

Download at WoweBook.Com

Linux iptables
Pocket Reference

Gregor N. Purdy

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.18890 Page 1 Friday, June 30, 2006 6:06 PM

Download at WoweBook.Com

Linux iptables Pocket Reference
by Gregor N. Purdy

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Darren Kelly
Cover Designer: Emma Colby
Interior Designer: David Futato

Printing History:
August 2004: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference/Pocket
Guide series designations, Linux iptables Pocket Reference, the image of two
cowboys in a doorway, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

0-596-00569-5
[C] [1/05]

,COPYRIGHT.19131 Page ii Friday, June 30, 2006 6:06 PM

Download at WoweBook.Com

iii

Contents

Introduction 1
An Example Command 1
Concepts 2
Applications 9
Configuring iptables 11
Connection Tracking 14
Accounting 16
Network Address Translation (NAT) 17
Source NAT and Masquerading 18
Destination NAT 19
Transparent Proxying 20
Load Distribution and Balancing 20
Stateless and Stateful Firewalls 20
Tools of the Trade 21

iptables Command Reference 22
Getting help 23
The iptables Subcommands 23
iptables Matches and Targets 25

Utility Command Reference 81
iptables-restore 81
iptables-save 82

Index 83

Download at WoweBook.Com

1

Chapter 0

Linux iptables
Pocket Reference

Introduction
The Linux kernel’s network packet processing subsystem is
called Netfilter, and iptables is the command used to config-
ure it. This book covers the iptables user-space utilities Ver-
sion 1.2.7a, which uses the Netfilter framework in the Linux
kernel version 2.4 and also covers most of what’s in 2.6.
Because Netfilter and iptables are tightly coupled, I will use
“iptables” to refer to either or both of them throughout this
book.

The iptables architecture groups network packet processing
rules into tables by function (packet filtering, network
address translation, and other packet mangling), each of
which have chains (sequences) of processing rules. Rules
consist of matches (used to determine which packets the rule
will apply to) and targets (that determine what will be done
with the matching packets).

iptables operates at OSI Layer 3 (Network). For OSI Layer 2
(Link), there are other technologies such as ebtables (Ether-
net Bridge Tables). See http://ebtables.sourceforge.net/ for
more information.

An Example Command
Here is a sample iptables command:

iptables -t nat -A PREROUTING -i eth1 -p tcp --dport 80
 -j DNAT --to-destination 192.168.1.3:8080

Download at WoweBook.Com

2 | Linux iptables Pocket Reference

Table 1 shows what this sample iptables command means.

Concepts
iptables defines five “hook points” in the kernel’s packet
processing pathways: PREROUTING, INPUT, FORWARD,
POSTROUTING and OUTPUT. Built-in chains are attached to these
hook points; you can add a sequence of rules for each hook
point. Each rule represents an opportunity to affect or moni-
tor packet flow.

TIP

It is common to refer to “the PREROUTING chain of the nat
table,” which implies that chains belong to tables. Howev-
er chains and tables are only partially correlated, and nei-
ther really “belongs” to the other. Chains represent hook
points in the packet flow, and tables represent the types of
processing that can occur. Figures 1 through 3 show all
the legal combinations, and the order in which they are
encountered by packets flowing through the system.

Figure 1 shows how packets traverse the system for network
address translation. These are the chains for the nat table.

Table 1. Decomposed example iptables command arguments

Component Description

-t nat Operate on the nat table...

-A PREROUTING ... by appending the following rule to its PREROUTING
chain.

-i eth1 Match packets coming in on the eth1 network interface...

-p tcp ... that use the tcp (TCP/IP) protocol

--dport 80 ... and are intended for local port 80.

-j DNAT Jump to the DNAT target...

--to-destination
192.168.1.3:8080

... and change the destination address to 192.168.1.3
and destination port to 8080.

Download at WoweBook.Com

Introduction | 3

Figure 2 shows how packets traverse the system for packet
filtering. These are the chains for the filter table.

Figure 3 shows how packets traverse the system for packet
mangling. These are the chains for the mangle table.

Figure 1. Network packet flow and hook points for NAT

Figure 2. Network packet flow and hook points for filtering

Figure 3. Network packet flow and hook points for mangling

Network
interface PREROUTING Local

process

Network
interface POSTROUTING Local

processOUTPUT

Network
interface

Local
process

Network
interface

Local
processOUTPUT

INPUT

FORWARD

Network
interface

Local
process

Network
interface

Local
processOUTPUT

INPUT

FORWARD

PREROUTING

POSTROUTING

Download at WoweBook.Com

4 | Linux iptables Pocket Reference

Table 2 shows the five hook points and describes the points
in the packet flow where you can specify processing.

TIP

For the curious, the hook points are defined in the kernel
header file /usr/include/linux/netfilter_ipv4.h with names
like NF_IP_FORWARD, NF_IP_LOCAL_{IN,OUT}, and NF_IP_
{PRE,POST}_ROUTING.

Your choice of chain will be based on where in the packet
lifecycle you need to apply your rules. For example, if you
want to filter outgoing packets, it is best to do so in the
OUTPUT chain because the POSTROUTING chain is not associated
with the filter table.

Tables

iptables comes with three built-in tables: filter, mangle, and
nat. Each is preconfigured with chains corresponding to one
or more of the hook points described in Table 2 and shown
in Figures 1 through 3. The three built-in tables are described
in Table 3.

Table 2. Hook points

Hook Allows you to process packets...

FORWARD ... that flow through a gateway computer, coming in one
interface and going right back out another.

INPUT ... just before they are delivered to a local process.

OUTPUT ... just after they are generated by a local process.

POSTROUTING ... just before they leave a network interface.

PREROUTING ... just as they arrive from a network interface (after dropping
any packets resulting from the interface being in promiscuous
mode and after checksum validation).

Download at WoweBook.Com

Introduction | 5

iptables arranges for the appropriate chains in these tables to
be traversed by network packets based on the source and
destination, and in the order depicted in Figures 1 through 3
and detailed in Tables 4 through 7.

TIP

The default table is the filter table; if you do not specify
an explicit table in an iptables command, filter is as-
sumed.

Chains

By default, each table has chains, which are initially empty,
for some or all of the hook points. See Table 2 for a list of
hook points and Table 3 for a list of built-in chains for each
table.

In addition, you can create your own custom chains to orga-
nize your rules.

A chain’s policy determines the fate of packets that reach the
end of the chain without otherwise being sent to a specific
target. Only the built-in targets (see Table 8) ACCEPT and DROP
can be used as the policy for a built-in chain, and the default
is ACCEPT. All user-defined chains have an implicit policy of
RETURN that cannot be changed.

Table 3. Built-in tables

Table Description

nat Used with connection tracking to redirect connections for network
address translation; typically based on source or destination addresses.
Its built-in chains are: OUTPUT, POSTROUTING, and PREROUTING.

filter Used to set policies for the type of traffic allowed into, through, and out of
the computer. Unless you refer to a different table explicitly, iptables
operate on chains within this table by default. Its built-in chains are:
FORWARD, INPUT, and OUTPUT.

mangle Used for specialized packet alteration, such as stripping off IP options (as
with the IPV4OPTSSTRIP target extension). Its built-in chains are:
FORWARD, INPUT, OUTPUT, POSTROUTING, and PREROUTING.

Download at WoweBook.Com

6 | Linux iptables Pocket Reference

If you want a more complicated policy for a built-in chain or
a policy other than RETURN for a user-defined chain, you can
add a rule to the end of the chain that matches all packets,
with any target you like. You can set the chain’s policy to
DROP in case you make a mistake in your catch-all rule or wish
to filter out traffic while you make modifications to your
catch-all rule (by deleting it and re-adding it with changes).

Packet flow

Packets traverse chains, and are presented to the chains’ rules
one at a time in order. If the packet does not match the rule’s
criteria, the packet moves to the next rule in the chain. If a
packet reaches the last rule in a chain and still does not
match, the chain’s policy (essentially the chain’s default tar-
get; see the previous section “Chains” section for more infor-
mation) is applied to it.

Based on the flow depicted in Figures 1 through 3, the order
in which packets are presented to the built-in tables and
chains is shown in Tables 4 through 7.

Table 4. Packet flows from one network interface to another
(forwarding)

Table Chain

mangle PREROUTING

nat PREROUTING

mangle FORWARD

filter FORWARD

mangle POSTROUTING

nat POSTROUTING

Table 5. Packet flows from a network interface to a local process
(input)

Table Chain

mangle PREROUTING

Download at WoweBook.Com

Introduction | 7

Rules

An iptables rule consists of one or more match criteria that
determine which network packets it affects (all match
options must be satisfied for the rule to match a packet) and
a target specification that determines how the network pack-
ets will be affected.

The system maintains packet and byte counters for every
rule. Every time a packet reaches a rule and matches the

nat PREROUTING

mangle INPUT

filter INPUT

Table 6. Packet flows from a local process to a network interface
(output)

Table Chain

mangle OUTPUT

nat OUTPUT

filter OUTPUT

mangle POSTROUTING

nat POSTROUTING

Table 7. Packet flows from a local process to another local process
(local)

Table Chain

mangle OUTPUT

nat OUTPUT

filter OUTPUT

filter INPUT

mangle INPUT

Table 5. Packet flows from a network interface to a local process
(input) (continued)

Table Chain

Download at WoweBook.Com

8 | Linux iptables Pocket Reference

rule’s criteria, the packet counter is incremented, and the
byte counter is increased by the size of the matching packet.

Both the match and the target portion of the rule are
optional. If there are no match criteria, all packets are con-
sidered to match. If there is no target specification, nothing is
done to the packets (processing proceeds as if the rule did
not exist—except that the packet and byte counters are
updated). You can add such a null rule to the FORWARD chain
of the filter table with the command:

 iptables -t filter -A FORWARD

Matches

There are a variety of matches available for use with iptables,
although some are available only for kernels with certain fea-
tures enabled. Generic Internet Protocol (IP) matches (such
as protocol, source, or destination address) are applicable to
any IP packet (described in the reference section “ip (Internet
Protocol IPv4) matches,” even though the IP matches are
available without referencing any match extension).

In addition to the generic matches, iptables includes many
specialized matches available through dynamically loaded
extensions (use the iptables -m or --match option to inform
iptables you want to use one of these extensions).

There is one match extension for dealing with a networking
layer below the IP layer. The mac match extension matches
based on Ethernet media access controller (MAC) addresses.

Targets

Targets are used to specify the action to take when a rule
matches a packet and also to specify chain policies. Four tar-
gets are built into iptables, and extension modules provide
others. Table 8 describes the built-in targets.

Download at WoweBook.Com

Introduction | 9

Applications
The following list provides a brief overview of packet pro-
cessing techniques and some of their applications:

Packet filtering
Packet filtering is the most basic type of network packet
processing. Packet filtering involves examining packets at
various points as they move through the kernel’s net-
working code and making decisions about how the pack-
ets should be handled (accepted into the next stage of
processing, dropped completely without a reply, rejected
with a reply, and so on).

Accounting
Accounting involves using byte and/or packet counters
associated with packet matching criteria to monitor net-
work traffic volumes.

Connection tracking
Connection tracking provides additional information
that can match related packets in ways that are other-
wise impossible. For example, FTP (file transfer proto-

Table 8. Built-in targets

Target Description

ACCEPT Let the packet through to the next stage of processing. Stop
traversing the current chain, and start at the next stage shown in
Figures 1 through 3 (and Tables 4 through 7).

DROP Discontinue processing the packet completely. Do not check it
against any other rules, chains, or tables. If you want to provide
some feedback to the sender, use the REJECT target extension.

QUEUE Send the packet to userspace (i.e. code not in the kernel). See the
libipq manpage for more information.

RETURN From a rule in a user-defined chain, discontinue processing this
chain, and resume traversing the calling chain at the rule following
the one that had this chain as its target. From a rule in a built-in
chain, discontinue processing the packet and apply the chain’s
policy to it. See the previous section “Chains” for more information
about chain policies.

Download at WoweBook.Com

10 | Linux iptables Pocket Reference

col) sessions can involve two separate connections: one
for control and one for data transfer. Connection track-
ing for FTP monitors the control connection and uses
knowledge of the FTP protocol to extract enough infor-
mation from the control interactions to identify the data
connections when they are created. This tracking infor-
mation is then made available for use by packet process-
ing rules.

Packet mangling
Packet mangling involves making changes to packet
header fields (such as network addresses and port num-
bers) or payloads.

Network address translation (NAT)
Network address translation is a type of packet man-
gling that involves overwriting the source and/or destina-
tion addresses and/or port numbers. Connection
tracking information is used to mangle related packets in
specific ways. The term “Source NAT” (or just S-NAT or
SNAT) refers to NAT involving changes to the source
address and/or port, and “Destination NAT” (or just D-
NAT or DNAT) refers to NAT involving changes to the
destination address and/or port.

Masquerading
Masquerading is a special type of SNAT in which one
computer rewrites packets to make them appear to come
from itself. The computer’s IP address used is deter-
mined automatically, and if it changes, old connections
are destroyed appropriately. Masquerading is commonly
used to share an Internet connection with a dynamic IP
address among a network of computers.

Port Forwarding
Port forwarding is a type of DNAT in which one com-
puter (such as a firewall) acts as a proxy for one or more
other computers. The firewall accepts packets addressed
to itself from the outside network, but rewrites them to
appear to be addressed to other computers on the inside

Download at WoweBook.Com

Introduction | 11

network before sending them on to their new destina-
tions. In addition, related reply packets from the inside
computers are rewritten to appear to be from the firewall
and sent back to the appropriate outside computer.

Port forwarding is commonly used to provide publicly
accessible network services (such as web or email serv-
ers) by computers other than the firewall, without requir-
ing more than one public IP address. To the outside
world, it appears that the services are being provided by
the proxy machine, and to the actual server, it appears
that all requests are coming from the proxy machine.

Load balancing
Load balancing involves distributing connections across
a group of servers so that higher total throughput can be
achieved. One way to implement simple load balancing
is to set up port forwarding so that the destination
address is selected in a round-robin fashion from a list of
possible destinations.

Configuring iptables
The procedures for configuring iptables vary by distribution.
This section provides both generic and Red Hat–specific
information on iptables configuration.

Persistent rules

On recent Red Hat systems, you can find the iptables rules
stored in /etc/sysconfig/iptables. You can determine which
runlevels have iptables enabled by running the command:

chkconfig --list iptables

You can enable iptables for runlevels 3, 4, and 5 by running
the command:

chkconfig --levels 345 iptables on

You can start iptables manually by running:

service iptables start

Download at WoweBook.Com

12 | Linux iptables Pocket Reference

You can stop it with:

service iptables stop

Other configuration files

The kernel’s general networking and iptables behavior can
be monitored and controlled by a number of pseudofiles in
the /proc filesystem. Table 9 lists the most prominent ones.

Compiling your own kernel

On Red Hat machines, you can determine the kernel you are
currently running by looking at the output of the uname -r
command, which will print a message such as this:

2.4.20-20.9

Using your kernel version and your machine type, which can
be determined by consulting the output of uname -a (see the

Table 9. iptables configuration and information files

Path Purpose

/etc/sysctl.conf Contains settings for configurations in the
/proc/sys directory that are applied at boot
time. For example, /proc/sys/net/ipv4/ip_
forward can be set to 1 at boot time by
adding an entry net.ipv4.ip_forward
= 1 to this file.

/proc/net/ip_conntrack Dumps the contents of the connection
tracking structures if you read it.

/proc/sys/net/ipv4/ip_conntrack_max Controls the size of the connection tracking
table in the kernel. The default value is
calculated based on the amount of RAM in
your computer. You may need to increase it if
you are getting “ip_conntrack: table
full, dropping packet” errors in your
log files. See also the entry for /etc/sysctl.conf
in this table.

/proc/sys/net/ipv4/ip_forward You need to set this to 1 for the host to act as
a gateway (forwarding packets among the
networks connected to its interfaces). See
also the entry for /etc/sysctl.conf in this table.

Download at WoweBook.Com

Introduction | 13

manpage for uname for more information), you can find the
most appropriate configuration file to use to build your new
kernel in a file named something like this (we’ll use i636 for
this example): /usr/src/linux-2.4.20-20.9/configs/kernel-2.4.
20-i686.config.

The iptables configuration settings are found in entries with
names like CONFIG_IP_NF_*.

The following configuration options must be selected, at a
minimum:

• CONFIG_PACKET (direct communication with network
interfaces)

• CONFIG_NETFILTER (the basic kernel support required by
iptables)

• CONFIG_IP_NF_CONNTRACK (required for NAT and masquer-
ading)

• CONFIG_IP_NF_FILTER (adds the filter table)

• CONFIG_IP_NF_IPTABLES (the basic support for user space
iptables utility)

• CONFIG_IP_NF_MANGLE (adds the mangle table)

• CONFIG_IP_NF_NAT (adds the nat table)

WARNING

You might be tempted to turn on CONFIG_NET_FASTROUTE,
since fast routing sounds pretty attractive for a firewall
computer. Don’t do that; fast routing bypasses Netfilter’s
hooks.

The following configuration options provide compatibility
layers with older firewalling technologies:

• CONFIG_IP_NF_COMPAT_IPCHAINS

• CONFIG_IP_NF_COMPAT_IPFWADM

Download at WoweBook.Com

14 | Linux iptables Pocket Reference

TIP

There is a repository of Kernel patches that add features
to Netfilter called “patch-o-matic.” You can find out more
about this repository by visiting the Netfilter web site at
http://www.netfilter.org/ and reading the Netfilter Exten-
sions HOWTO at http://www.netfilter.org/documentation/
HOWTO/netfilter-extensions-HOWTO.html. Patch-o-mat-
ic is distributed separately from iptables and can be found
at: ftp://ftp.netfilter.org/pub/patch-o-matic/.

You should exercise extreme caution when patching your
kernel, especially if doing so with experimental Netfilter
extensions. Some combinations don’t even compile, and
others might compile but fail to run. Always test your
newly built kernels in a noncritical setting.

Connection Tracking
iptables associates packets with the logical connections they
belong to (it even considers certain UDP communication pat-
terns to imply connections even though UDP is a connection-
less protocol). In order to do this, it tracks the progress of
connections through their lifecycle, and this tracking infor-
mation is made available through the conntrack match exten-
sion.

Although the underlying TCP connection state model is
more complicated, the connection tracking logic assigns one
of the states in Table 10 to each connection at any point in
time.

Table 10. Connection tracking states

State Description

ESTABLISHED The connection has already seen packets going in both
directions. See also SEEN_REPLY status.

INVALID The packet doesn’t belong to any tracked connections.

NEW The packet is starting a new connection or is part of a
connection that hasn’t yet seen packets in both directions.

Download at WoweBook.Com

Introduction | 15

The connection tracking logic maintains three bits of status
information associated with each connection. Table 11 con-
tains a list of these status codes as they are named in the
conntrack match extension (the --ctstatus option).

The iptables connection tracking logic allows plug-in mod-
ules to help identify new connections that are related to
existing connections. You need to use these plug-ins if you
want to make multiconnection protocols work right across
your gateway/firewall. Table 12 shows the main connection
tracking “helper” modules.

To use these, you need to run the modprobe command to
install the kernel module. See also the helper match extension.

RELATED The packet is starting a new connection, but the new
connection is related to an existing connection (such as the
data connection for an FTP transfer).

Table 11. Connection tracking statuses

Status Description

ASSURED For TCP connections, indicates the TCP connection setup
has been completed. For UDP connections, indicates it
looks like a UDP stream to the kernel.

EXPECTED Indicates the connection was expected.

SEEN_REPLY Indicates that packets have gone in both directions. See
also ESTABLISHED state.

Table 12. Connection tracking helper modules

Helper Protocol

ip_conntrack_amanda Amanda backup protocol (requires CONFIG_IP_NF_
AMANDA kernel config)

ip_conntrack_ftp File Transfer Protocol (requires CONFIG_IP_NF_FTP
kernel config)

Table 10. Connection tracking states (continued)

State Description

Download at WoweBook.Com

16 | Linux iptables Pocket Reference

Accounting
The kernel automatically tracks packet and byte counts for
each rule. This information can be used to do accounting on
network usage.

For example, if you add the following four rules to a machine
serving as an Internet gateway (assuming two network inter-
faces: eth0 for the internal network, and eth1 for the Internet
connection), the kernel tracks the number of packets and
bytes exchanged with the outside world.

iptables -A FORWARD -i eth1
iptables -A FORWARD -o eth1
iptables -A INPUT -i eth1
iptables -A OUTPUT -o eth1

After running these commands, iptables -L -v shows (note
the counts for INPUT and OUTPUT; the nonzero counts indi-
cate that some traffic had already traversed the chains by the
time we displayed the counts):

Chain INPUT (policy ACCEPT 27 packets, 1728 bytes)
 pkts bytes target prot opt in out source destination
 3 192 all -- eth1 any anywhere anywhere

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 0 0 all -- eth1 any anywhere anywhere
 0 0 all -- any eth1 anywhere anywhere

Chain OUTPUT (policy ACCEPT 21 packets, 2744 bytes)
 pkts bytes target prot opt in out source destination
 3 192 all -- any eth1 anywhere anywhere

ip_conntrack_irc Internet Relay Chat (requires CONFIG_IP_NF_IRC
kernel config)

ip_conntrack_tftp Trivial File Transfer Protocol (requires CONFIG_IP_NF_
TFTP kenel config)

Table 12. Connection tracking helper modules (continued)

Helper Protocol

Download at WoweBook.Com

Introduction | 17

See the discussion of the -c, -n, -t, and -x options in
Table 14, and the -L and -Z options in Table 15 to learn
more about the iptables options applicable to accounting
applications.

Network Address Translation (NAT)
NAT is the modification of the addresses and/or ports of net-
work packets as they pass through a computer. The com-
puter performing NAT on the packets could be the source or
destination of the packets, or it could be one of the comput-
ers on the route between the source and destination.

WARNING

Network address translation requires connection track-
ing, and connection tracking only works when the com-
puter sees all the packets. So, if your firewall setup
involves more than one computer, take care not to break
connection tracking.

NAT can be used to perform a variety of useful functions
based on the manipulations of addresses and ports. These
functions can be grouped based on which addresses (source
or destination) are being manipulated.

The nat built-in table is intended specifically for use in NAT
applications.

The iptables NAT logic allows plug-in modules to help han-
dle packets for protocols that embed addresses within the
data being exchanged. Without the helper module, the pack-
ets would be modified to go to different hosts, but the appli-
cation data being exchanged would still use the pre-NAT
addresses, keeping the application from working.

To use these, you need to run the modprobe command to
install the kernel module. Table 13 lists the NAT helper
modules.

Download at WoweBook.Com

18 | Linux iptables Pocket Reference

If you want certain packets to bypass NAT, you can write
rules that match the packets you are interested in and jump
to the special target ACCEPT. You need to have such rules
before your other NAT rules.

iptables -t nat -i eth1 ... -j ACCEPT

Source NAT and Masquerading
Source NAT (SNAT) is used to share a single Internet con-
nection among computers on a network. The computer
attached to the Internet acts as a gateway and uses SNAT
(along with connection tracking) to rewrite packets for con-
nections between the Internet and the internal network. The
source address of outbound packets is replaced with the
static IP address of the gateway’s Internet connection. When
outside computers respond, they will set the destination
address to the IP address of the gateway’s Internet connec-
tion, and the gateway will intercept those packets, change
their destination addresses to the correct inside computer,
and forward them to the internal network.

Since SNAT entails modifying the source addresses and/or
ports of packets just before they leave the kernel, it is per-
formed through the POSTROUTING chain of the nat table.

Table 13. NAT helper modules

Helper Protocol

ip_nat_amanda Amanda backup protocol (requires CONFIG_IP_NF_
NAT_AMANDA kernel config)

ip_nat_ftp File Transfer Protocol (requires CONFIG_IP_NF_NAT_
FTP kernel config)

ip_nat_irc Internet Relay Chat (requires CONFIG_IP_NF_NAT_
IRC kernel config)

ip_nat_snmp_basic Simple Network Management Protocol (requires
CONFIG_IP_NF_NAT_SNMP_BASIC kernel config)

ip_nat_tftp Trivial File Transfer Protocol (requires CONFIG_IP_NF_
NAT_TFTP kernel config)

Download at WoweBook.Com

Introduction | 19

There are two ways of accomplishing SNAT with iptables.
The SNAT target extension is intended for situations where the
gateway computer has a static IP address, and the MASQUERADE
target extension is intended for situations where the gateway
computer has a dynamic IP address. The MASQUERADE target
extension provides additional logic that deals with the possi-
bility that the network interface could go off line and come
back up again with a different address. Additional overhead
is involved in this logic, so if you have a static IP address, you
should use the SNAT target extension instead.

You can set up SNAT on the eth1 interface by putting a sim-
ple rule on the POSTROUTING chain of the nat table:

iptables -t nat -A POSTROUTING -o eth1 -j SNAT

The corresponding command for masquerading is:

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

Destination NAT
Destination NAT (DNAT) exposes specific services on an
internal network to the outside world without linking the
internal computers directly to the Internet. And as long as
there is no more than one service to be exposed on any given
port, only one Internet connection (public IP address) is
required. The gateway computer redirects connections to the
specified ports to the designated internal computers and
ports and arranges for return traffic to go back to the origi-
nal address outside the network.

Since DNAT entails modifying the destination addresses
and/or ports of packets just before they are either routed to
local processes or forwarded to other computers, it is per-
formed through the PREROUTING chain of the nat table.

For example, to forward inbound connections coming in on a
gateway’s port 80 (HTTP) to an internal web server running
on port 8080 of 192.168.1.3, you could use a rule like this:

iptables -t nat -A PREROUTING -i eth1 -p tcp --dport 80
 -j DNAT --to-destination 192.168.1.3:8080

Download at WoweBook.Com

20 | Linux iptables Pocket Reference

Transparent Proxying
Transparent proxying is a way to intercept specific outgoing
connections and redirect them to a computer that will ser-
vice them in the place of the original destination computer.
This technique allows you to set up proxies for services with-
out having to configure each computer on the internal net-
work. Since all traffic to the outside world goes through the
gateway, all connections to the outside world on the given
port will be proxied transparently.

If you have an HTTP proxy (such as Squid) configured to run
as a transparent proxy on your firewall computer and listen
on port 8888, you can add one rule to redirect outbound
HTTP traffic to the HTTP proxy:

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 80
 -j REDIRECT --to-port 8888

It is more complicated to transparently proxy to a service run-
ning on a different host. You can find details on making this
work for Squid in Daniel Kiracofe’s “Transparent Proxy with
Linux and Squid mini-HOWTO,” available online at The
Linux Documentation Project’s web site (http://www.tldp.org/
HOWTO/TransparentProxy.html).

Load Distribution and Balancing
You can distribute load across a number of participating
hosts using the nth match extension and the DNAT target
extension.

Load balancing is a refinement of load distribution that
entails using load statistics for the target hosts to advise the
choice of target for packets in order to keep the participating
hosts close to equally loaded.

Stateless and Stateful Firewalls
A firewall is a gateway computer that restricts the flow of
network traffic among the networks it connects.

Download at WoweBook.Com

Introduction | 21

Stateless firewalls use simple rules that do not require con-
nection or other state tracking, such as matches on combina-
tions of source and destination addresses and ports for
certain protocols.

Stateful firewalls allow more advanced packet processing that
involve tracking connections and other state, such as keep-
ing track of recent activity by host or connection (such as the
iplimit, limit, and recent match extensions).

iptables supports both types of firewall rules (but see the
warning in the section “Network address translation”).

Tools of the Trade
There are many networking tools that can come in handy
while troubleshooting your firewall or other network func-
tionality. Table 14 provides links for a few of the most com-
mon ones.

Table 14. Tools of the trade

Tool Description

ethereal Network protocol analyzer.
http://www.ethereal.com/

Nessus Remote security scanner.
http://www.nessus.org/intro.html

nmap Network mapper.
http://www.insecure.org/nmap/

ntop Network traffic probe.
http://ntop.ethereal.com/ntop.html

ping Send ICMP ECHO_REQUEST to specific hosts.

tcpdump Packet capture and dumping.
http://www-nrg.ee.lbl.gov/

traceroute Print the route packets take to a specific host.
http://www-nrg.ee.lbl.gov/

Download at WoweBook.Com

22 | Linux iptables Pocket Reference

iptables Command Reference
Most of the options for the iptables command can be
grouped into subcommands and rule match criteria.
Table 15 describes the other options.

Table 15. iptables miscellaneous options

Option Description

-c packets bytes When combined with the -A, -I, or -R
subcommand, sets the packet counter to packets
and the byte counter to bytes for the new or
modified rule.

--exact Synonym for -x.

-h Displays information on iptables usage. If it appears
after -m match or -j target, then any additional
help related to the extension match or target
(respectively) is also displayed.

--help Synonym for -h.

-j target [options] Determines what to do with packets matching this rule.
The target can be the name of a user-defined chain,
one of the built-in targets, or an iptables extension (in
which case there may be additional options).

--jump Synonym for -j.

--line-numbers When combined with the -L subcommand, displays
numbers for the rules in each chain, so you can refer
to the rules by index when inserting rules into (via-I)
or deleting rules from (via -D) a chain.

-m match [options] Invoke extended match, possibly with additional
options.

--match Synonym for -m.

-M cmd Used to load an iptables module (with new targets or
match extensions) when appending, inserting, or
replacing rules.

--modprobe=cmd Synonym for -M.

-n Displays numeric addresses and ports instead of
looking up and displaying domain names for the IP
addresses and displaying service names for the port
numbers. This can be especially useful if your DNS
service is slow or down.

Download at WoweBook.Com

iptables Command Reference | 23

Getting help
iptables provides some online help. You can get basic infor-
mation via these commands:

iptables -h
iptables -m match -h
iptables -j TARGET -h
man iptables

WARNING

Sometimes there are contradictions among these sources
of information.

The iptables Subcommands
Each iptables command can contain one subcommand,
which performs an operation on a particular table (and, in
some cases, chain). Table 16 lists the options that are used to
specify the subcommand.

--numeric Synonym for -n.

--set-counters Synonym for -c.

-t table Performs the specified subcommand on table. If
this option is not used, the subcommand operates on
the filter table by default.

--table Synonym for -t.

-v Produces verbose output.

--verbose Synonym for -v.

-x Displays exact numbers for packet and byte counters,
rather than the default abbreviated format with
metric suffixes (K, M, or G).

Table 15. iptables miscellaneous options (continued)

Option Description

Download at WoweBook.Com

24 | Linux iptables Pocket Reference

WARNING

The manpage for the iptables command in the 1.2.7a re-
lease shows a -C option in the synopsis section, but the
option does not exist

Table 16. iptables subcommand options

Option Description

-A chain rule Appends rule to chain.

--append Synonym for -A.

-D chain
 [index | rule]

Deletes the rule at position index or matching
rule from chain.

--delete Synonym for -D.

--delete-chain Synonym for -X.

-E chain newchain Renames chain to newchain.

-F [chain] Flushes (deletes) all rules from chain (or from all
chains if no chain is given).

--flush Synonym for -F.

-I chain [index]
rule

Inserts rule into chain, at the front of the chain,
or at position index.

--insert Synonym for -I.

-L [chain] Lists the rules for chain (or for all chains if no
chain is given).

--list Synonym for -L.

-N chain Creates a new user-defined chain.

--new-chain Synonym for -N. Commonly abbreviated --new.

-P chain target Sets the default policy of the built-in chain to
target. Applies to built-in chains and targets
only.

--policy Synonym for -P.

-R chain index rule Replaces the rule at positionindex ofchainwith
the new rule.

--rename-chain Synonym for -E.

--replace Synonym for -R.

Download at WoweBook.Com

iptables Command Reference | 25

iptables Matches and Targets
iptables has a small number of built-in matches and targets,
and a set of extensions that are loaded if they are referenced.
The matches for IP are considered built-in, and the others are
considered match extensions (even though the icmp, tcp, and
udp match extensions are automatically loaded when the cor-
responding protocols are referenced with the -p built-in
Internet Protocol match option).

This section describes all of the built-in and extension
matches and targets included in iptables version 1.2.7a.

TIP

Some options can have their senses inverted by inserting
an exclamation point surrounded by spaces, immediately
before the option. The options that allow this are anno-
tated with [!]. Only the noninverted sense is described in
the sections that follow since the inverted sense can be in-
ferred from the description.

Internet Protocol (IPv4) matches

The built-in IP matches are listed in the later section “ip
(Internet Protocol IPv4) matches” in order to keep with the
encyclopedic format of this section.

-V Displays the version of iptables.

--version Synonym for -V.

-X [chain] Deletes the user-defined chain (or all user-
defined chains if none is specified).

-Z chain Zeros the packet and byte counters for chain (or
for all chains if no chain is specified).

--zero Synonym for -Z.

Table 16. iptables subcommand options (continued)

Option Description

Download at WoweBook.Com

26 | Linux iptables Pocket Reference

ACCEPT target

This built-in target discontinues processing of the current
chain and goes to the next table and chain in the standard
flow (see Figures 1 through 3 and Tables 4 through 7).

Only this target and the DROP target can be used as the policy
for a built-in chain.

ah match

Match extension for the IPSec protocol’s Authentication
Header (AH) Security Parameters Index (SPI) field. The desti-
nation address and the SPI together define the Security Asso-
ciation, or SA for the packet. Used in conjunction with the -p
ah (or -p ipv6-auth or -p 51) protocol specification option.
Table 17 describes the single option to this match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_AH_ESP enabled.

For example:

iptables -A INPUT -p ah -m ah --ahspi 500 -j DROP

See the book IPv6 Essentials, by Silvia Hagen (O’Reilly) for
more information on the IPv6 protocol. See also esp match.

connmark Match

Match based on the packet’s connection mark. Table 18
describes the single option to this match.

Table 17. ah match options

Option Description

--ahspi
 [!] min[:max]

Match the value (if only min is given) or inclusive range (if
both min and max are given) for the SPI field of the AH.

Download at WoweBook.Com

iptables Command Reference | 27

See also the CONNMARK target extension.

CONNMARK target

Set the packet’s connection mark. Table 19 describes the
options to this target.

See also the connmark match extension.

conntrack match

Match based on information maintained by the connection
tracking machinery. Table 20 describes the options to this
match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_CONNTRACK enabled.

Table 18. connmark match options

Option Description

--mark
value[/mask]

Match if the packet’s connection mark is equal to value
after applying mask.

Table 19. CONNMARK target options

Option Description

--set-mark value Set the packet’s connection mark to the integer value.

--save-mark Save the packet’s mark into the connection.

--restore-mark Restore the packet’s mark from the connection.

Table 20. conntrack match options

Option Description

[!] --ctexpire
min[:max]

Match the value (if only min is given) or inclusive
range (if both min and max are given) for the
connection’s remaining lifetime (in seconds).

Download at WoweBook.Com

28 | Linux iptables Pocket Reference

DNAT target

Perform Destination Network Address Translation (DNAT)
by modifying the destination addresses and/or ports of pack-
ets. If multiple destination addresses are specified, connec-
tions are distributed across those addresses. Connection
tracking information ensures that packets for each connec-
tion go to the same host and port. Table 21 describes the
options to this target.

--ctorigdst [!]
addr[/mask]

Match the original destination address (before NAT).

--ctorigsrc [!]
addr[/mask]

Match based on the original source address (before
NAT).

[!] --ctproto
proto

Match the given protocol. The proto argument can
be a protocol number or name. See also Table 37.

--ctrepldst [!]
addr[/mask]

Match the replacement destination address (after
NAT).

--ctreplsrc [!]
addr[/mask]

Match the replacement source address (after NAT).

[!] --ctstate
states

Match any of the given connection tracking states.
The states argument is a comma-separated list of
connection tracking states (see Table 10) or SNAT or
DNAT.

[!] --ctstatus
statuses

Match any of the given connection tracking statuses.
The statuses argument is a comma-separated list
of connection tracking statuses (see Table 11). The
special valueNONEmay be used to indicate that none
of the status bits should be set.

Table 21. DNAT target options

Option Description

--to-destination
a1[-a2][:p1-p2]

a1 and a2 are used to specify a range of destination
addresses. p1 and p2 are used to specify a range of
ports (for TCP or UDP protocols).

Table 20. conntrack match options (continued)

Option Description

Download at WoweBook.Com

iptables Command Reference | 29

The DNAT target extension is available only on the
PREROUTING and OUTPUT chains of the nat table.

For example, to forward packets coming in on interface eth0
for port 80 to an internal web server listening on IP address
192.168.1.80:

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 80
 -j DNAT --to-destination 192.168.1.80

WARNING

When doing this kind of DNAT, it is important to sepa-
rate internal and external DNS so that internal hosts use
the inside address of the web server directly.

See also:

• The REDIRECT target extension for simple redirection to
ports on the local machine.

• The SNAT target extension for source NAT.

• The nth match extension for an alternative way of imple-
menting load distribution.

DROP target

This built-in target causes the kernel to discontinue process-
ing in the current chain without continuing processing else-
where and without providing rejection notices to the sender.

Only the DROP target and the ACCEPT target can be used as the
policy for a built-in chain.

See also the REJECT target extension, which will send an
ICMP reply to the sender.

dscp match

Use this match to identify packets with particular Differenti-
ated Services Codepoint (DSCP) values in their IPv4 headers.
The DSCP field is a reinterpretation of the TOS byte of the
IPv4 header. Table 22 describes the options to this match.

Download at WoweBook.Com

30 | Linux iptables Pocket Reference

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_DSCP enabled.

At most, one of these options may be specified for any rule.

Table 23 provides descriptions of the classes, and Table 24
shows the corresponding DSCP values.

Table 22. dscp match options

Option Description

--dscp value Match if the packet’s DSCP field equals value,
which can be specified in decimal or hexadecimal
notation (such as 0x0e).

--dscp-class name Match if the packet’s DSCP field value corresponds to
DSCP class name.
The names are AF[1-3][1-4], BE, CS[0-7],
and EF. See Table 23 for descriptions of the classes,
and Table 24 for the corresponding DSCP values.

Table 23. Differentiated Services classes

Class Description

AF Assured Forwarding. See RFC 2597, “Assured Forwarding PHB
Group” (available online at http://www.rfc-editor.org/rfc/
rfc2597.txt) for more information on the AF class.

BE Best Effort.

CS Class Selector.

EF Expedited Forwarding. See RFC 2598, “An Expedited
Forwarding PHB” (available online at http://www.rfc-editor.
org/rfc/rfc2598.txt) for more information on the EF class.

Table 24. Differentiated Services class names and values

Name Value

AF11 0x0a

AF12 0x0c

Download at WoweBook.Com

iptables Command Reference | 31

See also:

• The DSCP target extension.

• RFC 2474 “Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers” (available
online at http://www.rfc-editor.org/rfc/rfc2474.txt).

• RFC 2475 “An Architecture for Differentiated Service”
(available online at http://www.rfc-editor.org/rfc/
rfc2475.txt).

AF13 0x0e

AF21 0x12

AF22 0x14

AF23 0x16

AF31 0x1a

AF32 0x1c

AF33 0x1e

AF41 0x22

AF42 0x24

AF43 0x26

BE 0x00

CS0 0x00

CS1 0x08

CS2 0x10

CS3 0x18

CS4 0x20

CS5 0x28

CS6 0x30

CS7 0x38

EF 0x2e

Table 24. Differentiated Services class names and values (continued)

Name Value

Download at WoweBook.Com

32 | Linux iptables Pocket Reference

DSCP target

Set the DSCP values in IPv4 packet headers. The DSCP field
is a reinterpretation of the TOS byte of the IPv4 header.
Table 25 describes the options to this target.

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_DSCP enabled.

At most one of these options may be used for any given rule.

For example, to set all outgoing traffic to DSCP 0x0e:

iptables -t mangle -A OUTPUT -j DSCP --set-dscp 0x0e

See also:

• The dscp match extension.

• RFC 2475 “An Architecture for Differentiated Service”
(online at http://www.rfc-editor.org/rfc/rfc2475.txt).

ecn match

Match based on values of the Explicit Congestion Notifica-
tion fields in the IPv4 header. Table 26 describes the options
to this match.

Table 25. DSCP target options

Option Description

--set-dscp value Overwrite the packet’s DSCP field with value,
which can be specified in decimal or hexadecimal
notation (such as 0x0e).

--set-dscp-class name Set the packet’s DSCP field to the value for DSCP
class name.
The names are AF[1-3][1-4], BE, CS[0-7],
and EF. See Table 23 for descriptions of the classes,
and Table 24 for the corresponding DSCP values.

Download at WoweBook.Com

iptables Command Reference | 33

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_ECN enabled.

See also:

• The ECN target extension.

• RFC 2481 “A Proposal to add Explicit Congestion Noti-
fication (ECN) to IP” (available online at http://www.rfc-
editor.org/rfc/rfc2481.txt).

• RFC 3168 “The Addition of Explicit Congestion Notifi-
cation (ECN) to IP” (available online at http://www.rfc-
editor.org/rfc/rfc3168.txt).

ECN target

Set the values of the Explicit Congestion Notification fields
in the IPv4 header.

Use this target only in the mangle table. Table 27 describes
the options to this target.

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_ECN enabled.

Table 26. ecn match options

Option Description

[!] --ecn-ip-ect
 [0..3]

Matches the ECN Capable Transport field (two
bits) of the IPv4 header.

[!] --ecn-tcp-cwr Matches the Congestion Window Reduced bit of
the IPv4 header.

[!] --ecn-tcp-ece Matches the ECN Echo bit of the IPv4 header.

Download at WoweBook.Com

34 | Linux iptables Pocket Reference

See also:

• The ecn match extension.

• RFC 2481 “A Proposal to add Explicit Congestion Noti-
fication (ECN) to IP” (available online at http://www.rfc-
editor.org/rfc/rfc2481.txt)

• RFC 3168 “The Addition of Explicit Congestion Notifi-
cation (ECN) to IP” (available online at http://www.rfc-
editor.org/rfc/rfc3168.txt).

esp match

Match extension for the IPSec protocol’s Encapsulating Secu-
rity Payload (ESP) header Security Parameters Index (SPI)
field. The destination address and the SPI together define the
SA for the packet. Used in conjunction with the -p esp (or -p
ipv6-crypt or -p 50) protocol specification option. Table 28
describes the single option to this match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_AH_ESP enabled.

Table 27. ECN target options

Option Description

--ecn-tcp-cwr n Sets the Congestion Window Reduced bit of the IPv4
header to n (0-1).

--ecn-tcp-ece n Sets the ECN Echo bit of the IPv4 header to n (0-1).

--ecn-tcp-ect n Sets the ECN Capable Transport field (two bits) of the
IPv4 header to n (0-3).

--ecn-tcp-remove Clears all the ECN fields of the IPv4 header.

Table 28. esp match options

Option Description

--espspi
 [!] min[:max]

Match the value (if only min is given) or inclusive range (if
both min and max are given) for the SPI field of the ESP.

Download at WoweBook.Com

iptables Command Reference | 35

For example:

iptables -A INPUT -p esp -m esp --espspi 500 -j DROP

See the book IPv6 Essentials, by Silvia Hagen (O’Reilly) for
more information on the IPv6 protocol. See also ah match.

FTOS target

This target sets the packet’s full Type of Service field to a partic-
ular value. It ignores special interpretations of the field such as
differentiated services and the various subfields of the Type of
Service field. Table 29 describes the single option to this target.

For example, this command sets outbound traffic to a nor-
mal type of service:

iptables -t mangle -A OUTPUT -j FTOS --set-ftos 0

See also:

• The tos match extension.

• The TOS target extension for a target that affects just the
TOS subfield of the Type of Service field.

helper match

Invoke a connection tracking helper, thereby matching pack-
ets for the connections it is tracking. Table 30 describes the
single option to this match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_HELPER enabled.

Table 29. FTOS target options

Option Description

--set-ftos value Set the IP type of service field to the decimal or hex
value (this target does not accept Type of Service
names). See Table 34 for a list of types of service.

Download at WoweBook.Com

36 | Linux iptables Pocket Reference

For example, to invoke the Internet Relay Chat (IRC) con-
nection tracking helper module to allow related IRC traffic
through the firewall, use this command:

iptables -A INPUT -m helper --helper irc -j ACCEPT

icmp match

Match extension for the Internet Control Message Protocol
(ICMP). This match extension is automatically loaded if -p
icmp is used. The fields of the ICMP header are shown in
Figure 4. Table 31 describes the options to this match.

Table 32 shows the official ICMP types and codes at the time
of writing, from the official database at http://www.iana.org/
assignments/icmp-parameters (per RFC 3232, “Assigned

Table 30. helper match options

Option Description

--helper name Invoke the connection tracking helper name. Typical
values of name are amanda, ftp, irc, or tftp.

Figure 4. ICMP (RFC 792) header layout

Table 31. icmp match options

Option Description

--icmp-type
 [!] typename

Matches ICMP type typename. See also Table 32.

--icmp-type
 [!] type[/code]

Matches ICMP type and code given. See also Table 32.

Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Code Checksum

Pointer Unused

Internet protocol header and 64 bits of original payload

Download at WoweBook.Com

iptables Command Reference | 37

Numbers: RFC 1700 is Replaced by an On-line Database,”
available online at http://www.rfc-editor.org/rfc/rfc3232.txt).
The ones in the regular text style (such as type 6, Alternate
Host Address) must be referenced by number, not by name.

Table 32. ICMP protocol types and codes

Type Code Name

0 any echo-reply or pong

1 any Unassigned

2 any Unassigned

3 any destination-unreachable

0 network-unreachable

1 host-unreachable

2 protocol-unreachable

3 port-unreachable

4 fragmentation-needed

5 source-route-failed

6 network-unknown

7 host-unknown

8 Source Host Isolated

9 network-prohibited

10 host-prohibited

11 TOS-network-unreachable

12 TOS-host-unreachable

13 communication-prohibited

14 host-precedence-violation

15 precedence-cutoff

4 any source-quench

5 any redirect

0 network-redirect

1 host-redirect

2 TOS-network-redirect

Download at WoweBook.Com

38 | Linux iptables Pocket Reference

3 TOS-host-redirect

6 any Alternate Host Address

7 any Unassigned

8 any echo-request or ping

9 any router-advertisement

0 Normal router advertisement

16 Does not route common traffic

10 any router-solicitation

11 any time-exceeded or ttl-exceeded

0 ttl-zero-during-transit

1 ttl-zero-during-reassembly

12 any parameter-problem

0 ip-header-bad

1 required-option-missing

2 Bad Length

13 any timestamp-request

14 any timestamp-reply

15 any Information Request

16 any Information Reply

17 any address-mask-request

18 any address-mask-reply

19-29 any Reserved

30 any Traceroute

31 any Datagram Conversion Error

32 any Mobile Host Redirect

33 any IPv6 Where-Are-You

34 any IPv6 I-Am-Here

35 any Mobile Registration Request

36 any Mobile Registration Reply

Table 32. ICMP protocol types and codes (continued)

Type Code Name

Download at WoweBook.Com

iptables Command Reference | 39

ip (Internet Protocol IPv4) matches

These built-in matches are available without a preceding -m
argument to iptables. Figure 5 shows the layout of the fields
in an Internet Protocol (IPv4) packet. These fields are the
subjects of various match and target extensions (including
the set of built-in matches described in this section).
Table 36 describes the options to this match.

Figure 6 shows the original layout of the TOS portion of the
Type of Service field (a collection of one-bit flags) and two
more current interpretations. All three versions are shown
here because you may see references to any of these interpre-
tations.

Table 33 gives the meanings of the various values for the
(historical) Precedence portion of the Type of Service field.
Precedence values are not often used in modern networks
because the Explicit Congestion Notification and Differenti-
ated Services features reinterpret the historical Precedence
and Type of Service interpretations of these bits.

37 any Domain Name Request

38 any Domain Name Reply

39 any SKIP

40 any Photuris

0 Bad SPI

1 Authentication Failed

2 Decompression Failed

3 Decryption Failed

4 Need Authentication

5 Need Authorization

41-255 any Reserved

Table 32. ICMP protocol types and codes (continued)

Type Code Name

Download at WoweBook.Com

40 | Linux iptables Pocket Reference

Figure 5. IP version 4 (RFC 791 and RFC 3168) header layout

Figure 6. IP version 4 header Type of Service field layout, according
to various RFCs

Table 33. IP version 4 precedence values

Code Description

0 Routine (normal)

1 Priority

2 Immediate

0

1

2

3

4

5

Version (4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IHL (5-15) Total length

[Fragment] Identification Flags

Type of service

Fragment offset

Time to live Protocol Header checksum

Source address

Destination address

Options padded to 32-bit boundary. . . (0-10 words)

Data. . .

0

RFC 791, Section 3.2 (September 1981):

1 2 3 4 5 6 7

Precedence Low delay
(D)

High
through-
put (T)

High
reliability

(R)

Reserved
(0)

Reserved
(0)

RFC 1349, Section 4 (July 1992):

Precedence TOS Reserved
(0)

RFC 3168, Section 5 (September 2001):

Differentiated services code point (DSCP)
Explicit congestion

notification
(ECN)

Download at WoweBook.Com

iptables Command Reference | 41

Table 34 shows the predefined values for the TOS field.
Other values are not considered illegal; they just are not
defined by the standard.

WARNING

Section 4 of RFC 1349 shows only the values of the four
nonreserved bits in the table that correspond to the items
in Table 34 here, excluding the implicit zero for the least
significant bit. So the binary value 0001 in the RFC corre-
sponds to the full binary value 00010 (decimal “2”) in
Table 34.

WARNING

RFC 1349 replaces the old (RFC 791 and 1122) bit-field
interpretation of the TOS part of the Type of Service IP
header field. Of the 32 possible values of the 5-bit field,
only the 5 listed above are predefined. Others are still
considered legal, but it is no longer permitted to treat the
field as a set of one-bit flags.

3 Flash

4 Flash override

5 CRITIC/ECP (critical)

6 Internetwork control

7 Network control

Table 34. IP version 4 TOS values

Number Name Description

0 (0x00) Normal-Service Requests normal (default)
service.

2 (0x02) Minimize-Cost Requests the lowest
(monetary) cost path
available.

Table 33. IP version 4 precedence values (continued)

Code Description

Download at WoweBook.Com

42 | Linux iptables Pocket Reference

Figure 7 shows the layout of the Flags field.

The complete list of registered Internet Protocol options is
available online at http://www.iana.org/assignments/ip-
parameters. Table 35 contains a list of some of the more
common ones.

4 (0x04) Maximize-
Reliability

Requests the most reliable
path available.

8 (0x08) Maximize-
Throughput

Requests the highest
throughput path available.

16 (0x10) Minimize-Delay Requests the lowest delay
path available.

Figure 7. IP version 4 header flags field layout

Table 35. Common Internet Protocol options

Copy Class Number Value Description

1 0 3 131 Loose Source Routing (LSR) instructs
routers to ensure that the packet is
processed by a particular series of
routers on its way from the source to
the destination, although it is
permissible for other routers to be
visited along the way. The route taken
is recorded, as with the Record Route
option.

0 2 4 68 Timestamp (TS) instructs routers to
record timestamps in the packet when
they process the packet.

Table 34. IP version 4 TOS values (continued)

Number Name Description

0 1 2

Reserved
(0)

Don't
fragment

(DF)

More
fragments

(MF)

Download at WoweBook.Com

iptables Command Reference | 43

The copy bit indicates whether the option should be copied
into fragment packets if the original packet is fragmented.
The class bits are zero (00 in binary) for network control
options or two (10 in binary) for debugging options (the
other two values, 1 and 3, are not used). The remaining five
bits of the eight-bit value are the underlying option number.
(People commonly refer to the options by the eight-bit value
rather than the underlying five-bit option number.)

Table 36 provides a list of the Internet Protocol match
options.

0 0 7 7 Record Route (RR) instructs routers to
record their addresses in the packet so
the destination host can examine the
path the packet took from source to
destination.

1 0 9 137 Strict Source Routing (SSR) instructs
routers to ensure that the packet is
processed by a particular series of
routers on its way from the source to
the destination without other routers
being visited along the way. The route
actually taken is recorded, as with the
Record Route option.

1 0 20 148 Router alert (RTRALT) is used to advise
routers they should apply extra scrutiny
to the packet, possibly pulling it out of
the fast path. This can be useful when
rolling out a new protocol (see RFC
2113, “IP Router Alert Option,”
available online at http://www.rfc-
editor.org/rfc/rfc2113.txt).

Table 36. Internet Protocol match options

Option Description

-d [!] addr[/mask] Destination address addr (or range, if mask is given).

--destination Synonym for -d.

--dst Synonym for -d.

Table 35. Common Internet Protocol options (continued)

Copy Class Number Value Description

Download at WoweBook.Com

44 | Linux iptables Pocket Reference

You can use the old-style dotted-quad notation for masks
such as 192.168.1.0/255.255.255.0, or the newer Common
Inter-Domain Routing (CIDR) notation such as 192.168.1.0/24
(see RFC 1591, available online at http://www.rfc-editor.org/
rfc/rfc1519.txt) for the address specifications of -s and -d.

Table 37 provides a list of some common IP protocols.

[!] -f Second or further fragment of a packet that has
undergone fragmentation. Connection tracking does
automatic defragmentation, so this option is not often
useful. But if you aren’t using connection tracking, you
can use it.

--fragments Synonym for -f. Commonly abbreviated (including in
the iptables manpage) --fragment.

-i [!] in Input interface in (if in ends with +, any interface
having a name that starts with in will match).

--in-interface Synonym for -i.

-o [!] out Input interface out (if out ends with +, any interface
having a name that starts with out will match).

--out-interface Synonym for -o.

-p [!] proto Protocol name or number proto.
See Table 37 for a list of common protocol names and
numbers. Your system’s /etc/protocols file will be
consulted to map official names (in a case-insensitive
manner) to numbers. The aliases in /etc/protocols are
not available. See also the official protocol list at http://
www.iana.org/assignments/protocol-numbers.
-p protocol includes an implicit -m protocol
when protocol is one of icmp, tcp, or udp.

--protocol Synonym for -p. Commonly abbreviated --proto.

-s [!] addr[/mask] Source address addr (or range, if mask is given).

--source Synonym for -s.

--src Synonym for -s.

Table 36. Internet Protocol match options (continued)

Option Description

Download at WoweBook.Com

iptables Command Reference | 45

iplimit match

Match when the number of live connections is less than or
equal to the specified count. Table 38 describes the options
to this match.

Table 37. Common IP protocols

Name Number(s) Description

ah 51 Synonym for ipv6-auth, built into
iptables (not typically in /etc/protocols).

ALL 1, 6, 17 Equivalent to not specifying protocol at all.

esp 50 Synonym for ipv6-crypt, built into
iptables (not typically in /etc/protocols).

icmp 1 Internet Control Message Protocol

igmp 2 Internet Group Management Protocol

ipv6-auth 51 Internet Protocol (version 6)
authentication header

ipv6-crypt 50 Internet Protocol (version 6) encryption
header

ospf 89 Open Shortest Path First

tcp 6 Transmission Control Protocol

udp 17 User Datagram Protocol

Table 38. iplimit match options

Option Description

[!] --iplimit-above
count

Number of simultaneous connections per
network. A “network” for the purposes of this
extension is all IP addresses that are the same
after masking off the rightmost n bits, where n is
determined by the --iplimit-mask option.

--iplimit-mask n Sets the number of bits n of IP addresses that will
be masked off before grouping them into logical
networks. Defaults to 32. This way, all IP
addresses are considered to be in the same
“network.”

Download at WoweBook.Com

46 | Linux iptables Pocket Reference

For example, you can create rules that will accumulate byte
and packet counts when the connection count is low and
when it is high:

iptables -A INPUT -m iplimit ! --iplimit-above 10
iptables -A INPUT -m iplimit --iplimit-above 1000

Or, to allow no more than 10 simultaneous HTTP connec-
tions from each class-C–sized network (24 network bits, 8
host bits), use this rule to drop the over-the-limit connection
initiation (SYN) packets:

iptables -A INPUT -p tcp --syn --dport 80 -m iplimit
 --iplimit-above 10 --iplimit-mask 24 -j REJECT

See also the limit match extension for rate-based limited
matching.

ipv4options match

Match extension for some common IPv4 options. See
Figure 5 for the IPv4 header structure. Table 39 describes the
options to this match.

For example, use this rule to drop all packets with any
option present:

iptables -A INPUT -m ipv4options --any-opt -j DROP

See also the IPV4OPTSSTRIP target extension for a way to strip
options out of the IP header.

Table 39. ipv4options match options

Option Description

--ssrr Strict Source and Record Route option is present. See RFC 791.

--lsrr Loose Source and Record Route option is present. See RFC 791.

--no-srr No Source and Record Route option is present. See RFC 791.

[!] --rr Record Route option is present. See RFC 791.

[!] --ts Time Stamp option is present. See RFC 791.

[!] --ra Router Alert option is present. See RFC 2113.

[!] --any-opt At least one option is present.

Download at WoweBook.Com

iptables Command Reference | 47

IPV4OPTSSTRIP target

This target strips off all IPv4 options from the packet’s
header. See Figure 5 for the IPv4 header structure.

Use this target extension only in the mangle table.

For example, this rule strips options from all incoming pack-
ets:

iptables -t mangle -A PREROUTING -j IPV4OPTSSTRIP

See also the ipv4options match extension for a way to match
packets based on options in the IP header.

length match

Match extension for overall packet length. Table 40 describes
the single option to this match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_LENGTH enabled.

For example, to drop long ping packets, use this command:

iptables -A INPUT -p icmp --icmp-type ping -m length
 --length 1000 -j DROP

limit match

Match until a packet rate limit is exceeded, then stop match-
ing. Table 41 describes the options to this match.

Table 40. length match options

Option Description

--length min
--length min:
--length :max
--length min:max

Match the value (if only min is given) or inclusive
range (if both min and max are given) for the overall
length of the packet.
min defaults to zero, and max defaults to 65535.

Download at WoweBook.Com

48 | Linux iptables Pocket Reference

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_LIMIT enabled.

For example, to accept all pings up to 10 per second, use this
rule:

iptables -A INPUT -p icmp --icmp-type ping -m limit
 --limit 10/s -j ACCEPT

or this rule to drop them if the rate exceeds 10 per second:

iptables -A INPUT -p icmp --icmp-type ping -m limit
 !--limit 10/s -j DROP

You could also use the limit match with the LOG target to
implement limited logging.

See also the iplimit/connlimit match extension for connec-
tion-count limited matching and the quota match extension
for total traffic limits.

Table 41. limit match options

Option Description

--limit
 [rate[/unit]]

The number of packets to let through per unit of
time. Each time a packet is matched, an internal
counter of packets to allow in the future is decreased
by one. Further, the counter is increased by one rate
times every unit of time, up to the maximum
determined by --limit-burst. If no argument is
given, defaults to 3/hour. If no unit is given,
defaults to second.

--limit-burst
 [count]

Set the count of packets that will be matched in a
single “burst.” This value is used to initialize an
internal allowed-packet counter (so that up to count
packets can be matched before the first unit of time),
and also determines the maximum value of that
counter (so that no more thancount packets will ever
be allowed in a single unit of time).
If count is not given, defaults to 5.

Download at WoweBook.Com

iptables Command Reference | 49

LOG target

Log information about packets to the system’s logging facil-
ity (syslog). Table 42 describes the options to this target.

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_LOG enabled.

The available logging levels (as shown in Table 43) are those
defined in the <linux/kernel.h> header file (you may have
such a header, but if you don’t have full kernel source, you
may not have these definitions).

Table 42. LOG target options

Option Description

--log-ip-options Include the IP options in the log entries.

--log-level level Log with the specified level (by number or
name). The default level is warning. See
Table 43 for a list of logging level numbers and
names (names are case-insensitive to iptables).

--log-prefix prefix Prefix log entries with prefix.

--log-tcp-options Include the TCP options in the log entries.

--log-tcp-sequence Include the TCP sequence numbers in the log
entries.

Table 43. Logging levels

Level Name Description

0 emerg or panic Something is incredibly wrong; the system is
probably about to crash.

1 alert Immediate attention is required.

2 crit Critical hardware or software failure.

3 err or error Usually used for reporting of hardware
problems by drivers.

4 warning or warn Something isn’t right, but the problem is not
serious.

Download at WoweBook.Com

50 | Linux iptables Pocket Reference

TIP

The names panic, error, and warn are deprecated (al-
though iptables still maps err to error for display).

You can determine where the log entries go by looking at
your syslog.conf file, which should have an entry such as
kern.=info path. If you use the --log-level info option, log
entries will go into the log file at path.

See also the ULOG target extension, which provides more
advanced logging capabilities.

mac match

Match based on the media access controller (MAC) address
of the source Ethernet interface. Table 44 describes the sin-
gle option to this match.

This is actually not an Internet Protocol match because
Ethernet is at a lower level in the network architecture, but
because many IP networks run over Ethernet, and because
the MAC information is available, this match extension is
included.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_MAC enabled.

5 notice No problems: indicates an advisory of some
sort.

6 info General information, such as drivers’ reports
about hardware.

7 debug Debugging.

Table 43. Logging levels (continued)

Level Name Description

Download at WoweBook.Com

iptables Command Reference | 51

Use this only with rules on the PREROUTING, FORWARD, or INPUT
chains, and only for packets coming from Ethernet devices.
For example, this rule allows only a single Ethernet device to
communicate over an interface (such as an interface con-
nected to a wireless device):

iptables -A PREROUTING -i eth1 -m mac --mac-source
 ! 0d:bc:97:02:18:21 -j DROP

mark match

Match packets that have been marked with a particular value.
Packet marking can be used in conjunction with the ip com-
mand from the iproute2 tool set for advanced routing appli-
cations. Table 45 describes the single option to this match.

The Linux kernel allows you to attach an integer mark to a
packet and carries the mark along with the packet as it is pro-
cessed by other parts of the kernel. Note that the mark is not
stored in any IP or other header but is a separate piece of meta-
data maintained by the kernel. Therefore, packet marks are
lost once packets leave the computer on which they were set
(as happens if the packet was forwarded to another computer).

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_MARK enabled.

Table 44. mac match options

Option Description

--mac-source
 [!] mac

Match when the Ethernet frame source MAC field
matches mac. The format is: XX:XX:XX:XX:XX:XX,
where each XX is replaced by two hexadecimal digits.

Table 45. mark match options

Option Description

--mark value[/mask] Match if the packet’s mark is value after being
subjected to mask.

Download at WoweBook.Com

52 | Linux iptables Pocket Reference

The mask can be used to treat the kernel’s mark value as a set
of bit fields although the MARK target extension does not have
a mask, which prevents you from incrementally setting bit
fields with iptables.

See also the MARK target extension.

MARK target

Set the packet’s mark. Packet marking can be used in con-
junction with the ip command from the iproute2 tool set for
advanced routing applications. Table 46 describes the single
option to this target.

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_MARK enabled.

This target can be used only from the mangle table.

See also:

• The mark match extension.

• The TOS target extension for a target that can mark pack-
ets in a way that can be seen by other computers.

MASQUERADE target

Use this target extension to perform SNAT when the inter-
face has a dynamic IP address. Table 47 describes the single
option to this target.

The MASQUERADE target extension is for TCP and UDP connec-
tions.

Table 46. MARK target options

Option Description

--set-mark value Set the packet’s mark to value.

Download at WoweBook.Com

iptables Command Reference | 53

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_MASQUERADE enabled.

See also the SNAT target extension for a target with similar
functionality for static IP address connections.

multiport match

Match multiple TCP or UPD ports and port ranges simulta-
neously. Table 48 describes the options to this match.

For use only with TCP and UDP protocols (-p tcp or -p udp).

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_MULTIPORT enabled.

Table 47. MASQUERADE target options

Option Description

--to-ports p1[-p2] Change the source ports of the packets to the port (or
range of ports) given.

Table 48. multiport match options

Option Description

--destination-ports
portspec

Matches if the destination port is one of the port
names or numbers listed.

--dports Synonym for -destination-ports.

--ports portspec Matches if either the source or the destination port is
one of the port names or numbers listed.

--source-ports
portspec

Matches if the source port is one of the port names or
numbers listed.

--sports Synonym for -source-ports.

Download at WoweBook.Com

54 | Linux iptables Pocket Reference

Port specifications (portspec, above) are comma-separated
lists of up to 15 individual ports or port ranges (2 ports sepa-
rated by a colon).

NETLINK target

Send packets to userspace via a netlink socket. You can use
this to call your own custom packet processing code in user
space or to plug into an external application such as fwmon
(see http://www.scaramanga.co.uk/fwmon/). Table 49 describes
the options to this target.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_QUEUE enabled.

For example, to send all ICMP ping traffic to netlink and
then drop it, use this command:

iptables -A INPUT -p icmp --icmp-type ping -j NETLINK
 --nldrop

See also:

• The ULOG target extension, which uses netlink sockets to
communicate with the ulogd userspace packet logging
daemon.

• The netlink manpages (usually visible by running man 7
netlink or man 3 netlink) for more information.

• RFC 3549 “Linux Netlink as an IP Services Protocol”
(online at http://www.rfc-editor.org/rfc/rfc3549.txt).

Table 49. NETLINK target options

Option Description

--nldrop Send the packet and then drop it.

--nlmark number Mark the packet with number.

--nlsize size Send only the first size bytes of the packet.

Download at WoweBook.Com

iptables Command Reference | 55

NETMAP target

An IPv4 address consists of 32 bits, divided into a network
number and a host number based on the network mask. This
target strips off the network number and replaces it with a
different network number, effectively mapping the hosts of
one network to another. This target alters the destination
address in the PREROUTING chain for incoming packets, or the
source address in the POSTROUTING chain for outgoing pack-
ets. Table 50 describes the single option to this target.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_NETMAP enabled.

For example, to map between the networks 192.168.1.0/24
and 172.17.5.0/24, use these commands:

iptables -t nat -A PREROUTING -d 192.168.1.0/24 -j NETMAP
 --to 172.17.5.0/24
iptables -t nat -A POSTROUTING -s 172.17.5.0/24 -j NETMAP
 --to 192.168.1.0/24

nth match

Match one out of every group of n packets matching earlier
rule criteria. Table 51 describes the options to this match.

Table 50. NETMAP target options

Option Description

--to addr[/mask] Map hosts to the addr[/mask] network.

Table 51. nth match options

Option Description

--counter num Use packet counter num for this rule. There are 16 packet
counters available, and the default is zero. You can use
different packet counters for different packet streams on which
you are going to use the nth match extension.

Download at WoweBook.Com

56 | Linux iptables Pocket Reference

For example, to distribute incoming load across three servers:

iptables -t nat -A PREROUTING -i eth0 -p udp --dport $PORT
 -m nth --every 3 --packet 0 -j DNAT --to-destination
 $SERVER0
iptables -t nat -A PREROUTING -i eth0 -p udp --dport $PORT
 -m nth --every 3 --packet 1 -j DNAT --to-destination
 $SERVER1
iptables -t nat -A PREROUTING -i eth0 -p udp --dport $PORT
 -m nth --every 3 --packet 2 -j DNAT --to-destination
 $SERVER2

You could also use the nth match with the DROP target to sim-
ulate packet loss.

See also the DNAT target extension for a better way to accom-
plish load distribution.

owner match

Match packets based on information about the owning (cre-
ating) process. This match extension is available only in
OUTPUT chains, since it requires access to information about
the local process that created the packet. This match exten-
sion is ineffective for ICMP packets, which do not have own-
ers. Table 52 describes the options to this match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_OWNER enabled.

--every n Match one out of every group of n packets.

--packet num Specify which one (num) of each group of n packets to match.
If you use --packet in any rule, you must use it in n different
rules, covering the cases from zero to n - 1. The default is zero,
so that just specifying --every n gives you packet zero out of
every group of n.

--start num Start the counter at num instead of the default, which is zero.

Table 51. nth match options (continued)

Option Description

Download at WoweBook.Com

iptables Command Reference | 57

pkttype match

Match packets having a particular packet type that is classi-
fied based on the type of destination address it contains.
Table 53 describes the options to this match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_PKTTYPE enabled.

See Figure 5 for the IPv4 header structure.

Table 52. owner match options

Option Description

--cmd-owner cmd Match if the creating process was command cmd. (Not
all kernels support this feature.)

--gid-owner gid Match if the creating process’ effective group id is gid.

--pid-owner pid Match if the creating process’ process id is pid.

--sid-owner sid Match if the creating process is a member of the
session group sid.

--uid-owner uid Match if the creating process’ effective user id is uid.

Table 53. pkttype match options

Option Description

--pkt-type [!]
type

Match packets of the given type, which must match
one of the types in Table 54.

Table 54. Packet types

Name Description

bcast Synonym for broadcast.

broadcast The destination address is a network broadcast
address (all the host bits are one).

host Synonym for unicast.

mcast Synonym for multicast.

Download at WoweBook.Com

58 | Linux iptables Pocket Reference

Multicast addressing is discussed in RFC 1112 and RFC
1122, sections 3.2.1.3 and 3.3.6.

pool match

Matches source or destination IP addresses against those in
specific pools of IP addresses, which can be populated
dynamically via the POOL target. You manage pools with the
ippool command and the /etc/ippool.conf configuration file (a
map from pool numbers to names), which must be present
for the pool match to be useable. Table 55 describes the
options to this match.

The pool argument can be either a pool number or a name
from /etc/ippool.conf.

See also the POOL target extension.

POOL target

Adds or removes source or destination IP addresses in spe-
cific pools, which can be used to match packets via the pool
match. You manage pools with the ippool command and the
/etc/ippool.conf configuration file (a map from pool numbers
to names), which must be present for the POOL target to be
useable. Table 56 describes the options to this target.

multicast The destination address is a multicast address (an
address in the range 224.0.0.0 to 239.255.255.255).

unicast The destination address is a host address.

Table 55. pool match options

Option Description

[!] --srcpool pool Match if the source IP address is in pool.

[!] --dstpool pool Match if the destination IP address is in pool.

Table 54. Packet types (continued)

Name Description

Download at WoweBook.Com

iptables Command Reference | 59

The pool argument can be either a pool number or a name
from /etc/ippool.conf.

See also the pool match extension.

psd (Port Scan Detector) match

This match extension attempts to detect port scans by moni-
toring connection attempts across port numbers. It calcu-
lates and maintains a port scan value statistic (roughly
analogous to the number of connection attempts) based on
parameters you can set and match with the options described
in Table 57.

Table 56. POOL target options

Option Description

--add-dstip pool Add the packet’s destination IP address to pool.

--add-srcip pool Add the packet’s source IP address to pool.

--del-dstip pool Remove the packet’s destination IP address from pool.

--del-srcip pool Remove the packet’s source IP address from pool.

Table 57. psd match options

Option Description

--psd-delay-threshold delay The maximum delay (in ticks, where a tick
is typically 1/100 of a second—defined by
the kernel’s HZ constant) between
consecutive connection attempts for them
to be considered part of a scan. As long as
new connection attempts come no farther
apart than this, they will result in an
increase to the port scan value.The default is
300.

--psd-hi-ports-weight
weight

The weight to assign to high port numbers
(those from 1024 and up; also called
unprivileged ports) in calculating the port
scan value. Each connection attempt to a
high port is counted as this many hits.The
default is 1.

Download at WoweBook.Com

60 | Linux iptables Pocket Reference

For example:

iptables -A INPUT -m psd -j DROP

See also the recent match extension for another way of
detecting possibly hostile access.

QUEUE target

This built-in target causes the packet to be queued for pro-
cessing by a userspace application written with the libipq
library. You must use the ip_queue loadable kernel module to
use the QUEUE target. The /proc/sys/net/ipv4/ip_queue_maxlen
file contains the maximum queue depth, and you can see the
queue status at /proc/net/ip_queue. If there is no userspace
application processing the queue, the QUEUE target is equiva-
lent to DROP.

quota match

Match until a quota is reached. Table 58 describes the single
option to this match.

For example, to start dropping packets on port $PORT after
$QUOTA bytes have been received, use these two rules:

--psd-lo-ports-weight
weight

The weight to assign to low port numbers
(those below 1024; also called privileged
ports) in calculating the port scan value.
Each connection attempt to a low port is
counted as this many hits. The default is 3.

--psd-weight-threshold
weight

Match when the port scan value is greater
than or equal to weight. The default is 21.

Table 58. quota match options

Option Description

--quota amount Match until the number of bytes of network traffic
reaches the quota amount, and then stop matching.

Table 57. psd match options (continued)

Option Description

Download at WoweBook.Com

iptables Command Reference | 61

iptables -A INPUT -p tcp --dport $PORT -m quota --quota
 $QUOTA -j ACCEPT
iptables -A INPUT -p tcp --dport $PORT -j DROP

The quota match doesn’t provide a way to reset the quota or
to set the quota as a rate limit rather than as a total size limit.
See the limit match for more rate limits.

random match

Match packets randomly, based on a probability. This can be
used to simulate a bad link to test the robustness of a sys-
tem. Table 59 describes the single option to this match.

For example, use this rule to drop 10 percent of incoming
ping requests:

iptables -A INPUT -p icmp --icmp-type ping -m random
 --average 10 -j DROP

realm match

Matches routing realms as defined and used by the ip com-
mand. This match is used for advanced routing applications.
Table 60 describes the single option to this match.

recent match

Match all traffic from IP addresses that have seen recent
activity of a particular kind, as indicated by the options.
Table 61 describes the options to this match.

Table 59. random match options

Option Description

--average percent Set the percent chance a packet will be matched to
percent (from 1 to 99). The default percent is 50.

Table 60. realm match options

Option Description

--realm
 [!] value[/mask]

Specifies the realm value to match, along with an
optional mask of the bits to compare. The default
mask is 0xffffffff, which causes an exact match.

Download at WoweBook.Com

62 | Linux iptables Pocket Reference

For example, to create a “bad guy” list of addresses connect-
ing to port 139 (imap) and then drop any incoming packets
from those addresses, you can use these rules:

iptables -A PREROUTING -p tcp --dport imap -m recent --name
 BADGUY --set
iptables -A PREROUTING -m recent --name BADGUY --seconds
 60 -j DROP

Table 61. recent match options

Option Description

--hitcount hits Match only if the hit-count for the packet’s source address
in the designated recent address list is at least hits. Used
with --rcheck or --update.

--name name Designate the recent address list named name to be used
for matching or modification. Default is DEFAULT.

[!] --rcheck Match if the packet’s source address is in the designated
recent address list.

--rdest Save the destination address of the packet during --set.

[!] --remove Match if the packet’s source address is in the designated
recent address list and remove the packet’s source address
from the designated recent address list.

--rsource Save the source address of the packet during --set.
This is the default behavior.

--rttl Match only if both the source address and the TTL of the
original --set packet and the current packet match. This
stronger matching makes it harder for someone to send
packets that look like they are coming from somewhere
else, which might cause you to lock out that third party.
Used with --rcheck or --update.

--seconds secs Match only if the last-seen timestamp for the packet’s
source address in the designated recent address list is
within the last secs seconds. Used with --rcheck or
--update.

[!] --set Add the source address of the packet to the designated
recent address list.

[!] --update Match if the packet’s source address is in the designated
recent address list and update the last-seen timestamp for
the packet’s source address in the designated recent
address list.

Download at WoweBook.Com

iptables Command Reference | 63

See also the psd match extension for another way of detect-
ing possibly hostile access. You could use the psd match
extension along with the --set option of this match exten-
sion to set up an address list based on port scan detection.

record-rpc match

Matches packets with source IP addresses that have previ-
ously inquired about the destination port via the RPC
portmapper service. This can be useful in filtering out bogus
RPC traffic. There are no options for this target.

WARNING

You shouldn’t be accepting any RPC traffic over the In-
ternet. If you do, you could be exposing NFS or some
other RPC-based service to the world at large. These ser-
vices are meant more for interactions among mutually
trusting hosts, and you shouldn’t be extending any trust
to hosts at large on the Internet.

See also the configuration file /etc/rpc for your system’s
portmapper configuration.

REDIRECT target

Redirects the packet to the local machine by setting its desti-
nation IP address to one of the IP addresses of the local
machine. If the packet originated locally, its destination
address is changed to 127.0.0.1 (the address of the local
loopback interface). If the packet came in on a network inter-
face, the first-bound IP address of that interface is used.
Table 62 describes the single option to this target.

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_REDIRECT enabled.

Download at WoweBook.Com

64 | Linux iptables Pocket Reference

This target is for use with the PREROUTING and OUTPUT chains
of the nat table.

See also the DNAT target extension for more sophisticated des-
tination address manipulation.

REJECT target

Rejects a packet and sends an explicit notification back to
the packet’s sender via ICMP. While using DROP is usually
appropriate for packets originating outside your network,
you may want to use REJECT for packets originating inside
your network in order to aid in network troubleshooting.
Table 63 describes the single option to this target.

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_REJECT enabled.

This target is available for the INPUT, FORWARD, and OUTPUT
chains.

If no --reject-with option is specified, the default type is
icmp-port-unreachable.

Table 62. REDIRECT target options

Option Description

--to-ports p1[-p2] Also modify the destination port, setting it to a value
between p1 and p2 (inclusive), or just p1 if p2 is not
specified.
By default, the destination port is not altered.

Table 63. REJECT target options

Option Description

--reject-with
type

Send a type ICMP or TCP rejection reply and drop
the packet. See Table 64 for a list of rejection
types.

Download at WoweBook.Com

iptables Command Reference | 65

See also the DROP target, which doesn’t send a reply.

RETURN target

This built-in target is similar to the ACCEPT built-in target, but
it is meant for user-defined chains; it returns control to the
calling chain (the one that used -j to jump to the current
chain).

See also the ACCEPT built-in target.

ROUTE target

Route packets explicitly rather than letting the normal ker-
nel routing logic determine the route, without modifying the
packets. This target extension is used only in the PREROUTING
chain of the mangle table. Table 65 describes the options to
this target.

Table 64. REJECT rejection types

Type Description

host-prohib Synonym for icmp-host-prohibited.

host-unreach Synonym for icmp-host-unreachable.

icmp-host-prohibited Send an ICMP host prohibited reply.

icmp-host-unreachable Send an ICMP host unreachable reply.

icmp-net-prohibited Send an ICMP network prohibited reply.

icmp-net-unreachable Send an ICMP network unreachable reply.

icmp-port-unreachable Send an ICMP port unreachable reply.

icmp-proto-unreachable Send an ICMP protocol unreachable reply.

net-prohib Synonym for icmp-net-prohibited.

net-unreach Synonym for icmp-net-unreachable.

port-unreach Synonym for icmp-port-unreachable.

proto-unreach Synonym for icmp-proto-unreachable.

tcp-reset Send a TCP reset (with the RST flag set) reply. For
use in response to TCP packets only.

Download at WoweBook.Com

66 | Linux iptables Pocket Reference

For example, to send matched packets from the eth2 interface:

iptables -t mangle -A PREROUTING ... -j ROUTE --iface eth2

SAME target

Works like the SNAT target extension, but when using more
than one source address, attempts to use the same source
address for all connections that request the same destination
address. Table 66 describes the options to this target.

See also the SNAT target extension.

SNAT target

Use this target extension to perform SNAT when the inter-
face has a static IP address. Table 67 describes the single
option to this target.

Table 65. ROUTE target options

Option Description

--iface name Send the packet from the interface name.

--ifindex index Send the packet from the interface with number
index (based on the order in /proc/net/dev).

Table 66. SAME target options

Option Description

--nodst Don’t use the destination IP address in selecting
the source IP to use for the first connection for a
particular destination IP.

--to a1-a2 Specify the source address(es) to use. This option
can be used more than once to specify multiple
ranges.

Table 67. SNAT target options

Option Description

--to-source
a1[-a2][:p1-p2]

Change the source IP address field of the packet to
the addresses given (and optionally for the UDP
and TCP protocols, ports). This option can be used
more than once to specify multiple ranges.

Download at WoweBook.Com

iptables Command Reference | 67

Typical usage involves a single address, although if your host
has multiple addresses assigned to its interface, you can use
an address range and the SNAT target will distribute the con-
nections across the addresses in the range. You can also spec-
ify a range of port numbers if you want to limit the ports that
will be used for SNAT. Unless directed otherwise, iptables
uses unused ports in the range 1–511 if the pre-NAT port is
1–511, unused ports in the range 600–1023 if the pre-NAT
port is 512–1023, or unused ports in the range 1024–65535
if the pre-NAT port is 1024–65535.

For example, if eth0 was your network interface connected to
the Internet, and the environment variable $STATIC con-
tained the static IP address of eth0 (assigned by your Inter-
net service provider), you could use a rule like this to have
your computer apply SNAT to outbound traffic to make it all
look as if it is coming from the gateway computer:

iptables -t nat -A POSTROUTING -o eth0 -j SNAT
 --to $STATIC

See also:

• The DNAT target extension for destination NAT.

• The SAME target extension.

• The MASQUERADE target extension for a heavier-weight tar-
get with similar functionality for dynamic IP address con-
nections (which can cause strange failures with the SNAT
match extension).

state match

Use connection tracking information to match packets
belonging to connections in a particular set of states.
Table 68 describes the single option to this match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_STATE enabled.

Download at WoweBook.Com

68 | Linux iptables Pocket Reference

For example, if your machine is a gateway connected to the
Internet on its eth0 interface, you could use this command to
prevent it from forwarding packets for connections initiated
from the outside:

iptables -A FORWARD -m state NEW -i eth0 -j DROP

string match

Matches packets containing a particular string anywhere in
their payload. This match performs a simple, per-packet
string match, so it should not be used by itself to identify
traffic to be dropped. This match is intended to be used with
the QUEUE target extension to identify packets that should be
further examined in user space. Table 69 describes the single
option to this match.

For example, to queue any packet containing the string .pif
to user space for later examination by an intrusion detection
system:

iptables -A INPUT -m string --string .pif -j QUEUE

The string match won’t catch matches across packet bound-
aries, so the example just shown would fail to match a pair of

Table 68. state match options

Option Description

--state
state[,state...]

Match if the connection the packet
belongs to is in one of the listed states.
State must be one of the standard state
names (see Table 10)

Table 69. string match options

Option Description

--string
 [!] string

Match packets containing string.

Download at WoweBook.Com

iptables Command Reference | 69

packets where the first one ended with .p and the next one
started with if.

tcp match

Match extension for TCP. This match extension is automati-
cally loaded if -p tcp is used. Table 70 describes the options
to this match, and Table 71 provides the TCP protocol flags.

Figure 8 shows the structure of the TCP header.

Figure 9 shows the structure of the Control Bits field of the
TCP header.

Figure 8. TCP (RFC 793 and RFC 3168) header layout

Figure 9. TCP header Control Bits field layout

Table 70. tcp match options

Option Description

--destination-port Synonym for --dport.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination portSource port

Sequence number

Acknowledgement number

Window

Checksum

Options (with padding to 32-bit boundary)

Data. . .

Urgent pointer

Control bitsReservedData offset

Congestion
window
reduced
(CWR)

ECN
echo

(ECE)

Urgent

(URG)

Acknow-
ledgement

(ACK)

Push
function

(PSH)

Reset
connection

(RST)

Synchronize
sequence
numbers

(SYN)

No more
data from

sender
(FIN)

Download at WoweBook.Com

70 | Linux iptables Pocket Reference

--dport [!] port[:port] Match when the TCP destination port number is
equal to port (if only one port is given) or in
the inclusive range (if both ports are given).
Ports can be specified by name (from your
system’s /etc/services file) or number. See
Table 74 for high-level port ranges and Table 75
for a list of common ports.

--mss value[:value] Match SYN and ACK packets (see Table 73)
when the value of the TCP protocol Maximum
Segment Size (MSS) field is equal to value (if
only one value is given) or in the inclusive
range (if both values are given).
See also the tcpmss match extension.

--source-port Synonym for --sport.

--sport
 [!] port[:port]

Match when the TCP source port is equal to
port (if only one port is given) or in the
inclusive range (if both ports are given).
Ports can be specified by name (from your
system’s /etc/services file) or number. See
Table 75 for high-level port ranges and Table 76
for a list of common ports.

[!] --syn Synonym for --tcp-flags SYN,RST,ACK
SYN. Packets matching this are called “SYN”
packets (see also Table 73).
This option can be used to construct rules to
block incoming connections while permitting
outgoing connections.

--tcp-flags
 [!] mask comp

Check the mask flags, and match if only the
comp flags are set.
The mask and comp arguments are comma-
separated lists of flag names from Table 71, or
one of the two special values ALL and NONE.

--tcp-option
 [!] num

Match if TCP option num is set.

Table 71. TCP protocol flags

Name Description

CWR Congestion window reduced

ECE ECN echo

Table 70. tcp match options (continued)

Option Description

Download at WoweBook.Com

iptables Command Reference | 71

The flag combinations used in connection initiation and ter-
mination are described in Table 72.

URG Urgent data

ACK Acknowledge

PSH Push data

RST Reset (drop connection)

SYN Synchronization

FIN Final (close connection)

Table 72. Typical TCP flag combinations (ECE and CWR not
shown)

URG ACK PSH RST SYN FIN Description

• First step in TCP connection
initiation (called the “three-
way handshake”).A SYN
packet.

• • Second step in TCP connection
initiation, acknowledging the
initial SYN packet and
sending a reciprocal SYN
back. A SYN/ACK packet.

• Third and final step in TCP
connection initiation.
Acknowledges the SYN/ACK
packet. An ACK packet.

• Initiation of reset.

• • Acknowledgement of RST.

• • Acknowledgement of FIN.

Table 73. Additional TCP flag combinations considered valid by the
unclean match

URG ACK PSH RST SYN FIN

• •

• • •

Table 71. TCP protocol flags (continued)

Name Description

Download at WoweBook.Com

72 | Linux iptables Pocket Reference

See also RFC 1700, “Assigned Numbers,” for the historical (c.
1994) assignments or download the official list from http://
www.iana.org/assignments/port-numbers for the latest updates.

• • •

• •

• • •

• • •

• • • •

Table 74. TCP port ranges

From To Description

0 1023 These “well-known” ports are in a range that most
systems restrict to use by privileged processes only. The
Internet Assigned Numbers Authority (IANA) controls the
mapping of service names to port numbers in this range.

1024 49151 These “registered” port numbers are in a range that most
systems permit ordinary user processes to use. The IANA
maintains a mapping of registered service names to port
numbers in this range, but does not exert control over
their assignments.

49152 65535 These are “dynamic” or “private” port numbers and are
not subject to IANA control or registration.

Table 75. Common TCP (and UDP) port numbers

Port Name UDP TCP Description

7 echo • • Echo Protocol (RFC 862)

9 discard • • Discard Protocol (RFC 863)

13 daytime • • Daytime Protocol (RFC 867)

19 chargen • • Character Generator Protocol (RFC 864)

20 ftp-data • File Transfer Protocol (Data Stream)

21 ftp • File Transfer Protocol (Control Stream)

Table 73. Additional TCP flag combinations considered valid by the
unclean match (continued)

URG ACK PSH RST SYN FIN

Download at WoweBook.Com

iptables Command Reference | 73

22 ssh • Secure Shell

23 telnet • Telnet Protocol (RFC 854)

25 smtp • Simple Mail Transfer Protocol (SMTP)

37 time,
timeserver

• • Time Protocol (RFC 868)

53 domain • • Domain Name Service (DNS)

67 bootps • • BOOTP server

68 bootpc • • BOOTP client

69 tftp • • Trivial File Transfer Protocol (TFTP)

80 http • Hypertext Transfer Protocol (HTTP)

109 pop2 • Post Office Protocol (POP), version 2

110 pop3 • Post Office Protocol (POP), version 3

111 sunrpc,
portmapper

• • RPC Port Mapper (RFC 1050)

119 nntp • Network News Transfer Protocol (NNTP)

123 ntp • Network Time Protocol (NTP)

135 • • Microsoft: DHCP Manager, WINS
replication, Exchange Administrator,
RPC for Exchange

137 • • Microsoft: Browsing, WINS replication

138 • Microsoft: Browsing, Directory
Replication

139 • Microsoft: File sharing (CIFS/SMB) and
Print service, Directory Replication,
Event Viewer, Logon Sequence,
Performance Monitor

143 imap • Internet Mail Access Protocol (IMAP)

161 snmp • Simple Network Management Protocol
(SNMP)

179 bgp • • Border Gateway Protocol (BGP)

194 irc • Internet Relay Chat (IRC)

389 ldap • Lightweight Directory Access Protocol
(LDAP)

Table 75. Common TCP (and UDP) port numbers (continued)

Port Name UDP TCP Description

Download at WoweBook.Com

74 | Linux iptables Pocket Reference

The Microsoft port numbers above are excerpted from
Microsoft Knowledge Base Article 150543, available online at
http://support.microsoft.com/default.aspx?scid=kb;en-us;150543.

tcpmss match

Match packets based on the TCP/IP Maximum Segment Size
(MSS) header field. This match applies only to TCP SYN or
SYN/ACK packets. Table 76 describes the single option to this
match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_TCPMSS enabled.

443 https • HTTP over SSL

515 printer • Unix-style print spooler

563 nntps • NNTP over SSL

631 ipp • Internet Printing Protocol (IPP)

636 ldaps • LDAP over SSL

873 rsync • Rsync (see http://rsync.samba.org)

993 imaps • IMAP over SSL

995 pop3s • POP version 3 over SSL

1494 • Microsoft: ICA (Citrix)

2049 nfs, nfsd • • Network File System (NFS)

3389 • Microsoft: RDP (Remote Desktop
Protocol)

Table 76. tcpmss match options

Option Description

[!] --mss min[:max] Match the MSS value (if only min is given) or inclusive
MSS range (if both min and max are given).

Table 75. Common TCP (and UDP) port numbers (continued)

Port Name UDP TCP Description

Download at WoweBook.Com

iptables Command Reference | 75

See also:

• The --mss option to the tcp match extension

• The TCPMSS target extension.

TCPMSS target

Modify the TCP/IP Maximum Segment Size header field.
Table 77 describes the options to this target. Only one of
these options may be used for any given rule.

For example:

iptables ... -j TCPMSS --clamp-mss-to-pmtu

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_TCPMSS enabled.

See also:

• The --mss option to the tcp match extension

• The tcpmss match extension.

time match

This match extension can be used to turn packet flows on
and off during specific windows of time on certain days of
the week. The timestamp compared for an inbound packet is
the arrival timestamp, and for an outbound packet, it is the
departure timestamp. Table 78 describes the options to this
match.

Table 77. TCPMSS target options

Option Description

--set-mss value Force the MSS to value.

--clamp-mss-to-pmtu Force the MSS to 40 bytes less than the Path Maximum
Transmission Unit (PMTU).

Download at WoweBook.Com

76 | Linux iptables Pocket Reference

tos match

Match packets based on their values for the IP TOS packet
header field. Table 79 describes the single option to this
match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_TOS enabled.

See also:

• The FTOS target extension.

• The TOS target extension.

TOS target

Modify the IP Type of Service (TOS) packet header field
value. This target extension is for use only in the mangle
table. Table 80 describes the single option to this target.

Table 78. time match options

Option Description

--timestart value The value argument is in the 24-hour format HH:MM.

--timestop value The value argument is in the 24-hour format HH:MM.

--days list The list argument is comma-separated list of (case-
sensitive) values from this set: Sun, Mon, Tue, Wed,
Thu, Fri, Sat.

Table 79. tos match options

Option Description

[!] --tos tos Match if the type of service field in the IP header match
the name or number tos. See Table 34 for a list of IP
types of service.

Download at WoweBook.Com

iptables Command Reference | 77

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_TOS enabled.

See also:

• The tos match extension.

• The FTOS target extension.

ttl match

Match packets based on their values for the IP Time to Live
(TTL) packet header field. Table 81 describes the options to
this match.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_TTL enabled.

Table 80. TOS target options

Option Description

--set-tos tos Set the type of service field in the IP header to match the
name or number tos. See Table 34 for a list of IP types of
service.

Table 81. ttl match options

Option Description

--ttl ttl Synonym for --ttl-eq.

--ttl-eq ttl Match packets having a time to live equal to ttl. This
appears in the output of the iptables-store
command regardless of whether --ttl or --ttl-eq
was used when adding a rule.

--ttl-gt ttl Match packets having a time to live greater than ttl.

--ttl-lt ttl Match packets having a time to live less than ttl.

Download at WoweBook.Com

78 | Linux iptables Pocket Reference

For example, use this rule to have the gateway/firewall log
packets with unusually high TTL:

iptables -A FORWARD -m ttl --ttl-gt 100 -j LOG

See also the TTL target extension.

TTL target

Modifies the IP TTL packet header field. This target exten-
sion is for use only in the mangle table. You can use the TTL
target to mask the presence of the gateway/firewall from
traceroute probes by incrementing the TTL for packets pass-
ing through the firewall:

iptables -t mangle -A OUTPUT -j TTL --ttl-inc 1

Table 82 describes the options to this target.

For example, this command sets the TTL for all outgoing
packets to a very high value:

iptables -t mangle -A OUTPUT -j TTL --ttl-set 126

See also the ttl match extension.

udp match

Match extension for the User Datagram Protocol (UDP).
This match extension is automatically loaded if -p udp is
used. Table 83 describes the options to this match.

Table 82. TTL target options

Option Description

--ttl-dec amount Decrease the packet’s time to live by amount (which
must be greater than zero).

--ttl-inc amount Increase the packet’s time to live by amount (which
must be greater than zero).

--ttl-set ttl Overwrite the packet’s time to live with ttl.

Download at WoweBook.Com

iptables Command Reference | 79

ULOG target

Passes packets to the ulogd userspace packet logging daemon
(see http://www.gnumonks.org/projects/ulogd) over netlink
sockets. This daemon provides more advanced logging
options than the combination of the LOG target and the syslog
facility, including the ability to log packets to a MySQL data-
base. Table 84 describes the options to this target.

TIP

This target is available only if your kernel has been con-
figured with CONFIG_IP_NF_TARGET_ULOG and CONFIG_IP_NF_
QUEUE enabled.

Table 83. udp match options

Option Description

--destination-port
 [!] port[:port]

Match when the UDP destination port number is equal
to port (if only one port is given) or in the inclusive
range (if both ports are given).
Ports can be specified by name (from your system’s
/etc/services file) or number. See Table 75 for high-
level port ranges and Table 76 for a list of common
ports.

--dport Synonym for --destination-port.

--source-port
 [!] port[:port]

Match when the UDP source port is equal to port (if
only one port is given) or in the inclusive range (if
both ports are given).
Ports can be specified by name (from your system’s /
etc/services file) or number. See Table 75 for high-level
port ranges and Table 76 for a list of common ports.

--sport Synonym for --source-port.

Table 84. ULOG target options

Option Description

--ulog-cprange size Log size bytes of each packet.

--ulog-nlgroup
nlgroup

Log to NETLINK group nlgroup (a number). This
must match the configuration of a running ulogd
daemon (usually in /etc/ulogd.conf).

Download at WoweBook.Com

80 | Linux iptables Pocket Reference

See also:

• The LOG target extension, for simple logging

• The NETLINK target extension for more on netlink sockets

unclean match

Matches unusual or malformed IP, ICMP, UDP, or TCP
headers. Documentation of this match is minimal (the
manpage even lists it as “experimental”), but you could use it
for logging unusual packets. Here are a few of the checks it
performs:

IP:

• IP packet length not less than IP header length.

• Various integrity checks on any IP options.

• Various IP fragmentation checks.

• Nonzero IP protocol number.

• Unused IP bits set to zero.

ICMP:

• ICMP data at least two 32-bit words long (for required
ICMP header fields).

• ICMP code appropriate for ICMP type (although some of
the valid combinations in Table 32 are considered invalid
by this match).

• ICMP packet length appropriate for ICMP type.

UDP:

• UDP data at least as big as the minimum-size UDP header.

--ulog-prefix
prefix

Prepend prefix to each log message.

--ulog-qthreshold
threshold

Queue threshold packets before sending them to
ulogd. Default is 1, maximum is 50.

Table 84. ULOG target options (continued)

Option Description

Download at WoweBook.Com

Utility Command Reference | 81

• Nonzero UDP destination port.

• UDP fragmentation integrity checks.

TCP:

• TCP data at least as big as the minimum-size TCP
header.

• TCP data offset and overall packet data length in accord.

• Nonzero TCP ports.

• Reserved TCP bits set to zero.

• TCP flags match one of the patterns in Table 73 or
Table 74.

• Various integrity checks on any TCP options.

This match extension matches any packet that fails any of
these checks.

TIP

This match is available only if your kernel has been con-
figured with CONFIG_IP_NF_MATCH_UNCLEAN enabled.

There are no additional options provided by the unclean
match extension.

Utility Command Reference
iptables comes with two utility commands for saving and
restoring rule sets.

iptables-restore
iptables-restore
 [-c | --counters]
 [-n | --noflush]

Reads rules from standard input in the format written by
iptables-save and adds those rules to the current iptables

Download at WoweBook.Com

82 | Linux iptables Pocket Reference

setup. Normally, tables are flushed before rules are restored
into them, but you can use the -n (--noflush) option to have
the new rules added to those already present. Table 85
describes the options to this command.

iptables-save
iptables-save
 [-c | --counters]
 [[-t | --table] table]

Displays rules and (optionally) byte and packet counts for all
tables (the default) or for a specified table. The format is
designed to be easy to parse and can be written to file for
later restoration via iptables-restore. Table 86 describes the
options to this command.

Table 85. iptables-restore options

Option Description

-c Restore the packet and byte counters for the rules.

--counters Synonym for -c.

-n Disable the preflushing of tables before restoration.

--noflush Synonym for -n.

Table 86. iptables-save options

Option Description

-c Display the packet and byte counters for the rules.

--counters Synonym for -c.

-t table Display only the specified table.

--table Synonym for -t.

Download at WoweBook.Com

83

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

Symbols
! (exclamation point), inverting

options with, 25

A
ACCEPT target, 26

description of, 9
packets bypassing NAT, 18
policy for built-in chain, 5

accounting, 9
on network usage, 16

addresses and/or ports,
manipulating

MASQUERADE target, 19, 52
masquerading, 10
NAT (network address

translation), 17–19
DNAT, 19
SNAT, 18

ah match, 26
ASSURED status,

connections, 15
Authentication Header (AH), SPI

field, 26

B
balancing load, 20
byte counters for rules, 7, 16

C
chains, 1

built-in
attached to hook points, 2
order of packet presentation

to, 6
choice of, packet life cycle

and, 4
for the filter table, 3
for the mangle table, 3
for the nat table, 2
policy for, 5
tables vs., 2

CIDR (Common Inter-Domain
Routing) notation, 44

class bits (IP options), 43
classes, Differentiated

Services, 30
Common Inter-Domain Routing

(CIDR) notation, 44
CONFIG_NET_

FASTROUTE, 13

Download at WoweBook.Com

84 | Index

configuring iptables, 11–14
connection tracking, 9, 14

conntrack match, 27
helper modules, 15
helper, invoking, 35
required for network address

translation, 17
state match, 67
states, 14
statuses, 15

connmark match, 26
CONNMARK target, 27
conntrack match, 14, 15, 27

--ctstatus option, 15
Control Bits field, TCP

header, 69
copy bit (IP options), 43

D
debugging options (IP), 43
Destination NAT (see DNAT)
Differentiated Services

Codepoint (DSCP)
DS class names and values, 30
dscp match, 29–31
dscp target, 32

distributing load
across hosts, 20
across three servers, 56

DNAT (Destination NAT), 10,
19

DNAT target, 28
target extension, 20

dotted-quad notation for
masks, 44

DROP target, 29
description of, 9
policy for built-in chain, 5

dscp match, 29–31
DS class names and values, 30

DSCP target, 32

dynamic IP address connections,
using for MASQUERADE
target, 52

E
ebtables (Ethernet Bridge

Tables), 1
ecn match, 32
ECN target, 33
Encapsulating Security Payload

(ESP) header, 34
esp match, 34
ESTABLISHED state,

connections, 14
ethereal, 21
Ethernet Bridge Tables

(ebtables), 1
EXPECTED status,

connections, 15
Explicit Congestion Notification

ecn match, 32
ECN target, 33

extensions
specialized matches, 8

(see also matches)

F
fast routing, 13
filter table, 4

chains for, 3
default table for iptables

command, 5
description of, 5
order of packet presentation

to, 6
firewalls

older, iptables configuration
for compatibility with, 13

stateless and stateful, 20
troubleshooting, tools for, 21

Flags field, 42

Download at WoweBook.Com

Index | 85

flags, TCP, 70
combinations, 71

FORWARD hook, 2
point for packet processing

specification, 4
FTOS target, 35

G
generic matches, 8

H
help for iptables, 23
helper match, 35
historical Precedence portion of

Type of Service field, 39
hook points, 2

chains for, 5
points in packet flow for

processing
specification, 4

HTTP proxy, rerouting
outbound HTTP traffic
to, 20

I
ICMP (Internet Control Message

Protocol)
icmp match, 36
matching malformed headers

with unclean match, 80
owner match and, 56
sending ping traffic to netlink

and then dropping it, 54
types and codes, 36–39

icmp match, 36
INPUT hook, 2

point for packet processing
specification, 4

Internet Control Message
Protocol (see ICMP)

Internet Protocol (IP)
common IP protocols, 44
common options, listing

of, 42
malformed headers, matching

with unclean match, 80
TOS packet header field, 76
TTL packet header field, 77

Internet Protocol (IPv4)
Flags field, 42
header layout, 39
ip match options, 43
ipv4options match, 46
Precedence values, Type of

Service field, 39
predefined values for Type of

Service field, 41
Type of Service field

layout, 39
Internet Relay Chat (IRC)

connection tracking
helper module, 36

INVALID state, connections, 14
ip (Internet Protocol IPv4)

matches, 8, 39–45
options, 43

IP addresses
adding to/removing from

specific pools with POOL
target, 58

matching recent traffic with
for a particular
activity, 61

network number, changing
with NETMAP target, 55

pool match, 58
ip command (iproute2), 51

packet marking using with, 52
ip_queue loadable kernel

module, 60
iplimit match, 21, 45
ippool command, 58
ippool.conf file, 58

Download at WoweBook.Com

86 | Index

iproute2, 51
iptables

accounting, options for, 17
configuring, 11–14
example command, 1
filter table as default table, 5
help, getting, 23
-L -v options, 16
-m or --match option, 8
matches, 8
miscellaneous options, 22
rules, 7
subcommands, 23
tables, built-in, 4
targets, built-in, 8
utility commands to save and

restore rule sets, 81
iptables-restore command, 81
iptables-save command, 82
ipv4options match, 46
IPV4OPTSSTRIP target, 47

K
kernel

“hook points” in packet
processing pathways, 2

compiling your own, 12
connection tracking helper

modules, installing, 15
patching, caution with, 14
tracking number of packets

and bytes exchanged with
outside, 16

kernel header file, hook points
defined in, 4

L
length match, 47
limit match, 21, 47
Linux kernel Version 2.4, 1
load balancing, 11, 20
load distribution, 20, 56

LOG target, 49
logging

levels of, 49
passing packets to ulogd

daemon, 79

M
mac match, 8, 50
malformed IP, ICMP, UDP, or

TCP headers,
matching, 80

mangle table, 4
chains for, 3
description of, 5
MARK target and, 52
order of packet presentation

to, 6
TTL target, 78

mangling, 10
mapping hosts of one network to

another, 55
mark match, 51
MARK target, 52
masks

mark matches and, 52
notation styles for, 44

MASQUERADE target, 19, 52
masquerading, 10
matches, 1, 8, 25

ah, 26
connmark, 26
conntrack, 14, 15, 27
criteria for, in rules, 7
dscp, 29–31

DS class names and
values, 30

ecn, 32
esp, 34
helper, 35
icmp, 36
ip, 39–45
iplimit, 21, 45
ipv4options, 46

Download at WoweBook.Com

Index | 87

matches (continued)
length, 47
limit, 21, 47
mac, 50
mark, 51
multiport, 53
nth match, 20, 55
owner, 56
pkttype, 57
pool, 58
psd (port scan detector), 59
quota, 60
random, 61
realm, 61
recent, 21, 61
record-rpc, 63
state, 67
tcp, 69–74
tcpmss, 74
time, 75
tos, 76
ttl, 77
udp, 78
unclean, 80

Maximum Segment Size (MSS)
header field, TCP/IP, 74

media access controller (MAC
address), mac match, 8,
50

Microsoft port numbers, 74
modprobe command, 15, 17
MSS (Maximum Segment Size)

header field, TCP/IP, 74
multiport match, 53

N
NAT (network address

translation), 10, 17–19
bypassing with certain

packets, 18
DNAT (Destination NAT), 19
helper modules, 17

packets traversing system
for, 2

SNAT (Source NAT), 18
(see also DNAT; SNAT)

nat table, 4, 17
chains for, 2
description of, 5
order of packet presentation

to, 6
POSTROUTING chain, SNAT

and masquerading, 18
PREROUTING chain,

performing DNAT, 19
Nessus, 21
Netfilter, 1

kernel patches that add
features to, 14

NETLINK target, 54
NETMAP target, 55
network address translation (see

NAT)
network control options (IP), 43
network packet processing

choice of chain, packet life
cycle and, 4

grouping of rules into tables
by function, 1

packet flows, 6
rules for, 7
techniques and applications

of, 9
networking tools, 21
NEW state, connections, 14
nmap, 21
nth match, 20, 55
ntop, 21

O
OSI Layer 2 (Link), ebtables

technology, 1
OSI Layer 3 (Network), iptables

operation, 1

Download at WoweBook.Com

88 | Index

OUTPUT hook, 2
point for packet processing

speficifation, 4
owner match, 56

P
packet and byte counts, 7

network usage accounting,
using in, 16

packet filtering, 9
packets traversing system

for, 3
packet flows, 6

turning on/off at certain
times, 75

packet length, match for, 47
packet mangling, 10

packets traversing system
for, 3

(see also mangle table)
packet types, 57
patching your kernel, caution

with, 14
persistent rules, 11
ping, 21

accepting all pings up to 10
per second, rule for, 48

dropping 10% of incoming
requests, rule for, 61

sending ping traffic to netlink
and then dropping it, 54

pkttype match, 57
policy (chain), 5
pool match, 58
POOL target, 58
port forwarding, 10
port scan detector (psd)

match, 59
ports

manipulating with
NAT, 17–19

DNAT, 19
SNAT, 18

matching multiple TCP or
UDP ports and port
ranges, 53

SNAT, using, 67
TCP and UDP, common port

numbers, 72–74
TCP port ranges, 72

POSTROUTING hook, 2
point for packet processing

specification, 4
SNAT and, 18

Precedence portion, Type of
Service Field, 39

PREROUTING hook, 2
DNAT, performing, 19
point for packet processing

specification, 4
protocol specification

options, 26
proxying, transparent, 20
psd (port scan detector)

match, 59

Q
QUEUE target, 60

description of, 9
quota match, 60

R
random match, 61
realm match, 61
recent match, 21, 61
record-rpc match, 63
Red Hat systems

determining kernel for, 12
iptables rules, storage of, 11

REDIRECT target, 63
REJECT target, 64

rejection types, 65
RELATED state,

connections, 15

Download at WoweBook.Com

Index | 89

RETURN target, 65
description of, 9
policy for user-defined

chains, 5
RFCs

CIDR notation for masks, 44
Differentiated Services (DS)

Field definitions, 31
Differentiated Services

architecture, 31
Differentiated Services

classes, 30
ECN (Explicit Congestion

Notification), 33
ICMP (RFC 792) header

layout, 36
ICMP types and codes (RFC

3232), 36
IPv4 header layout (RFC 791

and RFC 3168), 40
IPv4 options, 46
Linux Netlink as IP Services

Protocol (RFC 3549), 54
multicast addressing, 58
TCP and UDP port

numbers, 72–74
TCP header layout, 69
Type of Service IP header

field, 41
ROUTE target, 65
routing

iproute2 tool set, 51
realm match, 61

RPC (remote procedure call)
traffic, record-rpc
match, 63

rules, 1, 7
chains of, 2, 5

(see also chains)
packet and byte counters

for, 7
persistent, 11

redirecting outbound HTTP
traffic to the HTTP
proxy, 20

stateless and stateful
firewalls, 21

utility commands to save and
restore rule sets, 81

S
SA (Security Association), 26
SAME target, 66
Security Association (SA), 26
Security Parameters Index (see

SPI field)
SEEN_REPLY status,

connections, 15
SNAT (Source NAT), 10

MASQUERADE target,
using, 52

rewriting packets for Internet/
internal network
connections, 18

SNAT target, 19, 66
specialized matches, 8
SPI (Security Parameters Index)

field
Authentication Header, 26
Encapsulatig Security Payload

(ESP) header, 34
Squid, transparent proxying

with, 20
state match, 67
stateful firewalls, 21
stateless firewalls, 21
states, connection tracking, 14
static IP address connections

SNAT and masquerading, 18
SNAT target, using, 66

status information for
connections, 15

subcommands, 23
syslog.conf file, 50

Download at WoweBook.Com

90 | Index

T
tables

built-in, 4
order of packet presentation

to, 6
chains vs., 2

targets, 1, 7, 25
built-in, 8

ACCEPT, 26
DROP, 29
QUEUE, 60
RETURN, 65
used as policy for built-in

chain, 5
CONNMARK, 27
DNAT, 20, 28
DSCP, 32
ECN, 33
FTOS, 35
IPv4OPTSSTRIP, 47
LOG, 49
MARK, 52
MASQUERADE, 19, 52
NETLINK, 54
NETMAP, 55
policy target for built-in or

user-defined chains,
customizing, 6

POOL, 58
REDIRECT, 63
REJECT, 64

rejection types, 65
ROUTE, 65
SAME, 66
SNAT, 19, 66
TCPMSS, 75
TOS, 76
TTL, 78
ULOG, 79

TCP
flag combinations, 71
flags, 70
header layout, 69

matching malformed headers
with unclean match, 81

matching multiple TCP ports
or port ranges, 53

port numbers,
common, 72–74

port ranges, 72
TCP connections,

MASQUERADE
target, 52

tcp match, 69–74
common TCP and UDP port

numbers, 72–74
TCP flag combinations, 71
TCP port ranges, 72
TCP protocol flags, 70

TCP/IP Maximum Segment Size
(MSS) header field, 74

tcpdump, 21
tcpmss match, 74
TCPMSS target, 75
time match, 75
Time to Live (TTL) packet

header field, 77
tools, networking, 21
tos match, 76
TOS portion of Type of Service

field, various layouts
for, 39

TOS target, 76
traceroute, 21

masking gateway/firewall from
probes, 78

transparent proxying, 20
troubleshooting

tools for, 21
ttl match, 77
TTL target, 78
Type of Service field

bit-field interpretation of TOS
part, 41

FTOS target, 35
IPv4, layouts for, 39

Download at WoweBook.Com

Index | 91

Type of Service field (continued)
Precedence portion, IPv4

values for, 39
predefined values for

(IPv4), 41

U
UDP

matching malformed headers
with unclean match, 80

matching multiple UDP ports
and port ranges, 53

port numbers,
common, 72–74

UDP connections,
MASQUERADE
target, 52

udp match, 78
ULOG target, 79
uname -r command, 12
unclean match, 80
User Datagram Protocol (see

UDP)
user-defined chains, policy target

for, 5

Download at WoweBook.Com

Download at WoweBook.Com

	Contents
	Linux iptables Pocket Reference
	Introduction
	An Example Command
	Concepts
	Tables
	Chains
	Packet flow
	Rules
	Matches
	Targets

	Applications
	Configuring iptables
	Persistent rules
	Other configuration files
	Compiling your own kernel

	Connection Tracking
	Accounting
	Network Address Translation (NAT)
	Source NAT and Masquerading
	Destination NAT
	Transparent Proxying
	Load Distribution and Balancing
	Stateless and Stateful Firewalls
	Tools of the Trade

	iptables Command Reference
	Getting help
	The iptables Subcommands
	iptables Matches and Targets
	Internet Protocol (IPv4) matches
	ACCEPT target
	ah match
	connmark Match
	CONNMARK target
	conntrack match
	DNAT target
	DROP target
	dscp match
	DSCP target
	ecn match
	ECN target
	esp match
	FTOS target
	helper match
	icmp match
	ip (Internet Protocol IPv4) matches
	iplimit match
	ipv4options match
	IPV4OPTSSTRIP target
	length match
	limit match
	LOG target
	mac match
	mark match
	MARK target
	MASQUERADE target
	multiport match
	NETLINK target
	NETMAP target
	nth match
	owner match
	pkttype match
	pool match
	POOL target
	psd (Port Scan Detector) match
	QUEUE target
	quota match
	random match
	realm match
	recent match
	record-rpc match
	REDIRECT target
	REJECT target
	RETURN target
	ROUTE target
	SAME target
	SNAT target
	state match
	string match
	tcp match
	tcpmss match
	TCPMSS target
	time match
	tos match
	TOS target
	ttl match
	TTL target
	udp match
	ULOG target
	unclean match

	Utility Command Reference
	iptables-restore
	iptables-save

	Index

