dump goes to a file (-f) specified as (-), which indicates
stdout, the standard output.
As the dump data goes to standard output (stdout), we can pipe that output
into gzip to compress the size of the dump. The -c option tells gzip to write
the compressed output to stdout.
The compressed level 0 dump output is then piped to the ssh command,
which makes a remote connection to the system backup-host.domain.
com logging in as user. Once logged in, the remote system executes the dd
command. We recommend the use of the key-based authentication scheme
that ssh offers. This way, the backup can run unattended, as nobody has to
enter the password needed to log in as user on backup-host.domain.com.
On the remote server, the final step is to write the output using the dd
command. The output filename is specified by the of option to dd. The
output filename has been constructed in such a way as to easily identify the
file system, the date and time the dump was taken, the level of the dump,
and the suffix .gz to indicate that this dump file has been compressed. The
filename portion $(date +%Y%m%d%H%M%S) is a shell expansion performed
on the local system (not the remote system) to output the current date and
time in YYYYMMDDHHMMSS format. The final output filename will be something
similar to 20090727115323.dump.0.gz.

•

•

•

•

Chapter 10

[327]

For more information on each of the commands, see the system manual pages for
dump, gzip, ssh, dd, and date.

The output will look similar to the following:

This next example will simply write the backup data to a directory—no stdout
wizardry this time!

The following lines of code give a full dump of the partition containing the
mailboxes to a file on a separate disk to hold the backups:

dump -0 -u -f /backupdirectory/fulldump /dev/sdb1

This is, of course, much faster and simpler than sending all the data across the
network via ssh with the data encryption and decryption carried out during the
transit (which takes a lot of time and CPU power), but if our server is burnt to
cinders, a backup on a built-in hard drive won't help at all.

Keep in mind that /backupdirectory/fulldump can also be an NFS mount or an
SMB mount. This would give you both, the advantage of a simple command line
and an off site backup. So, make sure you do have an offsite backup. It's easy
enough either way.

Backing Up Your System

[328]

Incremental dumps
Incremental dumps are performed in exactly the same way as a full dump except
that we change the level option from 0 to either 1, 2, or 3, and so on depending on
how many changes we wish to back up. Remember, a level number above 0 tells
dump to copy all files new or modified since the last dump of a lower level. This
is best illustrated with some examples. For clarity, we shall be simply dumping to
a file, but in practice we would normally use the same sequence of commands as
discussed using gzip, ssh, dd, and so on.

Let's assume our level 0 dump was taken on Sunday night. The first incremental
dump (level 1, indicated by the -1 option) is then taken on Monday night like this:

dump -1 -u -f mon.dump.1 /dev/sdb1

This saves everything that is new or has changed since the last full dump to
mon.dump.1. This dump file will be much smaller than the previous full dump
containing only the changes made on Monday. Assume, on the following day
we repeat this level 1 dump

dump -1 -u -f tue.dump.1 /dev/sdb1

The second incremental dump, tue.dump.1, will contain all the changes made on
Monday and Tuesday because a level 1 dump will back up everything that has
changed since the level 0 dump. In order to recover the system back to the latest
backup, we would have to restore only Tuesday's backup. Therefore one might
consider that the dump taken on Monday is now obsolete; however, should a user
wish to recover a file created on a Monday and accidentally deleted on a Tuesday,
our first backup is still required.

Repeatedly performing level 1 dumps allows for very quick recovery as only two
dump files need to be restored, the level 0 dump and the latest level 1 dump. The
downside is that each subsequent dump file grows in size and takes longer and
longer to complete. This scheme is sometimes called differential backup.

An alternative is to use additional dump levels to reduce the size of each backup file.

For example, the following sequence of commands perform a number of incremental
backups after our initial level 0 dump:

dump -1 -u -f mon.dump.1 /dev/sdb1
dump -2 -u -f tue.dump.2 /dev/sdb1
dump -3 -u -f wed.dump.3 /dev/sdb1
dump -4 -u -f thu.dump.4 /dev/sdb1

Chapter 10

[329]

In this example, each day's dump file contains only the new and changed files since
the previous dump. Each dump operation from Tuesday onwards will complete
more quickly and result in smaller file sizes than in our previous example. However,
recovery will take longer. To recover to the latest backup, we would need to restore
our full dump, then restore each of the incremental dumps from Monday through
Thursday in order.

Trying these examples on a small temporary file system might be a useful exercise in
order to understand the interaction between different levels of dumps. Each dump
file can be examined using the following command:

restore -t -f filename

For the curious, the file /var/lib/dumpdates can also be examined after each dump
to verify the date and level of each dump.

As was stated at the beginning of this chapter, everything is a trade-off, so choosing
the appropriate backup strategy involves balancing media costs, personnel costs, and
recovery time.

So far, all of our backups have been performed with the disks mounted, which makes
verifying the backup impossible. The reason for this is that data we were just backing
up is constantly in flux. Remember that each file represents an e-mail. Whenever
a user gets new mail or deletes old mail, the state of the file system changes. Users
constantly get mail, read mail, and delete mail, even when they're about to perform
a backup.

The restore command does have the -C option to compare a dump with the
original disk contents, but this is sensible only if the file system we are dumping is
unmounted. In most cases, unmounting each file system is not practical and would
interrupt service significantly.

Using restore
All the data that has been backed up will need to be restored before it can be used.

This can be done in two ways, interactively or non interactively.

Backing Up Your System

[330]

Interactive restore
To restore data from a dump interactively, we need to copy the dump from our
backup media onto our system or perform the selection of files to restore on the
computer we stored the dump in. If we are extracting only a few files, this can be
performed in a temporary directory and the resulting files can be moved to the
correct location once the restore has been completed. For larger numbers of files, for
example a whole user account, we can cd to the ultimate destination before starting
the restore.

For an interactive restore, run the following command:

restore -i -f /backupdirectory/subdir/dumpfile

>

The > is the prompt of the interactive interface to restore. It is a spartan interface with
limited commands available. It allows navigation through the dump as if we were
on a live file system. Use ls and cd to show directory contents or change directories.
Issue ? to get a list of supported commands.

Once we have found the data we want to restore, type either of the
following commands:

> add directoryname

> add filename

This adds the particular directoryname and all data below it, or just the filename
to the set of files that need to be restored. Repeat for additional files or directories.

Once we are done with adding all the data that needs to be recovered, we issue the
extract command.

The output shown in the previous screenshot relates to volume numbers on magnetic
tape. A dump file may have been split over a multi-volume tape set, but when
dealing with dump files on hard disk, choose volume 1. We would normally select n
to retain the current ownership and permissions of the working directory.

•

•

Chapter 10

[331]

Once the necessary files have been extracted, issue the following command:

> quit

Do this with the last full dump and each incremental dump in order, up to the last
incremental dump available. This makes sure that we restore all changes since the
last full backup.

If the data we are restoring hasn't changed between two dumps,
we will not find it in the second incremental dump at all.

Non-interactive restore across the network
The manual approach makes sense if we want to restore just a few mailboxes. If
we want a complete recovery of all mailboxes, we need to use the non-interactive
scheme. This doesn't need additional storage space on the target system, as the
dump data is being piped across the network.

Recreate the file system on our newly installed, freshly partitioned hard disk and
mount it:

mke2fs -j /dev/sdb1

mount /dev/sdb1 /home

The -j option to mke2fs creates a ext3 journaling file system on /dev/sdb1 and it's
mounted as /home.

Please note that we need to recreate the data using the same file system you used
when creating the backup!

Let the restore begin.

cd /home

ssh user@backup-host.domain.com \

 dd if=/backupdirectory/20090601030034.home.dump.0.gz | \

 gunzip -c | restore -r -f -

Just like when we performed the backup across the network, we now do the same
with the restore.

ssh user@backup-host.domain.com

Backing Up Your System

[332]

The previous line executes the following command as the user on the backup-host.
domain.com host, although this time with the dd command using the if option to
read the compressed dump file and sending the output to stdout.

dd if=/backupdirectory/20090601030034.home.dump.0.gz

The output is piped across the network and fed into gunzip to uncompress the file
and ultimately piped to restore -r -f -. The -r option instructs restore to rebuild
the whole file system from the dump file's contents to the original locations using the
original permissions and ownerships. If you wish, you may use the -v option with
restore for verbose output.

It is necessary to ensure we are located in the correct directory before
issuing the restore command, otherwise serious damage may occur
to an existing file system.

The output from the restore will look something like this:

ssh backup@nas1 dd if=backups/20090727153909.home.dump.0.gz \
 | gunzip -c | restore -r -f -
restore: ./lost+found: File exists
1629153+1 records in
1629153+1 records out
834126574 bytes (834 MB) copied, 71.4752 s, 11.7 MB/s
#

The warning about the existence of lost+found is normal and can be safely ignored.

This operation should then be repeated for each incremental dump file that is
required to return the system to the required state. If we restore the incremental
dumps in the wrong order, we will get the error "Incremental tape too low" or
"Incremental tape too high". Once we have received one of these errors, we cannot
complete the full restore and must restart the restoration from the level 0 dump.

When using the -r option to the restore command, it will create the file
restoresymtable. This is a checkpoint file that the restore command uses when
we are restoring multiple dumps as an aid to help the next restore command
determine which directories or files need updating, creating, or deleting.

Once the file system has been completely restored and verified, we should
remove the restoresymtable file. If this file is included in the next dump, the old
restoresymtable file could end up overwriting the one that is being created at that
time and prevent additional dumps from being restored.

As the final step, perform a level 0 dump of the newly restored file system.

Chapter 10

[333]

Backing up configurations and logs
There are two approaches to the backup of configuration data and important
log files.

Store the data on our backup media: Using this method, we will back up
directly to our backup server.
Add the data to our backup schedule: This approach will include the
necessary files as a part of our user data backup.

Either case is equally valid and is really a matter of personal preference.

As a reminder, earlier we made a list of the important parts of the system that
require backup. These were:

Important part of the system Example command
System inventory disk_layout.txt

List of installed software installed_software.txt

System configuration files /etc

Authentication data /etc/password /etc/
groups /etc/shadow

Log files /var/log

Mail queue /var/spool/postfix

As each system is different, you should ensure that the example commands given
next cover all the necessary files.

Transferring configurations and logs to
backup media
To keep it simple, we just use the tar tool to create an archive of the files and
directories listed previously, and store it in the same directory as the full or
incremental dumps on the backup server:

tar cz disk_layout.txt installed_software.txt \
 /etc /var/log /var/spool/postfix | \
 ssh user@backup-host.domain.com \
 dd of=/backupdirectory/$(date +%Y%m%d%H%M%S).config.tar.gz

•

•

Backing Up Your System

[334]

Alternatively, we can create the tar archive on the /home file system and have it
backed up as part of our normal backup schedule.

mkdir -p /home/config

chmod 600 /home/config

tar czf /home/config/$(date +%Y%m%d%H%M%S).config.tar.gz \
 disk_layout.txt installed_software.txt \
 /etc /var/log /var/spool/postfix

In both cases, we use the tar command with the options c to create an archive, z to
compress, and f as the output archive name. Also note that we have restricted access
to the /home/config directory as it contains archives with sensitive information that
should be protected.

For more information on tar, please see the system manual pages.

Restoring the configuration
Depending on the method used earlier, restoring our configuration and log files is
relatively simple. We can either copy the required archive from the backup server or
use the archive directly from /home/config. In either case, untarring the archive is
performed using the following commands:

mkdir tmpdir

cd tmpdir

tar xzf xxxxx.config.tar.gz

Note that we have created and moved into a temporary directory before expanding
the archive. If our current directory was / when we executed the tar command, we
would have overwritten all the files in /etc, /var/log, and /var/spool/postfix
with potentially undesirable results.

Now that we have untarred the archive, we can compare and copy the files we need
to restore.

Automating backups
Now that we have seen how to back up our system, we need to put in place an
automated procedure to remove the drudgery of manually invoking dump at
regular intervals.

Chapter 10

[335]

The manual pages for dump do provide some guidance on how often to back up and
at which level to reduce restoration time.

In the event of a catastrophic disk event, the time required to restore all the
necessary backup tapes or files to disk can be kept to a minimum by staggering
the incremental dumps. An efficient method of staggering incremental dumps to
minimize the number of tapes follows:

Always start with a level 0 backup. This should be done at set intervals, say once a
month or once every two months, and on a set of fresh tapes that is saved forever.

After a level 0, dumps of active file systems are taken on a daily basis, using a
modified Tower of Hanoi algorithm, with this sequence of dump levels:
3 2 5 4 7 6 9 8 9 9 . . .
For the daily dumps, it should be possible to use a fixed number of tapes for each
day, used on a weekly basis. Each week, a level 1 dump is taken, and the daily
Hanoi sequence repeats beginning with 3. For weekly dumps, another fixed set of
tapes per dumped file system is used, also on a cyclical basis.

After several months or so, the daily and weekly tapes should get rotated out of the
dump cycle and fresh tapes brought in.

This sequence of dumps looks rather bizarre and needs a little more explanation.
Working through the process will illustrate how we minimize the size of dumps
taken and reduce the number required to restore.

Once the level 3 dump is taken, restoration is only a matter of restoring the dumps
0 and 3. After the second day, the level 2 dump will back up everything changed
since the last dump at a lower level, that is, level 0. This renders the level 3 dump
ineffective. The level 5 dump then backs up the changes since the level 2 dump. As
the sequence progresses using higher and lower levels to skip days, previous dumps
become ineffective and are no longer required to complete a full restore. Each of the
dumps should still be retained, in case we need to restore individual files deleted by
accident at some later time.

By the end of the week, a level 1 dump is performed rendering all the previous
weeks' dump levels obsolete, and the sequence restarts until the end of the month
when a new level 0 dump is taken.

Backing Up Your System

[336]

The following table illustrates which dump levels are taken for each day and the
number of restorations required to recover the data to the latest version:

Day of month Dump level Restore levels required
1 0 0
2, 9, 16, 23, 30 3 0, 1*, 3
3, 10, 17, 24, 31 2 0, 1*, 2
4, 11, 18, 25 5 0, 1*, 2, 5
5, 12, 19, 26 4 0, 1*, 2, 4
6, 13, 20, 27 7 0, 1*, 2, 4, 7
7, 14, 21, 28 6 0, 1*, 2, 4, 6
8, 15, 22, 29 1 0, 1

During the first week, the level 1 dumps (marked with *) are not required
during the restoration process. From the eighth day, the level 1 dump is
always required.

As we can see from the table, even at the end of a month only a few dumps are
required to restore our data, rather than several dozen when creating incremental
daily dumps.

With our monthly backup schedule, a simple script and the addition of some entries
to cron will complete the automated backup process.

Backup script
The following example bash script will archive our system configuration and log
files, and dump the requested file system to a remote backup server. This is only a
sample script and should be modified to suit your needs. Any error checking and
logging has been omitted for clarity.

#!/bin/sh

The name of the dump, e.g. home or users
NAME=$1

The partition to dump, e.g. /dev/sdb1
DEVICE=$2

The dump level, e.g. 0 or 3 etc.
LEVEL=$3

Chapter 10

[337]

ssh login name and host
#
USERNAME=user
BACKUPHOST=backuphost

Take a system inventory.
#
/sbin/fdisk -l > /tmp/disk_layout.txt
/bin/df -h >> /tmp/disk_layout.txt
/bin/mount >> /tmp/disk_layout.txt

Installed software (Debian)
#
/usr/bin/dpkg --get-selections > /tmp/installed_software.txt

Archive our system configuration and logs
#
/bin/tar cz /tmp/disk_layout.txt /tmp/installed_software.txt \
 /etc /var/log /var/spool/postfix | \
 /usr/bin/ssh $USERNAME@$BACKUPHOST \
 /bin/dd of=$(date +%Y%m%d%H%M%S).config.tar.gz

Perform the dump to the remote backup server.
#
/usr/sbin/dump -u -$LEVEL -f - $DEVICE | \
 /bin/gzip -c | ssh $USERNAME@$BACKUPHOST \
 /bin/dd $(date +%Y%m%d%H%M%S).$NAME.dump.$LEVEL.gz"

Remove temporary files.
#
rm -f /tmp/disk_layout.txt /tmp/installed_software.txt

exit 0

The script expects 3 parameters—the name of the dump, the partition to be dumped,
and the dump level.

The typical usage is as follows:

remote-dump.sh home /home 0

The previous script archives /etc each time it runs. You may wish to move these
commands to a separate script to perform this task weekly or even monthly. This is
particularly important if the script will be used to dump other file systems as well.

Backing Up Your System

[338]

Old dump files from previous months are not removed by the script and could fill
up our backup server preventing future backups. It is prudent to put procedures in
place to either remove or archive old dump files depending on the organization's
data retention policy.

Adding crontab entries
Running our backup script automatically each night is just a matter of using the
entries from our backup schedule table and executing the script to dump the correct
partition. The following example crontab entries execute our script each night at
02:10 to dump /home. On the first of each month, a level 0 dump is performed and
then a weekly level 1 dump is performed every seven days after that. The other
entries implement the modified "Towers of Hanoi" algorithm.

10 02 1 * * /bin/remote-dump.sh home /home 0
10 02 2,9,16,23,30 * * /bin/remote-dump.sh home /home 3
10 02 3,10,17,24,31 * * /bin/remote-dump.sh home /home 2
10 02 4,11,18,25 * * /bin/remote-dump.sh home /home 5
10 02 5,12,19,26 * * /bin/remote-dump.sh home /home 4
10 02 6,13,20,27 * * /bin/remote-dump.sh home /home 7
10 02 7,14,21,28 * * /bin/remote-dump.sh home /home 6
10 02 8,15,22,29 * * /bin/remote-dump.sh home /home 1

Once our automated backup procedure has been put in place, we need to keep an
eye out for any errors and verify the integrity of the dump files on the remote server.

Verifying restoration procedures
Even with the best planning in the world, things go wrong and always at the most
inconvenient moment.

Taking a proactive approach to disaster recovery with good planning and practice
will highlight any problems at an early stage before it is too late. Verifying the
integrity of system backups is only really possible by restoring them and checking
that the restored system is fully operational.

You should ask yourself questions such as, "What actions are necessary if the remote
server fails?" Do you repair the backup server first or switch to another server to
reduce the size of the window without backups? If the mail server fails, are you
familiar with the restoration procedures? Is replacement hardware available at
short notice, for example, on a Sunday?

Chapter 10

[339]

There are many horror stories of administrators diligently taking backups only to
find that when required the backups are useless because of a tape drive error or a
minor syntax error in the backup script that overwrites valid dump files with
bad data.

Invent scenarios for yourself and practice a full bare metal restore on spare
hardware, or the recovery of an individual users' e-mail.

Verifying that your restoration procedures work will give you the confidence that
you can recover from data loss.

Summary
In this chapter, we described how to back up e-mail and the mail server
configuration. We started off with an introduction to what you should consider
worth backing up and ended with a sophisticated solution using automated full
and incremental backups.

In particular, we described the process using the dump command, and how to take
copies of our data. We used the restore command to recover a complete file
system and selective files.

This chapter guides you through the process of backing up and restoring your
server's precious data. It shows why to back up, what data to back up, the different
backup and restore methods, and a procedure to take automatic daily backups.

After implementing all the procedures we have shown you in this chapter, you will
sleep a lot better and, in any case, your users will love the range and functionality
your system can offer.

Index
Symbols
${VAR:+value} separator 205
${VAR: -value} separator 205
${VAR+value} separator 205
${VAR-value} separator 205
${VAR}iable * command 205
$ make install command 27
$ make upgrade command 27
$VAR command 205
%p macro 155
%r macro 155
%u macro 155
%v macro 155
* 185
> add directoryname command

interactive restore, using 330
> add filename command 330
^ character 193
^FROM_DAEMON 234
^FROM_MAILER 234
^TO_ option 185, 233
^TO option 233

A
access maps, SMTP restrictions

about 46
check_client_access 46
check_helo_access 46
check_recipient_access 46
check_sender_access 46, 47
check_sender_mx_access 46
check_sender_ns_access 46
example 48, 49
lookup key, results 47, 48

action line, recipe
about 223
compound recipes 226
global forwarding 223, 224
pipeline process 224
saving, to folder 225

Ad hoc backups 318
advanced recipes

large mail information, providing 238-240
mail, organizing by date 237, 238
vacation auto reply, creating 235, 237

amavisd-new
configuring 269, 270
installing, from package 267, 268
installing, from source 268
installing, prerequisites 268
Postfix, configuring 270, 271
user account, creating 269
using, with SpamAssassin 267

Antivirus protection
ClamAV 289

authdaemond, password verification service
about 140, 156
password verification service, setting up

156
socket path, configuring 156

automated backups
about 335
backup script, running 336
crontab entries, adding 338
dump levels 336
setting up 334

auxillary property plugins. See auxprop,
password verification service

auxprop, password verification service
about 140, 151

[342]

sasldb plugin, configuring 152
sql plugin, configuring 153, 155

B
backing up

automated procedure 334
configurations 333
data, authentication 321
installed software, restoring 320
list 319
log files 322, 333
log files, problems 322
system configuration files 321
system inventory 319
users' e-mail, storing 321
users' e-mail 323

backup mail server
avoiding 16
need for 16

backup options
Ad hoc backups 318
choosing 315
file system backups 317
image backups 316
RAID 316

Base64 encoding 57
basic operations

configuration file 181
file format 181

Bayesian filter
about 249, 285
auto-learning, avoiding 286, 287
sa-learn command, using 285

blacklist 51, 249, 283
blocklists. See blacklist

C
canonical rewriting 68
c flag 201
Clam AntiVirus. See ClamAV
ClamAV

about 290
clamd 290
clamscan 290
compiling, requirements 292

config files, editing 294
downloading 291
freshclam 290
freshclam configuration file 312
installing 291
installing, from package 292
installing, from source code 292
libclamav 290
new group, adding 291
new user, adding 291
post installation, testing 300
protecting, from document types 290, 291
version 290

clamd
sample config file, examining 295, 296

ClamSMTP
about 302, 303
building 303, 305
configuring 305
configuring, into Postfix 304
configuring, sample config file examination

305-307
installing 303, 305

colon line, recipe
flags 216
locking mechanism 215

Compatibility plugin installation,
SquirrelMail plugins

custom installation 124
downloading 123, 124
enabling, in conf.pl 124, 125
unpacking 123, 124

Comprehensive Perl Archive Network. See
CPAN

conditions, recipe
* regex 220
* variable ?? regex 220
about 219
exit code, testing 221, 222
message size, testing 221
negation 222
regular expression tests 220, 221
rule, applying unconditionally 220
variable, substituting 223

config files
editing 294
file permissions 299

[343]

config files, editing
clamd 294
freshclam 297

configuration file, basic operations
comments 182
recipes 182
rules 182
variables 182
variables, VERBOSE 182

configurations, backing up
approaches 333
restoring 334
system parts 333
transferring, to backup media 333

content based messages, spam
body_checks parameter 54
body checks 53
body checks, configuring 54, 55
body checks, examples 55, 56
header_checks parameter 54
header checks 53
header checks, configuring 54, 55
header checks, examples 55, 56
mime_header_checks parameter 54
nested_header_checks parameter 54
warning 57

Courier-IMAP
building 87-90
configuring, for POP3 92, 93
downloading 78
errors, handling 90
installing 78
installing, Debian package format used 80
installing, from distribution repository 79
installing, from RPM 79, 80
installing, from source 80
operation overview 78
Redhat Package Managers (RPMs) 79

Courier-IMAP installation, from source
Courier Authentication Library, building

81-83
Courier Authentication Library, configuring

84-86
errors, resolving 87
prerequisites, Berkeley DB library 81
prerequisites, gdbm library 81
prerequisites, GNU Libtool 81

prerequisites, GNU linker 81
prerequisites, make utility 81
prerequisites, source code 81
prerequisites, working C++compiler 80

Courier Authentication Library
about 78
authcustom method 84
authentication method, choosing 85
authmysql method 84
authpam method 84
authpwd method 84
authshadow method 84
authuserdb method 84
configuring 84

Courier IMAP 19
CPAN 253
CRAM-MD5 mechanism 138
Cyrus SASL

about 135
authentication, testing 157, 158
configuring 144-147
installing 141-144
password verification services 150, 154

Cyrus SASL configuration
about 144, 145
log level, choosing 146
password verification service, selecting 146
valid mechanisms, choosing 147

D
daemons

about 20
bounce daemon 22
cleanup daemon 21
pickup daemon 21
pipe daemon 23
qmqpd daemon 21
spawn daemon 23
trivial-rewrite daemon 21

DCC 249
debugging

directory permission, checking 189
disasters, avoiding 190
file permission, checking 189
Full Logging, enabling 190
log files, looking for 189

[344]

typos, checking 188
delivering recipe 200
dictionary attacks

about 166
recipient maps 166

DIGEST-MD5 mechanism 138
Distributed Checksum Clearinghouse. See

DCC
DNS

about 14
blacklist, choosing 52, 53
MX record 14
PTR record 14
record 14
record, types 14, 15

DNS-based Blackhole List. See DNSBL
DNSBL

about 51
lookups, client host address 51
lookups, client hostname 51
lookups, sender domain 51

DNS blacklist
choosing 52, 53
using 51

document types
common archive formats 291
ELF 290
Microsoft documents 290
other special files 291

DOMAIN 181
Domain Name System. See DNS
downloading

ClamAV 291
Courier-IMAP 78
downloading, SpamAssassin 253, 257, 259
Procmail 177

dump command
about 323
full dump 325-327
incremental dumps 328
using 325

E
e-mail client configuration

Microsoft Outlook 271-274
Microsoft Outlook Express 275, 276
Mozilla Thunderbird 277, 278

rules 271
e-mail filtering

e-mail borne testing used 309
mail-borne virus filtering, testing 307, 308
testing 307, 308

e-mail protocols
about 10
IMAP 10
overview 10
POP 10
SMTP 10

e-mail server
controlling, advantages 6
DNS 14
hardware, sizing 8, 9
hosting, requirements 7
managing, reasons 6, 7

e-mail structure
about 191, 192
headers 191, 192
headers, defining 192
header structure 192
message body 191

ELF 290
e-mail client 78
e-mail server 78
Enhanced SMTP. See ESMTP
error-handling variables

NORESRETRY 211
SUSPEND 211
TIMEOUT 211

ESMTP 12
Exclamation (!) 222
Executable and Linking Format. See ELF
EXTENSION 181
extract command 330

F
files

disinfecting 313
file system backups, backup options

system, restoring 318
filter e-mail

need for 248
spam 248
spam, filtering options 250

filtering options, spam

[345]

on client 250
on e-mail server 251
on e-mail server, advantage 251
on e-mail server, disadvantage 251

flags, colon line
about 216
action scope 217
A flag 218
a flag 218
B flag, using 217
case sensitivity 218
c flag 218
default flags, H 216
default flags, hb 216
D flag 218
E flag 218
e flag 218
execution mode 218
f flag 219
filtering mode 219
HB flag, using 217
H flag, using 217
i flag 219
matching scope 217
r flag 219
W flag 219
w flag 219

Formail 202
freshclam

about 309, 310
closest mirrors 297
sample config file, examining 298

Full Logging 190

G
GNU Libtool 81
GNU Linker 81

H
hashing 249
hold queue 22
HOME 181
home_mailbox parameter 37
HTTP 112
Hypertext Transfer Protocol. See HTTP

I
IETF 14
i flag 201
image backups, backup options

problems 317
IMAP

about 10, 11, 78
Courier-IAMP, configuration directives 99,

100
Courier-IMAP, configuring 99
mail retrieval, Mozilla Thunderbird used

102-106
POP, choosing between 77
service, testing 101
using 98

inet_interfaces parameter 35
installing

ClamAV 291
ClamSMTP 303, 305
Courier IMAP 78
Cyrus SASL 141-144
installing, SpamAssassin 253
Procmail 177
SquirrelMail 118-120
SquirrelMail plugins 122

installing, ClamAV
about 291
from package 292
from source code 292, 293
from source code, requirements 293
installed software, testing 293, 294
new group, adding 291
new user, adding 291

Internet Engineering Task Force. See IETF
Internet Message Access Protocol. See

IMAP
Internet Service Providers. See ISPs
ISPs

about 35
indirect mail delivery 35

K
kerberos method 139

[346]

L
ldap method 139
LMTP 23
LOCAL 181
local aliases

about 65, 66
command deliveries 67
pitfalls 68

Local Mail Transfer Protocol. See LMTP
locking mechanism, colon line

about 215
automatic locking 215
enforced locking 216
no locking 216

log files
monitoring 312

log files, backing up. See configurations,
backing up

log files, interpreting. See log files, reading
log files, reading

about 69
detailed message, obtaining 73, 74
local submissions, and SMTP delivery 72
message queue ID 69
SMTP delivery, connection problems 73
SMTP submissions, and local delivery 70,

71
logging variables

COMSAT 209
LOG 209
LOGABSTRACT 209
LOGFILE 209
VERBOSE 209

LOGNAME 181
lookup table, Postfix configuration

cdb 31
cidr 31
dbm 31
hash 31
indexed 30
indexed, drawback 32
ldap 31
mysql 31
pcre 31
pgsql 31
postconf command, using 32
proxy 31

regexp 31
static 31

ls command 189

M
mailbox variables

DEFAULT 207
MAILDIR 207
MSGPREFIX 207
ORGMAIL 207

mail filtering
automated system messages 173
file, locking 176
individual messages 173
mailing lists membership 173
potential uses 174
unsolicited bulk e-mail 173
uses 172

mail filtering, potential uses
acknowledgments 175
filtration 174
mail, forwarding 175
mail, processing in application 175
out of office/vacation replies 176
sorting 174

mail filtering strategy
creating 240
rc.killspam 243
rc.largefiles 244
rc.listd 242, 243
rc.spamfilter 245
rc.system 242
rc.vacation 244
rc.viruses 245

mailq 23
Mail Transfer Agent. See MTA
message content variables

LOCKEXT 211
LOCKFILE 211
LOCKSLEEP 211
LOCKTIMEOUT 211

method, SASL layer
Getpwent/shadow 139
kerberos 139
ldap 139
pam 139
rimap 139

[347]

sasldb 139
sql 139

Microsoft Outlook
configuring 271-274

Microsoft Outlook Express
configuring 275, 276

miscellaneous variables
DROPPRIVS 212
INCLUDERC 212
LINEBUF 212
SHIFT 212

mount command 320, 325
Mozilla Thunderbird

configuring 277, 278
MTA 19
MX record

about 14
benefits 15

N
NAT 7
Network Address Translation. See NAT
newaliases 23
non-delivering recipe

about 200
cd backup command 201
example 200, 201, 202
ls -t msg.* command 201
rm -f dummy...command 201
rule flags 201
sed -e 1,32d command 201
working 201

O
O letter 232, 300

P
PAM

using 151
pam method 139
Password Forget plugin 129
password verification service, SASL layer

authdaemond 140
auxprop 140
saslauthd 140

PE 290
Perl 253
plaintext mechanism

securing 163, 165
security policy, configuring 165
TLS, enabling 163, 164, 165

Pluggable Authentication Modules. See
PAM

POP. See also POP3
POP

about 10, 77
IMAP, choosing between 77

POP3
ADDRESS setting 92
Courier-IMAP, configuring 92, 93
disadvantage 91
e-mail retrieval, Windows Live Mail used

95-98
MAILDIRPATH setting 93
MAXDAEMONS setting 92
MAXPERIP setting 92
PIDFIL setting 92
POP3AUTH setting 92
PORT setting 92
service, testing 94
TCPDOPTS setting 93
using 91

Portable Executable. See PE
postalias 23
postcat 23
postconf 23
Postfix

about 19, 20
architecture 20
configuration, parameters 38
configuring 27
domains 33, 34
error, reporting 37, 38
experimental release 24
hostnames 33, 34
inet_interfaces parameter 28
installing, from package 25
installing, from source code 25, 26
mailbox format, choosing 36
mbox format 36
messages, sending 40
mynetworks_style parameter 34

[348]

mynetworks parameter 34
network interfaces, choosing 35
official release 24
Postfix SpamAssassin, using as

daemon 266
problems, troubleshooting 68
sendmail program 21
starting 39
version, choosing 24

postfix 23
Postfix's anti spam method

access policy delegation 42
after-queue content filtering 41
before-queue content filtering 42
DNS blacklist, using 51
DNS blocklists 41
header expressions, matching 41
Milters 42
SMTP restrictions 41

Postfix, architecture
daemons 20
diagrammatic representation 20
message deliveries, scheduling 22
message delivery agents 22
message delivery agents, lmtp 23
message delivery agents, local 23
message delivery agents, smtp 22
new message arrival 21
new message arrival, QMQP submission

protocol 21
new message arrival, SMTP 21
new message arrival, via local

submission 21
supporting programs 23, 24
supporting programs, mailq 23
supporting programs, newaliases 23
supporting programs, postalias 23
supporting programs, postcat 23
supporting programs, postconf 23
supporting programs, postfix 23
supporting programs, postmap 23
supporting programs, postqueue 24
supporting programs, postsuper 24

Postfix, problems
log files, interpreting 69
log files, reading 69
lookup tables troubleshoot, postmap com-

mand used 74, 75
mailing list, help 75
troubleshooting 68, 69, 74, 75

Postfix configuration
always_bcc parameter 38
defer_transports parameter 38
delay_warning_time parameter 39
lookup table 30
mailbox_size_limit parameter 39
main.cf file 28, 29, 33
master.cf file 30
maximal_queue_lifetime parameter 39
message_size_limit parameter 39
proxy_interfaces parameter 39

Postfix network maps
configuring 132

Postfix network maps configuration
about 132
dynamic IP ranges 135
SMTP-after-POP 132, 133
SMTP Authentication 134
static IP ranges 134
VPNs 133

Postfix SMTP AUTH configuration
about 159
broken clients, including 161
preparing 159
relaying, enabling 163
security policy, setting 160
SMTP AUTH, enabling 160

post installation, testing
clamd, testing 301
clamscan, testing 301
EICAR test virus 300
freshclam, testing 302

postmap 23
Post Office Protocol. See POP
postqueue 24
postsuper 24
Procmail

about 171
advantages 176
basic operations 181
delivering recipe 200
disadvantages 176
downloading 177
history 172

[349]

home page 171
individual installation 178
installing 177
installing, from source 177
installing, options 178
installing, via package manager 177
integrating, into Postfix system 179
mail filtering 172
Module Library 240
non-delivering recipe 200
overview 171
Procmail SpamAssassin, using 262, 263
pseudo-variables 207
regular expressions 227
rule sets 193
system-wide installation 179
variables, printing 212, 214
version 1.0 172
version 3.22 172
working 192

Procmail integration, with Postfix system
about 179
alias, creating 179
environment variables 180
Procmail, adding to Postfix

configuration 180
Procmail Module Library 240
program variables

SENDMAIL 207
SENDMAILFLAGS 207
SHELL 207
SHELLFLAGS 207

pseudo-variables
error-handling variables 211
locking variables 211
logging variables 209
mailbox variables 207
message content variables 210
miscellaneous variables 212
program variables 207
state variables 209
system interaction variables 208

Q
queue manager

about 21

active queue 22
deferred queue 22
hold queue 22

R
RAID 316
RBL 51
Real-time Blackhole List. See RBL
recipe

about 215
action line 223
advanced recipes 235
analyzing 203
colon line 215
comments, adding 204
conditions 219
delivering recipe 200
documentation 204
non-delivering recipe 200
variables, assigning 204

RECIPIENT 181
recipient maps, dictionary attacks

connections, re-limiting 167, 168
local_recipient_maps 166
relay_recipient_maps 167

Red Hat Package Manager. See RPM
Redundant Array of Inexpensive (or Inde-

pendent) Disks. See RAID
regular expressions

^FROM_DAEMON 234
^FROM_MAILER 234
^TO_ option 233
^TO option 233
about 227
asterisk modifier 229
character classes 231
dot 228
End of Line Anchor character ($) 232
online resources 233
plus sign 229
quantifier operation 228
restrictive matches 230
simple spam filter, creating 230, 231
Start of Line Anchor character (^) 232

Request for Comment. See RFC
restoration procedure

verifying 338

[350]

restore command 323
RFC 14, 192
rimap method 139
RPM 79, 253
rule flags, non-delivering recipe

c flag 201
i flag 201

rule sets
Cc header 194
Cc header, filtering by 194
header 193
return-path header 193
return-path header, filtering by 193
subject header 194
subject header, filtering by 194
To header 194
To header, filtering by 194

S
saslauthd, password verification service

about 140, 148, 149
IMAP server, using 150
LDAP server, using 150
local user accounts, using 151
PAM, using 151
problems 148

sasldb method 139
SASL layer

about 135, 137
anonymous mechanism 138
authenticating 136
authentication interface 136, 137
mechanism 137, 138
method 139
password verification service 139, 140
plaintext mechanism 138, 163
shared secret mechanism 138
shared secret mechanism, CRAM-MD5 138
shared secret mechanism, DIGEST-MD5

138
Secure Login plugin 129
SENDER 181
SHELL 181
shutdown

automating 310
in ClamAV 311

in ClamSMTP 310, 311
Simple Authentication and Security Layer.

See SASL layer
Simple Mail Transfer Protocol. See SMTP
simple rule

analyzing 183, 184
creating 185-188
hello world example 185
Procmail, configuring 188
rc. testing, creating 186
script, static testing 187
setup, testing 188
structure 183

SMTP
about 10-14, 21
digit 13
RFC 821 14
RFC 822 14

SMTP AUTH
testing 161, 162

SMTP AUTH. See also SMTP
authentication

SMTP authentication 134
SMTP restrictions, Postfix's anti spam

method
access map 46
new policies, implementing 50
permit_inet_interfaces 44
permit_mynetworks 44
permit_sasl_authenticated 44
reject 44
reject_invalid_hostname 44
reject_non_fqdn_hostname 44
reject_non_fqdn_recipient 44
reject_non_fqdn_sender 44
reject_unauth_destination 44
reject_unknown_client_hostname 45
reject_unknown_recipient_domain 45
reject_unknown_reverse_client_hostname

45
reject_unknown_sender_domain 45
reject_unlisted_recipient 45
reject_unlisted_sender 45
smtpd_client_restrictions 43

[351]

smtpd_data_restrictions 43
smtpd_end_of_data_restrictions 43
smtpd_helo_restrictions 43
smtpd_recipient_restrictions 43
smtpd_sender_restrictions 43

spam
content based messages, stopping 53
DNS blacklists, using 51
Postfix's anti spam method 41
about 247
disadvantage 248
filtering options, on client 250
filtering options, on e-mail server 251
stopping 41

SpamAssassin
about 247, 252
blacklists 249
content databases 249
customizing 279
downloading 253, 257, 259
features 287
installing 253
installing, CPAN used 254
keyword filters 249
open relays 249
Perl 253
schematic representation 252
statistical filters 249
URL blocklists 250
using 261
using, as daemon with Postfix 266
using, in procmailrc file 263, 264
using, measure methods 249
using, on per-user basis 264, 265
using, with amavisd-new 267-271
using, with Procmail 262, 263
whitelist 249

SpamAssassin, features
blacklist 287
customizable headers 288
customizable rule scores 288
external content databases 287
multiple installations 288
network tests 287
new values, creating 287
whitelist 287

SpamAssassin customization
Bayesian filter 285
blacklists 284
configuration files 279
configuration options 279
other rulesets, using 282, 283
reasons 279
rules 280
rule score, changing 281, 282
whitelists 283, 284

SpamAssassin installation
CPAN, configuring 254, 255
testing 259, 260
testing, e-mail modification 260, 261
using, rpmbuild utility 257, 258
using CPAN, prerequisites 254-257
using pre-built RPMs 258

Spam URI Realtime BlockLists. See
SURBLs

sql_database parameter 154
sql_engine parameter 154
sql_hostnames parameter 154
sql_insert parameter 154
sql_passwd parameter 154
sql_select parameter 154
sql_update parameter 154
sql_user parameter 154
sql_usessl parameter 154
sql auxprop plugin

configuring 154
sql_database parameter 154
sql_engine parameter 154
sql_hostnames parameter 154
sql_insert parameter 154
sql_passwd parameter 154
sql_select parameter 154
sql_update parameter 154
sql_user parameter 154
sql_usessl parameter 154

sql method 139
SquirrelMail

configuring 120, 121
installing 118
installing, prerequisites 115
Linux distribution, advantage 118
Linux distribution, disadvantage 119
plugins 122

[352]

plugins, installing 122
securing 129
source, installing 119, 120

SquirrelMail installation, prerequisites
Apache 2, installing 116
basic requirements, Apache 2

installation 117
basic requirements, PHP 117
Perl 117
PHP configuration, reviewing 117

SquirrelMail plugins
about 122
address book import-export 128
author category 126
category 126
change password 128
check quota usage (v) 128
Compatibility plugin 126
Compatibility plugin, installing 123
description category 126
e-mail footer 128
example installation 123
HTML mail 127
HTTP authentication 127
installing 122
password forget 127
plugin updates (v0.7) 128
quick save 127
requirement category 126
secure login 126
Sent confirmation 128
Timeout user 128
useful plugins 126-128

startup
automating 310
in ClamAV 311
in ClamSMTP 311

state variables
$$ 210
$- 210
$= 210
$? 210
$_ 210
$1, $2, ...; $@; $# 210
DELIVERED 210

HOST 209
LASTFOLDER 210
MATCH 210
PROCMAIL_OVERFLOW 209

static IP ranges, Postfix network maps con-
figuration

explicit relay rules 134, 135
generic relay rules, configuring 134

structure, simple rule
about 183
DEFAULT 184
LOGFILE 184
MAILDIR 184
PATH instruction 184
rule, analyzing 184
variable, analyzing 184

SURBLs 250
system-wide filtering

about 195
executables, removing 195
large e-mails 196

system interaction variables
EXITCODE 208
SHELLMETAS 208
TRAP 208
UMASK 208

T
TCP ports 8
Timeout User plugin 129
TLS 138, 163
Transport Layer Security. See TLS

U
UBE 202
Unsolicted Bulk E-Mail. See UBE
useradd tool 27
users' e-mail, backing up

about 323
advantages 323
data, restoring 330
dump command, using 324
full backup 324
incremental backup 324

[353]

interactive restore, using 330
mail, storing 323
Maildir format, using 324
non-interactive restore, using 331, 332

V
variables, recipe

${VAR}iable * command 205
$VAR command 205
assigning 204
compound output, assigning 206
default value variables, assigning 205, 206
pseudo-variables 206
separators 205
substitutions 205, 206

virtual alias domain
about 58
group addresses 61
mapping to multiple local

domain 60, 61
multiple, mapping to one local

domain 59, 60
MySQL lookups 62
MySQL lookups, additional_conditions

parameter 63
MySQL lookups, dbname parameter 63
MySQL lookups, example 64, 65
MySQL lookups, hosts parameter 63
MySQL lookups, password parameter 63
MySQL lookups, query parameter 63
MySQL lookups, select_field parameter 63
MySQL lookups, table parameter 63
MySQL lookups, user parameter 63
MySQL lookups, where_field parameter 63
pitfalls 67

virtual domain. See virtual alias domain
Virtual Private Networks. See VPNs
virus data update

automating 309
auto update, setting up 309

VMailer 19
VPNs 133

W
webmail solution

about 107
benefits 108
disadvantages 111
SquirrelMail 115

webmail solution, benefits
client maintenance, no need 109
easy access 108, 109
easy remote access 109
groupware features 108
quick access 108, 109
security 110
software client access model,

disadvantage 110
user interface, mail server options

configuration 110
webmail solution, disadvantages

e-mail attachment compatibility 112
large e-mail volumes compatibility 112
performance 111
security issues 113

X
X-Library header, adding 56
X-Spam-Flag 263

Thank you for buying
Linux E-mail

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career, or
simply get some additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for
Effective MySQL Management" in April 2004 and subsequently continued to specialize in
publishing highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals
in adapting and customizing today's systems, applications, and frameworks. Our
solution-based books give you the knowledge and power to customize the software and
technologies you're using to get the job done. Packt books are more specific and less
general than the IT books you have seen in the past. Our unique business model allows us
to bring you more focused information, giving you more of what you need to know, and
less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

SpamAssassin: A Practical Guide
to Configuration, Customization
and Integration
ISBN: 978-1-904811-12-1 Paperback: 240 pages

In depth guide to implementing antispam solutions
using SpamAssassin

1. Implement the right antispam solution
for your network and your business
requirements

2. Learn how to detect and prevent spam

3. Optimize SpamAssassin for all major mail
servers and clients

4. Discover how to use SpamAssassin
as a service

Hacking Vim: A cookbook to get
the most out of the latest
Vim editor
ISBN: 978-1-847190-93-2 Paperback: 228 pages

From personalizing Vim to productivity optimizations:
Recipes to make life easier for experienced Vim users

1. Create, install, and use Vim scripts

2. Personalize your work-area

3. Optimize your Vim editor to be faster and
more responsive

Please check www.PacktPub.com for information on our titles

CUPS Administrative Guide
ISBN: 978-1-847192-58-5 Paperback: 248 pages

A practical tutorial to installing, managing, and
securing this powerful printing system

1. Install and configure the CUPS server and set
up clients

2. Manage printers through the command line
and web interface and manage users

3. Monitor the CUPS server along with filtering
and file typing

4. Secure your CUPS server

5. Integrating with other systems like LPDs
and Mac

Qmail Quickstarter: Install, Set
Up and Run your own Email
Server
ISBN: 978-1-847191-15-1 Paperback: 152 pages

A fast-paced and easy-to-follow, step-by-step guide that
gets you up and running quickly

1. Qmail Basicsy

2. Storing and retrieving of emails

3. Virtualisation

4. Hosting Multiple Domains, Encryption, and
Mailing Lists

Please check www.PacktPub.com for information on our titles

	Packt - Linux E-mail Second Edition (11-2009) (Elements-ATTiCA)
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Linux and E-mail Basics
	Why manage your own e-mail server
	What you need to host an e-mail server
	Sizing the hardware of your e-mail server
	Main e-mail protocols—SMTP, POP, and IMAP
	Overview
	POP protocol
	IMAP protocol
	The SMTP protocol

	E-mail and DNS
	DNS record types used by e-mail applications

	Backup mail servers
	Summary

	Chapter 2: Setting up Postfix
	Introduction to Postfix
	What is Postfix
	Postfix architecture: An overview
	New message arrival
	Scheduling message deliveries
	Message delivery
	Supporting programs

	Installation and basic configuration
	Choosing the Postfix version
	Installing from a package
	Installing from source code
	The Postfix configuration
	main.cf
	master.cf
	Lookup tables

	Getting Postfix up and running
	Domains and hostnames
	Indirect mail delivery through your ISP
	Choosing network interfaces
	Choosing mailbox format for local deliveries
	Error reporting
	Other useful configuration parameters
	Starting Postfix and sending the first message

	Stopping spam and other unwanted messages
	Postfix's anti-spam methods: An overview
	Understanding SMTP restrictions
	Access maps
	Access map examples
	Implementing new policies

	Using DNS blacklists
	Choosing DNS blacklists

	Stopping messages based on content
	Configuring header and body checks
	Header and body checks examples
	Caveats

	Virtual alias domains and local aliases
	Virtual alias domains
	Many virtual alias domains mapping to one local domain
	One virtual alias domain mapping to many local domains
	Group addresses
	Introducing MySQL lookups

	Local aliases
	Command deliveries

	Common pitfalls
	Other address rewriting mechanisms

	Troubleshooting Postfix problems
	Reading and interpreting the log files
	Message queue ID
	SMTP submission and local delivery
	Local submission and SMTP delivery
	Connection problems upon SMTP delivery
	Getting more detailed log messages

	Troubleshooting lookup tables with Postmap
	Getting help from the Postfix mailing list

	Summary

	Chapter 3: Incoming Mail with POP and IMAP
	Choosing between POP and IMAP
	Downloading and installing Courier-IMAP
	Installing Courier-IMAP from a distribution repository
	Installing Courier-IMAP from RPM
	Installing Courier-IMAP using the Debian package format
	Installing Courier-IMAP from source
	Prerequisites
	Building the Courier Authentication Library
	Configuring the Courier Authentication Library
	Resolving errors

	Building Courier-IMAP
	Handling errors

	Using POP3
	Configuring Courier-IMAP for POP3
	Testing the POP3 Service
	Retrieving E-mail via POP3 with Windows Live Mail

	Using IMAP
	Configuring Courier for IMAP
	Testing the IMAP service
	Retrieving mail via IMAP with Mozilla Thunderbird

	Summary

	Chapter 4: Providing Webmail Access
	The webmail solution
	The benefits
	Easy and quick access
	Easy remote access
	No need to maintain clients
	Configuring mail server interface via the user interface
	Possible security benefits

	The disadvantages
	Performance
	Compatibility with large e-mail volumes
	Compatibility with e-mail attachments
	Security issues

	The SquirrelMail webmail package
	SquirrelMail installation and configuration
	Prerequisites to installation
	Basic requirements
	Perl
	Review configuration

	Installing SquirrelMail
	Source installation

	Configuring SquirrelMail

	SquirrelMail plugins
	Installing plugins
	Example plugin installation
	Downloading and unpacking the plugin
	Performing custom installation
	Enabling the plugin in conf.pl

	Useful plugins

	Securing SquirrelMail
	Summary

	Chapter 5: Securing Your Installation
	Configuring Postfix network maps
	SMTP-after-POP
	Virtual Private Networks
	SMTP Authentication
	Static IP ranges
	Generic relay rules
	Explicit relay rules

	Dynamic IP ranges

	Cyrus SASL
	SASL layers
	Authentication interface
	Mechanism
	Method
	Password verification service

	Cyrus SASL installation
	Configuring Cyrus SASL
	Selecting a password verification service
	Choosing a log level
	Choosing valid mechanisms

	Testing Cyrus SASL authentication
	Configuring Postfix SMTP AUTH
	Preparing the configuration
	Enabling SMTP AUTH
	Setting the security policy
	Including broken clients

	Testing SMTP AUTH
	Enabling relaying for authenticated clients
	Securing plaintext mechanisms
	Enabling Transport Layer Security
	Configuring security policy

	Dictionary attacks
	Recipient maps
	Checking local domain recipients
	Checking relay domain recipients

	Rate-limiting connections

	Summary

	Chapter 6: Getting Started with Procmail
	Introduction to Procmail
	Who wrote it and when

	How can a filtering system help me?
	Potential uses of mail filtering
	Filtering and sorting mail
	Forwarding mail
	Processing the mail in an application
	Acknowledgements and out of office/vacation replies

	File locking and integrity
	What Procmail is not suitable for

	Downloading and installing Procmail
	Installing via a package manager
	Installing from source
	Installation options/considerations
	Individual installation
	System-wide installation

	Integration with Postfix for system-wide delivery
	Creating an alias for system accounts
	Adding Procmail to the Postfix configuration
	Postfix-provided environment variables

	Basic operations
	Configuration file
	File format
	Configuration file dissection

	Analyzing a simple rule
	The rule structure
	Variable analysis
	Rule analysis

	Creating and testing a rule
	A "hello world" example
	Creating rc.testing
	Performing static testing of the script
	Configuring Procmail to process rc.testing
	Testing the setup

	Configuration debugging
	Checking for typos in the scripts
	Looking at the log file for error messages
	Checking file and directory permissions
	Turning on Full Logging
	Taking steps to avoid disasters

	Understanding e-mail structure
	Message body
	E-mail headers
	Header structure
	Official definitions for headers

	Example rule sets
	From header
	Return-Path Header
	Filtering by Return-Path

	To and Cc headers
	Filtering by To or Cc

	Subject header
	Filtering by subject

	System-wide rules
	Removing executables
	Large E-mails

	Summary

	Chapter 7: Advanced Procmail
	Delivering and non-delivering recipes
	Non-delivering example

	Formail
	Advanced recipe analysis
	Adding comments
	Assigning variables
	Performing substitutions
	Pseudo-variables

	Recipes
	Colon line
	Conditions
	Action line

	Regular expressions
	Introduction to regular expressions
	The dot
	Quantifier operation
	The asterisk
	The plus sign
	Restrictive matches using parentheses
	Creating a simple spam filter
	Character classes
	Start of line
	End of Line

	Further reading
	^TO and ^TO_
	^FROM_MAILER
	^FROM_DAEMON

	Advanced recipes
	Creating a vacation auto reply
	Organizing mail by date
	 Informing users about large mail

	Procmail Module Library
	Putting it all together
	Creating a structure to base your own rules upon
	Rc.system
	 Rc.lists
	Rc.killspam
	Rc.vacation
	Rc.largefiles
	Rc.viruses
	Rc.spamfilter

	Summary

	Chapter 8: Busting Spam with SpamAssassin
	Why filter e-mail
	Spam is a moving target
	Spam filtering options

	Introduction to SpamAssassin
	Downloading and installing SpamAssassin
	Using CPAN
	Configuring CPAN

	Installing SpamAssassin using CPAN
	Using the rpmbuild utility
	Using pre-built RPMs
	Testing the installation
	Modified e-mails

	Using SpamAssassin
	Using SpamAssassin with Procmail
	Global procmailrc file
	Using SpamAssassin on a per-user basis

	Using SpamAssassin as a daemon with Postfix
	Using SpamAssassin with amavisd-new
	Installing amavisd-new from package
	Installation prerequisites
	Installing from source
	Creating a user account for amavisd-new
	Configuring amavisd-new
	Configuring Postfix to run amavisd-new

	Configuring e-mail clients
	Microsoft Outlook
	Microsoft Outlook Express
	Mozilla Thunderbird

	Customizing SpamAssassin
	Reasons to customize
	Rules and scores
	Altering rule scores
	Using other rulesets
	Whitelists and blacklists
	Bayesian filtering

	Other SpamAssassin features
	Summary

	Chapter 9: Antivirus Protection
	Introduction to ClamAV
	Document types supported
	Downloading and installing ClamAV
	Adding a new system user and group
	Installing from a package
	Installing from source code
	Requirements
	Building and installing
	Quick test

	Editing the config files
	clamd
	Examining the sample config file

	freshclam
	Closest mirrors
	Examining the sample config file

	File permissions

	Post installation testing
	EICAR test virus
	Testing clamscan
	Testing clamd
	Testing freshclam

	Introduction to ClamSMTP
	Building and installing
	Configuring into Postfix
	Configuring clamSMTP
	Examining the sample config file

	Testing e-mail filtering
	Testing mail-borne virus filtering
	Thorough e-mail-borne testing

	Automating update of virus data
	Setting up auto updating

	Automating startup and shutdown
	ClamSMTP
	ClamAV

	Monitoring log files
	Disinfecting files
	Summary

	Chapter 10: Backing Up Your System
	Backup options
	RAID
	Image backups
	File system backups
	Ad hoc backups

	What to back up
	System inventory
	Obtaining a list of installed software
	System configuration files
	Authentication data
	The users' mailboxes
	Log files
	The mail queue

	What not to back up
	Backing up users' e-mail
	Mail storage
	Using dump
	Full dump
	Incremental dumps

	Using restore
	Interactive restore
	Non-interactive restore across the network

	Backing up configurations and logs
	Transfering configurations and logs to backup media
	Restoring the configuration

	Automating backups
	Backup script
	Adding crontab entries

	Verifying restoration procedures
	Summary

	Index

