

•
Table of

Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Linux Desktop Hacks

By Jono Bacon, Nicholas Petreley

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00911-9

Pages: 342

With hacks that any user can follow, Linux Desktop Hacks demonstrates
how easy it is to modify Linux to suit your desires. The book is packed
with tips on customizing and improving the interface, boosting
performance, administering your desktop, and generally making the
most out of what X, KDE, Gnome, and the console have to offer.

•
Table of

Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Linux Desktop Hacks

By Jono Bacon, Nicholas Petreley

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00911-9

Pages: 342

With hacks that any user can follow, Linux Desktop Hacks demonstrates
how easy it is to modify Linux to suit your desires. The book is packed
with tips on customizing and improving the interface, boosting
performance, administering your desktop, and generally making the
most out of what X, KDE, Gnome, and the console have to offer.

•
Table of

Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Linux Desktop Hacks

By Jono Bacon, Nicholas Petreley

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00911-9

Pages: 342

 Copyright

 Credits

 About the Authors

 Contributors

 Acknowledgments

 Preface

 Why Linux Desktop Hacks?

 How to Use This Book

 How This Book Is Organized

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Got a Hack?

 Safari Enabled

 Chapter 1. Booting Linux

 Hacks 1-9

 Hack 1. Give Your Computer the Boot

 Hack 2. Kill and Resurrect the Master Boot Record

 Hack 3. Bypass the Boot Manager

 Hack 4. Set a Bitmap Boot Screen for LILO

 Hack 5. Create Your Own LILO Boot Splash

 Hack 6. Display a GRUB Boot Splash Background

 Hack 7. Create a GRUB Boot Splash Background

 Hack 8. Jazz Up Your Debian System Boot

 Hack 9. Graphics on the Console

 Chapter 2. Console

 Hacks 10-15

 Hack 10. Redefine Keyboard Actions

 Hack 11. Energize Your Console with Macro Music Magic

 Hack 12. Take a Screenshot from the Command Line

 Hack 13. Put Your Command Prompt on a Diet

 Hack 14. Simplify Changing Directories

 Hack 15. Colorize Files in Your Pager

 Chapter 3. Login Managers

 Hacks 16-21

 Hack 16. Switch Users Fast

 Hack 17. Double Your KDM (KDE) Login Screens

 Hack 18. Double Your GDM (GNOME) Login Screens

 Hack 19. Get Multiple Desktops the Macho Way

 Hack 20. Scrap X11 for Fancy Login Consoles

 Hack 21. Personalize Your Qingy Theme

 Chapter 4. Related to X

 Hacks 22-34

 Hack 22. Take Your Screens Black

 Hack 23. Spice Up Your Desktop with Creative Mouse Cursors

 Hack 24. Convert CursorXP Themes for Use with Linux

 Hack 25. Use Windows and Mac Fonts

 Hack 26. Never Miss Another Reminder

 Hack 27. Make Applications Trigger On-Screen Alerts

 Hack 28. Heat Up Your Keyboard with Hotkeys

 Hack 29. Get Hotter Hotkeys with LinEAK

 Hack 30. Access Windows and Mac OS X from Linux

 Hack 31. Run Your Desktop over the Internet

 Hack 32. Access Your Programs Remotely

 Hack 33. Add Depth to Your Desktop

 Hack 34. Give Your Desktop X-Ray Vision

 Chapter 5. KDE Desktop

 Hacks 35-44

 Hack 35. Make Konqueror a Window into Remote Spaces

 Hack 36. Konquer Remote Systems Without Passwords

 Hack 37. Ai Karamba! Flashy KDE Gadgets!

 Hack 38. Start Applications in Weird and Wonderful Ways

 Hack 39. Script Hacks with DCOP

 Hack 40. Create Your Own KDE Right-Click Menu Actions

 Hack 41. Make KDE Even Easier to Use

 Hack 42. Give Depth to Your KDE Windows

 Hack 43. Lock Down KDE with Kiosk Mode

 Hack 44. Run KDE on the Bleeding Edge

 Chapter 6. GNOME Desktop Hacks

 Hacks 45-48

 Hack 45. Randomize Your GNOME Wallpaper

 Hack 46. Grow Your GNOME with gDesklets Steroids

 Hack 47. Create Your Own GNOME Right-Click Actions

 Hack 48. Compile a Bleeding-Edge GNOME Desktop

 Chapter 7. Terminal Empowerment

 Hacks 49-54

 Hack 49. Share Applications and Monitors with screen

 Hack 50. Stop Using Terminal Command-Line Switches

 Hack 51. Ultimate Terminal Transparency

 Hack 52. View Microsoft Word Documents in a Terminal

 Hack 53. Display PDF Documents in a Terminal

 Hack 54. View Word and PDF Files from Within Mutt

 Chapter 8. Desktop Programs

 Hacks 55-69

 Hack 55. Reduce OpenOffice.org Startup Time

 Hack 56. Read Yahoo! Mail from Any Email Client

 Hack 57. Encrypt Your Email

 Hack 58. Reclaim Your Email with procmail

 Hack 59. Convert Your Mailbox

 Hack 60. Configure Firefox Under the Covers

 Hack 61. Eliminate Annoying Browser Stalls

 Hack 62. Get Browser Plug-ins Working

 Hack 63. Create an Internet Phone

 Hack 64. Motion Capture and Video Conferencing Fun

 Hack 65. Put Screenshots Automatically on the Web

 Hack 66. Scan for Wireless Networks

 Hack 67. Map Your Meatspace

 Hack 68. Connect to a Microsoft PPTP VPN

 Hack 69. Play Restricted Media Formats

 Chapter 9. Administration and Automation

 Hacks 70-87

 Hack 70. Automate Your Life with cron

 Hack 71. Update Your Clock via the Internet

 Hack 72. Start Desktop Applications Automatically

 Hack 73. Don't Let Elvis Leave the Building

 Hack 74. Clone Your Linux Install

 Hack 75. Forward Ports over SSH

 Hack 76. Take Control of New User Setups

 Hack 77. Send Email Alerts for System Events

 Hack 78. Create a Passwordless Login

 Hack 79. Magically Empower Your Network Cable

 Hack 80. Protect Yourself from Windows Applications

 Hack 81. Build a Custom Firewall Computer

 Hack 82. Link Monitoring in Linux with Wavemon

 Hack 83. Make Network Backups

 Hack 84. Recover from Debian Disaster

 Hack 85. Prelink for Performance

 Hack 86. Grab the Latest Source Code

 Hack 87. Speed Up Compiles

 Chapter 10. Kernel

 Hacks 88-91

 Hack 88. Compile a Kernel

 Hack 89. Upgrade Your Kernel to 2.6

 Hack 90. Use CKO to Make Your Desktop Go to 11

 Hack 91. Tweak Your Kernel Without Recompiling

 Chapter 11. Hardware

 Hacks 92-100

 Hack 92. Make an Internet Connection Using Bluetooth and a Mobile Phone

 Hack 93. Perfect USB Devices with Project Utopia

 Hack 94. Optimize Your Refresh Rates

 Hack 95. Print to Unsupported Printers

 Hack 96. Control Your Power with ACPI

 Hack 97. Use an iPod with Linux

 Hack 98. Sync Your iRiver with Linux

 Hack 99. Boost Hard-Drive Performance

 Hack 100. Accelerate Your Gaming

 Colophon

 Index

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Hacks series designations, Linux Desktop Hacks, the image of a wood plane,
and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies that
technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may not
work, may cause unintended harm to systems on which they are used, or may not be consistent with
applicable user agreements. Your use of these hacks is at your own risk, and O'Reilly Media, Inc.
disclaims responsibility for any damage or expense resulting from their use. In any event, you should
take care that your use of these hacks does not violate any applicable laws, including copyright laws.

http://safari.oreilly.com

Credits

About the Authors

Contributors

Acknowledgments

About the Authors

Nicholas Petreley began his career in computing in 1983 as an Assembly-language programmer for a
signal-processing research and development firm called Adaptronics, located in McLean, Virginia, and
he hasn't been able to escape the field since. After getting a taste of writing as a weekly columnist for
the Times in New Jersey, Nick began spending more time with the English language than with Pascal, C,
C++, and the dozens of other languages that previously dominated his life. Nick's former lives also
include conference advisor for LinuxWorld Expo, creator of the Golden Penguin Bowl quiz show, editorial
director of LinuxWorld, editor-in-chief of Network Computing World, executive editor of the InfoWorld
Test Center, award-winning columnist for InfoWorld, and regular technical columnist for
ComputerWorld. You can find his current articles on Newsforge and in other publications under various
pseudonyms. He is a columnist for Tux magazine, the author of the Official Fedora Companion, a part-
time Evans data analyst, a freelance writer, a creator and maintainer of the VAR-oriented web site
(http://www.varlinux.org), and a professional open source consultant.

Jono Bacon (http://www.jonobacon.org/) is an established writer, developer, and musician. Jono has
been working as a full-time writer and technology consultant/developer since 2000, for a variety of
publishers and companies. They include Linux Format, Linux Pro, Linux Magazine, Linux User &
Developer, Linux Journal, PC Plus, MacFormat, MacTech, Digital Home, Newsforge, Sitepoint, and
ContentPeople. Jono has also worked as a writer/consultant/developer for Trolltech, Apple,
theKompany.com, the University of Wolverhampton, Delta Institute, and others. In addition to this
work, Jono has been a part of the Linux community since 1998 and has worked for various free software
projects including KDE and Kafka, and he founded Linux UK, the KDE Usability Study, KDE::Enterprise,
and the Infopoint Project. He currently works on various free software projects, as well as for
OpenAdvantage in Birmingham, UK, as a professional open source consultant.

http://www.varlinux.org
http://www.jonobacon.org/

Contributors

The following people contributed their writing, code, and inspiration to Linux Desktop Hacks:

Thomas Adam [Hack #9] has been using Linux since 1996. He has used a range of distributions
but currently runs Debian. He is an active member of an online magazine, the Linux Gazette, for
which he has written several articles. He also is a member of The Answer Gang.

Jim Aspinwall [Hack #99] is the coauthor and author of four books about computers and
networking. His writing spans not only books but feature articles and how-to columns for a handful
of PC magazines and web sites, including Computer User, PC World, and CNET.com. His hack can
also be found in his book PC Hacks (O'Reilly).

Adrian Bradshaw [Hack #57] is a network engineer and open source enthusiast.

David Brickner[Hacks [Hack #69] and [Hack #87]] is an editor at O'Reilly Media, Inc., where he
works on Linux and system administration books. He is the author of Test Driving Linux (O'Reilly).

John Cheng [Hack #65] is an enthusiastic teenage Linux user. John has toyed with Linux and
FreeBSD for years, and enjoys it.

Paul Cooper [Hack #31] is the Assistant Director of OpenAdvantage, the first independently
funded vendor-neutral Open Source solutions center in the United Kingdom. Paul researches new
(and old) OSS technologies in order to help people find the best OSS tools to use in their
organizations.

Alan Donovan [Hack #97] is a researcher in the field of programming languages and program
analysis. He holds degrees from the University of Cambridge and MIT, in whose Computer Science
and Artificial Intelligence Laboratory he currently works. His hack can also be found in iPod and
iTunes Hacks (O'Reilly).

Rob Flickenger [Hacks [Hack #75] and [Hack #82]] has been hacking as long as he can
remember. He recently served as sysadmin for the O'Reilly Network, and is currently working on
promoting community wireless networking through efforts like NoCat (http://nocat.net/) and
SeattleWireless (http://seattlewireless.net/). His hacks can be found in his O'Reilly books Linux
Server Hacks and Wireless Hacks, respectively.

Adam Garside [Hack #58] wanted to be a stuffy philosophy professor but discovered Unix in
1993. He currently maintains perimeter infrastructure and gateway services at Central Piedmont
Community College using Debian GNU/Linux exclusively. He lives in Charlotte, North Carolina,
with his wife Sherri and two crazy cats.

Emma Jane Hogbin [Hack #96] is a Toronto-based documentation junkie. She teaches standards-
compliant web development at Humber College, and gives public lectures on writing
documentation through The Linux Documentation Project. She likes her Scotch peaty, her books
hand-bound, and her rabbits angora. To find out more, visit http://www.emmajane.net.

Stuart Langridge [Hack #95] has several interests, including writing code for the Web, Python,
Linux, the usability of applications, and driving a Fiat Coupe. You can read his thoughts on these
and many, many other things at his web site, http://kryogenix.org.

http://nocat.net/
http://seattlewireless.net/
http://www.emmajane.net
http://kryogenix.org

Jon Masters [Hack #92] hacks on Linux for real-time scientific instrumentation and is the author
of a monthly Embedded Linux column in Linux User & Developer magazine. He began his first
degree in computer science at the age of 13. Jon is a keen musician and also enjoys cycling,
countryside walks, and geocaching.

Adam McMaster [Hack #45] is currently a full-time student, studying A-levels at Brooke Weston
CTC in the UK. In his spare time he enjoys learning about operating systems, programming, and
web design, as well as other aspects of computing.

David Murphy [[Hack #49] and [Hack #59]] is an open source fan, and supporter of Fedora and
Mono.

Kyle Rankin [Hack #2] is a system administrator who enjoys troubleshooting, problem solving,
and system recovery. He has been using Linux in many different forms for over six years, and has
used live CDs to demo Linux and troubleshoot machinesfrom DemoLinux to the LinuxCare bootable
toolbox to Knoppix. His hack can also be found in his book Knoppix Hacks (O'Reilly).

Jonathan Riddell [Hack #43] is a freelance computer programmer working on PHP-based web
sites. As a KDE developer he maintains Umbrello UML Modeller and organizes the exhibition stands
for KDE in Britain. He is a former Scottish champion of white-water canoe racing and is currently
organizing the World Gathering of Quakers.

Ron Wellsted [Hack #68] has been in the computer industry for more than 25 years, working on
Unix since 1983 and Linux since 1995.

George Wright [Hack #74] is a student living in London, hoping to study computer science at
university when he's old enough. In his spare time he's a developer on the KDE Project and
occasionally works on embedded Linux systems.

Acknowledgments

Nicholas Petreley

I would like to thank God, above all, for anything that is excellent in my contributions to this book. I
offer many thanks to David Brickner for his patience in giving advice and corrections during the editing
process. Thanks as well to the entire O'Reilly production crew. Thanks to Kyle Rankin and Jonathan Oxer
for their input during the review process. I would also like to thank my readers, contributors, and
assistant web masters for their help, encouragement, and inspiration offered at my web site,
VarLinux.org. Thanks also to the encouragement of my readers in other publications and to the many
wonderful people I've met (either for the first time or for the first time face-to-face) at LinuxWorld Expo
and other various conferences. Thanks to my heroes Tim O'Reilly, Bob Young, Jon "Maddog" Hall, Linus
Torvalds, Alan Cox, Hans Reiser, Con Kolivas, Richard Stallman, and the many more sung and unsung
heroes of the Linux and open source worlds. I thank my family for patiently allowing me to sleep
through quality time we would have spent together after I stayed up all night so that I could have more
consecutive hours of quiet time to focus on the book. I offer many thanks to Bill Gates, Steve Ballmer,
and the talented folks in Redmond whose ongoing work in the areas of security, quality assurance, and
product licensing continues to contribute greatly to the increasingly rapid adoption of Linux on the
desktop. Finally, any errors or anything lacking in excellence among my contributions to this book I
credit entirely to myself.

Jono Bacon

I would like to thank all of my family and friends for helping make my contribution to this book possible.
Everyone has been incredibly supportive throughout the long tech edits, ramblings on the phone,
endless proofreads, and unashamed plugging of the book when it was completed. I would also like to
thank the various groups I am involved with and their encouragement in my work. This includes Wolves
LUG, LUGRadio, OpenAdvantage, the Infopoint Project, and the many friends I have met at conferences
and in my daily work. Finally, I would like to thank the readers of my work in Linux Format, Linux User
& Developer, Linux Magazine, the O'Reilly Network, and the other publications I write for.

Preface
The Linux desktop has come a long way. I know. I've been using Linux as my default desktop work
environment for so long I feel like I've experienced almost the entire evolution of the Linux desktop
firsthand. I'm guessing it was sometime shortly after 1995 when I started using Linux on the desktop
for more than 90% of my work. Linux not only outperformed Windows 95 on my Everex 486 DX2-66,
but it also spared me the three R s that plagued every version of Windows: Reboot, Reformat, and
Reinstall. I never had to reboot or reinstall anything to solve a Linux problem. That was enough to
solidify my determination to use Linux in spite of its aesthetic flaws.

On the down side, I had to tolerate very spotty hardware support, especially for display and sound
cards. Once I had a graphical desktop running, the fonts were hideous. To its credit, Linux let me
choose from dozens of window managers. Unfortunately, only a few of them ran reliably, and the user
interface on most of them made little sense to someone like me, who was used to OS/2 and Windows.
On the other hand, I was immediately spoiled by the fact that almost all Linux window managers let you
switch between virtual desktops instantaneously (virtual desktops are separate, distinct desktop
workspaces). Windows-based attempts at mimicking this feature were pitiful by comparison. Only a
small number of productivity applications were available back then, and few of them were GUI-based.
But even then, Linux came with more than enough software to meet my needs. Eventually, I learned it
was possible to improve the early Linux desktop experience to make it border on pleasant, but I
couldn't do it without becoming proficient at editing an endless list of obscure, text-based configuration
files.

As Linux matured, it inspired a hack of the window manager FVWM that emulated the Windows 95
desktop. That, and a few other improved desktops, made Linux more usable, but it still didn't offer
mass appeal.

Then along came KDE, a free desktop environment based on the Trolltech Qt C++ library of widgets and
functions. Even in its most primitive stages, it was obvious that KDE would eventually challenge the
best desktop environments on any operating system. The KDE developers didn't disappoint those who
saw the potential. The most recent versions of KDE will knock your socks off and make them dance
around the room. You can accomplish virtually anything from the KDE desktop in ways more elegant
than I had ever anticipated back in 1995. Hopefully, by the time you've picked up some of the tips in
this book, you'll be able to use KDE to amaze your Windows-using friends with the flexibility of Linux.

The GNOME project started somewhat later than KDE. Since its inception, GNOME has switched
personalities more often than Sybil. But it is finally coming together as a desktop that targets users who
are looking for both power and simplicity. Although GNOME is somewhat less flexible than KDE, you can
use GNOME to put on a pretty good show for your Windows-using friends, too.

In a more general sense, the Linux desktop has improved dramatically in all other aspects. Linux fonts
are now downright beautiful. Arguably at least, as many productivity applications are available for Linux
as for Windows and it is surprisingly easy to run Microsoft Office applications directly on Linux without
having to buy a copy of Windows. Most important, there is OpenOffice.org, which matches or exceeds
the needs of the vast majority of Microsoft Office users. Plus, there's the Ximian Evolution email and
scheduler, which is a Microsoft Outlook clone that outperforms Outlook itself. And the Firefox web
browser is gaining so much momentum that even top managers at Microsoft use it rather than Internet
Explorer, because Firefox is so much more usable and secure.

In short, Linux desktop environments and applications are no longer chasing the Windows desktop for
usability and power. When it comes to choice, desktop usability, and features, Linux actually surpasses

Windows in many ways. Admittedly, there are a few glitches to fixfeatures that still require you to edit
text files and a few other holes to fill here and therebut we no doubt are entering the age of the Linux
desktop.

This book is designed to help you get the most out of the Linux desktop. These hacks will show you how
to spiff up your boot experience with graphical startup screens, ways to log in that you might never
have imagined, and various ways to let multiple users access the same machine at the same time, each
one using the graphical desktop they like best. This book also shows you how to extend the capabilities
of your graphical desktop so that it looks like these functions were built-in from the start. There are
even many useful tips for those who prefer to do most of their work at the text-mode console. For
example, you don't need a graphical desktop to assign the multimedia keys to control your CD player
and multimedia experience.

Though this book plunges into depths far more deeply than what I've outlined here, it still uncovers only
a fraction of what you can do with the Linux desktop. Linux multimedia capabilities are improving
steadily, and multimedia on Linux will virtually explode as problematic patent issues are addressed
(such as the decryption algorithms for playing DVDs). Desktop environments such as KDE and GNOME,
among many others, are changing and improving so quickly that by the time you read this book, some
of the problems I mention in the text that follows likely will have been solved, the URLs to patches
probably will have changed to reflect updates to those patches, and so on (fortunately, it is easy to
compensate for these changes, as we point out in the affected chapters). If the evolution of the Linux
desktop maintains its current pace, it won't be long before you start hunting for the second volume of
Linux Desktop Hacks (101-200).

Why Linux Desktop Hacks?

The term hacking has a bad reputation in the press. They use it to refer to someone who breaks into
systems or wreaks havoc with computers as his weapon. Among people who write code, though, the
term hack refers to a "quick-and-dirty" solution to a problem or a clever way to get something done.
And the term hacker is taken very much as a compliment, referring to someone as being creative,
having the technical chops to get things done. The Hacks series is an attempt to reclaim the word,
document the good ways people are hacking, and pass the hacker ethic of creative participation on to
the uninitiated. Seeing how others approach systems and problems is often the quickest way to learn
about a new technology.

Linux Desktop Hacks is composed of a variety of methods to help you get the most out of your Linux
system. Some are hacks in the true sense of varying difficulty. Sometimes you will create a simple text
file to add a menu option, while other hacks require you to edit keyboard configuration files to change
how your keyboard operates. This book even shows you how to apply a patch to source code and
recompile the program to get new features. This book also includes tips on how to exploit the power of
existing program features that you aren't likely to discover on your own. For example, Linux Desktop
Hacks will show you how to use the KDE and GNOME file managers in ways you might never have
imagined.

How to Use This Book

You can read this book from cover to cover if you want, but each hack stands on its own, so feel free to
browse and jump to the different sections that interest you most. If there's a prerequisite you need to
know about, a cross-reference will guide you to the right hack.

Although you do not have to proceed through the beginning chapters sequentially, they are ordered the
way in which a user approaches a Linux system: from the boot process to various methods of logging
in, using the graphical X11 system, and exploiting the power of KDE and GNOME. Each chapter covers
different approaches to enhancing each step in the chronological sequence, so you can construct an
entirely personal desktop experience as you choose the alternatives you like best from each chapter. In
the end, you will undergo an original experienceone that does not resemble anyone else's experience
from reading these same chapters.

Linux Desktop Hacks also covers some basic instructions, such as how to build a Linux kernel so that
even ambitious newcomers can learn how to benefit from some of the more difficult hacks.

How This Book Is Organized

The book is divided into several chapters, organized by subject. The first chapters are organized in
roughly the same order a user will experience the topics when starting a Linux computer: booting, a
console, a login manager, X11, and a desktop environment. Depending on your personal approach to
using Linux, you might want to skip a chapter or two. For example, if you never use a text console to do
work, you can bypass Chapter 2 without losing momentum on enhancing and personalizing your
system. On the other hand, you might miss out on some handy techniques by skipping a chapter that
does not appear to appeal to your work style at first glance, so it won't hurt to check out every hack and
tip at some time or another.

Starting with Chapter 9, you will learn how to perform some automation and administration tasks that
can help you with hacks you learned in other chapters. In addition, some hacks require you to know
how to get deep into the innards of Linux. In some cases, the complex information you need to use a
hack appears in the chapter itself. Chapter 10, however, is dedicated to helping you learn how to
customize and compile the Linux kernel, which will be useful for hacks that appear in previous chapters
if you are not already adept at replacing or customizing your Linux kernel.

Whichever way you choose to use this book, you probably will want to familiarize yourself with the
contents first, so here's a brief synopsis of each chapter and what you'll find.

Chapter 1, Booting Linux

You have to boot Linux before you can use it. So, why not spiff up the process? This chapter
shows you how to add a custom graphical background to your boot manager and even how to
design your own. It also shows you how to add a boot splash and progress bar to Debian, one of
the only popular Linux distributions left that doesn't automatically provide this capability. This
chapter also shows you some tricks for creating graphics consoles, and various ways to boot
Linux, including how to bypass the boot manager.

Chapter 2, Console

Contrary to popular belief, the text console is not dead, especially if you learn from Chapter 1 how
to turn your text consoles into graphical wonders. This chapter shows you how to customize your
keyboard to use those special Internet or multimedia keys to play CDs, start up programs, or
automate virtually anything you can imagine. Combine what you learn here with some hacks from
Chapter 7, and you can learn how to use the console or even your text-based email client to view
Microsoft Word or PDF file attachments, while maintaining some of the original formatting. As
you'll see, text consoles put an amazing amount of power at your fingertips.

Chapter 3, Login Managers

Did you know you do not have to close your applications and log out for someone else to log in,
start up their favorite graphical desktop, and use the same machine? You can set up Linux to let
you switch between simultaneously running desktop sessions started by different users in several

ways. This chapter explores both the easy and more challenging ways to accomplish this feat. You
can create multiple KDE or GNOME login screens, or be a macho hacker and start multiple
sessions from the command line. You can even ditch X11 login screens altogether and run several
sessions using Qingy, a fully customizable graphical login manager that runs on a console.

Chapter 4, Related to X

If variety is the spice of life, this chapter will thrill your taste buds more than any other. You will
learn how to set up custom-animated mouse cursors, how to add depth to your desktop with
window drop shadows, and how to make windows partially transparent. You'll also learn how to
create reminders or have your applications display on-screen alerts you can't possibly miss. You
will learn how to access other desktops from your computer, including Mac OS X desktops, and
you'll find out how to use those Internet and multimedia keys on your special keyboard, plus a
whole lot more.

Chapter 5, KDE Desktop

In this chapter, you'll explore KDE features you never knew existed. For instance, add custom
menu options that are smart enough to appear only when you select a file where the options will
be useful. Use Konqueror to manipulate files on other desktops almost as if they were local files.
Patch KDE to make the Konqueror sidebar easier to use, and make the process of selecting files
more attractive. Add drop shadows to your KDE windows. Use superkaramba to turn your KDE
desktop into a personalized desktop that hardly resembles KDE. This chapter explains all of this,
plus how to use DCOP to automate the way KDE applications behave, and much, much more.

Chapter 6, GNOME Desktop Hacks

Want to customize GNOME Nautilus menus to give you many more options for what to do with
selected directories and files? How about using gDesklets to add clocks, weather monitors,
hardware monitors, and other features that really spiff up the desktop? This chapter will teach you
how to accomplish these tasks. And, if you like a challenge, you will also learn how to run the
latest GNOME development code.

Chapter 7, Terminal Empowerment

Not everyone uses KDE or GNOME. Many hard-core geeks who prefer lightweight window
managers are also likely to prefer lightweight terminal programs. If you're one such user, this
chapter contains some tips on how to make your life easier. Set up your terminals to look and
behave the same way, no matter which window manager you're using. Add a little transparency
without having to use the bloated terminals from KDE or GNOME. And while you're at it, learn
how to view Microsoft Word and PDF documents inside terminals or even within the body of
messages in email clients such as Mutt.

Chapter 8, Desktop Programs

Beyond the desktop environment you run are the applications you choose to run on it. This
chapter covers a diverse range of programs that help improve your desktop experience. You will
learn how to start OpenOffice.org faster. Several hacks also enable you to take better control of

your email and web browser. The last few hacks deal with networking, and teach you how to scan
wireless networks, plot your location or next trip with GPS, and connect to a Microsoft VPN.

Chapter 9, Administration and Automation

If you're a Debian user, this is a must-read chapter, because it is one of the few places you'll find
a way to restore a Debian system after you have accidentally deleted the package database.
Learn how to make your system configure and deconfigure network connections simply by
connecting or disconnecting the network cable. This chapter also includes a hack that gives
CodeWeavers' CrossOver Office and/or Wine users a relatively safe way to view untrusted
Microsoft Word documents that arrive in email as attachments. You will also learn some basics,
such as how to keep your computer clock synchronized, how to speed up the loading of C++
programs (namely, almost all of KDE and KDE applications), and how to back up or clone
information from one machine to another. In addition, this chapter shows you a trick that restarts
a background application every time it accidentally (or intentionally) dies, and it does it with a
simple script instead of using complicated daemon tools.

Chapter 10, Kernel

This chapter discusses Linux, the kernel. Here you will learn how to compile your own kernel and
how to upgrade your system from the 2.4 kernel series to 2.6. It also covers one alternative
kernel branch that offers improved desktop performance, and ways to tweak your system
performance without modifying the kernel.

Chapter 11, Hardware

Your computer isn't much use if you can't configure the hardware attached to it. This chapter
covers how to set up various pieces of hardware, such as 3D video cards, USB devices, and
Bluetooth devices. In addition, it teaches you how to optimize your display refresh rates, print to
printers when you don't have a driver, and control the power features of your laptop. This chapter
wraps up with information on using the two most popular portable music players, the iPod and
the iRiver, under Linux.

Conventions Used in This Book

The following is a list of the typographical conventions used in this book.

Italics

Used to indicate URLs, filenames, filename extensions, and directory/folder names. For example,
a path in the filesystem will appear as /Developer/Applications.

Constant width

Used to show code examples, the contents of files, console output, as well as the names of
variables, commands, and other code excerpts.

Constant width bold

Used to highlight portions of code, typically new additions to old code.

Constant width italic

Used in code examples and tables to show sample text to be replaced with your own values.

You should pay special attention to notes set apart from the text with the following icons:

This is a tip, suggestion, or general note. It contains useful supplementary
information about the topic at hand.

This is a warning or note of caution, often indicating that your money or your
privacy might be at risk.

The thermometer icons, found next to each hack, indicate the relative complexity of the hack:

 beginner moderate expert

Using Code Examples

This book is here to help you get your job done. In general, you can use the code in this book in your
programs and documentation. You do not need to contact us for permission unless you're reproducing a
significant portion of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly books
does require permission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book into your
product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Linux Desktop Hacks by Nicholas Petreley and Jono Bacon.
Copyright 2005 O'Reilly Media, Inc., 0-596-00911-9."

If you feel your use of code examples falls outside fair use or the permission given here, feel free to
contact us at permissions@oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you might find
that features have changed (or even that we have made mistakes!). As a reader of this book, you can
help us to improve future editions by sending us your feedback. Please let us know about any errors,
inaccuracies, bugs, misleading or confusing statements, and typos that you find anywhere in this book.

Please also let us know what we can do to make this book more useful to you. We take your comments
seriously and will try to incorporate reasonable suggestions into future editions. You can write to us at:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

The web site for Linux Desktop Hacks lists examples, errata, and plans for future editions. You can find
this page at:

http://www.oreilly.com/catalog/linuxdeskhks

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

http://www.oreilly.com/catalog/linuxdeskhks
http://www.oreilly.com

Got a Hack?

To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

http://hacks.oreilly.com

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is avaiable online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com

Chapter 1. Booting Linux
Hacks 1-9

Hack 1. Give Your Computer the Boot

Hack 2. Kill and Resurrect the Master Boot Record

Hack 3. Bypass the Boot Manager

Hack 4. Set a Bitmap Boot Screen for LILO

Hack 5. Create Your Own LILO Boot Splash

Hack 6. Display a GRUB Boot Splash Background

Hack 7. Create a GRUB Boot Splash Background

Hack 8. Jazz Up Your Debian System Boot

Hack 9. Graphics on the Console

Hacks 1-9

Some of you might be wondering why this book contains a chapter on booting your computer. If you're
a new desktop Linux user, you might think the ideal boot experience should involve only two steps:
press the computer's power button, and then log in.

Even experienced Linux users might question why this chapter exists. Talk to any longtime Linux
aficionado, and he'll boast that one of the biggest advantages Linux has over that "other" popular x86
desktop operating system is that you almost never have to reboot Linux.

Regardless of what type of user you are, chances are good that you power off and boot your Linux
desktop system now and then. So, why not make the experience a little more pleasant by sprucing up
your bootloader with a fancy background graphic? One word of warning: if you choose to design your
own LILO or GRUB bootloader backgrounds, the process is easy and highly addictive. It could become
your next hobby.

And while you're at it, why not add a graphical boot-progress screen to Debian, one of the last of the
popular distributions that lacks a boot splash screen with a progress bar?

In addition to teaching you how to accomplish these two tasks, this chapter will also help take you out
of the Dark Ages of text-based virtual console screens. Whether you boot to a text login screen or a
graphical login screen, there's no excuse for leaving the virtual console screens in archaic 80x20
character text mode. It is especially important to enable frame-buffer consoles if you want to take
advantage of even fancier hacks in the following chapters.

Hack 1. Give Your Computer the Boot

The beginning of all Linux journeys originates with the humble bootloaderthe small bit of code that
jump-starts the whole boot process. Knowing how to configure your bootloader is almost requisite for
using a Linux system. You also need to understand the bootloader if you want to configure your system
to boot more than one operating system.

Within the exciting bootloader world are a number of choices for starting your computer. For x86
machines, there are two main contenders: LILO and GRUB. If you are running Linux on a Mac, LILO and
GRUB are not available, and the main bootloader is called yaboot. Another potential situation in which
you might need to boot a computer is when you are trying to boot a CD to install an operating system.
Sometimes you can encounter a problem booting from a CD if your computer's BIOS does not support
booting from CD-ROM or if your CD-ROM drive does not support booting from a CDR. You can resolve
this problem with a tool called the Smart Boot Manager.

This hack explores the GRUB, yaboot, and Smart Boot Manager bootloaders.

1.2.1. Configure GRUB

Without a doubt, GRUB is a far more flexible boot manager than LILO. It enables you to add new
kernels or boot parameters without having to install each update to the Master Boot Record (MBR).
GRUB also allows you to pass parameters to it or to the kernel at boot time. Many Linux distributions
now ship with GRUB as the default bootloader. Although GRUB is reliable and flexible enough to recover
from most disasters, it is still advisable to back up your boot sector just in case something goes wrong.
To do this, run the following command:

root@bar:~# dd if=/dev/hda of=/root/hda.mbr bs=512 count=1

GRUB is managed by a central configuration file which is either /boot/grub/menu.lst on Debian and
Gentoo systems, or /etc/grub/grub.conf on Red Hat-based systems. This file contains a number of
entries that indicate the name of the kernel, the root partition where the kernel can be found, and an
initrd if one applies. Here is an example of a typical Linux kernel stanza in the GRUB configuration file:

title Ubuntu, kernel 2.6.8.1-2-386
root (hd0,0)
kernel /vmlinuz-2.6.8.1-2-386 root=/dev/hda3 ro quiet splash
initrd /initrd.img-2.6.8.1-2-386
savedefault
boot

It's important to note how GRUB deals with disks and partition numbers. Unlike Linux, GRUB refers to
the first disk as hd0 and the first partition as partition 0. In Linux this is designated as /dev/hda1.

Basically, if the letters that designate the hard drive in Linux were numbers, you would subtract 1 from
them. Therefore, an a (1) becomes 0, a b (2) becomes 1, and so on. Also, you would subtract 1 from

the partition number itself. For example, a boot partition located on /dev/hdb3 becomes hd1,2 in GRUB
parlance. In the previous stanza, you refer to the location of the kernel (root) as hd0,0, but on the

kernel line, you refer to the root partition as /dev/hda3. Because it is a kernel parameter, it uses the
normal Linux method of referring to disks and partitions. The final part of the stanza uses savedefault
to make the stanza a default option in the GRUB menu, and the command boot actually boots the

system.

If you want to add another operating system, simply add it elsewhere in the configuration file. A
Windows stanza looks like this:

title Windows 95/98/NT/2000
root (hd0,0)
makeactive
chainloader +1

When you are booting non-Linux operating systems (most likely Windows), you usually will need to use
the makeactive and chainloader keywords. The makeactive keyword is used to set this partition as
GRUB's main root filesystem device. The chainloader command is used so that the bootloader can call

another bootloader (usually the Windows boot manager) instead of loading a Linux kernel.

If your boot manager is hidden, it is probably because your distribution set it to be hidden. Look for the
parameter hiddenmenu in your grub.conf file, and comment it out if you want to see your boot menu.
You might also have a default option, which specifies the stanza in the file you want to be your default

boot configuration. As an example, if you want the first stanza to be the default, use this:

default 0

1.2.2. Configure the Mac Bootloader

Mac versions of Linux use a different bootloader called yaboot. Although not quite as flexible as GRUB,
yaboot takes a similar stanza-based approach to specifying kernels. Here is a typical Linux kernel on the
first partition (you should adjust the path on the image line when your kernel is located elsewhere):

image=/vmlinux-2.6.8.1
 label=NewLinux
 read-only
 append="quiet splash"
 initrd=/initrd.img-2.6.8.1

To enable your system to boot Mac OS X as well, simply add the following option to /etc/yaboot.conf
and indicate the correct partition that contains Mac OS X (you can determine the right partition by
running a partitioning tool such as cfdisk):

macosx=/dev/
hda4

When you have edited the file, you need to run the ybin program to write the boot sector. If you use the
-v option, you can see the output of the command:

root@bar:~# ybin -v

1.2.3. Boot from a CD-ROM

The vast majority of Linux distributions are available on CD. Their installation program loads
automatically when you boot the computer with the CD in the drive. On newer machines, this process is
not a problem (though you might need to enter your BIOS setup program and select the CD drive as the
first bootable device). On older computers, this can be an issue because some computers do not support
a bootable CD drive. Another common complaint with old secondhand computers is that the BIOS might
be password-protected but no one knows the password. This means you can't make the CD drive the
first boot device.

Many Linux distributions get around this problem by including a floppy-disk boot image that you can
use to create boot floppies. These floppies "jump-start" the installation process and give access to the
CD despite any hardware shortcomings. The CDs usually include a tool called rawrite that can be used
to copy the boot images to the floppies. If this works with your distribution, the problem is solved, but
unfortunately not all distributions include a floppy boot image.

Another solution is to use a tool called the Smart Boot Manager (http://btmgr.sourceforge.net). This
useful little utility creates a boot sector on a floppy disk that allows you to boot from the CD and use the
CD installation program. To use the Smart Boot Manager, you need to download it from
http://btmgr.sourceforge.net/download.html and unpack it to your disk. I recommend downloading the
latest version that is statically linked. The software includes a program you can use to install the Smart
Boot Manager to the floppy disk in /dev/fd0:

foo@bar:~$ sbminst -t us -d /dev/fd0

This command installs the English theme into the boot sector on device /dev/fd0. A number of different

languages are supported across the different themes. These include:

cz = Czech theme

de = German theme

es = Spanish theme

fr = French theme

hu = Hungarian theme

pt = Portuguese theme

ru = Russian theme

us = English theme

zh = Chinese theme

When you boot into the Smart Boot Manager, you can configure the software from within the program
with a simple-to-use text-based windowing interface.

http://btmgr.sourceforge.net
http://btmgr.sourceforge.net/download.html

Hack 2. Kill and Resurrect the Master Boot Record

How to (carefully) back up and restore the Master Boot Record (MBR).

The MBR is a 512-byte segment at the very beginning (the first sector) of a hard drive. This segment
contains two major parts: the boot code in the first 446 bytes and the partition table (plus a 2-byte
signature) in the remaining 66 bytes. When you run lilo, grub-install, or fdisk /mbr in DOS, it writes to
these first 446 bytes. When you run cfdisk or some other disk-partition program, it writes to the
remaining 66 bytes.

Writing directly to your MBR can be dangerous. One typo or mistake can make
your entire system unbootable or even erase your entire partition table. Make
sure you have a complete backup of your MBR, if not your full hard drive, on
other media (like a floppy or anything other than the hard drive itself) before you
try any potentially destructive commands.

The MBR is very important and crucial for booting your system, and in the case of your partition table,
crucial for accessing your data; however, many people never back up their MBR. Use Knoppix to easily
create backups of your MBR, which you can later restore in case you ever accidentally overwrite your
partition table or boot code. It is important to double-check each command you type, as typing 466
instead of 446 can mean the difference between blanking the boot code and partially destroying your
partition table.

1.3.1. Save the MBR

First, before you attempt anything potentially destructive, back up the current MBR. Boot into Knoppix,
and type the following command into a terminal:

knoppix@ttyp0[knoppix]$ sudo dd if=
/dev/hda
of=/home/knoppix/mbr_backup
bs=512 count=1

Change /dev/hda to match the drive you wish to back up. In your home directory, you should now see

a 512-byte file called mbr_backup. Dd is used to create images of entire hard drives, and in this case, a
similar command is used; however, it contains two new options: bs and count. The bs (byte size)

option tells dd to input and output 512 bytes at a time, and the count option tells dd to do this only
once. The result of the command is that the first 512 bytes of the drive (the MBR) are copied into the
file. If for some reason you only want to back up the boot sector (although it's wise to always back up
the partition table as well), replace 512 with 446. Now that you have backed up the MBR, copy it to a
safe location, such as another computer or a CD-ROM.

The full 512-byte copy of the MBR contains the partition table, so it gets out of
sync whenever you change partitions on your drive. If you back up the full MBR,
be sure to update your backup whenever you make partition changes.

1.3.2. Kill the MBR

Now you should know how to totally destroy the MBR. To do this, simply use the same command you
used to back up an MBR, but replace the input file with /dev/zero and the output file with the drive,
overwriting each byte of the MBR with zero. If you only want to blank your boot code, type:

knoppix@ttyp0[knoppix]$ sudo dd if=/dev/zero of=/dev/hda bs=446 count=1

To clear the complete MBR, including the partition table, type:

knoppix@ttyp0[knoppix]$ sudo dd if=/dev/zero of=/dev/hda bs=512 count=1

While blanking the partition table in effect prevents you from accessing files on the drive, it isn't a
replacement for proper wiping of the complete drive, because the files are still potentially retrievable
from the drive. Even the partition table itself is recoverable with the right tools.

1.3.3. Resurrect the MBR

If you deleted your boot sector in the last section, you probably want to restore it now. To do this, copy
the backup you made earlier to your home directory in Knoppix and run:

knoppix@ttyp0[knoppix]$ sudo dd if=/home/knoppix/mbr_backup of=
/dev/hda

bs=446 count=1

Because of the bs=446 element, this command only restores the boot code in the MBR. I purposely left

out the last 66 bytes of the file so the partition table would not be overwritten (just in case you have
repartitioned or changed any partition sizes since your last MBR backup). If you have accidentally
corrupted or deleted your partition table, restore the full 512 bytes to the MBR with:

knoppix@ttyp0[knoppix]$ sudo dd if=mbr_backup of=
/dev/hda
bs=512 count=1

1.3.4. How Do I fdisk/mbr?

Knoppix also provides a useful tool called install-mbr that allows you to manipulate the MBR in many
ways. The most useful feature of this tool is that it can install a "default" master boot record on a drive,
which is useful if you want to remove lilo or grub completely from the MBR so Windows can boot by
itself, or so you can install Windows to a hard drive that previously used Linux. The results are the same
as if you were to type fdisk /mbr in DOS. To remove the traces of lilo or grub from your MBR, run:

knoppix@ttyp0[knoppix]$ sudo install-mbr
/dev/hda

Replace /dev/hda with your drive.

1.3.5. See Also

The install-mbr manpage by typing man install-mbr in a console.

Kyle Rankin

Hack 3. Bypass the Boot Manager

Save your system from a broken or missing kernel.

Of all the fantastic things you can do with your Linux box, one of the most nerve-wracking activities is
changing or upgrading a kernel. This not only involves the archaic process of compiling the kernel itself
[Hack #88], but it also requires you to update your bootloader so that you can actually use the new
kernel. Updating the bootloader often involves editing a complex configuration file in which one wrong
change can lead to a system that won't boot. Perhaps nothing is more worrisome in the Linux world
than a computer containing all your important work and files that doesn't boot, because you screwed up
the bootloader. Worrisome as it is, there is a useful hack you can use to get around the bootloader to
boot a working kernel, fix the broken configuration file, and restart a healthy, working system.

1.4.1. Bypassing the Installer

The key to restoring your sanity when confronted with a broken kernel is to use the installation disk you
used to install Linux on your computer in the first place. Every installation disk boots a generic kernel
from the CD-ROM to perform the installation routine. Many of the install disks for distributions such as
Debian, Ubuntu, Mandrake, Red Hat, and others include a slim-line shell called BusyBox that you can
use to sneak behind the installer and fix your system.

When you run the CD-ROM-based installation program, nothing on your hard disk is affected until you
get to the partitioning part of the program. Just before this section, jump to another virtual terminal by
pressing Ctrl-Alt-F(n) (such as Ctrl-Alt-F2). If you are installing Linux on a Mac, this can be a little
trickier, because you need to press the Apple Option Key-F(n)-F(n). These key combinations switch you
to a blank screen where you see a root shell. This shell is a substantially cut-down version of a normal
shell, but it has the essential commands to navigate directories, mount disks, and use an editor to
change files.

1.4.2. Mounting Disks

Before you can fix the bootloader, you need to identify the problem that is preventing your system from
booting. In many cases, the problem occurs because the kernel files in /boot do not have the same
name/location as specified in the bootloader configuration. This can occur if, for example, you specify in
your bootloader configuration that your kernel is called vmlinux, but when you installed a new kernel,
the original was automatically renamed by the installer to vmlinux.old, thus breaking the bootloader
configuration because the bootloader no longer contains the correct kernel name. When this occurs, first
you need to access /boot and check the names of your kernel and associated files.

To do this, mount /boot. First, create a new directory for the mount point on your hard disk:

foo@bar:~# mkdir /bootmnt

Now you can mount your hard disk's boot partition using the notation /dev/discs/disc[disk

number]/part[partition number]. For example, mount the third partition on the first disk with the

following:

foo@bar:~# mount /dev/discs/disc0/part3 /bootmnt

With your boot partition mounted to /bootmnt you can note the names of your kernels and associated
files (such as initrd.img files). Now you need to mount the main root partition so that you can modify
your bootloader configuration file. First, create the mount point:

foo@bar:~# mkdir /rootmnt

Now mount it:

foo@bar:~# mount /dev/discs/disc0/
part4
/rootmnt

Of course, your root partition might be something other than part4 as specified in this command. With

the partition mounted in /rootmnt, you need to change the root partition to that mount point so that
you can specify a different root partition from the one the installer is running. This will enable you to
access your root partition and run commands from it. To do this, use the chroot command on

/rootmnt:

foo@bar:~# chroot /rootmnt

When you have run this command, take a look at the directory structure with ls, and you will see that

your normal root partition is visible.

At this point in this process, you have access to your normal range of applications, and if you have a
network connection, you can use this opportunity to copy important files and directories to another
computer, just in case you can't work out how to fix your kernel or bootloader problem. You can find
more information on making network backups with scp and rsync in [Hack #83] .

To restore your system to its previous working form, you can enter /etc and edit the configuration file
for the bootloader using the notes of the filenames that you took from the /boot partition earlier. Then
run the command to re-create the bootloader (such as lilo or ybin) and reboot the machine.

1.4.3. Hacking the Hack

If you system is failing to boot the kernel, it could be that your kernel has become corrupted or is
incorrectly installed. At this point, you should try to reinstall the kernel from a package if one is
available. As root, you can do this with an RPM file using the following code:

foo@bar:~# rpm -Uvh kernel.rpm

You can reinstall a Debian package using this code:

foo@bar:~# dpkg -i kernel.deb

Instructions to compile a kernel are in [Hack #88] . You can compile a new kernel from the chrooted

environment you used earlier in this hack.

Hack 4. Set a Bitmap Boot Screen for LILO

You can have a splash screen for just about everything these days, including your bootloader.

Most people use either the time-honored LInux LOader (LILO), or the GRand Unified Bootloader
(GRUB). This hack shows you how to download a LILO splash screen and configure it to appear with
LILO when you boot your machine. This hack assumes your video card supports VESA frame buffers that
will render a 255-color, 640x480 graphics screen in bitmap format (practically every decent graphics
card made in the last several years works). It is not necessary to configure your Linux kernel to support
frame buffers. When LILO displays the splash screen, the Linux kernel isn't loaded yet, so LILO cannot
depend on the kernel for frame-buffer support.

On the other hand, this hack works nicely with all the other frame-buffer hacks, such as [Hack #8] and
[Hack #20], so you might want to combine all these hacks to get the most out of your card's frame-
buffer support.

You won't find a cornucopia of preconfigured LILO splash screens on the Internet, but a few do exist.
Most of the downloads include a README file that includes instructions on the lines you need to add to
lilo.conf to make the LILO boot splash work. Some of the URLs listed here have the instructions written
on their respective web pages. Here are most of the splash screens available on http://www.kde-
look.org:

Tux Lilo Selection Screen

http://www.kde-look.org/content/show.php?content=16756

Lilo Waterdrops Theme

http://www.kde-look.org/content/show.php?content=16739

EnterTheLinux lilo/grub splash screen

http://www.kde-look.org/content/show.php?content=11098

KeramikBlue Lilo Bootscreen

http://www.kde-look.org/content/show.php?content=2492

Slackware Lilo splash screen/Slackware Bootsplash Lilo

http://www.kde-
http://www.kde-look.org/content/show.php?content=16756
http://www.kde-look.org/content/show.php?content=16739
http://www.kde-look.org/content/show.php?content=11098
http://www.kde-look.org/content/show.php?content=2492

http://www.kde-look.org/content/show.php?content=17113

http://www.kde-look.org/content/show.php?content=15643

http://www.kde-look.org/content/show.php?content=16739

This hack uses the first splash screen in the list, the Tux Lilo Selection Screen, as an example. Visit the
URL and download the file. Then log in as root, extract the file, and copy the bitmap file (*.bmp) to the
/boot directory:

$ su -
Password:
tar zxvf 16756-Lilo-Tux.tar.gz
lilo-boot-tux.bmp
README.TXT
cp lilo-boot-tux.bmp /boot

Now view the README.TXT file. In it are the instructions to put the following lines in your lilo.conf file.
Start up your favorite editor and add these lines:

install=bmp
bitmap=/boot/lilo-boot-tux.bmp
bmp-table=48,15,1,12
bmp-colors=250,,,255,,
bmp-timer=300p,184p,250,,

These lines tell LILO to install the ability to display a bitmap and instruct LILO as to which graphical
bitmap file to use. The bmp-table, bmp-colors, and bmp-timer lines tell LILO where to place the menu

and countdown timer (after which LILO automatically boots the default selection), and which colors to
use. [Hack #5] provides more details about these lines.

Now run the lilo -v command to effect the change:

lilo -v

Reboot your system, and you should see a brand-new graphical LILO startup screen.

If you are running certain versions of SUSE Linux, you can use a special version of
LILO to display animated LILO boot splash screens. You can get more information
about this from http://www.gamers.org/~quinet/lilo/, along with some sample
animated LILO boot graphics.

The next hack provides complete instructions on how to create your own LILO boot splash [Hack #5].

http://www.kde-look.org/content/show.php?content=17113
http://www.kde-look.org/content/show.php?content=15643
http://www.kde-look.org/content/show.php?content=16739
http://www.gamers.org/~quinet/lilo/

Avoid downloading LILO boot screens that are designed to use the message=

command in the lilo.conf file. This technique works on only a few distributions of
Linux, and it is difficult to find all the utilities necessary to make it work. Because
the bitmap approach is at least as effective (if not better), it's probably a waste of
time trying to make the message= technique work.

If you can't resist and you do try using the message= technique, note that
message= and the bitmap approach are mutually exclusive. You cannot use both

simultaneously.

Hack 5. Create Your Own LILO Boot Splash

Create or modify any picture for use as a LILO boot splash background.

You can easily start from scratch and create any kind of LILO boot splash background. Just make sure
you consider the following:

The image resolution must be 640x480.

The image must be a bitmap.

The image must comprise 255 colors or less, and it must be indexed.

You should plan to create or allocate two areas on the screenone for the LILO menu and one for
the LILO timer, which ticks down until it automatically boots.

This example bases the LILO boot screen on a KDE screenshot with a Konsole window open (Figure 1-
1). The idea is to place the LILO boot menu within the Konsole window, and the countdown timer where
the clock appears on the KDE panel. I set up the KDE screen the way I wanted it to look. If you take a
similar approach, do not use a complex and colorful background, because it probably will not translate
well into 255 colors. I recommend you use the Gimp to take the screenshot and modify it for use as the
LILO boot screen. [Hack #12] shows you one method of taking screenshots. Here's how to do it with
the Gimp:

Arrange the KDE screen like the one shown in Figure 1-1.1.

Switch to another virtual desktop, and start the Gimp (starting the Gimp in another virtual desktop
ensures that the Gimp won't appear in the screenshot).

2.

Select File Acquire Screen Shot. This brings up a dialog box.3.

Select the Whole Screen radio button.4.

Give yourself about 5 seconds by entering 5 in the "Grab after [] Seconds Delay" field.5.

Click the OK button.6.

Switch to the virtual desktop you arranged to be the boot screen, and do it in less than 5 seconds!
The Gimp should snap a screenshot and present it for your use.

Figure 1-1. Converted KDE screenshot

7.

The next thing you want to do is convert this screen to meet the LILO requirements for a 640x480
bitmap with 255 indexed colors. Here's how to do that:

Right-click the image in the Gimp window, and select Image Scale Image.8.

Type 640 in the New Width field and 480 in the New Height field.9.

Change the Interpolation combo box control to read Cubit (Best).10.

Click the OK button.11.

Right-click the image again, and select Image Mode Indexed.12.

Change the number of colors to 255.13.

Check the No Color Dithering radio button.14.

Click the OK button.15.

This should create a blank area where the clock appears, because that is where the default countdown
timer will go. Generally, you would choose a color similar to the panel color, but for this example, you
can play it safe by using the color white. Here's how to create that blank area using the Gimp:

Select the entire rectangular area where the clock appears.1.

Right-click the image and select Edit Fill with BG color (which is white by default).2.

See Figure 1-2 for an example of what the result should look like.

Figure 1-2. Bitmap ready for LILO

Now you need to know the XY coordinates on the picture for those places you plan to place the menu
and the timer.

Position your mouse cursor approximately in the upper-left corner of the black inner portion of the
Konsole (somewhere beneath the prompt). Look at the lower-left corner of the Gimp window, and you
should see the coordinates for your mouse position, which will be the upper-left corner of your boot
menu. My selection indicates the coordinates 55, 214. Here is the definition of the LILO menu you need
to put in the lilo.conf file:

bmp-table=<x>,<y>,<columns>,<lines>

Let's assume you have up to six entries in your LILO menu. You need only one column to display that
many. So, plug in the coordinates, along with these details:

bmp-table=55,214,1,6

Now you need to know the coordinates for the timer. Position your mouse cursor in the upper-left area
of the white rectangle where the clock used to be. This is where the timer will appear. On my screen,
the coordinates I chose were 582, 455. The format of the timer definitions looks like this:

bmp-timer=<x>,<y>,<fg color>,<bg color>,<shadow color>

You know the coordinates already, so you can fill in that much:

bmp-timer=582p,455p,<fg color>,<bg color>,<shadow color>

Note that the coordinates are followed by the letter p, which tells LILO that the numbers represent pixel

coordinates.

Now it's time to pick colors.

1.6.1. Picking Colors

Here's the only really tricky part of creating the boot image specification for lilo.conf. You have to
specify the colors to use for the menu and the timer. You specify these colors using an indexed palette.
There is no standard palette of colors; the Gimp creates one based on the colors in your particular
image. When you converted the image to use 255 indexed colors, the Gimp created a palette for the
255 colors, and you must use one or more of those colors for your menu and timer.

Here's how to display the palette for your image: right-click the image and select Dialogs Indexed
Palette.

Here's the trick to defining colors for your menu and timer. Click one of the colored blocks in your
palette. You should see the Color Index Number field change to the number of that block. I happened to
click a light yellow block, and that was block number 235. Click other colors and you'll see the color
index number change accordingly. The color index number is the number you will use to define the
colors for your boot menu and timer.

Let's make the color of the timer black on white, with no shadow. On the Index Palette Colormap, find a
square that is white and click it. Make a note of the color index number (in my case the number is 254).
Click a square that is black and note the color index number. In my case, the black square has a color
index number of 0. Now that you have these color index numbers, you can finish the bmp-timer

definition, which defines the foreground as black (color index 0) and the background as white (color
index 254):

bmp-timer=582p,455p,0,254,

The last comma has nothing after it, because you are not specifying a shadow color.

Next, define the colors for the boot menu options, which is the menu you use to select which operating
system to boot. The format of that line is as follows:

bmp-colors=<fg>,<bg>,<sh>,<sel-fg>,<sel-bg>,<sel-sh>

The foreground color of the menu selection is defined by the <fg> option; <bg> is the background and
<sh> is the shadow for the text, if you want a shadow. The color of the foreground of the selected menu
entry is controlled by the <sel-fg> option; <sel-bg> is the color of the background of the selected
entry, and <sel-sh> is the color of the text shadow, if you want one.

Assume you want the menu text colors to be white on black, with no shadows. You already have color
index numbers for black and white (0 and 254, respectively), and you know to leave the entry blank for
no shadow. So, here is what the line should look like at this point:

bmp-colors=254,0,,<sel-fg>,<sel-bg>,<sel-sh>

Now you need to define the colors for the current highlighted menu selection. Because the menu
background is black, I picked something that would create a sharp contrast for the highlighted entry:
purple text on a yellow background.

Click a purple block in the indexed palette and note the color index number. The index number in my
case is 74. Click a light yellow block and make a note of that color index number. In my case, that
number is 242. There is no shadow, so leave the shadow entries blank. Now you can fill in the rest of
the information for the bmp-colors line:

bmp-colors=254,0,,74,242,

Logged in as root, save the image as lilo-kde.bmp and copy it to the /boot directory:

cp lilo-kde.bmp /boot

Now you need to edit /etc/lilo.conf. Here is the complete entry you want to put in the lilo.conf file for
this LILO splash screen. You might have to adjust some of the coordinates and color index numbers
depending on how you fashioned your KDE screenshot:

install=bmp
bitmap=/boot/swirl.bmp
bmp-table=55p,214p,1,6
bmp-colors=254,0,,74,242,
bmp-timer=582p,455p,0,254,

Now run lilo to rebuild the boot record and complete the job:

lilo -v

Reboot and you should see the LILO boot menu appear in the Konsole area and the timer appear in the
area where the clock was on the panel.

Here's a summary of the steps to follow to create a LILO boot splash image:

Download or create your own 640x480 image.1.

Set the image to have an indexed palette of 255 colors or less.2.

Choose two areas of the image: one for the menu, and one for the timer.3.

If necessary, create rectangles suitable for the menu and timer.4.

Find the coordinates where you will put the menu and timer.5.

Choose the colors for the menu entries, selected menu entries, and timer, and find the numbers
for those colors by selecting the appropriate squares in the Index Palette Colormap.

6.

Save the image as a bitmap file and copy it to /boot.7.

Create the appropriate lines in lilo.conf, based on the information you've collected.8.

Run lilo to rebuild the boot record.9.

Reboot.10.

Hack 6. Display a GRUB Boot Splash Background

Add a graphical background to your GRUB bootloader.

By default, the GRUB bootloader looks rather bland. It's a menu in a box with some instructions below
the menu. It is possible, however, to customize GRUB to display a graphical background. This hack
blends nicely with other custom screen hacks such as [Hack #8] and [Hack #20], because each lets
you customize the look of your screen at the different stages of booting up Linux, and starting up
terminals or window managers.

It's hard to find many premade backgrounds for GRUB. You can view thumbnails of some available
images at http://ruslug.rutgers.edu/~mcgrof/grub-images/images/, and download those images from
http://ruslug.rutgers.edu/~mcgrof/grub-images/images/working-splashimages/. Place the image in the
/boot/grub directory.

For example, let's assume you downloaded the file frag.xpm.gz. Log in as root, and copy that file to the
/boot/grub directory:

cp frag.xpm.gz /boot/grub

Now use your favorite editor to add or change the following line in your /boot/grub/grub.conf file:

splashimage=(hd0,0)/boot/grub/frag.xpm.gz

The preceding line assumes that your /boot directory is located on the first partition on the first disk on
your system. Change (hd0,0) to point to the disk and partition where your /boot directory resides, if it

is different from the example.

Reboot and voilà: you now have a new background splash screen for GRUB. [Hack #7] provides full
details on how to make your own personal backgrounds.

http://ruslug.rutgers.edu/~mcgrof/grub-images/images/
http://ruslug.rutgers.edu/~mcgrof/grub-images/images/working-splashimages/

Hack 7. Create a GRUB Boot Splash Background

Create your own personalized boot splash backgrounds for GRUB.

The default GRUB bootloader screen is rather bland, but you can spice it up a little by creating your own
custom graphical background screen for the bootloader. GRUB imposes a number of limitations on the
image size and number of colors. It also doesn't let you move the menu. The menu appears in a
rectangle near the top of the screen, with some text instructions below the menu. This makes it
relatively easy to create a graphical background screen for the GRUB bootloader, because you can focus
primarily on making the bottom one-third of the screen interesting. That is not to say you cannot use
other areas of the screen, but you should be careful. For example, don't make it difficult to read the
GRUB instructions by placing complex graphics behind the text.

Here are the rather strict requirements for the image:

It must be sized at 640x480.

It must be a .xpm format image file (gzip compression is optional).

It must contain no more than 14 colors.

Most people will cringe at the 14-color limit, but it is rather amazing what you can do with just 14
colors. Cartoon images are quite suitable for this narrow range of colors, and the narrow range of colors
to represent the official Linux penguin (Tux) works fine.

Find or create any image you want to try as a background for GRUB. If you create an image yourself,
it's best to create a 640x480 image and use as few colors as possible so that you don't lose the fidelity
of the image when you later reduce it to 14 colors. Don't worry about using your graphics editor to limit
yourself to 14 colors, however. It is possible to use the Gimp to reduce your image to use 14 colors,
which can be a good way of fine-tuning the results you want.

Here is what you need:

A graphics editor, such as the Gimp, if you want to create or modify an image.

You must install ImageMagick if it is not already installed. Nearly all Linux distributions provide
this on the install CD, and you can use your preferred package manager to install it.

Suppose you have found or created the image myimage.png. If you have ImageMagick installed, all you
need to do to prepare the image is log in as root and issue these commands:

convert myimage.png -colors 14 -resize 640x480 myimage.xpm

The convert command recognizes the extension png and knows what format it must convert the image
from. It also recognizes the extension xpm and knows what format to convert the image to. The -
colors 14 switch reduces the number of colors in the image to 14. If the image isn't already sized at

640x480, the switch -resize 640x480 will do that for you.

Next, compress the image (this step is optional, but it saves disk space, which is useful if you plan to
install GRUB on a floppy disk and use the floppy as your bootloader). Then copy the image to the
/boot/grub directory (if you have to mount the /boot directory after starting up Linux, make sure you
have it mounted before you start copying files into the /boot/grub subdirectory):

gzip
myimage.xpm

cp
myimage.xpm.gz
 /boot/grub

Now use your favorite editor to add this line to your grub.conf file:

splashimage=(hd0,0)/boot/grub/myimage.xpm.gz

Reboot and you should see your image as the background for GRUB.

Hack 8. Jazz Up Your Debian System Boot

Boot Debian with an optional graphics screen and progress bar, and spiff up your text
consoles by running them in graphics mode.

Here's how to add a graphical boot splash to your Debian distribution, the only popular Linux
distribution that lacks a built-in boot splash. Windows and Mac OS X have a graphical boot process, as
do all the most popular versions of Linux, including Fedora Core (Red Hat), SUSE, and Mandrake.
Debian lacks one. (OK, to be perfectly fair, so does Slackware, but currently there's no simple solution
for bringing a graphical boot screen to Slackware.) Here's how to bring your Debian system up-to-date
with the rest.

You must use a 2.6 version of the Linux kernel for the boot splash to work. If you are using a 2.4 or
earlier version of the Linux kernel and are not willing to upgrade to a 2.6 version, you cannot use this
hack. This hack also assumes you know how to configure, build, and install a new Linux kernel, and that
you already have chosen a version of the 2.6 Linux kernel source code and have that source code on
your hard drive. [Hack #88] provides instructions on how to build and install a Linux kernel if you
have never done so. Once you know how to build and install a Linux kernel, you will need to build your
kernel with support for frame-buffer graphics, frame-buffer graphics-based consoles, and graphical boot
splash screens to make this hack work.

The boot splash portion of this hack gives you a choice of booting in silent mode or verbose mode.
Silent mode displays a graphical background (such as a picture of Tux, the official Linux penguin), and a
progress bar to give you a rough idea of where you are during the boot process. You can press F2 at
any time to switch to verbose mode, where you see exactly what is happening at boot time. When the
boot process is finished, all your virtual consoles work in frame-buffer graphics mode.

Whether you boot to a console or to a graphical login manager, you always have a number of virtual
text consoles available to you. You can switch between them by pressing Ctrl-Alt-F1 to get to the first
virtual console, Ctrl-Alt-F2 to get to the second, and so on. The difference between a frame-buffer
console and a normal console is that the frame-buffer console works in graphics mode, which allows you
to display more text on the screen (using smaller fonts), yet keep the text very sharp and readable. The
consoles are still primarily for text-based use, but because they are running in graphics mode, you can
also have a graphical background behind the text.

At the time of this writing, two substantially different types of patch sets to the Linux kernel are
available for boot splash support. The patch set you need for this particular hack is the one that works
now, but it is slowly being phased out in favor of an approach that requires far fewer patches to the
kernel. This latter approach isn't quite ready for Debian yet. Keep your eye on the web site
http://alioth.debian.org/. I have been working with other Debian developers to create a more modern
boot splash package, and it should eventually show up on that site.

For now, however, you need to work with what's out there. Even so, it's difficult if not impossible to find
kernels prepatched or precompiled with the kind of frame-buffer boot splash support you need for this
older approach to boot splash. So, you have to patch and compile your own Linux kernel to make this
work. You can download a patch from http://www.bootsplash.de/files.

Log in as root and change to the directory /usr/src:

http://alioth.debian.org/
http://www.bootsplash.de/files

$ su -
Password:
cd /usr/src

Choose the patch that matches the 2.6 kernel you are using, and download that patch to the directory
/usr/src. For this example, let's assume you are using the Linux kernel 2.6.8.1, so download the file
bootsplash-3.1.4-sp3-2.6.8.1.diff.

It's always good practice to do a dry run with the patch process just to make sure the patch will apply

cleanly:

cd /usr/src/linux-2.6.8.1
cat ../bootsplash-3.1.4-sp3-2.6.8.1.diff | patch -p1 --dry-run
patching file drivers/char/keyboard.c
patching file drivers/char/n_tty.c
patching file drivers/char/vt.c
patching file drivers/video/Kconfig
patching file drivers/video/Makefile
patching file drivers/video/bootsplash/Kconfig
patching file drivers/video/bootsplash/Makefile
patching file drivers/video/bootsplash/bootsplash.c
patching file drivers/video/bootsplash/bootsplash.h
patching file drivers/video/bootsplash/decode-jpg.c
patching file drivers/video/bootsplash/decode-jpg.h
patching file drivers/video/bootsplash/render.c
patching file drivers/video/console/fbcon.c
patching file drivers/video/console/fbcon.h
patching file include/linux/console_struct.h
patching file include/linux/fb.h
patching file kernel/panic.c

It looks like there are no errors. Do it again for real by running the patch command, without the -dry-
run option:

cat ../bootsplash-3.1.4-sp3-2.6.8.1.diff | patch -p1
patching file drivers/char/keyboard.c
patching file drivers/char/n_tty.c
patching file drivers/char/vt.c
patching file drivers/video/Kconfig
patching file drivers/video/Makefile
patching file drivers/video/bootsplash/Kconfig
patching file drivers/video/bootsplash/Makefile
etc...

Now it's time to configure the kernel. Because this hack assumes you have already configured and
compiled this kernel without the boot splash feature, all you need to do is configure the boot splash
feature and the other kernel features on which boot splash depends.

1.9.1. make menuconfig

When you use make menuconfig to configure your kernel, you have to follow the menu options. Here

are the menu steps you should follow to set up your kernel to support boot splash and the frame buffer:

Select Device Drivers Graphics support Support for frame buffer devices.1.

Select the "VESA VGA graphics support" option and press Y.2.

Select "Video mode selection support" and press Y (you should see the selection show [*]).3.

Select "Console display driver support" and press Enter.4.

Select "Video mode selection support" and press Y, after which you should see [*].5.

Select "Framebuffer Console support" and press Y, after which you should see <*>.6.

Exit from this menu. Now select Bootsplash Configuration, and when you see the only selection,
"Bootup splash screen," press Y (you should see the selection show [*]).

7.

You might see a frame-buffer driver specifically written for your video card and be
tempted to use it instead of the VESA VGA driver. This can lead to serious
problems if you also use an accelerated graphics driver for your video card. For
example, never select "nVidia riva" frame-buffer support if you plan to use the
third-party NVIDIA accelerated graphics drivers. These two drivers do not play
well together, and you're sure to have video crashes.

If your system uses an initial RAM disk (initrd), now create that initial RAM disk as you normally would.
Make a note of the name of the initrd file you create. You'll need it later. It's easiest to remember it if
you put the kernel version in the name, such as initrd.img-2.6.8.1. For example, create the initrd file
with a command such as this (assuming your root partition is /dev/hda1):

mkinitrd -o initrd.img-2.6.8.1 -r /dev/hda1 2.6.8.1

1.9.2. Install Boot Splash and the Boot Splash init Scripts

Now that your kernel has support for frame buffers, frame-buffer consoles, and boot splash, you must
install the boot splash utilities and boot splash startup scripts.

Use your favorite editor to modify your /etc/apt/sources.list file to include the following line:

deb http://www.bootsplash.de/files/debian unstable main

Then update the package database and install the necessary files:

apt-get update
apt-get install sysv-rc-bootsplash
apt-get install bootsplash bootsplash-theme-newlinux

If you are running a Debian-based distribution instead of true-blue Debian, you
will probably have problems installing these packages. You must convert your
Debian-based distribution into a true Debian system for these instructions to
work. This process isn't difficult, but it is different for each Debian-based product,
and an explanation of the necessary steps is beyond the scope of this book.

When Debian installs the bootsplash package, the installation dialog presents a list of existing initrd
images it finds, and it asks you to make a choice about your initrd file. If you created an initrd file called
initrd.img-2.6.8.1, as in the previous example, select that file from the list. In this case, the installation
program will append the boot splash information to your existing initrd file.

If you do not have or need an initrd file for this kernel, select none from the list. In this latter case, the

configuration program creates an initrd file for you called initrd.splash.

1.9.3. Set Up Your Bootloader

Most people use either LILO or GRUB as their bootloaders, so let's take a look at both. But first, you
must decide what screen resolution and color depth you want for your frame-buffer consoles. The
bootloader uses a command something like the following:

vga=791

The decimal number 791 sets the console to 1024x768 with 64,000 colors. This is usually the safest

number to use (not all video cards support all combinations of resolutions and color depths). You can
experiment with others. Table 1-1 shows you which numbers represent the various resolutions and color
depths.

Table 1-1. Frame-buffer decimal codes

Color depth 640x480 800x600 1024x768 1280x1024

8-bit 769 771 773 775

15-bit 784 787 790 793

16-bit 785 788 791 794

24-bit 786 789 792 795

The LILO bootloader is controlled by the settings in the /etc/lilo.conf file. These settings determine
which operating system or kernel version your machine boots with, and which configuration options are
passed to Linux at boot time.

Here is a sample entry in the /etc/lilo.conf file that supports the boot splash and frame-buffer console.
Notice the line that sets the vga mode to the decimal number 791. This number specifically refers to the

frame-buffer console resolution 1024x768 at 16-bit (64,000 colors) color depth (see Table 1-1). The
line append="splash=silent" tells the boot splash sequence not to show all the steps Linux takes

during boot time. Instead, you will see a progress bar. If you would rather see all the boot information,
change that line to append="splash=verbose". If you choose "splash=silent", you can still press the

F2 key during the boot process to switch to verbose mode. However, once you press F2 to switch to
verbose mode, you cannot switch back to silent mode.

If you have an initrd image, such as initrd.img-2.6.8.1, set up your LILO entry like this (substitute your
kernel version where appropriate):

image=/boot/vmlinuz-2.6.8.1
 label=Linux
 root=/dev/hda1
 initrd=/boot/initrd.img-2.6.8.1
 append="splash=silent"
 vga=791

If you do not have an initrd image and you selected none during boot splash configuration, set up your

LILO entry more like this (substitute your kernel version where appropriate):

image=/boot/vmlinuz-2.6.8.1
 label=Linux
 root=/dev/hda1
 initrd=/boot/initrd.splash
 append="splash=silent"
 vga=791

Whenever you modify your /etc/lilo.conf file, you must run the command lilo for the changes to take

effect.

Always include a known working boot configuration in your lilo.conf file in case
the new one does not work. That way you can reboot and choose the working
selection to make changes to fix any problems you find.

If you use GRUB as your bootloader, you should have a directory called /boot/grub on your system. This
directory contains the files GRUB needs to work, such as the GRUB configuration file. The grub.conf file
is the one that determines which operating systems or Linux versions you can choose, and this is the file
you will need to modify to enable the boot splash.

Here is a sample entry in the grub.conf file, assuming you have an initrd file and you chose it during
boot splash configuration:

title Debian Splash
 root (hd0,0)
 kernel /boot/vmlinuz-2.6.8-1 ro root=/dev/hda1 vga=791 splash="silent"
 initrd /boot/initrd.img-2.6.8-1

Here is a sample entry in the grub.conf file, assuming you chose none during boot splash configuration:

title Debian Splash
 root (hd0,0)
 kernel /boot/vmlinuz-2.6.8-1 ro root=/dev/hda1 vga=791 splash="silent"
 initrd /boot/initrd.splash

Unlike with LILO, changes in grub.conf automatically take effect.

Always include a known working boot configuration in your grub.conf file in case
the new one does not work. That way you can reboot and choose the working
selection to make changes to fix any problems. GRUB also gives you the
opportunity to boot to a working kernel even if there is no definition for it in the
grub.conf file. Read the info file on GRUB for instructions for performing special
operations such as this.

1.9.4. Reboot

Once you have your Linux kernel compiled to support frame-buffer consoles and you have set up your
bootloader properly, it is time to reboot. If everything goes according to plan, you should see Tux, the
Linux penguin, and a progress bar that fills as the boot sequence proceeds. When your system has
finished booting, it will take you either to the first text console or the graphical login manager,
depending on how you have your system configured. When you shut down the machine, you should also
see the splash screen and the progress bar. In either case, you can press F2 to switch from silent mode
to verbose mode. You cannot switch back, however. Once you are in verbose mode, you stay in verbose
mode for the duration of that boot or shutdown sequence.

1.9.5. Graphical Consoles

If you normally boot into a text console, you should notice that you now have a graphical background
picture of Tux, the official Linux penguin. If you boot to a graphical login manager, press Ctrl-Alt-F1 to
get to the first console to see this new feature.

You can control how many consoles display this background by editing the file /etc/default/bootsplash.
Edit the following line to include whichever consoles you want to display the background:

BOOTSPLASH_TTYS="1 2 3 4 5"

Even if you do not include the number 0 in the list, console 0 (the first console) will always have the
background image.

Hack 9. Graphics on the Console

Some of you might be familiar with a picture of Tux the penguin in the upper-left corner of the screen
when your system is booting. Ever since kernel 2.2, this popular feature has graced many a Linux boot
sequence. To the untrained eye, it simply looks like a penguin, but to the trained technical eye, it is a
cunning use of the Linux frame buffer.

A frame buffer is an abstraction for graphics hardware. This abstraction provides a common set of
instructions that programs can use to access the graphics hardware on the computer. Most people see
the frame buffer as a grinning Tux when the system boots. However, there's more to the frame buffer
than a cartoon penguin. Typically, frame buffers are used to render the console graphically so that a
resolution can be set on it. Frame buffers are useful in a number of situations, some of which include
the following:

Providing a higher resolution

This allows for the display area to be much larger than before.

Greater color depth

When you use frame buffers, you can use more colors.

Bypassing X Windows

In some instances, certain Linux programs such as Mplayer can use the frame buffer immediately,
thus reducing the overhead of having to run an X Windows desktop such as KDE or GNOME. This
is suitable for use on resource-limited embedded systems.

1.10.1. Setting Up the Kernel

Support for the frame buffer comes from the kernel itself. Most stock kernels are supplied with frame-
buffer support built into them, so this shouldn't be a problem for most people. To check if your kernel
has support already, you can query it:

foo@bar:~$ grep -i config_fb /boot/config-$(uname -r)
CONFIG_FB=y

If you have frame buffers set, the line CONFIG_FB=y will be displayed (in which case you can move on to
the next section "Configuring the Bootloader"). If # CONFIG_FB is not set is displayed instead, you

will need to compile support for the frame buffer into your kernel.

1.10.2. Configuring the Kernel

Details on compiling a kernel are discussed in [Hack #88], and in this hack, I will simply discuss which
options need to be included. The first thing to do is to make sure development features have been
enabled within the "Code maturity level" options. Then, to enable frame buffers, go to the "Console
drivers" page and enable "VGA text console" and "Video mode selection" support.

There is a subsection under Console called "Frame-buffer support." Underneath that, you need to enable
"Support for frame buffer devices," "VESA VGA graphics console," and "VGA 16-color graphics console."

In addition, the subsection "Advanced low level driver options" appears under "Frame-buffer support."
Under this menu, you can enable specific levels of pixel support.

Now you can go ahead and compile the kernel.

You might see a frame-buffer driver specifically written for your video card and be
tempted to use it instead of the VESA VGA driver. This can lead to serious
problems if you also use an accelerated graphics driver for your video card. For
example, never pick "nVidia riva" frame-buffer support if you plan to use the
third-party NVIDIA accelerated graphics drivers. These two drivers do not play
well together, and you're sure to have video crashes.

1.10.3. Configuring the Bootloader

When the bootloader loads the kernel, it will pass to it the parameters which you specify and these
parameters affect how you use the frame buffer. Just like you would normally tell it which partition is
your root partition, you can do the same thing by telling the kernel the values you want to use for the
frame buffer.

When using the frame buffer, people commonly require a higher resolution for the command-line
console. To set this option, you will need to pass to the kernel the right video mode to use to enable the
frame buffer. Refer to Table 1-1 to determine the code to use for your desired video mode.

When you have determined the correct video mode to use, you can pass the kernel the vga parameter

to set the mode.

1.10.3.1 Configure LILO

To configure LILO to use a value from the table (as an example, 1024x768 with 16-bit color), edit
/etc/lilo.conf and find the following line:

vga=normal

Change this to the mode you want, which in this example is 0x317:

vga=0x317

Finally, save the file, and as root run /sbin/lilo -v.

1.10.3.2 Configure GRUB

You configure GRUB in much the same way you configure LILO. The configuration file varies from
distribution to distribution, and this is discussed in [Hack #1]. Edit your grub configuration file and
add the vga parameter on the kernel line:

title foo
 root (hd0,0)
 kernel /vmlinuz ro root=/dev/hda2 vga=0x317

Thomas Adam

Chapter 2. Console
Hacks 10-15

Hack 10. Redefine Keyboard Actions

Hack 11. Energize Your Console with Macro Music Magic

Hack 12. Take a Screenshot from the Command Line

Hack 13. Put Your Command Prompt on a Diet

Hack 14. Simplify Changing Directories

Hack 15. Colorize Files in Your Pager

Hacks 10-15

Some people actually prefer to use Linux as a desktop strictly in text mode, without running X Windows
at all. If you're among those users, this chapter is definitely for you.

Graphical desktop users have no reason to scoff at this approach. Plenty of text-mode versions of
productivity applications are equivalent to the applications most people use on a graphical desktop. For
example, the text-mode email client called Mutt is actually more powerful and flexible in handling email
than any graphical email program that I've tried. It might not have as many features as a combination
email/organizer such as Evolution has, but graphical email programs often force you through several
menus and submenus to accomplish a task that takes only one keystroke in Mutt.

If you're under the mistaken impression that you need to run a graphical desktop to use those special
multimedia and Internet keys on your keyboard, this chapter will set you straight. You can redefine your
keyboard so that your multimedia keys control your CD player, the Internet keys open your email
program or web browser, and so on. If you use your imagination, you can automate just about any
action.

This chapter focuses primarily on what you do at the virtual console. You can use some of the hacks in
the chapter (such as how to colorize files in your pager) in graphics terminals on X Windows desktops.
But you must avoid using the first two hacks with terminal emulators in X Windows; [Hack #10] and
[Hack #11] are designed specifically for the text console. Because X generally redefines the keys the
way it wants them, these console definitions will be overwritten, which means you lose the
customizations. But at least it won't hurt anything you do in X.

Hack 10. Redefine Keyboard Actions

This hack describes one of many ways you can customize the default behavior of keys and key
combinations for your keyboard. If you just want to make your special function keys on your fancy
Internet and multimedia keyboard work, take a look at [Hack #28] and [Hack #29] . But if you want
to fine-tune how keystrokes affect virtual text consoles, this is the place for you.

2.2.1. Virtual Consoles

You might recall that people used to attach several text-based terminals to minicomputers and
mainframes so that many people could access the computer at once. Each person could log in to the
computer and work on his separate text console, because he had his own text-based terminal connected
to the main computer.

Linux simulates that kind of behavior with a single terminal and several virtual consoles. Even if your
Linux-based computer starts up automatically with a graphical login screen, you can get to the first
virtual text console by pressing the key combination Ctrl-Alt-F1. If you want, you can log in and work,
using text-based programs. If you press Alt-F2 from here (or Ctrl-Alt-F2), Linux takes you to another
virtual console with another login prompt. This simulates another separate terminal hooked up to the
computer. Alt-F3 takes you to yet another virtual console and login prompt.

You actually need to use Ctrl-Alt-Fn only when switching from an X console, such
as virtual console 7. Otherwise, you can get away with just Alt-Fn.

2.2.2. Using the "Other" Alt Key

You might have noticed by now that you can switch from one text console to another only by using the
Alt key on the left side of the keyboard. It won't work if you use the Alt key on the right side of the
keyboard with F1, F2, or any other function key. This is not an accident. Linux is configured such that
the Alt key on the right side of the keyboard plus the F1 key will take you to virtual console 13. The
problem is that very few people use as many as 13 virtual consoles, and most Linux distributions don't
even enable more than 10 or 11 virtual consoles by default.

Because you don't need to use the Alt key on the right side to switch to nonactive virtual consoles, you
might as well use that Alt key in the same way the left Alt key worksto take you to virtual console 1, 2,
3, and so on. If you learn how to alter the way the keyboard is configured so that you can use the right
Alt key to switch between virtual consoles, you will begin to understand how to make other useful
changes in how your keyboard functions.

Here's how to make the change. Dump the current default key settings to a file with the following
command (you can log in as root, but a properly configured sudo should give you the right to dump the
file to the /etc directory):

$ sudo dumpkeys --keys-only >
/etc/mykeys

Now open the file (as root, preferably with sudo) with your favorite editor and locate the following
section:

keycode 59 = F1 F13 Console_13 F25
 alt keycode 59 = Console_1
 control alt keycode 59 = Console_1
keycode 60 = F2 F14 Console_14 F26
 alt keycode 60 = Console_2
 control alt keycode 60 = Console_2
keycode 61 = F3 F15 Console_15 F27
 alt keycode 61 = Console_3
 control alt keycode 61 = Console_3
keycode 62 = F4 F16 Console_16 F28
 alt keycode 62 = Console_4
 control alt keycode 62 = Console_4
keycode 63 = F5 F17 Console_17 F29
 alt keycode 63 = Console_5
 control alt keycode 63 = Console_5
keycode 64 = F6 F18 Console_18 F30
 alt keycode 64 = Console_6
 control alt keycode 64 = Console_6
keycode 65 = F7 F19 Console_19 F31
 alt keycode 65 = Console_7
 control alt keycode 65 = Console_7
keycode 66 = F8 F20 Console_20 F32
 alt keycode 66 = Console_8
 control alt keycode 66 = Console_8
keycode 67 = F9 F21 Console_21 F33
 alt keycode 67 = Console_9
 control alt keycode 67 = Console_9
keycode 68 = F10 F22 Console_22 F34
 alt keycode 68 = Console_10
 control alt keycode 68 = Console_10

The first line in the section that is relevant to the changes we want to make starts with the keycode
definition, which is keycode 59 =. A number of columns follow the equals sign, and each column

represents what is produced when you combine a modifier (such as Shift, Ctrl, etc.) with that keycode
59. F1 appears in the first column; so, when you press F1 alone (to produce keycode 59), you get F1
with no modifiers (such as Shift, Ctrl, etc.). The second column tells you what you get when you press
Shift-F1, and that result is the key F13. The third column tells you what you get when you press Altgr
(the Alt key on the right side of the keyboard)-F1, and that takes you to Console_13.

See the sidebar How to Interpret Keycode Files for a more detailed explanation as
to why the command switch --keys-only produces this particular type of

abbreviated set of definitions for your keyboard configuration.

You want to change this key combination to take you to Console_1 rather than Console_13. All you have
to do is change the definition from Console_13 to Console_1. Change Console_14 to Console_2, and

so on. Edit each starting line for every keycode definition so that the previous section looks like the

following:

keycode 59 = F1 F13 Console_1 F25
 alt keycode 59 = Console_1
 control alt keycode 59 = Console_1
keycode 60 = F2 F14 Console_2 F26
 alt keycode 60 = Console_2
 control alt keycode 60 = Console_2
keycode 61 = F3 F15 Console_3 F27
 alt keycode 61 = Console_3
 control alt keycode 61 = Console_3
keycode 62 = F4 F16 Console_4 F28
 alt keycode 62 = Console_4
 control alt keycode 62 = Console_4
keycode 63 = F5 F17 Console_5 F29
 alt keycode 63 = Console_5
 control alt keycode 63 = Console_5
keycode 64 = F6 F18 Console_6 F30
 alt keycode 64 = Console_6
 control alt keycode 64 = Console_6
keycode 65 = F7 F19 Console_7 F31
 alt keycode 65 = Console_7
 control alt keycode 65 = Console_7
keycode 66 = F8 F20 Console_8 F32
 alt keycode 66 = Console_8
 control alt keycode 66 = Console_8
keycode 67 = F9 F21 Console_9 F33
 alt keycode 67 = Console_9
 control alt keycode 67 = Console_9
keycode 68 = F10 F22 Console_10 F34
 alt keycode 68 = Console_10
 control alt keycode 68 = Console_10

Save your modifications to the file /etc/mykeys.

You're not quite done. You still have to load this new set of definitions into the system before the
modifications will work. You do that with the following command:

$ sudo loadkeys
/etc/mykeys

Now you can use either the left or right Alt key (plus a function key such as F1) to switch between the
most frequently used virtual consoles. The downside, if there is one, is that you can no longer get to
Console_13 or higher by pressing Altgr-F1, Altgr-F2, etc. In most cases, however, Linux does not
activate consoles above Console_11, so you'll never miss the lost capability.

If you want to have your computer automatically reload the new key definitions at startup, see the
sidebar Keep Your Custom Keys Intact.

2.2.3. Deep-Six the Caps Lock Key

This section describes another thing you can accomplish by changing the keycode definitions.

I hate the Caps Lock key. I am always inadvertently hitting the key, after which I type a full command
at the console in caps before I realize what I've done. Naturally, the command does not work, because
Linux/Unix is case-sensitive.

Although you can redefine the key in your /etc/mykeys file with your favorite editor (which would be a
good idea if you also implement the previous hack), here are two tricks you can use without having to
edit any files. This first trick simply disables the Caps Lock key for consoles so that it has no function:

$ sudo echo "keycode 58 = VoidSymbol" | loadkeys

Some people like to convert the Caps Lock key into a Ctrl key. Here is the simple command to do that:

$ sudo echo "keycode 58 = Control" | loadkeys

Again, if you want to have your computer make this change automatically, see the sidebar Keep Your
Custom Keys Intact for instructions.

How to Interpret Keycode Files

The --keys-only switch makes the keycode definition file a bit shorter and easier to read,

because it omits a lot of information you don't need to customize it for our purposes.

When you dump the list of keycodes and their various permutations (which is what happens
when you combine them with some other key or key combination, such as Alt, Alt-Ctrl,
etc.) with the dumpkeys --full-table command, it prints out 16 columns in an order

determined by the numeric value of the first five modifying keys: 0, 1, 2, 4, and 8. Here is
a list of the numeric values of all the key modifiers, including the ones that aren't used:

None = 0

Shift = 1

Altgr = 2

Ctrl = 4

Alt = 8

ShiftL = 16

ShiftR = 32

CtrlL = 64

CtrlR = 128

Notice that you can add any combination of modifying keys and still get a unique column
number. Ctrl-Shift is 4+1. Although it is possible to use ShiftL, ShiftR, CtrlL, and CtrlR (the
left and right Shift and Ctrl keys), these keys aren't assigned by default. That's why you get
only 16 key combinations, each represented in a column of a row of combinations for each
keycode. If you print out a complete list of keycodes and their functions, you should get 16

columns. Each column would represent, in order:

The key with no other key pressed (0)

The key with the Shift key pressed (1)

The key with the Altgr key pressed (2)

The key with the Altgr-Shift keys pressed (2+1 = 3)

The key with the Ctrl key pressed (4)

The key with the Shift-Ctrl keys pressed (1+4 = 5)

The key with the Altgr-Ctrl keys pressed (2+4 = 6)

The key with the Ctrl-Altgr-Shift keys pressed (4+2+1 = 7)

The key with the Alt key pressed (8)

The key with the Shift-Alt keys pressed (1+8 = 9)

The key with the Alt-Altgr keys pressed (8+2 = 10)

The key with the Alt-Altgr-Shift keys pressed (8+2+1 = 11)

The key with the Alt-Ctrl keys pressed (8+4 = 12)The key with the Alt-Ctrl-Shift keys
pressed (8+4+1 = 13)

The key with the Alt-Ctrl-Altgr keys pressed (8+4+2 = 14)

The key with the Alt-Ctrl-Altgr-Shift keys pressed (8+4+2+1 = 15)

You don't see all 16 columns when you use the --keys-only switch. You see a subset of

columns defined by the first line of the output of the command. The first line of the output
of the dumpkeys --keys-only command is keymaps 0-2,4-6,8-9,12. This means the
dumpkeys --keys-only command displays only the following nine columns: modifiers 0, 1,

2, 4, 5, 6, 8, 9, and 12.

Indeed, the --keys-only command might not even print all nine columns, because it does

not print columns that are not assigned an action. If nothing happens when you press
certain key combinations (such as Shift-Ctrl), the command does not print that column.
(The official definition of an inactive key is VoidSymbol).

For example, look at the definition line for keycode 59 in the output of our example file:

keycode 59 = F1 F13 Console_13 F25
 alt keycode 59 = Console_1
 control alt keycode 59 = Console_1

The first column shows F1, which is the key without any modifiers. The second column is
F13, which is Shift-F1. The third column is Console_13, which is Altgr-F1. Because the
columns are defined as 0-2,4-6, etc., the output skips modifier 3, and the next column we
can expect to see is the key with modifier 4, or Ctrl-F1. This produces F25. The next column
we should see is modifier 5, which is Shift-Ctrl-F1. But no action is defined for this
combination. The fact that nothing happens when you press Shift-Ctrl-F1 would normally
be represented by the definition VoidSymbol in that column, but the --keys-only switch

avoids printing out VoidSymbol.

As a result, notice that the keycode table format changes for the rest of the keycode
combination definitions. The rest of the possible actions for F1 are spelled out in separate
lines. That's why the output skips to a new line that says Alt keycode 59 = Console_1
(this would normally appear in column 8), followed by another line that says Control-Alt-
keycode 59 = Console_1 (normally column 12).

If you want to see a file that has a column definition for every possible key modification
combination from 0-15, including all the VoidSymbols, issue the command dumpkeys --
full-table.

Hack 11. Energize Your Console with Macro Music Magic

Redefine keys to issue commands at the command line.

You can exploit the power of the preceding keyboard customization technique to a much greater degree
than just redefining the action of a key. You can actually define keys to send strings of characters,
which, at the console, means issuing commands.

In this example, you're going to redefine keys to control your CD-ROM as a CD player. Even if you have
a plain keyboard, you can simply use unusual key combinations such as Ctrl-Alt-Right Arrow to perform
the kind of magic you're about to explore. If you can determine the keycodes generated by any special
keys you have on your Internet or multimedia keyboard, you can use those keys instead.

2.3.1. Defining the Magic

First, you want to create a file called /etc/mykeys, or add to your existing /etc/mykeys file if you are
combining this hack with [Hack #10] . You will place in /etc/mykeys string definitions that represent
commands. The cdtool program is really handy for controlling a CD player at the command line

without a bothersome user interface. You can use another tool if you prefer, but you'll have to substitute
your tool's commands for the ones defined by cdtool.

Assume you are using cdtool to define commands to play a CD, stop playing it, advance to the next

track, move to the previous track, etc. First, define labels for the command strings. Here is what you
add to /etc/mykeys:

string F100 = "cdplay\n"
string F101 = "cdstop\n"
string F102 = "cdplay +\n"
string F103 = "cdplay -\n"
string F104 = "eject\n"

Notice that each command string includes a trailing \n. This is the equivalent of pressing the Enter key.
If you don't add the \n at the end of each string, the computer "types" the command, but doesn't

execute the command until someone presses Enter.

2.3.2. Normal Keyboards

If you have a normal keyboard with no added multimedia keys, decide on a set of keys you want to
modify. In this example, you will assign the following keys these actions:

Keyboard command Action taken

Keyboard command Action taken

Ctrl-Alt-Insert Play the CD.

Ctrl-Alt-Right Play the next track.

Ctrl-Alt-Left Play the previous track.

Ctrl-Alt-Down Stop the CD.

Ctrl-Alt-Up Eject the CD.

Because you want Ctrl-Alt-Insert to begin playing an audio CD in your CD drive, look for the definition
for the Insert key in /etc/mykeys. That keycode is 110. Add a line below the keycode definition that
makes the combination control+alt+keycode 110 execute the string represented by F100, which is
cdplay\n.

Assume you want Ctrl-Right Arrow to play the next track on a CD. Find the definition in /etc/mykeys for
the Right Arrow key, which is keycode 106. It already has one definition (increase to the next console).
Add another definition below that so that Ctrl-Alt-Right plays the next track on a CD (string F102).

When you are finished assigning all the F100-F104 actions to the keys, the relevant section of your
/etc/mykeys file should look like this:

keycode 103 = Up
 alt keycode 103 = KeyboardSignal
 control alt keycode 103 = F104
keycode 104 = Prior
 shift keycode 104 = Scroll_Backward
keycode 105 = Left
 alt keycode 105 = Decr_Console
 control alt keycode 105 = F103
keycode 106 = Right
 alt keycode 106 = Incr_Console
 control alt keycode 106 = F102
keycode 107 = Select
keycode 108 = Down
 control alt keycode 108 = F101
keycode 109 = Next
 shift keycode 109 = Scroll_Forward
keycode 110 = Insert
 control alt keycode 110 = F100

2.3.3. Special Keyboards

I have a Logitech Elite keyboard. It has multimedia keys for starting and stopping a CD player, moving
forward and backward through the CD tracks, and so on. If you have a similar keyboard you can find
out what keycodes these keys generate by using the showkey command. Then, execute showkey, and
then press the keys for which you want the keycodes. Here is a sample showkey session:

$ showkey
press any key (program terminates 10s after last keypress)...
keycode 28 release
keycode 165 press
keycode 165 release

Ctrl-Alt-Insert Play the CD.

Ctrl-Alt-Right Play the next track.

Ctrl-Alt-Left Play the previous track.

Ctrl-Alt-Down Stop the CD.

Ctrl-Alt-Up Eject the CD.

Because you want Ctrl-Alt-Insert to begin playing an audio CD in your CD drive, look for the definition
for the Insert key in /etc/mykeys. That keycode is 110. Add a line below the keycode definition that
makes the combination control+alt+keycode 110 execute the string represented by F100, which is
cdplay\n.

Assume you want Ctrl-Right Arrow to play the next track on a CD. Find the definition in /etc/mykeys for
the Right Arrow key, which is keycode 106. It already has one definition (increase to the next console).
Add another definition below that so that Ctrl-Alt-Right plays the next track on a CD (string F102).

When you are finished assigning all the F100-F104 actions to the keys, the relevant section of your
/etc/mykeys file should look like this:

keycode 103 = Up
 alt keycode 103 = KeyboardSignal
 control alt keycode 103 = F104
keycode 104 = Prior
 shift keycode 104 = Scroll_Backward
keycode 105 = Left
 alt keycode 105 = Decr_Console
 control alt keycode 105 = F103
keycode 106 = Right
 alt keycode 106 = Incr_Console
 control alt keycode 106 = F102
keycode 107 = Select
keycode 108 = Down
 control alt keycode 108 = F101
keycode 109 = Next
 shift keycode 109 = Scroll_Forward
keycode 110 = Insert
 control alt keycode 110 = F100

2.3.3. Special Keyboards

I have a Logitech Elite keyboard. It has multimedia keys for starting and stopping a CD player, moving
forward and backward through the CD tracks, and so on. If you have a similar keyboard you can find
out what keycodes these keys generate by using the showkey command. Then, execute showkey, and
then press the keys for which you want the keycodes. Here is a sample showkey session:

$ showkey
press any key (program terminates 10s after last keypress)...
keycode 28 release
keycode 165 press
keycode 165 release

keycode 163 press
keycode 163 release
keycode 164 press
keycode 164 release
keycode 166 press
keycode 166 release
keycode 171 press
keycode 171 release

When you execute the showkey command it tells you that you have 10 seconds in which to enter a

keypress. If you don't send one within that time the program will terminate. Ignore the first keycode 28
release in this list, as it represents the fact that I released the Enter key after executing showkey.

Given the order in which I pressed my special keys and the output of showkeys, I was able to create the

following table:

Special keyboard key Keycode

Previous track Keycode 165

Next track Keycode 163

Play Keycode 164

Stop Keycode 166

Eject Keycode 171

You should already have defined the strings for the special keys F100-F104, but I'll repeat them here so
that you can see the associations more clearly. Assuming you have a Logitech Elite keyboard with the
same keycodes, the following section is what you should add to or modify in your /etc/mykeys file:

string F100 = "cdplay\n"
string F101 = "cdstop\n"
string F102 = "cdplay +\n"
string F103 = "cdplay -\n"
string F104 = "eject\n"

keycode 163 = F102
keycode 164 = F100
keycode 165 = F103
keycode 166 = F101
keycode 167 =
keycode 168 =
keycode 169 =
keycode 170 =
keycode 171 = F104

The last thing you need to do is save your work, and then load the new key definitions with this
command:

sudo loadkeys /etc/mykeys

Now, even if you don't have a multimedia keyboard, you can use your keyboard at a virtual text console
to play and manipulate audio CDs. If you want to have your computer automatically reload the new key
definitions at startup, see the sidebar Keep Your Custom Keys Intact.

Keep Your Custom Keys Intact

The only problem with defining a special /etc/mykeys file and loading it manually is that
you will lose this customization the next time you boot your Linux system. You can find and
replace the default configuration file for your system, but that's not a very good way to
make these changes permanent. You'll probably overwrite the modified system key
bindings with a new version the next time you upgrade the package that contains the
configuration file. It is best to save your custom settings in a file somewhere, such as
/etc/mykeys, and load them automatically within a startup script after all the necessary
startup scripts have finished. Virtually every Linux distribution I've used gives you a
method to add these sorts of extra commands. Here are some samples to show you where
you would add the command to load the special key configurations.

You might notice that you don't need to use sudo to redefine the Caps Lock key when you
make the modification in this file. This file is automatically executed as root, so sudo is not
necessary.

You need to place the following code into each file. In most instances it needs to be placed
at the end of the file, so it doesn't hurt to put it at the end for all files:

loadkeys /etc/mykeys
echo "keycode 58 = VoidSymbol" | loadkeys

Here are the files you need to edit for various distributions:

Fedora Core 3: /etc/rc.local

Debian: /etc/rc.boot

SUSE 9.1: /etc/init.d/boot.local

Mandrake 10.1: /etc/rc.local

Gentoo ~x86: /etc/conf.d/local.start

2.3.4. Undoing Your Custom Keys and Macros

If you want to set the behavior of your keyboard back to the defaults, all it takes is one simple
command:

$ sudo loadkeys --default

XFree86 and Xorg tend to override settings you make for console use, so you don't usually have to undo
them before you start up a graphical desktop.

On rare occasions, something you define with loadkeys can sneak into your

graphical desktop keyboard definitions and cause unexpected behavior. If you run
into that problem, set your keyboard configuration back to the defaults before
starting your graphical desktop.

Hack 12. Take a Screenshot from the Command Line

Who needs a graphical tool to grab a screenshot? The command line has everything you need.

For many writers and programmers, screenshots are useful for showcasing how an interface or program
looks. Although grabbing a screenshot is often as simple as running a small utility or clicking an option,
some grabbers are not as flexible as you need them to be. For example, sometimes you might need a
screenshot without the screenshot tool displayed in the taskbar, or you might need to take a screenshot
in an environment, where you cannot run a graphical screenshot utility. This is a common problem for
those who need to take screenshots of installation programs or software on embedded devices.

2.4.1. Take a Screenshot from an X Terminal

Although a graphical screenshot-grabbing tool is the obvious choice for making a screenshot, most of
these utilities leave a trace of themselves in the screenshot by having an entry on the taskbar or being
visible on the desktop. You can solve this problem by using a collection of command-line tools to take
the screenshot from an X terminal or even from within the Run option in the KDE/GNOME main menu:

foo@bar:~$ sleep 2; import -window root screen.png

This command is actually composed of two separate utilities. The sleep command delays the process

for two seconds before the screenshot is taken. This gives you time to minimize windows, expand
menus, or make other necessary adjustments before the screenshot is taken. By changing the sleep

value you can control the delay before the screenshot is taken. The second command uses the import
utility that is part of the ImageMagick suite of tools (use your package manager to install ImageMagick
if it isn't already on your system) to take a screenshot of the root window (the root window is the entire
screen) and name the image screen.png. If you want to grab a particular part of the screen, you also
can use the -crop option to grab that specific area (such as import -crop 500x400). And if you run
import without -window your cursor will change to a crosshair, which you can drag over the area you

want to capture. For many print and digital media houses, PNG is a recommended screenshot format,
but ImageMagick supports a range of different formats, so you can use what you need. Read the import

manpage for more information.

2.4.2. Take a Screenshot from a Command-Line Terminal

If you need to take a screenshot from a command-line console while X is running elsewhere on the
system, adjust the command line and add a few additional features to it. This method is commonly used
when you need a screenshot of an installation routine or a program running on an embedded device. To
do this, first access the shell that runs behind the installer by pressing Ctrl-Alt-F2; this provides you
with a simple shell in which you can run the commands to grab the shot. If you are planning on using
this hack while installing a Linux distribution, you might need to copy the chvt, sleep, and import

commands onto a floppy disk so that you can mount it and access the programs. You can mount the
floppy disk with:

foo@bar:~$ mount /dev/fd0 /mnt/floppy

Before you can run the command to grab the shot, you need to find out the display number of the
running X server. Every X server has a unique display number that is mapped to the particular user who
is using X. This number can be used to distinguish between different X displays. You can find this
number by checking the $DISPLAY environmental:

foo@bar:~$ echo $DISPLAY

Now you can run the command. For example, if your display number returns :0.0, the main command

to grab the screenshot is:

foo@bar:$ chvt 7; sleep 2; import -window root screen.png-display :0.0 ; chvt 2

This command runs through the process of switching to the X terminal, grabbing the screenshot, and
switching back to your current command-line terminal. The first command (chvt 7) switches to the X
terminal (usually the 7th terminal), and then the second command (sleep 2) pauses the process for

two seconds. This pause allows for the machine to switch to the 7th terminal before the screenshot is
taken. Then the import command is used to grab the root window on display :0.0 and save the shot as
screen.png. Finally, the terminal is switched back to terminal 2 (chvt 2). If you run this from a terminal

other than 2, you need to change the number on the last command to the relevant terminal number. If
you need to store the image to the floppy disk when you run this command, you need to prepend the
filename with the mount point of the floppy diske.g., /mnt/floppy/screen.png.

Hack 13. Put Your Command Prompt on a Diet

Change your bash prompt to show extra information without cluttering the area around your
command prompt.

This hack saves command-line prompt space without sacrificing the informational value that prompt
hacks often add to command-line prompts. Sure, it's great to see the date, time, uptime, and phase of
the moon in your bash prompt, but most schemes for providing this extra information create a crowded
mess and push more important text off the terminal screen. This hack uses the tput command to place

some of that extra information in the upper-right corner of the terminal or console, leaving your prompt
neat, clean, and short. Thanks to Giles Orr whose web site on bash prompts
(http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/) inspired this example hack.

I'll keep this particular hack simple. You are going to put the current working directory somewhere on
the terminal but not at the prompt itself. This hack creates a directory path that always appears in the
upper-right corner. Of course, as explained later, you can modify this location.

The tput command is ideal for this type of trick, because tput manipulates the location and color of

cursors. Figure 2-1 shows what it might look like when it is configured as the default prompt.

Figure 2-1. The current working directory in the upper-right corner

This might seem somewhat superfluous when using an X terminal, because it's easy to put the current
working directory in the titlebar. However, not every terminal works that way, and there is no titlebar
on a virtual console, so it still comes in really handy, especially when you are working without a
graphical window manager or desktop.

Here is the script, with comments on how it works:

http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/

#!/bin/bash

function prompt_command {
save the current position
tput sc
backwash is where to position the cursor
to write the whole current working directory
we back up 2 more for the brackets
let backwash=$(tput cols)-$(echo $(pwd) | wc -m)-2
position the cursor at Y=0, X=calculated length
tput cup 0 ${backwash}
set foreground color, bold
tput setaf 4 ; tput bold
wrap the full path in brackets
echo -n "["
set the color of the current path
tput setaf 6
show the path
echo -n "$(pwd)"
set the color of the closing bracket"
tput setaf 4 ; tput bold
show the closing bracket
echo -n "]"
return cursor to the saved position
tput rc
}

PROMPT_COMMAND=prompt_command

GREEN="\[$(tput setaf 2 ; tput bold)\]"
WHITE="\[$(tput setaf 7 ; tput bold)\]"
NO_COLOUR="\[$(tput sgr0)\]"

case $TERM in
 xterm*|rxvt*)
 TITLEBAR='\[\033]0;\u@\h \007\]'
 ;;
 *)
 TITLEBAR=""
 ;;
esac

PS1="${TITLEBAR}\
$GREEN\u@\h \
$WHITE\$$NO_COLOUR "
PS2='> '
PS4='+ '

Here's how it works. First, the tput sc command saves the current position of the cursor.

Now let's pick apart the following, somewhat awkward-looking command from the preceding code:

let backwash=$(tput cols)-$(echo $(pwd) | wc -m)-2

The goal here is to find out where to move the cursor on the X axis to start printing out the current
working directory surrounded by brackets. The column you want is the width of the terminal minus the
width of the current directory, minus two more columns (for the brackets).

The tput cols command returns the number of columns in the current terminal or console. The pwd
command prints the current working directory, which is echoed and piped through the wc -m command,

which returns the number of characters in the current working directory. Then the command subtracts
that length plus two more for the brackets. All together, the whole command returns the X axis location
of the cursor where the script should start printing the current directory in brackets.

The tput cup <row> <column> command moves the cursor to the specified row and column. In this

case, we always want row 0 (the top row), and we calculated the starting location for the column in the
previous command.

Now the script sets up some tput variables to determine how the next bit of text placed on the screen
will look. The tput setaf 4 command defines the color as dark blue, and tput bold makes it bold. Then

the script echoes the open bracket to the screen. The script resets the color and prints the current path,
and then resets the color and prints the close bracket.

Then it returns the cursor back to its saved position with tput rc. Finally, it sets the prompt, using
variable definitions for tput sequences to set colors.

You probably won't find setaf in the manpage for tput. Indeed, Table 2-1 provides some of the rarely
documented features of tput.

The fact that these features are rarely documented implies it is possible they
might not work on some systems (such as some terminals or Linux running on
machines other than x86es).

Table 2-1. tput commands

Command for tput Result of the command

tput setab [1-7]
Set a background color using ANSI escape sequence.

tput setb [1-7]
Set a background color.

tput setaf [1-7]
Set a foreground color using ANSI escape sequence.

tput setf [1-7]
Set a foreground color.

tput bold
Set bold mode.

tput dim
Set half-bright mode.

tput smul
Begin underline mode.

Command for tput Result of the command

tput rmul
Exit underline mode.

tput rev
Turn on reverse mode.

Table 2-2 shows the ANSI escape sequence commands for foregrounds and backgrounds you can use in
place of the colors I've chosen.

Table 2-2. Color commands for tput

Command for tput Color

tput setaf 0
Black

tput setab 0
BlackBG

tput bold ; tput setaf 0
DarkGrey

tput setaf 1
Red

tput setab 1
RedBG

tput bold ; tput setaf 1
LightRed

tput setaf 2
Green

tput setab 2
GreenBG

tput bold ; tput setaf 2
LightGreen

tput setaf 3
Brown

tput setab 3
BrownBG

tput bold ; tput setaf 3
Yellow

tput setaf 4
Blue

tput rmul
Exit underline mode.

tput rev
Turn on reverse mode.

Table 2-2 shows the ANSI escape sequence commands for foregrounds and backgrounds you can use in
place of the colors I've chosen.

Table 2-2. Color commands for tput

Command for tput Color

tput setaf 0
Black

tput setab 0
BlackBG

tput bold ; tput setaf 0
DarkGrey

tput setaf 1
Red

tput setab 1
RedBG

tput bold ; tput setaf 1
LightRed

tput setaf 2
Green

tput setab 2
GreenBG

tput bold ; tput setaf 2
LightGreen

tput setaf 3
Brown

tput setab 3
BrownBG

tput bold ; tput setaf 3
Yellow

Command for tput Color

tput setaf 4
Blue

tput setab 4
BlueBG

tput bold ; tput setaf 4
BrightBlue

tput setaf 5
Purple

tput setab 5
PurpleBG

tput bold ; tput setaf 5
Pink

tput setaf 6
Cyan

tput setab 6
CyanBG

tput bold ; tput setaf 6
BrightCyan

tput setaf 7
LightGrey

tput setab 7
LightGreyBG

tput bold ; tput setaf 7
White

tput setaf 4
Blue

tput setab 4
BlueBG

tput bold ; tput setaf 4
BrightBlue

tput setaf 5
Purple

tput setab 5
PurpleBG

tput bold ; tput setaf 5
Pink

tput setaf 6
Cyan

tput setab 6
CyanBG

tput bold ; tput setaf 6
BrightCyan

tput setaf 7
LightGrey

tput setab 7
LightGreyBG

tput bold ; tput setaf 7
White

Hack 14. Simplify Changing Directories

This hack makes it ridiculously easy to jump right to your favorite directories from the
command line.

Every Linux user probably knows there's an environment variable called PATH. When you type a
command, your system looks through all the directories defined in the PATH environment variable until it

finds the command. If it doesn't find the command by the time it has exhausted all the directories listed
in the path, it tells you it can't find the file.

There's a similar environment variable that is a bit more obscure called CDPATH. You can define CDPATH

to include a number of directories to search when you type the following command:

$ cd
somewhere

Here's how it works. Assume for a moment that you're an obsessively organized writer who likes to
create directory trees that organize files by types, groups, categories, etc. Let's say you organized your
documents such that you have the following directories:

/docs/pub/books/oreilly/linuxhacks/chapter1
/docs/pub/books/oreilly/linuxhacks/chapter2
/docs/pub/books/oreilly/linuxhacks/chapter3

Here's what you want to do. You want to be able to jump right to the chapter2 directory without having
to type the entire path. Here's how to set the CDPATH environment variable so that you can do that:

$ export CDPATH=:.:/docs/pub/books/oreilly/linuxhacks

Notice that this command does not include any of the chapter directories in the CDPATH. That's because
you want the CDPATH to define the directory immediately above the directory you want to find.

Remember, the system searches the directories listed in the path for the contents you specify on the
command line. The argument chapter2 is what you're looking for. chapter2 exists in the directory
/docs/pub/oreilly/linuxhacks, so that is the directory you want to include in your search CDPATH.

Assuming you have defined CDPATH as shown in the previous example, now you should be able to type

this command, (almost) no matter what your current directory might be:

$ cd chapter2

The command should take you immediately to the directory
/docs/pub/books/oreilly/linuxhacks/chapter2.

2.6.1. The Catch

Remember I said you're obsessive about organization? Suppose you also created the following
directories according to the same pattern mentioned earlier:

/docs/pub/books/oreilly/bsdhacks/chapter1
/docs/pub/books/oreilly/bsdhacks/chapter2
/docs/pub/books/oreilly/bsdhacks/chapter3

Naturally, you have to add a new path to your CDPATH environment variable:

$ export CDPATH=:.:/docs/pub/books/oreilly/linuxhacks:/docs/pub/books/oreilly/bsdhacks

As with the PATH environment variable, you separate different search paths with a colon. The system

searches through each path from left to right. Now issue this command:

$ cd chapter2

Where do you think it takes you? It puts you in the same place as before,
/docs/pub/books/oreilly/linuxhacks/chapter2. That is not what you expected or desired. But it happened
because the cd command searches the CDPATH environment variable paths from left to right. It searched

the linuxhacks location first and found chapter2. So, that's where it assumed you wanted to go.

2.6.2. The Solution

One solution is to avoid being obsessive about standardizing the way you structure directories. The
other, arguably more realistic solution to this problem is to be extremely careful about how you
construct your CDPATH environment variable and how you use it. One way to avoid the problem
described earlier is to define the CDPATH in this way:

$ export CDPATH=:.:/docs/pub/books/oreilly

You have to do a little extra typing to get where you want to go, but you still save some effort. If you
want to get to chapter2 of bsdhacks, you simply type the following:

$ cd bsdhacks/chapter2

2.6.3. One More cd Trick

This is perhaps the simplest of all tricks for cd, yet surprisingly few people know of it. Suppose you are

working in the directory /docs/pub/books/oreilly/linuxhacks/chapter2 and then you change to the
directory /usr/X11R6/lib/X11/fonts/TrueType. You can jump back to the previous directory simply by
typing the following:

$ cd -

This simple command returns you to the last directory you were using before you changed to the current
one.

Hack 15. Colorize Files in Your Pager

As a Linux user you might have noticed that filenames appear in different colors when you type ls or
dir. Yet when you pipe the colored file listing through a pager such as less, the pager ignores the colors

and turns the output into black and white. You might notice this when you execute a commonly used
command, such as ls -al | less.

Most Linux distributions are configured to display the files in various colors to make it easy to identify
symbolic links, executable files, compressed files, and so on. If yours is not configured in such a way,
there's an easy way to correct this. Type the following command:

$ alias ls='ls --color=auto'

This tells your system that every time you type the ls command, it will actually type ls --color=auto

for you. Now type the command:

$ ls

You should see your files appear in different colors, according to their type. If you didn't see colored
filenames, you might have a distribution that requires a slightly different switch. Try this instead:

$ alias ls='ls --color=tty'

Now type the command to test the color capability:

$ ls

Chances are that one or more alias definitions are already defined for you in one of the automatically

executed login files. See the sidebar Bash Auto-Configuration Files for more information about how
many popular distributions make these settings.

2.7.1. The Black-and-White Problem

Now here's the problem that might plague you at times. You want to view a list of files, so you issue the
command ls -a. That command lists all the regular and hidden files, and all the files and directories
appear in living color. Or perhaps you prefer to use the command ls -al that lists all regular and

hidden files in a detailed single column. Once again, the files appear in living color.

When there are many files, the list scrolls off the screen. This is particularly troublesome on a text
console that doesn't let you scroll back far enough to see the beginning of the list. What's a geek to do?
The intuitive solution is to issue this command:

$ ls -al | less

This pipes the output of ls -al tHRough the less pager, which lets you scroll back and forth through
the entire output of the ls -al command.

There's just one catch. All the pretty colors are gone. It is no longer easy to identify compressed files
from executable files (and so on...) at a glance.

You don't see colors in the less pager for two reasons. First, less requires the -R command-line switch

to display colors. That won't be enough for most Linux users, however. You can find out for yourself if
adding the -R switch is all you need for your Linux distribution by typing this command:

$ ls -al | less -R

Did you see the list of files in color? Probably not. That's because most Linux distributions set up ls as
an alias for the command ls --color=tty or ls --color=auto. These commands output color only
when the destination is a terminal screen. When you pipe the output or redirect the output from ls, it

turns off the color feature automatically.

There are at least three solutions to this problem.

2.7.2. Solution 1

Here's one way to fix the problem. The ls --color command does not care what the output is, whether

it's a terminal screen, a redirection to another file, or a pipe to another program. One or more files in
your system contain the commands to set the aliases (see the sidebar Bash Auto-Configuration Files,
which includes information on where these settings are made for various distributions). Find the file on
your system where you want to change the way the aliases are set. Look for the line that defines the
color as auto or tty as the default, and change it to this (you might as well add the -R to less while

you're at it):

alias ls='ls --color'
alias less='less -R'

By not specifying tty or auto, the ls command will output color no matter where the output is directed.

There's a catch to doing things this way, so before you edit the file that defines the alias command, try
the technique manually so that you can see for yourself what the catch will be. Follow these steps to set
the default behavior for both ls and less to support color, and then perform the piped output

command to see a listing of files in color:

$ alias ls='ls --color'
$ alias less='less -R'
$ ls -al | less

There you gocolorized output in the less pager.

Now that ls automatically outputs color no matter where the output is directed, try this command to

redirect the output of the colored directory list to a file:

$ ls -al > directory.txt

Now open the file with your favorite editor, and you should see all the codes used to colorize the text.
For example, you might see something like this:

[[01;34mDesktop[[00m
[[01;31mEiosource-1.1-1.i386.rpm[[00m
[[01;34mGNUstep[[00m
[[00mHello[[00m
[[00mKernel-Win4Lin3-2.6.6.patch[[00m

Your editor doesn't interpret the codes to colorize your text. It simply shows you the codes that exist in
the output of the command. This is not quite what you want when you redirect output to a file, is it?

So, here's a way to deal with the first solution. You can modify your alias settings so that the following
command produces colorized output:

$ ls -al | less

When you don't want to produce colorized output, such as when you want to redirect the output to a
file, you override the alias with a command like this, which specifies that ls should output color only if

the destination is a terminal:

$ ls -al --color=auto > directory.txt

2.7.3. Solution 2

The second solution is precisely the opposite of the first. Leave the alias alone, as it is already set. When
you get the hankering to view a long directory list through a pager, override the setting that restricts
color output to terminals with this command:

$ ls -al --color | less -R

2.7.4. Solution 3

Neither of the previous solutions is the "Linux way"; that is, a way to customize and automate
everything. So, here's a way to solve the problem like a true Linux hacker would. Define aliases to give
you the choices you want while using shorthand commands. Here's one example, but it is by no means
the only way to approach this. Edit the file where aliases are defined so that it contains these aliases:

alias ls='ls --color=auto'
alias lsp='ls --color | less -R'
alias dir='ls -al'
alias dirp='ls -al --color | less -R'

This way, you can issue a command such as ls -al > directory.txt, and the file won't be littered

with color codes. Yet anytime you want to page through a full list of your files in living color, all you
have to type is the command lsp or dirp.

Bash Auto-Configuration Files

Fedora Core sets default aliases in the /etc/profile.d/colorsls.sh file to:

alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'

Debian sets default aliases in the /etc/skel/.bashrc file to:

alias ls='ls --color=auto'

SUSE uses a complex /etc/bash.bashrc script that ends up setting the ls alias indirectly to:

alias ls='ls --color=tty'

Mandrake uses a complex set of files, and sets the default alias in /etc/profiles.d/alias.sh
to:

alias ls='--color=auto'

Gentoo sets default aliases in /etc/skel/.bashrc to:

alias ls="ls --color=auto"

Chapter 3. Login Managers

Hacks 16-21

Hack 16. Switch Users Fast

Hack 17. Double Your KDM (KDE) Login Screens

Hack 18. Double Your GDM (GNOME) Login Screens

Hack 19. Get Multiple Desktops the Macho Way

Hack 20. Scrap X11 for Fancy Login Consoles

Hack 21. Personalize Your Qingy Theme

Hacks 16-21

Personal computers are no longer as personal as they used to be. You might have a family computer,
for example, and each member of the family uses the computer with his own personal account. In this
case, at one time or another you will encounter this conversation, or something like it: "I need to use
the computer." "But I'm right in the middle of typing my school report." "This can't wait, you need to
log off and let me use it now!"

If you are ever caught in a situation in which you have to relinquish control of your computer to another
person, it seems both logical and natural that you should close all your applications and log out before
allowing the other person to access the computer. That isn't necessary with Linux. Linux is truly
multiuser. You can have two or more people logged in to the same computer at the same time, even
running separate graphical desktops at the same time. You don't have to close all your applications and
log out. All you have to do to relinquish control to another person is to lock your session (for security
purposes), and then let the next person start up his own session.

In some cases, desktop environments, such as KDE and GNOME, provide you with a handy menu option
that will let someone start another desktop session. If your Linux distribution doesn't provide you with
that easy method, don't worry. The following hacks will show you how you can set up two or more KDE
or GNOME graphical login screens, where each user can start up her own session isolated from any
other sessions that are running.

I've even provided a method for the staunch power user who resists point-and-click in favor of a
command-line approach.

Finally, these hacks introduce a whole new approach to graphical login screens. These screens replace
the dull text login prompt with a graphical frame-buffer console prompt that lets you start up anything
from plain-text consoles to window managers or desktop environments such as KDE and GNOME. You
can set up as many of these login screens as you want, and each one will start up a separate user
session. You can even customize the graphical look and feel of each login screen.

Hack 16. Switch Users Fast

It's a personal computer. No, it's a family computer. No, it's two . . . two . . . two computers in one!
Picture this. You're working at home on an important business document when your daughter tells you
she needs to use the computer for a while to do research for a school project. Do you have to close all
your applications and log out for her to do her work? Nope. The following hack shows you a few ways to
let your daughter log in and work with her own desktop without you having to close your applications
and log out first.

You can get two or more users logged in and running separate graphical desktops on the same machine
in a number of ways. This hack explores the built-in method.

3.2.1. First, a Lesson on Virtual Terminals

You might recall that people used to attach several text-based terminals to minicomputers and
mainframes so that many users could access the computer at once. Each person could log in to the
computer and work on his separate text console, because he had his own text-based terminal connected
to the main computer. Linux simulates that kind of behavior with a single terminal and several virtual
consoles. Most Linux distributions provide six text-based virtual consoles and usually three virtual
consoles for graphical desktops, although more of both types are possible.

If you have used the graphical interface only on Linux and you're not familiar with virtual consoles,
here's a quick way to see what they're all about. Press the key combination Ctrl-Alt-F1. You should see
a text-based screen with a login prompt. This is virtual console 1. Press the key combination Ctrl-Alt-F2.
This is virtual console 2. You can get back to the graphical desktop by pressing Ctrl-Alt-F7, because the
default virtual console for graphical desktops is virtual console 7. If you can start up a second graphical
desktop, it will be assigned to the next available virtual console after the previous graphical desktop,
which is virtual console 8. You can switch to that desktop by pressing Ctrl-Alt-F8. So, when you achieve
your goal of starting up two separate graphical desktops, you can switch between them by pressing
Ctrl-Alt-F7 and Ctrl-Alt-F8.

3.2.2. The Built-In KDE and GNOME Way

Some Linux distributions with the latest versions of GNOME or KDE include a menu option to log in as
another user on a separate virtual terminal. For example, as of this writing, one menu sequence (on
Gentoo Linux) for GNOME is Applications System Tools New Login. This brings up a second
GNOME-based graphical login screen (GDM), from which a second user can log in and start working
with her account. This works only if you started GNOME from GDM. Here's why: after you start a
GNOME session, part of GDM is still running in the background waiting for you to exit GNOME. The
menu selection depends on this program to be running in the background, so if you didn't start GNOME
with GDM, it won't be running and waiting to start another session.

Fedora Core 2 currently does not offer the option of starting a new login, even
though it runs GDM by default. You can still get multiple simultaneous logins with
graphical desktops using the other techniques described in this hack.

The latest versions of KDE have a similar option. The menu sequence on my Gentoo system is K Menu
System New Login. (Beware: I take the risk of running the latest unstable versions of software

on my system, so you might not have this option.) Again, this will work only if you logged in to KDE
from the KDE graphical login screen, KDM. This launches a second KDM graphical login screen, from
which a second user can log in to her own session.

Because your version of GNOME and/or KDE probably lacks these menu options, here are two
additional, easy ways to get two or more graphical login screens running at once. The first way sets up
multiple login screens for KDM. The second sets up multiple login screens for GDM.

Hack 17. Double Your KDM (KDE) Login Screens

Set up the graphical login manager KDM to run on two different screens when you boot the
computer.

If you run the KDE graphical login manager, KDM, you can set up KDM so that one user can log in from
one login screen, and if another user wants to jump in and do some work, he can log in from the second
login screen. You're not limited to two login screens, but it takes some good horsepower to run more
than two sessions at once.

If your Linux distribution runs KDE by default rather than GNOME, it probably uses the KDM graphical
login manager to log in. This likely is true even if you're not actually using KDE as your desktop, simply
because distributions that favor KDE also favor KDM.

In this case you need to locate the configuration files for KDM to make the changes necessary to enable
multiple simultaneous desktop users. The KDM configuration files are located in the same place as your
kdmrc file. To locate this file, log in as root and type this command:

locate kdmrc

/etc/kde3/kdm/kdmrc

In this case, the output tells you that kdmrc, and thus the KDM configuration files, are located in
/etc/kde3/kdm. Change to this directory (or whatever directory your Linux distribution uses) and edit
the Xservers file.

Your distribution might include support for more than one graphical login
manager, in which case it might have more than one Xservers file; one for each
alternative such as XDM or GDM. Make sure you are editing the Xservers file in
the directory for the KDM graphical boot manager.

You should see something like the following in the Xservers file:

:0 local@tty1 /usr/X11R6/bin/X -nolisten tcp
#:1 local@tty2 reserve /usr/X11R6/bin/X -nolisten tcp :1
#:2 local@tty3 reserve /usr/X11R6/bin/X -nolisten tcp :2
#:3 local@tty4 reserve /usr/X11R6/bin/X -nolisten tcp :3
#:4 local@tty5 reserve /usr/X11R6/bin/X -nolisten tcp :4

Change the second line in the preceding output so that this section looks like the following:

:0 local@tty1 /usr/X11R6/bin/X -nolisten tcp
:1 local@tty2 /usr/X11R6/bin/X -nolisten tcp :1
#:2 local@tty3 reserve /usr/X11R6/bin/X -nolisten tcp :2
#:3 local@tty4 reserve /usr/X11R6/bin/X -nolisten tcp :3

#:4 local@tty5 reserve /usr/X11R6/bin/X -nolisten tcp :4

You should remove the # comment mark at the beginning of the second line, and remove the word
reserve. Save your changes and exit the editor. That should be all you have to do.

You can make these changes take effect in several ways, but some Linux distributions are stubborn
about restarting the login managers. So, the easiest way to enforce the changes is to simply reboot
your computer.

Once your system is finished booting, press Ctrl-Alt-F8 to check whether you have two graphical login
screens. If you see the same login screen, everything is working as planned. Press Ctrl-Alt-F7 to get
back to the default login screen, and proceed to log in and have fun.

If you want to have three graphical login screens, simply edit the Xservers file again and change the
third line the same way you changed the second. You can get to the third graphical login screen by
pressing Ctrl-Alt-F9. Theoretically, you can have several more graphical login screens. The default
keyboard settings provide key combinations that will work for up to 22 consoles, including both text and
graphical logins, but Linux distributions rarely enable more than 11 virtual consoles, some as few as
nine.

Hack 18. Double Your GDM (GNOME) Login Screens

Set up the graphical login manager GDM to run on two different screens when you boot the
computer.

This hack will set up GDM to run on two different screens when you boot the computer. One user can
log in from one login screen, and if another user wants to jump in and do some work, he can log in from
the second login screen. You're not limited to two login screens, but the more sessions you run, the
more processor power and memory are needed. Performance shouldn't be a problem on most modern
systems, however.

If your Linux distribution runs GNOME by default rather than KDE, or if you're using Fedora, you're
probably also using the GDM graphical login manager to log in. This might be true even if you don't use
GNOME as your desktop, because distributions that favor GNOME tend to use GDM.

In this case, you need to locate the configuration file called gdm.conf to make the changes necessary to
enable multiple simultaneous desktop users. Use the locate command to find out where gdm.conf is

located. Type the following command as root:

locate gdm.conf
/etc/X11/gdm/gdm.conf

Open the gdm.conf file for editing and locate the section that looks something like the following (you
can jump right to this spot by searching for the text string [servers]):

[servers]
These are the standard servers. You can add as many you want here
and they will always be started. Each line must start with a unique
number and that will be the display number of that server. Usually just
the 0 server is used.
0=Standard
#1=Standard

All you have to do is remove the # comment mark before the line 1=Standard so that this section looks

like the following:

[servers]
These are the standard servers. You can add as many you want here
and they will always be started. Each line must start with a unique
number and that will be the display number of that server. Usually just
the 0 server is used.
0=Standard
1=Standard

Save your changes and exit the editor. The easiest way to make sure the changes take effect is to

reboot your computer. When your computer presents the graphical login screen, you can check to make
sure there are two graphical logins by pressing Ctrl-Alt-F8. If you see the same login screen, everything
is working. Press Ctrl-Alt-F7 to get back to the default login screen, log in, and have fun.

If you want to have three graphical login screens (and your version of Linux supports at least nine
virtual consoles, which is quite likely), simply add another line so that the section looks like this:

[servers]
These are the standard servers. You can add as many you want here
and they will always be started. Each line must start with a unique
number and that will be the display number of that server. Usually just
the 0 server is used.
0=Standard
1=Standard
2=Standard

Reboot, and look for the new graphical login screen by pressing Ctrl-Alt-F9. Theoretically, you can have
several more graphical login screens. The default keyboard settings provide key combinations that will
work for up to 22 consoles, including both text and graphical logins, but Linux distributions rarely
enable more than 11 virtual consoles, some as few as nine.

Hack 19. Get Multiple Desktops the Macho Way

Power users don't need no stinkin' graphical login managers, so here's the command-line
way.

This hack assumes you're not the type who likes to have graphical login screens running all the time.
You want your computer to boot to a text login prompt, after which you're perfectly capable of getting a
graphical desktop running. You might still want the ability to have a second person log in and start
another desktop. So, here's how.

I'll assume you're the power user who avoids GDM, KDM, and XDM. When your computer finishes
booting, it leaves you in a virtual console (virtual terminal 1) with a text login prompt. You log in, and
then you start your favorite window manager or desktop using whatever command is most familiar to
you. Perhaps you type startkde to start the KDE environment. You could type xinit /usr/bin/wmaker
to start WindowMaker. You could also type startx alone to start your default window manager. The

default window manager could be defined in various ways, depending on the Linux distribution you're
using. In most cases, power users configure the ~/.xinitrc file to define the default window manager,
among other things (~/.xinitrc also lets you define other programs to start automatically, etc.).

If you want another user, such as your power-user daughter, to log in and start up a separate desktop,
press Ctrl-Alt-F2 to get to the second text console with a login prompt. When she logs in, she can start
a new WindowMaker desktop without disturbing your desktop by typing either of the following two
commands:

$
xinit /usr/bin/wmaker -- :1
$ startx /usr/bin/wmaker -- :1

In this case, you add a space, a double-dash followed by a space, then a colon, and then a 1. This tells
your system to run WindowMaker on the second virtual console allocated for graphical desktops (the
default is 0, so the next available graphical console is 1).

This is a rather inconvenient way to do things because you must be sure display 1 is not in use, and you
must know the exact path to the window manager or desktop environment you want to start. Neither of
the following simpler commands works, because they do not include the full path to the executables:

$ xinit wmaker -- :1
$ startx wmaker -- :1

The following script makes this whole process much easier. All you need to know is the name of the
executable file that starts your preferred window manager or desktop. Log in as root, or use sudo to fire
up your favorite text editor, and type in the following script:

#!/bin/bash

screen=nothing

for screen in 0 1 2 3 4 5 nomore
 do
 if ["$screen" = "nomore"]
 then
 echo "No more available screens."
 exit 1
 fi
 [! -e /tmp/.X${screen}-lock] && break
 done

if [-x "`which ${1} 2>/dev/null`"]
 then
 windowmanager="`which ${1} 2>/dev/null`"
 echo $windowmanager
 xinit $windowmanager -- -br :$screen
 else
 xinit -- -br :$screen
fi

Save it as /usr/local/bin/mstartx. (I used the name mstartx because it is short for multiple-startx, but
you can name your script anything you want.) Then change the script to be executable with this
command:

chmod +x /usr/local/bin/mstartx

Now all you have to type to start WindowMaker is this:

mstartx wmaker

The script performs two important tasks. First, it finds the first available graphical console. If two
people are already using graphical desktops, the script will detect this and automatically run the next
session on the third graphical desktop. Second, it automatically locates the full path to the executable
file for the window manager you want to start (/usr/bin/wmaker in this example). As an added bonus,
this script changes the default startup background from a gray mesh to solid black. [Hack #22]
provides an alternate way to blacken your startup background.

Table 3-1 lists the executable filenames for the most popular window managers.

Table 3-1. Window manager executable filenames

Window manager or desktop environment Executable filename

KDE Startkde

GNOME gnome-session

WindowMaker Wmaker

AfterStep Afterstep

XFce 4 Startxfce4

Window manager or desktop environment Executable filename

IceWM Icewm

Enlightenment Enlightenment

qvwm Qvwm

Fluxbox fluxbox or startfluxbox

Blackbox Blackbox

Openbox Openbox

Fvwm fvwm or fvwm2

XFce 3 Xfce

Motif Mwm

No matter which method you choose for launching a second or third user desktop
session, you probably want to keep your current session protected. Configure the
screensaver for your favorite desktop environment or window manager to lock the
screen and require a password to get back to work. When someone else wants to
log in with a separate desktop session, start the screensaver (thus locking out
anyone without your password) before you allow her to log in on the next virtual
terminal.

IceWM Icewm

Enlightenment Enlightenment

qvwm Qvwm

Fluxbox fluxbox or startfluxbox

Blackbox Blackbox

Openbox Openbox

Fvwm fvwm or fvwm2

XFce 3 Xfce

Motif Mwm

No matter which method you choose for launching a second or third user desktop
session, you probably want to keep your current session protected. Configure the
screensaver for your favorite desktop environment or window manager to lock the
screen and require a password to get back to work. When someone else wants to
log in with a separate desktop session, start the screensaver (thus locking out
anyone without your password) before you allow her to log in on the next virtual
terminal.

Hack 20. Scrap X11 for Fancy Login Consoles

Qingy is an attractive replacement for X Windows-based graphical login managers such as
XDM, GDM, and KDM.

Qingy is an alternative login screen developed by Michele Noberasco
(http://qingy.sourceforge.net/news.php). Qingy uses the graphical frame-buffer console capability in
Linux to paint an attractive and powerful session login screen on one or more virtual terminals. Unlike
XDM, GDM, and KDM, Qingy does not use X11. Despite this, Qingy has as many features as these
traditional graphical login screens, if not more (see the sidebar, Frame-Buffer Versus X11 Graphics).
You can choose your preferred session type, such as KDE, GNOME, WindowMaker, Fluxbox, or just a
text console. You can include buttons on the Qingy login screen that will start the screensaver, put your
computer in sleep mode, reboot, shut down, and many other options. And of course, you can change
the Qingy graphical theme.

Frame-Buffer Versus X11 Graphics

Put in the simplest terms a frame buffer is a block of memory storage that your graphics
display card represents on your monitor as pixels (the red, green, and blue dots which
combine to make colors from white to black). There are different frame-buffer modes. The
higher modes, such as 1280x1024 pixels with up to 64,000 colors, allocate a bigger block
of memory for the frame buffer than the lower 800x600-pixel modes with 64,000 colors.

The most common use of frame buffers in Linux is to solve a problem that occurs when you
try to use smaller text fonts to cram more text on the screen while keeping your video card
in text mode. As you try to put more text on the screen at once, the text starts to get really
ugly and hard to read. If you switch the display card into frame-buffer graphics mode,
however, higher resolutions automatically present smaller fonts that are rendered dot-by-
dot, so even at high resolutions text appears sharper and much more legible.

Frame buffers are ideal for use at boot time, before the Linux kernel loads, because you
don't need to know what kind of video card is installed. Frame-buffer usage follows a
standard maintained by the Video Electronics Standards Association (VESA). Almost all
display cards support one or more VESA frame-buffer modes.

Although you can use frame buffer-based programs such as Qingy to replace the function of
an X11-based login screen, comparing frame buffers directly to X11 is an apples-to-
oranges comparison. X11 is a much higher-level piece of software. It uses graphics as part
of a client/server scheme to provide a rich set of application capabilities.

Admittedly, frame buffer-based X11 drivers do exist that make it possible to use frame
buffers as the basis for an X11-based (XFree86 or Xorg) window manager or desktop
environment. But frame buffers generally do not take advantage of the special features of
your display card, so they are not ideally suited for this use. This is why you generally pick
a specific X11 display driver that matches the display card you're using.

http://qingy.sourceforge.net/news.php

For more information on how frame buffers are being used for projects other than boot
splash screens and Qingy, see http://www.directfb.org. (This web site is also where you'll
find more information about the frame-buffer project to run X11 applications.)

Qingy stands for "Qingy Is Not GettY." getty is the text-based terminal program that greets you with a
login prompt. You have several of these text-based virtual consoles (terminals) on your machine, and
you can switch between them by pressing Ctrl-Alt-F1, Ctrl-Alt-F2, Ctrl-Alt-F3, and so on. (You can omit
the Ctrl key if you're not switching to a text console from a graphical desktop.) Each desktop is a virtual
terminal that uses a version of getty as a terminal emulator. Various Linux distributions use
alternatives, such as agetty, mingetty, and others; despite a few feature differences, they all amount to
the same thinga text-based terminal console.

Qingy replaces getty with an attractive graphical login screen that can automatically launch any one of
your favorite graphical desktops or a text console. You can start Qingy on more than one virtual
console, which means two or more people can use Qingy to log in and start their own desktops. Qingy
also has some built-in security. You can configure Qingy to make it impossible for another user to get to
your desktop without knowing your password.

A number of themes are available for Qingy. Figure 3-1 is based on the theme called "biohazard."

Figure 3-1. Qingy login screen

3.6.1. Prepare to Install Qingy

It is not difficult to install Qingy. First, you must have frame-buffer support and frame-buffer console
support compiled into your Linux kernel (you do not need boot splash support compiled into the kernel,
however). [Hack #8] and [Hack #9] include instructions for compiling frame-buffer support and
frame-buffer console support into the kernel. Once you have modified your kernel, reboot so that these
changes will take effect.

http://www.directfb.org

If your system automatically launches a graphical login manager, such as GDM, KDM, or XDM, the first
thing you want to do is disable it. You won't need to use it anymore after you have Qingy working.

You can turn off these login managers in several ways. This command is one way you can do it on a
Debian system:

update-rc.d -f kdm remove
Removing any system startup links for /etc/init.d/kdm ...
 /etc/rc0.d/K01kdm
 /etc/rc3.d/S99kdm
 /etc/rc4.d/S99kdm
 /etc/rc6.d/K01kdm

On Gentoo, the command should be as follows:

rc-update del xdm default

A generic approach also exists that should work with almost every Linux distribution (it doesn't work for
Fedora).

First, check to see what the default run level is for your system. You can do this by examining the file
/etc/inittab. Look for a line that reads like this:

id:3:initdefault:

This tells you the default run level is 3. For most Linux systems, this means you want to log in as root
and change to the directory /etc/rc3.d. If the default run level turned out to be 5, you would change to
the directory /etc/rc5.d. Then look for any symbolic links to kdm, gdm, or xdm and delete them. For

example:

cd /etc/rc3.d
ls -l *dm
lrwxrwxrwx 1 root root 17 Nov 17 2003 S99xdm -> ../init.d/xdm
rm S99xdm

3.6.2. Install Qingy

If your Linux distribution has a Qingy package, install it via your package manager. If you can install
Qingy from a package manager, it will likely place configuration files in the /etc/qingy directory, place
theme files in /usr/share/qingy/themes, and install the qingy program in /sbin.

If you download the source code and compile it yourself, it will store configuration
files (by default) in /usr/local/etc/qingy, store theme files in
/usr/local/share/qingy/themes, and place the executable qingy in /usr/local/sbin.
Consider these differences when viewing the following examples, which assume
that you compiled Qingy for yourself.

If you do not have a Qingy package for your Linux distribution, you have to download and compile the
code yourself. Download the latest version of Qingy from http://qingy.sourceforge.net/news.php. Log in

http://qingy.sourceforge.net/news.php

as root, and change to an appropriate directory (such as /usr/local/src). Extract the code, change to the
source directory, configure, compile, and install the program. (Consider that by the time you read this,
a more recent version of Qingy might be availableuse that version instead of 0.5.2.) Here is an example
of how to perform the preceding steps:

$ su -
cp qingy-0.5.2.tar.bz2 /usr/local/src
cd /usr/local/src
tar jxvf qingy-0.5.2.tar.bz2
cd qingy-0.5.2
./configure
make
make install

You can specify an alternate prefix when you run ./configure. The prefix tells the build session where

to install the files. For example, if you want Qingy to install in /usr/sbin, you would type:

./configure --prefix=/usr

The default setting will install the qingy program in /usr/local/sbin, and store the settings file in
/usr/local/etc/. This installs the default theme to /usr/local/share/qingy/themes.

3.6.3. Configure Linux to Use Qingy

If you took the preceding advice, you have already compiled and are running a Linux kernel that
supports frame-buffer consoles. This means you can see the immediate results of any changes to your
console settings.

To avoid any potential complications, make all of these changes from a virtual console that is not going
to be configured for Qingy. For this example, only the first two virtual consoles will be configured as
Qingy login screens. If you are logged in to virtual console 1 or 2, press Ctrl-Alt-F1 and log out of the
first virtual console, then press Ctrl-Alt-F2 and log out of the second virtual console. If you don't log out
of these consoles, the changes you make will not take effect immediately. Then press Ctrl-Alt-F3 to go
to the third virtual terminal (which will not run Qingy), and log in as root there.

Now use your favorite editor to edit your /etc/inittab file. Find the section that looks something like this:

TERMINALS
c1:12345:respawn:/sbin/agetty 38400 tty1 linux
c2:12345:respawn:/sbin/agetty 38400 tty2 linux
c3:12345:respawn:/sbin/agetty 38400 tty3 linux
c4:12345:respawn:/sbin/agetty 38400 tty4 linux
c5:12345:respawn:/sbin/agetty 38400 tty5 linux
c6:12345:respawn:/sbin/agetty 38400 tty6 linux

You need to change one or more lines to spawn qingy instead of the agetty terminal program. (Your
Linux distribution might use something other than agetty, such as getty or mingetty. This doesn't
matter.) It isn't necessary or even desirable to change every virtual terminal to use Qingy. If something
goes wrong, you want at least one terminal to behave normally so that you can log in and diagnose the
problem. In this example, change just the first two virtual terminals to use Qingy. Edit the /etc/inittab
file to look more like this:

TERMINALS
c1:12345:respawn:/usr/local/sbin/qingy tty1 --screensaver 0
c2:12345:respawn:/usr/local/sbin/qingy tty2 --screensaver 0
c3:12345:respawn:/sbin/agetty 38400 tty3 linux
c4:12345:respawn:/sbin/agetty 38400 tty4 linux
c5:12345:respawn:/sbin/agetty 38400 tty5 linux
c6:12345:respawn:/sbin/agetty 38400 tty6 linux

Obviously, if you installed Qingy from a package that placed the qingy executable in the /sbin directory
modify the absolute path to Qingy appropriately. The --screensaver 0 switch at the end of the line

turns off the Qingy screensaver. The screensaver is sometimes triggered after a few minutes even if
you're actively typing on a non-Qingy console, which can be annoying. Qingy is young yet. Perhaps this
quirk will be fixed in a future version.

Save the /etc/inittab file. Now execute the following commands:

init Q
killall agetty

The first command tells Linux to reexamine the /etc/inittab file. It does not automatically turn off the
agetty sessions for any of the virtual consoles, though. That is why you need the second command. This
kills every version of agetty that might be running except the one you are currently using. Instead of
respawning (restarting) agetty in virtual consoles 1 and 2, Linux will respawn qingy.

If your version of Linux uses something other than /sbin/agetty for normal terminal sessions, substitute
the name of your version of agetty in the killall command. For example, if your Linux distribution

uses getty, issue these commands instead:

init Q
killall getty

Press Ctrl-Alt-F1 and now you should see the Qingy login screen. Use the Tab key or your mouse to
move from one input field to another. When you select the session field, you can change the session
setting by pressing the up and down arrows. Select whichever window manager you prefer or the text
console. Once you have typed in your username and password and you've selected your desired
session, press Enter. You should see your selected session start up. If you start up a window manager
or desktop environment, such as KDE or GNOME, Qingy has to start X11 from scratch. Therefore, you
might notice it takes a bit longer to start up than if you were running the KDE or GNOME login manager,
which load faster because X11 was already running.

If someone else wants to use the computer and you don't want to close your session, press Ctrl-Alt-F2
to get to the second Qingy login screen. Allow the other user to log in and start her separate session.

You can switch between sessions by pressing Ctrl-Alt-F1 and Ctrl-Alt-F2. Virtual consoles are still
available on Ctrl-Alt-F3 through F6.

3.6.4. When Qingy Doesn't Offer Session Choices

One common occurrence is that Qingy doesn't display any window managers or desktop environments
in its session field. By default, Qingy looks in the /etc/X11/Sessions directory for a list of files, each
representing a window manager or desktop available on your system. The name of the file appears in
the Qingy sessions list. These session files contain a single line, a full path to the executable to the

window manager or desktop. For example, the file named /etc/X11/Sessions/KDE might contain the line
/usr/bin/startkde, and the file /etc/X11/Sessions/WindowMaker should contain a single line such as
/usr/bin/wmaker.

If you don't see any window managers available from the Qingy login screen, you have one of two
problems. Your session files are stored somewhere other than /etc/X11/Sessions or your system simply
doesn't work that waythere is no single directory of session files.

If your system stores the session files somewhere other than /etc/X11/Sessions, edit the Qingy
configuration file /usr/local/etc/qingy/settings so that it points to the directory where your system keeps
its session files. Locate the following line:

x_sessions = "/etc/X11/Sessions/"

and change it to the absolute path to your Sessions directory.

If your system doesn't have a Sessions directory, here's an easy way to create one and fill it with
session files for each window manager and desktop you have installed. Before you create each session
file, check to see if the window manager executable (the file that actually starts up the window
manager) exists. If the which command reports back a path to the file you're looking for, create the
session file by redirecting the output of the which command to a session file. If the output can't find the

executable for a window manager (the following example shows that blackbox is not available), don't
create a session file for it. Table 3-1, earlier in this chapter, lists the common window manager
executable filenames.

You can name the session file anything, so pick a name that is meaningful to you. For example, the
WindowMaker executable is /usr/bin/wmaker, but you can use "wmaker" or "WindowMaker" if you like.
The following example shows how to use the which command and command redirection to create your

session files:

mkdir /etc/X11/Sessions
which wmaker /usr/bin/wmaker
which wmaker > /etc/X11/Sessions/WindowMaker
which twm /usr/X11R6/bin/twm
which twm > /etc/X11/Sessions/TabWM
which blackbox which: no blackbox in (/usr/bin:/usr/local/bin:/etc...)
which fluxbox /usr/bin/fluxbox
which fluxbox > /etc/X11/Sessions/Fluxbox
which startkde /usr/bin/startkde
which startkde > /etc/X11/Sessions/KDE
which gnome-session /usr/bin/gnome-session
which gnome-session > /etc/X11/Sessions/GNOME

These sessions should appear automatically on your Qingy login screen as you create each session file.
There is no need to restart anything.

Hack 21. Personalize Your Qingy Theme

Many themes are available for Qingy. See Figure 3-2 for a look at the default Qingy login screen.

Figure 3-2. Default Qingy login screen

At the risk of sounding superstitious, some of us are not comfortable with a start screen featuring a bug.
Fortunately, you can download a pack of alternate themes from
http://umn.dl.sourceforge.net/sourceforge/qingy/qingy_0.3_themepack_1.0.tar.bz2, and extract it with
the following commands:

cp qingy_0.3_themepack_1.0.tar.bz2 /usr/local/share/qingy/themes
tar jxvf qingy_0.3_themepack_1.0.tar.bz2

The j in the tar argument jxvf tells tar to unpack a bzip2 file (you can tell this has been packed using
bzip2 because the suffix is bz2.) If you find a theme with a suffix of tar.gz or tgz, use the command tar
zxvf to unpack the file (z replaces j).

Almost all (if not all) of the themes are optimized for a screen resolution of 1024x768. Keep that in
mind when you configure your copy of Linux to use frame-buffer consoles. If you choose a resolution
other than 1024x768, you might find you have to modify the theme configuration file to get the login
and other prompts to appear in their proper locations. It's not hard to modify Qingy themes for different

http://umn.dl.sourceforge.net/sourceforge/qingy/qingy_0.3_themepack_1.0.tar.bz2

resolutions, but if you can save yourself the trouble by sticking to a resolution of 1024x768, why not?

If you prefer a theme other than the default theme, you change the setting in the
/usr/local/etc/qingy/settings file. This line in the settings file controls which theme is used:

theme = "default"

To use a different themethe vendetta3 theme, for examplemodify the theme value like this:

theme = "vendetta3"

Save your changes. Then (as root) type the following command:

killall qingy

Don't worry; Qingy will restart by itself. That's the purpose of the respawn command in your /etc/inittab

file. Now when your Qingy login screens reappear, they should look something like Figure 3-3.

Figure 3-3. The Vendetta3 Qingy login screen

3.7.1. Personalize Every Terminal

You can assign themes or even screensavers (or notthe screensavers can be quirky) to individual
terminals by editing the /usr/local/etc/qingy/settings file once again. This time add a definition for
specific terminals (ttys), like this:

tty=2
{

 theme = "fireplace"
 screensaver "pixel"
}
tty=3
{
 theme = "vendetta2"
}

Save your changes. Then (as root) type the following command:

killall qingy

Don't forget that you have to edit the /etc/inittab file and make Qingy the default
for every terminal for which you assign a theme. If you assign a theme to tty3,
but tty3 is still using something such as agetty instead of Qingy, your theme
assignment won't have any effect.

Once again, Qingy will restart on its own with the appropriate themes for each terminal.

Chapter 4. Related to X
Hacks 22-34

Hack 22. Take Your Screens Black

Hack 23. Spice Up Your Desktop with Creative Mouse Cursors

Hack 24. Convert CursorXP Themes for Use with Linux

Hack 25. Use Windows and Mac Fonts

Hack 26. Never Miss Another Reminder

Hack 27. Make Applications Trigger On-Screen Alerts

Hack 28. Heat Up Your Keyboard with Hotkeys

Hack 29. Get Hotter Hotkeys with LinEAK

Hack 30. Access Windows and Mac OS X from Linux

Hack 31. Run Your Desktop over the Internet

Hack 32. Access Your Programs Remotely

Hack 33. Add Depth to Your Desktop

Hack 34. Give Your Desktop X-Ray Vision

Hacks 22-34

The hacks in this chapter are designed to be window manager- and desktop environment-agnostic (that
is, they don't depend on any given window manager or desktop environment, such as Fluxbox,
WindowMaker, KDE, GNOME, or XFce). For the most part, the hacks simply assume you are running a
version of X11.

These hacks range from the relatively mundane (replacing the ugly gray startup background with a
black background) to frivolous but exciting changes (customizing your mouse pointer to show animated
graphics). You'll also learn two different ways to make your fancy Internet and/or multimedia keyboard
work with X11, how to access programs remotely (even if they are running on different platforms), and
how to add 3D effects and transparency to your windows.

X11, which also goes by the names X and X Windows, is the client/server graphics engine that runs
almost all the desktop environments and window managers on Linux. Almost all Linux distributions used
to include XFree86, a free software implementation of X11. However, the folks in charge of XFree86
changed their software license, which led to a political uproar, the magnitude of which led eventually to
a fork of the XFree86 code, and a new version of X11 called Xorg or X.org. Xorg has many benefits
besides the preferred license. It has built-in support for transparency and drop shadows, and it often
takes a better approach to solving problems than XFree86. Virtually all Linux distributions have
switched from XFree86 to Xorg, or are in the process of doing so, with the notable exception of Debian.

Most of the hacks in this chapter do not require that you have Xorg installed instead of XFree86, but
some of the most visually impressive hacks (transparency, drop shadows, etc.) do require this. The
custom-cursor hacks don't require Xorg, but they do require that you have at least version 4.3.0 or
better installed if you are running XFree86.

If you are running Xorg, note that a few of these hacks are likely to be more stable on some
environments. This is especially true of the hacks that add drop shadows and transparency. This is the
first attempt at adding these features to the X Window System, and not all the quirks have been worked
out. The Xorg programmers are improving these features very quickly. But don't be surprised if these
two hacks crash one window manager and work almost perfectly on another.

Hack 22. Take Your Screens Black

Every time you start up an X11 session, the default background is an ugly gray mesh. Some window
managers and desktop environments change this almost immediately, but others leave the background
a putrid gray. Here's a tip on how you can make sure the default background is solid black. (In case
you're wondering, the choice of colors for the background is like the choice for the Model T Fordyou can
make it any color you want as long as it's black.)

The trick behind making the default background black is to add the -br switch to the right configuration

file. Which configuration file needs to be modified depends on how you start your window manager or
desktop.

4.2.1. startx

If you start your window manager with the startx command, edit the /usr/X11R6/bin/startx file. Make
sure the default server arguments include the -br switch. For example, if the beginning of your startx

file looks like this:

userclientrc=$HOME/.xinitrc
userserverrc=$HOME/.xserverrc
sysclientrc=/etc/X11/xinit/xinitrc
sysserverrc=/etc/X11/xinit/xserverrc
defaultclientargs=""
defaultserverargs="-nolisten tcp"
clientargs=""
serverargs=""

Add the -br switch to the definition for either defaultserverargs or serverargs. Just place the switch

between the quotes. For example:

defaultserverargs="-nolisten tcp -br"

Now, when you run startx to start a window manager, the default background will be black instead of
the gray mesh.

4.2.2. xinit

If you use the xinit command to start a window manager or desktop, add -- -br to the tail end of the
command. For example, if you want to start the blackbox window manager with the xinit command,

do it this way:

$ xinit /usr/bin/blackbox -- -br

If you use the xinit command to start a new window manager or desktop for a second user [Hack
#19], add -- -br after the command and before you specify the next available virtual terminal. For

example:

$ xinit /usr/bin/blackbox -- -br :1

4.2.3. The Xservers File

One or more of your desktop environments or window managers might use a file called Xservers to
determine how to start the X11 engine that drives all window managers and desktops. In this case, log
in as root and locate your Xservers file with this command:

locate Xservers /etc/X11/xdm/Xservers

If you are using the XDM graphical login manager, this is the file you want to modify. You can find the
Xservers file in the directory for the KDE graphical login manager, KDM, or in the directory for the
GNOME graphical login manager, GDM. You might even find Xservers files in all three places. You only
need to modify the Xservers that is connected to your login manager. Once you've found it, open the file
with a text editor, and you should see a line that looks something like this:

:0 local@tty1 /usr/X11R6/bin/X -nolisten tcp

Simply add the -br switch to this line so that it looks more like this:

:0 local@tty1 /usr/X11R6/bin/X -br -nolisten tcp

Save your work, and that should transform the ugly gray pattern into solid black.

Hack 23. Spice Up Your Desktop with Creative Mouse
Cursors

Replace the boring default mouse pointer, resize cursor, wait cursor, and the rest with
colorful custom animated cursors.

Microsoft Windows lets you change cursor themes easily. Linux doesn't make it quite as easy (although
the KDE desktop environment comes close). This hack explores how to check if your distribution of
Linux supports cursor themes, how to find, download, and install new cursor themes, and how to set up
your desktop to use them. A wide variety of custom cursor themes are available, ranging from the
subtle (cursors decorated with a red dot) to the outrageous (a Tux penguin grabbing windows to resize
them!).

4.3.1. Does Your Desktop Support Cursor Themes?

You need XFree86 4.3 or later or Xorg (a fork of the XFree86 project) for custom cursors to work. All
recently released Linux distributions include one or the other, so it is unlikely that your Linux desktop
cannot support custom cursors, but you need to be sure. Type this command to see which version of X
you have installed:

X -version

If your Linux distribution installed XFree86, all you have to do is make sure the version is 4.3 or higher.
For example, look for a string something like the following in the output of the X -version command:

XFree86 Version 4.3.0 (or higher)

If your Linux distribution is using the Xorg branch of X11, you should see something like this in the
output:

X Protocol Version 11, Revision 0, Release 6.7 (or higher)

If you see anything like either of these strings, it means your version of X supports custom cursor
themes.

4.3.2. What Themes Are Available by Default?

Unfortunately, Linux distributions vary considerably as to where they store the default cursor themes. If
the documentation for your Linux distribution doesn't tell you where to find these themes, you can use a
trick to find out where your particular distribution looks for cursor themes. Generally, the file you want
to examine is /usr/X11R6/lib/X11/config/Imake.tmpl. Check to see if the file exists with the ls

command:

ls /usr/X11R6/lib/X11/config/Imake.tmpl

If the response is "No such file or directory," you might be able to find the file with the following
command:

locate Imake.tmpl

If this file does not exist on your system, you're going to have to find another way to locate where your
distribution stores globally available cursor themes. A Google search or browsing online forums specific
to your distribution are good places to start.

If this file does exist on your system, this command should help you determine the default locations
where your distribution stores cursor themes:

$ grep XcursorPath /usr/X11R6/lib/X11/config/Imake.tmpl
ifndef XcursorPath
define XcursorPath "~/.cursors:~/.icons:/usr/local/share/cursors/xorg-x11:/usr/
share/cursors/xorg-x11:/usr/share/pixmaps/xorg-x11"
#ifndef XcursorPath
define XcursorPath Concat(~/.cursors:~/.icons:/usr/local/share/cursors/xorg-x11:/
usr/share/cursors/xorg-x11:/usr/share/pixmaps/xorg-x11:,IconDir)
 XCURSORPATH = XcursorPath /* Xcursor cursors path */

The useful information is the first line that includes define XcursorPath. Notice that this particular
distribution (Gentoo) defines the XcursorPath to search the following directories:

~/.cursors
~/.icons
/usr/local/share/cursors/xorg-x11
/usr/share/cursors/xorg-x11
/usr/share/pixmaps/xorg-x11

Take note of the order in which your system searches for cursor themes. It looks
first in your home directory, then it searches directories available to everyone. To
install a new theme for your personal use only (see later for instructions), you
install it in your home directory (under ~/.cursors or ~/.icons). To install a new
theme everyone can use, install it in one of the remaining directories in the list.

Check all these directories to see if any theme files exist. The first two directories are below your home
directory, and few, if any, distributions install alternate cursor themes there by default. So, you're more
likely to find alternate themes in one of the last three directories in the list. Because I'm "in the know"
about Gentoo and therefore have an unfair advantage, I would check the /usr/share/cursors/xorg-x11
path first:

ls /usr/share/cursors/xorg-x11
Blue Silver default gentoo-blue handhelds whiteglass
Gold blueglass gentoo gentoo-silver redglass

There they are. I can choose between any of these cursor themes by referencing the name of the
directory that holds the theme.

Some distributions have the inconsiderate habit of placing the cursor themes in
the same directory as icon themes (different types of KDE or GNOME icons for
your desktop). If your Linux distribution does this, not all of the theme names you
find in the directory will be cursor themes. You'll know you've picked an icon
theme by mistake if your desktop starts up with the default mouse cursors rather
than a new cursor theme.

4.3.3. Set a Personal Default Theme

Each user can set his own default cursor theme by creating or modifying a file called
~/.icons/default/index.theme (recall that the ~ represents your home directory). This index.theme file
is the one that tells your system which cursor theme to use. Create the directories you need with the
following command:

$ mkdir ~/.icons ~/.icons/default

Now use your favorite editor to create the index.theme file in the ~/.icons/default directory. Place the
following two lines in the file:

[Icon Theme]
Inherits=whiteglass

This example assumes you have a cursor theme called Whiteglass installed on your system (the earlier
example showed that it exists on my system, because the directory name whiteglass appears in the
/usr/share/cursors/xorg-x11 directory that contains all the globally available cursor themes). Obviously,
if you don't have the Whiteglass theme on your system, this setting won't do you any good. The next
time you start your desktop, you'll see only the default cursor theme, because Whiteglass doesn't exist.
If you don't have Whiteglass, substitute a theme name that you do have installed.

Start up your favorite desktop window manager, and voilà, you should see a new set of mouse pointers.

If you want to change cursor themes, the best way to do it is to change the
setting in the index.theme file, and then restart your window manager or desktop.
If you don't restart the desktop, you could get unexpected results or no change in
cursor theme at all.

4.3.4. Tips for Users of NVIDIA Display Cards

It is not uncommon for people with NVIDIA display cards (such as the GeForce series) to use the
accelerated NVIDIA driver available from the NVIDIA web site. If you're using the accelerated driver,
not the default driver that comes with X11, your mouse cursors can tend to flicker.

Here's how to fix that problem. Find the Device section for your NVIDIA card in your X11 configuration

file. This file is called XF86Config, XF86Config-4, or xorg.conf, depending on the X server you are using,
and it is usually found in the /etc/X11 directory. Look for the Device section where you define the video

card driver. It should contain these lines, although not necessarily exactly as they appear here:

Section "Device"
 Driver "NVIDIA"
 Option "HWCursor" "On"

Turn off the HWCursor option so that it looks like the following:

 Option "HWCursor" "off"

The next time you start up your desktop, the flicker problem should be gone.

4.3.5. Get Custom Cursor Themes, Example 1

One popular source of custom cursor themes and other eye candy is a site called KDE-Look
(http://www.kde-look.org). The URL for cursor themes is http://www.kde-look.org/index.php?
xcontentmode=36. Find a cursor theme you like and download it. Though this web site is KDE-focused,
the cursor themes work on any X server that meets the earlier criteria.

Unfortunately, there's no standard way to package a cursor theme. Different people package their
cursor themes in different ways, and not everyone includes a README file to tell you how to unpack and
install their cursor themes. This makes it impossible to provide you with one set of instructions on how
to unpack and install a cursor theme, and to expect those instructions to work for every theme you
download.

But there are some simple patterns to look for that make it easy to adapt how you unpack and install
cursor themes. For this example, download the Red Dot cursor theme from the KDE-Look site. The URL
for this cursor theme is http://www.kde-look.org/content/show.php?content=4805 and the file (at the
time of this printing) is called 4805-RedDot.tar.gz. Find or create a work directory where you can
unpack the file and change to that directory. For example:

$ mkdir ~/temp
$ cd ~/temp

After you install the cursor theme, you can delete the contents of this work directory. Decompress the
file with the following command:

$ tar zxvf 4805-RedDot.tar.gz

This creates two directories, RedDot and RedDotSource. For those not familiar with it, the -z option
passed to GNU tar will uncompress gzipped files.

In general, once you unpack a cursor theme, the directories that matter are the ones that contain a
single subdirectory below them called cursors. In this case, the RedDot directory has a subdirectory
called cursors. That tells you which directory you want to install. (For the curious, the RedDotSource
directory contains all the files the author of the theme used to create the Red Dot theme.)

You can install the Red Dot cursor theme simply by copying the RedDot directory and its contents to
~/.icons (the .icons directory in your home directory):

$ cp -a RedDot ~/.icons

http://www.kde-look.org
http://www.kde-look.org/index.php?
http://www.kde-look.org/content/show.php?content=4805

If you want the Red Dot cursor theme to be available to all users, copy RedDot to one of the shared
directories instead. (Given the previous example of how this Linux distribution is configured, the shared
directories are /usr/local/share/cursors/xorg-x11, /usr/share/cursors/xorg-x11, and
/usr/share/pixmaps/xorg-x11. They might be different for your system.) You need to log in as root to
do this; otherwise, you won't have the privileges necessary to write to these directories.

Now edit the ~/.icons/default/index.theme file to contain the following two lines:

[Icon Theme]
Inherits=RedDot

Start up your favorite window manager or desktop environment (or restart the one you're using), and
you should see the Red Dot mouse cursors.

4.3.6. Get Custom Cursor Themes, Example 2

As I mentioned before, there's no standard way to package a cursor theme. So, here's another example
of how to install a cursor theme that should illustrate that the principles are the same, even if the
package is different.

In this case, download the Golden XCursors 3D theme, which (at the time of this writing) is at
http://www.kde-look.org/content/show.php?content=5507 and is located in a file called 5507-Golden-
XCursors-3D-0.8.tar.bz2. Unpack the file with the following command:

$ cd ~/temp
$ tar jxvf 5507-Golden-XCursors-3D-0.8.tar.bz2

This creates a subdirectory called Golden-XCursors-3D-0.8. (If the version of Golden Cursors has
changed since the publishing of this book, the filename will be different. Follow these instructions using
the new filename.) Change to this subdirectory with the following command, and list that directory's
contents:

$ cd Golden-XCursors-3D-0.8
$ ls
COPYING Gold README default

In this case, the author created a README file, but let's ignore it for a moment and use the same
reasoning used earlier to identify the relevant directory. Look in the directory called Gold by issuing the
following command:

$ ls Gold
cursors

There's the cursors subdirectory that we're looking for. So, Gold is the directory we want. Copy the Gold
directory to the ~/.icons directory:

$ cp -a Gold ~/.icons

Again, if you want the Gold cursor theme to be available to all users, copy Gold to one of the shared
directories instead. (Given the previous example of how this Linux distribution is configured, the shared

http://www.kde-look.org/content/show.php?content=5507

directories are /usr/local/share/cursors/xorg-x11, /usr/share/cursors/xorg-x11, and
/usr/share/pixmaps/xorg-x11. They might be different for your system.) You need to log in as root to
do this; otherwise, you won't have the privileges necessary to write to these directories.

Edit the ~/.icons/default/index.theme file to contain these two lines:

[Icon Theme]
Inherits=Gold

Start up your favorite window manager or desktop environment (or restart the one you're using), and
you should see the Gold mouse cursors.

Hack 24. Convert CursorXP Themes for Use with Linux

Convert custom cursor themes meant for Windows for use with Linux.

Want even fancier cursor themes than those currently available for Linux? A company called Stardock
has created a product called CursorXP for Windows XP. It allows Windows users to choose from
hundreds of fancy animated cursor themes. This hack is a script that will convert these cursor themes
for use with X11 under Linux.

A huge repository of publicly available cursor themes are designed for use with CursorXP. You can find
these themes at http://www.wincustomize.com. The specific URL for the cursor themes is
http://www2.wincustomize.com/skins.asp?library=25.

You can download one or more of these themes and then use a Perl script to convert them for use with
X11, the engine that powers your desktop. Eric Windisch created the original Perl script, which Nicholas
Petreley and James Barron have since modified. This hack uses the version of the script called np-
sd2xc.pl, which you can download from the O'Reilly catalog page for this book:
http://www.oreilly.com/catalog/linuxdeskhks.

You need to have version 6 or better of ImageMagick installed for the script to work properly. You also
need these Perl modules installed:

Image::Magick

Getopt::Long

Config::IniFiles

Once you are sure you have all the prerequisite packages installed, download a cursor theme to
convert. For example, download the file Gear.zip. Unzip this file to a work directory so that you can
perform the conversion. These commands (substitute the name of the zip file you're using for Gear.zip if
you are using a different theme) use the newly created directory geartemp as a work directory:

$ mkdir ~/geartemp
$ cd ~/geartemp
$ unzip Gear.zip

This expands your zip file into another file, which in this case is called Gear.CurXPTheme. Even though
this file has the extension .CurXPTheme, it's really just another zip file that you can expand with the
following command:

$ unzip Gear.CurXPTheme

Now you're almost ready to run np-sd2xc.pl. The -name command switch defines the name of the cursor

theme when you install it. This theme was originally called Gear, but you can use another name if you
want. For the sake of frivolity, give this theme a new name, CoolGear, by using this command:

http://www.wincustomize.com
http://www2.wincustomize.com/skins.asp?library=25
http://www.oreilly.com/catalog/linuxdeskhks

$ np-sd2xc.pl -name CoolGear

The conversion program can add drop shadows to all the cursors when it converts the CursorXP cursor
themes. It's a matter of taste, but I think drop shadows give the cursor a very nice 3D appearance. If
you want the cursors to have drop shadows, add the -shadow command switch and use this command

instead:

$ np-sd2xc.pl -shadow -name CoolGear

Now you can install the theme (this example installs it in your home directory). The following
commands both install the theme and set it as the default theme (the -R switch tells the cp copy

command to recurse through directories so that you'll copy everything below the CoolGear and default
directories to the destination ~/.icons):

$ cp -R CoolGear ~/.icons
$ cp -R default ~/.icons

The second command overwrites whatever index.theme file you have in your ~/.icons/default directory.

Start up your favorite desktop or window manager (or exit and restart the desktop or window manager
you're using), and you should see the cursor theme, formerly designed for Windows, running on your
Linux X server-based desktop!

Not every CursorXP theme converts well. It's possible for a misbehaving cursor
theme to prevent you from starting up your window manager or desktop. If you
have this problem, switch to a virtual console by pressing Ctrl-Alt-F1. Log in with
your normal username. Edit your ~/.icons/default/index.theme file, and change
the Inherits parameter to a theme that works.

Hack 25. Use Windows and Mac Fonts

Spruce up your desktop with your favorite fonts from other operating systems.

A major problem that has been leveled at the Linux desktop is a lack of good-quality fonts. This is
because font creation is a time-consuming and expensive process that requires a lot of skill. Those who
know how to do it are generally not inclined to give their work away for free (a nice contrast to the
thousands of open source programmers who do give their code away). You can purchase fonts to use
with your Linux system, but it is cheaper to use fonts you already have on another OS.

When copying fonts from one operating system to another, bear in mind the legal
implications of what you are doing. Fonts that are included with proprietary
operating systems are sometimes under specific licensing terms that can restrict
their use. Before you copy anything, be sure to read the licensing terms for the
fonts.

4.5.1. Use Windows Fonts

Linux has full support for the TrueType fonts used by Windows. One method of using the fonts is to
simply copy them from Windows and install them either in the X font directories or in .fonts in your
home directory. Although this method works, if you have Windows installed on the same computer that
runs Linux, it's unnecessary to copy all those fonts when you can use a more elegant solution and
access them from one place.

First, you need to ensure that you can mount your Windows partition. To do this you need to have
support for the VFAT (or NTFS if you use Windows 2000/XP) filesystem in your kernel. My distribution
kernels include this support, but if you compile your own kernels, you need to add support yourself. In
your kernel configuration tool, enable support by selecting File systems DOS/FAT/NT, File systems

VFAT Support or, if you have an NTFS filesystem, File systems NTFS file system support (read
only).

Before you can access the Windows disk, mount the partition. You can do this manually with the
following:

foo@bar:~$ mkdir /mnt/windows
foo@bar:~$ mount -t vfat /dev/hda1 /mnt/windows

Your Windows partition might be located someplace other than /dev/hda1 and you can use a different
mount point than /mnt/windows. If you are unsure which partition numbers are available, you can type
this command to see a list:

foo@bar:~$ ls -al /dev/hda*

To make mounting easier, add this mount point to the list of available mount points in /etc/fstab. This
file tells the system which disks are available and how they are accessed. You should add one of these
two lines depending on whether you have a VFAT- or NTFS-formatted Windows partition:

/dev/hda1 /mnt/windows vfat rw 0 0
/dev/hda1 /mnt/windows ntfs ro 0 0

This tells the system that /dev/hda1 is available in /mnt/windows with read and write access and to
mount it at every boot. NTFS is mounted read-only (ro), because writing to an NTFS partition is not

supported and will cause data corruption.

To use the fonts, you need to access the Windows font directory and run some utilities that will make
the fonts usable in X Windows. Although X supports TrueType fonts, it needs some special files to be
generated that provide information about the fonts. Windows often keeps fonts in C:\Windows\Fonts, so
you should go to /mnt/windows/windows/fonts to run the commands.

The first command is called ttmkfdir. This command creates a special font information file called

fonts.scale that displays a list of the fonts and their capabilities in a format the X server can
understand; this acts like a reference card that says what each font can do. To create this file, simply
run the command inside the font directory:

foo@bar:~$ ttmkfdir

If your Windows partition is NTFS, you won't be able to run this command because your access is read-
only. To get around this, copy the fonts to a directory on your Linux system and run the command. Then
copy the file it creates, fonts.scale, to media you can access from Windows, such as a floppy disk or USB
memory key. From there you can put it in your C:\Windows\fonts directory. You will have to repeat this
work each time you add new fonts to your Windows partition that you want to use in Linux, so you have
to question if it is really worth it.

You now need to tell XFree86 that this font directory exists and it should use it. You can do this in one of
two ways. The first method is to add a FontPath line to your X11 configuration file, which is commonly

/etc/X11/XF86Config-4:

FontPath "/mnt/windows/Windows/Fonts"

When you have added this, you will need to restart your X server.

Remember to use proper capitalization for your Windows files when accessing
them from Linux. For example, the main Windows directory is sometimes spelled
with all caps: WINDOWS. So, you might need to change your font paths
appropriately.

An alternative method if you are using the XFS font server is to use the chkfontpath command to add

the path dynamically:

foo@bar:~$ chkfontpath --add /mnt/windows/Windows/Fonts

If you add the directory using this command, you must restart the font server and restart XFree86. You
can do this with the following:

foo@bar:~$ /etc/init.d/xfs restart

Now your fonts should be available.

4.5.2. Use Mac OS X Fonts

Although Mac OS X has support for TrueType fonts, Apple decided to store many of the native system
font details in special files known as data fork resource files. These files end in the extension .dfont and
contain a lot more information than is typically found in a TrueType font file. This information is specific
to the Mac OS X operating system, so just copying the files over to Linux is not enough as X would not
understand what to do with this extra information. Therefore, you need to convert these files to
something X can use with the aid of a nifty little tool called Fondu.

Fondu (http://fondu.sourceforge.net/) has been developed to extract font information from the .dfont
files and make usable TrueType font files. Fondu includes not only a converter, but also several other
tools to deal with font differences between Unix-type operating systems, such as Linux/BSD and Mac OS
X. On the home page is a Mac OS X StuffIt archive that you need to download to your Mac.

When you have downloaded the archive, double-click the icon to extract the software and a .pkg icon
will appear on the desktop. When you click this icon, the installation routine will run. Although the
installer will require the normal process of clicking Next and selecting where to install the files, you
should also set your PATH and MANPATH environment variables to /usr/local/bin and /usr/local/man,

respectively, so that the installed files are accessible anywhere in Mac OS X. You can do this in the
.profile file inside your directory (this file is read each time you log in and sets up any environment
settings such as those defined by these variables):

PATH = /usr/local/bin:$PATH
MANPATH = /usr/local/man:$MANPATH
export PATH MANPATH

Now log off Mac OS X and then log back on, and check that these variables are set by typing the
following:

foo@bar:~$ echo $PATH
foo@bar:~$ echo $MANPATH

To convert the fonts, create a directory in which to perform the conversion:

foo@bar:~$ mkdir ~/fontconv

You cannot convert the main font files in the system font directory as write access is disabled, so use
fontconv as a temporary directory. Use this command to copy the fonts from the /System/Library/Fonts
directory into your new directory:

foo@bar:~$ cp /System/Library/Fonts/* ~/fontconv

Now if you go to the fontconv directory, you can perform the conversion with:

foo@bar:~$ fondu *

http://fondu.sourceforge.net/

When this process is finished you will see a number of .ttf fonts in the directory. Create another
directory called macfonts into which to copy the TrueType fonts, and then make a tarball of them:

foo@bar:~$ mkdir ~/macfonts
foo@bar:~$ cp *.ttf ../macfonts
foo@bar:~$ tar zcvf ../macfonts/*.ttf macfonts

Now copy these fonts to the Linux machine and extract them into either the system font directory or
.fonts in your home directory. As outlined in the previous section, be sure to run the ttmkfdir tool to

create the font information file, and add the font path to XFree86.

Hack 26. Never Miss Another Reminder

Flash your reminders on your desktop on top of any applications you are running.

Did you know you can display pop-up messages on top of X Windows, even if you're using multiple
virtual desktops? This trick can come in handy when a pop-up dialog box or messages in a terminal
window simply aren't sufficient to get your attention. And it can be fun, too. This hack explores the
power of X11 On-Screen Display (XOSD), and then uses it to set reminders that will pop up on-screen
at the preset time.

XOSD allows you to print messages, symbols, and even progress bars directly on-screen, on top of
anything else you have displayed on your desktop. Think of it as the equivalent of the volume control
meter that pops up on many televisions when you adjust the volume.

Use your distribution's preferred installation method to install XOSD. The package name usually
includes the term XOSD. If you have yum set up properly, you can log in as root and install it on Fedora
Core (and some other RPM-based Linux distributions) with this command:

yum install xosd

On Debian or RPM-based distributions that support apt-get, install it with this command:

apt-get install xosd-bin

On Gentoo, install it with this:

emerge xosd

The distinct advantage of using XOSD is that it is often more likely to get your attention than any other
alert technique. That's because the message appears on every virtual desktop, and it appears on top of
any applications you are using. You can try out the XOSD program, osd_cat, with a simple command,
such as the following:

$ echo "Hello there, this is osd_cat speaking." | osd_cat

You should see the message appear in tiny red text in the upper-left corner of the screen. It's so tiny, in
fact, that it's hardly useful. Don't worry; you can do something about that. As long as you see the text
(or something red that looks like text) you know osd_cat is working.

4.6.1. The Way You Like It

You can add several customization switches to tune how the osd_cat command presents text on the
screen. The first thing you want to do is increase the text size. Use the -f switch followed by a font

definition to make osd_cat use the font you prefer.

Font definitions, such as the ones used by osd_cat, can appear intimidating because they contain so
much information littered with dashes and asterisks. Each part of the definition says something about
the type of font, the point size, whether the font is bold, etc. It's probably safe to stick with the
definitions listed here, but if you want to play with various font definitions, run the program xfontsel.
This program lets you play with the various parameters that make up a font definition while showing
the results in the window. When you come up with a combination you like, you can click the Select
button, which will copy the full definition onto the clipboard and let you paste it into your script or
program.

If you want a big eye-catching font, you'll probably want to use the following font definition, which is
available in almost every Linux distribution:

-adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-*

If you have the Microsoft TrueType fonts installed [Hack #25], you can get a much broader range of
font sizes at the cost of speed. The larger you make the font, the longer it takes for osd_cat to render
the message. Here's one example:

"-microsoft-comic sans ms-*-*-*-*-48-*-*-*-*-*-*-*"

You can get some fonts to display text larger than 48 points, but it might take several seconds before
you see the text on your screen.

Make sure you enclose font descriptions in quotes if the font name includes
spaces. Otherwise, the spaces in the font description will confuse the osd_cat
program.

Let's try the osd_cat test again, this time with a font definition:

$ echo "Hello there, this is osd_cat speaking." |
osd_cat -f "-adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-*"

If everything works properly, you should see the message in much larger text.

You can use the -c switch to change the color of the text. You can use any color name defined in the

/usr/X11R6/lib/X11/rgb.txt file, but unless you're really picky, it's safe to stick with basic color names,
such as blue, green, yellow, cyan, white, black, and magenta. If you really want to branch out into
colors, such as PapayaWhip, however, be my guest.

Green is typical of television on-screen displays, so see if it looks good for XOSD:

$ echo "Hello there, this is osd_cat speaking." |
osd_cat_-c green \
-f "-adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-*"

If you want to get fancy, present the text with a bit of a shadow. Of course, if the message displays on a
dark background, you probably won't see the shadow. Add the -s 2 switch to create a 2-pixel shadow

for the message:

$ echo "Hello there, this is osd_cat speaking." |
osd_cat -c green -s 2 \
-f "-adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-*"

Now position the text in the middle of the screen with the -p middle switch (you can choose top or
bottom, if you prefer). You might see the message appear at the top of the screen for a moment, after

which it shifts to the middle of the screen. This is an occasional idiosyncrasy of osd_cat that will
probably be fixed as it matures. Finally, you can make the message display on the screen for longer
than the default 5 seconds. Add the -d 60 switch to tell osd_cat to leave the message on the screen for

60 seconds:

$ echo "Hello there, this is osd_cat speaking." |
osd_cat -c green -s 2 -p middle -d 60
-f "-*-helvetica-*-*-*-*-34-*-*-*-*-*-*-*"

A number of other switches are also available, such as a switch to indent the text. Browse the manpage
for osd_cat for a list of the available customization switches.

4.6.2. Scripting the Attention-Getting Reminder

Now that you know what XOSD can do, you can put it to work by writing a script that will cause
reminders to flash on the screen at the appointed time. In addition to osd_cat, you also need the at
program installed for this script to work, and you must have the atd daemon running. Many Linux
distributions install at and atd, and run the daemon by default. If yours does not, you have to follow the
procedure for your particular distribution to install at and atd, and make sure atd starts when you boot
the computer.

Now, on to the script itself. Log in as root or use sudo to fire up your favorite editor, create the file

/usr/local/bin/remindme, and type in the bash script from Example 4-1 or fetch the script from
O'Reilly's Examples web site for this book.

Example 4-1. remindme bash script

#!/bin/bash

figure out which display we're currently using

HOST="$(xrdb -symbols | grep SERVERHOST | cut -d= -f2)"
DISPLAYNUM="$(xrdb -symbols | grep DISPLAY_NUM | cut -d= -f2)"
THISDISPLAY=$HOST:$DISPLAYNUM.0

check to see if the reminders directory exists in the home directory
if not, then create the directory

if [! -e ~/reminders] ; then
 mkdir ~/reminders
fi

unique=`date +%F-%H-%M-%S`
reminder="reminders/reminder-"$unique
Now output the reminder script

echo '#!/bin/bash' > ~/$reminder
echo -n 'export DISPLAY=' >> ~/$reminder
echo $THISDISPLAY >> ~/$reminder
echo "echo \"$2 today\" | osd_cat -s 2 -c green -p middle \
 -f -adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-* -d 60" >> ~/$reminder
Make the reminder script executable
chmod +x ~/$reminder
Schedule it to run
at $1 -f ~/$reminder

Save your work, and change the file to be executable with this command:

$ sudo chmod +x /usr/local/bin/remindme

Do you need to set a quick reminder to call your boss at 2:00 p.m.? Simply type the following
command:

$ remindme 2:00pm "Call your boss now."

From this command the bash script creates a separate reminder script and schedules it to run at 2:00
p.m. The script it creates will put the message on the screen using on-screen display. That means you
won't be able to miss the message, because it will appear on every virtual desktop at the same time.

Here's how it works. The first part of the script determines which X Windows display you are using.
Then it adds a line to the reminder file that exports the discovered display setting. The osd_cat program
does not get that information from the environment, so it must be specified in the script. You can't
depend on the user always being on the default display of :0.0, which is why the script has to
determine the current display by querying the system with the xrdb command.

Some versions of osd_cat are cranky about how the DISPLAY variable is set, and
they won't work if you specify the hostname in front of the <:0.0>. Keep that in

mind when trying to get this working on your system.

The next part of the bash script creates a unique filename based on the current time. Then it creates the
first line of the bash script (#!/bin/bash) and writes it to the reminder file that will run at the proper

time.

Next, it adds the on-screen display command, which substitutes "Call your boss now" for the second
argument, $2. It makes the reminder script executable, and finally, it schedules the computer to run
your reminder program with the at command, which uses the time at which you typed the command as

your first argument. The time argument is flexible, by the way. You can type the time as 2:00PM, 2pm,
or even 14:00. The script adds today for you, although if you are ambitious, you can rewrite the script

to let you create reminders for specific dates in the future.

If you look carefully at the script, you can see that it stores files as something such as
~/reminders/reminder-2004-10-04-05-07-39. Note that the symbol ~ refers to your home directory, so
it is storing all the reminders in the reminders subdirectory just below your home directory. If you like
this script and use it often, this directory will fill up with those temporary reminder script files. They
don't take up much space, so that shouldn't be much of a concern. But if you want to clean out old
reminders, you can do so by checking the filenames to see how old they are. Each reminder script
includes the year, month, day, hour, minute, and second as part of the filename. This makes it easy to
identify expired reminders and delete them.

Note that the year, month, day, hour, minute, and second in the filename
represent the time you created the reminder script file, not the time it is
scheduled to run. If you create a reminder at 1:00 p.m. that is supposed to run at
3:00 p.m., don't delete the file because it's older than the current time if the
current time is sometime before 3:00 p.m. It expires after it was scheduled to
runat 3:00 p.m.not after the time it was created.

Hack 27. Make Applications Trigger On-Screen Alerts

Many applications can run a program when an event occurs. Use XOSD to make these alerts
really grab your attention.

Many of the applications you use daily might give you the option of executing a program when an event
occurs. The KMail email client, Jpilot personal information manager, and Swatch log-monitor program
are three examples. Each hack in this section takes advantage of XOSD [Hack #26] .

4.7.1. KMail

If you use the KDE KMail email client, you can have KMail execute a program when new mail arrives.
Here's how you can have KMail display the on-screen new-mail notification "You've got mail!" with
XOSD.

First, you need to create a script that displays the on-screen alert "You've got mail!". KMail doesn't
allow you to insert the entire echo and osd_cat command line, but it will execute a script that displays

the message. Fire up your favorite editor, and enter this script into a file called ~/youhavemail. (This
script executes from your home directory, so you don't need any special privileges for it to work.)

#!/bin/bash

figure out which display we're currently using
then export the DISPLAY environment variable

HOST="$(xrdb -symbols | grep SERVERHOST | cut -d= -f2)"
DISPLAYNUM="$(xrdb -symbols | grep DISPLAY_NUM | cut -d= -f2)"
THISDISPLAY=$HOST:$DISPLAYNUM.0

export DISPLAY=$THISDISPLAY

echo "You've got mail"'!' | osd_cat -s 2 -c yellow -p middle \
 -f -adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-* -d 30

The placement of various quotes in the text for the echo command looks a bit

odd, doesn't it? Here's why. The bash shell interpreter will allow you to embed
only a single quote in a string that is enclosed by double quotes. If the string
"You've" wasn't isolated within double quotes, the echo command would report
an error. In addition, the exclamation point (!) has a special meaning in bash. It

refers to the command history (a recording of your most recent commands). In
this case, you can display the exclamation point only if you surround it with single
quotes. This creates a dilemma in the first part of our message because it
requires double quotes, yet we have to surround the exclamation point with single
quotes. The answer is simple. Break up the message into two parts, the main part
surrounded by double quotes followed by the single exclamation point surrounded
by single quotes. The echo command handles both strings as part of a single

message.

Save your work and change the script to be executable:

$ chmod +x ~/youhavemail

Now follow these steps to configure KMail to execute the script when new mail arrives:

Start up KMail and then click Settings Configure KMail.1.

Click the button entitled Other Actions at the bottom of the dialog, located right below the Detailed
New Mail Notification box, which should be checked by default.

2.

Click the More Options button at the bottom of the next dialog box that appears.3.

Check the "Execute a program" box.4.

Enter ~/youhavemail in the edit field for this selection.5.

Click the Apply and/or OK buttons until you are back to the KMail interface.6.

4.7.2. Jpilot

You can configure the Jpilot personal information manager (PIM) to run a script that displays an on-
screen message when a scheduled event occurs. Fire up your favorite editor, and enter this script into a
file called ~/jpilotalert. (This script executes from your home directory, so you don't need any special
privileges for it to work.)

#!/bin/bash

figure out which display we're currently using
then export the DISPLAY environment variable

HOST="$(xrdb -symbols | grep SERVERHOST | cut -d= -f2)"
DISPLAYNUM="$(xrdb -symbols | grep DISPLAY_NUM | cut -d= -f2)"
THISDISPLAY=$HOST:$DISPLAYNUM.0

export DISPLAY=$THISDISPLAY

echo "You have an appointment scheduled for $1 $2"'!' | osd_cat -s 2 -c yellow
-p middle \
 -f -adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-* -d 30

Here is how to set up Jpilot to execute this script and enter the date and time as part of the alert:

Select File Preferences from the menu, or press Ctrl-E to get to the Preferences dialog.1.

Click the Alarms tab.2.

Check the box labeled "Execute this command."3.

Enter the following string of text into the Alarm Command text field: ~/jpilotalert "%d" "%t".4.

4.7.3. Swatch

Swatch is a program that monitors your system logs to watch for certain important keywords in one or
more log files. If Swatch finds a keyword, perhaps a word or pattern that indicates someone might be
trying to guess passwords and break into your network, Swatch will do whatever you tell it to do to
issue the alert.

Normally, when Swatch issues an alert, it simply prints it to the screen where Swatch is running.
Swatch can also send you an email alert, but if Swatch detected an attempted break-in, your network
could be compromised by the time you check your email. This hack exploits the power of XOSD to give
Swatch a better chance of grabbing your attention when something potentially serious is afoot.

Here is an example of how to set up Swatch to tell you when someone tries to log in, but fails (a
possible indication that someone is trying to guess a password). Assume that the Swatch configuration
file you are using is /root/.swatchrc, and the log file to be monitored is /var/log/auth.log, which, for
some Linux distributions, is the file that records all login attempts. Here is just one section of a larger
file called /root/.swatchrc, which looks for the word "failure" in /var/log/auth.log:

Bad login attempts
watchfor /failure/
 pipe "osd_cat -c magenta -p middle \
-f \"-*-arial black-*-*-*-*-48-*-*-*-*-*-*-*\" -d 60"

When Swatch finds a new log entry with the word "failure" in /var/log/auth.log, it prints the suspicious
log entry on-screen by piping it through osd_cat, which makes the event almost impossible to miss if
you're working at the computer. Note that we're using a smaller font than we used for the previous
hacks. That's because Swatch messages can sometimes be lengthy, and you don't want to have the
most important information hidden off-screen.

Hack 28. Heat Up Your Keyboard with Hotkeys

Activate those special Internet and multimedia keys on your keyboard.

Hotkeys is a bit antique these days, so it doesn't support all the modern keyboards. But if you are willing to put in some
effort, you can get a decent experience from Hotkeys, especially if your keyboard is supported. If your keyboard is not
supported, it might take more work than it is worth to you, and you might want to skip ahead to the more modern LinEAK
[Hack #29] .

First, you must install Hotkeys; you can use your distributions package manager or download and compile it yourself. If your
Linux distribution doesn't have a package available, you can find RPM packages for various distributions at
http://rpm.pbone.net/index.php3?stat=3&search=hotkeys&srodzaj=3, or you can search http://rpmfind.net. Just as an
example, if you use Debian, get the packages with this command (logged in as root):

apt-get install hotkeys xosd-bin

By installing xosd-bin at the same time you can take advantage of one of the better features of Hotkeys: the attractive use of
on-screen display (Figure 4-1). If you compile hotkeys yourself, be sure to also install the XOSD and XOSD development
programs [Hack #26] to take advantage of this feature.

Figure 4-1. The Hotkeys on-screen volume display

Start the process of configuring Hotkeys for your keyboard by copying the default configuration to your personal
configuration file. The default configuration file is usually saved as /etc/hotkeys.conf. You want to create a copy of this file in
your home directory, and personalize it to work with your keyboard and perform the actions you want performed when you
press the special keys on your keyboard:

$ mkdir ~/.hotkeys
$ cp /etc/hotkeys.conf ~/.hotkeys

Now look to see which keyboards are supported by default:

$ hotkeys -L
Supported keyboards: (with corresponding options to --kbd-list or -l)
 mx2500 - Memorex MX2500 Keyboard
 kbp8993 - Chicony KBP-8993 keyboard
 sk2500 - Fujitsu/Logitech/Trust SK2500 Keyboard / Liteon-ak2500
 sk2505 - SK-2505 Keyboard

http://rpm.pbone.net/index.php3?stat=3&search=hotkeys&srodzaj=3
http://rpmfind.net

 sk2800c - SK-2800C
 ibook - iBook Internal Keyboard
 mx1998 - Memorex MX1998 Keyboard
 sk2501a - Silitek SK5210A Keyboard
 msnatpro - Microsoft Natural Keyboard Pro
 msnet - Microsoft Internet Keyboard
 logitech-cfo - Logitech Cordless Freedom Optical Keyboard
 polypix - Polypix Keyboard
 sk7100 - Silitek SK7100 Keyboard
 itouch - Logitech Cordless iTouch/Internet/Cordless Desktop
 hp5181 - HP 5181 Internet Keyboard
 msnetpro - Microsoft Internet Pro Keyboard
 acerwl - Acer Wireless Keyboard
 btc9000 - BTC 9000
 orktekusb - ORKTEK USB Hub/keyboard
 kb9930 - IBM Rapid Access II Keyboard
 mck800 - Process MCK-800
 kb9963 - Compaq KB-9963 keyboard
 pb5140w - Packerd Bell Model 5140W
 mx3000 - Memorex MX3000 Keyboard
 sk9925 - Silitek SK-9925 USB Keyboard

This isn't a terribly impressive list, but if your keyboard is there, you're all set. If your keyboard isn't listed, you can use one
of the existing Hotkey keyboard definitions as a template to create a new keyboard definition. For example, to create a
definition for the Logitech Elite keyboard, log in as root and run these commands:

cd /usr/share/hotkeys
cp itouch.def lelite.def

Now you need to find out what the keycodes are for the Logitech Elite keyboard and adjust the definitions in the file. This is
the hardest part of the process. The best way to discover what keycodes your special keys generate is to execute the
following command within an X terminal:

$ xev

You will see a small window appear with a box inside it. Click the window to make sure it's active. Now press the various
special keys on your keyboard. As you press each key, information about that key should appear in the terminal from which
you launched xev. If you press a special key and nothing appears on the X terminal where you started xev, you won't be able
to assign that key to an action. Also, if you see a result that looks something like this, you probably won't be able to assign
that key to an action:

KeymapNotify event, serial 30, synthetic NO, window 0x0,
 keys: 4294967222 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0

ButtonRelease event, serial 30, synthetic NO, window 0x1400001,
 root 0xb6, subw 0x1400002, time 2414137, (35,22), root:(1053,797),
 state 0x200, button 2, same_screen YES

However, if you see a result that looks something like the following, you're in luck:

KeyPress event, serial 27, synthetic NO, window 0x1400001,
 root 0xb6, subw 0x1400002, time 31223, (44,18), root:(1085,771),
 state 0x0, keycode 162 (keysym 0x0, NoSymbol), same_screen YES,
 XLookupString gives 0 bytes:
 XmbLookupString gives 0 bytes:
 XFilterEvent returns: False

KeyRelease event, serial 30, synthetic NO, window 0x1400001,
 root 0xb6, subw 0x1400002, time 31447, (44,18), root:(1085,771),
 state 0x0, keycode 162 (keysym 0x0, NoSymbol), same_screen YES,
 XLookupString gives 0 bytes:

In this example, your keypress generated a keycode of 162. Jot down that keycode and make a note of which key generated
it. In the case of the Logitech Elite keyboard, the Play key generates keycode 162.

Given all I could find out about the Logitech Elite keyboard, here is an abbreviated version of the
/usr/share/hotkeys/lelite.def definition file I re-created from the original itouch.def file:

<?xml version="1.0"?>

<definition>

 <config model="Logitech Elite Keyboard">

 <Favorites keycode="230"/>
 <Shopping keycode="148"/>
 <PrevTrack keycode="144"/>
 <Play keycode="162"/>
 <Stop keycode="164"/>
 <NextTrack keycode="153"/>
 <VolUp keycode="176" adj="2"/>
 <VolDown keycode="174" adj="2"/>
 <Mute keycode="160"/>
 <Email keycode="236"/>
 <Search keycode="136"/>
 <Sleep keycode="223"/>
 <Go keycode="233"/>
 <!-- Media keycode="129"/ -->
 <userdef keycode="129" command="/usr/bin/eject">Eject</userdef>
 <!-- My Home keycode="130 -->
 <userdef keycode="130" command="/usr/bin/xfe">Home</userdef>
 <!-- Go keycode="233" -->
 <userdef keycode="233" command="/usr/bin/firefox \
-remote openURL()"></userdef>

 </config>

 <contributor>
 <name>nicholas petreley</name>
 <email>nicholas at petreley dot com</email>
 </contributor>

</definition>

Notice that some definitions begin with userdef. Hotkeys is very strict about the names you define for the available keys on

the keyboard. Hotkeys simply refuses to recognize some key names, and therefore you cannot associate those names with a
keycode. You can get around the problem by creating a user-defined key definition. In the case of the Logitech Elite
keyboard, there is a Media key, a My Home key, and a Go key (among others undefined by Hotkeys). I added these keys
along with their functions to the /usr/share/hotkeys/lelite.def file using the Hotkeys userdef command:

 <!-- Media keycode="129"/ -->
 <userdef keycode="129" command="/usr/bin/eject">Eject</userdef>
 <!-- My Home keycode="130 -->
 <userdef keycode="130" command="/usr/bin/xfe">Home</userdef>
 <!-- Go keycode="233" -->
 <userdef keycode="233" command="/usr/bin/firefox \
-remote openURL()"></userdef>

Now you're ready to edit the ~/.hotkeys/hotkeys.conf file to define the actions Hotkeys will take when you press certain
special keys. Here is a sample configuration:

Specify the default keyboard (without the .def extension) so you
don't need to specify -t every time
Kbd=lelite

CDROM=/dev/cdroms/cdrom0

PrevTrack=xmms --rew
Play=xmms --play-pause
Stop=xmms --stop
Pause=xmms --pause
NextTrack=xmms --fwd
Rewind=

WebBrowser=firefox
Email=thunderbird
Calculator=xcalc
FileManager=gentoo
MyComputer=gentoo
MyDocuments=gentoo
Favorites=firefox
Shell=aterm
ScreenSaver=xscreensaver-command -activate
NewsReader=thunderbird -news
Communities=firefox -remote 'openURL(http://slashdot.org,new-tab)'
Search=firefox -remote 'openURL(http://www.google.com,new-tab)'
Idea=firefox -remote 'openURL(http://sourceforge.net,new-tab)'
Shopping=firefox -remote 'openURL(http://thinkgeek.com,new-tab)'
Go=firefox -remote 'openURL()'
Print=lp

osd_font=-adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-*
osd_color=LawnGreen
osd_timeout=3
osd_position=bottom
osd_offset=25

Some of the actions are simple. The Email key starts the Thunderbird program, so all you need in the file is the line

Email=thunderbird. Other definitions require more complex actions, such as opening a new tab in a web browser (if one is

already running) and pointing it to a specific web page.

The key definition is Kbd=lelite, which tells Hotkeys which keyboard definition file to use. In this case, it instructs Hotkeys

to use /usr/share/hotkeys/lelite.def.

I confess that most of the keys listed in the configuration file do not exist on the Logitech Elite keyboard, so the definitions
are useless. But it's sufficient for my tastes as it enables my keyboard to control the volume, play audio CDs, launch Firefox,
and open Google in a browser tab. If you have a keyboard that is officially supported, you can do a lot more.

Hack 29. Get Hotter Hotkeys with LinEAK

LinEAK turbo charges the whole concept of customizing how your Internet/multimedia
keyboard works.

This hack will show you how to adopt the modern equivalent of Hotkeys. LinEAK is a combination of
packages, including the main daemon service and several plug-ins. It's a bit quirky and doesn't always
launch successfully (at least in this author's experience), but it has support for far more keyboards than
Hotkeys. And because Hotkeys hasn't advanced much over the years, it isn't likely to catch up unless
someone regains interest in it. LinEAK, on the other hand, is being improved on a regular basis.

As of this writing, you can get Debian packages for some of the programs that make up LinEAK at
http://lineak.sourceforge.net/, and you can get the source code for all the packages from the same site
and compile the programs and plug-ins yourself. I compiled my own and it was a cinch. The RPM
packages at this site are out-of-date but might be current by the time you read this.

Until that time, you can find a variety of RPM packages for LinEAK designed for Mandrake and other
distributions at http://rpm.pbone.net/index.php3?stat=3&search=lineakd&srodzaj=3. And you can also
search http://www.rpmfind.net. Make sure you have XOSD and XOSD development libraries installed if
you want to enjoy the on-screen display feature. [Hack #26] provides more information about XOSD.
For example, the volume control shown in Figure 4-2 is one of the nice features LinEAK shares with
Hotkeys [Hack #28] .

Figure 4-2. LinEAK's on-screen volume display, which is nice-looking as long
as you use the built-in volume definitions

The following programs comprise LinEAK as it stands now:

lineakd

lineak_defaultplugin

lineak_xosdplugin

lineak_kdeplugins

Media Detect

lineakconfig

Klineakconfig

http://lineak.sourceforge.net/
http://rpm.pbone.net/index.php3?stat=3&search=lineakd&srodzaj=3
http://www.rpmfind.net

At minimum, install lineakd, lineak_defaultplugin, and lineak_xosdplugin. If you can't find packages for
your distribution, download the source code and then compile and install the programs using these
commands (assuming you place your source code in /usr/local/src):

cd /usr/local/src/lineakd-0.8.1
./configure
make
make install
cd /usr/local/src/lineak_defaultplugin-0.8.1
./configure
make
make install
cd /usr/local/src/lineak_xosdplugin-0.8.1
./configure
make
make install

Now log in as a regular user and type the following command to get a list of the supported keyboards:

$ lineakd -l
(The complete list is 3 pages long, this is just the first few lines)
LinEAK v0.8.1 -- supported keyboards:

 [TYPE] [Full name]

 A4-KBS21 A4Tech Wireless Desktop KBS-21533RP & Office/Multimedia Keyboard
 A4-KBS8 A4Tech KBS-8
 A4-RFKB23 A4Tech RFKB-23
 A4-RFKB25 A4Tech RFKB-25 (KBS-2548RP & KBS-2548RPC)
 ACE-6512UV Acer 6512-UV
 ACE-TM290 Acer Laptop/notebook Travelmate 290LCi
 ACEAKV12 Acer AirKey V (12 keys)
 ADEL-9805 Adesso EL-9805
 APK7 Apple Pro Keyboard (7 keys)
 BEN-AM805 BenQ AM805

That kind of beats the tar out of Hotkeys support, doesn't it?

Find your keyboard in the list. For example, the code for the Logitech Elite keyboard is LTCElite. Now
type this command to create a default configuration file for your keyboard (substitute LTCElite with the
code for your keyboard):

$ lineakd -c LTCElite

The -c option creates a default configuration file, lineakd.conf, for the Logitech Elite keyboard and

places the configuration file in the ~/.lineak directory. Fire up your favorite editor, and customize this
file's settings to your heart's content. Here's a sample configuration I created for my Logitech Elite
keyboard:

LinEAK - Linux support for Easy Access and Internet Keyboards
Copyright (c) 2001,2002, 2003 Sheldon Lee Wen <leewsb@hotmail.com>
and Mark Smulders <Mark@PIRnet.nl>
http://lineak.sourceforge.net

#
lineakd configuration file
#
example key configuration:
play = "xmms --play-pause"
eject = EAK_EJECT
#
Lineakd supports the following modifier keys:
control alt shift mod2 mod3 mod4 mod5

Normally /dev/cdrom, but UDEV likes /dev/cdroms/cdrom0
CdromDevice = /dev/cdroms/cdrom0
Display_align = center
Display_color = 77FF00
Display_font = "-adobe-helvetica-bold-r-normal-*-*-240-*-*-p-*-*-*"
Display_hoffset = 0
Display_plugin = xosd
Display_pos = bottom
Display_soffset = 1
Display_timeout = 6
Display_voffset = 50
KeyboardType = LTCElite
MixerDevice = /dev/mixer
Screensaver =
conffilename = /home/nicholas/.lineak/lineakd.conf
keystate_capslock =
keystate_numlock =
keystate_scrolllock =

Arrow =
Email = "thunderbird"
Favorites = "firefox"
Go = "firefox -remote 'openURL()'"
Media = "cdeject"
Messenger =
Mute = "EAK_MUTE"
MyHome =
Next = "cdplay +"
Play = "cdplay"
Pause = "cdpause"
Previous = "cdplay -"
Search = "firefox -remote 'openURL(http://www.google.com,new-tab)'"
Shopping =
Sleep =
Stop = "cdstop"
VolumeDown = "EAK_VOLDOWN"
VolumeUp = "EAK_VOLUP"
Webcam =
iTouch =

Note the use of some built-in commands, such as EAK_MUTE, EAK_VOLUP, and EAK_VOLDOWN. These are

far more preferable when figuring out how to configure a command-line mixer to do the same
operations. Unfortunately, LinEAK doesn't automatically insert these as the default settings for the Mute,
VolumeUp, and VolumeDown parameters (it leaves the definitions empty), so unless you know these

generic settings exist, you might waste a lot of time figuring out how to create a command to mute your

sound driver or change the volume. Well, now that you know they exist, by all means, use them!

Outside of the internal EAK_ commands, the audio CD controls in this example are driven by a

command-line package of programs called cdtool, created by a host of contributors but currently
maintained by Max Vozeler. You can download cdtool from http://hinterhof.net/cdtool. You can choose

any CD player that can be controlled via the command line, but it's nice not to have an actual graphical
CD player clutter the screen when all the controls are already on the keyboard.

If you decide to try both Hotkeys and LinEAK, restart your desktop after using
Hotkeys. Even if you kill the Hotkeys program, it leaves the desktop in a state
that prevents LinEAK from working properly.

You can thank Mark Smulders (msmulders@elsar.nl), the original author, for this fine piece of software.
Sheldon Lee Wen (leewsb@hotmail.com) is the current maintainer and developer of the latest versions,
and wrote plug-ins from the ground up. Phil Woodland (sir_taco@yahoo.ca) is the contributions
coordinator and maintainer. Finally, Chris Peterson (rpm@forevermore.net) does the RPM packaging for
LinEAK.

http://hinterhof.net/cdtool

Hack 30. Access Windows and Mac OS X from Linux

No need to move to another computer; just sit put and access them all.

Although you don't need to go far to hear someone extolling the benefits of Linux and free software,
many people still need to use other operating systems, such as Microsoft Windows and Apple Mac OS X.
Aside from personal choice, other reasons to use non-Linux operating systems include running
applications that are available only on a particular OS, an employer mandating that you use a particular
platform, or even a need to test software and services across different platforms. For some, the solution
is a huge desk set up to accommodate three computers with three monitors and three keyboards/mice;
however, there is a better way.

This hack uses a piece of software called Virtual Network Computer (VNC). This useful little tool allows
you to essentially redirect your monitor output to another computer on a network, and accept keyboard
and mouse input from the remote computer. With this software you can run the VNC server on a
Windows machine and view the Windows desktop on your Linux machine. Likewise, you can run the
VNC server on your Linux machine and view your Linux desktop on a Windows-based desktop. VNC is
available for most Unix-based OSes, such as Linux, FreeBSD, Solaris, etc., as well as Microsoft Windows
and Mac OS X. VNC gives you the ability to pull together these disparate operating systems on a single
desktop.

4.10.1. Configure a Linux VNC Server

VNC comes in a few different guises, but most attention is focused on the RealVNC and TightVNC
variants. Of the two versions, TightVNC appears to be the better performer and you can get it from
http://www.tightvnc.com/download.html. A number of different packages are available for the
supported platforms, and you need both the server (to provide a VNC resource to connect to) and the
viewer (to connect to another VNC resource). You should be able to install a recent version of TightVNC
using your distributions package manager.

If you run a Mac and want to access your Mac OS X desktop from your Linux machine, you need the
OSXvnc package from http://www.redstonesoftware.com/vnc.html as RealVNC and TightVNC do not
natively support Mac OS X. A VNC client for Mac OS X is also available within the Fink packaging system
at http://fink.sourceforge.net.

To run a VNC server on Linux you must launch the server and give it a special display number to
connect to. This usually starts at 1 and increases by one for each new server created. As an example, if
you run a VNC server on a machine with the address 192.168.0.2, you would access the first VNC
resource as 192.168.0.2:1. To run the server, specify the screen resolution and color depth with the -
geometry and -depth command-line options:

foo@bar:~$ vncserver -geometry 1024x768 -depth 24

These settings are parameters for your virtual screen, not the real settings of the machine you are
running the server on. This means the physical screen might be displaying an image at 1280x1024 in 8-
bit color, but you can view it remotely at 1024x768 in 24-bit color. Of course, the machine you are

http://www.tightvnc.com/download.html
http://www.redstonesoftware.com/vnc.html
http://fink.sourceforge.net

viewing the image on must support your choices.

You can specify a nonstandard resolutionfor instance, 990x745. Doing this allows
you to maximize the size of the remote image on your desktop without obscuring
your local desktop's toolbars and panels.

When you first run the server, you are prompted for a password. This password is used to ensure that
clients are who they say they are, and the password is stored and remains the same each time you use
the VNC server (you can change the password later with vncpasswd if you need to). When the password

is successfully entered, the server indicates which display number it has been given.

While the server is running, all applications that are used appear on the VNC display as well as the
normal screen on the computer (if a monitor is attached). You can also route applications to display
only on the VNC server by using the DISPLAY environment variable and specifying the hostname and

display number:

foo@bar:~$ mozilla -display 192.168.0.2:1 &

To stop the VNC server, you need to use the -kill option and the display number assigned earlier

when you started the server:

foo@bar:~$ vncserver -kill :1

4.10.2. Connect to a VNC Server

To connect to the VNC server from a Linux machine, you can use the vncviewer tool that is included

with the VNC software. This simple little program is used like this:

foo@bar:~$ vncviewer 192.168.0.2:1

In this command, you specify the IP address, a colon (:), and then the display number to connect to.
When you run the command, you are prompted for the VNC server password and then the VNC desktop
is displayed.

4.10.3. Configure a Windows VNC Server

Installing the Windows VNC server is a fairly painless process. Once installed, it can be configured as a
Windows Service so that it is always running (like a daemon in Linux). The benefit of running the server
as a service is that you will still be able to access the server when the machine is locked or the user has
logged out.

Download the Windows installer from the TightVNC web site. It is a typical Windows installer that offers
no surprises.

To use the VNC server as a service, tick each box that refers to the VNC Server System Service in the
VNC installation routine. When you have done this, the Server Options dialog box will appear, and you
must configure at least the Authentication tab to run the server. In this tab, you should select the VNC
3.3 Authentication option and use the Set Password field to define the password for the server. You
should never disable authentication unless you are 100% sure the host network is secure.

To start and stop your server, use the standard Windows Services configuration tool to start and stop
the service.

4.10.4. Configure a Mac OS X VNC Server

The official VNC distribution does not include support for Mac OS X; however, a VNC server is freely
available from Redstone Software (http://www.redstonesoftware.com/vnc.html), called OSXvnc. This
software is available as a Mac OS X disk image file (.dmg). Download the software and then double-
click it in the Finder. A window will pop up with the program inside it; drag the program to the desktop.
Now if you double-click the icon on the desktop, the VNC Settings dialog will appear. For a quick and
easy VNC connection, the defaults are fine, and you can just click the Start Server button to begin the
connection.

4.10.5. View Your Desktop in a Web Browser

One intriguing feature of the VNC server is that it includes a small web server that exports the VNC
desktop to a browser using a special Java applet. To access your VNC server, connect to port 5801 with

a Java-enabled web browser. This port number is appended to the hostname/IP address in the same
way as a normal web resource:

http://foo.com:5801

This port number actually maps to the VNC display you are running. If you are running display number
1, use port 5801; display number 2 is port 5802, etc.

Some distributions, notably Debian, package the Java applet separately from the
VNC server package.

When you are running any server on the Internet, you should take steps to ensure that it is protected
with a firewall. A firewall keeps all unwanted traffic away from your server. If you are running a firewall
already, you should ensure that ports 5800-5805 are available for use. If you want to be extra secure,
only open port 5801 for use and make sure you always run off desktop number 1. Another option is to
encrypt your VNC connection with an SSH tunnel [Hack #32] .

http://www.redstonesoftware.com/vnc.html
http://foo.com:5801

Hack 31. Run Your Desktop over the Internet

You can access your desktop system and run graphics applications from remote systems at
close to full speed, even over dial-up connections.

You might want to access a desktop computer remotely for numerous reasons. Perhaps you are
travelling and you forgot an important file on your home machine. You need to edit it, but the
application you need isn't on your laptop. It would be nice to connect to your home machine over the
Internet, edit the file using software on the desktop, and then transfer the file to your laptop. A number
of technologies are available for running applications from remote locations, or remotely sharing
desktops; the X Window System has built-in network transparency that allows you to run applications
on one machine and display them on another [Hack #32], and the different versions of the VNC
protocol allow you to use the desktop on another machine [Hack #30]). Though each method has its
purpose and excels at what it does, both also have one drawbackthey require significant bandwidth.
Remote X applications or VNC desktops are pretty slow, even over a DSL or cable modem connection.

NX, from NoMachine (http://www.nomachine.com), is an add-on to X that accelerates remote X
applications and can be used to run a full remote desktop at near-native speeds, even over a 56K
modem connection. NX works much like a proxy cache for the X protocol, caching and compressing
requests and responses to and from the X client and server. This dramatically reduces the network
traffic of the X protocol and works in a way that is transparent to the X client. All the NX libraries and
components are open source, as is the NX client software. However, the servers NoMachine provides are
proprietary, although a free trial period of the personal edition is available, which allows single-client
access. In addition, the FreeNX project uses the open source NX libraries to create an open source NX
server. The following examples use the personal server and client software from NoMachine.

4.11.1. Installing the NX Server and Client

On the machine on which you want to run the remote session, you need to install an NX server and
client. Packages for various flavors of Linux are available from http://www.nomachine.com. Download
the NX Server Personal Edition for your distribution, along with a client, and install both in the normal
way. For example:

foo@bar:~# rpm -i nxserver-1.4.0-99.i386.rpm
foo@bar:~# rpm -i nxclient-1.4.0-75.i386.rpm

On the machine on which you want to display the remote session, you need to install the NX client.
Clients for Linux, Mac OS X, and Windows are available from the same web site as the server.

4.11.2. Setting Up the NX Server

Once NX is installed, you can start the NX server using this command (run as root):

foo@bar:~# /usr/NX/bin/nxserver -start

http://www.nomachine.com
http://www.nomachine.com

Now you need to add user sessions to the server using this command:

foo@bar:~# /usr/NX/bin/nxserver --useradd username

where username is the name of a preexisting user on the server system. Next you are prompted to set a

password for this session. Once that's done, you can connect your client machine to the server using the
NX client. Go to a separate machine and run the client using this command:

foo@bar:~# /usr/NX/bin/nxclient

For the first connection this starts a wizard to collect the connection details. On the second wizard page
you can give the session a descriptive name, enter the NX server IP address, and select the type of
connection between the client and server.

On the third wizard page, you can choose your protocol type (the NX client is also an RDP and VNC
client), the type of desktop session to run the NX server, and the size of the window to display the
remote desktop. If there are firewalls [Hack #81] and you only have Secure SHell (SSH) access, check
the "Enable SSL encryption of all traffic" box, as this tunnels all communication through SSH (i.e., you
only need port 22 open) and has the added bonus of encrypting all the NX traffic. If you don't want to
tunnel the traffic over SSH, you'll need to open ports 1000, 5000, and 7000 for the first session, 1001,
5001, and 7001 for the second session, and so oni.e., three ports for each session started.

Finally, on the fourth wizard page, you can choose to create a desktop shortcut for this session and edit
the advanced configuration. Once the wizard is finished, you should have a connection dialog with the
Login and Session details filled in.

Now type in the password you set on the NX server and click Login. Once this connects and
authenticates you should have a complete remote desktop in a window on your client machine.

4.11.3. Further NX Server Commands

Now that you know how to create a basic connection, a few other useful commands for the NX server
might interest you. These commands need to be run as root. To see a list of all NX users, type this
command:

foo@bar:~# /usr/NX/bin/nxserver --userlist

To delete an NX user (this deletes the user from NX, not as a user of the system), issue the following:

foo@bar:~# /usr/NX/bin/nxserver --userdel username

where username is the name of the NX account you want to delete.

Paul Cooper

Hack 32. Access Your Programs Remotely

The full power of your desktop and its applications never need to be more than a network
connection away.

For many years now, the X Window System, which plays host to KDE, GNOME, and other desktops or
window managers, has had the ability to support networking in a way that other graphical
environments can only dream of. These networking features not only allow you to run an application
installed on a remote machine and display it on another machine, but also allow you to access and run
an entire desktop from another computer. Using this feature, you can use any computer capable of
running a basic X session to access a desktop environment on a faster computer. Provided your network
bandwidth is plentiful, there isn't a noticeable lack of speed running a desktop in this way. In fact,
because all the programs run at the speed of the faster remote machine, your performance might be
better than it's ever been.

Despite these impressive abilities, the remote networking personality of X is largely ignored by most
users. Few regular desktop users seem to experiment with the possibilities of running remote
applications over a network, even though these features could save a lot of time in homes or offices
with multiple X-based systems. This hack explores some of these features so that you can apply them in
your own context and hopefully save some time rushing between different computers.

The final production work on nearly all O'Reilly books is done by running X
applications over the network. Specifically, FrameMaker 5.5.6 is run on a Solaris
server and displayed on various Linux, Windows, and Macintosh clients running
an X server. All the Linux computers are actually thin clients that run their entire
desktop over the network using X.

4.12.1. Access X Programs Securely

Running X applications from another computer is a fairly simple process. You just change the $DISPLAY

environment variable (this indicates where the output of X applications should be directed) to point to
another computer on the network, such as:

foo@bar:~$ export DISPLAY= "192.169.0.1:0.0"

Now, when you run an application, it is displayed at the new IP address rather than at your local
display. Exporting a display like this is the function of the X client. Viewing the display is the function of
the X server. For a user sitting at the machine whose address is 192.168.0.1 to see the exported

program, he must have a running X server that accepts connections from an outside source. To set up a
remote machine to accept X displays from other hosts, use the xhost command:

foo@bar:~$ xhost +
access control disabled, clients can connect from any host

The plus sign indicates you are willing to accept connections from any computer. Optionally, you can
specify a specific host (by DNS name or IP address) in place of the plus sign.

Although you can run remote X applications from anywhere using this technique, the traffic between the
two machines is entirely unencrypted and insecure. All this traffic operates on port 6000, and if you

want to provide access from outside your network, it means opening another port in your firewall and
potentially making yourself vulnerable to attacks. To solve this security problem, I advise you to encrypt
your X sessions so that they are as secure as possible. The Secure SHell (SSH) has built-in support for
running X applications remotely, and it is simple to turn on and use. Most Linux distributions install SSH
by default, but if that isn't the case, use your distributions package manager to install the openssh
packages.

The first step is to open /etc/ssh/sshd_config on the machine that will serve X applications and ensure
the X11Forwarding option is turned on:

X11Forwarding yes

In many default installations of the SSH server, this option is added but commented out with the #
symbol. If you remove the #, you can enable the option. After you have changed the configuration file,

you need to restart the SSH server for the setting to take effect. You can do this with the following:

foo@bar:~$ /etc/init.d/ssh restart

Now you can run an application on the remote machine by using the -X option to forward the X
connection. As an example, you can start the Gimp on 192.168.0.2 by entering this command into

your local machine:

foo@bar:~$ ssh -X jono@192.168.0.2 gimp

To permanently enable X forwarding on your local machine, you need to modify your local copy of
/etc/ssh/ssh_config. Simply add the following line (or uncomment this line if it already exists):

ForwardX11 yes

What you are doing is telling your local machine to always initiate SSH sessions with X forwarding
enabled. This is different from the earlier step where you enabled the remote machine to allow X
forwarding. There is no need to restart the sshd daemon when you make this change; it will
automatically work for all new SSH connections.

If you receive errors when you attempt to run a remote X application, try enabling trusted X forwarding
by adding the -Y option when you make your SSH connection. If this works, you can enable this

permanently by modifying your /etc/ssh/ssh_config file to include this line:

ForwardX11Trusted yes

4.12.2. Access the Entire Desktop

There is no doubt that running X applications remotely is useful, but a truly killer feature is the ability to
run the entire desktop from a remote computer on your local machine. To do this, you need to use a
feature called the X Display Manager Control Protocol (XDMCP), which is part of X. This protocol allows
remote computers to access the GDM/KDM/XDM login program, which then gives access to the remote

desktop. If you have a reasonably fast network connectionEthernet speeds of 10-Mbit or greater are
recommendedit is possible for a slow computer to be as responsive as a cutting-edge machine. This is
possible because the local box is just a display device, like a television, and all the real work is done on
the faster remote machine.

To use XDMCP, you must be running XDM, GDM, or KDM as your login manager on the remote machine.
Each display manager has support for XDMCP, and you must turn on that support.

To enable XDMCP in GDM, you need to load the gdmconfig tool. Inside this tool is an XDMCP tab. Turn
on XDMCP support by setting the Enable XDMCP option. You can use some additional settings on this
tab to fine-tune XDMCP support. After you've made your changes, you must restart GDM.

There is no GUI way to turn on XDMCP in KDM, so you need to edit the kdmrc file on your system. Both
a system-wide file (possibly in /etc/kde3/) and a per-user file (in ~/.kde/share/config) exist. Inside
kdmrc is an [Xdmcp] section where you need to set the Enable option to TRue. After you save this

change, you must restart KDM.

When you have turned on this support, you can return to your local machine and search the network for
computers that are allowing XDMCP connections. To do this, ensure that you are logged out of X and
run the following command:

foo@bar:~$ X -broadcast

X will start and the login screen from the remote machine will appear. Now you can log in and use the
machine in the same way as if you were sitting in front of it. If you want to connect to a specific
machine on the network, you can also run the following command on your local machine (remember to
change the IP address to a host that is relevant to your network):

foo@bar:~$ X -query 192.68.0.2

Hack 33. Add Depth to Your Desktop

Drop shadows add a dimension of depth to every window and pop up on your desktop. The
3D effect is truly mesmerizing.

A composite manager program called xcompmgr is available that taps into some of the new features of
the Xorg X Window System to create attractive drop shadows for windows, pop ups, menus, and the
like. It also gives you the option to make your windows and menus fade in and out instead of the
normal behavior of appearing and disappearing instantly.

You can use xcompmgr only if you use the Xorg fork of the XFree86 project. You cannot use this with
any version of XFree86. And you can use it only if you have a recent version of Xorg. Check which X
server and version you're using with the following command:

X -version
X Window System Version 6.8.0

If you don't see 6.8.0 or higher as the version, this hack is not for you.

4.13.1. Get the Composite Manager

A composite manager taps into the new Xorg features that allow X11 to blend various on-screen
elements in ways XFree86 cannot. For example, it allows you to make a window partially transparent by
blending the background into the application foreground. You can find some programs that appear to
give you this feature, such as X terminals that look partially transparent. But they aren't tapping into
the features of Xorg; they are essentially "faking it" with some clever graphics tricks. Faking it might
look good, but the difference is speed. The Xorg composite features exist as part of the X11 engine, so
the effects are built-in and render much faster.

You'll need to install the xcompmgr program to take advantage of these features. You probably won't
find this program as a normal package in the standard package repositories for your Linux distribution,
because it is experimental and can still be very quirky and unstable at this point. A Google search
turned up a number of RPM packages for xcompmgr at http://rpm.pbone.net.

If this or any other site doesn't have a ready-made package that installs cleanly on your Linux
distribution, you will have to compile it yourself. Because this is experimental code there's no guarantee
it will compile on your system. You need to connect to a CVS server to download the source code. So,
log in as root, change to a directory where you like to keep local source code, such as /usr/local/src,
and run the following commands (you do not need a password, so just press Enter when prompted for
one):

cvs -d :pserver:anoncvs@cvs.freedesktop.org:/cvs/xorg login
CVS password: (press Enter)
cvs -d :pserver:anoncvs@pdx.freedesktop.org:/cvs/xapps co xcompmgr
cd xcompmgr
sh autogen.sh

http://rpm.pbone.net

./configure
make
make install

4.13.2. Start Your Desktop or Window Manager

The xcompmgr program doesn't play well with every desktop or window manager. In my experience, it
does not work well with Metacity, the default window manager for GNOME. Metacity is supposed to have
some of the xcompmgr capabilities already built-in, but I have not been able to tap into them.
Regardless, you can't invoke xcompmgr until you have started your favorite desktop or window
manager, so do that now.

The manpage for xcompmgr explains the various tricks you can do with the program. However, the
following combination of command-line switches should please nearly everyone. Open an X terminal
and type this command:

$ xcompmgr -cCfF -l 0 -t 0 -r 5 -o .6 &

If everything works the way it should, the screen should go mostly blank for a moment, after which any
open windows will reappear with drop shadows. You should also notice that things such as menus have
drop shadows and fade in and out. See Figure 4-3 for an example of this effect.

Figure 4-3. Firefox and menu with shadows

Here's what the command-line switches do. The -l 0 and -t 0 switches tell xcompmgr that pixels (no
shadow at all) should appear to the left of the window (-l 0), and no shadow pixels should appear
above the top of the window (-t 0). This means you will see drop shadows only to the right of and

beneath the windows, as though the light source is up and to the left. Normally, xcompmgr creates a
shadow around the entire window. This effect isn't too bad, but because many other things that appear
on-screen (such as your mouse pointer) have shadows to the right and below, this combination makes
the simulated light source consistent.

The -r 5 and -o .6 switches tell xcompmgr to give the shadows a radius of 5 and an opacity of 0.6,

which makes the shadows somewhat subtle.

Finally, let's pick apart the combination -cCfF. The c tells xcompmgr to include shadows and
translucency; the C tells xcompmgr to try to avoid creating shadows for things such as launch panels.
The combination fF tells xcompmgr to fade just about everything in and out whenever windows, menus,

or other objects change (maximize, minimize, etc.).

xcompmgr is a work in progress, and as such, things change, so you might have
to "go with the flow" if xcompmgr works differently by the time you read this. As
we go to press, at least one new version is already available that gets its
configuration settings from a ~/.xcompmgrrc file instead of the command line.

Hack 34. Give Your Desktop X-Ray Vision

This hack won't let you see through anyone's clothes, but it will make your applications translucent so
that anything behind the applications shows through, as if you have X-ray vision. You simply issue a
command, and then click a window. Poof!the window suddenly becomes as translucent as you want.

If you want to use this hack you need to have a recent version of the Xorg X Window System, and you
need to install xcompmgr, as covered in [Hack #33] . If you can't get xcompmgr to work, you won't be
able to get this hack to work, because this hack needs to have xcompmgr running in the background.

Once xcompmgr is working and running in the background, you need the transset program. Once again,
this is an experimental program, so you probably won't find it in the regular package repositories for
your Linux distribution. You might find that an RPM package for xcompmgr includes transset, or you
might have to find a separate transset package. If all else fails, you can always download the program
and compile it yourself. Here's how (no password is required, so just press Enter when prompted for a
password):

cvs -d :pserver:anoncvs@cvs.freedesktop.org:/cvs/xorg login
CVS password: (press Enter)
cvs -d :pserver:anoncvs@pdx.freedesktop.org:/cvs/xapps co transset
cd transset
make
chmod +x transset
cp transset /usr/bin

Let's assume you have a window manager or desktop environment running, and you have already
launched xcompmgr (see the previous hack for a sample xcompmgr command). Now, all you have to do
is issue the transset command, followed by the degree of opacity you want. For example, open an X

terminal and type this command:

transset 0.7
got arg 0.7
d is 0.7

You should see the cursor change to a crosshair (or something like one). Click the window you want to
make translucent. It is probably best to click the window's titlebar. Now you should be able to see the
wallpaper or even other windows behind the window you just clicked. See Figure 4-4 for an example of
xterm with a degree of transparency. In case you're not aware of this fact, the xterm program has no

built-in capability to emulate transparency, so you cannot get this affect with an xterm without using
transset.

Figure 4-4. An xterm with true transparency

Something such as the following text should also appear in the X terminal where you typed the
transset command:

opacity 0xb3333332
Set Property to 0.7

If you want a real thrill (and your window manager has the ability to display the contents of windows
while moving, instead of just outlines), move the see-through window around. This is not "fake"
translucency, where the window manager has to wait until you have finished repositioning the window
for it to redraw the background through the window. It changes in real time, even as you move
windows over the wallpaper or other windows.

The transset program is at an even more experimental stage than the xcompmgr program on which it
relies. No fancy features are available for making your window manager know which windows should be
transparent, and to what degree. If you want transparent windows, you're going to have to go through
the process of making them transparent manually every time you start your desktop.

No doubt this will be made user-friendly in the future. In the meantime, it's not all that difficult to
streamline the process of making windows transparent. You can add a menu entry or create an icon on
the desktop that executes the transset 0.7 command. When you want to make a window transparent,

just click the icon (or select the menu entry) and then click the target window.

Chapter 5. KDE Desktop

Hacks 35-44

Hack 35. Make Konqueror a Window into Remote Spaces

Hack 36. Konquer Remote Systems Without Passwords

Hack 37. Ai Karamba! Flashy KDE Gadgets!

Hack 38. Start Applications in Weird and Wonderful Ways

Hack 39. Script Hacks with DCOP

Hack 40. Create Your Own KDE Right-Click Menu Actions

Hack 41. Make KDE Even Easier to Use

Hack 42. Give Depth to Your KDE Windows

Hack 43. Lock Down KDE with Kiosk Mode

Hack 44. Run KDE on the Bleeding Edge

Hacks 35-44

The desktop is central to a modern Linux desktop. Traditionally, Linux relied heavily on the command
line, and a strong knowledge of the vast portfolio of Linux commands and how they could be strewn
together was essential for surviving the Linux way of life. In the last few years, this way of life has
changed substantially, and Linux users are becoming less and less reliant on the command line. The
command line is still there, but if you want to control and administer your computer in an entirely
graphical way with your desktop, you can.

This chapter focuses on the KDE desktop environment. In it you'll find information on how to use the
protocol handlers in Konqueror to access remote filesystems, patch KDE with experimental code to
improve its appearance and functionality, use desktop enhancements from the superkaramba project,
and lock down KDE to provide a controlled environment for users.

One point to remember when using the desktop is that it typically provides an interface to the
command-line magic that underlies it. The benefit of this is that many of the features and configurations
you use in your desktop environment are available in the command line. For example, [Hack #39]
shows you how to control your KDE environment from the command line.

The hacks included in this chapter give you insight into the variety of ways you can step in and below
the desktop GUI layer to make it behave how you want. The desktop is not just a pretty face.

Hack 35. Make Konqueror a Window into Remote Spaces

Use the KDE Konqueror file manager to access remote files as easily as local ones.

It is fairly common knowledge that KDE Konqueror functions as both a file manager and a browser.
What you might not realize is that Konqueror can load modules that allow it to support many other
protocols. Konqueror even handles the mundane protocols common to most browsers in superior ways.

5.2.1. Konquer Your Remote FTP Sites Using FTP and SFTP

Take FTP, for example. Most browsers support FTP access. Assuming you have an FTP account on a
server, try these steps with Konqueror to see how it handles FTP access (don't bother trying this with a
web browser, such as Firefox, because it won't work):

Open a Konqueror window pointing to your home directory.1.

Maximize the window (optional, but helpful).2.

Press Ctrl-Shift-L to split the window.3.

Click the window pane on the right side to make it the active one.4.

In Konqueror's Location field, enter the URL to the FTP site where you have an account (for
example, ftp://<yourserver>, or if you prefer secure FTP [SFTP, which is FTP over Secure SHell, or
SSH], use the URL sftp://<yourserver>).

5.

Enter your username and password when prompted for them.6.

You should see two window panes: the one on the left contains your home files and directories, and the
one on the right contains the files and directories at the remote SFTP server for which you have a valid
account. You can drag files from one pane to the other to move or copy them. You can open documents
on the SFTP site, edit them, and then save your changes. Most of the operations work just as though
both panes point to directories on your local machine.

You can load a document from the remote server into virtually any program and modify that document.
It doesn't matter if the program you use to modify the document is able to save documents to remote
servers. When you save your changes and exit the program, Konqueror still has a copy of the modified
document in a temporary file. A dialog box will appear asking you if you want to update the file on the
remote server to reflect the changes you made.

There are some limitations to what you can do between local and remote directories, of course. You
can't create symbolic links between the two locations, and some of the built-in Konqueror viewers work
only on local files. For example, you can view the contents of a compressed tar archive in the local
Konqueror window pane, as if the contents were in folders. If you click a compressed tar archive on the
FTP site, you have to open the contents with the Ark application.

It is not necessary to split the window into two panes if that is not how you prefer
to work. In this example, you could open two Konqueror windows, point one to
your home directory and the other to the SFTP server, and get the same
capabilities.

5.2.2. FISH with Konqueror

FISH works in basically the same way as SFTP in that it uses SSH to exchange information. Simply enter
the URL fish://<yourserver> and enter a valid username and password for the server, and Konqueror
will present you with access to the files almost as if they were local. (The same limitations apply as with
SFTPyou cannot navigate compressed archives directly, etc.)

As with SFTP, you can open files, edit them, and save your changes, and Konqueror will ask you if you
want to update the remote files.

5.2.3. Browse via LAN Connections with Konqueror

If you enter smb:/ (SMB is the protocol Microsoft Windows uses to share files) in Konqueror's Location

field, it will show you the Windows workgroups that are available on your network. When you enter a
workgroup folder you should see the servers that belong to the workgroup. From here you can browse
to server shares and access remote files. Once again, you can treat the folders and files as if they are
stored locally. If you open a file with a word processor, for example, and then you change the contents,
save the file, and exit, Konqueror will ask you if you want to save the changes to the remote location.
This works when the remote system is a Samba server, a Windows server, or even a Windows desktop
that is sharing files.

Open a Konqueror window and type rlan:/<yourserver> in the Location field. You should see a

number of network access methods, including FISH, FTP, NFS, SMB, and HTTP. This simplifies the
various ways to access the remote server. Click the FISH folder, and it should ask you for your
username and password (unless you've been accessing the site recently and it remembers you are still
logged in).

For a more entertaining experience, put an audio CD into your CD-ROM drive and type audiocd:/ in

the Location field. You should see all the tracks represented as individual WAV files. Depending on the
plug-ins you have installed, you might also see folders for MP3 and Ogg Vorbis sound files. If you want
to convert the songs on the CD to Ogg Vorbis format, simply open the Ogg Vorbis folder, drag tracks
from the Ogg Vorbis folder to another folder on your disk, and choose Copy from the pop-up menu.
Konqueror will perform the conversion automatically as it copies the files.

Open the KDE Control Center and click Sound & Multimedia Audio CDs to fine-
tune the settings for your audio CD, how KDE formats the filenames for song
tracks, and settings for the available sound formats, such as MP3 and Ogg Vorbis.

Want to locate every filename or directory name on your system that contains the string "Vorbis"? Type
locate:Vorbis in the Location field and Konqueror will present you with everything it finds.

You can even view and manage your printers from within Konqueror. Type print:/ in the Location field

to get to icons that will let you view your printers and print jobs, manage your printers, and more.

You can find a complete list of the protocols Konqueror supports on your machine by starting the KDE

help system and clicking Kioslaves. Then click the protocol for more information. (The list of available
protocols Konqueror supports varies according to how your distribution compiles KDE.)

Hack 36. Konquer Remote Systems Without Passwords

Use some of Konqueror's powerful protocol connections without being bothered by password
requests.

You might already be familiar with the KDE wallet system. The KDE wallet saves usernames and
passwords for you so that you don't have to enter them each time you access a site that requires them.
You can use the wallet to store your usernames and passwords for use with the various protocols
available with Konqueror, including FISH, SFTP, etc., but you still have to type a password to use the
wallet each time.

Here's a better way to save yourself the time involved in typing passwords to access remote sites with
the SSH protocols that Konqueror uses (such as FISH and SFTP).

SSH normally requires a username and password. But SSH also supports a public and private key
mechanism that lets you bypass the password without opening a security hole. Here is how the two keys
are related. Your private key gives you access to any remote accounts that already have your matching
public key. But the reverse is not true. Remote users with a copy of your public key cannot use the
public key to access your account on your local machine.

Suppose you have an account under the username daggett. Here's how to create an SSH key that can

be used to authenticate your user account on other systems:

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/daggett/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/daggett/.ssh/id_rsa.
Your public key has been saved in /home/daggett/.ssh/id_rsa.pub.
The key fingerprint is:
cd:f5:43:e5:62:16:53:1a:8c:8c:13:3b:5c:28:cc:5b daggett@<yourlocalhost>

Press Enter when prompted for information on where to save the key. You'll be asked for a passphrase
for the account. Just press Enter all the way through the next series of prompts. This process creates
both a private key and a public key. The SSH key is saved to the .ssh directory in the example user
daggett's home directory.

You do not want to specify a passphrase. Doing so defeats the purpose of this
portion of the hackthat is, to get to the remote home directory without having to
type in anything to authenticate your user. If you do specify a passphrase in this
process, you will be required to enter that passphrase each time you open a
Konqueror file manager view of your remote home directory. The fact that you
have the private key on your machine is what is truly providing security for the
authentication.

Now you need to copy the public key to the server host. The following command makes an SSH
connection to the remote server norbert, creates a .ssh directory in your user's home directory, and

sets read-only permissions on it:

$ ssh norbert "mkdir .ssh; chmod 0700 .ssh"
Password:

Type in the password for the user account you are connecting with and press Enter. Then copy your
public key to the newly created .ssh directory and name it authorized_keys2 with this command:

$ scp .ssh/id_rsa.pub norbert :.ssh/authorized_keys2
Password:

Once again, type in the password for the user account on the remote system and press Enter.

From this point forward, you should be able to enter your equivalent of the location
sftp://daggett@norbert in Konqueror, and you should be taken immediately to your home directory on
the server without having to enter a password. Similarly, you should be able to enter the equivalent of
the FISH protocol, such as fish://daggett@norbert, which will take you to your home directory on
norbert without asking for a password.

5.3.1. Dealing with Split Personalities

Suppose your username on the remote server is different from your username on your local server. Or
perhaps you are an administrator and want to set yourself up with instant access to another user's
account.

The procedure to follow in both of these scenarios is almost identical because the principle is the same,
regardless of the username on the remote server. As long as the user on the remote server has your
public key stored in the ~/.ssh/authorized_keys2 file, you can log in to that account without supplying a
password.

The only differences in the procedure are that you must supply the different username during parts of
the procedure andmost important of allyou must know the password for the account on the server with
the username that is different from your username on your workstation. That is what protects the users
on the server from enabling you to plant your public key in their home directories so that you'll have
free access to their files.

Even if your username on the server is different from your username on your local machine, you must
still create a public and private key using the ssh-keygen -t rsa command, and press Enter when

prompted for passwords. If you have already created a public and private key and you intend to give
yourself access to another account to which you have the proper rights, you can skip that step.

Here's how to deal with the fact that the username on the server is different from your local username.
When you create the .ssh directory on the remote machine, specify the remote username in combination
with the server name, separated by the @ symbol. Assume your username on the server is oxnard. This
is the command to create the directory for oxnard on norbert:

$ ssh oxnard@norbert "mkdir .ssh; chmod 0700 .ssh"
Password:

Type in the password for the oxnard user account you are connecting with and press Enter. Then copy

your public key to the newly created .ssh directory and name it authorized_keys2. Once again, combine
the remote username with the server name, separated by the @ symbol:

$ scp .ssh/id_rsa.pub oxnard@norbert: .ssh/authorized_keys2
Password:

Now type in the password for the oxnard user account on the remote system and press Enter.

When you want to access the oxnard account using the FISH or SFTP protocol from Konqueror, take the

same approach as you did when you used your local username, substituting your remote username. For
example, use sftp://oxnard@norbert to use SFTP to connect to your oxnard home directory on the
remote server without using a password, and use fish://oxnard@norbert to use FISH to connect to the
remote server without using a password.

5.3.2. Make Remote Konqueror Access a Single-Click Operation

It is possible to create an icon on your desktop to make the entire process a single-click operation. To
do this, right-click the desktop and select Create New File Link to Application. Give the file a name
that suits you. Given the example username and server, an appropriate name might be Home@Norbert.
Click the icon next to the of the name field to choose an icon image that suits you.

Then click the Application tab, and enter the following into the Command field (substituting your name
and your server name, of course):

kfmclient openProfile filemanagement sftp://
daggett@norbert

From now on, whenever you want to manage your home directory files on the server, just click the icon
you just created. A Konqueror file manager window should pop up with the remote files ready to be
accessed and managed.

kfmclient is actually the program you know as Konqueror. In this case, you are specifying that the
profile it should use is the one for file management, after which you supply the starting location. You
could just as easily issue a command, such as kfmclient openProfile webbrowser
http://www.oreilly.com, and that would open the web browser form of Konqueror and load the

location http://www.oreilly.com.

http://www.oreilly.com
http://www.oreilly.com

Hack 37. Ai Karamba! Flashy KDE Gadgets!

Spiff up your KDE desktop with various information panels and interactive gadgets.

This tip involves two programs, karamba and superkaramba. The author of the original program,
karamba, is Hans Karlsson (karlsson.h@home.se). The karamba project started out as a clone of a
Windows program called Samurize, which displayed system information, such as system temperature,
network traffic, CPU activity, etc., in attractive ways. The primary function of karamba was to display
similar information on your KDE desktop, and it did it with such flair and style that it attracted a huge
number of hackers to create more inventive and attractive ways of displaying various types of
information, such as local weather data and forecasts.

But karamba had one notable limitation. The gadgets were pretty, but not terribly interactive. You could
configure them and display them, but that was all.

Adam Geitgey (adam@rootnode.org), with a little help from his friends, took karamba to new heights
by creating superkaramba. This handy utility introduced the ability to interact with the gadgets,
combining the artistic appeal of the karamba gadgets with live action. One of the first things hackers
did with superkaramba was to create much more attractive alternatives to the KDE panel, task switcher,
and launcher. Indeed, some superkaramba supercharged desktops are so customized that it hardly
looks like you're running KDE at all.

Figure 5-1 shows an example of a superkaramba-transformed desktop. It replaces the panel with a
custom blue kicker (application launcher) and various statistics about your machine (CPU usage, etc.).
A separate superkaramba applet replaces the taskbar with a subtler version at the top of the screen. In
addition, there is a chrome clock and an animated weather applet. Click the cloud or a forecast day to
see it will whirl around into a summary of weather for that day.

Figure 5-1. KDE with superkaramba

It is generally easy to find prepackaged versions of superkaramba for most Linux distributions. Debian
and Gentoo Linux include superkaramba as a standard package you can download. You might get the
best results by searching the Internet yourself, but you can find a Red Hat 9 superkaramba RPM at
http://www.kde-look.org/content/show.php?content=7774. This package reportedly works for
Mandrake, too. You can find a number of SUSE RPMs for superkaramba at
http://linux01.gwdg.de/~pbleser/rpm-navigation.php?cat=/Utilities/superkaramba.

Not all the prepackaged versions are up-to-date, and many of the nicest gadgets require the latest
version. If you can't resist some of the latest and greatest gadgets, download the latest superkaramba
source code from http://netdragon.sourceforge.net/ and compile it yourself. (You can also find some of
the latest gadgets at this site.) Sooner or later, you'll also find the latest RPMs at the SourceForge.net
site.

The superkaramba program depends heavily on the Python language (it won't
work without Python installed). Many of the gadgets for superkaramba employ
features available only if you have the Python extensions for KDE and Qt installed,
too. I highly recommend that you make sure you have these extensions installed
in addition to superkaramba itself. They are generally called PyQt and PyKDE, but
your distribution might package them under very different names.

If you want to get an idea of the diversity of karamba and superkaramba, browse the site at
http://www.kde-look.org/index.php?xcontentmode=38, where you will find pages upon pages of
available system monitors, clocks, launch bars, and countless other gadgets. superkaramba has been
maturing over the years. Many new gadgets now include a configuration menu for customizing the
gadget, whereas older gadgets still force you to edit configuration files. I recommend placing your
superkaramba gadgets in a single location such as ~/gadgets.

The one place you should not use as the location for your gadgets is
~/.superkaramba. This is a special directory that superkaramba creates and uses
to store settings. If you try to store your gadgets there, superkaramba simply will
not work.

http://www.kde-look.org/content/show.php?content=7774
http://linux01.gwdg.de/~pbleser/rpm-navigation.php?cat=/Utilities/superkaramba
http://netdragon.sourceforge.net/
http://www.kde-look.org/index.php?xcontentmode=38

For this example, download ChromeClock, which you can preview at http://www.kde-

look.org/content/show.php?content=12972. You can download the file directly from http://www.kde-
look.org/content/download.php?content=12972&id=1.

Create the ~/gadgets directory, and then download your gadget (the downloaded file is named 12972-
ChromeClock.tar.bz2) and extract it to ~/gadgets:

$ mkdir ~/gadgets
$ tar jxvf 12972-ChromeClock.tar.bz2 -C ~/gadgets

This creates a subdirectory called ~/gadgets/ChromeClock, which holds the ChromeClock files. One or
more of the files it creates will have a .theme suffix. This is the file you launch with superkaramba. If
there is more than one theme file, you can try launching each one separately. Each probably represents
preconfigured combinations of different features.

Assuming you are currently running KDE, just issue this command to launch this gadget:

$ superkaramba ~/gadgets/ChromeClock/ChromeClock.theme

A clock should appear on the desktop. (If you don't see it, you might have to switch to an empty
desktop!)

Right-click the clock and you should see menu selections to configure the clock, lock it into position, and
update the configuration so that it remembers your settings. If you really like the clock once you have it
configured to your tastes, you should configure it to start automatically when your desktop loads [Hack
#72] .

Another way to start a superkaramba gadget is to issue the command superkaramba with no
arguments. This should bring up a screen that looks like the one shown in Figure 5-2.

Figure 5-2. SuperKaramba program

http://www.kde-
http://www.kde-

Click Open... and a KDE file dialog will appear to let you navigate to any directory that contains a
superkaramba theme.

Now that you've had a taste of superkaramba, visit http://www.kde-look.org/index.php?
xcontentmode=38, browse through the selections, and try some of the more versatile and interactive
gadgets.

Be careful not to download a gadget that requires a later version of superkaramba
than the version you have installed, unless you are prepared to compile and
install the latest version of superkaramba itself.

http://www.kde-look.org/index.php?

Hack 38. Start Applications in Weird and Wonderful Ways

Start your applications in customized ways to make your programs run exactly how you want
them to.

With modern desktop environments, starting applications is a straightforward conceptyou either click an
application icon or you type in the name of a program. Simple. But if you look under the hood of this
simplicity, you'll find a number of tricks and techniques for starting applications in clever and interesting
ways. This hack shows you how to make an application start on a particular virtual desktop, load into a
particular mode, always appear on top of other applications, or load in full-screen mode.

5.5.1. Starting Programs in KDE

An interesting facility in KDE is a tool called kstart. This simple command-line program is used to
customize how programs start and display on your screen. kstart provides several options that enable
you to choose which virtual desktop it appears on, if it starts as a maximized/minimized window, if it
has focus and other uses.

As kstart is a command-line tool, you can experiment with it from a command-line terminal, such as a
konsole, xterm, or gnome terminal. To use kstart, specify the options that determine how the application
is started, and then specify the program name.

To begin with, you can experiment with how you can start applications on different virtual desktops. As
an example, if you wanted to start Konqueror on virtual desktop 2, you could use this:

foo@bar:~$ kstart --desktop 2 konqueror

This command uses the --desktop option in kstart with the parameter 2 to specify the virtual desktop

on which to start the application. To make Konqueror start on all the virtual desktops (particularly useful
for applications that should be visible in all parts of the desktop), use the -alldesktops option:

foo@bar:~$ kstart --alldesktops konqueror

To extend this functionality a little further, combine the --alldesktops option and the --ontop option

to ensure that a specific application always remains visible on every desktop. This is handy for media
players such as noatun when you want to control the player at all times:

foo@bar:~$ kstart --alldesktops --ontop noatun

Another useful modification is to not display the application on the taskbar (the part of the panel that
shows which programs are running). You can use the --skiptaskbar option to give the effect of a

floating application that is always on top:

foo@bar:~$ kstart --alldesktops --ontop --skiptaskbar noatun

A final useful switch is the --fullscreen option. This is particularly handy when running an application

that should appear like a kiosk [Hack #43] . The benefit of this mode is that you can restrict users from
using other applications in kiosk mode. You can run Konqueror in full-screen mode so that it gives you a
full-screen kiosk web browser:

foo@bar:~$ kstart --fullscreen konqueror

5.5.2. Adding Application Options

In addition to the facilities available in kstart, you can also combine the options and switches from the
program you are running. Each Linux program has accessible options similar to the ones you used in
kstart, and you can view them in the application manpage. Many programs also have a --help option

that will list the different options available:

foo@bar:~$ kstart --help

As an example of combining these options, you can load Konqueror full screen in web-browsing mode to
look at the O'Reilly web site:

foo@bar:~$ kstart --fullscreen konqueror --profile webbrowsing http://www.oreilly.com/

In this example you use the --profile option in Konqueror to set the mode of the application to
webbrowsing. You also specify the URL of the O'Reilly web site as the site to be loaded into Konqueror
when the application starts. It is important to note that the kstart options (--fullscreen) are to the
right of the kstart command and the Konqueror options (--profile webbrowsing

http://www.oreilly.com/) are to the right of the konqueror command.

5.5.3. Starting Programs Conveniently

Although you have been typing your kstart commands into a terminal, you can actually use a desktop
icon to run the commands. To do this, add a shortcut by right-clicking the desktop and selecting New
Shortcut. In the command box, add the full kstart command. Click OK and your shortcut is complete.

Another useful feature in KDE is that you can automatically start applications when the desktop loads.
This feature is useful if you use the same programs day in day out and you want them started whenever
you load the desktop. If you want to load KMail, Mozilla, the Gimp, Bluefish, and Kopete when you start
KDE, this feature saves you from having to click all the program icons each time the environment starts
and move the application windows to your preferred desktops.

To do this, use the Autostart directory in ~/.kde. You can access the directory in Konqueror and create
normal application shortcut icons inside it by dragging the programs to run into the directory. If you
combine the features of kstart with the Autostart directory, you can enable your desktop to start up
exactly how you want it to with the right applications running in the right part of the desktop.

http://www.oreilly.com/
http://www.oreilly.com/

Hack 39. Script Hacks with DCOP

Use the KDE scripting tool of choice to tweak your desktop for maximum flexibility.

For most users, interaction with the desktop is a simple process that is limited to clicking buttons and
typing things in from the keyboard. Although fine for most cases, this normal form of interaction limits
what you can accomplish with an application, because you are restricted to the program elements that
the GUI has been designed to show, and because complex or repetitive tasks require the user to input
every command himself. Many programs can be augmented with a scripting tool to overcome traditional
input methods.

Within the KDE feature set is a special tool called the Desktop COmmunications Protocol (DCOP). This
facility can access a number of so-called "hooks" in KDE applications that can allow programs to
communicate with other applications either remotely, with a scripting language, or from the command
line. DCOP essentially provides a means for you to hook together graphical programs in the fine tradition
that Unix and Linux command tools can be connected with pipes.

DCOP is a tool that typically resides in the developer's toolbox, out of sight from most users. But DCOP is
also a tool that you can use in everyday desktop practice. Although hackers are animals that enjoy
wallowing in reams of code, a little GUI application is available, which nonhackers can use as an interface
to DCOP to facilitate the process of writing DCOP programs. It is called KDCOP and you can start it by
typing kdcop into a console or in the Run application dialog box (Alt-F2).

5.6.1. DCOP and Processes

Each KDE application that you are running on the system has a number of DCOP "interfaces" that provide
methods for learning information about the application and adjusting how it works. When you run
KDCOP, each interface is displayed and you can play with them inside the program. For example, run
KDCOP and then load a Konqueror browser. You will see Konqueror added to the list of applications in the
KDCOP window. You should also see a number to the right of the entry, such as konqueror-1377. This

number relates to the process number of the application. This number is added, because often more than
one process is running for each program at any one time. If you click the Konqueror entry you are
presented with a list of categories that contain DCOP interfaces.

To test an interface, look in the category called KonquerorIface and double-click the entry DCOPRef
createNewWindow(QString url), as shown in Figure 5-3.

Figure 5-3. Browsing DCOP interfaces with KDCOP

Not surprisingly, this string creates a new window. The QString url part in brackets means you can pass

the interface a web address or file location and the interface will display that resource in the window.
When you double-click the interface, you are prompted for this value and then Konqueror opens a new
window with the requested URL.

You can tie DCOP functionality into a number of places. For example, you can access a similar DCOP
interface from the command-line shell with:

foo@bar:~$ dcop konqueror-1377 KonquerorIface openBrowserWindow http://www.oreilly.com/

Notice how you need to specify the process number of the application within the application name (your
process number might be different from mine). This is so you can probe the correct Konqueror process
and open a new browser window.

5.6.2. Write a DCOP Shell Script

The true power of DCOP comes into its own when you start writing shell scripts. As an example, imagine
that numerous applications are in use across all your virtual desktops. Things are getting a little messy on
these desktops and you want to tidy up. You can solve this problem by writing a little script that switches
to each desktop and runs the cascadeDesktop interface, which organizes the windows in a cascaded

order.

To create this script, create a new file called cascade.sh and add the following code:

#!/bin/bash
for i in seq 1 5:

do
 dcop kwin KWinInterface setCurrentDesktop $i
 dcop kwin KWinInterface cascadeDesktop
done

This code creates a bash for loop that loops four times (for the number of desktops). Inside the loop, it
sets the current desktop to that of the loop number, and then it issues the cascadeDesktop interface

command.

To run the script, you need to turn on the execute bit on the file:

foo@bar:~$ chmod a+x cascade.sh

Then you can run the script with:

foo@bar:~$./cascade.sh

As another example, say you want to receive an email when your friend Nick logs on to your instant
messenger network. This could be particularly useful if you leave Kopete (the KDE instant messenger)
running at home and you want to know when someone is online while you are at work. You can
accomplish this with the following script:

#!/bin/bash

nick=$1;
echo Waiting for $nick
while ((`dcop kopete KopeteIface reachableContacts | grep -c $nick` == 0))
do
sleep 10
done
echo Sending message
mail -s "$nick is online" you@foo.com

Save this script to a file such as immail.sh and run it, like so:

foo@bar:~$./immail.sh bob

This script works by first making the command-line argument available as the $nick variable. After this,
a while loop is started that uses grep to search for the chosen nick in $nick within the output of the
reachableContacts interface in KopeteIface. Nick is not online, so the process will just sleep for 10
seconds. When Nick does come online, an email is sent to you@foo.com using the mail command.

Hack 40. Create Your Own KDE Right-Click Menu Actions

Create custom menu actions for when you right-click a file, directory, or group of files and/or
directories.

When you use KDE, do you ever find yourself having to click too many times to do a simple operation,
or resort to opening up a terminal to do a task at the command line that should have been a no-brainer
feature of KDE? Now you can add your own features to KDE context menus. Right-click a file and click
Action Make Executable to make the file executable. Right-click an empty space in a folder and click
Action Create a new Bash Script to open an editor and fill in the first line. This is a very cool hack
because you can create a context menu to launch scripts or programs written in any language. It is
especially powerful if you learn DCOP scripting [Hack #39] . That way you can use the context menu
selection to control KDE programs.

Remember all the times you wrote a dandy new bash script and created an icon to launch it, but when
you clicked it, it didn't run? Instead, it popped up in an editor, because you forgot to make the script
executable. With this hack, you can create a script to make your file executable by right-clicking its icon
and selecting Actions Make file executable (see Figure 5-4). It takes much less time than traditional
methods.

All you have to do to create the context menu that will make a file executable is create a text file
formatted very much like an application link, and then drop it in a special directory. We'll start by
creating a file called make_executable.desktop. Start up your favorite editor, and enter the following
text:

[Desktop Entry]
Encoding=UTF-8
ServiceTypes=application/x-shellscript
Actions=MakeExe

[Desktop Action MakeExe]
Name=Make file executable
Exec=chmod +x %f
Icon=kfm

Save your work. The action this file takes is defined by the entry Exec=chmod +x %f. KDE substitutes the
name of the selected file for %f. If you want to make this feature available to everyone who uses KDE on

this computer, place the file here:

cp make_executable.desktop <path to kde>
/share/apps/konqueror/servicemenus

Depending on your Linux distribution, the path might not be tied to your KDE directory. It might be
/usr/share/apps/konqueror/servicemenus.

If you simply want to make this feature available to yourself, place the file here (assuming your KDE

settings are kept in ~/.kde; your distribution might use ~/.kde3.3 or something similar):

$ cp make_executable.desktop ~/.kde/share/apps/konqueror/servicemenus

The ServiceTypes field in the file is set to the mime-type application/x-shellscript,
which means the menu option will be available only when you right-click a shell
script file.

Figure 5-4. Context-sensitive Actions menu

5.7.1. Symbols Available for Menu Actions

Konqueror passes the names of selected URLs, selected files, and other selected elements to your
custom menu actions through the use of symbols. Symbols exist for single files, multiple files, single
URLs, and more. The right-click action that allows you to change a file to be executable works, because
it substitutes the name of the selected file for the symbol %f. Here are some other symbols available to

you, and how they work.

%f

A single filename, even if you select multiple files. In general, you use this only when you intend
to select a single file. In some cases, you can use this to select several files for use by a program
that knows how to launch a separate instance for each filename.

%F

Multiple selected files. Use this for programs that can act upon several files at once.

%u

A single URL.

%U

Multiple URLs.

%d

The single directory that contains the selected file represented by %f.

%D

A list of the same directory containing an entry for every selected file in that directory (%F).

%n

A filename without a path.

%N

Multiple filenames without paths.

%k

A file represented as a URI.

5.7.2. Create an Action to Jump-Start Script Writing

Here's another hack to give you a taste of some of the power behind KDE custom menus. This time, you
will exploit three powerful features of KDE. The first is the ability to create submenus. You will create a
general menu selection that lets you choose between two actions that appear as submenus. The second
is the fact that your custom action can be a script instead of a simple command, such as the chmod +x

command we used in the previous example. Finally, the script will exploit the ability to use DCOP to
manipulate KDE applications [Hack #39] .

To get started, create the file /usr/local/bin/CreateBashScript.desktop. Use your favorite editor to put
the following contents into that file:

[Desktop Entry]
ServiceTypes=inode/directory
Actions=CreateBashScript;CreatePythonScript
X-KDE-Submenu=Create Script

[Desktop Action CreateBashScript]
Name=Create a bash script
Icon=kfm
Exec=/usr/local/bin/writeBashScript
[Desktop Action CreatePythonScript]
Name=Create a Python script
Icon=kfm
Exec=/usr/local/bin/writePythonScript

In this case, the ServiceTypes definition of inode/directory tells KDE that the submenu entry Create
Script will appear under the Action menu selection only if you are pointing to a folder or to an empty

area within the Konqueror file manager (which represents the currently open folder). When you select
this action, it will give you the choice of creating a bash or Python script. If you choose Action Create
Script Create a bash script, it will launch the shell script /usr/local/bin/writeBashScript. Use your
favorite editor with sudo (or log in as root) to create the writeBashScript file, with the following
contents:

#!/bin/bash

cd ~/bin
kwrite &
sleep 2
kwid=`dcop | grep kwrite | sort | tail -n 1`
echo $kwid
dcop $kwid EditInterface#1 insertText 0 0 '#!/bin/bash'
dcop $kwid EditInterface#1 insertLine 1 ''
dcop $kwid EditInterface#1 insertLine 2 ''
dcop $kwid ViewCursorInterface#1-1 setCursorPosition 2 0

Here's how it works. First, it changes to the user's directory where the user keeps his personal ~/bin
scripts. This is totally arbitrary, and it assumes you want to place all your personal shell scripts in this
directory. Replace this directory with whatever directory you prefer (and one to which you have read,
write, and execute access). Then it launches kwrite followed by an ampersand to let it run in the
background while the writeBashScript shell script finishes. Again, the use of kwrite is arbitrary, but it is
a good example of how to use DCOP to automate actions, because it is a KDE editor with DCOP
capabilities. Then the script sleeps for 2 seconds (you can set this to a higher number if your system is
always slow and busy) to make sure kwrite is running before it starts issuing DCOP commands to it.

The next line is a bit tricky. Each time you launch an instance of kwrite, it gets a DCOP listing with a
number attached to it. You want to address the most recently launched copy of kwrite, so the script
runs dcop to list all DCOP applications, finds all the applications that match "kwrite," sorts the list, and
picks the last entry. That entry's name is assigned to the variable $kwid. This works even if this is the

first instance of kwrite you have launched.

Then the script issues a few DCOP instructions. It automatically enters the first line of a typical bash
script, #!/bin/bash, after which it enters two more blank lines and moves the cursor to the last blank
line.

Now create the bash script that gets you started writing a Python script. The only difference between

/usr/local/bin/writeBashScript and /usr/local/bin/writePythonScript is that you will insert the first line as
the full path to your Python interpreter instead of #!/bin/bash. That line of code should look like this:

dcop $kwid EditInterface#1 insertText 0 0 '#!/usr/bin/python'

Obviously, there's no limit to the kinds of templates you can create for various scripting languages.

These examples barely scratch the surface of what you can do. You can create a single menu entry that
lets you select a half dozen directories, tar and compress them, and burn them to a multisession CD, all
in one fell swoop. And you have the flexibility to do this as a bash script, as a Python script, or in any
method you prefer. You'll be surprised at how much more you rely on the GUI interface of KDE once you
have customized menu features for your personal convenience.

Hack 41. Make KDE Even Easier to Use

Beautify and enhance the usability of KDE by patching it with experiment code.

This is actually a combination of code hacks that improve KDE in several ways. Some of the changes are
purely cosmetic, but some enhance the usability of KDE, especially the sidebar in the Konqueror file
manager and web browser. This collection of hacks makes the practically indecipherable design of the
sidebar thoroughly intuitive. It also makes selecting files a more pleasant experience and spruces up a
few parts of the KDE interface.

André Moreira Magalhães (andrunko@yahoo.com.br), a 24-year-old computer science graduate from
Brazil, has provided a pack of incredibly cool KDE hacks via http://www.kde-look.org for KDE 3.3.1.
Some of André's patches are modified and ported from hacks written by Aviv Bergman
(aviv_brg@yahoo.com).

As I write this, KDE 3.3.2, a bug-fix release to KDE 3.3.1, is being launched. I
have downloaded and applied the patches to the KDE 3.3.2 source code, and they
apply cleanly (though occasionally you might receive a message that the patch
was offset by a few lines, which is a warning you can usually ignore). So far, the
patches seem to work fine with KDE 3.3.2, although I have not had the time to
give KDE 3.3.2 a thorough workout. It is possible, and even likely, that an
updated patch set for KDE 3.3.2 will be available on http://www.kde-look.org by
the time you read this.

KDE 3.4 is due to be available by mid-March 2005, and that release might
incorporate some of the hacks documented here. If not, keep an eye on
http://www.kde-look.org for new patches for these features.

Figure 5-5 shows what Konqueror looks like before the enhancements, and Figure 5-6 gives you an idea
of most of the changes these hacks will make to KDE 3.3.1 Konqueror.

Figure 5-5. Konqueror without enhancements

http://www.kde-look.org
http://www.kde-look.org
http://www.kde-look.org

Figure 5-6. Konqueror with enhancements

I assume you already compiled and installed KDE 3.3.1. If you still have the source code on your hard
drive, this will make things easier. If not, get the source code for the following portions of KDE, and
unpack it where you will compile it. For this example, I am assuming you will work in the /usr/local/src
directory. You need to have the source code installed for the following packages, which are listed in the
order in which you will compile and install them:

Qt 3.3.3

kdelibs 3.3.1

kdebase 3.3.1

kdeartwork 3.3.1

For more detailed instructions on how to build and install all of KDE 3.3.1, see
http://www.kde.org/info/3.3.1.php and/or [Hack #44] .

Once you have the preceding source code ready, download the hacks from http://www.kde-
look.org/content/show.php?content=16962. You want to download the 16962-patches-1.0.0.tgz file.

Keep in mind that things change quickly. From the time I wrote this hack to the
time I made the first set of revisions (just weeks later), the URL stayed the same,
but the file I download changed from 16962-patches-0.5.5.tgz to 16962-patches-
1.0.0.tgz. The URLs on www.kde-look.org tend to stay the same as versions of a
single package change. If URLs printed here don't work, go to the main page,
http://www.kde-look.org, find the category on the left side of the page (KDE
Improvements, in this case), and page through the packages until you find the
correct package. Because KDE 3.3.2 was just released at the time of this writing,
it is likely that the version of this patch set will change again when it is adjusted
for KDE 3.3.2.

André provided a number of downloads to make it easier to patch specific Linux distributions, but this
example assumes you will download and apply the hacks to the source code for Qt 3.3.3 and KDE 3.3.1,
which works for any Linux distribution with the proper development tools. You need to log in as root,
create a patch directory, and unpack this file in the patch directory. For this example:

$ su -
Password:
mkdir /patches-1
mv 16962-patches-0.5.5.tgz /patches-1
cd /patches-1
tar zxvf 16962-patches-0.5.5.tgz
Changelog
README
TODO
kdeartwork-3.3.1.diff
kdebase-3.3.1.diff
kdelibs-3.3.1.diff
qt-x11-free-3.3.3.dif

As noted earlier, this procedure assumes you have already unpacked the necessary Qt 3.3.3 and KDE
3.3.1 source code in the /usr/local/src directory. These patches are guaranteed to work only with Qt
3.3.3 and KDE 3.3.1, so apply them to other versions at your own risk.

Here are the commands for patching, compiling, and installing Qt, kdelibs, kdebase, and kdeartwork:

cd /usr/local/src/qt-x11-free-3.3.3
cat /patches-1/qt-x11-free-3.3.3.diff | patch -p0
./configure <your configure preferences>

make
make install

http://www.kde.org/info/3.3.1.php
http://www.kde-
http://www.kde-look.org

cd /usr/local/src/kdelibs-3.3.1
cat /patches-1/kdelibs-3.3.1.diff | patch -p0
./configure <your configure preferences>

make
make install
cd /usr/local/src/kdebase-3.3.1
cat /patches-1/kdebase-3.3.1.diff | patch -p0
./configure <your configure preferences>

make
make install
cd /usr/local/src/kdeartwork-3.3.1
cat /patches-1/kdeartwork-3.3.1.diff | patch -p0
./configure <your configure preferences>

make
make install

These commands assume the names of the directories for your Qt, kdelibs, kdebase, and kdeartwork
source are:

/usr/local/src/qt-x11-free-3.3.3

/usr/local/src/kdelibs-3.3.1

/usr/local/src/kdebase-3.3.1

/usr/local/src/kdeartwork-3.3.1

The names of the directories in this example, such as qt-x11-free-3.3.3, might not match yours,
depending on where you get your source code. Just substitute your directory names for the ones in the
examples.

Take note of <your configure preferences> following every ./configure command. This is where you

can specify the destination directory prefix, along with other configuration parameters you find
necessary. As for the prefix, some people like to install KDE under the /opt/kde directory, others like
/usr, and so on. It's up to you, but you should stick with whatever prefix you used when you installed
KDE 3.3.1, before making this modification. If you installed it with the prefix /usr, the command would
look like this:

./configure --prefix=/usr <other preferences>

Make sure to run ./configure --help before you actually run ./configure as part of the build

process. This command tells you about options that might be important to your installation of KDE
3.3.1.

Provided everything has gone smoothly so far, all but one of the enhancements should automatically be
enabled and work. You have to make one more change to enable the fancy new sidebars in addition to
the new rubber-banding effect for selecting icons. Use your favorite editor to edit the configuration file
konqsidebartng.rc. This file is located in the default configuration directory for KDE 3.3.1, and a copy of
it is located in a subdirectory of your home directory. Assuming you have installed KDE to /opt/kde, you
want to edit /opt/kde/share/config/konqsidebartng.rc if you want the changes to affect everyone who
uses KDE. If you simply want to change the sidebar for your own use, edit the configuration file in your

home directory. Assuming the home KDE configuration directory is ~/.kde, the file you want to edit is
~/.kde/share/config/konqsidebartng.rc. The contents of the file should look something like this:

HideTabs=false
OpenViews=services.desktop
SavedWidth=241
ShowExtraButtons=true
ShowTabsLeft=true

[filemanagement]
HideTabs=false
OpenViews=root.desktop
SavedWidth=200
ShowExtraButtons=true
ShowHeader=true
ShowTabsLeft=true
SidebarStyle=0
SingleWidgetMode=false

[webbrowsing]
HideTabs=false
SavedWidth=207
ShowExtraButtons=true
ShowHeader=true
ShowTabsLeft=true
SidebarStyle=0
SingleWidgetMode=false

Note that the SidebarStyle is set to 0 for both web browsing and file management. The 0 sets the

sidebar to the default style, which is what you are trying to replace. To change it to the new hacked
style, change 0 to 1. You can change to the new sidebar look for the file manager, web browser, or

both:

SidebarStyle=1

Start up KDE, and enjoy the new sidebar and the new look for selecting icons.

Hack 42. Give Depth to Your KDE Windows

Create a 3D effect with drop shadows for all open KDE Windows.

You can give your application windows and other on-screen elements (such as menus and dialog boxes)
a really nice 3D effect if you add drop shadows to them. The active window seems to pop right out at
you, and you don't even need geeky cardboard and plastic glasses for this trick to work.

Although it is also possible to create drop shadows if you use the xcompmgr utility with Xorg-X11 6.8.0
or higher instead of XFree86, xcompmgr is still a work in progress. The xcompmgr program crashes a
lot, and sometimes it takes down the window manager with it.

The only real disadvantage to this hack is that it is most useful on fast machines, especially if you have
an accelerated X driver for your video card. But apart from speed and convenience, these patches have
the distinct advantage of saving you time restarting after a window manager crash caused by
xcompmgr.

These instructions assume you are using KDE 3.3.1; you can combine these instructions with the KDE
improvements in [Hack #41] .

As I write this, KDE 3.3.2, a bug-fix release for KDE, is being launched. The
patches described here do not apply cleanly to KDE 3.3.2, although if you are an
experienced programmer, you might be able to fix the areas where the patches
fail.

Figure 5-7 shows what the drop shadows look like, as well as proof that this hack and the previous
sidebar and icon hacks work well together. Notice also from Figure 5-7 that you can configure this hack
to give inactive windows a smaller drop shadow to make them look like they've receded into the
background.

Figure 5-7. KDE windows with drop shadows

I assume you already compiled and installed KDE 3.3.1. If you still have the source code on your hard
drive, this will make things easier. If not, get the source code for the following portions of KDE, and
unpack it where you will compile it. For the purposes of this example, I am assuming you will work in
the /usr/local/src directory. You need to have the source code installed for the following packages,
which are listed in the order in which you will compile and install them:

kdelibs 3.3.1

kdebase 3.3.1

For more detailed instructions on how to build and install all of KDE 3.3.1, see
http://www.kde.org/info/3.3.1.php and/or [Hack #44] .

Download the hack (http://www.kde-look.org/content/show.php?content=15781). The file you want
should be named kwin_shadow-patch.tar.bz2. Log in as root, and then enter the following commands to
put the patches in the /patches-2 directory:

tar jxvf kwin_shadow-patch.tar.bz2
cd kwin_shadow/kde-3.3.1
cp kdebase.kwin-kwin_shadow-3.3.1.patch /patches-2
cp kdelibs.kdefx-kwin_shadow-3.3.1.patch /patches-2

Now you are ready to apply these patches to the KDE source code.

If you are working with source code that has already been patched to include the
KDE improvements described in this hack, you will see some messages that the
patches were applied at various offsets (2 lines, 52 lines, etc.). These messages
are harmless.

http://www.kde.org/info/3.3.1.php
http://www.kde-look.org/content/show.php?content=15781)

Here are the commands for applying the drop-shadow patches, then configuring and installing kdelibs
and kdebase:

cd /usr/local/src/kdelibs-3.3.1/kdefx
cat /patches-2/kdelibs.kdefx-kwin_shadow-3.3.1.patch | patch -p1
./configure <your configure preferences>

make
make install
cd /usr/local/src/kdebase-3.3.1/kwin
cat /patches-2/kdebase.kwin-kwin_shadow-3.3.1.patch | patch -p1
./configure <your configure preferences>

make
make install

These commands assume the names of the directories for your kdelibs and kdebase source are:

/usr/local/src/kdelibs-3.3.1

/usr/local/src/kdebase-3.3.1

The names of the directories in this example, such as kdelibs-3.3.2, might not match yours, depending
on where you get your source code. Just substitute your directory names for the ones in the examples.

Take note of <your configure preferences> following every ./configure command. This is where

you can specify the destination directory prefix, along with other configuration parameters you find
necessary. As for the prefix, some people like to install KDE under the /opt/kde directory, others like
/usr, and so on. It's up to you, but you should stick with whatever prefix you used when you installed
KDE 3.3.1 before making this modification. If you installed it with the prefix /usr, the command would
look like this:

./configure --prefix=/usr <other preferences>

Make sure to run ./configure --help before you actually run ./configure as part of the build

process. This command tells you about options that might be important to your installation of KDE
3.3.1.

If all went smoothly, you should be able to start up KDE, but you won't see any drop shadows yet. To
set up the drop shadows, open the KDE Control Center and click Appearance & Themes Window
Decorations. Then click the Shadows tab, which should look something like the picture in Figure 5-8.
From here, you can choose to draw drop shadows on active or inactive windows, determine how big a
drop shadow you want on each, set the opacity (how much you can see through the shadow), and
more. Experiment until you get the effect you like best.

Figure 5-8. The Shadows configuration tab

This hack has a long list of credits. Karol Szwed started the process, and David Sansome wrote some
decoration code, some of which was converted for use in this patch. Thomas Libking added a lot of work
to make the drop shadows for different applications interact. Bernardo Hung pulled it all together, and
then Heiko Przybyl (zuxez@uni.de) ported the latest version of the code for use with KDE 3.3.0 and KDE
3.3.1.

Hack 43. Lock Down KDE with Kiosk Mode

Control exactly what your users can tinker with, and what they can't change at all.

System administrators typically spend a lot of their time fixing trivial problems for users who have
accidentally changed their settings in some way. When an inexperienced user moves a desktop icon into
the trash or sets a mime-type to open with the wrong program, he might be unable to reverse his
changes. Calls to the system administrator for help are a poor use of everyone's time. It would be
better if the user had never been able to make undesirable changes.

Perhaps you just want to set up a Linux desktop for your grandmother but she keeps changing the
layout of the application toolbars without meaning to. The new look confuses her so much that she calls
you all the time asking for help, or worse, she gives up on Linux or computers. Wouldn't it be great if
you could protect your grandmother from herself?

For computers in a public setting such as an Internet café or library, problems such as these turn into
more than just timewasters; they can prevent others from using the machine or cause distress for
users. Have you heard the common anecdote of the script kiddy who has changed the background
wallpaper on all the machines in a library to pornographic photos?

5.10.1. Enter the Kiosk

KDE has traditionally been one of the most configurable desktop environments available, but KDE 3.2.3
pushed the fold and added the Kiosk framework, which allows for any or all of the configuration options
to be marked as unchangeable. With Kiosk you can create profiles that are attached to users or groups
of users. A profile can define any KDE setting, but usually includes the contents of the desktop, panel,
and K Menus, as well as the choice of wallpaper, default fonts, and widget style. You can also specify
important system settings, such as the network proxy and file associations. Most importantly, all these
options can be set to be unchangeable by the user. This means grandma will never accidentally delete
her web browser icon, and a bored teenager can't change the library's computer wallpaper to something
that will give grandma a heart attack.

The easiest way to set up a Kiosk profile is to use the Kiosk Admin Tool. Some distributions include this
by default or include a package for it. If you need to, you can download the source from its web site at
http://extragear.kde.org/apps/kiosktool.php.

Start the Kiosk tool (as a normal user; there's no need to run as root) by selecting K-menu System
Kiosk Admin Tool, or with the kiosktool command, and click Add New Profile. Give this profile a

name such as "locked-down" and click OK to save. When prompted, provide your root password to save
the new profile. Now click Manage Users and add a user policy to link a user to your new locked-down
profile. You can also add Linux user groups to the policy. The Kiosk tool links to /etc/group, which is
where you should manage group membership. To configure a profile, select it in the list and then click
Next. The next screen presents numerous modules, each with specific configuration options in it. Ticking
an option will lock down its corresponding feature. The settings will be saved when you click Back.

Some of the modules offer graphical setup for their settings. For example, under the Desktop Icons
module you can load a temporary desktop to replace your normal one. Switch to a different virtual

http://extragear.kde.org/apps/kiosktool.php

desktop (Ctrl-F2) if you have windows covering your background. You can add, remove, and move any
of the icons on the temporary desktop. When you click Save in Kiosk Admin Tool, the settings for this
desktop will be saved and your normal desktop will be loaded again. This makes configuring the setup
for your Kiosk profile as easy as configuring your own desktop.

A general breakdown of the types of settings you will find in the most important modules follows:

General

Contains the settings that control the global properties for all KDE programs and includes the
ability to run commands, log out, or move toolbars. Disabling Konsole removes not only its entry
from the K Menu, but also the embedded Konsoles in Konqueror and Kate.

Desktop Icons

Settings to prevent users from moving or deleting desktop icons.

KDE Menu

Controls which programs are available from the K Menu.

Themeing

Prevents users from changing the widget style, color, or font settings.

Konqueror

Stops the user from being able to browse outside his home directory.

Menu Actions

Turns off standard menu actions such as open, print, paste, settings, etc., from all KDE
applications.

File Associations

Ensures that files can be opened only with the specified programs.

Network Proxy

Enforces the use of your web proxy. Uses a web proxy to restrict which web sites a user can
browse.

Panel

Used to lock down the panel, prevents users from adding or removing the items you place here,
and enables you to prevent panel context menus from working.

The Kiosk framework has been used in large enterprise deployments of KDE. Administrators report that
it cuts the time taken up by user support by half, because it reduces the number of small but time-
consuming problems users have. If you are considering using Kiosk in a public setting you might want
to make yourself familiar with the KDE configuration file format. Browse through /etc/kde-profile to see
the settings made by the Kiosk Admin Tool. Adding [$i] to a configuration option, group of options, or

file makes them unchangeable by users.

Kiosk is not a substitute for using Unix filesystem permissions or other security settings. You should also
make sure you set X to not be killable with Ctrl-Alt-Backspace, and prevent users from changing to a
text console. Finally, make sure the login manager does not allow users to log in to any other desktop
environment that has not been locked down.

Jonathan Riddle

Hack 44. Run KDE on the Bleeding Edge

Of all the free and open source projects, KDE is possibly the fastest-growing, as evidenced by the large
and active community of developers, features that go from the drawing board to computer in record
time, and the constant stream of additions being committed to the KDE source code. The rapid pace of
development means something new or interesting is always in the development code. This hack shows
you how to compile and run all the newest code in advance of official binary releases.

The first thing to be aware of when you are going to play with development software is that most likely
it will not work the first time you try it. Some things will work, and some things won't, and you might
even lose data and information to crashes, bugs, and other nasties that are part and parcel of
development code. In this hack, you will download some code and compile it, but I recommend you
back up any important data first.

To get a basic desktop up and running, you need to compile the following KDE CVS modules, in this
order:

qt-copy (you need this only if you do not have the latest copy of Qt installed on your system)

arts

kdelibs

kdebase

Details on getting code via CVS are discussed in [Hack #86] . The anonymous CVSROOT for the KDE
code is:

:pserver:anonymous@kde.org:/home/kde

You need to grab the qt-copy, arts, kdelibs, and kdebase modules from CVS. Compile the modules in the
order in which they appear in the earlier list.

5.11.1. Compiling the Code

When you have checked out the code for each module, you need to go into each module directory, and
issue a number of commands to configure and compile the software. The first command is:

foo@bar:~$ make -f Makefile.cvs

This performs some special logic on the files in the module so that it is suitable for compiling. You need
to use this command only with a CVS copy of KDE and not normal, stable, packaged versions. Next, you
need to configure the module. This means running a special script called configure, which checks that
you have everything needed to compile the code (such as a compiler, linker, etc.) and finalizes the code

and makes it ready for compilation. You can normally run configure like this:

foo@bar:~$./configure

Although this is fine, configure has a few options that can be useful. The first is the --prefix option

that can be used to specify where the compiled software will be stored. As an example, to store your
CVS version of KDE in /opt/kde, use the following command:

foo@bar:~$./configure --prefix=/opt/kde

If you do use --prefix on your configure command, you also need to add your prefix to your PATH

environment variable so that your system can find the compiled software. You can set your path to
PATH=$PATH:/opt/kde/bin, for example. One other note to make is that the qt-copy module needs
quite a few arguments to be passed to its configure script. You can find information on this in the

INSTALL.qt-copy file in the module. If you get any errors while configuring a module, you need to fix
them before you can continue.

With a module configured, it is time to compile it by running:

foo@bar:~$ make

Now grab some coffee and eat some flapjacks; your module will take quite a while to compile. When it
has finished you are returned to the prompt. At this point you can install it with:

foo@bar:~$ make install

You might need to be root to run this command when you are installing it to a normal system binaries
directory, such as /usr/bin. If you used the --prefix command in the configure script, your files are

installed to that directory instead. Remember that you will need to run each command for each module
you want to compile.

5.11.2. Running KDE

With your new development version compiled, it is advised that you back up your existing KDE
configuration before you run the new version; it is not uncommon for new development code to eat
previous configuration files. KDE stores its configuration in the .kde directory within your home
directory. A simple way to back up this directory is to rename it to another name. When you start your
new development KDE version, the .kde directory will be re-created with the new configuration files.

To run KDE, set your PATH environment variable to include the path where KDE is installed (as
discussed earlier), and then edit your .xinitrc file and add exec startkde to it. This will load KDE when
you run startx.

Chapter 6. GNOME Desktop Hacks

Hacks 45-48

Hack 45. Randomize Your GNOME Wallpaper

Hack 46. Grow Your GNOME with gDesklets Steroids

Hack 47. Create Your Own GNOME Right-Click Actions

Hack 48. Compile a Bleeding-Edge GNOME Desktop

Hacks 45-48

Though Linux users have plenty of choices as to which desktop environment or window manager they
use, the reality is that the vast majority of them choose KDE or GNOME. Chapter 5 was about KDE, and
this chapter is focused on GNOME.

GNOME has become the default desktop for Fedora and Red Hat, is the only desktop for Sun's Java
Desktop System, and is currently fighting it out with KDE to become Novell's preferred corporate
desktop. Since the introduction of the 2.0 series GNOME has moved to a time-based release schedule,
with new major versions out every six months. This has led to rapid development of the core
environment, advanced features, and even wider acceptance as a desktop than it previously enjoyed.
Combine this with outstanding applications such as Evolution and Gaim (which look more at home on
the GTK-based GNOME desktop than the QT-based KDE desktop) and developers' adherence to the
GNOME Human Interface Guidelines, and you have a desktop environment that is loved by many.

This chapter provides a few hacks to help you customize your GNOME desktop even further, and one
hack to keep you up-to-date with the latest development releases.

Hack 45. Randomize Your GNOME Wallpaper

Like many Linux enthusiasts, you spend hours each day staring at your computer screen. You're lucky to
have nice graphical interfaces sprinkled with pretty pictures to make all the work you do seem more
interesting, but after a time, things can still get dull. To spice up your daily working grind, it would be
nice to have the GNOME desktop periodically change to a random image. With a collection of suitable
wallpaper this could add a little more sparkle to your desktop.

Unfortunately, a default option for performing this kind of randomized wallpaper adjustment does not
exist. Therefore, you will write a small script in this hack to accomplish this. After a little time preparing
the script, not only will you have a randomized wallpaper set up, but also you will have a deeper
understanding of how GNOME can be scripted.

6.2.1. Selecting a Random Image

With a small bash script, it is possible to randomly select an image from a directory and change the
current GNOME wallpaper to that image. It's easy to forget just how powerful bash can be; more than
just a simple command shell, bash has a whole host of features that make it well-suited for even

complex programming tasks.

To begin this hack, you need to have a directory full of wallpapers somewhere. Assume this directory is
located at /home/foo/Images/Wallpapers/. This script will take an image from that directory and set it
as the current wallpaper. Here's the first part of the script:

#!/bin/bash
export DIR='/home/foo/Images/Wallpapers/'
export NUMBER=$RANDOM
export TOTAL=0

The first line is a standard piece of code that says which program should be used to run the script (in
this case bash). After this line is the location of the directory containing your images, stored in the $DIR

variable for future use. Next, you store a random number, which is generated by the built-in variable
named $RANDOM. You also set $TOTAL to 0 to begin with; this variable stores the total number of images

in the directory.

If you get an error when running this script that reports a "Bad Interpreter" or
something similar, you should check the documentation for your distribution and
make sure the path to the bash binary is correct (/bin/bash should be correct on
most distributions).

After this initial code, you need to create a loop that counts the number of images in the directory using
the output of the ls command. Because this script doesn't check file types, it is important that you store

only images in this directory. Here is the loop:

for f in `ls $DIR`
do
 let "TOTAL += 1"
done
let "NUMBER %= TOTAL"

The line let "NUMBER %= TOTAL" is the part that actually selects which image will be used. This line

divides the randomly generated number by the number of images in the directory and stores the
remainder of this division in the $NUMBER variable. If you're wondering how this works, the remainder

must be between 0 and 1, minus the number of images, and because in the next part the script starts
counting from 0, it is possible for any image to be selected with this method.

The final part of the script simply counts through each image to see if it is the one that was selected.
When it finds the correct image, it modifies the GConf setting that stores the filename of the wallpaper
using the gconftool command (this might be gconftool-2 on some systems). Nautilus notices this

change immediately and updates the wallpaper. So, here's the final script:

#!/bin/bash
export DIR='/home/adam/Images/Wallpapers/'
export NUMBER=$RANDOM
export TOTAL=0
for f in `ls $DIR`
do
 let "TOTAL += 1"
done
let "NUMBER %= TOTAL"
export CURRENT=0
for f in `ls $DIR`
do
 if [$CURRENT = $NUMBER]
 then
 /usr/bin/gconftool-2 -t string -s /desktop/gnome/background/picture_filename
$DIR/$f
 break
 fi
 let "CURRENT += 1"
done

Save the script somewhere convenient such as /home/foo/setbg.sh. Also make it executable by running
the following in a terminal:

foo@bar:~$ chmod +x setbg.sh

Now when you run this script your wallpaper will be changed.

6.2.2. Automating the Task

Using cron you can run this script automatically at set times. [Hack #70] discusses how to use cron.
Another option is to use GNOME's session manager to have the script run when you log in. You can even
add a launcher to your panel so that you can change the wallpaper with one click. Just enter
/home/foo/setbg.sh as the program name.

Adam McMaster

Hack 46. Grow Your GNOME with gDesklets Steroids

Spiff up your GNOME desktop with various information panels and interactive gadgets.

gDesklets are GNOME's answer to KDE's karamba and superkaramba. You can set up and use gDesklets
that place system information, clocks, and other information on your desktop. Some gDesklets provide
more interactive functions. Even though they are associated primarily with GNOME, gDesklets are not

GNOME-only programs. The gDesklets system runs reasonably well with other window managers, even
KDE.

Like the KDE gadget programs, gDesklets depend heavily on Python and Python interfaces to GNOME.
Here are the minimum requirements for gDesklets to work (some sensors might have extra
requirements):

Python 2.3 or higher

pygtk 2.0.0 or higher

libgtop2

librsvg

GConf

gnome-python 2.0.0 or higher

GConf support for gnome-python (plus the extra package gnome-python2-gconf on Red Hat Linux)

The web site for gDesklets is at http://gdesklets.gnomedesktop.org/, but you won't find RPMs there.
Your best bet is to search http://rpm.pbone.net/index.php3 for RPM packages for Fedora, SUSE,
Mandrake, and others, and you'll also find some RPM packages at http://www.rpmfind.net. Debian and
Gentoo provide packages you can download through their Internet installers, apt-get and emerge,
respectively.

Although both superkaramba and gDesklets provide a user interface for selecting gadgets (called
displays), the one for gDesklets is the only one worth using. In most cases, you should be able to start
up the gDesklets Display selector by choosing gDesklets from the GNOME Applications menu,
although the location of the selection varies considerably from one Linux distribution to the next.

Once you find the selection and start gDesklets, it launches itself as a daemon that runs in the
background, after which it presents the gDesklets interface to select from a variety of displays (Figure

6-1). Double-click a display selection on the right to start up that display.

Figure 6-1. gDesklets selector

http://gdesklets.gnomedesktop.org/
http://rpm.pbone.net/index.php3
http://www.rpmfind.net

In my past, personal use, the gDesklets selector shell (which launches the daemon) often failed to start
a display, or the shell interface crashed before I had a chance to select a display. Recent updates to
GNOME seem to have fixed this problem. Regardless, if this happens to you, you can usually bypass the
launcher and start up a display directly from the command line. The trick is to use the --no-config

switch for it to work (gDesklets is evolving and changing rapidly, as are the rules for its use, so even
that switch might not be necessary at some point). For example, to launch the clock display, use this
command:

$ gdesklets --no-config /usr/share/gdesklets/Displays/Clock/osXclock.display

Of course, launching from the command line gives you the ability to autolaunch a gDesklets display
each time you start GNOME [Hack #72] . Figure 6-2 shows both the clock and the weather display.

Figure 6-2. Two gDesklets on the GNOME desktop

Hack 47. Create Your Own GNOME Right-Click Actions

Create custom menu actions in the Nautilus file manager.

GNOME and its file manager, Nautilus, have a custom menu feature similar to KDE/Konqueror. This
hack shows you how to exploit that Nautilus feature, add your own menu selections, and get around
some of the limitations of Nautilus.

The Nautilus approach and the KDE approach to adding custom menu selections differ in that you can't
make the Nautilus menu selections context-sensitive so that they appear only when they would be
useful. This means you can create menu actions that are useless in the wrong context. For example,
there's no reason why you would want to click a spreadsheet and then select "convert to PNG image"
from a custom menu. Yet, if you create a script that converts a file to a PNG image, that menu option
(along with all the other script menu selections you have created) will appear even when you select files
where such a conversion would be nonsense.

The only way to make a script context-sensitive is to associate the script with a type of file by using the
GNOME File Types and Programs applet. After that, the script will appear as one of the ways to "Open"
the file.

6.4.1. Adding a Scripts Option to the Nautilus Menu

You run custom scripts from the Nautilus File menu or by right-clicking and selecting the Scripts option.
You might notice your current Nautilus menu doesn't contain a Scripts option. This simply means you
haven't defined any scripts yet. Once you define a script, the option to run scripts will appear (along
with the option to open the scripts folder where you can add, change, delete, or edit your scripts).

Place your scripts in the ~/.gnome2/nautilus-scripts directory. If you find you are adding so many
scripts that the menu gets confusing, you can divide them into categories and place them into
subdirectories of ~/.gnome2/nautilus-scripts. For example, you can put all your file conversion-related
scripts in the ~/.gnome2/nautilus-scripts/Convert directory. This will place all the conversion scripts in
a submenu so that you can select Scripts Convert Your Script to run one of those scripts.

6.4.2. Image Conversion Script

This sample script takes an image file and converts it to the GIF format. It uses the convert command

that comes with the ImageMagick package. This command is capable of converting images from just
about any format to just about any other format.

Create the ~/.gnome2/nautilus-scripts/Convert2Gif script. Use your favorite editor to enter the following
code, and then save the file:

#!/bin/bash

convertprg=`which convert`

while [$# -gt 0]; do
 picture=$1
 newfile=`echo "$picture" | cut -d . -f 1`
 $convertprg "$picture" "$newfile".gif
 shift
done

Make the script executable with this command:

$ chmod +x ~/.gnome2/nautilus-scripts/Convert2Gif

Now you're about to find out if Nautilus scripting works in your version of GNOME. Use Nautilus to
navigate to a non-GIF image file in a folder where you have permission to create new files. Right-click
the image file and select Scripts Convert2Gif. If scripts work in your copy of Nautilus, you should see
a new file appear in GIF format.

6.4.3. Checking File Types

The one time you can easily get into trouble with Nautilus scripts is when you run a script against the
wrong kind of file. It's easy to find the type of a file, but it's not that easy to narrow it down to
something usable in a script. The following script has some additional code that checks to make sure the
file is an image:

#!/bin/bash

convertprg=`which convert`

while [$# -gt 0]; do
 picture=$1
 filetype=`file $picture | cut -d ' ' -f 3`
 if [$filetype = "image"]
 then
 newfile=`echo "$picture" | cut -d . -f 1`
 $convertprg "$picture" "$newfile".gif
 fi
 shift
done

This additional code runs the file command against the target image. The file command returns a
string of text describing the type of the file. Then it uses the cut command to find the word "image" in
the text output of file. The word "image" should be the third field if you separate the words with

spaces. If this command returns the word "image," the script attempts to convert the image; otherwise,
the file is skipped. The second field would identify the type of the image (JPEG, for example), but if we
used that field we would have to compare it against a long list of image types. It is much easier to
simply identify the file as an "image."

One final tip: the preceding script doesn't care what kind of image it is converting. That makes the
script easily adaptable to become a conversion script to any other format that the ImageMagick
convert command can handle. All you have to change is the file extension of the target file. In short,

change .gif to .png and then save the file as Convert2Png, and now you have a script that converts
images to PNG format. Place Convert2Png in the scripts directory, and off you go.

6.4.4. Environment Variables

Nautilus scripts automatically recognize the following environment variables which you can use in your
scripts.

NAUTILUS_SCRIPT_SELECTED_FILE_PATHS

This environment variable includes the names of all the selected files, separated by newline
characters (\n). This works only if the files are local, not if they are accessed over a network.

NAUTILUS_SCRIPT_SELECTED_URIS

This environment variable returns newline-delimited URIs for the selected files.

NAUTILUS_SCRIPT_CURRENT_URI

This environment variable returns the current URI, regardless of whether it is local.

NAUTILUS_SCRIPT_WINDOW_GEOMETRY

This environment variable stores the position and size of the current window.

If you're interested in Nautilus scripts, you can find an excellent collection at http://g-
scripts.sourceforge.net/. This site also includes some tutorial information on scripting for Nautilus.

http://g-

Hack 48. Compile a Bleeding-Edge GNOME Desktop

The use of binary packages has transformed Linux into a convenient system in which the software you
need is readily available in RPM or Deb form. Although these packages are perfectly fine for the
majority of users, they have a few limitations. The first issue is that binary packages are generically
built for the widest range of hardware, which means they are not as optimized for your computer as
they could be. Another issue is that availability of the latest software in binary form depends on your
distributor and how quickly they can build the packages. The solution to these two common problems is
to use the source and compile the code yourself. Although the idea of compiling code might send a
shiver down the spine of even the bravest user, the method of compiling the latest version of GNOME is
actually surprisingly simple.

The process of compiling GNOME used to be fraught with difficulties, and the great many modules took
time, effort, and patience to compile. As more developers came on board, a few sensible hackers
realized the process needed to be improved and created a GNOME compilation tool called GARNOME
(http://cipherfunk.org/garnome), which provides a simplified method of compiling the code. GARNOME
has been actively developed for a few years now, and you can compile a lot of GNOME software using it.

6.5.1. Prepare Your System

Before you install and configure GARNOME, first you should install the build tools required to compile
the main GNOME desktop. You probably already have most of these tools, but for the sake of
thoroughness, here is the complete list:

A shell (preferably bash)

wget (required to download the tarballs)

gzip and bzip2 (required to extract the tarballs)

binutils, gcc, g++, and make (required to compile)

bison, flex, gettext, diff, and patch

autoconf, automake, and libtool

Besides these tools, you need to obtain some additional software if you want to use certain packages
that are available in the GARNOME system. These tools include:

fam (required to compile gnome-vfs)

bzip2-devel (required to compile gnome-vfs)

samba (required to compile gnome-vfs)

libpng, libjpeg, and libtiff (required to compile Nautilus)

http://cipherfunk.org/garnome

db4-devel (required to compile Evolution)

krb5-devel (required to compile Evolution)

openldap-devel (required to compile Evolution)

gnutls (required to compile vino)

With this software installed, you should download the latest stable version of GARNOME from the
projects web site and unzip it into a directory on your disk. Inside this directory is a main configuration
file called gar.conf.mk. This file has a lot of possible settings, each well documented in the file itself.
Most of the settings relate to different ways the packages can be built. For even more specific
configuration, you can also edit the makefiles inside the different subdirectories in the GARNOME source
directory.

6.5.2. Compile the Code

Within your GARNOME directory are a number of subdirectories such as desktop, fifth-toe, hacker-tools,
mono, and office. Each directory contains scripts that will build the relevant software. For example, the
main GNOME desktop is present in the desktop directory, Mono is in the mono directory, etc. The
README file included with GARNOME explains the contents of these modules in detail.

To compile the code, enter the directory of your choice and run make. As an example, to compile the

main GNOME desktop, do the following:

foo@bar:~$ cd desktop/
foo@bar:~$ make paranoid-install

GARNOME downloads the required source code and compiles it in the right order. This process can take
quite some time, depending on the speed of your computer. When it is complete, the compiled software
is installed in a garnome directory created inside your home directory. If you prefer the installed
software to be located elsewhere, you can edit the main_prefix setting in the gar.conf.mk configuration

file to specify a new location.

The final step is to launch your new GNOME desktop. To do this, you need to write a small script that
you can call to set up your environment variables and log you in to the desktop. Add this script to a file
called garnome-session and save it to your home directory, such as ~/garnome-session:

#!/bin/sh GARNOME=$HOME/garnome
PATH=$GARNOME/bin:$PATH
LD_LIBRARY_PATH=$GARNOME/lib:$LD_LIBRARY_PATH
PYTHONPATH=$GARNOME/lib/python2.2/site-packages
PKG_CONFIG_PATH=$GARNOME/lib/pkgconfig:/usr/lib/pkgconfig
XDG_DATA_DIRS=$GARNOME/share
GDK_USE_XFT=1
export PATH LD_LIBRARY_PATH PYTHONPATH PKG_CONFIG_PATH
export GDK_USE_XFT XDG_DATA_DIRS
exec $GARNOME/bin/gnome-session

Now you can call this script by adding the following to .xinitrc in your home directory:

#!/bin/sh exec
garnome-session

This ensures that when you type startx, the new desktop will be started. If you use GDM as a graphical

login manager, you need to place these two lines to .xsession in your home directory.

If you want all users on the system to have access to the installation, ensure that the main_prefix

setting in the gar.conf.mk configuration file is a generic file path that all users can access (such as
/opt/gnome).

Chapter 7. Terminal Empowerment

Hacks 49-54

Hack 49. Share Applications and Monitors with screen

Hack 50. Stop Using Terminal Command-Line Switches

Hack 51. Ultimate Terminal Transparency

Hack 52. View Microsoft Word Documents in a Terminal

Hack 53. Display PDF Documents in a Terminal

Hack 54. View Word and PDF Files from Within Mutt

Hacks 49-54

Linux distributors are anxious to shed the idea that Linux is too complex and to prove you can do
anything in Linux from a graphical desktop without having to resort to entering a single command at a
command line. Fedora Core doesn't even include a terminal icon on its launcher panel, as if to
communicate the message that only outdated geeks and power users need to resort to command-line
tools.

Linux users "in the know" recognize that an easy-to-use graphical interface is ideal only for some users
and some tasks. Other tasks, however, demand the power of the command line and/or text command
scripts.

In addition, some of us simply like some text-based applications. I, for one, still often use the text-
based Mutt email client simply because Mutt supports macro commands that help you plow through the
stacks of new mail more quickly than with any graphical email client.

So, whether you're an outdated geek and proud of it, a power user, or someone who simply likes using
text-based programs, this chapter is for you. Indeed, this chapter assumes you not only like to use X-
based terminals, but you prefer to use the lightweight terminals instead of the GNOME and KDE
terminals, which consume far more resources.

The last three hacks, [Hack #53], [Hack #52], and [Hack #54], are not only useful in an X terminal,
but are ideal if you don't use X and work strictly from a virtual text console (preferably a frame buffer-
based console). Indeed, I struggled with the decision as to whether to include these hacks in Chapter 2,
which is dedicated to consoles, or here, where we discuss X terminals. It was just as difficult to decide
to put the three hacks [Hack #13], [Hack #14], and [Hack #15] in Chapter 2, because those hacks
work perfectly well in X terminals, too. I encourage you to try out all these dual-personality hacks in
both virtual consoles, and X terminals and see for yourself how well they work in both cases.

Hack 49. Share Applications and Monitors with screen

Although doing clever things with X gets most people's attention, you can perform some cool tricks with
the console using a tool called screen.

screen is a window manager for your terminals. It provides the following nice features:

Multiple screens

A scrollback buffer

Copy and paste buffers

Although this sounds like a fairly boring listafter all, you can do this with multiple X terminalsbear in
mind that these features are provided within the terminal. You don't need to be using X; screen works
just as well (or better) from one of the Linux virtual terminals or even on a remote machine. For more
advanced use, it also provides the ability to detach and share the output of a process. screen is a GNU
tool and is available for most Unix-based platforms, including Linux. Most, if not all, distributions
provide a package for it, or alternatively it can be downloaded from the GNU web site and compiled.

You can access screen's functions via the control key combination Ctrl-A. Pressing this, and then the
question mark (?) key, displays a list of some of the commands you can use.

7.2.1. (Dis)connected

One of the most commonly used features of screenbesides its support for running multiple applicationsis
its ability to continue running applications while detached. When you run screen, it creates a new
process separate from your current terminal. Then you can close that terminal (or log out), open a new
one (or log back in), and reattach to your screen. This is useful for running long background jobs (such
as compiling a kernel) that you don't want to accidentally "break" by closing the terminal or logging
out. And it's especially useful if you're performing that job on a remote computer where there is a
distinctive risk of your connection dropping.

To begin, simply run screen without any parameters:

foo@bar:~$ screen

Now press the control key combination Ctrl-A; then press D. You'll be returned to your original console
with the following message:

[detached]

To see a list of your running screens, type:

foo@bar:~$ screen -ls

You'll see something like this:

There is a screen on:
 25091.pts-3.foo (Detached)
1 Socket in /var/run/screen/S-user.

Now you can reattach to your screen with:

foo@bar:~$ screen -r

If you've got multiple screens listed, you can select which one to connect to with this:

foo@bar:~$ screen -r n

Here you should replace n with the number shown by screen -ls (e.g., 25091), as shown earlier.

7.2.2. Mirror, Mirror

Another useful feature is the ability to attach to an already attached screen. This is often used for
rescuing an uncleanly detached session (e.g., your connection dropped), but you also can use it to
mirror applications.

IRC is a good example for this. People running several machines at once (e.g., laptop and desktop)
might want to have their IRC channels open on both machines, but don't want to be signed in twice.
With screen you don't have to!

From a shell, enter the following:

foo@bar:~$ screen irssi

This launches screen and loads irssi (a console IRC client) onto screen 0 (you don't always have to use

an interactive shell).

From another shell (local, or remotely in an SSH shell), enter the following:

foo@bar:~$ screen -ls

This will give you a list of sessions like these:

There is a screen on:
 3483.pts-0.foo (Attached)
1 Socket in /var/run/screen/S-user.

Using this session number, enter the following:

foo@bar:~$ screen -x 3483

Now you are sharing your screen session; go ahead, try it from multiple shells. You can attach as many
sessions as you want, but when you exit the application (assuming you launched the application directly
like you did for irssi, not from a screen shell), that screen terminates.

7.2.3. It's Good to Share

It is also possible for multiple users to access a single screen instancee.g., to collaborate on a

document or some code. For this to work, the following must apply:

screen must be compiled with "multiuser" enabled (most packages are).

screen must be suid root (chmod +s /usr/bin/screen).

To do this as user1 and assuming screen is running, press Ctrl-A and then type :multiuser on. Still as

user1, press Ctrl-A and then type :acladd username, where username is the user you want to be able
to access your screen. For this example, use user2.

As user2, launch screen with:

foo@bar:~$ screen -x user1/

At this point you should be connected to user1's screen. Besides acladd, you also have the aclchg,
acldel, and aclgrp commands for controlling who can access your screen, and what they can do (e.g.,

you can make them read-only). To see who's connected to your session press Ctrl-A. Then press the
asterisk (*) key.

To prevent people from (temporarily) editing all your windows, press Ctrl-A and then type :writelock
on to lock editing and :writelock off to remove the lock. If people have write permissions, they can
"steal" writelock from you. To prevent someone from editing any of your windows, press Ctrl-A and
type :aclchg username -w "#".

David Murphy

Hack 50. Stop Using Terminal Command-Line Switches

Power users switch window managers almost as often as "Alias" character Sydney Bristow
changes hairstyles. Here's a way to deal with the fact that each window manager starts up X
terminals differently.

GNOME and KDE are terrific in terms of ease of use, and their terminals (gnome-terminal, konsole)
make it easy to save your preferences. But when you want to do something that sucks up computer
resources (such as a large compile), you can free up resources by using a more minimalist window
manager, such as Fluxbox, WindowMaker, ION, or any of several dozen others that are available. Also,
some people who like to use a graphical desktop simply prefer these lightweight window managers,
because they run better on older hardware.

If you're going to use a minimalist window manager to conserve system resources, it doesn't make
much sense to use the fancier terminals available for GNOME and KDE, which might need to load a lot
of libraries just to run. If the point of using a minimalist window manager is to save resources, it makes
sense to use a lean terminal emulator, such as xterm, aterm, or rxvt. This hack shows you how to start
up any of these terminal programs without having to use command-line switches to make them appear
the way you want them to.

Here's a scenario that involves the hard way to make a terminal such as xterm launch with your favorite
settings in different window managers. You want to give Fluxbox a try, so you fire it up as your window
manager. You launch an xterm from the menu, and up it comes with the default settings. And for you,
the default settings are wrong, wrong, wrong. So, what do you do? You create a ~/.fluxbox directory,
find the default menu file (a file appropriately named menu, usually found in /usr/share/fluxbox), copy
it to your ~/.fluxbox directory, and start customizing the commands that launch terminals. For
example, if you want to start an xterm with a predefined size, a white foreground, a black background,
a font size of 10x20, the ability to remember 4,000 lines after they've scrolled off, etc., you have to
create a menu entry that reads something like this:

[exec] (xterm) {xterm -fn 10x20 -fg white -bg black -geometry 120x40
-sb 4000}

Now, what happens when you have set up all your terminal menu options for Fluxbox, and then you
decide you prefer to use WindowMaker? You can't just insert a copy of the preceding line of code into
the file WindowMaker uses to construct its menus, because WindowMaker uses a different format for
menu command entries.

Fear not. There is an oft-forgotten file in which you can set your preferences once, and then just start
xterm with the simple xterm command and no arguments, and aterm with the aterm command and no
arguments, and these terminals will pop up just the way you want them to. It even simplifies menu
entries. Here's all you need for the Fluxbox entry:

[exec] (xterm) {xterm}

The crucial file is located in your home directory, and it is called .Xdefaults (some distributions prefer to

use .Xresources, but all distributions seem to check and respect .Xdefaults). Few programs these days
care about the settings in ~/.Xdefaults, but most of the lean, mean terminal programs still use it.

Here is a sample ~/.Xdefaults file that customizes the look and feel of xterm, aterm, and rxvt with the
same settings used earlier in the Fluxbox menu file to define an xterm, and even more. All three
terminals tend to respect the following XTerm definitions (or at least the definitions for which aterm and

rxvt have equivalent features), but sometimes you might need to define some separate settings for
aterm, rxvt, and other terminals.

XTerm*scrollBar: on
XTerm*rightScrollBar: on
XTerm*title: XTerm
XTerm*font: 10x20
XTerm*savelines: 4000
Xterm*geometry: 120x40
XTerm*background: black
XTerm*foreground: white
XTerm*colorMode: on
XTerm*dynamicColors: on
XTerm*underLine: off
XTerm*colorBDMode: on
XTerm*colorBD: cyan
XTerm*colorULMode: on
XTerm*colorUL: magenta
XTerm*customization: -color
XTerm*reverseWrap: true
XTerm*color0: #000000
XTerm*color1: #b21818
XTerm*color2: #18b218
XTerm*color3: #BE5F00
XTerm*color4: #6D85BA
XTerm*color5: #b218b2
XTerm*color6: #18b2b2
XTerm*color7: #b2b2b2
XTerm*color8: #686868
XTerm*color9: #FF5454
XTerm*color10: #54FF54
XTerm*color11: #FFFF54
XTerm*color12: #73A5FF
XTerm*color13: #FF54FF
XTerm*color14: #54FFFF
XTerm*color15: #FFFFFF

More options are available for each terminal program mentioned. The best way to find out which
options you can control is to view the manpage for each terminal and view the section entitled
RESOURCES. As this method of controlling the look and feel of programs is going out of style, some of
these resources are not very well documented. You might have to play around with various settings
until you get the look you like best.

Hack 51. Ultimate Terminal Transparency

You want a lightweight terminal, but you want it to look cool.

You can set a number of terminal programs to have their own graphics backgrounds or to be
"transparent," so that your wallpaper shows through, which really makes the terminal look good.
Transparency seems to be the trendy look these days.

The only problem with true transparency is that you need to stick with monochromatic wallpaper for it
to work. If you have wallpaper with both bright and dark patterns, you're in trouble (Figure 7-1). It
doesn't matter if you set your text color to black or white. Depending on where the text shows up on
your colorful wallpaper, you'll be able to read some text, and other text will blend into the background
and disappear.

Figure 7-1. A hard-to-read transparent terminal

Sure, Figure 7-1 looks pretty, but one could go blind trying to read the text. Heavyweight programs
such as KDE Konsole or a GNOME terminal solve this problem nicely. But it seems counterproductive to
run a lightweight window manager only to load heavyweight terminals just to get a cool tinted
transparency. Xorg (a fork of the XFree86 X Windows project) has experimental transparency features
[Hack #34] that will solve this problem for all terminals, but it is currently unstable. Until Xorg works
out the bugs, aterm, urxvt, and some settings in .Xdefaults come to the rescue.

7.4.1. Tint Your urxvt

At least two relatively lightweight terminalsa Unicode version of rxvt, called urxvt, and atermprovide the

ability to tint the transparent background. A project called mrxvt that lets you open multiple terminals
in a single window also offers this feature. But the mrxvt project is such a quickly moving target I
cannot recommend any settings until it matures further.

In the case of urxvt, the terminal will still be transparent so that it shows the desktop wallpaper as its
background. But urxvt can modify the background by applying a colored tint to adjust the view of the
desktop wallpaper. You define the color of the tint and the level of shading of the tint, and you can do it
all in your .Xdefaults file [Hack #50] so that you never have to remember the command-line
parameters. Starting with urxvt, here are the settings to add to your ~/.Xdefaults file to get the results,
as shown in Figure 7-2.

urxvt*inheritPixmap: True
urxvt*tintColor: green
urxvt*shading: 70
urxvt*fading: 70

The added green tint with a shading value of 70 makes a huge difference in the legibility of the text,
doesn't it?

Here are two more tips: I find it very useful to set the termName to rxvt. Some
versions of Linux do not recognize urxvt as a valid terminal type and therefore do
not format text properly. Also, urxvt has a resource setting called fading that
determines how much the text will fade when the window loses focus.

Figure 7-2. Transparent and tinted urxvt terminal

7.4.2. aterm Is a Beautiful Thing to Tint

The terminal shown in Figure 7-2 is urxvt, but aterm looks identical with the suggested settings. Here's
all you have to do to get the same useful transparency from aterm. Fire up your favorite editor, add
these settings to your .Xdefaults file, and then run aterm:

Aterm*transparent: true
Aterm*tintingType: true
Aterm*tinting: green
Aterm*shading: 80

If you have your system set up to use multiple text colors, one of those colors might be difficult to read
no matter what color you pick for a tint. Pick dark green, and the dark green text is hard to read. Pick
dark blue, and the dark blue text is hard to read. I simply tweak the shading values to make the tint
lighter or darker until I find a happy medium where I can read all the text colors. I recommend you do
the same if you like this effect.

Hack 52. View Microsoft Word Documents in a Terminal

Avoid the load time of OpenOffice.org and view Microsoft Word documents in a terminal.

The simplest way to view a Microsoft Word document in a terminal is to use the catdoc command. But
catdoc turns a Word document to plain text, which does little or nothing to preserve the format of the

original Word document. Obviously, it's nearly impossible to view a Word document in a terminal
exactly the way it would look in Word. Heck, competing word processors have trouble importing Word
documents without upsetting the format, and they have the advantage of being a graphical desktop
application. But this hack is still a vast improvement over the popular catdoc program, because it
preserves at least some of the formatting of the original document by converting the Word document to
HTML.

You'll need both the wvWare set of file conversion utilities and the hybrid web browser/pager w3m,
along with a little scripting magic to view Word documents in a terminal or console while retaining at
least some of the original formatting.

7.5.1. wv, the All-Purpose Word Converter

There is a way to retain at least some of the original formatting while printing the document to the
screen. For this, you need a set of utilities under the name of wvWare. You can find the home page for
wvWare at http://wvware.sourceforge.net. Packages of wvWare are readily available for almost all
Linux distributions, although the package name is usually just wv. For example, if you don't already
have it installed on your system, you can install wv in Debian Linux with this command:

apt-get install wv

Users of the yum package can get the RPM version of wv with this command:

yum install wv

7.5.2. w3m, the All-Purpose Web Browser/Pager

That's not all you need for this hack. You also need a popular pager/browser called w3m. Packages of
w3m should be available for most Linux distributions, and the package name is usually w3m. For
example, you can install w3m in Debian Linux with this command:

apt-get install w3m

Users of the yum package can get the RPM version of w3m with:

yum install w3m

http://wvware.sourceforge.net

The w3m program is rather unique in that it is a web browser that works like a pagerthat is, you can
pipe text into w3m and use w3m to simply page back and forth through the text. Some versions of w3m
even render graphics in a frame-buffer console without having an X Windows desktop running.

You can combine the two utilities to get the desired result of viewing a Word document in a terminal.
Use wvWare to convert a Microsoft Word document to HTML format, and then pipe the output into the
w3m pager to view it. Here's the full command you need to make it work (this command assumes
wvHtml.xml is stored in the /usr/lib/wv directory, which might not be the case on your Linux system):

$ wvWare -x /usr/lib/wv/wvHtml.xml document.doc | w3m -T text/html

That's a lot of typing every time you want to view a Word document, so turn it into a script called
viewdoc to make it easier to use in the future. Log in as root and use your favorite editor to create the
following script:

#!/bin/bash

wvWare -x /usr/lib/wv/wvHtml.xml $1 2>/dev/null | w3m -T text/html

Note the one subtle addition, 2>/dev/null. This simply redirects any error messages to the twilight zone
so that they do not interfere with the presentation of the Word document. Store it as
/usr/local/bin/viewdoc and make the script executable with this command:

chmod +x /usr/local/bin/viewdoc

Now all you have to do to view a Word document in a text console or terminal is issue this command:

$ viewdoc document .doc

Not only does this technique preserve at least some of the formatting of a Word document, but also,
hyperlinks are live and you can activate them to visit the URL from within the w3m viewer you're using
to view the document. Figure 7-3 shows an example of a Word document viewed with w3m. Note both
the bold headings and the live link to http://www.bootsplash.de/files.

Figure 7-3. A Word document viewed in HTML text format

http://www.bootsplash.de/files

Hack 53. Display PDF Documents in a Terminal

You can view PDF documents in a terminal or console; no graphical desktop is required.

This hack is similar to the previous one, which converts Word documents into HTML. But this hack
shows you how to convert PDF documents into HTML. Then you view the HTML version with a text-
based browser or pager called elinks. (The previous hack used the w3m text browser, but elinks works
better than w3m with this hack.) With a little scripting magic and help from two programs, you can view
the contents of a PDF file in a text terminal or console.

This time you need to convert a PDF document to HTML before you run it through the elinks pager.
There's a fine utility for doing just that, and it's called (appropriately) pdftohtml. You can find the home
page for pdftohtml at http://pdftohtml.sourceforge.net/. If pdftohtml isn't already installed in your
distribution of Linux, or isn't on your CD set, it's commonly available for Debian and RPM-based
distributions, such as Fedora, SUSE, and more. The elinks program is also easily available if it isn't
automatically installed in your distribution. For example, you can install pdftohtml and elinks in Debian
Linux with this command:

apt-get install pdftohtml elinks

Users of the yum package can get the RPM version with this command:

yum install pdftohtml

Now you can view a PDF document with the following command. This particular command has one
drawback. The output will not include frames (PDF files generally have a frame on the left that lets you
jump to different pages).

$ pdftohtml -q -noframes -stdout document .pdf | elinks

If you want the left frame of page numbers, you can always use the following command instead:

$ pdftohtml -q document .pdf ; elinks document .html

You can write a script to save you all this typing each time you view a document. Use sudo or log in as
root to create the /usr/local/bin/viewpdf script and enter the following code:

#!/bin/bash

pdftohtml -q $1 ~/temp.html
elinks ~/temp.html

This code assumes it's OK to store the temporary HTML file in your home directory. You can use another

http://pdftohtml.sourceforge.net/

location if you prefer.

Now save your work and make the file executable:

$ sudo chmod +x /usr/local/bin/viewpdf

Figure 7-4 shows an example of what a PDF document will look like when you use viewpdf.

Figure 7-4. A PDF file shown in elinks

Hack 54. View Word and PDF Files from Within Mutt

Mutt is an extremely powerful terminal-based email client that supports IMAP, POP, and much more. No
graphical email client can come close to the configurability of Mutt. That's why a lot of hard-core Linux
users still use Mutt in spite of the myriad GUI-based email clients.

It is certainly possible to launch a GUI application such as OpenOffice.org or Acrobat Reader to view Word
and PDF email attachments in Mutt. But Mutt users aren't always using a graphical desktop, so it's handy
to be able to view these documents as text, right inside the message itself.

Here's how to do it. First, you need to edit the Mutt configuration file. The default configuration file is
usually /etc/Muttrc, but you'll most likely want to create your own even if you do it by copying the default
and modifying it. Mutt lets you define your user configuration file as either ~/.muttrc or ~/.mutt/muttrc.
Modify your personal Mutt configuration file to point to a custom mailcap file. For example:

set mailcap_path="~/mailcap.mutt"

Then edit the ~/mailcap.mutt file to include these two lines:

application/pdf; pdftohtml -q -stdout %s | w3m -T text/html; copiousoutput

application/msword; wvWare -x /usr/lib/wv/wvHtml.xml %s 2>/dev/null | w3m -T text/html;
copiousoutput

Now all attached PDF and Microsoft Word documents will appear within the text of the email. Granted, the
formatting isn't as pretty as when you view Word or PDF documents [Hack#52] and [Hack#53],
because all the output is piped into Mutt's own display, and not in a specialized pager, such as elinks or
w3m. But you can still read the content of the attached file. And if it interests you enough to read it in a
better format, you can save the file and read it with whatever program you wantincluding one of the
scripts in the previously mentioned hacks.

Chapter 8. Desktop Programs

Hacks 55-69

Hack 55. Reduce OpenOffice.org Startup Time

Hack 56. Read Yahoo! Mail from Any Email Client

Hack 57. Encrypt Your Email

Hack 58. Reclaim Your Email with procmail

Hack 59. Convert Your Mailbox

Hack 60. Configure Firefox Under the Covers

Hack 61. Eliminate Annoying Browser Stalls

Hack 62. Get Browser Plug-ins Working

Hack 63. Create an Internet Phone

Hack 64. Motion Capture and Video Conferencing Fun

Hack 65. Put Screenshots Automatically on the Web

Hack 66. Scan for Wireless Networks

Hack 67. Map Your Meatspace

Hack 68. Connect to a Microsoft PPTP VPN

Hack 69. Play Restricted Media Formats

Hacks 55-69

This truly is an odd collection of hacks that represents the diversity of things a user might do with her
desktop. It is not an attempt to be a definitive solution to any particular set of common problems a
Linux user might experience. You won't find any KDE-, GNOME-, or X-specific hacks here, as those were
covered in the previous three chapters.

The first hack covers how to load the OpenOffice.org office suite faster, and the last hack explains how
to create a PPTP connection to a Microsoft VPN. The rest of the hacks focus primarily on things you can
do over the Internet. Half of the hacks deal with your email or web browser, while a couple of others
cover how to make free long-distance phone calls or set up a video conference call.

Hack 55. Reduce OpenOffice.org Startup Time

OpenOffice.org might seem like it is composed of separate productivity applications, such as a word
processor and spreadsheet, but it actually is closer to being a single large application with different
faces, one being a word processor, another a presentation manager, etc. That's why it takes so long to
start the first OpenOffice.org application you decide to use. When you launch the first OpenOffice.org
application, such as the word processor, you can run out to the nearest Starbucks for coffee and get
back in time to see the opening splash screen finish loading. OK, that's a bit of an exaggeration, but
sometimes it seems like it takes that long to start an OpenOffice.org application.

Yet, did you ever notice that if you leave the word processor running, you can open a spreadsheet
application very quickly? That's because the behemoth engine behind the spreadsheet was already
loaded into memory when you started the word processor.

The obvious solution to providing quick launches of OpenOffice.org is to preload the bulk of
OpenOffice.org when you first start your window manager or desktop, before you launch your first
application.

8.2.1. OOOQS, I Did It Again

A utility is available for KDE that does just that. It preloads much of OpenOffice.org, and then makes it
possible for OpenOffice.org applications to start up almost immediately. The utility is called
OpenOffice.org Quickstarter, or oooqs, and it was created by Christian Nitschkowski.

Quickstarter places an icon on the KDE panel. You right-click the icon, and from a menu, select what
you want to do with OpenOffice.org, such as start a new text document or open an existing document.
Depending on the speed of your computer, the application can appear on-screen almost immediately.

Many Linux distributions make the OpenOffice.org Quickstarter package readily available. You can get
the Debian version over the Internet by logging in as root and issuing this command:

apt-get install oooqs-kde

An RPM package is available for Fedora Core, SUSE, and other RPM-based distributions and goes under
the name oooqs. You can retrieve this package from a number of sites, including
http://www.rpmfind.net. Chances are that if you are running apt or yum, you can simply install it with
either of these two commands:

apt-get install oooqs
yum install oooqs

You can also download an RPM package of the latest version from
http://developer.berlios.de/project/showfiles.php?group_id=366&release_id=1620. Finally, if you
prefer to roll your own software, you can download the source code from http://kde-
apps.org/content/show.php?content=10156 or from http://segfaultskde.berlios.de/index.php?

http://www.rpmfind.net
http://developer.berlios.de/project/showfiles.php?group_id=366&release_id=1620
http://kde-
http://segfaultskde.berlios.de/index.php?

content=oooqs.

Depending on how you or the package manager installed the program, either oooqs starts automatically
and makes an icon appear in the KDE panel, or you might have to start it manually from the KDE menu
the first time, after which it will start automatically from then on.

8.2.2. The OOQSTART-GNOME of Antiquity

A similar hack is available that preloads some of OpenOffice.org and then places an icon on your
GNOME panel. It is called ooqstart-gnome, and it was written by Kumaran Santhanam. If it works at all
for your Linux distribution, it works basically the same way oooqs works. You right-click the icon to
launch any of the OpenOffice.org applications quickly, avoiding the typically long startup times.

The problem is that this utility has remained basically unchanged since 2002, which makes its
usefulness and compatibility questionable. It seems to work well with Debian, even the unstable branch,
which has the most up-to-date software (for Debian, anyway). Debian users can install the program
with this command:

apt-get install ooqstart-gnome

You can also find an RPM package of ooqstart-gnome at http://sourceforge.net/project/showfiles.php?
group_id=47895. When I tried to install it in Fedora Core 2, the installer complained about unmet
dependencies. I took the dangerous path and forced RPM to ignore package dependencies, using this
command:

rpm -i --nodeps ooqstart-gnome-0.8.3-1.i386.rpm

Surprisingly, it installed and worked fine. Then I tried the same thing with Fedora Core 3, the latest
version. It didn't work at all. (What did work, mysteriously enough, was the KDE oooqs program. It
appeared in the GNOME panel just as it would in the KDE panel.)

8.2.3. Alternative Methods to Quick-Start OpenOffice.org

GNOME problems aside, what about all the other window managers? If you're used to using
WindowMaker or XFce 4, you're unlikely to benefit from a program such as oooqs.

It so happens that OpenOffice.org has a feature called quickstart, which works fine with any desktop or
window manager. You activate it with this command:

$ ooffice -quickstart &

Once you issue this command, the bulk of the OpenOffice.org engine starts up invisibly in the
background and remains theresort of (more about this in a moment). This makes it possible to start up
Writer, Calc, or other OpenOffice.org applications very quickly. Of course, no pretty icon appears in the
panel, so you have to use the regular KDE or GNOME menu icons, or another means of starting the
word processor, spreadsheet, or other OpenOffice.org applications.

Now let's get back to the "sort of" part of the equation. First you start ooffice -quickstart manually, or
have it launched automatically when you start your window manager or desktop [Hack #72] . Then
you start up your OpenOffice.org productivity applications, do a little work, and then close the

http://sourceforge.net/project/showfiles.php?

applications.

As soon as you close the last OpenOffice.org productivity application, the background quickstart process
automatically exits, too. Unlike the methods employed by oooqs, quickstart interprets the closing of the
last application as an indication that you're done with OpenOffice.org for the day. So, the next time you
open the word processor, it's back to "trip to Starbucks" time again. (Well, not necessarily. If you ran
the OpenOffice.org application recently, much of it might still be in memory, and it will start quickly.)

8.2.4. Respawn Trick to the Rescue

Here's where the respawn method I describe later in [Hack #73] comes in really handy. Log in as root,
start up your favorite editor, and create a file called /usr/local/bin/oostay. Type the following text into
the file:

#!/bin/bash
Restart ooffice -quickstart every time it exits
instances=`ps ax | grep -e -quickstart | grep -v grep | wc -l`
if [$instances == 0]; then
while true; do ooffice -quickstart ; done
else
exit 1
fi

Save your work and make the file executable with this command:

chmod +x /usr/local/bin/oostay

Now execute oostay instead of ooffice -quickstart whenever you want OpenOffice.org's quickstart

feature to keep running no matter how many times you open and close OpenOffice.org applications.
Best of all, this trick is completely window manager- and desktop-agnostic. It doesn't work any better
or worse for KDE, GNOME, WindowMaker, Fluxbox, or any other environment you like best. You can
start up /usr/local/bin/oostay automatically when you start your window manager [Hack #72] .

Hack 56. Read Yahoo! Mail from Any Email Client

Use your Yahoo! webmail account in a normal email client.

A few years back webmail exploded onto the scene. It was new, it was cool, and it enabled you to read
your email from any computer with Internet access. In an age when people were increasingly using
computers at work, school, and home, webmail was a natural progression for email access.

Despite the benefit of reading your email on any computer with a web browser, the very fact that the
browser is your client is a tad limiting. Aside from the issue that webmail is slower than a normal email
program, deleting and moving mail with webmail is a tedious process that involves selecting lots of
checkboxes and waiting while the web site slowly updates your mailbox. Therefore, many people have
opted to use alternative methods to access their webmail accounts using traditional email clients.
However, not all webmail accounts allow access methods, such as POP3 and IMAP, so users have to use
clever workarounds. This hack covers one such method to retrieve email from a Yahoo! email account.

8.3.1. Using FetchYahoo

To solve the problem of getting your email from the Yahoo! server into your own mailbox, the
FetchYahoo script was written to screen-scrape the information from the web site. This screen-scraping
involves connecting to the Yahoo! site, picking out the right bits of information from the HTML, and
sending them back to your computer in the form of usable email. When combined with a few other
tools, FetchYahoo is an invaluable piece of software.

To begin, grab FetchYahoo from http://fetchyahoo.twizzler.org/, and extract the tarball:

foo@bar:~$ tar xcvf fetchyahoo-x-x-x .tar.gz

The directory that is extracted will have the version number in it, so you should rename it to a simpler
directory name (this is useful if you create a cronjob later, as you can upgrade the script without having
to update the cronjob entry):

foo@bar:~$ mv fetchyahoo-x-x-x fetchyahoo

You need to replace fetchyahoo-x-x-x with whatever directory name is extracted from the tarball.

8.3.2. Configure the Script

The FetchYahoo script needs to have a properly configured fetchyahoorc configuration file that specifies
your login details and configures certain options in the script. A fetchyahoorc file is included within the
main tarball, and you can configure it by loading it into a text editor. You can locate this file anywhere
on your system as you will call it with an absolute path later, but keeping personal configuration files in
your home directory is always a good idea.

http://fetchyahoo.twizzler.org/

The most important parts to configure are at the top of the file. Like many other Linux configuration
files, each option has the format option_keyword = setting. For example, username = johnsmith sets
the username option to johnsmith. To get started, you need to set the username and password options

to your Yahoo! account settings (you don't need to put these settings in double quotes, as with other
configuration files). It is also advisable that you set use-https = 1 to ensure secure communications

between your computer and the mail server.

The spool option is another important setting. This indicates where your mail spool (the place where
your mail is stored) is located on your Linux system. Most distributions place this in a file with your
account name inside the /var/spool/mail/ directory. As an example, the user bob would have his mail

spool at /var/spool/mail/bob. To check this, have a poke around /var/spool/mail and see if the
username exists in thereevery user should have a mail spool file. If you don't have a mail spool (such as
if your mail client cannot read mail from a spool), you can have the mail stored in maildir format by
adding a slash (/) to the spool setting (e.g., /var/spool/mail/); this directory will contain the mailbox.

A variety of other options are in the configuration file, and each one is documented inside the file itself.
These options control how much mail is delivered, if attachments are delivered, whether to empty the
bulk mail directory, and other useful functions.

It is recommended that when you first use FetchYahoo, you should set no-delete = 1 so that your

Yahoo! mail won't be deleted when running the script. When you are confident the script is working, set
no-delete back to 0 so that it will delete the mail on the server, once it has been successfully received.

8.3.3. Run the Script

With the configuration file set up, execute the script by simply running:

foo@bar:~$ fetchyahoo --configfile=fetchyahoorc

The first time you run the script against a Yahoo! account containing lots of email messages, you might
find the script downloads only some of the mail before exiting with an error. This is usually because the
Yahoo! server is set up to deny malicious requests that bombard it with traffic, and it misinterprets your
use of the FetchYahoo script as one of these malicious programs. If you get an error such as this, visit
the web interface to Yahoo! mail, and if you cannot log in, this is likely what happened. To resolve this
problem, simply leave the server alone for a few minutes and then try to access the web interface
againif you can log in, the server has recovered and you can run FetchYahoo again. It might take a
number of runs to get all your email transferred to your computer. You do not encounter this problem
when downloading only a few emails at regular intervals.

8.3.4. Automate FetchYahoo with cron

Most people who use email want to check it regularly. With this in mind, you ideally want to run
FetchYahoo every few minutes to update your mail spool with new emails, but you don't want to have to
manually rerun the command every time; repetitive tasks such as this are what computers are for. To
solve this problem, use cron to automate running the script [Hack #70] . First, you should edit your
crontab:

foo@bar:~$ crontab -e

If you want to run the fetchyahoo command every three minutes, you can use the following cronjob:

*/3 * * * * /sources/fetchyahoo/fetchyahoo --configfile=/sources/fetchyahoo/
fetchyahoorc

In this cronjob, you are running the script every three minutes on every day, month, and year. It
includes a full path to the location of the script because you have not installed the FetchYahoo script to
your path, so you need to specify its path to the system. You also need to give a full path to the location
of the configuration file.

Hack 57. Encrypt Your Email

Because you have a right to privacy.

We all seem to take email for granted these days. Although we are using it for more and more things,
we rarely stop to think about its security, and regularly include telephone numbers, home addresses,
and even credit card details inside email without a second thought. So, it's worth reminding ourselves
that email is sent in plain text and that anyone between you and the recipient can read this directly off
the network very easily.

Two main methods are available for encrypting your email. One uses certificates and the other uses
Pretty Good Privacy (PGP) or GNU Privacy Guard (GPG). This hack is about the latter. It assumes you
are using a graphical mail client, such as Thunderbird, Mozilla Mail, or Evolution, but the concepts apply
equally to text-based email clients that support encryption, such as Mutt.

GPG uses public/private key technology to secure communications. This dual-key approach could use a
quick explanation. You might want to read this bit through a couple of times if public/private key
technology is new to you.

One of the first things you will do is generate a keypair that is unique to yourself. As the name suggests,
two keys will be generated. One (the public one) will be distributed to all your friends, and the other
(the private one) you must keep safe. Anything that is encrypted with your public key (the one you
distribute) can be decrypted only by your private key (the one you have for safekeeping).

Here's how the system works. When someone sends you an email message, she encrypts it with your
public key. When you receive the message, you decrypt it with your private key. If anyone along the
way intercepts the encrypted email, they won't be able to read it, because they don't have your private
key. Likewise, when you send email to your friends, you should encrypt the message with their public
key. This is why it is important that you share your public key with as many people as possible so that
they can send you encrypted email. You can also upload your public key to a key server. These servers
host public keys and give them to users who request them so that they can send you a message.

In case you are wondering, by the way, the public and private keys are mathematically related, but
having one doesn't mean you can reverse-engineer it to become the other. This fact is mathematically
proven and is the heart of any public/private key system. You can, and should, give everyone your
public key and even put it on a public key server. The only thing people can do with this key is encrypt
stuff for you. So long as you keep your private key secret, you will be secure.

8.4.1. What You Need

Email clients require the first of the following two items to encrypt email; Thunderbird also requires the
second item.

GPG

The GNU Privacy Guard, which performs the encryption/signing of your messages. It is available
at http://www.gnupg.org/download/.

Enigmail

A nice plug-in for Mozilla-based mail clients such as Thunderbird. It is available at
http://enigmail.mozdev.org/download.html.

8.4.2. Creating Your Keypair

As I stated earlier, most distributions come complete with GPG these days, so your first step is probably
to create a keypair for each email account that you want to use. The process is quite straightforward,
and although the Enigmail plug-in can do some of this for you, I think it's prudent to be able to
configure GPG from the console.

To begin, you need to run the gpg command with the --gen-key switch to generate a key:

foo@bar:~$ gpg --gen-key
Please select what kind of key you want:
 (1) DSA and ElGamal (default)
 (2) DSA (sign only)
 (4) RSA (sign only)

You are asked which type of key you want to generate. The default is DSA and ElGamal, and that is a
good choice as the other two options allow for only signing, not encrypting and signing.

DSA keypair will have 1024 bits.
About to generate a new ELG-E keypair.
 minimum keysize is 768 bits
 default keysize is 1024 bits
 highest suggested keysize is 2048 bits
What keysize do you want? (1024)

Next, you are asked what size you want the keys to be. Your answer really depends on your level of
paranoia. The default of 1024 is fine, but it doesn't hurt to use 2048.

Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0)

Now you are asked how long you want this key to be valid. Here I suggest you don't accept the default
(which is that it doesn't expire). It is best practice to change keys occasionally, so I suggest you choose
either one or two years. To do this you simply type:

Key is valid for? (0) 2y

http://www.gnupg.org/download/
http://enigmail.mozdev.org/download.html

This sets the key lifetime to two years. After two years you will need to generate a new set of keys.

You need a User-ID to identify your key; the software constructs the user id
from Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Joe Blogs
Email address: joe.blogs@foobar.com
Comment:
optional comment

Once you have confirmed the key lifetime you are asked for your name and email address. Note that the
output of the program is somewhat confusing here. It states that you need to enter the information in a
specific way, all on one line. This is not true; you need to enter this information on three separate lines,
and press Enter after you enter each value. The comment field is optional.

You selected this USER-ID:
 "Joe Blogs <joe.blogs@foobar.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit?

Here you are asked if you want to edit any of the fields, or type O to continue or Q to quit.

Enter passphrase:
Repeat your passphrase:

Finally, you are asked to type in a passphrase to protect your secret key. The thing to remember here is
that it is a passphrase, not a password. A passphrase typically consists of a sentence such as "I love
eating cheese," and the longer the passphrase, the better. When you have added it, you are asked to
confirm it by typing it twice. Then your keys are created and saved in your GPG keyrings that are
located in .gnupg in your home directory. You have two keyrings, because one contains only other
people's public keys and one contains only your private key. It's a good idea to back up your secret
keyring (.gnupg/secring.gpg) to a safe place because if you lose your private key, you can't re-create it
and you will not be able to access encrypted messages that have been sent to you.

It's critical that you choose a very strong passphrase: using a key with a high
level of encryption with a short passphrase is like building a bank vault but
securing the door with only a piece of string. If your passphrase is weak, you
leave your private key vulnerable to brute-force dictionary attacks if it ever falls
into the wrong hands.

8.4.3. Publish Your Key to a Server

Now that you have your key, it's a good idea to send it to a public key server. A key server is a public
resource that will provide a means for you to distribute your public key to those who need it to encrypt
email to you. It is also a place where you can download their public keys, should you need to encrypt
email to them. You have to upload it to only one key server, because the key servers replicate with each
other. Here is the command to upload your key:

 foo@bar:~$ gpg --keyserver wwwkeys.pgp.net --send-key joe.blogs@foobar.com

To save some typing, store values for options such as the key server name in
~/.gnupg/options.

Enigmail supports a number of key servers by default:

wwwkeys.pgp.net

random.sks.keyserver.penguin.de

pgp.dtype.org

keyserver.kjsl.com

ldap://certserver.pgp.com

8.4.4. Installing Enigmail in Thunderbird

Download copies of the Enigmail and Enigmime modules, for your version of Thunderbird, from
http://enigmail.mozdev.org/download.html. Enigmail handles the basic encryption and decryption while
the Enigmime enables PGP/MIME-formatted email. (Later versions of the Enigmail plug-in for
Thunderbird move all this into one module.)

From within Thunderbird, select Tools Extensions and click Install. Now browse to the Enigmail and
Enigmime modules and select them.

You need to close and reopen Thunderbird before Enigmail will work.

8.4.5. Configuring Enigmail

Now that you have Enigmail installed, you just need to configure it. Inside Thunderbird, select Tools
Account Settings and then select OpenPGP Security under each account for which you have a key. Then
check "Enable OpenPGP support (Enigmail) for this identity." You don't need to change anything else
(unless you want to); the defaults are fine.

Now you can sign your own emails, which is how you can start distributing your public key to people
you correspond with.

To send an encrypted email to someone, that person will need to have her own keypair, and you will
need a copy of her public key. You can ask her to either put it on a key server or send you a signed
email (which includes her public key).

To receive encrypted email, people will need your public key firstagain, they can get this off the key
server or you can sign an email to them.

8.4.6. Configuring Evolution

http://enigmail.mozdev.org/download.html

Evolution has support for GPG built in: once you install GPG and have created a key for yourself, you
can select Tools Accounts Your default account Security, where you will see options that allow
you to tell Evolution to do things, such as always sign messages by default.

You will also see a field where you can enter your PGP/GPG key ID. Type in the email address
associated with your key so that Evolution knows which key to use.

8.4.7. Keysignings

You can do many more interesting things with GPG, such as determine if a person you never met is
really who she says she is. To learn more about keysignings and other GPG-related events, browse to
http://www.keysigning.org.

Adrian Bradshaw

http://www.keysigning.org

Hack 58. Reclaim Your Email with procmail

Manage your email automatically without depending on your email client.

Email is the Internet's killer app. Everybody uses it, everybody loves iteven those who feel like their
lives are controlled by it. The volume of email in our lives has increased exponentially the last few
years, and I'm not referring just to spam. With email's acceptance as a mainstream communications
medium, it has become increasingly important for users to manage their volume of email efficiently.
Most GUI email programs provide numerous features to help manage email, including searching, filters,
and spam-checking. But for some users these features aren't enough. They have found it best to
augment their email client with the Swiss Army Knife of email processing, procmail. This email tool
allows you to define what you do with your mail, where it goes (if it goes anywhere), and how it should
be stored using a simple, albeit terse, rule-based syntax. This hack explores how to use procmail.

To get procmail, use your distribution tools to search for and install it. For instance, on Debian, use:

foo@bar:~# apt-get install procmail

If your distribution doesn't come with procmail, you can always download it from
http://www.procmail.org and compile it yourself.

8.5.1. Configure Your MTA to Use procmail

procmail is typically used on computers that have a Mail Transfer Agent (MTA) running, and as such,
before you use procmail you must configure your MTA to use it. The majority of distributions include a
default MTA that, although sometimes not installed by default, can be installed at a later time. An
example of this is Debian, which includes the Exim MTA as the default server. You will need to ensure
that your MTA is able to send and receive mail before you can begin configuring procmail.

Along with the many different MTAs available are many different ways to configure them to use
procmail. Despite the mass of potential options, an almost foolproof method is to use a .forward file in
your home directory. This file contains rules that, when followed, invoke procmail for all incoming mail.
The following command enables procmail for most MTAs:

foo@bar:~$ echo '|exec /usr/bin/procmail' > ~/.forward

If your MTA complains, you might have to use just |/usr/bin/procmail instead.

8.5.2. Using procmail

procmail rules, better known as recipes, are defined in the .procmailrc file in your home directory.
Although a full treatment of the recipe syntax is beyond the scope of this hack, a simple example shows
the basic format. Add the following to your .procmailrc file:

http://www.procmail.org

:0
*

This simple recipe delivers all mail addressed to you to your default system mailbox file (usually
/var/mail/$USER). The :0 indicates the beginning of a rule and the * indicates that all mail should be

handled by this rule. This re-creates what your MTA usually does by default. If you use the maildir
format (the preferred format of the qmail MTA and the KMail client), procmail can move all mail to a
directory with a recipe, such as this:

:0
*
Mail/

This delivers your mail into a maildir-formatted directory ($HOME/Mail by default). If you prefer
standard mailbox format (mbox), you can use this:

:0
*
mbox

This recipe delivers all your mail to $HOME/mbox by appending all new mail to the same file. Although
these examples are trivial and do no more than your MTA, they are the most basic recipes procmail
uses. These simple concepts form the basis behind more complex procmail recipes.

8.5.3. Standard procmail Usage

Now that you know how procmail works, you can use it to do some processing. Say you want to store
mail from your friends Bruce (bruce@foo.org) and Steve (steve@bar.com) in a different mailbox file or
maildir directory. You can use the following recipe:

MAILDIR=$HOME/Mail

:0
* ^From.*(bruce@foo.org|steve@bar.com)
friends/

Any mail from Bruce and Steve will be stored in the maildir-formatted directory $HOME/Mail/friends.
maildir format is denoted by the trailing / in the rule; if you don't use the /, the mail will be delivered

to a standard mailbox file named friends in your $HOME/Mail directory. The regular expression in the
second line of the recipe conforms to the usage of egrep, so anything that egrep can use as a regular
expression can be used in procmail rules. Consult the manpage for egrep for more information.

You can also use this format to separate mail sent to a mailing list into a specific directory. This is
shown in the following recipe:

:0:
* ^TObugtraq
bugtraq

This recipe stores all mail sent to the bugtraq mailing list in a bugtraq mailbox in your $HOME directory.
The second : in :0: tells procmail to use a default lock file to prevent multiple instances of procmail
from trying to write to the mailbox at once. The ^TObugtraq regular expression is shorthand that

expands to a more complex regular expression that catches all mail sent to an address containing a
specific word (bugtraq in this case).

Now let's look at something fun. If you have festival (a text-to-speech system that is freely available on
most distributions), you can have it speak to you when new mail arrives, using this recipe:

:0
*
{
 SUBJECT=`formail -xSubject:`
 FROM=`formail -xTo:`

 :0 c
 Mail/

 :0 W
 | echo "Incoming mail from, ${FROM}. Subject is: ${SUBJECT}" \
 |/usr/bin/festival --tts -
}

The {} allow you to combine more than one rule. The formail utility that is bundled with procmail

allows you to grab various headers and, in this case, put them in variables for use in the second rule.
The c in :0 c indicates this rule works on a copy of the incoming message, and the message will

continue on through the various rules that follow.

Other potential uses for procmail include sending all mail through Spamassassin to root out all the junk
and prevent it from entering your mailboxes.

8.5.4. See Also

procmailex manpage

procmailrc manpage

egrep manpage

Adam Garside

Hack 59. Convert Your Mailbox

Don't let your old email become stranded in a format that your new mail program can't read.

Switching email clients, MTAs, or mail servers can be a traumatic process. And getting used to the
different interface of an email client and its way of working can be awkward. Aside from the cosmetic
changes, you might have a far more serious problem if the new client stores its mail differently.

This hack takes you through the steps of converting between the two most popular formats on Linux:
mbox and maildir. This can often be a daunting and confusing process, but with this hack by your side,
you will be converting your mail in no time.

The most common reasons to switch mailbox formats are as follows:

Switching email clients

Not all email clients support both mailbox formats. If you really want to use a client that doesn't
support your current format, you need to covert your old mail to a format that is supported.

Switching your local delivery agent

Many Linux users run an MTA on their desktops to handle mail delivery to local users. Like email
clients, not all email servers support each mailbox format. When switching servers, it might be
necessary to convert your mail from one format to another.

Switching mail servers

This is like switching your local MTA, only on a larger scale. If you administer users on a mail
server, it might be necessary to convert their mailboxes when you switch MTAs.

Generally, the mailbox format is dictated by the MTA, and you choose your client accordingly. Of course,
if you want a particular client for its unique feature, you might need to switch (or reconfigure) your
MTA. You might also decide to switch between the two based purely on technical merits, so here is a
brief rundown of the differences.

8.6.1. mbox Versus maildir

mbox is the older of the two mail storage formats. It is actually the generic name for a family of related
formats. Although the formats are slightly different, they both store multiple messages within a single
file. These multiple formats came about because of different Mail User Agents (MUAs) implementing
their own variations of the original format. Although they are very similar, they are generally not

compatible between MUAs. Because of the single file format, there can be problems with file-locking and
storage on networked filesystems such as NFS, which might cause the mail file to be corrupted.

maildir, on the other hand, stores one message per file. This removes the locking problems of mbox,
which means it should be your first choice is your mail is stored over NFS. Because of its relative youth
compared to some of the MUAs that support it, there are no variants of the format, so your mail should
be portable between clients.

Generally, maildir is considered to be superior to mbox.

8.6.2. Converting mbox to maildir

You can convert between the two formats with the mb2md.pl Perl script, which you can find at
http://batleth.sapienti-sat.org/projects/mb2md. To use this tool, you need to have both Perl and its
TimeDate module installed, but packages of the script are available for various distributions that should

take care of these dependencies for you.

First, you need to know where your mail is coming from. Your mbox mail is normally stored in two
locations: /var/spool/mail/$user for new mail and an mbox file in your home folder for read mail,
although the paths and filenames can be distribution-dependent. If you sort your mail into folders, each
folder is represented by a single file within your mail directory.

When run, mb2md.pl discovers your new and read mail locations automatically, but you need to point it
at any other folders containing mbox files. If necessary, you can also point it at specific files. The
following examples assume you've downloaded the script from its site.

To convert your new and read mail into a newmaildir folder:

foo@bar:~$ perl mb2md.pl -m

To send the output to a different folder:

foo@bar:~$ perl mb2md.pl -m -d somefolder

To tell it where to convert the files in a specific folder:

foo@bar:~$ perl mb2md.pl -s sourcefolder

To convert the files in a folder recursively (for nested folders):

foo@bar:~$ perl mb2md.pl -s sourcefolder -R

8.6.3. Converting maildir to mbox

The main conversion from maildir to mbox is achieved in a much more hack-ish way, by writing a small
shell script that uses the formail tool to filter input into mbox format. Create a file called md2mb.sh in
you home folder, making sure you replace maildir with your own mailbox. Insert the following text

into the file:

#!/bin/bash

http://batleth.sapienti-sat.org/projects/mb2md

for file in `find maildir/.$1/cur/ -type f`
do
 cat $file | formail -a Date: >> mbox
done

Make the script executable with:

foo@bar:~$ chmod +x md2mb.sh

Then run it with:

foo@bar:~$./md2mb.sh

To process a particular folder, run it with:

foo@bar:~$./md2mb.sh
foldername

This appends any email in the maildir folder to an mbox file that can be read with mail or your favorite

MUA.

David Murphy

Hack 60. Configure Firefox Under the Covers

To keep the Firefox GUI preferences simple, some of the more interesting but less common
options were moved under the covers by the developers.

Almost every application allows you to customize it to some extent. For most graphical programs, these
configuration options are available through dialog boxes and settings menus, whereas console
programs usually store these options in a series of configuration files. In either case, the options are
clearly visible and available to be configured.

Firefox is a little different. Instead of bombarding the user with every potential option and setting for
the program within the settings dialog boxes, Firefox puts only the most commonly needed options in
the main Preferences dialog box. Everything else it hides away. This has the benefit of making Firefox
simple to use for most users, whereas power users can jump under the covers to tweak many different
settings.

8.7.1. Entering Configuration Mode

Firefox has a number of different modes that give information about how the browser is running. To see
one such mode, type the following into the address bar and press Enter:

about:plugins

This page gives you information about the plug-ins that are configured for the browser. There are a
number of modes, including about:mozilla, about:credits, about:, and most interestingly,
about:config, the main Mozilla configuration interface.

When you enter about:config, you see a number of lines listed down the page. Each line refers to a

different setting that can be configured. As an example, one of my lines is:

browser.startup.homepage user set string http://www.jonobacon.org/

This setting simply sets the default home page that is loaded when the browser is started. The status
column refers to this as user set, because this option was configured in the dialog box in Firefox. The
type column refers to this setting as a string because the setting browser.startup.homepage requires

text strings as a value. The final value column actually states the desired page for the setting. You can
see that most of these settings follow the same format, and most have their status set to default. Here

are a couple of examples on how to use these settings to configure Firefox to do things you can't
otherwise control from the Preferences page.

8.7.2. Teach Firefox to Lie

When you connect to any web site on the Internet, your web browser leaves a small fingerprint with the

web server that gives some details about which browser and operating system you are running. This
information is called the user agent.

Many web sites use this information to cater their content to specific browsers. This has traditionally
been the case with web sites that have not been coded to run in every browser (as they really should
be) and are instead designed specifically around Internet Explorer. This causes a problem for anyone
using a different browser, and even if the site was to work correctly in Firefox, the user agent would
probably trigger a "This site requires IE" access-denied page. Luckily for the Firefox faithful, you can
use about:config to change your user agent to anything you want. This means you can lie about your

browser to web sites you visit, so you can get around their stupid IE-specific coding practices.

By default Firefox sets a sensible user agent string for you, and you can see it when you select Help
About Mozilla Firefox. On Linux the default user agent is:

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7) Gecko/20040914 Firefox/0.9.3

To override this setting you need to set the general.useragent.override setting. By default this
setting is not available, so you need to add it. To do this, right-click the about:config page, select New

String, and in the box that appears, type:

general.useragent.override

In the box that pops up, enter a new user agent string such as:

Mozilla/4.0 (compatible;MSIE 5.5;Windows 98)

Restart Firefox and select Help About Mozilla Firefox to see the new user agent string. Now you can
access web sites that require IE in Firefox!

8.7.3. Loading Web Pages Faster

You can use the about:config screen to tweak Mozilla's performance by increasing the maximum

number of connections to different aspects of the network. Here are the settings to change, along with
their values:

network.http.max-connections 128
network.http.max-connections-per-server 48
network.http.max-persistent-connections-per-proxy 24
network.http.max-persistent-connections-per-server 12

These values are only guidelines for some sensible settings.

You should bear in mind that the higher the values in these settings, the greater
the load on the web site server your connection will cause. Therefore, don't
increase these values too much.

Hack 61. Eliminate Annoying Browser Stalls

Here's a method to short-circuit the part of the web page that is stalling your browser.

It doesn't happen often, but every once in a while, you visit a web page that seems to take forever to
load, or simply hangs and never finishes loading. The problem often occurs because the web page
includes a picture, a button, an advertisement, or some other web element from another server that
your browser cannot reach or cannot reach quickly.

These resources are slow to respond for a few reasons. Sometimes there's a bottleneck on the Internet
itself. Sometimes a link to a button, picture, or ad points to an Internet site that is overloaded and
having trouble responding.

Sometimes a link to an off-site graphical element is pointing to an address that is inexplicably difficult
to resolve. You see, for every domain name, such as oreilly.com, there are one or more numeric
Internet protocol (IP) addresses. Your browser needs to ask a domain name server (DNS) for that IP
address, and that server might have to pass the request on to another server, and then to another.
Sometimes there's a bad link in the chain, and your browser simply gets hung up waiting to find out the
numeric IP address.

This hack refers to a problem with a specific link or site. When Internet access in
general seems slow, one thing you can do is go to
http://www.internethealthreport.com/ to see the current status of various
Internet access and router points. The poor performance could be caused by a
router outage somewhere. It might have nothing to do with the speed of your
personal access method to the Internet.

But when you visit a web page again and again for weeks and notice that it consistently stalls, that's a
sign that one or more identifiable elements, such as a graphic or advertisement, might be causing the
stall. For this hack, assume the problem is with a graphical button. In this case, the web site you are
trying to view does not contain the graphics file needed for that button to be displayed. Instead, the
web page includes an HTML instruction to get the graphic for that button from another site. You can run
into trouble if the browser has trouble finding the IP address for the site that contains the graphic. Or
perhaps your browser doesn't have fast access to the site that provides the graphic, or your browser is
blocked from accessing that site. The bottom line is that your browser can stall when loading the web
page simply because it cannot get the graphical element from a remote site. Some browsers might even
refuse to finish loading the page until the problem is resolved.

You can short-circuit this process so that it never has to contact the problematic web site. The trick
revolves around how your computer translates domain names, such as oreilly.com, to IP addresses.

The /etc/nsswitch.conf file determines how your computer tries to resolve the address of a domain
name. Examine your /etc/nsswitch.conf file, and look for the line that starts with the label hosts. For

example, it might look like this:

hosts: DNS files

http://www.internethealthreport.com/

This tells your computer to check the DNS first, and if it cannot find the IP address from the DNS, to try
looking up the IP address in your local file called /etc/hosts.

If the line looks more like the following, it checks the local file /etc/hosts first, and then checks with a
DNS if it can't find the IP address from your local file:

hosts: files DNS

In most cases, browsers are slow to load pages or stall on something such as a graphical element,
because the DNS is having trouble resolving the domain name into an IP address.

8.8.1. Short-Circuit the DNS Request

You can short-circuit this process in a few steps. First, make sure the line in your /etc/nsswitch.conf file
looks like the latter example, where files precedes DNS. If your /etc/nsswitch.conf file places
something other than files first, rearrange the order to make sure files comes first.

Next, determine the domain name that is causing your browser to load a page slowly or get stuck
loading a web page element. Here's how to track down the troublesome site. Keep your eye on the
status bar in your browser. If you are experiencing the kind of problem I've been describing, the status
bar usually reads something like "Looking up www.someadvertisementsite.com" or "Waiting for
www.someadvertisementsite.com" while is it slow or stuck. The status message won't change until it
can find or contact that site. (Be careful not to move the mouse while you are waiting for the site to
load, or you might inadvertently clear this status message even though the problem continues to exist.)

Suppose your browser is getting stuck loading a page, because it is having trouble trying to figure out
the IP address of a host such as www.someadvertisementsite.com. That's because it cannot find the IP
address in your /etc/hosts file, and it has to resolve the address using DNS.

Now edit your /etc/hosts file and add a line that defines the problematic web site so that it points to the
IP address for your localhost (your own machine):

127.0.0.1 www.someadvertisementsite.com

That's all you need to do. The next time you browse the web page, your browser will assume the
graphic, button, advertisement, or other problematic element resides on your own machine. It will fail
(quickly) to find what it needs, and then move on to finish loading the page.

You can also use this technique to block advertisements. Many domain names are dedicated exclusively
to serving advertisements. If you list those domain names in your /etc/hosts file and make them point
to your own machine, your browser won't load the advertisement. I don't recommend doing this,
however. This ad-blocking technique isn't nearly as effective as it once was. For one thing, many
advertisers have figured out how to get around this short-circuit technique, and it simply won't work.
For another, ads are often useful instead of annoying. But if you're determined to block advertisements,
plenty of more-effective methods are available, such as ad-blocking extensions for various browsers, or
other ad-blocking tools that run in the background.

Hack 62. Get Browser Plug-ins Working

Liven up the Web with a plug-in or two.

The Web has long moved beyond its humble beginnings as a text-based medium. Now it is filled with
dynamic content that includes animations, interactivity, video, sound, and other types of media. Special
software, known as plug-ins, is usually required to use this new content. Getting plug-ins to work in
Firefox can be a little difficult, so this hack explores how to get the two most common plug-ins working:
Macromedia Flash and Java.

8.9.1. Use the Macromedia Flash Plug-in

The Macromedia Flash plug-in enables you to view animations on dynamic web sites. A few years back,
installing Flash was a difficult and error-prone process, but luckily, the process has improved. First,
download the Linux Flash plug-in from http://www.macromedia.com, and unzip it into a directory. Once
it is extracted, you will see a number of files, including a file called flashplayer-installer. This file
automates the process of installing Flash.

Before you can run the installer, you must change its permissions so that it is executable:

foo@bar:~$ chmod a+x flashplayer-installer

To run the installer and have it install the plug-in for you, type the following command:

foo@bar:~$./flashplayer-installer

Once you have run through this installation routine, load up Firefox and type the following into the
address bar:

about:plugins

This page tells you the plug-ins Firefox has installed. Once you've installed the Flash plug-in, you should
see two entries that look like this:

MIME Type Description Suffixes Enabled

application/x-shockwave-flash Shockwave Flash swf Yes

application/futuresplash FutureSplash Player spl Yes

http://www.macromedia.com

These two lines indicate that the player is correctly installed. Now you can test the player by visiting a
Flash-based web site, such as the "fantastic" http://www.badgerbadgerbadger.com.

8.9.2. Use Java in Firefox

Java is a popular cross-platform programming environment in which you can theoretically write a single
program, and have it run on a number of different operating systems and web browsers. Although the
Java language was developed by Sun Microsystems, it has been licensed openly enough to allow a
number of Java software interpreters to be developed by various companies and organizations.

To run Java programs, you need a Java Runtime Environment (JRE). This software lets you run Java
programs either in a web browser or as a normal application. By far one of the most popular JREs
available is from Sun at http://java.sun.com/j2se/. Other Java environments are available that work
well with Firefox and normal Java desktop environments, but this hack covers just the official Sun
incarnation.

One issue to bear in mind in terms of getting the right JRE is finding one that is compatible with Firefox.
The first place you should check for this information is http://plugindoc.mozdev.org/. Traditionally, in
terms of using Java within Firefox, the main source of problems is that the browser should be compiled
with the same major version of the GNU C Compiler as the versions of the JRE you will be using. At the
time of this writing, Firefox requires version 1.4.2 or later of the Sun JRE, as this version and most
distributed versions of Firefox were compiled with version 3 of the GNU C Compiler. You can check
which version your Firefox was compiled with by typing this into the address bar:

about:buildconfig

It is likely that your version of the browser was compiled with GCC 3.x and should be compatible with
the Sun JRE 1.4.2 or above.

When you have downloaded and installed the Sun JRE, you will have a directory with all the files that
are part of the JRE distribution. Inside this is a plugins directory. To enable Java support in Firefox, you
need to create a symbolic link inside your Mozilla plug-ins directory. The actual file in the JRE that you
are linking to is libjavaplugin_oji.so. You can create this link by going to your Mozilla plug-ins directory
in your home directory (this should be .mozilla/plugins or .firefox/plugins), and type in the following
command:

foo@bar:~$ ln -s /sources/jre/plugin/i386/ns610-gcc32/libjavaplugin_oji.so

This command assumes your JRE is in /sources/jre; you will need to adjust it for the actual directory on
your machine. One point to note is that inside the /sources/jre/plugin/i386 directory are a number of
subdirectories which correspond to different versions of Netscape. The ns610-gcc32 directory contains
the correct plug-in for recent versions of Mozilla-based browsers (such as Firefox). If you want to make
Java support available to every user on the system, you will need to make the symlink available in the
system Mozilla plugins directory (such as /usr/lib/mozilla-firefox/plugins) as opposed to a particular
user's plug-ins directory.

You can check that your installation works by typing this into the address bar:

about:plugins

http://www.badgerbadgerbadger.com
http://java.sun.com/j2se/
http://plugindoc.mozdev.org/

You should see a number of lines showing that Java support is working. Then you can test the
installation by accessing a web site that uses Java, such as http://java.sun.com/.

http://java.sun.com/

Hack 63. Create an Internet Phone

Talk to the world and save money while doing so.

As the number of broadband installs increases and the connections get faster and faster, the potential to
use quality audio and video applications over the Internet has become more feasible. These kinds of
heavy-bandwidth applications are no longer the domain of just large corporations with money to spend
on expensive Internet access; cable modems and DSL lines bring the technology to the home.

This hack explores how to use two applications to make phone calls to others over the Internet.
Although using these applications is fairly straightforward, the configuration of firewalls and security
can be a barrier to getting started. In addition to exploring Internet-based calls, I also discuss what
options are available to call regular phones from the Internet. A number of services offer PC-to-phone
and vice-versa services, and the cost compared to regular phones is often minimal.

8.10.1. GnomeMeeting

GnomeMeeting is a fully open source audio and video conferencing tool. This hack focuses on audio;
[Hack #64] focuses on the use of GnomeMeeting as a video conferencing tool.

When you use GnomeMeeting, a gatekeeper manages your connection. This central server provides a
directory of connected clients and their call status. The gatekeeper offers a telephone directory-type
service for users, complete with a user profile. This hack doesn't cover how to set up a gatekeeper, but
information on this is available at http://opengatekeeper.sourceforge.net.

Using GnomeMeeting is fairly simple if you have a working sound cardjust connect to the default
gatekeeper and go. Using GnomeMeeting gets more complex when you roll a firewall into the mix.
GnomeMeeting requires a number of ports to be open on the firewall for the software to work. Opening
these ports can be a concern for those who feel uncomfortable about providing additional access past
the firewall. Unfortunately, to use GnomeMeeting, you must ensure these ports are forwarded to the
machine running GnomeMeeting (or are opened entirely if more than one machine will run
GnomeMeeting), or it won't work. One slight consolation is that you can change some of the ports for
different numbers by adjusting some settings in GConf (the GNOME Configuration program that comes
with most GNOME installs). The ports to be forwarded are as follows:

TCP port 1720

You can change this port if you modify the /apps/gnomemeeting/ports/listen_port key in

GConf.

TCP port range 30000-30010

http://opengatekeeper.sourceforge.net

If you and the remote connection are using H.245 Tunneling, you don't need to forward this range
of ports. Microsoft Netmeeting does not support H.245 Tunneling, so you do need to allow and
forward this range of ports if you need to connect to Netmeeting clients. You can adjust this range
of ports if you modify the /apps/gnomemeeting/ports/tcp_port_range key in GConf.

UDP port range 5000-5007

This mandatory range of ports is used for audio and video transmission and reception.

UDP port range 5010-5013

These ports are used when registering to a gatekeeper. You don't need to allow and forward these
ports if you don't plan on using a gatekeeper. You can change this range of ports if you modify the
/apps/gnomemeeting/ports/udp_port_range key using GConf.

Once you have set up your firewall to forward these ports [Hack #81], you must also ensure that these
ports are available to the outside world. Smoothwall includes an External Services Access screen where
you can configure this. If you're accessing the Internet from a LAN, you should turn on "Enable IP
translation" in the H.323 Advanced section of the GnomeMeeting preferences so that GnomeMeeting can
apply some processing to work over Network Address Translation (NAT) routers. Previous versions of
GnomeMeeting (0.94 and before) required that a special library called RSIP
(http://openresources.info.ucl.ac.be/rsip/) be installed to achieve the same feature.

With the network settings complete, you can plug in your microphone. Make sure the mic volume is
turned up; many people forget to do this. If you are using an ALSA-based setup, you can adjust the
volume by using alsamixer or the volume controls on your desktop. With all of this complete,

GnomeMeeting is ready to make calls.

8.10.2. Skype

The new kid on the block in the Voice over IP world is Skype (http://www.skype.com). This
multiplatform Internet phone uses proprietary peer-to-peer technology to provide an efficient way of
connecting to another client. If you don't have a problem with the proprietary nature of Skype, it is a
highly recommended tool. The sound quality and performance are simply incredible. One particularly
interesting feature about Skype is that it requires no port-forwarding or adjustments to your firewall.
This feature can be a saving grace for those who have battled to get GnomeMeeting working and have
found the hill too steep to climb. Skype, by comparison, is a breeze to set up.

8.10.3. Calling Regular Phones

Both GnomeMeeting and Skype support PC-to-phone calls, but each has a different method of dealing
with these types of calls. In Skype, you simply need to register a SkypeOut account, and then buy
credits that allow you to call regular phones. No additional software or hardware is required.

If you want to call phones with GnomeMeeting, the process is more complicated. First, you need to
purchase some Quicknet hardware at http://www.linuxjack.com. Due to the patented nature of the
G.723.1 audio codec that is required to make phone calls, the codec cannot be included in the
GnomeMeeting code. But if you buy the Quicknet hardware, the codec is included in the hardware itself,
along with features, such as a speaker phone, hardware support, and other niceties. Once you have
installed the hardware and it is working, you need to install the latest version of the Open H323 driver

http://openresources.info.ucl.ac.be/rsip/
http://www.skype.com
http://www.linuxjack.com

from http://www.openh323.org. It is required to make PC-to-phone calls. To actually make calls with
GnomeMeeting you need to register a MicroTelco account on http://www.linuxjack.com. This gives you
a login and PIN number that you can enter into the GnomeMeeting settings. Finally, plug your normal
phone device (analog phone, cordless phone, etc.) into the Quicknet hardware, and dial the phone as
normal.

http://www.openh323.org
http://www.linuxjack.com

Hack 64. Motion Capture and Video Conferencing Fun

Keep an eye on the world with your webcam.

Some years back, it was the height of geek cred to have a webcam. At that point in history, the average
webcam was a hulking device that looked more like a CCTV camera and cost an inordinate amount of
money. Many of these bulky units also needed an expensive video card to squeeze the huge amounts of
data through weedy `486 processors. Since those early days, the success of the webcam has catapulted
and virtually everyone has picked one up for peanuts.

With this explosion of webcams and the rapid growth in broadband speed, videoconferencing has
become something of a reality. [Hack #63] covered how to use the GnomeMeeting application to make
phone calls over the Internet. In this hack, I cover the video conferencing side of GnomeMeeting as well
as explore how to enable motion capture so that you can use it to form a security system in your
home/office.

8.11.1. Setting Up a Webcam

Before you get started using GnomeMeeting and motion capture, the first step is to ensure that you
have a working webcam configured. With more and more people using Project Utopia [Hack #93],
device configuration is becoming less of an issue, but it probably needs a brief discussion.

First, you should find out which driver your webcam needs. A number of online hardware databases and
some sensible Google searching can help you with this. Then you can find out if that driver is included in
your kernel version or if you need to upgrade to a later kernel [Hack #89] that does support your
webcam. If the driver is not included in the latest kernel version or you need a newer version of the
driver than the one that's included in the kernel tree, you will probably need to patch the kernel source
to get the driver you need.

In addition to using a driver for your webcam, you should also ensure that you compile Video 4 Linux
support into your kernel. Video 4 Linux provides a standardized method for the kernel to handle video
devices. Support for this is in the main kernel tree. It is recommended that this be compiled as a
module that can be loaded when you access your webcam.

Most webcams are USB-powered, so you need to ensure that your USB system is configured correctly
[Hack #93] . When you plug in a camera, it should load the Video 4 Linux module. Check that it does
with this command:

foo@Bar:~$ lsmod

In the output you should see videodev listed. If it is not listed, you should insert it with insmod:

foo@bar:~$ insmod videodev

Once Video 4 Linux is loaded, it creates one or more video entries in /dev. Check this with:

foo@bar:~$ ls -al /dev/video*

When you run this command, you should see at least one entry appear. If this is not the case, your
camera is not working with Linux. You should double-check your previous work to make sure you did
everything necessary.

8.11.2. Using GnomeMeeting

When you first run GnomeMeeting, you are taken through a configuration druid that helps you set up
and configure the program. Included in this setup routine are some features for ensuring your webcam
is working properly. At the end of this process, you can click the webcam icon and see the video from
your camera in the window.

If you see a corrupted picture when viewing video in GnomeMeeting, the webcam driver might have
some bugs that might require an update to a newer driver version; this has been a problem with the
OV511 chip-based range of devices. You should check your camera with a range of software such as
xawtv or Camorama. If you can get video working in other tools, it might be a problem with how
GnomeMeeting is accessing the device. If this is the case, you should contact the GnomeMeeting
developers at http://www.gnomemeeting.org.

8.11.3. Creating a Motion Capture Camera

The concept of motion capture is fairly simple. You set up a camera in a particular location and the
camera registers when a particular threshold of pixels changes. As an example, you could have a
camera focused on a room, and if someone walks past the camera the recording software is triggered
by the motion.

This hack covers a tool called motion that is incredibly flexible in dealing with a variety of motion
capture needs. What is particularly interesting about motion is the range of responses that can be
triggered when motion occurs. The software can send you an email, update a database, save a picture,
record a video clip, play a sound, and more. motion is also flexible in how it is configured and used.

To get started, first you should install motion using your distribution package manager, or from the
official web site at http://www.lavrsen.dk/twiki/bin/view/Motion/DownloadFiles. You also need to
download the software dependencies if you want to save images and movies when movement occurs.
Details about these requirements are on the motion web site.

Running motion is simple; just run it from the command line:

foo@bar:~$ motion

motion reads a central configuration file called motion.conf, which is normally stored in /etc. This easy-
to-configure file contains settings for all features within motion. The first section that you should
concentrate on is called Capture Device Options. Here you should set videodevice to the device in

/dev that you are using (this is usually /dev/video0). You should also adjust the frame rate, as this
affects the accuracy of the webcam. The next important section to complete is Motion Detection
Settings, where you should set the threshold setting to something that is suitable. This setting

specifies how sensitive the motion capture is. To test this, run motion, move in front of the camera, and
see how the software reacts. A good test is to look at the camera, stand still, and move your eyes,
mouth, and other parts of your face to see if the movement triggers the camera.

http://www.gnomemeeting.org
http://www.lavrsen.dk/twiki/bin/view/Motion/DownloadFiles

The rest of the file contains settings that can be used to send you an email when motion occurs, store
information in a database, and store images and video. If you want to store images and video, you
should ensure that you set the target_dir setting to a directory where you want to store the

images/video.

motion also includes a comprehensive set of command-line options that negate the need for a
configuration file in some cases. These command-line options are useful if you want to use motion in a
very specific way, possibly in a script or cronjob. In addition to this flexibility, motion includes a special
execute option with which you can specify a script or command that can be executed when motion is

detected.

Hack 65. Put Screenshots Automatically on the Web

Show off to the world what you're up to.

This little hack is fun. It does not improve system performance in any way, but it allows you to share
with the world what you're currently doing. This hack is a perfect way for you to demonstrate how cool
your Linux desktop is by automatically taking screenshots of your desktop and uploading them to a web
server.

The script this hack uses to upload the screenshot is written in Perl and requires Net::FTP, a web

server, and a simple program called scrot; all of these are freely available online.

8.12.1. Installing scrot

You can find scrot, a command-line screen-capture tool (similar to import, which is included with

ImageMagick), at http://linuxbrit.co.uk/scrot/. Extract, compile, and install the software with these few
commands:

foo@bar:~$ wget http://linuxbrit.co.uk/downloads/scrot-0.8.tar.gz
foo@bar:~$ tar -zxvf scrot-0.8.tar.gz
foo@bar:~$ cd scrot-0.8
foo@bar:~$./configure
foo@bar:~$ make
foo@bar:~$ su -c "make install"

With scrot installed, you can use it to take screenshots anytime you want; just find the nearest terminal
and type scrot. For more information on scrot, see the manpage.

Perl is likely to be installed already on your Linux system, but if it isn't, you should use your
distribution's installation tool to install it. In addition to the stock Perl installation, you also need the
Net::FTP module that you can install by using CPAN, Perl's module repository:

foo@bar:~# perl -e shell -MCPAN
foo@bar:~# install Net::FTP

8.12.2. The Code

This is where all the magic is. Just write each line into your favorite text editor, whether it is emacs or
vim or something else, and save it as autoscreenshot.pl in $localfolder:

#!/usr/bin/perl -w
use Net::FTP; # Start FTP

Define your variables

http://linuxbrit.co.uk/scrot/

$delay = "60"; # Set the screen captures in seconds
$quality = "50"; # Set the quality of the screenshot
$thumb = "25"; # Set percentage of the thumbnail produced
$server = "your.server.com"; # Hostname of the server
$username = "username"; # Put your username for the server here
$password = "password"; # Put your password for the server here
$serverfolder = "/home/me/www"; # This is the folder that you want the pictures to
end up in
$localfolder = "/home/me/autoscreensnap"; # This is the folder in which you are
going to locally save the screenshots

while()
 {
 system("scrot $localfolder/currentscreen.jpg --thumb $thumb --quality $quality");
Let's take the screenshot

 $ftp = Net::FTP->new($server, Debug => 0); # Connect to FTP server
 $ftp->login($username, $password); # Let's log in
 print "OK Connected \n";
 $ftp->cwd($serverfolder); # Change to the directory you want uploaded image to
 be in
 print "OK Changed directories \n";
 $ftp->binary(); # Set binary mode so the picture works
 $ftp->delete("$serverfolder/currentscreen.jpg"); # Delete old screenshot
 $ftp->delete("$serverfolder/currentscreen-thumb.jpg"); # Delete old thumbnail
 print "Deleted old screenshots\n";
 $ftp->put("$localfolder/currentscreen.jpg"); # Uploading...
 $ftp->put("$localfolder/currentscreen-thumb.jpg"); #Upload some more..
 print "OK Finished uploading files\n";
 $ftp->quit; # Close session
 print "Sleeping for $delay seconds\n\n";
 system("sleep $delay");
 }

The first half of the script is just to define all your variables. It is safe to change these and it is
recommended that you do change them to suit your needs. These options include the following:

$delay

Determines how long the script will wait, in seconds, until it repeats the loop.

$quality

Controls the quality of the screenshot that will be taken. I suggest you use a low number so that it
doesn't take long to upload or download the screenshot.

$thumbnail

Defines what percentage of your resolution the thumbnail should be.

$server

The host of your web server; hopefully it has FTP running on it.

$serverfolder

The folder on your web server that will be accessible by the World Wide Web.

$localfolder

Represents the folder where you are going to store the screenshots. I recommend you put it in
your home folder just to make everything easy.

The second half of the script uses a loop that repeats itself over and over again. The first command tells
the script to use scrot to take a screenshot and create a thumbnail. Then it connects to the web server
and changes to a directory visible on the Internet. Once the script has completed, it deletes any old
screenshots and thumbnails and uploads the new ones. After it completes this job, it sleeps for 60
seconds by default (this is adjustable) and then continues the loop once again.

8.12.3. Running the Code

To run the script first change the directory to $localfolder. Your autoscreenshot.pl script should be
sitting in this folder. Now you can run it in two different ways. You can run the script independently with
the following commands:

foo@bar:~$ chmod 777 autoscreenshot.pl
foo@bar:~$./autoscreenshot.pl

An alternative is to run it with the Perl interpreter:

foo@bar:~$ perl autoscreenshot.pl

John Cheng

Hack 66. Scan for Wireless Networks

Detect which networks are available in your area.

Wireless networks are rapidly gaining use in homes, businesses, schools, and other places. You can
often access these networks for your personal use. As an example, if you are visiting a conference and a
number of different wireless networks are available, you need to be able to distinguish one network
from another and log on. To discover which networks are available to you, you need to use a network
scanner.

Another reason to scan a network is to determine how wide-reaching and secure the network is. If you
are running a wireless network that is not encrypted, a house down the street might be able to connect
and gain free access to your LAN. In some cases, you might want to have an open network (some
people leave their wireless networks open to create free Internet hotspots), but in other cases, this
might be expressly what you don't want.

Although anyone can connect to a wireless network easily enough, scanning for networks is a different
ballgame. First of all, you need to put your network card into a special mode called monitor mode that
can scan for networks, and then you need to be able to control the card to determine when a network
has been detected. You can achieve all of this with a suitable wireless card and a tool called Kismet
(http://www.kismetwireless.net).

Although every wireless card allows you to connect to a network, not all cards support monitor mode. If
you are unsure whether your card supports this mode, some sensible Google searching is likely to
indicate if your hardware supports it. When you have determined monitor mode is available, you need
to find which driver the card uses. If you are already using the card in Linux, you can probably see
which driver is loaded by using this command:

foo@bar:~# lsmod

Take a look at the list of drivers supported by Kismet at
http://www.kismetwireless.net/documentation.shtml and see if your driver is included in the list. The
cards listed in the Kismet documentation are known to work, but drivers, patches, and third-party
support might be available for your card elsewhere. Many of the members of the Kismet mailing lists
and IRC channels have experience in a range of different cards, and they can help you determine if your
card is supported. If your card isn't fully supported by Kismet, you need to peruse the mailing lists
(available at http://www.kismetwireless.net/forum.php) and IRC channel (#kismet on irc.freenode.net)
to see what level of support is available for your hardware.

8.13.1. Patching the Driver to Enable Monitor Mode

Though some wireless cards do support the use of monitor mode, the default Linux drivers aren't coded
to support it. Many of these drivers have patches that can be applied to the kernel driver source code to
enable monitor mode support. To use these patches, make sure the patch is suitable for the version of
the driver included in the kernel. To find out the version of your driver, look in the Documentation
directory inside the kernel source code and look through the files in the networking directory. You can

http://www.kismetwireless.net
http://www.kismetwireless.net/documentation.shtml
http://www.kismetwireless.net/forum.php

also do a search to see which files contain the word wireless:

foo@bar:~$ grep -rli wireless networking/

When you are ready to patch the kernel device driver, download your driver patch to a directory on your
hard disk. You can test that the patch will apply cleanly without actually patching the code by running
the following command from inside your kernel source tree (usually /usr/src/linux-<version>):

foo@bar:~# patch -p1 --dry-run < /path/to/patches/patch.diff

If you don't get any FAIL errors when you run this command, you are ready to patch the file with this
command:

foo@bar:~# patch -p1 < /path/to/patches/patch.diff

Read the documentation files that come with the patch. These instructions might
indicate it is necessary to patch the driver from a directory other than
/usr/src/linux, or that you can compile the driver separately from recompiling the
kernel.

Now recompile the kernel to build the driver. Then ensure that you are loading the updated driver. This
might require a reboot or manually removing the old module from memory and inserting the new one.
You can do this with the rmmod and insmod commands:

foo@bar:~$ rmmod orinoco
foo~bar:~$ insmod orinoco

8.13.2. Running Kismet

Kismet is a special tool that can scan for wireless networks and indicate which ones are available for you
to connect to. Kismet is packaged for many Linux distributions and the source code is available at
http://www.kismetwireless.net. Detailed instructions on how to install and set up Kismet are included
with the software, so I won't cover that here. The documentation will require you to make some
adjustments to your /etc/kismet.conf file, which controls Kismet's configuration. When you are reading
the documentation, you should pay particular attention to the suiduser and PID parts, as these could
cause problems with Kismet running.

To start Kismet, run the command-line program:

foo@bar:~$ kismet

When the program starts, you see an interface that displays a list of networks Kismet has detected.
Each network is color-coded to indicate if it is open (red) or encrypted (green). If you have configured
speech=true in /etc/kismet.conf and you have the festival speech synthesis software available on your

system, Kismet speaks to you and tells you when it detects a network.

Inside the Kismet interface, you can press h to display a help list, which tells you the commands for

accessing the application's features. Once you have some sniffed networks displayed in the main
window, you need to turn off the default Autofit mode so that you can get more information about the

http://www.kismetwireless.net

different networks. You can display information in Kismet in a variety of different ways, and you can't
use all functions in all modes. To turn off the mode, press the s key, and select another way to sort the

networks. Now you can select a network with the arrow keys.

If you press the i key with a network selected, you can find out general information about it. The r key

gives you a detailed ASCII graph with the current packet rateuseful for determining how much traffic is
available. Another useful mode is the statistics view (a key), which indicates channel usage and the

total number of servers and networks.

You also can use Kismet in conjunction with a GPS unit to plot wireless networks on a map [Hack #67]
.

Using Kismet might leave your network card in an unstable state. Reload your
network card drivers if you experience problems after using Kismet.

8.13.3. Dumpster-Diving the Kismet Way

At this point in your use of Kismet, you have looked at the main methods of scanning for networks.
Although the information inside the Kismet interface is useful, you also can use Kismet's other tools to
find out even more information about the traffic on the network. The most common method of doing
this is by capturing the raw data sent across the wireless network and then using some tools to crack
open and sift through the captured information.

When you run Kismet, the raw data it collects is stored in your home directory in a series of *.dump
files. These files contain data stored as pcap information (a common network packet format). You can
use packet analysis tools to open these dumps and identify patterns in their contents. A number of
packet analysis tools are available for Linux, but one of the most popular is Ethereal
(http://www.ethereal.com). You can use Ethereal to open these dump files and look for plain-text data,
as well as to capture live data. If you use Ethereal to capture live data while your network card is in
monitor mode, you will see the low-level frame information about the wireless network, and this can be
useful when diagnosing problems with wireless software.

Another useful function of Ethereal is for strengthening network security. If you run Ethereal while
connected to a network, the packet data from normal communications is logged, and you can use it to
see if plain-text passwords or other sensitive data is being transferred over the stream. A useful feature
in Ethereal is the ability to follow a TCP stream conversation, and determine how data is sent back and
forth between the client and the server. With this information, you can perform an autopsy on how the
traffic is formed and how secure it is.

http://www.ethereal.com

Hack 67. Map Your Meatspace

A bird's-eye view of the world on your Linux desktop.

When Global Positioning System (GPS) technology was launched, it was heralded as the next big thing.
Although its usefulness has not been quite as explosive in the consumer market as many people
predicted it would be, GPS has proved useful in areas, such as satellite navigation systems and mapping
tools. Although many people think only ramblers and walkers use GPS, the technology actually is useful
in numerous applications, many of which you can perform from your Linux desktop. This hack shows
you how you can hook up a GPS unit to your Linux desktop and use some open source tools to help map
out your area.

8.14.1. Connect the GPS to Linux

A number of GPS units are compatible with Linux, and all of them come with either serial or USB
connections. Although two types of connections are available, the USB connector simply uses a special
chip called the FTDI chip to convert a legacy serial connector to a USB connector. This chip requires a
special driver to convert from a USB to a serial port. A Linux driver has been developed for this and it is
available at http://ftdi-usb-sio.sourceforge.net/.

Each connector is compatible with Linux, and most of the USB GPS units include the FTDI driver in the
kernel. If you are using one of these USB devices, you need to ensure that you have USB drivers
compiled into the kernel. You should ensure you have the UHCI, UHCI Alternate Driver, or OHCI options
from the USB Support page in the kernel configuration tool. Which option you choose depends on your
motherboard; consult your motherboard's manual for information on this.

When you have installed the USB or serial drivers and you have plugged in the device, the GPS unit
should be available on the system in /dev/ttyS[n] for a serial GPS or /dev/ttyUSB[n] for the USB
equivalent. Now you can look in /dev to see the name of the port from which you can access the GPS:

foo@bar:~$ ls -al /dev/ttyS*

Or, if you have a USB device:

foo@bar:~$ ls -al /dev/ttyUSB*

At this point your GPS is recognized by the system, and you can configure your GPS applications to look
at this port for your GPS unit. If you are thinking of purchasing a GPS unit, it is recommended that you
get one with full NMEA compatibility. This will ensure that the unit will work with most of the common
GPS software tools.

8.14.2. Use Mapping Software

http://ftdi-usb-sio.sourceforge.net/

You probably want to use GPS so that you can view a map of your area as you travel through it. Some
GPSes display a general map with streets and street names, and other maps go one step further to
provide instructions on where to go (such as "at the end of the road, turn left" instructions). The former
system uses general mapping information and the latter is a vector-based satellite navigation system.

For general mapping information, a useful tool is GpsDrive (http://gpsdrive.kraftvoll.at/). You can use
this application to indicate your current location, to plot waypoints (locations in latitude and longitude),
and to interact with other GPS users over a wireless network.

Although GpsDrive is a useful tool, one of its problems is that free maps of Europe and many other
parts of the world are not available for use with it. The lack of free maps is a big problem with GPS
software in general. GpsDrive does spider some online mapping web sites to download maps for the
areas you are in, but that is useful only when a map is available, and only if you have wireless
connectivity when you enter a new area. To solve this problem, you need to use a script that can
download maps of entire areas in advance of your visit (this script is covered later in this hack).

Another option, particularly if you just want to see where your location is in the world, is to use the free
NASA maps to plot your position inside GpsDrive. Before you do this, you should ensure you have at
least 3GB of disk space available, as the NASA maps are huge. You need to download two maps from
ftp://mitch.gsfc.nasa.gov/pub/stockli/bluemarble/ called
MOD09A1.W.interpol.cyl.retouched.topo.3x21600x21600.gz and
MOD09A1.E.interpol.cyl.retouched.topo.3x21600x21600.gz. When you have downloaded the files,
create a nasamaps directory inside your ~/.gpsdrive configuration folder:

foo@bar:~$ mkdir ~/.gpsdrive/nasamaps

Now copy the files into this directory, and rename them to top_nasamap_east.raw and
top_nasamap_west.raw, respectively:

foo@bar:~$ mv MOD09A1.E* top_nasamap_east.raw
foo@bar:~$ mv MOD09A1.W* top_nasamap_west.raw

Now when you run GpsDrive, the smaller maps for the different parts of the world will be created on-
the-fly from these larger maps. To see these maps, you need to select "Topo map" in the "Show map
type" field.

8.14.3. Spidering Mapping Information

Although GpsDrive allows you to download maps displaying the area you are in, it is likely that you will
want to download a number of maps displaying different parts of your area or country. You can do this
with a small shell script called gpsfetchmap.pl, which is included with GpsDrive. You can use this script
to spider a number of maps between two sets of longitude and latitude points and download all the
content for use with GpsDrive. All these maps will be downloaded from the Expedia Germany web site
(http://www.expedia.de/).

To use the script, you need to pass it the latitude and longitude of the top left corner and bottom right
corner of the region you want maps for. The top left corner is referred to as the starting
latitude/longitude, and the bottom right corner is the ending latitude/longitude. You should also pass
the script the scale of the map. For street-level detail, a scale of 1500 is recommended. Here is an
example of the command in use:

foo@bar:~$ gpsfetchmap107.pl --start-lat 52.2401 --end-lat
52.3096 --start-lon 13.2265 --end-lon 13.3203 -sc 1500 -a 4 -p

http://gpsdrive.kraftvoll.at/
http://www.expedia.de/

Hack 68. Connect to a Microsoft PPTP VPN

At home you are running the "One True" operating system, but at work you are languishing in a solid
Microsoft shop. Your business is so far into the Microsoft camp that, horror of horrors, it has chosen to
protect network access using a Microsoft VPN server. It won't even allow an SSH connection, which
means you can't use port forwarding in SSH to access internal resources [Hack #75] . As a Linux user,
you can use the plentiful open source tools to access your work email and files, and even remotely
control your desktop PC. All that is stopping you from this computing-at-home nirvana is being able to
connect to the existing Microsoft VPN server.

To connect and make your work machine available at home, you need to install some software known
as PPTP Client. This package allows a Linux system to connect to a Microsoft PPTP VPN. The project is
hosted at http://pptpclient.sourceforge.net/, but you might find the software is already available in your
current distribution. The project web site has details on how to install the software if your distribution
does not include it.

8.15.1. Configuration

Before you can start using PPTP Client, you need some information from you network administrator,
namely:

The IP address or hostname of the PPTP server (server)

The authentication domain name (domain)

The username you are to use (username)

The password you are to use (password)

Whether encryption is required

Using this information, you can start editing the configuration files. Fire up your favorite text editor,
create a file called /etc/ppp/peers/office, and insert the username and the options file that contains your

PPP configuration to use (options.pptp). As an example, you could have a file with the following
settings:

PPTP Tunnel configuration for tunnel office
#
Specify our login username (may need to be domain\\username)
#
name username
#
get all other options from the file /etc/ppp/options.pptp
#
file /etc/ppp/options.pptp

http://pptpclient.sourceforge.net/

Depending on the VPN server you are connecting to, you might have to change username to

domain\\username, where both values are replaced with the information your network administrator

gives you. Next, edit the /etc/ppp/options.pptp file, which should contain the following:

#
Lock the port
#
lock

#
We don't need the tunnel server to authenticate itself
#
noauth

#
Turn off transmission protocols we know won't be used
#
nobsdcomp
nodeflate

#
We want MPPE
#
require-mppe

If your kernel does not already support it, you also need MPPE support to be built-in. Run this command
as root:

foo@bar:~# modprobe ppp-compress-18

If the module loads without error, everything is well; otherwise, you need to obtain or build the
ppp_mppe kernel module. If you are using a stock distribution kernel, this could be as simple as
installing the required package. If a package isn't available, you need to build a custom kernel. The
required kernel option (using menuconfig) is Network Device Support PPP (point-to-point protocol)
Support PPP MPPE Compression (encryption).

You also need to use Version 2.4.2 or above of the ppp package. Now you need to edit the
/etc/ppp/chap-secrets file to contain the following:

OUTBOUND CONNECTIONS

username
 "*"
password

Again, you should replace both username and password with the values your network administrator

gives you. If you are running a firewall at your end (you should be!), you need to configure the firewall
to allow all packets out on TCP port 1723 to the VPN server. This is used to negotiate the connection
and to pass link control traffic. The only other change that is required is to allow all GRE protocol
packets (protocol number 47) between the client system and the VPN server. You should do this for
both inbound and outbound traffic.

8.15.2. Starting the VPN

Now everything should be ready to go. To make a connection, log in as root and run the following
command:

foo@bar:~# pptp-command start office
Using interface ppp0
Connect: ppp0 <--> /dev/pts/1
MPPE 128-bit stateless compression enabled
Cannot determine ethernet address for proxy ARP
local IP address www.vvv.xxx.yyy
remote IP address www.vvv.xxx.zzz
pptp-command: added route add default dev ppp0
Tunnel office is active on ppp0. Local IP Address: www.vvv.xxx.yyy

Now try pinging a server on the remote end, which should give a result similar to the following:

foo@bar:~# ping -c 1 www.vvv.xxx.aaa
PING www.vvv.xxx.aaa (www.vvv.xxx.aaa) 56(84) bytes of data.
64 bytes from www.vvv.xxx.aaa: icmp_seq=1 ttl=126 time=45.8 ms

--- www.vvv.xxx.aaa ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3002ms
rtt min/avg/max/mdev = 42.745/45.541/48.479/2.052 ms

8.15.3. Applications

OK, so now you should have a working connection to the office VPN server (and the office LAN), so what
are you going to do with it? Perhaps the simplest thing to do now is to launch your favorite web
browser, and point it at the company's intranet server. If you have a Microsoft Exchange server, try
pointing your web browser at http://mailserver/exchange, where mailserver is the actual name of your
Exchange server. Then you should be able to log in with your username and password and access your
email. Alternatively, you can set up the email client on your Linux machine to pull mail from your
corporate mail server, or you can access your work machine via RDP if it is a Windows XP desktop, or
VNC if it is anything else [Hack #30] . Basically, once you have a VPN connection to your corporate
network, you can do anything you would do at work, just a little more slowly.

It is important to remember that all packets passing over the VPN are encrypted, which introduces a bit
of latency. This does not normally present a problem with most applicationse.g., web, email, file
transfers. Some applications, such as Voice over IP, will be affected by this latency and will require
careful tuning to operate successfully.

Ron Wellsted

http://mailserver/exchange

Hack 69. Play Restricted Media Formats

For licensing reasons, not all distributions come preconfigured to play several popular media
formats.

Out of the box, many Linux distributions do not include support to play a few restricted media formats,
such as DivX, Windows Media (WMV), Quicktime, and DVDs. The distros don't include the codecs to play
these formats due to licensing restrictions. However, you can download the codecs yourself, and use
them with media player backends, such as mplayer and xine. Getting DVDs to play is a bit trickier.

8.16.1. Playing non-DVD Media Formats

Mplayer is a cross-platform multimedia player that is quite popular on Linux. The makers of mplayer
host the sites where you can obtain the codecs for media formats that aren't normally supported on
Linux. These codecs are usually the Win32.dll files that are used on Windows systems, and mplayer is
programmed to let you use these codecs on Linux. You can obtain the most commonly used media
codecs by downloading the essentials package from http://www.mplayerhq.hu/homepage/dload.html.
These codecs can be used with the other popular media player on Linux, xine. Uncompress the
download and put the contents in /usr/lib/win32, which is where mplayer and xine will look for codecs
by default:

dbrick@rivendell:$ tar -jxvf essential-20050216.tar.bz2

dbrick@rivendell:$ sudo cp essential-20050216/* /usr/lib/win32/

Restart your media player, and you should now be able to play most restricted formats. For a full list of
formats that are supported, visit: http://www.mplayerhq.hu/homepage/design7/info.html.

Mplayer and xine each have several frontend GUIs, such as kmplayer, kaffeine,
namp, Totem, and oxine. So, regardless of the media player your distribution is
configured to use, you can probably drop the codecs into the /usr/lib/win32
directory and have it just work.

8.16.2. Playing DVDs

Getting DVDs to play on your Linux box is usually a bit trickier. Distributions, such as Suse, Mandrake,
Fedora, and Debian, do not provide support for DVD playback compiled into the binaries of their media
players (mplayer and xine usually). Your options are either to compile the support into the players
yourself or to find a binary that already has it for you.

The best place I've found for instruction on DVD playback is at
http://www.geniusweb.com/LDP/HOWTO/html_single/DVD-Playback-HOWTO/. By using the
instructions on this website, you should be able to get DVD playback working for most distributions. For

http://www.mplayerhq.hu/homepage/dload.html
http://www.mplayerhq.hu/homepage/design7/info.html
http://www.geniusweb.com/LDP/HOWTO/html_single/DVD-Playback-HOWTO/

each distribution, there are usually several links that take you to download sites where you can get the
latest packages of the media players or required libraries. Read each section carefully, and make sure
you are installing only what is necessary to enable a particular media player backend; there is no need
to perform the instructions for both mplayer and xine if you are only using one. The instructions also
push the ogle frontend. You should feel free to use your preferred frontend it its place.

You'll notice that each distribution's instructions have you install the libdvdcss library. This library is
used to playback encrypted DVDs (which is nearly all of them), so it is a requirement regardless of the
backend you choose. In some countries, it may be illegal to use this library.

DVD playback requires quite a bit of processing power. Depending upon your setup, you may be able to
get by with a processor as slow as Pentium II 500Mhz, but you probably can't go any slower than that.
As mentioned on the website, you should also be sure to enable DMA on your DVD drive [Hack #55] .
If you don't, you'll experience jerkiness in your video playback regardless of processor speed.

David Brickner

Chapter 9. Administration and Automation
Hacks 70-87

Hack 70. Automate Your Life with cron

Hack 71. Update Your Clock via the Internet

Hack 72. Start Desktop Applications Automatically

Hack 73. Don't Let Elvis Leave the Building

Hack 74. Clone Your Linux Install

Hack 75. Forward Ports over SSH

Hack 76. Take Control of New User Setups

Hack 77. Send Email Alerts for System Events

Hack 78. Create a Passwordless Login

Hack 79. Magically Empower Your Network Cable

Hack 80. Protect Yourself from Windows Applications

Hack 81. Build a Custom Firewall Computer

Hack 82. Link Monitoring in Linux with Wavemon

Hack 83. Make Network Backups

Hack 84. Recover from Debian Disaster

Hack 85. Prelink for Performance

Hack 86. Grab the Latest Source Code

Hack 87. Speed Up Compiles

Hacks 70-87

Administering and automating maintenance tasks isn't important just for server users. It's extremely
important for desktop users, too, especially for those who want to get the most out of their Linux
desktop. This chapter is a treasure house of information on administering and automating Linux tasks.

These hacks make mundane tasks easy or automatic (such as keeping your clock synchronized), and
they make seemingly impossible tasks possible (such as restoring a Debian system that appears
damaged beyond hope).

Regardless of your specific desires or needs, this is one chapter you do not want to gloss over. One or
more of these hacks will prove useful to you, even if you're a casual desktop user. Or you can find a way
to adapt the hack to be even more useful for your specific needs. Count on it.

Hack 70. Automate Your Life with cron

One of the great benefits of using computers is that they are ideal candidates for performing the
uninteresting jobs humans get tired of doing. Most of us would be bored senseless making database
backups everyday, cleaning out disks, updating report files, and managing system logs. These activities
are typically linear, mundane processes that are straightforward enough to require little intervention,
which makes them ideal candidates for automation.

One of the most fundamental pieces of the toolbox within all Unix-type operating systems is called cron.
This small utility is like an alarm clock. When the alarm goes off, it tells the computer to do whatever
you have configured it to do. As an example, if you perform a backup every day, you can get cron to
perform this for you at a specific time. Another example is if you need to generate a weekly report
about a projectcron can generate this report automatically.

An important point to note is that cron does not actually perform these activities itself. cron's only
function is to trigger a specific process or series of commands at a certain time. When the specified time
occurs, the commands and tools that are needed to complete the activity are run. As such, to automate
a process on your computer, you need to determine how you can complete your task with a series of
command-line tools. This usually means you need to create a script with the commands for cron to run
at specified intervals.

9.2.1. Create a Cronjob

The cron program reads in a special file called a crontab. This file specifies jobs to be run and their
times. You can access this file by running:

foo@bar:~$ crontab -e

This command uses the system's default command-line editor so that you can edit the crontab. If you
want to set this editor to a different one (such as jed), set the $EDITOR environment variable prior to

editing crontab:

foo@bar:~$ export EDITOR=jed

If this is your first use of cron, it is likely that your crontab is empty; unless some special system
cronjobs were added (these automatically added crontabs are quite common in a number of Linux tools
and utilities). Each cronjob consists of a single line containing the time of the cronjob, as well as the
command to run.

A simple example of a crontab entry is:

30 3 1 * * /home/foo/createreport.sh

This example runs a script called createreport.sh at 3:30 a.m. on the first day of each month. The

numbers on the left side of the line identify the time at which the script should be run, and the
/home/foo/createreport.sh part shows the location and name of the script. It is always important that
you use full and absolute paths when referring to scripts and files, as cron does not understand relative
paths.

The numbers and stars on the left side of the line are entries in five different columns. Here are the
columns, from left to right.

Minutes

This column indicates the minute part of the time in which the cronjob is to be run.

Hours

This column indicates the hour of the job and is given in 23-hour time (0_23). The time between
midnight and 1:00 a.m. is the 0 hour.

Day

This is the number of the day in the month when the job is to be run.

Month

This is the month number between 1 and 12.

Day of the week

This is the day of the week, between 0 and 6, where 0 is Sunday.

In this example, you indicated the time as 3:30 a.m., and the day as the first day of the month. The two
asterisks (*) show you want to run the script for each time increment in that columni.e., every day or
month. As per the example, the * in the month and day-of-the-week columns means the cronjob will

run every month and every day.

When you have finished editing the crontab, saved the file, and exited, the changes are automatically
enabled. You can view the entries in the crontab file by running:

foo@bar:~$ crontab -l

You can also remove the entire crontab by using the -r option:

foo@bar:~$ crontab -r

9.2.2. More Advanced Crontabs

Although creating a crontab is fairly simple, if you need to have cronjobs running at specific intervals
during a day, month, or year, this can result in a number of duplicated crontab entries with different
times. To solve this problem, cron has a number of special symbols you can use to configure more
elaborate times.

The first symbol is a comma (,), and you can use this to add multiple entries to a column. As an
example, you can run the cronjob on the 5th, 10th, and 15th of each month with this line:

30 3 5,10,15 * * /home/foo/createreport.sh

Another useful symbol is the dash (-). You can use this to set a range for a particular column. For

example, you can run the cronjob every day for the first week of a month with this line:

30 3 1-7 * * /home/foo/createreport.sh

A final symbol that is useful is the slash (/). You can use this to divide a column into regular intervals.
In the following example, the */6 option means the cronjob will be run every six minutes:

*/6 * * * * /home/foo/createreport.sh

9.2.3. Make cron Email You

To cement your knowledge of cron let's try creating a cronjob that does something dynamic. The
following cronjob emails you a daily report showing the current disk usage on your computer:

0 0 * * * echo -e "This is a summary of disk usage on your
server:\n\n `df -h`" | mail -s 'Disk report for `hostname`
on `date`' foo@bar.org

In this example, use the echo command to create the text of the email; then embed the df (disk free)
command in backticks and pipe the output to the mail command. Then the command creates the
subject line of the email dynamically by calling the date and hostname commands.

This example illustrates that you can perform quite complex tasks as cronjobs, but that the crontab file
itself can start to look very confusing. If you intend to do more complex tasks, such as the one in the
previous example, it's probably better to put the code that does the actual work into a separate script
file, and then just call it from the crontab. For safety it's also considered good practice to have your
cron entry test that the script it is trying to call actually exists and can be executed. For the previous
example, you can create a script called /home/foo/diskreport.sh like this:

#!/bin/sh
echo -e "This is a summary of disk usage on your
server:\n\n `df -h`" | mail -s 'Disk report for `hostname`
on `date`' foo@bar.org

Then in your crontab, you can place an entry to call the script like this:

0 0 * * * test -x /home/foo/diskreport.sh || exit 0; /home/foo/diskreport.sh

The test -x checks whether the file exists and is executable, and it lets cron exit cleanly without an

error instead of generating an error message if it can't run the script.

Hack 71. Update Your Clock via the Internet

Staying in time is easier when you let someone else set your clocks.

There is little doubt that time is an important part of your daily life. Everything from watching the latest
episode of your favorite TV program to having a meeting with your boss is based around time, and your
computer is no different. Inside your computer, hardware and software rely on time to help keep you
up-to-date. If our computers didn't know the time, our calendar, email, and personal-information
management would be a mess. Each of these tools relies heavily on having an accurate clock, and the
challenge is keeping this clock accurate.

This hack explores a little tool called the Network Time Protocol (NTP) that can solve your inaccurate-
clock problems. The NTP software synchronizes your computer's clock with a central server on the
Internet with impressive accuracy, and if you set this synchronization to occur when your system boots
(or at regular intervals), your clock will never be inaccurate again.

9.3.1. Getting NTP

The NTP software is available for download from http://www.ntp.org, but it is probably best to use your
distributions package-management program to obtain the software.

With the software installed, you need to find a server with which to synchronize your clock. Many ISPs
provide NTP services to their subscribers; contact your ISP to see if it has a server to synchronize with.
If your ISP does not provide a server, a number of public NTP servers are available for different regions
of the world. The easiest way to find these servers is to search on Google for your location/country and
the words public NTP server. For quick synchronizations which lead to a more accurate clock, choose a
server as physically close to your geographic location as possible. Also, because you are an end user,
you should not synchronize to a stratum 1 server. These servers are reserved for use only when you are
setting up your own NTP server that will service thousands of clients.

9.3.2. Synchronizing Your Clock

Within the NTP software is a tool called ntpdate that is used to synchronize your clock with an NTP
server. With the server address you just obtained and ntpdate, you can easily synchronize your clock
with this command:

foo@bar:~$ ntpdate
ntp.yourserver.com

When you run this command, ntpdate will connect to the server and perform the synchronization. For
an even easier method of running NTP, create a configuration file, /etc/ntp.conf, with your servers
included. Use this format to add your server:

server ntp.yourserver.com

http://www.ntp.org

With the file created, you need to use the ntpd daemon to read the file and synchronize your clock. You
can start it manually with this command:

foo@bar:~$ ntpd

You should use your distribution's startup services software manager to load ntpd when the system
boots.

9.3.3. Automate NTP Synchronization

Apart from setting your clock, one of the best uses of NTP is to synchronize your clock regularly to
compensate for the natural drift that occurs with a hardware clock. This drift is caused by various issues
such as power fluctuations and hardware problems, but if you synchronize with NTP as often as
possible, you can reduce this drift.

To schedule synchronization at regular intervals, use a cronjob to automate these NTP updates. [Hack
#70] fully explains the uses of cron. You can create your cronjob by opening the cron file with:

foo@bar:~$ crontab -e

Then add a line to define the cronjob. As an example, to synchronize your clock once a day at 3:00
a.m., use this line:

00 03 * * * ntpdate ntp.yourserver.com > /dev/null

When you save and quit the editor, your cronjob will be enabled and your clock will be updated
regularly.

Hack 72. Start Desktop Applications Automatically

Start tools, utilities, and applications automatically as soon as you start your favorite desktop
or window manager.

You might want to start a number of programs automatically as soon as you launch your window
manager or desktop environment. For example, assume you set up your LinEAK keyboard utility so that
you can use all the special keys on your Internet and multimedia keyboard [Hack #29] . Naturally, you
want to run this utility every time you start your window manager, but you don't want to have to start it
manually. What you need is a way to have LinEAK and any other program you want running launch
automatically as you start up your graphical desktop.

Some of the solutions that follow are features of the X Window System, so they will work regardless of
the window manager or desktop you use. But many window managers and desktops also have their own
special and interesting ways to start up programs automatically, so this hack covers those as well.

9.4.1. Back to Basics

One of the most basic ways of starting a window manager is to create a file called ~/.xinitrc, and set it
up so that it runs your favorite window manager whenever you issue the command startx. Assuming

you use this approach, here's the simplest form of the .xinitrc file using Fluxbox as an example window
manager to launch:

exec /usr/bin/fluxbox

All this does is start up the Fluxbox window manager. To start LinEAK, the custom keyboard utility, add
the following line to the .xinitrc file before you start Fluxbox:

lineakd &
exec /usr/bin/fluxbox

Notice the ampersand (&) following lineakd, which tells lineakd to start in the background. Unless a

program places itself automatically in the background without a trailing ampersand, you need to make
sure you add the ampersand. Without the ampersand, the lineakd command will not release control

back to the ~/.xinitrc script, and Fluxbox will never start.

You can launch many additional commands via ~/.xinitrc, including commands that control how your
X11 graphical system behaves. For example, the xset -b command turns off beeps in terminal
windows. You can also use xset to set the volume and duration of beeps, control the lights (LEDs) on
your keyboard, and much more. In this case, you don't need an ampersand after the xset commands,
because xset returns control to the script on its own. Here is a slightly more advanced .xinitrc file:

xset -b
xcompmgr -cCfF -l 0 -t 0 -r 5 -o .6 &
lineakd &

exec /usr/bin/fluxbox

This script also includes the xcompmgr command [Hack #33] (which works only with Xorg-X11 6.8 or
better). This command sets window drop shadows and fade effects. Unlike xset, the xcompmgr program
needs an ampersand to be told to run in the background.

9.4.2. Using the Window Manager and Desktop Features

Window managers and desktop environments often provide their own means of starting programs
automatically. The rest of this hack covers specific window managers and how they automatically run
programs.

9.4.2.1 WindowMaker

WindowMaker uses a script file to start programs automatically. The script file is
~/GNUstep/Library/WindowMaker/autostart. You can edit the
~/GNUstep/Library/WindowMaker/autostart file to include commands much like the ones you would
place in your .xinitrc file. For example, put this commented command in the autostart file to launch the
utility that enables your Internet/multimedia keyboard:

XOSD-enabled internet/multimedia keyboard utility
lineakd &

9.4.2.2 XFce 4

When XFce 4 is started with the command startxfce4, it will automatically start anything you place in

the ~/Desktop/Autostart/ directory. You can place scripts, programs, or symbolic links to scripts and
programs in this directory, but you must have permission to execute the scripts and programs for this
to work. For example, the following script will find the location of lineakd and start it:

#!/bin/bash
LINEAKD=`which lineakd`
$LINEAKD &

You can create the script with your favorite editor, save it as startlineakd, make it executable (chmod +x
startlineakd), and place it in the ~/Desktop/Autostart directory.

9.4.2.3 KDE

KDE is a good example of a desktop environment that offers more power than you can configure out of
the commands available to a startup file such as ~/.xinitrc.

Many desktop environments consist of much more than a window manager. They include panels,
launchers, and more. When you start a desktop environment, such as KDE, it automatically starts these
extra features. All of these features running together are considered a session. You can configure KDE to
remember what applications you are running when you log out, and KDE will consider those programs
as part of the next session and start them automatically the next time you start KDE. So, one of the
simplest ways to start programs automatically in KDE is to save your current session when you exit

KDE. In fact, most distributions preconfigure KDE to behave this way automatically, so most of you
won't have to turn on this feature. Those of you who don't want KDE to restart the programs you have
running when you log out will have to turn off this feature.

Some Linux distributions customize the KDE Control Center, but the typical KDE control panel lets you
control session management this way. Start up the Control Center from the main menu, and select KDE
Components Session Manager to see the options for how you want KDE to handle sessions. You can
have KDE start a new session each time, restore the last session, or start a manually configured
session.

Alternatively, you can start up programs or open files simply by placing them in the ~/.kde/Autostart
directory. There are actually two Autostart directories. One is used by KDE to start up applications for
every user. The other, the ~/.kde/Autostart directory, is for personal use. If you want to start
programs, you can place a symbolic link to the program in this directory. You can do this for scripts as
well, or even place the script itself in this directory. In all cases, however, you must have permission to
execute any scripts or links you place in this directory.

You can also place KDE application launcher files in the ~/.kde/Autostart directory. You can create a
launcher file by right-clicking the desktop, and then selecting Create New File Link to Application.
The dialog that appears is self-explanatory. You specify the name for the launcher icon in the first tab,
and click the icon to select a new icon if you want. Click the third tab labeled Application to specify a
command to run. For example, if you specified Firefox as the name of the launcher in the first tab, you
would enter firefox as the command in the Application tab. This creates a new icon on your desktop

with the name Firefox. Drag this icon into your ~/.kde/Autostart directory to start Firefox every time
you start KDE.

The KDE ~/.kde/Autostart directory also boasts another significant capability that is worth special
notice. You don't have to limit what you place in this directory to scripts, programs, or .desktop files.
You can also place normal files, such as OpenOffice.org documents, pictures, spreadsheets, or whatever
you want in the ~/.kde/Autostart directory. KDE will automatically open these documents as though
you clicked their icons in a folder. KDE opens these files by performing the default action for that file
type, the same way it has a default action for launching a file when you click it.

9.4.2.4 GNOME

As with KDE, one simple way to make sure certain programs start automatically when you start GNOME
is to set GNOME to save the current session when you exit GNOME. GNOME automatically restores the
session the next time you log in to GNOME.

If you want to customize which applications you want started automatically, you need to do it through
the sessions manager. The menu item for this program appears in the GNOME menu in various places,
depending on the Linux distribution, but the menu selection itself is usually called Sessions. Click the
third tab of the Sessions dialog and enter a command you want to execute automatically every session
(Figure 9-1).

Figure 9-1. The Gnome Sessions settings dialog

Hack 73. Don't Let Elvis Leave the Building

Keep a program running in the background by automatically restarting it whenever it exits.

Some programs behave contrary to our wishes and exit prematurely, either because they are designed
to do so, or because they are flaky and prone to crashing. This hack provides a neat trick to restart such
programs automatically every time they exit.

The xcompmgr program that provides drop shadows and other special effects for Xorg is still a work in
progress, and it often exits unexpectedly. With a simple script, you can automatically restart it every
time it exits. First, log in as root, fire up your favorite editor, and create the following script, naming it
/usr/local/bin/keep-xcompmgr-running:

#!/bin/bash
start up xcompmanager with drop shadows and fade effects
instances=`ps ax | grep "xcompmgr -cCfF" | grep -v grep | wc -l`
if [$instances == 0]; then

while true; do xcompmgr -cCfF -l 0 -t 0 -r 5 -o .6 ; done
else
exit 1
fi

The first thing the script does is check to see if the command is already running. If so, the script exits.
Perhaps you forgot you already started this script, or perhaps you started the command manually. In
either case, you don't want to start two instances, and this portion of the script prevents that.

How to Ignore grep

Many people use the expression ps ax to see which processes are running, and then pipe
the command through a grep command (a search utility) to see if a certain program is in

the list. A common problem often occurs when you use a command such as the following in
a script to see if xcompmgr is already running:

ps ax | grep xcompmgr

The problem is that even if xcompmgr is not running, the command might return a
resultthe grep command itself. The grep command finds the word "xcompmgr" in the

process list, because it put the word there:

22833 pts/1 R+ 0:00 grep xcompmgr

One way to prevent this is to pipe the results through a second grep command. This time,

you pipe it through the command grep -v grep. The -v switch tells grep to ignore lines

that include the word "grep."

This is how the following line uses the technique to make sure xcompmgr is not running:

instances=`ps ax | grep "xcompmgr -cCfF" | grep -v grep | wc -l`

First, it generates a process list and pipes it through grep to find lines that contain the
string xcompmgr -cCfF. If xcompmgr -cCfF is running, this command might return two

lines. One line will show the xcompmgr process running, and the second line will show the
grep command that is looking for this program. Then those lines are piped through grep

again, this time eliminating lines that contain the word "grep." Finally, it pipes the results
through wc -l, which is a command that counts lines of text. If one line is left over after
grep removes itself from the list, xcompmgr -cCfF must be running. If no lines are left over
after the grep command is removed from the list, you know xcompmgr -cCfF is not

running.

You might also be wondering why the script looks for xcompmgr -cCfF rather than
something simpler such as xcompmgr. I confess that it's force of habit. Suppose you were

looking to see if the xset program is running. If we look for the word "xset" it might find the
xsetpointer program, because the xset string appears in that program, too. The script

would get the mistaken idea that xset is running, because it found a program with a name
that contains the xset string. To avoid this, I have developed the habit of finding ways to

make the search string as unique as possible.

Notice that the xcompmgr command is not followed with an ampersand. That would launch xcompmgr in

the background and return control to the script. Then the script would proceed to try to launch more
instances of xcompmgr over and over again. Trust me. That's a bad thing.

Now save your work and make this script executable with this command:

chmod +x /usr/local/bin/keep-xcompmgr-running

The script is a simple infinite loop. But it doesn't just start new instances of xcompmgr over and over
again. The xcompmgr program does not return control to the script unless it fails, so this script will get
to the point where it launches the xcompmgr command and its arguments, and then stop running. If

xcompmgr encounters a bug that causes it to exit unexpectedly, control returns automatically to the
script, and the loop continues by starting xcompmgr all over again. Then the script stops running until
xcompmgr fails again. (See the sidebar, How to Ignore grep.)

9.5.1. Putting the Respawn Trick to Work

One great place to use this trick is in a .xinitrc startup script (or any other method of starting up an
application automatically when you run a window manager or graphical desktop). The following .xinitrc
script will work, but if xcompmgr crashes, it will stay crashed:

xcompmgr -cCfF -l 0 -t 0 -r 5 -o .6 &
exec /usr/bin/fluxbox

If you instead start up the script that keeps xcompmgr running, it will restart every time it crashes:

/usr/local/bin/keep-xcompmgr-running &
exec /usr/bin/fluxbox

Hack 74. Clone Your Linux Install

Deploy a single installation of Linux across many computers.

Cloning is simply a method by which some data is copied exactly, from one medium to another. This can
be a physical CD being copied into a CD image (such as an ISO image) or, in the case of this hack,
copying a hard-disk partition into a file that can be stored for archival purposes or deployed to several
machines. The use of cloning is very widespread on the Internet, with CDs and floppies being
distributed as images that are just a bit-for-bit copy of the original medium. Cloning can also be used to
move your Linux system to a larger hard drive.

9.6.1. Create an Image

Linux systems generally have a utility installed called dd (data dump) that can accept an input from a
device and pipe the output as an exact copy of the original to another device or a file. This is the tool
you should use when creating a cloned image of an installation.

First, you need to find out which partition on the hard disk contains the root filesystem. You can do this
using the mount command:

foo@bar:~# mount

It should give some output similar to the following:

/dev/hda1 on / type ext3 (rw,noatime)
none on /proc type proc (rw)
none on /sys type sysfs (rw)

The entry you're looking for is the one mounted on the root filesystem, /. In this case, it is /dev/hda1.

Now that you know the device for the root partition, you can use dd to clone the partition. However, it is
very unwise to start trying to clone a partition while it is still mounted, because processes that are
currently running on the box constantly change the data and the image produced will be inconsistent.
The best method is to enter single-user mode when you boot your system, then run a command to
remount the root filesystem as read-only. (Other methods are available for doing this; you could use a
Knoppix boot CD and log in via a virtual terminal to run your commands, for example.)

To boot into single-user mode, you need to add the kernel argument single on startup. You can find

details on how to add kernel arguments to your bootloader in [Hack #1]. If you use this method, you
cannot simply unmount the root partition, as it contains the binary for dd, which you need to perform
the hack. Also while a partition is being cloned, you cannot write the resulting image to anywhere on
that partition, because the write process will change the partition while you are copying it. So, you need
to find another partition to which you can write the image (it doesn't have to be a Linux partition, but it
must have more free space than the size of the partition you are cloning). As such, create a mount point
for the partition to which you are going to write the image (/mnt/foo in this example):

foo@bar:~# mkdir /mnt/foo

Then mount your destination partition on that mount point so that you can write the image to it.
Another option is to use an external USB hard-disk drive and load the usb_storage module to read it.
Most systems have the usb_storage module already compiled, but if yours doesn't, you need to

compile it [Hack #88] . You need to have the option under Device Drivers USB support USB
Mass Storage support set to "Compile as a module." If you have the module loaded, it appears as a
SCSI device which can be mounted:

foo@bar:~# modprobe usb_storage
foo@bar:~# mount /dev/sda1 /mnt/foo

Finally, you need to sync and remount the root partition as read-only so that things cannot change
when you are creating the image:

foo@bar:~# sync
foo@bar:~# mount -o remount,ro /

Now you are ready to create the image. The following command copies the contents of /dev/hda1 and
places it as an image file called image.bin on the filesystem mounted on /mnt/foo:

foo@bar:~# dd if=/dev/hda1 of=/mnt/foo/image.bin

The dd command takes two arguments: if= and of=. The if= argument points to the device or file from
which it is to take its input (i.e., the device you are cloning), and of= points to the device or file where

you want to dump the clone. Depending on the size of your root partition, this could take a very long
time, indeed. Go have a cup of coffee or tea, or watch television. When it's finished, it should tell you
how many in and out records it has read and written. If it says "Input/Output error," something's gone
wrong (such as a bad block on the hard disk), but all is not lost. A tool called dd_rescue will skip over
the bad blocks and clone as much of the filesystem as possible. You can read more about this tool at
http://www.oreillynet.com/pub/wlg/5205.

9.6.2. Restore the Image

Now you should have a large file called image.bin in the root directory of /dev/sda1 (or whichever
partition you mounted on /mnt/foo). At this point, you should unmount the disk to which you wrote the
image. If you used an external USB drive, you can plug it into any computer onto which you want to
clone this Linux install.

To restore the image, you literally do the commands in reverse. You need a Linux boot CD of some sort
(such as Knoppix, SUSE, Ubuntu, or Red Hat) and boot into a recovery mode, or gain access to a shell
(Ctrl-Alt-F2 when you are in the installation portion of a distribution). Then you can load the
usb_storage module again, and mount the external hard disk:

foo@bar:~# mkdir /foo
foo@bar:~# modprobe usb_storage
foo@bar:~# mount /dev/sda1 /foo

Now you need to partition the disk on the new machine using fdisk or a similar partitioning tool. A root
partition and a swap partition are required. Assuming that the root partition is the first partition on the

http://www.oreillynet.com/pub/wlg/5205

disk and the swap is the second, you need to format the swap partition using the following command:

foo@bar:~# mkswap /dev/hda2

It isn't necessary to write a filesystem to the root partition, because the image is providing a filesystem.
At this point you can load the image file onto the hard disk using the dd command again:

foo@bar:~# dd if=/foo/image.bin of=/dev/hda1

As you can see, the command just reverses the source and destination of the input and output. When
this is finished, you need to mount the partition and chroot into it so that you are "inside" the Linux
installation:

foo@bar:~# mkdir /install
foo@bar:~# mount /dev/hda1 /install
foo@bar:~# chroot /install /bin/bash

The last line tells the system to pretend the root directory is /install, and run the bash shell upon
entering it. Now you need to sort out the bootloader for the system. Most systems use either LILO or
GRUB. In the case of LILO, you need to run lilo in the chrooted environment. This will write the

necessary code to the master boot record:

foo@bar:~# lilo

With GRUB you need to run grub-install:

foo@bar:~# grub-install /dev/hda

If all has gone well, you can exit the chroot environment and reboot the system. It should boot up as
normal.

George Wright

Hack 75. Forward Ports over SSH

Keep network traffic to arbitrary ports secure with SSH port forwarding.

In addition to providing remote shell access and command execution, OpenSSH can forward arbitrary
TCP ports to the other end of your connection. This can be very handy for protecting email, web, or any
other traffic you need to keep private (at least, all the way to the other end of the tunnel).

Ssh accomplishes local forwarding by binding to a local port, performing encryption, sending the
encrypted data to the remote end of the ssh connection, then decrypting it and sending it to the remote
host and port you specify. Start an ssh tunnel with the -L switch (short for Local):

root@laptop:~# ssh -f -N -L110:mailhost:110 -l user mailhost

Naturally, substitute user with your username, and mailhost with your mail server's name or IP

address. Note that you will have to be root on laptop for this example, since you'll be binding to a
privileged port (110, the POP port). You should also disable any locally running POP daemon (look in
/etc/inetd.conf) or it will get in the way.

Now to encrypt all of your POP traffic, configure your mail client to connect to localhost port 110. It will
happily talk to mailhost as if it were connected directly, except that the entire conversation will be
encrypted.

The -f forks ssh into the background, and -N tells it not to actually run a command on the remote end
(just do the forwarding). If your ssh server supports it, try the -C switch to turn on compressionthis can

significantly improve the time it takes to download your email.

You can specify as many -L lines as you like when establishing the connection. To also forward

outbound email traffic, try this:

root@laptop:~# ssh -f -N -L110:
mailhost
:110 -L25:
mailhost
:25

-l user mailhost

Set your outbound email host to localhost, and your email traffic will be encrypted as far as mailhost.
This generally is only useful if the email is bound for an internal host, or if you can't trust your local
network connection (as is the case with most wireless networks). Obviously, once your email leaves
mailhost, it will be transmitted in the clear, unless you've encrypted the message with a tool such as
pgp or gpg.

If you're already logged into a remote host and need to forward a port quickly, try this:

Hit Enter

Type ~C

You should be at an ssh> prompt; enter the -L line as you would from the command line.

For example:

rob@catlin:~$

rob@catlin:~$ ~, then C (it doesn't echo)
ssh> -L8080:localhost:80
Forwarding port.

Your current shell will then forward local port 8000 to catlin's port 80, as if you had entered it in the
first place.

You can also allow other (remote) clients to connect to your forwarded port, with the -g switch. If

you're logged in to a remote gateway that serves as a NAT for a private network, then a command like
this:

rob@gateway:~$ ssh -f -g -N -L8000:localhost:80 10.42.4.6

will forward all connections from gateway's port 8000 to internal host 10.42.4.6's port 80. If the
gateway has a live Internet address, this will allow anyone from the Net to connect to the web server on
10.42.4.6 as if it were running on port 8000 of the gateway.

One last point worth mentioning: the forwarded host doesn't have to be localhost; it can be any host
that the machine you're connecting to can access directly. For example, to forward local port 5150 to a
web server somewhere on an internal network, try this:

rob@remote:~$ ssh -f -N -L5150:
intranet.insider.nocat
:80
gateway.nocat.net

Assuming that you're running a TLD of .nocat, and that gateway.nocat.net also has a connection to the
private .nocat network, all traffic to 5150 of remote will be obligingly forwarded to
intranet.insider.nocat:80. The address intranet.insider.nocat doesn't have to resolve in DNS to remote;
it isn't looked up until the connection is made to gateway.nocat.net, then it's gateway that does the
lookup. To securely browse that site from remote, try connecting to http://localhost:5150/.

Although ssh also has functionality for acting as a Socks 4 proxy (with the -D switch), it just isn't well
suited for routing all network traffic to the other end of a tunnel. See the documentation for the -D

switch; it's a pretty neat feature. (What, did you think we'd do all of the work for you? ;)

Ssh is an incredibly flexible tool, with much more functionality than I can cover here. See the references
below for more fun things you can do with ssh.

9.7.1. See also:

Ssh manpage

SSH, The Secure Shell: The Definitive Guide (O'Reilly)

http://localhost:5150/

Rob Flickenger

Hack 76. Take Control of New User Setups

Customize how each new user account is configured by default.

Whenever you create a new user for your system, Linux sets up the home directory with a slim pack of
default files. These files are usually located in /etc/skel, the skeleton directory for all new user homes.
This hack explains what you can and cannot do (easily, anyway) to customize /etc/skel to fine-tune how
a new user home directory will look and behave.

Wouldn't it be nice if you could create a default configuration for GNOME or KDE, then place all the
default configuration files in /etc/skel so that they are copied into each new user's directory? Everyone
would start out with the same menus, same wallpaper, etc. Well, dream on, because although it might
not be impossible, it's nothing close to easy. KDE and GNOME have their own methods for setting up
new users, and neither is careful to make one user's configuration portable to another. Usernames and
full paths to home directories are littered throughout the configuration files. So, when you copy them
from one home directory to another, the target user gets a slew of files pointing to configurations in
someone else's inaccessible home directory. It's a mess.

That's why the /etc/skel directory has so little inside. If you visit the /etc/skel directory and look at the
hidden files, you'll probably see something such as the following (if you're lucky, you might find one or
two more files than those listed here):

ls -a /etc/skel
.alias
.bash_logout
.bash_profile
.bashrc
.cshrc

9.8.1. Improve What Is Already There

If you have fine-tuned your personal settings in one or more of these files and believe others would
benefit from changes you make for your own personal preferences, edit the existing /etc/skel to use
default settings taken from your personal settings. Take a look at [Hack #15] . This particular hack
redefines some command aliases so that you can see a color listing of files in your pager. All it takes is
to replace the existing alias definitions (usually found in .bashrc) to read something more like this:

alias ls="ls --color"
alias less="less -R"

Make those changes in the /etc/skel/.bashrc file, and all new users will benefit from the hack, assuming
your users are as pleased with the idea as you are.

9.8.2. Create Application Defaults

The /etc/skel directory is also an ideal place to put customizations for individual programs, as long as
those configuration files do not include usernames or paths to user directories. It's quite easy to find out
if a file or directory has hardcoded references to a username or user directory. For example, assuming
your username is carlotta, try this command in your home directory:

$ grep -r carlotta .kde

You might be shocked at how many configuration files, among other things, show up with the username
hardcoded. You can't transfer these files to /etc/skel and expect them to work for a new user, because
they're filled with references to you and your home directory.

But if you run the same test on another configuration file or directory and your username never shows
up, there's hope that you can use the configuration in the /etc/skel directory.

One good candidate for placement in /etc/skel is the .Xdefaults file ([Hack #50] gives examples of the
benefits you can reap by customizing this file). You can set up an improved look and feel for a number
of X terminals once, place it in /etc/skel, and every new user will automatically benefit from those
customizations.

You might also want to customize the command-line prompt in the /etc/skel directory, assuming you
think everyone will like a custom prompt [Hack #13] .

9.8.3. Be Selfish

Not all the changes you make will be for the benefit of new users. For example, I use a character-mode
editor called joe in part because I have made major modifications to the key assignments so that the
editor behaves exactly the way I like it. All the settings are in the file ~/.joerc.

When I create a new user, I log in as the new user and run joe to make some final adjustments to the

files. Naturally, nothing works in the editor the way I expect it to work. because this new user's home
directory does not have my .joerc configuration file. It's possible to make a copy, but that involves
logging back in as root and changing ownershipwhich involves more work than it should. So, for my
benefit as an administrator, I have placed a copy of my .joerc file in the /etc/skel directory so that joe
works the way I expect it to work every time I create a new user account and log in as that user.

9.8.4. Default Desktop Environments

I have had some limited success at setting up a very basic user configuration from scratch, and then
copying the user's .kde directory into /etc/skel so that it becomes the default for new users. The one
catch is that KDE usually puts the username in the ~/.kde/share/config/ksmserverrc file. You can delete
the line containing the username, which might or might not make it possible to use /etc/skel/.kde as a
default configuration. Sometimes it works, sometimes it doesn't. If you can't blame it on different Linux
distributions, maybe it's sunspots.

Another thing you can do is create a default Desktop directory, with various desktop icons. But even in
this case you have to be cautious. because some desktop environments might still detect that the new
users are starting GNOME, KDE, or whatever for the first time, and override your desktop configuration
by creating their own idea of what a default desktop should look like.

One sure bet is not to bother trying to create a default configuration in /etc/skel with GNOME. GNOME
sets up a number of default directories, and launches a settings daemon called gconfd, which
remembers settings and even rewrites them to your home directory if you delete them manually. If

there's a way to set up a skeleton version of GNOME in /etc/skel that can be copied to new user home
directories, either a lot of hard work or a lot of magic must be involved.

Hack 77. Send Email Alerts for System Events

Track log entries and send an email to yourself when something looks suspicious.

In [Hack #27] you used X11 On-Screen Display (XOSD) to make system alerts (such as possible
attempts to break into the system) as visible as possible. As effective as that approach can be, it doesn't
work very well if you're not looking at your monitor when the alert appears.

The next best thing is to have a program send you an email alert. This "hack" is simply an explanation
of how you can configure two different log monitor programs, swatch and logsentry, to send you email
alerts.

Fortunately, if you use swatch to monitor one of your logs for keywords, you don't have to settle for one
method of notification. You can list several ways to have swatch notify you of an alert. For example, you
can have swatch check to see if the word "failure" appears in your authentication log (that might
indicate someone is trying to guess a password). Normally, it echoes the log entry to the screen where
you started swatch. [Hack #27] explained how to make the log entry appear on-screen. The following
entry in the .swatchrc file does both of these things and also sends you an email alert:

watchfor /failure/
 echo bold
 pipe "osd_cat -c magenta -p middle -f -*-helvetica-*-*-*-*-20-*-*-*-*-*-*-*
-d 60 "

 mail person-to-alert@yourdomain.com, subject="Alert from swatch"

Assuming you are running swatch as root, all you have to do is edit your /root/.swatchrc file to include
the previous lines, and then start swatch with this command:

swatch -t /var/log/auth.log

9.9.1. The logsentry Difference

The logsentry program is similar to swatch in that it monitors logs for keywords and sends alerts. The
difference is that swatch does it all in real time, but logsentry is usually set up to run as a cronjob every
hour or so. Most packaged versions of logsentry place a file, such as logsentry.cron in /etc/cron.hourly,
where programs are run every hour. Here is the simple logsentry.cron file:

#!/bin/sh

/bin/sh /etc/logcheck/logcheck.sh

The logsentry.cron file simply runs the /etc/logcheck/logcheck.sh program.

The /etc/logcheck directory contains more than the logcheck.sh program. It also includes these files:

logcheck.sh

logcheck.hacking

logcheck.ignore

logcheck.violations

logcheck.violations.ignore

The logcheck.sh file checks your logs according to the keywords and key phrases in the other files. The
logcheck.hacking and logcheck.violations files contain many keywords and key phrases that might
indicate trouble. The logcheck.ignore and logcheck.violations.ignore files include keywords and key
phrases that either are false alarms or aren't useful. The default values in these lists are quite reliable,
but you are free to modify the lists to trigger more alerts and/or ignore more events.

You need to configure the logcheck.sh file to have it send alerts by mail. The SYSADMIN enTRy should

point to the email address where you want alerts sent:

SYSADMIN=person-to-alert@yourdomain.com

$LOGTAIL /var/log/messages > $TMPDIR/check.$$

$LOGTAIL /var/log/auth.log >> $TMPDIR/check.$$

$LOGTAIL /var/log/syslog >> $TMPDIR/check.$$

The rest of the variables you want to customize for your system are the lines that point to the logs you
want to monitor. Each Linux distribution uses different log names for different purposes. Make sure
you're monitoring the right logs, or logsentry will be useless to you.

The only other entry you might need to change is the definition of the mail program on your system.
logsentry assumes you have the mail program installed, and that your mail program accepts the -s

argument for the Subject line. If you don't have mail installed, or your version of mail does not support
the -s switch, you need to find a substitute that does and redefine the program name in your

logsentry.sh file. The mailx program is a likely candidate:

Linux, FreeBSD, BSDI, Sun, etc.
MAIL=mail

Hack 78. Create a Passwordless Login

Forget about those passwords and make administering a remote server easier.

By far, the most common method of remotely logging in to Linux machines is by using the Secure SHell
(SSH). This encrypted method of accessing far-flung computers is a popular choice for system
administrators, but despite its popularity, repeatedly logging in and out of computers and entering
passwords over and over again can be a chore. This chore is significantly increased when you manage a
number of different computers, all with different passwords.

This hack explores how to create a passwordless login. Although this sounds like security suicide, it isn't
because it uses special encrypted keys to allow access to the remote computer. You do this by
generating both a public and a private key. The public key (a key that you can give to people) is
uploaded to the remote server as an authorized key, and when you connect to the remote server, the
private key on your local machine is compared to the public key. If they work together, access is
granted.

The other benefit of the passwordless login is that you can tie it into your desktop environment and
manage files on the remote machine graphically. I discuss this later in this hack.

9.10.1. Generate Public and Private Keys

To create a passwordless login, you need to generate your public and private keys. First, create a new
directory called sshkey in your home directory in which to store the keys:

foo@local:~$ mkdir sshkey
foo@local:~$ cd sshkey

When you generate the keys, you have a choice of either the DSA or RSA encryption algorithms, with
RSA being the newer version in Version 2 of the SSH protocol. You can generate the keys with:

foo@local:~$ ssh-keygen -f id_rsa -t rsa

When you run this command, you are asked for a password; press Enter when prompted for the
password. This creates two keys with a blank password. One is called id_rsa (your private key) and the
other is id_rsa.pub (your public key).

9.10.2. Create the Login

With the keys generated, the next step is to upload the public key to the remote server. If you have
never dealt with SSH keys before, you probably do not have a .ssh/authorized_keys file on the remote
server. If this is the case, you can simply copy the id_rsa.pub to the remote server and call it
.ssh/authorized_keys:

foo@local:~$ scp id_rsa.pub
foo@remote
:
/home/foo/
.ssh/authorized_keys

If you have already created an authorized_keys file on the remote server, you can simply log in to the
remote server, open authorized_keys in a text editor, and paste the contents of id_rsa.pub on the local
machine into the file on a new line. This is how you add multiple keys on the remote server.

Whichever method you use to get your public key on the remote server, you must set the permissions
on the files and directory correctly. Simply issue the following commands:

foo@remote:~$ cd ~/.ssh
foo@remote:~$ chmod 700 ./
foo@remote:~$ chmod 600 *

These commands ensure that your .ssh directory and files are secured. Finally, on the local machine,
copy the generated id_rsa file to the .ssh in your home directory to make it the default key for SSH:

foo@local:~$ cp id_rsa ~/.ssh

Now you can test to see that the connection works:

foo@local:~$ ssh foo@remote

You should be able to log in automatically with no password prompt.

9.10.3. Graphically Manage Remote Files

One of the benefits of creating a passwordless login is that it makes graphical administration of a
remote server much easier. Not only does this give you the ability to connect to a remote resource in
your favorite file manager, but also you can put an icon on your desktop that opens the specified
directories and files of the remote server when you click it. This gives you the ability to transfer files by
dragging and dropping.

You can display a remote file structure by clicking an icon on your desktop in a number of ways, but this
hack covers how to do it for the two major desktop environments, KDE and GNOME.

To access a networked resource in KDE, add a new icon to the desktop by right-clicking the desktop and
selecting Create New Link to Application. Inside the dialog box that pops up, click the Application
tab, and you'll see a Command box that you can use to indicate the location of the remote server. This
is done with the format:

fish://
user@server/path

When you click the icon, Konqueror loads, and you can use it to deal with the remote server graphically.

To connect to a networked resource in GNOME, click the main Computer menu in the top panel, and

then select Disks from the menu. When the window appears that displays your disks and drives, click
File Connect to Server. Inside this dialog box you can select an SSH connection from the Service
Type combo box, and then add the server name, port, folder, and username details. Finally, you can
name the icon by adding a label to the "Name to use for connection" box. Now the icon will be added to
your desktop and will appear in the Network Servers window.

Hack 79. Magically Empower Your Network Cable

Configure your Ethernet devices simply by plugging in or unplugging the cable.

This hack is actually a utility called ifplugd, a daemon that watches your Ethernet connection to see if it
is live or disconnected. Plug the wire into the network, and ifplugd configures the interface. Unplug the
wire, and ifplugd disables the interface. Plug the wire back in, and it reconfigures the interface, even if it
needs to use DHCP to get an IP address. It's a perfect utility for laptops that frequently change their
network connections, but it can come in handy for workstations, too.

The ifplugd utility simply checks your network interface(s) to see if they have a link beat, which
indicates a live connection to a network. When a link beat appears, ifplugd configures the interface
(eth0, for example) as being up and ready to use. When the link beat disappears (you disconnect the

cable), ifplugd brings the interface down.

Most distributions package ifplugd in such a way that it uses the default method for bringing down the
interface if there is no connection, and then it uses the default method for bringing up the interface
when ifplugd detects a connection. In other words, on a Debian system with the interface eth0, it uses
the default methods of ifdown eth0 and ifup eth0 for disconnect and reconnect, respectively. It
simply obeys how you originally configured eth0 to work.

You don't usually need to use ifplugd if you are using a laptop with a PC Card/PCMCIA network adapter
and static IP address, for two reasons. The PCMCIA driver generally configures the device automatically
anyway, and ifplugd is rarely able to detect a link beat through a PCMCIA device.

ifplugd is known to have problems with some USB network adapters (wireless or
otherwise), especially when the driver is available only from a third party and is
not part of the default Linux kernel. This is a driver issue related to the kernel's
ability to activate and deactivate the USB device. This cannot be fixed by new
versions of ifplugd; it is something the kernel driver must handle. If you have not
yet purchased a USB network adapter, research the latest kernel versions to find
out which ones are best supported. If you already have your USB network
adapter, report problems to the manufacturer. Some companies are surprisingly
accommodating and eager to fix problems such as these.

Hack 80. Protect Yourself from Windows Applications

Minimize the risk of viral infection in Windows emulators and Windows documents.

CodeWeavers's (http://www.codeweavers.com) CrossOver Office and Wine enable you to run many
Windows applications under Linux. In fact, they do such a good job of providing a Windows-like
environment that they can be susceptible to some of the same security issues as Windows. Use this
hack to protect the rest of your computer from the havoc an emulated Windows environment gone wild
can cause.

This hack uses sudo to open Windows documents in a restricted area. Some people use chroot for this
purpose, but the sudo approach accepts a certain level of risk in exchange for being much easier to set
up than chroot for the same purpose. (A utility currently in development called chroot_safe looks like it
will be a more promising alternative in the long run.)

If you're a Linux user who must use some Microsoft applications (through CrossOver Office or Wine),
this hack lets you do things such as open nontrusted Microsoft Word files that you get as email
attachments with Microsoft Word itself, yet without risking the integrity of your other Word documents.
For example, you can set up your Mozilla Mail client to open Word files in this restricted environment
where an infected document can do little or no damage. Once you understand the methodology you use
for Word, you can apply the same techniques to view any kind of file in a safe, restricted environment.

This hack requires several steps:

Install sudo, if you don't already have it installed.1.

Create a user and a group named jail.2.

Install Wine or CrossOver Office as the user jail in the /home/jail directory.3.

Create the /home/jail/Documents directory, and give everyone read/write access to the directory.4.

Set up the sudoers file to enable you to run certain applications as the jail user.5.

Install a special script in /usr/local/bin that automatically uses Microsoft Word, running in the
jailed environment, to open any Word document in read-only mode.

6.

9.12.1. Get Your Safe Environment Set Up

Create both a user and a group named jail. Make the jail user a member of the jail group, but do
not add this user to any other groups. You want the jail user to have as few privileges as possible.

Your Linux distribution probably includes a graphical application to manage users and groups. If you
prefer to use the command line, one way to create this user is to log in as root and issue the following
commands:

groupadd jail

useradd jail -d /home/jail -m -g jail -s /bin/bash
passwd jail
New UNIX password:
<password>

Retype new UNIX password:
<password>

passwd: password updated successfully

Though you are providing a password, you will configure sudo such that users do
not need to enter the password to use the jail account to do things such as view

Word documents.

Now log in as the jail user, and install CrossOver Office or Wine in the /home/jail directory. Then

install Microsoft Word or Microsoft Office via your choice of Windows emulator in the /home/jail
directory. Make sure that you can launch Microsoft Word and that everything works before you
continue.

Once you are completely done installing everything you need in the /home/jail
directory, you can log out of the jail account and then add another level of
safety by editing the jail user entry in /etc/passwd to change the shell from

/bin/bash to /bin/false. Using a nonexistent shell makes it impossible for anyone
to log in to the jail account to get to a command-line shell.

Now install sudo if it is not already installed for your distribution. Some distributions package it under
the name sudosh. Log in as root, and run the visudo command to edit the sudoers file that controls the

behavior of sudo. Edit the sudoers file to include these lines:

Runas alias specification

Cmnd_Alias VIEWERS = /bin/rm, /home/jail/cxoffice/bin/winword

Defaults:ALL env_reset
Defaults:ALL env_keep=DISPLAY
Defaults:ALL always_set_home

ALL ALL = (jail) NOPASSWD: VIEWERS

In case you're not familiar with sudo, the Cmnd_Alias VIEWERS line defines a list of programs to make
available to the jail user. You can add other viewers to the VIEWERS alias list later if you want, but
until you are certain everything works, keep it simple. The last line of the example file says that ALL
users on ALL hosts can run as the jail user without having to enter a password. Save your changes

and exit visudo.

Incidentally, the env_reset setting tells sudo to eliminate all but the most basic environment variables.
This way, your personal environment variables will not "leak" into the jail account while you're using
it. env_keep=DISPLAY simply retains the DISPLAY environment variable so that the program will show
up on the current display. The always_set_home variable makes sure that when you use sudo to run a
program as the user called jail, it will set the HOME variable to be /home/jail instead of retaining the

HOME variable of your user account.

While you are still logged in as root, create the following /usr/local/bin/wordview script:

#!/bin/bash

if [-r "$*"]; then
 chmod 444 "$*"
 cp "$*" /home/jail/Documents
 filename=$(basename "$*")
 cd /home/jail/cxoffice/bin
 sudo -u jail /home/jail/cxoffice/bin/winword f:"$filename"
 sudo -u jail rm -f /home/jail/Documents/"$filename"
else
 echo "No such file, or file is not readable"
fi

Save your work, and make the file executable:

chmod +x /usr/local/bin/wordview

You have to take care of two obscure details to make this work. First, you must configure CrossOver
Office (or Wine) to equate DOS drive f: with the /home/jail/Documents directory. Here's how to do that

with CrossOver Office:

su - jail
$ cd /home/jail/.cxoffice/dotwine/dosdevices
$ ln -sf /home/jail/Documents "f:"
$ exit

If the DOS drive f: is already defined by CrossOver Office, choose another driver letter, but make sure

it matches the drive letter in the /usr/local/bin/wordview script that looks like this:

sudo -u jail /home/jail/cxoffice/bin/winword f:"$filename"

If you are using something other than CrossOver Office, you also have to adjust one other line in the
/usr/local/bin/wordview script. This line points to the executables directory for CrossOver Office:

cd /home/jail/cxoffice/bin

It needs to be changed to point to the location of the executable files you are using:

cd /home/jail/<route to your winword executable file>

9.12.2. Give Your Creation a Try

Now you're ready to try it out. Log in as a normal user and find a Microsoft Word document to which
you have legitimate access (such as a Word document in your home directory). For this example,
assume the file is named dangerous.doc and is located in your home directory, /home/carlotta. Log in
as carlotta, start up your favorite desktop environment or window manager, open a terminal, and

issue this command to open the document using the script you just created:

$ wordview dangerous.doc

The script makes a copy of dangerous.doc in /home/jail/Documents, and then, running as the jail

user, it opens the document as read-only in Microsoft Word. When you are done viewing the document
and you exit Microsoft Word, the script will delete the temporary copy of dangerous.doc from
/home/jail/Documents. (This is why you made the /bin/rm command available to the jail user. It's

not a necessary step, so you can modify sudoers and the script accordingly, but it does keep the
/home/jail/Documents directory uncluttered.)

This is definitely not a good technique for viewing personal or company
documents. Even though the script deletes the document after you are done
viewing it, the document remains in the Jail directory as long as you have it open.
During this time, anyone has the capability to read the document you have open,
and they can even save a private copy for themselves. So, reserve the use of this
for documents that are coming from an unknown or untrusted source.

9.12.3. Automating Wordview in Mozilla

Not every application makes it possible to customize what action it will take when it opens a Microsoft
Word document. Some applications that do make it possible don't make it easy.

But it should be easy for Mozilla users. The next time you come across a Word document while browsing
a web page, you can adjust what Mozilla does when you click Word document links. When you click a
link to a Word document, you should get a dialog box that asks you what to do (Figure 9-2). Tell Mozilla
to open the document with /usr/local/bin/wordview.

Figure 9-2. Dialog for setting document handling

You should see the same dialog if you try to open a Microsoft Word attachment using Mozilla Mail. Then
you can set up Mozilla Mail to run /usr/local/bin/wordview automatically when opening attached Word
documents.

The technique for setting up the Mozilla Thunderbird email client is a bit different. When you receive a

Word document, right-click it and choose Open. This brings up a dialog that gives you the choice of
saving the file or specifying a program with which to open the file. In addition, a checkbox (similar to
the one in Figure 9-2 for Mozilla) tells Thunderbird to treat this type of file the same way by default.

Unfortunately, it isn't quite as easy to make the Mozilla Firefox browser behave this way. I expect this
limitation will disappear as the application matures. Fortunately, it looks like Firefox inherits the setting
from Thunderbird. After setting up Thunderbird to view Word documents with wordview, that setting
seems to have magically appeared in the preferences dialog for Firefox.

9.12.4. Preparing for Unlikely Damage

With everything protected in a sudo jail, the worst possible damage a virus could do is to infect your
copy of CrossOver Office. Even though I am not aware of any virus that can attack CrossOver or Wine, it
is theoretically possible, because both mimic Windows very closely. If you're worried this might happen,
make a backup copy of CrossOver Office and your installation of Microsoft Word as soon as you're done
installing these packages. If anything damages either CrossOver Office or Microsoft Word, you can
overwrite the damaged files with the backup copy. Make sure you back up both the hidden and
unhidden CrossOver Office directories:

cd
<backup directory>

tar cjvf crossover.tar.bz2 /home/jail/.cxoffice /home/jail/cxoffice

In the unlikely event that you have to restore a damaged CrossOver Office environment, here's how to
restore it:

cd
<backup directory>

tar jxvf crossover.tar.bz2 /home/jail/

Obviously, if you are using Wine or some other means of running Microsoft Word, back up those
directories instead of /home/jail/.cxoffice and /home/jail/cxoffice.

Hack 81. Build a Custom Firewall Computer

Turn an old, underpowered computer into a lean, mean, firewall machine.

As more and more computers are getting plugged into the Internet, the risk factor associated with an
online presence has also risen. The increase in hours online combined with the propagation of always-
on broadband and high-speed cable/DSL Internet access has resulted in the need to secure even
simple, one-computer home networks. As a result, the humble firewall has become a must-have item as
opposed to a could-have item in a network.

The basic aim of a firewall is to keep unwanted people off of your network. The virtual wall of fire is
essential in keeping out crackers who want to invade your security, as well as blocking the growing
armies of worms, viruses, and other Internet nasties that crawl the Web looking for computers to
exploit. The situation is very bad; an unprotected Windows machine can become infected in as little as
four minutes after it is put on the Internet. If you are considering a firewall but are uncertain you want
to put the effort into it, ask a friend who has one for a list of attempted intrusions on his network. You
will probably be surprised by the frequency of attacks. My own firewall logged more than 100 attempted
intrusions in the first few hours after I put it up.

Both software and hardware firewalls are available. Software firewalls are installed on each desktop on
the network, and they protect that single machine. The hardware approach is to use a dedicated
machine to protect the entire network from malicious traffic. This hack explores a dedicated firewall
Linux distribution called SmoothWall, which you can install on an aging computer to provide a dedicated
firewall appliance to protect your entire network. After the initial setup, you will find your SmoothWall
box to be invaluable.

9.13.1. Gather the Ingredients

To create a SmoothWall firewall appliance, you need a computer to use. Anything from a `486 with
16MB of RAM on up is fine, but if you want to keep several days' worth of log files, I recommend you
use at least a 4GB disk. You also need at least two Linux-supported network cards in the computer.
Here is how you will use your network cards:

If you have a cable/DSL modem that plugs into a network card, you need a card for this. This card
is referred to as the RED interface.

You need a network card to connect to the internal network. If you have more than one computer
on your internal network, this interface is usually plugged into a hub, switch, or wireless access
point. This card is referred to as the GREEN interface.

If you have any computers that need to be accessed publicly, you need another network card for
these. This card is referred to as the ORANGE interface and also is known as the snazzily titled De-
Militarized Zone (DMZ), because it exists in a sort of no man's land between the public Internet
and your private network.

You should install the cards you need in the computer, download the SmoothWall ISO from

http://www.smoothwall.org, and then burn the ISO to CD.

The next step is to boot from the CD and install the SmoothWall software. If you cannot boot from the
CD, try using the Smart Boot Manager discussed in [Hack #1]. If this does not work, you can create a
series of boot floppies from the files found in the images directory on the SmoothWall CD. There you'll
find two boot floppy images called bootdiskone-x.x.img and bootdisktwo-x.x.img. Use dd to create the
floppies (unmounting and changing the floppy between images, of course):

foo@bar:~$ dd if=bootdiskone-x.x.img of=/dev/fd0 bs=1024 conv=sync ; sync
foo@bar:~$ dd if=bootdisktwo-x.x.img of=/dev/fd0 bs=1024 conv=sync ; sync

If you need to create the floppies on a Windows system, you can use the rawrite program
(http://uranus.it.swin.edu.au/~jn/linux/rawwrite.htm) to create the disks.

Installing SmoothWall is a fairly simple process, but you need to know how you want your network to
be set up in terms of IP addresses. Within the setup routine are a Networking section and an Addresses
subsection. You set the IP addresses for each interface here. For example, a common setting for the
GREEN interface is the IP address 192.168.0.1 and the network mask 255.255.255.0. The RED interface
is typically set to DHCP to grab your Internet IP address from the cable modem, but you should check
with your ISP to see how the cable modem gets its IP address. The other setting to configure is in the
"DNS and Gateway settings" section. Set this to 192.168.0.1. Now you have your firewall set up as your
Internet gateway that other machines can refer to when requiring Internet access.

9.13.2. Configure the Firewall

Once the SmoothWall firewall is installed, you can access it in two main ways. The most common and
popular way is to access its special web-based interface, which is available on port 81. So, if your
firewall's IP address is 192.168.0.1, you can access the web interface at http://192.168.0.1:81.
SmoothWall's default configuration does not allow access from outside your internal network, so you
cannot make changes to it from work or while traveling.

When you access the web interface, you are asked for the administrator password for the machine
(which you created when you installed SmoothWall) and then you can configure it. Within the web panel
is a huge range of options and features that you can configure. These options are grouped into
categories which are visible at the top of the page.

If you need to do something that is not accessible in the web interface, you can use the included Java
SSH applet to log in to the machine and type in commands to an SSH shell.

9.13.3. Enable Port Forwarding

A common requirement when running a network of machines is the need to have a connection from
outside the firewall serviced by a machine inside the firewall (usually in the DMZ). This is the scenario
for those who run a web or email server and need to have the relevant ports accessible to the outside
world. When a computer connects to your IP address/domain, the first computer that receives the
connection is the firewall. Because it is unlikely you are running a web or email server on the firewall
itself (if you are, you really shouldn't be because bugs in these programs can compromise the security
of the firewall) you need a method to get that request to the computer that can handle it. This is where
port forwarding comes in. Its purpose is to take the request for a service and forward it to the specific
machine on the network that can service the request.

To do this with SmoothWall, access the web interface and select Networking Port Forwarding. You

http://www.smoothwall.org
http://uranus.it.swin.edu.au/~jn/linux/rawwrite.htm
http://192.168.0.1:81

can leave the external source IP box blank if you want to accept all connection requests for the port in
question (this is commonly the case for a public service such as web serving). In the Source Port box,
specify the port you want to forward (such as port 80 for a web server). Finally, you can enter the
destination computer IP address and its port number in the other two boxes. This is quite useful if you
want to forward a normal port 80 connection to a machine with a different port number, such as port
8080; a common request with Apache virtual hosts. Once you have forwarded your ports, you need to
select the External Services Access page and add the ports you have forwarded to that page. This
enables access to the ports from outside the network.

SmoothWall is proven to be an incredibly capable and flexible firewall. Because of this a lot of
organizations and homes use it to protect their networks. Although the GPL version of the firewall is
very capable, the commercial version and its included support can be really useful for commercial
organizations. Both versions give you the flexibility of a powerful and supported firewall that can protect
a network of Linux, Windows, or Mac OS X machines.

Hack 82. Link Monitoring in Linux with Wavemon

Monitor radio parameters in real time using Wavemon, a curses-based tool for Linux.

When using Linux, the standard wireless tools provide a wealth of status information. These tools get
their information from the standard kernel interface /proc/net/wireless. While ideal for providing
pinpoint accuracy in measuring signal strength and noise data, these tools are not designed to give an
indication of performance over time.

Wavemon (http://www.wavemage.com/projects.html) is a terrific little tool that does precisely this. It
polls /proc/net/wireless many times each second to give you a rolling report of how your wireless
connection is performing. Its simple curses interface keeps the code quite small and is ideal for
including in embedded distributions to get real-time link data from remote access points.

The main interface provides a nice graphical representation of the current link state (Figure 9-3).

Figure 9-3. Wavemon in action.

All of the statistics are updated in real time, making it ideal for monitoring point-to-point links and fine-
tuning antennas on long distance shots. For an even easier to read display, hit F2 to bring up the Level
Histogram (Figure 9-4).

Figure 9-4. Pretty little scrolling waves of data.

http://www.wavemage.com/projects.html

This display is easy to read on a laptop even in bright sunshine, making it an ideal tool for outdoor
work. The histogram slowly sweeps to the left, giving you a history of the last few moments of wireless
connectivity. Wavemon runs in a terminal, so you can easily run more than one instance to monitor
multiple radio links simultaneously.

When you need a high performance signal and noise meter for Linux, Wavemon is hard to beat. The
current version is available from Freshmeat at http://freshmeat.net/projects/wavemon/.

Rob Flickenger

http://freshmeat.net/projects/wavemon/

Hack 83. Make Network Backups

The cost of computing is so low that it is not uncommon to have more than one computer in a house.
Increasingly, people are buying many computers, networking them together, and using them for
different purposes. For example, in my home are two Linux boxes, one Linux server, one Linux firewall,
two Windows machines, and a Mac. With a large number of computers, each with important data on it,
backups of that data become a very real and important issue to consider.

The natural assumption when faced with a need to perform backups is to use a medium such as tape or
a CD/DVD. But in this hack you are going to perform a series of network backups that simply copy files
from one machine on the network to another.

9.15.1. Simple Single-Shot Backup

If you want to do a simple full backup of a directory, you can do it with a single command by using
secure copy (scp). This little tool lets you copy a number of files from one computer to another in a
secure encrypted form. One of the major benefits of scp is that you can copy files across the Internet;
you are not limited just to computers on your local network. To use scp, you need to have the Secure
SHell (SSH) daemon running on the machine you are copying to and have the scp program (which is
part of the SSH package) on the computer you are copying from.

To get started, you can copy a directory full of work from your machine martin to a machine called
simon (if your hostnames are not resolvable, use their IP addresses). You can do this with the following

command:

foo@martin:~$ scp -r importantwork simon:/home/alan

This command uses scp to recursively (-r) copy the files within the importantwork directory to the host
simon and into the /home/alan directory. Once you have entered the command, you see a status bar for

each file as it is transferred. This gives you a visual indication of the copy's progress.

9.15.2. Elaborate Backups Using rsync

Using scp for backing up a configuration has a few inherent problems. The first issue is that each time

you need to make a backup, the contents of your entire directory, importantwork, are copied over
again, which can consume a lot of bandwidth and time. The other problem is that scp is rather inelegant
in that it copies only specific files, and cannot easily distinguish between the files on the backed-up
computer and the source files.

A better solution for managing backups of large groups of files and directories is rsync. This tool is easy
to set up (you only need to install the rsync program on the remote and local computers), and it has the
ability to intelligently copy files and directories over and during later syncs to copy only the specific files
and directories that have changed. To use rsync you basically need to specify the machine and directory
you are copying from and where you are copying the files to on the local computer. For example, you

can copy some files from a remote machine called martin to your current machine:

foo@bar:~$ rsync -avz martin:/home/martin/importantwork /home/foo

In this example, you use two command-line switches that adjust how rsync works. The -v switch puts
rsync in verbose mode and outputs what it is doing at all times, and the -z switch compresses the files

to lower the bandwidth required to make the transfer. This compression is less important when copying
files between computers on a local network than it is when copying files over the Internet, but using
compression is not a bad habit to get into. The rsync program is very flexible, and a few other options
are worth exploring when making backups such as this. First, you should be aware that rsync's default
behavior is to add files only when making a backup. This means that if you've backed up a file and you
delete the local copy, the backed-up copy remains on the remote machine even during later syncs. In
some cases this might be unsuitable, such as when you want to mirror a directory full of files and you
want the backed-up files removed when they are removed from the main directory. To do this you can
add --delete to the line:

foo@bar:~$ rsync -avz --delete martin:/home/martin/importantwork /home/alan

A particularly useful feature within rsync is the ability to exclude specific files from the backup. You can
do this with the --exclude switch. For example, if you want to keep your

importantwork/passwords/importantpasswords.txt file out of the backup, you can use this command:

foo@bar:~$ rsync -avz --delete --exclude=passwords/importantpasswords.txt
martin:/home/martin/importantwork /home/foo

If you need to exclude a number of files, include a number of --exclude flags for different files or

directories, one after the other.

One final point to note about rsync is that as with many other network tools, all traffic is unencrypted
and potentially subject to malicious people sniffing your traffic and discovering sensitive information. If
you are concerned about your security, it is advisable to use the -e switch built into rsync to use an SSH
shell to encrypt all traffic. Simply add the e to the collection of switches and specify ssh as the shell to

use:

foo@bar:~$ rsync -avze ssh --delete --exclude=passwords/importantpasswords.txt
martin:/home/martin/importantwork /home/foo

Although the most common use of rsync is between a local and a remote
machine, it really doesn't matter where the two machines are. As far as rsync is
concerned, one is just a source and the other is just a destination. Both the
source and destination could be on the local machine, or one could be local and
one could be remote, or both could be on different remote machines.

Hack 84. Recover from Debian Disaster

Restore your Debian system from even the most seemingly unrecoverable disaster.

We all make mistakes, but the worst accident on a Debian system (or any Debian-based system, such
as Knoppix) is one that causes you to lose the contents of your /var/lib/dpkg directory. Once that
directory is gone, you can no longer update or install software. These things happen even to the best of
us, so here's a procedure to get your Debian system back where it was (or close), without losing any of
your data or having to reinstall all of Debian from scratch.

OK, so you lost the /var/lib/dpkg directory. Heck, if you had /var on its own partition, you might have
lost everything under the /var directory. If that's the case, you'll have a lot more work to do than
restoring your Debian package database. Unfortunately, because every system differs, it's up to you to
figure out what you need to restore directories other than those required by Debian. At minimum, you'll
need to create the following directories to start your recovery process. Log in as root, and run these
commands:

mkdir -p /var/cache/apt/archives
mkdir -p /var/cache/debconf
mkdir -p /var/log
mkdir -p /var/lib/dpkg/info
mkdir -p /var/lib/dpkg/parts
mkdir -p /var/lib/dpkg/alternatives
mkdir -p /var/lib/dpkg/methods
mkdir -p /var/lib/dpkg/updates

The next thing you need to do is find out what version of libc6 you have installed. Check the
documentation for this information. For example, the first line of the README file in the documentation
directory for libc6 often tells you the version:

less /usr/share/doc/libc6/README
This directory contains the version 2.3.2 release of the GNU C Library.

Now fire up your favorite editor to create the /var/lib/dpkg/status file. Enter the following text in this file
(substitute the version of your particular libc6 for the version in our example):

Package: libc6
Status: install ok installed
Version: 2.3.2

Save this file and exit the editor.

Be sure to press Enter after you enter the version number in this file. A new line
must appear after the version number for this recovery method to work.

Now you need to run the following commands. You will get error messages and warnings, and the apt-
get dist-upgrade command will not actually install any files, as it should. It will simply download

packages. Don't worry. Just plow through these commands, ignoring the warnings and errors:

dpkg --clear-avail
apt-get update
apt-get dist-upgrade

These commands cause your Debian system to download some critical packages. Change to the
directory where these packages are installed and install them manually with the dpkg command.
(Ironically, Debian might complain that dpkg isn't installed, but it works anyway.) Note the * at the end

of the package names in the following commands. This is just a wildcard that saves you the trouble of
specifying the full package filenames. Here are the commands to manually install the minimum required
packages you'll need for installing packages in a more automated fashion:

cd /var/cache/apt/archives
dpkg -i libncurses*
dpkg -i perl-base*
dpkg -i libstdc++*
dpkg -i dselect*
dpkg -i dpkg*

Read the error messages you encounter and be prepared to be flexible if one or
more steps give you trouble. I can almost guarantee there's a solution to every
glitch, so keep at it. Remember that not all the error messages you see are
important. Ignore the complaints about insufficient information regarding libc6.
These error messages go away by the end of the procedure.

Now you're ready to get rid of that annoying message about insufficient information regarding libc6.
Type in the following command:

apt-get install -reinstall libc6

Finally, you can run the dist-upgrade command once again. This causes Debian to install all the base

packages required for a bare-bones Debian distribution, because Debian doesn't know they already
exist:

apt-get dist-upgrade

At this point, you have only rebuilt the Debian database such that it "knows" about only the most
fundamental packages you have installed. It doesn't know you have things such as KDE installed, or
various productivity applications. These programs are on your system and they will work, but Debian
doesn't know to upgrade them as new versions appear. The only way to get Debian to know about the
packages you have installed is to install them again.

Don't worry. You won't have to reconfigure the packages you reinstall. But if you want your Debian
package database to know they exist, you have to install them again. You can install your favorite
programs any way you want, but this suggestion should make the process easier. Install the synaptic
program:

apt-get install synaptic

Then start up a graphical desktop, and run synaptic from a run dialog or terminal window. synaptic is a
graphical, friendly package installer for Debian that sorts the available packages by category. You can
browse through the various categories and checkmark all the programs you want on your system. Then
have synaptic (re)install all of them in one big batch. Voilà. You have just recovered from one of the
most disastrous types of damage one can inflict upon a Debian system.

Hack 85. Prelink for Performance

Increase your application's performance by up to 50%.

One of the problems with software applications is that they depend on other software to run. In some
cases, this dependency can be built into the application statically, but in most cases, the application
accesses a range of special libraries for the dependent functionality. Even the simplest of applications
can rely on a huge range of libraries, and every KDE and GNOME tool needs a number of dependent
programs to run. When an application accesses a library, special symbols are transferred from the
library to the memory that the application is running in. Unfortunately, this copying process (called
linking) can take quite some time, particularly with C++-based software.

On the majority of systems, libraries are rarely changed and, consequently, when a program is run, the
process of transferring these symbols is the same every time. A special tool called prelink uses this
repetition to link once and store the result of the process in a file that can be executed. This method,
called prelinking, can greatly improve performance, particularly in C++ software. Many users have
experienced performance improvements of up to 50% in some KDE software. You'll see less impressive
results in programs that aren't so heavily linked or are written in a language other than C++.

9.17.1. Run prelink

To use prelink, you need to ensure that you are running a compiler and libraries that support this
feature. You should aim for a gcc newer than Version 3.1 and a glibc newer than 2.3. You also need to
obtain the prelink tool from ftp://people.redhat.com/jakub/prelink/. The prelink tool is also available in
the Debian archive, and RPMs are available at http://www.rpmfind.net/linux/rpm2html/search.php?
query=prelink.

Once you have installed prelink, you need to run the tool on the binaries and libraries that are present
on your system. To do this, you need to add a list of the directories containing binaries to
/etc/prelink.conf. Here is an example listing of directories to add:

-l /usr/local/sbin
-l /sbin
-l /usr/sbin
-l /usr/local/bin
-l /bin
-l /usr/bin
-l /usr/X11R6/bin
-l /usr/games
-l /usr/local/lib
-l /lib
-l /usr/lib
-l /usr/X11R6/lib

The -l option included at the beginning of each line ensures that prelink descends recursively into

http://www.rpmfind.net/linux/rpm2html/search.php?

directories and works on dependent binaries and libraries. This works under the condition that the
directory does not span across different filesystems or mount points.

To actually perform the prelinking, you need to run the following command as root whenever you add
new software to the system:

foo@bar:~# prelink -afmR

This command prelinks all (-a) binaries and libraries in the paths within the configuration file. The other
options are explained in man prelink. When you run the command, it is likely you will see some

warnings about the linking. You can safely ignore these. Some distributions require a special
environment variable to be set to indicate that the prelinking has been done. You can set this for the
current session with this command:

foo@bar:~$ export KDE_IS_PRELINKED=1

For a more permanent solution, add this to /etc/environment or to a file appropriate to your distribution
for setting a system-wide variable.

Hack 86. Grab the Latest Source Code

Source code is the lifeblood behind any open source project, and its welfare is critical in pushing the
code forward and improving it. To the nonhacker, this random collection of phrases and letters appears
to be gibberish, but to the hacker, this code makes perfect sense. To remain productive, it is essential
that hackers maintain their code in a clean and useful state. Although many hackers worry about
keeping the source code usable, this is difficult when you consider that multiple developers from around
the world working on a project hack a single set of source code files. These projects rarely have a single
lead developer who decides what goes in and out of the source code tree, so how is this development
managed?

The solution to this problem is a source control system. These systems essentially provide a
metaphorical railway signal box to manage the different needs of the different hackers. The system
stores the code in a repository on the server and allows access to only those users who have an
authorized login account. With an account, users can copy a snapshot of the code to their computers
(this is called making a working copy), hack the code, and then submit the changes to the main server.
The source control system ensures that users cannot commit changes at the same time, and it only
commits the differences made to the code back into the system. This ensures that bandwidth is not
bogged down by the same content flying back and forth between the hackers and the source control
server.

In this hack, you are going to get started with a popular source control system called CVS. This tool is
in use by most of the large software projects, and you can use it to get read-only access to the
developers' source code servers. This code can be useful if you want to explore the possibility of hacking
on some code yourself, but it is also handy for those of us who like to compile unstable development
code to see just what the hackers are putting in the software. For example, using the methods
described here, you can compile the development branches of KDE or GNOME for a bleeding-edge
desktop [Section 5.11 and Section 6.5].

9.18.1. Connect to a CVS Repository

To use CVS first you need to specify where the CVS source code server is located. You do this by setting
an environment variable called $CVSROOT. This variable is often set in your shell's startup file (such as

.bash_profile for the bash shell), but if you are unsure of which shell you are running, type the following
command to see which one it is:

foo@bar:~$ echo $SHELL

You need to specify a $CVSROOT that indicates the location of the CVS server, the username to connect
with, and where the code is stored on the server. The $CVSROOT is set as an environment variable with

three distinctive parts:

[authentication type]:[user@location.domain]:[location of the code on server]

If you want to connect to the KDE CVS server, for example, you can get read-only access in which you
can just download the code by using the anonymous username. Many CVS services offer an anonymous

user in which onlookers can download the code but not make changes to it.

If, for example, you are using the bash shell, add this line to your .bash_profile to add a connection to
the KDE CVS server:

export CVSROOT=:pserver:anonymous@kde.org:/home/kde

If you want to set this value from the command line in a bash shell, you can use this command (good
only for your current session):

foo@bar:~$ export CVSROOT=:pserver:anonymous@kde.org:/home/kde

When you have set the variable with one of these methods, you can check that it is working by typing:

foo@bar:~$ echo $CVSROOT
:pserver:anonymous@kde.org:/home/kde

With this complete, now you can log in to the CVS server. To do this, type:

foo@bar:~$ cvs login

You are prompted for a password. Just press Enter to use a blank password. Now you are returned to
the prompt.

Considering the vast amount of different open source projects and the huge
amount of code sitting on the Internet in CVS servers, you might want to use
different CVS servers. To do this, you need to set your $CVSROOT to the new

server and log in again.

On a CVS server, code is grouped into modules that contain code for related projects and tools. For
example, the KDevelop project is contained within the kdevelop module on the KDE CVS server. You

can see a list of these modules by typing:

foo@bar:~$ cvs co -c

To get a module from the server, you need to check it out using the CVS co option. For example, you
can check out the kdevelop module with:

foo@bar:~$ cvs co kdevelop

Then you'll see the code checked out to your computer, one file at a time. To update your local copy
with the latest changes from the CVS server, you need to go into a checked-out directory (such as the
kdevelop directory in our example), and type:

foo@bar:~$ cvs update -PAd

When you run this command, only the files that were changed since your initial checkout will be copied
to your computer. This ensures that a minimal amount of bandwidth is used for keeping your code
current.

CVS is a powerful and competent source control system, but it is also one of the most confounding
pieces of software to use, particularly when adding files to a server. For more information, I
recommended you read the free book Open Source Development with CVS at http://cvsbook.red-
bean.com/.

9.18.2. New Kid on the Block: Subversion

Although CVS has been around for a long time and a lot of open source projects use it, it has some
limitations which some developers find frustrating, including not being able to store metadata
(properties) associated with files and not being able to properly version directories. An alternative
system called Subversion, which overcomes these limitations, is rapidly taking over as a replacement
for CVS, and many projects now provide access to their source code using Subversion.

The command for accessing a Subversion repository is very simple:

foo@bar:~$ svn checkout http://repo.example.com/project project

This will check out the latest copy of the project tree into a local working copy named project.

Then you can keep your local source tree up-to-date by entering it and typing svn up, which will fetch

any files that have changed since your last update and will merge the changes into your local tree.

The Subversion project is very active and has a very helpful mailing list. You can find the main project
page at http://subversion.tigris.org, and you can also access the free book Version Control with
Subversion at http://svnbook.red-bean.com.

http://cvsbook.red-
http://repo.example.com/project
http://subversion.tigris.org
http://svnbook.red-bean.com

Hack 87. Speed Up Compiles

Many other distribution users make fun of the Gentoo fanboys, because Gentoo users have to spend a
lot of time compiling all of their code. And even though these compiles can take hours or days to
complete, Gentooists still tout their distribution as being one of the fastest available. Because of their
constant need to compile, Gentoo users have picked up a few tricks on making the process go faster,
including using distcc to create a cluster of computers for compiling. Distcc is a distributed compiling
daemon that allows you to combine the processing power of other Linux computers on your network to
compile code. It is very simple to set up and use, and it should produce identical results to a completely
local compile. Having three machines with similar speeds should make compiling 2.6 times faster. The
distcc home page at http://distcc.samaba.org has testimonials concerning real user's experiences using
the program. Using this hack, you can get distcc to work with any Linux distribution, which will make
compiling KDE and GNOME from scratch quick and easy.

Distcc does not require the machines in your compile farm to have shared
filesystems, synchronized clocks, or even the same libraries and headers.
However, it is a good idea to make sure you are on the same major version
number of the compiler itself.

Before getting started with distcc, first you must know how to perform a parallel make when building
code. To perform a parallel make, use the -j option in your make command:

dbrick@rivendell:$ make -j3; make -j3 modules

This will spawn three child processes that will make maximum use of your processor power by ensuring
that there is always something in the queue to be compiled. A general rule of thumb for how many
parallel makes to perform is to double the number of processors and then add one. So a single
processor system will have -j3 and a dual processor system -j5. When you start using distcc, you
should base the -j value on the total number of processors in your compiling farm. If you have eight
processors available, then use -j17.

9.19.1. Using distcc

You can obtain the latest version of distcc from http://distcc.samba.org/download.html. Just download
the archive, uncompress it, and run the standard build commands:

dbrick@rivendell:$ tar -jxvf distcc-2.18.3.tar.bz2
dbrick@rivendell:$ cd distcc-2.18.3
dbrick@rivendell:$./configure && make && sudo make install

You must install the program on each machine you want included in your compile farm. On each of the
compiling machines, you need to start the distccd daemon:

http://distcc.samaba.org
http://distcc.samba.org/download.html

root@bree:# distccd -daemon -N15
root@moria:# distccd -daemon -N15

These daemons will listen on TCP port 3632 for instructions and code from the local machine (the one
which you are actually compiling software for). The -N value sets a niceness level so the distributed

compiles won't interfere too much with local operations. Read the distccd manpage for further options.

On the client side, you need to tell distcc which computers to use for distributed compiles. You can do
this by creating an environment variable:

dbrick@rivendell:$ export DISTCC_HOSTS='localhost bree moria '

Specify localhost to make sure your local machine is included in the compiles. If your local machine is
exceptionally slow, or if you have a lot of processors to distribute the load to, you should consider not
including it at all. You can use machine IP addresses in place of names. If you don't want to set an
environment variable, then create a distcc hosts file in your home directory to contain the values:

dbrick@rivendell:$ mkdir ~/.distcc dbrick@rivendell:$ echo "localhost bree moria
" > ~/.distcc/hosts

To run a distributed compile, simply pass a CC=distcc option to the make command:

dbrick@rivendell:$ make -j7 CC=distcc

It's that simple to distribute your compiles. Read the manpages for distcc and distccd to learn more
about the program, including how to limit the number of parallel makes a particular computer in your
farm will perform.

9.19.2. Distribute Compiles to Windows Machines

Though some clever people have come up with very interesting ways to distribute compiles to a
Windows machine using Cygwin, there is an easier way to perform the same task using a live CD
distribution known as distccKnoppix, which you can download from
http://opendoorsoftware.com/cgi/http.pl?p=distccKNOPPIX. Be sure to download the version that has
the same major version number of gcc as your local machine.

To use distccKnoppix, simply boot the computer using the CD, note it's IP address, and then enter that
in your distcc hosts file or environment variable as instructed earlier. Happy compiling!

David Brickner

http://opendoorsoftware.com/cgi/http.pl?p=distccKNOPPIX

Chapter 10. Kernel
Hacks 88-91

Hack 88. Compile a Kernel

Hack 89. Upgrade Your Kernel to 2.6

Hack 90. Use CKO to Make Your Desktop Go to 11

Hack 91. Tweak Your Kernel Without Recompiling

Hacks 88-91

When people speak of Linux, they are usually referring to an operating system, but most Linux users
know Linux is just a kernel and not a complete OS. Of course, the kernel is the most critical piece of
software on a Linux system. Luckily for us Linux users, the open source ethos that is ingrained in kernel
development, and the hundreds of developers who peer over the code and improve it, ensure that we
have an incredibly stable and secure kernel that forms the backbone of our operating system.

Unlike closed source operating systems in which you are given a one-size-fits-all kernel that needs to
account for a variety of hardware, the Linux kernel can be customized to fit your system. This approach
has both pluses and minuses. One the one hand, this ability gives you an efficient kernel that can
perform well on a resource-poor system, or give you increased stability by not running software that
isn't needed. On the other hand, it means you are often faced with the task of compiling a kernel to add
support for specific hardware or to gain additional functionality.

Compiling kernels is not a difficult or scary process, but the thought of doing so can be a bit nerve-
wracking. With the range of hacks included in this section, you will have no problem compiling the ideal
kernel for your computer.

Hack 88. Compile a Kernel

Linux device support is largely a double-edged sword. On the one hand, an up-to-date distribution with
a recent kernel is likely to configure all your hardware automatically, and you won't need to lift a finger.
On the other hand, if you have some hardware that is not supported within the kernel itself, life
suddenly becomes a lot more difficult; manuals need to be read, Google needs to be searched, and your
head needs to be scratched. Lack of universal device support is why Linux users need to research their
peripheral purchases before they buy.

When your Linux kernel doesn't already support a particular device, you often need to compile in
support yourself. If the code for your device is experimental, you might need to patch the kernel before
you compile it. Many users are nervous about compiling any program, and recompiling the kernel
makes them even more so. The "archaic" process of compiling the kernel is often avoided by many
users who live in hope that the kernel that ships with the next version of their distribution will provide
the hardware support they need.

Although daunting at first, compiling a kernel can provide a number of benefits, both for yourself and
for your humble computer. The first boon is that you are able to tweak your kernel so that it is custom-
built for your specific hardware configuration. This can potentially increase your computer's
performance. Another benefit is that you can patch the kernel with the latest "experimental" drivers,
which might not be present in the official source code or in your vendor-provided kernel. Although
patching code can seem a little nerve-wracking, it can greatly extend your system's flexibilitythe bar for
getting drivers in the official kernel release is quite high, and sometimes patching is the only way you
can use a specific feature or driver.

The process described here is a generic approach that should work on any Linux system. However,
many Linux distributions provide certain tools for compiling and packaging a kernel specifically to work
with that distribution. If you use a distribution such as Debian, which provides kernel packaging tools,
you should probably use them if possible for maximum convenience.

10.2.1. Get the Code

First, you need to download the source code for the tree from one of the mirrors at
http://www.kernel.org/mirrors/. Once you have downloaded the tree, copy it to /usr/src, and unzip and
extract it. If you are downloading a .bz2-compressed tree, extract it with this:

foo@bar:~$ bunzip2 -d linux-x.x.x. tar.bz2

where x.x.x represents the kernel version number you downloaded. Then you can extract the tar file

with this:

foo@bar:~$ tar xvf linux-x.x.x. tar

Now you have a new directory called linux-x.x.x. For simplicity in managing your kernel, you should
rename this to linux:

http://www.kernel.org/mirrors/

foo@bar:~$ mv linux-x.x.x linux

An alternative is to keep the linux-x.x.x directory and instead create a symlink called linux to point to it:

foo@bar:~$ ln -s linux-x.x.x linux

This enables you to keep multiple source trees on your machine and just change the symlink to point to
whichever is your current tree. It also helps you remember which version of the source you are working
with.

A number of different kernel source code trees (in addition to the official one) are
available. Each contains official kernel source code that has been tweaked and
modified by someone to achieve a specific goal, such as increased hardware
support or system performance improvements. [Hack #90] has more
information about these alternate kernel sources. The steps in this hack are
directly applicable to alternate kernel sources.

10.2.2. Configure the Code

Before you begin to configure your kernel, first you should ensure that you have all the software
necessary to compile it. This list of requirements is shown in the README file in /usr/src/linux. If you
are satisfied that everything required is installed, you can launch the configuration tool by running one
of the following commands.

make menuconfig

This is for text-based color menus, radio button lists, and dialogs.

make xconfig

This X Windows (Qt)-based configuration tool is available only in the 2.6 kernel series and higher.

make gconfig

This X Windows (Gtk)-based configuration tool is available only in the 2.6 kernel series and
higher.

make oldconfig

This option gives you the opportunity to take a .config file from an older kernel (such as a 2.4
series kernel), compare it to the options available in a new kernel, and then answer some
configuration questions about the new options. This is a convenient way to upgrade a kernel,
because it allows you to transfer your old settings to the new configuration file.

If you are running a graphical interface (such as KDE or GNOME), I recommend you use either xconfig
or gconfig. If you need to configure the code in a console terminal, use menuconfig. I don't suggest you
use oldconfig unless absolutely necessary; it can be a long and drawn-out process.

Each configuration program (apart from oldconfig) organizes options into a series of categories. If you
start at the first category and go through each section, you can turn an option on, turn it off, or mark it
to compile as a loadable module. I recommend you turn on essential features that you will use all the
time and configure less essential features as loadable modules. For example, you should compile
support for your filesystems into the kernel, but you might want to configure support for your webcam
as a module. If you are going to be dealing with USB devices, you should read [Hack #93] .

Each configuration option has some help associated with it. This is particularly
useful in the graphical configuration tools, where you can read the help while
configuring your kernel.

10.2.3. Compile the Code

Once you have configured the kernel, save your changes and quit. Now you need to enter a series of
commands to compile the code. The first command creates of list of dependencies. This list is a
preconfiguration step that sets up various kernel configuration files based on your kernel configuration
settings. To create the dependency list, run this command:

foo@bar:~$ make dep

The next command cleans out any unwanted junk, such as temporary compilation files that were
collected from previous compiles or when you created your dependencies:

foo@bar:~$ make clean

Now you can actually compile the kernel. This process can take quite some time depending on which
features you selected and how fast your computer is. Start the build with this:

foo@bar:~$ make bzImage

The next step is to compile the modules you selected in the configuration tool. Compile these with this:

foo@bar:~$ make modules

Finally, you must install the modules into the correct part of your system as root. This ensures that your
modules are accessible when you boot the system:

foo@bar:~# make modules_install

Though you can run these steps one by one, most people combine them into a single command, such as
this:

foo@bar:~# make dep && make clean bzImage modules modules_install

Joining the commands using && allows your system to proceed with each step automatically if no errors

occur in the previous step. This is a very useful trick to remember for other situations in which you want
to string a series of commands.

A few distributions might have specific methods you can follow to compile a kernel. For instance, Debian
provides a method for compiling a kernel and creating a Debian package out of it. This makes it easy to
install on your machine, and it makes a convenient package to transfer to other machines that need the
same kernel. Debian Universe (http://www.debianuniverse.com/readonline/chapter/21), a web site
created by Jonathan Oxer, has details on this method.

10.2.4. Install the Kernel

The compiled kernel is placed in /usr/src/linux/arch/<platform>/boot and is called bzImage, where
<platform> is a placeholder for the type of computer on which you are performing the compile. For
example, if you compiled your kernel on an x86 machine, such as a Pentium, Athlon, Celeron, etc., you
will find the kernel image in /usr/src/linux/arch/i386/boot. You must copy this image over to /boot. You
also should rename it to include the version of the kernel in the filename so that when you have
multiple kernels you can easily tell which is which. Also, the Linux kernel image has traditionally been
referred to as vmlinuz, and many users continue to call it this. So, if you have a 2.6.5 kernel, you could
copy the file with this command as root:

foo@bar:~# cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-2.6.5

You should also copy the System.map file (this file has a map of the positions of symbols in the kernel
and is used by programs such as depmod) to the /boot directory using a similar naming scheme:

foo@bar:~# cp /usr/src/linux/arch/i386/boot/System.map/boot/System.map-2.6.5

To complete the process, just adjust your bootloader to load the new kernel [Hack #1].

Another useful command-line option is make install. This option will copy the

kernel to /boot for you, copy associated files, and run LILO for you.

http://www.debianuniverse.com/readonline/chapter/21

Hack 89. Upgrade Your Kernel to 2.6

Hot rod your computer with a new kernel.

Upgrading your kernel from one minor version to another quickly becomes old hat. But when a new
major series of kernels comes out, such as the recently released 2.6 kernel series, many people are left
scratching their heads not knowing exactly how they should move to this new version.

In this hack, you will migrate from a 2.4 series kernel to a 2.6 series. This hack assumes you know how
to compile a kernel and that you have compiled the 2.4 series before [Hack #88] . Starting in mid-
2004, most distributions released 2.6 series kernels. If you don't want to compile your own 2.6 kernel
but you do want to take advantage of its new features, check your distributions package manager to see
if there is already a 2.6 kernel for you to use.

10.3.1. Get the Source

The first step is to grab the latest version of the 2.6 kernel from http://www.kernel.org/, and save it to
/usr/src. Then you should extract it and rename the resulting directory to linux. If you have compiled
2.4 before you should rename that source code to something unique such as linux2.4.

With the source code installed, you should read the Changes file in /usr/src/linux/Documentation. This
file gives you a list of points and some notes about the changes you will find in the new kernel. More
importantly, this file contains a list of software requirements and their minimum version numbers. The
file also includes a command that shows you how to find out what version of the software is on your
system. You should ensure that you check every piece of software listed, and upgrade your software if
necessary. Do not feel tempted to skip something just because the version number is similar; the kernel
hackers indicate these version numbers for a reason.

10.3.2. Configure the Code

Although a barrage of new features is included in each new release of the kernel source, the
configuration process has remained largely the same; you select options from a menu, and decide if
they should be compiled into the kernel or available as loadable modules. What has changed within the
configuration process are the configuration programs and how they can work for you. The 2.6 kernel
experienced an evolution in this area and saw the birth of two new additions for configuring your kernel.
One of these tools is based on the GTK widget set (used by GNOME), and you can run this version with
the following:

foo@bar:~$ make gconfig

Another available configuration tool uses the Qt widget set (used by KDE), and you can run this with the
following:

foo@bar:~$ make qconfig

http://www.kernel.org/

Although these two new graphical configuration tools are part of the 2.6 kernel, you can still use make
menuconfig for a console-based menu tool.

Users who are migrating from the 2.4 series kernel to 2.6 can use their old .config file. To do this simply
copy the .config file from your original 2.4 source code directory to your new 2.6 directory and run make
oldconfig. This converts the .config file to one that can be used with the 2.6 kernel. You'll be asked a

lot of questions concerning the new features in the 2.6 kernel, but most should be fairly simple to
answer.

10.3.3. New Features in 2.6

Version 2.6 has a number of new features and improvements that can be useful in the context of
desktop Linux. A huge number of new options are available, and you should explore them fully and
choose the ones most pertinent to your needs. Here is a summary of some of the most interesting
features.

Kernel preemption

The use of kernel preemption produces a lower delay in general applications and, more
specifically, multimedia applications. This is particularly useful if you want to use your desktop as
a sound recording or video editing workstation.

ALSA

One of the most substantial additions to the 2.6 series is the Advanced Linux Sound Architecture
(ALSA), and it is now the default sound system for Linux. Although ALSA is within the source tree,
you will need to run through a few additional steps to get it working. First, you should ensure that
you include all the options necessary for your sound card. To find out what options are necessary,
look at the excellent ALSA web site at http://www.alsa-project.org/alsa-doc, and select your card
from the combo box. Documentation is available for many of the cards ALSA supports, and this
documentation can help you get the most out of your card.

New filesystems

A number of additional filesystems have made their way into 2.6, and they include support for
ext2, ext3, reiserfs, jfs, xfs, minix, romfs, iso9660, udf, msdos, vfat, ntfs (read-only), adfs, amiga
ffs, Apple Macintosh hfs, BeOS befs (read-only), bfs, efs (read-only), cramfs, free vxfs, OS/2 hpfs,
qnx4fs, sysvfs, and ufs. Although the kernel is a stable version, you should check that any new
filesystems in 2.6 are fully tested before you store important data on them.

10.3.4. Compiling the Kernel

When you have configured the kernel, you can compile it with this:

foo@bar:~$ make

http://www.alsa-project.org/alsa-doc

foo@bar:~$ make modules_install

You no longer need to run make dep, make modules, and make clean.

10.3.5. Install the Kernel

The compiled kernel is placed in /usr/src/linux/arch/<platform>/boot and is called bzImage, where

<platform> is a placeholder for the type of computer on which you are performing the compile. For

example, if you compiled your kernel on an x86 machine, such as a Pentium, Athlon, Celeron, etc., you
will find the kernel image in /usr/src/linux/arch/i386/boot. You must copy this image over to /boot. You
also should rename it to include the version of the kernel in the filename so that when you have
multiple kernels you can easily tell which is which. Also, the Linux kernel image has traditionally been
referred to as vmlinuz, and many users continue to call it this. So, if you have a 2.6.5 kernel, you could
copy the file with this command as root:

foo@bar:~# cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-2.6.5

You should also copy the System.map file (this file has a map of the positions of symbols in the kernel
and is used by programs such as depmod) to the /boot directory using a similar naming scheme:

foo@bar:~# cp /usr/src/linux/arch/i386/boot/System.map /boot/System.map-2.6.5

To complete the process, just adjust your bootloader to load the new kernel [Hack #1].

Hack 90. Use CKO to Make Your Desktop Go to 11

Make your desktop quick and responsive, without making your music player skip, or your
videos drop frames.

A number of custom kernels are designed to increase performance in one area or another. The Con
Kolivas Overloaded (CKO) kernel is probably the most famous for improving desktop performance (Con
Kolivas has branched out into improving server performance, too). I also recommend the CKO kernel,
because it has the frame-buffer splash patch built-in (unfortunately, it is not the type of frame-buffer
splash patch needed by the Debian system boot in [Hack #8], although I expect Debian to eventually
switch to the CKO boot splash patch). It also includes a more modern VESA frame-buffer driver for
more recent cards. This can be useful for getting set up for the fancy login consoles [Hack #20], which
uses the Qingy frame-buffer login manager. If you intend to implement any hacks that require frame-
buffer support, using the CKO kernel is an easy way to prepare.

This pack of hacks shows you the advantages of using the CKO kernel, and one way to tweak CKO
performance in real time as you need it.

Before getting started, you should be forewarned. Only one hard and fast rule applies when it comes to
tweaking the performance of any kernel, whether it's a standard or a custom kernel: the rules will
eventually change. The Linux standard plain-vanilla kernel has been changing rapidly in terms of the
way it handles memory and swapping, for example, so what you might have learned months ago about
tweaking memory swap performance in the standard kernel might be useless knowledge today. The
same is also true for custom kernels, such as the CKO kernel. The best way to find out if or when the
following advice becomes obsolete is to visit the Con Kolivas kernel patch home page at
http://members.optusnet.com.au/ckolivas/kernel/.

You can usually find the latest CKO patch set at http://kem.p.lodz.pl/~peter/cko/. The page also
includes a link for patch sets for older kernels, too. Download the patch for the kernel you are using (or
want to use). Apply it to your kernel this way (assuming you are using kernel Version 2.6.9, which
would require the patch-2.6.9-cko3.bz2 patch):

cd /usr/src/linux-2.6.9

bzcat / <path to> /patch-2.6.9-cko3.bz2 | patch -p1

10.4.1. Compile CKO with Optimizations

A number of CKO kernel configuration optimizations are available for you to try, but the following
should suffice for starters. The latest 2.6 kernels already include the option to make the kernel
preemptible (i.e., the kernel can be interrupted by other tasks), but the CKO kernel adds the option to
preempt the "Big Kernel Lock." Unfortunately, Con Kolivas doesn't explain what the "Big Kernel Lock" is
or what advantage there is to making it preemptible, but it sure sounds impressive, and the menu
configurator comments recommend selecting "Yes" for this option if you're building for a desktop.
Enable this option by selecting Processor Type and Features Preemptible Kernel Preempt The Big
Kernel Lock.

http://members.optusnet.com.au/ckolivas/kernel/
http://kem.p.lodz.pl/~peter/cko/

You can also play with the kernel's internal timer frequency by selecting Processor Type and Features
Kernel Internal Timer Frequency (1000).

The internal timer frequency determines how long a process will run until the kernel interrupts it to see
what else needs to be done. In this case, there will be 1,000 interrupts per second. This means the
timer will trigger an interrupt every millisecond. You can set the number lower, but you shouldn't set it
higher. A higher number (more interrupts per second) can improve or degrade performance depending
on your machine's speed. If you're running anything better than a `486 on your desktop, you should be
happy with the default setting of 1,000. But by all means, feel free to drop it down to 500, and see how
that affects the kind of desktop computing that suits your style. You never know, the less overhead of
having to interrupt the CPU so often might actually improve performance, depending on what kind of
work or play you are doing.

The rest of the special configuration optimizations are riskier, so stop here for now. Finish configuring
the kernel for your machine's specifications, build it, and add it to your bootloader to try it out.

10.4.2. Tweaking CKO in Real Time

Memory and disk swapping are two of the most critical factors in desktop performance. A system that is
heavily swapping to disk is stealing time from the tasks you want to perform without interruption, such
as playing music or videos. The CKO kernel addresses this by setting a "watermark" threshold for the
amount of memory applications can use before the kernel starts to do what could be intrusive swapping.
The default watermark is 66% of available memory.

This means Linux will allocate up to 66% of available memory to applications, and only 33% of memory
for data caching. This often improves desktop performance, because Linux normally tends to use
memory to cache datafiles. This makes Linux somewhat aggressive about swapping an application out
to disk in favor of swapping data out to disk. If, for example, it swaps your browser to disk, you will
notice a delay the next time you use your browser. The fact that CKO reserves 66% of memory for
applications makes it less likely that your application will be swapped out to disk, so switching between
running applications should be snappy.

Sometimes, however, you will want Linux to use more memory for data than for applications.
Fortunately, you can change this watermark in real time, while your system is running the CKO kernel
(a roughly equivalent setting is also available in a plain-vanilla Linux kernel; see [Hack #91]).
Indeed, I often change the watermark as my work needs change throughout the day. The default of
66% is great for doing a bit of word processing while listening to music. If I build a large application,
however, the compiler will run faster if it has access to a lot of memory with which to store compiled
code for linking and reuse. A database also runs faster when you give it more memory to cache indexes
and data. So, when I am running an intense database program or happen to be building a large
program in the background, I reset the watermark to 33%, which allows the data cache-intensive
applications to run at a decent pace without having one or more desktop applications become totally
unusable. Here is how to change this watermark in a running CKO kernel:

echo "33" > /proc/sys/vm/mapped
echo "66" > /proc/sys/vm/mapped

10.4.3. schedtool and Isochronous Scheduling

The CKO kernel also allows you to launch applications with isochronous scheduling. Not all applications
respond correctly to this technique, but those that do start at a high priority and then drop priority
faster than normal. This guarantees that when they "wake up," they'll do so quickly, but they won't
retain such a high priority that they starve the rest of the system and bring all other tasks to a crawl.

You need a special tool to use this feature. If your Linux distribution doesn't provide the schedtool
package or something with a similar name, you can get the source code from
http://freequaos.host.sk/schedtool/ and compile it yourself. Unless you have multiple CPUs in your
machine, compile it this way (actually, I recommend this even if you do have multiple CPUs):

make no_affinity
make install

Affinity is a multi-CPU concept. It gets Linux to more likely assign a certain task to a particular CPU.
Most of the time, the only people who should work with processor affinity are high-level programmers,
such as SQL database programmers. Unless you really know what you're doing, it's better to let Linux
decide what tasks to assign to any given processor on a multiprocessor machine.

Here's how to launch an application with isochronous scheduling:

$ schedtool -I -e <application name>

This will start your application at a high priority, which means it should start up more quickly than
usual.

http://freequaos.host.sk/schedtool/

Hack 91. Tweak Your Kernel Without Recompiling

You don't need to compile a hot rod version of a Linux kernel or even recompile your existing kernel to
improve Linux performance on the desktop. If you're running one of the later 2.6 kernels, this pack of
hacks includes a few tricks you can use to modify the performance of the kernel you already have
installed and running.

One of the most hotly debated performance topics is how Linux should determine what memory to swap
to disk, how much it should swap, and when to do it. The answer is simple. Use one or more of the
following tweaks to control this process yourself.

10.5.1. Setting Swappiness via /proc

A kernel parameter is available that is represented as a pseudofile called /proc/sys/vm/swappiness. The
default value for the parameter is 70. You can log in and view the default value with this command:

cat /proc/sys/vm/swappiness
70

The number is a rough gauge for how likely it is that Linux will swap to disk whatever it considers to be
swappable. If you set it to 100, it will swap most aggressively. If you set it to 20, it will tend to swap a
lot less. Here is how you can set it to either value (logged in as root):

echo "100" > /proc/sys/vm/swappiness
cat /proc/sys/vm/swappiness
100
echo "20" > /proc/sys/vm/swappiness
cat /proc/sys/vm/swappiness
20

The argument for either side goes like this. Set the swappiness value to a high number, even to 100, if
you run several bloated applications and do not often switch between them. The end result will be that
when you do switch to an application you left unused for a while, it might take several seconds to
respond, because it must be swapped back into memory from disk. However, any application you use at
any given time should run faster, because it is not competing with seldom-used applications for
memory, as those applications are likely to be swapped out to disk.

On the other hand, if you set the swappiness value to a low number, your applications are likely to
respond instantly when you switch between them, even if you leave one or more of them unused for
long periods of time. The possible downside to this approach is that if one or more of your applications
needs a lot of memory to store data (such as a database application), it will run slower than if you set
the swappiness value higher.

So, here's what you should do. Set the value to a high number, use your computer for desktop
operation as you normally would, and see how things behave for a few hours. Then set it to a low

number, continue to use your computer for desktop operation as you normally would, and see for
yourself what the difference feels like. Then pick the performance characteristics you like best. Perhaps
you'll even be happiest with a default value of 70.

10.5.2. Tuning Network Performance via /proc

Here are a couple more parameters you might want to tweak, especially if you are using a home
computer hooked directly to a DSL or cable router:

echo "0" > /proc/sys/net/ipv4/tcp_sack
echo "0" > /proc/sys/net/ipv4/tcp_timestamps

These settings turn off some unnecessary network activity. You might not perceive any change in
performance, but it's worth a try.

10.5.3. Tuning Disk Access via Your Bootloader

Each program you run under Linux will want to access the disk at some point or another. The Linux
kernel determines how to prioritize how each program gets access to the disk, using three methods:
Anticipatory Scheduling, Complete Fairness Queuing, and Deadline Queuing. (Actually, the kernel uses a
fourth method, called noop, but noop is not likely to be applicable as a default method for a desktop
user.)

Each method has its advantages and disadvantages. Only two of them are likely to be appropriate for
desktop performance: Anticipatory Scheduling and Complete Fairness Queuing. Most people seem to
favor Complete Fairness Queuing for best desktop performance, but some argue that Anticipatory
Scheduling is actually superior for desktop performance. Here's how the three methods work.

Anticipatory Scheduling

The kernel tries to anticipate how the disk will be accessed. If a program is reading data, the
anticipatory scheduler assumes it's likely that it will want to continue reading data. So, while it
pauses according to a schedule, it anticipates picking up where it left off. If it guesses correctly,
the disk heads don't have to jump around much and you get better performance.

Complete Fairness Queuing

The kernel queues the disk to be used equally by every running program. No single program can
hog disk access. If several programs are using the disk at the same time, each one will be
responsive. On the other hand, this can also cause the disk head to jump around a lot more than
it has to, thus slowing the entire system's overall responsiveness.

Deadline Queuing

This type of queuing allows an application to dominate disk access. Other applications that want
to use the disk are put on the queue and must wait. If the application hogging the disk exceeds a

certain deadline, the kernel passes disk access to the next requesting application on the queue.
This is a good queuing system for a database server, but it is least likely to be best for a desktop
system.

The choice really comes down to Anticipatory Scheduling and Complete Fairness Queuing. There are
advocates for both when it comes to desktop performance, so you should try both and decide for
yourself how they suit your desktop use.

You can specify your choice of scheduler by passing parameters to the kernel in your bootloader.

LILO lets you append instructions to the boot process by adding a line such as the following for each
boot entry in the /etc/lilo.conf file:

append="<added instructions>"

If you want to use the Anticipatory Scheduler, use this:

append="elevator=as <possibly more added instructions>"

If you want to use Complete Fairness Queuing, use this instead:

append="elevator=cfq <possibly more added instructions>"

A complete example might look like this:

image=/boot/vmlinuz-2.6.9
 label=Linux
 root=/dev/hda1
 append="elevator=as video=vesafb:ywrap,mtrr,1024x768-16@60"

Run the lilo command after you make your changes to lilo.conf, and then reboot for the changes to

take effect.

With the GRUB bootloader, you simply append the instructions to the kernel line yourself. For example,
if you want to use Anticipatory Scheduling, your boot entry might look like this:

title My Default Linux
root (hd1,0)
kernel /boot/vmlinuz-2.6.9 ro root=/dev/hda1 elevator=as

If you want to try Complete Fairness Queuing, make your boot entry look more like this:

title My Default Linux
root (hd1,0)
kernel /boot/vmlinuz-2.6.9 ro root=/dev/hda1 elevator=cfq

You do not need to set up GRUB again. Simply reboot for the change to take effect.

If you are using the Con Kolivas Overloaded kernel [Hack #90], it defaults to
Complete Fairness Queuing. If you are using a plain-vanilla kernel, it defaults to
Anticipatory Scheduling. These default settings have changed over time, and they
might change again in the future, so it is best to specify the queuing method you
want.

Chapter 11. Hardware
Hacks 92-100

Hack 92. Make an Internet Connection Using Bluetooth and a Mobile Phone

Hack 93. Perfect USB Devices with Project Utopia

Hack 94. Optimize Your Refresh Rates

Hack 95. Print to Unsupported Printers

Hack 96. Control Your Power with ACPI

Hack 97. Use an iPod with Linux

Hack 98. Sync Your iRiver with Linux

Hack 99. Boost Hard-Drive Performance

Hack 100. Accelerate Your Gaming

Hacks 92-100

We're always told Linux can't be a viable desktop operating system unless it has certain pieces of
software, but mentioned less frequently is that Linux won't be adopted on the desktop unless it can use
a broad range of hardware. A high-end sound or video card isn't of any use if you don't have the drivers
to run it. Hardware vendors seldom write drivers for Linuxthey prefer to spend their time writing drivers
for Windows, because that is what runs on 95% of all computers sold.

This means Linux hackers have to pick up the slack and write drivers for various pieces of hardware. As
a result, it can be weeks or months before certain pieces of hardware are well supported under Linux.
Even when drivers are available, they might not be integrated into the distributions, because they are
too new, they are unstable, or they were written by a hardware vendor under a license which prevents
the driver from being distributed with a free Linux distribution.

This chapter has a broad range of hacks that show you how to use various pieces of hardware under
Linux. It starts with Bluetooth and USB connectivity, moves on to optimal monitor setups and a clever
method of using Windows to print to a printer that doesn't have a Linux driver, then covers power
management on a laptop, and finishes up with a couple of hacks on using portable music players under
Linux.

Hack 92. Make an Internet Connection Using Bluetooth and
a Mobile Phone

Linux now has good support for Bluetooth networking with mobile embedded devices. This is useful for
laptop and desktop users who want to use a mobile phone for quick dialup access. But configuring the
multitude of Bluetooth options is still fairly cumbersome and unwieldy. This quick and dirty hack uses
simple shell scripts to establish a dialup Internet connection, using Bluetooth as the link between a
laptop and mobile phone. Once it is set up, you can use the Bluetooth tools to easily interface with a
mobile phone's phone book and provide SMS capability using a third-party utility, such as gnokii

(http://www.gnokii.org). It is also trivial to replace the laptop used in this hack with a desktop PC
equipped with a low-cost USB Bluetooth dongle adapter device.

Bluetooth support in Linux is provided through the BlueZ software stack (http://www.bluez.org). This is
a collection of utilities and drivers that configure the underlying hardware, as well as provide the
interface seen by software applications. Each Bluetooth device contains a unique identifiermuch like a
network MAC addressthat is used in communications to determine the source and destination of the
data being transmitted. Certain operations cannot be performed unless the two communicating devices
have been paired or logically bound together using a password. In this way it is possible to provide
some level of safeguard against unauthorized use of a mobile phone, while allowing those who have
paired with it free reign to make any calls they want. The script in this hack relies on such a pairing to
reduce the hassle of calling an ISP to a single click of a desktop icon.

To begin, you must install the BlueZ protocol stack. The good news is that BlueZ support is standard in
most recent Linux distributions, including those based on kernels 2.4 and 2.6. Linux supports most of
the inexpensive Bluetooth devices on the market (especially those using the popular CSR chipset)
because they are usually based on the same generic parts, but with a different badge and label on the
box. Most distribution kernels are built with support for all the currently supported Bluetooth hardware
devices, but some older systems must be updated for Bluetooth support. If the tools mentioned here are
not available on your system, first check to see if they are included on the distribution installation discs
or as downloads on the BlueZ web site. Red Hat, SUSE, Mandrake, and Debian all ship with Bluetooth
support, but the Bluetooth tools might not have been installed when you installed your distribution.

As a minimum, you should ensure that the bluez-utils, bluez-pin, and bluez-sdp packages are installed
on your system. These provide the tools and utilities required by Bluetooth, a GUI application for pin
entry, and a server program that can advertise the system to other compatible Bluetooth devices. The
bluez-utils package also contains a range of useful utilities, including hcitool and rfcomm. You can use
the former to enumerate available Bluetooth devices, and the latter to establish a connection. With the
necessary packages installed, the following command should tell you the Bluetooth address of the host
Linux laptop:

foo@bar:~$ hcitool dev
Devices:
 hci0 00:09:DD:10:3F:8B

To communicate with a Bluetooth-enabled mobile phone, switch on its Bluetooth function and ensure
that it is set up to advertise its presence to other devices (it needn't advertise itself once the following

http://www.gnokii.org
http://www.bluez.org

steps have been completed, however). Look for Bluetooth devices using the hcitool command (this will

take some time to complete):

foo@bar:~$ hcitool scan
Scanning ...
 00:E0:03:3D:58:2E bob

This shows that the Nokia 6230 mobile phone used in this example has a hardware address of
00:E0:03:3D:58:2E and is called bob. It is now possible to communicate with that device and establish

a connection to the modem device within it. This will show up as an extra serial port (called
/dev/rfcomm0) that you can use to dial connections to an ISP. Connect to the phone using a command
similar to the following:

foo@bar:~$ rfcomm bind 0 00:E0:03:3D:58:2E 1

You should ensure that you replace the hardware address 00:E0:03:3D:58:2E with the appropriate

address discovered previously on your own device, but leave the rest of the command intact. Now you
can use the phone's internal modem via the /dev/rfcomm0 serial device. You also can script these
actions and store them in a file. This example uses a file called /usr/local/bin/bluetooth_call.sh with the
following contents:

#!/bin/sh
echo Configuring bluetooth...
rfcomm release 0
rfcomm bind 0 00:E0:03:3D:58:2E 1

Most Linux distributions provide an easy-to-use GUI tool for dialup configuration. Locate the appropriate
tool for your system and configure a new connection using /dev/rfcomm0 in place of /dev/modem, or
whichever modem device is selected by default on your system. In the case of pppd running on Debian,
it is possible to call an ISP through a single command appended to the previous script:

pppd call my_isp

You can reduce this entire process to a single desktop icon click by adding a new desktop launcher icon
and configuring it to execute the appropriate script. Note that it will be necessary to run any such script
using a wrapper such as gnome-sudo to run with root privileges. On a GNOME desktop, you can

configure a launcher icon to run the previous script:

foo@bar:~$ gnome-sudo /usr/local/bin/bluetooth_call.sh

Jon Masters

Hack 93. Perfect USB Devices with Project Utopia

Kick your desktop into the Plug and Play world with your USB devices.

Few would argue that USB has not had a tremendous impact on the computer world. Everything from
sound cards to network cards to lamps and beyond is available with a USB connector hanging off the
side.

Linux support for devices has traditionally been a slightly crufty area. Devices that are plugged in
usually require several manual steps before the OS recognizes them, and they are accessible to the
user. But in the last two years the ease of hardware handling has improved dramatically. One of the
major projects to work on this problem is Project Utopia. This collection of developers has worked to
create a software stack that enables you to plug a device into your USB port and have it just work. This
stack includes the following tools:

udev

This tool replaces the kernel-managed /dev with an equivalent userspace that makes it easier for
devices to be handled.

dbus

This allows programs to communicate with each other and respond to specific events.

Hardware Abstraction Layer (HAL)

This component ties together the other technologies to provide information about system events,
as well as an abstracted layer in which to interact with hardware. Traditionally, most programs
that deal with hardware have done it in their own way, but HAL provides a consistent way of
dealing with hardware while getting the benefits of device detection and other features.

In addition to these tools, you need to be running a 2.6 series kernel [Hack #89] and a recent version
of linux-hotplug. Project Utopia is a fairly complex system to build, so I recommend you install the
binary packages that are available for your distribution. If you are intent on compiling the source code,
however, you should look at the documentation available at http://hal.freedesktop.org.

11.3.1. Install the Packages

You need to install the packages in the right order. If you are using a system that figures out the
dependencies and installs them in the correct order (such as APT or portage), this should be easy for
you. If you are installing the packages individually, here is the required order:

http://hal.freedesktop.org

Kernel 2.6

linux-hotplug

udev

dbus

HAL

In addition, if you are using the GNOME desktop, you should install the GNOME Volume Manager. This
package (often named gnome-volume-manager) requires the following packages to be installed:

python-gnome2

libgnomeui

gnome-common

libglade2

You probably have some of these packages available already.

11.3.2. Configure the Automounter

When you plug a device into the system, you want to be able to automatically access the device. For
units such as digital cameras and other USB mass storage devices, you ideally want to plug in the
device and be able to use it right awayno more manual mounting of disks. On a Linux system, mounted
disks are typically managed by /etc/fstab. One option for automatically mounting inserted media uses
this file. This program, called fstab-sync, is part of the HAL package and it modifies /etc/fstab each time
a device is plugged in and used. When you install the HAL package, fstab-sync is installed automatically
for you.

Another option is to use pmount, written by Martin Pitt. This handy little tool replaces the mount

command with a version that can be used in userspace so that nonroot programs can access devices.
The Ubuntu distribution uses this method with a good degree of success, but it requires a little more
work to get going. To use pmount you need to use a special patched GNOME Volume Manager. At the
time of this writing the GNOME Volume Manager does not include built-in support for pmount, but you
should check to see if a newer version with pmount support has been released by having a look on
Google.

If the versions of GNOME Volume Manager available to you don't contain pmount, you will need to patch
the GNOME Volume Manager source yourself and compile it. Before you do this, be certain you have the
following programs installed:

pmount

python-gnome2-dev

libgnomeui-dev

libglade2-dev

You can download the source code to the GNOME Volume Manager from
http://ftp.gnome.org/pub/GNOME/sources/gnome-volume-manager, and you can get the pmount patch
from http://people.debian.org/~mpitt/gnome-volume-manager.pmount.patch. Extract the Gnome
Volume Manager code to a work directory, copy the patch to that directory, and cd to the work

directory. Then patch the code using this command:

foo@bar:~$ patch -p1 < ubuntu-pmount.diff

You might see some patch errors referring to a Debian control file. You can safely ignore these errors
when you're not running on a Debian system. Finally, you can compile the code with this:

foo@bar:~$./autogen.sh
foo@bar:~$ make
foo@bar:~$ make install (you may need to be root to do this)

Now you have a patched GNOME Volume Manager that can use pmount.

11.3.3. Configure Your System

With the GNOME Volume Manager installed you can configure your system to respond intelligently when
devices are plugged in. You configure this with the gnome-volume-properties tool. You should run this
tool from the command line, and then check the "Mount removable drives when hot-plugged," "Mount
removable media when inserted," and "Browse removable media when inserted" checkboxes. For the
other options in the properties box, try the following commands:

Audio CDs

gnome-cd --unique --play --device %d

Blank CDs

nautilus --no-desktop burn:

DVD videos

totem dvd://

Digital cameras

/usr/share/gnome-volume-manager/gnome-volume-manager-gthumb.sh %h

These options enable the most common actions you will want when you insert new media into your
computer.

http://ftp.gnome.org/pub/GNOME/sources/gnome-volume-manager
http://people.debian.org/~mpitt/gnome-volume-manager.pmount.patch

Hack 94. Optimize Your Refresh Rates

Reduce eyestrain by fine-tuning your monitor's refresh rates.

Many of you reading this book spend a lot of time in front of a computer at work, at school, or in your
home. As you rack up hours in front of the whirring machine, your eyes take the brunt of the physical
effects of your computer use. Most people see flicker on their monitors when the monitor refresh rate is
lower than 72MHz. This flicker causes eyestrain, headaches, and general fatigue. This hack explores
how you can tune your X configuration to optimize your picture's quality and its refresh rates. But
beware, using excessive refresh rates that your monitor does not support can potentially cause physical
damage to the monitor in the same way revving an engine too high can destroy your engine. Although
this is less common with modern monitors, you should be cautious when experimenting with this hack.

11.4.1. Find Out More About Your Monitor

To get the best use from your monitor, you need to determine its optimum refresh rate. You can do this
by gathering some information about your monitor, running that information through a web-based tool
that can determine your optimal settings, and then entering those settings in your X configuration file
(usually /etc/X11/XF86Config-4 or xorg.conf).

The web-based tool requires a couple of pieces of information: your monitor's resolution and the dot
clock frequency (also known as the pixel clock). But to complete this hack, you also need to know the
horizontal and vertical sync (refresh) ranges.

You can gather some of the information you need from the label on the back of your monitor, your
monitor's built-in menu system, your monitor's manual, and by Googling for your monitor specifications
on the Web. I've always found a Google search to be a particularly effective way to get the horizontal
and vertical sync ranges. You can also use the xvidtune utility:

foo@bar:~$ xvidtune

In the bottom right of the xvidtune window, you should see the "Vertical sync rate in Hz" box. If the
setting in that box is lower than 72Hz, you likely can optimize your X configuration. The exception is if
you are using an LCD monitor, which refreshes differently than a CRT and normally has a value of
around 60Hz. The other values you need that this tool provides are the pixel clock rate and the HDisplay
and VDisplay values, which combined make up your current monitor resolution.

To determine your optimal refresh rate, visit http://xtiming.sourceforge.net/cgi-bin/xtiming.pl, and
enter your monitor specifications in the Basic Configuration section. Do not enter a value for Refresh
Rate; that is what you are seeking to calculate. Unless you have a widescreen display, your Aspect Ratio
is 4:3. Most modern monitors are noninterlaced, but if your monitor is more than four years old, you
should double-check whether it is noninterlaced by Googling for specifications. There is seldom a reason
to check Doublescan. Once you have filled out the information, click the Calculate Modeline button at
the bottom.

When the web page refreshes, a new section at the top will provide you with a modeline to use in your

http://xtiming.sourceforge.net/cgi-bin/xtiming.pl

XF86Config-4 file. Copy this so that you can use it later.

11.4.2. Configure Your Monitor

To optimize your monitor settings, you need to adjust your X configuration file (usually XF86Config-4,
but if you are using Xorg, the file is xorg.conf). Before you change anything in your X configuration,
though, you should back up your X configuration file with this, or a similar command:

foo@bar:~$ cp /etc/X11/XF86Config-4 /etc/X11/XF86Config-4.backup

Now you need to modify the configuration file. Within the XF86Config-4 is a section called Monitor

where you can configure general monitor settings. Adjust the section using the information you have
from the X timing web site and the information you received from your monitor and xvidtune:

Section "Monitor"
 Identifier "Whizzbang MonitorMan"
 HorizSync 28-64
 VertRefresh 43-60
 Option "DPMS"
 Modeline "1152x864@88" 83.91 1280 1312 1624 1656 800 816 824 841"
EndSection

One intriguing option within this block is the DPMS setting. This highly recommended, power-saving
feature puts your monitor into standby mode if you have not used it for a while. HorizSync and
VertRefresh are the ranges you found earlier from your monitor's documentation or from searching the
Web. Modeline, which describes to X your monitor's frequencies, timings, and resolution, comes from

the X timing web site.

The name of the mode defined in the example is 1152x864@88. It is a unique identifier describing the

preferred resolution at 88Hz (this is a crisp resolution).

11.4.3. Configure the Resolution and Refresh Rate

To change the resolution and refresh rate inside X, you need to adjust the Screen part of the

configuration file. This section contains some important settings which, if configured incorrectly, could
stop X from working properly.

The first part of the block contains information about your monitor. Some of the details you added to
the Monitor block earlier should be copied over to this block. For the main part of this block, you need
to set two things: the resolution and the color depth. You use the DefaultDepth option to set the color
depth, and you use the Modes section to specify the first part of the custom mode you obtained from the
X timing web site (1152x864@88 for this example). You should ensure that modes you don't use are

removed from the Modes line. Here is an example block:

Section "Screen"
 Identifier "Screen 1"
 Device "Acme VideoKing"
 Monitor "Whizzbang MonitorMan"
 DefaultDepth 16
 Subsection "Display"
 Depth 16

 Modes "1152x864@88"
 ViewPort 0 0
 EndSubsection
EndSection

Now restart X. If you are starting X with startx, simply log out and restart the server. For example, if
you are using a display manager such as GDM, you will need to restart it with this:

foo@bar:~$ /etc/init.d/gdm restart

Hack 95. Print to Unsupported Printers

Use a Windows machine as a print server, when you can't print from Linux.

Linux's support for printers increases with every passing day; the team at http://linuxprinting.org and
the army of software developers building free drivers for new printers do a sterling job. However,
printers are still on the market (and new ones are being released each day) that Linux does not
support; no driver is available, so Linux users cannot print to these unfortunate devices. This problem
has no direct solution, but if you find yourself in this situation and you can attach your printer to a
Windows machine, you can hack a solution.

Under normal circumstances a printer connected to a Windows machine can be used by Linux (via
Samba). But this doesn't work when a Linux printer driver is not available. This hack delivers an
interesting solution to this problem. It uses a generic printer driver on Linux to send a PostScript print
job to a Windows machine sharing the printer. The Windows machine interprets the PostScript using a
local copy of Ghostscript, which then sends the information to the Windows printer driver and on to the
printer.

11.5.1. How Printing Works

The normal process of printing from Linux to a supported shared Windows printer is as follows:

You print from the application (say, a word processor) on the Linux box.1.

The print job goes to the print server on the Linux box, which is likely to be CUPS. CUPS has a
printer driver for this model of printer, and it converts the print job into a set of instructions telling
the printer how to print the job. (These instructions are, to some extent, printer-specific, which is
why a specific driver is required for each printer.)

2.

The stream of instructions flows across the network to the print server on the Windows machine.3.

The instructions are fed by the Windows print server to the printer.4.

The printer prints the job.5.

This hack changes this process a little by adding a couple of extra steps. After it has been set up, the
process works like this:

You print from the application (say, a word processor) on the Linux box.1.

The print job goes to the print server on the Linux box. CUPS processes the print job using a
generic printer driver that can output PostScript. PostScript is a generic way of describing print
jobs; if the "set of instructions" that describe how to print a job are in PostScript, any printer that
understands PostScript can understand them.

2.

3.

http://linuxprinting.org

The stream of PostScript instructions flows across the network to the print server on the Windows
machine. At this point, they are unusable by the Windows printer driver.

3.

The instructions are fed by the Windows print server to a "redirected printer," which is actually a
connection to Ghostscript, a free software PostScript interpreter.

4.

Ghostscript, which is running as an application on the Windows machine, sends the job to the real
printer (it can print to the real printer because it is running on Windows and can therefore use the
Windows printer driver).

5.

The printer prints the job.6.

Because steps 4 and 5 are where the magic happens, the rest of this hack covers setting up Ghostscript
as a pseudoprinter.

11.5.2. Creating a Redirected Printer

The first step in getting the redirected printer working is to install GhostScript and some supported
programs on Windows. Download and install the following programs:

Ghostscript (http://www.cs.wisc.edu/~ghost/doc/AFPL/get814.htm)

RedMon (http://www.cs.wisc.edu/~ghost/redmon/)

GSview (http://www.cs.wisc.edu/~ghost/gsview/index.htm)

GSview is sometimes packaged with Ghostscript, so you might not need to install it separately.

Within the directory containing gsprint.exe (C:\GS\GSVIEW, by default), create the file gsprint.cfg with
the following content:

-noquery
-color
-printer

windows_printer_name
-ghostscript

"C:\GS\GS8.14\BIN\GSWIN32C.EXE"

You can remove the -color line if you are using a black-and-white printer. The path in the last line
should be the actual path to gswin32c.exe. The line windows_printer_name must exactly match the

name the real Windows printer has in the control panel. Be careful about spaces; there must not be any
trailing or leading spaces on any of the lines, and there must not be any blank lines in the file (including
at the end).

Next, create a new printer in the control panel that uses the Apple LaserWriter II driver (this driver is
for a PostScript printer). This PostScript printer is necessary, because your Linux box knows how to
print to PostScript printers, but not to your Windows printer; next, you'll set up the PostScript printer so
that it passes documents sent from your Linux box on to Ghostscript. View the properties of the just-
created PostScript printer, click Add Port on the Ports tab, and select "Redirected port" (this option
appears only once you install the RedMon utility). Call the port RDR1: and click OK. Click Configure Port

and enter the following settings:

http://www.cs.wisc.edu/~ghost/doc/AFPL/get814.htm
http://www.cs.wisc.edu/~ghost/redmon/
http://www.cs.wisc.edu/~ghost/gsview/index.htm

Field Value

Redirect to program C:\GS\GSVIEW\GSPRINT.EXE

Arguments for program - (a single dash, no spaces)

Output Program handles output

Run as user Select this option

After saving the details, go back to the Ports tab of the PostScript printer's properties and set the Port to
be RDR1:. Now print a test page to the PostScript printer; it should print out of the real printer. The

print job that is sent to the PostScript printer is being sent on to Ghostscript (the printer is "redirected
to a program," as noted in the previous table), and then Ghostscript prints the job to your Windows
printer, because it was configured to do so (when you put the name of the Windows printer in
gsprint.cfg).

The printer should be available to all users; to do this, you need to copy the settings in the registry that
define the printer from your user account to the default user account. Export the registry key
HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Devices from RegEdit to a
file. Edit the exported file, and change the line [HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\Devices] to [HKEY_USERS\.DEFAULT\Software\Microsoft\Windows
NT\CurrentVersion\Devices]. Save the changed file, and double-click it to load it into the registry.

Finally, go back to the PostScript printer's properties, choose Ports, select RDR1: and Configure Port,
and uncheck Run as User. Now share the PostScript printer with a short share name (less than eight
characters). Remember this name: you'll need it shortly.

11.5.3. Printing to the New Printer

On the Linux machine, set up the printer as you would normally set up a Windows printer. For example,
under GNOME, in the Printers window, click Add Printer Network Printer Windows Printer (SMB),
and enter the NetBIOS name of the Windows box under Host. Put the share name you created earlier in
the Printer field. You might also need to add a username and password to access the printer; consult
the Samba documentation for details. Select the printer type as an Apple LaserWriter II or a generic
PostScript printer.

Under KDE, select "SMB shared printer (Windows)" from the KDEPrint Add Printer wizard, and enter the
details as for GNOME. Again, select the printer type as an Apple LaserWriter II or a generic PostScript
printer. Now your Linux applications should be able to print to the printer successfully!

For more information and details, take a look at
http://mywebpages.comcast.net/heretrythis/hp3100/psemunt.html.

Stuart Langridge

http://mywebpages.comcast.net/heretrythis/hp3100/psemunt.html

Hack 96. Control Your Power with ACPI

Extend the life of your laptop battery by limiting your computer's appetite for power.

The Advanced Configuration and Power Interface (ACPI) is an open industry specification that allows for
power management on laptops, desktops, and servers. Compaq/Hewlett-Packard, Intel, Microsoft,
Phoenix, and Toshiba first released it in 1996. These developers aimed to replace Advanced Power
Management (APM), the previous industry standard for power management.

You can configure ACPI and control it from within the operating system. This is a step forward from
APM, which was affected only by system idle time and could be configured only from within the BIOS
screens during startup. ACPI can be used by most new laptops, although some brands have specific
configuration issues. Be sure to do a web search for your specific machine to see what limitations your
system has.

ACPI has several different software components:

A subsystem, which monitors and affects hardware, including thermal control, motherboard
configuration, and power states

A policy manager, which allows the user to modify system states

Drivers to control and monitor devices, such as laptop batteries, SMBus
(communications/transmission path), and EC (embedded controller)

11.6.1. Installing ACPI

A number of things must be in place to use ACPI successfully. Your kernel must have the correct
configuration, you must have the relevant modules loaded, and you should be running an application to
monitor the status of your system.

To confirm that the kernel is properly configured, launch a kernel configuration tool and go to the
General Setup section. Inside this section, confirm that Power Management Support is enabled. Also,
make sure APM is disabled. Select all options to do with ACPI that are relevant to your hardware. You
can choose either M for modules or * to compile directly into the kernel. Save the new configuration and

exit. Then compile your kernel and modules, as discussed in [Hack #88] .

ACPI is always under revision. It is available in later versions of the 2.4.x series kernel (2.4.22 and
higher) and all 2.6.x series kernels. You should always use the latest stable version of the kernel that
your system can support. Even the most recent kernel can have minor bug fixes available as a patch, so
be sure to check for one at http://acpi.sourceforge.net. If your distribution has already patched your
kernel, you might have difficulty applying a second patch for ACPI. Read /usr/src/kernel-source-
<version>/README to see if your kernel has already been patched.

If you are already running a kernel with ACPI support, you can check the ACPI revision date with the
following command:

http://acpi.sourceforge.net

foo@bar:~$ cat /proc/acpi/info

This might give you detailed list or only a version number. You are looking for the line that starts with
version:.

11.6.2. Load Related Modules

The next step is to check to see that each ACPI module is loaded after your machine boots. You can do
this with the lsmod command. You are looking for the following options: button, battery, fan, ac,
thermal, and processor. If you chose Y instead of M (modules) when you compiled your kernel, you

will not see this list, because the components were compiled into the kernel itself. Otherwise, the output
should look similar to this:

 Module Size Used by
 button 2420 0 (unused)
 battery 5960 0 (unused)
 ac 1832 0 (unused)
 fan 1608 0 (unused)
 thermal 6664 0 (unused)
 processor 8664 0 [thermal]

If you compiled ACPI support as modules and you do not see the ACPI modules listed, you need to load
the modules by hand. The modules should be in /lib/modules/<kernel-version>/kernel/drivers/acpi/.

To prevent having to load the modules each time you reboot, you can do one of two things: compile
them directly into the kernel (a bit late for that, though, eh?) or add them to your /etc/modules file. If
you do not already have a copy of the file, just create a new one and add each module name
(remember, no .o) on a separate line. You can also try running update-modules which should

automatically update your /etc/modules.conf configuration file.

11.6.3. Use ACPI

You can install a few different applications/daemons on your system: acpid (the daemon that controls
your hardware states), and a monitoring program. Be sure to remove the APM daemon (apmd) if you
are running ACPI. In addition to using an application to monitor your system, you can also check the
ACPI files individually. Look in the /proc/acpi directory for various things of importance. For example, if
you want to look at your battery status you need to read the battery state file:

foo@bar:~$ cat /proc/acpi/battery/BAT0/state
present: yes
capacity state: ok
charging state: charging
present rate: 37 mW
remaining capacity: 44400 mWh
present voltage: 12456 mV

More information on ACPI in Linux, including information on power management (sleep and suspend),
is available at http://acpi.sourceforge.net.

Emma Jane Hogbin

http://acpi.sourceforge.net

Hack 97. Use an iPod with Linux

You don't need a Windows PC or Mac to use an iPod.

This hack shows how to use an iPod with Linux. It's aimed at Linux puriststhat is, people who don't
want to have to use a Mac or Windows-based PC, nor Wine nor Windows softwareto get going. (I fall
into this category, not because of any religious convictions, but merely because Linux is all I have. For
updates, visit http://pag.csail.mit.edu/~adonovan/hacks/ipod.html)

This hack assumes that you have reasonable level of Linux competence. You
should be comfortable with downloading, compiling, and installing software, as
well as general system administration tasks.

Here's what you'll need if you want to use an iPod with your Linux box:

A Mac or Windows iPod (obviously)

The iPod is basically just a FireWire hard disk, with its own operating software stored in one
partition. The two variants of the iPod are formatted with different filesystems: HFS+ in the case
of the Mac, and FAT32 in the case of Windows. Indeed, this is the only difference.

Ideally, you want to start with a Windows iPod. Linux has extremely limited support for the Apple
HFS+ filesystem, and thus it is necessary to convert HFS+ iPods to FAT32, erasing the disk in the
process. The iPod firmware is identical, though, so you must save this before you begin.

To do the conversion, don't mess around with Wine, or with WinniePod Updater, the Apple-
sanctioned tool for HFS-to-FAT32 conversion. The GNU instructions for how to convert are
sufficient and require only fdisk, dd, and mkfs.vfat, which are standard Unix tools.

The latest breed of iPod appears to come in a single flavor called "for Windows
and Mac." They are actually HFS-formatted but come with software for Windows
that invisibly does the conversion the first time they are used. So these are really
just Mac iPods. If you have access to a PC with MS Windows, you can use that to
do the conversion to FAT32. (Thanks to Zach Hobbs for this information.)

A Linux system with a recent, FireWire-capable kernel (2.4.12 or laternow might be a good time to
upgrade to RedHat 9.0 or similar)

Note that the version of RedHat Package Manager (RPM) that comes with RedHat 9.0 (Shrike) has
an annoying bug: sometimes it will crash, and on subsequent executions, it will hang, waiting for

http://pag.csail.mit.edu/~adonovan/hacks/ipod.html

a mutex (in the futex syscall, as can be observed using strace). If this happens, simply remove
the /var/lib/rpm/_ _dbxxx temporary files from the RPM database and try again.

A working FireWire interface

I use an Orange Micro PCMCIA card (http://www.orangemicro.com/firewire.html; $59.00) for a
laptop. It still seems that the kernel support for FireWire is a little flaky, so try to avoid issuing
and/or interrupting commands unnecessarily, or removing the interface while the drivers are
doing something.

The GtkPod package

GtkPod (http://gtkpod.sourceforge.net; free) is a graphical tool for transferring files to and from
the iPod. It is the Linux equivalent of the iTunes software used for this purpose on the Mac.

I used the gtkpod 0.50 RPM, available free from http://www.rpmfind.net. This package requires
the id3lib package.

You must use a tool such as GtkPod; you cannot simply copy files onto the iPod's hard disk,
because the iPod's database must be updated for it to see the new tracks. Furthermore, the first
time you use GtkPod, you must select File Create Directories to set up the database on the
iPod.

The grip package

Grip is a free, graphical tool for ripping CDs and encoding them as MP3s.

Note that when ripping CDs to files, the actual filenames are not important to the iPod. However,
because its music database is populated from the ID3 tags embedded within the MP3 files, it is
important that these are accurate.

This means that you should encode MP3 files from an album all together, or else you will lose the
album track-numbering information. It also means that you can use convenient filenames (such
as track07.mp3) instead of naming the files with the actual track names (e.g., 07. Voodoo Chile
[Slight Return].mp3); the shell metacharacters present in the latter make them a pain to work
with.

11.7.1. Setting Up Your Linux Desktop

Assuming you're using a PCMCIA FireWire card, once the card is inserted, the cardmgr daemon should
take care of loading the ieee1394 and ohci1394 modules. If you have a PCI card, these should be
loaded by system startup (/etc/rc.local).

When you attach the iPod to the FireWire interface, the sbp2 module is loaded automatically. (If it's not,
load it with modprobe.) You should see messages appear in dmesg indicating that the device is
recognized. Additionally, /proc/bus/ieee1394/devices contains information on each device, including
the string [Apple Computer, Inc.] for the iPod:

ieee1394: Host added: Node[00:1023] GUID[00d0f5cd4008049d] [Linux OHCI-1394]
ieee1394: Device added: Node[00:1023] GUID[000a2700020e545e] [Apple Computer, Inc.]

http://www.orangemicro.com/firewire.html
http://gtkpod.sourceforge.net
http://www.rpmfind.net

ieee1394: Node 00:1023 changed to 01:1023
SCSI subsystem driver Revision: 1.00
ieee1394: sbp2: Logged into SBP-2 device
ieee1394: sbp2: Node[00:1023]: Max speed [S400] - Max payload [2048]
scsi0 : IEEE-1394 SBP-2 protocol driver (host: ohci1394)
$Rev: 707 $ James Goodwin SBP-2 module load options:
- Max speed supported: S400
- Max sectors per I/O supported: 255
- Max outstanding commands supported: 64
- Max outstanding commands per lun supported: 1
- Serialized I/O (debug): no
- Exclusive login: yes
 Vendor: Apple Model: iPod Rev: 1.40
 Type: Direct-Access ANSI SCSI revision: 02
Attached scsi removable disk sda at scsi0, channel 0, id 0, lun 0
SCSI device sda: 58595040 512-byte hdwr sectors (30001 MB)
sda: test WP failed, assume Write Enabled
 sda: sda1 sda2

The iPod appears as a fake SCSI device (typically /dev/sda if you have no other SCSI devices) and can
be accessed using the regular Unix tools for block devices. However, if you are using a Mac iPod, fdisk

will not recognize the partition map, and you will get a message resembling "Device contains neither a
valid DOS partition table, nor Sun, SGI or OSF disklabel." In this case, it is time to follow the GNU
instructions (for conversion).

At this point, the Linux IEEE1394 drivers (ieee1394, ohci1394) should have recognized the hardware:

% cat /proc/bus/ieee1394/devices
Node[00:1023] GUID[001106000000649a]:
 Vendor ID: `Linux OHCI-1394' [0x004063]
 Capabilities: 0x0083c0
 Bus Options:
 IRMC(1) CMC(1) ISC(1) BMC(0) PMC(0) GEN(0)
 LSPD(2) MAX_REC(2048) CYC_CLK_ACC(0)
 Host Node Status:
 Host Driver : ohci1394
 Nodes connected : 2
 Nodes active : 2
 SelfIDs received: 2
 Irm ID : [00:1023]
 BusMgr ID : [00:1023]
 In Bus Reset : no
 Root : no
 Cycle Master : no
 IRM : yes
 Bus Manager : yes
Node[01:1023] GUID[000a2700020ec65a]:
 Vendor ID: `Apple Computer, Inc.' [0x000a27]
 Capabilities: 0x0083c0
 Bus Options:
 IRMC(0) CMC(0) ISC(0) BMC(0) PMC(0) GEN(0)
 LSPD(2) MAX_REC(2048) CYC_CLK_ACC(255)
 Unit Directory 0:
 Vendor/Model ID: Apple Computer, Inc. [000a27] / iPod [000000]
 Software Specifier ID: 00609e

 Software Version: 010483
 Driver: SBP2 Driver
 Length (in quads): 8

% cat /proc/scsi/scsi
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 00
 Vendor: Apple Model: iPod Rev: 1.40
 Type: Direct-Access ANSI SCSI revision: 02

Performing the HFS-to-FAT32 conversion involves the following steps:

Save the first 32 MB of the second partition, which contains the iPod firmware image. Keep this file
safe somewhere on your PC:

% dd if=/dev/sda2 of=backup_firmware

1.

Splat zeros all over the partition map so that all disk data is effectively erased. Unload and reload
the sbp2 driver to update its world-view:

% dd if=/dev/zero of=/dev/sda bs=1M count=10
% rmmod sbp2 && insmod sbp2

2.

Create two partitions. The first should be large enough to hold the 32-MB file you saved earlier;
the second will hold the remaining 30 GB of the disk. Tag the two partitions as Empty and FAT32,

respectively:

% fdisk /dev/sda
n [make new partition]
p [primary]
1 [first partition]
 [just press enter -- default first sector is 1]
5S [5 sectors -- big enough to hold 32MB]

n [make new partition]
p [primary]
2 [second partition]
 [just press enter -- default first sector is 6]
 [just press enter -- default size uses all remaining space]

t [modify type]
1 [first partition]
0 [first partition has no filesystem; ignore warning]

t [modify type]
2 [second partition]
b [second partition is FAT32]

p [show partition map]

 Device Boot Start End Blocks Id System
/dev/sda1 1 5 40131 0 Empty

3.

/dev/sda2 6 3647 29254365 b Win95 FAT32

w [commit changes to disk]

Copy the firmware back to the first (small) partition:

dd if=backup_firmware of=/dev/sda1

4.

Make a FAT32 filesystem on the second (large) partition:

mkfs.vfat -F 32 -n "My iPod" /dev/sda2

If all goes well, resetting the iPod (by holding down the Menu and Play buttons for 10 seconds) will
cause it to reboot to the familiar menus. If not, go through the instructions again. Remember, the
iPod is just a hard disk, so as long as you have the original firmware backed up correctly and
safely on your PC, you can reformat it as many times as you like. (It worked for me the first time.)
Be wary about installing different firmware from the one it came with, however.

At this point, you should be able to mount the disk in the usual way. Once this works, setup is
complete and you are through to the normal usage instructions described in the following section.

5.

11.7.2. Normal Usage

The Linux drivers for the iPod are still a little flakey; sometimes, the sbp2 driver gets stuck indefinitely

in its initializing state and cannot be removed, and at other times the machine hangs.

To minimize the risk of such errors, I strongly advise you to follow a disciplined procedure for docking
and undocking the iPod. Here's the order of events I usually employ:

Insert the IEEE1394 PCMCIA card into my laptop. Check that this succeeded by running lsmod and
looking for ieee1394 and ohci1394.

1.

Attach the iPod. This time the sbp2 driver should appear. If it does not, try detaching and
reattaching it.

2.

Mount the iPod as a disk, copy files across, and then unmount it again.3.

rmmod the sbp2 driver.4.

Detach the iPod.5.

Remove the IEEE1394 card.6.

Note that these steps are perfectly symmetrical. This seems to achieve greater reliability than
performing them in an arbitrary order.

I use two scripts, dock-ipod and undock-ipod, whenever I attach or detach the iPod to or from the
interface card. Here's dock-ipod:

#!/bin/sh

modprobe sbp2

mount /dev/sda2 /mnt/ipod/

And undock-ipod:

#!/bin/sh

umount /mnt/ipod
rmmod sbp2

They must both be run as root:

% su - root -c ./dock-ipod

or:

% sudo ./dock-ipod (if the user is a sudoer)

or:

% su - root
Password:
root$./dock-ipod

11.7.3. Downloaded MP3 Files and ID3 Tags

The iPod does not care about the filenames of MP3 files; all its database information is supplied by ID3
tags within the MP3 files. Therefore, these must be present for transferred files even to appear on the
iPod.

You might want to add MP3 files that did not come from a CD (e.g., those downloaded from Napster,
Kazaa, etc.) to your iPod. The ID3 tags in such files are often inappropriate; for example, because they
feature the original artist/album name from the CD they came from, instead of the logical group to
which they will belong on your iPod (e.g., Misc/80s Synth Pop). If you do nothing about this, you will
find each song appearing in its own artist/album category, with no useful grouping. You'll also need to
tag manually when CDDB lookup fails (e.g., for non-industry CDs) or for MP3 files that were hand-
encoded from WAV.

To change the tags, you'll need a tool such as ID3ed
(http://www.dakotacom.net/~donut/programs/id3ed.html; free). This tool is pretty straightforward,
and it comes with a helpful man page. The synopsis says:

id3ed [-s songname] [-n artist] [-a album] [-y year]
[-c comment] [-k tracknum] [-g genre] [-q] [-SNAYCKG]
[-l] [-L] [-r] [-i] [-v] files...

Obviously, you don't need to include all of those options. Here's an example:

% id3ed -s "Red House" -n "Jimi Hendrix" \
-a "Are You Experienced?" -k 3 redhouse.mp3

http://www.dakotacom.net/~donut/programs/id3ed.html

Alternatively, you can use a graphical tool such as xid3 (www.nebel.gmxhome.de/xid3/; free), which
has a Tcl/Tk-based front end for ID3-tag editing that makes it a lot easier to use for this information.
The most important ID3 tags for the iPod are Artist, Album, Title, and Track Index (and Genre, if you
actually bother to use that).

With minimal effort, your iPod will play nicely with Linux. No, you won't be able to buy songs from the
iTunes Music Store, but you'll still have most of the functionality Macintosh and Windows users have.

Alan Donovan

Hack 98. Sync Your iRiver with Linux

Use Linux to copy your songs and create the iRiver database.

Of the wide variety of "lifestyle" items that are competing for our disposable income, the personal music
player is one of the most popular. Although many of us can remember the excitement of getting a
personal cassette player when we were younger, the latest incarnation of music on the move is fully
digital, and it can store your entire album collection.

A number of these personal music players are on the market, but one of the most intriguing is the iRiver
series. Not only do these little boxes pack in upward of 40GB of storage, but they also support a variety
of different codecs beyond plain MP3. Some of you might be aware that encoding MP3 is actually a
legally foggy area, as the codec was created and licensed by Fraunhoffer, and many free encoders are
not properly licensed. A free MP3 alternative called Ogg Vorbis exists that promises both higher quality
and smaller file size. This format is gaining in popularity, and the iRiver, unlike the iPod, supports it out
of the box.

To get songs on your iRiver, you need to rip your CDs to get the tracks onto the hard disk of your Linux
machine, encode them as MP3 or Ogg Vorbis, and then upload them to the iRiver via USB. Optionally,
you can then build the iRiver internal database for your MP3s (you cannot use the database for Ogg
files). The iRiver IHP series of players use a special internal database that stores all the details of your
song titles, albums, genres, and other information. One issue to bear in mind is that the iRiver lacks
support of Ogg Vorbis tags. This means Ogg metadata will not be included in the database. If you want
to use ID tags (these tags store information about the artist, album, track number, and so on), you
need to rip your songs as MP3s.

This hack does not cover how to rip songs, but a number of great ripping tools are available, such as
Grip, RipperX, KAudioCreator, and Jack. Most of these tools are simple and intuitive to use.

11.8.1. Transfer the Songs to the iRiver

You can transfer songs to the iRiver by plugging it into one of the USB ports on your computer. To
transfer files, you need to ensure that you have USB support compiled into your kernel, and then you
need to mount the device. These options are available in the kernel configuration tool [Hack #88] in
the USB Support section. You should ensure that you have UHCU, UHCI Alternate Driver, or OHCI
selected, depending on the type of USB support on your motherboard. You can find out which USB
support you have from your motherboard's manual. With the USB support compiled in, you can mount
the disk with the following command:

foo@bar:~$ mount -t vfat /dev/sda1 /mnt/iriver

You will probably need to change the mount directory /mnt/iriver to something that is relevant to your
system. Once it is mounted, if you look in /mnt/iriver, you will see either an empty directory if you have
not uploaded any songs or a list of artist directories if songs are already on the iRiver. Now you can
copy over files by using a file manager, such as Nautilus or Konqueror, or by using the following
command if your Metallica songs are in /home/joeblogs/Metallica:

foo@bar:~$ cp -r /home/joeblogs/Metallica* /mnt/iriver

11.8.2. Rebuild the Database

The iRiver database is essential in terms of making the iRiver as usable as possible. This database
contains a detailed list of artists, genres, albums, song lengths, track numbers, and more; many of the
features in the iRiver are available only if you have created the database. You still can use the iRiver
without the database, but you can choose your songs and albums only via the clunky file manager on
the iRiver as opposed to its special menus. Unfortunately, the installation CD does not come with a tool
to build the database for Linux, but a simple utility available on the Internet, called iRipDB, can do the

job. You can download iRipDB from http://www.fataltourist.com/iripdb/.

Once you have downloaded the latest version of iRipDB, unzip it onto your hard disk with this
command:

foo@bar:~$ tar xcvf iRipDB -x-x-x .tar.gz

Replace x-x-x with the actual version number of the iRipDB program. You need to ensure that you have

the following libraries on your system before you compile the code:

libid3

This library provides the use of ID3 tags in songslibogg.

libvorbis

These libraries provide support for Ogg Vorbis files.

To compile the code, run the compilation script included with the code. Move into the directory where
the code is stored, and run this:

foo@bar:~$./compile.sh

When the program is compiled, you will have an executable in the source directory called iripdb. Now

you can run this to rebuild the database:

foo@bar:~$./iripdb /mnt/iriver

The preceding command runs the iripdb command on the directory where you mounted your iRiver.
You can also use the -e switch to include files that have not had tags added to them:

foo@bar:~$./iripdb -e /mnt

To finish, you should unmount the device to ensure that all data has been copied over completely:

foo@bar:~$ umount /mnt

http://www.fataltourist.com/iripdb/

Now full support for your iRiver is available on your system. Although you will mostly listen to music on
your iRiver, try copying some text files onto the device. On the IHP series, you will find that you can
read them on the screen. This can be handy if you need to carry around some notes or other text with
you.

Hack 99. Boost Hard-Drive Performance

Get the best possible performance from your IDE hardware.

To be on the safe side, your new Linux installation starts up with the least common denominator of disk
drive performance capabilitiestypically DMA-33robbing you of 50-150% of your potential performance.
Once Linux is installed, you are free and encouraged to start tweaking the configuration of your disk
drive and its interface to squeeze the most of them.

Setting HDPARM parameters too aggressivelythat is, in excess of the disk
controller or drive capabilitiescan lead to data loss.

It is best to test HDPARM settings on a fresh installation of the operating system
before committing any applications or programs to the drive and prepare to back
down on the settings and reinstall the OS if the drive is unstable or the HDPARM
tests show erratic results or fail.

The tool needed, HDPARM, is included with the operating system (or available from your package
manager). It can be adjusted manually and then put into a startup script to make your chosen settings
effective every time the system starts up.

HDPARM is a command-line utility that provides powerful control over your hard drive parameters (HD
PARaMeters). It can also tell you a lot about your disk drive. Everything you do with HDPARM, until you
make a script for it, will be done at the command line.

You must be logged in as root to run HDPARM. You can also use the sudo

command to run the command as root if you have sufficient privileges.

Assume /dev/hda is the designation for your hard drive. (This is the default for the first IDE drive; a
SATA drive may appear as /dev/hde if your motherboard also has IDE interfaces.) Run the following
command:

hdparm -i /dev/hda

You should get some info like the following:

/dev/hda:
Model=QUANTUM FIREBALLlct, FwRev=APL.1234, SerialNo=1234567
Config={ HardSect NotMFM HdSw>15uSec Fixed DTR>10Mbs }
RawCHS=16383/16/63, TrkSize=32256, SectSize=21298, ECCbytes=4
BuffType=DualPortCache, BuffSize=418kB, MaxMultSect=8, MultSect=off
CurCHS=16383/16/63, CurSects=-66060037, LBA=yes, LBAsects=39876478

IORDY=on/off, tPIO={min:120,w/IORDY:120}, tDMA={min:120,rec:120}
PIO modes: pio0 pio1 pio2 pio3 pio4
DMA modes: mdma0 mdma1 mdma2 udma0 udma1 udma2 udma3 udma4 *udma5
AdvancedPM=no
Drive Supports : ATA/ATAPI-5 T13 1321D revision 1 : ATA-1 ATA-2
ATA-3 ATA-4 ATA-5

This tremendous amount of data provided tells you:

MaxMultSect

The maximum number of sectors your hard disk can read at a time.

MultSect

The current number of sectors being read at a time.

PIO modes and DMA modes

The modes supported by your hard drive. The one marked with an asterisk (*) is the one

currently set.

AdvancedPM

Indicates whether or not your hard drive supports Advanced Power Management.

Another command:

hdparm /dev/hda

reveals the following information:

/dev/hda:
multcount = 0 (on)
I/O support = 0 (16-bit)
unmaskirq = 0 (off)
using_dma = 0 (off)
keepsettings = 0 (off)
nowerr = 0 (off)
readonly = 0 (off)
readahead = 8 (on)
geometry = 2482/255/63, sectors = 39876480, start = 0

The items of interest are:

multcount

The number of sectors being read at a time.

I/O support

The operating mode of your hard disk (16/32/32sync).

using_dma

Whether or not the drive is using the DMA feature. This may be on by default if your version of
Linux properly detects and supports your chipset and drive's DMA capabilities.

keepsettings

Whether the settings are kept after the drive resets (usually caused by errors).

readonly

Whether the drive is read-only. Normally set to 1 only for CD-ROMs.

readahead

How many sectors ahead will be read when you access the hard drive.

The HDPARM program provides two performance-testing features that are crucial to letting you know
whether you're making improvements as you tweak along. The command:

hdparm -Tt /dev/hda1

will show results such as the following before enhancing the performance:

/dev/hda1:
Timing buffer-cache reads: 128 MB in 5.97 seconds = 21.43 MB/sec
Timing buffered disk reads: 64 MB in 17.97 seconds = 3.56 MB/sec

and then results like these after enhancing the performance:

Timing buffer-cache reads: 128 MB in 0.91 seconds =140.66 MB/sec
Timing buffered disk reads: 64 MB in 3.78 seconds = 16.93 MB/sec

The goal of this hack is to see the time in seconds decrease and the MB/sec to increase. You can do that
by using a variety of parameters, invoked one at a time, then rerunning the performance tests to see if
things are improving.

Mistakes during the setup process may damage your filesystem and all of its data, so it's best to do this
after a fresh install of Linux or right after you've done a full backup.

Begin by setting the operating mode of the interface between the system and the disk drive using one of
the following parameters:

hdparm -c0 /dev/hda #sets operating mode to 16-bits
hdparm -c1 /dev/hda #sets operating mode to 32-bits
hdparm -c3 /dev/hda #sets operating mode to 32-bits synchronized

Mode 1 (-c1) is used most often for best performance. Mode 3 (-c3) only is needed for some chipsets.

Next set the data transfer parameters, which you can determine from the output of the "-I" command
shown earlier (in that case 8 is the maximum supported):

hdparm -m8 /dev/hda

Next try activating DMA mode for your system interface:

hdparm -d1

Then set the drive mode (a value of X32 is most common; UDMA-5 is X69):

hdparm -X32 /dev/hda

or:

hdparm -X69 /dev/hda

Finally, try setting the read-ahead value, which is typically set to the same value as multcount from
earlier, or 8:

hdparm -a8 /dev/hda

If any or all of these settings make incremental improvements in performance, remember them and
create a script that sets them all sequentially or includes them all in one line. I prefer sequential lines to
ensure the drive accepts each command separately and I do not lose a setting if another fails to take.
From all of this, you might typically be using the following parameters:

hdparm -c1
hdparm -m8 /dev/hda
hdparm -d1
hdparm -X34 /dev/hda
hdparm -a8 /dev/hda

Another single-command example that may work best for your system is:

hdparm -X66 -d1 -u1 -m16 -c3 /dev/hda

Save to a file and make the file a script to place in the directory for the runlevel at which you normally
use Linux. For example:

Using a text editor, create then save the script as /etc/init.d/hdparm.local.1.

Configure it to start in runlevel 5 with the following command:

ln -s /etc/init.d/hdparm.local /etc/rc5.d/S20hdparm.local

2.

The rc5.d part of the parameter string indicates runlevel 5, which is the normal operating mode

for most Linux systems. To find out your default runlevel, examine /etc/inittab for the
inittdefault entry, as in:

id:5:initdefault:

The next step is to keep an eye on dmesg and/or /var/log/syslog. In some cases, an error will
cause the settings to be reset. So that's where the -k (keep) flag comes in. If you're 100% positive
that these settings won't corrupt your data, you can add -k to the script.

Jim Aspinwall

3.

Hack 100. Accelerate Your Gaming

As Linux use grows, more device manufacturers are creating official Linux drivers; this is particularly
true of video card manufacturers. The benefit of having official drivers is that the manufacturer, which
has complete access to all the hardware specifications, is able to write a definitive driver that makes the
device as usable in Linux as it is in other operating systems. The flip side to this benefit, however, is
that some commercial drivers for graphics cards are written as closed source software, and sometimes
they incorporate incomplete or unstable features. Some drivers have been particularly reliable, such as
those from NVIDIA, but you should browse the Internet to see how reliable other official drivers are.
Sometimes a driver's stability changes between versions, but not always for the better. So, your
Internet searches might reveal that the best driver is not the most recent one.

This hack shows you how to install the binary drivers provided by the manufacturer for recent-model
video cards from ATI and NVIDIA.

11.10.1. Preparing for the Installation

Many official drivers require that specific versions of software be used to build and run the driver. This
required software usually includes the kernel, the kernel header files (used to compile the kernel itself),
the C compiler (gcc), and X. You need to ensure that all of these requirements are present on your
system; a process that can involve installing some of the missing pieces where needed. As many users
have never compiled anything before, it is quite common to need to install a copy of gcc.

Before proceeding, you should ensure that your versions of the required programs are compatible with
the software requirements for your driver. Virtually every program can report its version number. To
find out the version of your kernel, you can run this:

foo@bar:~$ uname -a

To find out the version of your kernel headers, you need to ensure that you have the kernel headers
package on your system. To check this on an RPM-based system, run this:

foo@bar:~$ rpm -qa | grep kernel-source

To check the version of the kernel headers on a Debian/APT-based system, run this:

foo@bar:~$ dpkg -l kernel-header*

To find out your version of gcc, run this:

foo@bar:~$ gcc -v

Finally, to find out your version of X, run this:

foo@bar:~$ X -version

Before you begin to install your driver, you should back up your X configuration file, as it might be
overwritten when you configure the binary driver. This file is called XF86Config or XF86Config-4 and is
usually found in /etc/X11. You should copy the file to a safe place as a backup:

root@bar:~# cp /etc/X11/XF86Config* /root/xconfigbackup/

11.10.2. Installing the NVIDIA Driver

One of the most popular closed source graphics drivers in use is the unified NVIDIA driver. Many people
have chosen NVIDIA cards for their impressive performance and driver support, and because the full
range of features on the cards are available in the Linux driver. You can download a single unified driver
that supports all NVIDIA cards at http://www.nvidia.com/linux.

Once you have downloaded the driver package, you need to make it executable so that you can run it.
Type the following commands as root:

foo@bar:~# chmod a+x NVIDIA-Linux-x86-x.x-xxxx-pkg1.run

Before you run a graphics driver installer, you should ensure that you have exited
X by logging out, and if you have a graphical login manager, you should shut this
down, too. Using GDM as an example, you can do this in Debian with
/etc/init.d/gdm stop. In Red Hat you can do the same with service gdm
stop.

Then you can run the installer (make sure you are not in X):

foo@bar:~# ./NVIDIA-Linux-x86-x.x-xxxx-pkg1.run

The software compiles a driver on-the-fly and installs it to your system. The next step is to change your
X configuration file to use the driver. For XFree86, you need to edit XF86Config or XF86Config-4, and
for the Xorg version of X, you need to edit xorg.conf. Both configuration files are located in /etc or
/etc/X11, and both use the same syntax.

Inside the file is a Device section, where you should change Driver "nv" to Driver "nvidia". In the
Module section, you should add Load "glx" and comment the DRI and Glcore lines.

Now reboot or reload your modules and X to run the driver.

11.10.3. Installing the ATI Driver

ATI has made a number of drivers available for its Radeon range of cards. You install these closed
source drivers in much the same way you install the NVIDIA drivers. You can download the drivers from
http://www.ati.com/support/driver.html.

The drivers are available as RPM files, and you can install the RPM with this command:

http://www.nvidia.com/linux
http://www.ati.com/support/driver.html

foo@bar:~$ rpm -Uh --force driver.rpm

If you are on a system that does not use RPM as a package type, you can use Alien to convert the
package to another type, such as a tarball or Debian package. Once you have opened the package, you
can move to the directory that contains the driver and run the main tool that completes the installation
for you:

foo@bar:~$./fglrxconfig

Within the program, you are asked numerous questions about how you want your video card configured
(when in doubt, accept the default). Then you are asked if an XF86Config-4 file should be generated.
Select Y to accept this action and the installation is complete. If you are running the Xorg server, you

will need to rename this generated file to xorg.conf, and put it in /etc or /etc/X11 on your system. Then
you can start X:

foo@bar:~$ startx

Now run the fglrxinfo utility; it should say this:

OpenGL vendor string: ATI Technologies Inc.

If this is the case, the driver installation process is complete.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The tool on the cover of Linux Desktop Hacks is a wood plane. For carpenters of the past, wood planes,
which are used to smooth, shape, and straighten wood surfaces, were once indispensable tools. The
typical carpenter lugged around an entire chest full of planes, each with a special function. This is not
surprising considering a single piece of wood can potentially become bowed, twisted, cupped, sprung,
and diamonded, all at the same time. Learning to use a wood plane is said to be a difficult and often
frustrating task. If the proper techniques are not used, the plane will dig into the wood surface and ruin
the board. Seasoned carpenters say that keeping a sharp blade and planing with the grain are the first
steps in mastering this tool.

Bench planes, such as jointers and jacks, range in length from 9 to 22 inches or more. These are better
than smaller planes for straightening edges, because their length enables them to bridge dips and rises
in the wood's surface. Today, power tools, such as routers and power planers, have replaced bench
planes for straightening boards, but hand or "block" planes are still the perfect tool for trimming swollen
doorways and fitting shingles.

Sarah Sherman was the production editor and proofreader, and Audrey Doyle was the copyeditor for
Linux Desktop Hacks . Lydia Onofrei, Claire Cloutier, and Colleen Gorman provided quality control.
Johnna Van Hoose Dinse wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is an image source found at Photo.com. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's Helvetica Neue and ITC Garamond fonts.

David Futato designed the interior layout. This book was converted by Judy Hoer to FrameMaker 5.5.6
with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses
Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Helvetica Neue
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Lydia Onofrei.

The online edition of this book was created by the Safari production group (John Chodacki, Ken
Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

2.6 kernel upgrade

 compiling

 installation

 new features

3D effects in KDE drop boxes

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

account setup, controlling

ACPI (Advanced Configuration and Power Interface)

 modules

alerts

 email

 KMail and

 logsentry and

Apple HFS+ file system

applications

 OpenOffice.org and

 sharing, screen tool

 startup

 automation

 translucent

 user setup

aterm project

ATI video card

automation

 application startup

 background programs

 clock updates

 cron and

 crontabs

 job creation

 GNOME and

 introduction

 KDE and

 respawn and

 xcompmgr

 XFce 4

Autostart directory (KDE)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

backgrounds

 automating programs

 GRUB and

 bootloader

 creation

 X11, black

backups, network

 rsync

 single-shot

bash configuration, auto-configuration files

Big Kernel Lock

Bluetooth, connections and

boot code

boot splash

 startup scripts

 utility installation

booting

 boot manager hidden

 bypass bootloader

 from CD

 corrupt kernel and

 Debian systems, graphics and

 floppy disks and

 graphical consoles

 installation disk and

 introduction

 mounting disks and

 non-Linux systems

 operating system

 silent mode

 Smart Boot Manager

 verbose mode

bootloaders

 bypassing

 configuration

 GRUB

 background

 LILO

 boot screen setup

 setup

 yaboot

 configuration

bootsplash package, Debian

browsers

 VNC server and

 w3m packages

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Caps Lock key, virtual console and

CDPATH, directory changes and

CDs, Konqueror and

cell phones, Internet connection and

cfdisk, MBR and

ChromeClock

CKO (Con Kolivas Overloaded) kernel

clocks

 NTP

 synchronizing

 updates

cloning Linux

 partitions and

color

 files on pagers

 LILO splash screen

command-line

 directory changes

 kstart

 log-in screens, multiple

 prompt, space saving

 screenshots

 screenshots and

 terminal switches

compiling kernel 2nd

 distributed compiling daemon

 speed

configuration

 bash, auto-configuration files

 bootloader

 Enigmail

 Ethernet, cables and

 Evolution

 FetchYahoo script

 Firefox configuration mode

 GRUB 2nd

 kernel 2nd

 make menuconfig command and

 LILO

 monitor

 monitor refresh rate

 monitor resolution

 PPTP

 procmail, MTA

 Qingy use

 SmoothWall

 USB device automounter

 user accounts, controlling

 VNC server

 Macintosh

 Windows

console

 as graphics layer

 keyboard and

 custom keys

 redefine

 special keyboard

 keycode files

 text mode

 virtual console

 keyboard actions

conversion

 maildir to mbox

 mbox to maildir

 Windows to Linux, custom cursors

corrupt kernel, booting and

cron

 automation and

 cronjobs, email

 crontabs, advanced

 FetchYahoo automation

 job creation

 scripts, automatically running

cursors

 custom

 NVIDIA driver and

 themes

 convert from Windows to Linux

 default

 Golden XCursors 3D theme

 KDE-Look Web site

 personal defaults

CursorXP

 custom cursors and

 ImageMagick and

CVS

 source control and

 Subversion and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

D3ed

data fork resource files (Macintosh)

DCOP (Desktop COmmunications Protocol)

 actions, automated

 KDE, right-click menu actions

 processes and

 scripting and

 shell script writing

dd utility

Debian systems

 boot graphics

 bootsplash package

 GRUB configuration file

 restores

desktop

 default environment, user account setup

 iPod and

 remote access

development code (KDE)

directories

 CDPATH and

 changing

distcc

DivX media format

DNS, Firefox and

drop shadows, 3D effect and

DVD format

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

email [See also procmail]

 alerts for events

 cronjobs

 delivery agent, mailbox format and

 encryption and

 mailbox formats

 mbox storage format

 text mode clients

 version conversion

 Yahoo!, read from any client

encryption

 email

 Enigmail

 GPG

 keypairs

 key servers

 PGP

Enigmail, mail encryption

 configuration

 installation

Ethernet configuration, cables and

events

 alerts

 Jpilot

 KMail and

Evolution configuration

experimental code

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

fast user switching

fdisk/mbr

FetchYahoo script

 automation, cron and

 configuration

files

 color, pagers

 graphic remote management

Firefox

 configuration mode

 DNS request

 Java in

 undercover options

 user agent override

firewalls

 old computer as

 overview

 port forwarding, enabling

 SmoothWall

FISH, Konqueror and

floppy disks, booting and

Fluxbox window manager

fonts

 Macintosh 2nd

 ttmkfdir command

 Windows

 TrueType

frame buffers, X11 graphics and

FTP, Konqueror and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

gaming

GARNOME

gDesklets (GNOME)

GDM (GNOME)

 multiple screens

Gentoo

 GRUB configuration file

getty, Qingy and

Gimp, LILO splash screen

GNOME

 automation and

 desktop

 bleeding edge

 introduction

 gDesklets

 GDM, multiple screens

 images, file conversion

 log-in, managing

 Nautilus

 file types

 right-click actions

 oooqstart-gnome

 wallpaper, randomize

GNOME Volume Manager

GnomeMeeting

 video and

 webcams

Golden XCursors 3D theme

GPG (GNU Privacy Guard)

 keypairs

GPS (Global Positioning System)

 connecting

 mapping software

 spidering maps

GpsDrive

graphical consoles, booting and

graphics layer, console as

graphics, booting and (Debian systems)

grep, xcompmgr and

grip CD tool

GRUB (GRand Unified Bootloader) 2nd

 background

 create

 display

 configuration 2nd

 Debian systems

 Gentoo systems

 MBR and 2nd

 setup

GtkPod tool, iPod and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

hard drive, HDPARM and

hard-drive performance

HDPARM tool

HFS-to-FAT32 conversion

hotkeys, LinEAK and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

icons, Kiosk mode (KDE)

ifplugd utility

ImageMagick, CursorXP and

images

 cloning and

 file conversion

 splash screens

install-mbr

installation

 ACPI

 Enigmail

 kernel

 2.6 upgrade

 NVIDIA driver

 NX client

 NXServer

 Qingy 2nd

 USB devices

installation disk, booting and

Internet connections, Bluetooth and

Internet keys

 LinEAK and

 text mode and

Internet phone

 GnomeMeeting

 PC-to-phone calls

 Skype

iPod

 desktop setup and

 drivers

 grip package

 GtkPod and

 HFS+ filesystem and

 Orange Micro PCMCIA card

 synchronization

 xid3

iRiver, synchronization and

isochronous scheduling

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

jail group/user

Java, Firefox and

Jpilot, events

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

karamba

KDE

 automation and

 Autostart directory

 compiling code

 DCOP and

 development code

 experimental code

 KDM, multiple screens

 Kiosk mode

 log in management

 menus

 right-click actions

 submenus

 symbols for actions

 program startup

 scripts

 actions

 user limits

 windows, 3D effects

KDE desktop

 interactivity

 karamba and

 Konqueror

 passwords for remote access

 remote access and

 panels

 superkaramba and

 superkaramba project

KDE wallet system

KDE-Look Web site, cursor themes

KDM, multiple screens

kernel

 2.6 upgrade

 compiling

 new features

 Big Kernel Lock

 booting and, corrupt

 CKO

 compiling 2nd

 configuration 2nd

 make menuconfig command

 device support

 installation

 2.6 kernel upgrade

 introduction

 tuning

key servers, encryption and

keyboard

 console and, redefine

 custom keys

 hot keys, LinEAK and

 Internet keys

 multimedia keys

 special, redefining

 virtual console and

keycode files

keypairs, GPG encryption

kfmclient, file management and

Kiosk mode (KDE)

 menus

Kismet

KMail

 alerts and

 events and

Konqueror

 audio CDs and

 FISH and

 FTP and

 Kiosk mode

 LAN connections and

 remote access and

 one-click operation

 passwords and

 usernames

 SFTP and

kstart

 application options

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

LANs, Konqueror and

LILO (LInux LOader) 2nd

 boot screen setup

 configuration

 MBR and

 setup

 splash screen

 color

 custom

LinEAK, hot keys and

link monitoring, Wavemon 2nd

Linux cloning

log file keywords, Swatch and

log-in managers

 fast user switching

 multiple screens

 command-line

 GDM

 KDM

login passwords, none

login screen, Qingy

logsentry, alerts and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Mac OS X, access from Linux

Macintosh

 data fork resource files

 fonts 2nd

 VNC server configuration

Macromedia Flash plug-in

maildir

 convert from mbox

 convert to mbox

 mailbox storage format

maildir email storage

make menuconfig command, kernel configuration

mapping software, GPS and

mbox

 convert from maildir

 convert to maildir

mbox email storage

MBR (Master Boot Record)

 backup

 backups

 GRUB and

 install-mbr tool

 killing 2nd

 recovery

 restores

menus

 actions, symbols

 KDE Kiosk mode

 Nautilus, scripts option

 right-click actions

 GNOME

 KDE

Microsoft VPN server

Microsoft Word documents, terminals

mirroring, screen tool and

monitor

 configuration

 information

 refresh rate

 configuration

 resolution configuration

monitor mode, network card, wireless networks and

monitor sharing, screen tool

motion capture

 scrot tool

motion capture camera

motion tool, video

mounting disks, booting and

mouse

 cursors

 NVIDIA driver and

 RedDot directories

 themes

 custom cursors

Mozilla, Wordview

MTA (Mail Transfer Agent), procmail configuration

multimedia keys on keyboard

 LinEAK and

multiple log-in screens

 command-line

 GDM

 KDM

Mutt

 email text mode client

 PDF documents

 Word documents

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Nautilus

 file types

 menu, scripts option

 right-click actions

 scripts, environment variables

networks

 backups

 rsync

 single-shot

 ifplugd utility

 remote access

 wireless

 Kismet and

 scan for

NTP (Network Time Protocol)

 clock synchronization

 clocks and

NVIDIA driver

 installation

 mouse cursors and

NX Client installation

NX server

 commands

 setup

NXServer installation

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

oooqs utility (KDE), OpenOffice.org and

ooqstart-gnome

OpenOffice.org

 oooqs utility

 preloading items

 quickstarts

 respawn trick

operating systems

 booting

 non-Linux, booting and

Orange Micro PCMCIA card, iPod and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

pagers, colored files

partition table

partitions, cloning Linux and

passwords

 KDE wallet system

 Konqueror remote access

 none

 public key

patches in experimental code

PDF documents

 Mutt

 terminal display

performance

 hard-drive

 prelinking and

personal default cursor themes

PGP (Pretty Good Privacy)

PIM (personal information manager)

plug-ins

 Java in Firefox

 Macromedia Flash

pointers, custom

pop-ups as reminders

port forwarding

 firewalls

PPTP Client

 configuration

prelinking, performance and

printers

 ACPI (Advanced Configuration and Power Interface)

 redirected

 unsupported

printing overview

private keys, generating

procmail

 configuration, MTA

 recipes

 usage

prompt, command-line, space saving

public keys

 generate

 passwords and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Qingy

 configuration

 installation 2nd

 login screens and

 session choices

 themes

Quicktime media format

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

RedDot directory, cursors and

RedDotSource directory, mouse cursors and

redirected printers

refresh rate

 configuration

 monitor

reminder pop-ups

reminders, script

remote access

 graphic file management

 Konqueror and

 one-click operation and

 passwords and

 passwords, none

 XDMCP (X Display Manager Control Protocol)

remote systems

resolution, configuration

respawn trick, OpenOffice.org

respawn, automation and

restores, Debian and

right-click menu actions

 GNOME

 KDE

rsync

rxvt project

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

screen

 LILO splash screens

 mirroring and

screen tool

 application sharing

 disconnected

 functions

 monitor sharing

 multiple users

screenshots

 command-line and

 command-line terminal

 upload to Web automatically

 X terminal

scripting

 cron, run automatically

 DCOP, shell script writing

 FetchYahoo

 KDE

 KDE actions

 Nautilus

 environment variables

scrot screen-capture tool

security

 firewalls, old computer as

 viruses

 X programs access

SFTP, Konqueror and

showkey command

silent mode, booting

Skype

Smart Boot Manager

SmoothWall

source code

 CVS and

 source control system

splash screens

 boot splash utilities

 LILO

 color

 custom

SSH (Secure SHell)

 Konqueror

 password, none

 port forwarding

 portforwarding and

stalling browser

starting applications

 automation

 kstart

 shortcuts on desktop

starting OpenOffice.org, preloading items

startx command, X11 background

submenus, KDE

Subversion (CVS)

superkaramba

 ChromeClock

 gadget storage

 prepackaged versions

 taskbar and

superkaramba project

Swatch, log files and

switching users fast

symbols for menu actions, KDE

synchronization

 clocks

 iPod

 iRiver

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

taskbar, superkaramba and

terminals

 PDF document display

 switches

 transparent

 tinted

 uses

 Word documents

text console, Alt key

text mode

 Internet keys and

 multimedia keys and

themes

 cursors

 convert from Windows to Linux

 default

 Golden XCursors 3D theme

 KED-Look Web site

 personal defaults

 Kiosk mode (KDE)

 Qingy

Thunderbird, Enigmail installation

TightVNC

tinted terminal window

transparent terminals

 tinted

TrueType fonts (Windows)

ttmkfdir command

tuning

 bootloader and

 kernel

 /proc and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

unsupported printers

urxvt project

USB devices

 automounter configuration

 GNOME Volume Manager

 Utopia and

user accounts

 application defaults

 configuration, controlling

 desktop, default environment

user agent, Firefox, overriding

usernames, Konqueror remote access and

users

 limits

 switching fast

Utopia, USB devices and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

verbose mode, booting

video

 ATI card

 GnomeMeeting

 motion tool

video conferencing

virtual console

 Alt key

 Caps Lock key

 description

 keyboard actions

virtual desktops, multiple, pop-ups and

virtual terminals

viruses

 Windows documents and

 Windows emulators and

VNC (Virtual Network Computer)

VNC server

 configuration

 Macintosh

 Windows

 connect to

 TightVNC and

 web browsers and

VPNs (Virtual Private Networks)

 Microsoft server

 PPTP Client

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

w3m packages

wallpaper, GNOME

Wavemon

Web browsers

 plug-ins

 Java in Firefox

 Macromedia Flash

 stalling 2nd

Web pages, screenshot upload

webcams, GnomeMeeting

window managers

 Fluxbox

 minimalists

 WindowMaker

WindowMaker

Windows

 access from Linux

 convert to Linux

 cursor themes

 documents, viruses and

windows

 drop shadows

Windows

 emulators, viruses and

 fonts

 TrueType

windows

 KDE, 3D effects

Windows

 machines as print server

windows

 translucent

Windows

 VNC server, configuration

Windows Media (WMV) media format

wireless networks

 Kismet and

 scan for

Word documents

 Mutt

 terminals

wvWare

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

X programs, security

X terminal, screenshots from

X11

 black background

 engine startup, Xservers and

 introduction

xcompmgr

 automation

 desktop startup

 grep and

 window manager startup

XDMCP (X Display Manager Control Protocol)

XFce 4, automation and

xid3, iPod and

xinit command

xinitrc startup script, automation and

Xorg fork

Xservers, X11 engine startup and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

yaboot 2nd

Yahoo! mail, read from any client

	Linux Desktop Hacks
	Table of Contents
	Copyright
	Credits
	About the Authors
	Contributors
	Acknowledgments

	Preface
	Why Linux Desktop Hacks?
	How to Use This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Got a Hack?
	Safari Enabled

	Chapter 1. Booting Linux
	Hacks 1-9
	Hack 1. Give Your Computer the Boot
	Hack 2. Kill and Resurrect the Master Boot Record
	Hack 3. Bypass the Boot Manager
	Hack 4. Set a Bitmap Boot Screen for LILO
	Hack 5. Create Your Own LILO Boot Splash
	Hack 6. Display a GRUB Boot Splash Background
	Hack 7. Create a GRUB Boot Splash Background
	Hack 8. Jazz Up Your Debian System Boot
	Hack 9. Graphics on the Console

	Chapter 2. Console
	Hacks 10-15
	Hack 10. Redefine Keyboard Actions
	Hack 11. Energize Your Console with Macro Music Magic
	Hack 12. Take a Screenshot from the Command Line
	Hack 13. Put Your Command Prompt on a Diet
	Hack 14. Simplify Changing Directories
	Hack 15. Colorize Files in Your Pager

	Chapter 3. Login Managers
	Hacks 16-21
	Hack 16. Switch Users Fast
	Hack 17. Double Your KDM (KDE) Login Screens
	Hack 18. Double Your GDM (GNOME) Login Screens
	Hack 19. Get Multiple Desktops the Macho Way
	Hack 20. Scrap X11 for Fancy Login Consoles
	Hack 21. Personalize Your Qingy Theme

	Chapter 4. Related to X
	Hacks 22-34
	Hack 22. Take Your Screens Black
	Hack 23. Spice Up Your Desktop with Creative Mouse Cursors
	Hack 24. Convert CursorXP Themes for Use with Linux
	Hack 25. Use Windows and Mac Fonts
	Hack 26. Never Miss Another Reminder
	Hack 27. Make Applications Trigger On-Screen Alerts
	Hack 28. Heat Up Your Keyboard with Hotkeys
	Hack 29. Get Hotter Hotkeys with LinEAK
	Hack 30. Access Windows and Mac OS X from Linux
	Hack 31. Run Your Desktop over the Internet
	Hack 32. Access Your Programs Remotely
	Hack 33. Add Depth to Your Desktop
	Hack 34. Give Your Desktop X-Ray Vision

	Chapter 5. KDE Desktop
	Hacks 35-44
	Hack 35. Make Konqueror a Window into Remote Spaces
	Hack 36. Konquer Remote Systems Without Passwords
	Hack 37. Ai Karamba! Flashy KDE Gadgets!
	Hack 38. Start Applications in Weird and Wonderful Ways
	Hack 39. Script Hacks with DCOP
	Hack 40. Create Your Own KDE Right-Click Menu Actions
	Hack 41. Make KDE Even Easier to Use
	Hack 42. Give Depth to Your KDE Windows
	Hack 43. Lock Down KDE with Kiosk Mode
	Hack 44. Run KDE on the Bleeding Edge

	Chapter 6. GNOME Desktop Hacks
	Hacks 45-48
	Hack 45. Randomize Your GNOME Wallpaper
	Hack 46. Grow Your GNOME with gDesklets Steroids
	Hack 47. Create Your Own GNOME Right-Click Actions
	Hack 48. Compile a Bleeding-Edge GNOME Desktop

	Chapter 7. Terminal Empowerment
	Hacks 49-54
	Hack 49. Share Applications and Monitors with screen
	Hack 50. Stop Using Terminal Command-Line Switches
	Hack 51. Ultimate Terminal Transparency
	Hack 52. View Microsoft Word Documents in a Terminal
	Hack 53. Display PDF Documents in a Terminal
	Hack 54. View Word and PDF Files from Within Mutt

	Chapter 8. Desktop Programs
	Hacks 55-69
	Hack 55. Reduce OpenOffice.org Startup Time
	Hack 56. Read Yahoo! Mail from Any Email Client
	Hack 57. Encrypt Your Email
	Hack 58. Reclaim Your Email with procmail
	Hack 59. Convert Your Mailbox
	Hack 60. Configure Firefox Under the Covers
	Hack 61. Eliminate Annoying Browser Stalls
	Hack 62. Get Browser Plug-ins Working
	Hack 63. Create an Internet Phone
	Hack 64. Motion Capture and Video Conferencing Fun
	Hack 65. Put Screenshots Automatically on the Web
	Hack 66. Scan for Wireless Networks
	Hack 67. Map Your Meatspace
	Hack 68. Connect to a Microsoft PPTP VPN
	Hack 69. Play Restricted Media Formats

	Chapter 9. Administration and Automation
	Hacks 70-87
	Hack 70. Automate Your Life with cron
	Hack 71. Update Your Clock via the Internet
	Hack 72. Start Desktop Applications Automatically
	Hack 73. Don't Let Elvis Leave the Building
	Hack 74. Clone Your Linux Install
	Hack 75. Forward Ports over SSH
	Hack 76. Take Control of New User Setups
	Hack 77. Send Email Alerts for System Events
	Hack 78. Create a Passwordless Login
	Hack 79. Magically Empower Your Network Cable
	Hack 80. Protect Yourself from Windows Applications
	Hack 81. Build a Custom Firewall Computer
	Hack 82. Link Monitoring in Linux with Wavemon
	Hack 83. Make Network Backups
	Hack 84. Recover from Debian Disaster
	Hack 85. Prelink for Performance
	Hack 86. Grab the Latest Source Code
	Hack 87. Speed Up Compiles

	Chapter 10. Kernel
	Hacks 88-91
	Hack 88. Compile a Kernel
	Hack 89. Upgrade Your Kernel to 2.6
	Hack 90. Use CKO to Make Your Desktop Go to 11
	Hack 91. Tweak Your Kernel Without Recompiling

	Chapter 11. Hardware
	Hacks 92-100
	Hack 92. Make an Internet Connection Using Bluetooth and a Mobile Phone
	Hack 93. Perfect USB Devices with Project Utopia
	Hack 94. Optimize Your Refresh Rates
	Hack 95. Print to Unsupported Printers
	Hack 96. Control Your Power with ACPI
	Hack 97. Use an iPod with Linux
	Hack 98. Sync Your iRiver with Linux
	Hack 99. Boost Hard-Drive Performance
	Hack 100. Accelerate Your Gaming

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

