
www.new
CHAP T E R 1
Introducing Eclipse
Stroll around the exhibit floor at the Embedded Systems Conference either in Silicon

Valley in April, or Boston in September. You’re sure to see any number of large, flashy

booths with big flat screen monitors showing off the vendor’s integrated software

development environment. You’ll probably also hear a pitch by a well-groomed

marketing type wearing a wireless headset and offering a T-shirt or other giveaway

if you’ll hang around for the full presentation.

After a while, it begins to dawn on you that all these integrated development

environments (IDEs) seem to have a similar look and feel. Coincidence? Not really.

Turns out that most of the major embedded software vendors have adopted Eclipse as

the foundation for their IDE products.

It makes perfect sense. Developing embedded development tools is expensive and

time-consuming. Making use of a common platform saves a lot of that time and

expense. It also provides tools with a consistent look and feel that run in a wide range

of operating environments. Vendors compete on the basis of their own proprietary

additions to the base platform.

And really, is it any different from the multitude of vendors who build embedded

products based on the PC architecture? They all start with the same PC platform and

then add their own proprietary hardware and software to create value-added products.
1.1 History

Eclipse grew out of the project that began in 1998 at Object Technology International

(OTI), a subsidiary of IBM now known as the IBM Ottawa Lab. The project was
nespress.com

2 Chapter 1
initiated to address complaints raised by IBM’s customers that the company’s tools

didn’t work well together.

In 2001, IBM established the Eclipse consortium and released the entire code

base, estimated to be worth $40 million at the time, as open source. The idea was to let the

open source community control the code and let the consortium deal with commercial

relations. The initial nine members of the consortium included both partners and

competitors of IBM at the time, such as Rational and TogetherSoft.

As Eclipse grew and evolved, IBM wanted more serious commitment from vendors, but

vendors were reluctant to make a strategic commitment as long as they perceived

that IBM was in control. This problem was addressed in 2004 with the creation of the

Eclipse Foundation, a not-for-profit organization with a professional staff and a large

and growing roster of commercial software vendors as members.

As of August 2007, the Eclipse Foundation listed 166 members on its web site. There

are four categories of membership reflecting different levels of commitment1:
1 Th

categ

mem

ww
� Committers. Individuals who contribute and commit code to Eclipse projects.

They may be members by virtue of working for a member organization, or may

choose to join independently if they are not. Note that Committers are not

included in the membership total above, as they are not listed on the web site.

� Associates. These are standards organizations, research and academic institutions,

open source advocates, or publishing houses that participate in the development

of the Eclipse ecosystem. There are currently 24 associates who can submit

requirements, participate in all project reviews, and participate fully in all

Membership Meetings. Associate Members are not assessed dues.

� Add-in Providers. Commercial software vendors who have publicly

expressed support for Eclipse. Add-in Providers are expected to make available

a commercial Eclipse-based product or service within 12 months of joining

the foundation. Products may be built using Eclipse tools or on top of

Eclipse projects. Services may include, for example, training, consulting, or a

hosted web service. The 121 Add-in Provider Members each pay annual dues

of $5,000.
e membership categories were modified somewhat in July of 2008. For details of the new membership

ories, see the following page at the EclipseWeb site: www.eclipse.org/membership/become_a_member/

bershipTypes.php.

w.newnespress.com

3Introducing Eclipse
� Strategic Members. These are the big dogs. Strategic Members fall into two

categories: Strategic Developers and Strategic Consumers. Each Strategic

Developer is expected to have at least eight developers assigned full time to

developing Eclipse technology and contribute annual dues of 0.12% of revenue

with no minimum and a maximum of $250K.

Strategic Consumers are users of Eclipse technology. They contribute annual

dues of 0.2% of revenue with a minimum of $50K and a maximum of $500K,

but can reduce the cash outlay by contributing one or two developers to Eclipse

projects at a rate of $125K for each developer.

Each Strategic Member has a representative on the Eclipse Foundation Board of

Directors allowing them direct control over the strategic direction of Eclipse.

Strategic Members also have a seat on the Eclipse Requirements Council providing

input and influence over the themes and priorities of Eclipse technology.

There are currently 21 Strategic Members, including IBM, Intel, Motorola,

Nokia, Oracle, Sybase, and Wind River, among others.
1.2 Eclipse Public License

Open source software is released to the public under the terms of a license that grants

users of the software certain rights, the most significant of which is access to the source

code. The software is copyrighted by its author, but rather than using the copyright to

restrict access and use, which is the usual case, the copyright becomes the means of

enforcing the rights granted by the open source license. Because open source effectively

“reverses” the rights granted by copyright, it is often referred to as “copyleft.”

Many users familiar with open source software may assume that the Gnu General Public

License (GPL) is the one and only mechanism for making open source code

available. In fact, there are over 50 different licenses certified by the Open Source

Initiative, a non-profit body that reviews and certifies licenses that meet its 10-point

definition of what constitutes open source software. Note, incidentally, that open source

does not prohibit one from charging a fee to distribute open source software, and

indeed, many companies are in the business of doing exactly that.

Part of the FUD (fear, uncertainty, and doubt) spread about open source software,

mostly by a certain software company in the northwest United States, revolves around
www.newnespress.com

4 Chapter 1
its so-called “viral” nature. The implication is that if you use any open source software

in your product, it “infects” the rest of the code, forcing it all to be open source. This

is at least partially true of software released under the GPL and it’s an issue that

developers must take into consideration if they wish to keep their own code proprietary.

The GPL requires that any “derivative work,” that is, code derived from GPL code,

must also be released under the terms of the GPL.

The motivation then for other open source licenses is to encourage and support

commercial use and distribution of open source software by allowing developers to

maintain their own contributions as proprietary. Among the licenses that do this is

the Eclipse Public License (EPL). Specifically, the EPL allows a developer to license

his own contributions under the license of his choice provided its provisions don’t

conflict with the EPL.

This works well for software like Eclipse that is based on a “plug-in” concept to

extend the base platform. Plug-ins are independent software modules that communicate

with the platform through well-defined interfaces. So while the platform itself is

open source, plug-ins may be proprietary.
1.3 Status of Eclipse

In addition to the Eclipse platform itself, Eclipse comprises dozens of tool-oriented and

application-oriented projects that operate as independent open source projects. For

the past three years, usually in June, the foundation has organized a coordinated major

release of the platform along with a large number of the constituent sub-projects.

This allows users to try out new features without worrying about version

incompatibility among the various tools.

Interestingly, these releases are named after the moons of Jupiter. The 2008 release

is named “Ganymede” and included 23 projects representing over 18 million lines

of code.

The Eclipse sub-projects are grouped into 10 major project areas that include:
ww
� The Eclipse Platform

� Eclipse Technology

� Business Intelligence and Reporting Tools

� Data Tools Platform
w.newnespress.com

5Introducing Eclipse
� Device Software Development Platform (DSDP)

� Modeling

� Service Oriented Architecture

� Development Tools

� Test and Performance Tools Platform

� Eclipse Web Tools Platform
Of particular interest to embedded developers are the Device Software Development

Platform (DSDP) and the Development Tools projects. Under Development Tools is the

C/C++ Development Tool (CDT) project, which is a major focus of this book and

the basis for commercial IDEs using Eclipse.
1.4 So What Is Eclipse, Anyway?

Eclipse itself is not an Integrated Development Environment (IDE). Rather it is a

collection of frameworks and tools for building IDEs and complex “rich-client”

applications. The Eclipse Foundation’s website describes it as “an extensible

development platform, runtimes and application frameworks for building, deploying

and managing software across the entire software lifecycle.” One early technical

overview paper described it thus: “The Eclipse Platform is an IDE for anything, and for

nothing in particular.”

Although Eclipse has a lot of built-in functionality, most of that functionality is very

generic. It takes additional tools to extend the platform to work with new content

types, to do new things with existing content types, and to focus the generic

functionality on a specific task.

Eclipse is largely written in Java, and was originally developed for it.

Consequently, it runs on any machine with a Java Runtime Environment (JRE).

Figure 1.1 shows the platform’s major components and APIs. The platform’s

principal role is to provide tool developers with mechanisms to use, and rules

to follow, for creating seamlessly integrated tools. These mechanisms are

exposed via well defined API interfaces, classes, and methods. The platform

also provides useful building blocks and frameworks that facilitate developing new

tools.
www.newnespress.com

Workspace

Team

New Tool

New Tool

New Tool

JFace

Standard Widget
Toolkit (SWT)

Workbench
Help

Eclipse platform

Platform runtime

Figure 1.1: Elements of Eclipse.

6 Chapter 1
Eclipse is designed and built to meet the following requirements:
ww
� Support the construction of a variety of tools for application development.

� Support an unrestricted set of tool providers, including independent software

vendors (ISVs).

� Support tools to manipulate arbitrary content types such as HTML, Java, C, JSP,

EJB, XML, and GIF.

� Facilitate seamless integration of tools within and across different content types

and tool providers.

� Support both GUI and non-GUI-based application development environments.

� Run on a wide range of operating systems, including Windows and Linux.

� Capitalize on the popularity of the Java programming language for writing

tools.
1.4.1 Workbench

The workbench is the primary user interface for Eclipse. As such, it implements

the Eclipse “personality” and supplies the structures that allow tools to interact with the

user. Because of this central and defining role, the workbench is synonymous with
w.newnespress.com

7Introducing Eclipse
the Eclipse Platform UI as a whole and with the main window you see when

Eclipse is running.

The workbench, in turn, is implemented on top of two generic toolkits:
� Standard Widget Toolkit (SWT). A widget set and graphics library integrated

with the native window system, but with an OS-independent API.

� JFace. A UI toolkit implemented using SWT that simplifies common UI

programming tasks.
SWT provides a common API that works across a number of supported windowing

systems. For each native windowing system, SWT translates its common API into

native window widgets. Most common low-level widgets such as lists, text fields, and

buttons are implemented natively. But some generally useful higher-level widgets,

such as toolbars and trees, may need to be emulated on some window systems. The end

result is that SWT maintains a consistent programming model in all environments,

while preserving the look and feel of the underlying native window system. Thus,

Eclipse on a Mac looks like a Mac OS application, Eclipse under Windows XP (or Vista

if you prefer) looks like a Windows application, and so on.

JFace is a UI toolkit providing classes for handling many common UI programming

tasks such as image and font registries, dialog, preference, and wizard frameworks, and

progress reporting for long running operations. It sits on top of SWT and thus is

independent of the native windowing system.
1.4.2 Workspaces

The various tools plugged in to the Eclipse Platform operate on regular files in your

workspace. The workspace consists of one or more top-level projects, where each

project maps to a corresponding directory in the file system. The different projects in a

workspace may map to different file system directories or drives, although by default,

all projects map to sibling subdirectories of a single workspace directory.

It is also possible to have multiple workspaces. You specify a workspace when starting

Eclipse. From within Eclipse you can also change workspaces, which causes Eclipse

to restart itself.

A project contains files that you create and modify. In addition to being accessible from

Eclipse, all files in the workspace are directly accessible to the standard programs
www.newnespress.com

8 Chapter 1
and tools provided by the underlying operating system. Tools integrated with the

Platform are provided with APIs for dealing with workspace resources (the collective

term for projects, files, and folders). So-called adaptable objects represent workspace

resources so that other parties can extend their behavior.

In a large project, the Linux kernel, for example, tools like compilers and link checkers

must apply a coordinated analysis and transformation of thousands of separate files.

To this end the platform provides an incremental project builder framework; the

input to an incremental build is a resource tree delta capturing the net resource

differences since the last build. The platform allows several different incremental

project builders to be registered on the same project and provides ways to trigger project

and workspace-wide builds. An optional workspace auto-build feature automatically

triggers the necessary builds after each resource modification operation (or batch of

operations).
1.4.3 Team Support

Eclipse supports programming teams with facilities for placing projects under the

control of version and configuration management tools known as “team repository

products.” The Platform has extension points and a repository provider API that allow

new kinds of team repositories to be plugged in.

Team repository products invariably affect the user’s workflow, for example, by adding

overt steps for retrieving files from the repository, for returning updated files to the

repository, and for comparing different file versions. Eclipse allows each team

repository provider to define its own workflow so that users already familiar with the

native tool can quickly learn to use it from within Eclipse. The platform supplies basic

hooks to allow a team repository provider to intervene in certain operations that

manipulate resources in a project.

At the UI level, the platform supplies placeholders for certain actions, preferences,

and properties, but leaves it to each repository provider to define these UI elements.

There is also a simple, extendable configuration wizard that lets users associate projects

with repositories, and which permits repository providers to extend with UI elements

for collecting information specific to that particular repository.

Multiple team repository products can coexist peacefully within Eclipse. The platform

includes built-in support for CVS repositories accessed via pserver, ssh, or

extssh protocols.
www.newnespress.com

9Introducing Eclipse
1.4.4 Help

The Eclipse Platform Help mechanism allows tools (plug-ins) to define and contribute

documentation to one or more online books. For example, a tool usually contributes

help style documentation to a user’s guide, and API documentation (if any) to a

separate programmer’s guide.

Raw content is provided as HTML files. The facilities for arranging the raw content

into online books with suitable navigation structures are expressed separately in XML

files. This separation allows pre-existing HTML documentation to be incorporated

directly into online books without the need to edit or rewrite.

The add-on navigation structure presents the content of the books as a tree of topics.

Each topic, including non-leaf topics, can have a link to a raw content page. A single

book may have multiple alternate lists of top-level topics allowing some or all of

the same information to be presented in completely different organizations. They may

be organized by task, or by tool, for example.

The XML navigation files and HTML content files are stored in a plug-in’s root

directory or subdirectories. Small tools usually put their help documentation in the same

plug-in as the code. Large tools often have separate help plug-ins. The Platform uses

its own internal documentation server to provide the actual web pages from within the

document web. This custom server allows the Platform to resolve special inter-plug-in

links and to extract HTML pages from ZIP archives.
1.4.5 Plug-Ins

A plug-in is the smallest unit of Eclipse functionality that can be developed and

delivered separately. A small tool is usually written as a single plug-in, whereas a

complex tool may have its functionality split across several plug-ins. Except for a small

kernel known as the Platform Runtime, all of the Eclipse platform’s functionality as

described above is located in plug-ins.

Plug-ins are coded in Java. A typical plug-in consists of Java code in a JAR library,

some read-only files, and other resources such as images, web templates, message

catalogs, native code libraries, etc. Some plug-ins don’t contain code at all. An example

is a plug-in that contributes online help in the form of HTML pages. A single plug-in’s

code libraries and read-only content are located together in a directory in the file

system or at a base URL on a server.
www.newnespress.com

10 Chapter 1
Each plug-in’s configuration is described by a pair of files. The manifest file,

manifest.mf, declares essential information about the plug-in to other plug-ins,

including the name, version, and dependencies. The second optional file, plugin.xml,

declares the plug-in’s interconnections to other plug-ins. The interconnection model is

simple: a plug-in declares any number of named extension points, and any number of

extensions to one or more extension points in other plug-ins.

The extension points can be extended by other plug-ins. For example, the workbench

plug-in declares an extension point for user preferences. Any plug-in can contribute

its own user preferences by defining extensions to this extension point.

On start-up, the Eclipse runtime discovers the set of available plug-ins, reads their

manifest files, and builds an in-memory plug-in registry. The platform matches

extension declarations by name to their corresponding extension point declarations.

Any problems, such as extensions to missing extension points, are detected and logged.

The resulting plug-in registry is available via the Platform API. After startup, plug-ins

can be unloaded, and new ones installed or new versions of existing plug-ins can

replace existing versions.

By default, a plug-in is activated when its code actually needs to be executed. Once

activated, a plug-in uses the plug-in registry to discover and access the extensions

contributed to its extension points. For example, the plug-in declaring the user preference

extension point can discover all contributed user preferences and access their display

names to construct a preference dialog. This can be done using only the information from

the registry, without having to activate any of the contributing plug-ins. The contributing

plug-in will be activated when you select one of its preferences from a list.

By determining the set of available plug-ins up front, and by supporting a significant

exchange of information between plug-ins without having to activate any of them, the

platform can provide each plug-in with a rich source of pertinent information about

the context in which it is operating. The context doesn’t change while the platform is

running, so there’s no need for complex life cycle events to inform plug-ins when

the context changes. This avoids a lengthy start-up sequence and a common source of

bugs stemming from unpredictable plug-in activation order.

1.5 What Can You Do With Eclipse?

The Eclipse platform is potentially useful for just about any software development

task you can imagine. The Eclipse Foundation organizes its range of projects and
www.newnespress.com

11Introducing Eclipse
sub-projects under what it calls the “Pillars of Eclipse.” These include:
� Enterprise development. Tools and frameworks that span the entire software

development lifecycle, including modeling, development, deployment tools,

reporting, data manipulation, testing, and profiling. Projects under this pillar

include: Business Intelligence and Reporting Tools (BIRT), Data Tools, Test

and Performance Tools, and Web Tools.

� Embedded and device development. This is the area of immediate concern in this

book. The projects under this pillar support building embedded applications as

well as tools that assist with target management, device debugging, and building

GUIs for mobile devices. These include: Device Software Development Platform,

Embedded Rich Client Platform, Mobile Tools for Java, Native Application

Builder, Target Management, and C/C++ IDE.

� Rich client platform (RCP). This is a platform for building and deploying

so-called “rich client” applications with facilities for deploying native GUI

applications to a variety of desktop operating systems, such as Windows, Linux,

and Mac OSX. Under this pillar we find Equinox, a component framework

based on the OSGi standard, along with the Plug-in Development Environment,

Visual Editor, and the Eclipse platform itself.

� Application frameworks. A number of Eclipse projects provide frameworks

that can be used as functional building blocks to accelerate the software

development process. Unlike developer tools, application frameworks are deployed

with the actual applications. Frameworks can be used either as standalone additions

to Java applications, or can be leveraged as components on top of the Eclipse RCP.

This supports the use of an integrated stack of open source frameworks on RCP

to quickly build and deploy applications. Frameworks include: Eclipse Modeling,

Graphical Modeling, Tool Services, Eclipse Communication, and Eclipse Process.

BIRT and Data Tools from the Enterprise pillar are also included here.

� Language IDE. In addition to Java and C/C++, the Eclipse Foundation

supports language IDE projects for Cobol and PHP. Third party plug-ins support

a wide range of other languages such as MatLab, Ruby and Rails, Perl, and Python.
Summary

This chapter has been a brief introduction to what Eclipse is along with its history and

current status. Eclipse is more than just an integrated development environment (IDE).
www.newnespress.com

12 Chapter 1
Instead, it is a framework for building IDEs. The Eclipse Platform provides a basic

Graphical User Interface (GUI) on top of which plug-ins are added to provide

functionality addressing a specific software development problem.

The next chapter will address the process of installing Eclipse on a workstation.
Resources

http://www.eclipse.org/—The official website of the Eclipse Foundation. There’s

a lot here and it’s worth taking the time to look through it. Specific features of

the website will be explained in more detail as we go along.

http://eclipse-plugins.2y.net/eclipse/index.jsp/—Eclipse Plugins. This site will give

you a feel for the extent of the Eclipse ecosystem. It lists over 1000 plug-ins, both

commercial and Open Source.

http://www.eclipseplugincentral.com/—Eclipse Plugin Resource Center and

Marketplace. Not quite as extensive as Eclipse Plugins, this site lists some

400 plug-ins.

A Google search on “eclipse plugin” returns a great many hits, but except for the two

sites listed above, all of the others seem to describe specific plug-ins mostly oriented

toward Java and web development.
www.newnespress.com

www.new
CHAP T E R 2
Installation
2.1 System Requirements

The primary focus of this book is embedded software development using Linux. The

primary focus of this chapter is installing and running Eclipse under Linux, which as

we’ll see, turns out to be fairly straightforward. Eclipse runs perfectly well under

Windows and Mac OSX, and we’ll take a look at the Windows installation process later

in this chapter.

You will need a PC-class computer running a relatively recent Linux distribution.

I happen to run both Red Hat Enterprise Linux (RHEL) 4 and Fedora Core 6, but

feel free to use Debian, SUSE, Ubuntu, or whatever your favorite distribution happens

to be. The Eclipse Foundation does caution, however, that Eclipse is only tested and

validated on a “handful of popular combinations of operating system and Java

Platform.” From a Linux standpoint, the v3.4 Ganymede release has been validated on

RHEL 4.0 and 5.0, and SUSE Linux Enterprise Server 10.

Installing a Linux distribution is beyond the scope of this book. There’s lots of

information and help available from the various distribution websites.
2.1.1 Hardware

Basic hardware requirements are relatively modest and largely dictated by Linux itself.

For windowing operation, for example, Fedora Core 6 recommends a 400-MHz Pentium

II or better, with 256 MB of RAM. The reality, of course, is that today anything less

than a GHz processor and a GB of RAM is pretty much a doorstop anyway.
nespress.com

14 Chapter 2
Storage requirements are likewise fairly minimal. The C Development Tools version of

Eclipse that we’ll be using takes approximately 70 MB of disk space.

2.1.2 Software

Since Eclipse is based on Java, you must have a Java Virtual Machine (JVM),

also known as the Java Runtime Environment (JRE), available on your workstation.

For RHEL 4.0, Eclipse recommends Sun Java 2 Standard Edition 5.0 Update 11

for Linux x86. Java 1.4.2 is also widely used and well tested in the Eclipse community.

Most contemporary Linux distributions install a JVM by default, but it may not be

compatible with Eclipse. I found, for example, that the default JVM under RHEL

4.0 didn’t work. Rather than take the time to puzzle out why, I simply downloaded

another version that did work. We’ll defer a discussion of downloading and installing the

JVM until later, when we determine whether or not your default JVM works.

Finally, since our objective is to develop C programs for embedded devices, you’ll

need a GNU tool chain with the GCC compiler and linker and the GDB debugger.

The tool chain is not always installed by default. Check to be sure it’s there, and if not,

follow your distribution’s instructions for installing additional packages.

2.2 Obtaining Eclipse

Go to http://www.eclipse.org/ and click on the large orange button labeled Download

Eclipse. This brings up a list of popular Eclipse packages consisting of the basic

Eclipse platform plus one or more application add-ons. To the right of each list entry is

a set of three links representing supported operating systems:
ww
� Windows

� Linux

� Mac OS X
Click the Linux link for the “Eclipse IDE for C/C++ Developers.” This brings up a

list of mirror sites fromwhich to download. Pick the one nearest you, understanding that in

many cases it’s not at all clear from a site’s name where it is located geographically.

Download the tar.gz file to the directory in which you plan to install Eclipse.

There are no hard and fast rules about where to install a given package. /opt is a good

place. For reasons I can’t explain now, I chose to install Eclipse in /usr/local.
w.newnespress.com

15Installation
2.3 Installation

Installation itself is trivial. Simply untar the tar.gz file that you downloaded. This

results in the directory structure shown in Figure 2.1. It’s not necessary to understand

the content of these directories. Perhaps the most significant of them is plugins/,

which contains all of the Java Archive (.jar) code. The readme directory contains

a rather extensive HTML release notes file.
eclipse

about_files
configuration
dropins
features
p2
plugins
readme

Figure 2.1: Eclipse directory structure.
The top-level eclipse/ directory contains several files, the most important of

which is the executable, eclipse. Eclipse is started by executing this file, either

by double-clicking it in a graphical file manager window or by executing

/<path_to_eclipse>/eclipse in a shell window.

If you’re running a graphical desktop environment such as Gnome or KDE, you can create

a custom launch button for Eclipse in the tool panel by following these instructions:

Gnome
1. Right-click on the tool panel.

2. Select Add to Panel –> Custom Application Launcher.

3. Fill in the pop-up dialog box:
Name: Eclipse 3.4

Generic Name: Eclipse

Comment:

Command: /<path_to_eclipse>/eclipse
www.newnespress.com

ww

16 Chapter 2
4. Select an appropriate icon.

5. Click OK.
KDE
1. Right-click on the tool panel.

2. Select Add –> Special Button –> Non-KDE Application.

3. Fill in the pop-up dialog box:
Executable: /<path_to_eclipse>/eclipse

Optional command line arguments:
4. Select an appropriate icon.

5. Click OK
Then to start Eclipse, simply click on the launch button.

Go ahead and give it a try using any of the three mechanisms cited above. If you get

to the screen shown in Figure 2.2, Eclipse is working. Click Cancel to terminate. You

can skip the rest of this chapter and move on to the next, unless you want to try out
Figure 2.2: Workspace selection dialog.

w.newnespress.com

17Installation
Eclipse under Windows. If Eclipse failed to launch, it’s probably because the JVM is

either not present or not compatible. Continue with the next section.
2.3.1 Installing and Using a Java Virtual Machine (JVM)

JVMs can be downloaded from http://www.java.com/en/. Click on the Free Java

Downloadbutton. This takes you to a JavaDownloads forWindows page.Click onAll Java

Downloads. This brings up a page with downloads of the latest releases of Solaris, Linux,

and Mac OS, as well as Windows. At the time this was being written, the latest release was

Java 6 update 3.While Eclipse does not officially support this version, it does appear towork

OK. Other versions of Java are available by clicking on Other Java Versions.

Download the Linux (self-extracting) file to the same directory where you downloaded

Eclipse. The file is an executable, so execute it. You’ll be asked to read and accept

the Sun Microsystems Binary Code License Agreement for the Java SE runtime

environment (JRE) version 6. The JVM is then extracted to jre1.6.0_03/. Note that if

you choose to use a different version, the directory name changes accordingly.

To be sure the new version of the Java is the one that gets executed, it must appear in

your path before the default version. You can add /<path_to_jvm>/bin to the

beginning of your $PATH environment variable. Or you can create a link to the new

Java executable in a directory that already appears in your $PATH ahead of the directory

holding the default version.

Execute the shell command whereis java to determine where the default version

is located. Then execute echo $PATH to find a suitable directory that appears earlier

in your path. In my case, the default java is in /usr/bin and it turns out that

/usr/local/bin shows up just ahead of that. So I put a link to /usr/local/

jre1.6.0_03/bin/java in /usr/local/bin.

You can skip the rest of this chapter and move on to the next, unless you want to try

out Eclipse under Windows.
2.4 Installing Eclipse Under Windows

Go back to the Eclipse downloads page, but this time select the Windows link and

download the file to an appropriate destination directory. In this case the file is a

.zip that must be opened with WinZip. Extract the .zip file to the directory of your
www.newnespress.com

18 Chapter 2
choice. This results in almost the same directory structure as that shown in Figure 2.1.

The about_files/ subdirectory is missing.

Start Eclipse from a file manager window by double-clicking eclipse.exe in the

eclipse/ directory. If your Windows system has a JVM, and most likely it does,

you should see a screen like Figure 2.3. For now, click Cancel.
Figure 2.3: Workspace selection dialog under Windows.
You’ll probably want to create a shortcut on the desktop for starting Eclipse. Right-

click on eclipse.exe and select Create Shortcut. This creates a shortcut in the

eclipse/ directory. Drag that over to the desktop.

Note incidentally that Eclipse does not use the standard Windows program installation

mechanism, and it doesn’t put anything into the Windows registry. To uninstall

Eclipse, simply delete the eclipse/ directory.
2.4.1 Installing a JVM

If Eclipse did not start correctly, your system may not have a JVM. Go to http://java.

com/en and click the Free Java Download button. Java offers two different

mechanisms for installation under Windows—online and offline. Clicking the link

Windows XP/Vista/2000/2003 Online downloads a small (360 KB) executable, jre-

6u3-windows-i586-p-iftw.exe. This program in turn installs the rest of the JVM

from the web.
www.newnespress.com

19Installation
You are given the opportunity to view, and then either to accept or to decline the terms

of the Java license. Assuming you accept, the installation proceeds without any

further user input required.

Alternatively, you can click Windows XP/Vista/2000/2003 Offline, which downloads

a much larger (about 13.8 MB) executable, jre-6u3-rc-windows-i586.exe. This

is the entire JVM package. The offline installation offers additional options—the

Google toolbar and desktop—and more control over the installation process. A custom

setup screen allows you to select the options to be installed. Unless you’re an

“advanced” user, it’s probably best to accept the defaults.

Following installation, restart your browser and go back to http://java.com/en/. Select

the Advanced tab and click the link Do I have Java? to bring up the Verify Installation

page. Click the Verify Installation button. This should confirm that the JVM is

properly installed. If not, you may need to configure the JVM.

Open the Windows Control Panel and double-click the Java icon (the coffee cup).

Select the Advanced tab and click on the + next to Default Java for browsers. Check

all the boxes on that branch to enable Java for the web browsers on your system.
2.5 Embedded Software Development on Windows

Remember that our objective here is to use Eclipse for developing software for

embedded devices, with an emphasis on those that are Linux-based. While it is possible

to do embedded development under Windows, it’s somewhat more difficult because

Windows, by itself, lacks a number of tools and services that are necessary, or at least

highly desirable, for embedded software development.

Windows XP, other than the server edition, lacks network server facilities

such as NFS (network file system) and TFTP (trivial file transfer protocol) that

are very useful for debugging code on a target board. But most importantly,

Windows lacks a tool chain for building software—a compiler, linker, assembler,

libraries, etc.

The most widely used tool chain for embedded development is the GNU tool

chain, which comes standard with just about every Linux distribution. There are

two common approaches to adding a GNU tool chain to Windows: Cygwin and

MinGW.
www.newnespress.com

20 Chapter 2
2.5.1 Cygwin

Cygwin is described as a “Linux-like environment” for Windows. It was originally

developed in 1995 by Cygnus Solutions, which was subsequently purchased by

Red Hat. Red Hat now maintains both the open source version and a licensable,

proprietary version for people who want to maintain their own applications as proprietary.

Cygwin consists of two basic parts:
ww
� A Windows DLL (cygwin1.dll) that acts as a Linux API emulation layer

providing substantial Linux API functionality.

� A collection of tools that provide Linux look-and-feel. Among these tools is the

GNU tool chain.
The primary motivation for Cygwin is to provide Unix/Linux functionality in a

Windows environment, but it is not a way to run native Linux apps under Windows.

Applications must be rebuilt from source to run in the Cygwin environment.

Nevertheless, it can be a useful tool for experimenting with C development with

Eclipse under Windows. Note, however, that to build code for an embedded target,

you will need a build of the GNU tool chain that supports your target processor. Many

chip and board vendors provide Linux-based tool chains for their architectures, but

rarely offer the tool chain built for Cygwin. So you will likely be on your own to

build the target tool chain.

Another perceived drawback to Cygwin, for desktop applications anyway, is that

the cygwin1.dll is released under the GPL. This means that anything that links with it,

i.e., an application, is considered a “derivative work” and must itself be released under

the GPL. On the other hand, this wouldn’t be a problem for an embedded application

intended for a target that runs real Linux. It is widely accepted that a Linux application

running in user space and using only the published kernel APIs is not a derivative work.

Another nice feature of Cygwin is that it happens to include NFS and TFTP

servers.
Installing Cygwin

Go to http://www.cygwin.com/ and click on the Install Cygwin now icon. There

are several icons and links on this page that point to the same target, setup.exe.
w.newnespress.com

21Installation
When you click one of these links, Windows asks if you want to run or save the file.

I generally save executables and then run them locally, but it’s your call.

In either case, execute setup.exe. You may get a warning saying that the publisher

could not be verified and asking if you really want to run it. Go ahead, it’s safe.

Following an initial information screen, you are offered three installation types:
� Install from Internet (default)

� Download Without Installing

� Install from Local Directory
The next screen lets you specify a root directory and select a couple of options. The

recommended defaults for the options are good. Next you’re asked to select a directory

in which the downloaded packages will be stored. These are then available for

subsequent reinstallation. Oddly, the default is the Desktop for the current user. I prefer

to put stuff like this in the \downloads directory.

The next screen asks how you connect to the Internet. Select appropriately and continue.

You are presented with a list of download mirror sites with the intention that you pick one

geographically close to you. But again, most of the names offer no clue about where they

may be located. Continuing to the next screen causes another setup program to be

downloaded and you are presented with a package selection menu.

Sadly, this is not the most intuitive or user-friendly menu. Expand the Devel

category by clicking on the +. The result is shown in Figure 2.4. Most of the

packages are designated as “Skip,” meaning they won’t be installed. Scroll down to

the gcc-core package and click on the word “Skip” in the New column. Skip changes

to a version number and the Bin? column changes to a check box. This package, in

its binary form, is now selected for installation. The Src? column is an open box

giving you the option of downloading the source code as well. You might want to

select this if you need to build a target version of gcc.

Scroll down and select gdb: The GNU Debugger as well. Again, you might want to

check the Src? box if you will need to build a version for your target architecture. That

should be all we need for C development. Now expand the net category and select the

nfs-server and xinetd. Clicking Next starts the download. This is a lengthy process

because we are, after all, building a fairly complete Linux environment. It’s much more

than the few packages we selected here.
www.newnespress.com

Figure 2.4: Cygwin package selection.

22 Chapter 2
Following the download, you have the option of creating icons on the desktop or in

the Start Menu. You’re done. You’ll find a folder named cygwin\ in the folder

specified for installation. It turns out to be the root directory of the Cygwin Linux

environment. You’ll also find a rather oddly named folder in the download directory

that has a setup.ini file reflecting your package selection and a folder containing

all of the download compressed package files.

Double-click the Cygwin icon and you’ll get a bash shell as shown in Figure 2.5. Play

around with some of the basic commands just to prove it really is a bash shell. Later

we’ll look at how to configure Eclipse to find the gcc compiler and other tools.
2.5.2 MinGW

MinGW, which stands for “Minimalist GNU for Windows,” is the other popular

approach to installing the GNU tool chain on Windows. The primary difference
www.newnespress.com

Figure 2.5: Cygwin bash shell.

23Installation
between it and Cygwin is that MinGW uses the Windows C runtime libraries (mscvrt)

instead of GNU’s libc. This means that a compatibility layer is not needed, thus

getting around the GPL issues associated with Cygwin.

Of course, this also means that MinGW generates native Windows code, which is

fine for learning about and experimenting with CDT, but won’t get you very far in

building embedded target code. Nevertheless, the Eclipse documentation suggests

that MinGW’s direct support for the Windows environment provides the best

integration with CDT.

MinGW is strictly an open source project and is hosted at

http://sourceforge.net/index.php.
Installing MinGW

The MinGW download page is

http://www.sourceforge.net/project/showfiles.php?group_id=2435. The first

item in the list is MinGW-5.1.3. Clicking the Download button brings

up another page with the actual file, MinGW-5.1.3.exe. Much like Cygwin,

this is an installer that guides you through the installation. Start the program,
www.newnespress.com

24 Chapter 2
select Download, and install. After agreeing to the license you can choose which

package to install: Previous, Current, or Candidate. I recommend Current.

Select the MinGW base tools and the g++ compiler components (Figure 2.6). Select

other compilers if you wish. Don’t select MinGW Make. There’s a more complete

implementation of make called MSYS that you’ll install in a subsequent step. Select an

install location and a Start Menu folder, and click Install. There’s about 60 MB to

download, so it takes a while.
Figure 2.6: MinGW component selection.
Oddly, the MinGW installer doesn’t install gdb. It can be downloaded at

http://www.downloads.sourceforge.net/mingw/gdb-6.6.tar.bz2. Extract the contents of

this file to the same location as MinGW.
www.newnespress.com

25Installation
If you want to create your own makefiles for use with CDT, you should install MSYS,

also part of the MinGW project. MSYS, which stands for Minimal SYStem, is

a POSIX-like command line interpreter (CLI) that serves as an alternative to the

Windows command prompt, cmd.exe. As such, it facilitates the execution of

POSIX-style build scripts and makefiles that are normally part of Open Source projects.

The CLI is essentially a Bourne shell.

The MSYS installer is available from the same SourceForge page as MinGW. Click

on MSYS Base System to get a list of the available releases. Select the Current Release

and click on MSYS-1.0.10.exe to download the installer. After agreeing to the

license terms and reviewing a release notes page, you get a dialog to select the

installation folder. I chose to install MSYS in the \MinGW folder just to keep everything

in one place. This is followed by a Select Components dialog, but in fact there is

only one component.

Following installation, a command prompt window pops up to ask if you would like

to execute the post-install process (Figure 2.7). Upon replying yes, “y”, you’re asked

if you have MinGW installed and where it’s located. Post-install then builds some

script files.
Figure 2.7: MSYS post install script.

www.newnespress.com

26 Chapter 2
The installation process puts an MSYS shortcut on your desktop. Double-click it to

bring up the window in Figure 2.8. Try some POSIX shell commands to prove it works.

For all practical purposes, MSYS provides the same functionality as Cygwin, so you

really only need one or the other. In fact, its author describes MSYS as a fork of

Cygwin that is “more friendly to the Win32 user.”
Figure 2.8: MSYS command shell.
2.5.3 NFS for Windows—nfsAxe

The combination of MinGW and MSYS does not include network server functionality

such as NFS. There are several packages available, some for free, that add NFS

server functionality to Windows. One that I’ve worked with is nfsAxe from LabF

(http://www.labf.com/). It’s a fairly extensive package that includes:
ww
� NFS client

� NFS server
w.newnespress.com

27Installation
� FTP client

� Telnet

� LPD and LPR

� TFTP client
A free downloadable evaluation version of nfsAxe is available that supports one user

and times-out after 30 minutes of operation. A commercial version supporting any

number of users sells for $24 to $40 per user, depending on how many user licenses are

purchased.

The download, nfsaxe.exe, is a self-extracting ZIP file. Use nfsaxe.exe to

extract the package files and start an InstallShield wizard that steps you through

the usual options of selecting an install directory, a setup type, and a program folder.

Unlike Cygwin and MinGW, nfsAxe uses the standard Windows software

installation process, so to remove it you must use the Control Panel Add/Remove

software process.

Using nfsAxe creates a program folder with icons for all of its features, plus a user’s

manual and an uninstall process. The first time you double-click NFS-Server two

things are likely to happen:
� A Windows security alert says the firewall has blocked the program from

accepting connections. Click on Unblock.

� NFS_Server says the list of exported directories is empty, and asks, “Do you

wish to create it?” Click Yes to bring up the window in Figure 2.9.
Click on Add directory to make one or more Windows directories visible to NFS. Then

click on Add User Access to allow access to the directories you’ve exported. The

simplest thing to do is select the wildcard, “*”, for all the entries. Uncheck Read only

if you want write access to the export.
2.5.4 Allegro—Another NFS Server

Allegro is a commercial product available from Franz, Inc., a web software

tools vendor. A free 30-day evaluation of the $65 package is available from
www.newnespress.com

Figure 2.9: NFS Server Settings.

28 Chapter 2
http://www.nfsforwindows.com/home by sending them your name and email address.

In return, they send you a link to a self-extracting ZIP file.

Following extraction, Allegro starts up a configuration utility (Figure 2.10) where you

can specify exported directories and user access properties. An interesting feature of

Allegro is that the exported name is separate and distinct from the path.

Allegro is a Windows service and by default it is started automatically.
www.newnespress.com

Figure 2.10: Allegro configuration utility.

29Installation
Summary

This chapter covered the process of obtaining and installing Eclipse under both

Linux and Windows. The Linux process is fairly straightforward. About the only hitch

may be that the version of the Java Virtual Machine on your system may not be

compatible with Eclipse.

Installation of Eclipse itself under Windows is equally straightforward. The problem,

though, is that Windows lacks other features necessary to do software development,

such as a compiler toolchain. Cygwin and MinGW are alternative approaches to

installing the GNU toolchain under Windows.
www.newnespress.com

30 Chapter 2
Another useful tool for embedded development that Windows lacks is an NFS

server. Cygwin includes an NFS server, but MinGW doesn’t. Two packages that provide

NFS server functionality under Windows are nfsAxe from LabF and Allegro from

Franz, Inc.

Now that we have Eclipse installed, it’s time to start playing around with it. That’s

the subject of the next chapter.
www.newnespress.com

Figure 3.1: Workspace dialog.

www.new
CHAP T E R 3
Getting Started
3.1 Start Eclipse

Start in your home directory. There are three ways to start Eclipse, indeed to start any

program under Linux running a graphical desktop environment:
� In a shell window, execute <path_to_eclipse>eclipse.

� In a file manager window, double-click the eclipse executable.

� Click on a custom launch button in the toolbar.
Eclipse always begins by asking you to select a workspace (Figure 3.1). The default

workspace is the directory workspace/ under your home directory. If the directory doesn’t
nespress.com

32 Chapter 3
exist, Eclipse will create it. If this is likely to be the only workspace you use, check the Use

this as the default and do not ask again box to bypass this dialog.

If the workspace did not exist, Eclipse brings up a Welcome screen (Figure 3.2).

This offers the opportunity to learn more about Eclipse before jumping right into it.

Icons include:
Overview of Eclipse features
w

What’s new in this release
Samples
Tutorials

Go to the Workbench
The next time you start Eclipse in the same workspace the Welcome screen won’t be

displayed but you can always get back to it by clicking Help –> Welcome. For now

click Go to the workbench, but feel free to come back to the samples and tutorials at

any time.
3.2 Basic Concepts

At its core, Eclipse is really just a collection of tools for managing and manipulating

files. The magic of course is in how these tools and other software components are

structured and integrated. The user’s view of Eclipse is a desktop known as a

Workbench. Figure 3.3 is the empty workbench window that comes up before we’ve

created any projects or files.

Across the top of the workbench window is a menu bar with familiar entries such

as File, Edit, Search, Window, and Help, as well as some menus specific to

Eclipse like Refactor, Navigate, Run, and Project. Below that is a tool bar whose

icons may change depending on which perspective is visible and which view or
ww.newnespress.com

Figure 3.2: Welcome screen.

33Getting Started
editor has the focus. The visible perspective is changed by clicking the button at

the far right of the tool bar. Eclipse CDT offers three default perspectives: C/C++

that is currently visible, Debug, and Team Synchronizing. Two other perspectives

are available by selecting the Other. . . button, CVS Repository Exploring, and

Resource.

It is helpful to have a project open in order to discuss Eclipse basic concepts. Select

File –> New –> C Project. In the Project name: field enter “hello”. Under Project

types: click the right arrow next to Executable and select Hello World ANSI C

Project (see Figure 3.4). Click Next to bring up the Basic Settings dialog. Enter

your name as the Author and change the Copyright notice and Hello world greeting,

if you choose. Click Finish. The Project Explorer window on the left side of the

workbench now shows some information about the hello project.
www.newnespress.com

Figure 3.3: Empty workbench.

34 Chapter 3
3.3 Perspectives, Editors, and Views

The Workbench window contains one or more Perspectives that are, in turn,

collections of Views and Editors. A Perspective defines an initial set of views, and the

layout of those views, to accomplish some specific task on a particular set of resources,

or files. The workbench is currently displaying the C/C++ perspective typical of Eclipse

CDT.

A workbench may have several perspectives open, but only one perspective is visible in

a window. To make additional perspectives visible, open additional windows using the

Window –> New Window command.
www.newnespress.com

Figure 3.4: New project dialog.

35Getting Started
The large space in the center of the workbench is the Editor. As you might expect, the

editor allows you to open, modify, and save files. The editor window is the central

feature of virtually all Eclipse perspectives. Different editors can be associated with

different file types. Opening a file then starts up the corresponding editor, which may

also change the contents of the menu and tool bars. The editor associated with C source

files has a number of useful features that we’ll look at shortly.
www.newnespress.com

36 Chapter 3
Multiple files can be open in the editor and are identified by tabs across the top

of the editor window. An asterisk, “*”, indicates the file has unsaved changes.

Clicking the “X” icon to the right of the file name in the currently visible tab closes

the file.

Views support editors and provide alternative presentations of the information in a

project as well as ways to navigate that information. Views most often appear in tabbed

stacks to the right and left of the editor window and sometimes beneath it. Icons on

the right end of the tab bar allow the currently visible view in that stack to be minimized

or maximized. Views also have their own menus represented by the down arrow icon

at the far right of the view tab. Frequently used menu items may be represented by

other icons in the tab.

Figure 3.5 is an example of the view menu for the Project Explorer view. The menu

items are primarily concerned with how the view is displayed.
Figure 3.5: Project Explorer view menu.
A view can be moved around anywhere in the Workbench by dragging its title bar.

As you move the view around, the mouse pointer changes to one of the drop cursors

shown in Figure 3.6. This indicates where the view will be docked if you release

the mouse. Try it with the Outline view on the right.

The default C/C++ perspective displays the Project Explorer view on the left and an

Outline view on the right. The Project Explorer provides a hierarchical view of the
www.newnespress.com

Dock above: The view is docked above the view underneath the cursor.

Where the view will be moved to
Drop
cursor

Dock below: The view is docked below the view underneath the cursor.

Dock to the right: The view is docked to the right of the view underneath the cursor.

Dock to the left: The view is docked to the left of the view underneath the cursor.

Stack: The view is docked as a Tab in the same pane as the view underneath the cursor.

Detached: The view is detached from the Workbench window and is shown in its own separate
window

Restricted: You cannot dock the view in this area.

Figure 3.6: Drop cursor icons.

37Getting Started
resources contained in a project. It allows for adding or importing new files or

directories, deleting or exporting files, and opening files for editing.

The Outline view displays an outline of the structural elements of the file currently visible

in the editor window. Since we don’t currently have a file open in the editor, the

Outline view is empty. Click the arrow to the left of the project name in the Project

Explorer to expand the project. Then expand the src entry to reveal the file hello.c.

Either double-click on hello.c or right-click and select Open. The source file shows

up in the editor and there’s now something in the Outline view on the right (Figure 3.7).

Note first of all that the editor, like any good programming language editor, employs

syntax coloring. Click just to the right of the opening brace in main and note that

the closing brace is highlighted. Try the same thing with the left parenthesis of the puts

statement.

With the cursor located anywhere in the main function, the vertical bar on the left,

known as the marker bar, shows the extent of main. The same thing happens if you

click on main in the Outline view.

Roll your mouse over puts. A help window pops up showing the function declaration

from the header file along with any comments associated with that declaration.
www.newnespress.com

Figure 3.7: hello.c in editor window.

38 Chapter 3
It’s also worth noting that as soon as you created the hello project, Eclipse built it using

the default gcc compiler. The results of the build are shown in the Console view

below the editor. This brings us to a discussion of all four of the views that normally

appear below the editor.
3.3.1 Problems View

If any errors or warnings are encountered in the course of building a project, they will

be logged in the Problems view. Currently that view is empty because the project built

successfully. It’s easy enough to introduce an error, for example, by deleting the

semicolon at the end of the puts statement.
www.newnespress.com

39Getting Started
Make that change and save the file. Note that by default, Eclipse does not

automatically save any changed files before it builds a project. There is a preference

option to save automatically before a build.1 We’ll look at preferences later in this

chapter.

There are several ways to build the project. For now select Project –> Build All.

The Problems view now shows a syntax error and tells us where it is. The error line is

also identified in the editor with an icon in the marker bar. By default, problems are

grouped by severity with different icons in the first column representing warnings

and errors. If there are several items in the Problems view, clicking on an item moves

the editor to the corresponding line, opening the file if necessary.

The Problems view can be filtered to show only warnings and/or errors for a particular

resource or group of resources (Figure 3.8). Filters are accessed from the Problems

view menu –> Configure filters. . . You can create multiple filters and enable and

disable them as needed. Filters are “additive” so that any problem that satisfies at least

one enabled filter will be shown.

Problems can also be sorted along several dimensions by selecting Sort By from the

Problems view menu.
3.3.2 Tasks View

The Tasks view lets you create tasks related to the project and link those tasks to

specific resources. There are several ways to add a task to the list. Right-click in

the Tasks view and select Add Task to bring up the dialog in Figure 3.9. Here you

can enter a description of the task and its priority. You can even check the task as

completed although it’s a little hard to understand why you would be adding a task

that’s already completed.

There are text boxes for entering an Element, Folder, and Location, but oddly enough

you can’t enter anything there. So tasks created by this method can’t be linked to a

resource. To create a task linked to a resource, hello.c for example, right-click in the

marker bar on the left side of the editor window and select Add Task. Try it on the

comment line that says “Copyright.” The same dialog box comes up but now it’s
1 Personally, I think that should be the default.

www.newnespress.com

Figure 3.8: Problems filter.

40 Chapter 3
labeled Properties instead of Add Task, and the Element, Folder, and Location fields

are filled in.

Change the description to “update copyright” and click OK. A task icon appears in

the marker bar at line 6. Like Problems, Tasks can be filtered to show only a relevant

subset and can be sorted along several dimensions. Your Task view should look

something like Figure 3.10.
www.newnespress.com

Figure 3.9: Add Task dialog.

Figure 3.10: Task view.

41Getting Started
3.3.3 Console View

The primary role of the Console view is to display program output, and output from

the build tools. The Console view is connected to stdin, stdout, and stderr.

Although several consoles may be open at any given time, only one is visible in the view.

An icon on the tab bar lets you select the visible console.

Figure 3.11 shows two different console views (a and b). When a program is running in

the console, a red rectangle icon appears that can terminate the program. Other icons

remove terminated console views, clear the console, open a new console, and lock

scrolling.
www.newnespress.com

Figure 3.11: Console views (a and b).

42 Chapter 3
The Console view only represents programs that are running on the host. Programs

running on an external target will display their output in some other fashion, such as

a terminal emulator window. In Chapter 6, “Device Software Development Platform,”

we’ll look at an Eclipse project that makes remote programs visible in the Console

view.
3.3.4 Properties View

Every object and/or resource in Eclipse has certain “properties,” the natures of which

depend on the type of object. The Properties view shows the properties of any object

selected in one of the other views. With the Properties view visible, click on the project

name “hello” in the Project Explorer view to bring up something like Figure 3.12.

Click on “hello.c” in the Project Explorer view to see a slightly different set of

properties. The Properties view is read-only—you can’t change anything here—and to

be honest, it doesn’t tell you a whole lot. A more extensive, editable view of properties

is available from an object’s context menu described later in this chapter.
www.newnespress.com

Figure 3.12: Properties view.

43Getting Started
Thus far we’ve explored several of the more common views available in Eclipse. Later

on we’ll encounter other views more specific to the C development environment.

3.4 Menus

Like any good windowing program, Eclipse has a set of menus arrayed across the top of

the main display window. Most of the items in these menus are fairly familiar, but

a few deserve some additional description.
3.4.1 File Menu

This is a fairly standard file menu. Some additional items worth mentioning are:
� Convert Line Delimiters To: Changes how text lines are terminated for the

selected file. Each of the three major operating systems that Eclipse supports

has a different convention for how text lines are terminated:
1. Unix (default): Line feed (0xa)

2. Windows: Carriage return and line feed (0xd, 0xa)

3. Mac OS/9: Carriage return (0xd)
www.newnespress.com

ww

44 Chapter 3
The changes are immediate and persist until you change the delimiter again. It’s

not necessary to explicitly save the file.

� Import: Allows resources to be imported into the selected project.

� Export: Allows resources to be exported out of a project to some other

location.

� Switch Workspace: Allows you to change to a different workspace. This

restarts the workbench.
3.4.2 Edit Menu

The Edit menu also has many of the familiar options. Some Eclipse- and CDT-specific

features include:
� Incremental Find Next/Previous: Search for expressions in the active editor.

As you type the search expression, Eclipse incrementally jumps to the

next/previous exact match.

� Add Bookmark: Adds a bookmark in the active file on the line where the

cursor is displayed.

� Add Task: Adds a task in the active file on the line where the cursor is

displayed.

� Word Completion (Alt + /): Attempts to complete the word currently being

entered in the active editor.

� Quick fix: Supposedly offers suggestions on correcting certain errors when the

cursor is on a line that has an error. Unfortunately, the only thing I’ve seen so

far is “No suggestions available.”

� Content Assist: Opens a dialog at the current cursor location to offer assistance

in the form of proposals and templates. The templates can be configured

through the Window menu at Window –> Preferences –> C/C++ –> C/C++

Editor –> Content Assist.

� Parameter Hints: Displays the parameter portion of a function prototype.

� Format: Reformats a source file to match the currently selected coding style.
w.newnespress.com

45Getting Started
3.4.3 Refactor Menu

There’s only one item in the Refactor menu: Rename. This is a way to rename a

selected object and have the change propagated through the entire project.
3.4.4 Navigate Menu

As the name implies, this menu helps you navigate through a large project in a number

of different ways. We’ll look at many of these menu items in more detail in the

next chapter, where we get into C programming:
� Open Type Hierarchy: Displays the Type Hierarchy view for the selected

object, provided the object resolves to a defined type.

� Open Call Hierarchy: Displays the Call Hierarchy view for the selected

function. The Call Hierarchy can show which functions call this function, and

which functions this function calls.

� Open Declaration: Opens the declaration of the selected object: a function,

variable, class, type, etc.

� Open Resource: Displays a dialog allowing you to select any resource in the

workspace to open in an editor.

� Last Edit Location: Moves the cursor to the line that contains the most

recent edit.

� Go to Line: Displays a dialog to specify a line number to which to move the

cursor.
3.4.5 Search Menu

The Search menu offers three different ways to search for text, represented by four

menu items. Figure 3.13 shows the C/C++ search dialog that allows you to search

for text in specific language elements. The scope of the search can be the entire

workspace or the set of resources selected in the Project Explorer view. The results

of the search appear in the Search view.
www.newnespress.com

Figure 3.13: C/C++ Search dialog.

46 Chapter 3
Figure 3.14 shows the File search dialog. Here you can search for a text string, a regular

expression, and/or a file name pattern. Again, the search can encompass the entire

workspace or only selected resources, and the results of the search appear in the

Search view.

Finally, with the cursor set in any word, you can select Search –> Text and

immediately see the Search view with a list of the files containing the selected text.
3.4.6 Project Menu

The Project menu is concerned, perhaps not surprisingly, with managing projects, which

is in fact the primary organizing principle of Eclipse. The menu includes items for

opening and closing projects, building projects, and making specific targets.
www.newnespress.com

Figure 3.14: File Search dialog.

47Getting Started
Select the hello project in the Project Explorer view and click the Project menu. Menu

items include:
� Close Project: Closes the selected project(s). Any project files open in editors

are closed and the hierarchy in the Project Explorer view is collapsed.

� Open Project: A project that was previously closed can be opened. Note that

the Project Explorer view must have the focus for Open and Close to be active.

� Build All: Builds all projects in the workspace. Currently there’s only one, the

“hello” project. Clicking Build All now will probably result in the message

“Nothing to be done for ‘all’” since the project has already been built. This is a

full build, that is, all files are built.

� Build Project: Builds the project currently selected in the Project Explorer

view. This is a full build.
www.newnespress.com

ww

48 Chapter 3
� Build Configurations: Allows you to set the active configuration, either Debug

or Release. Build All and Build Project build the active configuration.

� Clean: Cleans either all projects or selected projects, as determined by a dialog.

The selected projects are then rebuilt.

� Build Working Set: If you have created one or more working sets you can

have Eclipse just build the selected working set. We’ll look at working sets

in the next chapter.

� Build Automatically: If this item is checked then the project is automatically

rebuilt any time a project file is saved. This is probably not a very good idea

for very large projects.

� Make Target: Opens a submenu that allows you to create and then build

additional make targets. We’ll look at this is in the next chapter.

� Properties: Opens a rather extensive properties dialog, an example of which

is shown in Figure 3.15. This particular tab sets options for the gcc compiler

and linker. These settings are for the selected configuration.
3.4.7 Run Menu

Having built a project, the next thing we probably want to do is run or debug it.

Eclipse runs projects from a launch configuration that specifies the program to

run, its arguments and environment, and how the program connects to Eclipse

(i.e., is it a local process or is it running remotely on a target board of some

sort?). A launch configuration also specifies the debugger and how it connects

to Eclipse.

Before we run or debug a project, we must first create a launch configuration.

Click on Run –> Run Configurations . . . Click the New button, the one farthest

to the left in the left-hand panel, to create a new configuration under “C/C++

Local Application.” This brings up the dialog shown in Figure 3.16.

The configuration name has been automatically set to match the project name.

You need to select an application to run by clicking Search Project . . . and then

selecting /hello/Release/hello. Click the other tabs just to see what’s there. The

hello program takes no arguments and has no environment variables. We’ll look at the

Debugger tab in the next chapter.
w.newnespress.com

Figure 3.15: Project properties dialog.

49Getting Started
Now click Apply and then click Run. The program output appears in the Console view.

With at least one launch configuration established, the other Run menu actions

become meaningful:
� Run: Rerun the most recent launch in Run mode.

� Run History: Presents a submenu of configurations launched in Run mode.

Currently there’s only one.
www.newnespress.com

Figure 3.16: Launch configuration dialog.

ww

50 Chapter 3
� Run As: Presents a submenu with one item: “Local C/C++ Application.”

Clicking that brings up a dialog where you can select either the release or debug

binary to run.

� Debug: Rerun the most recent launch in Debug mode.

� Debug History: Presents a submenu of configurations launched in Run mode.

Currently there’s only one.

� Debug As: Presents a submenu with one item: “Local C/C++ Application.” Clicking

that brings up a dialog where you can select either the release or debug binary to run.
w.newnespress.com

51Getting Started
� Debug Configurations. . .: Opens the launch configuration dialog for

debug mode configurations. The hello configuration we created for run

mode is selected and can be used as-is. We’ll explore debugging in the

next chapter.
The Run menu also includes a number of execution control actions that are used for

debugging.
3.4.8 Window Menu

This menu offers a number of options for selecting views and perspectives and moving

around the workbench. Actions include:
� New Window: Opens a new workbench instance. This allows you to have

two or more perspectives visible at once.

� New Editor: Opens an empty editor window.

� Open Perspective: Allows you to select another perspective. The choices

offered depend on where you are. In any case, there’s always an Other. . .

case that lists all of the perspectives available.

� Show View: Brings up a list of views to make visible. Depending on

where you are, the views you are most likely to be interested in are

listed first. Again, there’s an Other . . . selection to select any possible

view.

� Customize Perspective: Each perspective includes a predefined set of

actions accessible from menus and the workbench toolbar. This command

brings up a dialog that lets you customize the actions in the current

perspective.

� Save Perspective As: Saves the current perspective, thus giving you the

opportunity to create custom perspectives, which may be opened with

Window –> Open Perspective –> Other.

� Reset Perspective: Returns the current perspective to its original layout.

� Close Perspective: Closes the current perspective. Basically, this just makes

another open perspective visible.
www.newnespress.com

ww

52 Chapter 3
� Close All Perspectives: Closes all open perspectives. This leaves the

workbench essentially blank with just the Open Perspective icon visible.

All open editors are closed.

� Navigation: Brings up an extensive submenu that provides another way to

move among views, perspectives, and editors.

� Preferences . . .: Leads you to the configuration dialog for Eclipse. There are

many preference options, which are the subject of the next section.
3.4.9 Help Menu

Eclipse comes with extensive help documentation that can be accessed in different ways:
� Welcome: Displays the welcome screen with access to tutorials and examples.

� Help Contents: Opens a new help window. A navigation panel on the left

lets you browse through two user guides: the Workbench User Guide and the

C/C++ Development User Guide. There’s also a search window.

� Search: This is one of several help actions that pops up a Help view in the

current perspective. See Figure 3.17.

� Dynamic Help: Brings up the Help view as another way to browse the help files.

� Key Assist. . . : Displays a pop-up window with all of the shortcut keys.

� Tips and Tricks . . . : Displays some helpful ideas for improving productivity

in the separate help window.

� Report Bug or Enhancement. . .: Provides a convenient mechanism for filing bug

reports.

� Cheat Sheets . . . : These are short tutorials that display in the Cheat Sheets view.

� Software Updates: Finds and installs updates to Eclipse software. You have

a choice between updating only currently installed features, and searching for

new features to install.

� About Eclipse Platform: The usual “about” type of information. Buttons

provide additional information about features, plug-ins, and configuration

details.
w.newnespress.com

Figure 3.17: Workbench with Help view visible.

53Getting Started
3.4.10 Context Menu

Again, like any good windowing program, Eclipse offers several different ways to

invoke its functionality. In addition to the menus described above, many Eclipse actions

are available from the toolbar just below the menu bar. The actions available in the

toolbar may change depending on which perspective is visible and which view has

the focus.

In addition, just about every object has a Context menu, accessed by right-clicking on

the object. The Context menu includes a collection of actions derived from the other

menus that are commonly performed on the selected object.

For example, right-click on the project name, “hello,” in the Project Explorer to

bring up the menu shown in Figure 3.18. This includes actions from the File, Project,
www.newnespress.com

54 Chapter 3
and Run menus that are useful to perform at the project level. Right-clicking on hello.c

brings up a similar, yet slightly different menu. For a completely different Context

menu, right-click on one of the entries in the Outline view.
Figure 3.18: Project-level Context menu.

www.newnespress.com

55Getting Started
Browse around different views and different objects to get a feel for the range of the

Context menus.
3.5 Configuring Eclipse

Perhaps not surprisingly, Eclipse offers an extensive array of configuration options that

let you tailor its appearance and operation to your particular tastes or to company

development standards. The Preferences dialog shown in Figure 3.19 is activated with

Window –> Preferences.
Figure 3.19: Preferences dialog.

www.newnespress.com

56 Chapter 3
As shown here, preferences are arranged into six major categories. At this point, it’s

not worth going through an exhaustive explanation of all the preference options.

Many of them are somewhat obscure, in any case. There is an extensive section in both

the Workbench User Guide and the C/C++ Development User Guide that describes

all of the preference options in detail.

Briefly, the six major categories are:
ww
� General. Pretty much what it says. There are options here for managing the

appearance of Eclipse, configuring editors and shortcut keys, startup and

shutdown operations, and other features.

� C/C++. This category manages a large number of configuration options for

CDT, including appearance, editor behavior, environment variables, debug

behavior, and more. There are a few options in this category that are worth a

closer look in this chapter (see below) and others that we’ll take a closer look at

in the next chapter.

� Help. Specifies how help information is displayed and offers a way to include

help content from a remote location.

� Install/Update. Manages the Eclipse software update and installation process.

Updates can be automatically downloaded and installed.

� Run/Debug. Manages the process of running and debugging code under

Eclipse, including things like console appearance, breakpoint behavior, and

what happens when a program is launched.

� Team. Offers preferences for using CVS and team synchronization.
Note the circle icon with the question mark in the lower left corner. Clicking this

icon brings up a context-sensitive help screen to the right of the dialog. This is, in fact,

a common feature of virtually every Eclipse dialog and is a useful way to get more

detailed information about the dialog options.

At this point it would be useful to browse around the preferences menus to get

a better feel for what’s there. Earlier, we saw that by default, Eclipse does not

save changed files before building. The option to change that behavior is in

General –> Workspace. It’s called Save automatically before build.
w.newnespress.com

57Getting Started
3.5.1 C/C++ Preferences

Code Style

The CDT text editor incorporates “smart typing” features, that include things like auto-

indentation and formatting, that are controlled by the Code Style preference shown

in Figure 3.20. You can select from among four built-in code styles that include:
� K&R

� BSD/Allman
Figure 3.20: Code Style preference.

www.newnespress.com

ww

58 Chapter 3
� GNU

� Whitesmiths
The primary difference among the four seems to be the location and indentation of

opening and closing braces. The default is K&R, where the opening brace is on the

same line as the expression or key word that introduces the block. This seems to be the

preferred style among Linux programmers.

For what it’s worth, my personal preference is BSD/Allman, where the opening brace is

on the next line and indented to line up with the introductory expression. There are

options to edit the built-in styles, import a style, and to create a completely new one.

Among the features you can edit in the built-in styles are Tab policy and Tab size. Tab

policy specifies whether tabs are represented in the file by tab characters, 0x9, or spaces.
Editor Preferences

General editor preferences include the ability to change various colors. I find the default

color for highlighting matching braces to be a bit “subtle.” To change it, select

Matching brackets highlight under Appearance color options: and then click on the

Color: button.

A few of the more interesting editor preference subcategories are described here.

Content Assist With Content Assist, the C/C++ editor can offer suggestions about key

words and phrases commonly used in C. Type part of a keyword followed by

Ctrl+Space to bring up a list of suggestions. When the list has been reduced to one

item, the editor can automatically insert that item into your code.

The related auto-completion feature can use “.”, “->”, and “::” as triggers to invoke

auto-completion on structures and class definitions.

Content Assist is based on templates that can be specified under Template preferences

(see below).

Folding Folding hides the detailed contents of selected regions in a source file. This

can be a useful strategy for browsing through large files. Figure 3.21 is an example of a

file with functions and macros folded. Click on the “+” icon next to the name to see the

contents of a specific function or macro.
w.newnespress.com

Figure 3.21: Folded source file.

59Getting Started
Folding preferences let you select if folding is enabled when a new editor is opened, and

which sections of code will be folded.

Syntax Coloring There are a large number of semantic elements to which specific

coloring and font styles can be assigned. Many of these are not enabled by default and

among those that are enabled many share the same coloring. Here’s your chance to “go

wild,” if you’re so inclined, and create some exciting color schemes.
Templates Templates are the basis for Content Assist. There’s a default set of

templates representing common C/C++ code snippets. You can add your own templates

with New, and Edit existing templates.
Typing Typing preferences are another way in which the editor provides

assistance. You can tell the editor to automatically close quoted strings, parentheses,

brackets, and braces. When you type an opening parenthesis or bracket, the editor
www.newnespress.com

60 Chapter 3
automatically inserts the matching close and positions the cursor between them.

Type what should be enclosed, then hit Enter to position the cursor just beyond the

matching close.
Summary

This chapter has been a quick tour of basic Eclipse concepts and operation with an

emphasis on the C/C++ Development Tools (CDT) environment. We began by

examining the relationship among Perspectives, Views, and Editors. A Perspective is a

collection of Views and Editors organized to accomplish a specific function. Editors

allow files to be opened, modified, and saved. Views support Editors by providing

additional information and functionality. The selection and arrangement of Views in a

Perspective can be changed at will.

The basic functionality of Eclipse, like all windowing programs, is embodied in a set

of menus. We looked in detail at many menu, or action, items that are specific to

Eclipse. Many of these action items also appear in the tool bar and in Context menus.

Items in the tool bar may change or become active or inactive depending on which

view has the focus.

Finally, we looked at some of the many configuration and customization options

available in Eclipse with particular attention to some of the interesting features of the

CDT editor.

The next chapter goes into more detail about the CDT environment and the nature of

projects.
www.newnespress.com

www.new
CHAP T E R 4
C/C11 Developers’ Toolkit (CDT)
With a good basic understanding of Eclipse concepts as a background, this chapter

looks at the C Developers’ Toolkit in more detail. It covers how to create, configure,

and build projects.
4.1 Obtaining the Sample Source Code

Source code and data files for all the examples in this book are available from

http://www.intellimetrix.us/downloads.html in the file EclipseSamples.tar.gz.

Download this file to your home directory and untar it. You’ll find a new directory called

EclipseSamples/ with subdirectories for each of the projects described in the book.
4.2 Creating a New Project

For this exercise we’ll create a fairly straightforward record sorting application. The

records to be sorted consist of a name and an ID number. To simplify the code a bit,

we’ll replace any spaces in the name field with underscores. The program will sort a file

of records in ascending order, either by name or ID number, as specified on the

command line thusly:

record_sort <datafile> [1 j 2]
Where “1” means sort by name and “2” means sort by ID. Sort by name is the default if

no sorting argument is given.

In the Eclipse C/C11 perspective, create a new C Project and call it “record_sort.”

The project type is Executable and we’ll use the default workspace location. Clicking
nespress.com

62 Chapter 4
Next brings up the Select Configurations dialog where you can select either or both

of the Debug and Release configurations. Later you’ll have the choice of building either

of these configurations. The primary difference between them is that the Debug

configuration is built with the compiler’s debug flag, “-g”, turned on to provide

information to GDB. The Release configuration leaves out the debug flag.

There’s also an Advanced settings. . . button to delve deeper into project configuration.

We’ll look at that later.

When you click Finish in the New Project Wizard, the workbench looks like Figure 4.1.

The only item under the record_sort project in the Project Explorer view is

Includes, which is a list of paths to search for header files. Eclipse attempted to build

the project, but of course there’s nothing to build since there are no source files.
Figure 4.1: Empty project.

www.newnespress.com

63C/C11 Developers’ Toolkit (CDT)
At this point it would be useful to take a look at the directory workspace/

record_sort/. It contains just two files, .cproject and .project, both of

which are XML code describing the project. The .project file provides

configuration information to the base Eclipse platform while the more extensive

.cproject file provides information to CDT. It’s not necessary to understand the

contents of these files, but it is useful to know they exist.
4.3 Adding Source Code to the Project

There are basically two ways to add source code to a C project. You can, of

course, create a new file in an Editor window, or you can import existing files

into the project. Execute File > Import . . . to bring up the Import Select

dialog. Expand the General category and select File System. Click Next, then

click Browse, and navigate to Home/EclipseSamples/record_sort and

click OK.

This brings up the Import dialog shown in Figure 4.2. Select all three files and click

Finish. Those files now show up in the Project Explorer view. Note that there is no

record_sort.c file. That’s because you’re going to type it in yourself to get some

practice with the CDT editor.

Click the down arrow next to the New icon at the left end of the tool bar and

select Source File from the drop down menu. Name it “record_sort.c.” An Editor

window opens up with a preliminary header comment. The contents of

record_sort.c are given in Figure 4.3, but don’t start typing until you read the

next section.
4.3.1 Content Assist

The CDT Editor has a number of features to make your coding life easier. These fall

under the general heading of Content Assist. The basic idea of Content Assist is to

reduce the number of keystrokes you must type by predicting what you’re likely

to type based on the current context, scope, and prefix. Content Assist is invoked by

typing Ctrl1Space and it’s also auto-activated when you type “.”, “->”, or “::”

following a struct or class name.
www.newnespress.com

Figure 4.2: Import dialog.

64 Chapter 4
4.3.2 Code Templates

Code Templates are an element of Content Assist that provide starting points for

frequently used sections of code. When you enter a letter combination followed by

Ctrl1Space, a list of code templates that begin with that letter combination is displayed.

Select one and it is automatically inserted into the file at the current cursor location.
www.newnespress.com

/*
 * author Doug Abbott
 *
 * Simple demonstration of building and running a project under
 * Eclipse.
 *
 * Usage:
 * record_sort <filename> [1 | 2]
 *
 * Sorts records in <filename> either by name (1) or ID (2).
 * Default is name. Outputs sorted file to stdout.
 */
#include <stdio.h>
#include <stdlib.h>

#include "record_sort.h"

int main (int argc, char **argv)
{

int size, sort = 1;
record_t *records;

if (read_file (argv[1], &size, &records))
{

printf ("Couldn't open file %s\n", argv[1]);
exit (1);

}
if (argc > 2)

sort = atoi (argv[2]);

switch (sort)
{

case 1: sort_name (size, records);
break;

case 2: sort_ID (size, records);
break;

default:
printf ("Invalid sort argument\n");
return_records (size, records);
exit (2);

}
write_sorted (size, records);
return_records (size, records);
return 0;

}

Figure 4.3: record_sort.c.

www.newnespress.com

66 Chapter 4
Try this: after entering the #include lines in Figure 4.3, type “ma” Ctrl1Space.

This brings up a template for the main() function. Note that the format of templates

is independent of whichever Code Style you’ve selected and the default is K&R. You

can edit templates at Window –> Preferences –> C/C11 –> Editor –> Templates.

We’ll take a closer look at that later in the chapter. Other aspects of Content Assist

can also be customized under Preferences.
4.3.3 Automatic Closing

As you type, note that whenever you type an opening quote (“), parenthesis [(],

square ([) or angle (<) bracket, or brace ({), the Editor automatically adds the

corresponding closing character and positions the cursor between the two. Type

whatever is required in the enclosure and hit Enter. This positions the cursor just

beyond the closing character. However, if you move the cursor out of the enclosed

space, to copy and paste some text for example, the Enter key reverts to its normal

behavior of starting a new line.

In the case of an opening brace, the closing brace is positioned according to the

currently selected coding style, and the cursor is properly indented.

Finally, notice that as you type, appropriate entries appear in the Outline view

identifying header files, functions, and if we had any, global variables.
4.4 The Program

Before moving on to building and running the project, let’s take a closer look at what

it actually does. main() itself is pretty straightforward. It’s just a set of calls to

functions declared in sort_utils.c that do the real work.

The function read_file() reads in a data file that is assumed to be organized as one

record per line, where a record is a text name and a numeric ID. It allocates memory

for an array of records and a separate allocation for each name field.

There are two sort functions: one to sort on the name field, and the other to sort on the

ID field. Both of these implement the shell sort algorithm, named after its inventor

Donald Shell. Shell sort improves performance over the simpler insertion sort by

comparing elements separated by a gap of several positions.
www.newnespress.com

67C/C11 Developers’ Toolkit (CDT)
After the record array is sorted, write_sorted() writes it to stdout. This could be

redirected to a file, of course.

The final step is to return all of the allocated memory in the function

return_records().

The program does virtually no “sanity checking” and, if you’re so inclined, you might

want to build some in. There’s also very little in the way of error checking.
4.5 Building the Project

Once you’ve completed and saved the record_sort.c file, the next step is to build

the project. All files that are created in, or imported into, a project automatically

become a part of it and are built and linked into the final executable.

In the Project Explorer view, select the top-level record_sort entry. Then execute

Project –> Build Project or right-click and select Build Configurations –> Build

All. In the former case, the Active Configuration will be built. By default this

is the Debug configuration. The Active Configuration can be changed by executing

Project –> Build Configurations –> Set Active.

In the latter case, both the Debug and Release configurations will be built. In either case

one or two new entries will show up under record_sort in the Project Explorer

view. These entries represent subdirectories called Debug/ and Release/ that hold,

respectively, the object and executable files for the corresponding build configurations.

Each also contains a makefile and some Eclipse-specific files.

Initially the build will fail because some compile-time errors and warnings have been

built into sort_utils.c. Open the Problems view, expand the Errors entry, find

the item that says “structure has no member named ‘Id’” and right-click on it. Select

Go To to open sort_utils.c, if it isn’t already open, and highlight the line that has

the error (Figure 4.4). The correction should be fairly obvious.

Eclipse CDT identifies build problems several different ways. In the Project Explorer

view, any project and source files that have problems are flagged with a red “X”

icon for errors or a yellow shield icon with a “!” to indicate a warning. When a source

file with errors or warnings is opened in the Editor, the tab shows the same symbol.

The Outline view then uses the same icons to show which functions in the file have

either errors or warnings.
www.newnespress.com

Figure 4.4: Identifying build problems.

68 Chapter 4
The Editor window uses the same icons to identify the line on which each error or

warning occurs. You can scroll through a source file and click on a line displaying

either a warning or error icon and the Problems view will jump to the corresponding

entry. If you roll the cursor over a line that’s identified as an error or warning, the

corresponding error message pops up.

Correct the problems and build the project again. This time the build should succeed and

you’ll see an executable file show up in the Debug tree in the Package Explorer view.

4.6 Debugging the Project

Execute Run –> Debug. If you executed Build Configurations –> Build –> All, you’ll

be asked to choose a local application to debug. Select the binary with the “bug”

icon and click OK. Next you’re asked if you want to open the Debug perspective,
www.newnespress.com

69C/C11 Developers’ Toolkit (CDT)
shown in Figure 4.5. Yes, you do. This may also automatically create a debug launch

configuration as discussed in the previous chapter. If not, the launch configuration

dialog will pop up and you can create a new configuration named record_sort under

C/C11 Local Application.
Figure 4.5: Debug perspective.
If the launch configuration dialog did not come up, execute Run –> Debug

Configurations . . . because we need to modify the configuration in any case. Select

the Arguments tab as shown in Figure 4.6 and enter “datafile” into the Program

arguments: window. datafile is a set of sample data records for the program

to sort. It was imported into the project along with sort_utils.c and

record_sort.h.
www.newnespress.com

70 Chapter 4
Note that the first line of main() is highlighted in the Editor window and a green arrow

in the marker bar identifies this as the current execution point. That’s because, by

default, Stop on startup at: main is selected in the launch configuration.
Figure 4.6: Debug launch configuration.
For now, go ahead and run the program by clicking the Resume icon in the Debug view

toolbar. Hmmm, we didn’t get exactly the results we expected. datafile has

twelve records, but only one record is output to the Console view. That’s because

a couple of run-time errors have been built into the program to offer some practice

using the debugger.
4.6.1 The Debug View

In the Debug view, right-click on the top level project entry and select Relaunch to start

another debug run. The Debug view, shown in Figure 4.7, displays the state of the

program in a hierarchical form. At the top of the hierarchy is a launch instance, that is,
www.newnespress.com

71C/C11 Developers’ Toolkit (CDT)
an instance of a launch configuration identified by its name. Below that is the debugger

instance, identified by the name of the debugger, in this case, gdb. Beneath the

debugger are the program threads under the debugger’s control. For record_sort

there is just one thread. In the next chapter we’ll see how gdb/Eclipse handles multi-

threaded programs.

Finally, at the lowest level are the thread’s stack frames, identified by function name,

source code line, and program counter. Currently there is only one stack frame for

main(), stopped at record_sort.c, line 20.
Figure 4.7: Debug view.
The Debug view’s tool bar has lots of buttons for managing program execution as

shown in Table 4.1.

The Debug view tool bar also has a menu with two items:
� Show Full Paths: Toggles between showing the full path to the source files and

just the file name. In practice, most of the time the path is just ../ anyway.

� View Management: The Debug view can automatically open and close views

based on selection. This lets you select in which perspectives this feature should be

enabled. Normally you would only want to enable this in the Debug perspective.
Click Step Over once and then click Step Into to get into the read_file() function.

Note that a second stack frame appears in the Debug view and sort_utils.c is

opened in the Editor. At this point it would be worth taking a closer look at the four

tabbed views in the upper right of the workbench.
www.newnespress.com

Table 4.1: Debug Tool Bar Buttons

Button Name Function

Remove all
Terminated
Launches

Clear all terminated processes in the Debug view.

Restart Start a new debug session for the selected process.

Resume Resume execution of the currently suspended debug
target.

Suspend Halt execution of the currently selected thread in the
debug target.

Terminate End the selected debug session and/or process. Behavior
depends on the selected item’s type.

Disconnect Detach the debugger from the selected process.

Step Into If the execution point (program counter) is on a line that
includes a function call, step into the function and stop at
its first line.

Step Over Step over any called functions in the current source line
and stop at the next line in the current function.

Step Return Execute to the end of the current function and stop at the
next line of the caller.

Drop to Frame Re-enter the selected stack frame.

Instruction Stepping
Mode

Activate instruction stepping mode to follow execution one
instruction at a time.

Use Step Filters Activate step filters in the Debug view.

www.newnespress.com

72 Chapter 4

73C/C11 Developers’ Toolkit (CDT)
4.6.2 Variables View

When a stack frame is selected in the Debug view, the Variables view displays all the

local variables in that frame. Figure 4.8 shows the Variables view for the read_file()

stack frame. The two variables visible are both pointers. Clicking the white arrow to

the left of the name de-references the pointer and displays the corresponding value.

For string variables, the full string is displayed in the lower window.
Figure 4.8: Variables view.
Select the main() stack frame in the Debug view and note that the Variables view

changes to show the local variables in main(). If anything other than a stack frame

is selected, the Variables view goes blank. Remember, you can also view the value of

a variable simply by rolling the cursor over it.
4.6.3 Breakpoints View

To debug the problems in record_sort, you’ll probably want to set one or more

breakpoints in the program and watch what happens. Select the Breakpoints view,

which is currently empty because we haven’t set any breakpoints.

Let’s set a breakpoint at line 34 in sort_utils.c. That’s the beginning of an if

statement in read_file(). Right-click in the marker bar at line 34 and select

Toggle Breakpoint. A green circle appears to indicate that an enabled breakpoint is set

at this location. The check mark indicates that the breakpoint was successfully installed.

By the way, there’s an editor preference to display line numbers in the editor window.
www.newnespress.com

74 Chapter 4
Select Window –> Preferences –> General –> Editors –> Text Editors. The line

number display can also be toggled from the marker bar context menu.

A new entry appears in the Breakpoints view with the full path to the breakpoint. The

check box shows that the breakpoint is enabled. Click on the check box to disable

the breakpoint and note that the circle in the marker bar changes to white. Disabled

breakpoints are ignored by the debugger. Click the check box again to re-enable it.

Click Resume in the Debug view tool bar and the program proceeds to the breakpoint.

The Thread [0] entry in the Debug view indicates that the thread is suspended

because it hit a breakpoint. Click Step Over to load temp with the first record. Select

the Variables view and click the white arrow next to temp. Now you can see the

current values of the fields in temp. Variables whose value has changed since the last

time the thread was suspended are highlighted in yellow.
4.6.4 Breakpoint Properties

Breakpoints have some interesting properties that extend their flexibility and

usefulness. Right-click on the entry in the Breakpoint view and select Properties

to bring up the dialog in Figure 4.9.

Actions

Actions can be attached to a breakpoint such that when it is hit, the attached actions are

performed. CDT offers four classes of pre-defined actions:
ww
� Play Sound: Play a selected sound file when the breakpoint is hit. Maybe

the breakpoint only happens every half hour or so. You can go off and do

something else and when you hear the appropriate beep, you can go back and

see what happened. Sound files can be .wav, .mid, .au, or .aiff.

� Log Message: Output a message to the console.

� Run External Tool: Execute a program that has been configured in Eclipse as an

external tool. For example, the program might be running on a remote device.

You could configure the breakpoint to send an email or SMS to your desktop

� Resume: Automatically resume the program after a specified delay. Again, if

the program is running remotely, this is probably the only way to keep it

running after a breakpoint.
w.newnespress.com

Figure 4.9: Breakpoint properties—actions.

75C/C11 Developers’ Toolkit (CDT)
From the Actions dialog shown in Figure 4.9 you can create and edit actions

using the four classes. Then you can attach one or more of these actions to

the selected breakpoint. The actions are executed in the order that they appear

in the Actions for this breakpoint list. Actions can be moved up and down in

the list.

Try it out. Create a log action and a resume action and, if you’re so inclined, a sound

action. Attach them to the breakpoint at line 34 and watch what happens. Be sure

you click Apply after setting up the action list.
www.newnespress.com

76 Chapter 4
Common

Personally, I think this feature probably could have been named a little better.

The idea is that you can establish a Condition for triggering a breakpoint rather than

have the breakpoint triggered every time it’s encountered. You can also specify,

with the Ignore count, a number of times to ignore the breakpoint before triggering

it. Figure 4.10 shows an example where the breakpoint will be triggered when the for

loop variable “i” equals 9. The same behavior could be obtained by setting the

Ignore count to 9.
Figure 4.10: Breakpoint properties—Common.

www.newnespress.com

77C/C11 Developers’ Toolkit (CDT)
Filtering

Filtering lets you restrict a breakpoint to some subset of threads. Suppose, for example,

you have several threads running the same code. You might set a breakpoint in the code,

but you’re really only interested in stopping one particular thread. You can restrict the

breakpoint to just that thread. We’ll look at multi-threaded debugging in the next chapter.

At this point it might be useful to let the program execute to line 42, nrecs 1¼ 10.

Disable the breakpoint. Select line 42 in the Editor window and right-click for the context

menu in the text area, not the marker bar. It’s worth noting that the context menus for the

marker bar and text area are substantially different. Select Run to Line. The program

executes to the selected line. This is simply an alternate form of execution control.

4.6.5 Other Views

There are two other views that are included in the upper right tab by default. They are

the Registers and Modules views. The Registers view shows you the contents of the

processor registers. This is only really useful if you’re debugging assembly language

code. At “C-level” it doesn’t tell you much.

The Modules view shows what modules are loaded to create the complete program.

Typically this consists of your own executable, plus some collection of shared libraries.

Information provided for the executable includes a much more extensive version of the

information found in the Outline view.

Memory View

There’s one more debug-oriented view that shows up by default in the bottom-tabbed

window of the Debug perspective. The Memory view lets you monitor and modify

process memory. Memory is organized as a list of memory monitors, where each

monitor represents a section of memory specified by a base address. Each memory

monitor can be displayed in one or more of four predefined formats known as memory

renderings. The predefined renderings are hexadecimal (default), ASCII, signed integer,

and unsigned integer.

Figure 4.11 shows a memory monitor of the area allocated for temp just after the first

fscanf() call in read_file(). The Memory view is split into two panes, one that

lists the currently active monitors and another that displays the renderings for the

selected monitor. A monitor may have multiple renderings enabled, and these will be

tabbed in the renderings pane.
www.newnespress.com

Figure 4.11: Memory view.

78 Chapter 4
The first four bytes hold a pointer to another area allocated for the name. This also

happens to be visible. Remember that the x86 is a “little endian” machine. Consequently,

when memory is displayed as shown here, most entries appear to be “backwards.”

Each of the panes has a small, fairly intuitive set of buttons for managing the pane.

These allow you to either add or remove monitors or renderings, and in the case of

monitors, remove all of them.
4.6.6 Finish Debugging

With this background on the principal debugging features of Eclipse, you should be able

to find the two runtime errors that have been inserted in sort_utils.c. Good luck.
4.7 Linking Projects

Eclipse allows projects to refer to, and to depend on, other projects. Consider, for

example, that you have a family of similar application projects that all make use of a

common library. We can have each of the application projects refer to the library

project so that any time a change is made in the library, the applications are rebuilt. The

library project becomes a dependency of the applications.

To illustrate this idea, we’ll take the five functions in sort_utils.c and turn

them into a static library that we’ll link with record_sort.c. Switch back to the

C/C11 perspective, select File –> New . . . C Project and select Static Library as the

project type. Call it “sort.” Click Finish. Right-click on the sort project in

Project Explorer and select Import –> General –> File System. Browse to

EclipseSamples/sort/. Click Select All and Finish. Five C files and one header

file are imported into the project. Build the project. The result is libsort.a.
www.newnespress.com

79C/C11 Developers’ Toolkit (CDT)
Now go back to the record_sort project and select Properties from the Project

Explorer context menu. Select Project References and check sort, which may be the

only entry (Figure 4.12). Delete sort_utils.c from the file list.
Figure 4.12: Project References.
Now expand the C/C11 General entry in the left-hand pane and select Paths and

symbols. Click the References tab and check sort. This will expand the sort entry and

you’ll see that the Active build configuration is selected. Select the Library paths tab

and you’ll see that /sort/Debug has been added (assuming that Debug is the active

configuration for sort).

Expand the C/C11 Build entry and select Settings. Then select GCC C Linker –>

General and checkNo shared libraries. We’ll be using static libraries in this example. Now

select Libraries (Figure 4.13). The Library search path lists the path to the sort project.

Click the Add icon in the Libraries section and enter “sort.”1 In the context menu

for record_sort in the Project Explorer, clean the project. This will rebuild it using the

sort library. To prove that record_sort is now dependent on sort, clean the sort project.
1 I find it a little odd that Eclipse can’t automatically insert the sort library here, since it apparently

figured out that sort is a library project.

www.newnespress.com

Figure 4.13: Library selection.

80 Chapter 4
This causes it to be rebuilt with a later timestamp on the library than that of the

record_sort executable. Now build record_sort. It will be relinked with the new library.
4.8 Refactoring

Refactoring is generally described as a process of restructuring code for the purpose of

readability, performance improvements, reuse, or simply for the “regular evolutionary

quest for elegance.”2 Most programmers engage in a process of refactoring without
2 http://wiki.eclipse.org/FAQ_How_do_I_support_refactoring_for_my_own_language?

www.newnespress.com

81C/C11 Developers’ Toolkit (CDT)
consciously realizing it. As a project progresses we often realize that the approach we

started with isn’t quite working and it’s time to do some prudent restructuring and

reorganization.

Eclipse supports an automated approach to refactoring that makes sure that changes are

propagated properly throughout a project. The nature of refactoring support is somewhat

language-dependent. Eclipse offers extensive refactoring support for Java involving

operations on classes, interfaces, and methods. For the moment, anyway, C/C11

refactoring is limited to renaming. While this may seem trivial, propagating a name

change accurately throughout a large project can be burdensome if done by hand.

We’ll use the record_sort project to illustrate the refactoring support in CDT. Go

back to the C/C11 perspective if you’re not already there and open record_sort.c

if it isn’t already. In line 23 select read_file. Now from the main menu, select

Refactor –> Rename. . . This brings up the dialog box in Figure 4.14. Let’s change the
Figure 4.14: Renaming dialog.

www.newnespress.com

82 Chapter 4
name read_file to file_read by changing it in the Rename to: field. The default

scope is related projects. This is what we want, because we do in fact have a related

project that includes this symbol name. The rename dialog is also accessible from the

editor’s context menu.

With the Rename to: field modified, the Preview button is now active. Click it to

bring up the dialog in Figure 4.15. This shows all of the places in both projects

where read_file can be changed to file_read and offers the option to selectively

change any or all of them. Click OK and read_file will be magically changed to

file_read throughout both projects.
Figure 4.15: Rename change dialog.

www.newnespress.com

83C/C11 Developers’ Toolkit (CDT)
Clearly, this example is trivial, but in a large project involving hundreds, perhaps

thousands of files, the ability to automatically rename a symbol throughout the project

can be quite powerful.
Summary

This chapter has introduced the basic concepts and operation of the C/C11

Development Tools, CDT. We saw how to create a project and looked at the many tools

the C Editor offers to ease the task of coding. We examined many of the views in the

C/C11 Perspective in detail, to see how they contribute to the development process.

After building the project, we looked at the Debug perspective in detail, with

particular emphasis on the many capabilities of breakpoints. We also looked at other

views in the Debug perspective to see how they help you gain insight into what’s

happening in your program.

Finally, we explored a couple of nifty features of Eclipse that can make life easier

for developers. Projects can refer to, and can be dependent on, other projects.

When changes are made to the referenced project, the dependent project will be

rebuilt. Refactoring offers a way to automatically rename a symbol throughout

a project or a set of related projects.

The next chapter goes deeper into CDT. In particular, we’ll look at how to connect

a remote embedded target and debug a program on it.
Resources

Fowler, Martin, et al. 2002. Refactoring: Improving the design of existing code.

Addison-Wesley.

This book takes a task that many programmers do intuitively and recasts

it in a formal methodology.
www.newnespress.com

www.new
CHAP T E R 5
Eclipse CDT—Digging Deeper
The last chapter covered the basics of the C/C++ Developer Tools: basically how to

create, build, debug, and run projects. In this chapter we’ll get into more advanced

concepts, such as supplying your own makefile and connecting CDT to a remote

embedded target.

The project we’ll be using in this chapter is called “thermostat.” It simulates the

operation of a thermostat controlling a cooler. When the indicated temperature rises

above the setpoint, the cooler turns on. If the temperature exceeds a limit value, an

alarm indicator flashes. The thermostat can also be built for an ARM-based embedded

target board.

A separate program provides a means to set the indicated temperature and to observe

the cooler and alarm outputs.
5.1 User-Supplied Makefiles

In the last chapter we created a project where Eclipse supplied the Makefile. But there

are situations where it makes more sense to create the Makefile yourself and import

it into the project along with the source files. This is also useful for bringing “legacy”

projects into Eclipse that already have a makefile.

In the C/C++ perspective, create a new C project (File –> New –> C Project) but this

time select Makefile Project as shown in Figure 5.1. Call the project “thermostat.”

Eclipse creates an empty project with an Includes entry and attempts to build the “all”

target. Since the project is empty, there is no “all” target and the build fails.
nespress.com

Figure 5.1: Makefile Project.

86 Chapter 5
Right-click thermostat in the Project Explorer and select Import –> General –> File

System. Browse to the EclipseSamples/thermostat directory and click OK. Now

click Select All and Finish as shown in Figure 5.2 to import the entire collection of

source files into your thermostat project. Eclipse again attempts to build the “all” target

and oddly, it fails even though the Makefile does in fact include an “all’ target.

Right-click thermostat and select Build Configurations –> Build –> All. This time

Eclipse builds an executable target called thermostat_s (“s” for simulation).
www.newnespress.com

Figure 5.2: Import File System dialog.

87Eclipse CDT—Digging Deeper
5.1.1 Make Targets

Open the Makefile in the Editor window. You’ll notice that it builds three different

targets, one of which is intended to run on an embedded computer board.

By default, the only thing CDT knows how to make is “all.” In this case, “all” can be

one of two targets depending on the environment variable TARGET. Then there’s an
www.newnespress.com

88 Chapter 5
additional build target for the simulated devices program. We have to tell Eclipse about

these additional targets.

In the right-hand tabbed window, select the Make Target view and right click on

the thermostat entry, which brings up a context menu as shown in Figure 5.3. Select

Add Make Target, which is probably the only selection currently enabled. That brings

up the Create a new Make target dialog shown in Figure 5.4.
Figure 5.3: Make Target view.
Fill it out as shown in Figure 5.4 and click Create. There is now a new entry under

thermostat in the Make Target view named “devices.” Right-click that entry and select

Build Make Target. The devices program builds.
www.newnespress.com

89Eclipse CDT—Digging Deeper
Like most operations in Eclipse, there are several ways to create a Make target. With

the thermostat project name highlighted in either the Make Target or Project Explorer

views, select Project –> Make Target –> Create . . . Enter the Target Name as

“target” and the Make Target as “all.” Uncheck the Use default box and add

“TARGET¼1” after make in the Build command box.

This target will only build if you happen to have an ARM-Linux tool chain. More on

that later in the chapter.
Figure 5.4: Create make target dialog.
5.2 Thermostat Internals

Let’s take a closer look at how the thermostat program is organized before we run it

under the debugger. As shown in Figure 5.5, thermostat consists of three modules:
� thermostat.c—The main()function that implements the thermostat state

machine and outputs the current temperature to stdout. main()takes

a run-time argument that is the delay between samples in seconds. The default

is two seconds.
www.newnespress.com

Shared
Memory simdrive.c

thermostat.c

thermostat_s

monitor.cdevices.c

devices

Figure 5.5: Simulated thermostat.

ww

90 Chapter 5
� simdrive.c—A set of simulated device driver functions for an A to D

converter and digital output.

� monitor.c—A separate thread that monitors the keyboard for operator input to

change the thermostat operating parameters—setpoint, limit, and deadband.
simdrive uses a shared memory region to communicate with the simulated devices

program. devices uses the ncurses library to create a pseudo-graphical user interface.

It just reads A/D input values entered by the user and depends on a signal sent by

thermostat_s to indicate a change in one of the output bits. Entering a non-numeric

value for the A/D terminates the program.

The command syntax for changing parameter values is fairly simple. It’s just a single

lower case letter followed by a number:
� s—setpoint

� l—limit

� d—deadband
The monitor thread just sets the new value into the corresponding global variable.

Although it’s probably not strictly necessary in this case, access to the global variables

is protected by a mutex because that’s the right thing to do.

Have a look through the four source files to see how it all hangs together.

5.2.1 Running the Simulation

The devices program needs to be started first. We’ll run it from a shell window outside

of Eclipse. In a shell window, cd to �/workspace/thermostat (note that “�” is
w.newnespress.com

91Eclipse CDT—Digging Deeper
a shortcut for your home directory). Both executables, thermostat_s and devices,

are in this directory. Enter ./devices to start the devices program.

Back in Eclipse, right-click thermostat_s under the thermostat project in the Project

Explorer view and select Debug As –> Debug Configurations . . . to create a new

debug configuration for this project. Name it whatever you’d like and select the

thermostat project. Search Project doesn’t work for finding an application in a

Makefile project, so you have to browse to the project directory in your workspace and

select the file, thermostat_s. If you choose, enter a number in the Arguments tab for

the program’s loop delay time in seconds. Click Apply and then Debug.

As before, Eclipse brings up the Debug perspective with the program stopped at the first

executable line of main().
5.3 Debugging Multi-Threaded Programs

The thermostat program uses POSIX threads (pthreads) to create two independent

threads of execution: the thermostat state machine, and the monitor that looks for

parameter changes. Fortunately, Eclipse and gdb are very good at handling multi-

threaded programs.

Set a breakpoint at the call to createThread() and resume the program. Step into

createThread() and step until the pthread_create() function executes. The

Debug view now shows that a second thread has been created (Figure 5.6). Thread [1] is

suspended in createThread() as we expect.
Figure 5.6: Multi-threaded debug.

www.newnespress.com

92 Chapter 5
Thread [2] is also suspended. Expand its entry in the Debug view and you’ll see that it

is suspended in the clone()function. clone() is a Linux system service, that like

fork(), creates a child process but offers finer control over what gets shared between

parent and child. Thus it is useful for creating kernel-schedulable threads that share

their parent process’s global data space.

At this point we would probably want to gain control of the monitor thread to watch

its execution. monitor.c should already be open in an Editor window since we’ve

been stepping through a function in that file. Scroll back up to find the monitor()

function that executes Thread [2]. How do we know that that’s the right function? Well,

monitor is the start_routine argument to pthread_create().

Set a breakpoint on the line following the call to fgets(). fgets() doesn’t return

until you enter a string on stdin. Click the Step Return button to get back to main().

Expand Thread [2]’s entry in the Debug view and you’ll see that it’s now way down

deep somewhere in the kernel having called fgets() from monitor().

At this point you might want to step through initDigIO() and initAD() just to

see what they do. When you’re finished, click the Resume button to let the program

execute. The Debug view shows that both threads are Running and sample data starts

appearing in the Console view.

Enter a new A/D value in devices and watch it show up in the thermostat output. In the

same Console view, enter a parameter command, say “s 44,” to change the setpoint.

Note that the Console view must have the focus to type something into it. This

causes both threads to suspend with Thread [2] at the breakpoint, as we would expect.

Thread [1] is deep inside the kernel having called the sleep() system service.

You can now step through the execution of monitor() as it parses the command you

just entered.

The next thing we might want to do is trace the execution of Thread [1] as it executes a

state change. thermostat.c should still be open in an Editor window, so select

that tab. Set a breakpoint on the switch (state) line. Now in the Breakpoints view,

open the Properties page for the breakpoint you just created and set the Condition as

“value > setpoint + deadband.” Incidentally, you can simply copy and paste that

expression from thermostat.c rather than having to type it.

Let the program resume and enter a new A/D value that is in fact greater than the

setpoint you just entered plus the default deadband of 1. The condition for our new
www.newnespress.com

93Eclipse CDT—Digging Deeper
breakpoint is satisfied, and so the program suspends. We can now step through and

verify that a state transition occurs and the “cooler” gets turned on.

Resume the program, but note that the breakpoint will be triggered again on the next

pass through the loop because the condition is still true. You might want to change

the condition to observe the transition to the LIMIT state.

This then is the general strategy for debugging multi-threaded applications.

Strategically place breakpoints in the threads of interest and watch them interact. But

what if you guess wrong and none of your breakpoints are triggered, or the breakpoints

aren’t triggered because the program isn’t behaving as you expect?

In this case the Suspend button lets you regain control of the program. Suspend sends a

SIGINT signal to the currently selected thread to suspend the program. Chances are the

thread is not executing your source code but is somewhere inside the kernel with no

symbol information available. This brings up a new Editor window with the notation

“No source available for “”” and a View Disassembly button.

You can click View Disassembly to see the actual machine code being executed when

the signal was received, but it’s probably not terribly enlightening. The most useful

thing to do is select the stack frame for your thread function to show where it is

executing. Set a breakpoint immediately after that line and you’ll regain control in your

thread function.
5.3.1 The Signals View

The suspend functionality raises the interesting question of how gdb handles signals in

general. Normally, the SIGINT signal is generated by typing Ctrl-C, which causes the

receiving process to be terminated if it doesn’t handle the signal itself.

The thermostat program registers a signal handler for SIGINT to terminate the program

gracefully. Among other things, in a multi-threaded environment, it’s important that

threads terminate in the correct order. That’s what the function terminateThread()

does.

But by default gdb intercepts the signal and uses it to suspend the program. Click

Window –> Show View –> Signals. This displays the Signals view in the upper right

tabbed window (Figure 5.7). This shows you the signals defined on the selected target

and how the debugger handles each one.
www.newnespress.com

Figure 5.7: Signals view.

94 Chapter 5
SIGINT is currently configured to suspend the program, which is the behavior we

just saw, and not to pass the signal on to the program. Right-click the SIGINT entry and

select Signal Properties. This brings up a dialog with two check boxes:
ww
� Pass this signal to the program.

� Suspend the program when this signal happens.
If both boxes are checked, the program is suspended before the signal is passed to the

program. Resuming the program then allows the signal handler to be executed. With the

Pass box checked and the Suspend box unchecked, the signal handler is executed first,

and then oddly enough, the debugger catches the signal later. Try it with thermostat and

you’ll see that Thread [1] is suspended in the pthread_cancel() call inside

terminateThread().

5.4 Working With Embedded Target Hardware

While the simulated thermostat is a useful way to illustrate many Eclipse concepts, and it

can help you start testing software before the target hardware is ready, eventually you’ll

need to test your program on real hardware. Eclipse has facilities to support that process.

5.4.1 System Requirements

The following hardware and software components are required in order to work through

the example in this section:
� Target embedded computer board with network and serial ports. The example

here is based on a board available from Intellimetrix. See Appendix B,
w.newnespress.com

95Eclipse CDT—Digging Deeper
“The Embedded Linux Learning Kit,” for details on this board and how to

obtain it. A nice feature of this board is that it includes a temperature sensor for

the thermostat example.

� Serial and network ports on the host workstation.

� GCC cross tool chain for the target board.

� NFS server running on the host machine.

� minicom terminal emulator for communicating with the target board’s serial port.

� TFTP server is useful but not required.
All of the software components with the exception of the cross tool chain should be part

of any decent Linux distribution. The tool chain should be available from the target

board vendor.

The other approach to a target environment for the purpose of this chapter is to make

use of an old 486 box that’s sitting in the closet or serving as a doorstop. Put a network

card in the box and install Linux on it. Redirect stdin, stdout, and stderr to a

serial port. In this case you don’t need a cross compiler. The one you’ve been using is

quite sufficient.
5.4.2 The Cross-Development Environment

Very often a target board stores its root file system in a non-volatile or “semi-volatile”

medium such as flash memory. This can make it difficult and time-consuming to load

executable images onto the target for testing. This is especially true in early stages

of testing, where the edit-compile-debug cycle turns rapidly.

The development paradigm we’ll follow here makes use of the Network File

System (NFS) to remotely mount part (or even all) of the target’s file system on

the host workstation. Then we simply put our target executables in a location on

the host that’s visible to the target, which then loads the image off the host and

executes it.

Figure 5.8 illustrates the process graphically. The /home directory on the target is

remotely mounted through NFS to �/workspace, the default Eclipse workspace. Now

all the project subdirectories of �/workspace on the host show up as subdirectories

of /home on the target. The serial port serves as the target shell’s console
www.newnespress.com

96 Chapter 5
communicating with the minicom terminal emulator running on the host. Technically,

you could telnet to the target shell and get by without the serial port, but in many cases

a serial port is still necessary to communicate with the target’s boot loader.
/home

Shell

minicom

TargetHost

~/workspace

RS-232

Ethernet

Figure 5.8: Cross-development paradigm.
5.4.3 Host Configuration

There are three aspects to configuring the host workstation for target development:
ww
1. Install the GNU cross tool chain. The supplier of the tool chain should

provide instructions and/or scripts for this. If your target is a PC, this step

isn’t required.

2. Configure the terminal emulator, minicom.

3. Configure networking.
Configure Minicom

minicom is a fairly simple Linux application that emulates a dumb RS-232 terminal

through a serial port. This is what we’ll use to communicate with the Linux system

running on the target board.

There are a number of minicom configuration options that we need to change to

facilitate communication with the target.

In a shell window as root user, enter the command minicom –s. If you’re running

minicom for the first time you may see the following warning message:

WARNING: Configuration file not found. Using defaults
w.newnespress.com

97Eclipse CDT—Digging Deeper
You will be presented with a configuration menu. Select Serial port setup (Figure 5.9).

By default, minicom communicates through the modem device, /dev/modem.

We need to change that to talk directly to one of the PC’s serial ports. Type “A” and

replace the word “modem” with either “ttyS0” or “ttyS1”, where ttyS0 represents

serial port COM1 and ttyS1 represents COM2. However, if your host only has USB

ports and you’re using a USB-to-serial converter, the correct device is most likely

“ttyUSB0.”
Figure 5.9: minicom serial port setup.
You’ll need to change the data rate (bps) to match your target board. Chances are you

won’t want either hardware or software flow control.

Type Enter to exit Serial port setup and then select Modem and dialing. Here we want

to delete the modem’s Init string and Reset string since they’re just in the way on a

direct serial connection. Type “A” and backspace through the entire Init string. Type

“B” and do the same to the Reset string.
www.newnespress.com

98 Chapter 5
Type Enter to exit Modem and dialing. In the Screen and keyboard menu, you may

need to change the backspace behavior for shell line editing to work correctly. Finally,

select Save setup as dfl to save the configuration.

You will probably have to change the permissions on the device node for the

selected serial port to allow the group and world to read and write the device. And

of course, you must be root user to do this.
Configure Networking

Your workstation is probably configured to get a network address via DHCP (Dynamic

Host Configuration Protocol). But in this case, to keep things simple, we’re going to

specify fixed IP addresses for both ends. This is particularly useful if you choose to

directly connect the workstation to the target using an Ethernet crossover cable.

If you’re using KDE, there’s a nice graphical menu for changing network parameters.

How you get to that menu from the Start menu varies depending on the distribution. The

two variants I’ve seen so far are System –> Network Configuration and System

Settings –> Network. You’ll be asked for the root password.

The actual layout of the dialog boxes will vary by distribution. You should find a

Devices tab and then be able to edit the entry for your Ethernet device, which is

probably eth0. The edit dialog allows you to select between “Automatically obtain IP

address settings” and “Statically set IP addresses.” Select the latter and assign an

address. I usually assign 192.168.1.2 to the workstation. The dialog from Red Hat

Enterprise Linux 4 is shown in Figure 5.10.

Alternatively, you can just go in and directly edit the network device parameters file.

Network configuration parameters are found in /etc/sysconfig/network-

scripts/ where you should find a file named something like ifcfg-eth0 that

contains the parameters for network adapter 0. You might want to make a copy of this

file and name it dhcp-ifcfg-eth0. That way you’ll have a DHCP configuration file

for future use if needed. Now open the original file with an editor (as root user of

course). It should look something like Box 5.1a. Delete the line BOOTPROTO=dhcp and

add the four new lines shown in Box 5.1b.

We’ll use NFS (Network File System) to download executable images to the target.

That means we have to “export” one or more directories on the workstation that

the target can mount on its file system. Exported directories are specified in the
www.newnespress.com

Figure 5.10: Ethernet configuration dialog.

Box 5.1a ifcfg-eth0

DEVICE¼eth0

ONBOOT¼yes

BOOTPROTO¼dhcp

Box 5.1b revised ifcfg-eth0

DEVICE¼eth0

ONBOOT¼yes

IPADDR¼192.168.1.2

NETMASK¼255.255.255.0

GATEWAY¼192.168.1.1

BROADCAST¼192.168.1.255

www.newnespress.com

99Eclipse CDT—Digging Deeper

100 Chapter 5
file /etc/exports. Initially this file is present but empty. As root user, open it with an

editor and insert the following on a single line:

/home/<your_home_name>/workspace

*(rw,no_root_squash,no_all_squash,sync,nosubtree_check)

This makes the Eclipse workspace/ directory visible to other computers on the

network.

Be sure the NFS server is running. In most cases it will be automatically started at boot

time. Use the command:

/etc/rc.d/init.d/nfs status

to check this. If it isn’t started automatically, execute the command /etc/rc.d/

init.d/nfs start.1 You can execute this command from a shell window or, better

yet, add it near the end of /etc/rc.d/rc.local. This is the last script executed at

boot up.
5.4.4 Target Configuration

There are a couple of files that need to be edited on the target to support NFS file

mounting. The equivalent of /etc/sysconfig/network-scripts/ifcfg-eth0

needs to be modified to specify a fixed IP address. The exact location, name, and layout

of this file will vary from board to board. On the Intellimetrix board it’s /etc/

network/interfaces. I usually assign 192.168.1.50 to the target board.

The other file that needs modification is the last script executed by the init process

when the system boots. Again, this will vary from board to board. On the Intellimetrix

board it’s /etc/init.d/rcS. Add the following line at the end of that file:

/bin/mount –o nolock 192.168.1.2:/home/<your_home_name>/workspace

/home

On a PC target /etc/ rc.d/rc.local is a good place to add this.
1 This is the location of the nfs script on a Red Hat or Fedora distribution. Other distributions may locate it

somewhere else.

www.newnespress.com

101Eclipse CDT—Digging Deeper
This causes the workspace/ sub-directory under your home directory to appear as

/home on the target using the Network File System.

In order to debug on the target, you’ll need a program called gdbserver compiled

for the target and loaded on the target’s file system, preferably someplace visible

from the PATH environment variable. gdbserver runs the program under test and

communicates over the network with GDB running under Eclipse on the host.
5.4.5 Creating a Target Eclipse Project

Even though our thermostat project included a make target for the target version of

the thermostat, we’ll create a new project to illustrate some additional features

of Eclipse. Create a new C executable project and call it “target.” From the

thermostat project, select the following files using the Shift and Ctrl keys in the

same way you do when selecting multiple files in Windows or graphical Linux

environments:
� AT91RM9200.h

� driver.h

� thermostat.h

� monitor.c

� thermostat.c

� trgdrive.c
Right-click and select Copy. Click on the new target project, right-click and select

Paste. We now have all the files we need for the project. But remember that we don’t

want to build this project for the host, but rather for the target. This requires configuring

the project to use a different GNU tool chain.

The file trgdrive.c provides a set of device driver functions for the Intellimetrix

ARM9 board. This is not a real Linux “device driver,” but rather accesses memory

mapped I/O directly from user space. If you’re using some other target board, you’ll

need to modify the functions in trgdrive.c accordingly.

If your target is a PC, you can skip to the next section on debugging on the target. You

don’t need to select a different compiler.
www.newnespress.com

102 Chapter 5
Right-click on the project name and select Properties. Expand the C/C++ Build entry

and select Settings. This brings up the dialog shown in Figure 5.11. The first tab,

Tool settings, lets you specify which C compiler, C linker, and assembler to use.

By default, the compiler and linker are just gcc. This is the standard name for a host

GNU C compiler.

By convention, cross compilers are given a prefix that identifies the architecture and the

operating system on which the compiled program will run. On my system, the ARM
Figure 5.11: Project build settings.

www.newnespress.com

103Eclipse CDT—Digging Deeper
cross compiler is called arm-linux-gcc and I’ve added the path to it to my PATH

environment variable. So change the Command name to match your cross compiler. All

of the items under GCC C Compiler represent categories of compiler options. Take

a look through them to see what’s there.

Likewise, change the GCC C Linker command to match your cross compiler. Here we

also have to add a library to the linker command. Select Libraries, click the Add

button, and enter “pthread.” This is the library of Posix threads functions. Take a quick

look at the categories of linker options.

Finally, change the GCC Assembler to match your cross assembler.

Note that we’ve done all this for the Debug configuration. Click the Configuration

drop-down menu at the top, select Release, and make the same changes.

Click OK to exit the Properties dialog. Make sure the active build configuration is

Debug and build the project. You’ll find two new entries under the target project in

the Project Explorer view: Binaries and Debug. Debug lists all of the built objects

including an executable named “target”. Expanding any of the built object entries

produces a list of every source file used to build that object. It’s not clear to me

what purpose that serves.
5.4.6 Debugging on the Target

From a developer’s standpoint, there’s virtually no difference between debugging

on host and debugging on a target board. The only difference is in how Eclipse

connects to the debugger. For this you’ll need to create a new debug configuration.

With the target project selected in the Project Explorer view, select Run –> Debug

Configurations . . . Click the New launch configuration button. A new configuration

named target Debug is created, referencing the target project and the Debug/target

application. Select the Debugger tab (Figure 5.12).

Open the Debugger drop-down menu and select gdbserver Debugger. Enter the name

of your cross gdb in the GDB debugger field. Click the Connection tab under

Debugger Options. Select TCP from the Type drop-down and enter the IP address of

your target in the Host name or IP address field (Figure 5.13). Click Apply and

then Close. GDB is now configured to talk to your target board over the network.
www.newnespress.com

Figure 5.12: Target debug configuration.

104 Chapter 5
But before starting up a debug session, you have to start the application running on

the target:
ww
1. Execute minicom from a shell window on the host.

2. Power up your target board and boot into Linux.

3. In minicom, cd /home and verify that it has the same contents as

�/workspace on the host. If not, go back to the section on configuring

networking and see if anything isn’t right. Try executing the mount

command manually from the shell.
w.newnespress.com

Figure 5.13: Target debug connection.

105Eclipse CDT—Digging Deeper
4. cd target/Debug.

5. Execute gdbserver :10000 target.
This last command starts gdbserver telling it to listen for a connection on TCP/IP

port 10000, which is the default port assigned in the Eclipse configuration, and start up

the target executable. gdbserver responds that it created a process for the target

executable and that it is listening on port 10000. Note, incidentally, that you can use

any port number you want as long as both sides use the same number and it doesn’t

conflict with some other network service. Port numbers below 1024 are reserved for

established services and shouldn’t be used.
www.newnespress.com

106 Chapter 5
Back in Eclipse, you should be in the C/C++ perspective. Select the target project in the

Project Explorer view and execute Run –> Debug. Eclipse switches to the Debug

perspective and you should see virtually the same thing you did earlier with the

simulation version of the thermostat. On the target, gdbserver responds that it has

established a debugging session with host 192.168.1.2.

Play around with it to confirm that the target version really does behave like the

simulation version. Note that program I/O is through the minicom window. When

you’re finished terminate the debug session. gdbserver responds that its child process,

the target executable, has exited and then gdbserver itself exits.

Figure 5.14 attempts to put this whole process into graphical perspective. GDB itself is

conceptually split into two major components that you can think of as the “front end”

and the “back end.” The front end is effectively a client and provides the user interface.

The back end is a server that controls and interacts with the program under test.
HOST

Eclipse
GDB

Remote
Protocol

Front end Back end

Your Target Board

Application

Linux
kernalgdbserver

Figure 5.14: GDB architecture.
The back end is architecture-dependent so it knows how to do things like disassemble

machine code and set breakpoints. When we debugged the simulation thermostat, the

back end simply ran the program under test on the workstation.

Things got a little more complicated when we moved to debugging on a remote target

board. Now the back end running on the host has to know that it’s not running the

program under test locally, but rather becomes a client to gdbserver running the

program under test on the target. GDB provides a well-defined protocol for this

communication. The primary role of gdbserver is to get and set memory locations and

processor registers, and to maintain control over execution of the program under test.
www.newnespress.com

107Eclipse CDT—Digging Deeper
The existence of a well-defined and public protocol for communicating between the

GDB back end and gdbserver opens other possibilities for communicating with the

target. Specifically, vendors of In Circuit Emulators (ICE) and JTAG boxes can use that

protocol to make their products useable from GDB and Eclipse.
Summary

This chapter has delved deeper into the Eclipse C Developers’ Toolkit (CDT) to look at

issues such as supplying your own Makefiles, cross-compiling for target embedded

hardware, and debugging an application on a remote target board. We also explored the

notion of using high level simulation to get started with application software testing

before any target hardware is available.

The next chapter looks at the Device Software Development Platform (DSDP), another

Eclipse project related to embedded software development. In particular, DSDP

provides target management capabilities that further simplify the process of connecting

to a remote target.
www.newnespress.com

www.new
CHAP T E R 6
Device Software Development Platform
The Eclipse Device Software Development Platform (DSDP) extends CDT to address

specific needs of embedded device software developers. It consists of six

subprojects, some of which are farther along than others:
� Target Management (TM)

� Remote System Explorer (RSE)

� Native Application Builder (NAB)

� Embedded Rich Client Platform (eRCP)

� Mobile Tools for the Java Platform (MTJ)

� Tools for Mobile Linux (TmL)
In this chapter, we’ll take a closer look at Target Management and the Native Application

Builder. The Embedded Rich Client Platform is tied in with plug-in development that we’ll

explore in the next chapter.Mobile Tools for Java and Tools forMobile Linux are currently in

an “incubation” stage, making them a little difficult to describe accurately and thoroughly.

But before proceeding, we should look at how Eclipse manages updates and extensions.
6.1 Adding on to Eclipse

The beauty of Eclipse is that it can be easily extended through the plug-in mechanism.

Currently, your Eclipse installation includes the base platform, CDT, the Rich Client

Platform (RCP), and a CVS version control system client. For this chapter we’ll install

some additional features.
nespress.com

110 Chapter 6
There are a couple of different approaches to adding features to Eclipse. The simplest

approach is to download a zip file of one or more plug-ins and just unzip it in your

Eclipse directory. Oddly though, plug-ins don’t seem to carry any information about

what other plug-ins or features they may depend on. Thus, you may install a plug-in

only to find that it doesn’t work because it’s dependent on something else that isn’t

installed and isn’t identified.

Eclipse has addressed this issue with the concept of a feature, which bundles together

plug-ins that are logically related to perform some useful function. Features are then

published to an update site on the Internet from where they can be downloaded by the

Eclipse Update Manager. Organizations that create Eclipse plug-ins are encouraged

to maintain an update site and publish their plug-ins as features.

Start up Eclipse if it’s not already running and select Help –> Software Updates to

bring up the menu in Figure 6.1. The Available Software tab is displayed, listing update
Figure 6.1: Update Manager.

www.newnespress.com

111Device Software Development Platform
sites that can be searched for new features. You can add remote update sites in the form

of URLs or Local sites, such as a CD. An Archive site is a local site packaged as jar

or zip files.

Several sites are already available for searching. Expand the Ganymede entry. The

Update Manager goes to the selected site to discover what new features are available

and presents a list of feature categories. Scroll down to and expand Remote Access and

Device Development (Figure 6.2).
Figure 6.2: Expanded feature category.
Check the box next to Remote Access and Device Development to select all 11 of its

features. When you click Install, the Update Manager automatically resolves any
www.newnespress.com

112 Chapter 6
dependencies and downloads them as well. You are asked to review and confirm the

items to be installed. Next, you’ll be asked to accept the license terms. Click Finish.

Install offers the option of running in the background so that you can continue working

in Eclipse while the download is in progress. This is a useful feature, since downloads

can take a while. When the installation has completed, Eclipse suggests that you

restart the system for the changes to take effect. Some changes can be applied without

restarting, but generally it’s a good idea to restart.

You can get additional details on a feature by selecting it and clicking the Properties

button. Figure 6.3 is an example of the General Information category for one of the

Remote System Explorer features.
Figure 6.3: Feature information.

www.newnespress.com

113Device Software Development Platform
6.1.1 Installing Features in External Directories

Normally, features are installed in eclipse/features and plug-ins are installed in

eclipse/plugins. If, for whatever reason, you should need to reinstall Eclipse, all of

the additional features and plug-ins you had previously installed would also have to be

reinstalled. But if they’re installed in an external directory, reinstalling Eclipse itself

doesn’t affect them.

The previous version of the software update feature offered an option to install features

and plug-ins in alternate directories. The current version doesn’t seem to have that

option. Nevertheless, if you install plug-ins manually, you’re free to put them wherever

you like.

If you do create an external directory for plug-ins, you have to let Eclipse know about it.

On startup, Eclipse looks for a directory eclipse/links. In that directory create one

or more text files whose names end in .link. Each file contains an entry of the form:

path=<path_to_eclipse plug-ins>

For example, path=/usr/local/eclipse-plugins

6.1.2 Updating Existing Features

The other thing the Update Manager can do is search for and install updates of existing

features, including the platform itself. Select Help –> Software Updates –> Find and

Install . . . but this time select Search for updates of the currently installed features.

Click Finish and the Update Manager will search for updates to installed features. This

can be a lengthy process, so you’ll probably want to click Run in Background so

you can continue working while the update process runs.

The update search can be scheduled to run automatically. Select Window –>

Preferences . . . –> Install/Update –> Automatic Updates (Figure 6.4). Here you can

choose from several update scheduling policies:
� No automatic update

� On every startup

� Every day at a specific time

� On a scheduled day of the week at a specific time
The last two options, of course, require that Eclipse is running at the selected time.
www.newnespress.com

Figure 6.4: Scheduling automatic updates.

114 Chapter 6
6.2 Target Management and the Remote
System Explorer (RSE)

The Remote System Explorer (RSE) is a collection of tools that allows you to work

with resources such as files and folders on remote systems. The Remote System

Explorer perspective allows you to directly manipulate resources on a remote system.

The available actions depend on the type of system you’re connecting to and the way

the resource is recognized.

For a quick tour of some basic RSE capabilities, go to the Remote System Explorer

perspective. Currently, there is one item called Local. This, in fact, is the local host.
www.newnespress.com

115Device Software Development Platform
Expand that item to reveal Local Files and Local Shells. Under Local Files is

My Home and Root, which are fairly self-explanatory. Expand My Home, and you’ll

see the contents of your home directory. Root, of course, is the entire local file

system.

Right-click on Local Shells and select Launch Shell. This brings up a Remote Shell

view in the lower tabbed window. Commands are entered in the small window at

the bottom, and the results show up in the larger window. Figure 6.5 shows the result

of executing the ls command on my workspace directory. File name completion is done

with CTRL+Space rather than tab. The Remote Shell view has tool bar icons to clear

the results, terminate the shell, and save both command results and command history

to files.
Figure 6.5: Remote Shell.
6.2.1 Connecting to a Remote System

Of course, the Remote System Explorer isn’t very interesting until we connect to a

remote system. This section assumes you have network access to another computer

running Linux.

RSE is a framework that supports plugging in many different communication protocols.

By default FTP and SSH (secure shell) are supported along with a more capable RSE-

specific protocol called dstore. The latter requires a server running on the remote

system. We’ll examine both SSH and dstore connections. SSH is easy, and requires

fewer resources on the target; dstore has more functionality.
www.newnespress.com

116 Chapter 6
SSH Connection

In the Remote Systems view, click the Define a connection icon or right-click on Local

and select New –> Connection . . . The first step is to select the Remote System Type.

Select SSH Only and click Next. The next screen (Figure 6.6) initially displays

LOCALHOST as the Host name. Change that either to an IP address or to the name of a

computer on your network. The Connection name defaults to the Host name, but you

can change it to anything you want.
Figure 6.6: Setting up an SSH connection.
Clicking Next shows the file services available on the remote machine. Clicking Next

again shows the available shell services. One final click on Next shows the available
www.newnespress.com

117Device Software Development Platform
terminal services. Click Finish and the new connection shows up in the Remote

Systems view. Incidentally, the SSH daemon must be running on the remote system.

Most Linux distributions start it at boot time.

Expand the new connection to reveal entries similar to what we saw with Local. When

you expand My Home or Root under Sftp Files, you’re required to enter a valid user ID

and password for the remote system, which effectively logs you into it. You can now

use copy and paste commands to move files between your local host and the remote

system. Give it a try.

There’s an option to save the user ID and password as defaults, so you don’t have to

enter them every time.

Right-click on Ssh Shells and select Launch Shell. You now have a command shell

connected to the remote machine. You can also right-click any directory entry in the

remote file system and launch a shell in that directory. This allows for multiple shells to

the same remote system. These are opened as tabs in the Remote Shell view.

Right-click a text file in the remote system and select Open. The file is opened in the

Eclipse editor.

Dstore Connection

The dstore protocol provides more capability than SSH at the expense of requiring a

Java-based server running on the remote machine. dstore supports browsing into archive

files such as tar, tgz, and zip. It supports remote search without transferring files to your

local host. Nevertheless, the requirement for Java means it’s probably not the best fit for

embedded devices.

Before creating a dstore connection, you must install the dstore server on the remote

machine. Download it from the Target Management project download site at

http://www.download.eclipse.org/dsdp/tm/downloads. Click on the latest release link,

currently 3.0, and in that page scroll down to the DStore Server Runtime. Versions are

available for Linux, Windows, other Unix, and Mac OS X (considered experimental).

Currently, a server implementation for Windows CE is in “incubation.”

Decide where to install the server—on a Linux box /opt is a good place—and create a

directory for it, say, /opt/rseserver. Untar the downloaded tar file there.

The dstore server also requires a Java Runtime Environment (JRE) version 1.4 or

higher. An IBM, Sun, or equivalent JRE is required. The gcj-based jvm that comes with
www.newnespress.com

118 Chapter 6
most Linux distributions doesn’t work. If necessary, refer back to Chapter 2,

Installation, for information on installing a JRE. The scripts that start the Linux server

also require Perl, which is installed by default on most distributions.

There are two ways to start the dstore server on a Linux remote system. As root user

you can start a server daemon by executing the Perl script daemon.pl. The server

daemon listens for connection requests on port 4075 by default. You can change the

port number with an optional port argument to the script. In response to a connection

request, the daemon spawns a dstore server.

Alternatively, if you don’t have root access, or just don’t want the daemon running, you

can manually start the server with the Perl script server.pl. If you don’t specify

a port, the server picks the first one available and prints out the port number. This is

usually 4033. If no connection shows up in about two minutes, the server times out.

A manually launched server also terminates when you terminate the connection.

The process is essentially the same for a Windows remote system, except that the

scripts are called respectively daemon.bat and server.bat.

To establish a dstore connection, click the New Connection icon and select either

Linux or Windows as the remote system type. Specify the host name and a connection

name, just as we did for the SSH connection. Click Next. In this dialog (Figure 6.7)

Launcher Properties specifies how the server is started on the remote system. If you

started the daemon on the remote system, then select Daemon as the Launcher. If you

manually started the server, select Running.

Click Finish. Right-click on the new entry in the Remote Systems view and click

Connect.

Personally, I find the SSH Only connection to be simpler and easier to work with.

Dstore is useful in connecting to Windows boxes, because standard Windows doesn’t

include an SSH server.

Creating a Second Connection

There are times when you might want to have two or more connections open to the

same remote system. You might want to log on with a different user ID, for example. Or

you might want to have both a dstore and an SSH connection open.

With the first connection selected in the Remote Systems view, click the New

Connection icon or right-click and select New –> Connection. The Host name remains
www.newnespress.com

Figure 6.7: Setting launcher properties.

119Device Software Development Platform
the same. You just need to give it a unique Connection name. Go ahead and create a

second connection, because we’ll use it to illustrate referencing filter pools later on.
6.2.2 Filters and Filter Pools

The entries My Home and Root under Sftp Files in your first remote connection

are known as filters. RSE automatically creates these two filters for every
www.newnespress.com

120 Chapter 6
SSH connection. Right-click on My Home and select Properties. The Filter

Information page tells you that this is a Filter Resource and gives its name. It also

says that it belongs to a specified filter pool and profile. The Filter Strings page

tells you that this filter points to the home folder “.” and that displayed file

entries are filtered by name, but the file name filter, in fact, is “*” or everything.

Note that none of this information is editable in the default filters that RSE

creates.

You can create your own filters to simplify the management of remote resources. You

might, for example, want a filter that lists just C/C++ source files, those with a .c,

.h, or .cpp extension. Pick a folder on your remote system that has some source

files in it, or in subfolders. In my case, it’s drivers/ that has some examples for my

Linux device driver class.

Right-click the folder name and select New –> Filter . . . This brings up the dialog in

Figure 6.8. Select Subset by file types, and click Select . . . This brings up a list of file
Figure 6.8: Creating a filter.

www.newnespress.com

121Device Software Development Platform
extensions, but sadly, .c and .h aren’t listed. In Other Extensions enter “c,h,cpp” and

click OK.

Click Next and give the filter a name, “My C Files,” for example. On this screen you

also have a choice of making this filter private to this connection or making it part

of a filter pool, which makes it visible to other connections. Uncheck the Only create

filter in this connection box to make it part of the default filter pool. Clicking Next

brings up some “tips” about filters and filter pools. Click Finish.

The new filter shows up below Root under Sftp Files in your remote connection.

For filters you create, you can modify the Filter Strings from the Properties page and

add new filter strings.

Over time, you may end up with such a large number of filters that the system becomes

hard to navigate. The solution is to aggregate related filters into filter pools. But in

order to work with filter pools, we have to make them visible. Select Window –>

Preferences –> Remote Systems and check the Show filter pools in Remote Systems

view box. While you’re there have a look at some of the other preferences related to

remote systems. Click Apply and then OK.1

Back in the Remote Systems view, the filters previously listed under Sftp Files have

been replaced by a filter pool entry called <profile_name>:ssh.files, where

<profile_name> is the name of the default RSE profile that defaults to the name of

your local host system. Expand the filter pool entry to reveal the same set of filters

we previously had. Right-click the pool entry and select Properties. Here we see that

this is not a filter pool but is, in fact, a reference to a filter pool.

Filter pools are associated with profiles and then referenced by connections. To create a

new filter pool, right-click on Sftp Files and select New –> Filter Pool . . . Give it a

name, “My New Pool,” perhaps. At this point there should be only one profile to which

it can be attached named for your host computer. Click Finish and the new pool

shows up under Sftp Files. You can now create new filters to add to this pool.

You might want to make your new filter pool visible to the second connection we

created earlier. Right-click on the Sftp Files entry of your second connection and select

New –> Filter Pool Reference –> <your_host_name> –> My New Pool. The new

pool is now visible in your second connection.
1 You can also manipulate this preference by clicking the View Menu icon in the Remote Systems view.

www.newnespress.com

122 Chapter 6
6.2.3 Profiles

Profiles are the “big picture,” so to say, a way of tying everything together. RSE

resources such as connections, filter pools, and other artifacts are owned by a profile.

Figure 6.9 schematically illustrates how these elements tie together. Profiles are a useful

tool for managing resources when you have a lot of connections.
Profiles

contain Filter Pools

Filters

Connections

Filter Pool
References

Filter Strings

contain

contain

contain

contain

reference

Figure 6.9: The role of profiles.
RSE creates an initial profile when it’s started for the first time, usually named after

the host name of the machine that creates the workspace. This profile is considered

private and can’t be deleted or made inactive. All of the objects we’ve created so far

have gone into this profile.

Profiles are managed from the Team view, which should currently look something

like Figure 6.10. You should see three connections: your local host, and two

connections to a remote target.

Creating a new profile is trivial. Click the New profile icon in the Team view menu.

All you have to do is give it a name and decide whether or not to make it active.

Click Finish and the new profile immediately shows up in the Team view. The new

profile has Connections and Filter pool entries, but of course, they’re currently empty.

Now whenever you create a connection or a filter pool you have a choice of which

profile to put it in.
www.newnespress.com

Figure 6.10: RSE Team view.

123Device Software Development Platform
6.2.4 Debugging With a Remote Connection

With a remote connection established, we’ll use the record_sort project to illustrate how

to set up a remote debug configuration. Initially, you have to copy the application

executable, record_sort, to a location on the remote target. My Home seems like a

good place. The main reason for doing this is so you can change the permissions to

make the file executable. Eclipse will, in fact, download the executable to the target

when you click Debug, but if the file doesn’t already exist, oddly enough it won’t

be created with execute permission. While you’re at it, copy datafile to the target

as well.

Now go back to the C/C++ perspective and open the Debug Configurations dialog for

the record_sort project. You’ll find a new configuration type called C/C++ Remote

Application. Create a new configuration of this type.
www.newnespress.com

124 Chapter 6
In the Connection drop-down, select your remote connection. Then click Search

Project . . . next to C/C++ Application and select the Debug binary just as you would

for a local debug configuration. Now click Browse next to Remote Absolute File Path

for C/C++. This brings up a dialog (Figure 6.11) that lets you specify where the

application executable will be downloaded on the remote machine. Expand My Home

and select the record_sort executable that you just downloaded.
Figure 6.11: Select remote file location.
The Main tab of Debug Configurations now resembles Figure 6.12. Add “datafile” in

the Arguments tab. Take a look at the Debugger tab and note that the only choice
www.newnespress.com

125Device Software Development Platform
for Debugger is remote gdb/mi. Also note under Gdbserver Settings, that the default

port number is 2345.
Figure 6.12: Remote debug configuration.
Click Apply and then Debug. Eclipse invokes make all, which may have nothing to do,

downloads the executable to the target, starts gdbserver on the target, and switches

to the Debug perspective. You’re now debugging on the remote target without having to

manually start gdbserver.
www.newnespress.com

126 Chapter 6
6.3 Native Application Builder (NAB)

The goal of the Native Application Builder (NAB) is to enable you to develop platform-

independent graphical applications in an intuitive and graphical manner. Conceptually,

this is similar to SWT and JFace, except that NAB is written in C++ and is oriented

toward developing C++ applications.

NAB makes use of run-time libraries from WideStudio/MWT, an open source project

based in Japan. The MWT stands for Multi-platform Widget Toolkit. WideStudio/MWT

is described as an “Integrated Development Environment for desktop applications.”

Nevertheless, the intention is that applications developed with WideStudio should be

able to run on a wide range of embedded platforms simply by recompiling and relinking

with the appropriate library. In addition to C/C++, WideStudio supports Java, Perl,

Ruby, Python, and Objective Caml (OCaml).
6.3.1 Getting and Installing NAB

There are actually three elements to NAB:
ww
1. The NAB Eclipse plug-in itself

2. WideStudio

3. JDK, the Java 2 software development kit
These elements need to be installed in the reverse order that they’re listed above.

That is, JDK should be installed first. Go to

http://www.java.sun.com/javase/downloads/index.jsp and click Download for JDK 6

Update 7 (or whatever is the latest update at the time). On the next page select Linux as

your platform (unless you’re running Eclipse under Windows), agree to the Java SE

Development Kit 6 License Agreement, and clickContinue. You are then presented with a

choice of downloading a self-extracting binary or a self-extracting RPM. I chose the binary.

Move the resulting .bin file to the directory where you want to install it. I chose

/usr/local/. Then execute it. The binary code license is displayed, and you are

prompted to agree to its terms. The JDK files are installed in a directory called

jdk1.6.0_<version> in the current directory.

The DSDP-NAB project downloads page has a link to the WideStudio MWT libraries

package, which happens to be hosted at http://www.sourceforge.net/.
w.newnespress.com

127Device Software Development Platform
Download the file, and then follow these instructions to install it:
2 Reg
1. Copy the *.tar.gz file to the directory where you want to build it.

2. cd to that directory.

3. cd ws-v3.97-12/src

4. ./configure

5. make runtime

6. export JAVA_HOME=<JDK_install_directory>

7. make mwt_java

8. su

9. make install

10. Add /usr/local/lib to the LD_LIBRARY_PATH environment variable.

11. Add /usr/local/ws/bin2 to your PATH
Step 6 is necessary if, like me, you have an older version of the JDK lurking in the

default location.

The final step is installing NAB, which doesn’t show up in any of the current

software update sites, so you would expect to install it “manually.” This is what the

DSDP-NAB download page describes. Unfortunately, it doesn’t work. There are

apparently some undocumented dependencies in the NAB plug-in.

A plea for help on the DSDP-NAB newsgroup finally yielded a response that included

the link to an NAB update site:

http://download.eclipse.org/dsdp/nab/updates/

Add this to your list of update sites and expand it. You’ll find three entries:
� NAB/MWT for Linux GTK

� NAB/MWT for Win32

� Uncategorized, which expands to:
ardl
○ NAB/MWT Plug-in
ess ofwhere you chose to build the package, theMWTruntimes get installed in/usr/local by default.

www.newnespress.com

128 Chapter 6
Select the third item and one of the first two depending on your host platform.

Note: It seems thatmany, if notmost, of themature Eclipse projects have established update

sites, although it’s not always apparent. It may take some serious digging around and

asking questions on the relevant newsgroup. As a last resort, see if the following link exists:

http://download.eclipse.org/<project_name>/<sub_project>/updates/

where <project_name> is the name of the project you’re trying to install and

<sub_project> is an optional sub-project name.

6.3.2 An NAB Project

After adding the NAB components, you’ll find a new perspective called NAB/MWT that

initially looks something like Figure 6.13. The NAB/MWT perspective introduces several

new views. You may want to expand Eclipse to full screen in order to see more detail.
Figure 6.13: Initial NAB/MWT perspective.

www.newnespress.com

129Device Software Development Platform
Proceeding from left to right, the views are:
� C/C++ Projects: This is virtually identical to the Project Explorer view in the

C/C++ perspective. Underneath it are . . .

� NAB/MWT Tree: Shows the current project’s application windows and their

elements, or instances, in tree form.

� NAB/MWT List: For each instance in the Tree view, this view shows the child

instances. Moving to the right . . .

� NAB/MWT Editor: Enables you to visually lay out screen images, known as

application windows. Multiple windows are identified by tabs across the top.

� NAB/MWT Properties: Displays and edits the properties of an instance

selected in the Editor, Tree, or List.

� NAB/MWT Attributes: Displays and edits the attributes of a selected instance.

The only attribute for a variable is Global. A window instance has a Type that

identifies it as a Normal window, a Class definition, or an object store that

isolates window configuration information in a file.

� NAB/MWT Procedures: Associates event procedures written in a procedural

language with instances. A procedure has an arbitrary Procedure name, a

Function name by which it is called, and a Trigger that specifies the conditions

for calling it.

� NAB/MWT Object Box: Displays icons for all object types and classes

implemented by WideStudio/MWT. These are added to an application window

by simply dragging them into the Editor.
So let’s create our first NAB project. Select File –> New –> Project and you’ll find a

new wizard category called NAB. Expand that and select NAB/MWT Project

(Figure 6.14). Next, you’re asked to select between C++ and Java as the Programming

language. Leave it as C++. Then you give the project a name. Call it “HelloNAB” and

click Finish.

The new project shows up in the C/C++ Projects view, and already has a number of

files including a template .ccp file. In fact, Eclipse went ahead and built the project,

although there isn’t anything useful in it yet. Have a look at HelloNAB.cpp just to get

a feel for what’s there. Remember that the objective of NAB is to generate programs

that make use of the WideStudio/MWT libraries.
www.newnespress.com

Figure 6.14: Select NAB project wizard.

130 Chapter 6
Creating an Application Window

Select File –> New –> Other . . . The wizard dialog now has another entry under NAB

called NAB/MWT Window. Select that and click Next. The new window gets a name,

a class, and a type. For now, leave the defaults and click Finish. The new window

shows up in the NAB/MWT Editor and the Properties view shows that it is 400 � 400

pixels. Add a Title string property. Call it “NAB Application.”

Now we’ll add a button to the window. Find the Commands section in the Object Box

view and select the first entry, WSCvbn (Button class). Select that and click
www.newnespress.com

131Device Software Development Platform
somewhere near the upper left corner of the newwin001 tab of the Editor. A new

button instance is created. Grab a corner of the button and expand it. Note that the

Properties view reflects the current location and size of the button, among other things.

Edit the properties (in the Properties view) as follows:
X: 10

Y: 10

Width: 200

Height: 30

Label string: Hello
The result should look like Figure 6.15.
Figure 6.15: Application window in NAB/MWT perspective.

www.newnespress.com

132 Chapter 6
Creating an Event Procedure

In order for our new button to actually do something, we have to attach it to an event

procedure. With the Hello button selected in the Editor, click the Add procedure

icon in the Procedures view to bring up the dialog in Figure 6.16. Name the function

“hello_button” and select ACTIVATE as the trigger.
Figure 6.16: NAB Create Procedure dialog.
Clicking OK creates a new .cpp file with a template for the hello_button()

function. In the source code Editor, enter the following line in the hello_button()

function:

object->setProperty (WSNlabelString, “Hello from NAB”);

When you save the revised hello_button.cpp file, the project is rebuilt. Now we

have a program that does something.

Running the Program

As we have with previous projects, open the Debug Configurations dialog and create

a new configuration for this project. The default values should be fine. Click Apply if

it’s active and click Debug. The Debug perspective displays an error in an Editor tab

saying that no source is available for “main()”. That’s because main() is supplied by

the WideStudio/MWT library. That’s OK, because we’re not interested in debugging

main().
www.newnespress.com

133Device Software Development Platform
Click the Resume icon. The application window with the Hello button shows up

(Figure 6.17). When you click the button, the label changes to the string you set in the

hello_button() function.
Figure 6.17: The running application window.
Granted this is not a very exciting application, but it does serve to illustrate the

fundamental capabilities of NAB. You can easily build and test the GUI elements of

an embedded application on your host and then move it over to the target. In a

sense, this is a more elaborate version of the simple simulation we did in the

previous chapter.

NAB Project Properties

While building a native application is an instructive exercise, the real power of

WideStudio/MWT and the NAB plug-in is the ability to rebuild the project for an

embedded target environment. The target environment is configured and described

in the project Properties dialog.
www.newnespress.com

134 Chapter 6
When you select Properties for an NAB project, you’ll find three additional entries in

the navigation panel:
ww
� NAB/MWT Platform SDK Environment

� NAB/MWT Project Class Library Settings

� NAB/MWT Project Settings
For now, we’ll take a look at the Project Settings dialog shown in Figure 6.18. There are

three tabs. Target Settings has three items. Encoding lets you specify a character

encoding if one is not explicitly specified in the program. Application type is one of

Normal Application, Class Library, Netscape Plugin, or Console Application.
Figure 6.18: NAB/MWT Project Settings dialog.
The Target drop-down brings up a very extensive list of all the platforms supported by

WideStudio/MWT (Figure 6.19). Of course, selecting anything other than Native
w.newnespress.com

Figure 6.19: NAB/MWT targets.

136 Chapter 6
assumes you have the appropriate cross-development tool chain, and have built the

corresponding MWT runtime libraries.

The Compiler Settings (Figure 6.20) and Linker Settings tabs take the place of the

C/C++ Build –> Settings dialog for ordinary C/C++ projects. This is because NAB

creates its own makefiles. Here is where you would specify a cross compiler for your

embedded target. Note also that this is where Debug mode is enabled.
Figure 6.20: NAB project Compiler Settings.
The NAB/MWT Platform SDK Environment settings are an artifact of the original

WideStudio IDE and are likely to be deleted in the next major update, according to the

NAB project lead. Its functionality has effectively been supplanted by the Project

Settings. Incidentally, T-Engine is a popular embedded platform in Japan that grew out

of the TRON project.
www.newnespress.com

137Device Software Development Platform
6.4 Other DSDP Subprojects

Although they’re still in the incubation stage, it’s worth at least describing the

remaining subprojects under the Device Software Development Platform. If you’re

developing mobile devices, you might want to look into them.
6.4.1 Mobile Tools for Java (MTJ)

According to the project’s webpage, the goal of the Mobile Tools for Java (MTJ)

project is to extend existing Eclipse frameworks to support mobile device Java

application development. The intention is to develop frameworks that can be extended

by tool vendors and tools that can be used by third-party mobile Java application

developers.

At the beginning of 2008, the project was “rebooted.” It went from version 0.7 to 0.1.

The goal now seems to be to extend the functionality of EclipseME version 1.7.9.
6.4.2 Tools for Mobile Linux (TmL)

The Tools for mobile Linux (TmL) project intends to “address the gap where existing

Eclipse projects do not entirely satisfy the needs of developers of applications for

mobile devices,” according to the project’s webpage. The initial scope focuses on

building a device emulator framework supported by a VNC Viewer for graphic display

visualization and a simulated end-to-end environment to test enterprise applications.
Summary

In this chapter we’ve looked at a couple of features of the Device Software

Development Platform (DSDP), an Eclipse project specifically focused on issues of

embedded software development. We started out by looking at how Eclipse handles

software updates and installing extensions. Using update sites makes the process of

extending Eclipse relatively painless and transparent because the update mechanism

takes care of resolving any dependencies in the software you want to install. You can

also instruct Eclipse to automatically check for new updates to installed software on a

regular basis.

DSDP itself is divided into several subprojects. The Remote System Explorer (RSE)

is a collection of tools that allows you to work with resources such as files and folders
www.newnespress.com

138 Chapter 6
on remote systems. You can copy files to and from the remote system with a simple

drag-and-drop paradigm, edit files directly on the remote system, and run and debug

applications remotely.

The Native Application Builder (NAB) enables you to develop platform-independent

graphical applications in an intuitive and graphical manner. NAB is an Eclipse wrapper

for WideStudio/MWT, an open source project focused on developing platform-

independent graphical applications for embedded devices. You can create and test your

application on your host environment initially, and then rebuild it for the appropriate

target environment.

There are two other subprojects under DSDP that focus on aspects of mobile device

development. These are still in a very early “incubation” phase.

Up to this point we’ve talked about how to use the features that are already available

in Eclipse. Suppose you want to add some new functionality to Eclipse. The next

chapter looks at the process of developing Eclipse plug-ins.
www.newnespress.com

www.new
CHAP T E R 7
Plug-In Development
Environment (PDE)
As has been mentioned before, Eclipse is built on the notion of plug-ins that define its

functionality beyond the base platform. So in order to extend Eclipse’s functionality, you

need to create one or more additional plug-ins. As an embedded C developer, you may

never need to extend Eclipse, but if you do, this chapter will serve as a starting point.

Perhaps not surprisingly, Eclipse provides a powerful, easy-to-use tool, the Plug-in

Development Environment (PDE), to assist in creating new plug-ins. PDE hides many

of the excruciating details of plug-in development.
7.1 Installing the PDE

PDE itself is of course a collection of plug-ins that must be downloaded and installed

into Eclipse just as we did with the DSDP in the last chapter. PDE depends on the

Eclipse Java Development Toolkit, JDT. That, too, needs to be downloaded and

installed. The JDT in turn depends upon the Java Development Kit (JDK) from Sun

Microsystems.

The update site for the Plug-in Development Environment is part of the Ganymede update

bundle under Java Development. Just select Eclipse Plug-in Development Environment

and click Install . . . JDT and any other plug-ins that PDE requires will be installed.

There does appear to be a “gotcha” that wasn’t in Eclipse 3.3. PDE does not recognize

that it needs the Eclipse SDK and Eclipse Platform SDK in order to function, so you

have to explicitly install those from the Eclipse Project Update Site.
nespress.com

140 Chapter 7
The final step in installing PDE is to install the Java Development Kit from Sun

Microsystems. Go to http://java.sun.com/javase/downloads/index.jsp and Download –>

JDK 6 Update 7. On the next page select Linux as your platform (unless you’re

running Eclipse under Windows), agree to the Java SE Development Kit 6 License

Agreement, and click Continue. You are then presented with a choice of downloading

a self-extracting binary or a self-extracting RPM. I chose the binary.

7.2 So What Is a Plug-In?

It might help to think of Eclipse as the software equivalent of a USB hub. Plug a device

into a USB hub and the system automatically figures out what it is and how to drive it.

Likewise, when a plug-in is installed into Eclipse, the system determines what the plug-in

is capable of doing and what it depends on, so that things get loaded in the proper order.

The core of a plug-in is Java code, so in order to develop truly useful plug-ins,

you’ll need to know Java. This book is not the place to learn it. The Resources

section at the end of the chapter can point you to Java resources.

With the release of version 3.0, Eclipse adopted the OSGi1 framework for modular,

dynamic, Java components. The OSGi framework defines a dynamic component model

that allows applications or components, in the form of “bundles,” to be remotely

installed, started, stopped, updated, and uninstalled without requiring a system reboot.

An Eclipse plug-in is the equivalent of an OSGi bundle.
7.2.1 Extensions and Extension Points

Fundamentally, extensions and extension points are how plug-ins communicate with

the Eclipse platform and with each other. Conceptually, you can think of an

extension point as a socket and an extension as a plug that mates with the socket.

Extension points define places where the Eclipse platform can be extended by plugging

in additional functionality in the form of extensions. The current Eclipse platform

exposes around 200 extension points in the following categories:
1 OS

and

ww
� Platform Runtime: Controls the global behavior of Eclipse itself. If you wanted

to write an application based on the Eclipse platform, this is the place to start.
Gi originally stood for Open Services Gateway initiative. At some point that term was dropped,

now the organization and its specifications are simply referred to as OSGi.

w.newnespress.com

141Plug-In Development Environment (PDE)
� Workspace: Contains extension points for managing projects, such as resource

builders (build tools), markers, project life-cycle behavior, and team behavior.

� Platform Text: Facilities for extending editors.

� Workbench: Manages the user interface. This is the largest class of

extension points and includes things like support for new views and editors,

key bindings, drag-and-drop operations, and additional panels in the Preferences

dialog.

� Team: Extension points to manage sharing of project resources, such as folders

and files, among team members.

� Debug: Controls application launching as well as debugging. Includes extension

points for both behavior and user interface functionality.

� Console: A set of three extension points for managing console views.

� User Assistance (in other words, Help): Facilities to extend the Eclipse Help

engine. You can add new HTML help pages and cheat sheets, extend the table

of contents, and access the search engine.

� Language Toolkit: Extension points that support refactoring.

� Other: Provides access to the underlying Ant infrastructure. Facilities include

read-only content viewers and specialized search pages.
The Platform Plug-in Developer Guide in the Eclipse online documentation provides a

thorough description of all the extension points and this is, in fact, the best place to get

familiar with what the various extension points represent.

Extensions in turn provide the additional functionality that plugs into the extension

points. This is what plug-ins generally do. They extend Eclipse functionality by

“plugging in” to extension points.
7.2.2 MANIFEST.MF and plugin.xml

In Eclipse terminology, plug-ins are defined by two files, MANIFEST.MF and

plugin.xml. The MANIFEST.MF file identifies the plug-in by name, version, and

so on. The plugin.xml file defines the extensions and extension points that this

plug-in provides. This is how the plug-in gets linked into the Eclipse platform

environment.
www.newnespress.com

142 Chapter 7
Ultimately, MANIFEST.MF and plugin.xml get packaged along with the Java code in

a Java archive (.jar) file.
7.2.3 Naming Conventions

You’ve probably noticed by now that all of the Eclipse plug-ins have rather long names

of the form org.eclipse.<feature>.<element of feature>_<number that

looks like a version><maybe another big long number>.jar. This is a

naming convention that assures that all Java packages, or in this case Eclipse plug-ins,

are unique. Eclipse requires that all plug-ins have a name that is unique throughout

the world.

The name begins with a top-level Internet domain, such as .com, .org, .edu, etc., or one

of the two-letter codes that identify a country outside the United States. The next

element is a domain name representing the organization that wrote and/or maintains the

package. Subsequent components of the name are specified by the organization and

may include elements such as division, department, project, and so on.

For Eclipse the next component of the name is a component such as core, ui, or

debug, or a subproject such as cdt, jtk, or pde. This is usually followed by

the element of the component or subproject. Then comes the underscore followed by

a version number. This is followed by another underscore, a “v”, and the date the

package was built.

The convention further suggests that the Eclipse project name should match the plug-in

name up to the first underscore.

7.3 Our First Plug-In

As a way to get started with writing plug-ins, we’ll create a simple workbench view that

just lists all views available in the workbench at run-time. You might think of it as a

“super view” so that’s what we’ll call it: SuperView. While it doesn’t really do a lot, it

does illustrate most of the basic principles involved in using PDE.

7.3.1 Creating a Plug-In Project

Like every other project, building a plug-in starts by creating a project. Select

File –> New Project. Find and expand the Plug-in Development category and select

Plug-in Project as shown in Figure 7.1.
www.newnespress.com

Figure 7.1: Project selection wizard.

143Plug-In Development Environment (PDE)
This brings up the dialog shown in Figure 7.2. Again, like every other project, we

have to give it a name. In accordance with the Java naming standard, let’s call it

com.eclipsebook.superview. There is also an option to choose a target platform,

which simply means whether we’re targeting a version of Eclipse, or an OSGi

framework like Equinox. In this case, we’ll stick with the 3.4 version of Eclipse to keep

things simple.

The next screen (Figure 7.3), called Plug-in Content, basically identifies the plug-in in

the form of properties, and says something about its content. The properties are

structured to make the plug-in compliant with Eclipse. All the default values are

suitable.

The Plug-in ID represents a unique identifier for your plug-in. No other plug-in can

share the same identifier. Note that the default value for the ID is the same as the name
www.newnespress.com

Figure 7.2: Plug-in new project dialog.

www.newnespress.com

144 Chapter 7

Figure 7.3: Plug-in Content dialog.

www.newnespress.com

145Plug-In Development Environment (PDE)

146 Chapter 7
we used in the previous screen. The Plug-in Version consists of four segments (three

integers and a string) respectively named major.minor.service.qualifier The Plug-in

Name is simply a human-readable name. Likewise, the Plug-in Provider is a human-

readable string identifying the author of the plug-in, which defaults to the organization

field of the name.

There’s an option to generate a plug-in activator, which is simply a class that controls

the life cycle of a plug-in; basically a start and stop method. The activator is usually

responsible for setting up things and for properly disposing of resources when the

plug-in isn’t needed anymore. We’ll also say here that this plug-in makes contributions

to the UI.

Click Finish. If you’re not in the Plug-in Development environment, Eclipse will

prompt you to switch to it.

PDE has created a template project for our new plug-in. Views initially visible in the

Plug-in Development Perspective include:
ww
� Package Explorer: The Java equivalent of the Project Explorer in CDT. It

shows the contents of our new Hello World project.

� Plug-ins: Lists all of the plug-ins presently installed in Eclipse. You can select a

plug-in and open it in the. . .

� Manifest Editor: A form-based multi-page editor that aids in the creation of the

plugin.xml and MANIFEST.MF files.

� Outline: As in CDT, this view organizes the information in the Manifest Editor

in an easily browsable structure.
7.3.2 Plug-In Content

The Manifest Editor initially shows an overview as seen in Figure 7.4. This

essentially duplicates the information entered in the Plug-in Content dialog and also

includes links to several other tabs in the Manifest Editor and related functionality.

Our plug-in will create a new extension that contributes to the Eclipse toolbar and

also adds an item to the main menu.

The Dependencies tab specifies what plug-ins and packages this plug-in depends on.

Initially the Required Plug-ins list has two entries: org.eclipse.ui and

org.eclipse.core.runtime. Just about everything is dependent on these two.
w.newnespress.com

Figure 7.4: Manifest Editor overview tab.

147Plug-In Development Environment (PDE)
The Imported Packages list lets you specify packages that your plug-in depends on

without identifying the plug-in that contains the package.

Packages are a useful way to specify implementation-independent behavior. Suppose, for

example, that your plug-in is dependent on anXML parser.We can implement that parser as

a package called com.company.xml.parser. You could then create two plug-ins, say,

com.company.xml.parser.mobile and com.company.xml.parser.desktop,
www.newnespress.com

148 Chapter 7
each of which implements the same parser package—that is, the same extension points, but

for a different environment.

Click the Runtime tab in the Manifest Editor, or click Runtime under Plug-in Content

in the Overview form. This lets us specify which packages contained in the plug-in will

be made visible to other plug-ins. Any packages not explicitly exported will not be

visible externally. Click Add . . . to see that our plug-in has one package available for

export. We don’t really need to export the package, but it doesn’t hurt, so go ahead and

select it, and click OK. Now click on the package in the Exported Packages list.

The Properties. . . button lets you set a version for that package.

Normally, exported packages are visible to all “downstream” plug-ins. Nevertheless,

you can declare packages to be internal, meaning they’re not necessarily intended for

use by downstream plug-ins, but are still visible. Such internal packages can be hidden

when Eclipse is started in “strict” mode by selecting the hidden option under package

visibility. Internal packages can also have “friend” plug-ins that have access to the

package even in strict mode.

The Classpath section lists all locations the runtime will search when loading

classes from a plug-in. This is an artifact of earlier Eclipse releases and should normally

be left blank. Starting with Eclipse 3.1, plug-ins are packaged as Java archives (.jar)

and don’t require an extended classpath.

Click the Extensions tab or click Extensions in the Extension / Extension Point

Content section of the Overview tab. This is where the real functionality of our plug-in

is defined. Clicking Add . . . brings up a list of extension points defined in the plug-ins

listed in the Dependencies tab. Here we select the extension points for which our

plug-in will provide extensions. Find and select org.eclipse.ui.views.

A description of the extension point appears (Figure 7.5). Many extension points

also offer one or more templates to provide additional help in structuring the

plug-in’s Java code. In this case, we won’t use the template. Click Finish.

Back in the Extensions list, right-click on the new entry and select New –> category

(Figure 7.6). Leave the id as is, and change the name to EclipseBook.

Right-click the extension point entry again and select New –> view (Figure 7.7).

Change the name to SuperView and add com.eclipsebook.superview.

category1 to the category to match the id in the category entry. Click the class link,

enter SuperView as the name, and click Finish.
www.newnespress.com

Figure 7.5: Selecting extension points.

www.newnespress.com

149Plug-In Development Environment (PDE)

Figure 7.7: Adding a view.

Figure 7.6: Adding a category.

www.newnespress.com

151Plug-In Development Environment (PDE)
The PDE creates a new class implementing the required interface and opens it in the

Java editor. We’ll come back to that in a moment, but for now let’s finish up our tour of

the Manifest Editor.

The final product of the Manifest Editor is the two files that constitute the

plug-in’s manifest, MANIFEST.MF and plugin.xml. The content of these files is

available in tabs of the same names. Have a look. MANIFEST.MF basically describes

the plug-in with the information from the Overview and Dependencies forms. plugin.

xml defines the extensions and extension points that this plug-in provides. In this

case, we haven’t defined any extension points.

You can, of course, edit MANIFEST.MF and plugin.xmlmanually, but why? The beauty

of PDE is that you don’t need to understand XML or the syntax of MANIFEST.MF, in order

to create a plug-in. Some developers even suggest that it is bad practice tomanually edit an

XML file as this can lead to hard-to-diagnose configuration problems.

Now go back to the Editor tab displaying SuperView.java. Not much here. Just

templates for the class constructor and two other functions that are the minimum

necessary to extend the view. To get something that works, import the file

SuperView.java from EclipseSamples/plug-in/ to com.eclipsebook.

superview in the Package Explorer. Eclipse asks if you want to overwrite the existing

file. Yes, you do.
7.3.3 Running and Debugging a Plug-In

Eclipse and PDE have a notion of self-hosting, which means that we can launch a new

instance of Eclipse with plug-ins we’re currently working on, without having to

export or deploy any plug-ins. One way to start the new instance is to go back to the

Overview form in the Manifest Editor and click on Launch an Eclipse application

under Testing. You can also just click on the Run icon in the menu toolbar or, from

the top-level project context menu in the Package Explorer view, select Run As –>

Eclipse Application.

After a little churning, a new instance of Eclipse appears in the default C/C++

perspective. Interestingly, it doesn’t ask for a workspace location. Instead, it creates a

workspace in your home directory, called runtime-EclipseApplication.

In the main menu select Window –> Show View –> Other. Expand the EclipseBook

entry and select SuperView. The new view shows up in the bottom window.
www.newnespress.com

152 Chapter 7
Now that you know what the plug-in does, go back into the Java code and try to figure

out how it does it.

Debugging is virtually identical to what we did with CDT. The one “gotcha” here is that

there’s no “Stop on main.” This means you must have a breakpoint set before you

launch the debug run. Open SuperView.java if it’s not already open. Now switch to

the Debug perspective. This is essentially the same Debug perspective we used for

C programming, but now we’re using a Java debugger instead of gdb.

Scroll down to line 24 in SuperView.java that starts with viewer.

setContentProvider . . . and set a breakpoint just as we did before. Now from the

Manifest Editor Overview form, click Launch an Eclipse application in Debug mode.

The new Eclipse instance starts as before. Select the SuperView view as we did above

and the program hits the breakpoint (Figure 7.8).
Figure 7.8: Java Debug perspective.

www.newnespress.com

153Plug-In Development Environment (PDE)
The Debug view shows the call stack with the method containing the breakpoint

highlighted. If you select any other frame in the call stack, a window appears in the

editor saying that the source is not available. Nevertheless, the local variables for that

frame are displayed in the Variables view and the Outline view shows an outline of

the corresponding method.

Note, incidentally, that the debug instance of Eclipse is blank and waiting for

something to happen. You can step through the createPartControl() method to

see what happens, but in fact nothing actually changes on the workbench until after

setFocus() is called.

Without going into a lot of detail, let’s take a quick look at what createPartControl()

does. First it creates a table-like visual component, a “table viewer,” to display your view’s

contents. It then configures the viewer with a content provider and a label provider. The

former allows the viewer to navigate your model, or more specifically, to extract your

model’s structural elements suitable for inclusion in a table. The latter allows it to convert

your model’s elements into table cells with textual labels and optional images.

Then there’s a sorter to display the entries in alphabetical order. Finally, you provide an

input source that is an array of descriptors of all views available in the workbench at

run-time. Note that we’re providing an implementation of setLabelProvider()

here, and we’re overriding the getText() and getImage() methods.

7.4 Building and Exporting a Plug-In

Our plug-in is fully debugged and it’s time to share it with the rest of the world. This

requires packaging all of its components in a Java archive (.jar). This, too, is a fairly

painless process owing to wizards available to help.

There are three steps to going from a working plug-in to its corresponding .jar file:
� Clean up and organize the manifests.

� Configure the build content.

� Build and export the plug-in.
7.4.1 Clean Up and Organize the Manifests

PDE provides an Organize Manifests wizard to help ensure that the information in

your MANIFEST.MF file is complete and up to date. Among other things, it gives you

the opportunity to override and extend options selected in the Manifest Editor.
www.newnespress.com

154 Chapter 7
The Organize Manifests wizard (Figure 7.9) is accessible from the Overview form in

the Exporting section. The various options, which tend to be rather verbose, are:
ww
� Ensure that all packages appear in the MANIFEST.MF: Adds Export-

Package declarations for any package in the project that isn’t already exported.

� Mark as internal all packages that match the following filter: Can change

the visibility of a package based on its name. The Package filter field is

a regular expression that identifies packages to be marked as internal. Internal

packages are not available for use by other plug-ins.

� Remove unresolved packages: Removes Export-Package entries that can’t

be resolved, probably because they simply don’t exist in the project.

� Calculate ‘uses’ directive for public packages: Does the complex

computations for the “uses” directive for packages that other plug-ins have

access to. This requires code introspection and can be a lengthy process.

� Handle unresolved dependencies by: Offers the option of removing

unresolved dependencies or declaring them as optional. The most common

reason a dependency might be unresolved is that an optional plug-in is missing

from the configuration.

� Remove unused dependencies: Analyzes the project code for references to

unused dependencies, which could result in unnecessary plug-ins being installed

at runtime. This can be a time consuming process.

� Add required dependencies: Sort of the complement of the previous option, it

looks for dependencies that are not currently included in the manifest. This only

finds dependencies for plug-ins listed in the Automated Management of

Dependencies section of the Dependencies form of the Manifest Editor. This

can be a time consuming operation.

� Remove unnecessary lazy activation headers: Removes so-called “lazy

activation headers” if a Bundle-Activator is not defined. The lazy activation

header isn’t necessary if a plug-in has nothing to contribute when it is started.

� Delete unnecessary plug-in manifest files: Removes plugin.xml files if a

plug-in doesn’t contribute any extensions or extension points.

� Prefix icon paths in plug-in extensions with a nl segment: Modifies icon

paths to allow fragments to contribute unique icons for different locales.
w.newnespress.com

155Plug-In Development Environment (PDE)
� Remove unused keys from the plug-in’s properties file: Finds and removes

unused keys in the properties file.

� In most cases the default values are fine.
Figure 7.9: Organize Manifests wizard.

www.newnespress.com

156 Chapter 7
7.4.2 Configure Build Content

The file build.properties defines what is included in the final plug-in. Its contents

are specified in the Build form of the Manifest Editor shown in Figure 7.10. Again,

for now anyway, the defaults are fine.

The Binary Build is what you specify for building your plug-in. Oddly, the bin and

src directories are not selected, yet they do show up in the actual text of the build.

properties file. The Source Build is not commonly used or needed by general

users. It’s used if you need to ship source in separate plug-ins rather than in the binary

plug-ins.
Figure 7.10: Build Configuration.

www.newnespress.com

157Plug-In Development Environment (PDE)
7.4.3 Build and Export

The final step in creating a deployable plug-in is to build the .jar file and place it

somewhere in the file system. The Export Wizard is the last item under Exporting on

the Manifest Editor’s Overview form. Clicking that link brings up the dialog in

Figure 7.11. The wizard lists the plug-ins that are available to deploy, in this case just

our com.eclipsebook.superview project. Check it if it isn’t already checked.
Figure 7.11: Plug-in export wizard.

www.newnespress.com

158 Chapter 7
Select a destination. I chose to store it back in the Superview project folder in the

workspace. The wizard stores the .jar file in a subdirectory named plugins/ under

the directory you specify. If you’re curious, take a look at the Options and JAR

Signing tabs. Click Finish and the plug-in will be built.

The plug-in export wizard can also be accessed from File –> Export. Select Plug-in

Development –> Deployable plug-ins and fragments.

That’s it! You’ve created and deployed an Eclipse plug-in.
7.5 Exploring Further

The PDE provides a number of templates that allow you to explore many features of

plug-in extensions. When creating a new plug-in project, at the Plug-in Content dialog,

click Next instead of Finish as we did when we created our first plug-in. This brings up

the dialog shown in Figure 7.12. Select one and you’ll get a description of what the

template creates and what extensions it uses. These are complete, working examples,

with reasonably well commented code.

Try them out!
7.6 Rich Client Platform (RCP)

Up to this point we’ve been using PDE to create plug-ins that operate from within the

workbench. We can also use PDE to create so-called rich client applications that build

on the Eclipse plug-in architecture, but run as independent programs. The Rich Client

Platform, first introduced in version 3.0, is basically a refactoring of the fundamental

parts of the Eclipse UI that allows it to be used for non-IDE applications.

Select File –> New –> Project . . . –> Plug-in Project. Call it “HelloRCP.” In the

Plug-in Content dialog, answer “Yes” to “Would you like to create a rich client

application?” Click Next to bring up the Templates dialog of Figure 7.13 and select

Hello RCP. Click Next. This dialog is just some basic information about our trivial

Hello World RCP application. Click Finish.

The new project opens in the Manifest editor and looks pretty much like the SuperView

project we created earlier. Click the Extensions tab and expand both entries. What

makes this an RCP application rather than an Eclipse plug-in is that we’re creating an

extension to org.eclipse.core.runtime.applications. This is the class that
www.newnespress.com

Figure 7.12: PDE plug-in templates.

159Plug-In Development Environment (PDE)
will be executed when the platform is started. In effect, our plug-in becomes the main

application program. We’re also creating a new perspective.

Expand the HelloRCP project down to the individual .java files under hellorcp and

open Application.java. This file defines a class that implements IApplication,

which in turn implements both a start and a stop method.
www.newnespress.com

Figure 7.13: RCP Templates dialog.

www.newnespress.com

160 Chapter 7

161Plug-In Development Environment (PDE)
Run the project by selecting Launch an Eclipse application from the Testing

section of the Manifest editor Overview tab. The result (Figure 7.14) isn’t very exciting,

but it does illustrate that we’ve fired off an independent application window. The

code that implements the window is in ApplicationWorkbenchWindowAdvisor.

java.
Figure 7.14: HelloRCP application window.
7.6.1 Making It a Product

Ultimately of course, we want to create a stand-alone product that doesn’t require

Eclipse to run. Right-click the HelloRCP project entry and select New –> Product

Configuration. All you have to do is give it a File name. Call it “Hello.”

A new file shows up under the project called Hello.product and that file is opened in

the Product Configuration editor. Give the product a name, say “Hello RCP.” Click the

New . . . button to create a new product ID. The default values are fine, so just click

Finish.
www.newnespress.com

162 Chapter 7
In the Configuration tab click Add . . . and select HelloRCP from the Plug-in Selection

list. Then click Add Required Plug-ins. The Configuration tab should now look like

Figure 7.15.

Go back to the Overview tab, save the file, and click Synchronize to get this

configuration in sync with the plug-in. At this point it’s a good idea to test the

application one more time by clicking Launch an Eclipse application. If the Hello

RCP window came up correctly, then we’re ready to export the finished product.
Figure 7.15: Product Configuration editor, Configuration tab.

www.newnespress.com

163Plug-In Development Environment (PDE)
Click on Eclipse Product export wizard. Select a relevant name for Root directory.

I called it “HelloApp.” We’ll store the final application in a Destination Directory.

Click Browse . . . , which starts in your workspace. I chose to just put it in HelloRCP.

Click Finish and the final application will be built.

Go to the root directory you just created and you’ll see that the executable is called

eclipse. You’ve just created a stand-alone rich client application.

A much more extensive and interesting example of a rich client application is available

from the Eclipse CVS repository. Go to the CVS Repository Exploring perspective

and add a new repository. The details are:
Host: dev.eclipse.org

Repository Path: /cvsroot/eclipse

User: anonymous

Password: (leave blank)

Connection Type: pserver
After connecting, expand the HEAD branch to find a very large number of projects.

Scroll down to find org.eclipse.ui.examples.rcp.browser. Check out that

project. Note, incidentally, that there are quite a few ui.examples projects. Later on,

you might want to investigate some of the others.

Back in the Plug-in Development perspective, right-click the new project entry in

Package Explorer and select PDE Tools –> Open Manifest. In the Testing section of

the manifest Overview page, click Launch an Eclipse application to bring up the

browser window of Figure 7.16.

This project already has a Browser.product file that you can turn into a stand-alone

application, as we did above with HelloRCP.
7.6.2 Embedded Rich Client Platform (eRCP)

The RCP is aimed at developing platform-independent desktop applications. So what

does that have to do with embedded development, you may ask? The answer is another

Eclipse project called the embedded Rich Client Platform (eRCP). This project aims

to bring the power of rich client applications to embedded and mobile devices.
www.newnespress.com

Figure 7.16: Rich Client Platform browser application.

164 Chapter 7
To explain how eRCP differs from RCP, it’s necessary to delve a little deeper into

the architecture of Eclipse. Referring back to Figure 1.1, the Eclipse workbench

is built on top of two hierarchical graphical toolkits. The lower level toolkit is

called the Standard Widget Toolkit (SWT), a Java-defined layer sitting on top of

platform-dependent GUI components. Every platform on which Eclipse runs has its

own native SWT layer, but the Java side of that layer is constant.

The JFace toolkit is built on top of the SWT and is a high-level GUI layer

that addresses the needs of Eclipse itself. JFace provides components that create

views and support events, control tasks using progress components, and manage

UI resources such as fonts. Of course, the GUI requirements of Eclipse are

common to many applications, which makes JFace useful outside the Eclipse

environment.
www.newnespress.com

165Plug-In Development Environment (PDE)
eRCP implements a subset of the SWT called, not surprisingly, the embedded Standard

Widget Toolkit (eSWT) that provides a set of controls, panels, and other widgets

commonly used as building blocks of user interfaces in embedded devices Additionally,

eSWT introduces a new component, mobile extensions, primarily targeted at the needs

of mobile devices such as PDAs and smart phones.

The design of SWT emphasizes portability among operating systems by keeping the

native code layer as small and simple as possible. That’s fine in desktop environments

where there’s ample processor horsepower to compensate for the performance hit of

platform-independent code. But in mobile devices, performance is a critical issue. So

eSWT sacrifices portability to put more of the functionality in the native layer.

eSWT consists of three elements:
� Core

� Expanded

� Mobile extensions
Figure 7.17 illustrates where eSWT fits in the scheme of things.
UI applications

App

SWT

Core eSWT
(required)

Expanded
eSWT

(optional)

Mobile
extensions
(optional)

Java Virtual Machine

Native Operating System

App App

Figure 7.17: eSWT UI toolkit architecture.

www.newnespress.com

166 Chapter 7
eRCP then is a collection of runtime libraries supporting a range of platforms that

includes:
2 Th

IBM

Chec

ww
� Windows Mobile 2003/5/6

� WindowsCE 5.0 Professional

� Nokia series 80: Includes emulator

� Windows desktop: For testing
Unfortunately, there’s no Linux runtime, so in order to play around with eRCP, you’ll

need a Windows Eclipse installation. Download the latest version of the Windows

desktop runtime from the eRCP Download Page at

http://www.eclipse.org/ercp/downloads-page.html. This is a zip file that

creates its own directory. I suggest unzipping it in your Eclipse directory.

The eRCP package includes three fairly simple demos that are started from batch files.

Try them out. Unfortunately, the demos don’t appear to include source code. There is an

example2 with source code in your EclipseSamples/ directory in the form of a JAR

file that you’ll need to import into Eclipse.

Click File –> Import . . . , expand Plug-in Development and select Plug-ins and

Fragments. This brings up the dialog in Figure 7.18. In the Import from section,

uncheck The target platform and browse to your EclipseSamples/ directory.

In Import As, select Projects with source folders and click Next. Only one plug-in

will be found. Select that and Add it to the Plug-ins and Fragments to import list.

Click Finish.

Back in the Project Development perspective you’ll find a new project in the Package

Explorer view. Take a look at some of the Java files and open the manifest to get a feel

for what’s going on.

However, before you can build and run the example, you must point PDE at the correct

target environment. Select Window –> Preferences –> Plug-in Development –>

Target Platform. Browse to the eRCP/ directory under the eRCP installation directory.

Back in the Manifest editor launch the application.
is particular example comes from a paper describing the embedded Rich Client Platform posted at

’s Developer Works, at http://www-128.ibm.com/developerworks/opensource/library/os-ecl-rcp/.

k it out.

w.newnespress.com

Figure 7.18: Import Plug-ins and Fragments dialog.

167Plug-In Development Environment (PDE)
Summary

Plug-ins, written in Java, are the mechanism for extending the functionality of Eclipse.

The Plug-in Development Environment (PDE), itself a collection of plug-ins, provides

intuitive graphical tools to aid the process of plug-in development.

Eclipse defines some 200 extension points where the basic platform can be enhanced by

plugging in extensions. The role of a plug-in, then, is to implement extensions.

Normal plug-ins execute as extensions of the Eclipse workbench. The Rich Client

Platform (RCP) provides a mechanism that allows you to use the same plug-in
www.newnespress.com

168 Chapter 7
development environment to build stand-alone Java applications that utilize Eclipse

UI features. Another project, the embedded Rich Client Platform (eRCP), brings the

same capability to embedded devices.

The next chapter looks at a couple of advanced features of Eclipse that are also of

value to embedded developers, source code control using CVS, and software design

modeling using UML.
Resources

There are countless books on Java programming. Here are a few that look interesting.
Block, Joshua. 2008. Effective Java. (2nd ed.) Prentice-Hall.

Eckel, Bruce. 2006. Thinking in Java. (4th ed.) Prentice Hall.

Horstmann, Cay S., and Gary Cornell. 2007. Core Java Volume 1—Fundamentals.

(8th ed.) Prentice Hall.

Horstmann, Cay S., and Gary Cornell. 2007. Core Java Volume 2—Advanced Fea-

tures. (8th ed.) Prentice Hall.

Sierra, Kathy, and Bert Bates. 2005. Head First Java. (2nd ed.) O’Reilly.

http://www.java.sun.com/—This is Sun’s website for Java developers.

http://www.geocities.com/kollurihari/hari/programming.html/—

This is an interesting and very extensive website with tutorials on a wide range of

software topics including Java. Nothing on Eclipse yet.

Here is a great starting point for writing plug-ins.

Clayberg, Eric and Dan Rubel, Eclipse: Building Commercial Quality Plug-ins, 2nd

edition, Addison-Wesley, 2006.
www.newnespress.com

www.new
CHAP T E R 8
Eclipse Advanced Features
With a solid background in CDT, it’s time to turn our attention to some other tools

in the Eclipse workshop that can aid software developers. Specifically, in this

chapter we’ll look at source code control using CVS and software design modeling

using UML.
8.1 UML

UML (Unified Modeling Language) is a mechanism for expressing the constructs

and relationships of complex systems, in particular software systems. More specifically,

it is a graphical notation that can be used to describe the various models of a software

system.

Some of the ways UML is useful include:
� Requirements capture

� Expressing system concepts as classes

� Understanding how objects interact with each other in specific scenarios

� Characterizing the life cycle of objects by identifying the various states to which

an object can transition

� Organizing classes into packages and subsystems

� Depicting the deployment of components in a final system
nespress.com

170 Chapter 8
The UML 2.x specifications1 define 13 types of diagrams that are split into three

categories:
1 Ve

ww
� Structural diagrams. Identify the objects in the model:
rsion

w.
○ Class diagram

○ Component diagram

○ Composite structure diagram

○ Deployment diagram

○ Object diagram

○ Package diagram
� Behavior diagrams. Describe what must happen in the system being modeled:
○ Activity diagram

○ State machine diagram

○ Use case diagram
� Interaction diagrams. A subset of Behavior diagrams, these emphasize the

flow of control and data among the objects in the model:
○ Communication diagram

○ Interaction overview diagram

○ Sequence diagram

○ Timing diagram
Clearly then, the role of an Eclipse UML plug-in is to facilitate creating these diagrams

and documenting the properties associated with them. UML is not tied to any specific

programming language or software development methodology, although it is very

much object-oriented and thus is a natural fit for Java and C++.
2.0 was released by the Object Management Group (OMG) in 2003.

newnespress.com

171Eclipse Advanced Features
This chapter can only skim the surface of UML itself. The objective here is to show

how a UML editor works in the context of Eclipse. The Resources section at the end of

the chapter lists some resources for UML.

It should be noted that issues of modeling are also being addressed by the Eclipse

organization itself through the Eclipse Modeling Framework project (EMF). EMF is

described as a modeling framework and code generation facility for building tools

and other applications based on a structured data model. For the time being anyway,

EMF is primarily oriented toward Java programmers and so may not be particularly

useful for embedded developers.

8.1.1 Installing Omondo EclipseUML

Eclipse.org does not itself have a complete UML plug-in. Instead, we’ll use a free plug-

in offered by Omondo, a UML tool vendor. EclipseUML Free Edition supports all UML

2.1 diagrams and is a good package for exploring what UML is all about.

The EclipseUML download page is:

http://www.eclipsedownload.com/download_free_eclipse_3.3.html.

There are three distributions available. For our purposes, the correct one is the EclipseUML

Free Installer for Windows and Linux. It’s a jar file. Download it to your workstation.

Make sure Eclipse is not running, and in a shell window execute:2

java –jar eclipseUML_E330_2007_freeEdition_3.3.0.v20071210.jar

This brings up an installation dialog. The first step is to select a language and click OK.

Click Next to exit the welcome screen. The next screen is a little confusing in its

description of system requirements. It says that three Eclipse plug-ins are required for

EclipseUML and implies that one of them, Graphical Editor Framework, is included. In

fact, all three of the required plug-ins are included.

Click Next and accept the license terms. The next screen shows your Eclipse

installation path. Click Next again. This brings up the configuration screen of

Figure 8.1. Leave all six items checked. Click Next and the installation begins. The

installer creates an uninstall script should you wish to remove EclipseUML later.

To confirm that the installation succeeded, select Window –> Preferences. UML

should show up in the left-hand navigation panel.
2 Be aware, of course, that the file name may change.

www.newnespress.com

Figure 8.1: EclipseUML configuration screen.

172 Chapter 8
8.1.2 UML Example

Our example for working with UML is a classic embedded control application: an

elevator. The problem is to implement the logic required to move the elevator between

floors in response to user requests3. The elevator operates as follows:
3 Th

http:

ww
� Each elevator has a set of m buttons, one for each floor. These illuminate when

pressed and cause the elevator to move to the corresponding floor. The

illumination is canceled when the elevator reaches the corresponding floor.
e example was derived from this web page:

//www.geocities.com/siliconvalley/network/1582/uml-example.htm/.

w.newnespress.com

173Eclipse Advanced Features
� Each floor, except the bottom and top floors, has two buttons: one to request an

“up” elevator, and one to request a “down” elevator. These buttons illuminate

when pressed. The illumination is canceled when the elevator visits the floor

and is moving in the requested direction.

� When the elevator has no requests pending, it remains at its current floor with

the doors closed.
To begin, we’ll need to create a Java project. The reason for starting out in Java

is simply that UML tools seem much better integrated with Java. Change to the

Java perspective and select File –> New –> Java Project. Name the project

“elevator” and accept the defaults. Accept the defaults on the next screen and

click Finish.

Expand the newly created elevator project and notice that there’s an src/ directory

under it. Right-click the src/ directory and select New –> Package. Name it

“elevator” as well. The UML diagram files you will be creating can go anywhere. I

suggest creating a new directory under the project to store them. With the elevator

project selected in the Package Explorer view, select New –> Folder and call it

“models.” The project structure should now look like Figure 8.2.
Figure 8.2: Java project structure for UML.

www.newnespress.com

174 Chapter 8
8.1.3 Use Case Diagram

The first UML diagram we’ll tackle is the use case. The role of the use case is to

describe how an actor interacts with the system. It provides a generalized description

of how the system will be used. In this case the actor is a passenger desiring to use

the elevator.

The elevator system goes through a process something like this:
ww
1. Passenger presses up or down button. Button illuminates.

2. Elevator detects button pressed and moves to passenger’s floor.

3. Doors open. Up/down button illumination turns off.

4. Passenger gets in and presses a floor button. Button illuminates.

5. Doors close.

6. Elevator moves to destination floor.

7. Doors open. Floor button illumination turns off.

8. Passenger gets out. Doors close.
Right-click on the elevator package and select New UML Diagram –> UML Use

Case Diagram. The suggested file name is elevatorUseCaseDiagram.uud.

I chose to delete the elevator part. Select the models/ directory and click Finish to

bring up the Use Case editor. Figure 8.3 shows the editor’s toolbar. The icons, starting

from the left, are:
� Selection mode

� Zoom mode

� Create an actor

� Create a use case

� Create a system

� Add a generalization

� Add an includes

� Add an extends
w.newnespress.com

175Eclipse Advanced Features
� Add an association

� Create a package

� Create an indication

� Create a note

� Create a diagram link

� Create a text label
Figure 8.3: Use Case editor tool bar.
Let’s start by creating an actor. Click the Create an actor icon to bring up the

Create an actor dialog. Name it “passenger.” The New Stereotype button in the dialog

is a way of clarifying the role of the actor. For now, leave it blank. Click OK and

the passenger shows up in the editor window (Figure 8.4).

Next, let’s add a use case. Click Create a use case and name it “Press up/down button.”

The use case dialog contains five tabs, the first four of which take free-form text

input. In the Properties tab, Abstract means a use case is not complete, but depends

on other use cases. Pre condition is the system state before the use case is called, and

Post condition is its state after this use case is called (Figure 8.5).
www.newnespress.com

Figure 8.4: The passenger actor.

176 Chapter 8
The Normal flow tab is where you describe how the system responds when the use

case succeeds. In this case, two activities happen:
ww
� Button illuminates.

� Elevator moves to passenger’s floor.
Alternative flow is what happens if something fails. Off hand, I can’t think of any

actions for that circumstance. Description is just additional explanatory text that

doesn’t fit the other tabs.

The actor and the use case now need to be associated. Click the Add an association

icon, then click both the passenger actor and the Press up/down button use case.
w.newnespress.com

Figure 8.5: New use case dialog.

177Eclipse Advanced Features
You can optionally give the association a Label. Our use case diagram now looks like

Figure 8.6.

We need one more use case for our passenger: “Press floor button.” I suggest that

the Pre condition is that “doors are open” since the passenger can’t push the button

until he gets in the elevator. The Post condition is “floor button illuminated.” The

normal flow is:
1. Illuminate floor button.

2. Close doors.

3. Move to destination floor.
Create an association between the passenger and the Press floor button case. Finally,

we should encapsulate our use cases inside a system. Click the Create a system button

and drag the cursor to create a box around the two use cases. Name it “Elevator.”

Oddly, the two use case ovals end up outside the system box, so drag them back into it.

Figure 8.7 shows the completed diagram. Save it.
www.newnespress.com

Figure 8.6: passenger and Press up/down use case.

178 Chapter 8
The information you entered into the use case diagram, as well as other diagrams, can

be turned into design documentation. Unfortunately, that feature is not supported in

the free version of EclipseUML.

8.1.4 Class Diagram

A system, or domain, is composed of classes and the relationships among them. The

class diagram depicts these relationships and provides an overview of the domain.

EclipseUML lets you define a domain model without getting bogged down in the details

of creating classes, interfaces, and relationships. Wizards help you build the diagram
www.newnespress.com

Figure 8.7: Completed use case diagram.

179Eclipse Advanced Features
incrementally until you have enough information to adequately describe the problem

domain.

For illustration purposes, let’s say our elevator has the following classes:
� Elevator. The thing that actually moves up and down carrying passengers.

The elevator has a current position that might be expressed either as a floor

or as an elevation in feet. It can be directed to move up or down from its

current position.

� Door. The elevator has a door that can be commanded to open or close.
www.newnespress.com

ww

180 Chapter 8
� Up/Down button. Each floor has a pair of these buttons, except for the top and

bottom floors. The button state can be pressed or not pressed, and it can either

be illuminated or not illuminated.

� Floor button. The elevator has a set of buttons, one for each floor. Like the

Up/Down buttons, these can be pressed or not pressed, illuminated or not

illuminated.

� Controller. This class ties all the others together by controlling the elevator and

door in response to button presses by passengers.
Right-click the elevator package in the Package Explorer view and select New UML

Diagram –> UML Class Diagram. Change the parent folder to elevator/models/

and if you choose, delete “elevator” from the file name. The Class Diagram editor

toolbar is shown in Figure 8.8. The first two icons are Selection mode and Zoom mode,

as in the Use Case editor. The remaining icons are:
� Create a package

� Create a class: drop down menu

� Create an interface

� Create an enumeration

� Association: drop down menu

� Dependency: drop down menu

� Generalization

� Realization: drop down menu

� Create an Element Import: drop down menu

� Create an interface provider

� Create a require interface

� Create an interface connection

� Create a note: drop down menu

� Create an indication
w.newnespress.com

Figure 8.8: Class Diagram editor tool bar.

181Eclipse Advanced Features
Click Create a class and then click somewhere in the top center of the editor. This

brings up the New Java Class dialog. Name the class “Controller” and leave

everything else as defaults. Click Finish. A class symbol shows up on the diagram. In

the Package Explorer view a Java file, Controller.java, shows up under the

elevator package.

Repeat this process for the following classes:
� Elevator

� Door

� UpDownButton

� FloorButton
The result should look something like Figure 8.9.

Take a quick look at Controller.java. Not much there, just a stub for the Controller

class. But as we add items to the class diagram, the template code will be expanded to

remain in sync with the diagram.

Now that we have the classes, we need to figure out how they interact. Let’s start by

creating a pair of directed associations between the Controller and the two button classes.

From the Association drop-down menu, select Directed Association. Then click on the

Controller class. The cursor changes to a plug, implying that we’re “plugging” the

Controller class into something else. Now click on the UpDownButton class.
www.newnespress.com

Figure 8.9: Class diagram.

182 Chapter 8
A pair of methods show up in the Controller box—getUpDownButton() and

setUpDownButton(). This seems reasonable. We want to get the state of the buttons

and in turn set the illumination state. Do the same thing with the FloorButton class. Our

class diagram now resembles Figure 8.10.

It might be equally useful to create directed associations with the Elevator and

Door. Instead, I encourage you to investigate the other associations and connection

mechanisms, to see how EclipseUML treats them. And of course, unless you’re a

Java programmer with some knowledge of UML, they may not make much sense

just yet.
www.newnespress.com

Figure 8.10: Class diagram with associations.

183Eclipse Advanced Features
8.1.5 Sequence Diagram

To round out our brief tour of EclipseUML, we’ll create a sequence diagram to

describe the system’s response to the passenger pushing an UpDownButton. The

sequence is as follows:
1. The passenger presses an UpDownButton.

2. The UpDownButton sends an update to the Controller.

3. The Controller illuminates the button and moves the Elevator to the specified

floor.
www.newnespress.com

ww

184 Chapter 8
4. The Elevator signals that it has reached the floor.

5. The Controller stops the Elevator and turns off the UpDownButton

illumination.

6. The Controller opens the Door.

7. After a suitable delay, the Controller closes the Door.
Right-click the elevator package and select New UML Diagram –> UML Sequence

Diagram. Name it “UpDownButtonSequence” and store it in the models/ directory.

The Sequence Diagram editor tool bar (Figure 8.11) has the following buttons:
� Selection mode

� Zoom mode

� Add new property (similar to add an object)

� Create an actor

� Add a message

� Add a self message

� Add a frame

� Add an Interaction Use

� Create a Component

� Create a Class

� Create an Interface

� Create an entity

� Create a boundary

� Create a controller

� Create a note

� Create an indication

� Create a diagram link

� Create a text label
w.newnespress.com

Figure 8.11: Sequence Diagram editor tool bar.

185Eclipse Advanced Features
For the purpose of this illustration we’ll only be using a couple of these buttons, Create

an actor and Add a message. Our objective here is to express the interactions

among the classes in our system for the Press up/down button use case. Begin by

creating an actor in the upper left-hand corner of the diagram and name it “passenger.”

Now the cool thing is that we can drag the classes from the elevator package in the

Package Explorer view directly into the sequence diagram. Drag the classes so

they show up in the following order to the right of the passenger:
1. UpDownButton

2. Controller

3. Elevator

4. Door
In order to get the Door class to show up you may have to maximize the editor window

and drag the frame out to about 700 pixels. Then restore the editor to its windowed

view. Your diagram should now look something like Figure 8.12. Each of the boxes is

an instance of its respective class.

Note that the Outline view shows a thumbnail of the entire diagram with the portion

visible in the Editor shaded. You can drag the shaded portion to scroll around in the

Editor.

In the context of a sequence diagram, classes communicate by sending messages to each

other. Click the Add a message button, move the cursor to just below the label of

the actor (his head turns blue) and click. Now move the cursor to the right until the
www.newnespress.com

Figure 8.12: Sequence diagram with classes.

186 Chapter 8
UpDownButton box turns blue, and click. The Message dialog of Figure 8.13 comes up.

Label it “Press.”

Here you can also specify the Operation (method) that carries out the message. In this

case, of course, there is none—the passenger is pressing the button. The commercial

version of EclipseUML will add method templates to the class code. Leave the rest of

the fields at their default values and click OK.

In like fashion, add a message labeled “update” from the UpDownButton to the

Controller. You might want to grab the vertical box below the controller and drag it

down a little to make it clear that the update follows the press. Next add a message from

the Controller back to the UpDownButton and label it “illuminate.”
www.newnespress.com

Figure 8.13: Message dialog.

187Eclipse Advanced Features
This gets a little tricky. The destination of a message can’t be the vertical bar (known as

an “activation”) below a class instance. Note that when you drag the message wire over

the activation bar, the international “no” symbol pops up. Drag the wire until the

UpDownButton box is shaded blue, and click. Again, you’ll probably want to drag

down the activation bar at the end of the illuminate message for readability. Your

diagram should now look something like Figure 8.14.

Continue adding messages to carry out the sequence of events listed above. After

illuminating the button, the Controller will start the Elevator moving toward the

specified floor. The Elevator will notify the Controller when it has reached the floor,

whereupon the Controller will stop the Elevator and turn off the button illumination.

Finally the Controller opens the Door and, after a suitable delay, closes the Door. The

final diagram is shown in Figure 8.15.

Unfortunately, EclipseUML seems to have a mind of its own when it comes to vertical

spacing of messages. It seems that some activation bars can be moved and resized,

while other can’t. The resulting diagram is so big it requires a full screen to display.
www.newnespress.com

Figure 8.14: Sequence diagram with messages.

188 Chapter 8
We could continue looking at the other UML diagrams, but I think you get the idea.

Feel free to play around with them and see what they do.
8.1.6 Configuring EclipseUML

EclipseUML has a number of configuration options. Click Window –> Preferences

and select the UML entry. The top-level preferences dialog has four tabs. The

Appearance tab is show in Figure 8.16. You may very well want to turn off the Show

splash screen option. The tool bar can be displayed as text and/or images. The icon

images can be either flat or embossed, although I can’t really see any difference.
www.newnespress.com

Figure 8.15: Completed sequence diagram.

189Eclipse Advanced Features
Diagram presentation style offers some subtle variations in display, mainly involving

shading. The differences are more apparent in the use case diagram than in the

sequence diagram.

The Options and Print tabs are fairly self-explanatory. The Diagram Board tab offers

options related to the grid and ruler, although it’s not obvious that they do anything.
www.newnespress.com

Figure 8.16: EclipseUML preferences.

190 Chapter 8
Expand the UML preferences entry then expand Class Diagram. In the Association

dialog is a Router option that specifies how lines, or “wires,” are drawn. The default

is “Manhattan,” which routes the lines with right angles. The alternative is “Manual,”

which runs the lines directly. Most of the other options are concerned with features

of Java.
www.newnespress.com

191Eclipse Advanced Features
8.2 CVS

Back in the early days of embedded computing, a lone engineer would design

the hardware and write the software, sometimes in assembly language. I did my

share of that back in the day. In that kind of environment, keeping track of

changes was no big deal. The entire program may have consisted of perhaps a

dozen or so files, and it’s easy enough to wrap your mind around a project of that

magnitude.

Needless to say, things have changed. Projects are not uncommon that contain

hundreds, if not thousands of files being worked on by teams of developers who may be

distributed all over the world. Now, keeping track of changes is a big deal. In fact,

disciplined management of revisions is absolutely critical in maintaining control of the

software development process. I even regret not having used version control on

projects where I was the only developer.

CVS (Concurrent Versioning System) is an Open Source software package that

supports simultaneous development of files by multiple developers. It is commonly

used in large programming projects, but its use is not limited to software

development. It can be useful in any task that involves managing files of data on a

computer system.

CVS uses a client/server paradigm to store a set of files on a server and then make those

files accessible to all users who need them. The system provides commands to

“check out” a copy of a file for modification and subsequently “commit” changes back

to the repository. It also scans files as they are moved to and from the repository, to

prevent one person’s changes from overwriting another’s.

The system also maintains a history of each file, which allows you to go back and

recreate any previous version.
8.2.1 Branches

CVS is based on the notion of branches, where programming teams can share and

integrate ongoing work. A branch is a shared work area that can be updated at any time

by any member of the team. This allows individuals to share their own work with

other members of the team and to access the work of others during all stages of a

project. The branch effectively represents the current shared state of the project.
www.newnespress.com

192 Chapter 8
The process is illustrated graphically in Figure 8.17. Two programmers each check files

out of the branch, update them, and commit them back to the branch. It is entirely

possible that both programmers are working on the same file. Both programmers need

to synchronize the file to check for conflicting changes before committing.
Workbench 1

Workbench 2

Commit

Checkout

Branch

Figure 8.17: CVS workflow.
Every CVS repository has a special branch called HEAD that is the main branch. HEAD,

also referred to as the trunk, is considered sacrosanct. You don’t commit something to

HEAD until you are absolutely certain that it’s correct. Other branches are created to

provide a safe place to make changes before committing file to the HEAD branch.
8.2.2 CVS in Eclipse

Like most Unix/Linux software packages, CVS is strictly command line-driven. But

of course, Eclipse wraps a graphical user interface around that, just like it does for gdb.

The CVS GUI is embodied in the CVS Repository Exploring perspective. The

blank CVS perspective shown in Figure 8.18 isn’t very exciting.

To see how CVS works, we’ll have to connect to a repository on a CVS server. There’s

a large number of CVS repositories at sourceforge.net. I happened to choose

nxtOSEK, an RTOS for the Lego Mindstorm NXT, as my sample project, but feel free

to select whatever strikes your fancy at SourceForge, or anywhere else for that matter.

nxtOSEK is found at http://sourceforge.net/projects/lejos-osek.

In a web browser, go to that page, or the page for your selected project, and scroll

down until you find a link to the CVS Repository. Upon clicking the link you’ll see
www.newnespress.com

Figure 8.18: Blank CVS Repository Exploring perspective.

193Eclipse Advanced Features
some basic information about CVS and about anonymous access. There you’ll see a

command line, something like:

cvs –d:pserver:anonymous@lejos-osek.cvs.sourceforge.net:/cvsroot/

lejos-osek login

Note that this is in fact one line.

This tells us the following:
� The repository uses the CVS protocol pserver.

� The user login name is anonymous with no password.

� The server name is lejos-osek.cvs.sourceforge.net.

� The root path to the project is cvsroot/lejos-osek.
www.newnespress.com

194 Chapter 8
This is enough information to get Eclipse to connect to the project. Right-click in the

CVS Repositories view and select New –> Repository Location . . . Fill out the

resulting dialog, as shown in Figure 8.19. The User: field is a drop-down menu whose

only entry is anonymous.
Figure 8.19: Add Repository dialog.

www.newnespress.com

195Eclipse Advanced Features
Click Finish. You’ll find a new entry in the CVS Repositories view. Expand that

to look like Figure 8.20. Each time you expand an entry by clicking on the

right arrow, Eclipse goes out to the server to retrieve the information for that

directory.
Figure 8.20: CVS Repositories view.

www.newnespress.com

196 Chapter 8
Right-click one of the file entries under the ecrobot directory and select Show

History. The History view (Figure 8.21) now shows the full history of this file

including author, timestamp, comments, and so on. You may have to expand the Older

than This Month entry to see the history. There’s not much here, but it gives you

the idea.

Other items in the CVS Repositories view context menu include Show Annotation and

Open, both of which retrieve the file from the repository and open it in a read-only

editor window.
Figure 8.21: CVS History view.
Having connected to a repository, we might want to check out some or all of the

contents to work on locally. Right-click the ecrobot entry again and select Check

Out. Eclipse retrieves all the files in ecrobot and creates a new project of the same

name in the default workspace. The Console view shows the CVS commands and

responses.

Go back to the C/C++ perspective and you’ll see that the ecrobot project is identified as

having come from a CVS repository. All the files have their version number listed, and

are identified as ASCII files.

Select Properties from the context menu for ecrobot. There’s a section called CVS

shown in Figure 8.22. This lists all the properties of the repository from which the

project came. You can now edit the files in the local project.
www.newnespress.com

197Eclipse Advanced Features
The next thing we might want to do is create a branch where we can safely share the

project files with other team members, and make changes until we’re ready to check

them back into HEAD. The branch is created on the repository server and requires write

access, which anonymous users normally don’t have.
Figure 8.22: Project CVS properties.
8.2.3 Setting Up a CVS server

To continue our exploration of CVS, you’ll need write access to a CVS server. If you

don’t have one, there’s a nice server called CVSNT that runs both on Windows and

Linux, that’s available from http://www.cvsnt.org/. CVSNT was originally

developed to provide CVS server functionality under Windows and was later ported to

Linux. The download for Linux is in the form of a gzipped RPM.
www.newnespress.com

198 Chapter 8
There’s a fairly complete installation guide for Linux at the cvsnt.org wiki at

http://www.cvsnt.org/wiki/InstallationLinux, so I won’t bother going

into a lot of detail here. You only need to install the required package, cvsnt-

2.5.03.2382-1.i386.rpm. None of the optional database or protocol packages

are necessary for our purposes.

There are a couple of incompatibilities between Eclipse and CVSNT that need to be

dealt with. RPM created a cvsnt/ directory under etc/ with files Pserver.

example and Plugins.example. Copy Pserver.example to Pserver and open

it in an editor. Find a line that says #Compat0_OldVersion=0 and uncomment it

by deleting the #. Then uncomment the line #Compat0_OldCheckout=0 a little

farther down.

You’ll need to create an initial CVS repository. Create a directory in a suitable place,

/usr/local/cvsroot is what I chose, and then as root user execute:

cvs –d /usr/local/cvsroot init

Back in the CVS Repositories view, right-click and select New –> Repository

Location . . . This brings up the Add Repository dialog we saw in Figure 8.19.

This time the entries are:

Host: localhost

Repository path: <your_repository_path> (/usr/local/cvsroot)

User: <your_user_name>

Password: <your_password>

Connection type:extssh

The new repository looks something like Figure 8.23. The HEAD and Versions nodes

have the requisite CVSROOT entries, but are otherwise empty, as is the Branches node.

Our next task then is to add a project to the repository that we can share with other

members of our team.

Let’s use the thermostat project as an example. Go to the C/C++ perspective and

right-click thermostat in the Project Explorer view. Select Team –> Share Project . . .

The first dialog box gives you the choice of using an existing repository or creating a

new one. Highlight your local repository and click Next. Here you have a choice of
www.newnespress.com

Figure 8.23: New local CVS repository.

199Eclipse Advanced Features
module naming options. Keep the default, Use project name as module name.

Click Next.4

The next dialog lets you select which of the project’s resources to share (Figure 8.24).

Typically you want to share all of them. Click Finish to launch the Commit wizard.

Interestingly, the Commit wizard finds a couple of files with “unknown names or

extensions” and asks you whether they are binary or ASCII. .cdtproject is in fact

ASCII. thermostat_s is binary. Finally, you can enter a comment for the commit

operation. Something like “Adding new project” might be appropriate.
4 I encountered an error at this point: “Errors saving CVS synchronization information to disk.” CVS

created a hidden directory, .settings, in the project workspace that is owned by root and not world-writable.

Changing the permissions fixed the problem.

www.newnespress.com

Figure 8.24: Share Project Resources dialog.

200 Chapter 8
The thermostat project is now identified as being under CVS control on the localhost

and all the resource files have version numbers. Back in the CVS Repository

Exploring perspective, thermostat now shows up as an entry under HEAD in your

local repository.
8.2.4 Team Synchronizing

Having committed the project to CVS, we can continue working on our own copy in the

workspace and later synchronize any changes with what’s in the repository. Make

some minor change to thermostat.c, add a comment, perhaps. When you save the

changes, greater-than signs (>) appear next to the project name and the file, indicating

changes that will need to be checked in to the repository.
www.newnespress.com

201Eclipse Advanced Features
Right-click thermostat.c in the Project Explorer view and selectTeam –> Synchronize

with Repository. This brings up the C Compare Viewer, showing the differences

between the Local File on the left and the Remote File in the repository on the right

(Figure 8.25). Icons in the tool bar let you step through the differences. You can also

copy any non-conflicting changes from the Remote File to the Local File, that is, from

right to left.

Where a team of developers is involved, it’s quite likely that the file in the repository,

the Remote File, contains changes from someone else. The C Compare Viewer

highlights those changes as well. In practice, you should perform a Team –> Update

operation on the file before synchronizing with the repository.
Figure 8.25: C Compare Viewer.
Now you can commit the new version back to the repository. Right-click

thermostat.c and select Team –> Commit . . . This operation is also known as
www.newnespress.com

202 Chapter 8
“checking in.” You’re prompted to enter a comment for the commit operation. Then

click Finish. The new version is written back to the repository.

For completeness, we’ll also go through the process of checking a project out of the

repository. In the C/C++ perspective, delete the thermostat project. When prompted,

check Delete project contents on disk. Now go back to the CVS Repository Exploring

perspective and right-click on thermostat. Select Check Out. The project is copied to

your workspace and built.
8.2.5 Branching

To wrap up our exploration of CVS, we’ll look at the branching process. There may

be any number of reasons why you would want to create branches for a project in addition

to HEAD. Maybe there are multiple versions of a product, in which the software

builds differently for each version. Make each one a branch. You might want to establish

a developmental branch separate from the production branch.

In the C/C++ perspective, right-click the thermostat project and select Team –>

Branch . . . Give the branch some sensible name (Figure 8.26) and leave the Start
Figure 8.26: Create CVS branch.

www.newnespress.com

203Eclipse Advanced Features
working in the branch box checked. CVS proposes a Version Name. The version

name identifies the point at which the branch was created, and is necessary later on

when you want to merge the branch.

The branch name shows up next to the project name. Back in the CVS

Repositories view, expand the Branches node of your local repository. You’ll see the

branch you just created and under it, the thermostat project. Now, when you do a

checkout or a commit, you’re working with the newly created branch and not

HEAD.
Summary

In this chapter we’ve looked at two advanced features of Eclipse, one built-in, and

the other an add-on, that can greatly improve software productivity and reliability.

UML is a powerful tool for visualizing complex software and deriving code

templates from the graphical models. Although most open source UML tools tend to

be oriented to Java, there’s nothing to prevent tools that have a C++ flavor.

Eclipse plug-in Central lists 35 plug-ins in its UML category. It might be worth

checking some of them out.

CVS is an integral part of Eclipse that brings some order to the potential chaos of team

development. Project resources are checked in and out of a central repository in an

orderly fashion, and conflicting changes can be easily identified for resolution. CVS

tracks every change so that the code can be rolled back to any previous version if

necessary.

In the next and final chapter we’ll look at how three embedded Linux vendors have

adapted the open source Eclipse platform to build commercial products that

address various aspects of the embedded development process.
Resources

UML
Fowler, Martin. 2003. UML Distilled: A brief guide to the Standard Object

Modeling Language. (3rd ed.) Addison-Wesley.

Miles, Russ, and Kim Hamilton. 2006. Learning UML 2.0. O’Reilly.
www.newnespress.com

204 Chapter 8
Bruce Powell Douglass has been particularly prolific in writing about UML for embedded

and real-time applications. His titles, all published by Addison-Wesley, include:
ww
Douglass, Bruce P. 1999. Doing hard time: Developing real-time systems with

UML, objects, frameworks, and patterns. Addison Wesley.

Douglass, Bruce P. 2004. Real-time UML: Advances in the UML for real-time

systems. (3rd ed.) Addison Wesley.

Douglass, Bruce P. 2006. Real-time UML workshop for embedded systems. Addison

Wesley.
CVS
Bar, Moshe, and Karl Fogel. 2003. Open source development with CVS. (3rd ed.)

Paraglyph.

Cederqvist, Per. 2002. Version management with CVS. Network Theory Ltd.

Vesperman, Jennifer. 2006. Essential CVS. O’Reilly.
w.newnespress.com

www.new
CHAP T E R 9
Eclipse-Based Development Products
An interesting feature of the Eclipse ecosystem is that it explicitly encourages the

development of proprietary commercial products on top of the base platform. In the

embedded Linux world, several vendors have migrated from proprietary development

environments to tools based on Eclipse.

This chapter takes a look at how three of the leading embedded Linux vendors have

extended Eclipse with value-added software to create their own unique products. The

information is based on evaluation versions of the tools, and for the most part are my

personal impressions of what seemed most interesting about each one. This is in no way

intended to be a “competitive analysis,” or to say that one product is “better” than another.

The intention is simply to show how these three vendors have approached the issue.

9.1 Why Buy It?

You may be wondering, why should I pay money for something I can get for free?

The most common reason is because open source software vendors have gone through

an extensive testing and integration process to make sure that the various software

packages from different sources actually do work together as advertised.

The goal of most open source projects is not to create production-ready code, but to push

the technology envelope. That’s less true of Eclipse with its annual major release of the

platform and a large number of related projects. This is, in turn, accompanied by quarterly

maintenance releases. The result is code that is quite stable, and for the most part, bug free.

But of course, embedded software development is more than just an IDE. You also need

an operating system, tool chain, boot loader, file system, and so on. The quality and

stability of open source implementations of these elements varies widely. The Linux
nespress.com

206 Chapter 9
kernel, for example, changes daily. Unless you want to be a kernel developer

yourself, trying to keep up with that is futile and counter-productive.

The vendors discussed in this chapter offer complete embedded development tool

suites that include, at a minimum, the Eclipse platform with proprietary plug-ins,

one or more GNU tool chains for cross development, a Linux kernel, and a boot

loader of some form. This doesn’t come cheap, but if your objective is to get a

stable, reliable product out the door on time, it’s probably worth it.

9.2 LynuxWorks—Luminosity

Having been in business for some 20-odd years, LynuxWorks predates the Linux

craze, selling its own Unix-like real-time operating system called LynxOS. Variants

of LynxOS include:
ww
� LynxOS-SE. Based on a virtual machine architecture that supports “medium

robustness” security as defined by the US Government.

� LynxOS-Secure. A separation kernel and embedded system hypervisor for very

high security, mission-critical applications

� LynxOS-178.Meets the requirements of DO-178BLevelA for safety-critical systems
LynuxWorks also offers its own version of Linux called BlueCat Linux.

Luminosity, the company’s Eclipse-based IDE, supports the full range of operating

system products. The current version of Luminosity, 3.0, is based on Eclipse version 3.2.

9.2.1 Getting the Evaluation

The product page for Luminosity on the LynuxWorks website doesn’t offer a link

for an evaluation, but the RTOS product pages do offer such a link. This takes you

to a request form. The RTOS evaluation will include Luminosity.

My evaluation version of Luminosity was delivered as four ISO image files:
� FlexLM license manager

� Luminosity

� LynxOS cdk

� LynxOS ode
w.newnespress.com

207Eclipse-Based Development Products
9.2.2 Getting Started

The first step is to install the FlexLM license manager and have it retrieve a host

ID number. This turns out to be the MAC address of your eth0 port. Send that to

LynuxWorks and they will send back a license file with limited-time licenses for

both Luminosity and LynxOS. Before starting Luminosity, you must start the

FlexLM daemon.

Actually, you can run Luminosity without a license, in which case it simply

reverts to standard Eclipse 3.2. Figure 9.1 is the initial perspective for Luminosity.

There are several additional icons in the tool bar, most of which represent items in

the LynuxWorks menu. Note also a set of shortcuts for selecting perspectives.
Figure 9.1: Luminosity initial perspective.

www.newnespress.com

208 Chapter 9
In order to create and run embedded projects with Luminosity, you must register a

cross-development platform (Figure 9.2). In this case it’s LynxOS for the x86.
Figure 9.2: Register a cross-development platform.
Luminosity offers several LynuxWorks-specific project types, as shown in Figure 9.3.

A LynuxWorks C project gives you complete control over the Makefile. Luminosity

generates a template Makefile that you are allowed to edit. By contrast, the Managed

Make project generates a makefile that you’re not supposed to edit. The same

distinction is true of Device Driver and Managed Device Driver projects. The Kernel

project builds a LynxOS bootable kernel image.

Having selected and named a LynuxWorks C project, clicking Next a couple of times

brings up the Project Code Generator dialog, shown in Figure 9.4. Here you have the

choice of creating an empty project, a Hello World project, or one of several sample

projects that illustrate various operational features of LynxOS.
www.newnespress.com

Figure 9.3: New Project dialog and wizard selection.

209Eclipse-Based Development Products
Clicking Finish creates the project and brings up the LW C/C++ perspective.

This is very much like the standard C/C++ perspective with the addition of a LW

C/C++ Projects view and a LW Make Targets view. The Projects view is similar

to the standard Navigator view with a slightly different look. LW Make Targets

seems to take the place of the standard Make Targets view.
www.newnespress.com

Figure 9.4: Code Generator dialog.

210 Chapter 9
9.2.3 Debugging With Luminosity

LynuxWorks doesn’t support any kind of simulator for LynxOS, so you need a real

target running LynxOS in order to test code. That’s the bad news. The good news is that

just about any old 486 box you have lying around as a doorstop should work as a target.

There is a tool to build a bootable CD with a LynxOS kernel image.
www.newnespress.com

211Eclipse-Based Development Products
Luminosity uses a proprietary method for managing remote targets. Select

LynuxWorks –> Set Remote Target to bring up the Targets view, which is initially

empty. Right-click in the Targets view and select New Target. This brings up the

dialog of Figure 9.5. The Connection tab is fairly self-explanatory. Once you enter the

parameters, the Validate button will attempt to resolve the target IP address and then

check all connection types that Luminosity uses.
Figure 9.5: Remote Target Configuration.
The Authentication tab lets you enter a user name and password, and a directory on the

target where application binaries will be downloaded. The Utilities tab sets network

protocol parameters and can usually be left at default values. If you only define one

target, it becomes the default.
www.newnespress.com

212 Chapter 9
Luminosity defines its own launch configuration for LynuxWorks C/C++ projects. The

only tab that differs from the standard C/C++ Local Application launch configuration

is the Debugger tab (Figure 9.6). This sets parameters for remote debugging on the

default target.
Figure 9.6: Launch configuration debugger tab.
Basic debugging is essentially the same as in standard Eclipse. LynuxWorks does add a

couple of its own interesting debug features.

Tracepoints

There are times when you don’t really want to, or can’t, stop the program at the

breakpoint, but you would like to monitor its behavior by watching the value of

selected variables. Tracepoints are set in the program in much the same way as are

breakpoints. When program execution encounters a tracepoint, any variables or

expressions attached to it are evaluated and saved. Later, when the program is

stopped, you can review the saved data.
www.newnespress.com

213Eclipse-Based Development Products
Two new views are associated with tracepoints: Tracepoints and Trace Data. The

Tracepoints view is where you define and configure tracepoints. Figure 9.7 shows the

Tracepoint properties dialog where you can add expressions to be monitored.
Figure 9.7: Tracepoint properties.
The Trace Data view displays collected trace data when the program is stopped.

It provides menu items to start and stop tracing, scroll through the collected data,

and save the data to a file.
www.newnespress.com

214 Chapter 9
POSIX IPC Awareness

Luminosity can display information about POSIX inter-process communication

mechanisms being used by the application being debugged. This information is

contained in a set of views representing each of the IPC mechanisms:
ww
� Semaphores

� Mutexes

� Conditional variables

� Message queues
Figure 9.8: Message Queues view.
9.3 MontaVista—DevRocket

MontaVista offers both an Application Development Kit (ADK) and a Platform

Development Kit (PDK). The latter is intended for doing Linux kernel development and

building board support packages (BSPs). The former is intended for application

development and leaves out the features that support kernel and BSP development.

Both packages are based on the company’s DevRocket IDE, which in turn is built on

Eclipse.
9.3.1 Getting the Evaluation

For purposes of this book, I tested an on-line demo of DevRocket that includes a

simulation of a Power PC target board. MontaVista’s website includes an “Evaluation
w.newnespress.com

215Eclipse-Based Development Products
Center,” accessed from the Products and Services tab of the main page. From there you

can fill out a form to request access to the online demo. You should then receive an

email with a link to the demo, a user ID, and a password. Access is time-limited. In my

case it was about two weeks.
What’s Included

ADK version 5.0 includes:
� Eclipse version 3.2

� CDT version 3.1

� Remote System Explorer 1.0

� GNU cross tool chain for a specific architecture, based on GCC 4.2

� Analysis and optimization tools:
○ Application pre-linking

○ Library optimization

○ Memory leak detection

○ Memory usage analysis

○ Application profiling

○ Linux Trace Toolkit: in PDK only
� Linux kernel version 2.6.18

� “Virtual target” based on VMware for testing without actual target hardware
9.3.2 Getting Started

After obtaining a user ID and password from MontaVista, you are directed to

a specific web page from where you can start the simulation. This brings up

a Gnome graphical desktop, as shown in Figure 9.9.

The desktop initially has three windows open: DevRocket itself, an Xterm serial

console connected to the simulated target board, and the target simulation. The first
www.newnespress.com

Figure 9.9: DevRocket simulation.

216 Chapter 9
thing to notice is a new top-level menu item, MontaVista, the contents of which are

shown in Figure 9.10.

This menu provides access to most of MontaVista’s extensions. Note the range of new

objects that can be created. The memory analysis and profiling tools can be started

from here. There are facilities for license and edition management that bring up

corresponding preferences pages. The RSS Feeds item brings up a Feeds view where

you can see RSS feeds from your favorite news sites.

This version includes the Platform Development features so the menu includes a

number of kernel development items. The Kernel Project lets you configure and build

a Linux kernel and subsequently debug it using KGDB.
www.newnespress.com

Figure 9.10: MontaVista menu.

217Eclipse-Based Development Products
KFT stands for Kernel Function Trace, which is effectively a profiling tool for the

kernel. It adds instrumentation callouts to every kernel function entry and exit to

generate a trace log of function execution with timing details. This adds considerable

overhead to the kernel, so it’s not particularly good for revealing precise timing

problems such as race conditions, but it is useful for identifying bottlenecks such as

functions with long execution times and those that are called frequently.
9.3.3 Platform Image Builder (PIB)

One of the tasks required for an embedded Linux device is to create a file system. What

goes in it, what can you leave out? Creating a file system by hand can be a tedious,

iterative process as you work through the various feature dependencies.

Platform Image Builder is a combination of a project creation wizard and a perspective

to help guide you through the process of building a file system from RPM packages.
www.newnespress.com

218 Chapter 9
You can also add your own applications and libraries from projects in your workspace

by importing the files into the Image Builder project.

The Platform Image perspective, Figure 9.11, includes a Platform Image Builder editor

that lists the packages available for inclusion in the file system. Here you select the

pre-defined packages you need and the wizard works out the dependencies from

the RPM database as you select them. The editor includes filtering and grouping options

to make it easier to navigate through the package list.
Figure 9.11: Platform Image Builder perspective.
When you highlight a package in the Packages tab, details about the package such as

version, release information, and dependencies show up in the Properties view. This

information comes directly from the RPM database. Other tabs in the editor include
www.newnespress.com

219Eclipse-Based Development Products
Files, which details the structure of the file system, and Images, which lets you specify

one or more mount points on the target. Each mount point gets its own image. The

Options tab lists optional features of the build. The output of the Platform Image

Builder editor is a file called default.pib.

There’s another file in the project called default.exp, which stands for “exports.”

The name strikes me as a little odd because what it really does is identify directories,

files, and symbolic links to be added to the file system. This file is managed by an

Exports editor.

The Outline view shows the packages that have been selected as well as the required

supporting packages.

The final output of an Image Builder project is a binary image of the file system

called default.<file_system_type> where <file_system_type> represents

the type of file system you’re building, such as ext2 or ext3, jffs2, and so on.

The file system type is specified in the Images tab of the Platform Image

Builder editor.
9.3.4 Memory Analysis Tools

DevRocket includes two memory analysis tools: a memory leak detector and a usage

analyzer. The leak detector is based on mpatrol, an open source library that wraps

malloc() and free() functions, and the C++ new() operator, with instrumentation

that logs each call to these functions. mpatrol is a dynamically-linked shared library,

so there’s no change to the application.

DevRocket wraps the text-based mpatrol library and utilities with a graphical Eclipse

front end to make it easier to work with. To run a program with memory leak detection,

you create a Memory Leak Detection run configuration from the MontaVista menu.

This is much like any other run or debug launch configuration, with the addition of a tab

for configuring mpatrol (Figure 9.12). The defaults seem to be just fine.

When you click Run, DevRocket invokes mpatrol to run the program and then

brings up the Memory Leak Detection perspective, with views that display the contents

of the mpatrol logs. Figure 9.13 shows a Call Graph in the Memory Leak Detection

view.

The memory analysis tool is intended to help you find memory usage problems quickly

and accurately by providing a graphical depiction of memory usage across the entire
www.newnespress.com

Figure 9.12: Memory leak detection launch configuration.

Figure 9.13: Memory Leak Detection view.

www.newnespress.com

221Eclipse-Based Development Products
system. Memory analysis starts with a high-level view showing relative memory usage

for the whole system. From there you can drill down into kernel and application-

specific memory usage. Drilling down even further, you can view a memory map for

each application.

From the menu bar, select MontaVista –> Memory Usage Analyzer. This brings up

the Memory Usage Analyzer view, shown in Figure 9.14. From here you can click on

Applications or Kernel to get more detail. Figure 9.15 shows memory usage by user

space applications. The kernel usage graph shows memory allocated by vmalloc(),

allocated as slabs, and memory used by page tables.
Figure 9.14: Memory Usage Analyzer view, system level.

Figure 9.15: Memory Usage Analyzer view, applications.

www.newnespress.com

222 Chapter 9
The information for the Memory Usage Analyzer comes from /proc files. There are a

number of virtual files in the /proc directory and in the subdirectories for each process

that provide information on memory usage. The Memory Usage Analyzer simply

collates this information in a convenient, easy-to-understand format.
9.4 Wind River—Workbench

Wind River’s entry in the Eclipse IDE sweepstakes is called, simply, Workbench. The

current version is 3.0, based on Eclipse version 3.3.1. Workbench supports both Linux

and Wind River’s proprietary operating system, VxWorks. In addition to the standard

GNU compiler, Wind River also supplies its own compiler with support for multiple

target architectures. In addition to supporting both VxWorks and Linux code

development, the Wind River compiler also supports stand-alone applications. It also

has a number of simulators so you don’t need a target for debugging.
9.4.1 Getting the Evaluation

I downloaded an evaluation version that supports on-chip debugging. Workbench for

On-Chip Debugging (OCD) uses in-circuit emulation (ICE) to target tasks such as board

bring-up and flash programming, where a software debugger such as GDB may not

yet be operational. While the full Workbench OCD product supports debugging

Linux and VxWorks projects, the evaluation version is limited to stand-alone

projects.

From the Products tab on Wind River’s web site, select Download Center. Then select

Software. Listed among the top three evaluations is Workbench 3.0 for On-Chip

Debugging. Click that link, then click Download, and you’re given the choice of

downloading or getting a CD. Clicking Download here takes you to an information

form to fill out. After completing the form you’ll be able to download the 600 MB file.

Wind River uses the FlexLM license manager. The evaluation comes with a 30-day

license.
9.4.2 Getting Started

When you start this version of Workbench, after getting past the workspace selection

and Welcome screen, you’re presented with a start dialog that offers choices such as

creating or editing a launch configuration, connecting, or syncing with a target. The
www.newnespress.com

223Eclipse-Based Development Products
main editor window shows a list of Getting Started Resources (Figure 9.16) with

links to documentation and other support resources. Workbench supports an RSS Feeds

view that is already subscribed to several Wind River feeds. Roll the cursor over an

item in the Feeds view and a pop-up appears, displaying a summary of that item.
Figure 9.16: Workbench initial screen.
The default perspective is called Application Development. It’s similar to the C/C++

perspective with the addition of several views, including:
� Remote Systems

� File Navigator
www.newnespress.com

ww

224 Chapter 9
� Kernel Objects

� Feeds

� Build Console
Workbench makes a distinction between consoles that are attached to targets and

the local console that displays the build results. The latter is called the Build

Console.

There are some additional items in the tool bar. There’s a feature to make the editor

emulate vi. Another feature turns on Emacs key bindings, replacing some of the

standard Eclipse key bindings.
9.4.3 On-Chip Debugging

The objective of the OCD version of Workbench is to provide tools that help in the

early stages of a project, such as bringing up a new board. At this point there’s no

operating system, so OCD supports a stand-alone application environment where the

executable image is expected to be self-contained. We also can’t expect the hardware

itself to be working, so usually a hardware debugging device such as a JTAG probe

or an in-circuit emulator (ICE) is called for.

Accordingly, Workbench OCD provides Remote System connections for two classes

of hardware debugging products, Wind River ICE and Wind River Probe.

Both products use either JTAG or BDM ports to connect to a target board. Probe

connects to the host through USB, while ICE connects via Ethernet and an RS-232 port.

Both devices support typical debugging features, such as:
� Execution control: download, start, stop

� Breakpoints

� Examine and modify memory and registers

� Flash programming

� Hardware Diagnostics
Additionally, the ICE class products offer profile analysis and trace capabilities.
w.newnespress.com

225Eclipse-Based Development Products
Wind River provides a number of sample programs to illustrate various features of

Workbench. Under File –> New is an Example . . . menu item that can be used to

create various sample projects. One class of examples is that of stand-alone projects

that require no OS support (Figure 9.17). The C Demonstration program is a

good starting point.
Figure 9.17: Sample project selection.
In place of an actual ICE or Probe device, the evaluation version provides an instruction

set simulator for a PowerPC MPC8260 processor. You establish a connection to the

instruction set simulator in the same way you would to any other type of remote system

(see Figure 9.18).
www.newnespress.com

Figure 9.18: Remote system connection.

226 Chapter 9
Next, you create a launch configuration for the project that uses the ISS connection. The

dialog for setting up an OCD launch configuration is somewhat different from the

launch configurations we’ve seen before (Figure 9.19). Perhaps not surprisingly, the

dialog deals with a lot of hardware issues. The Download tab lets you specify the files

that will be downloaded to the target.

Clicking Debug brings up the Device Debug perspective, which is similar to the

standard Debug perspective, with some additional views (Figure 9.20). A System

Context view appears in the editor window. This is a mixed C and assembly language

listing of the code being executed. The Debug Symbol Browser shows all of the
www.newnespress.com

Figure 9.19: OCD launch configuration.

227Eclipse-Based Development Products
symbols in the project and supports operations such as going directly to the symbol’s

declaration and setting a breakpoint at the symbol.

From this point on, debugging is essentially the same as we’ve seen earlier. Workbench

OCD supports some additional views that are only meaningful if the debugging tool

provides the necessary data. These include:
� Flash Programmer

� Hardware Diagnostics

� OCD Statistical Code Profiling

� Trace
www.newnespress.com

Figure 9.20: Device Debug perspective.

228 Chapter 9
9.4.4 Analysis Tools

The full Workbench product includes several analysis and visualization tools similar to

what we’ve encountered with the other products reviewed in this chapter. They aren’t

included with the Workbench OCD evaluation.

All but one of these tools (System Viewer) were previously offered as an add-on

product called Scope Tools for Test and Validation. These are now included in the base

Workbench platform. Each of these tools has its own Eclipse perspective with views

appropriate to the task at hand.
www.newnespress.com

229Eclipse-Based Development Products
System Viewer

This is the Wind River equivalent of the Linux Trace Toolkit. It was previously

called WindView and has been around for quite some time1. Like LTT it provides a

graphical visualization of system events to reveal the complex interactions of tasks,

threads, and interrupts (Figure 9.21). I think of this kind of tool as a logic analyzer

for the software.
Figure 9.21: System Viewer.

1 I remember playing with an early version with VxWorks back in the mid-1990s.

www.newnespress.com

230 Chapter 9
You can scroll around the trace and zoom in on particular areas to see more detail.

The set of processes, threads, and events being traced can be filtered to focus attention

on specific areas of concern.
Performance Profiler (Formerly ProfileScope)

This is a dynamic performance profiler that shows where a program is spending its

time. An agent on the target periodically takes a “snapshot” of the currently executing

process and its call stack. These snapshots are saved in a buffer and periodically

uploaded to the Profiler GUI on the host.

The Profiler graphically reports the percentage of CPU time spent in any function

(Figure 9.22). This view organizes the information in a call stack format. Current Direct %

is the time spent in the function itself. Current Indirect % is the time spent in the

function and all functions that it calls. Click on a function name in the Performance

Profiler, and an editor opens at that function.
Figure 9.22: Performance Profiler.
Memory Analyzer (Formerly MemScope)

This tool serves as a memory leak detector much like MontaVista’s implementation of

mpatrol. On the target it dynamically patches the memory allocation functions with
www.newnespress.com

231Eclipse-Based Development Products
instrumentation code. This approach means the application doesn’t have to be rebuilt

for memory analysis and also means you can analyze any code, not just your own.

Like the Performance Profiler, the data is collected in a local buffer and periodically

uploaded to the Memory Analyzer GUI on the host.

Data Monitor (Formerly StethoScope)

The Data Monitor uses an oscilloscope metaphor to monitor program variables in real

time and display the results graphically (Figure 9.23). Like the Performance Profiler,
Figure 9.23: Data Monitor.

www.newnespress.com

232 Chapter 9
an agent on the target periodically samples the variables being monitored and stores the

values in a local buffer. A low priority process then sends this buffer to the host for

display. The performance hit is claimed to be fairly minor.

The sampling interval is configurable. Variables can be added or removed from the

monitor list while the application runs. Variable values can also be modified at run

time. Collected data can be stored to a file on the host, formatted for post processing by

other applications, such as MatLab or Excel.

As described thus far, the Data Monitor is asynchronous with respect to any running

applications. In some situations, it may be more meaningful to collect data

synchronously. The Data Monitor target agent can be configured to collect data in

response to calls from the application, thus making data collection synchronous with

respect to the application.
Code Coverage Analyzer (Formerly CoverageScope)

This tool reports how much of the code in a system has been executed, or more

importantly, which code hasn’t been executed. Unlike the other tools, Code Coverage

requires that the code be recompiled with the appropriate instrumentation added.

You select which files to instrument and the level of coverage analysis. The four types

of coverage are:
ww
� Function: Verifies that the function was called.

� Block: Did this statement or block of statements get executed?

� Decision: Have both the true and false branches of a Boolean expression used in

a branching statement such as if() or while() been executed?

� Condition: Did every subexpression in a Boolean expression evaluate to both

true and false? Example:

if (a && b || BuggyFunction())

How to be sure that BuggyFunction() was executed?
The high-level output from Code Coverage is shown in Figure 9.24. Double-click on

any function name and the source code shows up in an editor with the uncovered code

highlighted.
w.newnespress.com

Figure 9.24: Code Coverage Analyzer.

233Eclipse-Based Development Products
Summary

In this chapter we’ve seen how some of the major players in the open source

software business have adapted the Eclipse platform to create high quality

commercial software development tools. Each vendor has chosen a slightly different

approach that emphasizes its particular strengths to differentiate its offerings from

the competition.

Free software doesn’t necessarily mean free of charge, and in fact there’s no such

thing as zero cost software2. One way or another you’re going to pay for it.

You can download it all from the Internet and go through the inevitable learning
2 As one open source practitioner put it some time ago, “Think free speech, not free beer.”

www.newnespress.com

234 Chapter 9
curve. On the other hand, the most cost-effective way to get your product out the

door on time may be to buy a high-quality commercial tool.

This brings us to the end of our exploration of Eclipse as a platform for developing

embedded software around Linux. We’ve seen how Eclipse provides intuitive, graphical

tools for building and managing software projects of any size. Even though Eclipse was

originally aimed at Java development, additional plug-ins provide facilities to work

with the GNU compiler tool chains for C and C++ development. For the embedded

space in particular, Eclipse offers tools to access and manage remote target hardware.

We looked at the Eclipse plug-in architecture and how it extends the functionality of the

basic platform. Well over a thousand plug-ins, both open source and commercial,

provide support for just about any development task you require. If you can’t find what

you need, you can always create your own.

Needless to say, there’s a lot more there. We’ve really only scratched the surface.

I hope I’ve piqued your interest sufficiently to dive in and play around with it some

more. And don’t forget that Eclipse is constantly evolving.

You may even want to get involved in Eclipse development itself. The Eclipse

community enthusiastically welcomes new contributors.
www.newnespress.com

www.n
AP P END I X A
The Eclipse Public License
Open Source Initiative OSI - Eclipse Public
License v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS

ECLIPSE PUBLIC LICENSE (“AGREEMENT”). ANY USE, REPRODUCTION

OR DISTRIBUTION OF THE PROGRAM CONSTITUTES RECIPIENT’S

ACCEPTANCE OF THIS AGREEMENT.
1. DEFINITIONS

“Contribution” means:
a) in the case of the initial Contributor, the initial code and documentation

distributed under this Agreement, and

b) in the case of each subsequent Contributor:
I. changes to the Program, and

II. additions to the Program;
where such changes and/or additions to the Program originate from and are distributed

by that particular Contributor. A Contribution ‘originates’ from a Contributor

if it was added to the Program by such Contributor itself or anyone acting on

such Contributor’s behalf. Contributions do not include additions to the Program

which: (i) are separate modules of software distributed in conjunction with the Program

under their own license agreement, and (ii) are not derivative works of the Program.
ewnespress.com

236 Appendix A
“Contributor” means any person or entity that distributes the Program.

“Licensed Patents” mean patent claims licensable by a Contributor which are

necessarily infringed by the use or sale of its Contribution alone or when combined

with the Program.

“Program” means the Contributions distributed in accordance with this Agreement.

“Recipient” means anyone who receives the Program under this Agreement, including

all Contributors.
2. GRANT OF RIGHTS
ww
a) Subject to the terms of this Agreement, each Contributor hereby grants

Recipient a non-exclusive, worldwide, royalty-free copyright license to

reproduce, prepare derivative works of, publicly display, publicly perform,

distribute and sublicense the Contribution of such Contributor, if any, and such

derivative works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants

Recipient a non-exclusive, worldwide, royalty-free patent license under

Licensed Patents to make, use, sell, offer to sell, import and otherwise transfer

the Contribution of such Contributor, if any, in source code and object code

form. This patent license shall apply to the combination of the Contribution and

the Program if, at the time the Contribution is added by the Contributor, such

addition of the Contribution causes such combination to be covered by the

Licensed Patents. The patent license shall not apply to any other combinations

which include the Contribution. No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses to its

Contributions set forth herein, no assurances are provided by any Contributor that

the Program does not infringe the patent or other intellectual property rights of

any other entity. Each Contributor disclaims any liability to Recipient for claims

brought by any other entity based on infringement of intellectual property rights

or otherwise. As a condition to exercising the rights and licenses granted

hereunder, each Recipient hereby assumes sole responsibility to secure any other

intellectual property rights needed, if any. For example, if a third party patent

license is required to allow Recipient to distribute the Program, it is Recipient’s

responsibility to acquire that license before distributing the Program.
w.newnespress.com

237The Eclipse Public License
d) Each Contributor represents that to its knowledge it has sufficient copyright

rights in its Contribution, if any, to grant the copyright license set forth in this

Agreement.
3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own

license agreement, provided that:
a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:
i) effectively disclaims on behalf of all Contributors all warranties and

conditions, express and implied, including warranties or conditions of title

and non-infringement, and implied warranties or conditions of

merchantability and fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages,

including direct, indirect, special, incidental and consequential damages,

such as lost profits;

iii) states that any provisions which differ from this Agreement are offered by

that Contributor alone and not by any other party; and

iv) states that source code for the Program is available from such Contributor,

and informs licensees how to obtain it in a reasonable manner on or

through a medium customarily used for software exchange.
When the Program is made available in source code form:
a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained within the

Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a

manner that reasonably allows subsequent Recipients to identify the originator of the

Contribution.
www.newnespress.com

238 Appendix A
4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to

end users, business partners and the like. While this license is intended to facilitate the

commercial use of the Program, the Contributor who includes the Program in a

commercial product offering should do so in a manner which does not create potential

liability for other Contributors. Therefore, if a Contributor includes the Program in a

commercial product offering, such Contributor (“Commercial Contributor”) hereby

agrees to defend and indemnify every other Contributor (“Indemnified Contributor”)

against any losses, damages and costs (collectively “Losses”) arising from claims,

lawsuits and other legal actions brought by a third party against the Indemnified

Contributor to the extent caused by the acts or omissions of such Commercial Contributor

in connection with its distribution of the Program in a commercial product offering. The

obligations in this section do not apply to any claims or Losses relating to any actual or

alleged intellectual property infringement. In order to qualify, an Indemnified Contributor

must: a) promptly notify the Commercial Contributor in writing of such claim, and

b) allow the Commercial Contributor to control, and cooperate with the Commercial

Contributor in, the defense and any related settlement negotiations. The Indemnified

Contributor may participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product

offering, Product X. That Contributor is then a Commercial Contributor. If that

Commercial Contributor then makes performance claims, or offers warranties related to

Product X, those performance claims and warranties are such Commercial Contributor’s

responsibility alone. Under this section, the Commercial Contributor would have to

defend claims against the other Contributors related to those performance claims and

warranties, and if a court requires any other Contributor to pay any damages as a result,

the Commercial Contributor must pay those damages.
5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM

IS PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING,

WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE,

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the
www.newnespress.com

239The Eclipse Public License
appropriateness of using and distributing the Program and assumes all risks associated

with its exercise of rights under this Agreement, including but not limited to the risks

and costs of program errors, compliance with applicable laws, damage to or loss of data,

programs or equipment, and unavailability or interruption of operations.
6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER

RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST

PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR

DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS

GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.
7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law,

it shall not affect the validity or enforceability of the remainder of the terms of this

Agreement, and without further action by the parties hereto, such provision shall be

reformed to the minimum extent necessary to make such provision valid and

enforceable.

If Recipient institutes patent litigation against any entity (including a cross-claim or

counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of

the Program with other software or hardware) infringes such Recipient’s patent(s), then

such Recipient’s rights granted under Section 2(b) shall terminate as of the date such

litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any

of the material terms or conditions of this Agreement and does not cure such failure in a

reasonable period of time after becoming aware of such noncompliance. If all

Recipient’s rights under this Agreement terminate, Recipient agrees to cease use and

distribution of the Program as soon as reasonably practicable. However, Recipient’s
www.newnespress.com

240 Appendix A
obligations under this Agreement and any licenses granted by Recipient relating to the

Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to

avoid inconsistency the Agreement is copyrighted and may only be modified in the

following manner. The Agreement Steward reserves the right to publish new versions

(including revisions) of this Agreement from time to time. No one other than the

Agreement Steward has the right to modify this Agreement. The Eclipse Foundation is

the initial Agreement Steward. The Eclipse Foundation may assign the responsibility to

serve as the Agreement Steward to a suitable separate entity. Each new version of the

Agreement will be given a distinguishing version number. The Program (including

Contributions) may always be distributed subject to the version of the Agreement under

which it was received. In addition, after a new version of the Agreement is published,

Contributor may elect to distribute the Program (including its Contributions) under the

new version. Except as expressly stated in Sections 2(a) and 2(b) above, Recipient

receives no rights or licenses to the intellectual property of any Contributor under this

Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the

Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual

property laws of the United States of America. No party to this Agreement will bring a

legal action under this Agreement more than one year after the cause of action arose.

Each party waives its rights to a jury trial in any resulting litigation.
www.newnespress.com

www.n
AP P END I X B
The Embedded Linux Learning Kit
Chapter 6, “Device Software Development Platform,” goes through the process of

connecting Eclipse to a target computer for running and debugging applications. If you

don’t have a suitable target board, you might consider the Embedded Linux Learning

Kit (E.L.L.K.) from Intellimetrix.

More than just a target board, the Embedded Linux Learning Kit is designed to teach

embedded Linux in a practical, self-paced, hands-on environment, taking you step-by-

step through the process of building and testing real embedded applications on real

hardware. You’ll learn how to:
� Set up boot parameters and boot Linux

� Configure and build the Linux kernel

� Build and debug application code over the network

� Access peripheral devices with and without device drivers

� Create network-based applications including a simple web server
The Embedded Linux Learning Kit uses a single board computer (SBC) with an ARM9

processor and a preloaded Linux kernel. Features include:
� 180 MHz, 200 MIPS ARM9 processor (Atmel AT91RM9200)

� 64 MB of DRAM

� 8 MB SPI serial Flash

� 256 MB NAND Flash
ewnespress.com

ww

242 Appendix B
� 16 KB bootloader EEPROM

� SD/MMC socket

� Parallel LCD interface

� 10/100 Ethernet port

� USB 2.0 host and device ports

� IrDA transceiver

� RS-232 serial port for debugging

� On-board temperature sensor

� User-programmable LEDs and switches

� Optional LCD graphics display
The complete kit includes:
� Single board computer

� Power supply

� Serial and Ethernet crossover cables

� Pre-installed Linux kernel and U-Boot boot loader

� CD with support software:
w.
○ Cross-development tools

○ Kernel source

○ Eclipse IDE

○ Tutorial code samples
� User’s guide
To learn more, visit http://www.intellimetrix.us/. A discounted price is available to

owners of this book. Go to www.intellimetrix.us/eclipsekit.htm to place an order at the

reduced price.
newnespress.com

Index
A
About Eclipse Platform, 52

Actions attached to a breakpoint,

74–75

adaptable objects, 8

Add Bookmark, 44

Add Task, 44

Allegro, 27–28

application frameworks, 11

assembly language, debugging, 77

Automatic Closing, 66

B
behavior diagrams, 170

Breakpoint Action classes,

pre-defined

Log Message, 74

Play Sound, 74

Resume, 74

Run External Tool, 74

Breakpoint Properties

Actions, 74–75

Common (triggering

condition), 76

debugging a project, 74–77

Filtering, 77

Breakpoints view, 73–74

Build All, 47

Build Automatically, 48

Build Configurations, 48

Build Project, 47

Build Working Set, 48

C
C/Cþþ Developers’ Toolkit

(CDT)

building the project step,

examples of, 67–68, 86
creating a new project,

examples of, 61–63, 85

cross-compiling for target

embedded hardware,

95–96

debugging the project

Breakpoint Properties,

74–77

Breakpoints view, 73–74

Debug view, 70–71

finishing, 78

Memory view, 77–78

Modules view, 77

Registers view, 77

Variables view, 73

Debug perspective, 68–78

linking projects, 78–80

the program, 66–67

refactoring, 80–83

source code

importing, 63–66, 86

obtaining the sample, 61

tools for adding, 63

user-supplied makefiles,

85–89

C/Cþþ perspective, 36

C/Cþþ preferences, configuring,

56, 57–60

C/Cþþ Projects, 129

C/Cþþ search dialogue, 45

Cheat Sheets, 52

Cheat Sheets view, 52

In Circuit Emulators (ICE), 107

Class Diagram, 179–183

Clean, 48

Close All Perspectives, 52

Close Perspective, 51

Close Project, 47
ww
code, restructuring for

readability, 80

code coverage analysis

tools, 232

Code Style preferences, 57–58

Code Templates, 64–66

color options, configuring, 37, 58

Common, 76

Console view, 38

Content Assist, 44, 58, 63

Context menu, 53–55

Convert Line Delimiters to:, 43

copyleft, 3

copyright, source code, 3

Customize Perspective, 51

CVS

basics, 191–203

branches, 192

branching, 203

in Eclipse, 192–198

further resources on, 204

Repository, 192, 198

server access, 198–201

Team synchronizing, 201–203

CVSNt, 198

Cygwin, 20–22

D
data management, 191–203

data monitoring tools, 231–232

Debug, 50

Debug As, 50

Debug Configurations, 51, 91

debugging

assembly language, 77

with Luminosity, 210–214

multi-threaded programs,

91–94
w.newnespress.com

244 Index
debugging (Continued)
a Native Application Builder

project, 132–133

on-chip, 224–227

plug-ins, 151–153

with a remote connection,

123–125

on a target board, 101,

103–107

thermostat project, 91–94

debugging, project

Breakpoint Properties, 74–77

Breakpoints view, 73–74

Debug view, 70–71

Memory view, 77–78

Modules view, 77

Registers view, 77

Variables view, 73

Debug History, 50

Debug perspective, 68–78

Debug view, 70–71

Debug view tool bar, 71

Debug view tool bar buttons, 72t
Debug view tool bar menu items,

71

desktop shortcuts, 18

Development Tools project, 5

Devices, configuring, 98

Device Software Development

Platform (DSDP)

Embedded Rich Client

Platform (eRCP),

126–136

Mobile Tools for Java (MTJ),

137

Native Application Builder

(NAB), 126–136

subprojects, 109

Target Management, Remote

System Explorer,

114–125

Tools for Mobile Linux

(TmL), 137

DevRocket-MontaVista,

214–222

diagrams in UML, 170
www.newnespress.com
Disconnect button, 72t
drop cursor icons, 36

Drop to Frame button, 72t
Dstore Connection, 117–118

Dynamic Help, 52

E
Eclipse

about, 5–11

adding features to, 109–113

additional resources, 12

adoption of, 1

application projects and

sub-projects, 4

basic concepts, 32–33

CVS in, 192–198

design/build requirements, 6

directory structure, 6f
elements comprising, 5–11

functionality, 11–12, 139

history, 1–3

introduction, 1

public license, 3–4

software, updating, 56, 110

status of, 4–5

website, 12

Eclipse basics

configuring, 55–60

downloading, 14

Editors, 34–43

help mechanism, 9

menus, 43–55

new project dialogue, 33, 38f
Perspectives, 32, 34–43

starting, 31–32

team support, 8–9

toolkits, 7

Views, 34–43

welcome screen, 33f
the workbench, 7, 32

workspaces, 7–8

Eclipse CDT, 32

Eclipse consortium, 2

Eclipse Foundation, 2

Eclipse Foundation

membership, 2
Eclipse Modeling Framework

(EMF), 171

Eclipse Platform Help

mechanism, 9

Eclipse Public License (EPL),

appA, 4

EclipseUML, 171, 179, 189–191

Edit menu

Add Bookmark, 44

Add Task, 44

basics, 44

Content Assist, 44

Format, 44

Incremental Find Next/

Previous, 44

Parameter Hints, 44

Quick fix, 44

Word Completion, 44

Editor preferences, configuring,

58–60

Appearance color options, 58

Content Assist, 58

Folding, 58

Syntax Coloring, 37, 59

Templates, 59

Typing, 59

Editors

Automatic Closing, 66

basics, 34

Code Templates, 64–66

Content Assist, 63

defined, 60

NAB/MWT, 129

Text Editors, 73

The Embedded Linux Learning

Kit (E.L.L.K.), appB

Embedded Rich Client Platform

(eRCP), 126–136

embedded Rich Client Platform

(eRCP), 165–168

embedded software development,

19–28. See also Device

Software Development

Platform (DSDP)

embedded Standard Widget

Toolkit (eSWT), 166

245Index
embedded target hardware

configure minicom, 96–98

configure networking, 98–100

creating a target eclipse

project, 101–103

the cross-development

environment, 95–96

debugging on the target, 101,

103–107

host configuration, 96–100

sample project, 94–107

target configuration, 100–101

enterprise development, 11

Ethernet configuration, 98

Export, 44

Export Wizard, 158

extensions and extension

points, 10

F
features, adding to Eclipse,

109–113

file management, 191–203

File menu

basics, 43–44

Convert Line Delimiters

to, 43

Export, 44

Import, 44

Switch Workspace, 44

File search dialogue, 46

Filtering property, 77

filters and filter pools, 119–121

Folding, 58

Format, 44

G
GDB, 103–107

GDB architecture, 106f
GDB debugger, 14, 103

Gnome launch button, 15

Gnu General Public License

(GPL), 3

Gnu General Public License

(GPL) tool chain, 14, 19

Go to Line, 45
H
Help Contents, 52

help mechanism, 9

Help menu

About Eclipse Platform, 52

basics, 52

Cheat Sheets, 52

Dynamic Help, 52

Help Contents, 52

Key Assist, 52

Report Bug or Enhancement, 52

Search, 52

Software Updates, 52

Tips and Tricks, 52

Welcome, 52

Help preferences, 56

I
IBM Eclipse consortium, 2

IBM Ottawa Lab, 1

Import, 44

Incremental FindNext/Previous, 44

incremental project builder

framework, 8

installation

under Linux, 13–14

preferences, configuring, 56

under Windows, 17–19

Install/Update preferences, 56

Instruction Stepping Mode

button, 72t
integrated development

environments (IDEs)

Eclipse and, 1

LynuxWorks-Luminosity,

206–214

MontaVista-DevRocket,

214–222

Wind River-Workbench,

222–232

Interaction diagrams, 170

J
Java, 5

Java programming, further

resources on, 168
ww
Java Runtime Environment

(JRE), 5, 14, 172–173

Java Virtual Machine (JVM)

installation requirement, 14

installing and using, 17, 18–19

JFace, 7

JFace toolkit, 165

JTAAG boxes, 107

K
KDE launch button, 16

Key Assist, 52

L
language IDE, 11

Last Edit Location, 45

Libraries, 79

line number display, configuring,

73

linking projects, 78–80

Linux, installation under, 13–14

Linux emulation, 20–22

Log Message, 74

Luminosity-LynuxWorks,

206–214

LynuxWorks-Luminosity,

206–214

LynxOS, 206

M
makefiles, 63–66, 85–89, 136

Make Target, 48, 87–89

manifest files, 10

MANIFEST.MF, 141–142

membership, Eclipse

Foundation, 2

memory analysis tools, 219–222,

230–231

Memory view, 77–78

menus

Context menu, 53–55

Edit menu, 44

File menu, 43–44

Help menu, 52

Navigate menu, 45

Project menu, 46–48
w.newnespress.com

246 Index
menus (Continued)
Refractor menu, 45

Run menu, 48–51

Search menu, 45–46

Window menu, 51–52

messages, 74

MinGW (Minimalist GNU for

Windows), 22–26

mobile devices software

development, 137

Mobile Tools for Java (MTJ),

137

modeling, 171. See also UML

(Unified Modeling

Language)

Modules view, 77

MontaVista-DevRocket,

214–222

Multi-platform Widget Toolkit

(MWT), 126

multi-threaded programs,

debugging, 91–94

N
NAB/MWT Attributes, 129

NAB/MWT Editor, 129, 130

NAB/MWT List, 129

NAB/MWT Object Box, 129

NAB/MWT Platform SDK

Environment, 134, 136

NAB/MWT Procedures, 129

NAB/MWT Project Class

Library Settings, 134

NAB/MWT Project Settings, 134

NAB/MWT Properties, 129

NAB/MWT Tree, 129

NAB/MWT Window, 130–131

Native Application Builder

(NAB)

application windows, creating,

130–131

basics, 126–136, 138

creating a new project,

128–136

debugging, 132–133

event procedures, creating, 132
www.newnespress.com
installing, 126–128

NAB/MWT perspective, 128

project Properties, 133–136

views, 129

Navigate menu

basics, 45

Go to Line, 45

Last Edit Location, 45

Open Call Hierarchy, 45

Open Declaration, 45

Open Resource, 45

Open Type Hierarchy, 45

Navigation, 52

Network Configuration, 98–100

New Editor, 51

New Window, 51

NFS (Network File System), 98

nfsAxe, 26–27

NFS servers for Windows, 26–27

O
Object Technology International

(OTI), 1

Omondo EclipseUML, 171

on-chip debugging, 224–227

Open Call Hierarchy, 45

Open Declaration, 45

Open Perspective, 51

Open Project, 47

Open Resource, 45

Open Source Initiative, 3

open source software, 3, 4, 205

Open Type Hierarchy, 45

Organize Manifests, 154–157

Outline view, 36

P
Parameter Hints, 44

Perspectives

basics, 34

default, 32

defined, 60

NAB/MWT, 128

Pillars of Eclipse, 11

Platform Image Builder (PIB),

217–219
Play Sound, 74

Plug-in Development

Environment (PDE)

building and exporting,

153–158

creating a new project,

143–146

installing, 139–140

Rich Client Platform (RCP),

11, 161–168

templates, 159f, 160f
plug-in registry, 10

plug-ins

activating, 10

basics, 4, 9–11, 140–142, 168

building and exporting,

154–157

bundling through features,

110

extensions and extension

points, 140–141

further resources on, 12

naming conventions, 142

UML, 171

writing, 143–146

plugin.xml, 141–142

POSIX IPC awareness, 214

POSIX threads (pthreads), 91

Preferences, 52

preferences, configuring

C/Cþþ, 56, 57–60

Code Style, 57–58

EclipseUML, 189–191

Editor, 58–60

Help, 56

Install/Update, 56

line number display, 73

Run/Debug, 56

Team, 56

Templates, 66

Problems view, 38–39

Problems view filters, 39

Project Explorer view, 36

Project menu

basics, 46–48

Build All, 47

247Index
Build Automatically, 48

Build Configurations, 48

Build Project, 47

Build Working Set, 48

Clean, 48

Close Project, 47

Make Target, 48

Open Project, 47

Properties, 48

Project References, 79

projects

linking, 78–80

shared. See CVS

workspace, 7

Properties

Breakpoint, 74–77

CVS, 197

Native Application Builder

(NAB), 133–136

Project menu, 48

Use Case Diagram, 175

Properties view, 42–43

proprietary licensing, 4

Q
Quick fix, 44

R
Red Hat, 20

Refactoring, 80–83

Refractor menu, 45

Registers view, 77

Remote System Explorer (RSE)

basics, 114–125, 137

connecting to a remote system,

115–119

debugging using, 123–125

Dstore Connection, 117–118

filters, 119–121

profiles, 122

second connections, 118–119

SSH (secure shell)

Connection, 116–117

remote target management

Luminosity, 211

Workbench, 224–227
Remove all Terminated

Launches button, 72t
Rename, 45, 81

Report Bug or Enhancement, 52

Reset Perspective, 51

resource tree delta, 8

Restart button, 72t
Resume, 74

Resume button, 72t, 74, 92
Rich Client Platform (RCP), 11,

161–168

Run, 49

Run As, 50

Run/Debug preferences, 56

Run External Tool, 74

Run History, 49

Run menu

basics, 48–51

Debug, 50

Debug As, 50

Debug Configurations, 51

Debug History, 50

Run, 49

Run As, 50

Run History, 49

Run to Line, 77

S
Save Perspective As, 51

Search, 52

Search menu basics, 45–46

Search Project, 91

Sequence Diagram, 183–188

Show Full Paths, 71

Show View, 51

Signal Properties, 94

Signals view, debugging, 93–94

software

code, restructuring for

readability, 80

code coverage analysis tools,

232

open source, 3, 4, 205

purchasing value-added,

205–206

tracking changes, 191
ww
updates/updating, 52, 56,

109–113

software development.

See also CVS

embedded, on Windows,

19–28

team support, 8–9

software development products,

Eclipse-based

LynuxWorks-Luminosity,

206–214

MontaVista-DevRocket,

214–222

purchasing value-added,

205–206

Wind River-Workbench,

222–232

sounds, 74

source code

copyright, 3

importing, 63–66

tools for adding, 63

SSH (secure shell) Connection,

116–117

Standard Widget Toolkit (SWT),

7, 165

Step Into button, 71, 72t
Step Over button, 71, 72t, 74
Step Return button, 72t, 92
strategic consumers, 3

structural diagrams, 170

Suspend button, 72t, 93
Switch Workspace, 44

Syntax Coloring, 37, 59

system tools

code coverage analysis, 232

data monitoring, 231–232

events viewer, 229–230

memory analysis, 230–231

performance profiler, 230

T
Target debug, 101, 103–107

Target Management (TM),

Remote System Explorer

(RSE), 114–125
w.newnespress.com

248 Index
Tasks view, 39–40

Team preferences, 56

team repository products, 8–9

Templates, 59

T-Engine, 136

Terminate button, 72t
Text Editors, 73

thermostat project, 89–91

Tips and Tricks, 52

Toggle Breakpoint, 73

tool bars

Debug view, 71

workbench window, 32

toolkits

embedded Standard Widget

Toolkit (eSWT), 166

JFace toolkit, 165

Multi-platform Widget Toolkit

(MWT), 126

Standard Widget Toolkit

(SWT), 7, 165

Tools for Mobile Linux

(TmL), 137

Tracepoints, 212–213

TRON project, 136

Typing, 59

U
UML (Unified Modeling

Language)

basics, 169–191

diagrams, 170, 174–178
www.newnespress.com
example, 172–173

further resources on, 203

plug-ins, 171

updates, software, 52, 56,

109–113

Use Case Diagram, 174–178

user interface, primary, 7

user-supplied makefiles, 85–89

Use Step Filters button, 72t

V
Variables view, 73

View Disassembly button, 93

View Management, 71

Views

basics, 34

Console view, 38, 41–42

defined, 60

drop cursor icons, 36

Native Application Builder

(NAB), 129

Outline view, 36

Problems view, 38–39

Project Explorer view, 36

Properties view, 42–43

Tasks view, 39–40

W
WideStudio, 126

WideStudio/MWT, 126, 133,

134, 138

Window menu
basics, 51–52

Close All Perspectives, 52

Close Perspective, 51

Customize Perspective, 51

Navigation, 52

New Editor, 51

New Window, 51

Open Perspective, 51

Preferences, 52

Reset Perspective, 51

Save Perspective As, 51

Show View, 51

Windows

embedded software

development on, 19–28

GNU tool chains for, 20–22

installation under, 17–19

NFS servers for, 26–27

Wind River-Workbench,

222–232

Word Completion, 44

workbench

introduction, 7

toolkits, 7

workbench window

menu bar, 32

perspectives in the, 34

tool bar, 32

Workbench-Wind River,

222–232

workspace auto-build, 8

workspace resources, 8

	Introducing Eclipse
	History
	Eclipse Public License
	Status of Eclipse
	So What Is Eclipse, Anyway?
	Workbench
	Workspaces
	Team Support
	Help
	Plug-Ins

	What Can You Do With Eclipse?
	Summary
	Resources

	Installation
	System Requirements
	Hardware
	Software

	Obtaining Eclipse
	Installation
	Installing and Using a Java Virtual Machine (JVM)

	Installing Eclipse Under Windows
	Installing a JVM

	Embedded Software Development on Windows
	Cygwin
	Installing Cygwin

	MinGW
	Installing MinGW

	NFS for Windows-nfsAxe
	Allegro-Another NFS Server

	Summary

	Getting Started
	Start Eclipse
	Basic Concepts
	Perspectives, Editors, and Views
	Problems View
	Tasks View
	Console View
	Properties View

	Menus
	File Menu
	Edit Menu
	Refactor Menu
	Navigate Menu
	Search Menu
	Project Menu
	Run Menu
	Window Menu
	Help Menu
	Context Menu

	Configuring Eclipse
	C/C++ Preferences
	Code Style
	Editor Preferences
	Content Assist
	Folding
	Syntax Coloring
	Templates
	Typing

	Summary

	C/C++ Developers' Toolkit (CDT)
	Obtaining the Sample Source Code
	Creating a New Project
	Adding Source Code to the Project
	Content Assist
	Code Templates
	Automatic Closing

	The Program
	Building the Project
	Debugging the Project
	The Debug View
	Variables View
	Breakpoints View
	Breakpoint Properties
	Actions
	Common
	Filtering

	Other Views
	Memory View

	Finish Debugging

	Linking Projects
	Refactoring
	Summary
	Resources

	Eclipse CDT-Digging Deeper
	User-Supplied Makefiles
	Make Targets

	Thermostat Internals
	Running the Simulation

	Debugging Multi-Threaded Programs
	The Signals View

	Working With Embedded Target Hardware
	System Requirements
	The Cross-Development Environment
	Host Configuration
	Configure Minicom
	Configure Networking

	Target Configuration
	Creating a Target Eclipse Project
	Debugging on the Target

	Summary

	Device Software Development Platform
	Adding on to Eclipse
	Installing Features in External Directories
	Updating Existing Features

	Target Management and the Remote System Explorer (RSE)
	Connecting to a Remote System
	SSH Connection
	Dstore Connection
	Creating a Second Connection

	Filters and Filter Pools
	Profiles
	Debugging With a Remote Connection

	Native Application Builder (NAB)
	Getting and Installing NAB
	An NAB Project
	Creating an Application Window
	Creating an Event Procedure
	Running the Program
	NAB Project Properties

	Other DSDP Subprojects
	Mobile Tools for Java (MTJ)
	Tools for Mobile Linux (TmL)

	Summary

	Plug-In Development Environment (PDE)
	Installing the PDE
	So What Is a Plug-In?
	Extensions and Extension Points
	MANIFEST.MF and plugin.xml
	Naming Conventions

	Our First Plug-In
	Creating a Plug-In Project
	Plug-In Content
	Running and Debugging a Plug-In

	Building and Exporting a Plug-In
	Clean Up and Organize the Manifests
	Configure Build Content
	Build and Export

	Exploring Further
	Rich Client Platform (RCP)
	Making It a Product
	Embedded Rich Client Platform (eRCP)

	Summary
	Resources

	Eclipse Advanced Features
	UML
	Installing Omondo EclipseUML
	UML Example
	Use Case Diagram
	Class Diagram
	Sequence Diagram
	Configuring EclipseUML

	CVS
	Branches
	CVS in Eclipse
	Setting Up a CVS server
	Team Synchronizing
	Branching

	Summary
	Resources
	UML
	CVS

	Eclipse-Based Development Products
	Why Buy It?
	LynuxWorks-Luminosity
	Getting the Evaluation
	Getting Started
	Debugging With Luminosity
	Tracepoints
	POSIX IPC Awareness

	MontaVista-DevRocket
	Getting the Evaluation
	What's Included

	Getting Started
	Platform Image Builder (PIB)
	Memory Analysis Tools

	Wind River-Workbench
	Getting the Evaluation
	Getting Started
	On-Chip Debugging
	Analysis Tools
	System Viewer
	Performance Profiler (Formerly ProfileScope)
	Memory Analyzer (Formerly MemScope)
	Data Monitor (Formerly StethoScope)
	Code Coverage Analyzer (Formerly CoverageScope)

	Summary

	The Eclipse Public License
	Open Source Initiative OSI - Eclipse Public License v 1.0
	Definitions
	Grant of Rights
	Requirements
	Commercial Distribution
	No Warranty
	Disclaimer of Liability
	General

	The Embedded Linux Learning Kit
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

