Linux Unwir

By Edd Dumbill, Brian Jepson, Roger Weeks

Table of Contents

Index
Reviews
Reader Reviews
Errata
Academic

ed

Publisher
Pub Date
ISBN

Pages:
Slots:

: O'Reilly

: April 2004

: 0-596-00583-0
312

1.0

< Day Day Up >

Linux Unwired is a one-stop wireless information source for on-the-go Linux users. Whether you're
considering Wi-Fi as a supplement or alternative to cable and DSL, using Bluetooth to network devices in
your home or office,or want to use cellular data plans for access to data nearly everywhere, this book will
show you the full-spectrum view of wireless capabilities of Linux, and how to take advantage of them.

< Day Day Up >

< Day Day Up >

- Table of Contents
- Index

- Reviews

- Reader Reviews

- Errata

- Academic

Linux Unwired

By Edd Dumbill, Brian Jepson, Roger Weeks

Publisher: O'Reilly

Pub Date: April 2004
ISBN: 0-596-00583-0
Pages: 312
Slots: 1.0

Copyright
Foreword

Preface

What This Book Covers

Conventions Used in This Book

Comments and Questions

Acknowledgments
Chapter 1. Introduction to Wireless

Section 1.1. Radio Waves

Section 1.2. Connections Without Wires

Section 1.3. Wireless Alphabet Soup
Section 1.4. Bluetooth

Section 1.5. Cellular Data

Section 1.6. Infrared

Chapter 2. Wi-Fi on Your Linux Box

Section 2.1. Quick Start

Section 2.2. Chipset Compatibility

Section 2.3. Four Steps to Wi-Fi

Section 2.4. Linux Wi-Fi Drivers in Depth
Chapter 3. Getting On the Network

Section 3.1. Hotspots

Section 3.2. Wireless Network Discovery

Chapter 4. Communicating Securely
Section 4.1. The Pitfalls of WEP

Section 4.2. The Future Is 802.11i
Section 4.3. WPA: a Subset of 802.11.i
Section 4.4. WPA on Linux

Chapter 5. Configuring Access Points with Linux

Section 5.1. Linux-Friendly Wireless Vendors

Section 5.2. Commercial Wireless Equipment Overview

Section 5.3. Configuring Access Points

Section 5.4. Flashing Your Access Point

Chapter 6. Building Your Own Access Point

Section 6.1. Hardware

Section 6.2. Software

Section 6.3. Linux-Powered Off-the-Shelf
Chapter 7. Bluetooth

Section 7.1. Quick Start

Section 7.2. Bluetooth Basics

Section 7.3. Bluetooth Hardware

Section 7.4. Linux Bluetooth Support

Section 7.5. Installing the BlueZ Utilities

Section 7.6. Basic Configuration and Operation

Section 7.7. Graphical Applications

Section 7.8. Cool Bluetooth Tricks

Chapter 8. Infrared
Section 8.1. IrDA in the Kernel
Section 8.2. PC Laptop with Built-In IrDA

Section 8.3. Infrared Dongle

Section 8.4. Sharing a Network Connection over IrDA

Section 8.5. Connecting to the Internet with a Cell Phone

Section 8.6. Transferring Files with OpenOBEX

Section 8.7. Synchronizing with a Palm
Section 8.8. Pocket PC
Chapter 9. Cellular Networking

Section 9.1. Cellular Data

Section 9.2. Some Cellular Carriers

Section 9.3. Phones and Cards

Section 9.4. Sending a Fax

Section 9.5. Text Messaging

Section 9.6. Acceleration
Chapter 10. GPS

Section 10.1. Uses of GPS

Section 10.2. A GPS Glossary

Section 10.3. GPS Devices

Section 10.4. Listening to a GPS

Section 10.5. Mapping Wi-Fi Networks with Kismet

Section 10.6. GpsDrive

Section 10.7. Other Applications

Colophon
Index

< Day Day Up >

¥ FREV < Day Day Up > MEXT mjp

Copyright © 2004 O'Reilly Media, Inc.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Linux series designations, Linux Unwired, images of the American West, and
related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume

no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

48 FREV < Day Day Up > MEXT @

http://safari.oreilly.com

< Day Day Up >

Foreword

This is a book about two revolutions: free software and free wireless networking.

The first revolution was born in 1991, when a lone Finnish hacker named Linus Torvalds used the GNU
Project's free C compiler to build Linux, a free Unix-like operating system kernel. One of the hallmarks of
this kernel was its release under the GNU Public License, which guaranteed that anyone would be able to
customize and improve the Linux kernel to suit their computing needs, and that those improvements
would be shared with the other users of the Linux kernel.

Today, Linus Torvalds is virtually a household name, and his brainchild has gone on to star in millions of
personal computers, web servers, supercomputing clusters, embedded devices, mainframes, and more.
Bolstered by the success of Linux and its BSD-derived cousins, a globe-spanning Free Software movement
has taken hold, spawning thousands of community-supported projects, and fundamentally altering how
software is made and distributed in the 21st century.

Although the second revolution has been lurking in the background for years, it received a major boost in
1999 from the publication of the IEEE 802.11b standard, a specification for wireless data networking that
made use of the 2.4 GHz microwave band, which had long been considered "junk™ spectrum in the U.S. As
consumer 802.11b devices hit the market, more and more people were able to use computers and access
the network from an ever widening array of locales—Iliving room couches, conference rooms, coffee
shops, and even sunny park benches.

Meanwhile, ordinary individuals were discovering that, using nothing more than off-the-shelf radio
hardware and the right antennas, they could build wide-area—and even metropolitan-area—IP network
infrastructure for the first time ever, without the need for costly or restrictive government licenses. The
result has been a quantum leap in ubiquitous computing, with millions of 802.11 devices in use across the
world. The newer IEEE 802.11a and 802.11g standards are now implemented to offer even more
possibilities for free data networking.

The operative word at the heart of both of these revolutions is the word "free,"” but the concept it refers to
is freedom. Trivially, they offer the opportunity to download an operating system free of charge or
perhaps to escape the tyranny of Ethernet cables. But on a deeper level, these revolutions promise basic
freedoms of action and of speech—the freedom to employ your computing hardware to communicate with
others as you see fit, and not merely as commercial interests dictate. Unlike many of the technical choices
available to you today, Linux and 802.11 serve to enhance your freedom and expand your options, rather
than to constrain them.

As the title implies, Linux Unwired guides you through configuring and using Linux with the 802.11
protocols, as well as Bluetooth, IR, cellular data networking, and GPS. Ultimately, though, this is a book
about freedom. This book shows you how to harness the combined power of these technologies to expand
your options and your technical horizons.

Welcome to the revolution(s). May you do good work!

—Schuyler Erle
February, 2004

< Day Day Up >

¥ FREV < Day Day Up > MEXT mjp

Preface

Take a trip to the computer store, buy a Wi-Fi card, and insert it into your Linux notebook. You will
probably hear two beeps; are they both happy beeps, or is one of them an angry beep? It's possible that
you will receive a happy beep, but with the variety of hardware, firmware, and software drivers for Wi-Fi
cards, it's quite likely that you will receive the angry beep. Next, go through this exercise with a Bluetooth
adapter, cell phone, and some other random wireless hardware.

This book is all about hearing the happy beeps.

Wireless networks are popping up everywhere; from Wi-Fi hotspots to cellular data plans, you can connect
to the Internet virtually anywhere. You can even cut more cables with technologies like Bluetooth and
Infrared. Linux is already an amazing operating system, and combined with wireless, its strengths are
amplified.

But things really shine when you combine wireless technologies. This book also discusses using wireless

technology in combination, whether you want to share your Wi-Fi connection to Bluetooth devices or map
out Wi-Fi networks with a Global Positioning System (GPS) device.

48 FREV < Day Day Up > NEXT @i

< Day Day Up >

What This Book Covers

This book explains how to use the following wireless technologies with Linux:

Wireless Fidelity (Wi-Fi)

Wi-Fi is short-range wireless networking that supports raw speeds up to 54 Mbps (about 20-25
Mbps actual speeds). It's an affordable replacement for wired Ethernet, and includes the 802.11b,
802.11g, and 802.11a protocols. Chapter 1 through Chapter 6 discuss Wi-Fi.

Bluetooth

Bluetooth is a wireless cable-replacement that allows you to get rid of USB and serial cables. You
can use it to connect a Personal Digital Assistant (PDA), such as a Palm or Pocket PC, to Linux;
create an ad-hoc network; or transfer files between computers. Bluetooth is covered in Chapter 7.

Infrared

Infrared has been available for a long time, and in some cases, it's the only way that two devices
will talk to each other, particularly with older PDAs. Infrared uses light waves that are just outside
the range of visible light. Infrared is covered in Chapter 8.

Cellular networking

Although Wi-Fi is fast and reliable, it disappears the moment you leave its useful range. Cellular
networks cover large areas, reach speeds between 40 kbps and 100 kbps, and even work reliably
while you are in a moving vehicle. With unlimited data plans starting at $19.99 a month from some
providers, cellular data plans can be a useful complement to Wi-Fi. Chapter 9 covers cellular data.

Global Positioning System (GPS)

Use a GPS to figure out your location in two or three dimensions. Plugged into a Linux computer, a
GPS device becomes a source of location data that can be combined with freely available maps to
plot locations of wireless networks, figure out where you are, or map out whatever interests you.
GPS is covered in Chapter 10.

,. PREY < Day Day Up > ME=T "

< Day Day Up >

Conventions Used in This Book

This book uses the following abbreviations:

Hz, kHz, MHz, and GHz

Hertz (cycles per second), kilohertz (one thousand hertz), megahertz (one million hertz), and
gigahertz (one billion, or 10° hertz)

bps, kbps, Mbps

Bits per second, kilobits (1,024 bits) per second, and megabits (1,048,576 bits) per second

KB/s, MB/s

Kilobytes (1,024 bytes) per second and megabytes (1,048,576 bytes) per second

MB

Megabytes (1,048,576 bytes) of hard disk or RAM storage
mwW

Milliwatts; one thousandth of a watt of power output

This book uses the following typographic conventions:

Constant wi dth

Used for listing the output of command-line utilities

Constant width italic

Used to show items that need to be replaced in commands

Italic

Used for emphasis, for first use of a technical term, and for example URLs

Indicates text that has been omitted for clarity

B

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

< Day Day Up >

< Day Day Up >

Comments and Questions

Please address any comments or questions concerning this book to the publisher:

O'Reilly & Associates

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookguestions@oreilly.com

O'Reilly has a web site for this book where examples, errata, and any plans for future editions are listed.
You can access this site at:

http://www.oreilly.com/catalog/Inxunwired

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

48 FREV < Day Day Up > NEXT @i

http://www.oreilly.com/catalog/lnxunwired
http://www.oreilly.com

< Day Day Up >

Acknowledgments

Roger Weeks

Writing this book would not have been possible without the backing and inspiration of my wife, Cynthia.
Despite a house sometimes too cluttered with geek gear, long technical conversations, and more than one
late night, she's always there for me.

Many thanks also to Schuyler Erle, who not only got the book approved by O'Reilly, but somehow
managed to convince them that | should be the author.

All of the "Cats" should be thanked publicly for their amazing amounts of knowledge, friendship, and hard
work: Rob Flickenger, Schuyler Erle, Adam Flaherty, Nate Boblitt, Jim Rosenbaum, and Rich Gibson.
Without them, significant parts of the West Coast would be very boring, and the wireless community
would be much poorer.

Finally, many thanks to Brad Silva for excellent hardware advice and soldering skills.

Edd Dumbill

I would like to thank Marcel Holtmann and Maxim Krasnyansky for their devoted work on the BlueZ Linux
Bluetooth stack and, of course my wife Rachael for her patient support.

Brian Jepson

My thanks go out to Schuyler Erle and Rob Flickenger for helping to develop the original outline of this
book and for technical review. Thanks also to Adam Flaherty for technical review. I'm very grateful to
Roger and Edd for being such great coauthors.

I'd especially like to thank my wife, Joan, and my stepsons, Seiji and Yeuhi, for their support and
encouragement through my late night and weekend writing sessions, my occasional trips around town in a
car full of Wi-Fi and GPS equipment, and the various milliwattage that soaked through the walls of my
home office while | worked on this book.

. FPREY < Day Day Up > ME=T ‘

< Day Day Up >

Chapter 1. Introduction to Wireless

Wireless networks use radio waves to move data without wires and they have been around in one form or
another for decades. Teletype, or telex, systems were established worldwide in the early 1920s. These
systems used copper lines to connect two or more teletype machines. Government investments in military
radios lead to innovations in radio; teletype over radio (TOR), or radioteletype, replaced many teletype
systems, particularly in third-world countries that lacked copper-wire infrastructures. In many parts of the
world, TOR is still used as the primary communications medium for governments. TOR uses the high
frequency (HF) radio band. We'll cover the types of radio bands later in this chapter.

In 1970, Norm Abramson, a professor of engineering at the University of Hawaii, developed a radio-based
communications system known as ALOHANET. This was the world's first wireless packet-switched
network, which allows multiple devices to transmit and receive data simultaneously. The research behind
ALOHANET was used by Bob Metcalfe to develop the Ethernet standard for wired networking.

Presently, there are many types of wireless networks in use around the world. The 802.11 protocol set,
popularly known as Wi-Fi, includes wireless network standards that allow data transmission up to a
theoretical 54 Mbps. The Global Positioning System (GPS) uses a wireless connection from a receiver to a
series of satellites to fix a location precisely on the planet. There are several wireless networking
standards in the mobile-phone world, including General Packet Radio Service (GPRS) and Code Division
Multiple Access (CDMA) 1xRTT (1x Radio Transmission Technology). Subsequent chapters will discuss all
of these in detail.

& Frev | < Day Day Up > | NEXT up

< Day Day Up >

1.1 Radio Waves

Radio waves are created when electrically charged particles accelerate with a frequency that lies in the
radio frequency (RF) portion of the electromagnetic spectrum. Other emissions that fall outside of the RF
spectrum include X-rays, gamma rays, and infrared and ultraviolet light. When a radio wave passes a
copper wire or another electrically sensitive device, it produces a moving electric charge, or voltage, which
can be transformed into an audio or data signal.

Radio waves can be depicted mathematically as a sinusoidal curve, as shown in Figure 1-1.

Figure 1-1. A sine wave representing a radio wave

Arnplitade \ \
| 1 |I 1 | !

&
r

Wavelength
[length of Toycle)

The distance covered by a complete sine wave (a cycle) is known as the wavelength. The height of the
wave is called the amplitude. The number of cycles made in a second is known as the frequency.
Frequency is measured in Hertz (Hz), also known as cycles per second. So, a 1 Hz signal makes a full
cycle once per second. You should be familiar with this unit of measurement: if your new computer's CPU
operates at 2 GHz, the internal clock of your CPU generates signals roughly at two billion cycles per
second.

i Note that frequency is inversely proportional to the wavelength: the longer the
a wavelength, the lower the frequency; the shorter the wavelength, the higher the
‘*. 4+ frequency. The wavelength of a 1 Hz signal is about 30 billion centimeters, which is

the distance that light travels in one second. A 1 MHz signal has a wavelength of
300 meters.

1.1.1 Radio Frequency Spectrum

To regulate the use of the various radio frequencies, the Federal Communications Commission (FCC) in
the United States determines the allocation of frequencies for various uses. Table 1-1 shows some of the
bands defined by the FCC (see http://www.fcc.gov/oet/spectrum/table/fcctable.pdf).

Table 1-1. Range of frequencies defined for the various bands

http://www.fcc.gov/oet/spectrum/table/fcctable.pdf

Frequency Band

10 kHz to 30 kHz Very Low Frequency (VLF)

30 kHz to 300 kHz Low Frequency (LF)

300 kHz to 3 MHz Medium Frequency (MF)

3 MHz to 30 MHz High Frequency (HF)

30 MHz to 328.6 MHz Very High Frequency (VHF)
328.6 MHz to 2.9 GHz Ultra High Frequency (UHF)

2.9 GHz to 30 GHz Super High Frequency (SHF)

30 GHz and higher Extremely High Frequency (EHF)

You can get a more detailed frequency allocation chart from
http://www.ntia.doc.gov/osmhome/allochrt.pdf. The following conversion list should help you understand
this chart:

¢ 1 kilohertz (kHz) = 1,000 Hz
e 1 megahertz (MHz) = 1,000 kHz
¢ 1 gigahertz (GHz) = 1,000 MHz

Wireless networks use a variety of radio frequencies. Table 1-2 shows some common wireless network
protocols and the corresponding radio frequencies.

Table 1-2. Frequencies used by various wireless networks

Frequency range Wireless network
2.45 GHz Bluetooth
2.4 10 2.483 GHz 802.11, 802.11h, 802.11g
5.180 GHz to 5.805 GHz 802.11a
1.2276 and 1.57542 GHz GPS

1.1.2 Radio Wave Behavior

Radio waves, similar to light waves, exhibit certain characteristics when coming into contact with objects.

Reflection occurs when a radio wave hits an object that is larger than the wavelength of the radio wave
(see Figure 1-2). The radio wave is then reflected off the surface.

Figure 1-2. Reflection of a radio wave

an radi wave

http://www.ntia.doc.gov/osmhome/allochrt.pdf

Refraction occurs when a radio wave hits an object of a higher density than its current medium (see
Figure 1-3). The radio wave now travels at a different angle—for example, waves propagating through

clouds.

Figure 1-3. Refraction of a radio wave

\ Refracted radio wave

Scattering occurs when a radio wave hits an object of irregular shape, usually an object with a rough
surface area (see Figure 1-4), and the radio wave bounces off in multiple directions.

Figure 1-4. Scattering of a radio wave

\% Scatterad radio wave

Absorption occurs when a radio wave hits an object but is not reflected, refracted, or scattered. Rather,
the radio wave is absorbed by the object and is then lost (see Figure 1-5).

Figure 1-5. Absorption of a radio wave

\ Absarbed radin wave

i
--..___IL

Radio Interference and Absorption

Radio waves are subject to interference caused by objects and obstacles in the air. Such
obstacles can be concrete walls, metal cabinets, or even raindrops. Generally, transmissions
made at higher frequencies are more subject to radio absorption (by the obstacles) and larger
signal loss. Larger frequencies have smaller wavelengths; hence, signals with smaller
wavelengths tend to be absorbed by the obstacles that they collide with. This causes high-

frequency devices to have a shorter operating range.

For devices that transmit data at high frequencies, much more power is needed in order for
them to cover the same range as compared to lower-frequency transmitting devices.

Diffraction occurs when objects block a radio wave's path. In this case, the radio wave breaks up and
bends around the corners of the object (see Figure 1-6). This property allows radio waves to operate
without a visual line of sight.

Figure 1-6. Diffraction of radio waves

¥ FREV < Day Day Up > MEXT mjp

1.2 Connections Without Wires

There are many types of wireless networks, such as Cellular (wide-area wireless networking), Wi-Fi (local
and wide area wireless networking), and Bluetooth (cable-replacement and short-range wireless
networking). All of these networks run with Linux. Here is a list of tasks you can complete with Linux and
wireless networks:

¢ Build your own wireless access point. At home, use a Linux box as your wireless access point
and secure firewall for a broadband connection, and use a Linux notebook as a wireless client. To
control who uses your access point, build a captive portal. It's also possible that your broadband
connection is wireless and uses a point-to-point directional wireless network.

¢ Synchronize your contacts. At the office, keep your contacts list from your Linux desktop
synchronized with your cell phone using Bluetooth or an infrared port.

e Use a cellular network and GPS for the ultimate road warrior experience. On the road, use
your Linux-powered PDA to check email from a wireless hotspot. Connect your cell phone and
laptop, and use a high-speed data network where there is a digital cell signal. Hook a GPS receiver
to your laptop and find that out-of-the-way hotel.

4@ FREV < Day Day Up > MEXT

< Day Day Up >

1.3 Wireless Alphabet Soup

While it is not the sole focus of this book, there are several chapters that deal entirely with "Wi-Fi," or
Wireless Fidelity. This phrase is trademarked by the Wi-Fi Alliance, a group that consists of nearly all
802.11 manufacturers. The Wi-Fi Alliance does product testing and certification for interoperability.

802.11 was defined as a protocol by the Institute of Electrical and Electronics Engineers (IEEE) in 1997.
This protocol specification allowed for 1 and 2 Mbps transfer rates using the 2.4 GHz ISM (Industrial,
Scientific, and Medical) band, which is open to unlicensed public use. Prior to the adoption of this
standard, there were various wireless network vendors manufacturing proprietary equipment using both
the 2.4 GHz and the 900 MHz bands. The early adopters of the proprietary technologies and 802.11 were
primarily the manufacturing and health care industries, which rapidly benefited from their employees'
mobile access to data. The 802.11 standard uses spread spectrum modulation to achieve high data rates.
Two types of modulation were specified: Frequency Hopping and Direct Sequence. 802.11 also uses the
Carrier Sense Multiple Access (CSMA), which was developed for Ethernet in 1975 with the addition of
Collision Avoidance (CA)—referred to as CSMA-CA.

In 1999, the IEEE adopted two supplements to the 802.11 standard: 802.11a and 802.11b. The 802.11b
standard is also referred to as High Rate DS and is an extension of the Direct Sequence Spread Spectrum
type of modulation specified in 802.11. 802.11b uses 14 overlapping, staggered channels, each channel
occupying 22 MHz of the spectrum. This standard's primary benefit is that it offers data rates of 5.5 and
11 Mbps in addition to the 12 megabits provided by 802.11. 802.11b has been widely adopted around the
world, and its products have been readily available since 1999.

However, 802.11a products did not begin shipping until 2001. 802.11a utilizes a range in the 5 GHz
frequency and operates with a theoretical maximum throughput of 54 Mbps. It provides for 12
nonoverlapping channels. Products based on this protocol have not seen the adoption rate of 802.11b
products for several reasons. At higher frequencies, more power is needed to transmit. The power of
802.11 radio types is limited; therefore, 802.11 and 802.11b have longer range transmission and
reception characteristics than 802.11a. Because of its higher frequency, 802.11a is absorbed more readily
by obstacles, reducing range and throughput.

In June of 2003, the IEEE ratified a third supplement to the 802.11 standard: 802.11g. This standard
continues to operate in the 2.4 GHz band with backward compatibility to 802.11b, but it raises the
theoretical maximum throughput to 54 Mbps. In early 2003, there were many products released prior to
the ratification of the standard. The standard was delayed several times as the subcommittees in the IEEE
worked out interoperability issues between 802.11b and 802.11g.

1.3.1 Operating Modes

There are two main client operating modes in the 802.11 family of standards: Infrastructure and Ad-Hoc.
Two additional modes, Master and Monitor, are discussed in later chapters.

Infrastructure Mode requires the use of a wireless access point. At a minimum, this is a device with a
radio that operates in Infrastructure Mode and has a connection to a wired network. This is also known as
the Basic Service Set (BSS). There is also an Extended Service Set (ESS) for use with multiple access
points.

A typical 802.11b access point consists of a radio, external antenna, and at least one Ethernet port. There

are many variations on this theme, with models sporting 4-port Ethernet switches, connectors for other
external antennas, and higher-power radios.

When operating in Infrastructure Mode, an access point is the master of any client radios that are
associated with the access point. The client radios are also operating in Infrastructure Mode, in a different
sub-mode. The access point is programmed with a Service Set Identifier (SSID); this is the network name
for the access point. The access point broadcasts the SSID as an advertisement of the network name.

Clients operating in Infrastructure Mode identify an access point by these SSID broadcast frames. Once a
client is associated with an access point, the access point manages all communication over the radio link.
When multiple clients are associated with a single access point, the access point has a set of algorithms
for controlling traffic to and from the access point radio.

Ad-Hoc Mode, or peer-to-peer mode, is designed specifically for client-to-client communication. To use
Ad-Hoc Mode, you need at least two radio clients. In this example, let's say we have two Linux notebooks
with PCMCIA radio cards. Both cards are configured to work in Ad-Hoc Mode, and both clients must use
the same SSID. Ad-Hoc clients do not advertise themselves with the same broadcast frames used by an
access point.

While Ad-Hoc Mode is very useful for client-to-client communication, it introduces a difficult situation
known as the Hidden Node problem. Ad-Hoc Mode does not provide an access point to control
communications between other client machines, so any client using Ad-Hoc Mode may decide to transmit
data on its own rather than being told when it is clear to transmit. Figure 1-7 illustrates the problem.

Figure 1-7. A Hidden Node problem with three clients in Ad-Hoc Mode

)

As shown, node A can hear node B, but it cannot hear node C. Node C can also hear node B, but it cannot
hear node A. Because 802.11 is a shared-access physical medium, only one device can transmit at any
given time. The Hidden Node problem is that node A and node C cannot hear each other, and neither
node will detect a collision. Hidden Node issues reduce throughput in this example by at least 50%.

1.3.2 Wi-Fi Hardware

As discussed previously, to make a Wi-Fi network, you need a minimum of two radios, whether you
operate in Ad-Hoc or Infrastructure Mode. For PC hardware, there are three physical types of radio
interface cards available: PC Card, PCI, and MiniPCI.

Of the three, the PC Card is by far the most common, because notebook PCs are widely deployed, and
most have at least one card slot; notebook users are the most common users of 802.11 networks.

MiniPCI cards are the up-and-coming form factor. Many notebook manufacturers have built MiniPCI cards
into their motherboards, which enables you to install network cards without using a PC Card slot.

At one time, PCI cards were not as common as the other types of radios, but they are staging a
comeback with new offerings from Linksys and D-Link. Many manufacturers, such as Linksys and D-Link,
produce some PCI cards now, which actually consist of a MiniPCI or PCMCIA card on a larger PCI card.

There is a fourth option for a growing number of notebook and PDA users: built-in Wi-Fi. Intel is
marketing their Centrino chipset that integrates an 802.11b radio on the motherboard, and most
notebook manufacturers offer Centrino notebooks. Similarly, other CPU manufacturers such as Via will be
integrating wireless into their chipsets. Finally, there are a number of notebook and PDA models that
feature built-in radios. Sony, for example, sells a Vaio notebook with an Orinoco radio built in and also
sells the Clie handheld PDAs with optional Wi-Fi.

As of this writing, more and more dual- and tri-mode cards are available. These cards allow you to access
802.11a/b/g networks with a single radio. The maker of a radio chipset decides the level of support—as of
this writing, support for these cards is still in flux under Linux. We'll cover this in more detail in the next
chapter.

Wireless access points are also available now in dual- and tri-mode. There is a wide range of access points
on the market, which range from units geared specifically for home users with built-in firewalls, 4-port
switches, and web-based configuration to models aimed at the corporate market with support for
authentication protocols such as RADIUS and LDAP, the ability to run via Power Over Ethernet (POE), and
connectors for external antennas.

Another category of access point is the "hotspot in a box." With the rising popularity of Wi-Fi hotspots in
cafes, hotels, and airports, many manufacturers have developed access points that are an all-in-one
solution. These boxes provide the radio and Ethernet of a normal access point, but also have some form
of authentication and payment system, which range from a web-based login to a printed coupon that the
store clerk delivers to the customer.

1.3.2.1 Antennas

Although a discussion of the physics of antennas is beyond the scope of this book, antennas are obviously
a very important part of any radio. Depending on the type of antenna, radio coverage is narrowly focused
or widely distributed, which makes a great deal of difference when building or connecting to 802.11
networks.

Briefly, antennas are transducers that convert radio frequency electric currents to electromagnetic waves
that are then radiated into space. Antennas are polarized according to the plane of the electric field
radiating from the antenna. A vertically polarized antenna has an electric field that is perpendicular to the
Earth's surface. Likewise, the electric field of a horizontally polarized antenna is parallel with the Earth's
surface.

There are several types of antennas used for Wi-Fi networks. The most common antenna is the integrated
antenna, followed by omnidirectional and directional antennas

Integrated antennas

Most PC Card radios have integrated antennas inside the enclosure of the card. A typical integrated
antenna design has two very small antennas—really just a solder trace or small piece of
foil—located at right angles to each other for diversity. Diversity antennas are designed so that one
antenna or the other is used to transmit and receive, but never at the same time. The card switches
automatically between antennas to choose the stronger signal. The antennas are horizontally
polarized, and this layout produces an antenna that has a somewhat omnidirectional pattern in a
horizontal beam.

Omnidirectional antennas

If you have a radio card or access point with a single external antenna attached, you are likely
looking at an omnidirectional, or omni, antenna. Omnidirectional antennas, as the name implies,
are designed to send and receive signals 360 degrees around the antenna. Figure 1-8, which is a
sample antenna gain pattern for a commercially produced omnidirectional antenna, shows that the
360-degree pattern is not circular at all. Notice that the antenna has pronounced gain at O and 180
degrees, but hardly any gain at 90 and 270 degrees.

Figure 1-8. A sample omnidirectional antenna gain pattern

While the theoretical beamwidth of an omnidirectional antenna is 360 degrees horizontally, the
vertical beamwidth of most omni antennas is less than 8 degrees. See Figure 1-9 for a side view of
a typical omni antenna. Notice that if the antenna were mounted high enough, someone directly
under the antenna itself would have very poor signal quality.

Figure 1-9. A side view of an omnidirectional antenna beamwidth

—

Most omnidirectional antennas are of the "rubber ducky" type—a rubber- covered antenna, which
ranges from a few inches long for a low-gain model to several feet for high-gain types.

Directional antennas
Although patch antennas are similar to sector antennas, they are considered directional antennas.

Patch antennas generally have horizontal and vertical beamwidths that are similar. An example
shown in Figure 1-10 shows the gain patterns for a patch antenna.

Figure 1-10. A sample patch antenna gain pattern

Horizontal

Yagi antennas are also directional antennas and are designed for highly directional applications.
They typically have a beamwidth of less than 30 degrees; most of them look like a PVC pipe or a
"Christmas tree" pointed at its target.

Finally, parabolic dish, or grid, antennas are the most highly directional antennas used in the 802.11
world. If you've seen a satellite dish, you've seen a parabolic dish antenna. These antenna types

are suited for sending wireless network signals over several miles. As shown in Figure 1-11, the
gain pattern is very tight.

Figure 1-11. A sample parabolic dish antenna gain pattern

Horizontal

Another antenna type widely used in outdoor applications is a sector antenna. These antennas are

generally available with horizontal polarization and antenna patterns from 90 to 180 degrees. They are
rectangular with a flat profile.

& Frev | < Day Day Up > | NEXT up

< Day Day Up >

1.4 Bluetooth

Bluetooth is a low-power radio technology aimed at replacing cables for connecting devices. It was
originally developed by the Swedish telecommunications manufacturer Ericsson and then formalized by an
industry consortium. The name is taken from a Danish king, Harald Bluetooth, who ruled Denmark and
Norway in A.D. 936.

The standards for Bluetooth define a low-power radio with a maximum range of 300 feet. The radios are
actually on a transceiver microchip to keep size and power consumption to a minimum. Bluetooth uses
the 2.45 GHz band of the ISM radio spectrum and divides the band into 79 channels. To further reduce
any crosstalk into other ISM bands, Bluetooth devices can change channels up to 1,600 times per second.

Bluetooth is becoming widely available on mobile phones and PDAs, and one of its "killer" applications is
hands-free wireless headsets for mobile phones. Bluetooth is also a popular way to "tether" a notebook
computer to a cellular phone, which allows you to connect to the Internet even when an 802.11 network
is not available (because current cellular data speeds are much slower than Bluetooth, Bluetooth's
relatively slow speeds are not the limiting factor). Bluetooth adapters are available for PDAs, desktops,
and notebooks. There are some printers and keyboards available that use Bluetooth to communicate with
the host device as well.

Compared to Wi-Fi, Bluetooth speeds are not impressive, but they are quite useful for transferring small
amounts of data. Download speeds can max out at 720 kbps with a simultaneous upload speed of 56
kbps. Every Bluetooth device can simultaneously maintain up to seven connections, making a personal
Bluetooth LAN a real possibility.

& FREY < Day Day Up > NEXT mjp

< Day Day Up >

1.5 Cellular Data

With the rise of digital cellular phone networks, it became possible to use these networks to transfer data
rather than just voice. There are several differing and competing technologies available.

Cellular Digital Packet Data (CDPD) was one of the first data networking technologies available for mobile
phones. CDPD utilizes unused bandwidth in the 800-900 MHz range normally used by mobile phones.
Data transfer rates max out at a theoretical 19.2 kbps. Today, CDPD is obsolete, and cellular carriers are
actively trying to phase it out.

General Packet Radio Service (GPRS) is an add-on technology to existing Time Division Multiple Access
(TDMA)-based GSM mobile phone networks. Timeslots in the GSM network are normally allocated to
create a circuit-switched voice connection. With a GPRS-enabled network, the timeslots are used for
packet data as needed. This by design creates a very slow data network with high latency and,
theoretically, the speed of a 56 kbps modem. AT&T Wireless, T-Mobile, and Cingular Wireless use this
technology. In 2003, an enhancement to GPRS, Enhanced Data Rates for Global Evolution (EDGE), was
partially rolled out in the United States by AT&T Wireless and Cingular. In theory, EDGE can triple the
data rate of GPRS, but you need an EDGE-capable handset, such as the Nokia 6200, to use it.

1XRTT stands for Single Carrier Radio Transmission Technology and is part of the CDMA2000 family of
protocols, which includes successors to 1XRTT such as Single Carrier Evolution Data Only (1XEV-DO). It is
built on top of the CDMA-based mobile phone networks and allows for ISDN-like data transfer speeds up
to 144 kbps (1XEV-DO is capable of much higher speeds). Sprint's PCS Vision and Verizon's Express
Network use this technology. As of this writing, Verizon Wireless is experimenting with 1xXEV-DO in two
U.S. markets, with testers obtaining data rates between 500 and 800 kbps.

< Day Day Up >

¥ FREV < Day Day Up > MEXT mjp

1.6 Infrared

The electromagnetic (EM) spectrum contains many different wavelengths of which the RF spectrum is a
small part. Another part of the EM spectrum is infrared light. This light has a longer wavelength than
visible light, but a much shorter wavelength than radio or microwave radiation. Infrared is usually linked
to body or mechanical heat, as many objects above room temperature emit infrared radiation. These
emissions can be seen by night vision equipment.

Infrared is used in television remote controls, because the signal does not interfere with the TV
transmission. Remote controls and Infrared Data (IrDA) equipment utilize light-emitting diodes to emit
infrared radiation that is then focused by a lens into a narrow beam. The beam is modulated on and off to
encode the data transmission.

The IrDA Association publishes specifications that are used by PDA, notebook, and mobile phone device
manufacturers for the infrared ports on their devices. IrDA devices typically have a maximum throughput
of 4 Mbps. While most mobile devices still have IrDA, many manufacturers are replacing these with
Bluetooth.

& FREV | < Day Day Up > | NE<T ap

¥ FREV < Day Day Up > MEXT mjp

Chapter 2. Wi-Fi on Your Linux Box

Wireless support on Linux has come a long way. With modern Linux distributions, you may not need to
recompile your kernel to receive support for your Wi-Fi card. You probably won't need to install driver
software or even touch a command line. However, this isn't always the case, especially as new cards
come on the market, so you should still have a good understanding of how Wi-Fi works under Linux. This
chapter starts out with an explanation of what you need to do with some common distributions and a
common radio card, and then gets into the details you need to know to take things a little further,
including radio chipsets, drivers, kernel compilation, the PCMCIA subsystem, and the Linux wireless tools.

48 FREV < Day Day Up > MEXT

< Day Day Up >

2.1 Quick Start

If you haven't purchased a Wi-Fi card yet, and are happy with 802.11b (about 5.5 Mbps real-world speed
versus about 20 for 802.11a or g), pick up either a Lucent/Agere/Avaya/Proxim Orinoco Silver or Orinoco
Gold (see Section 2.2.1.2 later in this chapter). If you've purchased a different card, it may work out of
the box with Linux. But if it doesn't, the rest of this chapter describes chipsets and drivers in enough
detail for you to find your way. Unfortunately, the orinoco_cs driver does not support monitor mode,
which passive monitoring tools such as Kismet require. See Chapter 3 for information on monitor mode
and available patches for orinoco_cs. If you want to use monitor mode with an unpatched driver, we
suggest that you use a Prism or Atheros-based card.

network interfaces, especially any wired Ethernet adapters you might use in the
future to avoid a particular situation where your Wi-Fi card is assigned and
configured as ethO during installation, but the system later detects the onboard
Ethernet and assigns it to ethO (bumping up your Wi-Fi adapter to ethl and
messing up the configuration files that think ethO is your Wi-Fi adapter).

|=: When you install Linux for the first time, load the modules for all the built-in

You must install the wireless tools package, which is described in Section 2.3.4 later in this chapter. The
name of this package in all the Linux distributions in the following list is wireless-tools.

We tested the Proxim Orinoco Classic Gold (pictured in Figure 2-1) with several Linux distributions on an
IBM ThinkPad A20m with onboard Ethernet (ethO), and this is what we found:

Debian 3.0r1

We used disk 5 (kernel 2.4.18-bf2.4) to boot the installer and installed the base system using disk
1. During installation, the card was recognized and configured properly using orinoco_cs and the
ethl adapter.

SuUSE 9.0

We used the free download version of SUSE 9.0 and installed everything over FTP. The installer did
not automatically detect the card, so we had to use wired Ethernet for the installation. However,
when we booted the system for the first time, SUSE found the card and configured it automatically
using the orinoco_cs driver as wlanO (the default for orinoco_cs would be to use ethl).

Mandrake 9.2

The card was automatically detected during installation. We configured it by clicking Configure
under Network & Internet when the installer reached the summary screen. Mandrake offers
advanced options, including SSID (WIRELESS_ESSID) and WEP key (WIRELESS_ENC_KEY).
Mandrake used orinoco_cs and the ethl adapter for this card.

RedHat 9

The RedHat installer detected the card using the orinoco_cs driver and set up the card as ethl.
However, the card was not configured correctly on first boot. We edited /etc/sysconfig/network-
scripts/ifcfg-ethl and set ONBOOT to no, which corrected the problem. (Linux should always defer
configuration of PCMCIA adapters until the pcmcia rc script runs.)

Gentoo 1.4

We performed a stage 3 install of Gentoo. After booting the installer, we tried to start PCMCIA with
/etc/init.d/pcmcia start, but it insisted on loading the prism2_cs driver, which did not work at all.
However, after we installed Gentoo, built a kernel with genkernel, and rebooted, Gentoo correctly
loaded the orinoco_cs driver (which saw the card as ethl).

Figure 2-1. The Orinoco Classic Gold card

ol If you're connecting to a network that uses WEP or one that doesn't broadcast its
e SSID, you may need to use the wireless tools, described later in this chapter, after
w 4: installation is complete. However, if the Linux distribution supports advanced

options (as does Mandrake 9.2), you should be able to connect to the network
during the initial installation. For more information on using WEP with Linux, see

Chapter 4.

48 FREV < Day Day Up > MEXT

< Day Day Up >

2.2 Chipset Compatibility

While there are many vendors selling Wi-Fi hardware, the radio chipsets come from a relatively small set
of manufacturers. With a few exceptions, radio chipset support under Linux is quite good, and getting
better.

Before getting into the nuts and bolts of radio chipsets, there is one online resource that you absolutely
need. Jean Tourrilhes at Hewlett Packard is the author of the Linux Wireless Tools (covered later in this
chapter). He also maintains an extensive web page that includes the Wireless LAN How-To. The page is
located at http://www.hpl.hp.com/personal/Jean Tourrilhes/index.html. For information regarding a
specific radio chipset and driver support in Linux, look on the Devices & Drivers page:
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.html. The page is updated
frequently and has extensive information on many esoteric wireless devices and drivers.

2.2.1 Common Chipsets

Although there are probably less than 50 manufacturers of Wi-Fi radio chipsets, this book simply does not
have the space to cover each of these manufacturers in detail. We cover the five most popular
manufacturers and their chipsets, which, in reality, produce 80% of all 802.11 hardware.

2.2.1.1 Intersil Prism |l

Before it became a part of Intersil, a company called Harris developed the Prism | reference standard for
802.11, based on an AMD AM930 processor core. This chipset is 802.11 only, so we won't cover any
details of driver support, but they are available on Jean Tourrilhes' web site, listed in the previous section.

At one point, Prism Il has been the most widely available and popular 802.11b radio chipset. Intersil
licensed the chipset and reference designs for Prism Il to a large number of vendors. A partial list of
vendors using Prism 11 radios in their access points, PCMCIA cards, PCI cards, USB adapters, and
Compact Flash (CF) cards includes:

e Compaqg

e Nokia

e Proxim

e D-Link

e Linksys

o Netgear

e SMC

e Senao/Engenius

Nearly all of these vendors have products using other radio chipsets. Unfortunately, many products have

http://www.hpl.hp.com/personal/Jean_Tourrilhes/index.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.html

kept the same name and sometimes even the same part number, while changing the underlying radio
chipset. A good case in point: the D-Link DWL-650. This radio card initially shipped with a Prism Il chipset
and was very popular, because it worked in a Linux box. However, D-Link changed chipsets when it
released the DWL-650 Version 2, choosing an ADMtek chipset. It is very difficult to tell from the packaging
which version of the DWL-650 you are purchasing.

Although you have a very good chance of finding an 802.11b radio card that uses a Prism Il chipset, there
is no guarantee that the chipset is inside your card. This applies to every other card manufacturer as well.
Once you've decided on a radio card, research online to make sure you know which chipset it uses.

Several manufacturers licensed the Prism Il reference design from Intersil and based their products
around this design. These manufacturers include Lucent, Symbol, and Aironet/Cisco. However, the radios
designed by these manufacturers use different firmware and are not compatible with Prism Il drivers,
although some cards may appear to work: the driver will load, but the card may function only partially or
not at all.

2.2.1.2 Lucent WaveLan/Orinoco

The original Lucent WavelLan radios developed at AT&T (before Lucent was spun off as a separate
company) were 900 MHz radios, later followed by 2.4 GHz radios in the Industrial, Scientific, and Medical
(ISM) band. These cards used an Ethernet MAC chip onboard, rather than a MAC chip that met standard
802.11 specifications.

The history of Wavelan is of name changes, mergers, and acquisitions. Lucent released a newer version
of the card, the WavelLan IEEE, which met the 802.11 specifications, and then later upgraded the card to
support 802.11b (based on the Prism Il reference design, discussed previously). Not too long afterward,
the WavelLan brand was renamed to Orinoco. Lucent then spun off this part of its company into a
separate company named Agere. Another Lucent spin-off called Avaya also sells radio cards using the
Orinoco chipset. Most recently the end unit sales of Orinoco have been acquired by Proxim, while Agere
still manufactures the radio chipsets.

Lucent/Agere was one of the few vendors not only to manufacture the radio chipset, but to sell end-user
equipment in the form of radio cards and access points.

In addition to the Lucent, Agere, and Avaya brands, which use the Orinoco chipset, the Apple AirPort line
of products is based on the WavelLan IEEE chipset but is not compatible with Linux drivers for Orinoco.
Other vendors that sell radios using the Orinoco chipset include Enterasys, Elsa, Buffalo, HP, IBM, Dell,
Sony, and Compaq. Again, many of these vendors also produce radios using chipsets from other
manufacturers.

2.2.1.3 Aironet/Cisco

The original Aironet radios were similar to the original Lucent WavelLan: they started at 900 MHz and then
moved to 2.4 GHz. Again, they were not initially compatible with the 802.11 standard. Aironet produced
the 4500 (802.11) and 4800 (802.11b) series of radios, based on the Harris Prism chipset, but with
proprietary firmware.

The story of Aironet is also one of acquisition: Cisco purchased Aironet in March of 2000. Prior to the
purchase, Aironet had released the 4800B family of radio cards, including ISA, PCI, and PCMCIA versions,
based on the Intersil Prism Il chipset. These radios were renamed as the Cisco 340 series of cards. Cisco
has since released the 350 series of radio cards that feature 100 mW of transmit power (as opposed to
the 30 mW offered by the majority of radios). The 350 family also includes a MiniPCI form factor radio
card.

"_-‘~ The majority of consumer Wi-Fi radio cards have radios that feature 30 mW of
as transmit power. Notable exceptions to this are the Cisco 350 cards, the
. 4+ Senao/EnGenius 100 and 200 mW cards, similar 100/200 mW cards from Zcomax,

and a few models from D-Link.

2.2.1.4 Symbol

Symbol developed frequency-hopping radios in the 2.4 GHz band called Spectrum24. In a slight twist,
Symbol made sure its products were 802.11-compliant from the beginning. Symbol came somewhat late
to the 802.11b market, but it released a new line called Spectrum24 High-Rate. Again, these cards are
based on the Intersil Prism Il chipset with custom firmware. Both 3Com and Intel sell OEM versions of
these cards.

Symbol sells mostly PCMCIA cards but also offers a PCI card. Symbol main strength is integrated
products—it offers PDAs with built-in wireless and barcode readers for industrial, medical, and
manufacturing applications. Symbol also has one of the few CF implementations of 802.11b. Versions of
these cards are also available and sold as an OEM package by Socket Communications.

2.2.1.5 Atmel

Atmel was the first to market a USB 802.11b chipset. However, that chipset did not include a radio, so
various radios can be used with this chipset, including the Intersil Prism Il radios. Linksys and D-Link both
sell USB radio adapters based on the Intersil chipset. SMC and 3Com both sell PCMCIA cards using the
Atmel chipset.

2.2.1.6 Atheros

Atheros is unique in that its chipsets are not based on the Intersil Prism Il reference designs. It was the
first to market 802.11a chipsets. For quite some time, any 802.11a radios available for purchase were
built using the Atheros chipset. Atheros has since introduced dual-mode 802.11a/b radios with its ar5211
chipset and tri-mode a/b/g radios using their ar5212 chipset.

Proxim, SMC, Linksys, and D-Link all sell 802.11a, as well as dual- and tri-mode radio products using the
Atheros chipset. The primary form factors are PCMCIA and MiniPCI. Linksys and D-Link both sell PCI dual-
and tri-mode radios; however, they consist of a PCI card with a MiniPCI radio onboard.

2.2.1.7 Broadcom

Broadcom has both 802.11b and 802.11g radio chipsets. It has completely ignored the Linux community
despite the many references to Linux on its web pages. No Linux drivers are available for Broadcom radio
cards as of this writing. Cards based on the Broadcom 802.11b chipset include the Dell TrueMobile 1180
and the Linksys WMP11 (previous versions of this card used the Intersil Prism Il chipset). Cards based on
the Broadcom 802.11g chipset include the Linksys WPC54G and WMP54G.

Linux, Driver Support, and the GPL

There are a few fronts on which the proprietary approach of a few hardware vendors clashes
with the spirit of the Linux community.

Companies that manufacture many of the unsupported Wi-Fi cards refuse to divulge enough
information on their radios and firmware for the open source community to effectively build
drivers.

Also, there are a number of drivers available that are available only in binary form. The
company that manufactures the radio chipset releases most of these drivers. The madwifi
driver for the Atheros chipsets, developed by Sam Leffler with the cooperation of Atheros, is a
good example. The original driver was developed for BSD but wasn't released, because the
Atheros hardware does not enforce valid operating modes that comply with FCC regulations.

As a solution, Atheros developed a Hardware Abstraction Layer (HAL), in binary form, that sits
between the hardware and the driver and regulates the hardware to meet FCC requirements.
Unfortunately, the binary HAL is available only for i386 architecture, and source is not
available.

As such, the madwifi driver is viewed in the open source community as a "black sheep”
project, and many people refuse to use the driver, because a large portion of it does not have
source publicly available. There is a completely open source driver for the Atheros chipsets
under development; see Section 2.4.4 later in this chapter.

Finally, there are issues with some vendors that have released products based on Linux and
other open source software products. The open source community has made recent
discoveries that show that some vendors appear to be violating the GNU General Public
License under which the operating system and tools software were published. As of this
writing, this is an unresolved matter.

2.2.2 Determining Your Radio Chipset

As previously discussed, determining the chipset your radio uses can be difficult, because many
equipment vendors use chipsets from several different manufacturers. An excellent example is Linksys.
Its 802.11b PCMCIA cards use the Prism Il chipset. However, the Linksys USB 802.11b adapters use the
Atmel chipset, while its 802.11g PCMCIA cards use a Broadcom chipset, and its dual-mode
802.11a/802.11g PCMCIA and PCI cards use the Atheros chipset. The bottom line is that you should
determine your card chipset type before installing drivers.

To determine the chipset of a radio card, refer to the following methods:

e If your radio card is PCMCIA or Cardbus, and you have the pcmcia-cs package installed, or are using
the kernel tree PCMCIA, use the cardct| i dent command. This shows vendor identification strings

for the cards that are currently inserted in the PCMCIA slots. This works regardless of whether you
have a driver loaded for the card. Here is an example output of the command on a system with two
Orinoco cards:

cardct| ident
Socket O:

product info: "Lucent Technol ogi es", "WaveLAN | EEE", "Version 01.01",

manfi d: 0x0156, 0x0002
function: 6 (network)
Socket 1:

product info: "Lucent Technol ogi es", "WaveLAN | EEE", "Version 01.01",

manfid: 0x0156, 0x0002

function: 6 (network)
Here is an example output of the command on a system with a single Senao Prism ll-based card:
cardct!| ident
Socket O:

product info: "INTERSIL", "HFA384x/|EEE"', "Version 01.02", ""

manfid: 0x0156, 0x0002

function: 6 (network)

e If your radio card is PCI, use the command | spci -v to show the vendor identification string. Bear
in mind that this command shows you all of the devices on your PCI bus, so for some systems this
may return a list several pages long.

e If your radio card is USB, you can usually find the vendor identification strings for any USB device by
using the dnesg command to show output generated during the boot process. You might also find
the same information in /var/log/messages.

These commands usually let you know the manufacturer of the chipset. However, some manufacturers
have obfuscated their vendor identification strings, so you still may not find a valid chipset ID.

An excellent resource that is published on the pages of the wlan-ng driver is the WLAN Adapter Chipset
Directory (http://www.linux-wlan.org/docs/wlan adapters.html). This is compiled and updated regularly
by the maintainers of wlan-ng, AbsoluteValue Systems, Inc.

All radio devices are required to have the FCC ID printed on them. A final option is to get the FCC ID from
your radio card and look it up on the FCC web site (http://www.fcc.gov/oet/fccid). Using this web site, the
FCC ID NI3-SL-2011CD from the back of a Senao 100 mW 802.11b card returned a single entry for Senao
in Taiwan. If you select this entry by choosing the link for Detail, you are again presented with a number
of documents provided to the FCC by the manufacturer. In this particular case, select a PDF document
titled "Operational Description,”™ which reads:

The SL-2011CD WLAN PC Card utilize the Intersil Prism Il Direct Sequence Spread Spectrum
Wireless Transceiver chip set.

. PREY < Day Day Up > ME=T -“

http://www.linux-wlan.org/docs/wlan_adapters.html
http://www.fcc.gov/oet/fccid

< Day Day Up >

2.3 Four Steps to Wi-Fi

To use a Wi-Fi card on your Linux system, you need several things:

e The correct driver software for your Wi-Fi card
e The Linux Wireless Tools software

e If your system uses a PC Card interface for the Wi-Fi card, the pcmcia-cs software package must be
installed and configured OR

¢ Your kernel must have kernel PCMCIA support compiled in. You may need to recompile your kernel,
depending on your system and distribution.

If you installed your Linux distribution on a notebook or laptop, there's a good chance that you already
have at least part of the necessary packages to make a configured and operational Wi-Fi network card.
Current versions of Red Hat, Debian, and SuSE with 2.4 kernels all include a "notebook™ option during the
installation process that installs kernel PCMCIA support.

You have two options for PCMCIA support in Linux: the pcmcia-cs package or kernel PCMCIA support. All
2.4.x distributions of the Linux kernel include the option for compiling in PCMCIA support, which removes
the need for the external pcmcia-cs package. However, there are some valid reasons to use the pcmcia-cs
package rather than the kernel PCMCIA support, which we discuss later in this section.

Kernel PCMCIA support is based on the pcmcia-cs package. The pcmcia-cs README for Version 2.4
kernels, found at http://pcmcia-cs.sourceforge.net/ftp/README-2.4, has several good questions on this
topic:

Q: Are these two versions of PCMCIA both going to continue with active development?

A: The kernel PCMCIA subsystem should be the focus for ongoing development. The standalone
pcmcia-cs drivers are still being maintained but the focus has shifted from adding functionality,
towards mainly bug fixes.

Q: Which should I use / which is better? The kernel PCMCIA, or the standalone PCMCIA?

A: It rarely matters. The client drivers should generally behave the same. At this point, most current
distributions use the kernel PCMCIA subsystem, and | recommend sticking with that unless you have
a particular need that is only met by the standalone drivers.

Your Linux distribution may not install the Linux Wireless Tools or the pcmcia-cs packages by default. You
must select these packages during the installation process or add them at a later time.

- You don't need to install both kernel PCMCIA and pcmcia-cs.
L
Ll

Yia

B

The same is true for many wireless drivers. Most current Linux distributions give you drivers for some
common Wi-Fi cards, including the orinoco_cs driver for Lucent WaveLan/Orinoco cards. However, if you

http://pcmcia-cs.sourceforge.net/ftp/README-2.4

need the hostap, wlan-ng, or madwifi drivers, you must install these from source, or optionally from a
binary package that a third party has made available.

2.3.1 Linux Wi-Fi Drivers

We can't cover all Wi-Fi radio cards, their features, and the available drivers for them. We'll discuss
several of them briefly and cover the four most useful drivers for Linux in more detail at the end of this
chapter:

Hermes AP

Hermes AP is a patched version of the orinoco_cs driver that allows you to use the "tertiary" code
available for Orinoco cards, which allows them to act as an access point. You can find the driver at
http://hunz.org/hermesap.html.

hostap_cs

This is a driver for Prism 1l cards but with a few features not found in other drivers. You can find the
driver at http://hostap.epitest.fi. See Section 2.4.2 later in this chapter.

madwifi

This driver supports the Atheros 802.11a/b/g radio cards. You can find this driver at
http://sourceforge.net/projects/madwifi. See Section 2.4.4 later in this chapter.

orinoco_cs

This driver supports Lucent WavelLAN IEEE, Lucent Orinoco, Symbol Spectrum 24, and Apple AirPort
(but not AirPort Extreme) cards, and is included with most recent Linux distributions. This driver
also supports Prism Il cards, but most features of the Prism Il chipset are not supported. You can
download the driver from http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Orinoco.html.
See Section 2.4.1 later in this chapter.

prism54

The prism54 driver supports cards based on Prism GT, Prism Duette, and Prism Indigo chipsets. You
can find this driver at http://prism54.org/.

wlan-ng

This is another Prism 11 driver. It does not support the wireless-tools package, but it does come
with its own utilities. You can download the driver from http://www.linux-wlan.org/. See Section
2.4.3 later in this chapter.

http://hunz.org/hermesap.html
http://hostap.epitest.fi
http://sourceforge.net/projects/madwifi
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html
http://prism54.org/
http://www.linux-wlan.org/

2.3.2 Configuring and Compiling Your Kernel

There are a number of reasons why you should consider compiling your own Linux kernel from source:

e Many drivers require certain features to be compiled into the kernel that are not available in stock
distribution kernels. For example, the madwifi driver requires not only radio support and the wireless
tools, but also PCI Hotplug and ACPI support, which must be compiled into the kernel.

e Other drivers, while not requiring experimental kernel features, still require a configured kernel
source. A .config file must exist in the root of your kernel source and must be the file that was used
to configure and compile your running kernel. Some Linux distributions do not include this file, which
makes it difficult for you to install kernel drivers.

¢ You should know how to compile a Linux kernel. If you have used Linux for any length of time, or if
you plan to, kernel compilation teaches you a great deal about Linux.

Compiling the Linux kernel from source is not a trivial undertaking. While you don't need prior experience
building system-level software, you do need a basic understanding of Linux filesystems, editors, and other
concepts. See the following resources for some good basic Linux backgrounders:

e The Linux Kernel HOWTO, part of the Linux Documentation Project
(http://www.linux.org/docs/Idp/howto/Kernel-HOWTO/index.html)

¢ Running Linux, Fourth Edition (O'Reilly)
¢ Understanding the Linux Kernel, Second Edition (O'Reilly)

To configure and compile a Linux kernel, you must obtain the following items:

¢ A working Linux system
e The correct compiler, libraries and tools
e The kernel source

A working Linux system should be fairly modern if you are planning on compiling modern kernel code. For
instance, do not attempt to compile a 2.4 kernel tree using a Linux system based on a 2.0 or prior kernel.
Any recent distribution of Linux should have the kernel version and tools necessary for compiling your
own kernel.

In each kernel release, the README file in the kernel source specifies the version of the gcc compiler
needed to compile successfully. For example, the README for kernel 2.4.22 states:

Make sure you have gcc 2.94.3 available. gcc 2.91.66 (ecgs-1.1.2) may also work but is not as safe,
and gcc 2.7.2.3 is no longer supported.

Compiling and running the 2.4.xx kernels requires up-to-date versions of various software packages.
Consult /Documentation/Changes for the minimum version numbers required and how to get
updates for these packages.

The Changes document goes into great detail on versions of software, including gcc, that are required for
successful compilation of the kernel source. Make sure your system has the correct versions of the tools
specified. Failure to do so may mean that your new kernel will not compile, or that bugs will be introduced
into your kernel.

http://www.linux.org/docs/ldp/howto/Kernel-HOWTO/index.html

Kernel source can be obtained from many places. The major distributions include kernel source in package
format—RPMs, Debian packages for apt-get, or dpkg. Other kernel source RPMs built by third parties can
be found at http://www.rpmfind.net. The ultimate repository for all Linux kernels is kernel.org, accessible
via FTP or HTTP. Here you can find source for any kernel version you want, all the way back to the 1.0
kernel from 1994.

The latest stable kernel is Version 2.4.23, and it can be downloaded directly by using this URL:
http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.23.tar.bz2. You'll want to save this compressed
file in /usr/src.

- To find the latest kernel source, look in the major/minor version subdirectory (such
..fn. as v2.4) for a file starting with LATEST-1S. For example, a file named LATEST-IS-
w s 2.4.23 tells you that kernel 2.4.23 is the most recent. Unless you are aware of a
* specific problem with the latest kernel version, you should always use the most

recent one.

We'll walk through a compile of the 2.4.23 kernel for a Debian Linux system running on a Dell laptop.
Obviously, this only scratches the surface of kernel compilation. This book doesn't have the space to cover
multiple versions of kernels, much less cover what it takes to compile on other specific systems. One good
resource for information is the Kernel HOWTO listed earlier. Another is the linux-kernel mailing list,
located at http://www.tux.org/Ikml/. This page has a very extensive questions section, where many
common kernel answers are given.

2.3.2.1 Off to the races

Assuming that you have obtained the 2.4.23 kernel source from www.kernel.org, you'll want to
uncompress the file and change into the working source directory (these instructions will work with later
versions of the 2.4 kernel):

tar xjvf linux-2.4.23.tar.bhz2
cd linux-2.4.23

If you want to save the original .config file from the source, you should back it up (if you obtained your
kernel source from a tarball at kernel.org, this file won't exist):

cp .config .config-original

If you have done anything in this directory other than the three commands listed previously, it's a good
idea to run a couple of cleanup commands. These commands clean out all sorts of things that might have
been compiled or configured in ways that you don't want:

make cl ean
make nrproper

At this point, you have four options for configuring your kernel before compilation.

Manual editing of the .config file

Not recommended unless you are a serious kernel hacker, and you know exactly what you're doing.

http://www.rpmfind.net
http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.23.tar.bz2
http://www.tux.org/lkml/

make config
This is a command-line interface that walks you through every possible config option, one at a time.
It is very time consuming and very unfriendly. When you enter this command, you see something
such as this on the screen:

rm-f include/asm

(cd include ; In -sf asmi 386 asm

/' bin/sh scripts/Configure arch/i386/config.in

#

Using defaults found in .config

#

* Code maturity |evel options

*

Pronmpt for devel opnent and/or inconplete code/drivers (CONFIG_

EXPERI MENTAL) [Y/n/?]

You must answer each and every question the script asks you in order to generate a valid .config file.

make nenuconfig

This is a command-line menu interface that relies on the ncurses library to generate a menu-based
configuration editor. It is a much more friendly interface than the preceding options. Here, instead
of answering a question about each and every single possible kernel feature, you are presented with
a hierarchical menu that breaks things down into sections. Figure 2-2 shows the main menu you
obtain from running make nenuconfi g.

Figure 2-2. Initial menu from make menuconfig

Linux Kernel we.4.Z23 Configuration

fnerow keys navigate the meou. <Enter? selects subrenus -3
Highlighted letters are otkheys. Pressing <Y: includes, <H» excludes,
<H» modularizes features. Press (Esc><Esc> to exit, <7> for Help.
Legend: [=1 built—in [1 excluded <H> modile < » #odile capable

Code maturity leeel options —-3
adahle & support —%
rocessor type and features

eneral setap ---2

H mory Techmology Devices (ATD) —3
arallel port support -—3

lug and Play configuration -—3>
lock dewices -—-2

H 1ti-device support (RATD and LUH) —-3

H tworking options -—3

elephony Suppart —-»

Tiwe IDE-HFH-RLL zupport ---2

C31 support -—--3»

uzion HPT device support —->

20 device support ——3

H twork device support --->

< Exit > 4 Help »

make xconfig
As the name implies, this is an X-Windows interface for the config process. You must be running

some flavor of X-Windows to use this option. For most Linux users, this is Ghome or KDE. make
xconfi g produces a GUI window, as shown in Figure 2-3.

Figure 2-3. Initial menu from make xconfig

[Linue Fernel Eonfisrotion 8 IEIETE
Codler malurty lewel opSions Fusion MPT device support feal]
Lsslshie muduls sugpurl USL mpport
Processor Uype and featunes 20 thrvice supgori Elueiooth support
Gorerad selp Metwark device siuppon Kermel haicking
kemory Technelogy Devices (MTE) Amalmr Badfin suppor] Cryplngraphic oplines
Puaralil purt suppurt el fimBraretl] support Libirary routinee
Phary el Pl confiyisation 120N sulsystam
Binck: dovicos Ol CD-AOM drtvers (nod 3C31, not BDE)
Multi-favice suppord (HAM asd LV) Ingut core suppor
Flusaratig o o Charntine dinvicas Eava ol Dali
Telepsany Support Meltimesia davices QUL Without Saving
ATANDEMPMTLL support File Tyshems Load Condquratmn [roe Fie
HLE| gyl LI fnvers Slore Conhgeralion o e

For most users, make nenuconfi g or make xconfi g are going to be the most friendly. This book assumes

that you have chosen one of these options. Every option in the following list that you pick is from a menu
in make nenuconfi g or make xconfi g.

The following list presents a number of options that you must choose to successfully compile your kernel
for wireless connectivity. Note that there are many other options that must be selected to compile a
kernel for your system, but they are not covered here. There are three options you can select: Y for yes,
M for module, and N for no:

Code maturity |level options

Prompt for devel opnment and/or inconplete code/drivers: Y
Loadabl e Modul e Support
Enabl e | oadabl e nodul e support: Y
Set version information on all nodule synbols: Y
Kernel nodule |oader: Y
Processor type and features
It is vitally inportant that you select your correct processor type
in this option. Oherw se your kernel will not be conpiled properly
and will definitely not boot.
CGeneral Setup
Net wor ki ng support: Y
PCl Support (for PCl or CardBus wireless cards): Y
Support for hot-pluggable devices (for PCMCI A, CardBus or USB support) Y
PCMCI A/ Car dBus support
PCMCI A/ Car dBus support: Y
CardBus support (if required for your setup): Y
PCl Hot pl ug Support
Support for PCI Hotplug (required for madwi fi driver): Y
ACPlI PCI Hotplug driver (required for madwi fi driver): M
Power Managenent Support (required for ACPl): Y
ACPI Support
ACPlI Support (required for madwi fi driver): Y
Pl ug and Pl ay configuration
Plug and Play support: Y
Net wor ki ng options
Packet socket: Y
Socket filtering: Y

Uni x domai n sockets: Y

TCP/ I P networking: Y
Net wor k devi ce support
Net wor k devi ce support: Y
Wreless LAN (non-hanradio): Y
In this section you will want to choose a wirel ess
driver for your card, if it is |listed here.

Once you have selected these options (and any other options required for your particular system), you're
done with the config. You can choose to Store Configuration to File if you would like to write this particular
config to a file other than the default .config. Otherwise, choose Save and Exit, which writes your options
to the .config file.

Your next step is to issue the nake dep command. This runs a Makefile script that compiles any
dependencies required for your kernel. Depending on your system, this likely takes a few minutes.

You're now ready to compile the kernel! This is done with the nmake bzl mrage command. This takes quite
some time.

Next, because you have selected the Loadable Modules section, you must compile all of the modules by
issuing the nake nmodul es command. On some systems, depending on the number of modules you chose

to build, this command may take more time than compiling the kernel.

Finally, you must install the modules you have just compiled. This is accomplished by the nake
nodul es_install command.

If you encounter errors during the compile process, note the specific error and the directory in which it
occurred. Execute the nake cl ean command. Go back into nake xconfi g and find the area
corresponding to the directory where the compile failed. Examine the options you chose very carefully.
Did you choose a kernel option or module that is not on your system? Did you choose an option that is
labeled as EXPERI MENTAL? You may wish to alter your choices. While the menu makes choosing kernel
options very easy, it does not give you advice on which options to choose. You may have to experiment
with the settings until you get a successful compile.

Once you have compiled the bzImage and the modules, you are ready. Now, you must copy the bzlmage
file that was compiled to your /boot directory. Many distributions use the filename of vmlinuz for this
purpose, but you can call the file anything you want. The path below obviously varies depending on your
system architecture. The following example is from kernel 2.4.23 compiled for i386:

cp /usr/src/linux/arch/i386/boot/vminuz-2.4.23 /boot/

One last thing must be done: configure your boot loader program so that it recognizes your new kernel.
The two most common boot loaders are GRUB and LILO. LILO is the older of the two, but it is still widely
used. We assume that you are using LILO. For more information on configuring GRUB, see the GNU
software pages at http://www.gnu.org/software/grub.

To configure LILO for your new kernel, edit the /etc/lilo.conf file. A typical lilo.conf is shown here:

| ba32
boot =/ dev/ hda

r oot =/ dev/ hda3

http://www.gnu.org/software/grub

i nstal | =boot/ boot - menu. b

map=/ boot / nap

del ay=20

pr onpt

ti meout =150

vga=nor ma

def aul t =Li nux

i mge=/boot/vm inuz-2.4.23
| abel =Li nux
read-only

i mage=/ boot/vm inuz-2.4.18
| abel =0 d Ker ne

read-only

The key pieces are at the end. This example uses def aul t =Li nux, the label associated with the image for
kernel 2.4.23, which you have just built and copied to /boot. Leave the old kernel image in the
configuration file. This is very important, because it gives you a rescue option if your new kernel image
does not boot or has errors.

To activate this lilo.conf, run LILO and specify the configuration file:
#lilo -C/etc/lilo.conf

Added Linux *

Added O d Ker nel

You are now ready to reboot your system and boot into the new kernel that you just compiled.

2.3.3 Building and Configuring the pcmcia-cs Subsystem

As mentioned previously, you have two options for PCMCIA support. You can select PCMCIA/CardBus
support when you compile your kernel, or you can build the pcmcia-cs subsystem from scratch.

The pcmcia-cs software package, available from http://pcmcia-cs.sourceforge.net, is the basis for the
kernel PCMCIA support. Going forward into the 2.6 kernels, it appears that all new development will be on
the kernel tree PCMCIA. However, as of this writing and the 2.4.23 kernel, the pcmcia-cs version of 3.25
has newer utilities and drivers than the ones in the kernel PCMCIA. It is mainly for this reason that you
will want to compile pcmcia-cs from source.

http://pcmcia-cs.sourceforge.net

- If you compile your kernel with PCMCIA/CardBus support, you do not need to install
.fn. the pcmcia-cs package from source. However, if you want the latest versions of the
ul . ;= PCMCIA utilities, you can install this package without interfering with kernel support

* for PCMCIA/CardBus. For more information, see Section 2.3.3.1 later in this

chapter.

Once again, to compile kernel modules from source, you need the configured kernel source for your
kernel. This generally means that you have configured and compiled your own Linux kernel. While it is
certainly possible to compile kernel modules against Linux kernels provided by a stock distribution, it can
be tricky. For more on compiling your own kernel, see the previous Section 2.3.2.

There are a number of kernel options that may need to be enabled, depending on how you use the
PCMCIA devices. Because many of these options pertain to wired network cards, SCSI and IDE adapters,
we do not cover them here. However, if you do plan to use 16-bit PCMCIA (non-CardBus cards), you must
enable CONFIG_ISA. This option can be found in the General Setup portion of nake nenuconfi g or make
xconfi g as part of your kernel configuration.

To begin compiling the package, download the pcmcia-cs.3.2.5.tar.gz file into the /usr/src directory.
Unpack the tar.gz file and change into the top-level directory (if a later version is available, you should
use that):

tar xzvf pcntia-cs.3.2.5.t9z
cd pcntia-cs.3.2.5

You must configure the package before compilation and make a few decisions on what kind of PCMCIA
support you need. In most cases, you can accept the defaults on all of the config questions.

The kernel source directory defaults to /usr/src/linux. If your kernel source is located in /usr/src/kernel-
2.4.23, you must enter that here:

make config
Li nux kernel source directory?

Next, you can choose whether to allow non-root users to modify PCMCIA card configurations. The default
answer is no, which does not allow any non-root users to suspend, resume, or reset cards, or to change
the PCMCIA configuration scheme. Answering yes allows non-root users all these privileges.

Build '"trusting' versions of card utilities?

In most cases, you want to enable CardBus support. Unless you plan only to use 16-bit 802.11 and
802.11b PCMCIA cards, CardBus is required for 802.11a and 802.11g PC Cards.

I nclude 32-bit (CardBus) card support?

This option inserts extra code into the PCMCIA subsystem, which allows it to check with a system's BIOS
to obtain resource information on a motherboard's devices to help avoid resource conflicts. It can cause
problems on some laptops, so this option is not enabled by default.

I ncl ude PnP BI CS resource checking?

Unless you are installing modules in an alternate directory for some reason, this should be the
subdirectory of /lib/modules that matches your kernel. In this case, the subdirectory is
/lib/modules/2.4.23.

Modul e install directory?

Once you've answered the questions and config has finished, you should run the following commands to
build and then install the kernel modules and utility programs:

make all
make install

Once installed, the kernel modules will be located in /lib/modules/2.4.23/pcmcia, the binary PCMCIA
control programs will be located in /sbin, and all configuration files will be located in /etc/pcmcia. A
startup configuration file will also be installed, but this location varies with the Linux distribution in
question. Debian locates the startup configuration in /etc/default/pcmcia. RedHat and several other
distributions locate the startup configuration in /etc/sysconfig/pcmcia.

The startup configuration file has several options that can be set. A sample file from a modified Debian
system looks like this:

PCMCI A=yes

PCI C=i 82365

PCI C_OPTS=

CORE_OPTS=

CARDMGR_OPTS=-f

If PCMCIA is set to anything other than "yes," the PCMCIA subsystem will not start at time of boot.

The only mandatory option in this file that must be set is PCIC=. There are three options: tcic, i82365,
and yenta_socket. tcic is a driver for older PC Card controllers, and unless you're building on a 486 laptop,
you won't use it. Most other systems will want to set this option as i82365, unless you have the kernel
tree PCMCIA. If the kernel tree PCMCIA is configured in your kernel, you must set this option to
yenta_socket. Finally, if your PCMCIA card is CardBus, you should set this to yenta_socket.

PCIC_OPTS are necessary only if your specific PC Card controller has options that need to be passed to it
at boot time. For most modern controllers, this is not an issue.

CORE_OPTS are options for the kernel module pcmcia_core. man pcnti a_cor e gives you a listing of all
these options.

CARDMGR_OPTS are options for the cardmgr daemon. man car dngr gives you a listing of these options.
In this case, the - f option tells cardmgr to run in the foreground, rather than as a daemon, until any
cards present are already configured.

There are quite a number of settings that are possible for various systems. If you have an unusual system
or a desktop system with an add-on PCMCIA reader, you should completely read through the PCMCIA
HOWTO:

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO.html

2.3.3.1 2.4 kernels and kernel tree PCMCIA

Note that if you have a 2.4 kernel and kernel tree PCMCIA configured in your kernel, the pcmcia-cs install
process will install only the PCMCIA tools, cardmgr, and cardctl in the /sbin directory. None of the kernel
modules or client card drivers will be installed, because the pcmcia-cs installer will find existing modules

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO.html

from the kernel tree PCMCIA and by default will not overwrite them.

Included with the pcmcia-cs source is a README file on issues with the 2.4 kernel. (You can also find this
file at http://pcmcia-cs.sourceforge.net/ftp/README-2.4.) One of the questions in the Q&A section covers
this issue. You cannot compile or install anything in the /usr/src/pcmcia-cs.3.2.5/modules directory, as
these modules would conflict with the PCMCIA subsystem in the kernel tree.

However, you can build client card drivers from the pcmcia-cs source code by executing make install in

either the /usr/src/pcmcia-cs.3.2.5/clients or /usr/src/pcmcia-cs.3.2.5/wireless subdirectories after
running make config.

You may need to build the drivers this way for a variety of reasons. For example, when we built and
compiled the 2.4.23 kernel, pcmcia-cs, and associated wireless drivers, we discovered that the madwifi
driver for Atheros chipsets required kernel tree PCMCIA. However, once the kernel was compiled and the
Atheros card was successfully tested, we discovered that the Orinoco card would not initialize. The
PCMCIA subsystem reported orinoco_cs: CardServices release does not match! In order to fix this, it was
necessary to configure pcmcia-cs and run a nake i nstal |l in the wireless subdirectory, as described

earlier.

2.3.3.2 Controlling the PCMCIA subsystem

To successfully initialize and configure a PCMCIA wireless card, there are a number of pieces that come
into play. Three modules need to be loaded at boot time: ds, i 82365 or yent a_socket , and pcnti a_core.

If you have kernel tree PCMCIA enabled or have gone through the pcmcia-cs installation process, these
modules load automatically.

The next important bit is the cardmgr daemon, which monitors the PCMCIA socket, loads client card
drivers at startup, and runs user scripts when cards are inserted or removed. The two important files for
cardmgr are located in /etc/pcmcia/config and /etc/pcmcia/config.opts. config contains information about
all of the client card drivers, about how to identify various cards, and about which drivers to load for which
card. This file shouldn't be modified unless you really know what you're doing and must load a driver for a
card that is not described in the config file. Similarly, config.opts must be modified if you have special
options that must be passed to the PCMCIA card from cardmgr, or if you are experiencing memory or
address conflicts with a specific card.

To manage a given PCMCIA card, run a user-space program called cardct| . cardct| checks the status

and configuration of a PCMCIA socket and allows you to modify the configuration, as well as insert, eject,
and suspend PCMCIA cards. There are several commands that cardct| supports. Examples with sample

output from the commands are shown next.

The confi g command shows low-level configuration for any PCMCIA card: the voltage type, interface
type, IRQ in use, and I/0 memory used. This is a very handy tool for troubleshooting if you are running
into resource conflicts.

cardctl config

Socket O:
Vce 3.3V Vppl 0.0V Vpp2 0.0V
interface type is "menory and 1/ O
irq 12 [exclusive] [level]

function O:

http://pcmcia-cs.sourceforge.net/ftp/README-2.4

config base 0x03e0
option 0x41

i 0 0x0100- 0x013f [16bit]

The i dent command gives you the chipset identification strings for your PCMCIA card. In this example,
you are looking at a Senao 802.11b card that uses the Intersil Prism Il chipset. Note that one thing you
don't see is the manufacturer name; rather, you see the chipset manufacturer name.

cardct! ident

Socket O:
product info: "INTERSIL", "HFA384x/|EEE", "Version 01.02", ""
manfid: 0x0156, 0x0002
function: 6 (network)

The suspend and r esune commands shut down a PCMCIA card without unloading the associated drivers,
and then they allow you to resume normal card operation. r eset reloads the card driver without shutting
down power to the card or resetting the PCMCIA subsystem.

cardct| suspend
cardctl resune
cardctl reset

The ej ect and i nsert commands are the software equivalent of physically ejecting and inserting a
PCMCIA card, so the card drivers are loaded or unloaded, and the devices are configured or shut down.
It's important to note that CardBus cards may not react well to physical ejection, and you should use the
cardct| ej ect command before removing a CardBus card.

cardct! eject

cardct! insert

Schemes allow you to have multiple configurations for your PCMCIA card. With a wireless network card,
multiple schemes provide you with the ability to change ESSID and other wireless settings as well as

TCP/IP configuration. Schemes are covered in more detail in the discussion of the PCMCIA configuration.

cardct!l schene
To stop or start the entire PCMCIA subsystem, execute the rc script that is installed with pcmcia-cs or the

kernel tree PCMCIA. Where this file is located varies depending on your Linux distribution. On most Linux
distributions, these commands stop and start the PCMCIA subsystem:

/etc/init.d/ pcntia stop

/etc/init.d/ pcntia start

2.3.3.3 PCMCIA wireless card configuration

PCMCIA devices are grouped into classes that define how they are configured and managed. These
classes include network, SCSI, CDROM, fixed disk, serial, and a couple of memory card classes. This

chapter is really concerned with wireless network cards, so the only class that is discussed here is the
network class.

When the Wireless Tools are installed (see Section 2.3.4 later in this chapter for more information), an
additional class is added: wireless.

Classes are associated with device drivers in /etc/pcmcia/config. Each class has two scripts located in
/etc/pcmcia: a main configuration script and an options script. For network cards, these scripts are
/etc/pcmcia/network and /etc/pcmcia/network.opts. Similarly, the wireless class scripts are
/etc/pcmcia/wireless and /etc/pcmcia/wireless.opts.

Both config scripts extract some information about the PCMCIA card from the PCMCIA subsystem and use
this information to generate a device address. The first part of any PCMCIA device address is the current
scheme.

While the PCMCIA scripts accept any number of parameters in the device address, the sample scripts use
the following syntax:

case "$ADDRESS" in
,O,’*)

definitions for network card in socket O
111,*)

definitions for network card in socket 1

esac

The comma-separated fields in this example are the scheme, the socket number, the device instance, and
the card's hardware Ethernet address. The device instance is used only if the card has multiple network
interfaces, so, in most cases, it is zero. In this example, the cards are configured based on their socket
number, which is somewhat easier to manage than configuration based on hardware Ethernet address.

The network.opts file accepts a large number of parameters. For information on all that this file offers,
read through the PCMCIA HOWTO:

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO.html

It is also beneficial to read through the default /etc/pcmcia/network.opts file before making any changes.
Back up the file before you start editing:

[etc/pcnci a# cp network. opts network.opts.orig

Here is a sample of a configured network.opts file that sets up a static IP address and related TCP/IP
address information for the wireless network card in slot O:

case "$ADDRESS" in
*, O’ *, *)

I NFO=" Sanpl e network setup”

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO.html

| PADDR="10.42.7.2"
NETMASK="255. 255. 255. 192"
NETWORK="10. 42. 7. 0"
BROADCAST="10. 42. 7. 63"

GATEWAY="10.42.7. 1"

esac
This configuration applies to any PCMCIA network card that happens to be placed in slot 0. To make the

configuration adaptable to a laptop that needs to establish network configuration between home and
work, set up the network.opts file:

case "$ADDRESS" in

yourjob, 0, *,*)
I NFO="Wor k network setup”
| PADDR="10. 1. 1. 200"
NETMASK="255. 255. 255. 0"
NETWORK="10. 1. 1. 0"
BROADCAST="10. 1. 1. 255"
GATEWAY="10.1.1. 1"

hone, 0, *, *)
I NFO="Home network settings"
DHCP=Y

esac

With this setup, you can switch between the static IP address assigned by your employer and the DHCP

address you receive at home from your ADSL or cable router. To switch to the home settings, run the
following command:

cardct|l schene hone

The scheme is persistent after rebooting. This may be a problem if you shut down your system at home
and bring it up at work, and you are still using your home network and wireless settings.

You can manually edit your lilo.conf so that the PCMCIA scheme is passed from LILO to the system init as
a variable. Here is a lilo.conf that shows two different schemes:

root = /dev/hdal

read-only
i mage = /boot/vminuz-2.4.22

home

| abel

append " SCHEME=hone"

i mage = /boot/vminuz-2.4.22

| abel wor k

append " SCHEME=your j ob"

The /etc/pcmcia/wireless.opts file can be handled in a similar manner as network.opts. Again, the
wireless.opts file accepts a large number of parameters, and you should read through the Wireless
HOWTO before starting:

http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/#howto

Also, read through the default /etc/pcmcia/wireless.opts file before making any changes. Back up the file
before you start editing:

/etc/pcntia# cp wirel ess.opts wireless.opts.orig
Here is a sample of a configured wireless.opts file that sets an ESSID of hone and a scheme of hone:

case "$ADDRESS" in

hone, 0, *, *)
I NFO="Home wirel ess setup"
ESSI D="hone"

MODE=" managed"

RATE="aut 0"
esac
- The fields of interest are the ESSID, the mode, the channel, and the rate. The
o, ESSID can be set either to the correct case-sensitive ESSID from the needed access
w} #: point or to any, which allows the card to associate with any wireless network it
* finds.

For most cards, the mode can be set to managed or to ad- hoc. Managed mode is the 802.11
infrastructure mode, which means your card is a client to an access point. Ad-hoc mode can be used to
communicate directly between two computers. Many cards support a third "monitor" mode that can be
used to monitor wireless traffic. This mode is covered in Chapter 3. Finally, if you have a Prism or
Atheros-based card, a fourth "master" mode can be used to let your card act as an access point (see

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/#howto

Chapter 6).

Setting the rate allows you to determine the network speed your wireless card uses. For 802.11b cards,
the valid rates are 1MB, 2MB, 5.5MB, 11MB, and auto. Setting this to any of the numerical values locks
your card into that rate, and it transmits and receives at no other rate. If you want the card to
automatically choose a rate up to a particular limit, use the desired rate along with auto. For example,
choosing "5.5MB auto™ chooses automatically 1MB, 2MB, or 5.5MB, depending on the amount of available
signal. You may want to force a rate (or range of rates) if you are operating in an area with marginal
coverage. Locking in a lower rate can sometimes lead to better performance than auto if the card is
continually renegotiating the data rate.

The channel setting is not always needed, particularly if you have ESSI D="any". However, if you are in a
noisy wireless environment with multiple access points, you may wish to set the ESSID and the channel to
ensure that your card does not associate with other access points.

Building on the use of a scheme, here is an expanded wireless.opts that provides configuration for both
home and work:

case "$ADDRESS" in

hone, 0, *, *)
I NFO="Home wirel ess setup"
ESSI D="hone"
MODE=" managed"
CHANNEL="11"
RATE=" aut 0"
yourjob, 0, *,*)
I NFO="Work wirel ess setup"
ESSI D="Bi gCor p"
MODE=" managed"
CHANNEL="4"
RATE=" aut o"
KEY="s: bi gsecret"
esac
Note that the work setup has another field: KEY="s: bi gsecr et ". "bigsecret" is the Wired Equivalent

Privacy (WEP) key, and it is used to encrypt traffic between the client network card and an access point.
WEP, its uses, and its weaknesses are covered in Chapter 4.

Debian Network Device Configuration

Debian users have an alternate method of configuring their network devices, including any
wireless PCMCIA devices. Rather than relying on the /etc/pcmcia/network.opts and
/etc/pcmcia/wireless.opts, all options are set using /etc/network/interfaces.

Any PCMCIA device you wish to configure with the /etc/network/interfaces file should not be
marked as "auto." Debian will try to configure these interfaces before PCMCIA support is
started, and the network configuration will fail.

The interfaces file is responsible for setting TCP/IP settings for any network interfaces
configured in Debian. A sample entry defining a static IP address would look like this:

iface wlanO inet static
address 192.168.1.2
network 192.168.1.0
net mask 255. 255. 255.0
broadcast 192.168. 1. 255

gateway 192.168. 1.1

If you install the wireless-tools package via apt - get , rather than compiling from source,
Debian adds hooks to the interfaces file to support new option statements. These options take
the form of:

wi rel ess_<function> <val ue>

When the interface is brought up during the boot process, these options result in the execution
of the following Wireless Tools command:

iwconfig <interface> <function> <val ue>

Using this method, any command that is recognized by i wconf i g, except for "Nickname," can
be entered in /etc/network/interfaces and passed to the wireless card when it is initialized. To
expand on the previous sample entry, here is an expanded entry that sets various wireless
parameters:

iface wlanO inet static
address 192.168.1.2
network 192.168.1.0
net mask 255. 255. 255. 0
broadcast 192.168. 1. 255
gateway 192.168.1.1
W rel ess essid NoCat

wi rel ess_node Managed

2.3.4 Installing the Wireless Tools

The Linux Wireless Tools and their companion API, the Wireless Extensions, are both the work of Jean
Tourrilhes at Hewlett Packard, who maintains an excellent web page full of useful information for Linux
and wireless LANs at http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/.

While the Wireless Tools and Extensions are not the only methods of configuring and using wireless
network cards under Linux, they are the most common and are discussed in this chapter.

2.3.4.1 Wireless Extensions

To use the Wireless Tools, you must have a kernel and drivers with the Wireless Extensions. Fortunately,
most kernels since 2.2.14 have included the wireless.h that defines Wireless Extensions in the kernel. In
order for the Wireless Extensions to be included in the kernel, you must make sure that the
CONFIG_NET_RADIO option is enabled. If you built your kernel following the instructions earlier in the
chapter, your kernel should be built properly with the Wireless Extensions.

Table 2-1 shows what version of the Wireless Extensions your kernel should support (see Jean
Tourrilhes's web page for the most recent information).

Table 2-1. Wireless Extensions support in Linux kernels

Version Kernel Features

WE-9 2.2.14,2.3.30 Basic 802.11b support

WE-10 2.2.19,2.4.0 Add TxPower setting

WE-11 2.4.4 Driver version check, retry setting

WE-12 2.4.13 Additional statistics

WE-13 2.4.19,2.5.3 New driver API

WE-14 2.4.20,2.5.7 Wireless Scanning, Wireless Events

WE-15 2.4.21,2.5.37 Enhanced iwpriv support

WE-16 | 2.4.23, 2.6 802.11a/802.11¢ fixes, Enhanced iwspy support

The Wireless Extensions Version 16 is used for all the examples that use the 2.4.23 kernel. While there
are patches to upgrade older kernels to later versions of the Wireless Extensions, it is not recommended,
as many of the changes in wireless.h are dependent on specific kernel features and were not tested in
older kernel versions.

2.3.4.2 Compiling the Wireless Tools

Now that you know the version of the Wireless Extensions that your kernel includes, you should get the
latest version of the Wireless Tools. At the time of this writing, the latest stable version is 26 and can be
obtained from the pcmcia-cs web site:

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/

http://pcmcia-cs.sourceforge.net/ftp/contrib/wireless tools.26.tar.gz

"_—‘~ If you don't want to compile from source, you can install a binary package. Debian
s users can install the Wireless Tools as a package using apt -get install
w #: wrel ess-tool s. RedHat and Mandrake users can install the wireless-tools RPM

from the installation CDs. Other distributions should have a similarly named
package.

Your best option is to download the source code from the aforementioned link and build the Wireless Tools
for your exact version of the Wireless Extensions in your kernel. If you install a package version, it may
have been compiled against a different version of the Wireless Extensions. When this happens, every time
you use one of the Wireless Tools, you will see this error message:

Warning: Driver for device wl an0O has been conpil ed
with version 14 of Wreless Extension, while this programis using version
15. Sone things may be broken...

As the error message states, if you are using a version of the Wireless Tools that has been compiled with
a previous version of the Wireless Extensions, some features may not work. Looking at Table 2-1, you can
see that if you use a version of the Wireless Tools that had been compiled against Version 13 of the
Wireless Extensions, you would not be able to use the Wireless Scanning in Version 14, regardless of the
version of the Wireless Extensions in your kernel.

To successfully compile the Wireless Tools, you should need only a working compiler environment and a
kernel with CONFIG_NET_RADIO enabled. PCMCIA support is optional but obviously required if your
wireless card is a PCMCIA card. To really use the tools, you definitely need a wireless driver that supports
the Wireless Extensions. Most Linux drivers do. Consult Jean Tourrilhes's web page if you have questions
about a specific driver. Of the drivers covered in this chapter, only the wlan-ng driver does not support
the Wireless Extensions.

To begin compiling the package, download the wireless_tools.26.tar.gz file into the /usr/src directory.
Unpack the tar.gz file and change into the top-level directory:

tar xzvf wireless tools.26.tar.gz
cd wirel ess_tools. 26

There isn't any configuration to do. As Jean Tourrilhes says in the INSTALL text file, "in theory a ~make’
should suffice to create the tools." You should be able to:

make

make install

One potential problem you may run into: there are compilation issues with certain kernel and libc
combinations. If you receive the error "Your kernel/libc combination is not supported,” it means some

code hacking is required. For your purposes, you are better off installing a packaged version from your
distribution.

2.3.5 Using the Wireless Tools

You now have the Wireless Tools compiled and installed in /usr/local/sbin. There are four binary

http://pcmcia-cs.sourceforge.net/ftp/contrib/wireless_tools.26.tar.gz

executables included with the Wireless Tools. All four Wireless Tools pull information from
/proc/net/wireless, which is created only when your kernel is compiled with the Wireless Extensions.

2.3.5.1 iwconfig

This is the tool you use to configure the basic operating parameters of your wireless card. It is also the
tool that is called during the boot process to configure your card based on settings in
/etc/pcmcia/wireless.opts.

Called without any arguments, i wconf i g displays current wireless settings for any wireless cards in the
system. A typical example would look something like this:

| o no W rel ess extensions.
et hO no wrel ess extensions.
w anO | EEE 802.11-b ESSID: "NoCat - G andvi ew' Ni cknane: "airhead"

Mode: Managed Frequency: 2. 462GHz

Access Point: 00:02:6F:04:78: 7E

Bit Rate:11Mo/s Tx- Power =24 dBm Sensitivity=1/3
Retry min limt:8 RTS thr: of f Fragnent thr:of f
Encryption key: of f

Power Managenent: of f

Link Quality:40/92 Signal level:-77 dBm

Noi se | evel : - 100 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:5293 Invalid msc:86372

M ssed beacon: 0

If you have multiple wireless network cards and you don't wish to see the "no wireless extensions"
message each time you run i weonf i g, make sure to specify the interface:

$ iwconfig w an0

This only shows the configuration for the specified network card.

As you can see, there are quite a number of parameters that i wconf i g can set. Not everything can be
changed, however. Starting with Li nk Qual i ty, the output is taken from /proc/net/wireless and consists

of read-only statistics.

All of these parameters, settings, and statistics are device- and driver- dependent. Each wireless driver is
going to write different things to /proc/net/wireless, and each driver supports commands from the
Wireless Tools differently. For example, if you use an Orinoco card with the orinoco_cs wireless driver,
your options for "Mode" are much more limited than if you use a Prism ll-based card with the hostap_cs

driver.

Let's step through the available i wconf i g parameters. In the following examples, we use the ethl
interface, but it may be something different, such as wlan0 in the hostap_cs driver or athO in the madwifi
driver:

essid < name>

Sets the network name or SSID to which the wireless card connects. A useful option is to set the
name to any, which allows the card to connect to any available wireless network:
iwconfig ethl essid NoCat

iwconfig ethl essid any

freq or channel

Sets the operating frequency or channel of the wireless card. channel accepts a number in the
range of 1-11 (U.S.) or 1-14 (E.U.). fr eq accepts the frequency in Hz. You should enter the exact
frequency, such as 2.462 for channel 11. You can also enter the frequency with the suffix of G:
2.46G for channel 11:

iwconfig ethl channel 6

iwconfig ethl freq 2.437

iwconfig ethl freq 2.43G

node

Sets the operating mode of the wireless card. There are different options depending on your
wireless card and driver. Most cards and drivers under Linux support ad- hoc mode for
communicating with another node, without any access points. The most common mode is managed,
which allows the wireless card to connect as a client to an access point. One advanced mode is
mast er , which is supported in the hostap and madwifi drivers, and makes the card into a software-
controlled access point. Another advanced mode is noni t or , which turns the wireless card into a
passive receiver that can only receive packets:

iwconfig ethl node managed

iwconfig ethl node ad-hoc

ap

Enters a hardware address of a specific access point, which forces the card to associate with that
access point. By default, if the connection quality degrades or is unusable, the card defaults back to
automatic mode, where the card finds the best access point in range. You can defeat this by using
the option of f to disable automatic mode. any or aut o enables automatic mode.

iwconfig ethl ap 00: 02: 2d: 53: 66: 19

iwconfig ethl ap off

iwconfig ethl ap auto

sens

Sets the sensitivity threshold of the wireless card. The card does not receive any signal lower than
this level. This avoids background noise. Positive values are assumed to be the raw value used by
the hardware, or a percentage. Negative values are assumed to be dBm. Again, the settings are
dependent on the hardware of the wireless card. Prism and Orinoco cards seem to treat only values
of 1-3 as valid sensitivity settings. Depending on your hardware, this parameter may also control
the defer threshold (the lowest signal level for which the channel is considered busy) and the
handover threshold (the lowest signal level where the card stays associated with an access point).
iwconfig ethl sens -80

rate

Sets the bit-rate in bits/second. Once again the available options depend on your wireless card. The

value of the option must be the exact bitrate number or should have M appended to the end of the

number. aut o is the default setting for most cards and falls back to lower bit-rates if there is noise.
iwconfig ethl rate auto

iwconfig ethl rate 11M # (802.11b)

iwconfig ethl rate 54M # (802.11a/Q)

RTS/CTS adds a handshake before each packet transmission to make sure that the channel is clear.
This adds quite a bit of overhead and decreases the potential bandwidth. However, it can result in
increased performance in the case of hidden nodes or large numbers of active nodes. Set a packet
size that determines the minimum packet size threshold for enabling RTS/CTS, aut o to have the
driver automatically perform RTC/CTS, or of f to disable:

iwconfig ethl rts 250

iwconfig ethl rts auto

iwconfig ethl rts off

frag

Sets the fragmentation threshold. This allows the card to split a packet into smaller packet
fragments to transmit. As with rt s, this adds overhead and reduces the available bandwidth, but in
very noisy environments, it reduces the amount of errors and tries to send packets again. As with
rts, you set a packet size that determines the minimum packet size for determining when
fragmentation should be enabled. You can also set aut o to have the driver automatically perform
fragmentation or of f to disable fragmentation.

iwconfig ethl frag 512

iwconfig ethl frag auto

iwconfig ethl frag off

ni ck

Sets the nickname or station name of the wireless card. Most 802.11 devices define this parameter,
but it is completely optional and doesn't affect performance or operation at all. Some diagnostic
tools may use it.

iwconfig ethl nick "Network God"

key or enc
Sets the encryption mode and keys for the wireless card. on and of f enable and disable encryption,
respectively. Encryption keys can be entered as hex digits, with or without separation dashes, or
ASCII strings can be entered in the format s: passwor d. Generate an index of keys by appending an

index number in brackets ([]) to the key when it is entered. Once you have multiple keys in the

index, change keys by simply passing the index number as the option. Two modes are available:
open and restri ct ed. open accepts nonencrypted traffic, while restri ct ed accepts only encrypted

packets.
iwconfig ethl enc on
iwconfig ethl key 0al2fcl32

iwconfig ethl key s:supersecret [2]

iwconfig ethl key [2] restricted

power

Sets power management modes and parameters. on and of f enable and disable power
management, respectively.

t xpower

For cards that support multiple transmit powers, this sets the transmit power in dBm. on and of f
enable and disable radio transmissions entirely. aut o enables automatic power selection if that
feature is available. If the entry is followed by "mW," the value automatically is converted to dBm.
Geeky math note: if W is the power in watts, the power (P) in dBm is P = 30 + 10.log(W).

iwconfig ethl txpower 30

iwconfig ethl txpower 200nw

iwconfig ethl txpower auto

iwconfig ethl txpower off

retry

For cards that support MAC retransmissions, this allows you to change the parameters of the retry.
You can set the maximum number of retries with | i mi t and an absolute value. The maximum

length of time the MAC should retry is set with | i f eti ne, in seconds. You can append "m" or "u" to
specify milliseconds or microseconds respectively. | imt and | ifeti ne can also be modified by the
use of m n or max, which allows you to set the upper and lower boundaries of linit andlifetine.
iwconfig ethl retry 16
iwconfig ethl retry lifetine 300m

iwconfig ethl retry min limt 8

iwconfig ethl retry max lifetine 500m

--version

Displays the version of i W i st and the Wireless Extensions:
iwconfig --version

iwconfig Version 25
Conpatible with Wrel ess Extension v15 or earlier,

Currently conpiled with Wrel ess Extension v15.

w an0 Recomrend Wrel ess Extension v13 or |ater,
Currently conpiled with Wrel ess Extension vl14.

To summarize: i weonfi g allows you to change the configuration of your wireless network card on the fly.
All of the options supported by i wconfi g can be set in /etc/pcmcia/wireless.opts, and when the PCMCIA
subsystem is initialized, these options are executed as the card is configured.

2.3.5.2 iwlist

This is mainly used for showing lists of parameters that the current wireless card supports. However, it
does have one very useful feature that is not a list of parameters.

If you would like to see a list of access points available for your wireless card, i W i st is your ticket. You
won't have to install other network-scanning utilities like Kismet (covered in Chapter 3). Not all card
drivers support this option. For instance, the orinoco_cs driver does not support scanning. To initiate
scanning, this command must be run with root access:

iwist ethl scan

Here is a sample of th output you might expect:

w an0 Scan conpl eted :
Cell 01 - Address: 00:02:6F:04:78: 7E
ESSI D: " NoCat "

Mode: Managed

Frequency: 2. 462GHz
Quality:0/92 Signal |evel:-64 dBm Noise |evel:-100 dBm
Encryption key: of f
Bit Rate:1Md/s
Bit Rate:2Mi/s
Bit Rate:5.5Md/s
Bit Rate:11MWo/s
If you are in an area with multiple access points, you should see "Cell" entries for each access point, with

specific information on signal and noise level. This is a very useful base tool for finding access points in an
unfamiliar environment, or even for baselining your wireless network infrastructure.

Aside from this, i W i st serves as a query tool to determine what features your wireless card supports.
Let's step through the available i W i st queries:

freq
Displays the list of available radio frequencies and the number of defined radio channels. It also
displays the currently used radio channel. For a U.S. user, typical output from this command would

be:
$ iwist wian0 freq

w an0 14 channels in total; available frequencies :
Channel 01 : 2.412 GHz
Channel 02 : 2.417 GHz
Channel 03 : 2.422 GHz
Channel 04 : 2.427 GHz
Channel 05 : 2.432 GHz
Channel 06 : 2.437 Gz
Channel 07 : 2.442 G
Channel 08 : 2.447 G
Channel 09 : 2.452 G
Channel 10 : 2.457 G

Channel 11 : 2.462 GHz

Current Frequency:2.462GH (channel 11)

ap or peers
This feature is deprecated in favor of the scan feature, previously mentioned. Most current drivers

do not support this feature. However, some drivers may use this command to return a specific list
of peers associated with the wireless card.

rate

Lists the bit-rates supported by the card and the current bit-rate in use:
$iwist wwan0 rate

wl an0 4 available bit-rates :
1Mo/ s
2Mo/ s
5.5Md/ s
11Mo/ s

Current Bit Rate: 11Md/ s

key or enc
Lists the encryption key size supported, the available keys in the wireless card, and the current key

in use:
$ iwist wan0 key

w an0 2 key sizes : 40, 104bits

4 keys avail able :

[1]: off
[2]: off
[3]: off
[4]: off

Current Transmit Key: [0]

t xpower

Lists the various transmit powers available on the wireless card. This feature appears to be broken,
at least with respect to Wireless Extensions 15 and a Prism card using the hostap driver.

retry

Lists the transmit retry limits and lifetime:
$iwist wan0 retry

w an0 Fixed limt ; mnlimt:0
max |imt:255
Current npde: on

mnilimt:8 max [imt:5

--Vversion

Displays the version of i W i st and the Wireless Extensions:
$ iwist --version

iwWist Version 25
Conpatible with Wrel ess Extension v15 or earlier,

Currently conpiled with Wrel ess Extension v15.

w an0 Recomrend W rel ess Extension v13 or |ater,

Currently conpiled with Wrel ess Extension vl4.

2.3.5.3 iwspy

This is a useful tool that shows you quality-of-link information for one or many nodes in a wireless
network. The information is taken from /proc/net/wireless, but when running i wspy, the statistics are

updated each time a packet is received from the remote node. This does add some driver overhead, which
means that local performance on the machine running i wspy is degraded. Note that different drivers may
partially support i wspy or may not support it at all.

In the most basic mode, simply run i wspy interface:

$ iwspy wanl

w anl Statistics collected:

00: 02: 6F: 03: FE: 65 : Quality:42/92 Signal level:-90 dBm
Noi se | evel :-98 dBm
00:02: 2D: 04: EB: 15 : Quality:31/92 Signal |evel:-94 dBm
Noi se | evel :-98 dBm

As in the previous example, you should see a MAC address for every remote station, along with quality,
signal level, and noise level statistics.

To start collecting statistics for a specific node, invoke i wspy with a DNS name, an IP, or hardware
address:

$ iwspy wanl 192.168.0.1

Then, when you invoke i wspy again for that interface, you see not only the current statistics for the
remote node, but a set of averages as well:

$ iwspy wanl

w anl Statistics collected:
00: 02: 6F: 01: 6A: 02 : Quality:18/92 Signal |evel:-82 dBm
Noi se | evel : -100 dBm (updat ed)
typi cal / aver age © Quality:36/92 Signal level:-62 dBm
Noi se | evel : -98 dBm

You can have i wspy monitor up to eight addresses simply by passing it multiple DNS names, IP, or
hardware addresses on the command line:

$ iwspy W anl 192.168.0.1 test.foobarus.com notebook. f oobarus. com

Again, when you invoke i wspy for that interface, you see current statistics for each remote node plus an
average across all three nodes.

If you are already monitoring three remote nodes and run i wspy again with a fourth IP address to
monitor, i wspy will replace the monitoring of your existing three nodes with monitoring of the new IP
address. To avoid this, use the + sign before the IP address on the command line:

$ iwspy W anl + 192.168.0. 15

This appends the new address to your existing list of addresses that are already being monitored.
To disable any i wspy statistic collection you may have started, simply turn it off:

$ iwspy wlanl off

Two more useful commands in i wspy let you set high and low signal strength thresholds for wireless
events. setthr <l ow hi gh> sets the thresholds, and if an address monitored with i wspy goes higher or
lower than the thresholds, a wireless event is generated:

$ iwspy w anl setthr 40 80

This means that you can monitor link status on multiple connections without having to continually run

i wspy.
To show what the threshold has been set to, type the following:

$ iwspy w anl getthr

2.3.5.4 iwpriv

This tool allows you to configure private wireless options—in other words, options that are limited to a
single wireless driver. This is different than i wconf i g, which deals with generic settings that are

applicable to all wireless cards.

Called without any arguments, i wpr i v returns a list of available private commands. On a Prism ll-based
Senao 200 mW card, the following list is returned:

w an0 Avai |l abl e private ioctl
noni t or (8BE4) : set 1lint & get 0
readm f (8BE3) : set 1 byte & get 1 byte
witemf (8BE2) : set 2 byte & get 0
reset (8BE6) : set 1 int & get 0
inquire (8BE8) : set 1 int & get 0
set rid word (8BEE) : set 2 int & get 0
maccnd (8BFO) : set 1 int & get 0
wds_add (8BEA) : set 18 char & get 0
wds_del (8BEC) : set 18 char & get 0
addmac (8BF2) : set 18 char & get 0
del mac (8BF4) : set 18 char & get 0
ki ckmac (8BF6) : set 18 char & get 0
prisn2_param (8BEO) : set 2 int & get 0

getprisn2_param (8BEl) : set 1 int & get 1 int

This list shows that there are quite a few private options that can be set using i wpri v on a Prism Il card.
One option is WDS, the Wireless Distribution System, which is covered in Chapter 6. Most of the private
commands are hardware- and driver-specific.

Many cards support some types of i wpri v reset command. The orinoco_cs driver includes car d_r eset
and force_reset options for i wpriv.

,‘ PREY < Day Day Up > ME=T "

< Day Day Up >

2.4 Linux Wi-Fi Drivers in Depth

Most Linux distributions include a number of wireless drivers. In many cases, the driver that you need will
be available. However, there are a number of situations where you must obtain the driver source and
build it yourself. This is true for many newer Wi-Fi cards, particularly cards that support 802.11a,
802.11q, or both. The drivers for these cards are still under development and are not included with most
Linux distributions.

A second reason to obtain the driver source and build it yourself is if you wish to build your own access
point. (The details of Linux access points are covered in Chapter 6.) However, the drivers that enable you
to have your own Linux AP all require that you obtain the source code and compile it.

- In addition to the drivers described in this chapter, there are two ways you can get

e _ Windows drivers to load on your Linux system. NdisWrapper

A (http://ndiswrapper.sourceforge.net/) is an open source project that loads Windows
drivers, and Linuxant (http://www.linuxant.com/) is a proprietary product that also
accomplishes this. We'll talk more about Linuxant in Chapter 4, where we discuss
using Wireless Protected Access (WPA) with non-Prism cards.

Ty

T

2.4.1 orinoco_cs

There are two original drivers available for the Lucent WavelLan/Orinoco radio cards: wvlan_cs and
wavelan2_cs. wvlan_cs was the first driver for Linux that supported the WavelLan IEEE (802.11 and
802.11b) radio cards. wavelan2_cs is a binary driver released by Lucent. The downside of the binary
driver is that it's limited to i386 architecture, and the source is not available. With the sale of Orinoco to
Proxim, development of the wavelan2_cs driver stopped. However, Agere continues to build the chipsets
for the Orinoco radios, and has developed a driver called wlags49 based on the wavelan2_cs code. Details
on wlags49 are found in Chapter 6.

The orinoco_cs driver was written by David Gibson, who was maintaining the wvlan_cs driver and was not
satisfied with the code or the performance of the driver. orinoco_cs was written based on low-level parts
of the wlan-ng driver and BSD drivers. The driver also supports Prism Il radio cards, Symbol Spectrum
24, and Apple AirPort (but not AirPort Extreme) cards, with varying degrees of feature support. This driver
is primarily written for support of the Lucent WavelLan IEEE cards, which are also known as Orinoco and
are also sold by Agere and Avaya. Proxim is now selling cards branded "Orinoco" for 802.11a and
802.11g, which are based on the Atheros chipset.

The orinoco_cs driver can be obtained in several ways. Red Hat, Debian, and SuSE all have installation
packages with names similar to kernel-pcmcia-modules-2.4.x. Choosing this package during installation or
adding it later will install the orinoco_cs driver. The orinoco_cs driver has been merged into the kernel
sources since kernel Version 2.4.3.

The pcmcia-cs software package, which comprises the PC Card Services for Linux, also includes the
orinoco_cs driver. As with the kernel PCMCIA modules, pcmcia-cs can be installed as a package in most
Linux distributions, or it can be installed from source. Both options are covered earlier in this chapter.
pcmcia-cs is the only option for kernel Version 2.2 users.

Finally, you can download the most current beta version of the orinoco_cs driver from the download

http://ndiswrapper.sourceforge.net/
http://www.linuxant.com/

section of Jean Tourrilhes's web page:

http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Orinoco.html. As of this writing, the most current
version is 0.13e. The README on the download page does explain that unless you have a 2.2 kernel or
you need some of the experimental features of the beta orinoco_cs driver, you would be better off using
the kernel version.

In the download section, there is a list of patches to the orinoco_cs driver. Of note is the orinoco_usb
driver, which is a separately maintained software package and supports Orinoco USB Wi-Fi adapters.

Also of note is the Shmoo Group's patch for the orinoco_cs driver that enables monitor mode for Versions
0.13e and earlier. If you need monitor mode with your Orinoco card, this is one option. The other option is
to obtain the CVS code of the orinoco_cs driver, now in 0.14 alpha from
http://savannah.nongnu.org/cvs/?group=orinoco.

To compile the orinoco_cs driver, download the latest tar.gz file from the aforementioned web site. You
need the kernel source for whatever kernel version your Linux system is running. Major Linux vendors
include the kernel source on their installation media as a package, and also as an optional package on
their web or FTP sites. For example, on a Pentium 4 Debian system running the 2.4.18 kernel, use apt-get
to install the package titled kernel-source-2.4.18 from the installation CD. If you have upgraded your
kernel, install kernel-source-2.4.21 (or later) from one of the Debian update sites. It's worth noting that
when you retrieve the kernel source files in this manner, apt does not uncompress them. You will have a
kernel-source-2.4.21.tar.bz2 file located in /usr/src, which you must extract. For information about using
apt-get, consult the Debian web pages at http://www.debian.org/doc/user-manuals#apt-howto.

You can also download kernel sources from http://www.kernel.orqg or ftp://ftp.kernel.org. This is the
primary archive site for all Linux kernel sources and is your best source for kernel code. For example,
download the 2.4.21 kernel sources from http://www.kernel.org/pub/linux/kernel/2.4/linux-2.4.21.tar.gz.

Compilation of the orinoco_cs driver also assumes that the symbolic link of /lib/modules/<version>/build
points to the kernel source of your current kernel. For example, /lib/modules/2.4.21-5-686/build should
be a symbolic link that points to /usr/src/linux-2.4.21-5-686. To create this link, execute the following
command:

#1n -s Jusr/src/linux-2.4.21-5-686 /1ib/nmodul es/2.4.21-5-686/build
To build the driver, unpack the tar.gz file and change into the top-level directory:
tar xzvf orinoco-0.13e.tar.gz

cd orinoco-0. 13e

To compile and install the driver, run the following:

make

make install

If you try to load the driver and receive the error message "Card Services release does not match," the
driver was compiled against the Kernel PCMCIA drivers, but the system is actually using the drivers from
the pcmcia-cs package. To fix this, you must edit the Makefile in the orinoco-0.13e directory and set the
PCMCIA_CS variable to reflect your local source for the pcmcia-cs package.

Once the driver is installed, you can execute:
nodprobe orinoco_cs

to load the driver module.

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html
http://savannah.nongnu.org/cvs/?group=orinoco
http://www.debian.org/doc/user-manuals#apt-howto
http://www.kernel.org
http://www.kernel.org/pub/linux/kernel/2.4/linux-2.4.21.tar.gz

2.4.2 hostap_cs

The HostAP driver is one of the drivers for Prism Il radio cards. (wlan-ng is another widely used driver
that is discussed in the following section.) The HostAP driver has a couple of noteworthy features not
found in the wlan-ng driver. First, it supports access point mode on Prism Il radio cards. wlan-ng supports
only access point mode with a "tertiary firmware" loaded on the Prism Il card. This firmware is not widely
available. Second, the HostAP driver is well integrated with the Linux Wireless Tools. The wlan-ng driver
provides its own set of tools.

The access point mode of a Prism Il card does not provide a full 802.11b access point. What it does do is
broadcast the beacon frames that advertise an access point. The HostAP driver, in this case, actually
takes care of the 802.11 management. In a standalone access point, this function is usually in firmware.
The tertiary firmware mentioned for Prism Il cards turns a Prism Il card into a full access point, which is
what allows the wlan-ng driver to utilize this mode as an access point.

The author and maintainer of the HostAP driver is Jouni Malinen. His web site for HostAP is located at
http://hostap.epitest.fi. In addition to the source for HostAP, the web site hosts a useful mailing list and
anonymous CVS access to the source code.

The hostapd daemon is also available. When used in conjunction with the HostAP driver, it provides
support for 802.1X, dynamic WEP rekeying, RADIUS Accounting, and minimal support for IAPP (802.11f).
Use hostapd with a RADIUS server to provide authenticated access to 802.11b networks.

The hostap driver not only supports Prism Il cards in a PCMCIA bus, but it also supports PCI cards
(hostap_pci) and PLX cards; these cards look like they are a PCMCIA-to-PCI bridge adapter card, but
actually, they are another beast altogether—hostap_plx.

Debian users can use apt-get to install a hostap source package from the stable package tree. To locate
the hostap packages, use the apt-cache utility to search through the available package lists:

apt-cache search hostap

host ap-source - Software access point driver for Prisn2 based 802.11b cards

hostap-utils - Utilities and configurations for the hostap driver

hostapd - 802.11x access daenon for hostap driver

To install any of these packages, or all three, use the apt-get i nstall command:

apt-get install hostap-source hostap-utils hostapd

This example installs all three hostap packages and may require you to install additional packages as well.

For more information on how to use apt-get and its associated utilities, consult the Debian web pages at
http://www.debian.org/doc/user-manuals#apt-howto.

Note that HostAP is a kernel driver, so the aforementioned apt-get command installs the source only for
HostAP. It does not install the actual binary kernel driver. The source is downloaded and placed in
/usr/src/hostap-modules.tar.gz. You must extract this file and follow the compilation instructions.

Mandrake users can find HostAP RPMs for HostAP at http://www.rpmfind.net. Kernel RPMs for Red Hat
Versions 8 and 9 can be found at http://www.cat.pdx.edu/—baera/redhat hostap/. The maintainer of this
site has recompiled the production Red Hat kernels with the HostAP 0.0.3 kernel driver and made the
RPMs available. As with the testing tree in Debian, you should use these RPMs at your own risk. You
should note that these kernels are out of date since the latest stable release of HostAP is 0.1.2, and the
development versions are 0.2.0 and higher.

http://hostap.epitest.fi
http://www.debian.org/doc/user-manuals#apt-howto
http://www.rpmfind.net
http://www.cat.pdx.edu/~baera/redhat_hostap/

The best option for most distributions is to compile the HostAP driver from source. As of this writing, the
most current version is 0.1.3; the latest version can be downloaded from
http://hostap.epitest.fi/releases/ (see the HostaAP homepage for a link to the most recent stable and
development releases). To compile kernel modules from source, you must have the configured kernel
source for your kernel. This generally means that you have configured and compiled your own Linux
kernel. While it is certainly possible to compile kernel modules against Linux kernels provided by a stock
distribution, it can be tricky. For more on compiling your own kernel, see Section 2.3.2 earlier in this
chapter.

The HostAP distribution includes three files, hostap-driver-x.y.z.tar.gz, hostap-utils-x.y.z.tar.gz, and
hostapd-x.y.z.tar.gz. To build hostap-utils and hostapd, extract the tarball with t ar xzvf fil enane, cd
into the top-level directory, and run nake and then nake i nstall as root.

To begin compiling the driver, unpack the tar.gz file and change into the top-level directory (the file and
directory name will be different if you are using a more recent version):

tar xzvf hostap-driver-0.1.3.tar.gz
cd hostap-driver-0.1.3

How you proceed in the compilation at this stage depends on whether your system is using the kernel tree
PCMCIA subsystem or the external pcmcia-cs subsystem.

If you are using the kernel tree PCMCIA, you must edit the Makefile in the hostap-driver-x.y.z directory.
As with the orinoco_cs driver, you need the kernel source for the kernel that your Linux distribution is
currently running. The KERNEL_PATH variable should be set to the location of your kernel source.

Once you have set the KERNEL_PATH variable, there are two commands to compile and install the
hostap_cs driver:

make pccard
make install pccard

Once the driver is compiled and installed, you must restart the PCMCIA card services. On must Linux
distributions, the rc file for this is located in /etc/init.d/pcmcia, so you can execute:

letc/init.d/ pcntia restart
to restart the PCMCIA card services.
If you are using the external pcmcia-cs, you have two compilation options:
¢ You must set the KERNEL_PATH variable as in the previous example. You also must set the
PCMCIA_PATH variable to point to the source for the pcmcia-cs. So, for example, if you download

and extract the pcmcia-cs source code into /home/barfoo/pcmcia-cs-3.2.5, you must set
PCMCIA_PATH=/home/barfoo/pcmcia-cs-3.2.5.

Once the PCMCIA_PATH variable is set, you should be able to run the make commands shown
previously to compile the hostap_cs driver.

e Copy the entire contents of the driver subdirectory except for driver/modules/Makefile to the root of
the pcmcia-cs source directory, so that driver/modules/hostap.c ends up in the pcmcia-cs/modules
directory. The README for installing HostAP recommends doing the following:

make sure that Makefile does not overwite old Makefile in pcntia-cs

mv driver/ nodul es/ Makefil e driver/ nodul es/ Makefi |l e-not -used

http://hostap.epitest.fi/releases/

cp -a driver/* hone/barfoo/pcntia-cs-3.2.5

Once the copy is finished, compile and install pcmcia-cs with the hostap_cs driver included in the
process using the commands:

make config
make all
make install

This second method installs both pcmcia-cs and HostAP; therefore, complete the compilation and install,
and you'll have successfully installed both the PCMCIA card services and HostAP. See Section 2.3.3 earlier
in this chapter for information on compiling pcmcia-cs from source.

There are specific instructions in the README for installing the driver for use with PCI or PLX adapter
cards. Consult the README if your card falls into one of these categories.

There are two excellent sources of information and assistance you can consult if you run into problems
with the hostap driver. The first is the well-populated hostap mailing list. Subscribe at
http://lists.shmoo.com/mailman/listinfo/hostap. The mailing list archives can be read at
http://sisyphus.iocaine.com/pipermail/hostap/. Use Google to search through lists like hostap, because
the archives do not have a search function. For example, if you want to search for the text "compile
error,"” enter the following search parameters at Google: conpile error site:lists.shnmo.com Before
posting to the mailing lists, it is advisable to read through both the FAQ and the README files, located on
the main hostap page at http://hostap.epitest.fi.

2.4.3 wlan-ng

The wlan-ng driver is the other available driver for Prism Il chipsets. The developer and maintainer of
wlan-ng is AbsoluteValue Systems, which first released the linux-wlan driver supporting Prism 1 802.11
chipsets in 1999, and followed that with linux-wlan-ng to support Prism Il and later 802.11b in August of
2000. According to its web pages at http://www.linux-wlan.com, one of its cofounders was employed at
Harris Semiconductor where the original Prism chipsets were developed, and three of its employees are
voting members of the IEEE.

One thing that is mentioned on the front page of the wlan-ng web site is that AbsoluteValue Systems's
approach to writing this driver is different from other available Linux wireless drivers because "everything
is based on the IEEE 802.11 standard.”

In a practical sense, this means that just about everything in the wlan-ng driver is different from most
other Linux Wi-Fi drivers. For starters, wlan-ng does not support the Linux Wireless Tools (although
certain Wireless Tools commands will work with this driver); instead, it has its own set of utilities. You
don't configure wlan-ng in /etc/pcmcia like other drivers; it has its own configuration directory in
/etc/wlan.

The driver does support PCMCIA, PCI, and PCMCIA cards in PLX adapters, and USB adapters, all using
Prism 11, 2.5, or 3 chipsets. By and large, most cards you find on the market are still based on Prism 11.
Prism 2.5 cards are integrated PCI cards, so you won't find a Prism 2.5 PCMCIA card. Prism 3 was
announced in 2002 and has made its way into products from Linksys, among others.

There are several methods to install the wlan-ng driver. As with HostAP, there are packages available for
Debian Linux in the testing and unstable trees. In order to do this, you must modify the
/etc/apt/sources.list file, which defines where apt-get downloads package lists and the corresponding
packages. To add the testing tree to apt, add the following line to sources.list:

http://lists.shmoo.com/mailman/listinfo/hostap
http://sisyphus.iocaine.com/pipermail/hostap/
http://hostap.epitest.fi
http://www.linux-wlan.com

deb http://ftp.us.debian.org/debian/testing main contrib non-free
Once you have added this line to sources.list, you must execute the following command:
apt-get update

This command updates the lists of packages from the sources defined in sources.list. Because you have
added the testing tree to your sources, you now have a list of packages that are in testing mode. A
caveat: packages in the testing and unstable trees are just that - designed for testing and/or may be
unstable. Use them at your own risk.

To locate the wlan-ng packages, use the apt-cache utility to search through the available package lists:

apt-cache search w an-ng

i nux-w an-ng - utilities for wireless prisnR cards

i nux-w an- ng-doc - docunentation for w an-ng

i nux-w an- ng- nodul es-2. 4. 20-3-386 - drivers for wireless prisn2 cards

i nux-w an- ng- nodul es- 2. 4. 20- 3-586tsc - drivers for wireless prisn? cards

i nux-w an- ng- nodul es-2. 4. 20-3-686 - drivers for wireless prisn2 cards

i nux-w an- ng- nodul es- 2. 4. 20- 3-686-snp - drivers for wireless prisnR cards

i nux-w an- ng- nodul es-2. 4. 20-3-k6 - drivers for wireless prisnR cards

nux-w an- ng- nodul es- 2. 4. 20-3-k7 - drivers for wireless prisn2 cards
[i nux-w an- ng- nodul es-2. 4. 20-3-k7-snp - drivers for wireless prisn2 cards

At a minimum, you need the linux-wlan-ng package and the correct set of linux-wlan-ng-modules for your
processor architecture. Note that these modules are compiled against kernel Version 2.4.20-3. apt-get
checks dependencies for these packages, and if you do not have kernel Version 2.4.20-3 as your current
kernel, it requires you to install 2.4.20-3 as part of the package install process. To install the necessary
packages, use the following command:

apt-get install |inux-w an-ng |inux-w an-ng-nodul es-2. 4. 20- 3- 686

This example installs the utilities and kernel drivers for a Pentium Pro/11/111/1V and may require you to
install additional packages as well. For more information on how to use apt-get and its associated utilities,
consult the Debian web pages at http://www.debian.org/doc/user-manuals#apt-howto.

The FAQ for wlan-ng, available at ftp://ftp.linux-wlan.org/pub/linux-wlan-ng/FAQ, states:

Q: Can | get Debian packages of linux-wlan-ng?

A: Packages of linux-wlan-ng are available in the Debian unstable and testing trees now, and will
eventually be shipped with a stable Debian release. The Debian packages include support for
configuring linux-wlan-ng interfaces via /etc/network/interfaces, among other things. Complete
details about the Debian-specific parts of these packages, including instructions for building a linux-
wlan-ng modules package for your kernel can be found in the file /usr/share/doc/linux-wlang-
ng/README.Debian.gz.

wlan-ng RPMs for Red Hat Linux can be found on the web at http://prism2.unixguru.raleigh.nc.us. RPMs

http://www.debian.org/doc/user-manuals#apt-howto
http://prism2.unixguru.raleigh.nc.us

are available for RedHat 7.3, 8, and 9. The page is maintained by Tim Miller and is kept up to date. As
with other independently maintained packages, use these at your own risk. You need three different RPM
files to get all of the wlan-ng functionality installed under RedHat:

¢ kernel-wlan-ng-<architecture>: the base package

¢ kernel-wlan-ng-<usb/pci/pcmcia-architecture>: interface packages

¢ kernel-wlan-ng-modules-<rh73/rh8/rh9-architecture>: kernel-specific module packages

For example, to install the RPM packages for Red Hat 9, kernel Version 2.4.20-20.9, i686 architecture,
and a PCMCIA Prism 1l card, execute:

rpm --install kernel-w an-ng-0.2.0-7.i686.rpm

rpm --install kernel-w an-ng-pcntia-0.2.0-7.i686.rpm

rpm --install kernel-w an-ng-nodul es-rh9. 20-0.2.0-7.i686.rpm

Your other option, as always, is to compile the driver from source. It is available at ftp://ftp.linux-

wlan.org/pub/linux-wlan-ng/. As of this writing, the most recent version is linux-wlan-ng-0.2.1-
prel2.tar.gz.

To compile kernel modules from source, you need the configured kernel source for your kernel. This
generally means that you have configured and compiled your own Linux kernel. While it is certainly
possible to compile kernel modules against Linux kernels provided by a stock distribution, it can be tricky.
For more on compiling your own kernel, see Section 2.3.2 earlier in this chapter.

If your Prism Il card is a PCMCIA-based card, you also need the configured source code for pcmcia-cs to
be available. Again, this means that you have configured and compiled pcmcia-cs from source, and you
have that source available, usually located in /usr/src/pcmcia-cs-version.

To begin compiling the driver, unpack the tar.gz file and change into the top-level directory (if you are
using a more recent version, the filename and directory will differ):

tar xzvf linux-w an-ng-0.2.1-prel2.tar.gz

cd linux-w an-ng-0. 2. 1-prel2

make config

You'll be asked a series of questions, including which type of interfaces you want the driver to support
(pcmcia, pci, plx, usb) and where your kernel and pcmcia-cs sources are located. Once you've stepped

through the config, compile and install the driver:

make all

make install

2.4.4 madwifi

The Atheros chipsets were eagerly awaited by the open source community, because Atheros was the first
vendor to ship 802.11a equipment, and among the first to ship dual-mode and tri-mode radio chipsets.

The Atheros hardware is designed for use as a "software-defined radio,"” which means that the hardware
itself is very basic, and on a Windows platform, the operating parameters of the card are all handled by

the software driver. The development of a driver for the Atheros chipset was very difficult from an open
source standpoint. Sam Leffler originally developed a BSD driver for the Atheros chipset with the help of
Atheros. However, the driver did not enforce valid modes, so it violated FCC regulations by allowing the
setting of invalid radio modes.

The solution to this was for Atheros to develop a Hardware Abstraction Layer (HAL), which is in binary
form. It sits between the driver and the hardware to enforce valid FCC operating modes. As discussed
earlier, the Atheros chipset design presents some problems for open source driver development.

The Multiband Atheros Driver for WiFi (madwifi) driver that is now available for BSD and Linux is currently
the only working implementation of a driver for Atheros chipsets. There is a complete GPL driver
implementation in the works. According to Jean Tourrilhes's page, some anonymous people and
companies have worked to get documentation on the Atheros chipset made available, and are supporting
the development of the GPL driver. This driver is known as "ar5k," and the web page for it is
http://team.vantronix.net/ar5k/. As of this writing, the ar5k driver is not yet functional, and development
seems to be stalled.

The FCC mandates that the manufacturers of software radios must prevent the software from being
modified so that it can operate outside the FCC regulations. This mandate also makes it very difficult for
maintainers of Linux distributions to include the madwifi driver as a package. The package cannot be
redistributed under the GPL because the source is not freely available. As such, there are no Debian
packages or RPMs of the madwifi driver available.

The following is from the README in the madwifi installation source:

The ath_hal module contains the Atheros Hardware Access Layer (HAL). This code manages much of
the chip-specific operation of the driver. The HAL is provided in a binary-only form in order to comply
with FCC regulations. In particular, a radio transmitter can only be operated at power levels and on
frequency channels for which it is approved. The FCC requires that a software-defined radio cannot
be configured by a user to operate outside the approved power levels and frequency channels.

This makes it difficult to open-source code that enforces limits on the power levels, frequency
channels and other parameters of the radio transmitter. See
http://ftp.fcc.gov/Bureaus/Engineering_Technology/Orders/2001/fcc01264.pdf for the specific FCC
regulation. Because the module is provided in a binary-only form it is marked "Proprietary"; this
means when you load it you will see messages that your system is now "tainted".

As of this writing, the most current version of the madwifi driver can be obtained from the SourceForge
project page at http://sourceforge.net/projects/madwifi. The driver supports both MiniPCI and Cardbus
devices. The driver can be built as a module or linked into the kernel and depends on two other modules:
wlan.o and ath_hal.o.

The madwifi driver has been written and tested with kernel Version 2.4.20 and the Linux Wireless Tools
v25. As the README says, "expect some rough edges if you deviate from that combo," particularly with
older kernel or Wireless Tools versions.

In order for the madwifi driver to compile and run successfully, make sure a number of things are
compiled into your kernel:

Kernel-tree PCMCIA (CONFIG_NET_RADIO)

Wireless Tools (CONFIG_NET_WIRELESS)

ACPI Support (CONFIG_ACPI)

PCI Hotplug Support (CONFIG_HOTPLUG_PCI, CONFIG HOTPLUG_PCI_ACPI)

http://team.vantronix.net/ar5k/
http://ftp.fcc.gov/Bureaus/Engineering_Technology/Orders/2001/fcc01264.pdf
http://sourceforge.net/projects/madwifi

Note that the ACPI and PCI Hotplug features are considered experimental in the 2.4 kernel tree.

To begin compiling the driver, unpack the .tgz file and change into the top-level directory (if you are using
a more recent version, the filename and directory will differ):

tar xzvf madwi fi-20030802.tgz
cd madwi fi-20030802

The Makefile.inc should automatically determine the location of your running kernel and modules. If not,
you may need to edit Makefile.inc manually and specify the KERNEL_PATH and MODULE_PATH variables.

On most Linux distributions, you should simply be able to execute these commands:
make
make install

make install copies the drivers to the appropriate location, i.e., /lib/modules/<kernel version>/<net>.
You can then run nodpr obe or i nsnbd from inside the source directory to load the modules:

insnmod w an/w an. o
insnod ath_hal/ath_hal.o
Warning: loading ath_hal/ath_hal.o will taint the kernel:

non-GPL license - Proprietary
insnod driver/ath_pci.o
Support for 802.11a and 802.11g cards in Linux is very new. The madwifi driver in particular is still being
actively worked on. As such, there is every possibility that the last stable release of code will not work
with your kernel or your hardware. Until development on madwifi settles down (keep your eye on the web
site), we suggest that you check out the latest CVS code of the driver to get the most current updates.
CVS is a revision control system used by many open source project developers. Open source development

sites like SourceForge (http://www.sourceforge.net) provide CVS access both for developers and for end
users.

CVS is required to access a CVS repository. Most distributions install CVS by default, located in
/usr/bin/cvs. Debian users can install CVS by executing the commands apt - get updat e; apt - get

i nstall cvs. Red Hat users can find the CVS RPM on their installation CDROM or from a Red Hat source
mirror. Many other distributions that use RPM can find CVS at http://www.rpmfind.net.

To obtain the latest CVS code for the madwifi driver, change to a directory where you want the code
located and execute the following command:

cvs -z3 -d: pserver:anonynous@vs. sour ceforge. net:/cvsroot/madw fi \
co madwi fi

This will log in to the CVS server at sourceforge.net as an anonymous (read-only) user and check out (co)
the madwifi source tree. It will place the source code in a directory titled madwifi in the directory you
were in when the command was executed.

Once you have obtained the CVS code, you should be able to follow the compilation instructions described
earlier. However, be aware that CVS code can change frequently, sometimes daily. CVS code is

http://www.sourceforge.net
http://www.rpmfind.net

development code, which means it can have bugs. It may not compile on your system at all.

There are two excellent sources of information and assistance you can consult if you run into problems
with the madwifi driver. The first is the excellent madwifi-users mailing list. Subscribe at
http://lists.sourceforge.net/lists/listinfo/madwifi-users. The mailing list archives can be searched at
http://sourceforge.net/mailarchive/forum.php?forum=madwifi-users. Second, a FAQ has been created by
a volunteer member of the mailing list and has several tips for getting the CVS code to compile in various
situations. The FAQ is located at http://www.mattfoster.clara.co.uk/madwifi-faq.htm.

48 FREV < Day Day Up > MEXT mjp

http://lists.sourceforge.net/lists/listinfo/madwifi-users
http://sourceforge.net/mailarchive/forum.php?forum=madwifi-users
http://www.mattfoster.clara.co.uk/madwifi-faq.htm

4@ FREV < Day Day Up > MEXT

Chapter 3. Getting On the Network

Assuming that you didn't encounter any problems in Chapter 2, you should now have a functional wireless
network adapter, and the knowledge to configure and use it under Linux. If you have a wireless network
set up at home or at work, chances are you will use this network most of the time.

If, however, you have Linux installed on a notebook PC, chances are you're often in transit, and you
probably want to find and use wireless networks in cities, airports, hotels, and conferences.

This chapter discusses tools and techniques that allow you to find available wireless networks, whether
they are fee-based or free.

@ FREV | < Day Day Up > | NEXT ap

< Day Day Up >

3.1 Hotspots

It would be pretty much impossible for any notebook user not to have heard the term hotspot. Wireless
hotspots are popping up in many locations; coffee shops, airports, hotels, conferences, restaurants, city
parks, and libraries are just a few places where you might find a hotspot.

You can easily build your own hotspot, and we cover this in detail in Chapter 6. A hotspot requires at least
one access point, a good antenna that covers the needed area, a broadband Internet connection, and
some form of access control (if you want to restrict access).

Most hotspots are built around these four basic pieces. Some use DSL as their broadband Internet
connection, while many of the commercial hotspots use a T1 line or other dedicated circuit. However,
many hotspots are simply in a house or apartment, particularly in dense urban areas, and these
connections are DSL, cable, or even simply dial-up.

Before you leave for a trip, research online to find hotspots along the way to your destination. To find
both fee-based and free hotspots, consult the following web sites:

WiFinder

http://www.wifinder.com/search.php

HotSpotList

http://www.hotspotlist.com

T-Mobile Hotspots

http://www.t-mobile.com/hotspot

Wi-Fi Zone Finder

http://www.wi-fizone.org/zonelLocator.asp

JiWire

http://www.jiwire.com

3.1.1 Wireless Hotspot Providers

http://www.wifinder.com/search.php
http://www.hotspotlist.com
http://www.t-mobile.com/hotspot
http://www.wi-fizone.org/zoneLocator.asp
http://www.jiwire.com

There are an increasing number of commercial hotspot providers, ranging from large companies, such as
T-Mobile and WayPort, to small operations in local coffee shops, and wireless aggregators that allow you
to access multiple networks from different hotspot providers.

Nearly all of these providers restrict access to their hotspots through a captive portal. This form of access
control intercepts all TCP/IP traffic. To gain access through a captive portal, simply open a web browser
and attempt to navigate to any web page, such as http://www.oreilly.com. Your browser traffic is
intercepted and redirected to the login screen of the hotspot's portal software. Figure 3-1 shows a typical
hotspot login screen.

Figure 3-1. Typical hotspot login to a captive portal

Pelooee to Surd and Sip = Hozilla Firebird .Ell.!l:

File Edit W¥iew Go Bookmarks Tools Help

L] |__', P‘cl:us;-'.fseure.su:andsip.ﬁwluginﬂﬂmaj |C,

@ SurFAND SIP”

NETWORK

; High Speed Wireless internet Access)

Welezme to Zwf and Bipl ¥oo're st mearents {row expedencing high-speed wireless [memet ecoess, please select an

praan belaw

Mewe Member Signup - Sterting s 35
Existing Moembers Propail Card
Usernames ; Card #
Fasswosd | | e

— Logn |
Roaming ;| Suf and Sip =| Login

*HMes monlsble il locatom

Location Listing - Techrical FAQ - Frae Chat

C‘:g:ll:z'l‘xb D0 200 Soel w30, [n AL Fgins peoremsd
Ful ard §ip - &0 Ipd Sren - Sudne 10 - Son Framooo, C& ST~ ¢ 1 {815 974032 1

f_[Dere

With commercial hotspot providers, you have a number of payment choices for access. The large
operators all offer monthly subscriptions in addition to pay-as-you-go pricing. This is convenient if you
don't want to sign up with a specific provider or if you don't travel enough to justify the $20-40 per month
that most monthly subscriptions cost.

If you travel frequently, you may want to sign up with one of the wireless hotspot providers. Deciding
which one to use is tricky. It really depends on where you think you may spend the most time. T-Mobile
provides access in nearly all Starbucks coffee shops, as well as Borders bookstores, Kinko's copy centers,
and many airports. Surf and Sip has neatly taken up many of the non-Starbucks coffee shops in major
cities. WayPort is a good choice if you need hotel or airport access.

Associating with a hotspot provider is easy. They all have easy-to-identify SSIDs. You can also locate their

hotspots ahead of time using their web pages. Table 3-1 lists some major hotspot providers, their SSIDs,
and their web pages for locating their hotspots.

Table 3-1. Hotspot providers, SSIDs, and location finders

http://www.oreilly.com

Hotspot provider SSID Web location finder

Cometa Cometa-Hotspot http://www.cometa-hotspot.com/locations/
STSN STSN http://www.stsn.com/hotel locator.php

Surf and Sip SurfandSip http://www.surfandsip.com

T-Mobile tmobile http://locations.hotspot.t-mobile.com/

Verizon Wireless Verizon http://www.verizonwireless.com/wifi/hot _spot/
WayPort wayport http://www.wayport.com/locations

3.1.2 Wireless Aggregators

With the rise in availability of commercial hotspot providers comes a conundrum: which hotspot provider
do you sign up with? As you've seen, there are many providers, and each of them has different coverage.
If you're a real road warrior, using several different hotspots could cost quite a bit.

Wireless aggregators have come into the market to address this problem. You sign up for an account with
the aggregator, and through its revenue-sharing agreements with different hotspot providers, you are
able to use many different hotspots while maintaining a single account with one company.

That's the theory. In practice, roaming is still very difficult, especially for non-Windows users. Boingo
(http://www.boingo.com), the largest aggregator, requires the use of proprietary software on your
notebook, and as of this writing, that software is Windows-only. There are reports of adventurous people
running the Boingo software using a Windows emulator like Wine, but we're not going to attempt to cover
that here. Unless the web-based captive portal offers a roaming option, roaming with Boingo and Linux
isn't possible at this time.

Two other aggregators fall into the same category: Trustive (http://www.trustive.com/) provides only a
Windows client software package, and iPass (http://www.ipass.com), while providing clients for Windows,
Windows CE/Pocket PC, Mac OS X, and Mac OS, does not provide a Linux software client.

Fortunately, there is at least one roaming company that has gotten it right: FatPort. FatPort's roaming
customers don't need any special software. Its locations and partner locations all use captive portal
software that requires only a web browser.

Although FatPort is based primarily in Canada, it has a wide range of partner agreements with Surf and
Sip, Boingo, and iPass. While not a complete coverage of all roaming sites, this is an excellent option for
the Linux user who is constantly on the road. FatPort accounts range from hourly rates to yearly
subscriptions. Check out http://www.fatport.com for more details.

3.1.3 Open Hotspots

Just as the software world is split into proprietary and open source, the hotspot world is populated with
commercial hotspots (which we've covered) and open hotspots. These open wireless networks span a
wide range of locations and philosophies:

e Businesses providing free wireless access as an incentive to customers. Hotels, coffee shops,
restaurants, bookstores, and other businesses are all using free wireless access as a way to bring in
customers and entice them to stay.

e Public places serving up hotspots as a public service. Libraries, city parks, town squares, city halls,

http://www.cometa-hotspot.com/locations/
http://www.stsn.com/hotel_locator.php
http://www.surfandsip.com
http://locations.hotspot.t-mobile.com/
http://www.verizonwireless.com/wifi/hot_spot/
http://www.wayport.com/locations
http://www.boingo.com
http://www.trustive.com/
http://www.ipass.com
http://www.fatport.com

and other publicly owned spaces view free wireless access as a way of promoting their city, county,
or other locations, and attracting visitors.

¢ Community wireless groups working with businesses, governments, and private citizens placing
hotspots in all sorts of locations, including apartment buildings, parks, downtown areas, and any
place that would benefit from free wireless access. Many community groups view this as a way to
better their neighborhoods.

Open hotspots are a mixed bag. You may simply be associating with a wireless router in someone's
apartment, connected to his DSL line. On the other hand, it may be a custom-built Linux-based access
point in a New York City park, installed by NYCWireless (http://www.nycwireless.net), with a T1 or DSL
backhaul.

Access control is also going to vary. If you connect to someone's home network with an SSID of "default"
or "linksys," chances are you won't find a captive portal or any other form of access control in place. Many
community and business that open hotspots have some sort of access control in place, such as a web
page that asks you to agree to a Terms of Service (ToS) agreement before you are allowed to use the
network.

A good place to locate open hotspots is the Personal Telco Project in Portland, Oregon. Visit its Wireless
Communities site at http://www.personaltelco.net/index.cgi/WirelessCommunities. A second place to look
for hotspots is WiFiMaps at http://www.wifimaps.com. This site, while still in development, shows you
hotspots all over the world.

3.1.4 Associating with Hotspots

To associate your Linux notebook with an open or commercial hotspot, you have a couple of options. If
you know the SSID of the hotspot, simply set the SSID using i wconfi g:

$ iwconfig ethl ESSID SurfandSip

Once you've done this, fire up your favorite web browser, attempt to navigate to any web page, and you
will be redirected to the hotspot captive portal login, as shown in Figure 3-1.

If you've settled in a coffee shop that has an unknown hotspot provider, the first thing you can try is:
$ iwconfig ethl ESSID any

If there is a hotspot in range, your card should find and associate with it. This can be tricky, especially if
you're in a densely populated urban area. For example, sitting in a coffee shop in San Francisco, we were
able to associate with four different SSIDs. The signal strength from the coffee shop hotspot was not as
strong as a neighboring open hotspot located in someone's apartment.

In these cases, you want to identify all of the access points in your immediate area before you decide
which one to associate with. There are several methods of finding access points with Linux, and we cover
each one in turn.

http://www.nycwireless.net
http://www.personaltelco.net/index.cgi/WirelessCommunities
http://www.wifimaps.com

< Day Day Up >

3.2 Wireless Network Discovery

If your network card supports it, the easiest method of locating available wireless networks is included
with the Wireless Tools, which you installed in Chapter 2. The i W i st command supports a scanni ng
parameter that lists any access points in range. It's worth noting, however, that some wireless card
drivers do not support this feature. Chief among them is the orinoco_cs driver. If you're using this driver,
you must use one of the alternative discovery methods next.

To determine if your card and driver support scanning, execute the i W i st command with no other
parameters. If you see "scanning" listed in the output, you should be able to scan for available access
points. Note that you must have root access to use this command.

iwist
Usage: iwist [interface] frequency

[interface] channel

Once you've determined that you can use the scanni ng parameter, execute the command. You must
specify the network adapter that corresponds to your wireless card (et hl in the following example).

[Interface]
[interface]
[interface]
[Interface]
[Interface]
[Interface]
[Interface]
[Interface]
[interface]

[interface]

ap
accesspoints
bitrate

rate
encryption
key

power

t Xxpower
retry

scanni ng

Again, you must have root access.

iwist ethl scanning

ethl Scan conpl eted :

Cel |

Address: 00: 02: 6F: 01: 76: 31

ESSI D: "NoCat "

Mbde: Mast er

Frequency: 2.462GHz

Quality:0/92 Signal |evel:-50 dBm Noise |evel:-100 dBm
Encryption key: of f

Bit Rate:1Md/s

Bit Rate:2Mi/s

Bit Rate:5.5M/s

Bit Rate: 11Mo/s

Cell 02 - Address: 00:30:65:03: E7: 0A
Essid:"SurfandSip "
Mbde: Mast er
Frequency: 2. 422GHz
Quality:0/92 Signal |evel:-66 dBm Noise |evel:-96 dBm
Encrypti on key: of f
Bit Rate: 1M/ s
Bit Rate:2Mi/s
Bit Rate:5.5M/s
Bit Rate:11Mo/s
Now that you've obtained a list of available networks, see what providers are in your area, and make a

decision on the hotspot to use. scanni hg shows you relative signal strengths, so pay attention. You don't
necessarily want to associate with the weakest hotspot in the area.

Note also that the scanni ng output gives you the frequency of each hotspot as well as whether
encryption (WEP) is enabled.

3.2.1 Kismet

In contrast to the small bit of information you can glean by using i W i st scanni ng, Kismet is a seriously
advanced wireless diagnostic tool. It is a passive network scanner, similar to commercial tools such as
Network Associates' Sniffer Wireless and Airopeek. It is designed from the ground up specifically for
scanning wireless networks, so it detects all 802.11 traffic from both access points and wireless clients. It
can find "closed" networks (some access points allow you to disable the broadcast of the SSID) by
monitoring traffic sent from clients, and it logs all raw 802.11 frames in standard pcap(3) format for later
use with other specialized tools such as Ethereal, an open source network protocol analyzer.

To take advantage of Kismet's advanced features, you need a wireless card and driver capable of entering
RF Monitor or promiscuous mode. Cards in this category include the Prism-based cards using the host_ap
driver and the Cisco Aironet cards using the airo driver. Kismet also works well with Atheros-based
802.11a/g cards using the madwifi driver. However, if you need monitor mode in the madwifi driver,
download the latest CVS driver code. Finally, you'll need a patched orinoco_cs driver or the latest CVS
version of the orinoco_cs code to support monitor mode with Orinoco cards. We covered this in detail in

Chapter 2.

Kismet is available as a package with most distributions. Debian users can install Kismet using apt - get :
apt-get install Kkisnet

Red Hat and Fedora users can obtain RPM packages from http://www.rpmfind.net. Mandrake users can
install Kismet using ur pm :

urpm ki smet

If you want to read Kismet's dump files in Ethereal, you must download the source code for Kismet from
http://www.kismetwireless.net. Also, Ethereal must be installed from source, and the Ethereal source
code tree must be available. Change into the Kismet source directory, and configure Kismet as follows:

./configure --wth-ethereal =/your/ethereal/source/path/here
Once that is done, build Kismet with standard compile commands:

make

make dep

make i nstall

Once Kismet is compiled or installed from source, you must edit /usr/local/etc/kismet.conf to suit your
system. If you've installed from package, the file is probably located in /etc/kismet.conf. At a minimum,

you must edit the sour ce= line to match your hardware. The format for this line is
driver,device,description. For example, with a Prism card, edit the line to read:

sour ce=hostap_cs,w an0, Pri sm
See the comments in the kismet.conf file for more information on supported drivers.

If you want Kismet to play sound effects when it finds new SSIDs, it will. By default, it expects
/usr/bin/play to be installed, which is part of the Sox sound utilities, but any command-line audio player
works. All of the audio and other display parameters are configured in /usr/local/etc/kismet_ui.conf.

When Kismet is running, your wireless card will be in RF monitoring mode. Note that once in this mode,
your card can no longer associate with wireless networks, so you may not have a network connection.

Now execute the ki smet command using your normal user ID. You don't have to run the Kismet user
interface as root. You should see the Kismet screen as shown in Figure 3-2.

Figure 3-2. The main Kismet screen

http://www.rpmfind.net
http://www.kismetwireless.net

Terninal L.
FilE' Edit Settings Help
(551

T U Ch Packts Flags 1P Rong
%]

o &2 i

| A3 fFor
Battery: charging 963 -0OE

Kismet incorporates a hopping algorithm to switch between radio channels in order to find all the
networks in your locations. This makes your card hop between radio channels. The hop pattern is
configurable to your needs. See the ki smet _hopper manpage for details. Note that newer versions of
Kismet call ki snet _hopper automatically

By default, Kismet initially scans the network list based on the last time it saw traffic from each network.
This list constantly changes, making it difficult, if not impossible, to select any one network for more
detailed information.

To keep the list from constantly changing, manage the scanning sort order by hitting s at any time,
followed by the desired sort order. For example, to sort by SSID, hit ss. Now use the arrow keys to select
a network for further details. Press h at any time to see keystroke help and q to close any pop-up
windows.

To get more information on a specific network, select it using the arrow keys and press i . You will see a
more detailed screen as shown in Figure 3-3.

Figure 3-3. Kismet's detailed network information

Terminal

[

File Edit Settings Help

Hetword List—(55ID)
e I ¥ in Packis Flags IF Ronge
B -totwork Details

Hana todmd =sid

= |

s TF
=

Battery: charging D6 506N eGs

Kismet finds closed networks (networks that do not broadcast their SSID). If there is no network traffic
coming from a client of that network, Kismet lists the SSID with a name of <no_ssid>. Once Kismet sees
a frame of traffic from a client, the SSID updates.

Note that your card is now out of monitor mode, but the original network settings are not returned. You
can physically eject the card and reinsert or execute:

cardctl reset

3.2.2 AP Radar

The previous methods are perfectly usable and provide you with all sorts of information regarding the
available wireless networks near you. These are manual methods that don't approach the level of ease in
wireless detection and configuration that is offered with other operating systems.

AP Radar is an attempt to make detection of and connecting to wireless networks easier and more
manageable. It is both a graphical network discovery tool and a wireless profile manager. Using the
Wireless Extensions, it has the ability to watch for wireless networks while staying associated to your
existing network. It focuses on automating tasks, so that when you come in range of your home network,
you are automatically connected.

AP Radar is the work of Don Park, and you can obtain it from the project's SourceForge development site
at http://apradar.sourceforge.net. Currently, it is available as an RPM package or as a source file. In order
to get the package running, you must have GNOME Version 2. You'll also need a 2.4.20 kernel or higher,
or any 2.6 kernel.

To compile AP Radar from source, you must have the GTK+ header files and libraries, as well as the
GTKmm header files and libraries. Users of Mandrake, RedHat, and other distributions that use RPM
should see the AP Radar README file for a list of required RPMs.

Debian users should be able to install the same packages via apt-get; however, you must set up apt to
obtain packages from the testing or unstable trees. See the sour ces. | i st manpage for details.

To build AP Radar from source, uncompress the source code file and change into the newly created
directory. The commands to compile are standard, although the filename and top-level directory name will
differ if you are using a newer version than we did:

$ tar xzvf apradar-0.50.tar.gz

$ cd apradar-0.50

$./configure

$ neke

$ su -c "make install"

AP Radar works with a number of wireless cards and drivers. To determine whether AP Radar will run with
your card and driver, execute i W i st scanni ng:

iwist wlan0 scanning

You should see some output like the following:

ethl Scan conpl eted :

http://apradar.sourceforge.net

Cell 01 - Address: 00:02:6F:01:76: 31
ESSI D: "NoCat "
Mbde: Mast er
Frequency: 2.462GHz
Quality:0/92 Signal |evel:-50 dBm Noi se |evel:-100 dBm
Encrypti on key: of f
Bit Rate:1Mod/s
Bit Rate:2M/s
Bit Rate:5.5Md/s
Bit Rate:11Mo/s

If you see anything else, chances are AP Radar will not function with your card. Some reasons for this
include the use of the following drivers:

Orinoco_cs driver, wvlan, wavelan, and wavelan2 drivers

None of these drivers currently support wireless scanning. Patches are available for the orinoco_cs
driver to enable scanning, and the CVS code for orinoco_cs also supports scanning. See Chapter 2
for more details.

host_ap driver
If you are using the newest host_ap code, Version 0.1.3 (as of this writing), you must execute the

following command as root for AP Radar to function properly:
iwpriv wl an0 host _roamng 1

Once you install AP Radar and determine that it will function with your wireless card/driver, simply start it
as root:

apradar
If you experience problems starting AP Radar, it may be due to oddities in your wireless card driver and

how it writes status to /proc/net/wireless. In order to avoid this problem, start AP Radar by specifying the
interface name (athO in the following example):

apradar -i athO

The AP Radar main screen appears, as shown in Figure 3-4.

Figure 3-4. AP Radar main screen

, AP Radan
Access Point List
testingrange master)(Chs -61 dBm

indymedia master) chs -92 dBm
atho(unknown driver)

testingrange managed 10.42.3.20

default gateway: 10.42.3.1 =1 sec

config
® ping default gateway
¥ run dhclient an associate

AP Radar shows all access points that are in range. Almost every field on the screen is either clickable or
provides you with information when you hover the mouse over it.

To associate with any of the access points shown under Access Point List, simply click on the name of the
access point. By default, AP Radar not only associates your wireless card with the selected AP, but it runs
dhcli ent to obtain an IP address via DHCP.

This and one other option can be set by clicking on the red symbol at the top of the AP Radar screen. You
can set two options:

Ping default gateway

This monitors the gateway that you receive from DHCP. When it does not receive a response from a
ping after more than a second, AP Radar assumes that the gateway is out of range.

Run dhclient on associate

This allows you to specify whether you want AP Radar to obtain a DHCP address for your PC after it
associates with an access point. Turn this off if you need to use static addressing.

In addition to displaying the SSID, mode, and channel and signal strength for each access point, AP Radar
also displays whether WEP is enabled by displaying the warchalking symbol for the network. See the later
Section 3.2.5.

3.2.3 Wardriving

Back in the good ol' days of hacking, wardialing was (and still is) the act of having a computer use a
modem to dial phone numbers from a list or mathematically step through all possible numbers in a
telephone exchange. Malicious hackers noted each line that had an answering modem and went back to
those numbers to find systems that could be compromised.

With the proliferation of notebook computers, handheld computers, and wireless network cards, the term
wardriving has been coined. When you wardrive, usually a two-man team takes off: one driving and the
other handling the wireless scanning. In dense urban areas, a wardrive can locate hundreds if not
thousands of active SSIDs.

With some added equipment such as external antennas and a GPS receiver, wardrivers can log each

wireless network and place them on a physical map. http://www.wifimaps.com is just one example of a
collaborative effort to place wardriving maps from all over the world in an online database. Kismet
(discussed previously) makes an excellent tool for wardriving, and it interfaces with GPS systems. See
Chapter 10 and the Kismet documentation for details.

People wardrive for different reasons. While many people do it simply for enjoyment or for the technical
knowledge gained, there are also those who have more illicit purposes in mind. Some wardrivers are
specifically out there looking for insecure networks that can be compromised for various purposes.

Wardriving may not be legal in your area. While it does not appear to be illegal in the United States, there
are many countries where it is considered a crime.

3.2.4 Warflying

In the same vein, warflying is conducted by those lucky people who can afford to rent a plane for a few
hours or who actually have their own plane. Warflyers generally need external antennas to pick up
wireless networks below the plane.

If you think this practice sounds too far-fetched to be true, Google for the phrase "warflying". You'll be
surprised at how many people do this.

3.2.5 Warchalking

During the Great Depression, many people in the United States were homeless because of economic
conditions. Tramps and hobos traveled the country looking for work and food. Due to scarcity of work,
hobos were not welcome in many places. Over time, hobos devised a set of logos that could be written in
chalk or stone, or carved in trees near various houses, restaurants, and other places. These logos could
communicate everything from "free food" to "you will be beaten."

You can visit the following web sites for more symbols used by the hobos:

e http://www.slackaction.com/signroll.htm

e http://sedaliakatydepot.com/hobo.htm

Matt Jones, an Internet product designer, operates a web site (http://blackbeltjones.com) that serves
primarily as the Londoner's online resume and portfolio. In 2002, Jones combined the practice of using a
sniffer tool to detect a wireless network with the hobos' set of logos to come up with the symbols for
wireless networks (see Figure 3-5).

Figure 3-5. Warchalking symbols

http://www.wifimaps.com
http://www.slackaction.com/signroll.htm
http://sedaliakatydepot.com/hobo.htm
http://blackbeltjones.com

KEY SYMBOL
OPEN ssid

w3

bandwidth

CLOSED ssid
NODE

: access
e ssid _ ontact

bandwidth

Using these symbols, wireless users can discover if there is an available wireless network for their use. He
was inspired by architecture students "chalking up the pavement" on his way to lunch. During a lunch,
Jones and a friend, who had recently been discussing hobo signs, called their idea warchalking. You can
learn more at http://www.warchalking.org.

& Frev | < Day Day Up > | NEXT up

http://www.warchalking.org

4@ FREV < Day Day Up > MEXT

Chapter 4. Communicating Securely

In a wired network, physical security is complicated but manageable. You can restrict physical access to
routers, switches, and network hardware. You can provide a complex authentication mechanism for
proving that users are who they say they are. You can set up Virtual LANs or Virtual Private Networks for
even more security. Even if an attacker were to plug into your wireless network, it would be difficult to
penetrate further with these kinds of security measures in place.

The wireless network world is not nearly this secure. In fact, it's not secure at all. Disassembling your
network packets and transmitting them wirelessly means that anyone within reach can see them. A wily
attacker could join or passively monitor your network from a mile away with a high-gain antenna, and you
would never see him.

48 FREV < Day Day Up > MEXT

< Day Day Up >

4.1 The Pitfalls of WEP

The IEEE specifications for 802.11a/b/g all provide a form of encryption called Wired Equivalent Privacy
(WEP). WEP operates at the Media Access Control (MAC) layer, or the Data Link layer, between the
Physical Layer (radio waves) and the Network Layer (TCP). WEP encryption is based on the RC4 algorithm
from RSA Data Security and employs a 40-bit encryption key.

Anyone who knows the secret key (unless you're the only user on the network, this key is shared, so it's
not all that secret) can participate in a WEP network. Secret keys are generally either plaintext words or
somewhat longer combinations of hexadecimal numbers.

There are two major problems with WEP:

¢ Encryption is handled at the Data Link layer, so if you connect to a WEP network with your
notebook, the communication between your notebook and the access point is encrypted. All packets
are decrypted at the access point and sent from there in the clear.

e Other computers that also have the secret key for this WEP network can read all packets sent to and
from your computer. The secret key is a "shared" key, which means that all devices that encrypt
packets must use the same key. Some access points use a passphrase to generate the WEP key,
making the key even easier to deduce. Once you are connected to a WEP network, you can do all
the packet sniffing you want with a tool like Ethereal.

A team of cryptographers from the University of California at Berkeley, as well as several other groups
(see the references at the end of this section), have identified weaknesses in the way that WEP keys are
generated and used, effectively making the number of bits in the key immaterial. Even though many
manufacturers have added extra bits to the key length, up to 152 bits, the longer key length provides
minimal protection, because WEP is not a well-designed cryptographic system.

With all of these problems, why is WEP still supported by wireless equipment manufacturers? Until
recently, there had not been another standard for wireless encryption. You could have run a Virtual
Private Network (VPN) on top of your wireless network, but this would have presented its own set of
challenges, and it is not practical for home or even small-business users. The Wi-Fi Alliance announced a
standard called Wireless Protected Access (WPA) in mid-2002. WPA is based on a draft of the IEEE
802.11i specification, which will probably be ratified in mid-2004. We cover WPA a bit later in the chapter.

So why would you want to use WEP on your wireless network at all? Consider it a first line of defense.
While it is definitely possible to crack its keys and gain access to a WEP network, someone who is looking
for free wireless access will choose an open network when given the choice. However, if you are worried
about an attacker specifically targeting your network, you must take stronger measures.

Consider not using WEP at all. There are other alternatives that provide stronger encryption and
authentication, and we cover those in this chapter. However, if you want an easy out-of-the-box setup,
WEP is your ticket. To keep your WEP network as secure as possible, keep these guidelines in mind:

e Make your secret key difficult to crack. Once a hacker has captured enough frames from your
encrypted network, he needs to run a tool to guess your secret key. This is no different from a
hacker running cr ack against a password database. The more complex your key, the less likely a
standard dictionary attack will crack it. Choose a long, complex key that utilizes nonalphanumeric
characters. If you can, use hexadecimal strings. Use the longest key that your hardware will

support. If you have access points and clients that support 128-bit WEP, by all means use it.
However, some implementations of WEP have weaknesses that allow attackers to recover the key
even without mounting a dictionary attack.

¢ Change your secret key often. WEP key attacks rely on two methods: a dictionary attack or the
collection of large amounts of frames data in order to deduce the secret key. Obviously, you provide
less of a chance for an attacker to break your key when you change it often. However, this option
becomes more cumbersome with larger networks, giving you the classic key-distribution problem.

¢ Use WEP in combination with other security measures. If your network uses equipment from
a single manufacturer, you may be able to take advantage of nonstandard security features. Cisco
and Proxim, for example, support rapid WEP key rotation and dynamic rekeying. If all of your clients
can take advantage of these features, use them. You should also consider whether the various IP
tunneling or VPN solutions will fit into your network infrastructure.

Several security measures that come standard with many access points are almost useless in protecting
your wireless network:

Disabling SSID broadcast
This creates a "hidden" network by causing the access point to suppress the broadcast of SSID
information. In order to join a network with SSID broadcast disabled, the client must manually
enter the SSID.

Premise: if you don't know the SSID, you can't join the network.

Reality: Kismet and other wireless network scanners can easily pick up the SSID by monitoring
traffic from clients of the "hidden™ network.

MAC address filtering
Most access points allow you to set up a list of allowed network cards by entering their MAC
address. If the access point sees a MAC address that is not on the list, it will not allow that device to
associate.

Premise: only authorized network cards can join the network.

Reality: Kismet and other wireless scanners can easily pick up MAC addresses by monitoring client
traffic on the wireless network. Spoofing a MAC address is very easy under Linux and other
operating systems, allowing easy access to the network. Also, wireless network cards can easily be
stolen. The MAC address filter only authenticates a device, so anyone can use it.

IP address filtering
Similar to MAC address filtering, this technique allows you to set up a list of allowed IP addresses
that can send TCP/IP traffic on the network. Other machines may be allowed to associate with the
access point, but they would not be able to participate in any TCP/IP network.

Premise: only known IP addresses are allowed to communicate on the network.

Reality: any network sniffer or analyzer, such as Ethereal or tcpdump, can easily find IP addresses

in use on any given network. Spoofing IP addresses is even easier than spoofing MAC addresses.

4.1.1 References

As mentioned previously, several groups have identified weaknesses in the way that WEP keys are
generated and used. To learn more, consult the following sources:

e Your 802.11 Wireless Network has No Clothes (http://www.cs.umd.edu/~waa/wireless.pdf) by
Arbaugh, Shankar, and Wan. University of Maryland, March 30, 2001.

¢ Weaknesses in the Key Scheduling Algorithm of RC4
(http://www.crypto.com/papers/others/rc4 ksaproc.ps) by Fluhrer, Mantin, and Shamir. July 25,
2001.

e Using the Fluhrer, Mantin, and Shamir Attack to Break WEP
(http://www.cs.rice.edu/—astubble/wep). AT&T Labs Technical Report by Stubblefield, loannidis, and
Rubin. August 21, 2001.

e Security of the WEP Algorithm (http://www.isaac.cs.berkeley.edu/isaac/wep-fag.html) by Borisov,
Goldberg, and Wagner, UC Berkeley. April 1, 2001.

4.1.2 WEP with Linux

Back in Chapter 2, we covered the use of schemes to set up multiple wireless networks on your PC with
the ability to switch between them as needed. Here again is a sample /etc/pcmcia/wireless.opts that
contains schemes for two networks and includes the use of a WEP key:

case "$ADDRESS" in

hone, 0, *, *)
I NFO="Hone wirel ess setup"”
ESSI D=" honge"
MODE=" managed"
CHANNEL="11"
RATE="aut 0"

yourjob, 0, *, *)
I NFO="Work wirel ess setup”
ESSI D="Bi gCor p"

MODE=" managed"

http://www.cs.umd.edu/~waa/wireless.pdf
http://www.crypto.com/papers/others/rc4_ksaproc.ps
http://www.cs.rice.edu/~astubble/wep
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html

CHANNEL=" 4"
RATE=" aut o"
KEY="s: bi gsecret"
esac
Use cardct!| yourj ob to switch to the WEP-enabled scheme.

The corresponding i weconf i g command to configure a WEP key is i weonfi g enc or i weonfi g key. This
command accepts several parameters:

iwconfig ethl key [on]|off]

on and of f enable and disable encryption, respectively.

iwconfig ethl key 0al2fcl132

Secret keys can be entered as hex strings with or without separating dashes.

iwconfig ethl key s:supersecret

ASCII secret keys can be entered in the form of s:secretkey.

iwconfig ethl key s:supersecret [2]

An index of keys can be generated by appending an index number in brackets ([]) to the key when
it is entered.

iwconfig ethl key [2]

You can change secret keys by passing the index number of the key as an option.

iwconfig ethl key [open|restricted]

Two operating modes are available: open accepts nonencrypted traffic, and restri ct ed accepts
only encrypted packets.

Using NoCatAuth

If WPA isn't an option for you, you may want to consider setting up a captive portal (see
Section 3.1.1 in Chapter 3).

NoCatAuth, which ships with Pebble Linux (see Chapter 6), is a captive portal that offers two
modes of operation: open and authenticated. Open mode intercepts a user's first web request
with a simple splash page and a Click here to continue button. Authenticated mode relies on
both the local NoCatAuth daemon and an authentication service on another machine. The
daemon and authentication service communicate via an encrypted channel, so passwords are
never sent in the clear.

NoCatAuth can be downloaded from http://nocat.net, and there is also a wiki and a fairly high
volume development mailing list. Other captive portal systems are available for Linux, as well.
You can find out more about them on the Personal Telco Project's portal software page at
http://www.personaltelco.net/index.cqgi/PortalSoftware.

@ FrEv | < Day Day Up >

a=

http://nocat.net
http://www.personaltelco.net/index.cgi/PortalSoftware

< Day Day Up >

4.2 The Future Is 802.11i

The future solution from the IEEE to provide real wireless security and a strong cryptographic system is
the proposed 802.11i standard. The IEEE Task Group responsible for this standard maintains a web page
at http://grouper.ieee.org/groups/802/11/Reports/tgi _update.htm. As of December 2003, draft 7 of this
proposal has been sent to a "sponsor ballot,” and the results are not yet available. The word on the street
is that 802.11i will become a ratified standard sometime in mid-2004.

The final standard of 802.11i will likely address the following:

Use of 802.1x for authentication

802.1x is a specification framework for mutual authentication between a client and an access point.
802.1x may also use a backend authentication server such as RADIUS and take advantage of one of
the Extensible Authentication Protocol (EAP) variations. 802.1x uses a new key for each session, so
it resolves the issue of a single static WEP key.

Use of the Temporal Key Integrity Protocol (TKIP)

TKIP uses 128-bit dynamic keys that are changed at random times. Because of the constantly
changing keys, intruders would be hard pressed to collect enough radio frames to compromise the
keys.

Use of the Advanced Encryption Standard (AES)

The full implementation of 802.11i will utilize AES encryption to make a very strong cryptographic
system. However, using AES requires significant computational horsepower. Current models of
access points will not be able to handle AES due to limited processors. Expect new models that are
"802.11i ready" to arrive on the market in 2004.

& FREV | < Day Day Up > | NEXT ap

http://grouper.ieee.org/groups/802/11/Reports/tgi_update.htm

< Day Day Up >

4.3 WPA: a Subset of 802.11i

Work on 802.11i began in 2001 after the weaknesses in WEP were made public by several teams of

researchers. However, as with any standards body, the IEEE does not always work as fast as some people
would like.

In mid-2002, the Wi-Fi Alliance, an industry consortium, proposed a subset of 802.11i, based on draft 3
from the IEEE working group, and called it Wireless Protected Access (WPA). The upcoming full IEEE
implementation is also being referred to as WPA v2.

WPA, as a subset of the 802.11i proposed standard, incorporates two major features:

e Use of 802.1x for authentication
e Use of the Temporal Key Integrity Protocol (TKIP)

Chipsets supporting WPA began to become available in 2003. As of this writing, many access points either
support WPA out of the box or have firmware updates available that include WPA.

WPA is not only an encryption mechanism but also includes 802.1x authentication, so support is required
on the client for the authentication mechanism. As of this writing, your options are very limited regarding
WPA support in Linux.

A few vendors have released updated firmware for older radio cards with WPA support; Apple AirPort
cards, the Linksys WPC-11, and the Dell TrueMobile 1150 all have updates available.

WPA Support in Access Points

WPA and 802.1x are starting to become available in new access points, and earlier models are
getting firmware updates that support WPA. The Linksys WRT54G and D-Link 900AP+ can
both support WPA after a firmware upgrade. Newer Linksys and D-Link models are packaged
with this support already enabled. Enterprise-level access points from Cisco, Proxim, and
others also support WPA and are starting to advertise themselves as "802.11i-ready."

- The Dell 1150 card is a rebranded Orinoco card; Agere has drivers on its web site
o listed "for evaluation only" that include this same update. However, Proxim, the
. 4 new owner of the Orinoco brand, has nothing on its web site about WPA for older

cards.

All of this is interesting but not immediately useful, however, because you can't use any of these cards
under Linux and take advantage of the WPA code in the cards. Why? Because their associated Linux
drivers do not support WPA. As of early 2004, you have two options if you want to use WPA under Linux,

which we discuss below. In order to take advantage of these methods, you should understand how 802.1x
works.

4.3.1 802.1x Authentication

802.1x was originally designed for wired Ethernet networks. It is a port-based authentication mechanism;
when a client is authenticated, traffic is allowed to flow from the Ethernet port of the client through the
authenticating device and out into the secured network.

In a wireless network, the principle is the same. Your notebook client is required to authenticate to the
access point. If authentication does not occur, wireless frames are not allowed to be sent through the
access point to the wired network.

802.1x authenticates users via a four-part process:
1. The Supplicant (the client that wants to access a network resource) connects to the Authenticator
(whose resource is needed).

2. The Authenticator asks for credentials from the Supplicant and passes the credentials to the
Authenticating Server.

3. The Authenticating Server authenticates the Supplicant on behalf of the Authenticator.
4. If the Supplicant is authenticated, access is then granted.

Note that before the authentication is performed, all the communications go through an uncontrolled port.
After authentication, the controlled port is used.

For the Authenticating Server to authenticate the Supplicant, the Extensible Authentication Protocol (EAP)
is used. EAP supports multiple authentication mechanisms and was originally developed for PPP.

There are many variants of EAP. Here are some that you may come across in wireless security literature:

EAP-MD5

EAP-MD5 uses the challenge/response method to allow a server to authenticate a user by
requesting a username and password. EAP-MD5 does not provide mutual authentication and is
vulnerable to an offline dictionary attack.

EAP-Transport Layer Security (EAP-TLS)

EAP-TLS is based on X.509 (an ITU standard specifying the contents of a digital certificate)
certificates. It is currently the most commonly used EAP type for securing wireless networks.
However, EAP-TLS requires the use of Public Key Infrastructure (PKI), which is not feasible to be
implemented on small networks.

Protected EAP (PEAP)

To counter the complexity of using EAP-TLS, PEAP was proposed as an alternative. PEAP uses a
server-side certificate to allow the authentication of the server. It creates an EAP-TLS tunnel and
then uses other authentication methods over the tunnel. EAP methods such as MD5, MS-CHAP, and
MS-CHAP v2 are supported. PEAP was proposed as an IETF standard by Microsoft, Cisco, and RSA.

EAP Tunneled TLS (EAP-TTLS)

EAP-TTLS is similar to PEAP. It creates a tunnel between the user and the RADIUS server. It
supports EAP methods such as MD5, MS-CHAP, and MS-CHAP v2.

Lightweight EAP (LEAP)

LEAP is Cisco's proprietary version of EAP, which works mostly with Cisco's wireless cards, RADIUS
servers, and access points.

Microsoft Challenge-Handshake Authentication Protocol Version 2 (MS-CHAP v2)

Originally designed by Microsoft as a PPP authentication protocol, MSCHAP Vv2 is a password-based,
challenge-response, mutual authentication protocol that uses the Message Digest 4 (MD4) and Data
Encryption Standard (DES) algorithms to encrypt responses. MS-CHAP v2 is now an EAP type in
Windows XP.

In the wireless world, suppose a notebook PC needs to connect to an access point. The notebook PC is the
Supplicant, and the access point is the Authenticator. The access point, as the Authenticator, maintains a
list of users and passwords and acts as the Authenticating Server. For small networks, this is not an
issue; for large networks, however, this is an additional overhead in maintenance and a potential security
risk, because it means that users must have another account and password.

In this case, the access point is told to refer to an external RADIUS server. RADIUS was developed by
Livingston (now part of Lucent) for use in large dial-up modem pools, and is widely used by ISPs as the
authentication mechanism for PPP and PPPoOE users. The protocol is now defined by RFCs 2058, 2138, and
2139.

A RADIUS server maintains the user and password list, and performs authentication on behalf of the
access point. The RADIUS server in this scenario is the Authenticating Server. Frequently, a RADIUS
server is merely a method to transform authentication from some other source—for example, NIS, LDAP,
or Kerberos authentication from a corporate network, which is then used by the RADIUS server to
authenticate clients.

4@ FREV < Day Day Up > MEXT

< Day Day Up >

4.4 \WPA on Linux

As of this writing, if you want to use WPA and/or 802.1x as a client on Linux, you have two options:

¢ Obtain the WLAN Driver Loader from Linuxant. This is a compatibility wrapper that allows you to use
the standard Windows NDIS drivers that ship with wireless network cards. The advantage to this is
that you can use a wide array of WiFi cards that currently do not have open source drivers available.

¢ Use a Prism-based Wi-Fi card with the latest HostAP CVS code. The newest versions of HostAP
contain a WPA Supplicant in software that allows you to connect to WPA-protected networks.

If you want to use your Linux box as a WPA Authenticator, you're currently out of luck. The HostAP
development team is working towards a full implementation of a WPA Authenticator. Right now, however,
the hostapd daemon acts as an 802.1x Authenticator and authenticates against a RADIUS database.

Windows XP and Mac OS X both include support for 802.1x Supplicants. There is an open source
implementation available for Linux called Xsupplicant, which is located at http://www.openlx.org.

A last option is to use your Linux box as the RADIUS server (Authenticating Server), and use an
inexpensive access point as the WPA Authenticator. You can then use any WPA Supplicant to connect to
the access points, and the backend authentication is handled by Linux/RADIUS.

4.4.1 WLAN Driver Loader

The Linuxant WLAN Driver Loader is a compatibility wrapper that allows the use of Windows NDIS wireless
network drivers under Linux. Open source purists have issues with this software, because parts of it are
released only in binary form, and after 30 days you must pay $20 for a permanent license. If you're
completely opposed to anything Windows-related, keep in mind that this solution requires you to run
Windows binary drivers, so this option may not be for you.

However, at this point in time, Linuxant is the only game in town if you need access to WPA-protected
networks from a Linux box and you don't have a Prism-based wireless card. More to the point, the WLAN
Driver Loader software allows you to use WiFi cards that do not have any open source drivers, including
cards with chipsets from Broadcom and Texas Instruments. For many of the popular 802.11g cards, this
may be your only option in Linux.

s A completely open source project to provide NDIS driver loading for Linux is located
e at http://ndiswrapper.sourceforge.net. As of this writing, support for radio chipsets
43 s limited and there is no support for WPA.

o

i

a

You can obtain the software from the Linuxant web site at
http://www.linuxant.com/driverloader/wlan/full/downloads.php. Linuxant provides RPM packages for
Fedora, Red Hat, Mandrake, SUSE, and Turbolinux, and has built them for various architectures. Debian
users can download a driverloader.deb package for installation with dpkg. For other systems, or if you
wish to compile the driver, the source code can be downloaded as well.

In order to use the WLAN Driver Loader with WPA-PSK (personal) authentication, Linuxant provides a

http://www.open1x.org
http://ndiswrapper.sourceforge.net
http://www.linuxant.com/driverloader/wlan/full/downloads.php

wpa_supplicant daemon that is also available in its downloads section. If you need to have WPA-EAP
authentication, the Xsupplicant from openlx.org is required in addition to the wpa_supplicant from
Linuxant. We cover installation of both supplicants next.

To compile the Driver Loader software from source, extract the package and change into the newly
created directory. A single nake command compiles and installs:

$ tar -xzf driverloader- version .tar.gz
$ cd driverl oader- version
$ make install

By default, WLAN Driver Loader starts up a localhost web-based configuration tool on port 18020. You can
access it by pointing a web browser to http://127.0.0.1:18020 and logging in as root. You can also
configure the software from a shell by executing the dl dr confi g command.

If you wish to disable the web configurator for security reasons, use dl drconfi g --webconf=off. To
reenable it, use dl drconfi g --webconf=127.0. 0. 1: 18020. Note that this command enables you to
choose an alternate port for web-based configuration.

The dl dr confi g command can also be used to change certain configuration options or recompile (generic
packages only) the kernel modules after installation or kernel upgrades. Run dl drconfi g - - hel p for
usage information.

If necessary, the device drivers can be unloaded using the dl dr st op command.

Figure 4-1 shows the screen that you will see when you point a web browser at the localhost address
created by the WLAN Driver Loader installation.

Figure 4-1. DriverLoader initial configuration

File Edit Vew Go Hookmarks Teols Help

2 = @ ‘:‘ hEtpo 1270001 1B020cgi-binconfig.cgi T | L
b]
LINUXANT
[1 Reload] [View Driverloader™ Conflquration
Karnel Messages]
Mo devices found
Please upload yvour Wimlows driver(s)
|]
Coparight © 20032004 Linuxapt ir

All rights reseived

Drare

As shown, the first thing you must do is provide the DriverLoader with Windows NDIS drivers for the
device you want to use. Click on the Upload Windows Driver link, and you will be presented with another
screen, shown in Figure 4-2, that allows you to browse the local filesystem for an .INF or .NTF file that
comes in the Windows driver package for your wireless card.

Figure 4-2. Browse for Windows driver files

http://127.0.0.1:18020

Eilwm Edit vew Go Hookmarks TJTools Help

> ke) hittp: 127000 1: 18020/ gi-binfconlig cgite = | L

LINUXANT

DriverLeader™ Confiquration

INF File:

Brawse..

Click on tha Browse button and locate the driver .INF or
.NTF file (but not the AUTORUN.INF) from your device's
Windows XP driver package (this will usually be found in a
subdirectory on the driver CD-ROM supplied with your
device), Afterwards, click the OK button below to continue,

K Carcel

Cogarighl © J00A-2004 Linussank in
Al rights reserved

Drane

In our example, we used a Linksys WPC55AG PC Card. We downloaded the latest driver in ZIP format
from the Linksys web site at http://www.linksys.com/download. The file we obtained was
wpc55ag_driver_utility_v1.2.zip, which we extracted using the unzi p command. This created three
subdirectories: Drivers, image, and utility. In the Drivers subdirectory, we found two ar5211.sys files and
a net5211.inf file, which are exactly what we needed to continue. Obviously, this procedure will vary for
each different wireless card. Linuxant maintains a list of wireless cards known to work with WLAN Driver
Loader and links to downloads of the associated Windows drivers. This list can be found at
http://www.linuxant.com/driverloader/drivers.php.

Using the browse function in Figure 4-2, we found the Drivers directory and selected net5211.inf. The
program quickly prompted us that the ar5211.sys file would be required and asked us to locate it. Once
we clicked OK, the driver file loaded, and we were presented with the screen in Figure 4-3.

Figure 4-3. DriverLoader shows a missing license for the newly installed
driver

http://www.linksys.com/download
http://www.linuxant.com/driverloader/drivers.php

File Edit Wew Go Bookmarks Tools Help

- = g -“:‘ http: {127 0.0.1:1B020/cgi-bin/config.cgi ¥ |,
]

LINUXANT
I I IIvigwe DriverLoader™ Conflquration
Earnel Messages]
Device Driver MAC Address License
athl nets2ll 0:0C:41:00:24:F8 MISSING [Sedtings]

There is 1| device without a valid license

Toinstall a license, click on [Settings] next to the device,

Driver Vendor Version Delete
nets211 SHLINKSYS% 12/03/2003,2.4.2.33 [X]

Copyright © 20033004 Linusaet

All rights reserved

Drare

As we mentioned, the Linuxant software is proprietary. Permanent licenses can be purchased from
Linuxant, and you can also obtain a 30-day license for trial purposes from the Linuxant web site at
http://www.linuxant.com/store. In order to get a license, you must fill out a registration form, wait for an
email from Linuxant with a verification code, and enter that code. Once entered, you can generate a
license. In order to do this, Linuxant requires the MAC address from your wireless card. You can obtain
this either from the web interface or by running:

dldrconfig -info
Li nuxant DriverLoader for Wreless LAN devices, version 1.61

Web configurator: listening on 127.0.0.1: 18020

Wreless interface nane: ethl

MAC addr ess : 00:0C: 41: 0A: 24: F8

Devi ce instance: PCl-0000: 05: 00.0-168c: 0013-1737:0017
Devi ce driver . netb5211

Li cense owner :unknown

Li cense key © none

Li cense status . M SSI NG

Enter the MAC address into the form on the Linuxant web site, and after a few seconds, you will be
presented with a 30-day-trial license key, a 12-character hexadecimal string that needs to be entered
either in the web configurator or by executing dl drconfig --1icense. You'll be asked to enter the email

address you used to register with Linuxant along with the license key, as shown in Figure 4-4.

Figure 4-4. Entering the Linuxant license information

http://www.linuxant.com/store

File Edit Wew Go Bookmarks Tools Help

- wy -‘I":‘ | hetpey 127 0000 18020/ cqi-binjparse . cgitc | * | Lo,

LINUXANT

DriverLeader™ Conflquration

Please verify the data below to ensure that it is exactly as it
appears on your leense from Linuxant.

Instead of typing it in, you may » fetch your license

directly from Linuxant if you are presently connected to
the Internet

Wireless imterface othl

MAC Address 00:0C:41:04:24:F&
License E-Mail rogerEDy ahoa cam
License Key LF-646-20-46-B6-87

Sane Adwanced == Carce|

Copwight © 20032004 Linuxapt in
All rights reacrved

Drane

Once you've entered the license information, you'll be returned to the main web screen, but this time it
should show that your driver is loaded. You can perform additional configuration on the card by clicking on
Settings and then selecting Advanced. Here you'll see the license information and any other configuration
options that are supported by the NDIS driver for your card. A sample screen is shown in Figure 4-5.

Figure 4-5. Advanced configuration under WLAN Driver Loader

Eile Edit VYiew Go

Wireless interface
MAC Address
License E-Mail
License Key

Radio
Enable/Disable

Power Save Mode
Preamble Mode

Fragmentation

Bookmarks Toals Help

ethl
00:06: 25:30:AE:51

ToEens S @y ahoo com

dd -B-F-EF-05-40
Enabled =

Disabled =|

At

£345

Threshald Range: 256 - 2346

RTS Threshold J-’f:‘ .

Power Cutput Moo =

Frame Bursting Disabled |

E::Irllirabn;}'];tinn Enable I

Antenna Diversity At |

802,11 mode 44G-Only highes: pedormance =|
Transmit Rate Fully o =]

IB55 Channel &

Number Rangw: 1«11

Save Canced

After having made any changes in the Advanced configuration, exit the web-based configuration. Your
wireless card should now be active. In this example, you can see that our Linksys WPC55AG wireless card
has been assigned to ethl:

iwconfig

| o no W rel ess extensions.
et hO no wirel ess extensions.
ethl | EEE 802.11g ESSID: "whitecottage-wpa" N cknane:"unknown"

Mode: Managed Frequency: 2. 447GHz Access Point: 00:0C 41:D4: 71: AB
Bit Rate=54Mb/s Tx- Power =8 dBm

RTS thr:off Fragnent thr:of f

Encryption key: of f

Power Managenent: of f

Link Quality:1/1 Signal |evel:-38 dBm Noise |evel:-83 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid msc:0 M ssed beacon: 0

As you can see from the ESSID, we are connected to a WPA-protected network. To authenticate, see
Section 4.4.3 later in this chapter. The next section describes how to connect to a WPA network with a
Prism-based card and the HostAP driver without using the WLAN Driver Loader.

Bleeding-Edge Warning

The Linuxant WLAN Driver Loader software is very new. As with any new software, particularly
software that allows cross-platform device drivers to work, you may run into problems. The
first two cards we tried with the Linuxant software did not work.

The Linksys WPC55AG card is based on the Atheros 5211 chipset and is compatible with
802.11a/b/g. While it was easy to load the card driver and make it work with WLAN Driver
Loader, further configuration of the card was prohibited by the fact that we could not change
operating modes. The card remained stuck in 802.11a mode, making it impossible to test with
our 802.11g access point that supports WPA. According to Linuxant Support, the INF file
included with the WPC55AG driver doesn't contain a section that deals with changing the mode
of the card; this is a bit odd, because the card does support this function in Windows.

We then attempted to load the drivers for an Orinoco Gold 802.11b card. Agere has recently
released Windows drivers that support WPA on this card, available from
http://www.agere.com/support/downloads. While we were able to load the drivers, WLAN
Driver Loader was not able to find any compatible devices on the system. We suspect this is
because our test system already had the orinoco_cs driver loaded, but even by disabling
orinoco_cs, we were unsuccessful.

Our last, and only, successful test used a Linksys WPC54G 802.11G radio card. This is based
on a Broadcom chipset and worked flawlessly, in both the setup and with the wpa_supplicant
software.

4.4.2 HostAP

Jouni Malinen, the developer behind the HostAP project, has developed a package called wpa_supplicant.
In this section, we discuss how you can use a Prism-based wireless card, the HostAP driver, and the
wpa_supplicant to connect your Linux box to a WPA-protected network.

In order to use the wpa_supplicant in conjunction with HostAP, you must have a Prism-based Wi-Fi card
with station firmware Version 1.7 or later. The latest version of firmware as of this writing is 1.8.0,
although Version 1.7.4 is more widely available and works as well. The most complete collection of Prism
firmware is located at http://www.red-bean.com/—proski/firmware

To update your Prism card firmware, refer to the excellent tutorial at http://linux.junsun.net/intersil-
prism. If you have questions or problems with the firmware update process, we recommend that you
check there first. However, we do go over the basics of updating your firmware later in this section. To
determine whether you need to update the firmware.

1. Build and install the hostap utilities (see Section 4.4.2.2 later in this chapter).

2. Use the host ap_di ag Wl an0 command to determine the current version of your Prism firmware.
Alternatively, use dnesg | grep w an0. hostap_diag returns output similar to the following:

NI ClID: id=0x8013 v1.0.0 (PRISM Il (2.5) Mni-PCl (SST parallel flash))
PRI I D: id=0x0015 v1.1.0
STAID: id=0x001f v1.4.9 (station firmare)

3. You should be concerned with the Station Firmware version, which must be at least Version 1.7.0.

http://www.agere.com/support/downloads
http://www.red-bean.com/~proski/firmware
http://linux.junsun.net/intersil-

Chances are that your card is below that version, and you will need to upgrade the firmware. Take
note of the NICID in the output of dmesg or hostap_diag. This is the ID of your Prism card and there
are many different IDs. Some IDs have only certain firmware versions available. To determine the
software that is required for your card, consult the tutorial at http://linux.junsun.net/intersil-prism.

Once you've determined which firmware you need, you can build hostap and its utilities, and then update
the firmware, as described in the following sections.

4.4.2.1 Building hostap from CVS

While you don't necessarily need the CVS version of the HostAP code to update your Prism firmware, you
will need it to use the wpa_supplicant features and to obtain the wpa_supplicant code.

You can obtain the CVS development snapshot from the HostAP web pages at http://hostap.epitest.fi.
Select the link for development branch in the section titled "CVS snapshot of the driver source code." You
must have the development branch of the code to get the WPA features.

Once you've downloaded the compressed file, extract it and change to the newly created directory:

tar xzvf hostap.tar.gz
cd hostap

You must edit the file drivers/modules/hostap_config.h and make sure these two items are
uncommented: #defi ne PRI SM2_DOMNLOAD_SUPPORT and #defi ne PRI SM2_NON_VOLATI LE_DOMLOAD. In
the CVS version, the first #define statement is already uncommented.

Once you have edited this file, go back to the hostap directory and build the software:

make
make install

To load the new HostAP drivers, stop and restart the PCMCIA services:

letc/init.d/ pcntia restart

4.4.2.2 Building the hostap tools

In the hostap source directory is a subfolder containing the hostap utilities. Building them is easy:

cd utils
make

There is no make install command, so if you want the tools installed outside of the utils directory, you
must move them yourself. Our examples merely run the utilities out of the directory where they are
compiled.

4.4.2.3 Updating the firmware

Copy the version of firmware files that you need for your prism card into the utils directory. The utility
that manages the firmware upgrade is pri sn2_sr ec. This utility not only updates the station firmware of
your card, but also the primary firmware. Updating the primary firmware is beyond the scope of your
needs, so focus simply on updating the station firmware.

Station firmware is always provided in the format s[pl at f orn] [ver si on] . hex. The tutorial web pages at

http://linux.junsun.net/intersil-prism
http://hostap.epitest.fi

http://linux.junsun.net/intersil-prism give you information on determining your platform. Make sure that
you are using the station firmware file and no other file. You could render your card useless if you were to
update it with the wrong firmware (the faint of heart may want to consider updating their card using a
Windows-based updater from the manufacturer, which is likely to be the only supported technique).

First, do a test run in verbose mode:
./prisnm2_srec -v W an0 s1010701. hex

The -v argument specifies verbose mode, and because we have not called the tool with any other options,
it simply tests the firmware against the card. If at the end of the output you see OK, you can proceed to
the next step. If you see anything else at the end of the output, do not proceed. You will know that the
firmware is not compatible with your card if you see output like:

NI CI D was not found fromthe Iist of supported platforns. Inconpatible update data

Assuming that your test run returned an OK, you can proceed to the next step, and write the firmware to
the flash on the Prism card. First, if you use a laptop, make sure it has a fully charged battery and is
plugged into the wall outlet. If your computer is a desktop, be sure that it is plugged into a UPS. (If the
power fails during this step, your Wi-Fi card will be useless.)

./prisnm2_srec -v -f wan0 s1010701. hex

The process takes about 30 seconds, and you should make sure that the card is not removed during the
update. Once finished, you should see output that shows the new firmware versions on the card and that
should be returned to a shell prompt:

Conponents after downl oad:
NI CI D. 0x8003 v1.0.0
PRI I D: 0x0015 v0.3.0
STAI D. 0x001f v1.7.1

#

The card driver is unloaded after the firmware update, so you should remove the card and reinsert it to
reload the driver.

4.4.3 Authenticating with wpa_supplicant

The supplicant software is included in the CVS releases of HostAP 0.2.x source, so you have already
downloaded it when you installed the CVS version of HostAP in the previous section. Linuxant also
provides the source for wpa_supplicant in the downloads section of its web site, but as of this writing, the
version included with HostAP 0.2.x source is more current. We recommend obtaining the HostAP source to
build wpa_supplicant even if you plan on using it with the WLAN Driver Loader.

Operating wpa_supplicant with either HostAP or the WLAN Driver Loader doesn't require a different setup.
You must make sure that the wireless card that you intend to use with WLAN Driver Loader supports WPA
in both the card firmware and the Windows NDIS driver. See the sidebar Bleeding-Edge Warning for
details on how some WPA-enabled cards may not work.

The only difference between running wpa_supplicant with HostAP and WLAN Driver Loader is what
interface you call from the shell. HostAP interfaces are always wlanX, typically wlanO. For all of the cards
we tried with WLAN Driver Loader, the interface came up as ethl.

In the hostap source directory is a subfolder that contains the wpa_supplicant. Building it from source is
easy:

http://linux.junsun.net/intersil-prism

cd wpa_suppl i cant
make

Again, there is no make install, so you must copy the generated executables to where you want them:
wpa_supplicant and wpa_passphrase, and the configuration file wpa_supplicant.conf.

According to the README file included with the source, wpa_supplicant is designed to run as a background
daemon. A frontend program that provides a user interface is planned but is not yet available.

On currently available access points, there are two possible operating modes for WPA:

WPA-PSK (pre-shared key)

Also called "WPA-Personal™ by the Wi-Fi Alliance; this somewhat resembles WEP in that it allows you
to use an identical key (a pre-shared key) on both the access point and the client. The access point,
acting as the WPA Authenticator, uses this pre-shared key to generate a master session key.

WPA-EAP

Also called "WPA-Enterprise" by the Wi-Fi Alliance; this relies on an external authentication server,
most likely RADIUS, and the EAP used by 802.1x. The master session key is generated by the
Authentication Server and then passed to the access point, which authenticates the client with that
key.

In both cases, WPA implements a 4-Way Key Handshake and Group Key Handshake, which generates and
exchanges data encryption keys between the Authenticator (access point) and Supplicant (client). The
only difference between the two methods is where the master session key is generated.

You want to start wpa_supplicant as a daemon, give it the path to the configuration file, and specify the
wireless interface. In most cases, you can use the line shown in Example 4-1.

Example 4-1. Launching wpa_supplicant

[path/to/ wpa_supplicant -Bw -c /path/to/ wpa_supplicant.conf -iw an0

This makes the process fork into the background and wait for the wlanO interface, so you can insert this
command into an appropriate place in your startup environment. WPA handshakes must be complete
before data frames can be exchanged, so wpa_supplicant must be started before a DHCP client, for
instance.

wpa_supplicant must be running when using a WPA-protected wireless network, so it should be started
from system startup scripts using the command shown in Example 4-1, or it can be called from the
pcnti a- cs scripts if you are using a PC card.

To enable WPA support using the pcnti a- cs scripts, add these lines to /etc/pcmcia/wireless.opts:

MODE=" Managed"
WPA="y"

Add the following code to the end of the st art action handler in /etc/pcmcia/wireless:

if [$WPA = "y" -a -x /usr/local/bin/wpa_supplicant]; then
[usr/l ocal / bin/wpa_supplicant -Bw -c/etc/wa_supplicant.conf \

- i $DEVI CE
fi

Finally, add the following code to the end of the st op action handler in /etc/pcmcia/wireless:
if [$WPA = "y" -a -x [usr/local/bin/wpa_supplicant]; then

killall wpa supplicant
fi

The combined effect of these changes make cardmgr start up wpa_supplicant when the card is plugged in.
wpa_supplicant waits until the interface is set up, and then negotiates keys with the access point.

The example wpa_supplicant.conf file can be used to generate a configuration for your environment. The
file needs at least two mandatory parameters, and it has several options depending on how your network
is configured. The general file format should be as in the example below. Empty lines and lines starting
with # are ignored.

net wor k={
ssi d="1 ocked- down"
psk="s00pers3cr3t"
key ngm =WPA- PSK
pai rwi se=CCVP TKI P
gr oup=CCWP TKI P

}

Here is a list of the possible fields in the configuration file:

ssi d=

A mandatory field that can be either an ASCII string in quotes or a hex string.

bssi d=

Optional, only needed if your network uses a BSSID.

key ngnt =

A list of accepted key management protocols. Options are WPA- PSK, WPA- EAP, and NONE. If not set,
this defaults to WPA- PSK WPA- EAP.

pai rw se=

A list of accepted pairwise (unicast) ciphers for WPA. Options are CCMP (AES encryption), TKI P, or
NONE. If not set, this defaults to CCMP TKI P.

group=

A list of accepted group (broadcast/multicast) ciphers for WPA. Options are CCMP, TKI P, VEP104,

and VEP40. If not set, this defaults to CCMP TKI P WEP104 WEP40.

psk=

A mandatory field when using WPA-PSK. This field can be entered as 64 hex digits or as an ASCI|I
passphrase. The ASCII passphrase must be at least 8 characters in length and can be a maximum
of 63 characters.

In our example configuration, we are connecting to a WPA-PSK network, and we have chosen to put the
ASCII passphrase in the text configuration file. If you want more protection, the included tool
wpa_passphrase can be used to generate 256-bit keys from an ASCII passphrase. This tool uses a fair
amount of CPU time, so it should be used only when the passphrase has actually changed.

If you don't have WPA set up on your access point, see Section 4.4.3.2, which provides information on
setting up a Linksys access point for WPA.

wpa_supplicant has an experimental interface for integrating with Xsupplicant. This allows you to connect
to a WPA-EAP network by having Xsupplicant manage the 802.1x and EAP authentication. In order for this
to work properly, Xsupplicant must be modified to send the master session key to wpa_supplicant after
successful EAP authentication.

The latest wpa_supplicant code includes an xsupplicant.patch that can be used to patch the source code
for Xsupplicant. However, this patch has been merged into the Xupplicant CVS code, so we recommend
you check out CVS code instead of dealing with the separate patch.

4.4.3.1 Xsupplicant

The folks at the Openlx project build the Xsupplicant software, available at http://www.openlx.org. The
latest stable release is Version 0.8b. However, for our purposes, we need the CVS code, which you can
check out from the SourceForge CVS server using the following commands (press Enter when prompted
for a password):

cvs -d:pserver:anonynous@vs. sour cef orge. net:/cvsroot/openlx |ogin
cvs -d:pserver:anonynous@vs. sourceforge. net:/cvsroot/openlx co \
xsuppl i cant

These commands check out the CVS code and deposit it in a newly created xsupplicant directory.

Xsupplicant requires that Openssl 0.9.7 or greater be installed. Mandrake, Fedora, and Red Hat users can
install the openssl package, Debian users can run apt-get install openssl, and the source can be
downloaded from http://www.openssl.org. Most distributions already have this package installed by
default, but you may need to upgrade it to ensure that you have the version required.

In order to get the CVS code running, you must install the automakel.7 and autoconf2.5 packages (or
more recent compatible versions). Once these are installed, compiling from source is straightforward:

cd xsupplicant
./configure

make

make install

This installs xsupplicant and some related tools in /usr/local/bin. However, the CVS nake instal | does
not install a config file, so you must copy the sample etc/xsupplicant.conf to /etc/1x/1x.conf (this is the
default location of the conf file).

http://www.open1x.org
http://www.openssl.org

Edit the 1x.conf file. Many of the defaults can be left in place, but you must change a few particulars
starting with the identity, then moving on to the EAP type. Although the sample configuration file gives
you a starting point for each type of EAP, we'll use EAP-MD5 because it's easy to implement and doesn't
require us to generate a certificate. After that, you need to configure the phase2 authentication type and
chap:

identity =

What Xsupplicant responds with when presented with an EAP ID Request. This is typically the
username, and because this can be an arbitrary string, you should enclose it with a <BEGIN ID>
and <END ID>.

eap-md5

In this section, you must enter a username and password.

phase2_type

Here you must specify the type of phase2 authentication. The default is chap, which we use for our
example.

chap
In this section, you must enter a username and password.

If you're uncomfortable entering confidential information into clear text files, Xsupplicant can be called
from the command line with switches that allow you to enter your username and password with the - u
and - p options. However, these options allow anyone who can execute a ps command on your system to

see your password.

Xsupplicant can be used both to authenticate your Linux machine to an 802.1x server as well as in
combination with wpa_supplicant to connect to WPA networks.

In either case, Xsupplicant must be activated after the interface is brought up so it can transmit
authentication information; Xsupplicant is unlike wpa_supplicant, which must complete the WPA
handshakes before any data can be transmitted.

After you have entered all of the correct information into the 1x.conf file, call Xsupplicant from the
command line:

xsupplicant -i wan0 -D

This command line puts Xsupplicant into daemon mode after it receives the password. Put the 1x.conf file
in the default location so you don't need to specify the location of the conf file. This command allows you
to authenticate against any 802.11x server.

To use Xsupplicant in combination with wpa_supplicant to connect to a WPA-EAP network, you must
change a few things:

1. First, you must edit the wpa_supplicant.conf file and change the key_ngnt entry to WPA- EAP.
2. Now you can start Xsupplicant, but it must be started with an extra command line switch:
xsupplicant -1 wan0 -D -W

The - Wswitch tells Xsupplicant that it must communicate the master session key that it obtains from the
802.11X/EAP server back to wpa_supplicant.

Xsupplicant also comes with some example i fup and i f down scripts in the tools directory of the source
tarball. We suggest that you use these scripts instead of the normal distribution scripts when you wish to
bring up or down an interface that uses 802.1x authentication.

4.4.3.2 Example WPA setup on a Linksys access point

All of our testing with WPA-PSK and WPA-EAP was done using a Linksys WRT54G Wireless Router. With
Version 2.0 and above of firmware, the WRT54G is capable of both WPA methods as well as TKIP and AES
encryption.

Figure 4-6 shows the configuration necessary for a WPA-PSK setup.

Figure 4-6. WPA-PSK setup for a Linksys WRT54G

Firwvears Yorson ¥1.00.0

Wiraless-3 Broadband Reuter WRTS4G

Wireless up imiaan —— L Applications L istretien Stabus

Misel
| ‘Wiishess Secuilty I —

Wirmleaua Seeuriby

Jacuily Made WA Pre-Shared Key |
T e—— |11-:P -
WRE Shared Eey: I-il’.'l:mm s 3cr3t

oup Ky - -
Benewal |11:.|:||:| seconds

Figure 4-7 shows configuration for a WPA RADIUS setup.

Figure 4-7. WPA RADIUS setup for a Linksys WRT54G

Furwvscds bersas w100 R

Wireless-G Broadband Rowter WRTSAG

secuity Made. [WRA RADILS -

WA Egorisims: | TRF j

BADLIS Sereer I | | |
R e ah:

SADLIG Part |:| g1z

Shared Eey foopersacra

Eey Nefewi
Timeaui

I:-I-I:Iﬁ seConds

4.4.3.3 WPA RADIUS setup details

In order to make this work, we set up a Mandrake 9.2 system as a dedicated RADIUS server. For a
RADIUS server, we installed the freeradius packages and their dependencies with ur pni freeradi us.
RedHat, Fedora, and Debian users should be able to install the freeradius packages similarly on their
systems. We did not attempt to compile the source code for our testing, but it can be downloaded from
http://www.freeradius.org.

FreeRadius supports a wide variety of database backends, including LDAP, MySQL, and others. This was
major overkill for our purposes. In order to run FreeRadius, we had to edit two files:

/etc/raddb/users

We didn't use any backend database for users, so we simply added several test users to this file. A
sample user entry is shown here:
“roger" Aut h- Type : = Local, User-Password = = "usel ess"
Repl y- Message = "Hell o, "

/etc/raddb/clients.conf

For each client of the RADIUS server, you can define an entry with a shared secret. This isn't
particularly secure, because RADIUS shared secrets are sent in the open with no encryption (for this
reason, you should use a wired link on a physically secured network between the RADIUS server
and access point). If this shared secret were compromised, it would not compromise the integrity of
the 802.1x-protected communication. However, an attacker with knowledge of the secret and
physical access to your network could replace either the RADIUS server or access point. We defined
an entry for our Linksys WRT54G and made sure that we entered the same shared secret here as
we did in the Linksys setup:

client 10.42.7.14 {

secr et = s00pers3cr 3t
short nanme = wrt54g
nastype = ot her

http://www.freeradius.org

Once we edited these files, we started FreeRadius manually with debugging enabled so we could watch for
any problems:

[usr/sbin/radiusd -x

At this point, we were able to use the combination of Xsupplicant and wpa_supplicant described earlier in
the chapter to establish a WPA link with the WRT54G, and authenticate through to the RADIUS server.

48 FREV < Day Day Up > MEXT @

< Day Day Up >

Chapter 5. Configuring Access Points with
Linux

So you've purchased an access point. You brought it home from the store, broke open the packaging,
discarded all of the extraneous bits of fluff, and you're likely left with an access point, a power supply, an
Ethernet cable and a CD that says "Windows Software Installation."

This chapter explains how to avoid this scenario. While there are vendors of wireless equipment that still
expect you to configure their gear from a Windows PC, there are many alternatives for the Linux user.

Many of the early access points from vendors, such as WaveLAN/Lucent/Orinoco, Linksys, and others,
required an external setup program. With few exceptions, these setup and configuration programs ran
only under Windows. However, as the price of wireless equipment continued to drop and access points
began to be marketed to home users, a number of vendors chose to make their equipment configurable
with a web browser.

There are also several manufacturers that allow Telnet access for configuration of their access points. One
thing you're unlikely to find, however, is SSH-enabled access. As of this writing, there are no commercial
access points capable of SSH. However, at least one company is producing wireless routers that operate
using a Linux kernel. Several organizations have built custom firmware for these boxes that include SSH
daemons. See Chapter 6 for details.

& FREV | < Day Day Up > | NEXT ap

< Day Day Up >

5.1 Linux-Friendly Wireless Vendors

While it is impossible to provide a complete and up-to-date list of all wireless vendors, Table 5-1 shows a
list of many of the major manufacturers, the types of equipment they sell, and how their equipment is
configured.

Table 5-1. Linux-friendly wireless vendors

Vendor Equipment types Configuration methods

Linksys[11

Access points, bridges, routers Web-based
www.linksys.com
Netgear

Access points, bridges, routers Web-based
www.netgear.com
D-Link

Access points, bridges, routers Web-based
www.dlink.com
Cisco

Access points, bridges Web-based, Telnet, SNMP
WWW.CiSco.com
SMC

Access points, bridges, routers Web-based
WWW.Smc.com
EnGenius

Access points, bridges, routers Web-based, Telnet, SNMP
www.engeniustech.com
Belkin

Access points, bridges, routers Web-based
www.belkin.com
US Robotics

Access points, routers Web-based
WWW.USr.com
Microsoft

Access points Web-based
www.microsoft.com
ActionTec

Access points, routers Web-based
www.actiontec.com

[1] Linksys was acquired by Cisco in June 2003.

Alternatively, Table 5-2 shows a list of vendors that are not configurable from Linux out of the box.

However, with some of this equipment, there are alternative methods of configuration, and even the
ability to reflash the firmware to run Linux or make the device act like a different model.

Table 5-2. Linux-less-than-friendly wireless vendors

Vendor

Equipment types

Configuration methods

Proxim Orinoco

WWW.proxim.com

Access points

Windows GUI[21

Apple

www.apple.com

Access points

Apple GUI

Tranzeo

Access points, bridges

Windows GUI, limited telnet

SmartBridges

www.smartbridges.com

Access points, bridges

Windows GUI

[21 Proxim makes available the Orinoco CLI Proxy, which is covered later in this chapter.

< Day Day Up >

< Day Day Up >

5.2 Commercial Wireless Equipment Overview

With the explosion in Wi-Fi popularity, a corresponding plethora of vendors and equipment choices have
surfaced. There are an amazing number of access points, but there are also wireless routers, wireless
bridges, wireless-to-Ethernet bridges, and some Linux-powered equipment as well.

5.2.1 Access Points

In Chapter 1, we covered the basics of 802.11 and the two modes of operation it supports. Infrastructure
Mode, the most common mode, requires the use of a wireless access point.

Most access points on the market share a common number of connectors: at least one external antenna,
one Ethernet port, status LEDs, and an external power supply or wall wart. Other features you might find
on some models include connectors for attaching external antennas, a reset button to return the unit to
factory settings, multiple Ethernet ports, and support for Power Over Ethernet (POE).

Power over Ethernet

If you're familiar with network cabling, you know that Ethernet uses only two pairs of the wire
inside a standard Category 5 cable. Pairs 1-2 and 3-6 are used, leaving 4-5 and 7-8 available.

POE sends DC power over these unused pairs, enabling the placement of access points or
other network hardware away from power sources. This is especially useful if you need to
mount your access point on a pole, on the ceiling, or in other inaccessible places. Run CAT5
wire rather than going to the trouble of running electrical conduit. You can now supply both
Ethernet and power to the unit.

In June 2003, the IEEE released its specification for POE, 802.3af. More information on this
standard can be obtained from the IEEE web site at http://www.ieee802.orqg/3/af/.

The IEEE standard is only a few months old as of this writing, so most POE equipment
available for purchase will not meet the standard. There are excellent documents from
community wireless organizations available on building POE equipment. A few good examples
are the Bay Area Wireless Users Group (BAWUG) page at
http://www.bawug.org/howto/hacks/PoE/ and the NYCWireless page at
http://www.nycwireless.net/poe/.

In order to make POE work, you need a power injector, which is referred to in the 802.3af
standard as the Power Sourcing Equipment (PSE), and a corresponding unit on the other end.
The standard refers to the end device as a PD.

If your equipment is designed to support POE out of the box, you need only a PSE. This unit
typically has three jacks: DC power, Ethernet IN, and Ethernet/power OUT. Connect power,
Ethernet from your network, and then connect Ethernet/power OUT to the Cat 5 cable running
to your Powered Device.

On the other end, if your equipment does not natively support POE, what you need is a
splitter, a reverse of the PSE. It also has three jacks: Ethernet/power IN, Ethernet OUT, and

http://www.ieee802.org/3/af/
http://www.bawug.org/howto/hacks/PoE/
http://www.nycwireless.net/poe/

DC power OUT. This device takes your incoming Ethernet/power and splits it again for
connection to your device.

WARNING: unless you have electrical and LAN wiring experience, making your own POE
equipment can be dangerous or fatal to you and your equipment.

Once you get past the outside connectors, the internal features of access points begin to vary widely.
There are all sorts of devices on the market, ranging from simple home-use devices to enterprise-class
units designed for large deployments. The following list describes various manufacturers and some of their
equipment:

Apple AirPort

This was one of the first access points available. Apple brought this access point and the AirPort
client cards to market before the 802.11b standard was finalized. The internals of the unit are built
by Lucent/Orinoco and are identical to the Orinoco RG-1100. Note that this applies only to the
original AirPort model. The second model (Snow) and the subsequent AirPort Extreme are based on
a different processor.

Chapter 6 covers some utilities that can be used to reflash the firmware on these units, allowing you
to swap personalities and even to run Linux on them. As shown in Table 5-2, the AirPort and the
RG-1100 are not configurable out of the box from Linux. This is easily remedied. Also, early
versions of the AirPort had problems with non-Apple wireless cards. Many of these cards would not
associate with the access point. This has since been fixed through firmware updates.

Orinoco AP-series

This series includes some of the most popular enterprise-class access points. The AP-500 has a
single radio inside, an Orinoco PC Card. The AP-1000 was the first access point to feature two
radios, again both in PC Card format. Orinoco access points have a wide array of features: MAC
address filtering, network protocol filtering to enforce such policies as preventing IPX from
traversing your wireless network, support for RADIUS authentication, and custom power over
Ethernet adapters. Orinoco calls these units "Active Ethernet,” and they are available in 1-, 6-, and
12-port models, so that you can power up to 12 access points using the same POE adapter.

More recent models include the AP-2000, the successor model to the AP-1000 (which features
upgradeability to 802.11a or 802.11g, or both), giving you a tri-mode access point with all of the
Orinoco features, and the AP-2500, which is a "hotspot-in-a-box" model that includes a captive
portal and many other features necessary for setting up a wireless hotspot.

Linksys

Linksys made a huge splash with its WAP-11 access point when it was first introduced. It had a
good feature set and external antenna adapters, and was priced for the home market.
Unfortunately, it is mainly configurable through a Linksys-specific setup program, which runs on
Windows. There is an SNMP utility for Windows, and Linksys did publish an SNMP Management
Information Base (MIB) for Linux/Unix users. (An MIB is one or more text files that allow Linux's
SNMP tools to generate human-readable statistics from SNMP management strings.)

Later Linksys models still continue to ship with Windows-only setup programs. However, they now

offer web-based configuration that is easily accessible from Linux web browsers.

Much of the other consumer-level wireless gear can be placed in the same area as Linksys. D-Link,
SMC, and Netgear all offer models with nearly identical features and price points.

EnGenius/Senao

Early in 2002, rumors surfaced of a 200 mW radio card. While one manufacturer, Zcomax, had
made these available, they were hard to find and were expensive.

At that point, with a few exceptions, most radio cards and access points were powered by 30 mwW
radios. You can imagine how excited the wireless users were at the thought of being able to expand
their range.

Today, EnGenius/Senao offers several access points for indoor and outdoor use, all with 200 mW
radios. Along with Cisco, it is one of the few vendors to support Telnet access for configuration.
Figure 5-1 shows a sample web-based configuration screen from an EnGenius access point.

Tranzeo

Cisco

Tranzeo is one of a number of vendors focused on supplying wireless Internet service providers.
Tranzeo's equipment is designed to work outdoors and comes in many models, some of which
include an integrated directional panel antenna. Its access points are accessible via Telnet as well as
a Windows-based GUI. Many of its models offer some routing features (see Section 5.2.2 later in
this chapter).

The 800-pound gorilla of networking, Cisco, entered the 802.11 market when it acquired Aironet in
late 1999. Aironet was already a manufacturer of 802.11 first-generation equipment, and Cisco
bought Aironet at precisely the right time to take advantage of the 802.11b introduction.

Cisco's access points, as expected, integrate extremely well into a Cisco network. They have a wide
feature set and compare well with the products from Orinoco in the enterprise space. Also, as
expected, the Cisco units all support Telnet as well as web-based configuration. Figure 5-2 shows
the main Telnet screen from a Cisco AP.

Figure 5-1. Web-based configuration for an EnGenius/Senao access point

Wirelerr docemr Peiel NP W - Herills Firekird

Fh Ed1 Yww G Bepknads Teds Hag

- ;I;_-I

| Pap 10427 1 e reiess_semp_mein hir

SENAD
Wireless Solution Provider

deomny et mane: 142000 i e
e e o e
Ohammmie | |7 v USACLE -0, TS 1D, SN -

e vl Bl o R F RS I ule e momgenier paieng

Soprmirg ey ol TEFE SEE B orete e s pamsian

Trasominies retw Ul | SUlsmalc -

AP W iy e v, D e | P e
e ot ks el BT sl e | i AR o T o e P
wup
wiskamy Malaii ¢ Wbk Itz
WIP ceafpuration "o x4 b g e e 1 e k. g B ey b, T 120 ey e
It 1m 7 b i by e ¢ ek e H e e mer
by ol e
(LI
PRy | GO0 % R gl o o b
WiF e |

Figure 5-2. Cisco Telnet configuration window

Tarninal

FIIE Edit Settings Help

5.2.2 Wireless Routers

The line between an access point and a wireless router is very blurry. Many devices sold as access points
include routing features. For example, the Apple AirPort models offer Network Address Translation and a

DHCP server. Wireless routers are basically a combination of home ADSL/cable routers and a wireless
access point.

There are some key differences, however, between most of the wireless routers now available and
standard access points. You can expect to find at least some of these features on a wireless router:

Routing protocol support

RIP or RIPv2 on many models

Network services

DHCP, DNS, and others

Encryption support

Client or router support for IPSec and PPTP VPNs

Limited firewalls

IP masquerading and some packet filtering

Port forwarding
Sending certain TCP or UDP ports to a specific machine

These units are really designed for home or small-office use. You'll find that the larger network vendors
such as Cisco don't manufacture this type of hardware, because they want you to purchase one of their
full-fledged routers.

Security in many models of these routers is also questionable. The bugtrag mailing list at
http://www.securityfocus.com/archive shows you that the number of vulnerabilities in this type of
consumer hardware is fairly high. While these units increase security compared to a standalone PC
connected to a DSL modem, they are not the end-all be-all for network security.

Wireless routers are available from almost any manufacturer that also makes access points. An
alternative to commercial wireless routers is to build your own using Linux. Chapter 6 covers this topic in
detail.

5.2.3 Wireless Bridges

Perhaps the most well-known wireless bridge is the Linksys WET-11. A wireless bridge takes in an
Ethernet signal and repeats it out to a wireless network, and vice versa.

A wireless bridge is not an access point, however. The bridge is only capable of acting as an infrastructure
client to a distant access point. The practical uses of these devices abound. If you want to connect your
Ethernet-enabled PC to your wireless network, attach it to a bridge. Wireless ISPs can install a wireless
bridge as their customer premises equipment (CPE), allowing the customer to have a wired Ethernet
network in her home, bridged wirelessly to a remote access point. Any device with an Ethernet port can
be added to a wireless network using a wireless bridge.

As with wireless routers, most of the companies that manufacture access points have at least one model
of wireless bridge available. If you want an outdoor wireless bridge with an integrated antenna, excellent
models are available from Tranzeo at http://www.tranzeo.com. Models for home or office use can be
found from Linksys, D-Link, SMC, and all the other usual suspects.

http://www.securityfocus.com/archive
http://www.tranzeo.com

& Frev | < Day Day Up > | NEXT up

< Day Day Up >

5.3 Configuring Access Points

While many of the manufacturers we've covered allow their wireless equipment to be configured through
a web or telnet interface, this is not an option for Orinoco or Apple access points. However, there are two
options for configuring Orinoco access points under Linux and at least one option for Apple AirPort
configuration.

5.3.1 Orinoco CLI Proxy

Orinoco provides a program it calls the CLI Proxy. It's available at
http://www.proxim.com/support/all/orinoco/software/di2002 orinoco_apcli_117 linux.html. If you look at
the accompanying README file, there appears to be support from Orinoco for this product.

The release notes and program are from 2002 and have not been updated in a while. The system
requirements state that the program runs under Red Hat Linux 6.1 or similar systems. We were able to
successfully install and run the package on both Red Hat 9 and Debian Woody distributions.

To install the CLI Proxy, download the .tgz file from the Orinoco web site. The help notes suggest
unpacking it in the /opt directory, but that's not necessary. The package can be unpacked in any location
that makes sense for your filesystem. For our purposes, we'll assume you're using /opt. You'll need 1.5
MB of disk space for installation.

To unpack, execute the following command as root:

tar xzvf clilill7.tar.gz

The package is a compiled binary with no source, so at this point all you can do is execute the program
with the command / opt/cl i proxy/cli proxy. You'll see this prompt:

[CLIT>

First, read through the HTML documentation that is installed with the program in the /opt/cliproxy/Help
directory.

The program works by downloading a configuration from an Orinoco access point on your local subnet.
The program makes use of broadcast traffic, so your Linux box must be on the same physical network as
the access point for it to work. You can also open a local configuration file. This is done through the use of
the confi gur e command. Saving the file is accomplished by writing the file to disk or writing it to the
access point, and is done by issuing the command wri te.

The interface is very similar to Cisco 10S, along with tab-completion of commands and the use of the ?
key to find context sensitive help. For example, show ? gives you all of the options to the show command.

Once you have opened a configuration for editing, you can modify any of the access point features
available, from the wireless interface to TCP/IP options to setting up bridging. The Orinoco access points
have a pretty broad set of features.

The software ships with default configuration files for the Orinoco AP-1000 and AP-500, which you can
open and modify to fit your needs.

http://www.proxim.com/support/all/orinoco/software/dl2002_orinoco_apcli_117_linux.html

5.3.2 Airport/RG-1000 Configurator

Jon Sevy of Drexel University has built a Java-based configuration program for the Apple AirPort and the
Orinoco RG-1000 access point. He also has versions of this program for the newer AirPort models with two
Ethernet ports and the AirPort Extreme 802.11g model. The software can be downloaded from
http://edge.mcs.drexel.edu/GICL/people/sevy/airport/#Configurator.

There are versions for Unix as well as MacOS 9, Mac OS X, and Windows. You need a Java 1.2-compliant
runtime engine (JRE). The latest versions of Java for many platforms can be downloaded from Sun
Microsystems at http://java.sun.com/j2se/1.4.

Once you've downloaded the Configurator, unpack it in a directory of your choice and run the program
using this command line:

java -jar AirportConfigurator.jar

When Java starts, it executes the Java Archive (JAR) code, which will result in Figure 5-3.

Figure 5-3. Java AirPort/RG-1000 Configurator main screen

=R
Dewice address: 100,11 | Community name fpasveords: |
| Discoar Dewices | REtrige S:E'l.'lilﬂji |
Agcess Control | Pen Mappings | SHMPSetting: | Advanced Settings
CMain | Wireless LAM Settings | Metwark Connection | Bridging functioms | DHCP Functions |
Ease s1alion name
Base station location
Contam person name
Community name |
ienter onty if o be changed
Messages:
E ‘Weisizn 112 J- Fewy, fMeveriber JO07 J

If you're familiar with either the Orinoco configuration programs available for Windows or the FreeBase
configuration software written to configure an Apple AirPort from Windows, this screen is very familiar.

As you can see, you have the option to discover compatible devices on your network or to specify the IP

address of a device you wish to configure. Configuration is handled through a series of tabs, giving you
options for wireless and wired network settings, bridging, DHCP, and a whole host of advanced settings.

& FREY < Day Day Up > NEST

http://edge.mcs.drexel.edu/GICL/people/sevy/airport/#Configurator
http://java.sun.com/j2se/1.4

< Day Day Up >

5.4 Flashing Your Access Point

One feature that is not immediately apparent in the Java Configurator is located in the drop-down File
menu: Upload New Base Station Firmware. This feature is also available in the Orinoco configuration
software for Windows and in the Apple AirPort software for Mac OS X, as well as in the FreeBase software
mentioned earlier.

However, a neat hack that the Java configurator and FreeBase allow is the uploading of firmware to a
device that does not explicitly match the firmware in question.

For example, the original Apple AirPort and the Orinoco RG-1000 are identical hardware, so you can flash
either unit with the firmware image of the other. You can also flash both of these models and the Orinoco
RG-1100 with the Orinoco AP-500 or AP-1000 firmware (which is quite a feature upgrade because it
supports bridging, protocol filtering, RADIUS, and many other advanced configuration options).

To flash the firmware, you need the firmware images. The Orinoco CLI proxy software comes with binary
(.bin) firmware images for the AP-500 and AP-1000. The Orinoco AP Manager software for Windows
comes with these images, as well as the RG-1000 and RG-1100 images. It is available from
http://www.proxim.com/support/all/orinoco/software/dl2002 orinoco ap 75.html.

Apple has built its firmware updates into the executables for its AirPort updater software. If you're a Mac-
head, you can use ResEdit to remove the binary firmware from the executable. However, we won't go into
that here. There is a non-Apple web page available that provides binary firmware images for the various
AirPort versions: http://www.icir.org/fenner/airport. Use these images at your own risk. For more
information on creative ways to flash an access point, see Chapter 6.

& FREY < Day Day Up > NEST

http://www.proxim.com/support/all/orinoco/software/dl2002_orinoco_ap_75.html
http://www.icir.org/fenner/airport

< Day Day Up >

Chapter 6. Building Your Own Access Point

Wi-Fi access points are inexpensive, because they are now accepted as commodity hardware. You can buy
them at discount stores, warehouse clubs, and probably your local gas station. Models with many features
and support for 802.11g can now be purchased for well under $100.

Why then would you want to build your own access point? Aside from the usual geek reason ("because
you can," a.k.a. "why even ask?"), there are many practical reasons:

e Make use of old or surplus PC hardware. An effective access point can be built with a 486/33
and 16 MB of RAM. Many commercial access points are not any more powerful inside. Don't know
what to do with that old Pentium? Stick a radio card in it and unwire your house.

¢ Take advantage of a complete Linux installation. Run an iptables firewall to protect your
network, build a web caching server, and set up intrusion detection. If you build a Linux-based
access point, you can do almost anything with it.

¢ Run a customized Linux kernel on off-the-shelf hardware. Wireless access point/routers from
Linksys and other manufacturers are actually running Linux kernels inside. Several groups of people
have put out alternative firmware for these units. You can build your own custom firmware if you
want.

These are only a few good reasons to build your own access point. In order to get started, you need some
hardware, a Linux distribution, and some configuration basics. We cover each in turn.

' FREW < Day Day Up > HEST l“

< Day Day Up >

6.1 Hardware

As we mentioned, building an access point can be a useful way to resurrect old PC hardware you may
have sitting around. Depending on where you want to install it, you can leave it in that old bulky case or
dress it up with a spiffy waterproof case and install it outside.

One of the wireless routing nodes we built for the NoCat network (http://nocat.net) in Sonoma County,
California, is a beige Macintosh G3/266 desktop machine. It runs Yellow Dog Linux and has two PCI-
PCMCIA converters and two Agere Orinoco Silver 802.11b radio cards. An odd choice, you might
think—but we had the hardware and it has already functioned as a wireless router for over a year as of
this writing.

There are a few things you'll want to keep in mind when deciding whether any given hardware is right for
building an access point:

Processor speed

While it might seem nostalgic to consider using a 386 or a non-PowerPC Mac for your access point
project, these machines are so slow and old that it can be painful running Linux on them. Once you
do, they don't have the horsepower to do many neat Linux tricks such as firewalling. Anything
faster than a 486/33 is able to act as an access point with little trouble.

Support

Older PCs can certainly be made into access points. Bear in mind, though, that you must dig up
such ancient artifacts as ISA network cards and SIMM memory. If you need to build on the cheap,
this can be the way to go, but all hardware ages and fails sooner or later. If you want reliability, you
might want to think about newer hardware. There's also the issue of relying on a PC with a spinning
hard disk inside—they will fail, often when you really need them.

Standardization

You might be expanding a larger network rather than just installing an access point in your closet. If
you build more than one access point for whatever reason, you've just crossed over into the zone of
network administration. In this world, standard hardware is the norm, because you can keep single
types of replacement hardware on hand, and if you're in a multisite network, it means that
everyone who's responsible is familiar with the same hardware.

Power

Depending on where you want to locate your access point, you must consider power requirements.
Do you really want a noisy old 486-power supply fan blowing in your closet? One alternative is to
consider DC-powered devices, which range from a dedicated embedded PC to an off-the-shelf

http://nocat.net

access point.

Ports

In a nutshell, does the hardware you're considering have all the right ports? Does it have onboard
Ethernet, or do you need to add a network card? If you add that network card, do you have room
for a radio card? Are there enough memory slots? Does it have a serial interface for a console? Do
you need a console?

6.1.1 Recycled Hardware

The first thing you should consider is whether you have any old PC hardware sitting around that can be
dusted off, turned on, and made into a Linux-powered access point. If you're on a budget, this may be
one of the cheapest solutions, but this depends on what hardware you have, and what you want to use it
for.

At a minimum, your hardware should be able to accommodate a Wi-Fi card and an Ethernet card. As
we've discussed already, you should not consider using anything slower than a 486/33 processor.
Additionally, if you have old Macintosh hardware available, you can easily run Linux on systems such as a
PowerMac 8500/120. It's also possible to run Linux on the first generation of PowerMacs, but their
motherboard are expandable only with NuBus interface cards, so you're not going to find a radio for these
models.

How much memory you need depends on what distribution you decide to run. If you choose to boot your
system in read-only mode from a CD or Compact Flash (CF) RAM, and use one of the custom distributions
designed specifically to be small, 16-32 MB of RAM will suffice. More RAM is always better, of course, and
if you plan on doing anything memory-intensive, such as web caching or intrusion detection, you'll want at
least 128 MB.

The beauty of using your own or buying used hardware is that you need very few components to build a
working system:

¢ Motherboard

¢ Memory

e Processor

e Power supply

¢ Bootable media drive: hard disk, CD, CF

e Ethernet card

¢ Radio card

All the other components you'd usually find on a regular PC are optional. A case is nice to keep dust off,
but a box or a large Rubbermaid container works just as well. You need a video card, keyboard, monitor,
and (optionally) a mouse for installation, but once the access point is operational, you can boot without
them. If your hardware is really old, it may not support booting without a keyboard. Check the options in
your BIOS to see if it will ignore a missing keyboard on boot.

All of the extraneous items that are in any old PCs can probably be removed: floppy drives, sound cards,

modems, and anything else not on the list above should all be taken out. You don't need them.

Another option that you should consider is an old laptop PC. The key concern here is PCMCIA slots. You
want at least two of them, unless the laptop has a built-in Ethernet port, which you probably won't find in
older laptops. The beauty of a used laptop is that they are inexpensive, especially if the LCD screen is
dead (which you don't need!). As long as it has an external video adapter or even a serial port that can be
used as a console, you should be set.

Fujitsu Stylistic

These units definitely fall under the category of recycled hardware, because they have been
out of production for years. They are not laptops, but rather the predecessor of the Tablet PC.
The Stylistic 1000 models are regularly available on Ebay for under $100. Fujitsu still
manufactures PCs in the Stylistic series, but all of its new models are Tablet PCs and cost as
much as a new laptop.

The 1000 series have three PCMCIA slots, one of which is the boot device. The Stylistics
shipped with internal type 111 PCMCIA hard disks, but you can also boot the unit from a CF
using a CF-PCMCIA adapter.

The 1000 models are powered by a 486 DX4/100 processor and expandable to 40 MB of RAM,
and they feature an integrated LCD display with cordless pen input and a 4-hour battery. The
1200 models are identical except that they are powered by a 120 MHz Pentium processor.

We have successfully used Stylistic 1000 units for access points and wireless routers on the
NoCat and Seattle Wireless networks. A single Stylistic 1000 served as the primary Internet
gateway for our Internet coop (http://www.wscicc.org) for over a year.

6.1.2 Small Board and Embedded PCs

So you don't have any used hardware sitting around that is suitable for building an access point, or you
want to build a small unit that might be placed in a location where using a full-size PC is impractical, such
as mounting it in a waterproof enclosure or installing it on your roof with a directional antenna.

However, an outdoor enclosure is only one reason you might want to think small. Power consumption,
noise levels, and available space are all good reasons to consider a small board or embedded computer
system for building your access point. Be warned, however: building one of these systems from the
ground up may cost you at least $400.

Your options in this arena range from custom-designed embedded PCs specifically built for
communications and networking to tiny PC motherboards that use the Mini-ITX form factor and measure
only 17 x 17 centimeters. Some of the more popular options include:

Soekris (http://www.soekris.com)

Packaged in a green metal case that is improbably the color of a refrigerator from the early 1970s,
the Soekris motherboards are a popular choice with do-it-yourself networkers. Soren Kristensen has
designed and built several custom motherboards based on the x86 architecture, and as of this
writing, he has four different models available for single purchase or bulk quantities. All of the
Soekris units are DC-powered and wired to support Power Over Ethernet. In addition, all units have

http://www.wscicc.org
http://www.soekris.com

a serial console port.

The net4801 is the newest addition to the Soekris line. It is powered by a 266 MHz GEODE Pentium-
class processor. It sports three 10/100 Ethernet ports, a CF slot, both MiniPCI and PCI slots, and up
to 256 MB of RAM soldered on board. See Figure 6-1 for a detailed picture. As of this writing, in
single quantities a board and case will cost you $265.

If you need PCMCIA support, you'll want to look at the net4521. It's a different form factor, because
the PCMCIA slots are positioned side-by-side rather than over-under as in most laptops. The
net4521 has a 133 MHz AMD ELAN processor, which is equivalent inside to a 486. It has two 10/100
Ethernet ports, a CF slot, a MiniPCI slot, and up to 64 MB of RAM soldered on board. See Figure 6-
2. A board and case will cost you $235.

Figure 6-1. The Soekris net4801 embedded PC

BARWN outdoor routers

BARWN is the Bay Area Research Wireless Network. Tim Pozar and Matt Peterson have created

BARWN, which has some interesting research projects, including an easy-to-build outdoor wireless
router.

At the time this idea was conceived, few commercial products were available that fit the needs of an
outdoor weatherproof design. To this date, not many products are available that also allow you to
run a Linux or BSD operating system on the wireless router, and have it mounted outside.

The BARWN guys put together a white paper based on Matt Peterson's initial prototype of an
outdoor router, and that white paper is available at http://www.barwn.org.

One fine, sunny day in May 2003, several interested groups of people converged at Tim Pozar's
house in San Francisco to assemble 30 or so of these outdoor routers. It was a messy job, because
three holes had to be drilled in each box, and those holes then had to be filed and sanded so that
barrel connectors and RJ-45 twist-lock connectors could be inserted.

Figure 6-3 shows a completed installation with the Soekris net4521 mounted inside a weatherproof
box.

Figure 6-4 shows one of these boxes in action on San Bruno Mountain south of San Francisco, as
part of the BARWN network.

Figure 6-3. Completed BARWN Outdoor Router

Figure 6-4. A BARWN Outdoor Router in action

http://www.barwn.org

OpenBrick (http://www.openbrick.orq)

The OpenBrick is a hybrid, a cross between a custom-designed embedded PC and one of the Mini-
ITX motherboards. It's designed to be a very small server or act as a workstation, so it has onboard
video, keyboard and mouse connectors, serial ports, USB ports, onboard sound, and a Small Form
Factor (SFF) IDE connector for a 2.5-inch laptop hard drive.

However, it does run on DC power, and it features a single PCMCIA slot, onboard 10/100 Ethernet
and a CF slot. It comes standard with 128 MB of RAM and is powered by a 300 MHz fanless Geode

processor. Figure 6-5 shows the back of an OpenBrick. As of this writing, an OpenBrick will set you
back a cool $360.

A newer model, the OpenBrick/E, is powered by a Via C3 533 MHz processor and features three

Ethernet ports, but has no PCMCIA or PCI bus slots, which makes it less useful for building an
access point.

Figure 6-5. The OpenBrick

Via Mini-I1TX PCs (http://www.viavpsd.com)

Via developed the Mini-ITX format, which defines a motherboard of 17 x 17 centimeters. It offers a
range of motherboards in the EPIA line, with processor speeds from 500 MHz to 1 GHz. They are

http://www.openbrick.org
http://www.viavpsd.com

intended to be general-purpose PC workstations, so they come with a wide array of features:
onboard Ethernet, video, sound, USB, FireWire, IDE interface, and a single PCI slot.

The Via motherboards can all be powered by an external DC adapter if you wish, but their power
requirements are such that adapting them for use with Power Over Ethernet is not advised. You can
simply boot from a standard IDE hard disk, or if you are using a CF-to-I1DE adapter, boot a Via (or
any PC) from a CF card. (See Section 6.1.3 later in this chapter.)

If you want a silent unit, make sure that the EPIA motherboard you buy is powered by the Eden
ESP processor. This is a low-power processor that requires cooling only from a heatsink instead of a
processor fan. The Via C3 processors are available at higher clock speeds, but they require a fan.

Older models of the EPIA M motherboards are widely available, and you can find them with 500 MHz
Eden processors. If you buy them on eBay, these motherboards can be purchased for as little as
$50. If you buy them new, they are pretty easy to find for $100.

Via's newest EPIA motherboard is the EPIA MII, which seems to be designed specifically for our
purposes. Not only does it have a fanless Eden processor, it features a PCI slot, a CardBus slot, and
a CF slot. All you need to build an access point with this motherboard is a power supply, memory,
radio card, and CF card. As of this writing, the MII can be purchased at http://www.mini-itx.com for
$218. Figure 6-6 shows the MIl motherboard in detail.

Figure 6-6. The Via EPIA MII motherboard

There are many other embedded PC designs on the market. One example is the PC-104 motherboard
standard, which is commonly used for industrial applications. However, obtaining PC-104 boards in small
quantities is very expensive. The motherboards offer low performance compared to the other options
we've already discussed, and the cost alone is prohibitive.

6.1.3 Bootable Media

http://www.mini-itx.com

Your new custom access point will run a general-purpose operating system rather than a custom
operating system designed for embedded processors, so you will need a bootable media device.

There's nothing wrong with using a hard disk. After all, they are inexpensive and reliable, and if you're
using recycled hardware, you probably already have one. Hard disks have their own set of problems,
however. They are mechanical devices, with limits to the temperature and humidity that they can
withstand. They generate noise, draw a fair amount of power, and are fragile. Mechanical devices, no
matter how well-designed, are going to fail eventually. If your access point needs to be small and quiet, or
needs to run on Power Over Ethernet or be installed outside, you should consider other bootable media
options.

A CD drive shares some of the same caveats as a hard disk. It's a mechanical device, it isn't suited to run
at high temperatures, and it is fragile. The cost for generic CD drives is very low; they can be purchased
new for less than $30. Again, if you have recycled hardware, you may already have a spare unit.

Using a CD as bootable media is advantageous because the device is read-only. This makes it rather
resistant to malicious hackers, because system files cannot be changed without physical access to the
machine. This is also a disadvantage, because making configuration changes is rather difficult, and any
configuration you do change won't be saved if you need to reboot. There are several Linux distributions
specifically built to boot from a CD, and we discuss them in Section 6.2.

A third option is to skip using bootable media altogether and boot your device from the network. Several
of the small board PCs support Preboot eXecution Environment (PXE), which is a technology developed by
Intel. You can find out more on PXE at the following link:
http://www.intel.com/labs/manage/wfm/wfmspecs.htm. Most PCs sold since 1999 support PXE booting in
their BIOS.

PXE allows you to tell a device that it will obtain booting information from another device attached to a
network. In practice, this works only on a wired network, because PXE is designed for Ethernet cards. A
PXE boot over a wireless network would require wireless drivers to be built into a device BIOS. You would
then have to set up a PXE boot server, which answers requests from PXE boot clients and feeds them the
code necessary to start up. This is a pretty advanced setup. You can get tutorials on how to set up PXE
here: http://www.kegel.com/linux/pxe.html.

Your last option, and one that we recommend, is to use flash RAM as the boot device. While PCMCIA flash
cards are available, they tend to be expensive and are not as widely available as the CF cards. CF cards
are now available in sizes up to 1 GB of storage. Several of the motherboards that we discussed earlier
have CF slots included. 128 MB cards can be found for less than $40, and 256 MB cards can be found for
under $50.

Compact Flash cards have many advantages. While they aren't nearly as cost-effective as a hard disk,
they are tiny, lightweight, consume almost no power, can operate in high-temperature conditions, and
can be dropped with no consequence. They can be rewritten many thousands of times. However, CF cards
can eventually be written too many times, but you can avoid this by using a Linux distribution that
mounts the CF as read-only. We cover how to do this later in the chapter.

It's even possible to use CF cards on any system that has IDE connectors on the motherboard by utilizing
a CF-IDE adapter card. These devices have a slot for the CF card, an IDE connector, and a power
connector. You attach the adapter to the IDE bus on your PC with a standard IDE cable. The CF card
should appear to your PCs BIOS as a standard IDE device.

A great source for CF-1DE adapters is Mesa Electronics. You can find a whole range of adapters on its web
page, including adapters for Smart Media cards and Memory Sticks, and other small flash cards that are
widely available. Check out http://www.mesanet.com/diskcardinfo.html for more details on the cards it
offers. Figure 6-7 shows the model CFADPT1, which has both IDE and SFF-IDE connectors.

Figure 6-7. CF-1DE adapter

http://www.intel.com/labs/manage/wfm/wfmspecs.htm
http://www.kegel.com/linux/pxe.html
http://www.mesanet.com/diskcardinfo.html

P BT e - —
~iH il | wmll | ‘.I a]

The CF-IDE adapters from Mesa are something to consider if you want to build an access point from an
old laptop. Suppose you have a Pentium-based laptop with two PCMCIA slots. You will need one slot for a
radio card and the other for an Ethernet card. Mesa's adapters have an SFF-IDE connector for the small-
form IDE cable that laptops use, so you can boot your laptop from CF. Mesa also sells the SFF IDE cables,
which can be hard to find in retail outlets.

6.1.4 Radio Cards

In Chapter 2, we covered all the steps you would need to get a number of different wireless cards working
with various Linux distributions. We showed you how to use the Wireless Tools to change operating modes
of your radio card.

Most 802.11 Linux card drivers support at least two modes: client (Infrastructure) Mode, also called
managed mode by the Wireless Tools, and ad-hoc mode. Some cards and their drivers support a third
monitor mode, which we discussed in Chapter 3. There is a fourth mode, master mode, that is of prime
importance when building your own access point.

6.1.4.1 Master mode

A commercial access point has multiple functions. Not only does it have an 802.11 radio of some kind, but
it also functions as the Master of any client radio that connects to it in Infrastructure mode. The access
point broadcasts beacon frames, which advertise the SSID of the access point to clients. Once a client
associates with an access point, the access point manages all radio communication. When multiple clients
associate with an access point, the access point follows a set of algorithms to control radio traffic.

These access points usually have a separate onboard chipset that provides the additional functionality
besides the 802.11 radio, or the radio card inside the access point is loaded with tertiary firmware, which
gives the card access point capability.

In our case, we can't rely on custom chipsets to provide access point functionality to our radio cards.
Depending on your particular radio card, the tertiary firmware may be an option. We discuss the ins and
outs of flashing tertiary firmware to your radio card in Section 6.2.

So where does that leave us? There are at least two types of chipsets and associated drivers that allow
the use of master mode in the driver:

e Prism 2/2.5/3-based radio cards with the HostAP driver
e Atheros-based radio cards with the Madwifi driver

When set to master mode, these cards do not actually provide a full 802.11 access point. They only
broadcast the beacon frames that advertise an access point to clients. The HostAP and Madwifi drivers
actually take care of the 802.11 management functionality that would otherwise require a separate
chipset or tertiary firmware.

In addition, if you have a Lucent WavelLAN IEEE/Orinoco/Agere 802.11b radio card, there are a couple of
options you can use to have your card act as an access point. The HermesAP project is a modified version
of the orinoco_cs driver that allows use of the tertiary firmware for Orinoco cards. While the driver does
not include the tertiary firmware, it does provide instructions on where to obtain the firmware.

The second option is an updated driver from Agere. This driver is not available from any of the other
Orinoco manufacturers, including Proxim. This driver is an updated version of the wavelan2_cs driver and
has been renamed wlags49 cs. The driver includes support for master mode. We set up these drivers in
Section 6.2 of the chapter.

. PREY < Day Day Up > ME=T *

< Day Day Up >

6.2 Software

There are a number of ways you can set up Linux on any of the hardware we discussed in the previous
section, ranging from custom-built distributions specifically designed for a particular motherboard to
simply installing a full Linux distribution on the hard disk of your recycled PC. We discuss several of the
most common distributions that you may want to consider.

What all of these distributions share in common is, at least, the wireless drivers you need. As mentioned
in Section 6.1.4.1, there are currently two drivers that support the use of master mode: the HostAP and
Madwifi drivers. In addition, there are two driver options you can use with a Hermes | (Lucent WavelLAN
IEEE/Orinoco/Agere 802.11b) or Hermes Il (Agere/Proxim 802.11g) radio card to run in master mode.
We cover all four of these driver options in detail.

6.2.1 Linux Distributions

There are several available versions of Linux that are specifically geared toward building your own Linux-
powered access point. Most of them have been under development for quite some time and are very
stable. Wireless ISPs and community network organizations use these distributions to power their access
points.

6.2.1.1 Running Linux off a CF card

One thing you will need for many of these installations is a Linux system that can read a CF card. Don't
panic! You don't need a custom-built motherboard such as the Soekris or the Via MIl. You need a CF
adapter, and you can find it in three flavors:

1. CF-to-PC Card adapter sleeves
2. USB CF reader
3. CF-to-IDE adapter

Any of these types of units will work fine for our purposes. The USB reader will obviously require that your
Linux system be configured properly for USB, and we don't have the space to go into those details here.
However, most USB card readers, once recognized, will use a device name of /dev/sd<x> where x=a-z. If
you have other SCSI devices in your system, the CF may not be recognized as /dev/sda.

The CF-to-PC Card adapter sleeve is your best option if you are working with a laptop system. You simply
fit the CF card into the end of the adapter, then insert the adapter like a regular PC Card. In order for this
to work in Linux, you must have pcmcia-cs installed or kernel tree PCMCIA configured in your kernel. We
covered both of these in detail in Chapter 2.

If you have a desktop system, the CF-to-1DE adapter is your other option if you don't have a USB reader.
(We discussed these adapters in Section 6.1.3.) We suggest using this type of adapter only if you don't
need any special drivers loaded. As long as your system recognizes an IDE device, you're set. Insert the
CF into the adapter when your system is powered off, and on boot, your Linux distribution should
recognize the CF as an IDE device.

- Almost all CF cards sold on the market come preformatted with the Microsoft FAT16
.fn_ filesystem. Why? Because this has become the de facto filesystem that most digital
w #: cameras read. Digital cameras are the primary users of CF cards, so it makes sense
* for the CF manufacturers to have their media ready to play.

We have encountered problems off and on with getting some makes of CF cards to
reformat properly in Linux. After you fdisk the CF card and run mkfs to make a new
filesystem, everything appears to run smoothly. However, when you attempt to
mount the new filesystem, you receive an error similar to "FAT filesystem not
supported.”

On some Red Hat 8 and 9 systems, we were not able to resolve this problem. On
other distributions, we were able to use the cfdisk graphical partitioning utility
instead of fdisk, and that resolved the issue. One other workaround was to fdisk the
CF card in a Sharp Zaurus PDA.

6.2.1.2 Pebble

This distribution was developed by Terry Schmidt of NYCWireless. Terry has worked very hard on this
distribution, and it shows. Pebble is designed specifically with the Soekris hardware in mind, but it also
runs quite nicely on the Stylistic and Via hardware.

The NoCat lab runs Pebble on various Pentium-era systems down to a Pentium 75 with an ISA 3Com
Ethernet card and an ISA PCMCIA adapter for an Orinoco wireless card. According to the README, Pebble
has also been known to run on 1U servers, IBM ThinkPads, and a robot at the Defcon hacking conference.

Terry developed this distribution specifically for the Soekris, so it was built from the ground up to be run
from a 128 MB CF memory card. While you could strip out some functionality by removing Perl,
NoCatAuth, djbdns, and a few other utilities, and get the distro to fit on a 32 MB CF card, it's barely worth
the effort because you can find 128 MB CF cards for $30.

To prevent excessive writes to the CF card, Pebble is designed to boot read-only, and it creates a RAM
disk for any temporary files that need to be written in the course of regular system operation. This means
that once the system is configured, the flash is never written to, which will extend the life of your CF card.
The other great advantage of a read-only mounted operating system is that you can lose power at any
time, and you won't corrupt any data.

Pebble is based on the Debian GNU/Linux 3.0r1 release, so customizing the installed software is easily
done with the included apt utilities. For example, the Pebble boxes on the NoCat network are customized
from the standard pebble release, so run apt-get install sudo ntp-sinple bind9 bind9-host and
apt-get renove djbdns ppp pppoe nano before you deploy a new Pebble machine. This approach is
much more flexible than some of the other small distributions we discuss later in the chapter. While the
apt databases do take up some space, the flexibility they offer is worth it.

Pebble is freely available at http://www.nycwireless.net/pebble. As of this writing, the latest version is
pebble.v39.tar.bz2. This release includes:

e Linux Kernel 2.4.22 with Crypto modules
e HostAP 0.1.2 and utils and hostapd
¢ MadWiFi CVS version from 11/17/03

¢ bridge-tools

http://www.nycwireless.net/pebble

¢ djbdns caching dns server

e elvis (tiny vi)

* gnupg

e iptables 1.2.6a

e lilo

¢ NoCatAuth, running as non-root user, post 0.81 nightly
e ntpdate

e 0penSSH server 3.4pl-1.woody.2 patched

e openSSL 0.9.6¢ patched with security fixes backported by Debian
e pcmcia-cs (kernel module pcmcia)

e Perl5.6.1

e ISC dhcpd and dhclient

e zebra 0.92a-5 (BGP, OSPF, RIP Routing Daemon)

Pebble has wireless card driver support for many but not all wireless cards. There are drivers for Orinoco,
Cisco, Atheros (madwifi), and Prism (HOStAP). It supports a fairly wide variety of Ethernet drivers,
including 3Com, Intel, National Semiconductor (Soekris), and Via-Rhine (Via motherboards), as well as
the Tulip driver, which supports a wide range of Ethernet cards.

We assume for the purposes of this section that you will install Pebble on a CF card for use in a Soekris or
other machine that can boot from a CF. This shouldn't keep you from loading it on other media. It works
well from a hard disk, and you can simply substitute a mounted IDE hard disk for the CF card in the
following instructions.

As Terry mentions in the README, there are many types of CF cards. He has had problems with Kingston
flash cards and recommends SanDisk CF cards. We concur, having had a few flash cards ourselves that
simply would not boot properly. Pebble fits nicely on a 128 MB flash. We don't recommend anything
smaller unless you plan to trim packages, and we don't cover that here. See Section 6.2.1.1.

Once the CF card is in your system and is successfully recognized, there are several steps to obtaining a
working Pebble distribution on the CF. Terry has greatly improved this process over time, and the latest
versions of Pebble have an installation script that takes care of most of the heavy lifting for you.

Here's what you must do as root. These examples assume that your CF card is recognized as /dev/hde.
This is the case on a typical system with a single IDE hard disk and an IDE CD-ROM. Consult dnesg to

make sure you know which device your CF card is using.

1. Use fdisk to create one large partition. You don't need swap, because Pebble mounts read-only and
writes everything entirely to RAM.

fdisk /dev/hde

2. Next, use mkfs.ext2 to create an ext2 filesystem. You don't need or want a journaling filesystem
such as ext3 or jfs. Again, Pebble mounts read-only, so the journal uses up space that you could

use:

nkfs.ext2 /dev/hdel

3. Create a mount point for the CF card (you don't need to mount it, because the pebble.update script,
which you'll run later, takes care of this for you):

nkdir /mt/cf

4. Make a directory to untar the Pebble distro so the install script can work:

nkdir /mmt/ pebbl e

cd / mt/ pebbl e

5. Uncompress and untar the Pebble distro to the directory that you have just created (the actual
version number may be different):

tar jxvf /path/tol/pebble.
v39.tar. bz2

If you want to do manual configuration of your Pebble install before invoking the installation scrip, there is
an opportunity here for editing filest. For instance, if you want to configure dhcpd or any of the other
daemons that run at startup, this is a good time to do so. In particular, you should consider editing
etc/network/interfaces to define TCP/IP for ethO, and also editing etc/pcmcia/network.opts and
etc/pcmcia/wireless.opts to configure your radio cards. This way, you can bring up a working system from
the get-go.

We also recommend editing etc/inittab. Terry runs the NoCatAuth captive portal from inittab to make sure
that it always respawns if it dies unexpectedly. This is fine, but until you have a completely configured
Pebble system with all of its network interfaces active, you will receive garbage on the console while
NoCatAuth tries to start, fails, and respawns. The last line of etc/inittab reads:
NC: 23: respawn: start-stop-daenon -S -c nocat -exec /usr/local/nocat/bin/
gateway -- -F
Comment this line out by placing a # at the beginning of the line. Then you can run:
./ pebbl e. update
This is the installation script. It's interactive, so you must answer a few questions before it can start.
Wiere is the pebble installer (this) directory? default=/mt/pebble:
VWi ch devi ce accesses the conpact flash? defaul t=/dev/hde:
VWi ch directory should I mount the FlashCard to? devfaul t=/mt/cf:
Whi ch nodul e? Enter 1 for pcntia, 2 for net4501, or 3 for net4521/net4511 \

def aul t =net 4501

You should know the answers to the first three questions, because we've discussed them in the previous

steps. The last question is critical, because the answer affects which modules load in the Pebble
installation you create, as well as other startup operations.

If you're setting up a Soekris system, the answers are obvious for any other system that uses a PC Card
radio, you must choose option #1. If you have a PCI or a MiniPCI radio card, none of these options will
completely suit you. Choose #1 and make some configuration changes later.

Once you have the questions answered, the installer script goes to work, making changes to the
configuration files depending on how you answered the last question. Once done, it copies the modified
distribution from /mnt/pebble to the mounted CF card at /mnt/cf.

After copying, it performs ssh key generation for the sshd keys, so that there are no duplicate Pebble ssh
keys running in the world, and finally, it makes you change the root password. Once done, it unmounts
the CF card, and you are ready to insert the CF card into your chosen access point hardware.

If you have a Soekris system, this is the point where you'll want to hook up a serial cable to a PC and run
some terminal software at 9600 8-N-1, so you can see the console as Pebble boots. If you made
configuration changes prior to running the installation script, this is doubly important so you can make
sure things start like you expect. If you're on a PC system with video output, hook up a monitor.

At this point, you should have a working Pebble access point. If you happen to have a Prism-based card in
your system, it should come up in master mode and appear as an access point with an SSID of
"Freenetworks." Later in this section, we cover some specifics on configuration of the HostAP driver that
makes this setup possible.

There are two places to get help with Pebble. First, read completely through the README, available at
http://www.nycwireless.net/pebble/pebble.README. If you can't resolve your issue with the help of the
README, subscribe to the Pebble mailing list at http://freenetworks.org/mailman/listinfo/pebble-linux.
The list is active and full of knowledgeable readers who should be able to provide you assistance.

6.2.1.3 LEAF/WISP-Dist

LEAF stands for the Linux Embedded Appliance Firewall. Rather than being a single distribution, LEAF has
actually become a clearinghouse of sorts for a number of related distributions, all of which are available
from the LEAF pages: http://leaf.sourceforge.net.

Most of the LEAF distributions are children of the Linux Router Project (LRP), which was designed as a
single-floppy bootable Linux-based router. As the project matured, spin-offs developed that included
newer kernel support, among other things. LEAF is now the parent organization for six active distributions
and some inactive ones.

At one time, Wireless ISP Distribution (WISP-Dist) was an independent distribution, but recently it has
moved under the support of LEAF. For the purposes of building a custom access point, WISP-Dist is the
only LEAF distribution we cover.

WISP-Dist is a modular embedded Linux distribution for wireless routers but can be used for other
purposes as well. The entire system fits in 8 MB flash/16 MB RAM, making it much smaller than Pebble.
The stated goal of the project is "to create an open, customizable, and easy to use embedded router for
ISP needs."

As of this writing, the current version of WISP-Dist is 2624, but it is referred to in the documentation as
WISP-2003, because it was the only release in that year. Current features include:

e Linux kernel 2.4

http://www.nycwireless.net/pebble/pebble.README
http://freenetworks.org/mailman/listinfo/pebble-linux
http://leaf.sourceforge.net

Simple to use menu-based configuration system for basic functionality
Command-line access for advanced configuration

The ability upgrade remotely via automatic script

Modularity: you can add/remove packages

Local access via console or serial port

Remote access via sshd

Statistics available via SNMP, including wireless statistics

Layer 3 bridging support based on proxy ARP

OSPF, RIPv2 dynamic routing support integrated with Zebra routing engine
NAT (with H.323, PPTP pass-through support)

Bandwidth shaping

PPP

PPPOE client

VTUN for encrypted PtP

VLAN trunking

Access point support for Prism2/2.5/3/Atheros

MAC filter support for access point

Advanced network diagnostics: NTOP, tcpdump, bmon, etc.

The ability to log all system events to remote system with syslog

checkping: system reboots if some of the specified hosts are unreachable (useful when radios get
stuck)

The ability to store all files, which makes it easy to service on standard FAT partition.

While WISP-Dist is very small, it runs on pretty much any x86-compatible CPU. The developers
recommend at least a 100 MHz processor in addition to the minimum of 8 MB of disk space and 16 MB of
RAM. WISP-Dist has been tested on the Soekris hardware as well as several single-board computers
designed for the ISP market. It includes drivers for Cisco, Orinoco, Atheros, and Prism-based cards. There
are two types of wireless cards that it does not support: cards based on the Texas Instruments chipset
(such as the D-Link DWL-520/650+) and USB wireless adapters.

As with Pebble, WISP-Dist is designed to be installed on a CF card. The size requirements are much
smaller, however—you can run WISP-Dist on as little as 8 MB of flash. You do need a system that can
read CF cards. See Section 6.2.1.1, earlier in this section.

The WISP-Dist installation is nowhere near the simplicity of the Pebble installation script. The distribution
is provided in two different types:

Partitionless installation from a .bin or .img file

Once you have downloaded the wisp-dist_2624_img_wdist.bin file (or a newer version) and have a
CF card inserted in your reader, you must use the dd command to copy the image to the CF card.
dd makes a block-by-block copy of the image, so you don't need to partition the CF. This invocation
assumes your CF card is on /dev/hde:

$ dd if=wisp-dist_ 2624

_img_wdi st. bin of=/dev/ hde

Partition-based installation from package distribution .zip file

You must manually partition the CF card using the fdisk command. The first partition that you
create should be at least 6800 Kb in size, and you should set this partition to Acti ve. You should
also specify the partition type as FAT. The second partition should be at least 1,300 Kb in size. If
you have more than 16 MB RAM in your system, you can skip the creation of the second partition,
as WISP-Dist will create a RAMdisk on boot to use instead of a second partition, similar to Pebble's
operation.

Next, create the filesystem on the first partition:
nkfs.nsdos /dev/ hdel

Now obtain the SYSLINUX bootloader from http://syslinux.zytor.com, and install it on the first partition.
SYSLINUX can also be installed in Debian using apt-get. Mandrake and Red Hat/Fedora users can install
an RPM. SYSLINUX is designed to boot Linux from a FAT filesystem. Once you have the SYSLINUX binary
on your system, execute this command:

syslinux /dev/ hdel
This creates a boot sector on the disk and copies a file named LDLINUX.SYS into the root directory.

Next, you should mount the CF card, unzip the wisp-dist_2624_ pkg_wdist.zip file (or a newer version that
matches the version of the .bin file) into a temporary directory, and copy files from the temporary
directory to the root of the CF card:

mount -t vfat /dev/ hdel /mmt/cf
cd w sp-di st
cp -a * /mt/cf

Lastly, edit the syslinux.cfg file. If you did create the second partition in the first step, you must add the
statement rwfs=/dev/hda2. This assumes that on your target system, the CF card is the IDE primary
master /dev/hda. If your system is booting from a different device, you must also change any occurrence
of boot=/dev/hdaX in the syslinux.cfg file to the appropriate device.

At this point, you should be able to unmount /dev/<hde> (or whatever device your CF is on) from your
system, eject the CF card, and place it in the system that will be running WISP-Dist. As with Pebble, it's a
good idea to connect a serial console or monitor to the system to watch the initial boot.

WISP-Dist should appear with a default configuration that has no root password, the ethO Ethernet
interface at 192.168.1.1 with a 255.255.255.0 netmask, and a serial console on ttySO at 9600 8N1. When
you log in as root, you are immediately presented with a menu, as shown in Figure 6-8.

Figure 6-8. WISP-Dist Configuration menu

http://syslinux.zytor.com

WIS -lhst Configuration (wisprouter}

HIEP=Tlizt, release unknoun, (C) 2002 YWladipir [vaschenko.
Devrelopment sporeored by Thunderklor: O, thunderwor:, cond ,

You need to reboot for mozt zettimgs to take effect.

Plezze select:

lessconfig — Wireless Parameter Configuration

yslogoonfig System logging (eyslog) Configuration

diststats Statistics

repodcont ig SHHF configuration

etdisgoonfig Netuork dissnostics configurstion

ehraconf ig 0SPF/RIP (Zebra) configuration

oot gl Changs rook {Administrator} password

awecont ig Save configuration from all packages

estartif Restart networking. 4pply all new network settings
~ehoot. Raboot.

KK > <Cancel>

The WISP-Dist configuration system is straightforward and easy to set up. If you want a command line for
advanced configuration, you can choose Quit from the menu and you will be presented with the root
command line.

If you need help with WISP-Dist, you should first read through the User Guide, which is located at
http://leaf.sourceforge.net/devel/hzdrus/doc/html. For some reason, there is no WISP-Dist topic in the
LEAF FAQs at SourceForge, so the next place you should check is the leaf-user mailing list. You can search
the archives at http://www.mail-archive.com/leaf-user%40lists.sourceforge.net or subscribe to the list at
http://lists.sourceforge.net/lists/listinfo/leaf-user.

6.2.1.4 LinuxAP

The LinuxAP distribution began life as an upgrade to the OpenAP code, which was developed to run on
certain access point hardware. See Section 6.3.4 later in this chapter for details.

As of this writing, the current version of LinuxAP is based on the 2.4.20 kernel, and it supports both the
Eumitcom WL11000 motherboards that power some access points, as well as the Soekris hardware
platform. The LinuxAP web pages are at http://linuxap.ksmith.com, and as of this writing, the most
current version of the LinuxAP source is linuxAP-2003-09-13.tar.bz2.

Installation and compilation of LinuxAP is somewhat modular in that you can choose up front which
daemons and utilities you want to include with your compiled kernel. In addition to the LinuxAP source,
you can download additional compressed files from the LinuxAP web site, including:

e Kernel 2.4.20

e Bridge utilities

¢ BusyBox shell/network utilities

e C-Kermit

¢ CRAMFS filesystem utilities

e CIPE tunnel driver and utilities

http://leaf.sourceforge.net/devel/hzdrus/doc/html
http://www.mail-archive.com/leaf-user%40lists.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/leaf-user
http://linuxap.ksmith.com

e HostAP driver

¢ |P tables firewall

e pcmcia-cs

e Tiny login

e Uclibc compact C library

e UDHCP client/server

¢ UMSDOS enhanced FAT filesystem
e Wireless tools

As with the previous two distributions, in order to get LinuxAP loaded on a CF card for use in a Soekris
unit, you need a CF card reader. See Section 6.2.1.1 earlier in this section.

1. First, uncompress the LinuxAP distribution. The developer recommends that you place the
compressed file in /usr/src so that your code tree resides in /usr/src/linuxAP. You must replace
2004- 09- 13 with whatever version of LinuxAP you downloaded:

cd /usr/src
tar xjvf linuxAP- 2004-09-13 -tar.bz2

cd | i nuxAP

2. Next, make a directory for the utilities that you selected and downloaded:

nkdir tarfiles

3. Uncompress each source file for the utilities, but leave the .tar file intact, and copy the .tar files into
the newly created directory:

cd /usr/src
bunzip2 linux- 2.4.20 .tar.bz2

cp linux- 2.4.20 .tar linuxAP/tarfiles

4. Now, run make, which allows you to select the type of hardware, Eumitcom or Soekris, and also the
utilities you want to include:

cd |inuxAP

make

5. Once the compile is completed, in the linuxAP directory you will have two created files: kernel and
ramdisk. At this point, prepare your target disk and install SYSLINUX. (See the Section 6.2.1.3
earlier in the chapter for details on where to obtain SYSLINUX.) Set up the first partition as 8 MB,
set it as Acti ve, and make it a FAT16 partition. Make a new MSDOS partition, and then install
SYSLINUX. If your CF card is on a different device, replace / dev/ hde with the appropriate device.

fdisk /dev/ hde
nkfs.nsdos /dev/ hdel

syslinux /dev/ hdel

6. The last step is to mount your newly formatted CF card and copy the compiled kernel, ramdisk, and
the syslinux.cfg files over:
mount -t vfat /dev/ hdel /[/mt/cf
cd /usr/src/linuxAP
cp syslinux.cfg ranmdi sk / mt/ cf
cp kernel /mmt/cf/linux
unount /mt/cf
7. Once again, you can now remove the CF card, insert it in your Soekris hardware, and boot it up with
a serial cable attached to observe the initial boot.
For help with LinuxAP, refer to the LinuxAP-dev mailing list, hosted at

http://linuxap.ksmith.com/mailman/listinfo/linuxap-dev. There is an active development and user
community who should be able to provide you with advanced assistance.

6.2.1.5 Other distributions

As of this writing, Pebble and WISP-Dist are the two most full-featured distributions specifically aimed to
make a small-board computer into an access point. There are some other distributions you may want to
investigate:

Sydney Wireless HostAP CD

The wireless folks down under have produced this ISO CDROM image of a Linux bootable CDROM
installer. This is not just a bootable CDROM; it will fdisk and format a hard disk or device that you
choose and install a custom version of Debian Linux. The distribution features support for PCI and
PCMCIA Prism cards using the HostAP driver, has support for a wide variety of Ethernet cards, does
advanced routing with the Zebra routing engine, and has IPv6 capabilities.

The installed distribution takes up approximately 43 MB, so you can consider this as another
alternative operating system to try on your CF card. The CD can be downloaded from
http://www.sydneywireless.org/?Projects.

LocustWorld MeshAP

MeshAP is a unique distribution in many respects. Jon Anderson, in the UK, created MeshAP and has
added some interesting features. First, MeshAP is designed from the ground up to actually build
mesh networks using the Ad-hoc On-demand Distance Vector (AODV) routing protocol. AODV builds

http://linuxap.ksmith.com/mailman/listinfo/linuxap-dev
http://www.sydneywireless.org/?Projects

routes between nodes on demand, as desired by those nodes. You can get detailed information on
AODV at http://moment.cs.ucsb.edu/AODV/aodv.html.

Second, as part of the MeshAP project, Jon created the Wireless Internet Assigned Numbers
Authority (WIANA), found at http://www.wiana.org. This is slightly controversial, as WIANA will
assign you a 1.x.x.x IPv4 address for the wireless mesh portion of your MeshAP. WIANA certainly is
not the first organization to assign unused IPv4 address space to wireless networks; the folks at
http://freenetworks.org have done the same with the 10.x.x.x address space. Both of these
assignments are really hacks on the existing infrastructure, until IPv6 is actually implemented on a
larger basis.

MeshAP is provided in a similar format to the Sydney Wireless CD, in that you download an 1SO
CDROM image, burn that image to CD, and boot from the CD. The installation process lets you
select a device for installation, and it then partitions and formats the destination device and installs
a MeshAP distribution. Once you have MeshAP installed, you must register at http://www.wiana.org
to receive a 1.x.x.x address for your Mesh.

You can get documentation for MeshAP from the LocustWorld Wiki at
http://www.locustworld.com/tracker/wiki?p=Wikilndex. There is also a MeshAP User mailing list. To
subscribe, send an empty email message to meshapuser-subscribe@lists.locust.net.

6.2.2 HostAP

In Chapter 2, we covered in detail the compilation and installation of the HostAP driver, so all the
examples from this point on assume that you have compiled and installed HostAP (if necessary—some
distributions include it), and then configured the HostAP driver for your Prism-based radio card. Also, we
assume that the driver works with your card in managed mode.

As we've explained previously, the HostAP driver performs the 802.11 management functions that would
normally be performed in an access point by either tertiary firmware in a radio card or dedicated
additional hardware.

Setting up HostAP to function this way is a simple matter of changing the card to master mode. You can
do this through the iwconfig tool (replace MyAP with the name you want to use for your access point):

iwconfig w an0 essid nyAP node naster

To bring up the HostAP driver in master mode during startup, modify /etc/pcmcia/wireless.opts. Here is
an example (you can change the ESSID and CHANNEL settings):

wirel ess.opts

case "$ADDRESS" in

*, * , *’ *)
I NFO="Prismcard in Master node"
ESSI D=" ny AP"

MODE=" Mast er "

http://moment.cs.ucsb.edu/AODV/aodv.html
http://www.wiana.org
http://freenetworks.org
http://www.wiana.org
http://www.locustworld.com/tracker/wiki?p=WikiIndex

CHANNEL="11"

RATE=" Aut o"

esac

Chapter 2 also discussed the address-matching syntax used in the wireless.opts and network.opts files.
This syntax is:

schenme, socket, instance, MAC address

You can use this syntax in many different ways. Schemes are mostly useful for client-based laptops,
where you need to switch between different wireless settings for home and work. i nst ance is supposed
to be used for network cards that have multiple interfaces. We've never found a wireless card that uses
this parameter.

However, for an access point, it can be extremely useful to specify which slot should only hold the access
point radio card:

,01.*)

This syntax would ensure that only a card in PCMCIA socket O would be given the master mode
configuration. It would even be more useful to add a wildcard MAC address match:

* 0,*,00:02: 6F: %)

Now, any card that is inserted in slot O and is a Senao/EnGenius Prism-based card is given the master
mode configuration, and allowed to act as the access point card. If you're spending a lot of time futzing
around with your radio card configuration, this is one way to make sure that you know what to expect
when you plug in a certain card.

-0 Some machines, including the Stylistic and Soekris, have problems loading the

o, HostAP driver with high-power 100 mwW and 200 mW Prism-based radio cards. The
! &= card is detected on insert but fails to initialize, and it reports an obscure error:

© "GetNextTuple: No more items." If you have this problem, add this line to
/etc/pcmcia/hostap_cs.conf:

nmodul e "hostap_cs" opts "ignhore_cis_vcc=1"

The driver attempts to verify that one entry on the card's acceptable voltage table
matches the voltage reported by your PC Card slot. In some cases, this voltage can
be reported incorrectly, causing the driver to fail. This option causes the driver to
ignore the reported voltage and load anyway.

If you have a PCI or MiniPCI Prism card, configuration is not handled via the pcmcia-cs configuration
scripts, but is handled like any other Ethernet interface. On Debian systems, you can add an up i wconfi g

line to the TCP/IP definition for the radio card in /etc/network/interfaces:

iface Wl an0O inet static

address 192.168.1.1

net mask 255. 255. 255. 0
broadcast 192.168. 1. 255
up iweconfig W an0 essid myAP node master channel 11 rate auto

On Mandrake, RedHat, and Fedora systems, you can add radio configuration for PC Card, PCI, and
MiniPCI Wi-Fi adapters in /etc/sysconfig/network-scripts. This is a sample ifcfg-wlanO script:

DEVI CE=wl an0
BOOTPROTO=st ati ¢
ADDRESS=192. 168. 1.1
NETMASK=255. 255. 255. 0
BROADCAST=192. 168. 1. 255
ONBOOT=yes

MODE=Mast er

ESSI D=ny AP

CHANNEL=11

RATE=AUTO

Once you have your card configured for master mode, you can now treat wlanO as any other Ethernet

interface. Assign IP addresses, set up routing, and bind processes to the interface as needed. HostAP
takes care of all the details of managing wireless clients attached to your access point.

6.2.2.1 Bridging

In the previous examples, your Prism card on wlan0 has its own IP address. This requires you to set up
routing on your Linux system. While this really isn't a problem, there may be situations where you don't
want routing, but rather want to bridge all wireless traffic across to your wired Ethernet port.

Later in this chapter, we discuss setting up Wireless Distribution System (WDS), which bridges HostAP
and a Linksys access point. In order to set up bridging or WDS, we needed to install the bridge-utils
package. On our Mandrake 9.2 system, this was installed using the command ur pm bri dge-utils; Red
Hat and Fedora users should be able to similarly use the rpm installation, and Debian users can do apt -
get install bridge-utils. You can also obtain the source code from http://bridge.sourceforge.net. You
must also make sure that your kernel has support for 802.1d Ethernet bridging. On the factory kernels
from Mandrake and Fedora, this was enabled by default, but for RedHat and Debian systems, we needed
to compile this option into the kernel ourselves.

To bridge your Prism card running in master mode with your first Ethernet card, use the following,
preferably from the console of your access point (if you try to mess with networking while you are
connected via ssh, things will probably become weird):

ifconfig ethO 0.0.0.0

ifconfig wan0O 0.0.0.0

http://bridge.sourceforge.net

brctl addbr broO

brctl addif br0O ethO

brctl addif brO w anO

ifconfig brO 192.168.1.2

route add default gw 192.168.1.1

As we report in the WDS section later in this chapter, it can take up to 30 seconds for the bridge to come
up and began passing TCP/IP traffic. Don't be alarmed if you can't ping across the bridge from your client
immediately after pressing Enter on the last command.

If you have only one bridge on your network, you can safely turn off the Spanning Tree protocol with:

brctl stp br0O off

This prevents the bridging code from needlessly sending 802.1d traffic to other nonexistent bridges. You
can see the configuration of your bridge at any time by using brctl show:

brctl show

bri dge nane bridge id STP enabl ed i nterfaces
bro 8000. 00026f 15423F no et hO
wl an0

Bridges tend to be "set and forget" devices (although you must run the commands shown in this section
after each reboot, so you may want to put them in a startup script). Once configured, your bridge
maintains itself, barring a huge amount of traffic. Be sure to read the documentation available at
http://bridge.sourceforge.net as well as the documents listed at the end of this section.

Keep in mind that although a bridge is simple to configure, it isn't very secure. You don't have any control
over the packets that flow across your bridge. To use a bit of cliché, you may want to consider enacting a
toll on your bridge by implementing some firewalling. Unfortunately, standard iptables firewall commands
don't work with bridging in the 2.4 kernels. Rob Flickenger has detailed how to bridge with a firewall in his
excellent book, Wireless Hacks (O'Reilly).

For more information, please consult the following sources:

e The Linux Bridge STP HOWTO (http://www.linux.org/docs/ldp/howto/BRIDGE-STP-HOWTO)

e The Linux Bridge and Firewall mini HOWTO (http://www.tldp.org/HOWTO/mini/Bridge+Firewall.html)

¢ Wireless Hacks, by Rob Flickenger (O'Reilly)

6.2.2.2 MAC address filtering

We touched briefly on this subject in Chapter 4. MAC filtering does not offer much security, because a
person running Kismet can easily sit in range of your access point, capture a number of frames, and
quickly deduce at least one MAC address that is allowed to associate with your access point. It is pretty
trivial under Linux to spoof a MAC address, allowing an attacker to join your wireless network. You should
combine MAC filtering with WEP and implement a captive portal with authentication to provide a

http://bridge.sourceforge.net
http://www.linux.org/docs/ldp/howto/BRIDGE-STP-HOWTO
http://www.tldp.org/HOWTO/mini/Bridge+Firewall.html

reasonable measure of security.

While the filtering of MAC addresses is certainly not the best security measure for your wireless network,
it does at least provide the first layer of defense. Filtering MAC addresses not only blocks traffic that is not
destined for your network, but also attempts to prevent other users from associating with your access
point.

When using MAC filtering, make a list of wireless devices that you wish to allow, and then deny all others.
With the HostAP driver, this is done using the i wpri v command:

iwpriv w an0 addrmac 00: 01: 02: 03: 04: 05
iwpriv w an0 addrmac 05: 06: 07: 08: AA: BB

This adds MAC addresses to an internal table maintained by HostAP. You can add as many addresses to
the table as you like, one on each line, and then tell HostAP what to do with the table you've built:

iwpriv wlan0 nmaccnd 1

iwpriv wan0 maccnd 4

The maccnd 1 tells HostAP to use the table as an allowed list and deny all other MAC addresses from
associating. The naccnd 4 disconnects all associated clients, forcing them to reassociate. At this point,
only clients in the table are allowed to reassociate with your access point.

Sometimes, you may only need to ban a troublemaker or two, rather than set up a list of permitted
devices. Again, you would use the i wpri v command:

iwpriv w an0 addrmac 01:10:20:02: 30: 03
iwpriv wl an0 naccnd 2

iwpriv w an0 ki ckmac 01:10: 20: 02: 30: 03

As before, you can use addnac to add as many addresses to the table as you need. The naccnd 2 sets
the policy for the new table to deny, and ki ckmac boots the specific MAC immediately from the access
point. This is nicer than booting everybody and making them reassociate.

To disable MAC filtering, enter this command:
iwpriv wlan0 nmaccnd O

If you make a mistake typing in a MAC address, you can use the del mac command just as you would
addmac. Should you ever need to flush the current MAC table entirely but keep a defined policy in place,
issue:

iwpriv wlan0 naccnd 3
Finally, you can view the current MAC table in /proc:
cat /proc/net/hostap/w an0/ap_control

While i wpri v manipulates the running HostAP driver, it doesn't preserve settings across reboots. Once
you're happy with your MAC filtering tables and policies, make sure you put the necessary commands in
an rc script to run at boot.

6.2.3 Madwifi

Unfortunately, the Madwifi driver does not have nearly all of the bells and whistles of HostAP. However, if
you want a Linux-based 802.11a or 802.11g access point, this driver is really your only working option as
of this writing.

Again, we covered the installation and compilation of the Madwifi driver in Chapter 2. We assume that you
are able to use the driver in managed mode.

The Madwifi driver, like HostAP, performs the 802.11 management functions that normally are performed
in an access point by either tertiary firmware in a radio card or dedicated additional hardware.

Setting up Madwifi to function this way is a simple matter of changing the card to master mode. You can
do this through the iwconfig tool (you can change nyAP to whatever you prefer for the SSID):

iwconfig athO essid nyAP node naster

To bring up the Madwifi driver in master mode during startup, you can modify /etc/pcmcia/wireless.opts.
Here is an example (you can replace ESSI D and CHANNEL with your own settings):

wirel ess.opts

case "$ADDRESS" in

PRI
| NFO=" At heros card in Master node"
ESSI D="ny AP"

MODE=" Mast er "
CHANNEL="11"

RATE=" Aut o"

esac

The Atheros cards are all CardBus adapters, so they are treated as hotplug devices, and configuration can
also be handled like any other Ethernet interface. On Debian systems, you can add an up i wconfi g line

to the TCP/IP definition for the radio card in /etc/network/interfaces:

i face athO inet static
address 192.168.1.1
net nask 255. 255.255.0

br oadcast 192. 168. 1. 255

up iwconfig wW an0 essid nmyAP node master channel 11 rate auto

On Mandrake, RedHat, and Fedora systems, you can add radio configuration for PC Card, PCI, and
MiniPCI Wi-Fi adapters in /etc/sysconfig/network-scripts. This is a sample ifcfg-athO script:

DEVI CE=at h0

BOOTPROTO=st ati ¢
ADDRESS=192. 168. 1.1
NETMASK=255. 255. 255. 0
BROADCAST=192. 168. 1. 255
ONBOOT=yes

MODE=Mast er

ESSI D=ny AP

CHANNEL=11

RATE=AUTO

Once you have your card configured for master mode, you can treat athO as any other Ethernet interface.

Assign IP addresses, set up routing, and bind processes to the interface as needed. Madwifi takes care of
all the details of managing wireless clients attached to your access point.

The Madwifi driver at this time does not support MAC address filtering, but you can set up bridging using
an Atheros card. (See the Section 6.2.2.1 previously in this chapter where we discussed setting up a
bridge with HostAP and a Prism card.) To set up a bridge with your Atheros card, simply substitute athO
for wlanO in the bridge setup.

6.2.4 Hermes AP

Hermes-based radio cards (the tremendously popular but confusingly named
Lucent/Orinoco/Avaya/Proxim silver and gold cards) are notoriously difficult to operate as an access point.
By design, the cards themselves are actually not able to provide 802.11 BSS master services on their
own. You might find this surprising, because they are the radio cards embedded in the original AirPort AP,
as well as the RG1000, RG1100, AP1000, and many others.

Before these cards can operate as a BSS master, they need additional firmware uploaded to the card.
Orinoco and many other cards originally based on the Prism designs can actually host three firmware
images: primary or operating firmware; station or client firmware; and tertiary firmware. This tertiary
firmware is uploaded to the card's RAM and lost if the card loses power. To make matters even more
difficult, the firmware in question is licensed software and can't legally be distributed by anyone but the
manufacturer.

The ingenious Hermes AP project (http://hunz.org/hermesap.html) addresses both of these tricky issues.
It consists of a set of modified drivers, a utility for uploading the tertiary firmware, and a simple script
that downloads the firmware from Proxim's public FTP server. Running Hermes AP successfully is not
trivial, but it can be the perfect piece of software if you absolutely need a host-based Orinoco AP.

To get Hermes AP running, you need a kernel with Dev FS enabled. This allows the kernel to manage the

http://hunz.org/hermesap.html

/dev directory, dynamically creating device files for every physical device that the kernel supports. Run a
make menuconfi g or make xconfi g, and select Code maturity level options = Prompt for development
and/or incomplete code/drivers. Now go back to the main menu, and under File systems enable /dev file
system support, as well as Automatically mount at boot. When running Dev FS, it's also a good idea to
disable /dev/pts filesystem support, as Dev FS automatically manages your ptys for you.

Before you recompile your kernel, copy all of the source code under the drivers/ directory from Hermes
AP over top of the existing drivers in the kernel (right over the files in linux/drivers/net/wireless/). Now
build your kernel and modules as you normally would, and reboot.

Your Orinoco card should come up as normal with the new driver, but it won't support BSS master mode
yet. First, cd to the Hermes AP source directory. To download a copy of the tertiary firmware from
Proxim's site, run the hfwget.sh script in the firmware/ directory. Next, build the hfwload utility by
running make in the hfw/ directory. This utility uploads the tertiary firmware to your card. Copy the utility
and the card firmware somewhere handy (we keep ours in /usr/local/hermesap), and run a command like
this at boot time, before the interface comes up, replacing et hl with the actual interface name and

FI RMMARE with the firmware filename (such as T1085800.hfw):

cd /usr/local/hernesap; ./hfw oad ethl FI RMMRE

Note that the card must not be configured up when you load the firmware; if it is already up, ani fconfig
et h1l down brings it down for you. If all goes well, an i wconf i g should show that ethl is in master mode!
You can now configure the radio with an ESSID, WEP keys, and any other features as you normally would.

Hermes AP is still beta software, but it seems to run quite well. For situations where you don't have the
option of using HostAP and a Prism-based card, Hermes AP is a good alternative solution.

6.2.5 Agere Wlags49

Linux drivers for the Hermes cards have unfortunately hit a stopping point with the recent acquisition of
the Orinoco line by Proxim. If you look for any information about Linux support on the Proxim web site,
you will find that the latest Proxim-provided driver for Hermes-based cards is 6.20 from May 2002.

An interesting twist to this storyline is that Agere, who was originally spun off from Lucent and also
produced Hermes-based radio cards, has updated drivers available on its web site dating from September
2003. If you browse to http://www.agere.com/support/drivers, you will find the Linux LKM Wireless Driver
Source Code, Version 7.14 listed, which you can download from

http://www.agere.com/support/drivers/wl lkm 714 release.tar.gz.

If you dig into the README, you will find that this is a major update of the previously provided
wavelan2_cs driver. It has been renamed wlags49, for reasons that are not clear. What is clear, however,
is that the driver provides support for not only the classic Hermes | chipset that powers Orinoco
Gold/Silver cards, but the Hermes Il chipset that is found in newer 802.11b PC Cards, MiniPCI, and CF
adapters from Agere and Proxim.

Even more interesting is the list of new features in the release:

Began updating the Wireless Extensions

Added support for access point (AP) mode

Added support for tertiary firmware downloads

Added support for WDS in AP mode

http://www.agere.com/support/drivers
http://www.agere.com/support/drivers/wl_lkm_714_release.tar.gz

The requirement for the driver is a 2.4.x kernel. The README does say that this driver should compile
under architectures other than x86, but that has not been verified. You'll also need a working gcc compiler
environment. If you have been able to compile kernels, pcmcia-cs, and the HostAP driver to this point,
compiling this driver will not be a problem.

If you already have the standard orinoco_cs or a compiled HostAP driver on your

system, be warned: wlags49 does not play nice with these drivers. Once compiled
and loaded as a module, wlags49 will be the default driver for any Hermes or
Prism-based card in your system.

We recommend you use only wlags49 on a system where you are not going to use
the orinoco_cs or HostAP drivers.

Getting the driver to compile is rather tricky. In order to configure the source code for compilation, you
must first obtain the pcmcia-cs source code. In Chapter 2, we covered in detail how to compile and install
pcmcia-cs. In brief, you can obtain the source code from http://pcmcia-cs.sourceforge.net.

You'll want to unpack the pcmcia-cs source somewhere. (On our Mandrake 9.2 system, we put the source
in /usr/src/pcmcia-cs-3.2.7.) Once you have done that, copy the gzipped Agere source into the pcmcia-cs
directory and extract it:

cp /root/downl oad/W Ikm 714 release.tar.gz pcntia-cs-3.2.7
cd pcntia-cs- 3.2.7

tar xzvf W _lkm_ 714 release.tar.gz

To configure the source for the driver, run ./ Confi gur e. This will look familiar to you if you have already
compiled pcmcia-cs, because the Configure script is part of the pcmcia-cs release. You must configure the
wlags49 source this way, even if you have kernel tree PCMCIA enabled.

You don't have to completely reinstall pcmcia-cs once the configuration is completed. To install the
wlags49 default driver, which supports Hermes | and Il cards in both STA (station adapter or managed)
mode and AP mode, run the scripts that came with the wlags49 source:

./Build
./lnstall

Once installed, you must stop and restart the pcmcia-cs subsystem, unless you have a MiniPCI Hermes |1
card, in which case you may want to simply reboot.

The wlags49 source also gives you the option of building a driver that supports either Hermes | or Il in
STA or AP mode only. Instead of the ./ Bui | d command, you can issue one of the following commands
before . /I nstall:

make -f w ags49.nk hl cs sta # Hernmes |, STA node
make -f w ags49.nk hl cs_ap # Hernmes |, AP node
make -f w ags49.nk h2 cs_sta # Hernmes |1, STA node
make -f w ags49.nk h2_cs_ap # Hernmes |1, AP node

If you only wish to build the driver to support a PCI/MiniPCI card in either STA or AP modes, you can issue

http://pcmcia-cs.sourceforge.net

these commands:

make -f w ags49.nk pci
make -f w ags49.nk pci_install

Once the driver is loaded, you have the option of configuring wireless parameters in three different ways.
The documentation seems to suggest that you should perform all wireless configuration in the
/etc/pcmcia/config.opts file. This is rather nonstandard, and we did not even attempt to go down this
road.

The documentation goes on to say that you can also configure the driver using a file in
/etc/agere/iwconfig-ethl. This directory was not created as part of the installation, so we also did not
attempt to use this method. We did not have a Hermes Il MiniPCI card to test with, but we suspect that
this second method is the one that you would need to use.

Fortunately, the third method is to simply use the pcmcia-cs standard configuration by configuring the
card in /etc/pcmcia/wireless.opts and /etc/pcmcia/network.opts. The wlags49 driver takes advantage of
the Wireless Tools, so that setting up our Orinoco Silver card as an access point is just like using HostAP:

iwconfig ethl essid nyAP node Master

As with Madwifi, the wlags49 driver does not support MAC address filtering. We were able to set up a
bridge using the Orinoco Silver card in master mode, using the example provided previously in the HostAP
section of this chapter.

& Frev | < Day Day Up > | NEXT up

< Day Day Up >

6.3 Linux-Powered Off-the-Shelf

Electronics manufacturers are increasingly turning to Linux to power all sorts of devices: e.g., TV set-top
boxes, handheld computers, and mobile phones. Now wireless vendors have begun shipping products
running a Linux kernel.

For example, Linksys is now selling the WRT54G Wireless Router. As the name implies, it uses an 802.11g
radio. However, the name doesn't tell you that the box is really running a custom Linux kernel based on
the 2.4.5 kernel code, running on a Broadcom processor, based on a 125 MHz MIPS processor core. As of
this writing, a WRT54G can be purchased for as little as $70, making it probably the cheapest project in
this book.

The Seattle Wireless folks have an excellent page on their web site detailing the work they have done
peeking into the innards of this device. You can find it at
http://www.seattlewireless.net/index.cqi/LinksysWrt54qg. Even before Linksys began releasing the source
code, people were hacking away at the WRT54G, trying to get a login shell and figure out what made it
tick.

6.3.1 Hacking the WRT54G Hardware

In the fall of 2003, several of the NoCat folks were hacking away at a newly acquired WRT54G,
attempting to learn how to get a login shell on the box. Early on, the Seattle Wireless group had
determined that you could execute arbitrary code by using the Ping.asp web page, which is part of the
administrative web pages shipped with the unit.

e If you're just looking for a quick way to upload new firmware, such as a custom
Linux distribution, to the unit, skip ahead to "Hacking the WRT54G Firmware," later
3 in this chapter.

Fag
= Iy

L

It was then possible to upload arbitrary files to the unit, which we don't recommend for this reason: we
managed to render our WRT54G completely useless by attempting to modify the administrative HTML
pages. In other words, the configuration on the box was stuck that way, and we couldn't change it. Due to
our error, none of the web pages were accessible, including Ping.asp, which was the only method at that
time.

The box sat unhappily in a paper bag for a few months. Recently, while reading through the Seattle
Wireless pages again, we became aware that someone had managed to solder the correct components on
the motherboard of a WRT54G and had a working serial port. With a working serial console, you can
interrupt the boot of the unit with Ctrl-C:

~C
PMON>

This puts you at the PMON bootloader prompt. From here, you can recover a crippled WRT54G by
executing the following commands:

http://www.seattlewireless.net/index.cgi/LinksysWrt54g

PMON> set boot _wait on
PMON> set nvram boot wait

These commands tell the unit to wait at boot and to attempt to load firmware via TFTP. In order to take
advantage of this, you need a tftp client that supports passwords. Standard tftp client software does not
use authentication, and the tftpd running on the WRT54G expects authentication. You can download a tftp
client for Linux that supports authentication from http://redsand.net/code/linksys-tftp.tar.bz2. The code
can be compiled with a simple make. The WRTG54 assigns itself the IP address 192.168.1.1, so to connect
to it, you must assign an IP address from the same subnet on the machine from which you want to run
the tftp client.

When you are attempting a tftp upgrade of firmware or using the web-based firmware upgrade shown in
the next section, you must make sure you have a reliable power connection. Interrupting the firmware
upgrade process can corrupt the flash memory during a write and make your unit a very nice blue and
black brick. It's also important to use an Ethernet connection to one of the LAN ports of the WRT54G
when upgrading the firmware. While it is possible to use the wireless connection, if anything interrupts the
wireless transmission, you again run the risk of Kkilling your flash memory and the unit.

Once you have set the boot _wait parameter, you can power-cycle the WRT54G. At this point, you have
approximately three seconds to start the tftp client. In these three seconds, you must execute the
following commands:

$./linksys-tftp 192.168.1.1

[inksys-tftp> put firmvare_i nage password

In the next section, we discuss alternate firmware images for the WRT54G.

Without a console on the Linksys unit, you cannot enter the bootloader. If you examine the motherboard
of a WRT54G, you will find several empty surface mount sockets, a mount for a crystal, and two sets of

standard pinouts marked UART1 and UART2 next to the WAN Ethernet port and the reset switch. Figure
6-9 shows a close-up of this area.

Figure 6-9. Close-up of WRT54G showing space for a UART

TS
g

—_—
r——
—
-
s
P

The Seattle Wireless web pages have a list of hardware that must be soldered on in the empty sockets:

e UART: National Semi PC16552DV

http://redsand.net/code/linksys-tftp.tar.bz2

e Transceiver: Maxim MAS213CIA

o XTAL: 12.75MHZ

- The details in this section are relevant only for a Linksys WRT54GVersion 1.0.
.fn. Version 1.1 hardware is different, and you can find a discussion on 1.1 serial port
W &= hardware at http://www.sveasoft.com/postt44.html. Look on the bottom of the
" WRT54G case to determine the hardware version: if your hardware is Version 1.1, it
is printed there. 1.0 hardware has no identifier.

We ordered the first two sample parts from each manufacturer. For links to the order pages, see the
Seattle Wireless WRT54G web page: http://www.seattlewireless.net/index.cqi/LinksysWrt54qg. Search for
"14 Booting your own kernel" to find the correct section.

As for the crystal, our hardware and soldering guru Brad Silva suggested that we should use an oscillator
instead. This required a slightly different approach when we began construction, as you'll see below, but it
worked well. We ordered a 12.8 MHz oscillator from Digikey (http://www.digikey.com).

Once all the parts had arrived, we set aside an evening to work on the unit in Brad's lab. He had the
necessary soldering equipment plus an oscilloscope and a number of other tools that came in handy.

Unless you really know what you're doing, soldering extra parts on your WRT54G is
an excellent way to void your warranty and potentially destroy the unit. You need
exceptional soldering skills for this project.

The first task was to solder the National Semi UART to the socket at U5. This was the most difficult part of
the operation, as the socket is surface-mount technology that is designed to be soldered by a machine.
The UART uses J-connectors, which curve inward under the chip. We held the chip in place with a piece of
double-sided tape underneath, but it was still difficult for Brad. However, his soldering skills won out in the
end.

Once we had the UART in place, we pulled out the oscilloscope so we could determine which of the two
smaller sockets would need the Maxim transceiver installed. The correct socket turned out to be U1, which
is strangely connected to the pinout for UART2, not to the pinout marked UART1/CON1 (which would
seem to be indicative of the console).

We then soldered the transceiver in place at U1, and despite the small size, the soldering went much
faster because the soldering iron simply wicked the existing solder into place on the chip.

Next up was the oscillator. As stated earlier, we chose an oscillator in place of a crystal. Either one should
work, however. As Brad states, "Crystals are finicky devices. Oscillators are much more reliable and easier
to work with." We mounted the oscillator on a small piece of breadboard.

In order to get signal flowing to the oscillator, we had to remove a resistor and a capacitor from the
motherboard. These are located at R7 and C14 between the UART and the spot where a crystal would be
mounted.

Lastly, we needed power and ground for the oscillator. We obtained these from ZN1 and DS1 next to the
DC power input. Figure 6-10 shows an image of the motherboard with all the work completed up to this
point.

During this process, we stopped at each step to use the oscilloscope to look at output from each new chip.
Checking the output from the transceiver and doing a little math, we were able to determine that the
eventual console serial speed would be at least 115 kbps.

http://www.sveasoft.com/postt44.html
http://www.seattlewireless.net/index.cgi/LinksysWrt54g
http://www.digikey.com

Figure 6-10. WRT54G with added UART, transceiver, and oscillator

The last requirement was to add a DB9 connector so we could connect to the serial port with a laptop. For
this, we needed pins 2, 3, and 5 from the pinout marked UART2. It is important to note that unlike a
standard RS-232 DB9 pinout, pins 2 and 3 are not crossed. The pinout to the DB9 is as follows:

e Pin 2: Pin 2 Transmit

e Pin 3: Pin 3 Receive

e Pin 5: Pin 5 Ground
Figure 6-11 shows the attached serial port close-up. We were not striving for attractiveness, just function.

The intent was not to have the serial port permanently attached, because if the whole exercise were a
success, we wouldn't have needed it afterwards.

Figure 6-11. WRT54G with attached DB9 serial port

This was the magic moment. Our monitoring with the oscilloscope was promising, in that we were
definitely seeing a flood of output immediately after the unit was powered on. We hooked up a laptop to
the DB9 port, fired up a minicom session, set the port speed to 115200, no RTS/CTS, no Xon/Xoff, applied
power to the WRT54G, and voila!

We were then able to use Ctrl-C to immediately interrupt the boot process, set the boot _wai t parameter,
and reboot. This time, the console showed a message indicating that it was waiting for network boot.
Following the previous instructions, we ran the linksys_tftp client software and were able to flash the
WRT54G with the latest Linksys firmware. We then went on to try out some alternate firmware, which we
describe in the next section.

6.3.2 Hacking the WRT54G Firmware

At the time of this writing, you can find Linksys source code modifications at
http://www.linksys.com/support/gpl.asp. Broadcom has not yet released any source code for the radio
drivers, nor has it released the modifications that it has made to the gcc compiler.

Several Linux distributions for the WRT54G are available. Some of these depend on execution of arbitrary
commands via Ping.asp. However, Linksys has fixed this "bug" with software release 1.42.2, which has
made any release that depends on this feature unusable.

With the release of the modified source code for the WRT54G, it is possible for interested parties to
compile the source themselves and learn how to build custom firmware that includes features that Linksys
does not support in its product.

These new distributions are easy to install, because they are complete firmware releases based on the
Linksys code. Linksys includes a firmware upgrade option in the administrative web pages for the
WRT54G. Figure 6-12 shows the screen, which you can find by selecting the Administration tab in the web
page and clicking on Firmware Upgrade.

Figure 6-12. WRT54G firmware upgrade

http://www.linksys.com/support/gpl.asp

Bla Edit Yew S0 Gookmatks Tool Halp

= - L™ A Ftip: 1042 7 sl pgrads asp x| [

L

Pl o Ve ol v 008

‘Wirsless-0 Broadband Router WETSAG

Administration i
d Sabup Wien laas Sacurity . Bt IrilntrEian Semtun

[EETTR T | Lag 5T 5. | e re Ui posd

Upgrads Flroyware

parade

Fleape pekect o ke 58 upgred e
Browsa....

Firmware LI

Dang

You can also upgrade the firmware via TFTP, as we described in the Section 6.1. Of course, on an
unmodified WRT54G running Linksys firmware, the TFTP option is not possible. You must have a soldered-
on serial port to enable the interrupt of the boot process, or you must flash the unit first with one of the
alternative firmware images we discuss below. They both provide support for enabling the boot _wai t

option from the administrative web pages.

As of this writing, there are two well-developed distributions available that are based on the latest Linksys
2.0 source code. Each distribution appears to have a number of similar features, and as they continue to
mature, it seems that they will continue to become more similar. Right now, however, both have different
feature sets and appeal to somewhat different audiences. There is also a third distribution at
sourgeforge.net (see Section 6.3.2.3 later in this chapter), which is built from the ground up and is not
based on Linksys source code.

Linksys doesn't support firmware that you receive from other sources. While you

many not be voiding your warranty by flashing the firmware with alternate versions
from other sources, you should be aware that the process is not perfect. There is a
possibility of corrupting the flash in your WRT54G and making it an expensive
paperweight.

When you upgrade your firmware, whether it is a Linksys or alternative firmware
file, the configuration in the WRT54G is erased. There is no provision for saving a
configuration to NVRAM, so before you upgrade, make a note of all your settings.

Finally, it should be stressed that as of this writing, all of the alternative firmwares
are in beta or testing modes, and are not as stable as the Linksys firmware.

6.3.2.1 Sveasoft firmware

Sveasoft is a company with offices in Sweden and California. It has developed a very nice firmware
package for the WRT54G. The developers host an active forum at http://www.sveasoft.com/forums.html
and are very responsive to bug reports and feature requests. Sveasoft is also selling in Sweden an
outdoor-mountable repackaged WRT54G with its custom code, suitable for a wireless ISP or community
network installation.

The Sveasoft firmware includes the following features:

http://www.sveasoft.com/forums.html

e Telnet daemon

e SSH daemon

e OSPF routing from the Bird routing daemon

¢ 20 new iptables filters to support filtering P2P and other protocols
¢ QoS bandwidth management

e Local DNS caching daemon

e PPTP client and server capability

¢ Radio transmit power adjustment

¢ Antenna selection

¢ Client radio mode

¢ Signal strength and MAC addresses of radio clients

¢ WDS

¢ Added options in the Administrative web pages to enable/disable services
¢ Command shell from the Administrative web pages

¢ Replaced openssl with maxssl to free up 1 MB of flash

¢ Roaring Pengiun PPPOE module

Additional features planned for inclusion in the firmware are:

¢ SNMP support

¢ Kismet drone—a remote sniffer

¢ Remote monitoring package

¢ Dynamic DNS configuration

e Shorewall firewall

¢ NoCat-like captive portal

e Snort intrusion detection engine

¢ Complete IPSec client and server support
e 802.1X for client radio mode

o Simplified web interface

e Support for a dynamic download so that developers can update in packages rather than in a
complete firmware reflash.

You can obtain the latest Sveasoft firmware from its FTP site: ftp.sveasoft.com/pub. As of this writing, the
most current firmware is Satori_v2_2.00.8.7sv-prel.bin.zip. When you uncompress this file:

$ unzip Satori_v2_2.00.8.7sv-prel.bin.zip

you will receive a single .bin file that you can flash to the WRT54G using the Firmware Upgrade web page
previously shown. Once you've clicked on the Upgrade button, do not interrupt the upgrade. Make sure
you have reliable power and wired Ethernet connections to the unit from the PC that you are using.

Once the firmware upgrade is complete, you should hold down the reset button on the back of the unit for
8-10 seconds, until you see the LEDs on the front of the unit turn red and flash in a pattern. This ensures
that you have cleared anything out of NVRAM that might have been put there by the previous firmware
version.

When the unit resets, connect to it from a web browser; http://192.168.1.1 is the default address for

Linksys devices. As you can see from Figure 6-13, the firmware version in the upper-right corner is now a
non-Linksys version.

Figure 6-13. Sveasoft firmware main configuration screen

Bla Edit Wiew G BHookmaks Took Halp

= - L= A] HHp:v192 168 1.1 index 53p | (i1,

L)

P 'wardore Ramad? - w] 00 & b

Wiraleis-O Broadband Mot er WRTSAG

Setup

Adminiriration

Basic Seup Avanced Rauling

Inta et Conmaction Tyes aatematic I_.;r\ﬁql,.r atian - DHCP bl

Optianal 54 rmings e :
i — Worshar Mame: [WRTEAG

et Hame |
Damialn Mane |
ST [ente =

b |

Boutar IF Locul P Addrass: |15

Selmel Mask | -
Do

The Sveasoft firmware offers another nice feature: the ability to select the receive and transmit antennas,
as well as the ability to increase and decrease the transmit power of the radio card. In the web-based
configuration, click on Wireless, and then on Advanced Settings. As shown in Figure 6-14, the last three
options allow TX and RX antenna selection, and you can now increase the milliwatt output of the WRT54G
radio card up to a maximum of 83 mW from the default of 28.

Figure 6-14. Sveasoft Advanced wireless configuration settings

http://192.168.1.1

Fla Edit Yiew G0 Hookmaks JTook Help
B - g W | hHpv192 168 1.1 MWireless_ddvanced ssp x| L

seclrily Emwirictions & Gami=g

Himic SEllisgs 1 Jecuity | HAL P | Advanced Ssilisge | Woa

i YT | Metsuk Awin|
Tyee

Basic Rate |Dlh?"i||l: *| Defsuk Defsuk

T i il saien . = .

fr. |.'||.I.._. | dCe=fash: A

CTE Prohacman

P [Cisable = imeraun D asies

Frame Buma |D|1-.\:lle = iDefau: Disasie)

[T — |:I|:|t Deafwsit: 180, Millsacands, Ranga: 1
GEEIE

oM Insreat: 1 Dol 1. Bmnge | - 255

F .

Thgmueatien [zxes Dliasll: 2346, Nasge: 256 - 2346]

ATE Threshald |33_|.7 Do arall: 2347, Masge: § - 2347
L T — |.n...|:, A S ——

X Aride fimi |j.|.l:_. %| J=Taeli: Snal

Arei Paseer Fi Desfmatt 20, Range: O B s

Dang

If you have two WRT54G units, a Linux box with a Prism card and the HostAP driver, or an access point
running the OpenAP/LinuxAP distributions (see Section 6.3.4 later in this chapter), you have the option of
setting up WDS between your access points. If you choose to use a Prism card, it must have station
firmware Version 1.50 or higher. See Chapter 4 for details on how to determine your station firmware
version.

WDS is an 802.11 specification for using an 802.11 wireless connection as a distribution system. A special
data frame with four addresses is defined for WDS. This allows layer 2 bridging of packets between two
addresses. In other words, your access points continue to serve clients, but can also communicate with
each other over a bridge. You can use this to set up a second access point that has no wired connection,
only the bridged connection to another access point. This is most useful for extending the range of your
network.

There are some caveats for using WDS. Your access points must use the same SSID, the same channel,
and the same WEP keys (if you're using WEP). Currently, using WPA to encrypt WDS communications is
not possible. Unless you use WEP, all of your bridged packets sent between the access points will be sent
in the clear, and you could easily fall victim to a classic "man in the middle" attack where one of your MAC
addresses is spoofed.

Another side effect of WDS will be decreased throughput. If both of your access points are serving clients
while they are communicating via the WDS bridge, you will lose throughput due to increased radio
utilization for WDS.

We did not have two WRT54G units with which to test this WDS, but we were able to set up a WDS link
between our WRT54G running the Sveasoft code, and a notebook with a Prism card and the HostAP
driver.

In order to set up the WDS link, we needed to install the bridge-utils package. On our Mandrake 9.2
system, this was installed using ur pm bri dge-utils; Red Hat and Fedora users should be able to
similarly use the rpm installation, and Debian users can do apt-get install bridge-utils.

It took some fits and starts to get WDS working between the WRT54G and our Mandrake box running
HostAP. Figure 6-15 shows the WDS configuration screen in the Sveasoft firmware. Here, we entered the
MAC address of the Prism card on the Mandrake system and assigned the WDS bridge an IP address and
subnet mask.

Figure 6-15. Sveasoft WDS configuration

Bla Edit wWiew Go Hookmarks Tooks Halp

e - k> 4 5 | bpiv1ez 168 L1 /Wirele ss_WINS amp x| (L

qa

P warsory Ramadss - 0] 00 K G

Wiraless-d Broadband Rowter WHTSEAG

Adminiriration

| wWDs

WhE Link #1 " gpade | Disabie
M Addici s | | | B
F Adisess: [EEE (] e
sutnesMask: e [pee. [eee |

| 1

Diefaui Gaieway | paial

WIS Link #2 " Enabla | Disabls

Hes Addiesn |_ |—_r —: —
P Addrenn I_ I_
Suibiid Mk | | | |

Diefault Caleway | I idipmnra

Dang

However, when we first attempted to set this up and clicked on Save Settings on the WRT54G, our Prism
card lost wireless communication with the Linksys. We were not able to bring up a bridge at that point.
Later, as we continued to troubleshoot, we were able to figure out why: the MAC address we obtained
from the WRT54G was not the MAC address that the WRT54G assigned to the WDS bridge.

On our WRT54G, the wireless MAC address is 00:06:25:B2:6B:D5. We entered this initially in the WDS
configuration for the Prism card. However, once we obtained a console login on the Linksys, we found that
the WDS interface was actually given a MAC address of 00:06:25:B2:6B:D7. Once we set up WDS for the
Prism card with this interface, we were able to communicate over the WDS link.

"'_-"~ Once the WDS commands were entered for the Prism card, it took approximately
e 30 seconds for the WDS link to begin working. Don't give up if you can't ping across

W &= the link immediately.

In order to set up the WDS link on the Prism card running HostAP, we entered the following commands:

iwpriv w an0 wds_add 00: 06: 25: B2: 6B: D7

Creates a WDS interface

brctl addbr brO # Creates a bridge interface

brctl addif w anO # Adds wl anO to the bridge

brctl addif w anOwdsO # Adds the WDS interface to the bridge

ifconfig wian0 0.0.0.0 # Zeros out TCP/IP for w an0O

ifconfig w anOwdsO 0.0.0.0 # Zeros out TCP/IP for the WDS interface
ifconfig br0 192.168. 255. 2 # Assigns TCP/IP to the bridge interface

Note that you must have your Prism card in either managed or master mode for this to work. If you are in
managed mode, you are essentially acting as a client to the bridge, and you must add another Ethernet or

radio interface to make the bridge useful. If you are in master mode, your HostAP access point can
continue to serve other clients while still participating in the WDS bridge.

The Sveasoft firmware enables many other interesting features, including Quality of Service (QoS) for
bandwidth management, among other things. Those features are really outside the scope of this book,
but one feature that is very handy is the SSH daemon.

To set up the SSH daemon, navigate to the Administration tab, and click on Management. Scroll down to
the section titled SSHD. First, click on the radio button to Enable SSHD. Scroll down and click on Save
Settings. Navigate back to the SSHD section and similarly enable Password Login. Click on Save Settings
again. Reboot the WRT54G.

You can now use ssh to log in to the router using root as a username and the administrative password
that you set in the web interface. (You have changed your administrative password from the default,
haven't you?)

6.3.2.2 Wifi-Box firmware

The Wifi-Box firmware distribution was developed by Augustin Vu. It is also now based on the Linksys 2.0
firmware release, and the project web page is found at http://sourceforge.net/projects/wifi-box.

As we previously discussed, this project has much in common with the Sveasoft firmware, because many
of the stated end goals of the project are similar. The current implementations, however, differ somewhat
in their feature sets.

The Wifi-Box software includes the following features:

¢ Radio transmit power adjustment

¢ Antenna selection

¢ DHCP server can assign static DHCP addresses

e Supports Class A and Class B subnets

e Local caching DNS server

¢ SNMP daemon

e Support for VPN Passthrough—IPSec, PPTP, L2TP
¢ Server Profiles for multiple IP forwarding

e Telnet daemon

¢ Remote wake on LAN support

¢ Web-driven reboot and restart services commands
¢ Enhanced status pages

Additional features planned for inclusion in the firmware include:

¢ WDS bridging

http://sourceforge.net/projects/wifi-box

SSH daemon

QoS bandwidth management

IPSec client and server

PPTP client

You can download the firmware from the SourceForge web site. As of this writing, the most current
version is code_2.02.prel-wfb.zip. Use the unzi p command to extract the single .bin file contained in the

compressed download.

The procedure for installing the Wifi-Box firmware is identical to flashing any other firmware to the
WRT54G (see Section 6.3.2 and Section 6.3.2.1). You can use the web interface, or, if you have already
tried the Sveasoft firmware, you can set the boot _wai t option in the Administration tab and flash the
router via tftp on the next reboot.

As you can see from Figure 6-16, the only noticeable difference to the Wifi-Box firmware is again in the
upper-right corner of the main screen.

Figure 6-16. Wifi-Box firmware main configuration screen

[[t yew Lo Beckmacks Jesls pelp

: A L 4 Al hinp: /192, 168. 1 LAndes Jsp =| |l

Fi
Wit i Relsore Verndon 2002101

Wirsless-G rosdband Router WETRAG

el Lahfee o Fppes AuTeas Cond LI Talha - DHLF '|

apmianal Sectings

LT, Sled L o
Irsquirsd by sema ISP T WRTS 4G

i hlame
TR
ML Rl =

Gra

Rainer P Lacsl P kdeareys

SUBREL ¥ s FEFTN R -

Cone

The current Wifi-Box firmware has fewer enhancements to the wireless side of the router and more added
features in the TCP/IP department. Wifi-Box does include the antenna selection and radio transmit power
adjustments in the same location as Sveasoft: Click on the Wireless tab and select Advanced Wireless
Settings.

One feature that will appeal to anyone already running MRTG, Cacti, or any other SNMP-based network
data gathering tool is the inclusion of an SNMP daemon. To configure SNMP, click on the Setup tab and
then select SNMP. The documentation is incomplete, and there is no help file for this page, so it is unclear
if the SNMP daemon supports SNMP v1, v2, v3, or a combination of these.

The Security tab adds new VPN settings to allow passthrough of the three most widely used VPN
protocols. In the Applications & Gaming tab you can define Server Profiles that allow you to forward many
commonly used ports to different servers on the LAN side of the WRT54G.

In the Administration section, you can enable the Telnet daemon. Here you can also click to reboot the
router or restart all services on the router without a reboot.

All in all, the Wifi-Box firmware is a nice upgrade from the standard Linksys firmware. As of this writing, it
appears that the Sveasoft firmware has more wireless features enabled, and it also does have the
advantage of a working SSH daemon. Both firmware packages are worth investigating for your use.

6.3.2.3 OpenWrt firmware

The OpenWrt firmware project is taking a completely different approach. Its firmware is not based on the
Linksys code at all, and its statement of goals at http://openwrt.sourceforge.net states some very specific
goals:

¢ Create a usable and functional development environment for the WRT54G that exposes the full
capability of the 2.4.20 kernel.

¢ Firmware must have failsafe modes so that configuration errors do not prevent the unit from
booting.

¢ As much flash as possible should be dedicated to read/write filesystems for installation of functional
modules.

¢ The Linksys/Broadcom/Cisco copyrighted configuration utilities are not included.

The OpenWrt developers are hard at work on the beta version of their firmware. As of this writing, they
have not released any packages on their SourceForge project site. Follow the directions at
http://openwrt.sourceforge.net to obtain their latest beta.

e As the login file to the #wrt54g IRC channel states: "Newbies need not apply." The
o, OpenWrt firmware is not complete. OpenWrt is still working on a development

wh #: platform base. If you want a fully functional access point with all the features

" shipped in the Linksys firmware, this is not for you. If, however, you want to hack
on a fully open source Linux distribution for the WRT54G, read on.

As with the previous firmwares, you can load the OpenWrt firmware by using the Upgrade Firmware
option in the Administration web pages, or, if you have loaded Sveasoft or Wifi-Box firmware, you can set
boot wait and use the tftp client to flash the WRT54G firmware.

OpenWrt changes the flash filesystem layout of the Linksys firmware. It contains a small read-only
squashfs filesystem and a larger writable jffs2 (Journaling Flash Filesystem). The squashfs partition has a
failsafe boot routine, which you can trigger by holding the reset button during boot. This failsafe mode
boots entirely from the squashfs partition, and configures the LAN and wireless networks to 192.168.1.1.
So if you manage to munge up the jffs2 partition, you can always recover and start over.

OpenWrt attempts to set up the networking of the WRT54G using configuration stored in NVRAM. So your
LAN, WAN, and wireless network information should remain the same after flashing.

OpenWrt implements a Telnet daemon for administrative access. The developers plan to have ssh
available as a package once the basic development environment is done. The busybox environment
implements telnetd by default, so this is a simple way to proceed with development.

On the first boot after flashing, the jffs2 filesystem does not exist. You must telnet to 192.168.1.1, run
the firstboot command at this point, and then restart the system. This initializes the jffs2 filesystem and

allows you to boot completely into OpenWrt.

When fully booted, the squashfs partition is remounted as /rom with the jffs2 partition mounted as /.

http://openwrt.sourceforge.net
http://openwrt.sourceforge.net

Symlinks are made from the root filesystem to files contained in /rom. If you want to modify any of the
files on jffs2, you must remove the symlink and copy the file or create the file on the root partition.

OpenWrt uses VLAN interfaces to represent the LAN and WAN ports. On a v1.x WRT54G, the following
interfaces are created:

e vianl: WAN interface
e vian2: LAN interface
e eth2: Wireless interface

For more detailed information on the innards of this beta version, you should consult the README. Check
out the IRC channel and the SourceForge project pages for updates. The developers hang out on
#wrtb54q, so it's the best place at the moment for help with the firmware.

You now have a small Linux-powered router. Although the OpenWrt firmware is still in early development,
we think it has the most potential of the alternative firmwares currently available for the WRT54G. The
Linksys-based firmware version have some impressive features, to be sure, but OpenWrt will definitely be
the most flexible firmware distribution of the three, due to its stated goals.

6.3.3 Other Linux-Powered Devices

Aside from the WRT54G, there are other Linux-powered devices now on the market. Some of them
appear to be even more capable internally than the WRT54G. Some of them have serious limitations that
would make it difficult or impossible to modify the kernel source. We touch on a few of these devices here.
If you're a dedicated hardware or kernel hacker, these boxes could use your time and expertise.

The Linux-powered device world is constantly changing, so by the time you read this, other wireless
devices with Linux under the hood will probably be available.

6.3.3.1 Linksys WRV54G

This is a Linksys wireless VPN router. It has nothing in common with the WRT54G, in that the internal
processor is a 266 MHz Intel ISP425 ARM-based CPU and the MiniPCI wireless card is a PrismGT 802.11G
chipset. The MiniPCI card is soldered to the MiniPCI connector for grounding purposes. There are open
source issues with the Intel Ethernet driver for the ISP425. The Intel Access Software Library license
expressly forbids any code in the Library from being released under the GPL or BSD licenses.

The Seattle Wireless folks have been hard at work on a WRV54G. As of this writing, however, there is no
alternative firmware available, and the firmware has not yet been hacked. You can find all of their current
information at http://seattlewireless.net/index.cqi/LinksysWrv54q. Linksys has released the source code,
and the various versions are available at http://www.linksys.com/support/opensourcecode/wrv54q.

6.3.3.2 Dell TrueMobile 1184

The Dell TrueMobile 1184 was released in early 2003. It has a Prism 3 802.11b chipset inside and runs a
2.2 Linux kernel. It appears that Dell contracted with another vendor to develop this product, and when it
was released, there was no acknowledgment that the device was Linux based, nor was there any source
code released.

Dell was persuaded by a user to release the source code. However, since that time it has been discovered

http://seattlewireless.net/index.cgi/LinksysWrv54g
http://www.linksys.com/support/opensourcecode/wrv54g

that the released source is not actually the correct source for the internal ARM processor or Ethernet
chipset.

As of this writing, there does not yet appear to be a viable solution to run any custom Linux kernels on
the Dell hardware. Dell has since discontinued this unit, and information and source code are no longer
available on the Dell web site. You can follow the Dell 1184 threads at the LinuxAP mailing list for more
information: http://ksmith.com/pipermail/linuxap-dev/2003-July. Lastly, if you follow this threaded
discussion, it appears that the Dell is so difficult to work with, any development has been abandoned to
look for easier hardware to hack: http://ksmith.com/pipermail/linuxap-dev/2003-October/000522.html.

6.3.4 Running Linux on Non-Linux Devices

Ever since 802.11b access points began shipping, people have been taking them apart to find out what
makes them tick. In many cases, especially with early models, the internals were i386-compatible chips,
which made the challenge of attempting to run Linux on these machines impossible to ignore. There are
some serious caveats to running Linux on any of these devices:

e These systems need a small kernel. 2.4 series kernels, even stripped to the bare bones, just take up
too much space on a device that has 2 or 4 MB of RAM. 2.2 series kernels are then the choice for all
of the following distributions.

¢ With some of these devices, there isn't enough room to store a usable Linux system on the flash, so
the root filesystem must be kept on an NFS server. While this isn't out of the question, it does mean
you must have an NFS server running.

¢ The minimal amount of RAM in these systems means that application space is very limited. It's
possible to run things like telnetd, but sshd or any other larger applications are out of the question.

e The cards in these access points are based on chipsets that do not support master mode. Even
though you have Linux running on them, you are restricted to managed or ad-hoc modes, and can't
use the AP as an actual access point.

6.3.4.1 Apple AirPort

When the Apple AirPort 802.11b access point was first released, people naturally opened it up to find out
what was inside. The guts of the unit are an AMD ELAN processor running at 33 MHz. The ELAN is an
i386-compatible processor that is very popular with embedded device manufacturers.

Of course someone took the challenge of getting the AirPort to run Linux, because it runs i386 binary
code. Til Straumann has an excellent web page detailing the steps necessary to run a Linux 2.2 kernel on
the AirPort: http://www-hft.ee.tu-berlin.de/~strauman/airport/airport.html.

The AirPort has only 4 MB of flash RAM, so you must boot and load software from a network share to
make Linux run. To do this, you need a tftp server, NFS server, and DHCP server. In addition, you must
reflash your AP with boot code that makes it look for the Linux software on the network. This is not easy
to set up, so we recommend that you read completely through the web page listed in the previous
paragraph before attempting to run Linux on your AirPort or RG-1000.

6.3.4.2 Orinoco RG-1000

The Lucent Orinoco RG-1000 is internally identical to the Apple AirPort. Seattle Wireless uses Linux-

http://ksmith.com/pipermail/linuxap-dev/2003-July
http://ksmith.com/pipermail/linuxap-dev/2003-October/000522.html
http://www-hft.ee.tu-berlin.de/~strauman/airport/airport.html

powered AirPorts and RG-1000s extensively in its citywide wireless network. More information on its
projects can be found at http://www.seattlewireless.net/?AirportLinux.

Seattle Wireless AirportLinux is based on the code by Til Straumann for the AirPort, with some
modifications. While both of these distributions are fun hacks, they are not nearly as practical as using
vanilla PC hardware or flashing a Linksys router. They both require a dedicated server to boot from. If you
have such an environment, great! You can pick up used RG-1000 units on Ebay for very little money.

6.3.4.3 Eumitcom WL11000

While you will never find a consumer product with this name on it, this motherboard was the basis for
these early models of 802.11b access points:

e US Robotics (USR 2450)

e SMC EZconnect (2652W)

e Addtron (AWS-100)

There have been two Linux distributions developed for these access points. They are both still available,
although the first, OpenAP, does not appear to be under active development. OpenAP is available from
http://opensource.instant802.com. As stated, it runs only on this single hardware platform. It is
increasingly difficult to find these access points, but if you have one, this is a fun little project.

In order to flash these access points, you need a linearly mapped memory card. The OpenAP site
recommends a MagicRAM Industrial SRAM Memory card that is 2 MB in size and readable at 3.3 V. You
must also connect a null modem cable to the RS-232 serial port on the access point, and a terminal
program to communicate with the Linux distribution.

For information and complete instructions, see the Getting Started page on the OpenAP web site:
http://opensource.instant802.com/getting started.php.

We mentioned LinuxAP in Section 6.2 earlier in this chapter. While LinuxAP is designed to run on the
Soekris hardware platform, and indeed can be made to run on any Intel-compatible small-board PC, it
also supports the WL11000-based access points. You can find LinuxAP at http://linuxap.ksmith.com. This
site also hosts an active mailing list at http://linuxap.ksmith.com/mailman/listinfo/linuxap-dev, and a
recent posting of the LinuxAP FAQ can be found in the mailing list archives:
http://ksmith.com/pipermail/linuxap-dev/2004-February/000675.htmi.

4@ FREV < Day Day Up > MEXT

http://www.seattlewireless.net/?AirportLinux
http://opensource.instant802.com
http://opensource.instant802.com/getting_started.php
http://linuxap.ksmith.com
http://linuxap.ksmith.com/mailman/listinfo/linuxap-dev
http://ksmith.com/pipermail/linuxap-dev/2004-February/000675.html

< Day Day Up >

Chapter 7. Bluetooth

Bluetooth is a wireless cable-replacement technology that uses low-power signals in the 2.4 GHz band.
Using Bluetooth, devices can transfer up to 720 kbps. This bandwidth is restricted in comparison to those
obtainable from 802.11 wireless technology, and while networking is one application of Bluetooth, it is not
the primary application area.

Bluetooth's goal is to be a low-cost, low-power, and, above all, pervasive technology. As well as to
increase convenience for the user, its aim is also to reduce the cost to the manufacturer by eliminating
the need to supply cables with devices. As opposed to single-use cables, a Bluetooth transceiver sustains
multiple connections, and, for most applications, the bandwidth constraints are not an issue.

As befits a cable-replacement technology, many of Bluetooth's applications are in areas where infrared,
USB, or serial connections were previously used: in connecting peripherals, PDAs, cell phones, and other
portable devices. One much-trumpeted application that bucks this general trend is mobile phone
headsets, which use Bluetooth to carry the audio to and from the user, who is liberated from the tiresome
cable.

Support for Bluetooth in the Linux kernel is mature, being present in both the 2.4 and 2.6 series of stable
kernels. Popular core functions of Bluetooth, such as emulated serial connections and networking, are
well-supported. More recent Bluetooth technologies, such as keyboard and mice support, have less well-
developed support and require more involvement from the user. User-level applications that support
Bluetooth on Linux are of varying maturity: applications simply requiring an emulated serial port work out
of the box, whereas specialized Bluetooth tools are under heavy development.

This chapter first introduces the core Bluetooth concepts that will aid a Linux system administrator in his
deployment, discusses kernel configuration and system-level tools, and finally covers user-level
applications.

< Day Day Up >

7.1 Quick Start

We tested a Belkin Bluetooth USB adapter with several Linux distributions on an IBM ThinkPad A20m. In
all cases, we got it up and running to the point where we created a serial port connection between a
Bluetooth cell phone (Nokia 3650) and the Linux machine.

After we set up Bluetooth on each distribution, we completed the following steps (all of this is explained in
detail throughout the chapter):

1. Set the pinin /etc/bluetooth/pin to a numeric-only pin (1234)

2. Restarted the hcid daemon with kil lall -HUP hcid

3. Plugged in the adapter

4. Discovered the cell phone's Bluetooth address with hci t ool scan

5. Configured the serial port (/dev/rfcomm0Q) with:

rfcomm bind O bl uetooth_address

Upon completion, we conversed with the phone over the serial port using Kermit (see Section 9.3).

The following sections describe our distribution-specific notes. Even if your distribution isn't listed here,
check these notes out.

7.1.1 Debian 3.0r1

We abandoned the older 2.4.18 kernel that was the latest 2.4 kernel available for Debian 3.0, and we
compiled kernel 2.4.24 according to the instructions in "Configuring the kernel,"” later in this chapter. To
get Bluetooth to the point where we could make an rfcomm connection, we follow these steps:

1. Edited /etc/apt/sources.list according to the instructions at
http://bluez.sourceforge.net/download/debian/APT-README.

2. Next, we completed an apt - get updat e and then installed the following packages:

o bluez-hcidump

o bluez-pan

@)

bluez-sdp

bluez-utils

(@]

o hotplug

3. The bluez-utils and bluez-sdp packages configured themselves to start in runlevel 3 and 5. After

http://bluez.sourceforge.net/download/debian/APT-README

installing these packages, we started them with the following commands (but we could also have
rebooted):

/etc/init.d/ bluez-utils start

/etc/init.d/bluez-sdp start

4. The /dev/rfcomm™* devices already exist, so we didn't need to create them.

7.1.2 SUSE 9.0

We used SuSE 9.0 (FTP install) with the latest available kernel package (2.4.21-166-default). To enable
Bluetooth, we followed these steps:

1. Installed the following packages using YaST:

o bluez-bluefw
o bluez-libs
o bluez-pan
o0 bluez-sdp
o bluez-utils

2. The packages configured themselves to start in runlevels 3 and 5. After installing these packages,
we started them with /etc/init.d/bluetoothstart (butwe could also have rebooted).

3. The /dev/rfcomm™ devicesdid not exist, so we created them as shown in Example 7-4.

7.1.3 Mandrake 9.2 and RedHat 9

On Mandrake, we used the latest available kernel package (2.4.22-10mdk), but on Red Hat, we rebuilt
the kernel the same way we built it for Debian. For rfcomm to work on RedHat and Mandrake, we followed
these steps:

1. Downloaded the following RedHat RPMs from http://bluez.sourceforge.net:

o bluez-bluefw
o bluez-hcidump
o bluez-libs

o bluez-pan

o bluez-sdp

o bluez-utils

http://bluez.sourceforge.net

2. Next,weranrpm--test -ivh bluez-*, and all looked well, so we installed them with r pm -i vh
bl uez-*.

3. To make sure that the Bluetooth scripts were started on boot, we ran chkconfi g --add bl uet oot h.
4. Weran/etc/init.d/ bluetooth start (we could also have rebooted).

5. The /dev/rfcomm™ devices did not exist, so we created them as shown in Example 7-4.

7.1.4 Troubleshooting

Generally, following the previous steps went smoothly, but we did run into some problems. Here are some
tips that should help you out:

Start hcid in the foreground

By default, the startup scripts launch hcid in the background. If you want to see verbose messages
from it, kill it and then start it with - n:

killall hcid

hcid -n

This helps you figure out what's going on with failed PIN requests.

Restart hcid after PIN changes

If you edit the PIN in /etc/bluetooth/pin, restart hcid (killall -HUP hci d should do the trick).

Replace bluepin

In theory, the bluepin utility should either use the PIN in /etc/bluetooth/pin or prompt you when it
needs a PIN. However, on Mandrake, the PIN exchange was silently failing. So, we replaced bluepin
with a script that spat out the PIN in /etc/bluetooth/pin:

#!/ bi n/sh

file: [usr/local/bin/bluepincat

echo -n "PIN:"
cat /etc/bluetooth/pin
Then we set the pi n_hel per line in /etc/bluetooth/hcid.conf:

pi n_hel per /usr/local/bin/bl uepincat

Make sure the rfcomm module is loaded

When we installed Bluetooth support on Mandrake and Red Hat, the rfcomm module wasn't loaded
automatically, so we received a complaint when we ran /etc/init.d/ bluetooth start:
"Can't open RFCOW control socket: Address famly not supported by protocol”

So, we added nodprobe rfconmto the start() section of the /etc/init.d/bluetooth script and rebooted
to make sure everything worked OK.

Double-check your kernel configuration

If you're compiling the kernel from source, be sure everything is configured the way it should be.
For example, one of us was testing the examples in this chapter and received an Oper ati on not
support ed error when we tried to make a connection over /dev/rfcommO. We hadn't configured
RFCOMM TTY support (CONFI G_BLUEZ_RFCOWM TTY) in the kernel. Well, we had, but it was
configured as a module rather than statically compiled into the kernel. Although nake menuconfi g
showed [*], a peek inside our .config file showed:

CONFI G_BLUEZ_RFCOVM TTY=m

So we changed mto y, recompiled the kernel, installed it, and rebooted, and all was well.

. FREW < Day Day Up > HEST l“

< Day Day Up >

7.2 Bluetooth Basics

Bluetooth Special Interest Group (SIG), a consortium of telecommunications, electronics, and computer
manufacturers, develops Bluetooth. The founding members were Ericsson, Nokia, IBM, Intel, and Toshiba.
The first version of the Bluetooth specification was formally adopted by the SIG in 1999.

The first revisions of the Bluetooth specification had a mixed reception, because implementations were
dogged by interoperability problems. The 1.1 release, published in 2001, eliminated the gray areas from
the 1.0b specification and, as a result, improved device interoperability. Over two years since the 1.1
release, Bluetooth is well on its way to becoming a ubiquitous technology in portable devices. At the time
of writing, the current approved revision of the Bluetooth specification is Version 1.2, released in
November 2003.

The Bluetooth specification itself covers the many levels involved in getting a signal between two
applications, from the radio through link control to application-level protocols. Figure 7-1 shows just some
of the various strata specified by Bluetooth, which we encounter in this chapter. Further details, including
the specifications themselves, can be obtained from http://www.bluetooth.org.

Figure 7-1. Some layers of the Bluetooth specification

RRIOMM Sop
{serial emulation) [service discovery)

W0
(far audin)

L2CAP
{logieal link control and adaptation protocel)

Hil
|hast contredler interface)

Badia ranspert

Bluetooth hardware typically takes the form of one or two microchips, which are embedded in devices.
Computers are increasingly shipping with integrated Bluetooth adapters, but the prevailing way of adding
Bluetooth support is by adding an external adapter, typically via the USB or PC card ports. Before a device
can sport the Bluetooth logo and use the Bluetooth trademarks, it must be put through a series of tests
known as qualification. Qualification involves tests for all parts of the Bluetooth specification, from radio
testing to protocol conformance.

7.2.1 What You Can Do with Bluetooth

As Bluetooth is intended to replace cable, it can be used for more or less the same purposes as a cable,
within the bandwidth constraints of the technology. All the following usage scenarios are supported within
Linux and are discussed in this chapter:

Serial port

http://www.bluetooth.org

Bluetooth's serial port emulation enables the connection of modems (such as in cell phones) and
printers. Serial emulation is also an easy way of writing simple data exchange applications using
Bluetooth.

Object exchange (OBEX)

Facilitated by implementing the OBEX protocol, object exchange is used for "beaming" data objects
between devices, such as contacts from address books. It is the main way that cell phones
exchange data and is often implemented by Bluetooth-enabled printers.

Synchronization

Devices that implement the IrMC specification permit synchronization of data sources, such as
calendars and address books. Many Bluetooth-enabled cell phones have this feature. More modern
devices implement the SyncML specification, which requires a networking connection.

Networking

Bluetooth supports two different forms of networking. The most basic and commonly implemented
form is dial-up networking using PPP over a serial connection. In addition, there is BNEP, an
encapsulation of Ethernet networking, which allows Bluetooth devices to join a network in a manner
much more analogous to Wi-Fi networking.

Input devices

Bluetooth supports an array of input devices similar to USB. Major manufacturers such as Apple and
Microsoft are shipping Bluetooth-enabled mice and keyboards.

Audio

Audio is one of the most-promoted aspects of Bluetooth by cell phone manufacturers; it is possible
to support bi-directional audio connections to headsets over Bluetooth.

7.2.2 Concepts

The following sections describe essential Bluetooth concepts that you need to be aware of. These include
the Bluetooth address, which uniquely identifies a Bluetooth adapter; the protocols and profiles that define
the communication techniques and device capabilities; bonding, discoverability, and device classes, which
Bluetooth devices use to find each other and communicate their abilities; and piconets, scatternets,
masters, and slaves, which describe the topology of Bluetooth networks and the relationships of one
device to another.

7.2.2.1 Bluetooth address

Each Bluetooth interface has a Bluetooth address, also known as its BDADDR. These addresses look very

much like Ethernet interface MAC addresses, and follow the same address allotments that the ANSI/IEEE
802 standard, administered by the IEEE, has laid down. The first three octets of the Bluetooth address
denote the organizationally unique identifier (OUI). For instance, the address 00: 80: 98: 23: 15: 6E has an
OUI of 008098, which is registered to the TDK Corporation.

ol OUls can be looked up online using the IEEE's search interface at
.f.._ http://standards.ieee.org/regauth/oui/. As some device manufacturers subcontract
W #: to others, it may not always be possible to determine the manufacturer of a device
* from its OUI.

In addition, Bluetooth adapters have a programmable name used to present to the user in interactions.
Example 7-2 shows both the Bluetooth addresses and the names that are discovered in a device scan.

7.2.2.2 Protocols

The Bluetooth specification defines some protocols of its own and also reuses some existing standards. A
protocol is an agreement about the way data is exchanged. It is on top of these protocols that all
applications of Bluetooth are built. An in-depth knowledge of the protocols is not necessary to deploy
Bluetooth, but passing familiarity with them helps in troubleshooting situations.

Confusingly, some of the protocols have very similar names to the profiles in which they are used and are
listed next. (Additionally, some protocols are layered on top of lower-level protocols. This happens
elsewhere in computing—for example, when a computer connects to the Internet via a modem, it uses

the RS232 protocol to communicate serial port data, the PPP protocol on top of that to facilitate a network
connection, and TCP/IP on top of that to carry the data.)

Link Manager Protocol (LMP)

Provides basic control of interdevice communication links

Logical Link Control and Adaptation Protocol (L2CAP)

Provides logical channels of communication to higher protocol layers

Radio Frequency Communication (RFCOMM)

Provides emulated serial connections

Object Exchange (OBEX)

A simple file transfer protocol

Bluetooth Network Encapsulation Protocol (BNEP)

http://standards.ieee.org/regauth/oui/

Provides Ethernet encapsulation for wireless networking

Service Discovery Protocol (SDP)

Enables the querying and reporting of services that a device supports

Telephony Control Protocol Specification (TCS)

Provides call control for voice and data telephone calls

7.2.2.3 Profiles

A profile is the name given to the implementation of one more protocols to provide a particular application
service. Bluetooth devices advertise profiles. Many of the profiles build on each other—for instance, the
OBEX profile builds on the serial port profile.

Commonly implemented profiles include:

Service Discovery Access Profile (SDAP)

Enables a device to discover the profiles supported by other devices

Serial Port Profile (SPP)

Emulates a serial port connection

Hardcopy Cable Replacement (HCRP)

Emulates a parallel port connection for the purposes of printing

Dial-up Networking Profile (DUN)

A connection to a modem or cell phone, which connects to an Internet access point

LAN Access Profile (LAP)

A point-to-point (PPP) access to a network

Headset Profile (HS)

A combination voice and control channel, which provides a link between a cell phone and audio

headset

Generic Object Exchange Profile (GOEP)

A file exchange, which exchanges business cards on cell phones

File Transfer Profile (FTP)

Analogous to Internet FTP, which allows navigation and access to a filesystem

Synchronization Profile (SP)

An address book and calendar synchronization, which uses the IrMC protocol

Human Interface Device Profile (HID)

A connection to a keyboard, mouse, joystick, barcode scanner, or other input devices

Personal Area Networking (PAN)

An Ethernet-like access to a network

Basic Printing Profile (BPP)

Enables devices to print text, as well as formatted documents; useful for low-powered devices such
as phones or pagers

7.2.2.4 Bonding

Bonding, also called pairing, is the process by which trust is established between two Bluetooth devices.
The user is required to input matching codes, called personal identification numbers (PINs), into the two
devices. In some situations, one of the devices may have the PIN pre-set—for example, some headsets
come with a PIN of 0000. PINs are typically a sequence of digits; they provide little security, and they are
intended only for the initial pairing.

Given a successful match of PIN, the devices negotiate a link key, a much more cryptographically secure
code, which is used thereafter as an access control mechanism between the two devices.

7.2.2.5 Discoverability

A Bluetooth device is discoverable if it can be found by another device's inquiry. During discovery, the
inquiring device broadcasts a specially coded message. As remote devices receive the message, they send
a return message indicating their presence. In most circumstances, you must make a device discoverable

in order to initiate bonding.

Bluejacking

Cell phone owners who inadvertently leave their phones discoverable may suffer from
"bluejacking," the phenomenon in which unknown people send data transfers such as address
cards. The address card carries a message in place of contact details. Although a remote
device can never force a data transfer on another device, leaving devices discoverable makes
the user vulnerable to these half technical, half social-engineering attacks. And it's possible for
bluejacking to go beyond pranks: one early smartphone operating system had a bug that
caused the phone to lock up if it was sent a GIF image file constructed in a particular way.

7.2.2.6 Device classes

Bluetooth devices fulfill many functions, so there should be a way that a device can quickly indicate its
primary function. As we have already mentioned, the SDP exists to provide a complete description of
running services. However, Bluetooth provides an additional way for a device to describe itself: the device
class. Although the SDP provides the description of the running services, the device class provides the
purpose of them.

The device class code is a 24-bit number that incorporates three subcodes: the major device type, the
minor device type, and additional service codes, which broadly indicate the services available. Table 7-1
shows the meaning of the useful major device types (other types are reserved or undefined), and Table 7-
2 shows the useful service class bits. The meaning of the minor device type bits (bits 7-0) depends on the
major device type. You can find a full explanation of these values on the Bluetooth Special Interest Group
web site at http://www.bluetoothsig.org/assigned-numbers/baseband.htm.

Table 7-1. Major device types as expressed in the device class

Bit pattern (bits 12-8) Meaning
0000O00O0 Miscellaneous
00001 Computer (from desktop to PDA)
00010 Telephone (cell phone, payphone, cordless phone)
00011 Network access point
00100 Audio/video device (headset, speakers)
00101 Peripheral (keyboard, mouse, joystick)
00110 Imaging (printer, camera, scanner)
11111 Uncategorized

Table 7-2. Service classes as expressed in the device class

http://www.bluetoothsig.org/assigned-numbers/baseband.htm

Bit Meaning if set

16 | Positioning (location information, e.g., GPS)

17 | Networking

18 Rendering (printer, speakers)

19 | Capturing (scanner, microphone)

20 Object transfer

21 Audio (speaker, microphone, headset)

22 Telephone (modem, cordless telephone, headset)

23 Information (web server)

7.2.2.7 Piconets and scatternets, and masters and slaves

A piconet is a network of Bluetooth devices created by a master connecting to one or more slaves. The
master is the device that initiates the connection. Figure 7-2 shows the topology of a piconet. A master
may be connected to as many as seven slaves simultaneously.

Figure 7-2. Topology of a piconet

Slawe

Slave Master Slave

Hlanve

Various applications such as LAN access points require the master/slave relationship to be the same as
the server/client relationship. For this reason, a client device, which serves as a master, initiates a
connection to the access point; once connected, a role-switch occurs, and the client device now becomes
a slave. For most applications of Bluetooth on Linux, you do not need to be aware of these distinctions,
but the knowledge of their existence may be useful in debugging scenarios. Some Bluetooth hardware has
restricted role-switching ability.

Sometimes, a slave in one piconet is connected to a master of another piconet. The linking together of
multiple piconets in this way is called a scatternet.

4@ FREV < Day Day Up > MEXT

< Day Day Up >

7.3 Bluetooth Hardware

There is a wide variety of hardware available for adding Bluetooth support to your computer. Devices fall
into several categories:

USB dongle

Plugs into the USB port. This device is the most common and economical.

Built-in

Increasingly, laptops are shipping with a Bluetooth transmitter built in. Typically this device appears
to the operating system as if it were a USB device.

PC card

Plugs into a laptop's PCMCIA slot and provides a serial interface to the Bluetooth transmitter.

CF card

Behaves in the same way as a PCMCIA card, and it is used with PDA devices.

Serial dongle

A Bluetooth transmitter that plugs into the serial port. In the early days of Bluetooth deployment, it
was a popular choice; today, however, it is not a recommended option.

Compatibility between Linux and Bluetooth hardware is good. A comprehensive table of verified device
compatibility can be found on Marcel Holtmann's web site, at
http://www.holtmann.org/linux/bluetooth/devices.html. This table includes information for laptops with
built-in Bluetooth, too. If you have no specific overriding criteria, it is best to choose a USB dongle. Due to
the standardization of the Bluetooth USB interface, compatibility is very good.

- If you dual-boot your computer between Linux and the manufacturer's operating

system, such as Windows XP or Mac OS X, you may want to use the Bluetooth
device your vendor recommends. Both the Apple-sold D-Link USB dongle and
Microsoft-manufactured USB dongle are known to work with Linux. If in doubt,
consult the Linux device compatibility list.

.
!

Fay

ey

When choosing a Bluetooth device, be aware of the difference between Class 1 and Class 2 Bluetooth

http://www.holtmann.org/linux/bluetooth/devices.html

devices. Class 1 devices have a more sensitive radio and work up to distances of 100 meters, whereas
Class 2 devices work up to 10 meters and are cheaper.

& Frev | < Day Day Up > | NEXT up

< Day Day Up >

7.4 Linux Bluetooth Support

As with many emerging technologies, there are competing implementations of Linux Bluetooth support.
The main two implementations are Affix and BlueZ. Affix was originally developed by Nokia and is now
hosted as an open source project at SourceForge (http://affix.sourceforge.net). BlueZ is also hosted at
SourceForge is (http://bluez.sourceforge.net) and the official Bluetooth stack of the Linux kernel.

Although Affix is a mature and functional project, BlueZ receives more testing and has more widespread
adoption. For this reason, this chapter focuses on the uses of the BlueZ Linux Bluetooth stack and
libraries.

This section includes all the information that you need to install and configure Bluetooth support from
scratch. It is possible that your Linux distribution already contains preconfigured Bluetooth support, which
will save you effort. However, the installation instructions provide useful background information for
troubleshooting.

7.4.1 Distributions

As Bluetooth is a relative newcomer to Linux, BlueZ support across commercial distributions varies.
Generally speaking, if the kernel shipping with your distribution is older than 2.4.22, it is a good idea to
upgrade it. Users of "bleeding-edge" distributions such as Debian Unstable and Gentoo should find that
Bluetooth is adequately supported.

7.4.2 Configuring the Kernel

Bluetooth support under Linux requires a recent kernel. If your kernel is Version 2.4.22 or better, or a 2.6
series kernel, then you're all set. Otherwise, you must upgrade your kernel. Alternatively, if you do not
wish to upgrade, and have kernel 2.4.18 or better compiled from source, you can apply the patches from
the "kernel patches" area of the BlueZ web site (http://bluez.sourceforge.net). Regardless, it's worth
checking out the patches, because there are often improvements available that have not yet been merged
into the main Linux kernel source.

http://affix.sourceforge.net
http://bluez.sourceforge.net
http://bluez.sourceforge.net

Patching the Kernel

To patch the kernel, first download the most recent patch for your kernel version from the
BlueZ web site (for example, patch-2.4.22-mh1.gz), and place it somewhere convenient, such
as /usr/src/. Change into the directory where your kernel source is unpacked, typically
/usr/src/linux, and apply the patch:

cd /usr/src/linux
gzip -dc .. [/patch-2.4.22-nmhl.gz | patch -pl

Next, run this command:
find . -name '*rej’

If any of the patches were rejected, you'll find some files ending in .rej. If they were, delete
the kernel source, extract it again (be sure that you have the correct patch for your kernel
version), and try the patch again.

You can then proceed with configuring your kernel for Bluetooth by running nake nenuconfi g,
make xconfi g, or make config.

Chapter 2 explains how to configure and compile a kernel. Table 7-3 and Table 7-4 show the options that
must be set in your kernel configuration to enable Bluetooth support. You can either configure Bluetooth
support to be compiled into the kernel or to be loadable on-demand in the form of modules. Many Linux
distributions choose to ship with modules, so we proceed on the assumption that you will use modules.
This removes the need to recompile your kernel if you acquire a different type of Bluetooth device.

Figure 7-3 and Figure 7-4 show the Bluetooth configuration options from the 2.4.24 kernel.

Figure 7-3. Configuring Bluetooth support in the Linux kernel
Limux Kernel wd.q4.24 Configuration

firrow keys novigate the menw. <Enter: selects subnenus —- 3.
Highlighted letters are hotkeys. FPressing <Y* includes, <N» excludes,
4H» modularizes featurez, Press (Esc><Esc> to exit, <7> for Help.
Legend: [w] built-im [] excleded <H» module < > module capable

A Bluetooth subsysten sup

<Hx 2CAP protocol support (HEW)
<H> CO linkz support (HEW)

<H> FCOMA protocol support

=] FCOMH TTY¥ support (HEW)

<H> HEF protocol su

[«]1 H lticast filter support (HEW)
[»] rotocol filter support (HEW)
luetooth device drivers —-——>

¢ Exit > < Help >

Figure 7-4. Configuring Bluetooth hardware support in the Linux kernel

Limux Kernel we.q4.24 Configuration

firrow keys novigate the menw. <Enter: selects subnenus —-3.
Highlighted letters are hotkeys. FPressing <¥r includes. <N> excludes,
<H> modularizes featuresz, Press (Esc><Esc> to exit, <7> for Help.
Legend: [=] built-in [] excleded <H» module < » module copable

Mx HCI USH driver (HEW)

CO tvolce) support (HEWN

CI UART driver (HEW)
ART (H4) protocol support (HEWD
C3P protocol support (NEW)
rangnit CRC with every BCSP packet

CI BlueFRITZ? USE driver (HEW)

CI DTLY (FC Card) driver (HEW)

CI BT3IC (FC Card) driver (HEW)

CI BlueCard (PC Card) driver (HEW)

CI UART (PC Card) dreiver (HEW)

CI UHCI Wirtwal HCI dewice) driver (HEW)

{ Exit » £ Help »

Table 7-3. BlueZ protocol configuration options

Option Purpose Recommended
value
Bluetooth subsystem support Enables the entire BlueZ stack m
L2CAP protocol support A basic Bluetooth protocol m
SCO links support Bluetooth Audio m
RFCOMM protocol support Serial data transfer m
Maps Linux terminal devices (e.g.,
RFCOMM TTY support /dev/rfcomm0O) to Bluetooth serial ports y
BNEP protocol support Personal area networking m
BNEP Multicast filter support, Advanced filtering for networking y

protocol filter support

Table 7-4. BlueZ hardware support configuration options

Option Purpose Reco\r/r;rlr:;nded
HCI USB driver Support for USB dongles m
SCO (voice) support Audio transmission support
USB zero packet support Workaround for buggy USB devices n

Support for serial dongles: either PCMCIA, CF, or

HCI UART driver RS232 serial port

UART (H4) protocol

Serial protocol used for most PCMCIA and CF cards y
support

Recommended

Option Purpose value

Serial protocol used for PCMCIA and CF cards based

BCSP protocol support on the CSR BlueCore chipset y
Transmit CRC with every Improves reliability of BCSP support, at a slight cost y
BCSP packet to efficiency

HCI BlueFRITZ! USB driver Support for BlueFRITZ! Bluetooth ISDN m
HCI VHCI (Virtual HCI Support for a virtual Bluetooth device for testing m
device) driver purposes

your kernel configuration (CONFIG_USB_BLUETOOTH). This is a vestigial driver
from very early Bluetooth work and will prevent the BlueZ Bluetooth stack from
operating. If you are using a distribution’'s precompiled kernel, this corresponds to
the bluetooth kernel module, and you should prevent it from being loaded. This can
be done either by ensuring the BlueZ hci_usb module is loaded instead of the USB
Bluetooth module or by disabling the module by adding its name to hotplug's
configuration list (/etc/hotplug/blacklist).

|!: You should not enable the Bluetooth device support in the USB drivers section of

Once your kernel is compiled and you have rebooted, you must configure Linux so it knows how to load
the appropriate Bluetooth protocol modules. Most modern distributions come with /etc/modules.conf
already set up for Bluetooth use, but you may be missing the required configuration.

To verify this, ensure that the contents of Example 7-1 are present in /etc/modules.conf. If you need to
change this file, run depnod - a to ensure automatic loading of modules by the kernel. You must be the

root user to perform this operation.

Example 7-1. Module configuration for BlueZ
Bl ueZ nodul es

alias net-pf-31 bluez

alias bt-proto-0 | 2cap

alias bt-proto-2 sco

alias bt-proto-3 rfcomm

alias bt-proto-4 bnep

alias tty-1ldisc-15 hci_uart

alias char-maj or-10-250 hci_vhci

"_-‘~ Linux distributions may vary in the way they manage the /etc/modules.conf file.
. Debian GNU/Linux, for example, requires you put the contents of Example 7-1 in a

wh # ;. separate file in /etc/modutils and run / sbi n/ updat e- nodul es; however, if you use
" the pre-packaged Debian BlueZ utilities, this file is already provided for you.

7.4.3 Supporting Subsystems

Depending on your hardware configuration, you must ensure you are running some extra supporting
software to initialize your Bluetooth device.

7.4.3.1 PCMCIA

If your Bluetooth adapter is a PC card or a CF card, you must have kernel support for PCMCIA and the
PCMCIA card services software installed. This software is responsible for initializing your adapter when it is
plugged in and loading the required drivers into the kernel.

BlueZ requires PCMCIA card services to be Version 3.2.2 or higher. If your Linux distribution has an older
version, you can update it from http://pcmcia-cs.sourceforge.net. See Chapter 2 for complete instructions
on compiling pcmcia-cs from source.

7.4.3.2 Hotplug

The Linux hotplug subsystem enables you to plug in a device and have it immediately ready to use. It is
similar in function to the card manager from PCMCIA card services, except it is generalized to include
USB, Firewire (IEEE 1394), and network devices. The 2.6 series of Linux kernels adds hotplug capability to
even more subsystems, such as SCSI and input devices.

When hotplug detects a new device, it loads the necessary driver modules into the kernel, and it runs any
scripts the user has configured. In the case of BlueZ, hotplug is required for certain Bluetooth devices that
require firmware downloaded to them, such as the USB dongles based on the Broadcom chipset.

Hotplug ships with most Linux distributions. Version 2002_08_26 or later is required. If you need to install
it separately, download it from http://linux-hotplug.sourceforge.net/.

< Day Day Up >

http://pcmcia-cs.sourceforge.net
http://linux-hotplug.sourceforge.net/

< Day Day Up >

7.5 Installing the BlueZ Utilities

In addition to the kernel support, you must install a set of utility programs to help you manage your
Bluetooth devices. Table 7-5 shows the names of the packages and their purpose. You can either install
the versions of these tools that come with your Linux distribution, or compile and install them from
source.

Table 7-5. BlueZ software packages

Package Purpose
bluez-libs The application library that all other Bluetooth tools require in order to function
bluez-utils Main utilities that enable you to initialize and control Bluetooth devices
Service discovery protocol tools that enable the advertisement and discovery of
bluez-sdp -
Bluetooth services
bluez-pan Tools that enable personal area networking using Bluetooth
bluez-

heidump A debugging tool that permits the monitoring of Bluetooth packets

bluez-bluefw The firmware for Broadcom chipset-based Bluetooth devices

If you are compiling the tools from source code, compile and install in the order shown in Table 7-5 to
avoid dependency problems.

Precompiled version of the utilities can be obtained for Red Hat Linux as RPMs, for Debian stable as .deb
packages (the latest BlueZ utilities are an integral part of Debian unstable), and as packages suitable for
the Sharp Zaurus Linux PDA. These can be downloaded, along with the source code packages, from the

BlueZ download page at http://bluez.sourceforge.net/.

In order to determine whether your Bluetooth system is working, you only need to install the bluez-libs
and bluez-utils packages, and also bluez-bluefw if your dongle contains a Broadcom chip (you can
determine this from Marcel Holtmann's Bluetooth hardware page at
http://www.holtmann.org/linux/bluetooth/devices.html). Install the rest when you have verified that
everything is working properly.

& FREV | < Day Day Up > | NEXT ap

http://bluez.sourceforge.net/
http://www.holtmann.org/linux/bluetooth/devices.html

< Day Day Up >

7.6 Basic Configuration and Operation

The bluez-utils package contains the tools you need to configure and test your Bluetooth setup. Once
you've installed the package, run the init script (/etc/init.d/bluez-utils start on Debian,
/etc/init.d/ bluetooth start on Red Hat) to start the Bluetooth subsystem. These scripts normally
run on boot, so they may have been started already if you installed from RPMs or Debian packages.

The hcid daemon should now be running. This program controls the initialization of Bluetooth devices on
the system and handles the bonding process with other devices. We discuss configuration of hcid later in
this chapter.

The prefix "hci” derives from the name of the interface between the computer and the Bluetooth device,
the Host Controller Interface.

7.6.1 Examining Local Devices

The hciconfig tool allows the configuration of the characteristics of your Bluetooth adapter. If you are
familiar with the configuration of network interfaces, you will find it parallel in operation to ifconfig. Use - a
to display extended information about each Bluetooth device attached to the computer:

hciconfig -a

hci 0O: Type: USB
BD Address: 00:80:98:24:15: 6D ACL MITU. 128:8 SCO MIU: 64:8
UP RUNNI NG PSCAN | SCAN
RX byt es: 4923 acl :129 sco: 0 events: 168 errors: 0
TX bytes: 2326 acl:87 sco: 0 conmands: 40 errors: 0
Features: Oxff Oxff Ox05 0x00
Packet type: DML DVB DVMb DH1 DH3 DH5 HV1 HV2 HV3
Li nk policy: HOLD SN FF PARK
Li nk node: SLAVE ACCEPT
Name: 'saag-0'
Cl ass: 0x100100
Service C asses: Object Transfer
Devi ce C ass: Conputer, Uncategorized

HCl Ver: 1.1 (0x1) HCI Rev: 0x73 LWMP Ver: 1.1 (0x1) LMP Subver: 0x73

Manuf acturer: Canbridge Silicon Radio (10)
From this output, you can observe several things, which have been rendered in bold text in the example.
¢ Bluetooth interfaces are referred to as hciO, hcil, etc. in the same way as Ethernet interfaces are
generally named ethO, ethl, etc.
¢ The unique Bluetooth address of our device is 00:80:98:24:15:6D.
e The hciO device in question is activated, that is, UP.

¢ Other Bluetooth devices will see this computer as saag-0. This name is configurable, as explained in
Table 7-6.

e The chipset is manufactured by Cambridge Silicon Radio (CSR). The CSR chipset is the most
commonly used chipset for USB dongles.

When diagnosing and reporting problems to kernel driver authors, you may be asked for the output of
hci confi g -a. Note that you must be the root user to use some of the features of hciconfig.

Table 7-6 shows the most useful options of the hciconfig tool.

Table 7-6. Common usages of the hciconfig tool

Command Description
hci config hciO u
9 P Activates or deactivates the Bluetooth device. Normally, in hcid does

hciconfig hci0 down this for you when you plug the device.

hci config hci O reset Sends a reset command to the Bluetooth device.
hci config hci 0 name nmynanme | Sets the device's public name to nynane.

Shows a human-readable list of the Bluetooth features the device
hci config hci O features supports. The most useful feature is SCO link, required in order to use
audio.

7.6.2 Scanning for Remote Devices

The acid test is, of course, to see if your computer can detect other Bluetooth devices. The hcitool toolcan
be used to do this. Switch on your other Bluetooth device, and ensure it is in "discoverable" mode. Issue
the command hci t ool scan and wait (see Example 7-2). You don't need to be root in order to run this

command.

Example 7-2. An example scan of remote Bluetooth devices
$ hcitool scan

Scanning ...

00: OA: D9: 15: CB: B4 ED P800

00: 40: 05: DO: DD: 69 saag- 1

Example 7-2 shows a typical output of a scan. In this case, the author's cell phone, "ED P800," and
second Bluetooth adapter, "saag-1," are shown as discoverable.

Why Isn't Scanning Instantaneous?

The reason scanning can take a long time is because a Bluetooth inquiry is being performed.
As Bluetooth devices frequency-hop, inquiry cannot be instantaneous. The device performing
the inquiry transmits a special code on two consecutive frequencies. When the other devices’
hop patterns take them onto those frequencies, they listen for a repetition of that code and
then indicate their presence to the inquirer.

The hcitool and hciconfig programs produce similar output for the remote devices. You must be root to
use this option of hcitool. Here's an example session with hcitool where we specify the Bluetooth address
of the P800 cell phone discovered in Example 7-2:

hcitool info 00:0A: D9:15: CB: B4
Requesting information ...
BD Address: 00: OA: D9: 15: CB: B4
Devi ce Nane: ED P800
LMP Version: 1.1 (0x1) LMP Subversion: 0x9040
Manuf acturer: Ericsson Mbile Comunications (0)
Features: Oxff Oxfb 0x01 0x00
<3-sl ot packets> <5-sl|l ot packets> <encryption> <slot offset>
<tim ng accuracy> <role swi tch> <hold node> <sniff node>
<par k node> <RSSI > <SCO | i nk> <HV2 packet s>

<HV3 packets> <u-law | og> <A-1aw | og> <CVSD>

7.6.3 Pinging a Remote Device

The ping command is an incredibly useful tool for discovering whether remote computers are reachable
over a TCP/IP network. BlueZ has an analog to ping, called 12ping. Its name refers to the fact that it
attempts to create a connection to the device using the logical link control and adaptation protocol
(L2CAP), the lowest-level link-based protocol in Bluetooth.

In other words, before despairing because you cannot connect to a device, check it with 12ping. There
may be a fault with software higher up the chain; I2ping enables you to determine whether a basic
connection can be established with a remote device. Here's an example of 12ping in action (you need to
run I12ping as root):

| 2pi ng 00: OA: D9: 15: CB: B4

Pi

ng: 00: OA: D9: 15: CB: B4 from 00: 80: 98: 24: 15: 6D (data si ze 20)
0 bytes from 00: OA: D9: 15: CB: B4 id 200 tine 54.85ns
0 bytes from 00: OA: D9: 15: CB: B4 id 201 tine 49. 35ns
0 bytes from 00: OA: D9: 15: CB: B4 id 202 tine 34.35ns
0 bytes from 00: OA: D9: 15: CB: B4 id 203 tine 28.33nms

4 sent, 4 received, 0%/ oss

- If you have not yet paired your computer with the device with which you are
..fn. testing, using I12ping may result in a "permission denied" error. To remedy this, you
w #: must either pair your device with the computer (see Section 7.6.5 later in this
" chapter) or ensure that the remote device is discoverable.

7.6.4 Configuring hcid

The hcid daemon handles various low-level aspects of a system's Bluetooth devices, including activating
and configuring the Bluetooth interfaces, and handling device bonding. hcid should be running at all times
on your system, and it is usually started by initialization scripts installed along with the rest of the tools
from the bluez-utils package.

The configuration file for hcid, /etc/bluetooth/hcid.conf, has two parts: global configuration and Bluetooth
device configuration. In normal operation, most of the default options are acceptable. In this chapter, we
cover only the options that are most useful to change.

7.6.4.1 Global options

This section is introduced by the opti ons keyword in the configuration file and controls the behavior of
the hcid program. The most useful option in this section is pi n_hel per, which tells the computer the
program to run in order to obtain a PIN code when pairing. The default PIN helper that ships with bluez-
utils is a Python script, which uses the Python bindings to the GTK graphical toolkit. Unless you have
Python and the Python-GTK package installed on your computer, this helper will not work, and you will
not be able to pair your computer with other Bluetooth devices. (See the Section 7.1.4 earlier in this
chapter for instructions on replacing the PIN helper with one that returns the same PIN code every time.)

A better-looking PIN helper is available separately from bluez-utils, in a package called bluez-pin.

Installing this package is recommended, and several Linux distributions ship it as a default. If you install
bluez-pin, you must amend the pi n_hel per option accordingly. Figure 7-5 shows bluez-pin in action.

Figure 7-5. A request for a PIN from bluez-pin

(O Blueto Dt PIN fstbi sttt ssasttoes oo & |
Dutgoing connection to 00:80:08: 24:15:6D

9 PIN: 1234

O;ancel OQK

7.6.4.2 Device options

This section is introduced by the devi ces keyword, which controls the configuration that hcid gives to
each Bluetooth device as it is activated. This has the same effect as if you were to manually configure the
device with hciconfig. Table 7-7 explains the most useful options available in this section.

Table 7-7. Useful device-level options from Zetc/bluetooth/hcid.conf

Option Explanation

The name of the adapter as it appears to other devices. The special sequence % is replaced

name by the machine's hostname, and % is replaced by the interface number.
The Bluetooth device and service class advertised to other devices. The default is hex
cl ass 0x000100, indicating a computer device class, with no special service class. Depending on
how the Bluetooth adapter is to be used, it may be helpful to amend this value. For more
information, see Section 7.2.2.6.
. These two options control whether the adapter responds to inquiry and page scans. If inquiry
i scan . . . ST . -
pscan scanning (i scan) is enabled, the adapter is discoverable by other devices. If page scanning

(pscan) is enabled, the computer permits adapter connections from remote devices.

7.6.5 Bonding/Pairing

Many devices require that bonding, or pairing, is performed before a Bluetooth connection is established.
Bonding may be initiated by the computer or by the remote device.

If the computer initiates bonding—usually by making an outgoing connection—then the pi n_hel per
program (usually bluepin) will present a graphical dialog box to the user requesting that he input a PIN,
which should match the code set on the remote device. If the remote device initiates bonding, then the
remote device is required to provide a PIN to match that set in the file /etc/bluetooth/pin.

In some distributions of bluez-utils, the PIN code is set to the alphabetical string
— Bl ueZz. This is troublesome, because many Bluetooth devices, including most cell
phones, are only capable of delivering numeric PINs. It is therefore recommended
that you alter the contents of /etc/bluetooth/pin to a numeric code.

o
T

If bonding is successful, the hcid daemon will store the resulting link key, used to authenticate all future
connections between the two devices concerned, in the database file /etc/bluetooth/link_key.

7.6.6 Service Discovery

Bluetooth devices implement the service discovery profile (SDP) in order to describe to other devices how
their services may be accessed. SDP is generally used in two ways: browsing and searching. An SDP
browse request causes a device to respond with a list of services that it supports. A search request is a
query for details of a particular service.

Two tools found in the bluez-sdp package handle SDP on Linux. The first is sdpd, which provides an SDP
server and allows remote devices to query the computer. The second, sdptool, allows administration of

the SDP server and querying of the remote device.

- Not all Bluetooth-enabled devices support SDP browsing—for example, the Palm
o, Tungsten-T PDA. Applications that wish to connect to these devices must instead

' &= search for the services they wish to use, as shown in the following section.

7.6.6.1 Using sdptool

The simplest invocation of sdptool is sdpt ool browse. This performs an inquiry and then browses each
available device. Example 7-3 shows the result of this command.

Example 7-3. Results of an SDP browse
$ sdptool browse
Inquiring ...
Browsi ng 00: 80: 98: 24: 15: 6D ..
Servi ce Nanme: SDP Server
Service Description: Bluetooth service discovery server
Service Provider: BlueZ
Servi ce RecHandl e: 0x0
Service Class |ID List:
"SDP Server" (0x1000)
Prot ocol Descriptor List:
"L2CAP" (0x0100)
PSM 1
Ver sion: 0x0001
Language Base Attr List:
code_ | S0639: 0x656e
encodi ng: Ox6a

base_of fset: 0x100

Service Nane: Public Browse G oup Root

Service Description: Root of public browse hierarchy

Service Provider: BlueZ
Servi ce RecHandl e: 0x804d008
Service Class ID List:

"Browse Group Descriptor” (0x1001)
Language Base Attr List:

code_| S0639: 0x656e

encodi ng: Ox6a

base of fset: 0x100

Servi ce Name: LAN Access Poi nt
Servi ce RecHandl e: 0x804d6f 0
Service Class |ID List:

"LAN Access Using PPP" (0x1102)
Prot ocol Descriptor List:

"L2CAP" (0x0100)

"RFCOW' (0x0003)

Channel : 3

Profil e Descriptor List:

"LAN Access Using PPP" (0x1102)

Ver si on: 0x0100

Service Nanme: OBEX (bject Push
Servi ce RecHandl e: 0x804d7f0
Service Class ID List:
" OBEX Obj ect Push" (0x1105)
Protocol Descriptor List:
"L2CAP" (0x0100)

" RECOMM' (0x0003)

Channel : 4
" OBEX" (0x0008)
Profil e Descriptor List:
"OBEX Obj ect Push" (0x1105)

Ver si on: 0x0100

The output from the br owse command shows a list of service descriptions obtained from the SDP server.
In this case, you can see that the device is running an SDP server, has support for public browsing of the
SDP server contents, is offering network access via PPP, and supports OBEX via OBEX PUSH. The two
profiles that use RFCOMM as a base protocol also indicate the RFCOMM channel on which the service is
available. The term "channel” is somewhat overloaded in radio technologies such as Bluetooth, so you
may find it helpful to consider each RFCOMM channel a virtual serial port number.

If the BDADDR of the device to query is known, it can be specified on the command line: sdpt ool browse
00: 80: 98: 24: 15: 6D.

The sdptool program is also used to search for devices supporting a particular service. For instance,

sdpt ool search OPUSH returns the service descriptor for OBEX PUSH support from any available device
supporting it. Unfortunately, unlike the br owse command, there is no way of searching only one device
with the current version of sdptool; it must perform an inquiry and search for the service on every device.
Table 7-8 shows the service abbreviations that sdptool understands.

Table 7-8. Service abbreviations for sdptool

Abbreviation Service
SP Serial port
DUN Dial-up networking
LAN LAN access
HSET Headset profile
FAX Fax profile
OPUSH Object push
FTRN Object file transfer protocol
NAP Network access point
GN Ad-hoc peer networking
HID Human interface device
CIP Common ISDN access
CTP Cordless telephony

Although the use of sdptool appears clumsy, in practice it is normally required only for diagnostic
purposes. Bluetooth application software generally performs its own SDP requests to determine how to
connect to a service on a remote device.

7.6.6.2 Configuring sdpd with sdptool

Unlike hcid, sdpd does not remember its settings by use of a static configuration file. The service directory
is dynamic, allowing services to register and deregister themselves as they come and go. Most
applications do this by using the BlueZ SDP libraries, but on occasion, it is useful to configure this
manually using sdptool.

To see which services the system's SDP daemon is advertising, use the special Bluetooth address
FF: FF: FF: 00: 00: 00, which refers to the local Bluetooth device: sdpt ool browse FF: FF: FF: 00: 00: 00.

The add subcommand of sdptool registers a service via SDP. It takes the service name as a parameter,
with an optional parameter for the RFCOMM channel. For instance, to advertise a serial port connection on
RFCOMM channel 3, use the following command: sdpt ool add --channel =3 SP. Obviously, the channel

option makes sense only for those services based on serial emulation, such as dial-up networking, OBEX,
and fax.

Removing a service is slightly more complex, requiring the identifying "handle" of the record. In the
output from an SDP browse in Example 7-3, there is a Service RecHandle entry for each record; the del

command requires this number. So, assuming Example 7-3 refers to a local SDP server, you could
remove the object push record with the command sdpt ool del 0x804d7fO0.

The sdptool command provides even more granular control over the SDP records through the use of

setattr and set seq, which adjust particular parameters. Use of set attr and set seq require knowledge
that is likely to be useful only if you are writing sophisticated Bluetooth programs.

7.6.7 Serial Connections

Using BlueZ's RFCOMM implementation, it is possible to create and use emulated serial port connections
over Bluetooth. RFCOMM actually underlies many Bluetooth profiles such as dial-up networking and OBEX.

As with SDP, BlueZ provides both application libraries, so programs can create and utilize RFCOMM
connections and an administrative tool for the user to set up connections herself.

7.6.7.1 Ensuring RFCOMM is set up

To use RFCOMM connections, you must ensure that:

e The rfcomm kernel module is either compiled into the kernel or available to load
e The /dev/rfcomm™ devices exist on your machine
Kernel configuration was covered in Section 7.4.2 earlier in this chapter. Most Linux distributions should

automatically create the RFCOMM device entries for you, but if they don't exist, create them using the
script in Example 7-4, which must be run as the root user.

Example 7-4. Creating the /dev/rfcomm devices

#1/ bi n/ sh

script: nkrfcomm

C=0;
while [$C -1t 256]; do
if [! -c /dev/rfcom®BC]; then
nknod -m 666 /dev/rfcomBC c 216 $C
fi
C="expr $C + 1°

done

7.6.7.2 Connecting to a cell phone

To see an example of RFCOMM usage, you could set up a serial connection to a cell phone's modem and
try some commands on it. First, you must discover the RFCOMM channel that dial-up networking uses on
the phone. For this, use sdpt ool browse ADDR (where ADDR is a Bluetooth address you retrieved with
sdpt ool browse):

$ sdptool browse

00: OA: D9: 15: CB: B4

Servi ce Nane: Dial-up Networking
Service Description: Dial-up Networking
Service Provider: Sony Ericsson
Servi ce RecHandl e: 0x10002
Service Class ID List:

"Di al up Networking” (0x1103)
Protocol Descriptor List:

"L2CAP" (0x0100)

"RFCOW' (0x0003)

Channel : 3

The phone uses channel 3 for dial-up networking. A virtual serial port on the Linux machine must be

bound to this channel on the phone. As the root user, use the rfcomm command to bind the port and then
again to confirm that the port is bound, as shown in Example 7-5.

Example 7-5. Binding to and checking an RFCOMM serial port

rfcomm bind O 00: OA: D9: 15: CB: B4 3

rfcomm
rfcormO: 00: OA: D9: 15: CB: B4 channel 3 cl ean

The 0 in bi nd 0 corresponds to the 0 in the device /dev/rfcommO, which can now be used with
applications in the same way that traditional serial ports (known as /dev/ttySO0, etc.) are used. A terminal
emulation package, such as the popular minicom, can be used to confirm that the phone's modem is
working, as shown in the following listing. The command ATI 3 usually returns useful model information for

a remote modem.

(04
ATI 3
P800 Bl uetooth (TM Mddem

X

:'_r_-‘: For more information on minicom, see http://alioth.debian.org/projects/minicom/.
..fn. You must create a configuration file for minicom referencing /dev/rfcommO or
w #: change the serial device to /dev/rfcommO from within minicom's option screens,
* which you can find by running m ni com -s. You can also use Kermit, as shown in

Chapter 9.

7.6.7.3 Internet access via a cell phone

By creating PPP connections with RFCOMM serial ports, you can use your cell phone for Internet access.
(To learn how to do this with GPRS cell phones, see Chapter 9.) For example, to connect to AT&T
Wireless's GPRS network with a Nokia 3650 (see "GSM/GPRS Phone with Data Cable" in Chapter 9), use
the peers script shown in Example 7-6. Be sure to use rfcomm bind as shown in Example 7-6. You can use
the attws-connect and attws-disconnect scripts from Chapter 9.

Example 7-6. PPP peer settings for AT&T Wireless and the Nokia 3650 over
Bluetooth

File: /etcl/ppp/peers/attws-rfconm

#

/dev/rfcommD # Nokia 3650

115200 # speed

defaultroute # use the cellular network for the default route
usepeer dns # use the DNS servers fromthe renote network

nodet ach # keep pppd in the foreground

http://alioth.debian.org/projects/minicom/

nocrtscts # no hardware fl ow control

| ock # lock the serial port

noaut h # don't expect the nodemto authenticate itself

| ocal # don't use Carrier Detect or Data Term nal Ready
connect "/usr/sbin/chat -v -f /etc/chatscripts/attws-connect"”

di sconnect "/usr/sbin/chat -v -f

/etc/chatscripts/attws-di sconnect™

7.6.8 Object Exchange

OBEX is a simple file transfer protocol. It is used when you "beam" files from one device to another. This
is known as OBEX PUSH. Some devices also support OBEX FTP. As its name suggests, OBEX FTP behaves
similarly to the Internet FTP protocol, allowing file uploads and downloads to a device.

The OBEX protocol was introduced as part of the group of technologies created for infrared device
connections. Its implementation in devices such as cell phones is widespread but not without its quirks.
OBEX itself is a binary protocol layered on top of a serial connection. With Bluetooth, it is layered on top of
an RFCOMM connection. Example 7-3 shows an entry for the OBEX PUSH profile, using RFCOMM channel
4.

Some older cell phones don't actually provide OBEX implementation in this way. Instead, they have
extended AT commands accessible from a serial connection to their internal modem, as described in the
previous section. These commands place the connection into OBEX mode. We do not cover this use, often
called "cable OBEX," but rather focus on the Bluetooth OBEX profiles.

OBEX FTP over Bluetooth is not very well supported on Linux. The most popular package, obexftp, still has
Bluetooth support in development at the time of writing. We advise you to check the project's home page
at http://trig.net/obex.

OBEX PUSH is better supported and is more practical since it is consistently implemented in consumer
devices such as cell phones. There are several graphical programs available to support OBEX PUSH on
Linux, as we shall see later. First, we look at the command-line tools available to perform file transfers.

7.6.8.1 Basic support

OBEX support on Linux is implemented through a project called OpenOBEX. Any OBEX-related program
requires you to have these libraries installed. They can be obtained and compiled from the project's home
page at http://openobex.sourceforge.net/ or installed through your Linux system's package management
system.

If your Linux distribution is relatively old, be aware that OpenOBEX might not have

been compiled with Bluetooth enabled. If you are encountering inexplicable errors
in starting up OBEX applications, this may well be the case, and you should contact
your Linux distribution vendor.

http://triq.net/obex
http://openobex.sourceforge.net/

The OpenOBEX libraries have a companion package called openobex-apps. The openobex-apps package
contains a set of basic test programs that you can use to get started. They are by no means production
quality, but they enable you to test your setup. We'll use the obex_t est program to test receiving and

sending files.

To send a file to a remote device, you must first discover the RFCOMM port the OBEX PUSH support uses,
as shown in Example 7-3. Use sdpt ool to discover this, and then run obex_t est. Let's suppose our
remote device has the address 11:22:33:44:55:66 and uses RFCOMM port 3 for OBEX PUSH. Here is an
imaginary session:

$ obex_test -b 11:22:33:44:55:66 3

> C

> p localfilename renotefil enane

This session presents two arguments to the p command: the location of the file you want to send and the
name of the file to use when it reaches the remote device.

To receive a file from a remote device, use the test program in server mode. (This is shown in the
following listing.) You can then push a file to your computer from a remote device.

$ sdptool add --channel =4 OPUSH
$ obex test -b ff:ff:ff:00:00:00 4
> s

Note that some devices require the OBEX capability to be reflected in your Bluetooth device's device class
setting before they allow transfers to be made to your computer. (See the section Section 7.2.2.6 for a
detailed discussion on the exact values that this can take.) In most cases, it is sufficient to set the class to
servi ce_cl ass_obex | device_class_conputer (0x100100). This can be set in /etc/bluetooth/hcid.conf
or by dynamically using the hciconfig command.

The test applications that come with the OpenOBEX libraries are necessarily very rough and require you to
do the legwork. Happily, more polished applications are available. These applications form part of the KDE
and GNOME desktop projects, and are mentioned later in this chapter.

Other software meriting investigation can be found on the Web. These programs include ussp-push,
obextool, and the OBEX PUSH daemon. They can be found either by searching the Web or visiting a page
on Linux and Bluetooth, created by BlueZ maintainer Marcel Holtmann, at
http://www.holtmann.org/linux/bluetooth.

7.6.9 PPP Networking

Point-to-point networking is useful for networking two computers together. If one of the peers permits
routing or bridging to a wider network, then the other gains access to that network. This is what happens
when you dial up your Internet service provider on a traditional modem.

PPP networking is used in the implementation of the Bluetooth LAN access profile. Here is what an SDP
record for the LAN access profile looks like:

Servi ce Nane: LAN Access over PPP

Servi ce RecHandl e: 0x804dae0

http://www.holtmann.org/linux/bluetooth

Service Cass ID List:
"LAN Access Using PPP" (0x1102)
Prot ocol Descriptor List:
"L2CAP" (0x0100)
"RFCOW' (0x0003)
Channel : 2
Profil e Descriptor List:
"LAN Access Using PPP" (0x1102)
Versi on: 0x0100
You can use LAN access to provide Bluetooth devices with access to your local network. Many PDA devices
support this connection method, both for purposes of synchronization over TCP/IP and general Internet
access.
In order to use LAN access, you need the bluez-pan package installed on your computer. This contains
two tools: dund and pand. LAN access is provided by dund, which we discuss here. You also need PPP
support in your Linux kernel, and the PPP daemon pppd installed on your computer. With most Linux
distributions, this is already installed.
While no pppd expertise is assumed in this section, you are strongly recommended to familiarize yourself

with its documentation. The Linux PPP HOWTO at http://www.linux.org/docs/Idp/howto/PPP-HOWTO is a
good starting point.

The dund daemon can be used to manage both sides of the LAN connection. It provides PPP access to a
remote device or connects to a provider. Acting as the server, it listens on a specific RFCOMM channel,
and when a connection is made, it invokes pppd to establish the network connection. Acting as the client,
it establishes a connection over Bluetooth to a remote device and then invokes pppd to handle the
network connection.

7.6.9.1 Creating a LAN access server

The simplest invocation of dund is dund --1listen --persist. You should run this command from the
account of a user with permission to run pppd (as a fallback, you can always run it as the root user.) This
command line causes dund to register the LAN access profile with the local SDP server and listen for
incoming connections as a daemon. (For debugging purposes, dund can be given the - - nodet ach
argument, which causes it to run in the foreground like a normal program.) The persist option causes the
daemon to continue running after a connection has terminated and await new connections. You can check
the system log /var/log/syslog for status messages from dund.

When a connection is established, dund invokes pppd with its default options. You can normally find these
in /etc/ppp/options. Some systems use /etc/pppd instead of /etc/ppp. However, it's better to create a
separate configuration file especially for your connections. Anything you pass to dund on the command
line after its own configuration options is sent straight to pppd. Create a file called dun in /etc/ppp/peers
with the content shown in Example 7-7.

Example 7-7. PPP daemon configuration for LAN access

http://www.linux.org/docs/ldp/howto/PPP-HOWTO

noaut h

debug

crtscts

| ock

| ocal

proxyarp

ne-dns 192.168.0.5
local : renote

192.168.7.1:192.168.7.2

You may want to adjust the last two entries in the configuration to suit your setup: the ns- dns line
specifies the IP address of your DNS server. This will become useful when you enable routing. The two
colon-separated addresses are the local IP address and the IP address to give the remote device. You
should choose addresses in the 10.x.x.x or 192.168.x.X ranges that don't clash with any of your internal
subnets.

The dund program can then be invoked with dund --1isten --persist call dun. When a remote
device connects, the PPP connection is brought up. Because of the "debug" option to pppd, you should see
a verbose report of the connection in the system log. To confirm that a connection has been established,
run the ifconfig command and look for the ppp0 network interface. Invoke the ping command to confirm

that your remote device is reachable:

$ ping 192.168.7.2

PI NG 192.168.7.2 (192.168.7.2): 56 data bytes

64 bytes from 192.168.7.2: icnp_seq=0 ttl =255 tine=77.8 ns
64 bytes from 192.168.7.2: icnp_seq=1 ttl =255 tine=80.5 ns
64 bytes from 192.168.7.2: icnp_seq=2 ttl =255 tine=78.3 ns

The final step is to ensure that your Linux box can route for the remote device, so it can take advantage
of your network facilities. Various Linux distributions have their own way of doing this in their network
configuration, but to test you can enable it by issuing the command echo 1 >

/ proc/ sys/net/ipvd/ip_forward. Further instructions on routing can be found on the iptables home
page (http://www.netfilter.org) and also in "Sharing a Network Connection over IrDA" in Chapter 8. There
are a few ways to set up this kind of routing, depending on your distribution and kernel version, but make
sure that other machines on your network know how to route to your connected Bluetooth device.

If you are connecting to a device running Microsoft software, you should pass the -
- ms- dun option to dund. This enables the extra negotiation required to talk to the
Windows dial-up networking implementation.

Our setup so far has no security considerations. There are several steps one can take to improve the
security situation:

http://www.netfilter.org

e Require username/password authentication for the PPP setup; see the pppd documentation for how
to do this.

e Configure your Bluetooth device to always use link-level encryption in hcid.conf.

You should rely on neither of these to provide more than basic security. Bluetooth is still a relatively new
technology, and its security measures have not yet been subjected to many attacks in the wild. It's
always best, if the remote device is capable of it, to assume link-level security is weak and to use secure
connection tools such as ssh to encrypt your network traffic at the application layer.

7.6.9.2 Connecting to a LAN access server

The dund program can be configured to connect to a known LAN access point or to search for one and
connect to it. Here are the command lines for these two functions:

dund --connect 11:22:33:44:55:66
dund --search

You can also specify a PPP configuration file by appending the cal | keyword and the name of the
configuration in /etc/ppp/peers/ to the command line.

7.6.10 Personal Area Networking

While you can achieve much with file transfers via OBEX and point-to-point networking with PPP, devices
can take the full advantage of being interlinked in the same way that Ethernet networks are. They can
then run protocols such as IPv4, IPv6, and IPX. For this reason, the Bluetooth specifications define a
protocol called Bluetooth Network Encapsulation (BNEP). BNEP is used by the Personal Area Networking
(PAN) profiles.

The PAN profiles cover two basic modes of networking. The first profile is a network access point (NAP).
NAPs provide network access in the same way that an access point for a Wi-Fi network does. They are
typically connected to a wider network and provide bridging. Figure 7-6 shows the structure of a NAP
network. Clients connect using a profile called PAN user (PANU).

Figure 7-6. Structure of a network connected to a NAP

LAN

NAFP

FARL PANU FARU

The second PAN profile is a group ad-hoc network (GN). GNs are not intended to provide access to any
further network but can be used to create ad-hoc networks among a group of devices. Figure 7-7 shows
the structure of a GN.

Figure 7-7. Structure of a GN

FANL PANL FAHU

FANL FANU PANU

Both of these types of network are supported under Linux. To set them up, you must have some
familiarity with Linux network administration.

7.6.10.1 Creating a GN

GNs are easier to create, so they are good starting points to test PAN functionality. To set up a GN or
NAP, the bluez-pan package must be compiled and installed. You must also ensure that your kernel has
the BNEP module compiled (Table 7-3). Load the BNEP module with nodpr obe bnep.

On the server machine, run this command as root:

pand --master --listen --role GN

On the client machine, run this command, substituting the Bluetooth address of the master machine:

pand --connect 11:22:33:44:55: 66

As usual, you can check for status reports from pand in the system log file. To bring a network up,
configure the interfaces' network addresses. On the master:

ifconfig bnep0 192.168.7.1

and on the client:
ifconfig bnep0 192.168.7.2

If you use the 192.168.7.x network locally, substitute other suitable IP addresses. Test the connection by
using ping to verify the connection from each end. Use ifconfig to display the interface configuration:

ifconfig bnep0
bnepO Li nk encap: Et hernet HWAddr 00: 80: 98: 24: 15: 6D
inet addr:192.168.7.1 Bcast:192.168.7.255 Mask: 255.255.255.0
inet6 addr: fe80::280:98ff:fe24:156d/ 64 Scope: Li nk
UP BROADCAST RUNNI NG MULTI CAST MrU: 1500 Metric:1
RX packets: 0 errors:0 dropped: 0 overruns: 0 frame: 0
TX packets:5 errors: 0 dropped: 0 overruns:0 carrier:0

col l'i sions: 0 txqueuel en: 1000

RX bytes: 20 (20.0 b) TX bytes: 188 (188.0 b)

You may not want to specify the GN host's Bluetooth address on the client. By default, pand registers the
GN or NAP service with the master host's SDP server. To make the client find its access point via SDP,
give the client the following command line:

pand --role PANU --search --service G\

Omitting the service argument causes pand to search for the NAP by default. Specifying the - - per si st
option to the client's pand line causes it to search for the GN whenever it is not connected. Using this
option, you can configure a machine to automatically connect to the network whenever it comes in range
of the master machine.

To automate the IP address configuration, use the methods provided by your Linux distribution. On Red
Hat, this means creating suitable scripts to go into /etc/sysconfig/network-scripts. On Debian, you should
edit /etc/network/interfaces. The BNEP network interfaces are not present at boot time, but they will be
initialized by the hotplug utility when a BNEP connection is made. For further details of this configuration,
read the manpages on your system for ifup, interfaces (Debian only), and hotplug.

The ideal configuration is to give the GN master a static IP address and require the clients to use DHCP. If
your DHCP server is running on the GN master, you may need to run a command to cause it to take note
of the new network interface to listen on. This should be possible through your system's network
configuration.

7.6.10.2 Bridging interfaces

As you will discover if you attempt to connect more than one client machine to your host, each connection
is given its own network interface: bnep0, bnepl, bnep2 and so on. Not only is it a nuisance to specify
multiple configurations on the master side for each interface, but it leaves the client devices unable to
communicate with each other. The solution to this is called bridging. Bridging enables multiple network
devices to appear as one interface on a network by tying, on the master side, all the bnep* devices into
one interface.

The first step is to ensure that bridging is enabled in your Linux kernel; bridging is supported in both the
2.4 and 2.6 series of kernels. This option can be found under "Networking options™ from the kernel's
menu configuration and is called 802.1d Ethernet Bridging. You also need the bridge-utils software
package installed. If this is not part of your Linux distribution, download it from
http://bridge.sourceforge.net/.

Once you have the kernel modules and tools installed, you can bring up and configure a bridge interface:

brctl addbr panO
ifconfig panO

192.168.7.1

brctl setfd panO O
brctl stp panO disable
This bridged interface then handles all the BNEP interfaces. The latter two commands disable two features

of Ethernet bridging known as Listening and Learning States and Spanning Tree Protocol. For noncomplex
networks, they are not required and may cause delays to initializing the network. Further information on

http://bridge.sourceforge.net/

these features can be found on the O'Reilly Network web site at
http://www.oreillynet.com/pub/a/network/2001/03/30/net_2nd lang.html.

The second part of the trick is to get pand to add each interface to the bridge as it comes up. Create a
script, as shown in Example 7-8, and save it to /etc/bluetooth/pan/dev-up. Ensure it is executable.

Example 7-8. A script to add each BNEP network interface to the bridge

#1/ bi n/ sh
brctl addif panO $1
ifconfig $1 0.0.0.0

The bridging method provides another advantage: you don't need to inform your DHCP server of the
existence of a new interface whenever a BNEP connection is made.

Here is the configuration of the network interfaces after a bridged network connection has been
established with one NAP and two PANU clients:

bnep0 Li nk encap: Et hernet HWaddr 00: 40: 05: DO: DD: 69
inet6 addr: fe80::240:5ff:fed0:dd69/64 Scope: Li nk
UP BROADCAST RUNNI NG MULTI CAST MruU. 1500 Metric:1
RX packets: 11 errors: 0 dropped: 0 overruns:0 frane: 0
TX packets: 13 errors: 0 dropped: 0 overruns:0 carrier:0
col l'i sions: 0 txqueuel en: 1000

RX bytes: 789 (789.0 b) TX bytes: 880 (880.0 b)

bnepl Li nk encap: Et hernet HWAddr 00: 80: 98: 24: 15: 6D
inet6 addr: fe80::280:98ff:fe24:156d/ 64 Scope: Li nk
UP BROADCAST RUNNI NG MULTI CAST MrU: 1500 Metric:1
RX packets: 49 errors: 0 dropped: 0 overruns: 0 frame: 0
TX packets: 72 errors:0 dropped: 0 overruns:0 carrier:0
col lisions: 0 txqueuel en: 1000

RX bytes: 6453 (6.3 KiB) TX bytes: 9019 (8.8 KiB)

pan0 Li nk encap: Et hernet HWaddr 00: 40: 05: DO: DD; 69

inet addr:192.168.7.1 Bcast:192.168.7.255 Mask: 255.255.255.0

http://www.oreillynet.com/pub/a/network/2001/03/30/net_2nd_lang.html

inet6 addr: fe80::200:ff:fe00:0/64 Scope:Link

UP BROADCAST RUNNI NG MULTI CAST MTU: 1500 Metric:1

RX packets: 11 errors: 0 dropped: 0 overruns:0 frame: 0
TX packets: 13 errors: 0 dropped: 0 overruns:0 carrier:0
col l'isions: 0 txqueuel en: 0

RX bytes: 700 (700.0 b) TX bytes: 1254 (1.2 KiB)

7.6.10.3 Creating a network access point

If you intend to incorporate PAN networking as part of your network’s infrastructure, you will want to set
up a NAP. The initial part of NAP configuration is exactly the same as for the aforementioned GN
configuration, except it specifies - -r ol e NAP to the pand command line rather than --rol e G\.

The remaining configuration required is to set up the routing in your network to ensure that the client
machines and the rest of your LAN know how to reach each other. To illustrate, consider a network where
the LAN uses the 10.x.x.x subnet and your NAP machine has the IP 10.0.3.2. The Bluetooth access point
you just set up uses the 192.168.7.x subnet with 192.168.7.1 as your NAP machine. On your client
machines, you must run:

route add -net 10.0.0.0 netmask 255.0.0.0 gw 192.168.7.1

On the LAN router, you must run the following command, or insert an equivalent configuration in the case
of a non-Linux router:

route add -net 192.168.7.0 netmask 255.255.255.0 gw 10.0.3.2
As with the configuration for dund, you must also ensure your NAP machine has IP forwarding enabled.

Finally, for further information, you should consult the "PAN HOWTO" document, available from the
documentation area of the BlueZ web site (http://www.bluez.org/documentation.html). This document
serves as the source for much of the information in this section.

7.6.11 Experimental Features

The uses of Bluetooth covered so far in this chapter are the widespread applications of the BlueZ stack. In
this section, we cover the more experimental uses: printing over Bluetooth, connecting Bluetooth mice
and keyboards, and using audio with Bluetooth headsets. If you're not afraid of some system
configuration, happy with compiling programs from source, and understand how to use CVS, this section
is for you.

7.6.11.1 Printing over Bluetooth

The Common Unix Printing System (CUPS) is a popular solution for managing printers on Linux systems.
If you run CUPS, you can add a Bluetooth printer to your system. Assuming you don't already have a
Bluetooth-enabled printer, you can buy Bluetooth-to-Centronics dongles that plug into the back of your
printer. These devices are produced by several manufacturers, which include AnyCom, Axis, HP, and TDK.

To configure CUPS to use a Bluetooth printer, you must first download and install Marcel Holtmann's

http://www.bluez.org/documentation.html

software from http://www.holtmann.org/linux/bluetooth/cups.html. Once you have compiled and installed
the software as per Marcel's instructions, you can configure the CUPS backend.

Edit the file /etc/bluetooth/printers.conf and add an entry similar to the following:

default {
Bl uet oot h address of the device

devi ce 00: 40: 8C. 5E: 5D: A4;

Bl uetooth printing protocol

protocol serial;

Description of the connection
comment "My Bluetooth printer”;

}

Restart your CUPS system, and you should then see the printer ready for administration. The Bluetooth
backend performs an SDP inquiry on the target printer to discover the RFCOMM channel on which to send
data.

7.6.11.2 Connecting input devices

Vendors such as Apple and Microsoft both produce Bluetooth-connected mice and keyboards. There is
experimental support available from the BlueZ project for these devices, and they will be supported more
fully in the 2.0 release of the BlueZ tools.

Input device support entails enabling the user-level driver support in the Input device drivers section of

your Linux kernel. As its name suggests, this allows regular programs to inject events into the system's
input device channels. Secondly, you must compile and configure the development version of BlueZ:

cvs -d :pserver:anonymus@vs. bl uez. sourceforge. net |ogin

cvs -z3 -d :pserver:anonynous@vs. bl uez. sourcef orge. net \
co libs2 utils2

cd |ibs2

./ bootstrap

./configure --prefix=/opt/bluez2

make && nake instal

cd ../utils2

http://www.holtmann.org/linux/bluetooth/cups.html

./ bootstrap

H*

./Iconfigure --prefix=/opt/bluez2 --wth-bluetooth=/opt/bluez2

make && make install

H*

echo /opt/bluez2/lib >> /etc/ld. so. conf

H*

I dconfig

Put BlueZ into /opt/bluez2 to avoid conflict with earlier, production-quality versions

of the BlueZ tools. We suggest that you don't put /opt/bluez2/bin in your path, but
invoke the 2.0 tools with their full path. When BlueZ 2.0 is released, however, feel
free to use them with wild abandon.

Next, you must verify that the user-level input module is working. Check that the device /dev/misc/uinput
exists. If not, create it with nknod /dev/ m sc/ui nput ¢ 10 223. Load the module with nodpr obe

ui nput .

If you use your mouse with the XFree86 windowing system, ensure that it has a suitable entry. If you

already use a USB mouse, you should have this already. Here is a configuration appropriate for the
Microsoft Bluetooth mouse, supporting its scroll wheel:

Section "I nputDevice"
| dentifier "MSMbuse"
Driver "nouse"
Option "Protocol™ "I MPS/ 2"
Option "Device" "/dev/input/mce"
Option "ZAxi sMappi ng" "4 5"
Option "Buttons" "5"
Option "Enul at e3Buttons” "fal se”
EndSecti on

Additionally, ensure that | nput Devi ce "MsSMuse" "SendCor eEvent s" is added to the ServerLayout
section of your XFree86 configuration.

Adding Bluetooth input devices to your system is now a matter of invoking the /opt/bluez2/bthid
program. This runs once as a daemon, and then you should invoke it again, each time to add a device:

/opt/bluez2/bin/bthid -d
/opt/bluez2/bin/bthid -c 11:22:33:44: 55: 66

Note that the input devices need to be paired before they will connect. With mice, the manufacturer
presets the PIN, usually to 0000. With keyboards, you enter a PIN and press return on the Bluetooth

keyboard. As ever, keep an eye on the system log to help diagnose failures.

7.6.11.3 Connecting to Bluetooth ISDN modems

Marcel Holtmann has written the necessary tools to interface with Bluetooth-enabled ISDN modems. The
relevant software and instructions can be found on his web site at
http://www.holtmann.org/linux/bluetooth/cmtp.html.

48 FREV < Day Day Up > ME>T

http://www.holtmann.org/linux/bluetooth/cmtp.html

< Day Day Up >

7.7 Graphical Applications

Linux has several popular graphical user interface systems, the most well-known being KDE and GNOME.
These projects both have tools that provide an easy-to-use interface to your system's Bluetooth devices.
At the time of writing, neither project is an official part of the KDE or GNOME desktop, but both will be
integrated in future. This section presents a brief survey of the tools available and where to get them.

7.7.1 KDE

The KDE Bluetooth Framework's home page is at http://kde-bluetooth.sourceforge.net/. Its features
include:

e A control center plug-in to configure Bluetooth devices

e An OBEX server application

e An OBEX sending client

¢ Graphical exploration of remote devices

¢ Cell phone handsfree implementation using your computer's microphone and speakers
¢ Proximity-based screen locking

The KDE Bluetooth Framework can be downloaded from the project's web page. Figure 7-8 and Figure 7-9
show KDE's Bluetooth applications in action.

Figure 7-8. Browsing a device's services in KDE

3 (7]-Ta]x]
Location Edit View Go Bookmarks Tools Settings Window Hslp
o i —
- - - i } i-f 4 =1 -] 1 — r-,-' E
E» Location: 2 sdp://Frads3ssos =

Lo

&L o Faudio CD Browser
b
i

| -~ (4 Bluatooth Browsar

*-..‘:j s %A

'i"LS]D‘-""l'-ES Blustoath Dial-up f__a_g:.
! 6 ALAN Browser serial Port Metworking
+-=4Print Systam Browser
h|Se) J LN =
feal-

mwm
Transfer ~ Push

Audio

Gateway

O & It2ms - & Files (0 B Total) - 0 Directories I

http://kde-bluetooth.sourceforge.net/

Figure 7-9. Receiving a file via OBEX in KDE
% T

Incoming file transfer

Fred's 3650 wants to send you the some files,
Press Sawe to accept all files or drag them to anothear
application or folder.

Foto[3E].7pg

Receiving Foto[37).ipg 259k8

Open destination folder /home/ fred/Desktop, E:'

W Save 2% Cancal

7.7.2 GNOME

The GNOME Bluetooth subsystem's home page is available at http://usefulinc.com/software/gnome-
bluetooth. Download it from the project's home page. RPM and Debian packages are also available.
Features of the GNOME Bluetooth subsystem include:

An OBEX server application

An OBEX sending client

A phone manager application allowing sending and receiving of SMS messages
Graphical exploration of remote devices

Programming libraries for creating Bluetooth-aware applications in C, Python, or C#

Figure 7-10 and Figure 7-11 show GNOME's Bluetooth features in action.

Figure 7-10. Exploring nearby Bluetooth devices in GNOME

Igr_w'lcr_hs Edit Help

§J &
ED PEOD AXISSESDAS Microsoft Mouse
==

saag-l

Figure 7-11. Sending a file via OBEX in GNOME

http://usefulinc.com/software/gnome-

boa-pics
File Edit Wew Go Bookmarks Help

Q-0-0000 O

Location: Jres/friends/boa-pics . @ 100% @ View as kcons

4k

Information = e

boa-pics

Folder, 19 items
Jun 16 2001 at 22:26

Sending file
Momeffezfedmundd/data/pictures/friends/boa-pics/boa-001.jpg

Open with. ..

baa-007.jpg boa-008.jpg

"boa-001.jpg" selected (800, 2 K)

L

7.7.2.1 Synchronization

If your PDA uses Bluetooth and you use Ximian Evolution as your calendar and contacts management
tool, you can synchronize the two over Bluetooth using the Multisync application. Multisync is available in
most Linux distributions, and you can download it from its home page at
http://multisync.sourceforge.net.

4 FREV < Day Day Up > MEXT

http://multisync.sourceforge.net

< Day Day Up >

7.8 Cool Bluetooth Tricks

Aside from the everyday file management and connectivity, Bluetooth on Linux provides scope for some
fun applications. This section outlines a few of them, mostly involving interfacing a cell phone with your
computer.

7.8.1 Use a Bluetooth Cell Phone to Control Presentations

Wireless devices that control presentations have been available for some time, but at a relatively hefty
price tag, they're probably not worth the investment for the occasional presenter. Instead, why not
program your cell phone to do the work?

This trick works with Ericsson phones, such as the T610, T68i, and R520m. These phones provide an
advanced ability to map keypad presses to output over an RFCOMM serial connection. In turn, a program
running on the Linux side can translate these codes into system input events.

You can find the code at http://www.hackdiary.com/projects/bluetoothremote.

7.8.2 Controlling Music Players

Using a similar trick as mentioned previously, the popular MP3-playing application XMMS can be controlled
from a suitable Ericsson phone. The bluexmms program even supports display of the MP3 playlist on the
phone's screen. You can find instructions and a download at http://linuxbrit.co.uk/bluexmms.

7.8.3 Proximity-Sensitive Screen Blanking

The BlueZ Bluetooth stack reports the signal strength of an active Bluetooth connection. The KDE
Bluetooth Framework has a program that takes advantage of this and activates your screensaver when
you take your cell phone out of range.

If you don't run the KDE desktop, then try Jon Allen's Perl script to do a similar task, available from
http://perl.jonallen.info/bin/view/Main/BluetoothProximityDetection.

< Day Day Up >

http://www.hackdiary.com/projects/bluetoothremote
http://linuxbrit.co.uk/bluexmms
http://perl.jonallen.info/bin/view/Main/BluetoothProximityDetection

< Day Day Up >

Chapter 8. Infrared

Infrared is a legacy technology that won't die any time soon. Sure, it has lousy range and can be a hassle
to set up, but sometimes, it's the only common communications medium between your Linux box and
something you want to talk to.

If you have ever used a remote control, you have used infrared technology. Infrared is a wireless
communication technology that makes use of the invisible spectrum of light that is just beyond red in the
visible spectrum. It's suitable for applications that require short-range, point-to-point data transfer.
Because it uses light, line of sight is a prerequisite for using infrared. Despite this limitation, infrared is
widely used in household equipment and is increasingly popular in devices such as digital cameras, PDASs,
and notebook computers.

Founded in 1993 as a nonprofit organization, the Infrared Data Association (IrDA) is an international
organization that creates and promotes interoperable, low-cost infrared data interconnection standards
that allow users to transfer data from one device to another. The Infrared Data Association standards
support a broad range of appliances, computing, and communications devices.

b The term IrDA is typically used to refer to the protocols for infrared
communications, not exclusively to the nonprofit body.

bl
Lt

Sy

B

There are currently four versions of IrDA; their differences are mainly in the transfer speed:

Serial Infrared (SIR)

The original standard with a transfer speed of up to 115 kbps

Medium Infrared (MIR)

Improved transfer speed of 1.152 Mbps; it is not widely implemented

Fast Infrared (FIR)

Speed of up to 4 Mbps; most new computers implement this standard

Very Fast Infrared (VFIR)
Speed of up to 16 Mbps; it is not widely implemented yet

When two devices with two different IrDA implementations communicate, one steps down to the lower

transfer speed.

In terms of operating range, infrared devices can communicate up to one or two meters. Depending on
the implementation, if a device uses a lower power version, the range can be stepped down to a mere 20
to 30 cm. This is crucial for low-power devices.

A Cyclic Redundancy Check (CRC), which uses a number derived from the transmitted data to verify its
integrity, protects all exchanged data packets. CRC-16 is used for speeds up to 1.152 Mbps, and CRC-32
is used for speeds up to 4 Mbps. The IrDA also defines a bi-directional communication for infrared
communications.

An infrared connection operates at a range of O to 1 meter, with peak intensity within a 30-degree cone
(see Figure 8-1). With more power, a longer operating range is possible with a reduction in transfer
speed. In addition, an infrared connection requires a visual line of sight in order to work, so there cannot
be any direct obstruction between the two communicating devices.

Figure 8-1. The 30-degree cone for peak power intensity of an infrared port

Setting up Infrared with Linux can be tricky. Jean Tourrilhes's Linux-1rDA Quick Tutorial
(http://www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/IrDA.html) lists 24 common pitfalls that await the
unsuspecting user.

If your hardware supports SIR mode, this is usually straightforward. FIR configuration is still somewhat
arcane, unless you have a system that's supported right out of the box. Most modern notebooks support
FIR by default, but you can often go into the BIOS setup and change it to SIR. Even if you want FIR to
work, be sure to try SIR first, because it's usually the simplest.

< Day Day Up >

http://www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/IrDA.html

< Day Day Up >

8.1 IrDA in the Kernel

Most modern kernels have all the support that you need to get infrared to work. If you build your own
kernel, make sure that you've enabled infrared support. Most of the infrared support is configured under
the IrDA (Infrared) Support section that appears in the kernel configuration. Figure 8-2 shows the make
menuconfig kernel configuration screen open to the IrDA Support section. (You may need to select
Prompt for development and/or incomplete code/drivers under the top-level Code maturity level options
section of the kernel configuration to see all the available options.)

Figure 8-2. Configuring IrDA support with make menuconfig
Limux Kernel w2 4.24 Conflgueation

Arrow keys navigate the menu. <{Enter> zelects subnenus —-3.
Highlighted letters are hotkeys. Pressing <Y> includes, H» excludes,
<H» modularizes featurez. Press (Escr(Esc} to exit, «<7» lfor Help.
Legend: [=1 built-in [1 excluded <H> module < > nodule capable

<H» IrDf subsyztem support

——— IrDfA protocols

<Hx rLAf protocol (HEW)

<H» rCOMN protocol (MEW)

L1 ltra (connectlonless) protocol (HEWD
——— IrDfA options

01 ache last LSAF (MEW)

1

L1

agt AHz (low latemcy) CHEWX
chug information (HEW)
nfrared-port device drivers —3»

¢ Exit > < Help >

You'll definitely want to configure IrDA Subsystem Support (CONFIG_IRDA) as well as the IrCOMM
Protocol (CONFIG_IRCOMM), which lets you use the IrDA port as a serial port via one of the
/dev/ircommN ports. We suggest that you compile these as modules and go into Infrared-port Device
Drivers and select every driver that it offers you, configuring each as a module.

Pyl < Day Day Up > | NExTEp

< Day Day Up >

8.2 PC Laptop with Built-In IrDA

There is a lot of hardware out there, and it's all put together slightly differently. We got infrared working
under a couple of different distributions, both with a dongle and the internal infrared. Your configuration
should be similar, but if you run into any trouble, check out Jean Tourrilhes's Linux-IrDA Quick Tutorial at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/IrDA.html.

- To make sure you are up to date with the most recent bug and security fixes, make
o sure you've installed the most recent updates that are available for your Linux
N
. 4s distribution, especially for the kernel and associated modules.

Out of the box, we were unable to get infrared working in SIR or FIR mode on our computer, a ThinkPad
A20m. On a whim, we went into the BIOS and tried different IRQ and port settings. The combination of

IRQ 4 and port Ox3E8 did the trick. The ThinkPad didn't let us switch from FIR to SIR mode in the BIOS,
but it let us use SIR mode without any complaints under several Linux distributions.

On all of the Linux distributions described in the following list, we performed some initial steps to discover
the infrared port. First, we booted the system, and then inspected the output of dmesg to get a list of
serial ports:

debi an: ~# dnesg | grep tty

ttySO1 at 0x02f8 (irq

3) is a 16550A

ttyS02 at 0x03e8 (irq

4) is a 16550A

We used this information to figure out which serial devices corresponded to the infrared hardware. If
there are a lot of serial devices on your system, this may involve some guesswork or at least a look
around the BIOS settings. In this infrared port, we knew that the first serial devices listed (/dev/ttyS1)
corresponds to the 9-pin serial port on the back of the computer, so that left /dev/ttyS2.

In each of the following examples, we rebooted after making the changes to ensure that everything
worked. If you'd like to preserve your uptime, try running /etc/init.d/irdarestart after making the

changes instead of rebooting.

Debian 3.0r1

Because the latest 2.4 kernel-image package (2.4.18-14.1) was showing its age, we compiled and
installed the latest kernel from source (2.4.24). Other than that, we worked with a stock 3.0r1
install with the latest updates. To get infrared working, we installed the irda-common and irda-tools
packages, and edited /etc/irda.conf, setting | RDADEV=/ dev/tt yS2. irda-common sets up
/etc/init.d/irda to start in all runlevels, so we didn't need to modify any startup scripts. However,
Debian did not put our mortal user into the correct group (di al out) to access serial ports, so we
fixed that with usernod - G di al out user nane.

http://www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/IrDA.html

SuSE 9.0

The irda package, which was installed by default, provided all the utilities we needed for IrDA
support. We set | RDA_PORT="/dev/ttyS2" in /etc/sysconfig/irda. Next, we ran i nsserv
/etc/init.d/irda to enable IrDA support to start at boot time.

Mandrake 9.2

To get infrared working, we installed the irda-utils package and edited /etc/sysconfig/irda, setting
DEVI CE=/ dev/ ttyS2. irda-utils sets up /etc/init.d/irda to start in all runlevels, so we didn't need to
modify any startup scripts. Mandrake did not put our mortal user into the correct group (uucp) to
access serial ports, so we fixed that with user nod -G uucp user nane.

RedHat 9

The irda-utils package, which was installed by default, provided all the utilities we needed for IrDA
support. We set DEVI CE=/ dev/t t yS2 in /etc/sysconfig/irda. Next, we ran chkconfig --level 5

i rda on to enable IrDA support to start in runlevel 5, the default runlevel for Red Hat Linux running
in graphical mode (check your /etc/inittab to see the default runlevel for your system or use the
runlevel command to see your current runlevel). Red Hat did not put our mortal user into the
correct group (uucp) to access serial ports, so we fixed that with user nod - G uucp user nane.

Gentoo 1.4

We installed the infrared utilities with energe irda-util s and set | RDADEV=/ dev/ttyS2 in
/etc/conf.d/irda. Next, we enabled the irda startup script with r c-update add irda default. The
ircomm devices were owned by root, so we gave the uucp group access to them with chgr p uucp

[dev/ircomt and chnod g+rw /dev/ircommt, and then gave our mortal user access with user nod
-G uucp user nane.

& Frev | < Day Day Up > | NEXT up

< Day Day Up >

8.3 Infrared Dongle

If you don't have built-in infrared support, or if you can't get the built-in infrared to work, use an infrared
dongle. If your dongle is compatible with the USB and IrDA specifications, it should just work. We tested
the WINIC W-USB-180 IrDA dongle (http://www.winic.com.tw/180.htm), which is available in the U.S.
from MadsonLine (http://www.madsonline.com/).

The most compelling reason to use an external dongle is the awkward placement of infrared ports on
devices. Figure 8-3 shows how we had to position an HP iPaq upside down to use it with the ThinkPad's
built-in IrDA port. Figure 8-4 shows a much more relaxed positioning using the W-USB-180..

Figure 8-3. Awkward infrared port placement

4P SNt

1

http://www.winic.com.tw/180.htm
http://www.madsonline.com/

:‘_r_-‘: At the time of this writing, support for USB infrared dongles was experimental. We
o suggest you compile the latest kernel available in the series you are using and
wh - & configure irda-usb as a module (CONFI G_USB_I RDA). You should also disable ir-usb,
* which conflicts with irda-usb. See "IrDA in the Kernel" earlier in this chapter

We got the W-USB-180 adapter to work by following these steps:

1. We stopped irda, just in case it had been started earlier:

letc/init.d/irda stop

2. We disabled the ir-usb module, which appears in some recent kernels and conflicts with the driver
that we should be using, irda-usb:

cd /1i b/ nodul es/
find . -name ir-usb.o
cd ./2.4.21-166-defaul t/ kernel/drivers/usb/seriall/

mv ir-usb.o ir-ush.o.unused

3. (Optional.) If you've already plugged in the dongle in the ir-usb module may have already claimed it.
You can convince that module to release the dongle with this command (you may have to run it
more than once if there are some other dependencies that prevent the modules from unloading):

romod ircommtty ircommirtty ir-usb irda-usb irda

4. Next, we modprobeed the irda-usb module, and dmesg showed that the device irda0 had come up
(the actual device name may vary on your system):

nodprobe irda-usb
dmesg | grep irda
usb.c: registered new driver irda-usb

| rDA: Regi stered device irda0

5. A device name of irdaX (where X is some number) indicates that you've loaded the IrDA device as a
network device. So, instead of putting the pathname to a device (such as /dev/ttyS2) in your IrDA
configuration file, you should put just the device name alone. For example, under Debian 3.0r1, we
set | RDADEV=i r da0 in /etc/irda.conf (for a list of some Linux distributions and the IrDA configuration

files used by each, see the Debian entry in Section 8.2 earlier in this chapter).

6. After this, we rebooted, but we could have also started IrDA support with/etc/init.d/irda
start.

For more information on using infrared dongles with Linux, including serial port dongles, see the sections
on dongles in the Linux Infrared HOWTO (http://www.tuxmobil.com/Infrared-HOWTO/Infrared-
HOWTO.html).

http://www.tuxmobil.com/Infrared-HOWTO/Infrared-

For specific details on using USB dongles, see the IrDA and USB section of the Linux Infrared HOWTO at
http://www.tuxmobil.com/Infrared-HOWTO/infrared-howto-s-irda-usb.html.

4@ FREV < Day Day Up > MEXT

http://www.tuxmobil.com/Infrared-HOWTO/infrared-howto-s-irda-usb.html

< Day Day Up >

8.4 Sharing a Network Connection over IrDA

If you want to accept PPP connections from other IrDA-enabled devices, start pppd listening on the
ircomm device that corresponds to your IrDA adapter (these devices are numbered ircommN, where N is a
number from O to one less than the number of IrDA adapters on your system). See Chapter 7.

In most cases, you'll want more than just a PPP connection. If you want to connect to the Internet from
the other device, you'll need your Linux box to act as a NAT router, and you'll also need to tell the PPP
client device where it can find its name server. We've found that the following script works well (you may
need to customize $LOCAL, $REMOTE, $DNS, $I NTERFACE, and $I RDEV):

#! / bi n/ sh

LOCAL=192.168.2.1 # | P address for the server running pppd
REMOTE=192. 168.2.2 # |P address for the device

DNS=192. 168. 254. 1 # A DNS server

| NTERFACE=wW an0 # Interface that connects to the network

| RDEV=/dev/ircommD # Infrared device

Set up forwarding.

#

echo 1 > /proc/sys/net/ipva/ip_forward
/fusr/sbin/iptables -t nat --flush

/usr/sbin/iptables -t nat -A POSTROUTI NG -0 "$I NTERFACE" -] MASQUERADE

Start the PPP |ink.

#

{usr/ sbin/pppd $I RDEV 115200 | ocal \
$LOCAL: $REMOTE ns-dns $DNS \

sil ent noauth persist nodetach \

8.4.1 Connecting from Linux

To connect from another IrDA-enabled Linux device, align the infrared ports and then issue the following
command:

pppd /dev/irconmmD 115200 usepeerdns | ocal nodetach defaul troute
You may need to bring down any existing network interfaces, because the def aul t r out e option generally

does not override existing default routes. Some versions of Linux ship with a modified pppd that lets you
use the r epl acedef aul t r out e option to replace any existing default route.

8.4.2 Connecting from Palm OS

To set up the connection to the Linux system:

1. Select Prefs = Communication = Network (Figure 8-5)
2. The Network preferences appear, which list the existing services; click New.

3. Give the new service a name and select IR to a PC/Handheld under Connection as shown in Figure
8-6.

Figure 8-5. Opening Network Preferences on the Palm

Select aset of preferences:

General Communication
Personal Other

Bluetooth
Connection
Network
Phone

Figure 8-6. Setting up a new network connection on the Palm

Preferences Metwork

~ Service: IR to Linuq
User Name:
Password: | -Prompt-.

Connection: « IR to a PC/Handheld

[Connect)

(Done) (New) (Details...)

To connect, align the infrared ports of your Linux system and the Palm. Return to Network preferences,
select the service you created in Step 3, and click Connect. When you are done with the network
connection, return to the Network preferences and click Disconnect.

To test out your connection, ping a remote host. To do this, stay in the Network preferences after the
connection is made and select Menu == Options = View Log. Scroll to the bottom of the log, use
Graffiti to write pi ng host nanme and then use the Graffiti stroke for a carriage return (a diagonal stroke in
the ABC region from upper right to lower left). If you've made the network connection successfully, you'll
be able to ping a remote host, as shown in Figure 8-7. (Be sure that the remote host accepts pings and
that your network does not block them).

Figure 8-7. Pinging a remote host from the Palm

Network Log

192.168.254.1
192.168.254.1
ping oreilly.com

Pinging oreilly.com [208.201.239.36]
with 32 bytes of data:

Reply from 208.201.239.36: bytes=32
time=960ms TTL=42 :

8.4.3 Connecting from Pocket PC

Making a simple PPP connection is more complicated under the Pocket PC than under Palm OS. To set up
the connection to the Linux system with Windows Mobile 2003.

1. Click the Start menu, and choose Settings= Connections. The Connections settings will appear, as
shown in Figure 8-8. Click Add a New Modem Connection.

Figure 8-8. Connection settings on the Pocket PC

CormeChlors g

To sk up or change connection information,
tap one of the Followirg lnks.

My ISP

l‘-.l.l 5 P modem correct ||I||

My Work Mebwork
Add & rew modem carpeckion
Add 3 new WPN server connection

Sat up my procoy Server

Tagks | A-:hran:ed]

B~

2. You'll be prompted to choose a name for the connection and to select a modem. Select Generic IrDA
and click Next.

3. You'll be prompted to type in a phone number. Pick anything you want—it's just a placeholder—and
then click Next.

4. On the next screen, you'll be asked to supply a username, password, and domain. Leave these all
blank and click Advanced.

5. On the General tab of the advanced settings, set the Baud rate to 115200 and uncheck Wait for Dial
Tone before Dialing, as shown in Figure 8-9.

Figure 8-9. Specifying general settings on the Pocket PC

Settings #5 g 54
A

Advanced

Baud rate: 115200 -

[wai For dial tone bafore dialing

Wal for credit card Elsm:.

Extra dial-string modem commands:

| |
Cancel if ok conneched in see,

Genersl | port settings | 1cR/1P | servers |
B~

6. Click the Port Settings tab and check the box labeled Enter Dialing Commands Manually, as shown in
Figure 8-10. Click OK.

7. You'll be back at the dialog (username, password, and domain) that you originally saw in Step 4.
Click Finish to return to the Connections settings.

Figure 8-10. Specifying port settings on the Pocket PC

Advanced
Connection preferences
Diata bits:
Parity:
Stop bits:
Flow control:
Terminal

D Liz= terminal before connecting
[e terminal after connecting
Enker dialing commands manually

Genersl [Pork Sattings | TCRfIP] Sarvers]
[[

To connect to the Linux system, align your infrared ports, and then:

1. Click the Start menu and choose Settings =2 Connections. Click Manage Existing Connections under
the same section where you created the connection originally.

2. Alist of connections appears, showing the connection that you created. Tap and hold on it to bring
up a context menu and select Connect, as shown in Figure 8-11.

Figure 8-11. Making the connection on the Pocket PC

Py ISP (7]

T ereske & connection, tap New. Tap and
hold on an exsbing connection For more

opticns,
Mame | Murber
(@ny Conmectian
Conneck
[Ceae [nen- |
Emd|r-'hd=m|

B~

3. You'll be prompted for a username, password, and domain. Leave these blank and click Save
Password to have this (hopefully) never bother you again, and then click OK.

4. After a few seconds, the Manual Dial Terminal should appear full of PPP gibberish, as shown in Figure
8-12. Click OK, and you should get confirmation of your connection, as shown in Figure 8-13.

Figure 8-12. The Manual Dial Terminal on the Pocket PC

"Ianual Dial Termin. 4 * <% 8:02

FUNED FARTDEY b D) PREOFOm) ' BT .
FUOp*=~ FEOIROEFER FAF"BE} F b B I
PEOFOmF BRI FEOFT== FEOIFIREE B
FEN DO} B FPRIEOFOm)CFUR(ITONT~-
DIBEDEY DAD"3EF B 3 % Mo)EDF0mb "
SHURSORO=~ PEOIFIRED FREIUREF PO}
POMEYE OFT B'RCRORTOFRO=c pEDIFTDA
¥ OMAYERER b ¥ b bEe OB7 F'II'H}-
Ofde= F@OIFIREE BEF"FCF }» b b b=
E OFT FUBE"HIF"0F0=~ FEO!FVRE} b3
"rE¥ 3 ¥ ¥ ¥EME OFT F'RTI0FOFE-A
EOIN %Y FAF"IEF) 0} b kR)E O}

[a] I | [*]

Heut A [

Figure 8-13. Confirming the connection on the Pocket PC

Setkings

Connechivity

My Connection 00:00: 18
Gdd 5 new miodem connechon

Maneos existing connections

My Work Metwork

Add a new modem conmechon
Add a new YPH server connsction
Sab up M prosoy server

Tasks | Agvanced I

B~

You can hide this notification and make it reappear by clicking its icon at the top of the screen. Use the
Disconnect button to disconnect when you are finished. Test your connection by visiting a web site with
Pocket Internet Explorer.

48 FREY < Day Day Up > NEXT @i

< Day Day Up >

8.5 Connecting to the Internet with a Cell Phone

Making an Internet connection over infrared is really no different from making it over any other serial
port, which is described in detail in Chapter 9. For example, to connect to AT&T Wireless's EDGE network
with a Nokia 6200 (see "GSM/GPRS Phone with Data Cable" in Chapter 9), use the peers script as shown
in Example 8-1. You can use the same attws-connect and attws-disconnect scripts as shown in Chapter 9.

Example 8-1. PPP peer settings for AT&T Wireless and the Nokia 6200 over
IrDA

File: [etc/ppp/peers/attws-irda
#

/dev/ircommD # Nokia 6200

115200 # speed

defaultroute # use the cellular network for the default route

usepeer dns # use the DNS servers fromthe renote network
nodet ach # keep pppd in the foreground

nocrtscts # no hardware flow control

| ock # lock the serial port

noaut h # don't expect the nodemto authenticate itself

| ocal # don't use Carrier Detect or Data Term nal Ready
connect "/usr/shin/chat -v -f /etc/chatscripts/attws-connect"

di sconnect "/usr/sbin/chat -v -f /etc/chatscripts/attws-disconnect"”

48 FREV < Day Day Up > MEXT @

< Day Day Up >

8.6 Transferring Files with OpenOBEX

OBEX (Object Exchange) is an IrDA standard (http://www.irda.org/standards/standards.asp) for
transferring files between devices. OpenOBEX (http://sourceforge.net/projects/openobex/) is an open
source implementation of this standard. To install OpenOBEX, download the latest release (openobex-
X.y.z.tar.gz), extract the tarball, then configure, compile, and install it:

bj epson@ i nux: ~/ Docunent s> tar xfz openobex-1.0.1.tar.gz

bj epson@ i nux: ~/ Docunent s> cd openobex-1.0. 1/

bj epson@ i nux: ~/ Docunent s/ openobex- 1. 0.1> ./configure

bj epson@ i nux: ~/ Docunent s/ openobex- 1. 0. 1> nake

bj epson@ i nux: ~/ Docunent s/ openobex- 1. 0. 1> sudo meke install

You'll also want the applications, so download the latest release of the apps (openobex-apps-x.y.z.tar.gz),
and go through the same steps:

bj epson@ i nux: ~/ Docunent s> tar xfz openobex-apps-1.0.0.tar.gz

bj epson@ i nux: ~/ Docunent s> cd openobex-apps-1.0. 0/

bj epson@ i nux: ~/ Docunent s/ openobex-apps-1.0.0> ./configure

bj epson@ i nux: ~/ Docunent s/ openobex-apps-1.0. 0> nake

bj epson@ i nux: ~/ Docunent s/ openobex-apps-1.0. 0> sudo nake install

(You may need to add /usr/local/lib to /etc/ld.so.conf and run Idconfig as root for everything to work.)

After you've installed the applications, you can transfer files with the irobex_palm3 utility. Don't let the
"palm" in the name put you off; we've used it with cellular phones as with well as a Palm (you should be
able to use any infrared device that supports OBEX). To receive files, start irobex_palm3, initiate sending
a file from your device, and align the ports. After irobex_palm3 receives the file, it exits. Here's a session
where irobex_palm3 receives a business card from a Nokia phone:

bj epson@ i nux: ~ > irobex_pal nB
Send and receive files to PalnB

Waiting for files

.. HEADER LENGTH = 220
Fi | enamre = Noki a. vcf

Wote /tnp/ Nokia.vcf (108 bytes)

http://www.irda.org/standards/standards.asp
http://sourceforge.net/projects/openobex/

To send a file, be sure that your device is configured to receive files via infrared, align the ports, and use
i robex_pal nB fil enane:

bj epson@ i nux: ~> i robex_pal nB sanpl e. png

Send and receive files to Pal n8

nane=sanpl e. png, size=11439

PUT successf ul

4 FREV < Day Day Up > MEXT

¥ FREV < Day Day Up > MEXT mjp

8.7 Synchronizing with a Palm

There are several tools that you can use to synchronize your Palm and Linux system. pilot-xfer, which is
part of the pilot-link (http://www.pilot-link.org/) package, lets you synchronize your Palm to a directory.
You can synchronize to KDE address books, calendars, etc. with KPilot
(http://www.slac.com/pilone/kpilot home/). GNOME-Pilot (http://www.gnome.org/projects/gnome-pilot/)
lets you do the same with GNOME applications.

- In each of these applications, you'll be asked to press the HotSync button
,.;.._ somewhere along the way. When this happens, launch HotSync on your Palm,
wh 4. select IR to a PC/Handheld, and click the on-screen HotSync button (not the
" HotSync button on your cable or cradle), as shown in Figure 8-17.

8.7.1 KPilot

You can use KPilot as a free alternative to the Palm Desktop software for Windows and Mac OS X. To set
up KPilot with your Palm over infrared:

1. Launch KPilot (select it from a menu or run the command kpi | ot). The main window appears as
shown in Figure 8-14.

Figure 8-14. The KPilot main window

m ;—gm

Eile Seitings Help

HolSync
Version: KPilot 4 310 (BRAMCH)
Yersion: pilot-link 0118
Wersion: KDE 314
Version: Gt 321
Hotsyne Log

A b
File installer [Clear Log i | Save Log

Sync progress: 0%

http://www.pilot-link.org/
http://www.slac.com/pilone/kpilot_home/
http://www.gnome.org/projects/gnome-pilot/

2. Click Settings = Configure KPilot. The settings window appears, as shown in Figure 8-15. Specify
/dev/ircommN (where Nis the number of your infrared device, usually 0) as the Pilot device and click
OK.

Figure 8-15. Setting the Pilot device in KPilot

General [Acdrss | OB Specials | Sync | Aboul |

Device Oplions

Pilot device: |ide v/ TR Speed: | 115200 F
Filot user:
Startup Dptions

(3¢ Stant HotSync Dasman at login
| %) Show dasmon in panel

I | Sfop dasmon on et

l.*" O Fl,-; LCancel |

3. The main window should update to display the following (if it doesn't, check your IrDA
configuration):

13:05:54 Trying to open device...

13: 05:54 Device link ready.

4. Next, click Settings =* Configure Conduits to choose the kind of information you want to
synchronize. The conduit configuration window appears, as shown in Figure 8-16. Select each
conduit you want, and click Enable. Click OK when you are done.

Figure 8-16. Selecting which conduits to use in KPilot

e ———————————] = |3

Avadabie Conduils Available conduits 2r8 00 | g cfive Conduils

the laft Active condults
“Organizar Calendar Canguid

ara on e fght Cnly
<organizer Todo Condud aclive condutls can be

“Filoi Expenses Tonduit configured

<Filod EMaotes Concuit

*Filol POF PMail Conduit

WAL (AvantGo) Condut

Tieme Synchrorization Conduft e e

KDE Addresshoak Condu

| =- Dizable |
| Canfigurs |

b oOx ;I,m Cancal |

To synchronize with your Palm:

1. Place your Palm's infrared port in range of that of your Linux system.
2. On your Palm, click the on-screen HotSync button as shown in Figure 8-17.

3. The first time you sync, you may get a dialog indicating that the Palm already has a username
associated with it. If you haven't synced the Palm before, the dialog may be slightly different.

The KPilot window shows the progress of the HotSync as it continues.

Figure 8-17. Starting a HotSync from the Palm

Last HotSync 1/30/04,1:33 pm
using IR to a PC/Handheld

9,

w |R to a PC/Handheld

((Log) (_Help)

8.7.2 pilot-link

Use the pilot-xfer utility to back up, sync, or restore your Palm (see the pilot-xfer manpage for a complete
list of options and features). For example, to sync your Palm into the —/Palm directory, use the - -sync

option and specify /dev/ircommN (where N is the number of your infrared device, usually 0) as the port
with the - p option:
bj epson@i nux: ~> pilot-xfer -p /dev/ircomD --sync ~/Palm
Li stening to port: /dev/ircomD
Pl ease press the HotSync button now. .. Connected

Synchroni zi ng / hone/ bj epson/ Pal mf Novarr a- 19. t xt. pdb

Synchroni zi ng / hone/ bj epson/ Pal mf Novar r a- 19. nod. pdb

You can use the - - backup option to back up your Palm and the - - r est or e option to restore it.

8.7.3 GNOME-Pilot

GNOME-Pilot lets you synchronize your Palm to various components of the GNOME desktop, including

Evolution. To configure GNOME-Pilot:

1. Launch GNOME-Pilot (gpilotd-control-applet). You'll see a Welcome screen. Click Next.

2. The Cradle Settings appear (Eigure 8-18). Give your settings a name, then select the port, such as

/dev/ircommN (where Nis the number of your infrared device, usually 0), and speed (115200).
Specify a type of IrDA and click Next.

Figure 8-18. GNOME-Pilot cradle settings

Cradle Settings

Mame IrDP.|

Port foarcommi

Speed | 115200

Timeowt 2

Type () Serdal () USB @ DA () Netwark

<] Back [= Mt | ¥ Cancel
L

The Pilot Identification appears. Here you must specify whether you've synced this Palm before. If
not, provide a username and ID. Click Next.

If you have synced the Palm before, the Initial Sync screen appears, and GNOME-Pilot will try to
retrieve the username and ID. Click Next after it has retrieved the name and ID (see Figure 8-19).

Figure 8-19. GNOME-Pilot retrieving the username and 1D

Initial Sync

successfully reffieved UserName and 1D from pilol
Usertlame: bjepson
ID: -1145611123

<] Back [Mexd & Cancel
L e

5. The Pilot Attributes screen appears, as shown in Figure 8-20. You can specify a name, working

directory, and action to perform on syncing. You should set the Sync Action to Use conduit settings
and click Next.

Figure 8-20. GNOME-Pilot displaying the Pilot Attributes

Pilot Attnbutes

Pilot Hame WyFilot
Local basedir shomedbjepsondiyFilol

Sync Action | Use conduit seflings » |

<] Back [= Mt I | ¥ Cancel

L

6. The final screen appears, which should indicate success. Click Finish, and the Pilot Link dialog
appears, as shown in Figure 8-21.

7. (Optional.) If GNOME-Pilot retrieved a negative ID in Step 3, you should change it now. Select your
Palm in the Pilot Link dialog and click Edit.

8. The Pilot Settings appear, as shown in Figure 8-22. Set the ID to a reasonable number (just to be

safe, choose an integer between 1 and 254) and click Send to Pilot. You'll need to press the on-
screen HotSync as shown earlier in Figure 8-17.

Figure 8-21. The Pilot Link dialog

R pibokink— P
Filots lecﬂ|tunduits .ﬁdﬂnced|
Mame |ID |Ll*serName |Eyn: Type
MyFilot o bjepson Use conduit setting
[«] N
Add... | | it | ot |
i|= 7 Help 0 Apply Lok X Cancel

Figure 8-22. Setting a new ID with GNOME-Pilot

adl Pilot Settings n

Filot Identification
Uger Name bjepson

] 23

Getfrom pilot || Send fo pilgt |

Filot Altribules
Filot Mame iy Filot
Local basedir shomesbjepsondhdyPilot

Sync Action | Use condult setings = |

| Pox | | X cancel

L)

9. Select the Conduits tab (see Figure 8-23), and for each conduit you want to enable, select the
conduit name and click Enable.

10. Click OK when you are done.

Now, when you press the onscreen HotSync button, you may not see anything on the screen unless
you've added a panel item for GNOME-Pilot. However, the Palm will show you what's happening as the

HotSync progresses.

e

Figure 8-23. Specifying conduit settings in GNOME-Pilot
(v T S - =)

Pilats Ineulm Conduits

Pilot Name; | MyPilot .

User Mame: bjepsan

Conduit [Eync Action | E

~| Backup Dizabled

Jwll EAddrass Synchronlze Disable
 ECalenda Disabled)
FlETobo Disabled | Settngs... |
JH File Dizabled

Condult Description

synchronlzes Addressbook with Evolution

7 Help | 28 Apply ok M cancel

L

< Day Day Up >

a=

< Day Day Up >

8.8 Pocket PC

You can sync with a Pocket PC using SynCE (http://synce.sourceforge.net/synce/). If SynCE is not
available with your distribution, follow the excellent instructions at the SynCE site for installing and
configuring the software.

After it's installed, you can generally start SynCE with synce-serial -confi gircomrN (where Nis the
number of your infrared device, usually 0) and then use synce-seri al -start (run these as root):

synce-serial-config ircomD
You can now run synce-serial-start to start a serial connection.

synce-serial -start

Once synce-seri al -start is running, you should run the dccm utility as the mortal user who wants to
play with the Pocket PC (this utility communicates with the synce process that you started as root):

bj epson@ i nux: ~> dccm

Now, align your Pocket PC's infrared port with that of your Linux system, and launch ActiveSync. Click
Tools = Connect via IR, and your Pocket PC should make an ActiveSync connection, as shown in Figure
8-24. Note that the progress bar never goes anywhere. It's just a live link between the two; it's not
actually syncing.

Figure 8-24. Never-ending ActiveSync

ncmg:.-,-m & g 1e €

S ©

(D sync (Z)stop

Synchronize with Windows PC
Last SyTic: Mone

| |

Toals B~

To move data between your Linux system and your Pocket PC, you can use commands like pl s to list files
on the Pocket PC and pcp (may be Pcp on some systems) to copy files to and from the Pocket PC. Note

http://synce.sourceforge.net/synce/

that you must prefix the root of the filesystem with ":" when you use pcp.

bj epson@i nux: ~> pls /My\ Docunents/

ACG------- 57727 Thu Jul 31 20:00: 02 2003 000013a8 Sanpl e4.jpg
ACG------- 67617 Thu Jul 31 20:00:02 2003 00001393 Sanpl e3.]pg
ACG------- 45053 Thu Jul 31 20:00: 02 2003 00001386 Sanple2.jpg
AC------- 64168 Thu Jul 31 20:00:02 2003 00001374 Sanplel.jpg
Directory Thu Jul 31 20:00:02 2003 0000134a Busi ness/
Directory Thu Jul 31 20:00:02 2003 00001349 Personal/
Directory Thu Jul 31 20:00:02 2003 00001287 Tenpl ates/

bj epson@i nux: ~> Pcp ":/M Docunents/ Sanpl el.jpg"
File copy of 64168 bytes took O minutes and 7 seconds, that's 9166 bytes/s.

The SynCE site includes a number of other tools, such as Orange (extract .cab files from Pocket PC
installation packages) and a plug-in for MultiSync (http://multisync.sourceforge.net/).

48 FREV < Day Day Up > MEXT mjp

http://multisync.sourceforge.net/

¥ FREV < Day Day Up > MEXT mjp

Chapter 9. Cellular Networking

The widest of the wide area wireless networks are the cellular networks. They're also among the slowest,
unless you're in one of the markets where third-generation (3G) cellular networks are available. At the
time of this writing, San Diego and Washington, D.C. users could receive between 300 and 500 kbps from
Verizon for $80 a month. The rest of the United States, and much of the world, is still plodding along at
between 30 and 130 kbps, depending on several variables: the type of network, capabilities of their
terminal (a phone or PC Card), and quality of coverage. This chapter explains these variables to help you
make the best choice in cellular data service, and also talks about configuring a cellular phone or PC Card
with Linux (although this is usually just a small matter of PPP chat scripting).

48 FREV < Day Day Up > MEXT mjp

< Day Day Up >

9.1 Cellular Data

There are several types of cellular data networks. The most popular are General Packet Radio Services
(GPRS) and 1x Radio Transmission Technology (1xRTT). At the time of this writing, slightly faster
Enhanced Data rates for GSM Evolution (EDGE) and 1x Evolution Data Only (1XEV-DO) networks are
emerging.

9.1.1 CSD

You use Circuit Switched Data (CSD) when you use your cellular phone as a dial-up modem. When you do
this, you use your voice plan. Generally, this is not the best option: CSD calls typically don't receive the
full throughput that's available to a data connection. However, there is a high-speed variant called High
Speed CSD (HSCSD) that can provide you with better speeds.

Unless you need to dial into a private network using a modem, we suggest that you use a packet-
switched protocol, such as GPRS, EDGE, 1xRTT, or 1XEV-DO, to make your data connection. With these
technologies, you're not dialing a bank of modems; rather, you're effectively using your cellular carrier as
your ISP and your phone as a network adapter. Additionally, CSD calls are billed by the minute; with the
exception of one plan offering from Verizon Wireless (Express Network NationalAccess) that we're aware
of, packet-switched data connections are billed by the amount of data used, rather than the amount of
time you spend online (unless you have an unlimited plan, in which case you are paying a flat rate).

If your cellular carrier and GSM device supports it, you can make an HSCSD at speeds up to 40 kbps. To
enable this capability, you must issue the command AT+CBST=speed, 0, 1, where speed is a value
supported by your phone (you can enumerate the supported values by issuing the AT+CBST=? command).
For example, request 14.4 kbps with AT+CBST=14, 0, 1.

The isdn4linux FAQ has some information on using HSCSD with ISDN:
http://www.mhessler.de/idlfag/i4lfag-6.html#config_gsmv110. The following sites have information on
HSCD commands, although support varies from device to device, and some providers do not support
HSCD at all (contact your cellular provider if you are unsure):

http://www.gcrsoft.com/data.html
http://www.nc9210.de/9210/tipps/at _hscsd.htm
http://www.zelaskowski.de/pda/hscsd.html

9.1.2 GPRS and EDGE

GPRS sits on top of Global System for Mobile communications (GSM), a cellular networking protocol that
breaks a channel into timeslots so that up to eight users can share the same channel; at any given time,
a channel is dedicated to one user only. A channel is 200 kHz of bandwidth within the 850, 900, 1,800, or
1,900 MHz bands. GSM is the most widespread digital cellular technology with 970 million users at the end
of 2003. It's available in the U.S., much of Asia, Europe, and many other places.

Although a given timeslot supports a slow data rate (typically between 9.6 and 13.4 kbps), one timeslot is
sufficient for each side of a voice conversation. GPRS phones and PC Cards combine multiple GSM
timeslots (up to eight in theory, but the equipment we've seen maxes out at four) and typically support a
downstream data rate of 40 kbps (we have found that this translates to a peak of 30 kbps for HTTP

http://www.mhessler.de/i4lfaq/i4lfaq-6.html#config_gsmv110
http://www.gcrsoft.com/data.html
http://www.nc9210.de/9210/tipps/at_hscsd.htm
http://www.zelaskowski.de/pda/hscsd.html

transfers). Upstream data rates are typically less, as low as 9.6 kbps, but this is governed by the number
of timeslots your device supports for upstream data, as well as by the number of timeslots your cellular

carrier makes available for this purpose.

EDGE is an improvement over GSM in that it increases the data rate per timeslot significantly. Instead of
9.6 kbps to 13.4 kbps, EDGE supports between 48 and 70 kbps per timeslot. However, to take advantage
of EDGE speeds, you need a handset or PC Card that supports EDGE, such as the Nokia 6200 cell phone
or the Sony Ericsson GC82 PC Card Modem. EDGE devices are backward-compatible with GSM and GPRS,
so if you're in a location without EDGE coverage, you can still connect at the slower GPRS speeds.

GSM devices require the installation of a Subscriber Identity Module (SIM). You (or the salesperson) insert
this card when you first get the phone. If you have more than one phone, you can swap SIMs and use the
phone that is currently holding the SIM. However, most cellular providers lock the device to their network,
so you can use the phone onlwith them. So, if you buy a phone from AT&T Wireless and insert the SIM
you bought from T-Mobile, you'll receive an error message. However, there are many ways to remove this
lock. Some carriers will do it for you if you contact their customer support and ask; this is usually done for
customers who have been with the carrier for a while, have an account in good standing, and are planning
to use the phone overseas (you can save money by buying a pay-as-you-go SIM from a local cellular
provider and swapping SIMs while you are abroad). Figure 9-1 shows a Nokia 6200 that is being inserted
with an AT&T Wireless SIM card (that's the battery next to it, which we had to remove to get at the SIM).

Figure 9-1. Inserting a SIM card into a Nokia 6200

-
=
=
-
=
-
=
o]
-]
=

9.1.3 1XxRTT and 1xEV-DO

1XRTT is an improvement to CDMAone, the first version of Code Division Multiple Access (CDMA), a digital
cellular protocol that supported data rates up to 14.4 kbps. 1XRTT cranks it up to 144 kbps upstream and
downstream. Instead of slicing up cellular channels by timeslots, CDMA uses spread-spectrum technology
to support multiple users in each 1.25 MH-wide CDMA channel within the 800 and 1900 MHz bands. Each
user within a given CDMA channel is associated with a code, and their signals (tagged with the associated
code) are spread across the channel. although CDMA is not as widespread as GSM, there are still many

users (188 million at the end of 2003). It's available in the U.S., parts of Asia, Latin America, and Europe.

1XEV-DO improves on 1xXRTT by supporting burst speeds up to 2.4 Mbps while still keeping channels only
1.25 MHz wide. At the time of this writing, Verizon Wireless has begun 1xEV-DO trials in San Diego and
Washington, D.C. (priced the same as its 1XRTT offering). Initial reports indicate that 300-500 kbps are
the likely real-world speeds.

CDMA phones do not use SIM cards. As a result, you can't move your account to a new phone as easily as
you can with GSM phones. You must contact your cellular provider, deactivate the old phone, and activate
the new one. (Your carrier may also allow you to do this through its customer support web site).

& FREY < Day Day Up > NEXT mjp

< Day Day Up >

9.2 Some Cellular Carriers

There are major cellular carriers around the world; This section looks at some of the major U.S. providers.
Of the ones described here, we have hands-on experience with Sprint, Verizon Wireless, AT&T Wireless,
and T-Mobile.

To connect to the Internet using a GPRS carrier, you must specify an Access Point Name (APN), which is
the name of a gateway on the carrier's network that gets you on the Internet. After that, dial *9Q9#***1#
to connect. APNs for networks not listed here can be found in a variety of places online, but your best bet
is to contact your cellular provider. Opera Software maintains a list of user-submitted carriers and APNs at
http://www.opera.com/products/smartphone/docs/connect/.

All plans and prices listed in the following sections are accurate as of this writing, but are subject to
change.

9.2.1 AT&T Wireless

AT&T Wireless (http://www.attwireless.com) offers GSM service with GPRS under a variety of plans. Its
consumer-oriented mMode plan tops out at 8 megabytes of data per month for $19.99, with additional
megabytes costing about six dollars each.

mMode plans must be accompanied by a voice plan. However, AT&T Wireless offers standalone Mobile
Internet data plans starting at $29.99 for 10 megabytes (about three dollars per additional megabyte),
going up to $79.99 a month for unlimited data (you can also add these plans to service with an existing
voice plan). In late 2003, AT&T rolled out support for EDGE on its North American network.

AT&T Wireless uses a GPRS APN named pr oxy, which also works with its EDGE data service. You can set
your APN with the following AT command sequence:

AT+CGDCONT=1, "I P", " pr oxy"

AT&T Wireless maintains online support forums at http://forums.attwireless.com/attws that are valuable
more for the community discussion than for the actual tech support that goes on there. Check out the
mMode and GSM(TM)/GPRS/EDGE General Discussion forums for insights into AT&T Wireless' data
services.

At the time of this writing, Cingular has just purchased AT&T Wireless, and it is expected to merge its
network with AT&T's by the end of 2004. Whether that changes any of the AT&T Wireless-related
instructions in this chapter remains to be seen. For more information, consult this book's errata at
http://www.oreilly.com/catalog/Inxunwired.

9.2.2 T-Mobile

T-Mobile (http://www.t-mobile.com), formerly VoiceStream, offers GSM and GPRS in a number of markets
across the globe. Its unlimited (T-Mobile Internet Unlimited) data plans are available as an add-on to
voice service or as separate plans. You can add unlimited GPRS data for $19.99 a month with a qualifying
voice plan ($29.99 and higher). Otherwise, unlimited GPRS data is $29.99 a month.

http://www.opera.com/products/smartphone/docs/connect/
http://www.attwireless.com
http://forums.attwireless.com/attws
http://www.oreilly.com/catalog/lnxunwired
http://www.t-mobile.com

Don't confuse T-Mobile's t-zones plan with its T-Mobile Internet Unlimited plan. The $4.99 and $9.99 a
month t-zones plans are designed for users who use the Internet exclusively from their handset, and
some users have reported that services such as SSH (and practically anything that isn't HTTP, SMTP, or
POP3) don't work with these plans.

As of late 2003, T-Mobile had not rolled out EDGE in any of the markets we tested.

T-Mobile uses two different APNs: i nt er net 2. voi cestream comand i nt er net 3. voi cestream com

i nternet2.voi cestream comgives you a private network IP address, which may cause headaches with
VPN connections, and i nt er net 3. voi cest ream comgives you a public IP address, which may cause
headaches when people to try break into your machine. If you want to use i nt er net 3. voi cestream com,
you must be on the T-Mobile Internet Unlimited VPN plan, which costs the same as T-Mobile Internet
Unlimited. If you aren't sure which plan you are on, contact T-Mobile customer service to find out. You
can set your APN with one of the following AT command sequences:

AT+CGDCONT=1, "I P", "i nt er net 2. voi cestr eam cont

AT+CGDCONT=1, "I P","i nternet 3. voi cestream cont'

9.2.3 Cingular Wireless

Cingular Wireless (http://www.cingular.com) is also a GSM/GPRS provider. Its Wireless Internet Express
pricing plans are similar to AT&T's mMode and Mobile Internet plans: for $24.99 a month, you can get 10
megabytes of data, and each additional megabyte is about four dollars. Its unlimited plan is $74.99 per
month.

As of late 2003, Cingular Wireless had rolled out trial EDGE support in one market (Indianapolis).

Cingular Wireless uses a GPRS APN named i sp. ci ngul ar . You can set your APN with the following AT
command sequence:

AT+CGDCONT=1, "I P", "i sp. ci ngul ar"

9.2.4 Verizon Wireless

Verizon Wireless (http://www.verizonwireless.com) offers CDMA service with 1XRTT and 1xEV-DO for
data. Its advertised data plans are available as add-ons to a voice plan or as standalone data plans.
Although it is not advertised on its site, many users have reported that the America's Choice voice plan
minutes can be used for data; but many users have reported that Verizon does not permit this, so unless
you get something in writing that indicates your plan allows this, we suggest that you use an add-on data
plan.

Verizon Wireless has a number of data plans. Its NationalAccess plan lets you pay by the minute. This
means that you're paying even when your network connection is idle. However, it also has plans that let
you pay by the megabyte, starting at 20 megabytes for $40 a month with each additional megabyte for
about four dollars. You can go up from there to unlimited data for $79.99 a month.

Verizon Wireless' 1XRTT service is available across its national network. As of late 2003, 1xXEV-DO trials
were underway in San Diego and Washington, DC.

'r_-‘~ An APN is not required for 1XRTT or 1XEV-DO; you can generally just dial #777 to
a make the connection. For more details, see "CDMA Phone with Data Cable" and
‘*. 4= "CDMA PC Card" later in this chapter.

http://www.cingular.com
http://www.verizonwireless.com

9.2.5 Sprint

Sprint PCS (http://www.pcsvision.com) offers CDMA cellular service. It offers unlimited 1xXRTT data
service, which it calls PCS Vision, as an add-on to a voice plan for $15 a month. However, there are
reports that say that these plans are not intended for users who want to connect a laptop to their cell
phone, and that Sprint may charge users who use the service in this way as much as $10 a megabyte.

However, Sprint does offer by-the-megabyte plans starting from $40 a month for 20 megabytes, going up
to $100 for 300 megabytes. Additional megabytes are two dollars each under all their megabyte plans.
Although Sprint had offered an unlimited data plan for $80 a month in the past, it is not advertising such
a plan at the time of this writing.

As of late 2003, Sprint was reported to be testing 1XEV-DO, but it was not marketing it or selling 1xXEV-
DO cards or phones.

& FREY < Day Day Up > MEXT

http://www.pcsvision.com

< Day Day Up >

9.3 Phones and Cards

The following sections describe the cards and phones that we tested with Linux. They include an
assortment of devices that can talk CDMA 1xRTT, GPRS, and EDGE. Each section includes the information
you need to make a data call.

Table 9-1 contains the results of the testing with these devices. In each download test, we moved a 384
KB compressed datafile down from an HTTP server using wget 1.8.1 (wget _1.8.1-6.1 i386.deb) and
recorded the transfer rate. In each upload test, we uploaded the same file using Debian'’s ftp client
(ftp_0.17-9 i386.deb) and recorded the transfer rate.

Table 9-1. Download and upload speeds with various devices

. . . Download Upload Download Upload
I[1]

Device Carrier Signal test 1 test 1 test 2 test 2
Merlin C201 Sprint 65% 12.64 KB/sec 8.7 KB/sec | 12.86 KB/sec 9.0 KB/sec
Motorola verizon 97% 13.94KB/sec 5.7 KB/sec 13.3 KB/sec 7.5 KB/sec
v120e Wireless

. AT&T
Nokia 6200 i 2 55% 11.05 KB/sec 6.0 KB/sec | 11.31 KB/sec 6.0 KB/sec
Wireless[21
Nokia 6200 T-Mobile[31 65% 2.61 KB/sec 2.8 KB/sec 1.74 KB/sec 2.6 KB/sec
Merlin G100 @ T-Mobile 32-54% 4.26 KB/sec 1.4 KB/sec 5.09 KB/sec 1.4 KB/sec

[11 Reported by AT+CSQ and divided by 31.
[2] Connected in an EDGE-enabled AT&T Wireless market.

[31 At the time of this writing, T-Mobile does not support EDGE.

These devices use a basic Hayes command set but also support an extended command set (I1S-707 AT
command set). You can use this command set to ask the modem about signal strength and the type of
network to which it's connected. For example, if you issue the command AT+CSQ?, the phone will respond
with the signal strength (on a scale of 0-31) and the frame error rate, which will be zero if you haven't
had any network activity.

Table 9-2 shows some of the commands and sample responses from the Novatel Wireless Merlin C201
(you should be able to use these commands with any CDMA or GPRS device described later in this
chapter). To issue one of these commands, use minicom or Kermit; type the command and then press
Enter. Example 9-1 shows a session where we set the serial speed and then run Kermit to have a
conversation with the modem. If your user account does not have the correct permissions, you must set
the permisions appropriately (on Debian, we add the bjepson user to the dialout group).

Example 9-1. Kermit session with the Novatel Wireless Merlin C201

bj epson@lebi an: ~$ setserial /dev/ttyS2 baud_base 230400
bj epson@lebi an: ~$ kermi t
C-Kermit 7.0.196, 1 Jan 2000, for Linux
Copyright (C) 1985, 2000,
Trustees of Colunbia University in the City of New York.
Type ? or HELP for help.
(/ hone/ bj epson/) C-Kermt>set line /dev/ttyS2
(/ hone/ bj epson/) C-Kermt>set speed 115200
/dev/ttyS2, 115200 bps
(/ hone/ bj epson/) C-Kerm t>connect
Connecting to /dev/ttyS2, speed 115200.
The escape character is Crl-\ (ASC | 28, FS)
Type the escape character followed by C to get back,

or followed by ? to see other options.

at +csq?

+CSQ 22, 00000000, 00000000

"_‘ If you can't see the commands you are typing but are still getting a response, the

A modem is probably set to not echo the commands that you type. You can reset this

w #: with the command ATE1 or reset the modem to its defaults with ATZ.

Table 9-2. Some of the AT commands recognized by cellular modems

Command Syntax
_Get batt_ery charge AT+CBC2I41
information
_Get man_ufactu rer AT+GM
information
Get mobile model AT+GW
Get model revision AT+GVR
Get serial number AT+GSN
Get service
information (analog = AT+CAD?[51
or digital)
Get serving system AT+CSS?
information Footnote 5
. . AT+CSQ?
Get signal quality Footnote 4

Sample response from C201

+CBC. 0, 65 (First integer: O=running on battery, 1=charging,
2=status no available, 3=power fault; second integer: percentage
charge remaining) Not applicable to the C201, because it's powered
by the PCMCIA bus

+GM : Novatel Wrel ess Inc.

+GvW CDMVA Merlin 1900MHz

+GVR F/WVER 1065 S/WVER BM3.0.10 Jun 11 03 14:45:56
BOOT VER 1-1

+GSN: 00000000

+CAD: 1 (O=no service, 1=CDMA digital, 2=TDMA digital, 3=analog)

+CSS: 1,1 4106 (First integer: O=unknown band, 1=800MHz,
2=1900MHz; second integer: mobile station block; third integer:
system identifier)

+CSQ 5, 00000291, 00000241 (First integer: signal strength from O-
31; last integers: frame error rate)

[41 Do not include the ? for GSM phones or modems.

[51 Not supported by the GSM phones or modems that we tested.

The Tao of Mac maintains a list of GSM AT commands at
http://the.taocofmac.com/space/AT%20Commands.

Although the example PPP peers file and chat scripts show examples for a particular provider, you should
be able to adapt these to providers and phones other than the ones covered in this chapter. If you decide
to change the name of the files, be sure that the connect and disconnect entries in your peers file match
the new filenames. For CDMA providers, you shouldn't need to make any change unless your cellular
carrier requires a username and password. For GSM providers other than the ones described in this
chapter, you need to change the APN (and perhaps set a username and password). If you are using a
different type of phone that uses a different file in the /dev directory, you need to change the device

name.

When you make a connection as directed in the following sections (running the command pppd cal |
provi der as root), you should see something similar to the following:

Serial port initialized.
Starting CDVA connect script
Di aling...

Serial connection established.

Using interface pppO

Connect: ppp0 <--> /dev/ttyS2

http://the.taoofmac.com/space/AT%20Commands

kernel does not support PPP filtering

Cannot determ ne ethernet address for proxy ARP
local | P address 68.29.37.40

renote | P address 68.28.97.6

primary DNS address 68.28.122.11

secondary DNS address 68.28.114.11

When you're done with your connection, press Ctrl-C to disconnect.

9.3.1 PPP Troubleshooting

If you see a message that the pppd command is "not replacing existing default route," it means you have
another network connection active. You should temporarily bring this network connection down before
making the PPP connection or manually adjust the routing to your liking.

If your link is dropping due to LCP Echo errors, try setting the interval to something really high in the
/etc/ppp/peers file:

| cp-echo-failure 4
| cp-echo-interval 65535

Also, some phones may have trouble with the default compression scheme that PPP uses. If you are
having problems negotiating a connection, try adding novj and novj cconp, as shown in Example 9-5 later
in this chapter.

For more information on PPP configuration, see the Linux PPP HOWTO:
https://secure.linuxports.com/howto/ppp/.

9.3.2 CDMA PC Card

The Novatel Wireless Merlin C201 (Eigure 9-2) is a CDMA 1xRTT PC Card offered by Sprint that is
automatically recognized by all the versions of Linux we tested (Mandrake 9.2, Gentoo 1.4, and Debian
3.0). It appears as two serial ports starting at the highest unused serial port. So, on a ThinkPad A20m
running Debian 3.0, there were already two serial ports (ttySO and ttyS1). When we plugged in the C201
card, two more were detected: ttyS2, which is the CDMA modem, and ttyS3, a status port for the modem
(whose purpose is unknown to us but is not necessary to connect to the Internet).

Figure 9-2. The Novatel Wireless Merlin C201 card

As of this writing, there is no way to provision (perform the initial activation with the Sprint network) this
card without a PC running Microsoft Windows. Novatel Wireless technical support confirmed this but
mentioned that upcoming firmware may come out that supports provisioning on any operating system.
Unless that happens, you must get access to a Windows notebook long enough to install the software that
comes with the card, activate it, and verify that you can connect to the network before trying it with
Linux.

To get online with the Merlin C201, use a PPP connection and the phone number #777. If you use a
regular phone number, you'll end up making a CSD call, which may incur per-minute charges. When you
dial #777, you'll incur whatever charges are applicable under your data plan. To set up a data connection
with the C201, first create the /etc/ppp/peers/sprint-pcs file shown in Example 9-2. You must change the
first two lines to specify your device (for example, /dev/ttyS?2).

Example 9-2. PPP peer settings for Sprint PCS and the Merlin C201
File: /etc/ppp/peers/sprint-pcs

#

/ dev/ YOUR_DEVI CE # device

init "setserial /dev/YOUR DEVICE baud _base 230400"

115200 # speed

defaultroute # use the cellular network for the default route

usepeer dns # use the DNS servers fromthe renote network

nodet ach # keep pppd in the foreground

crtscts # hardware flow control

| ock # |l ock the serial port

noaut h # don't expect the nodemto authenticate itself

scripts for connection/di sconnection
connect "/usr/sbin/chat -v -f /etc/chatscripts/sprint-connect"

di sconnect "/usr/shin/chat -v -f /etc/chatscripts/sprint-disconnect™

The Merlin C201 is a bit of an oddball. You must use setserial to specify twice the
""@ actual speed you want to use. (Thanks to the folks at tummy.com for this
information, found on http://www.tummy.com/articles/laptops/merlin-c201/)

Next, create the /etc/chatscripts/sprint-connect and /etc/chatscripts/sprint-disconnect scripts, shown in
Example 9-3 and Example 9-4.

Example 9-3. PPP connect script for Sprint PCS and the Merlin C201
File: /etc/chatscripts/sprint-connect

#

TI MEQUT 10

ABORT ' BUSY'

ABORT ' NO ANSVEER

ABORT ' NO CARRI ER

SAY "Starting CDVA connect script\n'

CGet the nodenmis attention and reset it.

[} [ATZ‘

EO=No echo, V1=English result codes

X " ATEOVT'

http://www.tummy.com/articles/laptops/merlin-c201/

Dial the nunber

SAY "Dialing...\n'
(016 " ATDHTTT'
CONNECT '

Example 9-4. PPP disconnect script for Sprint PCS and the Merlin C201

File: /etc/chatscripts/sprint-disconnect

#
" K"
" +++ATHO"
SAY " CDVA di sconnected. "

After you've set up these scripts, issue the command pppd cal | sprint-pcs as root. Press Ctrl-C to
invoke the disconnect script and hang up the PPP connection.

ol If your carrier requires a username and password, set the user and r enot e_nane
e options as shown in Example 9-5, and create a chap_secrets file, as shown in

W 4. Example 9-6.

9.3.3 CDMA Phone with Data Cable

The Motorola v120e (see Figure 9-3) is a CDMA 1xRTT phone offered by Verizon Wireless. You must
nodpr obe or i nsnod the acm.o (the USB Abstract Control Model drive) module for this phone to be

recognized. The v120e appears as a serial port named /dev/ttyACMO.

Figure 9-3. The Motorola v120e CDMA phone

::,-"r The Motorola v120e does not require the provisioning step typically required of

-, PCMCIA cards (see Section 9.3.2 earlier in this chapter). Simply using the data

w 1': connection for the first time provisions the phone.

To get online with this phone, create a PPP connection using the phone number #777. You can also use
this phone to connect to dial-up service (see Section 9.1.1 earlier in this chapter), but per-minute charges
will apply, and you'll get a maximum speed of 14.4 kbps. To set up a data connection for this phone, first
create the /etc/ppp/peers/verizon file shown in Example 9-5. Be sure the device name corresponds to
that of your phone (use dmesg to see which device the phone was associated with), although it will
probably be /dev/ttyACMO. You must supply your phone number followed by @zw3g. comas your
username in the verizon file, and specify vzwas your password in the /etc/ppp/chap-secrets file shown in
Example 9-6 (the veri zon in the server column in chap-secrets corresponds to the r enot e_nane
specified in the /etc/ppp/peers/verizon file).

Example 9-5. PPP peer settings for Verizon Wireless and the Motorola v120e

File: [etc/ppp/peers/verizon

#

/ dev/ttyACMD # device

The following two settings need a corresponding entry in
[etc/ppp/ chap-secrets.
user YOUR CELLULAR PHONE NUMBER@zw3g. com

renpt enane veri zon

115200 # speed

defaultroute # use the cellular network for the default route

usepeer dns # use the DNS servers fromthe renote network
nodet ach # keep pppd in the foreground

crtscts # hardware flow contro

| ock # lock the serial port

noaut h # don't expect the nodemto authenticate itself
novj

novj cconp

scripts for connection/di sconnection
connect "/usr/sbin/chat -v -f /etc/chatscripts/verizon-connect"

di sconnect "/usr/sbin/chat -v -f /etc/chatscripts/verizon-disconnect"

Example 9-6. CHAP password for Verizon wireless connection
File: /etcl/ppp/chap-secrets

#

Secrets for authentication using CHAP

client server secret | P addresses
YOUR _CELLULAR PHONE_NUMBER@ zW3g. com verizon vzw *

Next, create the /etc/chatscripts/verizon-connect and /etc/chatscripts/verizon-disconnect scripts, shown
in Example 9-7 and Example 9-8.

Example 9-7. PPP connect script for Verizon Wireless and Motorola v120e
File: /etc/chatscripts/verizon-connect

#

TI MEQUT 10

ABORT ' BUSY'

ABORT ' NO ANSVER

ABORT ' NO CARRI ER

SAY 'Starting CDVA connect script\n'

CGet the npdenls attention and reset it.

" CATZ

EO=No echo, V1=English result codes

XK " ATEOVY'

Dial the nunber
SAY 'Dialing...\n’
OK ' ATDH77T'

CONNECT '

Example 9-8. PPP disconnect script for Verizon Wireless and Motorola v120e
File: [etc/chatscripts/verizon-di sconnect

#

wnny e

"t U4+ ++ATHO"

SAY "CDMA di sconnected. "

After you've set up these scripts, issue the command pppd cal |l veri zon as root (if you haven't
configured Linux to automatically load the acm.o module, you must issue the command nodpr obe acm
first). Usage charges will apply according to your data plan. When you are done, press Ctrl-C to invoke
the disconnect script and hang up the PPP connection.

9.3.4 GSM/GPRS Phone with Data Cable

The Nokia 6200 (Figure 9-4) was the first phone on the market to support EDGE, an enhancement to GSM
that increases the data rate per timeslot up to 48 kbps (higher in ideal network conditions). With two
EDGE timeslots for uploads and downloads, the Nokia 6200 can achieve data rates of 96 kbps or higher.
The Nokia 6200 is offered by AT&T Wireless.

Figure 9-4. The Nokia 6200 EDGE/GPRS phone

EDGE-capable phones are compatible with GSM/GPRS networks. If the cellular base station you connect
to does not support EDGE, the phone will fall back to regular GSM data rates.

Unfortunately, the Nokia 6200 does not support Bluetooth, so you must use either IrDA or a data cable.
Linux does not recognize the Nokia data cable (DKU-5), but it does recognize the cable that comes with
the SmithMicro QuickLink Mobile for Mac OS X kit (available for $59.95 at http://www.smithmicro.com) as
a Prolific 2303. However, we had trouble with some of the 2.4 kernels that we had tested with 2.4.20
through 2.4.22: the driver (pl2303.0) would trigger a kernel oops when hanging up the connection.
However, we tested a prerelease version of 2.4.23 (rc3), which solved this problem.

To connect to the Internet with this phone, you must set up a PPP connection that sets the APN (see
Section 9.2 earlier in this chapter) and dials the number (*99** * 1#) for making a GPRS connection. In

theory, you can use this phone to connect to a dialup service (see Section 9.1.1 earlier in this chapter).

To set up your PPP connection, first create the /etc/ppp/peers/attws file shown in Example 9-9. Be sure
the device name corresponds to that of your phone (use dmesg to look at the device that the phone was
assigned to), although it will probably be /dev/ttyUSBO.

Example 9-9. PPP peer settings for AT&T Wireless and the Nokia 6200

http://www.smithmicro.com

/dev/ttyUSBO # USB-serial port
230400 # speed

defaultroute # use the cellular network for the default route

usepeer dns # use the DNS servers fromthe renote network
nodet ach # keep pppd in the foreground

crtscts # hardware flow control

| ock # lock the serial port

noaut h # don't expect the nodemto authenticate itself
connect "/usr/sbin/chat -v -f /etc/chatscripts/attws-connect"”

di sconnect "/usr/sbin/chat -v -f /etc/chatscripts/attws-di sconnect"

Next, create the /etc/chatscripts/attws-connect and /etc/chatscripts/attws-disconnect scripts, shown in
Example 9-10 and Example 9-11. If you are using a GPRS cellular provider other than AT&T Wireless, you
will probably have to change the APN (pr oxy in Example 9-10).

Example 9-10. PPP connect script for AT&T Wireless and the Nokia 6200
File: /etc/chatscripts/attws-connect

#

TI MEQUT 10

ABORT ' BUSY'

ABORT ' NO ANSVER

ABORT ' NO CARRI ER

SAY "Starting GPRS connect script\n'

Get the npdenls attention and reset it.

1 1 ATZ‘

EO=No echo, V1=English result codes

XK " ATEOVY'

Set Access Point Name (APN)
SAY "Setting APN\n'

oK ' AT+CGDCONT=1, "1 P", " pr oxy""

Dial the nunber

SAY "Dialing...\n'
K " ATD* 9O* * * 1#'
CONNECT '

Example 9-11. PPP disconnect script for AT&T Wireless and the Nokia 6200

File: /etc/chatscripts/attws-di sconnect

#

" " K

. " +++ATHO"

SAY "GPRS di sconnected. "

After you've set up these scripts, issue the command pppd cal | attws as root. Usage charges will apply
according to your data plan. Press Ctrl-C to invoke the disconnect script and hang up the PPP connection.

o If your carrier requires a username and password, set the user and r enpot e_nane
o options, as shown in Example 9-5 and create a chap_secrets file, as shown in

W 4. Example 9-6.

9.3.5 GPRS PC Card

T-Mobile once operated in the United States under the VoiceStream brand. In fact, you still see
voicestream.com on T-Mobile's APNs, and a USENET group that discusses T-Mobile is
alt.cellular.gsm.carriers.voicestream. Back when it operated as VoiceStream, it offered a great cellular
card that was branded iStream (see Figure 9-5). Under the hood, it's a Novatel Wireless Merlin G100
GPRS PCMCIA modem. We like this card because it's cheap (we picked ours up for $50 on eBay) and we
have received faster downloads with it than with other GPRS phones that we've used.

Figure 9-5. The (VoiceStream branded) Novatel Wireless Merlin G100 GPRS
card

Linux automatically detects this as a serial card; when you insert the card, look for messages in the
system log or the output of dmesg to see the port it's assigned to. On our system, it shows up as
/dev/ttyS2 (dmesg reports "ttyS02 at port 0x03e8," and ttyS02 corresponds to /dev/ttyS?2).

To connect to the Internet with this phone, you must set up a PPP connection that sets the APN (see
Section 9.2 earlier in this chapter) and dials the number (* 99*** 1#) for making a GPRS connection. In

theory, you could dial the number of a dialup ISP (see Section 9.1.1 earlier in this chapter).

To set up your PPP connection, first create the /etc/ppp/peers/tmobile file shown in Example 9-12 Be sure
the device name corresponds to that of the PCMCIA card.

Example 9-12. PPP peer settings for T-Mobileand the Merlin G100

/dev/ttyS2
115200
defaul troute
usepeer dns
nodet ach
crtscts

| ock

noaut h

| ocal

debug

#

#

G100 nodem

speed

use the cellular network for the default route
use the DNS servers fromthe renote network
keep pppd in the foreground

hardware flow contro

| ock the serial port

don't expect the nodemto authenticate itself

don't use Carrier Detect or Data Term nal Ready

Use the next two lines if you receive the dreaded nessages:

#

No response to n echo-requests

Serial link appears to be di sconnected.
Connecti on term nated.

#

| cp-echo-failure 4

| cp-echo-interval 65535

connect "/usr/sbin/chat -v -f /[etc/chatscripts/tnobile-connect"
di sconnect "/usr/sbin/chat -v -f /etc/chatscripts/tnobile-di sconnect"”

Next, create the /etc/chatscripts/tmobile-connect and /etc/chatscripts/tmobile-disconnect scripts, shown
in Example 9-13 and Example 9-14. If you are using a GPRS cellular provider other than T-Mobile, you will
probably have to change the APN (i nt er net 3. voi cest r eam com). Also, T-Mobile offers two options on its
T-Mobile Internet plan. By default, you should use the i nt er net 2. voi cest ream comAPN. However, if
you've opted for VPN support (you receive a public IP address), use i nt er net 3. voi cest ream com

Example 9-13. PPP connect script for T-Mobile and the Merlin G100
File: [etc/chatscripts/tnobile-connect

#

TI MEQUT 10

ABORT ' BUSY'

ABORT ' NO ANSVER

ABORT ' ERROR

SAY "Starting GPRS connect script\n'

Cet the nodenls attention and reset it.

" "ATZ

EO=No echo, VI1=English result codes

XK " ATEOVY'

Set Access Point Name (APN)

SAY "Setting APN\n'

X " AT+CCDCONT=1, "I P", "i nt er net 3. voi cest ream coni"'
Dial the nunber

ABORT ' NO CARRI ER

SAY "Dialing...\n
(014 " ATD* 99* * * 1#'
CONNECT '

Example 9-14. PPP disconnect script for T-Mobile and the Merlin G100

File: /etc/chatscripts/tnobile-di sconnect

#

o " K"

" " +++ATHO"
SAY "GPRS di sconnected. "

After you've set up these scripts, issue the command pppd cal | tnobil e as root. Usage charges will

apply according to your data plan. Press Ctrl-C to invoke the disconnect script and hang up the PPP
connection.

dfes) If your carrier requires a username and password, set the user and r enpot e_nane
o, options, as shown in Example 9-5 and create a chap_secrets file, as shown in
[

4: Example 9-6.

< Day Day Up >

< Day Day Up >

9.4 Sending a Fax

You can send a fax from your cell phone if both your cellular carrier and your cell phone support it. You
can figure out quickly whether your phone supports it by making a Kermit connection (see Section 9.3
earlier in this chapter). Here's a session with a Motorola v120e in which the phone acknowledges that it's
capable of Class 2 fax modem commands:

bj epson@lebi an: ~$ kermt -1 /dev/ttyACMD -b 115200
C-Kermit 7.0.196, 1 Jan 2000, for Linux
Copyright (C 1985, 2000,
Trustees of Colunbia University in the City of New York.
Type ? or HELP for help.
(/ hone/ bj epson/) C-Kerm t>connect
Connecting to /dev/ttyACM), speed 115200.
The escape character is Crl-\ (ASCII 28, FS)
Type the escape character followed by C to get back,
or followed by ? to see other options.
AT+FCLASS=?

0,2.0

X

However, the following session with the Nokia 6200 shows that it doesn't have any fax modem
capabilities:

bj epson@lebi an: ~$ kermit -1 /dev/ttyUSBO -b 115200
C-Kermt 7.0.196, 1 Jan 2000, for Linux

Copyright (C) 1985, 2000,

Trustees of Colunmbia University in the City of New York.
Type ? or HELP for help.

(/ hone/ bj epson/) C-Kermt>set carrier-watch off # required for sone phones

(/ hone/ bj epson/) C-Kerm t>connect

Connecting to /dev/ttyUSBO, speed 115200.

The escape character is Crl-\ (ASC | 28, FS)

Type the escape character followed by C to get back,
or followed by ? to see other options.

AT+FCLASS="?

0

K

To send a fax with your cell phone, install a package such as efax (http://www.cce.com/efax/) and
configure it for your modem. In the case of efax, you must edit /etc/efax.rc. At a minimum, you should
set the device (DEV), your phone number (FROM), and name (NAME):

DEV=t t yACMD

Your fax nunber in international format, 20 characters naxi num

Use only digits, spaces, and the "+" character.

FROVE"+1 401 555 1234"

Your nane as it should appear on the page header.

NAVE="Bri an Jepson"

Once you've done this, you can use a client program, such as fax (included as part of the efax package),
to send a file:

bj epson@lebi an: ~$ fax send 4015555678 Letter.ps

Letter.ps is postscript or pdf

efax: Sun Nov 23 16:39:16 2003 efax v 0.9a-001114 Copyright 1999 Ed Casas
efax: 39:16 opened /dev/ttyACM

efax: 39:21 using in class 2.0

http://www.cce.com/efax/

ef ax:

ef ax:

ef ax:

ef ax:

ef ax:

ef ax:

ef ax:

ef ax:

39:
39:
39:
39:
39:
41:
41:

41:57 done

22

43

43

51

51

52

52

di al i ng T4015555678

renote ID ->

connect ed

sessi on 196l pi
header: [2003/ 11/ 23 16:39 +1 401 555 1234 Brian Jepson p.

sent 20+2156 | i nes,

sent

-> Letter.ps. 001

returning 0 (success)

" 401 555 5678"

61097+0 bytes, 121 s

< Day Day Up >

4800bps 8.5"/215nm 11"/ A4 1D -

4039 bps

Oons

1/ 1]

< Day Day Up >

9.5 Text Messaging

Some phones and modems let you send a text message via Short Message Service (SMS) using AT
commands. To find out whether your device supports this (nearly all GSM devices do), connect with
Kermit, as shown in Example 9-1, and issue the query AT+CSM5=0 (the three columns indicate whether

the device is capable of receiving messages, sending messages, or sending broadcast messages):
AT+CSM5=0

+CSMs: 1,1,1

(04

If your cell phone supports this capability, you can work with text messages using AT commands. You can
list your text messages with AT+CMGEL=4 (the 4 indicates all messages: use 0 for unread, 1 for read, 2 for
unsent, and 3 for sent messages) and read a message with AT+CMGR=MESSAGE _NUVBER:

AT+CMGEL=4

+CMGL: 1,1,,28

07919170389103F2040B9 1 XXXXXXXXXXF100013011320211500A0AD3771D7E9A83DEEEL0Q

+CMGL: 2,1, , 25

07919170389103F2040B9 1 XXXXXXXXXXF100013011329135610A06C8F79D9COF01

XK
AT+CMGR=1
+CMGR 1,, 28

07919170389103F2040B91 XXXXXXXXXXF100013011320211500A0AD3771D7 ESA83DEEELO

(0 ¢

However, you'll want to put the phone into text mode, so the responses that you receive are human-
readable. Use AT+CMGF=1 for this, and try reading the message again:

AT+CMGF=1
XK

AT+CMGR=1

+CMCR " REC READ', "+14015559000",, "03/11/23, 20: 11: 05- 20"

Soup' s on!

(016
You can send a message with AT+CMGS="PHONE_NUMBER" (but make sure you've set responses to be

human-readable with AT+CMGF=1) . You'll be prompted for the message; type it and press Ctrl-Z when you
are finished:

AT+CMGF=1

(0
AT+CMGS="4015559000"
> Hello, world!”~Z
(04

You can also use the gsmsendsms utility from gsmlib (http://www.pxh.de/fs/gsmlib/index.html) to send
the message:

bj epson@lebi an: ~$ gsnmsendsnms -d /dev/ttyUSBO 4015559000 "Hell o, World"

48 FREV < Day Day Up > NEXT @i

http://www.pxh.de/fs/gsmlib/index.html

< Day Day Up >

9.6 Acceleration

Although GPRS and CDMA are pretty slow, some providers have put compression servers on their network
to compress documents before they make it to your computer.

Verizon Wireless uses a two-tier proxy server called Venturi
(http://www.venturiwireless.com/products.html). One tier of the proxy server sits on the cellular carrier's
network and compresses documents before they come down to your machine. The other tier is a local
proxy server that runs on your machine and decompresses the content on the fly before presenting it to
your web browser or any other application. (Venturi can compress data sent over a number of protocols
including SMTP and POP3.) AT&T Wireless uses something similar, but we do not know what it is. At the
time of this writing, there isn't a Linux client for either Venturi (or whatever it is that AT&T Wireless uses).
But that shouldn't stop you from asking customer support about it, because it may have changed (at the
very least, you should let them know the demand exists).

Sprint and T-Mobile have transparent acceleration on their networks. The nice thing about this approach is
that it should, in theory, obey web standards without requiring any fiddling on the client side; so it doesn't
matter what operating system you're on. To compress HTML, the compression server can use gzip
compression; to compress images, it can reduce the image quality. Figure 9-6 shows the T-Mobile
Internet Accelerator configuration page (http://getmorespeed.t-mobile.com). You will not be able to reach
this page unless you are connected to the internet2.voicestream.com or internet3.voicestream.com APNs
on T-Mobile's GPRS network.

Figure 9-6. Configuring the T-Mobile Internet Accelerator

Qe
. Eile Edit Wiew Go Booknares Tool Windos Help
O g) O 'J [% hitp-etmarsspesd Fnobils con | [, ssarch | ‘:2'_'5.'.9
- -] -
=
[Te=
Welcome to the T-Mobile Internet Accelerator Service!
With fhe T-mobile Imamal Accalaraior, you can enjoy avan fasser connechion s pesds
Trial wll increEes your winsless Wab DroeEng sperisncs
Accalaralor Service
= 0n o Ooff
Horeen Type
Coior PCLaplop =]
" Fost {Hgh Fasskion)
Speed Lavel " Faaster {Hecn Rasation inage)
* Fastesl (Low Reschition Imags)
Far help, please click hene ErT
I wou wank 30 change your sattings In e e, plaaie Wil
e mersspEedl: moh Li
Acpe e et Sy
aad
_w Diocurrenk: Done (8EBE s) -.i.—ﬂ

http://www.venturiwireless.com/products.html
http://getmorespeed.t-mobile.com

Figure 9-7 shows detail from an image that was sent across T-Mobile's network with compression
disabled. Figure 9-8 shows that same detail with maximum compression. Although some artifacts appear
in the image, the differences should not annoy most users. This 799 x 599 pixel image started out at 96
KB; compression reduced it to 48 KB.

Figure 9-7. Photograph with no compression

UMNERSITY

Your mileage will vary using acceleration; in theory, it should speed things up. We've found this to be the
case most of the time.

However, we've also found cases where the compression server was having a bad day, and the amount of
time it took to do its thing exceeded the acceleration we received from the compression. Try it out and
see how it works, and disable it if it's a problem. Contact your cellular carrier for instructions on turning
compression on and off.

4 FREV < Day Day Up > MEXT

< Day Day Up >

Chapter 10. GPS

The Global Positioning System (GPS) consists of 27 earth-orbiting satellites (of which 24 are operational
and 3 are backups) circling the earth twice each day. These satellites are arranged in six orbital paths, as

shown in Figure 10-1.

Figure 10-1. Satellites circling the earth in six orbital paths

These satellites continuously emit coded positional and timing information using low-power radio waves at
frequencies around 1,500 MHz. GPS receivers on earth can pick up the signals and calculate the exact (we
discuss what we mean by "exact" later in this chapter) positioning on earth. The orbits of the satellites are
arranged in such a manner that at least four satellites are visible at any given time. Thus, a GPS receiver
is able to receive signals from these four satellites and, based on the various signals transmitted by them,
derive positional information on earth.

So how does the GPS receiver calculate its position? It does so by measuring the distance between itself
and the satellites. Signals emitted by the satellites are received by the GPS receiver after a time lag, and
based on the speed of light, the GPS receiver calculates the distance from itself to the satellite. But
obtaining the distance from one satellite is not enough, because it tells you only that you are somewhere
on the surface of the sphere (think in terms of three-dimensional space). Figure 10-2 shows that you can
be anywhere on a sphere with a radius equal to the estimated distance to the satellite.

Figure 10-2. A sphere containing all the possible positions

Sphere

Distance from the GPS receiver j
to the satellite

To pinpoint your exact location, GPS uses at least three satellites to triangulate an exact location on earth.

Figure 10-3 shows that if you have two satellites, then you can narrow down your location to the
intersection of the two spheres. In this case, you can be anywhere on the dotted line (which is an ellipse).

Figure 10-3. Intersection of two spheres forming an ellipse

Itersection of the two
spheres—a circle

This is not precise enough. With a third satellite, you can reduce the possibilities to two (see Figure 10-4).
But one of these two points is in space, which is not likely the position you are in. Hence, you can
effectively derive your position from three satellites, but four or more satellites are needed to get a decent
altitude fix.

Figure 10-4. Intersection of the ellipse (formed by the two intersecting
spheres) with a third sphere

- ~
e o
A
f}_ﬁ..
IFitersection of the third //
sphera with the circle -~
LS
—

GPS Accuracy

GPS was originally developed in the 1980s by the U.S. Department of Defense for military use.
Because it was designed primarily for the military, the U.S. Department of Defense introduced
Selective Availability (SA) to degrade the signal accuracy and to encrypt sensitive information,
so that civilian usage could be restricted. The satellites would deliberately broadcast wrong
and randomly inaccurate signals, which would cause the precision of the GPS data to be within
100 meters. The accurate information could be decoded only by the military.

Because of the great commercial potential of GPS, in May 2000, President Clinton announced
that the U.S. would no longer degrade the accuracy of GPS. With SA turned off, the accuracy
of the GPS data could be within five meters.

- Most GPS receivers use information from three or more satellites to increase the
e accuracy of the positional information.
wh o
o

48 FREV < Day Day Up > MEST

< Day Day Up >

10.1 Uses of GPS

The function of GPS is fairly straightforward—with a GPS receiver, you can obtain your positional
information in the form of longitude, latitude, and altitude. It is the way that you use this information that
is important. Some useful applications of GPS are described in the following list:

Military use

As GPS was originally developed for military use, the U.S. Department of Defense is the main user
of the technology.

Location-Based Services (LBS)

GPS has been increasingly deployed in the commercial scene. LBS make use of the knowledge of
your precise location to provide location-sensitive services. For example, you can use LBS to receive
a list of restaurants near your current location.

Navigation services

GPS is popularly used for navigational purposes, such as driving and flying. A GPS-enabled PDA can
help a driver navigate unfamiliar cities. GPS is also widely used in the shipping industry, as well as
in airplane navigational systems. Courier companies, such as UPS and FedEx, make extensive use
of GPS in their delivery infrastructures.

Tracking

Using GPS to track the whereabouts of people or objects is rapidly gaining acceptance. This is useful
in the medical sector: patients suffering from diseases such as Alzheimer's can wear a GPS watch,
and, when needed, they can press a panic button to reveal their exact location to their family
members.

Mapping

GPS is also popularly used in mapping software, allowing you to combine a GPS receiver with
mapping software to display your current location. This is useful for travelers or explorers who need
navigational aids.

& FREV | < Day Day Up > | NEXT ap

< Day Day Up >

10.2 A GPS Glossary

Here are some GPS terms that you will encounter when you use GPS and GPS software:

8/12 channels receiver

An 8-channel receiver uses 8 channels to access 8 different satellites at any one time. A 12-channel
receiver can access 12 satellites at once.

Bearing

The direction you are aiming for.

CEP, RMS, and 2D RMS

Circular Error Probable (CEP), Root Mean Square (RMS), and 2D RMS are all measures of the
accuracy of a GPS receiver. CEP represents the radius of a circle containing 50% of the GPS
readings. RMS represents the radius of a circle containing 68% of the GPS readings. 2D RMS
represents the radius of a circle containing 98% of the GPS readings. If three GPS receivers each
claims to have 2m CEP, 2m RMS, and 2m 2D RMS respectively, then the third one is the most
accurate, because it has readings accurate to within a 2-meter radius 98 percent of the time.

DGPS

Differential GPS is an enhancement to the satellite-based GPS that makes use of receivers on fixed
reference points on the ground and improves accuracy to within 3-5 meters. These receivers
transmit error-correcting information to DGPS receivers to enhance the information supplied by the
satellites.

Fix

A location returned by the GPS receiver after processing the readings of at least three satellites.

Heading

The actual direction you are traveling towards. It is not the same as bearing. Bearing is your
desired direction, but you may not be heading towards the desired direction due to factors such as
obstacles (e.g., water, fences, and mountains). Therefore, you have to momentarily head in
another direction in a bid to get to your destination.

Latitude, longitude, and altitude

The coordinates of a specific location on earth. These three pieces of information together define a
point in the three-dimensional space.

National Marine Electronics Association (NMEA)

The NMEA-0183 standard has been universally adopted by GPS manufacturers and virtually every
GPS product for exchanging navigational information between devices. NMEA-0183 defines a
"sentence" format (using printable ASCII text) describing navigational information.

Route

A collection of waypoints representing the path that you would like to take.

Selective Availability (SA)

The degradation of GPS data for nonmilitary use. See the sidebar "GPS Accuracy" earlier in this
chapter for more information on SA.

Time to First Fix (TTFF)

The least amount of time required to obtain a fix by the minimum number of satellites required for
triangulation. Normally, it takes a few minutes before you can receive a fix.

WAAS

WAAS is an enhancement similar to DGPS that uses fixed reference stations on the ground to
enhance accuracy to under 3 meters.

Waypoint

A location that you store in your GPS system (as coordinates). Examples of waypoints are a hiking
location, camping ground, church, or any place of interest to a GPS user. You normally add a
waypoint to your GPS before you start your traveling. You can also add one during your travel when
you locate a place of interest.

. PREY < Day Day Up > ME=T *

< Day Day Up >

10.3 GPS Devices

There are two main types of GPS receivers on the market at the moment:

¢ Plain GPS receivers
e GPS receivers with maps

A plain GPS receiver simply interprets the readings from the satellite and returns the result in latitude,
longitude, and altitude. Figure 10-5 shows the PocketMap (http://www.pocketmap.com) PMG-220
Compact Flash (CF) GPS receiver. You can use the PMG-220 on a handheld or your notebook computer
(which may require a PCMCIA adapter for the CF card).

Figure 10-5. The PocketMap PMG-220 CF GPS receiver with a CF-to-PCMCIA
adapter

Figure 10-6 shows the Deluo Laptop GPS receiver. This is an affordable receiver ($99) that's available

from Deluo (http://www.deluo.com) in serial or USB configurations. We used the Deluo USB model in our
testing for this chapter.

Figure 10-6. The Deluo Laptop GPS receiver

http://www.pocketmap.com
http://www.deluo.com

Figure 10-7 shows two standalone GPS receivers equipped with their own mapping software. The Magellan
Meridian Gold and the Garmin StreetPilot 111 contain built-in screens to display maps. There is no need to
connect the receivers to any device for them to work. Standalone GPS receivers are useful for travelers
who need a lightweight GPS solution.

Figure 10-7. The Magellan Meridian Gold GPS (left) and the Garmin

StreetPilot 111 (Magellen used by permission, Thales Navigation, Inc. 2003;
Garmin courtesy of Garmin Ltd.)

& Frev | < Day Day Up > | NEXT up

< Day Day Up >

10.4 Listening to a GPS

Listening to a GPS from a Linux box is as simple as listening to any serial device: plug it in, make sure the
driver (if any) is loaded, open the port, and read the stream. We tried connecting both the PocketMap CF
GPS (using a CF-to-PCMCIA adapter) and the Deluo USB GPS. The PocketMap GPS was detected
automatically as a serial port; we needed to load the Prolific 2303 USB/Serial module (modprobe pl2303)
for the Deluo GPS to be recognized (it appeared on /dev/ttyUSBO, as did the Nokia 6200 described in

Chapter 9).

Most GPS devices use a format called NMEA 0183; however, many of them include proprietary extensions.
The NMEA standard specifies a transport of RS-232 at 4,800 kbps, 8 data bits, 1 stop bit, and no parity,
but some devices support higher speeds. The Deluo GPS that we used sends standard NMEA sentences in
the sequence GPGGA-GPGSA-GPGSV-GPRMC. Each sentence is a line of comma-separated text that
begins with $TYPE (where TYPE is the NMEA 0183 sentence type) and ends with a checksum value, as

shown in Example 10-1.

Example 10-1. Sample output from the Deluo GPS

$GPGGA, 071110. 000, 3242. 8536, N, 11709. 7626, W 1, 05, 01. 5, 00104. 2, M - 34. 0, M , *50
$GPGSA A 3, 22, 16, , 14, 20,,,,,25,,,02.5,01. 5, 02. 1*05

$GPGSY, 3, 1, 10, 22,11, 117, 35, 16, 13, 151, 35, 11, 44, 256, , 14, 26, 056, 35*78

$GPGSY, 3, 2, 10, 20, 32, 316, 34, 01, 22, 266, , 30, 09, 052, , 02, 07, 172, *76

$GPGSY, 3, 3, 10, 23, 30, 110, 33, 25, 70, 061, 39*77

$GPRMC, 071110. 000, A, 3242. 8536, N, 11709. 7626, W 000. 0, 000. 0, 100204, 013. 0, E*7D

The checksum is a two-digit hexadecimal value that's created by XORing the ASCII values of each

character in the sentence, except for the leading $ and * that precede the checksum itself. For example,
the Perl code shown in Example 10-2 verifies the checksum of each line in Example 10-1.

Example 10-2. Verifying NMEA 0183 sentence checksums

#!/usr/bin/perl -w
#
gpscksum pl--verify each NVEA 0183 sentence in standard input

#

use strict;

ny $count =1;

while (<>)

{

ny ($string, $cksum;
if (/M$(.*)*([0-9A Fa-f][0-9A-Fa-f])/)

{

$string = $1; # everything between | eading $ and checksum
$cksum = $2; # hex checksum from NVEA sent ence
} else

{

die "Ml formed NVEA 0183 sentence: $ \n";

Cal cul ate the checksum

ny $ny_cksum

for (my $i = 0; $i < length ($string); $i++)
{

$my_cksum A= ord(substr($string, $i, 1))

Conpare the checksuns
if ($ny_cksum ! = hex($cksum)
{
print "Checksum for |ine $count doesn't match: ",
$ny_cksum "!=", hex($cksunm), "\n";

}

$count ++;

The following tables describe the NMEA 0183 sentences listed in Example 10-1. Items in the Example
column are drawn directly from Example 10-1. Table 10-1 describes the elements of the GPGGA sentence
(GPS fix data). This sentence gives you information about the current position fix.

Column(s)

1

2,3

4,5

9,10
11,12

13
14
15

Table 10-1. GPGGA sentence

Example
071110.000(7:11:10)

3242.8536, N(32°42.8836'
N)

11709.7626,
W(117°9.7626' Wt)

1

05

01.5

00104.2,M(104.2 meters)

-34.0, M(-34 meters)

(empty)
(empty)
50

Description

Current time UTC (HHMMSS.mmm)

Latitude

Longitude

Fix quality (O=no fix, 1=GPS, 2=differential GPS)
Number of satellites used for fix

Horizontal dilution of precision

Altitude

Difference between mean sea level and the ellipsoid modeled
by WGS-84 (http://www.wgs84.com/)

Age of differential GPS data (if any)
Differential station ID

Checksum (preceded by * rather than a comma)

Table 10-2 describes the GPGSA (active satellites) sentence. This sentence summarizes information about
the satellites used to determine your current fix.

Column(s)
1

2

3-14

15

16

17

18

Table 10-2. GPGSA sentence

Example Description
A Selection mode (A=Automatic, M=Manual)
3 Fix mode (1=no fix; 2=2-dimensional; 3=3-dimensional)

22,16,,14,20,,,,,25,, Satellite IDs (blanks indicate satellites not in view)

02.5 Positional dilution of precision

01.5 Horizontal dilution of precision

02.1 Vertical dilution of precision

05 Checksum (preceded by * rather than a comma)

Table 10-3 describes the GPGSV (satellites in view) sentence, which may appear multiple times. This
sentence provides detailed information about each satellite, describing up to four satellites per line.

http://www.wgs84.com/

Column(s)

Example
3
1
10
22
11
117
35
16,13,151,35
11,44,256,
14,26,056,35
78

Table 10-3. GPGSV sentence

Description
Number of GPGSV sentences
Current sentence number
Number of satellites in view
Satellite number
Satellite elevation in degrees
Satellite azimuth in degrees
Signal-to-noise ratio
Repeat of 4-7 for another satellite
Repeat of 4-7 for another satellite
Repeat of 4-7 for another satellite

Checksum (preceded by * rather than a comma)

Table 10-4 describes the GPRMC (transit information) sentence, which provides navigational data such as
ground speed and course traveled.

Column(s)

3,4

5,6

10,11

Table 10-4. GPRMC Sentence

Example Description
071110.000
Time of fix
(7:11:10)
A Navigation receiver warning (A=0K; V=receiver warning)
3242.8536, N
Latitude
(32°42.8836' N)
11709.7626, W
Longitude

(117°9.7626" W)

000.0
000.0
100204

Ground speed in knots

Course made good (degrees)

Date of fix

(10 February 2004)

013.0, E

(13°E)

Magnetic variation

Column(s) Example Description

12 7D Checksum (preceded by * rather than a comma)

10.4.1 References

Peter Bennett's NMEA FAQ

http://vancouver-webpages.com/peter/nmeafaq.txt

Walter Piechulla's Understanding NMEA 0183

http://www.walterpiechulla.de/nmea0183.html

10.4.2 GPSd

GPSd listens to a GPS receiver and republishes the GPS information on the network in an easy-to-read
format. It's included with GpsDrive, described later in this chapter, but you can also download it and
install it yourself from the GPSd home page at http://www.pygps.org/gpsd/gpsd.html.

To launch GPSd, specify the serial port with - p and (optionally) the speed with - s. If you use the -D
option to specify a debugging level above 1, GPSd will stay in the foreground and display debugging info
(if you are using an RS-232 connection for your GPS, the port will be a standard serial port such as
/dev/ttys0):

$ sudo gpsd -D9 -p /dev/ttyUSBO -s 4800
command |ine options:

debug | evel: 9

gps devi ce nane: / dev/ t t yUSBO

gps devi ce speed: 12

gpsd port: 2947
| atitude: 3600. 000N
| ongi t ude: 12300. 000W

It doesn't start reading from the GPS until it gets a connection from a client. The simplest way to connect
is via telnet to port 2947. GPSd understands several simple commands followed by a carriage return, as
shown in Table 10-5.

Table 10-5. Commands supported by GPSd

http://vancouver-webpages.com/peter/nmeafaq.txt
http://www.walterpiechulla.de/nmea0183.html
http://www.pygps.org/gpsd/gpsd.html
http://vancouver-webpages.com/peter/nmeafaq.txt
http://www.walterpiechulla.de/nmea0183.html
http://www.pygps.org/gpsd/gpsd.html

Command Response from GPSd
Latitude and longitude

Date and time

Altitude in meters

Speed in knots

Status (0O=no GPS; 1=no fix; 2=2D fix; 3=3D Fix)

Mode (0=no GPS; 1=GPS; 2=differential GPS)

2 »n < » | 0T

Enter raw mode (dumps NMEA 0183 sentences)

The first time you ask for latitude and longitude after launching GPSd, you might not get a valid result
(and it may take a while to get a fix anyhow). But on subsequent requests, you should get valid data:

bj epson@lebi an: ~$ tel net | ocal host 2947
Trying 127.0.0.1...

Connected to debi an.

Escape character is '"]".

p

GPSD, P=0. 000000 0. 000000
p
GPSD, P=32. 714227 -117.162708

Here's a sample session showing some of the other commands:

bj epson@lebi an: ~$ tel net | ocal host 2947
Trying 127.0.0.1...

Connected to debian.

Escape character is '~]".

d

GPSD, D=02/ 10/ 2004 07:11: 14

a

GPSD, A=103. 500000

%

GPSD, V=0. 000000

GPSD, R=1

$GPGSA A 3, 22, 16, , 14, 20,,,,,25,,,02.5,01.5,02. 1*05

$GPGSY, 3, 1, 10, 22, 11, 117, 36, 16, 13, 151, 35, 11, 44, 256, , 14, 26, 056, 36* 78

$GPGSY, 3, 2, 10, 20, 32, 316, 30, 01, 22, 266, , 30, 09, 052, , 02, 07, 172, *72

$GPGSY, 3, 3, 10, 23, 30, 110, 35, 25, 70, 061, 39* 71

$GPRMC, 071119. 000, A, 3242. 8539, N, 11709. 7626, W 000. 0, 000. 0, 100204, 013. 0, E*7B

r $GPGGA, 071120. 000, 3242. 8539, N, 11709. 7626, W 1, 05, 01. 5, 00103. 1, M -34.0, M , *58

$GPGSA A 3, 22, 16, , 14, 20,,,,,25,,,02.5,01. 5, 02. 1*05

GPSD, R=0

But to really have fun with GPSd, you can use GPSd-aware applications such as Kismet and GpsDrive,
described in the following sections.

& FREV | < Day Day Up > | NEXT ap

< Day Day Up >

10.5 Mapping Wi-Fi Networks with Kismet

We introduced Kismet in Chapter 3 as a powerful network scanner. You can also use it in conjunction with
GPSd to map out the locations of Wi-Fi networks. (For the basics of getting Kismet running, see Chapter
3.) Once you have Kismet and GPSd up and running, you can make them work together.

Safety

If you plan to do some network mapping with Kismet, keep the following in mind:

e Put the computer somewhere safe and out of the way. Don't put it someplace where a
sudden stop will send it into your lap or through a window.

¢ Forget that the computer is there while you are driving. If you have to fiddle with it, pull
over first. If you can have a friend driving with you who can operate the computer, all the
better. Do not let the computer distract you while you are driving.

e Make sure that the GPS gets a fix before you start driving. It may be hard for it to get a
fix while you are in motion.

e Put the GPS somewhere where it can easily pick up the satellite signals. Your best bet is
to get a magnetized external antenna that can attach to your roof. Be sure that there are
no loose wires sticking out of your window. Don't slam the wires in the door!

Above all, when you are driving a car, your first responsibility is to drive safely. Pay attention
to the road and drive carefully.

To map networks with Kismet and GPSd:

1. (Optional.) Load any modules needed for the serial port you're using for the GPS:

$ sudo nodprobe pl 2303
$ dmesg | grep tty

ttyS00 at 0x03f8 (irg

4) is a 16550A
ttyS02 at 0x03e8 (irg = 4) is a 16550A

usbserial.c: PL-2303 converter now attached to ttyUSBO (or usb/tts/0 for devfs)

2. Start GPSd, specifying the serial port with - p and the speed with -s:

$ sudo gpsd -D9 -p /dev/ttyUSBO -s 4800

3. Telnet to GPSd and use p until you have a reliable fix; you can disconnect when you are done:

$ telnet |ocal host 2947
Trying 127.0.0.1...
Connected to debi an.
Escape character is "~]"'.

p

GPSD, P=0. 000000 0. 000000

p

GPSD, P=41. 485882 -71.524841
&

tel net> ¢

Connection cl osed.

4. Launch Kismet with the - g (GPS) switch and specify the hostname and port that GPSd is listening on:

$ sudo kisnet -g local host: 2947

5. Go for a drive. Press Q when you are done with the drive to terminate Kismet.

When you shut down Kismet, it writes its log files. Check the | ogt enpl at e setting in kismet.conf to see
where it puts its log files:

| ogt enpl at e=/ var/ | og/ ki srmet / %n- %d- % . %

Kismet writes several log files in the logtemplate directory (I starts at 1 and increments for each time you
run Kismet on a given day):

Kismet-<MMM-DD-YYYY=>-l.csv

Kismet log in semicolon-separated fields, one line per entry. The first entry contains the field names.

Kismet-<MMM-DD-YYYY>-1.dump

Kismet log in a pcap(3) format suitable for loading under Ethereal (http://www.ethereal.com).

Kismet-<MMM-DD-YYYY>-1.gps

Kismet log in a format designed to be read by the gpsmap utility, which is included with the Kismet

http://www.ethereal.com

distribution.

Kismet-<MMM-DD-YYYY=>-l.network

A human-readable dump of the networks that Kismet encountered.

Kismet-<MMM-DD-YYYY>-l.xml

Kismet log in an XML format.

network. This can sometimes be done by restarting PCMCIA card services or
removing and reinserting the card, but it resulted in a kernel panic in some of our
tests. Our workaround was to use a second network card for network connectivity

and let Kismet have its way with the Prism-based card on wlanO.

| "! When you're done with Kismet, you must reassociate your Wi-Fi card with the

To generate a map, run gpsmap on the .gps log file. See the gpsmap manpage for all the drawing and
mapping options. If you choose to use a downloaded map (the default), you must be online. Figure 10-8

shows a map generated by the following command:
$ gpsmap -S3 -p /var/log/ ki smet/Ki snet - Feb- 16- 2004- 5. gps

The - S option specifies which map server to use (O = MapBlast;1 = MapPoint;2 = Terraserver; 3= Tiger
Census). If you have trouble with one, try another (Tiger is loosely maintained by the Census Bureau and
is not up 100 percent of the time). Use - p to show power levels or - e to plot simply the locations of the

hotspots on the map (see the gpsmap manpage for more options).

Figure 10-8. Wi-Fi power levels in the Kingston, Rhode Island area

. F-I‘-'Hj'_"'il_ |§'

&

Fr— i

§ £ & ¥

5] Ay :_E £ il ;.
LI = § {.'% ;ﬁl o !
Fhombion J41§
'fl @ I l 3 .::-3
2 .DM ' ey "E
o ey £ L &
! L B | 1 [|
FlergeT : il
]
]
Ry &
rmﬁ& %\
o ! a Lo
- "’-g
LT " ey
2 — 51 T R g

,-. PREY < Day Day Up > ME=T '.'

< Day Day Up >

10.6 GpsDrive

GpsDrive (http://www.gpsdrive.cc/index.shtml) is an open source GPS-aware navigation system that uses
GTK+. It works with maps from a variety of sources, and plot waypoints, and even lets you share your
position with friends and send SMS text messages with position information.

If you launch GpsDrive while GPSd is listening on the localhost, it will pick it up and start reading
coordinates from it. By default, GpsDrive displays a placeholder map that's not very detailed (see Figure
10-9). However, you can download new maps by clicking the Download Map button and selecting the map
server from the dialog that pops up, as shown in Figure 10-10.

Figure 10-9. Default map from GpsDrive

Cpalirtee v SBprell & 2000 -2084 Frily Garder

Al ey b pa—

5 Strmat rras

| S

— S =
(- 91777 0.0 133
N | | s e R v o o M o e e | el | s
S =

Figure 10-10. Selecting a map to download in GpsDrive

Latitude [32.7143

Longitude -117,16278

Map covers 45,423 x 96.339 km

Scale 100000 j

Map file marme Imap_flleﬂun-:-.glf
[Mapbla crver (@ Expedia server (© TopaZaoneiUs Onlyl

Tou can also select the position
with a mouse click on the map.

i

Download map x Cancel

http://www.gpsdrive.cc/index.shtml

Using GpsDrive to download maps from a commercial map service may violate that
site's Terms of Service (ToS). Be sure to consult that mapping site's ToS before
proceeding.

The latest beta version as of this writing (2.08prel2) comes with support for NASA's Blue Marble
(http://earthobservatory.nasa.gov/Newsroom/BlueMarble/) satellite images. You must download some
extremely large files (over 1 GB uncompressed) and install them according to the README.nasamaps file
that's included with the GpsDrive distribution. Figure 10-11 shows the NASA maps in action.

GpsDrive does not support route planning, but it does show your speed, position, and altitude. What's
more, a version is available that runs on Linux-powered handhelds (http://www.gpsdrive.cc/pda.shtml),
so you can load it up with waypoints for points of interest and use it while you wander around unfamiliar
territory.

Figure 10-11. Using NASA's Blue Marble satellite maps with GpsDrive

vy s s 2 EOwrnis & B01 2008 Nevic Gamiy

iil

[
Downkoad map
Siop GPGD
Faprefrecn

et - == pe ' ®
L B : . .]
 thangf L g 1 '

I Feo made
¥ Shaa Irack

™ &wte bast map

I S wack

Fuswan rrisp Type——

™ Swreet e
Vi Mg
B A A | e {0 £ 7B 1 TRAET
0.0

o S oare.au]

wo | o | ‘:: neon | arasmaw | 39:59h | op_reems_sscege | ::::u-os'. L10A800
[RHEA Hzda. Fort 15407120 0L

S akim 3

dﬂlll

http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
http://www.gpsdrive.cc/pda.shtml

< Day Day Up >

10.7 Other Applications

Linux is a playground for geographic information, and there are a lot of other applications out there for
you to play with. GPStrans (http://sourceforge.net/projects/gpstrans) and GARNIX
(http://homepage.ntlworld.com/anton.helm/garnix.html) are free applications that exchange information
(track, route, waypoint, etc.) with a Garmin GPS. If you want to enjoy the increased accuracy of
Differential GPS without having to buy a DGPS radio, see the DGPS over the Internet project at
http://www.wsrcc.com/wolfgang/gps/dgps-ip.html.

If you're looking for a public map server with U.S. street maps, the U.S. Census Bureau makes street
maps that date from 1998, available at the TIGER Map Server (http://tiger.census.qgov/cgi-
bin/mapbrowse-tbl). The maps on this site are public domain, and you can specify latitude, longitude,
marker positions, and more in the URL. If you want to put a bunch of markers on the map (such as Wi-Fi
hotspots), see the instructions at http://tiger.census.gov/instruct.htmI#MURL. The Tiger web server is
loosely maintained by the Census Bureau and is not always in a working state.

One of the best resources for free/open source geographic information is the FreeGIS project
(http://www.freegis.org/). This site contains an overview of the massive world of free Geographic
Information Systems (GIS) software and provides software on CD-ROM. FreeGIS also acts as a central
point for communication and collaboration on free GIS projects. You can browse the software by category
at http://www.freegis.org/browse.en.html and its list of geographic data (including maps and other
geographic models) at http://freeqis.org/geo-data.en.html.

.. PREV < Day Day Up > ME=T I‘

http://sourceforge.net/projects/gpstrans
http://homepage.ntlworld.com/anton.helm/garnix.html
http://www.wsrcc.com/wolfgang/gps/dgps-ip.html
http://tiger.census.gov/cgi-
http://tiger.census.gov/instruct.html#MURL
http://www.freegis.org/
http://www.freegis.org/browse.en.html
http://freegis.org/geo-data.en.html

< Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality
and life into potentially dry subjects.

The image on the cover of Linux Unwired is cattle ropers. Ropers were cowboys who snared calves and
dragged them to the fire for branding. Branding was the act of applying a red-hot branding iron to a calf's
flank to mark the animal. Each ranch had a marking that identified cattle belonging to its herd, and this
was thought to discourage theft.

Sarah Sherman was the production editor and copyeditor for Linux Unwired. Matt Hutchinson was the
proofreader. Colleen Gorman and Claire Cloutier provided quality control. Julie Hawks wrote the index.

Emma Colby designed the cover of this book, based on a series design by Hanna Dyer and Edie
Freedman. The cover image is a 19th-century engraving from The Book of the American West (Bonanza
Books, 1963). Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond
font.

David Futato designed the interior layout. The chapter opening images are from the Dover Pictorial
Archive, Marvels of the New West: A Vivid Portrayal of the Stupendous Marvels in the Vast Wonderland
West of the Missouri River, by William Thayer (The Henry Bill Publishing Co., 1888), and The Pioneer
History of America: A Popular Account of the Heroes and Adventures, by Augustus Lynch Mason, A.M.
(The Jones Brothers Publishing Company, 1884). This book was converted by Joe Wizda to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason MclIntosh, Neil Walls, and Mike Sierra that
uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon was written by
Sarah Sherman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch,

and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained
by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

& FREY < Day Day Up > NEST

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

. PREY < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [FI [G] [H] [11 [J] [KT [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

--version parameter_(iwconfig)
--version parameter (iwlist)

12-channel receiver
1x Evolution Data Only [See 1xEV-DO]
1x Radio Transmission Technology [See 1xRTT]
1x.conf file
1XEV-DO (1x Evolution Data Only)
APN and
network
1IXRTT (1x Radio Transmission Technology) 2nd 3rd
APN and
Sprint PCS and
Verizon Wireless and
2.4 GHz ISM (Industrial, Scientific, and Medical) band
2.4 kernel PCMCIA
2D RMS
8-channel receiver
802.11
family of standards

history
Prism | reference standard for

protocol set [See Wi-Fi]
802.11a
802.11b standard
802.119g cards
802.11i standard
802.1x authentication

< Day Day Up >

[SYMBOL] [A] [B] [€] [D1 [E] [F] [G] [H] [11 [J] [K] [L] [M] [N] [O] [P] [QT [RT [S] [T1 [U] [V] [W] [X] [Y]

Abramson, Norm

absorption
radio _interference and

acceleration
Access Point Name (APN)
access points

commercial wireless

configuring

configuring with Linux

custom [See custom access points]
flashing

scanning for available

seeing list of available

WPA support in
ActionTec (wireless vendor)

ActiveSync

Ad-Hoc Mode

Advanced Encryption Standard (AES)
Affix

Agere wlags49 [See wlags49]
aggregators, wireless

Aironet radio chipsets
Airopeek

Allen, Jon

ALOHANET

altitude

amplitude
antennas

directional

integrated
omnidirectional
parabolic dish
patch
sector
Yagi

AP (wireless access point)

ap parameter (iwconfig)

ap parameter (iwlist)

AP Radar
associating with access points
building from source

compiling from source

determining if it will run with your card and driver
Ping default gateway option
Run dhclient on associate option

APN (Access Point Name)

Apple (wireless vendor)

Apple AirPort 2nd

configuration
AT commands recognized by cellular modems

AT&T Wireless 2nd

Edge network, connecting to
Atheros radio chipsets

madwifi driver for
Atmel radio chipsets
audio and Bluetooth

48 FREV < Day Day Up >

< Day Day Up >

[SYMBOL] [A] [BI [C] [D] [E] [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

BARWN outdoor routers

Basic Printing Profile (BPP)

Basic Service Set (BSS)

bearings (GPS)

Belkin (wireless vendor)

Bennett, Peter

bigsecret (PCMCIA wireless card configuration)
blackbeltjones.com

bluejacking
Bluetooth 2nd 3rd

adapters
address

basics
BlueZ utilities, installing

bonding/pairing 2nd
Class 1 and Class 2 devices

configuration and operation

configuring hcid
connecting input devices

controlling music players with

controlling presentations with

cool tricks

Debian 3.0 and

device classes
discoverability
examining local drives
experimental features
GUlIs

hardware

Linux hotplug subsystem and

Linux support
configuring kernel

patching kernel
Local Area Network (LAN) access profile

Mandrake and
master/slave
OBEX
overview

PAN profiles
PCMCIA and

piconets

pinging remote devices
PINs

PPP networking

printing over

profiles

protocols
proximity-sensitive screen blanking
quick start

RedHat and

scanning remote devices

scatternets
serial connections

service discovery
SuSE 9.0 and

troubleshooting

what you can do with
Bluetooth Network Encapsulation Protocol (BNEP) 2nd
Bluetooth Special Interest Group (SIG)
Bluetooth-enabled ISDN modems, connecting to
BlueZ utilities

hardware support configuration options
installing
protocol configuration options
RFCOMM implementation

bluez-bluefw package

bluez-hcidump package

bluez-libs package

bluez-pan package
LAN access

bluez-sdp package
bluez-utils package
Boingo
bootable media and access points
CD drives
flash RAM
Borders bookstores
bps (bits per second)
bridges, wireless
bridging interfaces
Broadcom radio chipsets
BSS (Basic Service Set)
built-in (Bluetooth hardware)

4@ FREV ' < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

captive portal
Cardbus, identifying radio chipset

cardctl program
CARDMGR _OPTS option
Carrier Sense Multiple Access (CSMA)
CD drives and access points
CDMA PC card
CDMA phones
with data cable
with data cable, getting online
CDMA2000 family of protocols
CDPD (Cellular Digital Packet Data)
cell phones
connecting to Internet with
download and upload speeds
Internet access using Bluetooth
sending faxes
sending text messages
cellular_carriers

cellular data networks

Cellular Digital Packet Data (CDPD)

cellular modems, AT commands recognized by
cellular_networks 2nd

Centrino chipset
CEP (Circular Error Probable)

CE-1DE adapters
channel parameter (iwconfig)
chipset compatibility
common chipsets
identifying chipsets
PCI
PCMCIA or Cardbus
usB
Linux, driver support, and GPL
Cingular Wireless 2nd
Circuit Switched Data (CSD)
Circular Error Probable (CEP)
Cisco (wireless vendor) 2nd
Cisco radio _chipsets

client-to-client_ communication

closed networks and Kismet

Code Division Multiple Access (CDMA)

Code Division Multiple Access (CDMA) 1XRTT (1x Radio Transmission Technology)
Cometa (hotspot provider)

Common UNIX Printing System (CUPS)

communicating securely

Compact Flash cards 2nd

Kingston
Linux-powered access points and

reformatting problems
SanDisk

WISP-Dist and
config command (cardctl program)
CONFIG _IRCOMM
CONFIG_IRDA
CONFIG_NET RADIO option
CONFIG_USB_BLUETOOTH
configuring and compiling Linux kernel

configuring boot loader program

editing .config file
reasons for

requirements
uncompressing kernel
contacts, synchronizing
CORE_OPTS option
CSD (Circuit Switched Data)
CSMA (Carrier Sense Multiple Access)
custom access points

bootable media
CD drives
flash RAM
booting from network
Fujitsu Stylistic
hardware
components
deciding factors
memory
minimum requirements

ports
ower

processor speed

recycled

support 2nd
LEAF/WISP-Dist

Linux-powered off-the-shelf
LinuxAP

old laptop PC

PCMCIA slots in laptop
Pebble

radio cards

master mode

reasons for

small board and embedded PCs
BARWN outdoor routers

OpenBrick
Soekris motherboards

software
Agere wlags49
Hermes AP
HostAP
Linux
Madwifi
Cyclic Redundancy Check (CRC)

< Day Day Up >

[SYMBOL] [A] [B] [C] [D1 [E] [F]I [G] [H] [11 [J] [K] [L] [M] [N] [O] [P] [QT [RT [S] [T1 [U] [V] [W] [X] [Y]

D-Link (wireless vendor)
DB9 connector
Debian
configuring network devices
installing Kismet
Debian 3.0
Bluetooth and
Debian 3.0rl and IrDA
Dell 1150 card
Dell TrueMobile 1184
Deluo GPS
Deluo Laptop GPS receiver
Dial-up Networking Profile (DUN)
Differential GPS (DGPS)
diffraction
digital cellular phone networks
Direct Sequence
Direct Sequence Spread Spectrum
directional antennas

didrconfig command

dldrstop command

download speeds of cell phones
drivers, Linux Wi-Fi

hostap cs
madwifi

orinoco_cs
wlan-ng
dual-mode cards

dund program
connecting to LAN access server

.. PREY 7 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F]I [G] [H] [11 [J] [K] [L] [M] [N] [O] [P] [QT [RT [S] [T1 [U] [V] [W] [X] [Y]

EAP_(Extensible Authentication Protocol)

EAP Tunneled TLS (EAP-TTLS)

EAP-MD5

EAP-Transport Layer Security (EAP-TLS)

EDGE (Enhanced Data Rates for Global Evolution) 2nd
devices

efax package

EHF (Extremely High Frequency) band

eject command (cardctl program)

electromagnetic (EM) spectrum

embedded PCs, using to build access points

enc parameter (iwconfig)

enc parameter (iwlist)

EnGenius (wireless vendor)

EnGenius/Senao (wireless vendor)

Enhanced Data rates
Enhanced Data Rates for Global Evolution (EDGE)
EPIA MII motherboard
ESS (Extended Service Set)
ESSID
noisy wireless environment

essid parameter_(iwconfig)
Ethereal, reading Kismet's dump files in
Ethernet

standard for wired networking
Eumitcom WL11000 motherboard
Extended Service Set (ESS)
Extensible Authentication Protocol (EAP)
Extremely High Frequency (EHF) band

[SYMBOL] [A] [B] [C] [D] [ET [F] [G] [H] [11 [J] [K] [L] [M] [N] [O] [P] [QT [RT [S] [T1 [U] [V] [W] [X] [Y]

Fast Infrared (FIR)

FatPort

faxes, sending from cell phones

FCC (Federal Communications Commission)
bands defined by

Fedora, installing Kismet

File Transfer Profile (FTP)

fix (GPS)

flash RAM and access points

flashing access points

frag parameter (iwconfig)

FreeGIS project

freeradius packages

freq parameter (iwconfig)

freq parameter (iwlist)

frequency 2nd [See also radio frequency]
allocation chart

range defined for various bands
Frequency Hopping
Fujitsu Stylistic, using to build access points

. PREW < Day Day Up >

< Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [©1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Garmin GPS

Garmin StreetPilot 111

GARNIX

General Packet Radio Service (GPRS) 2nd
General Packet Radio Services (GPRS)

Generic Object Exchange Profile (GOEP)

Gentoo 1.4 and IrDA

GHz (gigahertz

gigahertz (GHz)

Global Positioning System [See GPS]2nd [See GPS]
Global System for Mobile communications (GSM)

GN networks
creating
GNOME Bluetooth subsystem
GNOME-Pilot 2nd
configuring
GPGSA (active satellites) sentence
GPGSV (satellites in view) sentence
GPRMC (transit information) sentence
GPRS (General Packet Radio Service) 2nd 3rd
carrier, connecting to Internet using
PC card

getting online
GPS (Global Positioning System) 2nd

accuracy
communication rate

glossary
listening from a Linux box
pinpointing exact location
receivers

calculating position
with mapping software

uses of
GPSd
commands supported by

launching
mapping networks with Kismet and

GpsDrive

gpsmap _command

GPStrans

group ad-hoc network [See GN networks]
GRUB boot loader

GSM (Global System for Mobile communications)
GSM Evolution (EDGE) network

GSM/GPRS phone with data cable

getting online
GTK+

4@ FREV ' < Day Day Up >

< Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J] [K] [L] [M] [N] [O] [P] [Q] [RT [S] [T] [U] [V] [W] [X] [Y]

hands-free wireless headsets for mobile phones
Hardcopy Cable Replacement (HCRP)
Hardware Abstraction Layer (HAL)

hciconfig tool
common usages

options
hcid daemon, configuring
heading (GPS
Headset Profile (HS)
Hermes AP driver

custom access points
Hertz (Hz)
Hidden Node problem
High Frequency (HF) band 2nd
High Rate DS
High Speed CSD (HSCSD)

hobo symbols
Holtmann, Marcel

hopping between radio channels

horizontally polarized antenna

host_ap driver
hostap
building from CVS

building tools
HostAP

custom access points
hostap

distribution files
HostAP

driver,

loading

hostap

mailing list

packages, installing
hostap cs driver 2nd

compiling

installing for use with PCI or PLX adapter cards
hostap_pci driver
hostapd daemon
hotspot in a box
HotSpotList website
hotspots

associating with

locating

open

providers

associating with

requirements
restricted access

Human Interface Device Profile (HID)

Hz (Hertz)

. PREY < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J] [K] [L] [M] [N] [O] [P] [Q] [RT [S] [T1 [U] [V] [W] [X] [Y]

ident command (cardctl program)

IEEE (Institute of Electrical and Electronics Engineers)

infrared
setting up with Linux
Infrared Data Association [See IrDA]
infrared devices
operating range
infrared dongles
usB

infrared light
Infrastructure Mode

input devices and Bluetooth

insert command (cardctl program)
integrated antennas
interfaces file

Intersil Prism radio chipsets

IP address filtering

iPass

ir-usb_module

IrCOMM Protocol (CONFIG IRCOMM)
IrDA (Infrared Data Association)

devices with different transfer speeds

equipment

in kernel

PC laptop with built-in

PPP settings for AT&T Wireless and Nokia 6200 over
sharing a network connection over

connecting from Linux

connecting from Palm OS

connecting from Pocket PC

IrDA Subsystem Support (CONFIG IRDA)
isdn4linux FAQ
iwconfig command, configuring WEP key
iwconfig tool

parameters
iwlist tool
iwpriv_tool

iwspy tool
monitoring up to eight addresses

. PREY < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L1 [M] [N] [O] [P]1 [Q1 [RT [S1 [T] [UT [V]1 [W] [X] [Y]

Java Configurator
JiWire website

Jones, Matt

& FrEV | < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [K] [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

KB/s (Kkilobytes)
kbps (kilobits per second)

KDE address books, synchronizing

KDE Bluetooth Framework

Kermit session with the Novatel Wireless Merlin C201
kernel PCMCIA support

kernel source, obtaining

kernel tree PCMCIA

kernel, LInux

configuring and compiling [See configuring and compiling Linux kernel]

key parameter (iwconfig)
key parameter (iwlist)
kHz (kilohertz)

kilohertz (kHz)

Kingston flash cards
Kinkos copy centers
Kismet

building

closed networks

configuring
Debian and

Fedora and
mapping networks with GPSd and
mapping Wi-Fi networks with

safety issues
playing sound effects when it finds new SSIDs
reassociating Wi-Fi card with network when done
RedHat and

shutting down
taking advantage of advanced features

Kismet command

kismet _hopper command
KPilot

Kristensen, Soren

.. PREY 7 < Day Day Up >

< Day Day Up >

[SYMBOL] [A] [B] [C] [D] [ET [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O] [P] [Q] [RT [S] [T] [U] [V] [W] [X] [Y]

12ping tool
LAN access (Bluetooth)

connecting to server
creating a server
LAN Access Profile (LAP)
latitude
LDAP
LEAF (Linux Embedded Appliance Firewall)
Leffler, Sam
LF (Low Frequency) band
Lightweight EAP (LEAP)
LILO boot loader
lilo.conf file
manually editing
Link Manager Protocol (LMP)
Linksys 2nd

firmware support
source code modifications

Linksys WPC55AG PC Card
Linksys WRV54G router
Linux

basic resources
running on non-Linux devices

wireless networks, tasks you can complete with
Linux Embedded Appliance Firewall [See LEAF]
Linux _hotplug subsystem and Bluetooth
Linux PPP HOWTO
Linux Router Project (LRP)
Linux Wireless Tools [See Wireless Tools]
Linux-friendly wireless vendors
Linux-1rDA Quick Tutorial
Linux-powered access points

LEAF/WISP-Dist

LinuxAP

off-the-shelf

Pebble

running off Compact Flash card
Linux-powered handhelds and GPS
linux-wlan-ng package
Linuxant 2nd

licenses

web site
LinuxAP
web site and mailing list
Location Based Services (LBS)
LocustWorld MeshAP
LocustWorld Wiki
Logical Link Control and Adaptation Protocol (L2CAP)
longitude
Low Frequency (LF) band
Lucent Orinoco RG-1000

Lucent WaveLAN IEEE/Orinoco/Agere 802.11b radio card
Lucent WaveLan radio chipsets

. PREY ' < Day Day Up >

< Day Day Up >

[SYMBOL] [A] [B] [C] [D] [ET [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O] [P] [QT [RT [S] [T] [U] [V] [W] [X] [Y]

MAC address filtering
MadsonLine

madwifi driver 2nd
custom access points

for Atheros chipsets

obtaining

obtaining CVS code for
madwifi-users mailing list
Magellan Meridian Gold
make config command
make menuconfig command
make xconfig command
Malinen, Jouni 2nd
Mandrake 9.2 and IrDA
Mandrake and Bluetooth

mapping software, GPS in

maps, public map server with USA street maps
MB/s (megabytes)

Mbps (megabits per second)

Medium Frequency (MF) band
Medium Infrared (MIR)
megahertz (MHz)
Merlin C201 card
download and upload speeds
getting online with
PPP peer settings for
Merlin G100, download and upload speeds
Mesa Electronics
MeshAP
Metcalfe, Bob
MF_(Medium Frequency) band
MHz (megahertz)
Microsoft (wireless vendor)
Microsoft Challenge-Handshake Authentication Protocol Version 2 (MS-CHAP v2)
military use of GPS
Miller, Tim
milliwatts (mW)
MiniPClI
mobile phones
mode parameter (iwconfig)
Motorola v120e phone
download and upload speeds
getting online
MP3 players, controlling with Bluetooth
Multiband Atheros Driver for WiFi [See madwifi driver]

MultiSync tool
music players, controlling with Bluetooth

mW_(milliwatts)

& FrEV | < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J] [KT [L] [M] [N] [O] [P] [Q] [RT [S] [T] [U] [V] [W] [X] [Y]

NAP (network access point)

NAP access point, setting up

NASA Blue Marble

National Marine Electronics Association (NMEA)

National Marine Electronics Association (NMEA) 0183

National Semi UART

navigation services and GPS

NdisWrapper

net4521 motherboards

net4801 motherboard

Netgear (wireless vendor)

network access point (NAP)

network cards, determining if scanning is supported

network class (PCMCIA wireless card configuration)
bigsecret

network.opts file
networking with Bluetooth

networks
closed
mapping with Kismet and GPSd
wireless [See wireless networks]
nick parameter (iwconfig)
NMEA (National Marine Electronics Association)

FAQ

sentences

NoCatAuth captive portal
Nokia 6200 phone

download and upload speeds

EDGE and

inserting SIM card into
Novatel Wireless Merlin C201 [See Merlin C201 phone]
Novatel Wireless Merlin C201 phone
Novatel Wireless Merlin G100 GPRS PCMCIA modem
NYCWireless

.. PREY 7 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

OBEX (Object Exchange) 2nd
OBEX FTP over Bluetooth

OBEX PUSH

Object Exchange (OBEX) 2nd
object exchange with Bluetooth
omnidirectional antennas

open wireless networks

OpenBrick

OpenOBEX
transferring files with

OpenOBEX libraries
openobex-apps package
OpenWrt

telnet daemon

OpenWrt firmware

loading
Opera Software

Orange tool
Orinoco AP Manager software

Orinoco AP-series

Orinoco CLI Proxy

Orinoco radio chipsets

Orinoco RG-1000

Orinoco RG-1000 configuration
orinoco_cs driver 2nd
Orinoco_cs driver

oscillators

< Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [RT [S] [T1 [U] [V] [W] [X] [Y]

packet-switched network, first
Palm OS, sharing a network connection over IrDA
Palm system

synchronizing with Linux system

PAN (personal area networking)

setting up NAP access point
pand tool
parabolic dish antennas
Park, Don
patch antennas
pay-as-you-go SIM
PC Card
PC card (Bluetooth hardware)
PC laptop with built-in IrDA
PC-104 motherboard standard
PCI

identifying radio chipset
PCIC OPTS option
PCMCIA

Bluetooth and

card
managing
multiple configurations
network class 2nd

devices
classes
identifying radio chipset
kernel support
Linux support

scripts
support with Wireless Tools

pcmcia-cs README for Version 2.4 kernels
pcmcia-cs software package

building and configuring

options

PCMCIA/CardBus support, compiling kernel with
PDAs
Pebble

getting to work on CF card

included in release

Linux-powered access points

mailing list
manually configurating installation

wireless card driver support

peer-to-peer mode

peers parameter (iwlist)
Personal Area Networking (PAN)
personal area networking (PAN)
Personal Telco Project

Peterson, Matt
piconets

Piechulla, Walter
pilot-link package 2nd
pilot-xfer utility 2nd
plain GPS receivers
PMG-220 CF GPS receiver
Pocket PC
moving data between Linux system and

synchronizing
Pocket PC, sharing a network connection over IrDA

PocketMap
PocketMap Compact Flash GPS
Point-to-point _networking [See PPP]
Power Over Ethernet (POE)
power parameter (iwconfig)
Pozar, Tim
PPP
connect script
for AT&T Wireless and the Nokia 6200
for Sprint PCS and the Merlin C201
for T-Mobile and Merlin G100
for Verizon Wireless and Motorola v120e
connections and IrDA-enabled devices
disconnect script for AT&T Wireless and Nokia 6200
networking and Bluetooth
peer settings
for AT&T Wireless and the Nokia 6200
for Sprint PCS and the Merlin C201
for T-Mobile and Merlin G100
for Verizon Wireless and Motorola v120e
peer settings for AT&T Wireless and the Nokia 6200

troubleshooting

pppd command
Preboot eXecution Environment (PXE)

presentations, controlling with Bluetooth

primary firmware
printing over Bluetooth

Prism card firmware, updating

Prism | reference standard for 802.11
prism54 driver

Protected EAP (PEAP)

Proxim Orinoco (wireless vendor)

public map server with USA street maps
PXE (Preboot eXecution Environment)

< Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

quality of link information for one or many nodes in a wireless network

. FREV | < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [ET [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [RT [S] [T] [U] [V] [W] [X] [Y]

radio cards

access points and
master mode

radio frequency
corresponding wireless network protocols
Radio Frequency Communication (RFCOMM)
radio interface cards
radio interference and absorption
radio waves
amplitude
behavior
frequency
radioteletype
RADIUS
server
rate parameter (iwconfig)
rate parameter (iwlist)
RedHat
Bluetooth and
RedHat 9 and IrDA
RedHat, installing Kismet
reflection

refraction

Remote Authentication Dial In User Service (RADIUS) server
remote controls 2nd

ResEdit, removing binary firmware from executable
retry parameter (iwconfig)

retry parameter (iwlist)

RFCOMM connections and BlueZ

RG-1000 configuration

RMS (Root Mean Square)

Root Mean Square (RMS)

route (GPS)

routers, wireless

rts parameter (iwconfig)

4@ FREV < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [©1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

safety issues related to network mapping with Kismet
SanDisk CF cards

satellites and GPS

scanning

network card support

scanning for available access points
scattering

scatternets

schemes (PCMCIA card)

Schmidt, Terry
sdpd tool

configuring with sdptool
sdptool utility

browsing
service abbreviations

Seattle Wireless

sector_antennas

security [See communicating securely]
Selective Availability (SA) 2nd

sens parameter (iwconfig)

serial dongle (Bluetooth hardware)

Serial Infrared (SIR)

serial port emulation with Bluetooth

Serial Port Profile (SPP)

Service Discovery Access Profile (SDAP)
service discovery profile (SDP) in Bluetooth
Service Discovery Protocol (SDP)

Service Set Identifier (SSID)

Sevy, Jon

SHF (Super High Frequency) band

Short Message Service (SMS)

Silva, Brad

SIM (Subscriber Identity Module)

Single Carrier Radio Transmission Technology

small board PCs, using to build access points

SmartBridges (wireless vendor)

SMC (wireless vendor)
SmithMicro QuickLink Mobile for Mac OS X kit
Sniffer Wireless

Soekris_motherboards

Soekris system, setting up with Pebble
Sony Ericsson GC82 PC Card Modem
SourceForge

development site
Spectrum24
Sprint and acceleration

Sprint PCS
PPP peer settings for

Sprint PCS Vision
SSID (Service Set Identifiers)
SSIDs (Service Set ldentifiers)

disabling broadcast
hotspot providers and

Starbucks coffee shops

station firmware
Straumann, Til
STSN (hotspot provider)
Subscriber_Identity Module (SIM)
Super High Frequency (SHF) band
Surf and Sip (hotspot provider)
SuSE 9.0
Bluetooth and
SUSE 9.0 and IrDA
Sveasoft firmware
obtaining
selecting receive and transmit antennas
setting up SSH daemon
Sydney Wireless HostAP CD
Symbol radio chipsets

SynCE program
Synchronization Profile (SP)

synchronizing
Bluetooth
contacts
Palm and Linux systems
Pocket PC

" & Frev |

< Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T1 [U] [V] [W] [X] [Y]

T-Mobile 2nd 3rd 4th
acceleration and

Hotspots website
Telephony Control Protocol Specification (TCS)

teletype over radio (TOR)

Temporal Key Integrity Protocol (TKIP)

text messaging

TIGER Map Server

Time Division Multiple Access (TDMA)-based GSM mobile phone networks
Time to First Fix (TTFF)

Tourrilhes, Jean 2nd 3rd

tracking and GPS
Tranzeo (wireless vendor) 2nd

tri-mode cards

Trustive

TTFF (Time to First Fix)
txpower parameter (iwconfig)
txpower parameter (iwlist)

& FrEV | < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [ET [F] [GT [H] [11 [J] [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [UT [V] [W] [X] [Y]

U.S. Department of Defense

UHF (Ultra High Frequency) band
Ultra High Frequency (UHF) band
upload speeds of cell phones

US Robotics (wireless vendor)
USA street maps

USB dongle (Bluetooth hardware)
USB Infrared dongles

USB, identifying radio chipset

. PREY < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [©1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

vendors, Linux-friendly wireless

Venturi

Verizon Express Network

Verizon Wireless 2nd
Express Network NationalAccess plan
Venturi

vertically polarized antenna

Very Fast Infrared (VFIR)

Very High Frequency (VHF) band
Very Low Frequency (VLF) band

VHF (Very High Frequency) band

Via Mini-1TX

Via Mini-1TX PCs

Virtual LANs/Virtual Private Networks
VLF (Very Low Frequency) band
VoiceStream 2nd

Vu, Augustin

. PREY 7 < Day Day Up >

< Day Day Up >

[SYMBOL] [A] [B] [C] [D] [EI [F] [G] [H] [11 [J1 [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WAP-11 access point
warchalking

wardialing

wardriving

wardriving maps

warflying

wavelan and wavelan2 drivers
wavelength (radio waves)
waypoints (GPS)

WayPort
WayPort (hotspot provider)

WEP (Wired Equivalent Privacy)
complex keys
key attacks
pitfalls

rapid key rotation
references

with Linux
hardware
networks
mapping with Kismet 2nd

under Linux
chipset compatibility [See chipset compatibility]

configuring and compiling kernel [See configuring and compiling Linux kernel]

quick start
requirements
Wi-Fi_Alliance
Wi-Fi Zone Finder website

Wifi-Box_firmware
installing
SNMP daemon
WiFinder website
Windows Mobile 2003, sharing a network connection over IrDA
WINIC W-USB-180 IrDA dongle
Wired Equivalent Privacy [See WEP]
wireless
first packet-switched network
introduction to

wireless access points

custom
wireless aggregators

wireless bridges
wireless card

changing parameters of retry
configuring private wireless options
displaying list of available radio frequencies

displaying version of iwlist and Wireless Extensions

listing available keys
listing bit-rates supported by
listing current key in use

listing encryption key size supported
listing transmit powers

listing transmit retry limits and lifetime

listing version of iwlist and Wireless Extensions
operating mode

seeing list of access points available

sending handshake before packet transmission
setting access point

setting bit-rate

setting encryption mode and keys

setting fragmentation threshhold

setting frequency

setting network name

setting power management modes and parameters
setting rate

setting sensitivity threshhold

setting station name

setting transmit _power

wireless equipment overview

Wireless Extensions
support in Linux kernel
Wireless Fidelity [See Wi-Fi]
Wireless Internet Assigned Numbers Authority (WIANA)
Wireless ISP Distribution [See WISP-Dist]
wireless network
discovery

getting on
wireless network protocols

corresponding radio frequencies
wireless networks

locating

open

~+
E
%)

Wireless Protected Access [See WPA]
wireless router [See routers, wireless]

Wireless Tools

compiling

installing

iwconfig tool

iwpriv_tool

iwspy tool

PCMCIA support

using
wireless vendors, Linux-friendly
wireless-tools package

wireless.h file

wireless.opts file

WISP-Dist (Wireless ISP Distribution)
current features

installing
User Guide

wlags49
configuring wireless parameters

custom access points
getting driver to compile
WLAN Adapter Chipset Directory

WLAN Driver Loader
compiling from source
using with WPA-PSK (personal) authentication

wireless card downloads
wlan-ng driver 2nd
wlan-ng RPMs for Red Hat Linux
WPA (Wireless Protected Access)
on Linux
WPA RADIUS setup details
WPA support in access points

wpa_supplicant
authenticating with
Xsupplicant with

wpa_supplicant package

WRT54G Wireless Router
hacking firmware

OpenWrt
Sveasoft

Wifi-Box
hacking hardware
Linksys firmware support

Linux distributions for

soldering extra parts

wvlan driver

< Day Day Up >

[SYMBOL] [A] [B1 [C] [D1 [E]1 [E] [G]1 [H] [11 [J1 [KT [L1 [M] [N] [O1 [P1 [Q1 [R1 [S1 [T1 [U1 [VI [W] X1 [Y]
Ximian Evolution

Xsupplicant
Xsupplicant with wpa supplicant

& FrEV | < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [ET [F] [GT [H] [11 [J] [KT [L] [M] [N] [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Yagi antennas

. FREV | < Day Day Up >

	Linux Unwired
	Table of Contents
	Copyright
	Foreword
	Preface
	What This Book Covers
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Chapter 1. Introduction to Wireless
	1.1 Radio Waves
	1.2 Connections Without Wires
	1.3 Wireless Alphabet Soup
	1.4 Bluetooth
	1.5 Cellular Data
	1.6 Infrared

	Chapter 2. Wi-Fi on Your Linux Box
	2.1 Quick Start
	2.2 Chipset Compatibility
	2.3 Four Steps to Wi-Fi
	2.4 Linux Wi-Fi Drivers in Depth

	Chapter 3. Getting On the Network
	3.1 Hotspots
	3.2 Wireless Network Discovery

	Chapter 4. Communicating Securely
	4.1 The Pitfalls of WEP
	4.2 The Future Is 802.11i
	4.3 WPA: a Subset of 802.11i
	4.4 WPA on Linux

	Chapter 5. Configuring Access Points with Linux
	5.1 Linux-Friendly Wireless Vendors
	5.2 Commercial Wireless Equipment Overview
	5.3 Configuring Access Points
	5.4 Flashing Your Access Point

	Chapter 6. Building Your Own Access Point
	6.1 Hardware
	6.2 Software
	6.3 Linux-Powered Off-the-Shelf

	Chapter 7. Bluetooth
	7.1 Quick Start
	7.2 Bluetooth Basics
	7.3 Bluetooth Hardware
	7.4 Linux Bluetooth Support
	7.5 Installing the BlueZ Utilities
	7.6 Basic Configuration and Operation
	7.7 Graphical Applications
	7.8 Cool Bluetooth Tricks

	Chapter 8. Infrared
	8.1 IrDA in the Kernel
	8.2 PC Laptop with Built-In IrDA
	8.3 Infrared Dongle
	8.4 Sharing a Network Connection over IrDA
	8.5 Connecting to the Internet with a Cell Phone
	8.6 Transferring Files with OpenOBEX
	8.7 Synchronizing with a Palm
	8.8 Pocket PC

	Chapter 9. Cellular Networking
	9.1 Cellular Data
	9.2 Some Cellular Carriers
	9.3 Phones and Cards
	9.4 Sending a Fax
	9.5 Text Messaging
	9.6 Acceleration

	Chapter 10. GPS
	10.1 Uses of GPS
	10.2 A GPS Glossary
	10.3 GPS Devices
	10.4 Listening to a GPS
	10.5 Mapping Wi-Fi Networks with Kismet
	10.6 GpsDrive
	10.7 Other Applications

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y

