
Linux Administration:
A Beginner’s Guide

Fifth Edition
WALE SOYINKA

New York Chicago San Francisco
Lisbon London Madrid Mexico City

Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-154625-1

The material in this eBook also appears in the print version of this title: 0-07-154588-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate train-
ing programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-
4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, spe-
cial, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071545883

“ With the right knowledge, Linux can be clear and simple to understand. This
book presents the core fundamentals of Linux in a manner that is very logical
and easy to follow.”

—Greg Kurtzer, CTO, Infiscale, Inc.

“ Wale continues to do a great job explaining complex information in a straightfor-
ward manner. All newcomers should start their Linux library with this book.”

—Ron Hudson, Senior Field Support Engineer, Intervoice, Inc.

“ Wale Soyinka did a stellar job in the fourth edition and he was up for the chal-
lenge of making the fifth edition his own. It is with great pleasure I present the
fifth edition of Linux Administration: A Beginners Guide by Wale Soyinka. This
book barely resembles the 500-odd pages written nine years ago in the first edi-
tion, and it is without hesitation that I say his new words are for the better.”

—From the Foreword by Steve Shah, original author of
Linux Administration: A Beginner’s Guide

ABOUT THE AUTHOR
Wale Soyinka (Canada) is a systems/network engineering consultant with several years
experience in the field. He has written an extensive library of Linux administration train-
ing materials. In addition to being a co-author of the fourth edition of Linux Administration:
A Beginner’s Guide, he is the author of a projects lab manual—Microsoft Windows 2000 Man-
aging Network Environments, which is part of the Microsoft certification series published
by Prentice Hall. Wale participates in several open source discussions and projects. His
latest project is at caffe*nix (www.caffenix.com) where he usually hangs out. caffe*nix is
possibly the world’s first (or only existing) brick-and-mortar store committed and dedi-
cated to prompting and showcasing open source technologies and culture.

ABOUT THE CONTRIBUTING AUTHOR
Steve Shah (San Jose, California) is the chief technology officer (CTO) and co-founder
of Asyncast, where he leads the product strategy and engineering groups. Prior to start-
ing Asyncast, Steve was the founder and principal of RisingEdge Consulting where he
provided strategic marketing services for a number of Silicon Valley infrastructure com-
panies. To earn his chops, Steve grew to be a prominent player in network load balanc-
ing, application delivery controllers, and Secure Sockets Layer-virtual private network
 (SSL-VPN) markets as the director of product management at NetScaler (acquired by
Citrix) and Array Networks. Before turning into a marketing droid who is eerily com-
fortable at a Unix command prompt, Steve was a senior software engineer and systems
administrator at numerous companies. Steve holds a bachelor of science (BS) in com-
puter science with a minor in creative writing and a master in science (MS) in computer
science from University of California Riverside.

ABOUT THE TECHNICAL EDITOR
Dr. Ibrahim Haddad is director of technology at Motorola, Inc. and is responsible for
defining and developing the requirements for Motorola’s open source initiatives. Prior
to Motorola, Dr. Haddad managed the carrier-grade Linux and Mobile Linux Initiatives
at the Open Source Development Lab (OSDL), which included promoting the develop-
ment and adoption of Linux and open source software in the communications industry.
Prior to joining OSDL, Dr. Haddad was a senior researcher at the Research & Innova-
tion Department of Ericsson’s Corporate Unit of Research. He is a contributing editor
for Linux Journal and Enterprise Open Source magazines. Haddad received his BS and
MS degrees in computer science from the Lebanese American University, and his PhD
in computer science from Concordia University in Montreal, Canada. In 2000, he was
awarded by Concordia University both the J.W. McConnell Memorial Graduate Fel-
lowship, and the Concordia University 25th Anniversary Fellowship, in recognition for
academic excellence. In 2007, he was the winner of the Big Idea Innovation Award in
Recognition of Leadership and Vision at Motorola, Inc.

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

v

CONTENTS

Foreword . xx
Acknowledgments . xxi
Introduction . xxii

Part I

Installing Linux as a Server

▼ 1 Technical Summary of Linux Distributions . 3
Linux—The Operating System . 4

What Is Open Source Software and GNU All About? 5
What Is the GNU Public License? . 7

The Advantages of Open Source Software 8
Understanding the Differences Between Windows and Linux . . . 9
Summary . 14

▼ 2 Installing Linux in a Server Configuration . 15
Hardware and Environmental Considerations 16
Server Design . 16

Uptime . 18
Dual-Booting Issues . 18

For more information about this title, click here

Linux Administration: A Beginner’s Guide vi

Methods of Installation . 19
Installing Fedora . 20

Project Prerequisites . 20
Carrying Out the Installation . 21
Initial System Configuration . 36

Installing Ubuntu Server . 37
Summary . 41

▼ 3 Managing Software . 43
The RPM Package Manager . 44
The Debian Package Management System 47

APT . 47
Managing Software Using RPM . 48

Querying for Information the RPM Way
(Getting to Know One Another) . 48
Installing with RPM (Moving In Together) 51
Uninstalling Software with RPM (Ending the Relationship) . . 54
Other Things You Can Do with RPM 55

Software Management in Ubuntu . 58
Querying for Information . 58
Installing Software in Ubuntu . 59
Removing Software in Ubuntu . 59
GUI RPM Package Managers . 60

Compile and Install GNU Software . 62
Getting and Unpacking the Package 62
Looking for Documentation
(Getting to Know Each Other—Again) 64
Configuring the Package . 64
Compiling the Package . 65
Installing the Package . 66
Testing the Software . 66
Cleanup . 67

Common Problems when Building from Source Code 67
Problems with Libraries . 68
When There Is No configure Script 68
Broken Source Code . 68

Summary . 69

Part II

Single-Host Administration

▼ 4 Managing Users . 73
What Exactly Constitutes a User?. 74

Where User Information Is Kept . 74
The /etc/passwd File . 75

viiContents

The /etc/shadow File . 79
The /etc/group File . 80

User Management Tools . 81
Command-Line User Management 81
GUI User Managers . 85

Users and Access Permissions . 88
Understanding SetUID and SetGID Programs 88

Pluggable Authentication Modules (PAM) 89
How PAM Works . 89
PAM’s Files and Their Locations . 90
Configuring PAM . 90
The “Other” File. 95
“DOH! I Can’t Log In!” . 95
Debugging PAM . 95

A Grand Tour . 96
Creating Users with useradd . 96
Creating Groups with groupadd . 97
Modifying User Attributes with usermod 98
Modifying Group Attributes with groupmod 99
Deleting Groups and Users with groupdel and userdel . . . 99

Summary . 100

▼ 5 The Command Line . 101
An Introduction to BASH . 102

Job Control . 103
Environment Variables . 104
Pipes. 106
Redirection . 107

Command-Line Shortcuts . 107
Filename Expansion . 108
Environment Variables as Parameters 108
Multiple Commands . 108
Backticks . 109

Documentation Tools . 110
The man Command . 110
The texinfo System . 112

Files, File Types, File Ownership, and File Permissions 112
Normal Files . 112
Directories . 112
Hard Links . 113
Symbolic Links. 113
Block Devices . 113
Character Devices . 114
Named Pipes . 114

 viii L inux Administration: A Beginner’s Guide

Listing Files: ls . 114
Change Ownership: chown . 115
Change Group: chgrp . 116
Change Mode: chmod . 116

File Management and Manipulation . 119
Copy Files: cp . 119
Move Files: mv . 120
Link Files: ln. 120
Find a File: find . 121
File Compression: gzip . 121
bzip2 . 122
Create a Directory: mkdir . 122
Remove a Directory: rmdir . 123
Show Present Working Directory: pwd 123
Tape Archive: tar . 123
Concatenate Files: cat . 125
Display a File One Screen at a Time: more. 126
Disk Utilization: du . 126
Show the Directory Location of a File: which 127
Locate a Command: whereis . 127
Disk Free: df . 127
Synchronize Disks: sync . 128

Moving a User and Its Home Directory 128
List Processes: ps . 131
Show an Interactive List of Processes: top 133
Send a Signal to a Process: kill . 134

Miscellaneous Tools . 135
Show System Name: uname . 135
Who Is Logged In: who . 136
A Variation on who: w . 136
Switch User: su . 136

Editors . 137
vi . 137
emacs . 138
joe. 138
pico . 139

Standards . 139
Summary . 140

▼ 6 Booting and Shutting Down. 141
Boot Loaders . 142

GRUB . 142
LILO. 152
Bootstrapping . 152

ixContents

The init Process . 153
rc Scripts . 154

Writing Your Own rc Script . 155
Enabling and Disabling Services . 159

Disabling a Service . 162
Odds and Ends of Booting and Shutting Down 162

fsck! . 163
Booting into Single-User (“Recovery”) Mode 163

Summary . 164

▼ 7 File Systems . 165
The Makeup of File Systems . 166

i-Nodes . 166
Superblocks . 167
ext3 and ReiserFS . 168
Which File System to Use? . 169

Managing File Systems . 169
Mounting and Unmounting Local Disks 169
Using fsck . 176

Adding a New Disk . 177
Overview of Partitions . 178
Traditional Disk- and Partition-Naming Conventions . . . 178

Volume Management . 179
Creating Partitions and Logical Volumes 180

Creating File Systems . 190
Summary . 192

▼ 8 Core System Services . 193
The init Daemon . 194

upstart: Die init. Die Now! . 195
The /etc/inittab File . 196

xinetd and inetd . 198
The /etc/xinetd.conf File . 200
Examples: A Simple Service Entry and
Enabling/Disabling a Service . 205

The Logging Daemon . 208
Invoking rsyslogd . 208

Configuring the Logging Daemon . 208
Log Message Classifications . 210
Format of /etc/rsyslog.conf . 211

The cron Program . 216
The crontab File . 216
Editing the crontab File . 218

Summary . 218

Linux Administration: A Beginner’s Guide x

▼ 9 Compiling the Linux Kernel . 221
What Exactly Is a Kernel? . 222
Finding the Kernel Source Code . 224

Getting the Correct Kernel Version 224
Unpacking the Kernel Source Code 225

Building the Kernel . 225
Preparing to Configure the Kernel 227
Kernel Configuration . 228
Compiling the Kernel . 231
Installing the Kernel . 233
Booting the Kernel . 235
The Author Lied—It Didn’t Work! 235

Patching the Kernel . 236
Downloading and Applying Patches 237

Summary . 239

▼ 10 Knobs and Dials: proc and SysFS File Systems 241
What’s Inside the /proc Directory? . 242

Tweaking Files Inside of /proc . 243
Some Useful /proc Entries . 244

Enumerated /proc Entries . 246
Common proc Settings and Reports . 247

SYN Flood Protection . 248
Issues on High-Volume Servers . 249
Debugging Hardware Conflicts . 249

SysFS. 249
Summary . 252

Part III

Security and Networking

▼ 11 TCP/IP for System Administrators . 255
The Layers . 256

TCP/IP Model and the OSI Model 259
Headers . 263

Ethernet . 264
IP (IPv4) . 265
TCP . 268
UDP . 272

A Complete TCP Connection . 273
Opening a Connection . 273
Transferring Data . 274
Closing the Connection . 275

xiContents

How ARP Works . 276
The ARP Header: ARP Works with Other Protocols, Too! . . . 277

Bringing IP Networks Together . 278
Hosts and Networks . 278
Subnetting . 279
Netmasks . 280
Static Routing . 282
Dynamic Routing with RIP . 284

Digging into tcpdump . 289
A Few General Notes . 289
Graphing Odds and Ends . 293

IPv6. 294
IPv6 Address Format . 294
IPv6 Address Types . 295
IPv6 Backward Compatibility . 295

Summary . 296

▼ 12 Network Configuration . 299
Modules and Network Interfaces . 300

Network Device Configuration Utilities (ip and ifconfig) . . . 301
IP Aliasing . 303
Setting Up NICs at Boot Time . 304

Managing Routes . 307
Simple Usage . 309
Displaying Routes . 311

A Simple Linux Router . 314
Routing with Static Routes . 314

How Linux Chooses an IP Address . 317
Summary . 317

▼ 13 The Linux Firewall . 319
How Netfilter Works . 320

A NAT Primer . 321
NAT-Friendly Protocols . 324
Chains . 325

Installing Netfilter . 328
Enabling Netfilter in the Kernel . 328
Required Kernel Options . 329
Optional but Sensible Kernel Options 329
Other Options . 330

Configuring Netfilter . 331
Saving Your Netfilter Configuration 331
The iptables Command . 333

 xii Linux Administration: A Beginner’s Guide

Cookbook Solutions . 340
Rusty’s Three-Line NAT . 341
Configuring a Simple Firewall . 342

Summary . 344

▼ 14 Local Security . 345
Common Sources of Risk . 347

SetUID Programs . 347
Unnecessary Processes . 349

Picking the Right Runlevel to Boot Into 350
Non-human Accounts . 351
Limited Resources . 352
Mitigating Risk . 354

Using Chroot . 354
SELinux . 357

AppArmor . 358
Monitoring Your System. 358

Logging . 358
Using ps and netstat . 359
Using df . 359
Automated Monitoring . 359
Mailing Lists . 360

Summary . 360

▼ 15 Network Security . 361
TCP/IP and Network Security . 362

The Importance of Port Numbers 362
Tracking Services . 363

Using the netstat Command . 363
Security Implications of netstat’s Output 364

Binding to an Interface . 365
Shutting Down Services . 366

Shutting Down xinetd and inetd Services 366
Monitoring Your System. 368

Making the Best Use of syslog . 368
Monitoring Bandwidth with MRTG 370

Handling Attacks . 370
Trust Nothing (and No One) . 370
Change Your Passwords . 371
Pull the Plug . 371

Network Security Tools . 371
nmap . 371
Wireshark/tcpdump . 372

Summary . 373

xiiiContents

Part IV

Internet Services

▼ 16 DNS . 377
The Hosts File . 378
Understanding How DNS Works . 379

Domain and Host Naming Conventions 379
Subdomains . 382
The in-addr.arpa Domain . 383
Types of Servers . 383

Installing a DNS Server . 385
Understanding the BIND Configuration File 387
The Specifics . 388

Configuring a DNS Server . 391
Defining a Primary Zone in the named.conf File 391
Defining a Secondary Zone in the named.conf File 392
Defining a Caching Zone in the named.conf File 393

DNS Records Types . 394
SOA: Start of Authority . 394
NS: Name Server . 395
A: Address Record . 396
PTR: Pointer Record . 396
MX: Mail Exchanger . 397
CNAME: Canonical Name . 397
RP and TXT: The Documentation Entries 398

Setting Up BIND Database Files . 398
Breaking Out the Individual Steps 400

The DNS Toolbox . 404
host . 404
dig . 406
nslookup . 407
whois . 408
nsupdate . 408
The rndc Tool . 409

Configuring DNS Clients . 410
The Resolver . 410
Configuring the Client . 412

Summary . 413

▼ 17 FTP . 415
The Mechanics of FTP. 416

Client/Server Interactions . 416

 xiv Linux Administration: A Beginner’s Guide

Obtaining and Installing vsftpd . 418
Configuring vsftpd . 418
Starting and Testing the FTP Server. 423

Customizing the FTP Server . 426
Setting Up an Anonymous-Only FTP Server 426
Setting Up an FTP Server with Virtual Users 427

Summary . 431

▼ 18 Apache Web Server . 433
Understanding the HTTP Protocol . 434

Headers . 434
Ports . 435
Process Ownership and Security . 436

Installing the Apache HTTP Server . 437
Apache Modules . 438

Starting Up and Shutting Down Apache 439
Starting Apache at Boot Time . 440

Testing Your Installation . 441
Configuring Apache . 441

Creating a Simple Root-Level Page 442
Apache Configuration Files . 442
Common Configuration Options . 442

Troubleshooting Apache . 448
Summary . 449

▼ 19 SMTP . 451
Understanding SMTP . 452

Rudimentary SMTP Details . 452
Security Implications . 454

Installing the Postfix Server . 455
Installing Postfix via RPM in Fedora 455
Installing Postfix via APT in Ubuntu 456

Configuring the Postfix Server . 458
The main.cf File . 459
Checking Your Configuration . 461

Running the Server . 462
Checking the Mail Queue . 462
Flushing the Mail Queue . 462
The newaliases Command . 462
Making Sure Everything Works . 462

Summary . 463

xvContents

▼ 20 POP and IMAP . 465
POP and IMAP Basics . 468
Installing the UW-IMAP and POP3 Server 468

Installing UW-IMAP from Source 469
Running UW-IMAP . 471

Other Issues with Mail Services . 474
SSL Security . 474
Testing IMAP Connectivity with SSL 475
Availability . 475
Log Files . 476

Summary . 476

▼ 21 The Secure Shell (SSH) . 479
Understanding Public Key Cryptography 480

Key Characteristics . 482
Cryptography References . 483

Understanding SSH Versions and Distributions 484
OpenSSH and OpenBSD . 484
Alternative Vendors for SSH Clients 484
Installing OpenSSH via RPM in Fedora 486
Installing OpenSSH via APT in Ubuntu 486

Downloading, Compiling, and Installing OpenSSH from Source 486
Server Startup and Shutdown . 489
SSHD Configuration File . 490
Using OpenSSH . 490

Secure Shell (SSH) . 491
Creating a Secure Tunnel . 491

OpenSSH Shell Tricks . 494
Secure Copy (SCP) . 495
Secure FTP (SFTP) . 495
Files Used by the OpenSSH Client 496

Summary . 496

Part V

Intranet Services

▼ 22 Network File System (NFS) . 501
The Mechanics of NFS . 502

Versions of NFS . 503
Security Considerations for NFS . 504
Mount and Access a Partition . 504

Enabling NFS in Fedora . 505

 xvi Linux Administration: A Beginner’s Guide

Enabling NFS in Ubuntu . 506
The Components of NFS . 507

Kernel Support for NFS . 508
Configuring an NFS Server . 508

The /etc/exports Configuration File 508
Configuring NFS Clients . 512

The mount Command . 513
Soft vs. Hard Mounts . 515
Cross-Mounting Disks . 515
The Importance of the intr Option 516
Performance Tuning . 516

Troubleshooting Client-Side NFS Issues 517
Stale File Handles . 517
Permission Denied . 517

Sample NFS Client and NFS Server Configuration 518
Common Uses for NFS . 520
Summary . 520

▼ 23 Network Information Service (NIS) . 523
Inside NIS . 524
The NIS Servers . 525

Domains . 526
Configuring the Master NIS Server . 526

Establishing the Domain Name . 527
Starting NIS . 528
Editing the Makefile . 528
Using ypinit . 532

Configuring an NIS Client . 534
Editing the /etc/yp.conf File . 534
Enabling and Starting ypbind . 535

Editing the /etc/nsswitch.conf File . 536
NIS at Work . 538

Testing Your NIS Client Configuration 540
Configuring a Secondary NIS Server . 540

Setting the Domain Name . 540
Setting Up the NIS Master to Push to Slaves 541
Running ypinit . 541

NIS Tools . 542
Using NIS in Configuration Files . 543

Implementing NIS in a Real Network . 543
A Small Network . 544
A Segmented Network. 544
Networks Bigger Than Buildings 545

Summary . 545

xviiContents

▼ 24 Samba . 547
The Mechanics of SMB . 548

Usernames and Passwords . 548
Encrypted Passwords . 549
Samba Daemons . 549
Installing Samba via RPM . 550
Installing Samba via APT. 551

Samba Administration . 552
Starting and Stopping Samba . 553

Using SWAT . 554
Setting Up SWAT . 554

The SWAT Menus . 556
Globals . 557
Shares . 557
Printers. 557
Status . 557
View . 558
Password . 558

Creating a Share . 558
Using smbclient . 560

Mounting Remote Samba Shares . 563
Creating Samba Users . 563

Allowing Null Passwords . 564
Changing Passwords with smbpasswd 564

Using Samba to Authenticate Against a Windows Server 565
Troubleshooting SAMBA . 567
Summary . 567

▼ 25 LDAP . 569
LDAP Basics . 570

LDAP Directory . 570
Client/Server Model . 571
Uses of LDAP . 572
LDAP Terminologies . 572

OpenLDAP . 573
Server-Side Daemons . 573
OpenLDAP Utilities . 574

Installing OpenLDAP . 574
Configuring OpenLDAP . 576

Configuring slapd . 577
Starting and Stopping slapd . 580

Configuring OpenLDAP Clients . 581
Creating Directory Entries . 581

 xviii L inux Administration: A Beginner’s Guide

Searching, Querying, and Modifying the Directory 583
Using OpenLDAP for User Authentication 584

Configuring the Server . 584
Configuring the Client . 586

Summary . 587

▼ 26 Printing . 589
Printing Terminologies . 590
The CUPS System . 591

Running CUPS . 591
Installing CUPS . 591
Configuring CUPS . 593

Adding Printers . 594
Local Printers and Remote Printers 595

Routine CUPS Administration . 600
Setting the Default Printer . 600
Enabling and Disabling Printers . 600
Accepting and Rejecting Print Jobs 600
Managing Printing Privileges . 601
Deleting Printers . 601

Managing Printers via the Web Interface 602
Using Client-Side Printing Tools . 603

lpr. 603
lpq . 604
lprm . 604

Summary . 605

▼ 27 DHCP . 607
The Mechanics of DHCP . 608
The DHCP Server . 609

Installing DHCP Software via RPM 609
Installing DHCP Software via APT in Ubuntu 609
Configuring the DHCP Server . 610
A Sample dhcpd.conf File . 616

The DHCP Client Daemon . 617
Configuring the DHCP Client . 617

Summary . 619

▼ 28 Virtualization . 621
Why Virtualize? . 622

Virtualization Concepts . 622
Virtualization Implementations . 623

QEMU . 624
Xen . 624

xixContents

User-Mode Linux (UML) . 624
Kernel-based Virtual Machines (KVM) 624
VMware . 624
Virtualbox . 624
Hyper-V . 625

Kernel-based Virtual Machines (KVM) 625
KVM Example . 626

Summary . 631

▼ 29 Backups . 633
Evaluating Your Backup Needs . 634

How Much Data? . 634
What Kind of Media? . 635
How Much Network Throughput? 636
How Quickly Must the Data Be Recovered? 637
What Kind of Tape Management? 637
Manipulating the Tape Device with mt 639

Command-Line Tools . 640
dump and restore . 640

Miscellaneous Backup Solutions . 646
Summary . 646

▼ Index . 647

FOREWORD

In 1999, editor Jane Brownlow approached me to do a book on Linux.
The idea of writing my own book, start to finish, on an operating sys-
tem I loved was so fantastic that the little detail of already being over-

committed with my work was merely a footnote. Lucky for me, my very
patient wife supported the endeavor and accepted this mistress, which
consumed my evenings the first few months we were married.

When talk of the second edition came up, my dear wife asked, “Aren’t you
overcommitted even more than you were during the first edition?” She was
right, yet I couldn’t let my dear book—which had done very well—go to some-
one else. And so, five months of nights and weekends slipped away as I updated
and rewrote large portions of the book. By the end of the exercise, I was tired but
pleased.

Fortunately for my sanity, a few years of marriage made my wife much more
direct when talk of the third and fourth editions came about. “No,” she said, “not
unless you can prove that you can do this without becoming a tired and cranky
old man.” She was right, and I recruited help as a result. My co-worker and friend
Steve Graham helped with the third edition, and Wale Soyinka of Linux Lab Manual
fame jumped in on the fourth.

When Jane asked, “Fifth edition?” a few months ago, I actually knew better.
With a two-year-old son, a new business, and a mere four to five hours of sleep
a night, with weekends officially off-limits to non-family activity, lest I become
“Uncle Daddy,” there simply wasn’t any time to beg, borrow, or steal away to make
a fifth edition happen. However, this time, there was no question about whether
Linux Administration: A Beginner’s Guide, a book that I hold dear, would be in good
hands. Wale Soyinka had done a stellar job in the fourth edition, and he was up
for the challenge of making the fifth edition his own. It was time to pass the baton.

It is with great pleasure that I present the fifth edition of Linux Administration:
A Beginner’s Guide by Wale Soyinka. This book barely resembles the 500-odd pages
written nine years ago in the first edition, and it is without hesitation that I say the
new words are for the better.

Steve Shah
June 2008

Author, Linux Administration: A Beginner’s Guide
(1st through 4th editions)

xx
Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

xxi

ACKNOWLEDGMENTS

The list of people whom I would like to acknowledge is rather long—
and as such, I will try to create a “catch all” that will reflect the
 individuals and groups that I am referring to.

This simply includes everybody who has ever believed in me and provided
me with one opportunity or another to experience various aspects of my life
up to this point. You know who you are, and I thank you and remain forever
indebted to you.

I would like to dedicate this book to everyone who has contributed
to open source technologies and ideals in one form or another.

Without you, I would have nothing to write about in this book.

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

xxii

INTRODUCTION

On October 5, 1991, Linus Torvalds posted this message to the news-
group comp.os.minix:

Do you pine for the nice days of minix-1.1, when men were men and

wrote their own device drivers? Are you without a nice project and

just dying to cut your teeth on an OS you can try to modify for

your needs? Are you finding it frustrating when everything works

on minix? No more all-nighters to get a nifty program working?

Then this post might be just for you :-)

Linus went on to introduce the first cut of Linux to the world. Unbeknownst to
him, he had unleashed what was to become one of the world’s most popular and
disruptive operating systems. Seventeen years later, an entire industry has grown
up around Linux. And chances are, you’ve probably already used it (or benefitted
from it) in one form or another!

WHO SHOULD READ THIS BOOK
A part of the title of this book reads “A Beginner’s Guide”; this is mostly apt.
But what the title should say is “A Beginner’s to Linux Administration Guide,”
because we do make a few assumptions about you, the reader. (And we jolly well
couldn’t use that title because it was such a mouthful and not sexy enough.)

But seriously, we assume that you are already familiar with Microsoft Windows
servers at a “power user” level or better. We assume that you are familiar with the
terms (and some concepts) necessary to run a small- to medium-sized Windows

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

xxiiiIntroduction

network. Any experience with bigger networks or advanced Windows technologies,
such as Active Directory, will allow you to get more from the book but is not required.

We make this assumption because we did not want to write a guide for dummies.
There are already enough books on the market that tell you what to click without tell-
ing you why; this book is not meant to be among those ranks. Furthermore, we did not
want to waste time writing about information that we believe is common knowledge for
power users of Windows. Other people have already done an excellent job of conveying
that information, and there is no reason to repeat that work here.

In addition to your Windows background, we assume that you’re interested in hav-
ing more information about the topics here than the material we have written alone. After
all, we’ve only spent 30 to 35 pages on topics that have entire books devoted to them!
For this reason, we have scattered references to other books throughout the chapters. We
urge you to take advantage of these recommendations. No matter how advanced you
are, there is always something new to learn.

We feel that seasoned Linux system administrators can also benefit from this book
because it can serve as a quick how-to cookbook on various topics that may not be the
seasoned reader’s strong points. We understand that system administrators generally
have aspects of system administration that they like or loath. For example, backups is not
one of the author’s favorite aspects of system administration, and this is reflected in the
half a page we’ve dedicated to backups—just kidding, we’ve actually dedicated an entire
chapter to backups.

WHAT’S IN THIS BOOK?
Linux Administration: A Beginner’s Guide, is broken into five parts.

Part I: Installing Linux as a Server
Part I includes three chapters (Chapter 1, “Technical Summary of Linux Distributions”;
Chapter 2, “Installing Linux in a Server Configuration”; and Chapter 3, “Managing Soft-
ware”) that give you a firm handle on what Linux is, how it compares to Windows in
several key areas, and how to install server-grade Fedora and Ubuntu Linux distribu-
tions. We end Part I with a chapter on how to install and manage software installed from
prepackaged binaries and source code. Ideally, this should be enough information to
get you started and help you draw parallels to how Linux works based on your existing
knowledge of Windows.

Part II: Single-Host Administration
Part II covers the material necessary to manage a stand-alone system (a system not requir-
ing or providing any services to other systems on the network). While this may seem
useless at first, it is the foundation on which many other concepts are built, and these
concepts are essential to understand, even after a system is connected to a network.

 xxiv Introduction

There are seven chapters in this part. Chapter 4, “Managing Users,” covers the infor-
mation necessary on how to add, remove, and otherwise manage users. The chapter also
introduces the basic concepts of multiuser operation, permissions, etc. In Chapter 5, “The
Command Line,” we begin covering the basics of working with the Linux command line
so that you can become comfortable dropping out of the graphical environment pro-
vided by default. While it is possible to administer a system from within the graphical
desktop, the greatest power comes from being comfortable with both the command line
interface (CLI) and the graphical user interface (GUI). (This is true for Windows, too.
Don’t believe that? Open a command prompt, run netsh, and try to do what netsh
does in the GUI.).

Once you are comfortable with the CLI, you begin Chapter 6, “Booting and Shutting
Down,” which documents the entire booting and shutting down process. This includes
the necessary detail on how to start up services and properly shut them down during
these cycles so that you can reliably add new services later on in the book without any
difficulty.

Chapter 7, “File Systems,” continues with the basics of file systems—their organiza-
tion, creation, and, most importantly, their management.

The basics of operation continue in Chapter 8, “Core System Services,” with coverage
of basic tools, such as xinetd for scheduling applications to run at specified times. xinetd
is the Linux equivalent of Windows’ svchost and rsyslog, which manage logging for all
applications in a unified framework. One may think of rsyslog as a more flexible version
of the Event Viewer.

We finish this section with Chapter 9, “Compiling the Linux Kernel,” and Chapter 10,
“Knobs and Dials: proc and SysFS File Systems,” which cover the kernel and kernel-level
tweaking through /proc and /sys. Kernel coverage documents the process of compiling
and installing your own custom kernel in Linux. This capability is one of the points that
gives Linux administrators an extraordinary amount of fine-grained control over how
their systems operate. The viewing of kernel-level configuration and variables through
the /proc and /sys file systems shown in Chapter 10 allows administrators to fine-tune
their kernel operation in what amounts to an arguably better and easier way than in the
Microsoft Windows world.

Part III: Security and Networking
Previous editions of this book had security and networking at the back. This was done
because at the time, the only real extensions to the book that were covered were advanced
networking concepts that don’t apply to most administrators. This has significantly
changed over the last few years. With the ongoing importance of security on the Internet,
as well as compliancy issues with Sarbanes Oxley and Health Insurance Portability and
Accountability Act (HIPAA), the use of Linux in scenarios that require high security has
risen dramatically. Thus, we decided to move coverage up before introducing network-
based services, which could be subject to network attacks.

We kick off this section with Chapter 11, “TCP/IP for System Administrators,”
which provides a detailed overview of Transmission Control Protocol/Internet Proto-
col (TCP/IP) in the context of what system administrators need to know. The chapter

xxvIntroduction

provides a lot of detail on how to use troubleshooting tools, like tcpdump, to capture
packets and read them back, as well as a step-by-step analysis of how TCP connections
work. These tools should enable you to effectively troubleshoot network peculiarities.

Chapter 12, “Network Configuration,” returns to administration issues by focusing
on basic network configuration (for both IPv4 and IPv6). This includes setting up IP
addresses, routing entries, etc. We extend past the basics in Chapter 13, “The Linux Fire-
wall,” by going into advanced networking concepts and showing you how to build a
Linux-based firewall.

Chapter 14, “Local Security,” and Chapter 15, “Network Security,” discuss aspects
of system and network security in detail. They include Linux-specific issues as well as
general security tips and tricks so that you can better configure your system and protect
it against attacks.

Part IV: Internet Services
The remainder of the book is broken into two distinct parts: Internet and intranet ser-
vices. We define Internet services as those that you may consider running on a Linux sys-
tem exposed directly to the Internet. Examples of this include Web and Domain Name
System (DNS) services.

We start this section off with Chapter 16, “DNS.” In this section, we cover the infor-
mation you need to know to install, configure, and manage a DNS server. In addition to
the actual details of running a DNS server, we provide a detailed background on how
DNS works and several troubleshooting tips, tricks, and tools.

From DNS we move on to Chapter 17, “FTP,” and cover the installation and care of
File Transfer Protocol (FTP) servers. Like the DNS chapter, we also include a background
on the FTP protocol itself and some notes on its evolution.

Chapter 18, “Apache Web Server,” moves on to what may be considered one of the
most popular uses of Linux today: running a Web server with the Apache Web server.
In this chapter, we cover the information necessary to install, configure, and manage the
Apache Web server.

Chapter 19, “SMTP,” and Chapter 20, “POP and IMAP,” dive into e-mail through the
setup and configuration of Simple Mail Transfer Protocol (SMTP), Post Office Protocol
(POP), and Internet Message Access Protocol (IMAP) servers. We cover the information
needed to configure all three, as well as show how they interact with one another. What
you may find a little different about this book from other books on Linux is that we have
chosen to cover the Postfix SMTP server instead of the classic Sendmail server, because
it provides a more flexible server with a better security record.

We end Part IV with Chapter 21, “The Secure Shell (SSH).” Knowing how to set up
and manage the SSH service is useful for almost any server environment—regardless of
the server’s primary function.

Part V: Intranet Services
We define intranet services as those that are typically run behind a firewall for internal
users only. Even in this environment, Linux has a lot to offer. We start off by looking

 xxvi Introduction

at NFS in Chapter 22, “Network File System (NFS).” NFS has been around for close to
20 years now and has evolved and grown to fit the needs of its users quite well. In this
chapter, we cover Linux’s NFS server capabilities, including how to set up both clients
and servers, as well as troubleshooting. From NFS, we move on to NIS in Chapter 23,
“Network Information Service (NIS).” NIS is typically deployed alongside NFS servers to
provide a central naming service for all users within a network. We pay special attention
to scaling issues and how you can make NIS work in a large user-base environment.

Chapter 24, “Samba,” continues the idea of sharing disks and resources with cover-
age of the Samba service. Using Samba, administrators can share disks, printing facilities
and provide authentication for Windows (and Linux) users without having to install any
special client software. Thus, Linux can become an effective server, able to support and
share resources between UNIX/Linux systems as well as Windows systems.

We revisit directory services in Chapter 25, “LDAP,” with coverage of Lightweight
Directory Access Protocol (LDAP) and how administrators can use this standard service
for providing a central (or single) user database (directory) for use amongst heteroge-
neous operating systems.

In Chapter 26, “Printing,” we take a tour of the Linux printing subsystem. The print-
ing subsystem, when combined with Samba, allows administrators to support seamless
printing from Windows desktops. The result is a powerful way of centralizing printing
options for Linux, Windows, and even Mac OS X users on a single server.

Chapter 27, “DHCP,” covers another common use of Linux systems: Dynamic Host
Configuration Protocol (DHCP) servers. In this chapter, we cover how to deploy the ISC
DHCP server, which offers a powerful array of features and access controls that are not
traditionally exposed in graphical-based DHCP administration tools.

Chapter 28, “Virtualization,” is a new chapter. We discuss the basic virtualization con-
cepts and briefly cover some of the popular virtualization technologies in Linux. We cover
the kernel-based virtual machine (KVM) implementation in detail, with examples.

We end with Chapter 29, “Backups.” Backups are arguably one of the most critical
pieces of administration. Linux based systems support several methods of providing
backups that are easy to use and readily usable by tape drives and other media. We dis-
cuss some of the methods and explain how they can be used as part of a backup sched-
ule. In addition to the mechanics of backups, we discuss general backup design and how
you can optimize your backup system.

Updates and Feedback
While we hope that we publish a book with no errors, this isn’t always possible. You can
find an errata list for this book posted at www.labmanual.org. If you find any errors,
we welcome your submissions for errata updates. We also welcome your feedback and
comments. Unfortunately, our day jobs prevent us from answering detailed questions,
so if you’re looking for help on a specific issue, you may find one of the many online
communities a better choice. However, if you have two cents to share about the book, we
welcome your thoughts. You can send us e-mail at feedback@labmanual.org.

1

Installing Linux
as a Server

I

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

3

1

Technical Summary of
Linux Distributions

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

4 Linux Administration: A Beginner’s Guide

Linux has hit the mainstream. A quick walk through any local major computer
and electronics retail store will show this—the software offerings include boxed
versions of various Linux distributions, and the hardware offerings include systems

or appliances that use Linux in one form or another! Hardly a day goes by without a
mention of Linux (or open source software) in widely read print or digital publications.
What was only a hacker’s toy several years ago has grown up tremendously and is well
known for its stable and fast server performance. If more proof is needed, just note a
common question that is now asked of chief technology officers (CTOs) of Fortune 500
companies: “What is your Linux or open source strategy?”

With the innovative K Desktop Environment (KDE) and GNOME environments,
Linux is also making inroads into the Windows desktop market. In this chapter, we
will take a look at some of the core server-side technologies as they are implemented
in the Linux (open source) world and in the Microsoft Windows Server world (likely
the platform you are considering replacing with Linux). But before we delve into any
technicalities, we will briefly discuss some important underlying concepts and ideas
that affect Linux.

LINUX—THE OPERATING SYSTEM
Usually, people (mis)understand Linux to be an entire software suite of developer tools,
editors, graphical user interfaces (GUIs), networking tools, and so forth. More formally
and correctly, such software collectively is called a distribution, or distro. So the distro is the
entire software suite that makes Linux useful.

So if we consider a distribution everything you need for Linux, what then is Linux
exactly? Linux itself is the core of the operating system: the kernel. The kernel is the
program acting as chief of operations. It is responsible for starting and stopping other
programs (such as editors), handling requests for memory, accessing disks, and manag-
ing network connections. The complete list of kernel activities could easily be a chapter
in itself, and in fact, several books documenting the kernel’s internal functions have been
written.

The kernel is a nontrivial program. It is also what puts the Linux badge on all the
numerous Linux distributions. All distributions use essentially the same kernel, and
thus, the fundamental behavior of all Linux distributions is the same.

You’ve most likely heard of the Linux distributions named Red Hat Enterprise Linux
(RHEL), Fedora, Debian, Mandrake, Ubuntu, Kubuntu, openSuSE, goBuntu, and so on,
which have received a great deal of press.

Linux distributions can be broadly categorized into two groups. The first category
includes the purely commercial distros, and the second includes the noncommercial dis-
tros, or spins. The commercial distros generally offer support for their distribution—at
a cost. The commercial distros also tend to have a longer release life cycle. Examples of
commercial flavors of Linux-based distros are RHEL, SuSE Linux Enterprise (SLE), etc.

5 Chapter 1: Technical Summary of L inux Distributions

The noncommercial distros, on the other hand, are free. The noncommercial dis-
tros try to adhere to the original spirit of the open source software. They are mostly
 community supported and maintained—the community consists of the users and devel-
opers. The community support and enthusiasm can sometimes supersede that provided
by the commercial offerings.

Several of the so-called noncommercial distros also have the backing and support of
their commercial counterparts. The companies that offer the purely commercial flavors
have vested interests in making sure that free distros exist. Some of the companies use
the free distros as the proofing and testing ground for software that ends up in the com-
mercial spins. Examples of noncommercial flavors of Linux-based distros are Fedora,
OpenSuSE, Ubuntu, goBuntu, Debian, etc. Linux distros like Debian may be less well
known and may not have reached the same scale of popularity as Fedora, OpenSuSE,
and others, but they are out there and in active use by their respective (and dedicated)
communities.

What’s interesting about the commercial Linux distributions is that most of the tools
with which they ship were not written by the companies themselves. Rather, other peo-
ple have released their programs with licenses, allowing their redistribution with source
code. By and large, these tools are also available on other variants of UNIX, and some
of them are becoming available under Windows as well. The makers of the distribution
simply bundle them into one convenient package that’s easy to install. (Some distribu-
tion makers also develop value-added tools that make their distribution easier to admin-
ister or compatible with more hardware, but the software that they ship is generally
written by others.)

What Is Open Source Software and GNU All About?
In the early 1980s, Richard Stallman began a movement within the software industry. He
preached (and still does) that software should be free. Note that by free, he doesn’t mean
in terms of price, but rather free in the same sense as freedom. This meant shipping not
just a product, but the entire source code as well.

Stallman’s policy was, somewhat ironically, a return to classic computing, when soft-
ware was freely shared among hobbyists on small computers and given as part of the
hardware by mainframe and minicomputer vendors. (It was not until the late 1960s that
IBM considered selling application software. Through the 1950s and most of the 1960s,
they considered software merely a tool for enabling the sale of hardware.)

This return to openness was a wild departure from the early 1980s convention of sell-
ing prepackaged software, but Stallman’s concept of open-source software was in line
with the initial distributions of UNIX from Bell Labs. Early UNIX systems did contain
full source code. Yet by the late 1970s, source code was typically removed from UNIX
distributions and could be acquired only by paying large sums of money to AT&T (now
SBC). The Berkeley Software Distribution (BSD) maintained a free version, but its com-
mercial counterpart, BSDi, had to deal with many lawsuits from AT&T until it could be
proved that nothing in the BSD kernel was from AT&T.

6 Linux Administration: A Beginner’s Guide

Kernel Differences
Each company that sells a Linux distribution of its own will be quick to tell you
that its kernel is better than others. How can a company make this claim? The
answer comes from the fact that each company maintains its own patch set. In
order to make sure that the kernels largely stay in sync, most do adopt patches
that are put into Linus’ tree (as published on www.kernel.org). The main differ-
ence is that vendors typically do not track the release of every single kernel version
that is released onto www.kernel.org. Instead, they take a foundation, apply their
custom patches to it, run the kernel through their quality assurance (QA) process,
and then take it out to production. This helps organizations have confidence that
their kernels have been sufficiently baked, thus mitigating any perceived risk of
running open source–based operating systems.

The only exception to this rule revolves around security issues. If a security
issue is found with a Linux kernel, vendors are quick to adopt the necessary patches
to fix the problem immediately. A new release of the kernel is made within a short
time (commonly less than 24 hours) so that administrators can be sure their instal-
lations are secure. Thankfully, exploits against the kernel itself are rare.

So if each vendor maintains its own patch set, what exactly is it patching?
This answer varies from vendor to vendor, depending on each vendor’s target
market. Red Hat, for instance, is largely focused on providing enterprise-grade
reliability and solid efficiency for application servers. This may be different from
the mission of the Fedora team, which is more interested in trying new technolo-
gies quickly, and even more different from the approach of a vendor that is trying
to put together a desktop-oriented Linux system.

What separates one distribution from the next are the value-added tools that come
with each one. Asking “Which distribution is better?” is much like asking “Which is
better, Coke or Pepsi?” Almost all colas have the same basic ingredients—carbonated
water, caffeine, and high-fructose corn syrup—thereby giving the similar effect of
quenching thirst and bringing on a small caffeine-and-sugar buzz. In the end, it’s
a question of requirements: Do you need commercial support? Did your applica-
tion vendor recommend one distribution over another? Does the software (pack-
age) updating infrastructure suit your site’s administrative style better than another
distribution? When you review your requirements, you’ll find that there is likely a
distribution that is geared toward your exact needs.

The idea of giving away source code is a simple one: A user of the software should
never be forced to deal with a developer who might or might not support that user’s
intentions for the software. The user should never have to wait for bug fixes to be
 published. More importantly, code developed under the scrutiny of other programmers
is typically of higher quality than code written behind locked doors. The greatest benefit

7 Chapter 1: Technical Summary of L inux Distributions

of open source software, however, comes from the users themselves: Should they need
a new feature, they can add it to the original program and then contribute it back to the
source so that everyone else can benefit from it.

This line of thinking sprung a desire to release a complete UNIX-like system to the
public, free of license restrictions. Of course, before you can build any operating system,
you need to build tools. And this is how the GNU project was born.

NOTE GNU stands for GNU’s Not UNIX—recursive acronyms are part of hacker humor. If you don’t
understand why it’s funny, don’t worry. You’re still in the majority.

What Is the GNU Public License?
An important thing to emerge from the GNU project has been the GNU Public License
(GPL). This license explicitly states that the software being released is free and that no
one can ever take away these freedoms. It is acceptable to take the software and resell
it, even for a profit; however, in this resale, the seller must release the full source code,
including any changes. Because the resold package remains under the GPL, the pack-
age can be distributed for free and resold yet again by anyone else for a profit. Of pri-
mary importance is the liability clause: The programmers are not liable for any damages
caused by their software.

It should be noted that the GPL is not the only license used by open source soft-
ware developers (although it is arguably the most popular). Other licenses, such as BSD
and Apache, have similar liability clauses but differ in terms of their redistribution. For
instance, the BSD license allows people to make changes to the code and ship those
changes without having to disclose the added code. (The GPL would require that the
added code be shipped.) For more information about other open source licenses, check
out www.opensource.org.

Historical Footnote
Several years ago, Red Hat started a commercial offering of their erstwhile free
product (Red Hat Linux). The commercial release was the Red Hat Enterprise
Linux (RHEL) series. Because the foundation for RHEL is GPL, individuals inter-
ested in maintaining a free version of Red Hat’s distribution have been able to do
so. Furthermore, as an outreach to the community Red Hat created the Fedora Proj-
ect, which is considered the testing grounds for new software before it is adopted
by the RHEL team. The Fedora Project is freely distributed and can be downloaded
from http: //fedora.redhat.com.

8 Linux Administration: A Beginner’s Guide

THE ADVANTAGES OF OPEN SOURCE SOFTWARE
If the GPL seems like a bad idea from the standpoint of commercialism, consider the
surge of successful open source software projects—they are indicative of a system that
does indeed work. This success has evolved for two reasons. First, as mentioned earlier,
errors in the code itself are far more likely to be caught and quickly fixed under the
watchful eyes of peers. Second, under the GPL system, programmers can release code
without the fear of being sued. Without that protection, people may not feel as comfort-
able to release their code for public consumption.

NOTE The concept of free software, of course, often begs the question of why anyone would release
his or her work for free. As hard as it may be to believe, some people do it purely for altruistic reasons
and the love of it.

Most projects don’t start out as full-featured, polished pieces of work. They may
begin life as a quick hack to solve a specific problem bothering the programmer at the
time. As a quick-and-dirty hack, the code may not have a sales value. But when this code
is shared and consequently improved upon by others who have similar problems and
needs, it becomes a useful tool. Other program users begin to enhance it with features
they need, and these additions travel back to the original program. The project thus
evolves as the result of a group effort and eventually reaches full refinement. This pol-
ished program may contain contributions from possibly hundreds, if not thousands, of
programmers who have added little pieces here and there. In fact, the original author’s
code is likely to be little in evidence.

There’s another reason for the success of generally licensed software. Any project
manager who has worked on commercial software knows that the real cost of develop-
ment software isn’t in the development phase. It’s in the cost of selling, marketing, sup-
porting, documenting, packaging, and shipping that software. A programmer carrying
out a weekend hack to fix a problem with a tiny, kludged program may lack the interest,
time, and money to turn that hack into a profitable product.

When Linus Torvalds released Linux in 1991, he released it under the GPL. As a result
of its open charter, Linux has had a notable number of contributors and analyzers. This
participation has made Linux strong and rich in features. Torvalds himself estimates that
since the v.2.2.0 kernel, his contributions represent only 5 percent of the total code base.

Since anyone can take the Linux kernel (and other supporting programs), repackage
them, and resell them, some people have made money with Linux. As long as these indi-
viduals release the kernel’s full source code along with their individual packages, and
as long as the packages are protected under the GPL, everything is legal. Of course, this
means that packages released under the GPL can be resold by other people under other
names for a profit.

In the end, what makes a package from one person more valuable than a package
from another person are the value-added features, support channels, and documenta-
tion. Even IBM can agree to this; it’s how they made most of their money from 1930 to

9 Chapter 1: Technical Summary of L inux Distributions

1970, and now in the late 1990s and early 2000s with IBM Global Services. The money
isn’t necessarily in the product alone; it can also be in the services that go with it.

The Disadvantages of Open Source Software
This section was included to provide a balanced and unbiased contrast to the previous
section, which discussed some of the advantages of open source software.

Nothing to see here.

UNDERSTANDING THE DIFFERENCES
BETWEEN WINDOWS AND LINUX

As you might imagine, the differences between Microsoft Windows and the Linux oper-
ating system cannot be completely discussed in the confines of this section. Throughout
this book, topic by topic, we’ll examine the specific contrasts between the two systems.
In some chapters, you’ll find that we don’t derive any comparisons because a major dif-
ference doesn’t really exist.

But before we attack the details, let’s take a moment to discuss the primary architec-
tural differences between the two operating systems.

Single Users vs. Multiple Users vs. Network Users
Windows was designed according to the “one computer, one desk, one user” vision of
Microsoft’s cofounder Bill Gates. For the sake of discussion, we’ll call this philosophy
single-user. In this arrangement, two people cannot work in parallel running (for example)
Microsoft Word on the same machine at the same time. (On the other hand, one might
question the wisdom of doing this with an overwhelmingly weighty program like Word!)
You can buy Windows and run what is known as Terminal Server, but this requires huge
computing power and extra costs in licensing. Of course, with Linux, you don’t run into
the cost problem, and Linux will run fairly well on just about any hardware.

Linux borrows its philosophy from UNIX. When UNIX was originally developed at
Bell Labs in the early 1970s, it existed on a PDP-7 computer that needed to be shared by
an entire department. It required a design that allowed for multiple users to log into the
central machine at the same time. Various people could be editing documents, compil-
ing programs, and doing other work at the exact same time. The operating system on the
central machine took care of the “sharing” details so that each user seemed to have an
individual system. This multiuser tradition continues through today on other versions of
UNIX as well. And since Linux’s birth in the early 1990s, it has supported the multiuser
arrangement.

NOTE Most people believe that with the advent of Windows 95, the term “multitasking” was invented.
UNIX has had this capability since 1969! You can rest assured that the concepts put into Linux have
had many years to develop and prove themselves.

10 Linux Administration: A Beginner’s Guide

Today, the most common implementation of a multiuser setup is to support servers—
systems dedicated to running large programs for use by many clients. Each member of a
department can have a smaller workstation on the desktop, with enough power for day-
to-day work. When they need to do something requiring significantly more processing
power or memory, they can run the operation on the server.

“But, hey! Windows can allow people to offload computationally intensive work to
a single machine!” you may argue. “Just look at SQL Server!” Well, that position is only
half correct. Both Linux and Windows are indeed capable of providing services such as
databases over the network. We can call users of this arrangement network users, since
they are never actually logged into the server, but rather, send requests to the server.
The server does the work and then sends the results back to the user via the network.
The catch in this case is that an application must be specifically written to perform such
server/client duties. Under Linux, a user can run any program allowed by the system
administrator on the server without having to redesign that program. Most users find
the ability to run arbitrary programs on other machines to be of significant benefit.

The Monolithic Kernel and the Micro-Kernel
In operating systems, there are two forms of kernels. You have a monolithic kernel that
provides all the services the user applications need. And then you have the micro-kernel,
a small core set of services and other modules that perform other functions.

Linux, for the most, part adopts the monolithic kernel architecture; it handles every-
thing dealing with the hardware and system calls. Windows works off a micro-kernel
design. The kernel provides a small set of services and then interfaces with other execu-
tive services that provide process management, input/output (I/O) management, and
other services. It has yet to be proved which methodology is truly the best way.

Separation of the GUI and the Kernel
Taking a cue from the Macintosh design concept, Windows developers integrated the
GUI with the core operating system. One simply does not exist without the other. The
benefit with this tight coupling of the operating system and user interface is consistency
in the appearance of the system.

Although Microsoft does not impose rules as strict as Apple’s with respect to the
appearance of applications, most developers tend to stick with a basic look and feel
among applications. One reason this is dangerous is that the video card driver is now
allowed to run at what is known as “Ring 0” on a typical x86 architecture. Ring 0 is a pro-
tection mechanism—only privileged processes can run at this level, and typically user
processes run at Ring 3. Since the video card is allowed to run at Ring 0, the video card
could misbehave (and it does!), which can bring down the whole system.

On the other hand, Linux (like UNIX in general) has kept the two elements—user
interface and operating system—separate. The X Window System interface is run as a
user-level application, which makes it more stable. If the GUI (which is complex for both
Windows and Linux) fails, Linux’s core does not go down with it. The process simply
crashes, and you get a terminal window. The X Window System also differs from the

11 Chapter 1: Technical Summary of L inux Distributions

Windows GUI in that it isn’t a complete user interface. It only defines how basic objects
should be drawn and manipulated on the screen.

The most significant feature of the X Window System is its ability to display win-
dows across a network and onto another workstation’s screen. This allows a user sitting
on host A to log into host B, run an application on host B, and have all of the output
routed back to host A. It is possible for two people to be logged into the same machine,
running a Linux equivalent of Microsoft Word (such as OpenOffice) at the same time.

In addition to the X Window System core, a window manager is needed to create
a useful environment. Linux distributions come with several window managers and
include support for GNOME and KDE, both of which are available on other variants of
UNIX as well. If you’re concerned with speed, you can look into the WindowMaker and
Free Virtual Window Manager (FVWM) window managers. They might not have all the
glitz of KDE or GNOME, but they are really fast. When set as default, both GNOME and
KDE offer an environment that is friendly, even to the casual Windows user.

So which approach is better—Windows or Linux—and why? That depends on what
you are trying to do. The integrated environment provided by Windows is convenient
and less complex than Linux, but out of the box, it lacks the X Window System feature
that allows applications to display their windows across the network on another work-
station. Windows’ GUI is consistent, but cannot be turned off, whereas the X Window
System doesn’t have to be running (and consuming valuable memory) on a server.

NOTE With its latest server family (Windows Server 2008), Microsoft has somewhat decoupled the
GUI from the base operating system (OS). You can now install and run the server in a so-called “Server
Core” mode. Windows Server 2008 Server Core runs without the usual Windows GUI. Managing the
server in this mode is done via the command line or remotely from a regular system, with full GUI
capabilities.

The Network Neighborhood
The native mechanism for Windows users to share disks on servers or with each other is
through the Network Neighborhood. In a typical scenario, users attach to a share and have
the system assign it a drive letter. As a result, the separation between client and server is
clear. The only problem with this method of sharing data is more people-oriented than
technology-oriented: People have to know which servers contain which data.

With Windows, a new feature borrowed from UNIX has also appeared: mounting. In
Windows terminology, it is called reparse points. This is the ability to mount a CD-ROM
drive into a directory on your C drive. The concept of mounting resources (optical media,
network shares, etc.) in Linux/UNIX may seem a little strange, but as you get used to
Linux, you’ll understand and appreciate the beauty in this design. To get anything close
to this functionality in Windows, you have to map a network share to a drive letter.

Linux, using the Network File System (NFS), has supported the concept of mounting
since its inception. In fact, the Linux Automounter can dynamically mount and unmount
partitions on an as-needed basis.

12 Linux Administration: A Beginner’s Guide

A common example of mounting partitions under Linux involves mounted home
directories. The user’s home directories reside on a server, and the client mounts the
directories at boot time (automatically). So the /home directory exists on the client, but
the /home/username directory (and its contents) can reside on the server.

Under Linux NFS, users never have to know server names or directory paths, and
their ignorance is your bliss. No more questions about which server to connect to. Even
better, users need not know when the server configuration must change. Under Linux,
you can change the names of servers and adjust this information on client-side systems
without making any announcements or having to reeducate users. Anyone who has
ever had to reorient users to new server arrangements is aware of the repercussions
that can occur.

Printing works in much the same way. Under Linux, printers receive names that are
independent of the printer’s actual host name. (This is especially important if the printer
doesn’t speak Transmission Control Protocol/Internet Protocol, or TCP/IP.) Clients point
to a print server whose name cannot be changed without administrative authorization.
Settings don’t get changed without you knowing it. The print server can then redirect
all print requests as needed. The Linux uniform interface will go a long way toward
improving what may be a chaotic printer arrangement in your installation. This also
means you don’t have to install print drivers in several locations.

The Registry vs. Text Files
Think of the Windows Registry as the ultimate configuration database—thousands upon
thousands of entries, only a few of which are completely documented.

“What? Did you say your Registry got corrupted?” <maniacal laughter> “Well, yes,
we can try to restore it from last night’s backups, but then Excel starts acting funny and
the technician (who charges $50 just to answer the phone) said to reinstall.…”

In other words, the Windows Registry system is, at best, difficult to manage. Although
it’s a good idea in theory, most people who have serious dealings with it don’t emerge
from battle without a scar or two.

Linux does not have a registry. This is both a blessing and a curse. The blessing is that
configuration files are most often kept as a series of text files (think of the Windows .ini
files before the days of the Registry). This setup means you’re able to edit configuration
files using the text editor of your choice rather than tools like regedit. In many cases,
it also means you can liberally comment those configuration files so that six months
from now you won’t forget why you set something up in a particular way. With most
tools that come with Linux, configuration files exist in the /etc directory or one of its
subdirectories.

The curse of a no-registry arrangement is that there is no standard way of writing
configuration files. Each application can have its own format. Many applications are now
coming bundled with GUI-based configuration tools to alleviate some of these problems.
So you can do a basic setup easily and then manually edit the configuration file when
you need to do more complex adjustments.

13 Chapter 1: Technical Summary of L inux Distributions

In reality, having text files hold configuration information usually turns out to be
an efficient method. Once set, they rarely need to be changed; even so, they are straight
text files and thus easy to view when needed. Even more helpful is that it’s easy to write
scripts to read the same configuration files and modify their behavior accordingly. This
is especially helpful when automating server maintenance operations, which is crucial
in a large site with many servers.

Domains and Active Directory
If you’ve been using Windows long enough, you may remember the Windows NT domain
controller model. If twinges of anxiety ran through you when reading the last sentence,
you may still be suffering from the shell shock of having to maintain Primary Domain
Controllers (PDCs), Backup Domain Controllers (BDCs), and their synchronization.

Microsoft, fearing revolt from administrators all around the world, gave up on the
Windows NT model and created Active Directory (AD). The idea behind AD was simple:
Provide a repository for any kind of administrative data, whether it is user logins, group
information, or even just telephone numbers, and manage authentication and authori-
zation for a domain. The domain synchronization model was also changed to follow a
Domain Name System (DNS)–style hierarchy that has proved to be far more reliable.
NT LAN Manager (NTLM) was also dropped in favor of Kerberos. (Note that AD is still
compatible with NTLM.)

While running dcpromo may not be anyone’s idea of a fun afternoon, it is easy to see
that AD works pretty well.

Out of the box, Linux does not use a tightly coupled authentication/authorization
and data store model the way that Windows does with Active Directory. Instead, Linux
uses an abstraction model that allows for multiple types of stores and authentication
schemes to work without any modification to other applications. This is accomplished
through the Pluggable Authentication Modules (PAM) infrastructure and the name reso-
lution libraries that provide a standard means of looking up group information for appli-
cations and a flexible way of storing that group information using a variety of schemes.

For administrators looking to Linux, this abstraction layer can seem peculiar at first.
However, consider that you can use anything from flat files to Network Information
Service (NIS) to Lightweight Directory Access Protocol (LDAP) or Kerberos for authenti-
cation. This means you can pick the system that works best for you. For example, if you
have an existing UNIX infrastructure that uses NIS, you can simply make your Linux
systems plug into that. On the other hand, if you have an existing AD infrastructure, you
can use PAM with Samba or LDAP to authenticate against the domain. Use Kerberos?
No problem. And of course, you can choose to make your Linux system not interact
with any external authentication system. In addition to being able to tie into multiple
authentication systems, Linux can easily use a variety of tools, such as OpenLDAP, to
keep directory information available as well.

14 Linux Administration: A Beginner’s Guide

SUMMARY
In this chapter, we offered an overview of what Linux is and what it isn’t. We discussed
a few of the guiding principles, ideas, and concepts that govern open source software
and Linux by extension. We ended the chapter by glossing over some of the similarities
and differences between core technologies in the Linux and Microsoft Windows Server
worlds. Most of these technologies and their practical uses are dealt with in greater detail
in the rest of this book.

If you are so inclined and would like to get more detailed information on the internal
workings of Linux itself, you may want to start with the source code. The source code
can be found here: www.kernel.org. It is, after all, open source!

15

2

Installing Linux in a
Server Configuration

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 16 Linux Administration: A Beginner’s Guide

A key attribute in Linux’s recent success is the remarkable improvement in
installation tools. What once was a mildly frightening process many years back
has now become almost trivial. Even better, there are many ways to install the

software; optical media (CD/DVD-ROMs) are no longer the only choice (although they
are still the most common). Network installations are part of the default list of options as
well, and they can be a wonderful help when installing a large number of hosts. Another
popular method of installing a Linux distribution is installing from a live CD.

Most default configurations where Linux is installed are already capable of becom-
ing servers. It is usually just a question of installing and configuring the proper software
to perform the needed task. Proper practice dictates that a so-called server be dedicated
to performing only one or two specific tasks. Any other installed and irrelevant ser-
vices simply take up memory and exert a drag on performance and, as such, should be
avoided. In this chapter, we discuss the installation process as it pertains to servers and
their dedicated functions.

HARDWARE AND ENVIRONMENTAL CONSIDERATIONS
As with any operating system, before getting started with the installation process, you
should determine what hardware configurations would work. Each commercial vendor
publishes a hardware compatibility list (HCL) and makes it available on its web site. For
example, Red Hat’s HCL is at http://hardware.redhat.com (Fedora’s HCL can be safely
assumed to be similar to Red Hat’s), OpenSuSE’s HCL database can be found at http://
en.opensuse.org/Hardware, Ubuntu’s HCL can be found at https://wiki.ubuntu.com/
HardwareSupport, and a more generic HCL for most Linux flavors can be found at
http://www.tldp.org/HOWTO/Hardware-HOWTO.

These sites provide a good starting reference point when you are in doubt concerning
a particular piece of hardware. However, keep in mind that new Linux device drivers
are being churned out on a daily basis around the world and no single site can keep up
with the pace of development in the open source community. In general, most popular
Intel-based and AMD-based configurations work without difficulty.

A general suggestion that applies to all operating systems is to avoid cutting-edge
hardware and software configurations. While they appear to be really impressive, they
haven’t had the maturing process some of the slightly older hardware has gone through.
For servers, this usually isn’t an issue, since there is no need for a server to have the latest
and greatest toys, such as fancy video cards and sound cards. After all, your main goal is
to provide a stable and available server for your users.

SERVER DESIGN
By definition, server-grade systems exhibit three important characteristics: stability, avail-
ability, and performance. These three factors are usually improved through the purchase

17 Chapter 2: Instal l ing Linux in a Server Configuration

of more and better hardware, which is unfortunate. It’s a shame to pay thousands of
dollars extra to get a system capable of achieving in all three areas when you could have
extracted the desired level of performance out of existing hardware with a little tuning.
With Linux, this is not hard. Even better, the gains are outstanding.

One of the most significant design decisions you must make when managing a server
may not even be technical, but administrative. You must design a server to be unfriendly
to casual users. This means no cute multimedia tools, no sound card support, and no
fancy web browsers (when at all possible). In fact, it should be a rule that casual use of a
server is strictly prohibited.

Another important aspect of designing a server is making sure that it has a good
environment. As a system administrator, you must ensure the physical safety of your
servers by keeping them in a separate room under lock and key (or the equivalent).
The only access to the servers for nonadministrative personnel should be through the
network. The server room itself should be well ventilated and kept cool. The wrong envi-
ronment is an accident waiting to happen. Systems that overheat and nosy users who
think they know how to fix problems can be as great a danger to server stability as bad
software (arguably even more so).

Once the system is in a safe place, installing battery backup is also crucial. Backup
power serves two key purposes:

▼ It keeps the system running during a power failure so that it may gracefully shut
down, thereby avoiding data corruption or loss.

▲ It ensures that voltage spikes, drops, and other electrical noises don’t interfere
with the health of your system.

Here are some specific things you can do to improve your server performance:

▼ Take advantage of the fact that the graphical user interface is uncoupled from
the core operating system, and avoid starting the X Window System (Linux’s
graphical user interface or GUI) unless someone needs to sit on a console and
run an application. After all, like any other application, the X Window System
requires memory and CPU time to work, both of which are better off going to the
more essential server processes instead.

 ■ Determine what functions the server is to perform, and disable all other
unrelated functions. Not only are unused functions a waste of memory
and CPU time, but they are just another issue you need to deal with on the
security front.

▲ Unlike some other operating systems, Linux allows you to pick and choose
the features you want in the kernel. (You’ll learn about this process in Chap-
ter 10.) The default kernel will already be reasonably well tuned, so you won’t
have to worry about it. But if you do need to change a feature or upgrade the
kernel, be picky about what you add. Make sure you really need a feature
before adding it.

 18 Linux Administration: A Beginner’s Guide

NOTE You may hear an old recommendation that you recompile your kernel to make the most
effective use of your system resources. This is no longer entirely true—the other reasons to recompile
your kernel might be to upgrade or add support for a new device or even to remove support for
components you don’t need.

Uptime
All of this chatter about taking care of servers and making sure silly things don’t cause
them to crash stems from a longtime UNIX philosophy: Uptime is good. More uptime is
better.

The UNIX (Linux) uptime command tells the user how long the system has been
running since its last boot, how many users are currently logged in, and how much load
the system is experiencing. The last two are useful measures that are necessary for day-
to-day system health and long-term planning. (For example, the server load has been
staying high lately, so maybe it’s time to buy a faster/bigger/better server.)

But the all-important number is how long the server has been running since its last
reboot. Long uptime is regarded as a sign of proper care, maintenance, and, from a prac-
tical standpoint, system stability. You’ll often find UNIX administrators boasting about
their server’s uptime the way you hear car buffs boast about horsepower. This is also
why you’ll hear UNIX administrators cursing at system changes (regardless of operating
system) that require a reboot to take effect. You may deny caring about it now, but in six
months, you’ll probably scream at anyone who reboots the system unnecessarily. Don’t
bother trying to explain this phenomenon to a nonadmin, because they’ll just look at you
oddly. You’ll just know in your heart that your uptime is better than theirs.

DUAL-BOOTING ISSUES
If you are new to Linux, you may not be ready to commit to a complete system when you
just want a test drive. All distributions of Linux can be installed on separate partitions
of your hard disk while leaving others alone. Typically, this means allowing Microsoft
Windows to coexist with Linux.

Because we are focusing on server installations, we will not cover the details of build-
ing a dual-booting system; however, anyone with a little experience in creating partitions
on a disk should be able to figure this out. If you are having difficulty, you may want to
refer to the installation guide that comes with your distribution.

Some quick hints: If you are using Windows NT/200x/XP/Vista with NTFS and
have already allocated the entire disk to the OS, you may have to do some prep work. To
better guarantee success when resizing a New Technology File System (NTFS) file sys-
tem, you might want to use the built-in Windows tools (e.g., chkdisk, Disk Defragmenter,
etc.) to prepare or fix any file-system issues prior to resizing. Because of its complexity, it
is slightly trickier to resize an NTFS-formatted partition. Nonetheless, it is still possible.

19 Chapter 2: Instal l ing Linux in a Server Configuration

Most of the newer Linux distributions will even offer to automatically resize your NTFS
partition for you during the OS install.

NOTE From the perspective of flexibility, NTFS doesn’t sound like a good thing, but in reality, it is. If
you have to run NT, 2000, 2003, 2008, or Vista, use NTFS.

You may find using a commercial tool such as PartitionMagic to be especially
helpful, because it offers support for NTFS, FAT32, and regular File Allocation Table
(FAT), as well as a large number of other file-system types. Another useful, completely
open source alternative for managing disk partition is the GParted Live CD (http://
gparted-livecd.tuxfamily.org). For dealing with Linux dual-boot issues with Vista,
 Neosmart’s EasyBCD (www.neosmart.net) product is useful and easy to use.

METHODS OF INSTALLATION
With the improved connectivity and speed of both local area networks and Internet con-
nections, it is becoming an increasingly popular option to perform installations over the
network rather than using a local optical drive (CD-ROM, DVD-ROM, etc.).

Depending on the particular Linux distribution and the network infrastructure
already in place, one can design network-based installations around several protocols.
Some of the more popular protocols over which network-based installations are done
are listed here:

▼ FTP (File Transfer Protocol) This is one of the earliest methods for performing
network installations.

 ■ HTTP (Hypertext Transfer Protocol) The installation tree is served from a web
server.

 ■ NFS (Network File System) The distribution tree is shared/exported on an
NFS server.

▲ SMB (Server Message Block) This method is relatively new, and not all dis-
tributions support it. The installation tree can be shared on a Samba server or
shared from a Windows box.

The other, more typical method of installation is through the use of optical media pro-
vided by the vendor. All the commercial distributions of Linux have boxed sets of their
brand of Linux that contain the install media. They usually also make CD/DVD-ROM
images (ISOs) of the OS available on their FTP and/or HTTP sites. The distros (distribu-
tions) that don’t make their ISOs available will usually have a stripped-down version of
the OS available in a repository tree on their site.

Another variant of installing Linux that has become popular is installing via a live CD
or live distro. This method provides several advantages. It allows the user to try out (test
drive) the distribution first before actually installing anything onto the drive. It allows the

 20 Linux Administration: A Beginner’s Guide

user to have a rough idea of how hardware and other peripherals on the target system
will behave. Live CDs are usually a stripped-down version of the full distribution and, as
such, no conclusion should be drawn from them. With a little tweak here and there, one
can usually get troublesome hardware working after the fact—your mileage may vary.

We will be performing a server class install in this chapter using an image that was
burnt to a DVD. Of course, once you have gone through the process of installing from an
optical medium (CD/DVD-ROM), you will find performing the network-based installa-
tions straightforward. A side note regarding automated installations is that server-type
installs aren’t well suited to automation, because each server usually has a unique task;
thus, each server will have a slightly different configuration. For example, a server dedi-
cated to handling logging information sent to it over the network is going to have espe-
cially large partitions set up for the appropriate logging directories, compared to a file
server that performs no logging of its own. (The obvious exception is for server farms,
where you have large numbers of replicated servers. But even those installations have
their nuances that require attention to detail specific to the installation.)

INSTALLING FEDORA
In this section, you will install a Fedora 9 distribution on a stand-alone system. We will
take a liberal approach to the process, installing all of the tools possibly relevant to server
operations. Later chapters explain each subsystem’s purpose and help you determine
which ones you really need to keep.

NOTE Don’t worry if you chose to install a distribution other than Fedora; luckily, most of the concepts
carry over among the various distributions. Some installers are just prettier than others.

Project Prerequisites
First, you need to download the ISOs for Fedora 9 that we will be installing. Fedora’s
project web page has a listing of several mirrors located all over the world. You should,
of course, choose the mirror geographically closest to you. The list of mirrors can be
found at http://mirrors.fedoraproject.org/publiclist.

The DVD image used for this installation was downloaded from ftp://download
.fedora.redhat.com/pub/fedora/linux/releases/9/Fedora/i386/iso/Fedora-9-i386-
DVD.iso.

NOTE Linux distributions are often packaged by the architecture they were compiled to run on. You
would often find ISO images (and other software) named to reflect an architecture type. Examples of
the architecture types are x86, x86_64, ppc, etc. The x86 refers to the Pentium class family and their
equivalents (e.g., i386, i586, i686, AMD Athlon, AthlonXP, Duron, AthlonMP, Sempron, etc.). The PPC
family refers to the PowerPC family (e.g., G3, G4, G5, IBM pSeries, etc.). And the x86_64 family refers
to the 64-bit platforms (e.g., Athlon64, Turion64, Opteron, EM64T, etc.).

21 Chapter 2: Instal l ing Linux in a Server Configuration

The next step is to burn the ISO to a suitable medium. In this case, we need to burn
the ISO to a blank DVD. Use your favorite CD/DVD burning program to burn the image.
Remember that the file you downloaded is already an exact image of a DVD medium
and so should be burnt as such. Most CD/DVD burning programs have an option to cre-
ate a CD or DVD from an image.

If you burn the file you downloaded as you would a regular data file, you will end up
with a single file on the root of your DVD-ROM. This is not what you want. The system
you are installing on should have a DVD-ROM drive.

NOTE Linux distribution install images are also usually available as a set of CD-ROM images. You
can perform the installation using these CD-ROMs, but we have decided to perform the install using
a DVD-ROM, mostly for the sake of convenience. Using a single DVD helps you avoid having to swap
out CDs in the middle of the install, because all the required files are already on a single DVD, as
opposed to multiple CDs, and also because the chances of having a bad installation medium are
reduced (i.e., there is a higher probability of having one bad CD out of four than of having one bad
DVD out of one).

Let’s begin the installation process.

Carrying Out the Installation
 1. To start the installation process, boot off the DVD-ROM (the system Basic Input

Output System, or BIOS, should be preconfigured for this already). This will
present you with a welcome splash screen.

 22 Linux Administration: A Beginner’s Guide

 2. If you do not press any key, the prompt will eventually time out and begin the
installation process by booting the highlighted Install or Upgrade an Existing
System option. You can also press enter to start the process immediately.

 3. At the Disc Found screen, press enter to test/verify your install media. Note
that the test performed here is not always perfect. But for the majority of times
when it does work, it can save you the trouble of starting the installation only to
find out halfway through that the installer will abort because of a bad disc. Press
enter again at the Media Check screen to begin testing.

 4. After the media check runs to completion, you should get the Success screen that
reports that the media was successfully verified. At this point, it is safe to select
OK to continue with the installation. If you don’t have any other install media to
test, select Continue at the next screen.

 5. Click Next at the next screen.

 6. Select the language you want to use to perform the installation in this screen (see
illustration). The interface works much like any other Windows-style interface.
Simply point to your selection and click. English (English) is selected on our
sample system. When you are ready, click the Next button in the lower-right
portion of the screen.

 7. Select your keyboard layout type. This screen allows you to select the layout type
for the keyboard. The screen lists the various possible layouts that are supported.
The U.S. English layout is selected on our sample system. Click Next to continue.

23 Chapter 2: Instal l ing Linux in a Server Configuration

 8. If prompted, select Yes at the Warning screen to initialize the hard disk and erase
any data that might be on it.

NOTE After you click Next at this point, the installer will quickly search your hard drive for any
existing Linux installations. If any are found, you might be prompted with a different screen to perform
an upgrade or a reinstallation of the OS found. If you are instead installing on a brand-new hard disk,
you will not get any such screen. If installing on a new hard disk, you will get a Warning dialog box
prompting you to initialize the disk as described in the procedure.

Network Configuration
Each interface card that was detected correctly will be listed under the Network Devices
section. Ethernet devices in Linux are named eth0, eth1, eth2, and so on. For each inter-
face, you can either configure it using Dynamic Host Configuration Protocol (DHCP) or
manually set the Internet Protocol (IP) address. If you choose to configure manually, be
sure to have all the pertinent information ready, such as the IP address, netmask, etc.

On the bottom half of the screen, you’ll see the configuration choices for configuring
the Hostname of the system (the name defaults to localhost.localdomain, which can eas-
ily be changed later) and other Miscellaneous Settings.

 1. On our sample system, we are going to configure the first Ethernet interface—
eth0—using DHCP. Accept all the default values in this screen, as shown here,
and click Next.

 24 Linux Administration: A Beginner’s Guide

NOTE Don’t worry if you know that you don’t have a DHCP server available on your network that will
provide your new system with IP configuration information. The Ethernet interface will simply remain
unconfigured. The hostname of the system also can be automatically set via DHCP—if you have a
reachable and capable DHCP server on the network.

Time Zone Selection
The Time Zone Configuration section is the next stage in the installation. This is where
you select the time zone in which the machine is located.

If your system’s hardware clock keeps time in Coordinated Universal Time (UTC),
be sure to select the System Clock Uses UTC check box so that Linux can determine the
difference between the two and display the correct local time.

 1. Scroll through the list of locations, and select the nearest city to your time zone.
You can also use the interactive map to select a specific city (marked by a yellow
dot) to set your time zone.

 2. Click Next when done.

Set the Root Password
The next part of the installation allows you to set a password for the root user, also
called the superuser. It is the most privileged account on the system and typically has
full control of the system. It is equivalent to the Administrator account in Windows
operating systems. Thus, it is crucial that you protect this account with a good pass-
word. Be sure not to pick dictionary words or names as passwords, as they are easy to
guess and crack.

 1. Pick a strong password and enter it in the Root Password text box.

 2. Enter the same password again in the Confirm text box.

 3. Click Next.

Disk Partitioning Setup
This portion of the installation is probably the part that most new Linux users find the
most awkward. This is because of the different naming conventions that Linux uses. This
needn’t be so—all it takes is a slight mind shift. You should also keep in mind that “a
partition is a partition is a partition” in Linux or Windows.

What follows is a quick overview of the partitioning scheme you will be employing
for this installation. Please note that, by default, the installer has the option to automati-
cally lay out the disk partition, but we will not accept the default layout so that we can
configure the server optimally. The equivalent partitions in the Windows world are also
given in the overview:

25 Chapter 2: Instal l ing Linux in a Server Configuration

▼ / The root partition/volume is identified by a forward slash (/). All other
directories are attached (mounted) to this parent directory. It is equivalent to the
system drive (C:\) in Windows.

 ■ /boot This partition/volume contains almost everything required for the boot
process. It stores data that is used before the kernel begins executing user pro-
grams. The equivalent of this in Windows is known as the system partition (not
the boot partition).

 ■ /usr This is where all of the program files will reside (similar to C:\Program
Files in Windows).

 ■ /home This is where everyone’s home directory will be (assuming this server
will house them). This is useful for keeping users from consuming an entire
disk and leaving other critical components without space (such as log files). This
directory is synonymous with “C:\Documents and Settings\” in Windows
XP/200x or “C:\Users\” in the Vista and Windows Server 2008 world.

 ■ /var This is where system/event logs are generally stored. Because log files tend
to grow in size quickly and can also be affected by outside users (for instance,
individuals visiting a web site), it is important to store the logs on a separate
partition so that no one can perform a denial-of-service attack by generating
enough log entries to fill up the entire disk. Logs are generally stored in the C:\
WINDOWS\system32\config\ directory in Windows.

 ■ /tmp This is where temporary files are placed. Because this directory is
designed so that it is writable by any user (similar to the C:\Temp directory
under Windows), you need to make sure arbitrary users don’t abuse it and fill
up the entire disk. You ensure this by keeping it on a separate partition.

▲ Swap This is where the virtual memory file is stored. This isn’t a user- accessible
file system. Although Linux (and other flavors of UNIX as well) can use a nor-
mal disk file to hold virtual memory the way Windows does, you’ll find that
having your swap file on its own partition improves performance. You will typi-
cally want to configure your swap file to be double the physical memory that is
in your system. This is referred to as the paging file in Windows.

Each of these partitions is mounted at boot time. The mount process makes the con-
tents of that partition available as if it were just another directory on the system. For
example, the root directory (/) will be on the first (root) partition. A subdirectory called
/usr will exist on the root directory, but it will have nothing in it. A separate partition can
then be mounted such that going into the /usr directory will allow you to see the contents
of the newly mounted partition. All the partitions, when mounted, appear as a unified
directory tree rather than as separate drives; the installation software does not differenti-
ate one partition from another. All it cares about is which directory each file goes into. As
a result, the installation process automatically distributes its files across all the mounted
partitions, as long as the mounted partitions represent different parts of the directory
tree where files are usually placed.

 26 Linux Administration: A Beginner’s Guide

The disk partitioning tool used during the operating system installation provides an
easy way to create partitions and associate them to the directories they will be mounted
on. Each partition entry will typically show the following information:

▼ Device Linux associates each partition with a separate device. For the purpose
of this installation, you need to know only that under Integrated Drive Electronics
(IDE) disks, each device begins with /dev/sdXY, where X is a for an IDE master
on the first chain, b for an IDE slave on the first chain, c for an IDE master on the
second chain, or d for an IDE slave on the second chain, and where Y is the parti-
tion number of the disk. For example, /dev/sda1 is the first partition on the pri-
mary chain, primary disk. Native Small Computer System Interface (SCSI) disks
follow the same basic idea, and each partition starts with /dev/sdXY, where X is
a letter representing a unique physical drive (a is for SCSI ID 1, b is for SCSI ID 2,
and so on). The Y represents the partition number. Thus, for example, /dev/sdb4
is the fourth partition on the SCSI disk with ID 2. The system is a little more com-
plex than Windows, but each partition’s location is explicit—no more guessing:
“What physical device does drive E: correspond to?”

 ■ Mount point The location where the partition is mounted.

 ■ Type This field shows the partition’s type (for example, ext2, ext3, ext4, swap,
or vfat).

 ■ Format This field indicates whether the partition will be formatted.

 ■ Size (MB) This field shows the partition’s size (in megabytes, or MB).

 ■ Start This field shows the cylinder on your hard drive where the partition
begins.

▲ End This field shows the cylinder on your hard drive where the partition ends.

For the sake of simplicity, you will use only some of the disk boundaries described ear-
lier for your installation. In addition, you will leave some free space (unpartitioned space)
that we can play with in a later chapter (Chapter 7). You will carve up your hard disk into:

/boot

/

SWAP

/home

/tmp

FREE SPACE/UNPARTITIONED AREA

The sample system that this installation is being performed on has a 10-gigabyte (GB)
hard disk. You will use the following sizes as a guideline on how to allocate the various
sizes for each partition/volume. You should, of course, adjust the suggested sizes to suit
the overall size of the disk you are using.

27 Chapter 2: Instal l ing Linux in a Server Configuration

Mount Point Size

/boot 200MB

/ 5GB

SWAP 1024MB

/home 2.5GB

/tmp 512MB

FREE SPACE ~ 800MB

NOTE The /boot partition cannot be created on a Logical Volume Management (LVM) partition type.
The Fedora boot loader cannot read LVM-type partitions. This is true at the time of this writing, but may
change in the future.

Now that you have some background on partitioning under Linux, let’s go back to
the installation process itself:

 1. At the top of the screen, select the Create Custom Layout option, and click Next.

 2. Next you will be presented with the Disk Setup screen, as shown here:

 28 Linux Administration: A Beginner’s Guide

 3. Click New. The Add Partition dialog box appears; complete it with the informa-
tion that follows for the corresponding fields:

Mount Point /boot

File System Type ext3

Allowable Drives Accept the default value

Size (MB) 200

Additional Size Options Fixed size

Force to be a primary partition Leave unselected

The completed dialog box should resemble the one shown here. Click the OK
button when done.

NOTE The Fedora installer supports the creation of encrypted file systems. We will not use any
encrypted file systems on our sample system.

 4. You will create the / (root), /home, /tmp, and swap containers on an LVM-type
partition. In order to do this, you will first need to create the parent physical
volume.

29 Chapter 2: Instal l ing Linux in a Server Configuration

Click New. The Add Partition dialog box appears. The physical volume will be
created with the information that follows:

Mount Point Leave this field blank

File System Type physical volume (LVM)

Allowable Drives Accept the default value

Size (MB) 9216 (Approximately 9.0GB)

Additional Size Options Fixed size

Force to be a primary partition Leave unselected

The completed dialog box should resemble the one shown here. Click OK
when done.

 5. Click the LVM button. The Make LVM Volume Group dialog box will appear.
Accept the default values already provided for the various fields (Volume
Group Name, Physical Extent, etc.). Click Add. The Make Logical Volume dia-
log box will appear. Complete the fields in the dialog box with the information
that follows:

Mount Point /

File System Type ext3

 30 Linux Administration: A Beginner’s Guide

Logical Volume Name LogVol00

Size (MB) 5120 (approximately 5GB)

The completed dialog box should resemble the one shown here. Click OK
when done.

 6. Click Add again in the Make LVM Volume Group dialog box. The Make Logical
Volume dialog box will appear. Complete the fields in the dialog box with the
information that follows:

Mount Point Leave blank

File System Type swap

Logical Volume Name LogVol01

Size (MB) 1024 (approximately double the total amount of
random access memory, or RAM, available)

The completed dialog box should resemble the one shown here. Click the OK
button when done.

31 Chapter 2: Instal l ing Linux in a Server Configuration

 7. Click Add again in the Make LVM Volume Group dialog box. The Make Logical
Volume dialog box will appear. Complete the fields in the dialog box with the
information that follows:

Mount Point /home

File System Type ext3

Logical Volume Name LogVol02

Size (MB) 2560 (Approximately 2.5GB)

Click OK when done.

 8. Click Add again in the Make LVM Volume Group dialog box. The Make Logical
Volume dialog box will appear. Complete the fields in the dialog box with the
information that follows:

Mount Point /tmp

File System Type ext3

Logical Volume Name LogVol03

Size (MB) 480 (or “Use up all the remaining free space
on the Volume group”)

Click OK when done.

 9. The completed Make LVM Volume Group dialog box should resemble the one
shown here:

 32 Linux Administration: A Beginner’s Guide

Click OK to close the dialog box.

 10. You will be returned to the main Disk Setup screen. The final screen should be
similar to the one shown here:

You will notice that we have some free unpartitioned space left under the device
column. This was done deliberately so that we can play with that space in a later
chapter without necessarily having to reinstall the entire operating system to
create free space.

 11. Click Next to complete the disk-partitioning portion of the installation.

NOTE You might get a warning about “Writing partitioning to disk” before the changes are actually
written to disk. If you do get this warning, it is okay to confirm writing the changes to disk. Also, if you
get a “Low memory” warning message, click Yes to immediately turn on the swap space.

Boot Loader Configuration
A boot manager handles the process of actually starting the load process of an operating
system. GRand Unified Bootloader (GRUB) is one of the popular boot managers for Linux.

33 Chapter 2: Instal l ing Linux in a Server Configuration

If you’re familiar with Windows, you have already dealt with the NT Loader (NTLDR),
which presents the menu at boot time.

The Boot Loader Configuration screen has multiple sections (see Figure 2-1). The top
of the screen tells you where the boot loader is being installed. On our sample system,
it is being installed on the Master Boot Record (MBR) of /dev/sda. The MBR is the first
thing the system will read when booting a system. It is essentially the point where the
built-in hardware tests finish and pass off control to the software.

Typically, unless you really know what you are doing, you will want to accept the
defaults provided here. For example, clearing the check box next to the field where you
specify the device on which to install the boot loader will let you choose not to install a
boot loader, which is not what we want in this instance.

The next section of the screen (Boot loader operating system list) lets you configure
the boot loader to boot other operating systems.

If you are installing Linux on a hard disk that already has some other operating
system (e.g., Windows or some other flavor of Linux), this is where the dual-booting

Figure 2-1. Boot Loader Configuration screen

 34 Linux Administration: A Beginner’s Guide

 functionality will be configured. On a system that is configured to support both Windows
and Linux, you will see your choices here. If your system is set up only for Linux (as we
assume here), you will see one entry.

NOTE Various Linux distributions customize the boot loader menu in different ways. Some
distributions automatically add a rescue mode entry to the list of available options. Some distributions
also add a Memory Test utility option to the menu.

To reiterate, most of the default values provided in this stage of the installation usu-
ally work fine for most purposes.

 1. Accept the default values provided, and click Next.

Package Group Selection
This is the part of the installation where you can select what packages (applications)
get installed onto the system. Fedora categorizes these packages into several high-level
categories, such as Office and Productivity, Software Development, etc. Each category
houses the individual software packages that compliment that category. This organiza-
tion allows you to make a quick selection of what types of packages you want installed
and safely ignore the details.

Looking at the choices shown here, you see the menu of top-level package groups
that Fedora gives you. You can simply pick the group(s) that interest you.

 1. In the top half of the screen, clear the Office and Productivity option.

 2. Select the Customize Now option, and click Next.

The next screen allows you to further customize the software packages to be installed.
This is where you can choose to install a bare-bones system or install all the packages
available on the installation medium. Be warned: A full/everything install is not a good
idea for a server-grade system such as the one we are trying to set up.

The GNOME Desktop Environment might already be selected for you—GNOME is
a popular desktop environment.

In addition to the package groups that are selected by default, we will install the
KDE (K Desktop Environment) package group. This additional selection will allow you
to sample another popular desktop environment that is available to Linux. There is an
age-old holy war regarding which of the desktop environments is the best, but you will
have to play around with them to decide for yourself.

 1. Select the KDE (K Desktop Environment) package group in the right pane,
and accept the other defaults. The completed screen with KDE selected is
shown here.

35 Chapter 2: Instal l ing Linux in a Server Configuration

NOTE The installer will begin the actual installation (laying out the partitions, formatting the partitions
with a file system, writing the operating system to the disk, etc.) after the next step. If you develop
cold feet at this point, you can still safely back out of the installation without any loss of data (or self-
esteem). To quit the installer, simply reset your system by pressing CTRL-ALT-DEL on the keyboard or by
pushing the reset or power switch for the system.

 2. Click Next to begin the installation.

NOTE If you are installing from a set of CDs, the installer will inform you of the particular discs you
need to have handy to complete the installation. You will not get this warning if you are performing a
network-based installation or using a DVD. (The steps here are being performed using a DVD.)

 3. The installation will begin, and the installer will show the progress of the
installation.

 36 Linux Administration: A Beginner’s Guide

This is also a good time to study the release notes—if any are available. The
Release Notes button is usually displayed somewhere on the Installation Prog-
ress screen.

 4. Click the Reboot button in the final screen once the installation has completed.

Initial System Configuration
The system will reboot itself. After the boot process completes, you will have to click
through a quick, one-time customization process. It is here that you can view the soft-
ware license, add users to the system, and so on.

 1. Click Forward when you are presented with the Welcome screen.

 2. You will next be presented with a license information screen. Unlike other pro-
prietary software licenses, you might actually be able to read and understand the
Fedora license in just a few seconds! Click the Forward button to continue.

Create User
This section of the initial system configuration allows you to create a nonprivileged (non-
administrative) user account on the system. Having and using a nonprivileged account
on a system for day-to-day tasks on a system is a good system administration practice.
But we will skip the creation of any additional user at this time and do it manually later.

 1. Leave all the fields empty here, and click Forward.

 2. A warning dialog box will appear, urging you to create a nonprivileged user
account; click Continue.

Date and Time Configuration
This section allows you to set all date- and time-related settings for the system. The sys-
tem can be configured to synchronize its time to a Network Time Protocol (NTP) server.
You can also (re)configure the time zone settings here.

 1. In the Date and Time screen, make sure that the current date and time shown
reflect the actual current date and time.

 2. Click on the Time Zone menu in the Date and Time screen and make sure that
the correct time zone is selected. Click Forward when done.

Hardware Profile
The next section, which is optional, allows you to submit a profile of your current hard-
ware setup to the Fedora project maintainers. The information sent does not include any
personal information, and the submission is anonymous.

37 Chapter 2: Instal l ing Linux in a Server Configuration

 1. Accept the preselected default, and click Finish.

 2. If you get a dialog box prompting you to reconsider sending the hardware pro-
file, go with your heart.

Login
The system is now set up and ready for use. You will be presented with a Fedora login
screen similar to the one shown here. To log on to the system, enter root as the username,
and enter root’s password.

INSTALLING UBUNTU SERVER
Here we provide a quick overview of installing the Ubuntu Linux distribution in a server
configuration.

First you need to download the ISO image for Ubuntu Server. The ISO image that
was used on our sample system was downloaded from http://mirrors.kernel.org/
ubuntu-releases/8.04/ubuntu-8.04-server-i386.iso.

 38 Linux Administration: A Beginner’s Guide

The downloaded CD image needs to be burnt to a CD. The same cautions and rules
that were stated during the burning of the Fedora image also apply here. After burning
the ISO image onto a CD, you should now have a bootable Ubuntu Server distribution
media. Unlike the Fedora installer or the Ubuntu Desktop installer, the Ubuntu Server
installer is text-based and is not quite as pretty as the others. Complete the following
steps to start and complete the installation.

Initial System Configuration

 1. Insert the Ubuntu Server install media into the system’s optical drive.

 2. Make sure that the system is set to use the optical drive as its first boot media in
the system BIOS.

 3. Reboot the system if it is currently powered on.

 4. Once the system boots off the install media, you will be presented with an ini-
tial language selection splash screen. On our sample system, we press enter to
accept the default English language. The installation boot menu shown next will
be displayed.

 5. Make sure that the Install Ubuntu Server option is selected, and then press
enter.

 6. Select English in the Choose Language screen.

39 Chapter 2: Instal l ing Linux in a Server Configuration

 7. Select a country in the next screen. The installer will automatically suggest a
country based on your earlier choice. If this is correct, press enter to continue. If
not, manually select the right country and press enter.

 8. Next comes the Keyboard Layout section of the installer. On our sample system,
we choose “No” to manually pick the keyboard layout.

 9. Select USA when prompted for the origin of the keyboard in the next screen, and
press enter.

 10. Select USA again when prompted for keyboard layout, and press enter.

Network Configuration
 11. Next comes the Configure the Network section. Type ubuntu-serverA in the

Hostname field, and then press enter.

Time Zone Configuration
 12. At the Configure the Clock screen, select the appropriate time zone, and press

enter.

Disk Partition Setup
 13. The Partition Disk section of the installation follows. Use the arrow key on your

keyboard to select the Guided – Use Entire Disk and Set Up LVM option, as
shown, and then press enter.

 40 Linux Administration: A Beginner’s Guide

 14. Another screen will appear, prompting you to select the disk to partition. Accept
the default and press enter.

 15. If prompted to write the changes to disk and configure LVM, select Yes and press
enter. You might get a different prompt if you are installing the operating sys-
tem on a disk with existing partitions or volumes. In that case, you will need to
confirm that you want to remove any existing partitions or volumes in order to
continue.

NOTE This section of the installer allows you to customize the actual partition structure of the
system. It is here that you can elect to set up different file systems for different uses (e.g., /var, /home,
etc.). The same concept used in creating the different partitions during the Fedora installation earlier
transfers over for Ubuntu. For the sake of brevity, we won’t do this on our sample system. We will
instead accept the default partition and LVM layout recommended by the installer. As a result, we will
end up with only three file systems: /boot , /, and swap.

 16. A summary of the disk partitions and LVM layout will be displayed in the next
screen. You will be prompted to write the changes to disk. Select Yes and press
enter.

 17. The base software installation begins.

Users and Password Setup
 18. Next you will be presented with the Set Up Users and Passwords screen. Type in

the full name, Ying Yang, in the Full Name field, and then press enter.

 19. Type yyang in the Username For Your Account field. Press enter to continue.

 20. Create a password for the user “yyang.” Enter the password 19ang19 for the
user, and press enter. Retype the same password at the next screen to verify the
password. Press enter again when done.

NOTE You might be prompted for proxy server information at some point during this stage of the
install. You can safely ignore the prompt and continue.

 21. The next screen will inform you that your system has only the core system soft-
ware installed. Since we are not ready to do any software customization at this
time, ignore this section and press enter to continue.

NOTE If at any point you are prompted for UTC settings for the system, select Yes to confirm that
the system clock is set to UTC and then press ENTER.

41 Chapter 2: Instal l ing Linux in a Server Configuration

 22. Once done, you will be presented with the Installation Complete screen and you
will be prompted to remove the installation media. Press enter to continue.

 23. The installer will complete the installation process by rebooting the system.
Once the system reboots, you will be presented with a login screen. You can log
in as the user that was previously created during the installation. The username
is yyang and the password is 19ang19.

SUMMARY
You have successfully completed the installation process. If you are still having problems
with the installation, be sure to visit Fedora’s web site at http://fedora.redhat.com and
the Ubuntu web site at www.ubuntu.com and take a look at the various manuals and
tips available.

The version release notes are also a good resource for specific installation issues.
Even though the install process discussed in this chapter used Fedora as the operat-
ing system of choice (with a quick overview of the Ubuntu Server install process), you
can rest assured that the installation concepts for other Linux distributions are virtually
identical. The install steps also introduced you to some Linux/UNIX-specific concepts
that will covered in more detail in later chapters (e.g., hard disk naming conventions and
partitioning under Linux).

43

3

Managing Software

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 44 Linux Administration: A Beginner’s Guide

System administrators deal with software or application management on systems in
various ways. You have the class of system administrators who like to play it safe
and generally abide by the principle of “if it’s not broken, don’t fix it.” This approach

has its benefits as well as its drawbacks. One of the benefits is that the system tends to be
more stable and behave in a predictable manner. Nothing has changed drastically on the
system, so it should pretty much be the same way it was yesterday, last week, last month,
etc. The drawback to this approach is that the system might lose the benefits of bug fixes
and security fixes that are available for the various installed applications.

Another class of system administrators takes the exact opposite approach: They like
to install the latest and greatest piece of software available out there. This approach also
has its benefits and drawbacks. One of its benefits is that the system tends to stay current
as security flaws in applications are discovered and fixed. The obvious drawback is that
some of the newer software might not have had time to benefit from the maturing pro-
cess that comes with age and, hence, may behave in slightly unpredictable ways.

Regardless of your system administration style, you will find that a great deal of
your time will be spent interacting with the various software components of the system,
whether in keeping them up-to-date maintaining what you already have installed, or
installing new software.

There are a couple of basic approaches to installing software on a Linux system. One
approach is to use the package manager for the distribution. A common method for Red
Hat–like systems such as Fedora and Red Hat Enterprise Linux (RHEL) is to use the
Red Hat Package Manager (RPM). The tool of choice for Debian-based systems, such as
Ubuntu, Kubuntu, and Debian, is the Advanced Packaging Tool (APT). Another more
traditional approach is to compile and install the software by hand using the standard
GNU compilation method or the specific software directives. We will cover these meth-
ods in this chapter.

THE RPM PACKAGE MANAGER
The Red Hat Package Manager (RPM) allows the easy installation and removal of soft-
ware packages—typically, precompiled software. A package consists of an archive of
files and other metadata.

It is wonderfully easy to use, and several graphical interfaces have been built around
it to make it even easier. Several Linux distributions (distros) and various third parties
use this tool to distribute and package their software. In fact, almost all of the software
mentioned in this book is available in RPM form. The reason you’ll go through the
process of compiling software yourself in other chapters is so that you can customize
the software to your system, as such customizations might not be readily possible in
an RPM.

An RPM file is a package that contains files needed for the software to function cor-
rectly. These files can be configuration files, binaries, and even pre- and postscripts to run
while installing the software.

45 Chapter 3: Managing Software

NOTE In the present context mentioned, we are assuming that the RPM files contain precompiled
binaries. However, adhering to the open source principle, the various commercial and noncommercial
Linux distros are obliged to make the source code for most GNU binaries available. (Those who don’t
make it available by default are obliged to give it to you if you ask for it.) Some Linux vendors stick
to this principle more than others. Several Linux vendors, therefore, make the source code for their
binaries available in RPM form. For instance, Fedora and SuSE also make source code available
as an RPM, and it is becoming increasingly common to download and compile source code in this
fashion.

The RPM tool performs the installation and uninstallation of RPMs. The tool also
maintains a central database of what RPMs you have installed, where they are installed,
when they were installed, and other information about the package.

In general, software that comes in the form of an RPM is less work to install and
maintain than software that needs to be compiled. The trade-off is that by using an RPM,
you accept the default parameters supplied in the RPM. In most cases, these defaults are
acceptable. However, if you need to be more intimately aware of what is going on with
a piece of software, you may find that by compiling the source yourself, you will learn
more about what software components and options exist and how they work together.

Assuming that all you want to do is install a simple package, RPM is perfect. There
are several great resources for RPM packages, including the following:

▼ http://rpm.pbone.net

■ http://ftp.redhat.com

■ http://mirrors.kernel.org

▲ http://freshrpms.net

Of course, if you are interested in more details about RPM itself, you can visit the
RPM web site at www.rpm.org. RPM comes with Fedora, OpenSuSE, Mandrake, and
countless other Red Hat derivatives, and, most surprising of all, the Red Hat version of
Linux! If you aren’t sure if RPM comes with your distribution, check with your vendor.

NOTE Although the name of the package says “Red Hat,” the software can be used with other
distributions as well. In fact, RPM has even been ported to other operating systems, such as Solaris,
AIX, and IRIX. The source code to RPM is open source software, so anyone can take the initiative to
make the system work for them.

The primary functions of the RPM are

▼ Querying, installing, and uninstalling software

■ Maintaining a database that stores various items of information about the
packages

▲ Packaging other software into an RPM form

 46 Linux Administration: A Beginner’s Guide

Table 3-1, which includes frequently used RPM options, is provided for reference
purposes only.

Table 3-1. Common RPM Options

Command-Line Option Description

--install This installs a new package.

--upgrade This upgrades or installs the package currently
installed to a newer version.

--erase Removes or erases an installed package.

--query This is the option used for querying.

--force This is the sledgehammer of installation. Typically,
you use it when you’re knowingly installing an odd
or unusual configuration and RPM’s safeguards are
trying to keep you from doing so. The --force
option tells RPM to forego any sanity checks and just
do it, even if it thinks you’re trying to fit a square peg
into a round hole. Be careful with this option.

-h Prints hash marks to indicate progress during an
installation. Use with the -v option for a pretty
display.

--percent Prints the percentage completed to indicate progress.
It is handy if you’re running RPM from another
program, such as a Perl script, and you want to know
the status of the install.

-nodeps If RPM is complaining about missing dependency
files, but you want the installation to happen anyway,
passing this option at the command line will cause
RPM to not perform any dependency checks.

-q Queries the RPM system for information.

--test This option does not perform a real installation; it just
checks to see whether an installation would succeed.
If it anticipates problems, it displays what they’ll be.

-V Verifies RPMs or files on the system.

-v Tells RPM to be verbose about its actions.

47 Chapter 3: Managing Software

THE DEBIAN PACKAGE MANAGEMENT SYSTEM
The Debian Package Management System (DPMS) is the foundation for managing soft-
ware on Debian and Debian-like systems. As is expected of any software management
system, DPMS provides for easy installation and removal of software packages. Debian
packages end with the .deb extension.

At the core of the DPMS is the dpkg (Debian Package) application. dpkg works in
the back-end of the system, and several other command-line tools and graphical user
interface (GUI) tools have been written to interact with it. Packages in Debian are fondly
called “.deb” files. dpkg can directly manipulate .deb files. Various other wrapper tools
have been developed to interact with dpkg, either directly or indirectly.

APT
APT is a highly regarded and sophisticated toolset. It is an example of a wrapper tool
that interacts directly with dpkg. APT is actually a library of programming functions that
are used by other middle-ground tools, like apt-get and apt-cache, to manipulate
software on Debian-like systems. Several user-land applications have been developed
that rely on APT. (User-land refers to non-kernel programs and tools.) Examples of such
applications are synaptic, aptitude, and dselect. The user-land tools are generally more
user-friendly than their command-line counterparts. APT has also been successfully
ported to other operating systems.

One fine difference between APT and dpkg is that APT does not directly deal with
.deb packages; instead, it manages software via the locations (repositories) specified in a
configuration file. This file is the sources.list file. APT utilities use the sources.list file to
locate archives (or repositories) of the package distribution system in use on the system.

It should be noted that any of the components of the DPMS (dpkg, apt, or the GUI
tools) can be used to directly manage software on Debian-like systems. The tool of choice
depends on the user’s level of comfort and familiarity with the tool in question.

Figure 3-1 shows what can be described as the DPMS triangle. The tool at the apex
of the triangle (dpkg) is the most difficult to use and the most powerful, followed by the
next easiest to use (APT), and then followed finally by the user-friendly user-land tools.

Figure 3-1. DPMS triangle

dpkg

APT (apt-get, etc.)

synaptic, aptitude, adept, dselect, etc.

 48 Linux Administration: A Beginner’s Guide

MANAGING SOFTWARE USING RPM
In the following sections, we will cover details of querying, installing, uninstalling, and
verifying software on Red Hat–based systems. Actual examples are used to facilitate
understanding.

Querying for Information the RPM Way
(Getting to Know One Another)
One of the best ways to begin any relationship is by getting to know the other party.
Some of the relevant information might be the person’s name, what they do for a living,
date of birth, what they like or dislike, etc. The same rules apply to RPM-type packages
or dpkg packages. After you obtain a piece of software (from the Internet, from the
distribution’s CD/DVD, from a third party, etc.), you should get to know the software
before making it a part of your life . . . sorry—your system. This functionality was built
into RPM and dpkg from the beginning, and it is easy to use.

When you get used to Linux/UNIX, you may find that software names are some-
what intuitive, and you can usually tell what a package is just by looking at its name.
For example, to the uninitiated, it may not be immediately obvious that a file named
gcc-4.1.2.rpm is a package for the “GNU Compiler collection.” But once you get used
to the system and you know what to look for, it becomes more intuitive. You can also
use RPM or dpkg to query for other types of information, such as the package’s build
date, its weight (. . . sorry—its size), its likes and dislikes (. . . sorry—its dependen-
cies), etc.

Let’s start by trying a few things using RPM and dpkg. Begin by logging into the
system and start a terminal (as per the previous Tip).

Querying for All Packages
Use the rpm command to list all the packages that are currently installed on your system.
At the shell prompt, type:

[root@fedora-serverA ~]# rpm --query --all

This will give you a long listing of software installed.

NOTE Like most Linux commands, the rpm command also has its own long forms and short (or
abbreviated) forms of options or arguments. For example, the short form of the --query option
is -q, and the short form for --all is -a. We will mostly use short forms in this book, but we’ll
occasionally use the long forms just so you can see their relationship.

49 Chapter 3: Managing Software

Querying Details for a Specific Package
Let’s zero in on one of the packages listed in the output of the preceding command, the
bash application. Use rpm to see if you indeed have the bash application installed on
your system.

[root@fedora-serverA ~]# rpm --query bash

bash-3.2-*

The output should be something similar to the one shown. It shows that you do
indeed have the package called bash installed. It also shows the version number
appended to the package name. Note that the version number of the output on your
system might be different; however, the main package name will almost always be
the same, i.e., bash is bash is bash is bash in OpenSuSE, Fedora, Mandrake, RHEL,
Ubuntu, etc.

Getting Down to Business
The previous chapter walked you through the installation process. Now that you
have a working system, you will need to log into the system to carry out the exer-
cises in this and other chapters of the book. Most of the exercises will implicitly ask
you to type a command. Although it may seem like stating the obvious, whenever
you are asked to type a command, you will have to type it into a console at the
shell prompt. This is akin to the DOS prompt in Microsoft Windows, but is more
powerful.

There are several ways to type a command at the shell. One way is to use a
nice, windowed (GUI) terminal; another is to use the system console. The win-
dowed consoles are known as terminal emulators (or pseudo-terminals), and
there are tons of them. After logging into your chosen desktop (GNOME, KDE,
Xforms Cool Environment [XFCE], etc.), you can usually launch a pseudo-
terminal by right-clicking the desktop and selecting Launch Terminal from
the context-sensitive menu. If you don’t have that particular option, look for
an option in the menu that says Run Command (or press the alt and f2 keys
simultaneously to launch the Run Application dialog box). After the Run dia-
log box appears, you can then type the name of a terminal emulator into the
Run text box. A popular terminal emulator that is almost guaranteed (or your
money back!) to exist on all Linux systems is the venerable xterm. If you are in
a GNOME desktop, the gnome-terminal is the default. If you are using KDE,
the default is konsole.

 50 Linux Administration: A Beginner’s Guide

Which brings us to the next question. What is bash and what does it do? To find
out, type

[root@fedora-serverA ~]# rpm -qi bash

Name : bash Relocations: (not relocatable)

Version : 3.2 Vendor: Red Hat, Inc.

....<OUTPUT TRUNCATED>....

URL : http://www.gnu.org/software/bash

Summary : The GNU Bourne Again shell (bash) version 3.2

Description :

The GNU Bourne Again shell (Bash) is a shell or command language

interpreter that is compatible with the Bourne shell (sh). Bash

incorporates useful features from the Korn shell (ksh) and the C shell

(csh). Most sh scripts can be run by bash without modification. This

package (bash) contains bash version 3.2, which improves POSIX

compliance over previous versions.

This output gives us a lot of information. It shows the version number, the release, the
description, the packager, and more.

The bash package looks rather impressive. Let’s see what else comes with it.

[root@fedora-serverA ~]# rpm -ql bash

This lists all the files that come along with the bash package.
To list the configuration files (if any) that come with the bash package, type:

[root@serverA ~]# rpm -qc bash

/etc/skel/.bash_logout

/etc/skel/.bash_profile

/etc/skel/.bashrc

The querying capabilities of rpm are extensive. RPM packages have a lot of informa-
tion stored in so-called tags. These tags make up the metadata of the package. You can
query the RPM database for specific information using these tags. For example, to find
out the date that the bash package was installed on your system, you can type

[root@fedora-serverA ~]# rpm -q --qf "[%{INSTALLTIME:date} \n]" bash

Mon 03 Sep 2009 01:35:44 PM PDT

NOTE Because bash is a standard part of most Linux distros and would have been installed when
you initially installed the operating system (OS), you will find that its install date will be close to the
day you installed the OS.

51 Chapter 3: Managing Software

To find out what package group the bash application comes under, type

[root@fedora-serverA ~]# rpm -q --qf "[%{GROUP} \n]" bash

System Environment/Shells

You can, of course, always query for more than one package at the same time and
also query for multiple tag information. For example, to display the names and package
groups for the bash and xterm packages, type

[root@fedora-serverA ~]# rpm -q --qf "[%{NAME} - %{GROUP} - %{SUMMARY} \n]" bash xterm

bash - System Environment/Shells - The GNU Bourne Again shell (bash) version 3.2

xterm - User Interface/X - Terminal emulator for the X Window System

To determine what other packages on the system depend on the bash package, type

[root@fedora-serverA ~]# rpm -q --whatrequires bash

TIP The RPM queries noted here were done on software that is currently installed on the system.
You can perform similar queries on software that you get from other sources as well—for instance,
software that you are planning to install that you have obtained from the Internet or from the distribution
CD/DVD. Similar queries can also be performed on packages that have not yet been installed. To do
this, you simply add the -p option to the end of the query command. For example, to query an
uninstalled package named “joe-3.1.6.i386.rpm,” you would type rpm -qip joe-3.1-6.i386.rpm.

Installing with RPM (Moving In Together)
OK, you are now both ready to take the relationship to the next stage. You have decided
to move in together. This can be a good thing, because it allows both of you to see and
test how truly compatible you are. This stage of relationships is akin to installing the
software package on your system, i.e., moving the software into your system.

In the following procedures, you will install the application called “lynx” onto your
system. First, you will need to get a copy of the rpm package for lynx. You can get this pro-
gram from several places (the install CDs/DVD, the Internet, etc.). The example that fol-
lows uses a copy of the program that came with the DVD used during the installation.

The CD/DVD needs to be mounted in order to access its content. To mount it, insert
the DVD into the drive and launch a console. You should see an icon for the DVD appear
on the desktop after a brief delay.

The RPM files are stored under the Fedora/RPMS directory under the mount point
of your DVD/CD device, e.g., the /media/dvd/Packages/ directory.

NOTE If you don’t have a Fedora CD or DVD, you can download the RPM we will be using in the
next section from http://download.fedora.redhat.com/pub/fedora/linux/releases/9/Everything/i386/os/
Packages/lynx-2.8.6-13.fc9.i386.rpm.

 52 Linux Administration: A Beginner’s Guide

Let’s step through the process of installing an RPM.

 1. Launch a virtual terminal.

 2. Assuming your distribution install media disc is mounted at the /media/dvd
mount point, change to the directory that usually contains the RPM packages on
the DVD. Type

[root@fedora-serverA ~]# cd /media/dvd/Packages/

 3. You can first make sure that the file you want is indeed in that directory. Use
the ls command to list all the files that start with the letters “lyn” in the direc-
tory. Type

[root@fedora-serverA Packages]# ls lyn*

lynx-2.*.rpm

 4. Now that you have confirmed that the file is there, perform a test install of the
package (this will run through the motion of installing the package without actu-
ally installing anything on the system). This is useful in making sure that all the
needs (dependencies) of a package are met. Type

[root@fedora-serverA Packages]# rpm --install --verbose --hash --test lynx-*

Preparing... ### [100%]

Everything looks okay., If you get a warning message about the signature, you
can safely ignore it for now.

 5. Go ahead and perform the actual installation. Type

[root@fedora-serverA Packages]# rpm -ivh lynx-*

Preparing.. ### [100%]

1:lynx ### [100%]

 6. Run a simple query to confirm that the application is installed on your sys-
tem. Type

[root@fedora-serverA Packages]# rpm -q lynx

lynx-2.*

The output shows that lynx is now available on the system. Lynx is a text-based web
browser. You can launch it by simply typing lynx at the shell prompt. To quit lynx, sim-
ply press q. You will get a prompt at the lower-right corner of your terminal to confirm
that you want to quit lynx. Press enter to confirm.

As you can see, installing packages via RPM can be easy. But there are times when
installing packages is trickier. This is usually due to the issues of failed dependencies.

53 Chapter 3: Managing Software

For example, the lynx package might require the bash package to be already installed on
the system before it can be successfully installed.

Let’s step through installing a more complex package to see how dependencies are
handled with RPM. Assuming you are still in the Package directory of the DVD media,
do the following:

 1. Install the package by typing

[root@fedora-serverA Packages]# rpm -ivh gcc-4.*

error: Failed dependencies:

 glibc-devel >= 2.2.90-12 is needed by gcc-4.3.0-8.i386

The preceding output does not look good. The last line tells us that gcc* depends
on another package, called glibc-devel*.

 2. Fortunately, because we have access to the DVD media that contains most of the
packages for this distro in a single directory, we can easily add the additional
package to our install list. Type

[root@fedora-serverA Packages]# rpm -ivh gcc-4* glibc-devel-2*

error: Failed dependencies:

 glibc-headers = 2.8-3 is needed by glibc-devel-2.8-3.i386

Uh oh . . . it looks like this particular partner is not going to be easy to move
in. The output again tells us that the glibc-devel* package depends on another
package, called glibc-headers*.

 3. Add the newest dependency to the install list. Type

[root@fedora-serverA Packages]# rpm -ivh gcc-4* glibc-devel-2* \

> glibc-headers-2*

error: Failed dependencies:

 kernel-headers is needed by glibc-headers-2.8-3.i386

 kernel-headers >= 2.2.1 is needed by glibc-headers-2.8-3.i386

After all we have given to this relationship, all we get is more complaining. The
last requirement is the kernel-headers* package. We need to satisfy this require-
ment, too.

 4. Looks like we are getting close to the end. We add the final required package to
the list. Type

[root@fedora-serverA Packages]# rpm -ivh gcc-4* glibc-devel-2* |

> glibc-headers-2* kernel-headers-*

Preparing... ###################################### [100%]

 1:kernel-headers ###################################### [25%]

 2:glibc-headers ###################################### [50%]

 3:glibc-devel ###################################### [75%]

 4:gcc ###################################### [100%]

 54 Linux Administration: A Beginner’s Guide

It was tough, but you managed to get the software installed.

TIP When you perform multiple RPM installations in one shot, as you did in the previous step, it is
called an RPM transaction.

A popular option used in installing packages via RPM is the -U (for Upgrade) option.
It is especially useful when you want to install a newer version of a package that already
exists. It will simply upgrade the already installed package to the newer version. This
option also does a good job of keeping your custom configuration for an application
intact. For example, if you had lynx-7-2.rpm installed and you wanted to upgrade to
lynx-7-9.rpm, you would type rpm -Uvh lynx-7-9.rpm. It should also be noted that you
can use the -U option to perform a regular installation of a package even when you are
not upgrading.

Uninstalling Software with RPM (Ending the Relationship)
Things didn’t quite work out the way you both had anticipated. Now it is time to end the
relationship. The other partner was never any good anyhow, so we’ll simply clean them
out of our system.

Cleaning up after itself is one of the areas in which RPM truly excels. And this is one
of its key selling points as a software manager in Linux systems. Because a database of
various pieces of information is stored and maintained along with each installed pack-
age, it is easy for RPM to refer back to its database to collect information about what was
installed and where.

NOTE A slight caveat applies here. As with Windows install/uninstall tools, all the wonderful things
that RPM can do are also dependent on the packager of the software. For example, if a software
application was badly packaged and its removal scripts were not properly formatted, you might still
end up with bits of the package on your system, even after uninstalling. This is one of the reasons why
one should always get software only from trusted sources.

Removing software with RPM is quite easy and can be done in a single step. For
example, to remove the lynx package that we installed earlier, we simply need to use the
-e option, like so:

[root@fedora-serverA ~]# rpm -e lynx

This command will usually not give you any feedback if everything went well. To
get a more verbose output for the uninstallation process, add the -vvv option to the
command.

A handy feature of RPM is that it will also protect you from removing packages that
are needed by other packages. For example, if we try to remove the kernel-headers pack-
age (recall that the gcc package depended on it), we’d see the following:

55 Chapter 3: Managing Software

[root@fedora-serverA ~]# rpm -e kernel-headers

error: Failed dependencies:

 kernel-headers is needed by (installed) glibc-headers-2.8-3.i386

 kernel-headers >= 2.2.1 is needed by (installed) glibc-headers-2.8-3.i386

NOTE Remember that the glibc-headers* package required this package. And so RPM will do its
best in helping you maintain a stable software environment. But if you are adamant and desperate to
shoot yourself in the foot, RPM will also allow you to do that (perhaps because you know what you
are doing). If, for example, you wanted to forcefully perform the uninstallation of the kernel-headers
package, you would add the --nodeps option to the uninstallation command.

Other Things You Can Do with RPM
In addition to basic installation and uninstallation of packages with RPM, there are
numerous other things you can do with it. In this section, we walk through some of
these other functions.

Verifying Packages
A useful option with the RPM tool is the ability to verify a package. What happens is that
RPM looks at the package information in its database, which is assumed to be good. It
then compares that information with the binaries and files that are on your system.

In today’s Internet world, where being hacked is a real possibility, this kind of test
should tell you instantly if anyone has done something to your system. For example, to
verify that the bash package is as it should be, type

[root@fedora-serverA ~]# rpm -V bash

The absence of any output is a good sign.
You can also verify specific files on the file system that a particular package installed.

For example, to verify that the /bin/ls command is valid, you would type

[root@fedora-serverA ~]# rpm -Vf /bin/ls

Again, the lack of output is a good thing.
If something was amiss—for example, if the /bin/ls command had been replaced

by a dud version—the verify output might be similar to the one here:

[root@fedora-serverA Fedora]# rpm -Vf /bin/ls

SM5....T /bin/ls

If something is wrong, as in the preceding example, RPM will inform you of what
test failed. Some example tests are the MD5 checksum test, file size, and modification

 56 Linux Administration: A Beginner’s Guide

times. The moral of the story is that RPM is an ally in finding out what is wrong with
your system.

Table 3-2 provides a summary of the various error codes and their meanings.
If you want to verify all the packages installed on your system, type

[root@fedora-serverA ~]# rpm -Va

This command verifies all of the packages installed on your system. That’s a lot of files,
so you might have to give it some time to complete.

Package Validation
Another feature of RPM is that the packages can be digitally signed. This provides a type
of built-in authentication mechanism that allows a user to ascertain that the package in
their possession was truly packaged by the expected (trusted) party and also that the
package has not been tampered with along the line somewhere.

You sometimes need to manually tell your system whose digital signature to trust.
This explains the reason why you may see some warnings in the earlier procedures
when you were trying to install a package (such as this message: “Warning: lynx-2.*.rpm:
Header V3 DSA signature: NOKEY, key ID 4f2a6fd2”). To prevent this warning message,
you should import Fedora’s digital key into your system’s key ring. Type

[root@fedora-serverA ~]# rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-fedora

Table 3-2. RPM Verification Error Attributes

Code Meaning

S File size differs

M Mode differs (includes permissions and file type)

5 MD5 sum differs

D Device major/minor number mismatch

L readLink-path mismatch

U User ownership differs

G Group ownership differs

T mTime differs

57 Chapter 3: Managing Software

You might also have to import other vendors’ keys into the key ring. To be extra
certain that even the local key you have is not a dud, you can import the key directly
from the vendor’s web site. For instance, to import a key from Fedora’s project site, you
would type

[root@fedora-serverA ~]# rpm --import http://download.fedora.redhat.com/pub/

fedora/linux/releases/9/Fedora/i386/os/RPM-GPG-KEY-fedora

Yum
Yum is one of the newer methods of software management on Linux systems. It is basi-
cally a wrapper program for RPM, with great enhancements. It has been around for a
while, but it has become more widely used and more prominent because major Linux
vendors decided to concentrate on their (more profitable) commercial product offerings.
Yum has changed and enhanced the traditional approach to package management on
RPM-based systems. Popular large sites that serve as repositories for open source soft-
ware have had to retool slightly to accommodate “Yumified” repositories. According to
the Yum project’s web page:

“Yum is an automatic updater and package installer/remover for RPM systems.
It automatically computes dependencies and figures out what things should occur to
install packages. It makes it easier to maintain groups of machines without having to
manually update each one using RPM.”

This summary is an understatement. Yum can do a lot beyond that. There are certain
new Linux distributions that rely heavily on the capabilities provided by Yum.

Using Yum is simple on supported systems. You mostly need a single configuration
file (/etc/yum.conf). Other configuration files may be stored under the /etc/yum.repos.d/
directory that points to the Yum-enabled (Yumified) software repository. Fortunately,
several Linux distributions now ship with Yum already installed and preconfigured.
Fedora is one of these distros.

To use Yum on a Fedora system (or any other Red Hat–like distro)—to install a pack-
age called gcc, for example—at the command line, you would type

[root@fedora-serverA ~]# yum install gcc

Yum will automatically take care of any dependencies that the package might need
and install the package for you. (The first time it is run, it will build up its local cache.)
Yum will even do your dishes for you (your mileage may vary). Yum also has extensive
search capabilities that will help you find a package, even if you don’t know its correct
name. All you need to know is part of the name. For example, if you wanted to search
for all packages that have the word “headers” in the name, you can try a Yum option
like this:

[root@fedora-serverA ~]# yum search headers

 58 Linux Administration: A Beginner’s Guide

This will return a long list of matches. You can then look through the list and pick the
package you want.

NOTE By default, Yum tries to access repositories that are located somewhere on the Internet.
Therefore, your system needs to be able to access the Internet to use Yum in its default state. You can
also create your own local software repository on the local file system or on your local area network
(LAN) and Yumify it. Simply copy the entire contents of the distribution media (DVD/CD) somewhere
and run the yum-arch command against the directory location.

SOFTWARE MANAGEMENT IN UBUNTU
As we mentioned earlier, software management in the Debian-like distros such as Ubuntu
is done using DPMS and all the attendant applications built around it, such as APT and
dpkg. In this section we will look at how to perform basic software management tasks
on Debian-like distros.

Querying for Information
On your Ubuntu server, the equivalent command to list all currently installed
software is

yyang@ubuntu-server:~$ dpkg -l

The command to get basic information about an installed package is

yyang@ubuntu-server:~$ dpkg -l bash

The command to get more detailed information about the bash package is

yyang@ubuntu-server:~$ dpkg --print-avail bash

To view the list of files that comes with the bash package, type

yyang@ubuntu-server:~$ dpkg-query -L bash

The querying capabilities of dpkg are extensive. You can use DPMS to query for spe-
cific information about a package. For example, to find out the size of the installed bash
package, you can type

yyang@ubuntu-server:~$ dpkg-query -W --showformat='${Package} ${Installed-Size}

\n' bash

59 Chapter 3: Managing Software

Installing Software in Ubuntu
There are several ways to get software installed on Ubuntu systems. You can use dpkg
to directly install a .deb (pronounced dot deb) file, or you may choose to use apt-get
to install any software available in the Ubuntu repositories on the Internet or locally
(CD/DVD ROM, file system, etc).

NOTE Installing software and uninstalling software on a system is considered an administrative or
privileged function. This is why you will notice that any commands that require superuser privileges
are preceded with the sudo command. The sudo command can be used to execute commands in
the context of a privileged user (or another user). On the other hand, querying the software database
is not considered a privileged function. To use dpkg to install a .deb package named lynx_2.8.6-
2ubuntu2_i386.deb , type

yyang@ubuntu-serverA:~$ sudo dpkg --install lynx_2.8.6-2ubuntu2_i386.deb

Using apt-get to install software is a little easier, because APT will usually take care
of any dependency issues for you. The only caveat is that the repositories configured in
the sources.list file (/etc/apt/sources.list) have to be reachable either over the Internet
or locally. The other advantage to using APT to install software is that you only need to
know a part of the name of the software; you don’t need to know the exact version num-
ber. You also don’t need to manually download the software before installing.

To use apt-get to install a package called lynx, type

yyang@ubuntu-server:~$ sudo apt-get install lynx

Removing Software in Ubuntu
Uninstalling software in Ubuntu using dpkg is as easy as typing

yyang@ubuntu-server:~$ sudo dpkg --remove lynx

You can also use apt-get to remove software by using the remove option. To
remove the lynx package using apt-get, type

yyang@ubuntu-server:~$ sudo apt-get remove lynx

A less commonly used method for uninstalling software with APT is by using the
install switch, but appending a minus sign to the package name to be removed. This
may be useful when you want to install and remove a package in one shot. To remove
the Lynx package using this method, type

yyang@ubuntu-server:~$ sudo apt-get install lynx-

APT makes it easy to completely remove software and any attendant configuration
file(s) from a system. This allows you to truly start from scratch by getting rid of any

 60 Linux Administration: A Beginner’s Guide

customized configuration files. Assuming we completely want to remove the lynx appli-
cation from the system, we would type

yyang@ubuntu-server:~$ sudo apt-get --purge remove lynx

GUI RPM Package Managers
For those who like a good GUI tool to help simplify their lives, several package manag-
ers with GUI front-ends are available. Doing all the dirty work behind these pretty GUI
front-ends is RPM. The GUI tools allow you to do quite a few things without forcing
you to remember command-line parameters. Some of the more popular ones with each
distribution or desktop environment are listed in the sections that follow.

Fedora
You can launch the GUI package management tool (see Figure 3-2) in Fedora by select-
ing System menu | Administration | Add/Remove Software. You can also launch the
Fedora package manager from the command line, simply by typing

[root@fedora-serverA ~]# gpk-application

Figure 3-2. Fedora GUI package manager

61 Chapter 3: Managing Software

OpenSuSE and SLE
In OpenSuSe and SuSE Linux Enterprise (SLE), most of the system administration is
done via a tool called YaST, which stands for Yet Another Setup Tool. YaST is made up
of different modules. For adding and removing packages graphically on the system, the
relevant module is called sw_single. So to launch this module from the command line of
a system running the SuSE distribution, you would type

suse-serverA:~ # yast2 sw_single

Ubuntu
Several GUI software management tools are available on Ubuntu systems. For desktop-
class systems, GUI tools are installed by default. Some of the more popular GUI tools in
Ubuntu are synaptic (see Figure 3-3) and adept. Ubuntu also has a couple of tools that
are not exactly GUI, but offer a similar ease of use as their fat GUI counterparts. These
tools are console-based or text-based and menu-driven. Examples of such tools are apti-
tude and dselect.

Figure 3-3. Synaptic package manager

 62 Linux Administration: A Beginner’s Guide

COMPILE AND INSTALL GNU SOFTWARE
One of the key benefits of open source software is that you have access to the source
code. If the developer chooses to stop working on it, you can continue (if you know how
to). If you find a problem, you can fix it. In other words, you are in control of the situation
and not at the mercy of a commercial developer you can’t control. But having the source
code means you need to be able to compile it, too. Otherwise, all you have is a bunch of
text files that can’t do much.

Although almost every piece of software in this book is available in RPM or .deb for-
mat, we will step through the process of compiling and building software from source
code. Being able to do this has the benefit of allowing you to pick and choose compile-
time options, which is something you can’t do with prebuilt RPMs. Also, an RPM might
be compiled for a specific architecture, such as the Intel 486, but that same code might
run better if you compile it natively on, for example, your GiGa Core–class CPU.

In this section, we will step through the process of compiling the hello package,
a GNU software package that might seem useless at first, but exists for good reasons.
Most GNU software conforms to a standard method of compiling and installing, and the
hello package tries to conform to this standard and so makes an excellent example.

Getting and Unpacking the Package
The other relationship left a bad taste in your mouth, but you are ready to try again.
Perhaps things didn’t quite work out because there were so many other factors to deal
with . . . RPM with its endless options and seemingly convoluted syntax. And so, out with
the old, in with the new. Maybe you’ll be luckier this time around if you have more
control over the flow of things. Although a little more involved, working directly with
source code will give you more control over the software and how things take form.

Software that comes in source form is generally made available as a tarball—that is,
it is archived into a single large file and then compressed. The tools commonly used to
do this are tar and gzip. tar handles the process of combining many files into a single
large file, and gzip is responsible for the compression.

NOTE Do not confuse the Linux gzip program with the Microsoft Windows WinZip program. They
are two different programs that use two different (but comparable) methods of compression. The Linux
gzip program can handle files that are compressed by WinZip, and the WinZip program knows how
to deal with tarballs.

NOTE Typically, a single directory is selected in which to build and store tarballs. This allows the
system administrator to keep the tarball of each package in a safe place in the event he or she needs
to pull something out of it later. It also lets all the administrators know which packages are installed on
the system in addition to the base system. A good directory for this is /usr/local/src, since software
local to a site is generally installed in /usr/local.

63 Chapter 3: Managing Software

Let’s try installing Hello, one step at a time. We’ll begin by first obtaining a copy of
the Hello source code.

Pull down a copy of the Hello program used in this example from www.gnu.org/
software/hello or directly from http://ftp.gnu.org/gnu/hello/hello-2.3.tar.gz. The lat-
est version of the program available at the time of this writing was hello-2.3.tar.gz. Save
the file to the /usr/local/src/ directory.

TIP A quick way to download a file from the Internet (via File Transfer Protocol [FTP] or Hypertext
Transfer Protocol [HTTP]) is using the command-line utility called wget. For example, to pull down the
Hello program while at a shell prompt, you’d simply type

wget http://ftp.gnu.org/gnu/hello/hello-2.3.tar.gz

And the file will be automatically saved into your present working directory (PWD).

After downloading the file, you will need to unpack (or untar) it. When unpacked,
a tarball will generally create a new directory for all of its files. The Hello tarball (hello-
2.3.tar.gz), for example, creates the subdirectory hello-2.3. Most packages follow this
standard. If you find a package that does not follow it, it is a good idea to create a subdi-
rectory with a reasonable name and place all the unpacked source files there. This allows
multiple builds to occur at the same time without the risk of the two builds conflicting.
Use the tar command to unpack and decompress the Hello archive. Type

[root@fedora-serverA src]# tar -xvzf hello-2.3.tar.gz

hello-2.3/

hello-2.3/build-aux/

hello-2.3/build-aux/config.guess

hello-2.3/build-aux/config.rpath

hello-2.3/build-aux/config.sub

....<OUTPUT TRUNCATED>....

hello-2.3/build-aux/depcomp

The z parameter in this tar command invokes gzip to decompress the file before
the untar process occurs. The v parameter tells tar to show the name of the file it is
untarring as it goes through the process. This way, you’ll know the name of the directory
where all the sources are being unpacked.

NOTE You might encounter files that end with the .tar.bz2 extension. Bzip2 is a compression
algorithm that is gaining popularity, and GNU tar does support decompressing it on the command
line with the y or j option, instead of the z parameter.

A new directory, called hello-2.3, should have been created for you during the untar-
ring. Change to the new directory and list its contents. Type

[root@fedora-serverA src]# cd hello-2.3 ; ls

 64 Linux Administration: A Beginner’s Guide

Looking for Documentation (Getting to Know Each Other—Again)
OK. You have both now downloaded . . . sorry—found each other. Now is probably a good
time to look around and see if either of you comes with any special documentation . . .
sorry—needs.

A good place to look for software documentation will be in the root of its directory
tree. Once you are inside the directory with all of the source code, begin looking for
documentation. Always read the documentation that comes with the source code! If there are
any special compile directions, notes, or warnings, they will most likely be mentioned
here. You will save yourself a great deal of agony by reading the relevant files first.

So then, what are the relevant files? These files typically have names like README
and INSTALL. The developer may also have put any available documentation in a direc-
tory aptly named docs.

The README file generally includes a description of the package, references to
additional documentation (including the installation documentation), and references to
the author of the package. The INSTALL file typically has directions for compiling and
installing the package. These are not, of course, absolutes. Every package has its quirks.
The best way to find out is to simply list the directory contents and look for obvious
signs of additional documentation. Some packages use different capitalization: readme,
README, ReadMe, and so on. (Remember, Linux is case-sensitive!) Some introduce
variations on a theme, such as README.1ST or README.NOW, and so on.

While in the /usr/local/src/hello-2.3 directory, use a pager to view the INSTALL file
that comes with the Hello program. Type

 [root@fedora-serverA hello-2.3]# less INSTALL

Exit the pager by typing q when you are done reading the file.

TIP Another popular pager you can use in place of less is called more! (Historical note: more
came way before less.)

Configuring the Package
You both want this relationship to work and possibly last longer than the previous ones.
So this is a good time to establish guidelines and expectations.

Most packages ship with an auto-configuration script; it is safe to assume they do,
unless their documentation says otherwise. These scripts are typically named configure
(or config), and they can accept parameters. There are a handful of stock parameters that
are available across all configure scripts, but the interesting stuff occurs on a program-
by-program basis. Each package will have a handful of features that can be enabled or
disabled, or that have special values set at compile time, and they must be set up via
configure.

65 Chapter 3: Managing Software

To see what configure options come with a package, simply run

[root@fedora-serverA hello-2.3]# ./configure --help

Yes, those are two hyphens (--) before the word “help.”

NOTE One commonly available option is --prefix. This option allows you to set the base
directory where the package gets installed. By default, most packages use /usr/local. Each component
in the package will install into the appropriate directory in /usr/local.

If you are happy with the default options that the configure script offers, type

[root@fedora-serverA hello-2.3]# ./configure

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... /bin/mkdir -p

checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking for gcc... gcc

...<OUTPUT TRUNCATED>...

config.status: creating po/Makefile

With all of the options you want set up, a run of the configure script will create a spe-
cial type of file called a makefile. Makefiles are the foundation of the compilation phase.
Generally, if configure fails, you will not get a makefile. Make sure that the configure
command did indeed complete without any errors.

Compiling the Package
This stage does not quite fit anywhere in our dating model. But you might consider it as
being similar to that period when you are so blindly in love and everything just flies by
and a lot of things are just inexplicable.

All you need to do is run make, like so:

[root@fedora-serverA hello-2.3]# make

The make tool reads all of the makefiles that were created by the configure script.
These files tell make which files to compile and the order in which to compile them—
which is crucial, since there could be hundreds of source files. Depending on the speed of
your system, the available memory, and how busy it is doing other things, the compila-
tion process could take a while to complete, so don’t be surprised.

As make is working, it will display each command it is running and all of the param-
eters associated with it. This output is usually the invocation of the compiler and all of
the parameters passed to the compiler—it’s pretty tedious stuff that even the program-
mers were inclined to automate!

 66 Linux Administration: A Beginner’s Guide

If the compile goes through smoothly, you won’t see any error messages. Most com-
piler error messages are clear and distinct, so don’t worry about possibly missing an error.
If you do see an error, don’t panic. Most error messages don’t reflect a problem with the
program itself, but usually with the system in some way or another. Typically, these mes-
sages are the result of inappropriate file permissions or files that cannot be found.

In general, slow down and read the error message. Even if the format is a little odd,
it may explain what is wrong in plain English, thereby allowing you to quickly fix it. If
the error is still confusing, look at the documentation that came with the package to see
if there is a mailing list or e-mail address you can contact for help. Most developers are
more than happy to provide help, but you need to remember to be nice and to the point.
(In other words, don’t start an e-mail with a rant about why their software is terrible.)

Installing the Package
You’ve done almost everything else. You’ve found your partner, you’ve studied them,
you’ve even compiled them—now it’s time to move them in with you.

Unlike the compile stage, the installation stage typically goes smoothly. In most cases,
once the compile completes successfully, all that you need to do is run

[root@fedora-serverA hello-2.3]# make install

This will install the package into the location specified by the default prefix
 (--prefix) argument that was used with the configure script earlier.

It will start the installation script (which is usually embedded in the makefile).
Because make displays each command as it is executing it, you will see a lot of text fly
by. Don’t worry about it—it’s perfectly normal. Unless you see an error message, the
package is installed.

If you do see an error message, it is most likely because of permissions problems.
Look at the last file it was trying to install before failure, and then go check on all the
permissions required to place a file there. You may need to use the chmod, chown, and
chgrp commands for this step.

TIP If the software being installed is meant to be used and available system-wide, this is almost
always the stage that needs to be performed by the superuser (i.e., root). Accordingly, most install
instructions will require you to become root before performing this step. If, on the other hand, a regular
user is compiling and installing a software package for his or her own personal use into a directory
for which that user has full permissions (e.g., by specifying --prefix=/home/user_name),
then there is no need to become root to do this.

Testing the Software
A common mistake administrators make is to go through the process of configuring and
compiling, and then, when they install, they do not test the software to make sure that
it runs as it should. Testing the software also needs to be done as a regular user, if the

67 Chapter 3: Managing Software

software is to be used by non-root users. In our example, you run the hello command
to verify that the permissions are correct and that users won’t have problems running
the program. You can quickly switch users (using the su command) to make sure the
software is usable by everyone.

Assuming that you accepted the default installation prefix for the Hello program
(i.e., the relevant files will be under the /usr/local directory), use the full path to the pro-
gram binary to execute it. Type

[root@fedora-serverA hello-2.3]# /usr/local/bin/hello

Hello, world!

That’s it—you’re done.

Cleanup
Once the package is installed, you can do some cleanup to get rid of all the temporary
files created during the installation. Since you have the original source-code tarball, it is
OK to simply get rid of the entire directory from which you compiled the source code. In
the case of the Hello program, you would get rid of /usr/local/src/hello-2.3.

Begin by going one directory level above the directory you want to remove. In this
case, that would be /usr/local/src.

[root@fedora-serverA hello-2.3]# cd /usr/local/src

Now use the rm command to remove the actual directory, like so:

[root@fedora-serverA src]# rm -rf hello-2.3

The rm command, especially with the -rf parameter, is dangerous. It recursively
removes an entire directory without stopping to verify any of the files. It is especially
potent when run by the root user—it will shoot first and leave you asking questions
later.

Be careful and make sure you are erasing what you mean to erase. There is no easy
way to undelete a file in Linux when working from the command line.

COMMON PROBLEMS WHEN BUILDING
FROM SOURCE CODE

The GNU Hello program might not seem like a useful tool, and for the most part, we
will agree it is not. But one valuable thing it provides is the ability to test the compiler
on your system. If you’ve just finished the task of upgrading your compiler, compiling
this simple program will provide a sanity check that indeed the compiler is working.
Here are some other problems (and their solutions) you may run into when building
from source.

 68 Linux Administration: A Beginner’s Guide

Problems with Libraries
One problem you might run into is when the program can’t find a file of the type
 “libsomething.so” and terminates for that reason. This file is what is called a library.
Libraries are synonymous with Dynamic Link Libraries (DLLs) in Windows. These
libraries are stored in several locations on the Linux system and typically reside in /usr/
lib/ and /usr/local/lib/. If you have installed a software package in a different location
than /usr/local, you will have to configure your system or shell to know where to look
for those new libraries.

NOTE Linux libraries can be located anywhere on your file system. You’ll appreciate the usefulness
of this when, for example, you have to use the Network File System (NFS) to share a directory (or, in
our case, software) among network clients. You’ll find that users or clients can easily use the software
residing on the network share.

There are two methods for configuring libraries on a Linux system. One is to modify
/etc/ld.conf, add the path of your new libraries, and use the ldconfig -m command
to load in the new directories. You can also use the LD_LIBRARY_PATH environment
variable to hold a list of library directories to look for library files. Read the main page
for ld.conf for more information.

When There Is No configure Script
Sometimes, you will download a package and instantly type cd into a directory and run
./configure. And you will probably be shocked when you see the message “No such file
or directory.” As stated earlier in the chapter, read the README and INSTALL files in
the distribution. Typically, the authors of the software are courteous enough to provide
at least these two files. It is common to want to jump right in and begin compiling some-
thing without first looking at these documents and then come back hours later to find
that a step was missed. The first step you take when installing software is to read the
documentation. It will probably point out the fact that you need to run imake first and
then make. You get the idea: Always read the documentation first, and then proceed to
compiling the software.

Broken Source Code
No matter what you do, it is possible that the source code that you have is simply bro-
ken and the only person who can get it to work or make any sense of it is its original
author. You may have already spent countless hours trying to get the application to
compile and build before coming to this conclusion and throwing in the towel. It is
also possible that the author of the program has left valuable or relevant information
undocumented.

69 Chapter 3: Managing Software

SUMMARY
You’ve explored the common functions of the popular RPM and Debian Package Man-
agement Systems. You used various options to manipulate .rpm and .deb packages by
querying, installing, and uninstalling sample packages. We did a lot of our learning from
the command line. We mentioned a few GUI tools that are used on popular Linux dis-
tributions. The GUI tools are similar to the Windows Add/Remove Programs Control
Panel applet. Just point and click. We also briefly touched on a now-popular software
management system in Linux called Yum.

Using an available open source program as an example, we described the steps
involved in configuring, compiling, and building software from the raw source code.

As a bonus, you also learned a thing or two about the mechanics of relationships.

71

Single-Host
Administration

II

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

73

4

Managing Users

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 74 Linux Administration: A Beginner’s Guide

UNIX/Linux was designed from the ground up to be a multiuser operating
system. A multiuser operating system will not be much good without users. And
this brings us to the topic of managing users in Linux. Associated with each

user is the user’s baggage. This baggage might include files, processes, resources, and
other information. When dealing with a multiuser system, it is necessary for a system
administrator to have a good understanding of what constitutes a user (and all that
user’s baggage), a group, and how they interact together.

User accounts are used on computer systems to determine who has access to what.
The ability of a user to access a system is determined by whether that user exists and has
the proper permissions to use the system.

In this chapter, we will examine the technique of managing users on a single host.
We’ll begin by exploring the actual database files that contain information about users.
From there, we’ll examine the system tools available to manage the files automatically.

WHAT EXACTLY CONSTITUTES A USER?
Under Linux, every file and program must be owned by a user. Each user has a unique
identifier called a user ID (UID). Each user must also belong to at least one group, a col-
lection of users established by the system administrator. Users may belong to multiple
groups. Like users, groups also have unique identifiers, called group IDs (GIDs).

The accessibility of a file or program is based on its UIDs and GIDs. A running pro-
gram inherits the rights and permissions of the user who invokes it. (SetUID and SetGID,
discussed in “Understanding SetUID and SetGID Programs” later in this chapter, create
an exception to this rule.) Each user’s rights can be defined in one of two ways: as those
of a normal user or the root user. Normal users can access only what they own or have
been given permission to run; permission is granted because the user either belongs to
the file’s group or because the file is accessible to all users. The root user is allowed to
access all files and programs in the system, whether or not root owns them. The root user
is often called a superuser.

If you are accustomed to Windows, you can draw parallels between that system’s
user management and Linux’s user management. Linux UIDs are comparable to Win-
dows SIDs (system IDs), for example. In contrast to Microsoft Windows, you may find
the Linux security model maddeningly simplistic: Either you’re root or you’re not. Nor-
mal users cannot have root privileges in the same way normal users can be granted
administrator access under Windows. Although this approach is a little less common,
you can also implement finer-grained access control through the use of access control
lists (ACLs) in Linux, as you can with Windows. Which system is better? Depends on
what you want and whom you ask.

Where User Information Is Kept
If you’re already used to Windows 200x user management, you’re familiar with the
Active Directory tool that takes care of the nitty-gritty details of the user database. This
tool is convenient, but it makes developing your own administrative tools trickier, since

75 Chapter 4: Managing Users

the only other way to read or manipulate user information is through a series of Light-
weight Directory Access Protocol (LDAP), Kerberos, or programmatic system calls.

In contrast, Linux takes the path of traditional UNIX and keeps all user information
in straight text files. This is beneficial for the simple reason that it allows you to make
changes to user information without the need of any other tool but a text editor such as
vi. In many instances, larger sites take advantage of these text files by developing their
own user administration tools so that they can not only create new accounts, but also
automatically make additions to the corporate phone book, web pages, and so on.

However, users and groups working with UNIX style for the first time may prefer
to stick with the basic user management tools that come with the Linux distribution.
We’ll discuss those tools in “User Management Tools” later in this chapter. For now, let’s
examine the text files that store user and group information in Linux.

The /etc/passwd File
The /etc/passwd file stores the user’s login, encrypted password entry, UID, default GID,
name (sometimes called GECOS), home directory, and login shell. Each line in the file
represents information about a user. The lines are made up of various standard fields,
with each field delimited by a colon. A sample entry from a passwd file with its various
fields is illustrated in Figure 4-1.

The fields of the /etc/passwd file are discussed in detail in the sections that follow.

Username Field
This field is also referred to as the login field or the account field. It stores the name of
the user on the system. The username must be a unique string and uniquely identifies a
user to the system. Different sites use different methods for generating user login names.
A common method is to use the first letter of the user’s first name and append the user’s
last name. This usually works, because the chances are relatively slim that one would
have users with the same first and last names. There are, of course, several variations of
this method. For example, for a user whose first name is “Ying” and whose last name is
“Yang”—a username of “yyang” can be assigned to that user.

Figure 4-1. Fields of the /etc/passwd file

Username

Password Group-ID Directory

User-ID

yyang : * : 500 : 500 : Ying Yang :/home/yyang: /bin/bash

GECOS Shell

 76 Linux Administration: A Beginner’s Guide

Password Field
This field contains the encrypted password for the user. On most modern Linux systems,
this field contains a letter x to indicate that shadow passwords are being used on the sys-
tem (discussed in detail later). Every user account on the system should have a password
or, at the very least, be tagged as impossible to log in. This is crucial to the security of the
system—weak passwords make compromising a system just that much simpler.

The original philosophy behind passwords is actually quite interesting, especially
since we still rely on a significant part of it today. The idea is simple: Instead of relying
on protected files to keep passwords a secret, the system would encrypt the password
using an AT&T-developed (and National Security Agency–approved) algorithm called
Data Encryption Standard (DES) and leave the encrypted value publicly viewable. What
originally made this secure was that the encryption algorithm was computationally dif-
ficult to break. The best most folks could do was a brute-force dictionary attack, where
automated systems would iterate through a large dictionary and rely on the nature of
users to pick English words for their passwords. Many people tried to break DES itself,
but since it was an open algorithm that anyone could study, it was made much more bul-
letproof before it was actually deployed.

When users entered their passwords at a login prompt, the password they entered
would be encrypted. The encrypted value would then be compared against the user’s
password entry. If the two encrypted values matched, the user was allowed to enter the
system. The actual algorithm for performing the encryption was computationally cheap
enough that a single encryption wouldn’t take too long. However, the tens of thousands of
encryptions that would be needed for a dictionary attack would take prohibitively long.

But then a problem occurred: Moore’s Law on processor speed doubling every
18 months held true, and home computers were becoming powerful and fast enough
that programs were able to perform a brute-force dictionary attack within days rather
than weeks or months. Dictionaries got bigger, and the software got smarter. The nature
of passwords thus needed to be reevaluated. One solution has been to improve the algo-
rithm used to perform the encryption of passwords. Some distributions of Linux have fol-
lowed the path of the FreeBSD operating system and used the Message-Digest algorithm
5 (MD5) scheme. This has increased the complexity involved in cracking passwords,
which, when used in conjunction with shadow passwords (discussed later on), works
quite well. (Of course, this is assuming you make your users choose good passwords!)

TIP Choosing good passwords is always a chore. Your users will inevitably ask, “What then, O Almighty
System Administrator, makes a good password?” Here’s your answer: a non-language word (not English,
not Spanish, not German, not a human-language word), preferably with mixed case, numbers, and
punctuation—in other words, a string that looks like line noise. Well, this is all nice and wonderful, but if
a password is too hard to remember, most people will quickly defeat its purpose by writing it down and
keeping it in an easily viewed place. So better make it memorable! A good technique might be to choose
a phrase and then pick the first letter of every word in the phrase. Thus, the phrase “coffee is VERY GOOD
for you and me” becomes ciVG4yam. The phrase is memorable, even if the resulting password isn’t.

77 Chapter 4: Managing Users

User-ID Field (UID)
This field stores a unique number that the operating system and other applications use
to identify the user and determine access privileges. It is the numerical equivalent of the
Username field. The UID must be unique for every user, with the exception of the UID
0 (zero). Any user who has a UID of 0 has root (administrative) access and thus has the
full run of the system. Usually, the only user who has this specific UID has the login root.
It is considered bad practice to allow any other users or usernames to have a UID of 0.
This is notably different from the Windows NT and 2000 models, in which any number
of users can have administrative privileges.

Different Linux distributions sometimes adopt different UID numbering schemes.
For example, Fedora and Red Hat Enterprise Linux (RHEL) reserve the UID 99 for
the user “nobody,” while SuSE and Ubuntu Linux use the UID 65534 for the user
“nobody.”

Group-ID Field (GID)
The next field in the /etc/passwd file is the group-ID entry. It is the numerical equivalent
of the primary group that the user belongs to. This field also plays an important role
in determining user access privileges. It should be noted that besides a user’s primary
group, a user can belong to other groups as well (more on this in the section “The /etc/
group File”).

GECOS
This field can store various pieces of information for a user. It can act as a placeholder for
the user description, full name (first name and last name), telephone number, and so on.
This field is optional and as result can be left blank. It is also possible to store multiple
entries in this field by simply separating the different entries with a comma.

NOTE GECOS is an acronym for General Electric Comprehensive Operating System (now referred
to as GCOS) and is a carryover from the early days of computing.

Directory
This is usually the user’s home directory, but it can also be any arbitrary location on the
system. Every user who actually logs into the system needs a place for configuration files
that are unique to the user. This place, called a home directory, allows each user to work
in a customized environment without having to change the environment customized
by another user—even if both users are logged into the system at the same time. In this
directory, users are allowed to keep not only their configuration files, but their regular
work files as well.

 78 Linux Administration: A Beginner’s Guide

For the sake of consistency, most sites place home directories at /home and name
each user’s directory by that user’s login name. Thus, for example, if your login name
were “yyang,” your home directory would be /home/yyang. The exception to this is for
some special system accounts, such as a root user’s account or a system service. The

Startup Scripts
Startup scripts are not quite a part of the information stored in the users’ database in
Linux. But they nonetheless play an important role in determining and controlling
a user’s environment. In particular, the startup scripts in Linux are usually stored
under the user’s home directory… and hence the need to mention them while still
on the subject of the directory (home directory) field in the /etc/passwd file.

Linux/UNIX was built from the get-go as a multiuser environment. Each user
is allowed to have his or her own configuration files; thus, the system appears to be
customized for each particular user (even if other people are logged in at the same
time). The customization of each individual user environment is done through the
use of shell scripts, run control files, and the like. These files can contain a series of
commands to be executed by the shell that starts when a user logs in. In the case
of the bash shell, for example, one of its startup files is the .bashrc file. (Yes, there
is a period in front of the filename—filenames preceded by periods, also called dot
files, are hidden from normal directory listings.) You can think of shell scripts in the
same light as batch files, except shell scripts can be much more capable. The .bashrc
script in particular is similar in nature to autoexec.bat in the Windows world.

Various Linux software packages use application-specific and customizable
options in directories or files that begin with a dot (.) in each user’s home directory.
Some examples are .mozilla and .kde. Here are some common dot (.) files that are
present in each user’s home directory:

▼ .bashrc/.profile Configuration files for BASH.

■ .tcshrc/.login Configuration files for tcsh.

■ .xinitrc This script overrides the default script that gets called when you
log into the X Window System.

▲ .Xdefaults This file contains defaults that you can specify for X Window
System applications.

When you create a user’s account, a set of default dot files are also created for
the user; this is mostly for convenience, to help get the user started. The user cre-
ation tools discussed later on help you do this automatically. The default files are
stored under the /etc/skel directory.

79 Chapter 4: Managing Users

superuser’s (root’s) home directory in Linux is usually set to /root (but for most variants
of UNIX, such as Solaris, the home directory is traditionally /). An example of a special
system service that might need a specific working directory could be a web server whose
web pages are served from the /var/www/ directory.

In Linux, the decision to place home directories under /home is strictly arbitrary, but
it does make organizational sense. The system really doesn’t care where we place home
directories, so long as the location for each user is specified in the password file.

Shell
When users log into the system, they expect an environment that can help them be pro-
ductive. This first program that users encounter is called a shell. If you’re used to the
Windows side of the world, you might equate this with command.com, Program Man-
ager, or Windows Explorer (not to be confused with Internet Explorer, which is a web
browser).

Under UNIX/Linux, most shells are text-based. A popular default user shell in Linux
is the Bourne Again Shell, or BASH for short. Linux comes with several shells from which
to choose—you can see most of them listed in the /etc/shells file. Deciding which shell is
right for you is kind of like choosing a favorite beer—what’s right for you isn’t right for
everyone, but still, everyone tends to get defensive about their choice!

What makes Linux so interesting is that you do not have to stick with the list of shells
provided in /etc/shells. In the strictest of definitions, the password entry for each user
doesn’t list what shell to run so much as it lists what program to run first for the user. Of
course, most users prefer that the first program run be a shell, such as BASH.

The /etc/shadow File
This is the encrypted password file. It stores the encrypted password information
for user accounts. In addition to the encrypted password, the /etc/shadow file stores
optional password aging or expiration information. The introduction of the shadow file
came about because of the need to separate encrypted passwords from the /etc/passwd
file. This was necessary because the ease with which the encrypted passwords could be
cracked was growing with the increase in the processing power of commodity comput-
ers (home PCs). The idea was to keep the /etc/passwd file readable by all users without
storing the encrypted passwords in it and then make the /etc/shadow file only readable
by root or other privileged programs that require access to that information. An example
of such a program would be the login program.

One might wonder, “Why not just make the regular /etc/passwd file readable by root
only or other privileged programs?” Well, it isn’t that simple. By having the password
file open for so many years, the rest of the system software that grew up around it relied
on the fact that the password file was always readable by all users. Changing this would
simply cause software to fail.

 80 Linux Administration: A Beginner’s Guide

Just as in the /etc/passwd file, each line in the /etc/shadow file represents information
about a user. The lines are made up of various standard fields, with each field delimited
by a colon. The fields are

▼ Login name

■ Encrypted password

■ Days since January 1, 1970, that password was last changed

■ Days before password may be changed

■ Days after which password must be changed

■ Days before password is to expire that user is warned

■ Days after password expires that account is disabled

■ Days since January 1, 1970, that account is disabled

▲ A reserved field

A sample entry from the /etc/shadow file is shown here for the user account mmel:

mmel:1HEWdPIJ.$qX/RbB.TPGcyerAVDlF4g.:12830:0:99999:7:::

The /etc/group File
The /etc/group file contains a list of groups, with one group per line. Each group entry
in the file has four standard fields, with each field colon-delimited, as in the /etc/passwd
and /etc/shadow files. Each user on the system belongs to at least one group, that being
the user’s default group. Users may then be assigned to additional groups if needed. You
will recall that the /etc/passwd file contains each user’s default group ID (GID). This GID
is mapped to the group’s name and other members of the group in the /etc/group file.
The GID should be unique for each group.

Also, like the /etc/passwd file, the group file must be world-readable so that appli-
cations can test for associations between users and groups. The fields of each line in
the /etc/group file are

▼ Group name The name of the group

■ Group password This is optional, but if set, it allows users who are not part of
the group to join

■ Group ID (GID) The numerical equivalent of the group name

▲ Group members A comma-separated list

A sample group entry in the /etc/group file is shown here:

bin:x:1:root,bin,daemon

This entry is for the “bin” group. The GID for the group is 1, and its members are root,
bin, and daemon.

81 Chapter 4: Managing Users

USER MANAGEMENT TOOLS
The wonderful part about having password database files that have a well-defined for-
mat in straight text is that it is easy for anyone to write their own management tools.
Indeed, many site administrators have already done this in order to integrate their tools
along with the rest of their organization’s infrastructure. They can start a new user from
the same form that lets them update the corporate phone and e-mail directory, LDAP
servers, web pages, and so on. Of course, not everyone wants to write their own tools,
which is why Linux comes with several existing tools that do the job for you.

In this section, we discuss user management tools that can be used from the
 command-line interface, as well as graphical user interface (GUI) tools. Of course,
learning how to use both is the preferred route, since they both have their advantages
and place.

Command-Line User Management
You can choose from among six command-line tools to perform the same actions per-
formed by the GUI tool: useradd, userdel, usermod, groupadd, groupdel, and
groupmod. The compelling advantage of using command-line tools for user manage-
ment, besides speed, is the fact that the tools can usually be incorporated into other
automated functions (such as scripts).

NOTE Linux distributions other than Fedora and RHEL may have slightly different parameters from
the tools used here. To see how your particular installation is different, read the man page for the
particular program in question.

useradd
As the name implies, useradd allows you to add a single user to the system. Unlike the
GUI tools, this tool has no interactive prompts. Instead, all parameters must be specified
on the command line.

Here’s how you use this tool:

usage: useradd [-u uid [-o]] [-g group] [-G group,...]

 [-d home] [-s shell] [-c comment] [-m [-k template]]

 [-f inactive] [-e expire] [-p passwd] [-M] [-n] [-r] name

 useradd -D [-g group] [-b base] [-s shell]

 [-f inactive] [-e expire]

Take note that anything in the square brackets in this usage summary is optional.
Also, don’t be intimidated by this long list of options! They are all quite easy to use and
are described in Table 4-1.

 82 Linux Administration: A Beginner’s Guide

Table 4-1. Options for the useradd Command

Option Description

-c comment Allows you to set the user’s name in the GECOS field.
As with any command-line parameter, if the value
includes a space, you will need to put quotes around
the text. For example, to set the user’s name to Ying
Yang, you would have to specify -c "Ying Yang".

-d homedir By default, the user’s home directory is /home/
user_name. When creating a new user, the user’s
home directory gets created along with the user
account. So if you want to change the default to
another place, you can specify the new location with
this parameter.

-e expire-date It is possible for an account to expire after a certain
date. By default, accounts never expire. To specify a
date, be sure to place it in YYYY MM DD format. For
example, use -e 2009 10 28 for the account to
expire on October 28, 2009.

-f inactive-time This option specifies the number of days after a
password expires that the account is still usable.
A value of 0 (zero) indicates that the account is
disabled immediately. A value of -1 will never allow
the account to be disabled, even if the password has
expired (for example, -f 3 will allow an account to
exist for three days after a password has expired).
The default value is -1.

-g initial-group Using this option, you can specify the default group
the user has in the password file. You can use a
number or name of the group; however, if you use
a name of a group, the group must exist in the /etc/
group file.

-G group [,...] This option allows you to specify additional groups
to which the new user will belong. If you use the
-G option, you must specify at least one additional
group. You can, however, specify additional groups
by separating the elements of the list with commas.
For example, to add a user to the project and admin
groups, you should specify -G project,admin.

83 Chapter 4: Managing Users

Table 4-1. Options for the useradd Command (cont.)

Option Description

-m [-k skel-dir] By default, the system automatically creates the
user’s home directory. This option is the explicit
command to create the user’s home directory.
Part of creating the directory is copying default
configuration files into it. These files come from the
/etc/skel directory by default. You can change this
by using the secondary option -k skel-dir. (You
must specify -m in order to use -k.) For example, to
specify the /etc/adminskel directory, you would use
-m -k /etc/adminskel.

-M If you used the -m option, you cannot use -M, and
vice versa. This option tells the command not to
create the user’s home directory.

-n Red Hat Linux creates a new group with the same
name as the new user’s login as part of the process
of adding a user. You can disable this behavior by
using this option.

-s shell A user’s login shell is the first program that runs
when a user logs into a system. This is usually a
command-line environment, unless you are logging
in from the X Window System login screen. By
default, this is the Bourne Again Shell (/bin/bash),
though some folks like other shells, such as the
Turbo C Shell (/bin/tcsh).

-u uid By default, the program will automatically find the
next available UID and use it. If, for some reason,
you need to force a new user’s UID to be a particular
value, you can use this option. Remember that UIDs
must be unique for all users.

name Finally, the only parameter that isn’t optional! You
must specify the new user’s login name.

 84 Linux Administration: A Beginner’s Guide

usermod
The usermod command allows you to modify an existing user in the system. It works in
much the same way as useradd. Its usage is summarized here:

usage: usermod [-u uid [-o]] [-g group] [-G group,...]

 [-d home [-m]] [-s shell] [-c comment] [-l new_name]

 [-f inactive] [-e expire] [-p passwd] [-L|-U] name

Every option you specify when using this command results in that particular parameter
being modified for the user. All but one of the parameters listed here are identical to the
parameters documented for the useradd command. The one exception is -l.

The -l option allows you to change the user’s login name. This and the -u option are
the only options that require special care. Before changing the user’s login or UID, you
must make sure the user is not logged into the system or running any processes. Chang-
ing this information if the user is logged in or running processes will cause unpredictable
results.

userdel
The userdel command does the exact opposite of useradd—it removes existing
users. This straightforward command has only one optional parameter and one required
parameter:

usage: userdel [-r] username

groupadd
The group commands are similar to the user commands; however, instead of working
on individual users, they work on groups listed in the /etc/group file. Note that chang-
ing group information does not cause user information to be automatically changed. For
example, if you remove a group whose GID is 100 and a user’s default group is specified
as 100, the user’s default group would not be updated to reflect the fact that the group
no longer exists.

The groupadd command adds groups to the /etc/group file. The command-line
options for this program are as follows:

usage: groupadd [-g gid [-o]] [-r] [-f] group

Table 4-2 describes command options.

groupdel
Even more straightforward than userdel, the groupdel command removes existing
groups specified in the /etc/group file. The only usage information needed for this com-
mand is

usage: groupdel group

where group is the name of the group to remove.

85 Chapter 4: Managing Users

groupmod
The groupmod command allows you to modify the parameters of an existing group. The
options for this command are

usage: groupmod [-g gid [-o]] [-n name] group

where the -g option allows you to change the GID of the group, and the -n option
allows you to specify a new name of a group. In addition, of course, you need to specify
the name of the existing group as the last parameter.

GUI User Managers
The obvious advantage to using the GUI tool is ease of use. It is usually just a point-and-
click affair. Many of the Linux distributions come with their own GUI user managers.
Fedora comes with a utility called system-config-users, RHEL comes with a utility

Table 4-2. Options for the groupadd Command

Option Description

-g gid Specifies the GID for the new group as gid. This
value must be unique, unless the -o option is used.
By default, this value is automatically chosen by
finding the first available value greater than or
equal to 500.

-r By default, Fedora and RHEL search for the first
GID that is higher than 499. The -r options tell
groupadd that the group being added is a system
group and should have the first available GID
under 499.

-f This is the force flag. This will cause groupadd to
exit without an error when the group about to be
added already exists on the system. If that is the
case, the group won’t be altered (or added again).
It is a Fedora- and RHEL-specific option.

group This option is required. It specifies the name of the
group you want to add to be group.

 86 Linux Administration: A Beginner’s Guide

called redhat-config-users, and openSuSE/SEL Linux has a YaST module that can
be invoked with yast2 users. Ubuntu uses a tool called users-admin. All these tools
allow you to add, edit, and maintain the users on your system. These GUI interfaces
work just fine—but you should be prepared to have to manually change user settings in
case you don’t have access to the pretty GUI front-ends. Most of these interfaces can be
found in the System Settings menu within the GNOME or KDE desktop environment.
They can also be launched directly from the command line. To launch Fedora’s GUI user
manager, you’d type

[root@fedora-serverA ~]# system-config-users

A window similar to the one in Figure 4-2 will open.
In OpenSuSE or SLE, to launch the user management YaST module (see Figure 4-3),

you’d type

suse-serverA:~ # yast2 users

In Ubuntu, to launch the user management tool (see Figure 4-4), you’d type

yyang@ubuntu-server:~$ sudo users-admin

Figure 4-2. Fedora GUI User Manager tool

87 Chapter 4: Managing Users

Figure 4-4. Ubuntu GUI Users Settings tool

Figure 4-3. OpenSuSE GUI User and Group Administration tool

 88 Linux Administration: A Beginner’s Guide

USERS AND ACCESS PERMISSIONS
Linux determines whether a user or group has access to files, programs, or other resources
on a system by checking the overall effective permissions on the resource. The traditional
permissions model in Linux is simple—it is based on four access types, or rules. The pos-
sible access types are

▼ (r) Read permission

■ (w) Write permission

■ (x) Execute permission

▲ (-) No permission or no access

In addition, these permissions can be applied to three classes of users. The classes are

▼ Owner The owner of the file or application

■ Group The group that owns the file or application

▲ Everyone All users

The elements of this model can be combined in various ways to permit or deny a
user (or group) access to any resource on the system. There is, however, a need for an
additional type of permission-granting mechanism in Linux. This need arises because
every application in Linux must run in the context of a user. This is explained in the next
section, which explains SetUID and SetGID programs.

Understanding SetUID and SetGID Programs
Normally, when a program is run by a user, it inherits all of the rights (or lack thereof)
that the user has. If the user can’t read the /var/log/messages file, neither can the pro-
gram. Note that this permission can be different from the permissions of the user who
owns the program file (usually called the binary). For example, the ls program (which
is used to generate directory listings) is owned by the root user. Its permissions are set
so that all users of the system can run the program. Thus, if the user yyang runs ls, that
instance of ls is bound by the permissions granted to the user yyang, not root.

However, there is an exception. Programs can be tagged with what’s called a SetUID
bit, which allows a program to be run with permissions from the program’s owner, not
the user who is running it. Using ls as an example again, setting the SetUID bit on it and
having the file owned by root means that if the user yyang runs ls, that instance of ls will
run with root permissions, not with yyang’s permissions. The SetGID bit works the same
way, except instead of applying the file’s owner, it is applied to the file’s group setting.

To enable the SetUID bit or the SetGID bit, you need to use the chmod command. To
make a program SetUID, prefix whatever permission value you are about to assign it
with a 4. To make a program SetGID, prefix whatever permission you are about to assign

89 Chapter 4: Managing Users

it with a 2. For example, to make /bin/ls a SetUID program (which is a bad idea, by the
way), you would use this command:

[root@fedora-serverA ~]# chmod 4755 /bin/ls

PLUGGABLE AUTHENTICATION MODULES (PAM)
Pluggable Authentication Modules (PAM) allows the use of a centralized authentica-
tion mechanism on Linux/UNIX systems. Besides providing a common authentication
scheme on a system, the use of PAM allows for a lot of flexibility and control over authen-
tication for application developers, as well as for system administrators.

Traditionally, programs that grant users access to system resources performed the
user authentication through some built-in mechanism. While this worked great for a
long time, the approach was not very scalable and more sophisticated methods were
required. This led to a number of ugly hacks to abstract the authentication mechanism.
Taking a cue from Solaris, Linux folks created their own implementation of PAM.

The idea behind PAM is that instead of applications reading the password file, they
would simply ask PAM to perform the authentication. PAM could then use whatever
authentication mechanism the system administrator wanted. For many sites, the mecha-
nism of choice is still a simple password file. And why not? It does what we want. Most
users understand the need for it, and it’s a well-tested method to get the job done.

In this section, we discuss the use of PAM under the Fedora distribution. It should
be noted that while the placement of files may not be exactly the same in other distribu-
tions, the underlying configuration files and concepts still apply.

How PAM Works
PAM is to other programs as a Dynamic Link Library (DLL) is to a Windows application—it
is just a library. When programs need to perform authentication on someone, they call
a function that exists in the PAM library. PAM provides a library of functions that an
application may use to request that a user be authenticated.

When invoked, PAM checks the configuration file for that application. If there isn’t
a configuration file, it uses a default configuration file. This configuration file tells the
library what types of checks need to be done in order to authenticate the user. Based on
this, the appropriate module is called on (Fedora and RHEL folks can see these modules
in the /lib/security directory).

This module can check any number of things. It can simply check the /etc/passwd
file or the /etc/shadow file, or it can perform a more complex check, like calling on an
LDAP server.

NOTE The PAM web site (www.kernel.org/pub/linux/libs/pam) offers a complete list of available
modules.

 90 Linux Administration: A Beginner’s Guide

Once the module has made the determination, an “authenticated/not authenticated”
message is passed back to the calling application.

If this feels like a lot of steps for what should be a simple check, you’re almost cor-
rect. While it feels like a lot of steps, each module here is small and does its work quickly.
From a user’s point of view, there should be no noticeable difference in performance
between an application that uses PAM and one that does not. From a system administra-
tor’s and developer’s point of view, the flexibility this scheme offers is incredible and a
welcome addition.

PAM’s Files and Their Locations
On a Fedora-type system, PAM puts her configuration files in certain places. These file
locations and their definitions are listed in Table 4-3.

Looking at the list of file locations in Table 4-3, one has to ask why PAM needs so
many different configuration files. “One configuration file per application? That seems
crazy!” Well, maybe not. The reason PAM allows this is that not all applications are cre-
ated equal. For instance, a Post Office Protocol (POP) mail server that uses the Qpopper
mail server may want to allow all of a site’s users to fetch mail, but the login program
may want to allow only certain users to log into the console. To accommodate this, PAM
needs a configuration file for POP mail that is different from the configuration file for the
login program.

Configuring PAM
The configuration files that we will be discussing here are the ones located in the /etc/
pam.d directory. If you want to change the configuration files that apply to specific mod-
ules in the /etc/security directory, you should consult the documentation that came with

Table 4-3. Important PAM Directories

File Location Definition

/lib/security Dynamically loaded authentication modules
called by the actual PAM library.

/etc/security Configuration files for the modules located in /lib/
security.

/etc/pam.d Configuration files for each application that uses
PAM. If an application that uses PAM does not
have a specific configuration file, the default is
automatically used.

91 Chapter 4: Managing Users

the module. (Remember, PAM is just a framework. Specific modules can be written by
anyone.)

The nature of a PAM configuration file is interesting because of its “stackable” nature.
That is, every line of a configuration file is evaluated during the authentication pro-
cess (with the exceptions shown next). Each line specifies a module that performs some
authentication task and returns either a success or failure flag. A summary of the results
is returned to the application program calling PAM.

NOTE By “failure,” we do not mean the program did not work. Rather, we mean that when some
process was done to verify whether a user could do something, the return value was “NO.” PAM
uses the terms “success” and “failure” to represent this information that is passed back to the calling
application.

Each file consists of lines in the following format:

module_type control_flag module_path arguments

where module_type represents one of four types of modules: auth, account, session, or
password. Comments must begin with the hash (#) character. Table 4-4 lists these mod-
ule types and their functions.

Table 4-4. PAM Module Types

Module Type Function

auth Instructs the application program to prompt the
user for a password and then grants both user and
group privileges.

account Performs no authentication, but determines access
from other factors, such as time of day or location
of the user. For example, the root login can be
given only console access this way.

session Specifies what, if any, actions need to be
performed before or after a user is logged in (e.g.,
logging the connection).

password Specifies the module that allows users to change
their password (if appropriate).

 92 Linux Administration: A Beginner’s Guide

The control_flag allows us to specify how we want to deal with the success or fail-
ure of a particular authentication module. The control flags are described in Table 4-5.

The module_path specifies the actual directory path of the module that performs
the authentication task. The modules are usually stored under the /lib/security directory.
For a full list of modules, visit PAM’s web site (www.kernel.org/pub/linux/libs/pam).

The final entry in a PAM configuration line is arguments. These are the parameters
passed to the authentication module. Although the parameters are specific to each mod-
ule, some generic options can be applied to all modules. These arguments are described
in Table 4-6.

Table 4-5. PAM Control Flags

Control Flag Description

required If this flag is specified, the module must
succeed in authenticating the individual. If
it fails, the returned summary value must be
failure.

requisite This flag is similar to required; however, if
requisite fails authentication, modules
listed after it in the configuration file are not
called, and a failure is immediately returned
to the application. This allows us to require
certain conditions to hold true before even
accepting a login attempt (e.g., the user is on
the local area network and cannot come from
over the Internet).

sufficient If a sufficient module returns a success and
there are no more required or sufficient
control flags in the configuration file, PAM
returns a success to the calling application.

optional This flag allows PAM to continue checking
other modules, even if this one has failed.
You will want to use this when the user is
allowed to log in even if a particular module
has failed.

93 Chapter 4: Managing Users

An Example PAM Configuration File
Let’s examine a sample PAM configuration file, /etc/pam.d/login:

#%PAM-1.0

auth required pam_securetty.so

auth required pam_stack.so service=system-auth

auth required pam_nologin.so

account required pam_stack.so service=system-auth

Table 4-6. PAM Configuration Arguments

Argument Description

debug Sends debugging information to the system
logs.

no_warn Does not give warning messages to the
calling application.

use_first_pass Does not prompt the user for a password
a second time. Instead, the password
that was entered in the preceding auth
module should be reused for the user
authentication. (This option is for the auth
and password modules only.)

try_first_pass This option is similar to use_first_pass,
where the user is not prompted for a
password the second time. However, if the
existing password causes the module to
return a failure, the user is then prompted
for a password again.

use_mapped_pass This argument instructs the module to take
the clear-text authentication token entered
by a previous module and use it to generate
an encryption/decryption key with which
to safely store or retrieve the authentication
token required for this module.

expose_account This argument allows a module to be less
discreet about account information—as
deemed fit by the system administrator.

 94 Linux Administration: A Beginner’s Guide

password required pam_stack.so service=system-auth

pam_selinux.so close should be the first session rule

session required pam_selinux.so close

session required pam_stack.so service=system-auth

session optional pam_console.so

pam_selinux.so open should be the last session rule

session required session required pam_selinux.so multiple open

We can see that the first line begins with a hash symbol and is therefore a comment.
Thus, we can ignore it. Let’s go on to line 2:

auth required pam_securetty.so

Since the module_type is auth, PAM will want a password. The control_flag is
set to required, so this module must return a success, or the login will fail. The module
itself, pam_securetty.so, verifies that logins on the root account can happen only on the
terminals mentioned in the /etc/securetty file. There are no arguments on this line.

auth required pam_stack.so service=system-auth

Similar to the first auth line, line 3 wants a password for authentication, and if the
password fails, the authentication process will return a failure flag to the calling applica-
tion. The pam_stack.so module lets you call from inside the stack for a particular service
or the stack defined for another service. The service=system-auth argument in this
case tells pam_stack.so to execute the stack defined for the service system-auth
(system-auth is also another PAM configuration under the /etc/pam.d directory).

auth required pam_nologin.so

In line 4, the pam_nologin.so module checks for the /etc/nologin file. If it is present,
only root is allowed to log in; others are turned away with an error message. If the file
does not exist, it always returns a success.

account required pam_stack.so service=system-auth

In line 5, since the module_type is account, the pam_stack.so module acts dif-
ferently. It silently checks that the user is allowed to log in (e.g., “Has their password
expired?”). If all the parameters check out OK, it will return a success.

The same concepts apply to the rest of the lines in the /etc/pam.d/login file (as well as
other configuration files under the /etc/pam.d directory).

If you need more information about what a particular PAM module does or about the
arguments it accepts, you may consult the man page for the module. For example, to find
out more about the pam_selinux.so module, you would issue the command

[root@serverA ~]# man pam_selinux

95 Chapter 4: Managing Users

The “Other” File
As we mentioned earlier, if PAM cannot find a configuration file that is specific to an
application, it will use a generic configuration file instead. This generic configuration file
is called /etc/pam.d/other. By default, the “other” configuration file is set to a paranoid
setting so that all authentication attempts are logged and then promptly denied. It is
recommended you keep it that way.

“DOH! I Can’t Log In!”
Don’t worry—screwing up a setting in a PAM configuration file happens to everyone.
Consider it part of learning the ropes. First thing to do: Don’t panic. Like most configura-
tion errors under Linux, you can fix things by booting into single-user mode (see Chap-
ter 7) and fixing the errant file.

If you’ve screwed up your login configuration file and need to bring it back to a sane
state, here is a safe setting you can put in:

auth required pam_unix.so

account required pam_unix.so

password required pam_unix.so

session required pam_unix.so

This setting will give Linux the default behavior of simply looking into the /etc/
passwd or /etc/shadow file for a password. This should be good enough to get you back
in, where you can make the changes you meant to make!

NOTE The pam_unix.so module is what facilitates this behavior. It is the standard UNIX
authentication module. According to the module’s man page, it uses standard calls from the system’s
libraries to retrieve and set account information as well as authentication. Usually, this is obtained from
the /etc/passwd file, and from the /etc/shadow file as well if shadow is enabled.

Debugging PAM
Like many other Linux services, PAM makes excellent use of the system log files (you
can read more about them in Chapter 8). If things are not working the way you want
them to, begin by looking at the tail end of the log files and see if PAM is spelling out
what happened. More than likely, it is. You should then be able to use this information
to change your settings and fix your problem. The main system log file to monitor is the
/var/log/messages file.

 96 Linux Administration: A Beginner’s Guide

A GRAND TOUR
The best way to see many of the utilities discussed in this chapter interact with one
another is to show them at work. In this section, we take a step-by-step approach to cre-
ating, modifying, and removing users and groups. Some new commands that were not
mentioned but that are also useful and relevant in managing users on a system are also
introduced and used.

Creating Users with useradd
Add new user accounts and assign passwords with the useradd and passwd
commands.

 1. Create a new user whose full name is “Ying Yang,” with the login name (account
name) of yyang. Type

[root@fedora-serverA ~]# useradd -c "Ying Yang" yyang

This command will create a new user account called yyang. The user will be
created with the usual Fedora default attributes. The entry in the /etc/passwd
file will be

yyang:x:500:500:Ying Yang:/home/yyang:/bin/bash

From this entry, you can tell these things about the Fedora (and RHEL) default
new user values:

▼ The UID number is the same as the GID number.

■ The default shell for new users is the bash shell (/bin/bash).

▲ A home directory is automatically created for all new users (e.g., /home/
yyang).

 2. Use the passwd command to create a new password for the username
yyang. Set the password to be 19ang19, and repeat the same password when
prompted. Type

[root@fedora-serverA ~]# passwd yyang

Changing password for user yyang.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

 3. Create another user account called mmellow for the user, with a full name of
“Mel Mellow,” but this time, change the default Fedora behavior of creating a

97 Chapter 4: Managing Users

group with the same name as the username (i.e., this user will instead belong to
the general users group). Type

[root@fedora-serverA ~]# useradd -c "Mel Mellow" -n mmellow

 4. Use the id command to examine the properties of the user mmellow. Type

[root@fedora-serverA ~]# id mmellow

 5. Again, use the passwd command to create a new password for the account
mmellow. Set the password to be 2owl78, and repeat the same password when
prompted. Type

[root@fedora-serverA ~]# passwd mmellow

 6. Create the final user account, called bogususer. But this time, specify the user’s
shell to be the tcsh shell, and let the user’s default primary group be the system
“games” group. Type

[root@fedora-serverA ~]# useradd -s /bin/tcsh -g games bogususer

 7. Examine the /etc/passwd file for the entry for the bogususer user. Type

[root@fedora-serverA ~]# grep bogususer /etc/passwd

bogususer:x:502:20::/home/bogususer:/bin/tcsh

From this entry, you can tell that:

▼ The UID is 502.

■ The GID is 20.

■ A home directory is also created for the user under the /home directory.

▲ The user’s shell is /bin/tcsh.

Creating Groups with groupadd
Next, create a couple of groups: nonsystem and system.

 1. Create a new group called research. Type

[root@fedora-serverA ~]# groupadd research

 2. Examine the entry for the research group in the /etc/group file. Type

[root@fedora-serverA ~]# grep research /etc/group

research:x:501:

This output shows that the group ID for the research group is 501.

 98 Linux Administration: A Beginner’s Guide

 3. Create another group called sales. Type

[root@fedora-serverA ~]# groupadd sales

 4. Create the final group called bogus, and in addition, force this group to be a
system group (i.e., the GID will be lower than 499). Type

[root@fedora-serverA ~]# groupadd -r bogus

 5. Examine the entry for the bogus group in the /etc/group file. Type

[root@fedora-serverA ~]# grep bogus /etc/group

bogus:x:497:

The output shows that the group ID for the bogus group is 497.

Modifying User Attributes with usermod
Now try using usermod to change the user and group IDs for a couple of accounts.

 1. Use the usermod command to change the user ID (UID) of the bogususer to
600. Type

[root@fedora-serverA ~]# usermod -u 600 bogususer

 2. Use the id command to view your changes. Type

[root@fedora-serverA ~]# id bogususer

The output shows the new UID (600) for the user.

 3. Use the usermod command to change the primary group ID (GID) of the bogus-
user account to that of the bogus group (GID = 101) and to also set an expiry date
of 12-12-2010 for the account. Type

[root@fedora-serverA ~]# usermod -g 497 -e 2010-12-12 bogususer

 4. View your changes with the id command. Type

[root@fedora-serverA ~]# id bogususer

 5. Use the chage command to view the new account expiration information for
the user. Type

[root@fedora-serverA ~]# chage -l bogususer

Last password change : Sep 23, 2009

Password expires : never

Password inactive : never

99 Chapter 4: Managing Users

Account expires : Dec 12, 2010

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

Number of days of warning before password expires : 7

Modifying Group Attributes with groupmod
Now try using the groupmod command.

 1. Use the groupmod command to rename the bogus group to bogusgroup. Type

[root@fedora-serverA ~]# groupmod -n bogusgroup bogus

 2. Again use the groupmod command to change the group ID (GID) of the bogus-
group to 600. Type

[root@fedora-serverA ~]# groupmod -g 600 bogusgroup

 3. View your changes to the bogusgroup in the /etc/group file. Type

[root@fedora-serverA ~]# grep bogusgroup /etc/group

Deleting Groups and Users with groupdel and userdel
Try using the groupdel and userdel commands to delete groups and users,
respectively.

 1. Use the groupdel command to delete the bogusgroup group. Type

[root@fedora-serverA ~]# groupdel bogusgroup

You will notice that the bogusgroup entry in the /etc/group file will be removed
accordingly.

 2. Use the userdel command to delete the user bogususer that you created previ-
ously. At the shell prompt, type

[root@fedora-serverA ~]# userdel -r bogususer

NOTE When you run the userdel command with only the user’s login specified on the command
line (for example, userdel bogususer), all of the entries in the /etc/passwd and /etc/shadow
files, as well as references in the /etc/group file, are automatically removed. But if you use the optional
-r parameter (for example, userdel -r bogususer), all of the files owned by the user in that
user’s home directory are removed as well.

 100 Linux Administration: A Beginner’s Guide

SUMMARY
This chapter documented the nature of users under Linux. Much of what you read here
also applies to other variants of UNIX, which makes administering users in heteroge-
neous environments much easier with the different *NIXs.

The main points covered in this chapter were:

▼ Each user gets a unique UID.

■ Each group gets a unique GID.

■ The /etc/passwd file maps UIDs to usernames.

■ Linux handles encrypted passwords in multiple ways.

■ Linux includes tools that help you administer users.

■ Should you decide to write your own tools to manage the user databases, you’ll
now understand the format for doing so.

▲ PAM, the Pluggable Authentication Modules, is Linux’s generic way of handling
multiple authentication mechanisms.

These changes are pretty significant for an administrator coming from the Windows
XP/Vista/NT/200x environment and can be a little tricky at first. Not to worry, though—
the Linux/UNIX security model is quite straightforward, so you should quickly get com-
fortable with how it all works.

If the idea of getting to build your own tools to administer users appeals to you,
definitely look into books on the Perl scripting language. It is remarkably well suited
for manipulating tabular data (such as the /etc/passwd file). Take some time and page
through a few Perl programming books at your local bookstore if this is something that
interests you.

101

5

The Command Line

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 102 Linux Administration: A Beginner’s Guide

The level of power, control, and flexibility that the command line offers UNIX/
Linux users has been one of its most endearing and enduring qualities. There
is also a flip side to this, though—for the uninitiated, the command line can

also produce extremes of emotions, including awe, frustration, and annoyance. Casual
observers of UNIX gurus are often astounded at the results of a few carefully entered
commands. Unfortunately, this power makes UNIX less intuitive to the average user.
For this reason, graphical user interface (GUI) front-ends for various UNIX/Linux tools,
functions, and utilities have been written.

More experienced users, however, find that it is difficult for a GUI to present all of
the available options. Typically, doing so would make the interface just as complicated as
the command-line equivalent. The GUI design is often oversimplified, and experienced
users ultimately return to the comprehensive capabilities of the command line. After all
has been said and done, the fact remains that it just looks plain cool to do things at the
command line.

Before we begin our study of the command-line interface under Linux, understand
that this chapter is far from an exhaustive resource. Rather than trying to cover all the
tools without any depth, we have chosen to describe thoroughly a handful of tools we
believe to be most critical for day-to-day work.

NOTE For this chapter, we assume that you are logged into the system as a regular user and
that the X Window System is up and running. If you are using the GNOME desktop environment,
for example, you can start a virtual terminal in which to issue commands. Right-clicking the desktop
should present you with a menu that will allow you to launch a virtual terminal. The context-sensitive
menu may have a menu option that reads something like Open Terminal or Launch Terminal. If you
don’t have that particular option, look for an option in the main menu that says Run Command. After
the Run dialog box appears, you can then type the name of a terminal emulator (for example, xterm,
gnome-terminal, or konsole) into the Run text box. All of the commands you enter in this chapter
should be typed into the virtual terminal window.

AN INTRODUCTION TO BASH
In Chapter 4, you learned that one of the fields in a user’s password entry is that user’s
login shell, which is the first program that runs when a user logs into a workstation. The
shell is comparable to the Windows Program Manager, except that the shell program
used, of course, is arbitrary.

The formal definition of a shell is “a command language interpreter that executes
commands.” A less formal definition might be simply “a program that provides an
interface to the system.” The Bourne Again Shell (BASH), in particular, is a command
line–only interface containing a handful of built-in commands, the ability to launch
other programs, and the ability to control programs that have been launched from it

103 Chapter 5: The Command Line

(job control). It might seem simple at first, but you will begin to realize that the shell is
a powerful tool.

A variety of shells exist, most with similar features but different means of implement-
ing them. Again for the purpose of comparison, you can think of the various shells as
being like web browsers; among several different browsers, the basic functionality is
the same—displaying content from the Web. In any situation like this, everyone pro-
claims that their shell is better than the others, but it all really comes down to personal
preference.

In this section, we’ll examine some of BASH’s built-in commands. A complete refer-
ence on BASH could easily be a book in itself, so we’ll stick with the commands that a
system administrator (or regular user) might use frequently. However, it is highly recom-
mended that you eventually study BASH’s other functions and operations. There’s no
shortage of excellent books on the topic. As you get accustomed to BASH, you can easily
pick up other shells. If you are managing a large site with lots of users, it will be advan-
tageous for you to be familiar with as many shells as possible. It is fairly easy to pick up
another shell, as the differences between them are subtle.

Job Control
When working in the BASH environment, you can start multiple programs from the
same prompt. Each program is a job. Whenever a job is started, it takes over the terminal.
On today’s machines, the terminal is either the straight-text interface you see when you
boot the machine or the window created by the X Window System on which BASH runs.
(The terminal interfaces in X Window System are called a pseudo-tty, or pty for short.) If
a job has control of the terminal, it can issue control codes so that text-only interfaces (the
Pine mail reader, for instance) can be made more attractive. Once the program is done, it
gives full control back to BASH, and a prompt is redisplayed for the user.

Not all programs require this kind of terminal control, however. Some, including
programs that interface with the user through the X Window System, can be instructed
to give up terminal control and allow BASH to present a user prompt, even though the
invoked program is still running.

In the following example, with the user yyang logged into the system, the user
launches the Firefox web browser, with the additional condition that the program (Fire-
fox) gives up control of the terminal (this condition is represented by the ampersand
suffix):

[yyang@fedora-serverA ~]$ firefox &

Immediately after you press enter, BASH will present its prompt again. This is
called backgrounding the task.

If a program is already running and has control of the terminal, you can make the
program give up control by pressing ctrl-z in the terminal window. This will stop
the running job (or program) and return control to BASH so that you can enter new

 104 Linux Administration: A Beginner’s Guide

 commands. At any given time, you can find out how many jobs BASH is tracking by
typing this command:

[yyang@fedora-serverA ~]$ jobs

[1]+ Running firefox &

The running programs that are listed will be in one of two states: running or stopped.
The preceding sample output shows that the Firefox program is in a running state. The
output also shows the job number in the first column—[1].

To bring a job back to the foreground, i.e., to give it back control of the terminal, you
would use the fg (foreground) command, like this:

[yyang@fedora-serverA ~]$ fg number

where number is the job number you want in the foreground. For example, to place the
Firefox program (with job number 1) launched earlier in the foreground, type

[yyang@fedora-serverA ~]$ fg 1

firefox

If a job is stopped (i.e., in a stopped state), you can start it running again in the back-
ground, thereby allowing you to keep control of the terminal and resume running the
job. Or a stopped job can run in the foreground, which gives control of the terminal back
to that program.

To place a running job in the background, type

[yyang@fedora-serverA ~]$ bg number

where number is the job number you want to background.

NOTE You can background any process if you want to. Applications that require terminal input or
output will be put into a stopped state if you background them. You can, for example, try running the
top utility in the background by typing top &. Then check the state of that job with the jobs
command.

Environment Variables
Every instance of a shell, and every process that is running, has its own “environment”—
settings that give it a particular look, feel, and, in some cases, behavior. These settings are
typically controlled by environment variables. Some environment variables have special
meanings to the shell, but there is nothing stopping you from defining your own and
using them for your own needs. It is through the use of environment variables that most
shell scripts are able to do interesting things and remember results from user inputs as
well as program outputs. If you are already familiar with the concept of environment

105 Chapter 5: The Command Line

variables in Windows NT/200x/XP/Vista, you’ll find that many of the things that you
know about them will apply to Linux as well; the only difference is how they are set,
viewed, and removed.

Printing Environment Variables
To list all of your environment variables, use the printenv command. For example,

[yyang@fedora-serverA ~]$ printenv

HOSTNAME=fedora-serverA.example.org

SHELL=/bin/bash

TERM=xterm

HISTSIZE=1000

...<OUTPUT TRUNCATED>...

To show a specific environment variable, specify the variable as a parameter to
printenv. For example, here is the command to see the environment variable TERM:

[yyang@fedora-serverA ~]$ printenv TERM

xterm

Setting Environment Variables
To set an environment variable, use the following format:

[yyang@fedora-serverA ~]$ variable = value

where variable is the variable name and value is the value you want to assign the
variable. For example, to set the environment variable FOO to the value BAR, type

[yyang@fedora-serverA ~]$ FOO=BAR

Whenever you set environment variables in this way, they stay local to the running
shell. If you want that value to be passed to other processes that you launch, use the
export built-in command. The format of the export command is as follows:

[yyang@fedora-serverA ~]$ export variable

where variable is the name of the variable. In the example of setting the variable FOO,
you would enter this command:

[yyang@fedora-serverA ~]$ export FOO

TIP You can combine the steps for setting an environment variable with the export command, like
so: [yyang@fedora-serverA ~]$ export FOO=BAR.

 106 Linux Administration: A Beginner’s Guide

If the value of the environment variable you want to set has spaces in it, surround the
variable with quotation marks. Using the preceding example, to set FOO to “Welcome to
the BAR of FOO.”, you would enter

[yyang@fedora-serverA ~]$ export FOO="Welcome to the BAR of FOO."

You can then use the printenv command to see the value of the FOO variable you
just set by typing

[yyang@fedora-serverA ~]$ printenv FOO

Welcome to the BAR of FOO.

Unsetting Environment Variables
To remove an environment variable, use the unset command. The syntax for the unset
command is

[yyang@fedora-serverA ~]$ unset variable

where variable is the name of the variable you want to remove. For example, the com-
mand to remove the environment variable FOO is

[yyang@fedora-serverA ~]$ unset FOO

NOTE This section assumed that you are using BASH. There are many other shells to choose from;
the most popular alternatives are the C shell (csh) and its brother, the Tenex/Turbo/Trusted C shell
(tcsh), which uses different mechanisms for getting and setting environment variables. We document
BASH here because it is the default shell of all new Linux accounts in most Linux distributions.

Pipes
Pipes are a mechanism by which the output of one program can be sent as the input to
another program. Individual programs can be chained together to become extremely
powerful tools.

Let’s use the grep program to provide a simple example of how pipes can be used.
The grep utility, given a stream of input, will try to match the line with the parameter
supplied to it and display only matching lines. You will recall from the preceding section
that the printenv command prints all the environment variables. The list it prints can
be lengthy, so, for example, if you were looking for all environment variables containing
the string “TERM,” you could enter this command:

[yyang@fedora-serverA ~]$ printenv | grep TERM

TERM=xterm

107 Chapter 5: The Command Line

The vertical bar (|) character represents the pipe between printenv and grep.
The command shell under Windows also utilizes the pipe function. The primary dif-

ference is that all commands in a Linux pipe are executed concurrently, whereas Windows
runs each program in order, using temporary files to hold intermediate results.

Redirection
Through redirection, you can take the output of a program and have it automatically
sent to a file. (Remember that everything in Linux/UNIX is regarded as a file!) The shell
rather than the program itself handles this process, thereby providing a standard mecha-
nism for performing the task. (Using redirection is much easier than having to remember
how to do this for every single program!)

Redirection comes in three classes: output to a file, append to a file, and send a file
as input.

To collect the output of a program into a file, end the command line with the greater-
than symbol (>) and the name of the file to which you want the output redirected. If you
are redirecting to an existing file and you want to append additional data to it, use two >
symbols (>>) followed by the filename. For example, here is the command to collect the
output of a directory listing into a file called /tmp/directory_listing:

[yyang@fedora-serverA ~]$ ls > /tmp/directory_listing

Continuing this example with the directory listing, you could append the string “Direc-
tory Listing” to the end of the /tmp/directory_listing file by typing this command:

[yyang@fedora-serverA ~]$ echo "Directory Listing" >> /tmp/directory_listing

The third class of redirection, using a file as input, is done by using the less-than sign
(<) followed by the name of the file. For example, here is the command to feed the /etc/
passwd file into the grep program:

[yyang@fedora-serverA ~]$ grep "root" < /etc/passwd

root:x:0:0:root:/root:/bin/bash

operator:x:11:0:operator:/root:/sbin/nologin

COMMAND-LINE SHORTCUTS
Most of the popular UNIX/Linux shells have a tremendous number of shortcuts. Learn-
ing and getting used to the shortcuts can be a huge cultural shock for users coming from
the Windows world. This section explains the most common of the BASH shortcuts and
their behaviors.

 108 Linux Administration: A Beginner’s Guide

Filename Expansion
Under UNIX-based shells such as BASH, wildcards on the command line are expanded
before being passed as a parameter to the application. This is in sharp contrast to the
default mode of operation for DOS-based tools, which often have to perform their own
wildcard expansion. The UNIX method also means that you must be careful where you
use the wildcard characters.

The wildcard characters themselves in BASH are identical to those in command.com:
The asterisk (*) matches against all filenames, and the question mark (?) matches against
single characters. If you need to use these characters as part of another parameter for
whatever reason, you can escape them by preceding them with a backslash (\) character.
This causes the shell to interpret the asterisk and question mark as regular characters
instead of wildcards.

NOTE Most Linux documentation refers to wildcards as regular expressions. The distinction is
important, since regular expressions are substantially more powerful than just wildcards alone. All
of the shells that come with Linux support regular expressions. You can read more about them in the
shell’s manual page (e.g., man bash, man csh, man tcsh).

Environment Variables as Parameters
Under BASH, you can use environment variables as parameters on the command line.
(Although the Windows command prompt can do this as well, it’s not a common prac-
tice and thus is an often-forgotten convention.) For example, issuing the parameter
$FOO will cause the value of the FOO environment variable to be passed rather than the
string “$FOO.”

Multiple Commands
Under BASH, multiple commands can be executed on the same line by separating the
commands with semicolons (;). For example, to execute this sequence of commands (cat
and ls) on a single line:

[yyang@fedora-serverA ~]$ ls -l

[yyang@fedora-serverA ~]$ cat /etc/passwd

you could instead type the following:

[yyang@fedora-serverA ~]$ ls -l ; cat /etc/passwd

Since the shell is also a programming language, you can run commands serially only
if the first command succeeds. For example, use the ls command to try to list a file that

109 Chapter 5: The Command Line

does not exist in your home directory, and then execute the date command right after
that on the same line. Type

[yyang@fedora-serverA ~]$ ls does-not-exist.txt && date

ls: cannot access does-not-exist.txt: No such file or directory

This command will run the ls command, but that command will fail because the file
it is trying to list does not exist, and, therefore, the date command will not be executed
either. But if you switch the order of commands around, you will notice that the date
command will succeed, while the ls command will fail. Try

[yyang@fedora-serverA ~]$ date && ls does-not-exist.txt

Sun Jan 30 18:06:37 PDT 2090

ls: cannot access does-not-exist.txt: No such file or directory

Backticks
How’s this for wild? You can take the output of one program and make it the parameter
of another program. Sound bizarre? Well, time to get used to it—this is one of the most
useful and innovative features available in all UNIX shells.

Backticks (`) allow you to embed commands as parameters to other commands. You’ll
see this technique used often in this book and in various system scripts. For example,
you can pass the value of a number (a process ID number) stored in a file and then pass
that number as a parameter to the kill command. A typical use of this is for killing
(stopping) the Domain Name System (DNS) server named. When named starts, it writes
its process identification (PID) number into the file /var/run/named/named.pid. Thus,
the generic and dirty way of killing the named process is to look at the number stored in
/var/run/named/named.pid using the cat command, and then issue the kill command
with that value. For example,

[root@fedora-serverA ~]$ cat /var/run/named/named.pid

253

[root@fedora-serverA ~]$ kill 253

One problem with killing the named process in this way is that it cannot be easily
automated—we are counting on the fact that a human will read the value in /var/run/
named/named.pid in order to kill the number. Another issue isn’t so much a problem as
it is a nuisance: It takes two steps to stop the DNS server.

Using backticks, however, we can combine the steps into one and do it in a way that
can be automated. The backticks version would look like this:

[root@fedora-serverA ~]$ kill `cat /var/run/named/named.pid`

When BASH sees this command, it will first run cat /var/run/named/named.
pid and store the result. It will then run kill and pass the stored result to it. From our
point of view, this happens in one graceful step.

 110 Linux Administration: A Beginner’s Guide

NOTE So far in this chapter, we have looked at features that are internal to BASH (or BASH built-ins
as they are sometimes called). The remainder of the chapter explores several common commands
accessible outside of BASH.

DOCUMENTATION TOOLS
Linux comes with two superbly useful tools for making documentation accessible: man
and info. Currently, a great deal of overlap exists between these two documentation
systems because many applications are moving their documentation to the info for-
mat. This format is considered superior to man because it allows the documentation to
be hyperlinked together in a web-like way, but without actually having to be written in
Hypertext Markup Language (HTML) format.

The man format, on the other hand, has been around for decades. For thousands of
utilities, their man (short for manual) pages are their only documentation. Furthermore,
many applications continue to utilize the man format because many other UNIX-like
operating systems (such as Sun Solaris) use it.

Both the man and info documentation systems will be around for a long while to
come. It is highly recommended that you get comfortable with them both.

TIP Many Linux distributions also include a great deal of documentation in the /usr/doc or /usr/
share/doc directory.

The man Command
We mentioned quite early in this book that man pages are documents found online (on
the local system) that cover the use of tools and their corresponding configuration files.
The format of the man command is as follows:

[yyang@fedora-serverA ~]$ man program_name

where program_name identifies the program you’re interested in. For example, to view
the man page for the ls utility that we’ve been using, type

[yyang@fedora-serverA ~]$ man ls

While reading about UNIX and UNIX-related information sources (newsgroups and
so forth), you may encounter references to commands followed by numbers in paren-
theses—for example, ls (1). The number represents the section of the manual pages (see
Table 5-1). Each section covers various subject areas to accommodate the fact that some
tools (such as printf) are commands/functions in the C programming language as
well as command-line commands.

111 Chapter 5: The Command Line

To refer to a specific man section, simply specify the section number as the first
parameter and then the command as the second parameter. For example, to get the C
programmers’ information on printf, you’d enter this:

[yyang@fedora-serverA ~]$ man 3 printf

To get the command-line information, you’d enter this:

[yyang@fedora-serverA ~]$ man 1 printf

If you don’t specify a section number with the man command, the default behav-
ior is that the lowest section number gets printed first. Unfortunately, this organiza-
tion can sometimes be difficult to use, and as a result, there are several other available
alternatives.

TIP A handy option to the man command is -f preceding the command parameter. With this
option, man will search the summary information of all the man pages and list pages matching your
specified command, along with their section number. For example,

[yyang@fedora-serverA ~]$ man -f printf

asprintf (3) - print to allocated string

printf (1) - format and print data

printf (3) - formatted output conversion

Table 5-1. Man Page Sections

Manual Section Subject

1 User tools

2 System calls

3 C library calls

4 Device driver information

5 Configuration files

6 Games

7 Packages

8 System tools

 112 Linux Administration: A Beginner’s Guide

The texinfo System
Another common form of documentation is texinfo. Established as the GNU standard,
texinfo is a documentation system similar to the hyperlinked World Wide Web format.
Because documents can be hyperlinked together, texinfo is often easier to read, use, and
search than man pages.

To read the texinfo documents on a specific tool or application, invoke info with
the parameter specifying the tool’s name. For example, to read about the grub pro-
gram, type

[yyang@fedora-serverA ~]$ info grub

In general, you will want to verify whether a man page exists before using info
(there is still a great deal more information available in man format than in texinfo). On
the other hand, some man pages will explicitly state that the texinfo pages are more
authoritative and should be read instead.

FILES, FILE TYPES, FILE OWNERSHIP,
AND FILE PERMISSIONS

Managing files under Linux is different from managing files under Windows NT/200x/
XP/Vista, and radically different from managing files under Windows 95/98. In this sec-
tion, we discuss basic file management tools and concepts under Linux. We’ll start with
specifics on some useful general-purpose commands, and then we’ll step back and look
at some background information.

Under Linux (and UNIX in general), almost everything is abstracted to a file. Origi-
nally, this was done to simplify the programmer’s job. Instead of having to communicate
directly with device drivers, special files (which look like ordinary files to the applica-
tion) are used as a bridge. Several types of files accommodate all these file uses.

Normal Files
Normal files are just that—normal. They contain data or executables, and the operating
system makes no assumptions about their contents.

Directories
Directory files are a special instance of normal files. Directory files list the locations of
other files, some of which may be other directories. (This is similar to folders in Windows.)
In general, the contents of directory files won’t be of importance to your daily operations,
unless you need to open and read the file yourself rather than using existing applications
to navigate directories. (This would be similar to trying to read the DOS file allocation
table directly rather than using command.com to navigate directories or using the find-
first/findnext system calls.)

113 Chapter 5: The Command Line

Hard Links
Each file in the Linux file system gets its own i-node. An i-node keeps track of a file’s
attributes and its location on the disk. If you need to be able to refer to a single file using
two separate filenames, you can create a hard link. The hard link will have the same
i-node as the original file and will, therefore, look and behave just like the original. With
every hard link that is created, a reference count is incremented. When a hard link is
removed, the reference count is decremented. Until the reference count reaches zero, the
file will remain on disk.

NOTE A hard link cannot exist between two files on separate partitions. This is because the hard
link refers to the original file by i-node, and a file’s i-node may differ among file systems.

Symbolic Links
Unlike hard links, which point to a file by its i-node, a symbolic link points to another
file by its name. This allows symbolic links (often abbreviated symlinks) to point to files
located on other partitions, even other network drives.

Block Devices
Since all device drivers are accessed through the file system, files of type block device
are used to interface with devices such as disks. A block device file has three identify-
ing traits:

▼ It has a major number.

■ It has a minor number.

▲ When viewed using the ls -l command, it shows b as the first character of the
permissions field.

For example,

[yyang@fedora-serverA ~]$ ls -l /dev/sda

brw-r----- 1 root disk 8, 0 2090-09-30 08:18 /dev/sda

Note the b at the beginning of the file’s permissions; the 8 is the major number, and
the 0 is the minor number.

A block device file’s major number identifies the represented device driver. When this
file is accessed, the minor number is passed to the device driver as a parameter, telling
it which device it is accessing. For example, if there are two serial ports, they will share
the same device driver and thus the same major number, but each serial port will have a
unique minor number.

 114 Linux Administration: A Beginner’s Guide

Character Devices
Similar to block devices, character devices are special files that allow you to access devices
through the file system. The obvious difference between block and character devices is
that block devices communicate with the actual devices in large blocks, whereas char-
acter devices work one character at a time. (A hard disk is a block device; a modem is a
character device.) Character device permissions start with a c, and the file has a major
number and a minor number. For example,

[yyang@fedora-serverA ~]$ ls -l /dev/ttyS0

crw-rw---- 1 root uucp 4, 64 2007-09-30 08:18 /dev/ttyS0

Named Pipes
Named pipes are a special type of file that allows for interprocess communication.
Using the mknod command, you can create a named pipe file that one process can
open for reading and another process can open for writing, thus allowing the two to
communicate with one another. This works especially well when a program refuses
to take input from a command-line pipe, but another program needs to feed the
other one data and you don’t have the disk space for a temporary file.

For a named pipe file, the first character of its file permissions is a p. For example, if a
named pipe called mypipe exists in your present working directory (PWD), a long listing
of the named pipe file would show this:

[yyang@fedora-serverA ~]$ ls -l mypipe

prw-r--r-- 1 root root 0 Mar 16 10:47 mypipe

Listing Files: ls
Out of necessity, we have been using the ls command in previous sections and chapters
of this book. We will look at the ls command and its options in more details here.

The ls command is used to list all the files in a directory. Of more than 50 available
options, the ones listed in Table 5-2 are the most commonly used. The options can be
used in any combination.

To list all files in a directory with a long listing, type this command:

[yyang@fedora-serverA ~]$ ls -la

To list a directory’s nonhidden files that start with the letter A, type this:

[yyang@fedora-serverA ~]$ ls A*

115 Chapter 5: The Command Line

TIP Linux/UNIX is case-sensitive. For example, a file named thefile.txt is very different from a file
named Thefile.txt.

If no such file exists in your working directory, ls prints out a message telling
you so.

Change Ownership: chown
The chown command allows you to change the ownership of a file to someone else. Only
the root user can do this. (Normal users may not give away file ownership or steal own-
ership from another user.) The syntax of the command is as follows:

[root@fedora-serverA ~]# chown [-R] username filename

where username is the login of the user to whom you want to assign ownership, and
filename is the name of the file in question. The filename may be a directory as well.

The -R option applies when the specified filename is a directory name. This option
tells the command to recursively descend through the directory tree and apply the new
ownership, not only to the directory itself, but also to all of the files and directories
within it.

Table 5-2. Common ls Options

Option for ls Description

-l Long listing. In addition to the
filename, shows the file size, date/time,
permissions, ownership, and group
information.

-a All files. Shows all files in the directory,
including hidden files. Names of hidden
files begin with a period.

-t Lists in order of last modified time.

-r Reverses the listing.

-1 Single-column listing.

-R Recursively lists all files and
subdirectories.

 116 Linux Administration: A Beginner’s Guide

NOTE The chown command supports a special syntax that allows you to also specify a group
name to assign to a file. The format of the command becomes chown username.groupname
filename.

Change Group: chgrp
The chgrp command-line utility lets you change the group settings of a file. It works
much like chown. Here is the format:

[root@fedora-serverA ~]# chgrp [-R] groupname filename

where groupname is the name of the group to which you want to assign filename own-
ership. The filename may be a directory as well.

The -R option applies when the specified filename is a directory name. As with
chown, the -R option tells the command to recursively descend through the directory
tree and apply the new ownership, not only to the directory itself, but also to all of the
files and directories within it.

Change Mode: chmod
Directories and files within the Linux system have permissions associated with them.
By default, permissions are set for the owner of the file, the group associated with the
file, and everyone else who can access the file (also known as owner, group, and other,
respectively). When you list files or directories, you see the permissions in the first col-
umn of the output. Permissions are divided into four parts. The first part is represented
by the first character of the permission. Normal files have no special value and are rep-
resented with a hyphen (-) character. If the file has a special attribute, it is represented by
a letter. The two special attributes we are most interested in here are directories (d) and
symbolic links (l).

The second, third, and fourth parts of a permission are represented in three-character
chunks. The first part indicates the file owner’s permission. The second part indicates
the group permission. The last part indicates the world permission. In the context of
UNIX, “world” means all users in the system, regardless of their group settings.

Following are the letters used to represent permissions and their corresponding val-
ues. When you combine attributes, you add their values. The chmod command is used
to set permission values.

Letter Permission Value

R Read 4

W Write 2

X Execute 1

117 Chapter 5: The Command Line

Using the numeric command mode is typically known as the octal permissions, since
the value can range from 0–7. To change permissions on a file, you simply add these
values together for each permission you want to apply.

For example, if you want to make it so that just the user (owner) can have full access
(RWX) to a file called foo, you would type

[yyang@fedora-serverA ~]$ chmod 700 foo

What is important to note is that using the octal mode, you always replace any permis-
sions that were set. So if there was a file in /usr/local that was SetUID and you ran the
command chmod -R 700 /usr/local, that file will no longer be SetUID. If you want
to change certain bits, you should use the symbolic mode of chmod. This mode turns out
to be much easier to remember, and you can add, subtract, or overwrite permissions.

The symbolic form of chmod allows you to set the bits of the owner, the group, or
others. You can also set the bits for all. For example, if you want to change a file called
foobar.sh so that it is executable for the owner, you can run the following command:

[yyang@fedora-serverA ~]$ chmod u+x foobar.sh

If you want to change the group’s bit to execute also, use the following:

[yyang@fedora-serverA ~]$ chmod ug+x foobar.sh

If you need to specify different permissions for others, just add a comma and its per-
mission symbols, as here:

[yyang@fedora-serverA ~]$ chmod ug+x,o-rwx foobar.sh

If you do not want to add or subtract a permission bit, you can use the equal (=) sign
instead of a plus (+) sign or minus (-) sign. This will write the specific bits to the file and
erase any other bit for that permission. In the previous examples, we used + to add the
execute bit to the User and Group fields. If you want only the execute bit, you would
replace the + with =. There is also a fourth character you can use: a. This will apply the
permission bits to all of the fields.

The following list shows the most common combinations of the three permissions.
Other combinations, such as -wx, do exist, but they are rarely used.

Letter Permission Value

--- No permissions 0

r-- Read only 4

Rw- Read and write 6

Rwx Read, write, and execute 7

r-x Read and execute 5

--x Execute only 1

 118 Linux Administration: A Beginner’s Guide

For each file, three of these three-letter chunks are grouped together. The first chunk
represents the permissions for the owner of the file, the second chunk represents the per-
missions for the file’s group, and the last chunk represents the permissions for all users
on the system. Table 5-3 shows some permission combinations, their numeric equiva-
lents, and their descriptions.

Table 5-3. File Permissions

Permission Numeric Equivalent Description

-rw------- 600 Owner has read and write
permissions.

-rw-r--r-- 644 Owner has read and write
permissions; group and world
have read-only permission.

-rw-rw-rw- 666 Everyone has read and write
permissions. Not recommended;
this combination allows the file
to be accessed and changed by
anyone.

-rwx------ 700 Owner has read, write, and
execute permissions. Best
combination for programs or
executables that the owner
wishes to run.

-rwxr-xr-x 755 Owner has read, write, and
execute permissions. Everyone
else has read and execute
permissions.

-rwxrwxrwx 777 Everyone has read, write, and
execute permissions. Like the
666 setting, this combination
should be avoided.

-rwx--x--x 711 Owner has read, write,
and execute permissions;
everyone else has execute-
only permissions. Useful for
programs that you want to let
others run but not copy.

119 Chapter 5: The Command Line

FILE MANAGEMENT AND MANIPULATION
This section covers the basic command-line tools for managing files and directories.
Most of this will be familiar to anyone who has used a command-line interface—same
old functions, but new commands to execute.

Copy Files: cp
The cp command is used to copy files. It has a substantial number of options. See its man
page for additional details. By default, this command works silently, only displaying
status information if an error condition occurs. Following are the most common options
for cp:

Option for cp Description

-f Forces copy; does not ask for verification

-I Interactive copy; before each file is copied, verifies with user

Table 5-3. File Permissions (cont.)

Permission Numeric Equivalent Description

drwx------ 700 This is a directory created with
the mkdir command. Only
the owner can read and write
to this directory. Note that
all directories must have the
executable bit set.

drwxr-xr-x 755 This directory can be changed
only by the owner, but everyone
else can view its contents.

drwx--x--x 711 A handy combination for
keeping a directory world-
readable but restricted from
access by the ls command. A
file can be read only by someone
who knows the filename.

 120 Linux Administration: A Beginner’s Guide

First, let’s use the touch command to create an empty file called foo.txt in the user
yyang’s home directory. Type

[yyang@fedora-serverA ~]$ touch foo.txt

To use the cp (copy) command to copy foo.txt to foo.txt.html, type

[yyang@fedora-serverA ~]$ cp foo.txt foo.txt.html

To interactively copy all files ending in .html to the /tmp directory, type this
command:

[yyang@fedora-serverA ~]$ cp -i *.html /tmp

Move Files: mv
The mv command is used to move files from one location to another. Files can be moved
across partitions/file systems as well. Moving files across partitions involves a copy
operation, and as a result, the move command may take longer. But you will find that
moving files within the same file system is almost instantaneous. Following are the most
common options for mv:

Option for mv Description

-f Forces move

-I Interactive move

To move a file named foo.txt.html from /tmp to your present working directory, use
this command:

[yyang@fedora-serverA ~]$ mv /tmp/foo.txt.html .

NOTE That last dot (.) is not a typo—it literarily means “this directory.”

There is no explicit rename tool, so you can use the mv command. To rename the file
foo.txt.html to foo.txt.htm, type

[yyang@fedora-serverA ~]$ mv foo.txt.html foo.txt.htm

Link Files: ln
The ln command lets you establish hard links and soft links (see “Files, File Types, File
Ownership, and File Permissions” earlier in this chapter). The general format of ln is as
follows:

[yyang@fedora-serverA ~]$ ln original_file new_file

121 Chapter 5: The Command Line

Although ln has many options, you’ll rarely need to use most of them. The most
common option, -s, creates a symbolic link instead of a hard link.

To create a symbolic link called link-to-foo.txt that points to the original file called
foo.txt, issue the command

[yyang@fedora-serverA ~]$ ln -s foo.txt link-to-foo.txt

Find a File: find
The find command lets you search for files according to various criteria. Like the tools
we have already discussed, find has a large number of options that you can read about
in its man page. Here is the general format of find:

[yyang@fedora-serverA ~]$ find start_dir [options]

where start_dir is the directory from which the search should start.
To find all files in the current directory (i.e., the “.” directory) that have not been

accessed in at least seven days, use the following command:

[yyang@fedora-serverA ~]$ find . -atime 7

Type this command to find all files in your present working directory whose names
are core and then delete them (i.e., automatically run the rm command):

[yyang@fedora-serverA ~]$ find . -name core -exec rm {} \;

TIP The syntax for the -exec option with the find command as used here can be
hard to remember sometimes, and so you can also use the xargs method instead of the
exec option used in this example. Using xargs, the command would then be written
[yyang@fedora-serverA ~]$ find . -name 'core' | xargs rm

To find all files in your PWD whose names end in .txt (i.e., files that have the .txt
extension) and are also less than 100 kilobytes (K) in size, issue this command:

[yyang@fedora-serverA ~]$ find . -name '*.txt' -size -100k

To find all files in your PWD whose names end in .txt (i.e., files that have the .txt
extension) and are also greater than 100K in size, issue this command:

[yyang@fedora-serverA ~]$ find . -name '*.txt' -size 100k

File Compression: gzip
In the original distributions of UNIX, the tool to compress files was appropriately called
compress. Unfortunately, the algorithm was patented by someone hoping to make a great
deal of money. Instead of paying out, most sites sought and found another compression

 122 Linux Administration: A Beginner’s Guide

tool with a patent-free algorithm: gzip. Even better, gzip consistently achieves better
compression ratios than compress does. Another bonus: Recent changes have allowed
gzip to uncompress files that were compressed using the compress command.

NOTE The filename extension usually identifies a file compressed with gzip. These files typically
end in .gz (files compressed with compress end in .z).

Note that gzip compresses the file in place, meaning that after the compression pro-
cess, the original file is removed, and the only thing left is the compressed file.

To compress a file named foo.txt.htm in your PWD, type

[yyang@fedora-serverA ~]$ gzip foo.txt.htm

And then to decompress it, use gzip again with the -d option:

[yyang@fedora-serverA ~]$ gzip -d foo.txt.htm.gz

Issue this command to compress all files ending in .htm in your PWD using the best
compression possible:

[yyang@fedora-serverA ~]$ gzip -9 *.htm

bzip2
If you have noticed files with a .bz extension, these have been compressed with the
bzip2 compression utility. The bzip2 tool uses a different compression algorithm that
usually turns out smaller files than those compressed with the gzip utility, but it uses
semantics that are similar to gzip; for more information, read the man page on bzip2.

Create a Directory: mkdir
Themkdir command in Linux is identical to the same command in other flavors of UNIX,
as well as in MS-DOS. An often-used option of the mkdir command is the -p option.
This option will force mkdir to create parent directories if they don’t exist already. For
example, if you need to create /tmp/bigdir/subdir/mydir and the only directory that
exists is /tmp, using -p will cause bigdir and subdir to be automatically created along
with mydir.

Create a directory tree like bigdir/subdir/finaldir in your PWD. Type

[yyang@fedora-serverA ~]$ mkdir -p bigdir/subdir/finaldir

To create a single directory called mydir, use this command:

[yyang@fedora-serverA ~]$ mkdir mydir

123 Chapter 5: The Command Line

Remove a Directory: rmdir
The rmdir command offers no surprises for those familiar with the DOS version of the
command; it simply removes an existing directory. This command also accepts the -p
parameter, which removes parent directories as well.

For example, if you want to get rid of all the directories from bigdir to finaldir that
were created earlier, you’d issue this command alone:

[yyang@fedora-serverA ~]$ rmdir -p bigdir/subdir/finaldir

To remove a directory called mydir, you’d type this:

[yyang@fedora-serverA ~]$ rmdir mydir

TIP You can also use the rm command with the -r option to delete directories.

Show Present Working Directory: pwd
It is inevitable that you will sit down in front of an already logged-in workstation and
not know where you are in the directory tree. To get this information, you need the pwd
command. Its only task is to print the current working directory. To display your current
working directory, use this command:

[yyang@fedora-serverA ~]$ pwd

/home/yyang

Tape Archive: tar
If you are familiar with the PKZip program, you are accustomed to the fact that the com-
pression tool reduces file size but also consolidates files into compressed archives. Under
Linux, this process is separated into two tools: gzip and tar.

The tar command combines multiple files into a single large file. It is separate from
the compression tool, so it allows you to select which compression tool to use or whether
you even want compression. In addition, tar is able to read and write to devices, thus
making it a good tool for backing up to tape devices.

NOTE Although the name of the tar program includes the word “tape,” it isn’t necessary to read
or write to a tape drive when creating archives. In fact, you’ll rarely use tar with a tape drive in day-
to-day situations (backups aside). The reason it was named tar in the first place was that when it
was originally created, limited disk space meant that tape was the most logical place to put archives.
Typically, the -f option in tar would be used to specify the tape device file, rather than a traditional
UNIX file. You should be aware, however, that you can still tar straight to a device.

 124 Linux Administration: A Beginner’s Guide

The syntax for the tar command is

[yyang@fedora-serverA ~]$ tar option ... filename ...

Some of the options for the tar command are shown here:

Option for tar Description

-c Creates a new archive

-t Views the contents of an archive

-x Extracts the contents of an archive

-f Specifies the name of the file (or device) in which the
archive is located

-v Provides verbose descriptions during operations

-j Filters the archive through the bzip2 compression
utility

-z Filters the archive through the gzip compression
utility

In order to see sample usage of the tar utility, first create a folder called junk in the
PWD that contains some empty files named 1, 2, 3, 4. Type

[yyang@fedora-serverA ~]$ mkdir junk ; touch junk/{1,2,3,4}

Now create an archive called junk.tar containing all the files in the folder called junk
that you just created by typing

[yyang@fedora-serverA ~]$ tar -cf junk.tar junk

Create another archive called 2junk.tar containing all the files in the junk folder, but
this time, add the -v (verbose) option to show what is happening as it happens. Enter
the following:

[yyang@fedora-serverA ~]$ tar -vcf 2junk.tar junk

junk/

junk/4

junk/3

junk/1

junk/2

NOTE You should note that the archives created in these examples are not compressed in any way.
The files and directory have only been combined into a single file.

125 Chapter 5: The Command Line

To create a gzip-compressed archive called 3junk.tar.gz containing all of the files in
the junk folder and to show what is happening as it happens, issue this command:

[yyang@fedora-serverA ~]$ tar -cvzf 3junk.tar.gz junk

To extract the contents of the gzipped tar archive created here and be verbose about
what is being done, issue the command:

[yyang@fedora-serverA ~]$ tar -xvzf 3junk.tar.gz

TIP The tar command is one of the few Linux/UNIX utilities that cares about the order with which
you specify its options. If you issued the preceding tar command as # tar -xvfz 3junk.
tar.gz, the command will fail because the -f option was not immediately followed by a filename.

If you like, you can also specify a physical device to tar to and from. This is handy
when you need to transfer a set of files from one system to another and for some reason
you cannot create a file system on the device. (Or sometimes, it’s just more entertaining
to do it this way.) To create an archive on the first floppy device (/dev/fd0), you would
enter this:

[yyang@fedora-serverA ~]$ tar -cvzf /dev/fd0 junk

NOTE The command tar -cvzf /dev/fd0 will treat the disk as a raw device and erase
anything that is already on it.

To pull that archive off of a disk, you would type

[yyang@fedora-serverA ~]$ tar -xvzf /dev/fd0

Concatenate Files: cat
The cat program fills an extremely simple role: to display files. More creative things
can be done with it, but nearly all of its usage will be in the form of simply displaying
the contents of text files—much like the type command under DOS. Because multiple
filenames can be specified on the command line, it’s possible to concatenate files into a
single, large, continuous file. This is different from tar in that the resulting file has no
control information to show the boundaries of different files.

To display the /etc/passwd file, use this command:

[yyang@fedora-serverA ~]$ cat /etc/passwd

To display the /etc/passwd file and the /etc/group file, issue this command:

[yyang@fedora-serverA ~]$ cat /etc/passwd /etc/group

 126 Linux Administration: A Beginner’s Guide

Type this command to concatenate /etc/passwd with /etc/group and send the output
into the file users-and-groups.txt:

[yyang@fedora-serverA ~]$ cat /etc/passwd /etc/group > users-and-groups.txt

To append the contents of the file /etc/hosts to the users-and-groups.txt file you just
created, type

[yyang@fedora-serverA ~]$ cat /etc/hosts >> users-and-groups.txt

TIP If you want to cat a file in reverse, you can use the tac command.

Display a File One Screen at a Time: more
The more command works in much the same way the DOS version of the program does.
It takes an input file and displays it one screen at a time. The input file can come either
from its stdin or from a command-line parameter. Additional command-line param-
eters, though rarely used, can be found in the man page.

To view the /etc/passwd file one screen at a time, use this command:

[yyang@fedora-serverA ~]$ more /etc/passwd

To view the directory listing generated by the ls command one screen at a time,
enter

[yyang@fedora-serverA ~]$ ls | more

Disk Utilization: du
You will often need to determine where and by whom disk space is being consumed,
especially when you’re running low on it! The du command allows you to determine the
disk utilization on a directory-by-directory basis.

Following are some of the options available.

Option for du Description

-c Produces a grand total at the end of the run.

-h Prints sizes in human-readable format.

-k Prints sizes in kilobytes rather than block sizes. (Note:
Under Linux, one block is equal to 1K, but this is not true
for all forms of UNIX.)

-s Summarizes. Prints only a total for each argument.

127 Chapter 5: The Command Line

To display the total amount of space being used by all the files and directories in your
PWD in human-readable format, use this command:

[yyang@fedora-serverA ~]$ du -sh .

2.2M

Show the Directory Location of a File: which
The which command searches your entire path to find the name of an executable speci-
fied on the command line. If the file is found, the command output includes the actual
path to the file.

Use the following command to find out which directory the binary for the rm com-
mand is located in:

[yyang@fedora-serverA ~]$ which rm

/bin/rm

You may find this similar to the find command. The difference here is that since
which only searches the path, it is much faster. Of course, it is also much more limiting
than find, but if all you’re looking for is a program, you’ll find it to be a better choice
of commands.

Locate a Command: whereis
The whereis tool searches your path and displays the name of the program and its
absolute directory, the source file (if available), and the man page for the command
(again, if available). To find the location of the program, source, and manual page for the
command grep, use this:

[yyang@fedora-serverA ~]$ whereis grep

grep: /bin/grep /usr/share/man/man1/grep.1.gz /usr/share/man/man1p/grep.1p.gz

Disk Free: df
The df program displays the amount of free space partition by partition (or volume by
volume). The drives/partitions must be mounted in order to get this information. Net-
work File System (NFS) information can be gathered this way as well. Some parameters
for df are listed here; additional (rarely used) options are listed in the df manual page.

Option for df Description

-h Generates free-space amount in human-readable numbers
rather than free blocks.

-l Lists only the locally mounted file systems. Does not display
any information about network-mounted file systems.

 128 Linux Administration: A Beginner’s Guide

To show the free space for all locally mounted drives, use this command:

[yyang@fedora-serverA ~]$ df -l

To show the free space in a human-readable format for the file system in which your
current working directory is located, enter

[yyang@fedora-serverA ~]$ df -h .

To show the free space in a human-readable format for the file system on which /tmp
is located, type this command:

[yyang@fedora-serverA ~]$ df –h /tmp

Synchronize Disks: sync
Like most other modern operating systems, Linux maintains a disk cache to improve
efficiency. The drawback, of course, is that not everything you want written to disk will
have been written to disk at any given moment.

To schedule the disk cache to be written out to disk, you use the sync command.
If sync detects that writing the cache out to disk has already been scheduled, the ker-
nel is instructed to immediately flush the cache. This command takes no command-line
parameters. Type this command to ensure the disk cache has been flushed:

yyang@fedora-serverA ~]$ sync ; sync

NOTE Manually issuing this command is rarely necessary anymore, since the Linux kernel does a
good job of it on its own.

MOVING A USER AND ITS HOME DIRECTORY
This section will demonstrate how to put together some of the topics and utilities cov-
ered so far in this chapter. The elegant design of Linux allows you to combine simple
commands to perform advanced operations.

Sometimes in the course of administration you might have to move a user and its files
around. This section will cover the process of moving a user’s home directory. In this sec-
tion, you are going to move the user named “project5” from his default home directory
/home/project5 to /export/home/project5. You will also have to set the proper permis-
sions and ownership of the user’s files and directories so that the user can access it.

Unlike the previous exercises, which were performed as a regular user (the user
yyang), you will need superuser privileges to perform the steps in this exercise.

129 Chapter 5: The Command Line

 1. Log into the system as root and launch a virtual terminal.

 2. Create the user that will be used for this project. The username is “project5.” Type

[root@fedora-serverA ~]# useradd project5

 3. Use the grep command to view the entry for the user you created in the /etc/
passwd file. Type

[root@fedora-serverA ~]# grep project5 /etc/passwd

project5:x:502:503::/home/project5:/bin/bash

 4. Use the ls command to display a listing of the user’s home directory. Type

[root@fedora-serverA ~]# ls -al /home/project5

total 48

drwx------ 3 project5 project5 4096 2010-10-08 13:12 .

drwxr-xr-x 7 root root 4096 2010-10-08 13:12 ..

-rw-r--r-- 1 project5 project5 33 2010-10-08 13:12 .bash_logout

-rw-r--r-- 1 project5 project5 176 2010-10-08 13:12 .bash_profile

-rw-r--r-- 1 project5 project5 124 2010-10-08 13:12 .bashrc

 5. Check the total disk space being used by the user. Type

[root@fedora-serverA ~]# du -sh /home/project5

56K /home/project5

 6. Use the su command to temporarily become the user. Type

[root@fedora-serverA ~]# su - project5

[project5@fedora-serverA ~]$

 7. As user project5, view your present working directory. Type

[project5@fedora-serverA ~]$ pwd

/home/project5

 8. As user project5, create some empty files. Type

[project5@fedora-serverA ~]$ touch a b c d e

 9. Go back to being the root user by exiting out of project5’s profile. Type

[project5@fedora-serverA ~]$ exit

 10. Create the /export directory that will house the user’s new home. Type

[root@fedora-serverA ~]# mkdir -p /export

 11. Now use the tar command to archive and compress project5’s current home direc-
tory (/home/project5) and untar and decompress it into its new location. Type

[root@fedora-serverA ~]# tar czf - /home/project5 | (cd /export ; tar -xvzf -)

 130 Linux Administration: A Beginner’s Guide

TIP The dashes (-) you used here with the tar command force it to first send its output to stdout
and then receive its input from stdin.

 12. Use the ls command to ensure that the new home directory was properly cre-
ated under the /export directory. Type

[root@fedora-serverA ~]# ls -R /export/home/

/export/home/:

project5

/export/home/project5:

a b c d e

 13. Make sure that project5 has complete ownership of all the files and directories in
its new home. Type

[root@fedora-serverA ~]# chown -R project5.project5 /export/home/project5/

 14. Now delete project5’s old home directory. Type

[root@fedora-serverA ~]# rm -rf /home/project5

 15. Good, we are almost done. Try to temporarily assume the identity of project5
again. Type

[root@fedora-serverA ~]# su - project5

su: warning: cannot change directory to /home/project5: No such

file or directory

-bash-3.2$

Ah… one more thing left to do. We have deleted the user’s home directory
(/home/project5), as was specified in the /etc/passwd file, and that is why the su
command complained.

 16. Exit out of project5’s profile using the exit command. Type

-bash-3.00$ exit

 17. Now we’ll use the usermod command to automatically update the /etc/passwd
file with the user’s new home directory. Type

[root@fedora-serverA ~]# usermod -d /export/home/project5 project5

NOTE On a system with SELinux enabled, you might get a warning about not being able to relabel
the home directory. You can ignore this warning for now.

131 Chapter 5: The Command Line

 18. Use the su command again to temporarily become project5. Type

[root@fedora-serverA ~]# su - project5

[project5@fedora-serverA ~]$

 19. While logged in as project5, use the pwd command to view your present work-
ing directory. Type

[project5@fedora-serverA ~]$ pwd

/export/home/project5

This output shows that our migration worked out well.

 20. Exit out of project5’s profile to become the root user, and then delete the user
called project5 from the system. Type

[root@fedora-serverA ~]# userdel -r project5

List Processes: ps
The ps command lists all the processes in a system, their state, size, name, owner, CPU
time, wall clock time, and much more. Many command-line parameters are available;
the ones most often used are described in Table 5-4.

Table 5-4. Common ps Options

Option for ps Description

-a Shows all processes with a controlling terminal, not just the
current user’s processes

-r Shows only running processes (see the description of process
states later in this section)

-x Shows processes that do not have a controlling terminal

-u Shows the process owners

-f Displays parent/child relationships among processes

-l Produces a list in long format

-w Shows a process’s command-line parameters (up to half a line)

-ww Shows a process’s command-line parameters (unlimited
width fashion)

 132 Linux Administration: A Beginner’s Guide

The most common set of parameters used with the ps command is auxww. These
parameters show all the processes (regardless of whether they have a controlling
 terminal), each process’s owners, and all the processes’s command-line parameters. Let’s
examine some sample output of an invocation of ps auxww.

[yyang@fedora-serverA ~]$ ps auxww

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.3 0.5 2136 628 ? Ss 13:05 0:09 init [2]

root 2 0.0 0.0 0 0 ? S 13:05 0:00 [migration/0]

root 3 0.0 0.0 0 0 ? SN 13:05 0:00 [ksoftirqd/0]

root 4 0.0 0.0 0 0 ? S 13:05 0:00 [watchdog/0]

root 5 0.0 0.0 0 0 ? S< 13:05 0:00 [events/0]

........OUTPUT TRUNCATED........

yyang 2384 0.0 0.7 4328 948 pts/0 R+ 13:58 0:00 ps auxww

yyang 2385 0.0 0.3 4692 472 pts/0 R+ 13:58 0:00 -bash

The first line of the output provides column headers for the listing, as follows:

▼ USER Who owns what process.

■ PID Process identification number.

■ %CPU Percentage of the CPU taken up by a process. Note: For a system with
multiple processors, this column will add up to more than 100 percent.

■ %MEM Percentage of memory taken up by a process.

■ VSZ The amount of virtual memory a process is taking.

■ RSS The amount of actual (resident) memory a process is taking.

■ TTY The controlling terminal for a process. A question mark in this column
means the process is no longer connected to a controlling terminal.

▲ STAT The state of the process. These are the possible states:

▼ S Process is sleeping. All processes that are ready to run (that is, being multi-
tasked, and the CPU is currently focused elsewhere) will be asleep.

■ R Process is actually on the CPU.

■ D Uninterruptible sleep (usually I/O related).

■ T Process is being traced by a debugger or has been stopped.

▲ Z Process has gone zombie. This means either (1) the parent process has
not acknowledged the death of its child using the wait system call; or
(2) the parent was improperly killed, and until the parent is completely
killed, the init process (see Chapter 8) cannot kill the child itself. A
zombied process usually indicates poorly written software.

 In addition, the STAT entry for each process can take one of the follow-
ing modifiers: W = No resident pages in memory (it has been completely

133 Chapter 5: The Command Line

swapped out); < = High-priority process; N = Low-priority task; L = Pages
in memory are locked there (usually signifying the need for real-time
functionality).

▼ START Date the process was started.

■ TIME Amount of time the process has spent on the CPU.

▲ COMMAND Name of the process and its command-line parameters.

Show an Interactive List of Processes: top
The top command is an interactive version of ps. Instead of giving a static view of what
is going on, top refreshes the screen with a list of processes every two to three seconds
(user-adjustable). From this list, you can reprioritize processes or kill them. Figure 5-1
shows a top screen.

The top program’s main disadvantage is that it’s a CPU hog. On a congested system,
this program tends to complicate system management issues. Users start running top
to see what’s going on, only to find several other people running the program as well,
slowing down the system even more.

By default, top is shipped so that everyone can use it. You may find it prudent,
depending on your environment, to restrict top’s use to root only. To do this, as root,
change the program’s permissions with the following command:

[root@fedora-serverA ~]# chmod 0700 `which top`

Figure 5-1. top output

 134 Linux Administration: A Beginner’s Guide

Send a Signal to a Process: kill
This program’s name is misleading: It doesn’t really kill processes. What it does is send
signals to running processes. The operating system, by default, supplies each process
with a standard set of signal handlers to deal with incoming signals. From a system
administrator’s standpoint, the most common handlers are for signals number 9 and
15, kill process and terminate process, respectively. When kill is invoked, it requires
at least one parameter: the process identification number (PID) as derived from the ps
command. When passed only the PID, kill sends signal 15. Some programs intercept
this signal and perform a number of actions so that they can shut down cleanly. Others
just stop running in their tracks. Either way, kill isn’t a guaranteed method for making
a process stop.

Signals
An optional parameter available for kill is -n, where the n represents a signal number.
As system administrators, we are most interested in the signals 9 (kill) and 1 (hang up).

The kill signal, 9, is the impolite way of stopping a process. Rather than asking a
process to stop, the operating system simply kills the process. The only time this will fail
is when the process is in the middle of a system call (such as a request to open a file), in
which case the process will die once it returns from the system call.

The hang-up signal, 1, is a bit of a throwback to the VT100 terminal days of UNIX.
When a user’s terminal connection dropped in the middle of a session, all of that termi-
nal’s running processes would receive a hang-up signal (often called a SIGHUP or HUP).
This gave the processes an opportunity to perform a clean shutdown or, in the case of
background processes, to ignore the signal. These days, a HUP is used to tell certain
server applications to go and reread their configuration files (you’ll see this in action in
several of the later chapters). Most applications simply ignore the signal.

Security Issues
The ability to terminate a process is obviously a powerful one, making security pre-
cautions important. Users may kill only processes they have permission to kill. If non-
root users attempt to send signals to processes other than their own, error messages are
returned. The root user is the exception to this limitation; root may send signals to all
processes in the system. Of course, this means root needs to exercise great care when
using the kill command.

Examples Using the kill Command

NOTE The following examples are arbitrary; the PIDs used are completely fictitious and will be
different on your system.

Use this command to terminate a process with PID number 205989:

[root@fedora-serverA ~]# kill 205989

135 Chapter 5: The Command Line

For an almost-guaranteed kill of process number 593999, issue this command:

[root@fedora-serverA ~]# kill -9 593999

Type the following to send the HUP signal to the init program (which is always
PID 1):

[root@fedora-serverA ~]# kill -SIGHUP 1

This command is the same as typing

[root@fedora-serverA ~]# kill - 1 1

TIP To get a listing of all the possible signals available, along with their numeric equivalents, issue
the kill -l command!

MISCELLANEOUS TOOLS
The following tools don’t fall into any specific category we’ve covered in this chapter,
but they all make important contributions to daily system administration chores.

Show System Name: uname
The uname program produces some system details that may be helpful in several situa-
tions. Maybe you’ve managed to remotely log into a dozen different computers and have
lost track of where you are! This tool is also helpful for script writers, because it allows
them to change the path of a script according to the system information.

Here are the command-line parameters for uname:

Option for uname Description

-m Prints the machine hardware type (such as i686 for
Pentium Pro and better architectures)

-n Prints the machine’s hostname

-r Prints the operating system’s release name

-s Prints the operating system’s release name

-v Prints the operating system’s version

-a Prints all of the above

To get the operating system’s name and release, enter the following command:

[yyang@fedora-serverA ~]$ uname -s -r

 136 Linux Administration: A Beginner’s Guide

NOTE The -s option may seem wasted (after all, we know this is Linux), but this parameter
proves quite useful on almost all UNIX-like operating systems as well. At a Silicon Graphics, Inc.
(SGI) workstation, uname -s will return IRIX, or SunOS at a Sun workstation. Folks who work in
heterogeneous environments often write scripts that will behave differently, depending on the OS, and
uname with -s is a consistent way to determine that information.

TIP Another command that offers distribution-specific information is the the lsb_release
command. Specifically, it can show Linux Standard Base (LSB)–related information, such as the
distribution name, distribution code name, release or version information, etc. A common option used
with the lsb_release command is -a. For example, lsb_release -a.

Who Is Logged In: who
On systems that allow users to log into other users’ machines or special servers, you
will want to know who is logged in. You can generate such a report by using the who
command:

[yyang@fedora-serverA ~]$ who

yyang pts/0 2010-10-08 15:24 (10.35.35.51)

yyang pts/1 2010-10-08 16:07 (10.35.35.51)

A Variation on who: w
The w command displays the same information that who does and a whole lot more.
The details of the report include who is logged in, what their terminal is, where they are
logged in from, how long they’ve been logged in, how long they’ve been idle, and their
CPU utilization. The top of the report also gives you the same output as the uptime
command.

[yyang@fedora-serverA ~]$ w

 16:11:24 up 1:10, 2 users, load average: 0.04, 0.01, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

yyang pts/0 192.168.99.51 15:24 0.00s 0.12s 0.01s w

yyang pts/1 192.168.99.51 16:07 3:35 0.04s 0.04s -bash

Switch User: su
This command was used earlier on, when we moved a user and its home directory, and now
we’ll discuss it briefly. Once you have logged into the system as one user, you need not log
out and back in again in order to assume another identity (root user, for instance). Instead,
use the su command to switch. This command has few command-line parameters.

137 Chapter 5: The Command Line

Running su without any parameters will automatically try to make you the root user.
You’ll be prompted for the root password and, if you enter it correctly, will drop down to
a root shell. If you are already the root user and want to switch to another ID, you don’t
need to enter the new password when you use this command.

For example, if you’re logged in as the user yyang and want to switch to the root user,
type this command:

[yyang@fedora-serverA ~]$ su

You will be prompted for root’s password.
If you’re logged in as root and want to switch to, say, user yyang, enter this

command:

[root@fedora-serverA ~]# su yyang

You will not be prompted for yyang’s password.
The optional hyphen (-) parameter tells su to switch identities and run the login

scripts for that user. For example, if you’re logged in as root and want to switch over to
user yyang with all of his login and shell configurations, type this command:

[root@fedora-serverA ~]# su – yyang

TIP The sudo command is used extensively (instead of su) on Debian-based distributions such
as Ubuntu to execute commands as another user. When configured properly, sudo offers finer
grained controls than su does.

EDITORS
Editors are easily among the bulkiest of common tools, but they are also the most useful.
Without them, making any kind of change to a text file would be a tremendous under-
taking. Regardless of your Linux distribution, you will have gotten a few editors. You
should take a few moments to get comfortable with them.

NOTE Not all distributions come with all of the editors listed here.

vi
The vi editor has been around UNIX-based systems since the 1970s, and its interface
shows it. It is arguably one of the last editors to actually use a separate command mode
and data entry mode; as a result, most newcomers find it unpleasant to use. But before

 138 Linux Administration: A Beginner’s Guide

you give vi the cold shoulder, take a moment to get comfortable with it. In difficult
 situations, you may not have a pretty graphical editor at your disposal, and vi is ubiq-
uitous across all UNIX systems.

The version of vi that ships with Linux distributions is vim (VI iMproved). It has a
lot of what made vi popular in the first place and many features that make it useful in
today’s typical environments (including a graphical interface if the X Window System is
running).

To start vi, simply type

[yyang@fedora-serverA ~]$ vi

The vim editor has an online tutor that can help you get started with it quickly. To
launch the tutor, type

[yyang@fedora-serverA ~]$ vimtutor

Another easy way to learn more about vi is to start it and enter :help. If you ever
find yourself stuck in vi, press the esc key several times and then type :q! to force an exit
without saving. If you want to save the file, type :wq.

emacs
It has been argued that emacs is an operating system all by itself. It’s big, feature-
rich, expandable, programmable, and all-around amazing. If you’re coming from a GUI
background, you’ll probably find emacs a pleasant environment to work with at first.
On its face, it works like Notepad in terms of its interface. Yet underneath is a complete
interface to the GNU development environment, a mail reader, a news reader, a web
browser, and even a psychiatrist (well, not exactly).

To start emacs, simply type

[yyang@fedora-serverA ~]$ emacs

Once emacs has started, you can visit the psychiatrist by pressing esc-x and then
typing doctor. To get help using emacs, press ctrl-h.

joe
joe is a simple text editor. It works much like Notepad and offers onscreen help. Any-
one who remembers the original WordStar command set will be pleasantly surprised
to see that all those brain cells hanging on to ctrl-k commands can be put back to use
with joe.

To start joe, simply type

[yyang@fedora-serverA ~]$ joe

139 Chapter 5: The Command Line

pico
The pico program is another editor inspired by simplicity. Typically used in conjunc-
tion with the Pine mail reading system, pico can also be used as a stand-alone editor.
Like joe, it can work in a manner similar to Notepad, but pico uses its own set of key
combinations. Thankfully, all available key combinations are always shown at the bot-
tom of the screen.

To start pico, simply type

[yyang@fedora-serverA ~]$ pico

TIP The pico program will perform automatic word wraps. If you’re using it to edit configuration files,
for example, be careful that it doesn’t word-wrap a line into two lines if it should really stay as one.

STANDARDS
One argument you hear regularly against Linux is that there are too many different dis-
tributions, and that by having multiple distributions, there is fragmentation. This frag-
mentation will eventually lead to different versions of incompatible Linuxes.

This is, without a doubt, complete nonsense that plays on “FUD” (fear, uncertainty,
and doubt). These types of arguments usually stem from a misunderstanding of the ker-
nel and distributions. However, the Linux community has realized that it has grown past
the stage of informal understandings about how things should be done. As a result, two
major standards are actively being worked on.

The first standard is the File Hierarchy Standard (FHS). This is an attempt by many
of the Linux distributions to standardize on a directory layout so that developers have
an easy time making sure their applications work across multiple distributions without
difficulty. As of this writing, Red Hat is almost completely compliant, and it is likely that
most other distributions are as well.

The other standard is the Linux Standard Base Specification (LSB). Like the FHS, the
LSB is a standards group that specifies what a Linux distribution should have in terms
of libraries and tools.

A developer who assumes that a Linux machine complies only with the LSB and FHS
is almost guaranteed to have an application that will work with all Linux installations.
All of the major distributors have joined these standards groups. This should ensure that
all desktop distributions will have a certain amount of common ground that a developer
can rely on.

From a system administrator’s point of view, these standards are interesting but not
crucial to administering a Linux network. However, it never hurts to learn more about
both. For more information on the FHS, go to their web site at www.pathname.com/fhs.
To find out more about the LSB, check out www.linuxbase.org.

 140 Linux Administration: A Beginner’s Guide

SUMMARY
In this chapter, we discussed Linux’s command-line interface through BASH, many
command-line tools, and a few editors. As you continue through this book, you’ll find
many references to the information in this chapter, so be sure that you get comfortable
with working at the command line. You may find it a bit annoying at first, especially if
you are used to using a GUI for performing many of the basic tasks mentioned here—but
stick with it. You may even find yourself eventually working faster at the command line
than with the GUI!

Obviously, this chapter can’t cover all the command-line tools available to you as
part of your default Linux installation. It is highly recommend that you take some time
to look into some of the reference books available. For a helpful but less comprehensive
approach to the considerable detail of Linux systems, try the latest edition of Linux in a
Nutshell (various editions for different systems, from O’Reilly and Associates). In addi-
tion, there is a wealth of texts on shell programming at various levels and from various
points of view. Get whatever suits you; shell programming is a skill well worth learning,
even if you don’t do system administration.

And above all else, R.T.F.M., that is, Read the fine manual (documentation).

141

6

Booting and
Shutting Down

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 142 Linux Administration: A Beginner’s Guide

As operating systems have become more complex, the process of starting up and
shutting down has become more comprehensive. Anyone who has undergone
the transition from a straight DOS-based system to a Windows 2003/XP–based

system has experienced this transition firsthand. Not only is the core operating system
brought up and shut down, but also an impressive list of services must be started and
stopped. Like Windows, Linux comprises an impressive list of services that are turned
on as part of the boot procedure.

In this chapter, we discuss the bootstrapping of the Linux operating system with
GRUB and LILO. We then step through the processes of starting up and shutting down
the Linux environment. We discuss the scripts that automate this process, as well as the
parts of the process for which modification is acceptable.

NOTE Apply a liberal dose of common sense in following the practical exercises in this chapter on
a real system. As you experiment with modifying startup and shutdown scripts, bear in mind that it is
possible to bring your system to a nonfunctional state that cannot be recovered by rebooting. Don’t
mess with a production system; if you must, first make sure that you back up all the files you wish to
change, and most importantly, have a boot disk ready (or some other boot medium) that can help you
recover.

BOOT LOADERS
For any operating system to boot on standard PC hardware, you need what is called
a boot loader. If you have only dealt with Windows on a PC, you have probably never
needed to interact directly with a boot loader. The boot loader is the first software pro-
gram that runs when a computer starts. It is responsible for handing over control of the
system to the operating system.

Typically, the boot loader will reside in the Master Boot Record (MBR) of the disk, and
it knows how to get the operating system up and running. The main choices that come
with Linux distributions are GRUB (the Grand Unified Bootloader) and LILO (Linux
Loader). We will mostly cover GRUB, because it is the most common boot loader that
ships with the newer distributions of Linux and because it also has a lot more features
than LILO. A brief mention of LILO is made for historical reasons only. Both LILO and
GRUB can be configured to boot other non-native operating systems.

GRUB
Most modern Linux distributions use GRUB as the default boot loader during instal-
lation. GRUB is the default boot loader for Fedora, Red Hat Enterprise Linux (RHEL),
OpenSUSE, Mandrake, Ubuntu, and a host of other Linux distributions. GRUB aims to
be compliant with the Multiboot Specification and offers many features.

143 Chapter 6: Booting and Shutt ing Down

NOTE You might notice that GRUB is a pre-1.0 release of software, also known as alpha software.
Don’t be frightened by this. Considering the fact that major commercial Linux vendors use it in their
distribution, it is probably quality “alpha” code. The stable version of GRUB is also known as GRUB
Legacy. GRUB 2 is going to be the next-generation GRUB.

The GRUB boot process happens in stages. Each stage is taken care of by special
GRUB image files, with each preceding stage helping the next stage along. Two of the
stages are essential, and any of the other stages are optional and dependent on the par-
ticular system setup.

Stage 1
The image file used in this stage is essential and is used for booting up GRUB in the first
place. It is usually embedded in the MBR of a disk or in the boot sector of a partition. The
file used in this stage is appropriately named stage1. A Stage 1 image can next either load
Stage 1.5 or load Stage 2 directly.

Stage 2
The Stage 2 images actually consist of two types of images: the intermediate (optional
image) and the actual stage2 image file. To further blur things, the optional images are
called Stage 1.5. The Stage 1.5 images serve as a bridge between Stage 1 and Stage 2. The
Stage 1.5 images are file system–specific; that is, they understand the semantics of one
file system or the other.

The Stage 1.5 images have names of the form—x_stage_1_5 —where x can be a file
system of type e2fs, reiserfs, fat, jfs, minix, xfs, etc. For example, the Stage 1.5 image that
will be required to load an operating system (OS) that resides on a File Allocation Table
(FAT) file system will have a name like fat_ stage1_5. The Stage 1.5 images allow GRUB
to access several file systems. When used, the Stage 1.5 image helps to locate the Stage 2
image as a file within the file system.

Next comes the actual stage2 image. It is the core of GRUB. It contains the actual code
to load the kernel that boots the OS, it displays the boot menu, and it also contains the
GRUB shell from which GRUB commands can be entered. The GRUB shell is interactive
and helps to make GRUB flexible. For example, the shell can be used to boot items that
are not currently listed in GRUB’s boot menu or to bootstrap the OS from an alternate
supported medium.

Other types of Stage 2 images are the stage2_eltorito image, the nbgrub image, and
the pxegrub image. The stage2_eltorito image is a boot image for CD-ROMs. The nbgrub
and pxegrub images are both network-type boot images that can be used to bootstrap a
system over the network (using Bootstrap Protocol [BOOTP], Dynamic Host Configura-
tion Protocol [DHCP], Preboot Execution Environment [PXE], Etherboot, or the like). A
quick listing of the contents of the /boot/grub directory of most Linux distributions will
show some of the GRUB images.

 144 Linux Administration: A Beginner’s Guide

Conventions Used in GRUB
GRUB has its own special way of referring to devices (CD-ROM drives, floppy drives, hard
disk drives, etc.). The device name has to be enclosed in parentheses: “()”. GRUB starts
numbering its devices and partitions from zero, not from one. Therefore, GRUB would
refer to the master Integrated Drive Electronics (IDE) hard drive on the primary IDE
controller as (hd0), where “hd” means “hard disk” drive and the number zero means it
is the primary IDE master.

NOTE GRUB does not distinguish between IDE devices and Small Computer System Interface
(SCSI) devices.

In the same vein, GRUB will refer to the fourth partition on the fourth hard disk (i.e.,
the slave on the secondary IDE controller) as “(hd3,3).” To refer to the whole floppy disk
in GRUB would mean “(fd0)”—where “fd” means “floppy disk.”

Installing GRUB
Most Linux distributions will give you a choice to install and configure the boot loader
during the initial operating system installation. Thus, you wouldn’t normally need to
manually install GRUB during normal system use.

However, there are times, either by accident or by design, that you don’t have a boot
loader. It could be by accident if you, for example, accidentally overwrite your boot sec-
tor or if another operating system accidentally wipes out GRUB. It could be by design if,
for example, you want to set up your system to dual-boot with another operating system
(Windows or another Linux distribution).

This section will walk you through getting GRUB installed (or reinstalled) on your
system. This can be achieved in several ways. You can do it the easy way from within
the running OS using the grub-install utility or using GRUB’s native command-line
interface. You can get to this interface using what is called a GRUB boot floppy, using a
GRUB boot CD, or from a system that has the GRUB software installed.

NOTE GRUB is only installed once. Any modifications are stored in a text file, and any changes
don’t need to be written to the MBR or partition boot sector every time.

Backing Up the MBR
Before proceeding with the exercises that follow, it is a good idea to make a backup of
your current “known good” MBR. It is easy to do this using the dd command. Since the
MBR of a PC’s hard disk resides in the first 512 bytes of the disk, you can easily copy the
first 512 bytes to a file (or to a floppy disk) by typing

[root@fedora-serverA ~]# dd if=/dev/sda of=/tmp/COPY_OF_MBR bs=512 count=1

1+0 records in

1+0 records out

145 Chapter 6: Booting and Shutt ing Down

This command will save the MBR into a file called COPY_OF_MBR under the /tmp
directory.

Creating a Boot/Rescue CD
Another precautionary measure to take before performing any operation that can render
a system unbootable is to create a rescue CD. The CD can then be used to boot the sys-
tem in case of accidents (the CD can also be used for other purposes as well and should
always be close at hand).

The boot CD is system-specific and is automatically built from current information
extracted from your system. We will use the mkbootdisk command to generate an ISO
image that can be burned to a blank CD-ROM. If you don’t have the mkbootdisk util-
ity already installed, you can use yum to install it on a Fedora system by typing yum
install mkbootdisk. To generate an ISO image named BOOT-CD.iso for your run-
ning kernel and save the image file under the /tmp directory, type

[root@fedora-serverA ~]# mkbootdisk --device /tmp/BOOT-CD.iso --iso `uname -r`

You will next need to find a way to burn/write the created CD image onto a blank
CD. If you have a CD burner installed on the Linux box, you can use the cdrecord util-
ity to achieve this by issuing the command

[root@fedora-serverA ~]# cdrecord speed=4 -eject --dev=/dev/sr0 /tmp/BOOT-CD.iso

You should then date and label the disc accordingly with a descriptive name.

TIP The mkbootdisk utility can also be used to create a boot floppy disk. But because of the
differences between Linux kernels in the version 2.4 series and the version 2.6 series, it is no longer
straightforward to create a boot disk that will fit into the limited space (1.44 megabytes, or MB) that a
floppy disk offers. If you get your system to meet the size constraints, all you need to do to create a
boot floppy is insert a blank floppy disk into the drive and issue the command

[root@fedora-serverA ~]# mkbootdisk --device /dev/fd0 `uname -r`

Installing GRUB from the GRUB Shell
Now that we have dealt with the safety measures, we can proceed to exploring GRUB
fully. In this section, you will learn how to install GRUB natively using GRUB’s com-
mand shell from inside the running Linux operating system. You will normally go this
route if, for example, you currently have another type of boot loader (such as LILO or the
NT Loader, NTLDR) but you wish to replace or overwrite that boot loader with GRUB.

 1. Launch GRUB’s shell by issuing the grub command. Type

[root@fedora-serverA ~]# grub

 GNU GRUB version 0.97 (640K lower / 3072K upper memory)

 146 Linux Administration: A Beginner’s Guide

[Minimal BASH-like line editing is supported. For the first word, TAB

 lists possible command completions. Anywhere else TAB lists the

 possible completions of a device/filename.]

grub>Display GRUB's current root device. Type

grub> root

(fd0): Filesystem type unknown, partition type 0x0

The output shows that GRUB will, by default, use the first floppy disk drive
(fd0) as its root device, unless you tell it otherwise.

 2. Set GRUB’s root device to the partition that contains the boot directory on the
local hard disk. Type

grub> root (hd0,0)

Filesystem type is ext2fs, partition type 0x83

NOTE The boot directory may or may not be on the same partition that houses the root (/) directory.
During the OS installation on our sample system, the /boot directory was stored on the /dev/sda1
partition, and hence, we use the GRUB (hd0,0) device.

 3. Make sure that the stage1 image can be found on the root device. Type

grub> find /grub/stage1

(hd0,0)

The output means that the stage1 image was located on the (hd0,0) device.

 4. Finally, install the GRUB boot loader directly on the MBR of the hard disk. Type

grub> setup (hd0)

Checking if "/boot/grub/stage1" exists... no

 Checking if "/grub/stage1" exists... yes

 Checking if "/grub/stage2" exists... yes

 Checking if "/grub/e2fs_stage1_5" exists... yes

 Running "embed /grub/e2fs_stage1_5 (hd0)"... 16 sectors are embedded.

succeeded

 Running "install /grub/stage1 (hd0) (hd0)1+16 p (hd0,0)/grub/stage2 /

grub/grub.conf"... succeeded

Done.

 5. Quit the GRUB shell. Type

grub> quit

You are done. But you should note that you really didn’t make any serious changes
to the system, because you simply reinstalled GRUB to the MBR (where it used to be).
You would normally reboot at this point to make sure that everything is working as it
should.

147 Chapter 6: Booting and Shutt ing Down

TIP A simple-to-use script that can help you perform all the steps detailed in the preceding exercise
with a single command is the grub-install script (see man grub-install). This method is not always
perfect, and the authors of the GRUB software admit that it is a less safe route to take. But still—it
almost always works just fine.

The GRUB Boot Floppy
Let’s create a GRUB floppy. This will allow you to boot the system using the floppy disk
and use GRUB to write or install itself to the MBR. This is especially useful if your system
does not currently have a boot loader installed but you have access to another system that
has GRUB installed.

The general idea behind using a GRUB boot floppy is that it is assumed that you cur-
rently have a system with an unbootable, corrupt, or unwanted boot loader—and since
the system cannot be booted by itself from the hard disk, you need another medium to
bootstrap the system with. For this, you can use a GRUB floppy disk or a GRUB CD. You
want any means by which you can gain access to the GRUB shell so that you can install
GRUB into the MBR and then boot the OS.

You need to first locate the GRUB images, located by default in /usr/share/grub/
i386-redhat/ directory on a Fedora/Red Hat system (OpenSuSE stores the GRUB image
files in the /usr/lib/grub/ directory, and the images are stored under /usr/lib/grub/i386-pc/
on an Ubuntu system).

Use the dd command to write the stage1 and stage2 images to the floppy disk.

 1. Change to the directory that contains the GRUB images on your system. Type

[root@fedora-serverA ~]# cd /usr/share/grub/i386-redhat/

 2. Write the file stage1 to the first 512 bytes of the floppy disk. Type

[root@fedora-serverA i386-redhat]# dd if=stage1 of=/dev/fd0 bs=512 count=1

1+0 records in

1+0 records out

 3. Write the stage2 image right after the first image. Type

[root@fedora-serverA i386-redhat]# dd if=stage2 of=/dev/fd0 bs=512

seek=1

202+1 records in

202+1 records out

TIP You can also use the cat command to do the same thing as in the last two steps in a single
shot. The command to do this will be

[root@fedora-serverA i386-redhat]# cat stage1 stage2 > /dev/fd0

 148 Linux Administration: A Beginner’s Guide

Your GRUB floppy is now ready. You can now boot off of this floppy so that you can
install the GRUB boot loader.

Installing GRUB on the MBR Using a GRUB Floppy
Make sure that the GRUB floppy you created is inserted into the floppy disk drive.
Reboot the system and use the floppy as your boot medium (adjust the BIOS settings if
necessary). After the system has booted off the GRUB floppy, you will be presented with
a grub> prompt.

Set the root device for GRUB to your boot partition (or the partition that contains
the /boot directory). On our sample system, the /boot directory resides on the /dev/sda1
(hd0,0) partition. To do this, type the following command:

grub> root (hd0,0)

Now you can write GRUB to the MBR by using the setup command:

grub> setup (hd0)

That’s it, you are done. You may now reboot the system without the GRUB floppy.
This is a good way to let GRUB reclaim management of the MBR, if it had previously
been overwritten by another boot manager.

Configuring GRUB
Since you only have to install GRUB once on the MBR or partition of your choice, you
have the luxury of simply editing a text file, (/boot/grub/menu.1st), in order to make
changes to your boot loader. When you are done editing this file, you can reboot and
select any new kernel that you added to the configuration. The configuration file looks
like the following (please note that line numbers 1–16 have been added to the output to
aid readability):

[root@fedora-serverA ~]# cat /boot/grub/menu.lst

1) # grub.conf generated by anaconda

2) # Note that you do not have to re-run grub after making changes to this file

3) # NOTICE: You have a /boot partition. This means that

4) # all kernel and initrd paths are relative to /boot/, eg.

5) # root (hd0,0)

6) # kernel /vmlinuz-version ro root=/dev/VolGroup00/LogVol00

7) # initrd /initrd-version.img

8) #boot=/dev/sda

9) default=0

10) timeout=5

11) splashimage=(hd0,0)/grub/splash.xpm.gz

12) hiddenmenu

13) title Fedora (2.6.25-14.fc9.i686)

14) root (hd0,0)

15) kernel /vmlinuz-2.6.25-14.fc9.i686 ro root=UUID=7db5-4c27 rhgb quiet

16) initrd /initrd-2.6.25-14.fc9.i686.img

149 Chapter 6: Booting and Shutt ing Down

The entries in the preceding sample configuration file for GRUB are discussed here:

▼ Lines 1–8 All lines that begin with the pound sign (#) are comments and are
ignored.

■ Line 9, default This directive tells GRUB which entry to automatically boot.
The numbering starts from zero. The preceding sample file contains only one
entry—the entry titled Fedora (2.6.25-14.fc9.i686).

■ Line 10, timeout This means that GRUB will automatically boot the default
entry after five seconds. This can be interrupted by pressing any key on the key-
board before the counter runs out.

■ Line 11, splashimage This line specifies the name and location of an image file
to be displayed at the boot menu. This is optional and can be any custom image
that fits GRUB’s specifications.

■ Line 12, hiddenmenu This entry hides the usual GRUB menu. It is an optional
entry.

■ Line 13, title This is used to display a short title or description for the follow-
ing entry it defines. The title field marks the beginning of a new boot entry in
GRUB.

■ Line 14, root You should notice from the preceding listing that GRUB still
maintains its device-naming convention (e.g., (hd0,0) instead of the usual Linux
/dev/sda1).

■ Line 15, kernel Used for specifying the path to a kernel image. The first argu-
ment is the path to the kernel image in a partition. Any other arguments are
passed to the kernel as boot parameters.

 Note that the path names are relative to the /boot directory, so, for example,
instead of specifying the path to the kernel to be “/boot/vmlinuz-2.6.25-14.fc9.
i686,” GRUB’s configuration file references this path as “/vmlinuz-2.6.25-14.
fc9.i686.”

▲ Line 16, initrd The initrd option allows you to load kernel modules from an
image, not the modules from /lib/modules. See the GRUB info pages, avail-
able through the info command, for more information on the configuration
options.

NOTE You might be wondering what the initrd option is really for. Basically, this allows distributions
to use a generic kernel that supports a native and stable Linux file system (such as ext3). However,
the problem is that you might need a file system module to load all of your new modules—if you chose
to install the ReiserFS or ext4 file systems, for example. This is a chicken-and-egg problem—that is,
which came first. The solution is to provide the kernel with an image that contains necessary loadable
modules to get the rest of the modules.

 150 Linux Administration: A Beginner’s Guide

Adding a New Kernel to Boot with GRUB
In this section, you will learn how to manually add a new boot entry to GRUB’s configu-
ration file. If you are compiling and installing a new kernel by hand, you will need to
do this so that you can boot into the new kernel to test it or use it. If, on the other hand,
you are installing or upgrading the Linux kernel using a prepackaged Red Hat Package
Manager (RPM), this is usually automatically done for you.

Because you don’t have any new Linux kernel to install on the system, you will only
add a dummy entry to GRUB’s configuration file in this exercise. The new entry will not
do anything useful—it is only being done for illustration purposes.

Here’s a summary of what we will be walking you through: You will make a copy
of the current default kernel that your system uses, and call the copy duplicate-kernel.
You will also make a copy of the corresponding initrd image for the kernel, and name
the copy duplicate-initrd. Both files should be saved into the /boot directory. You will
then create an entry for the supposedly new kernel and give it a descriptive title, such as
“The Duplicate Kernel.”

In addition to the preceding boot entry, you will create another entry that does noth-
ing more than change the foreground and background colors of GRUB’s boot menu.

Let’s begin:

 1. Change your current working directory to the /boot directory. Type

[root@fedora-serverA ~]# cd /boot

 2. Make a copy of your current kernel, and name the copy duplicate-kernel. Type

[root@fedora-serverA boot]# cp vmlinuz-2.6.25-14.fc9.i686 duplicate-kernel

 3. Make a copy of the corresponding initrd image, and name the copy duplicate-
initrd. Type

[root@fedora-serverA boot]# cp initrd-2.6.25-14.fc9.i686.img duplicate-initrd.img

 4. Create an entry for the new pseudo-kernels in the /boot/grub/menu.1st configu-
ration file, using any text editor you are comfortable with (the vim editor is used
in this example). Type the following text at the end of the file:

title The Duplicate Kernel

 color yellow/black

 root (hd0,0)

 kernel /duplicate-kernel ro root=UUID=7db5-4c27

 initrd /duplicate-initrd.img

151 Chapter 6: Booting and Shutt ing Down

NOTE The value of “UUID” used above was obtained from the existing entry in the menu.1st file
that we are duplicating. The exact partition or volume on which the root file system (/) resides can
also be specified; for example, we could have the kernel entry in the menu.1st file as

kernel /vmlinuz-2.6.25-14.fc9.i686 ro root=/dev/VolGroup00/LogVol00 rhgb quiet

 5. Create another entry that will change the foreground and background colors of
the menu when selected. The menu colors will be changed to yellow and black
when this entry is selected. Enter the following text at the end of the file (beneath
the entry you created in the preceding step):

title The change color entry

 color yellow/black

 6. Comment out the splashimage entry at the top of the file. The presence of the
splash image will prevent your new custom foreground and background colors
from displaying properly. The commented-out entry for the splash image will
look like this:

splashimage=(hd0,0)/grub/splash.xpm.gz

 7. Finally, comment out the hiddenmenu entry from the file so that the Boot menu
will appear, showing your new entries instead of being hidden. The commented-
out entry should look like

#hiddenmenu

 8. Save the changes you made to the file, and reboot the system.

The final /boot/grub/menu.1st file (with some of the comment fields removed)
will resemble the one shown here:

[root@fedora-serverA boot]# cat /boot/grub/menu.lst

grub.conf generated by anaconda

default=0

timeout=5

#splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu

title Fedora (2.6.25-14.fc9.i686)

 root (hd0,0)

 kernel /vmlinuz-2.6.25-14.fc9.i686 ro root=UUID= 7db5-4c27 rhgb quiet

 initrd /initrd-2.6.25-14.fc9.i686.img

title The Duplicate Kernel

 color yellow/black

 root (hd0,0)

 kernel /duplicate-kernel ro root=UUID=7db5-4c27

 initrd /duplicate-initrd.img

title The change color entry

 color yellow/black

 152 Linux Administration: A Beginner’s Guide

When the system reboots, you can test your changes by following the next steps
while at the initial grub screen.

 9. After the GRUB menu appears, select The Change Color Entry, and press enter.
The color of the menu should change to the color you specified in the menu.1st
file using the color directive.

 10. Finally, verify that you are able to boot the new kernel entry that you created,
that is, the “The Duplicate Kernel” entry. Select “The Duplicate Kernel” entry
and then press enter.

LILO
LILO, short for Linux Loader, is a boot manager. It allows you to boot multiple operating
systems, provided each system exists on its own partition. (Under PC-based systems, the
entire boot partition must also exist beneath the 1024-cylinder boundary.) In addition to
booting multiple operating systems, with LILO, you can choose various kernel configu-
rations or versions to boot. This is especially handy when you’re trying kernel upgrades
before adopting them.

Configuring LILO is straightforward: A configuration file (/etc/lilo.conf) specifies
which partitions are bootable and, if a partition is Linux, which kernel to load. When the
/sbin/lilo program runs, it takes this partition information and rewrites the boot sector
with the necessary code to present the options as specified in the configuration file. At
boot time, a prompt (usually lilo:) is displayed, and you have the option of specifying
the operating system. (Usually, a default can be selected after a timeout period.) LILO
loads the necessary code, the kernel, from the selected partition and passes full control
over to it.

LILO is what is known as a two-stage boot loader. The first stage loads LILO itself
into memory and prompts you for booting instructions with the lilo: prompt or a col-
orized boot menu. Once you select the OS to boot and press enter, LILO enters the second
stage, booting the Linux operating system.

As was stated earlier in the chapter, LILO has somewhat fallen out of favor with most
of the newer Linux distributions. Some of the distributions do not even give you the
option of selecting or choosing LILO as your boot manager!

TIP If you are familiar with the Microsoft Windows boot process, you can think of LILO as comparable
to the OS loader (NTLDR). Similarly, the LILO configuration file, /etc/lilo.conf, is comparable to
BOOT.INI (which is typically hidden from view).

Bootstrapping
In this section, we’ll assume you are already familiar with the boot processes of other
operating systems and thus already know the boot cycle of your hardware. This section
will cover the process of bootstrapping the operating system. We’ll begin with the Linux
boot loader (usually GRUB for PCs).

153 Chapter 6: Booting and Shutt ing Down

Kernel Loading
Once GRUB has started and you have selected Linux as the operating system to boot,
the first thing to get loaded is the kernel. Keep in mind that no operating system exists in
memory at this point, and PCs (by their unfortunate design) have no easy way to access
all of their memory. Thus, the kernel must load completely into the first megabyte of
available random access memory (RAM). In order to accomplish this, the kernel is com-
pressed. The head of the file contains the code necessary to bring the CPU into protected
mode (thereby removing the memory restriction) and decompress the remainder of the
kernel.

Kernel Execution
With the kernel in memory, it can begin executing. It knows only whatever functionality
is built into it, which means any parts of the kernel compiled as modules are useless at
this point. At the very minimum, the kernel must have enough code to set up its virtual
memory subsystem and root file system (usually, the ext3 file system). Once the ker-
nel has started, a hardware probe determines what device drivers should be initialized.
From here, the kernel can mount the root file system. (You could draw a parallel of this
process to that of Windows being able to recognize and access its C drive.) The kernel
mounts the root file system and starts a program called init, which is discussed in the
next section.

THE INIT PROCESS
The init process is the first non-kernel process that is started, and, therefore, it always gets
the process ID number of 1. init reads its configuration file, /etc/inittab, and determines
the runlevel where it should start. Essentially, a runlevel dictates the system’s behavior.
Each level (designated by an integer between 0 and 6) serves a specific purpose. A run-
level of initdefault is selected if it exists; otherwise, you are prompted to supply a
runlevel value.

The runlevel values are as follows:

0 Halt the system

1 Enter single-user mode

2 Multiuser mode, but without Network File System (NFS)

3 Full multiuser mode (normal)

4 Unused

5 Same as runlevel 3, except using an X Window System login
rather than a text-based login

6 Reboot the system

 154 Linux Administration: A Beginner’s Guide

When it is told to enter a runlevel, init executes a script, as dictated by the /etc/ inittab
file. The default runlevel that the system boots into is determined by the initdefault
entry in the /etc/inittab file. If, for example, the entry in the file is

id:3:initdefault:

this means that the system will boot into runlevel 3. But if, on the other hand, the entry
in the file is

id:5:initdefault:

this means the system will boot into runlevel 5, with the X Window subsystem running
with a graphical login screen.

RC SCRIPTS
In the preceding section, we mentioned that the /etc/inittab file specifies which scripts to
run when runlevels change. These scripts are responsible for either starting or stopping
the services that are particular to the runlevel.

Because of the number of services that need to be managed, rc scripts are used. The
main one, /etc/rc.d/rc, is responsible for calling the appropriate scripts in the correct
order for each runlevel. As you can imagine, such a script could easily become extremely
uncontrollable! To keep this from happening, a slightly more elaborate system is used.

For each runlevel, a subdirectory exists in the /etc/rc.d directory. These runlevel sub-
directories follow the naming scheme of rc X .d, where X is the runlevel. For example, all
the scripts for runlevel 3 are in /etc/rc.d/rc3.d.

In the runlevel directories, symbolic links are made to scripts in the /etc/rc.d/init.d
directory. Instead of using the name of the script as it exists in the /etc/rc.d/init.d direc-
tory, however, the symbolic links are prefixed with an S, if the script is to start a service,
or with a K, if the script is to stop (or kill) a service. Note that these two letters are case-
sensitive. You must use uppercase letters, or the startup scripts will not recognize them.

In many cases, the order in which these scripts are run makes a difference. (For exam-
ple, you can’t start services that rely on a configured network interface without first
enabling and configuring the network interface!) To enforce order, a two-digit number is
suffixed to the S or K. Lower numbers execute before higher numbers; for example, /etc/
rc.d/rc3.d/ S10network runs before /etc/rc.d/rc3.d/S55sshd (S10network configures the
network settings, and S55sshd starts the Secure Shell [SSH] server).

The scripts pointed to in the /etc/rc.d/init.d directory are the workhorses; they
perform the actual process of starting and stopping services. When /etc/rc.d/rc runs
through a specific runlevel’s directory, it invokes each script in numerical order. It first
runs the scripts that begin with a K and then the scripts that begin with an S. For scripts
starting with K, a parameter of stop is passed. Likewise, for scripts starting with S, the
 parameter start is passed.

155 Chapter 6: Booting and Shutt ing Down

Let’s peer into the /etc/rc.d/rc3.d directory and see what’s there:

[root@fedora-serverA ~]# ls -l /etc/rc.d/rc3.d/

total 232

lrwxrwxrwx 1 root root 22 2008-11-05 01:34 S97yum-updatesd -> ../init.d/yum-updatesd

lrwxrwxrwx 1 root root 24 2008-11-05 01:42 K02NetworkManager -> ../init.d/NetworkManager

lrwxrwxrwx 1 root root 34 2008-11-05 01:42 K02NetworkManagerDispatcher -> ../init.d/

NetworkManagerDispatcher

lrwxrwxrwx 1 root root 19 2008-11-05 01:10 K05saslauthd -> ../init.d/saslauthd

lrwxrwxrwx 1 root root 16 2008-11-05 01:22 K10psacct -> ../init.d/psacct

lrwxrwxrwx 1 root root 14 2008-11-05 01:36 S55sshd -> ../init.d/sshd

...<OUTPUT TRUNCATED>...

From the preceding sample output, you will see that K05saslauthd is one of the many
files in the /etc/rc.d/rc3.d directory (Line 5). Thus, when the file K05saslauthd is executed
or invoked, the command actually being executed instead is

#/etc/rc.d/init.d/saslauthd stop

By the same token, if S55sshd is invoked, the following command is what really
gets run:

#/etc/rc.d/init.d/sshd start

Writing Your Own rc Script
In the course of keeping a Linux system running, at some point you will need to modify
the startup or shutdown script. There are two roads you can take to do this.

If your change is to take effect at boot time only and the change is small, you may
want to simply edit the /etc/rc.d/rc.local script. This script gets run at the end of the boot
process.

On the other hand, if your addition is more elaborate and/or requires that the shut-
down process explicitly stop, you should add a script to the /etc/rc.d/init.d directory.
This script should take the parameters start and stop, and act accordingly.

Of course, the first option, editing the /etc/rc.d/rc.local script, is the easier of the two.
To make additions to this script, simply open it in your editor of choice and append the
commands you want run at the end. This is good for simple one- or two-line changes.

If you do need a separate script, however, you will need to take the second option.
The process of writing an rc script is not as difficult as it may seem. Let’s step through it
using an example to see how it works. (You can use our example as a skeleton script, by
the way, changing it to add anything you need.)

Assume you want to start a special program that pops up a message every hour and
reminds you that you need to take a break from the keyboard (a good idea if you don’t

 156 Linux Administration: A Beginner’s Guide

want to get carpal tunnel syndrome!). The script to start this program will include the
following:

▼ A description of the script’s purpose (so that you don’t forget it a year later)

■ Verification that the program really exists before trying to start it

▲ Acceptance of the start and stop parameters and performance of the required
actions

NOTE Lines starting with a pound sign (#) are only comments and not part of the script’s actions,
except for the first line.

Given these parameters, let’s begin creating the script.

Creating the carpald.sh Script
First we’ll create the script that will perform the actual function that we want. The
script is unsophisticated, but it will serve our purpose here. A description of what
the script does is embedded in its comment fields.

 1. Launch any text editor of your choice, and type the following text:

#!/bin/sh

#

#Description: This simple script will send a mail to any e-mail address

#specified in ADDR variable every hour, reminding the user to take a

#break from the computer to avoid the carpal tunnel syndrome. The script

#has such little intelligence that it will always send an e-mail as long

#as the system is up and running - even when the user is fast asleep!!

#So don't forget to disable it after the fact.

#Author: Wale Soyinka

#

ADDR=root@localhost

while true

do

 sleep 1h

 echo "Get up and take a break NOW !!" | \

 mail -s "Carpal Tunnel Warning" $ADDR

done

 2. Save the text of the script into a file called carpald.sh.

 3. You next need to make the script executable. Type

[root@fedora-serverA ~]# chmod 755 carpald.sh

 4. Copy or move the script over to the directory where our startup scripts will find
it, that is, the /usr/local/sbin/ directory. Type

[root@ fedora-serverA ~]# mv carpald.sh /usr/local/sbin/

157 Chapter 6: Booting and Shutt ing Down

Creating the Startup Script
Here you will create the actual startup script that will be executed during system
startup and shutdown. The file you create here will be called carpald. The file will be
chkconfig-enabled. This means that if we want, we can use the chkconfig utility to
control the runlevels at which the program starts and stops. This is a useful and time-
saving functionality.

 1. Launch any text editor of your choice, and type the following text:

#!/bin/sh

#Carpal Start/Stop the Carpal Notice Daemon

#

#chkconfig: 35 99 01

description: Carpald is a program which wakes up every 1 hour and

tells us that we need to take a break from the keyboard

or we'll lose all functionality of our wrists and never

be able to type again as long as we live.

Source function library.

. /etc/rc.d/init.d/functions

[-f /usr/local/sbin/carpald.sh] || exit 0

See how we were called.

case "$1" in

start)

 echo "Starting carpald: "

 /usr/local/sbin/carpald.sh &

 echo "done"

 touch /var/lock/subsys/carpald

;;

stop)

 echo -n "Stopping carpald services: "

 echo "done"

 killall -q -9 carpald &

 rm -f /var/lock/subsys/carpald

;;

status)

 status carpald

;;

restart|reload)

 $0 stop

 $0 start

;;

*)

 echo "Usage: carpald start|stop|status|restart|reload"

 exit 1

 esac

exit 0

 158 Linux Administration: A Beginner’s Guide

A few comments about the preceding startup script:

▼ Even though the first line of the script begins with “#!/bin/sh”, it should
be noted that /bin/sh is a symbolic link to /bin/bash. This is not the case on
other UNIX systems.

■ The line “chkconfig: 35 99 01” is actually quite important to the chkconfig
utility that we want to use. The numbers “35” means that chkconfig
should create startup and stop entries for programs in runlevels 3 and 5 by
default, i.e., entries will be created in the /etc/rc.d/rc3.d and /etc/rc.d/rc5.d
directories.

▲ The fields “99” and “01” mean that chkconfig should set the startup prior-
ity of our program to be 99 and the stop priority to be 01, i.e., start up late
and end early.

 2. Save the text of the script into a file called carpald.

 3. You next need to make the file executable. Type

[root@fedora-serverA ~]# chmod 755 carpald

 4. Copy or move the script over to the directory where startup scripts are stored,
i.e., the /etc/rc.d/init.d/ directory. Type

[root@fedora-serverA ~]# mv carpald /etc/rc.d/init.d/

 5. Now you need to tell chkconfig about the existence of this new start/stop
script and what we want it to do with it. Type

[root@fedora-serverA ~]# chkconfig --add carpald

This will automatically create the symbolic links listed for you here:

lrwxrwxrwx 1 root root 17 2009-11-12 14:37 K01carpald -> ../init.d/carpald

lrwxrwxrwx 1 root root 17 2009-11-12 14:37 K01carpald -> ../init.d/carpald

lrwxrwxrwx 1 root root 17 2009-11-12 14:37 K01carpald -> ../init.d/carpald

lrwxrwxrwx 1 root root 17 2009-11-12 14:37 S99carpald -> ../init.d/carpald

lrwxrwxrwx 1 root root 17 2009-11-12 14:37 K01carpald -> ../init.d/carpald

lrwxrwxrwx 1 root root 17 2009-11-12 14:37 S99carpald -> ../init.d/carpald

lrwxrwxrwx 1 root root 17 2009-11-12 14:37 K01carpald -> ../init.d/carpald

(The meaning and significance of the K (kill) and S (start) prefixes in the

preceding listing was explained earlier.)

This may all appear rather elaborate, but the good news is that because you’ve
set up this rc script, you won’t ever need to do it again. More importantly, the
script will automatically run during startup and shutdown, and be able to man-
age itself. The overhead up front is well worth the long-term benefits of avoiding
carpal tunnel syndrome!

159 Chapter 6: Booting and Shutt ing Down

 6. Use the service command to find out the status of the carpald.sh pro-
gram. Type

[root@fedora-serverA ~]# service carpald status

carpald is stopped

 7. Manually start the carpald program to make sure that it will indeed start up
correctly upon system startup. Type

[root@fedora-serverA ~]# service carpald start

Starting carpald:

done

TIP If you wait about an hour, you should see a mail message from the carpald.sh script. You can
use the mail program from the command line by typing:

[root@fedora-serverA ~]# mail

Mail version 8.1 6/6/93. Type ? for help.

"/var/spool/mail/root": 1 message 1 new

>N 1 root@serverA.example Fri Aug 30 11:49 1/6 "Carpal Tunnel Warning"

&

Type q at the ampersand (&) prompt to quit the mail program.

 8. Next, stop the program. Type

[root@fedora-serverA ~]# service carpald stop

Stopping carpald services: done

 9. We are done.

ENABLING AND DISABLING SERVICES
At times, you may find that you simply don’t need a particular service to be started at
boot time. This is especially important if you are configuring the system as a server and
need only specific services and nothing more.

As described in the preceding sections, you can cause a service not to be started by
simply renaming the symbolic link in a particular runlevel directory; rename it to start
with a K instead of an S. Once you are comfortable working with the command line,
you’ll quickly find that it is easy to enable or disable a service.

The startup runlevels of the service/program can also be managed using the
chkconfig utility. To view all the runlevels in which the carpald.sh program is con-
figured to start up, type

[root@fedora-serverA ~]# chkconfig --list carpald

Carpald 0:off 1:off 2:off 3:on 4:off 5:on 6:off

 160 Linux Administration: A Beginner’s Guide

To make the carpald.sh program start up automatically in runlevel 2, type

[root@serverA ~]# chkconfig --level 2 carpald on

If you check the list of runlevels for the carpald.sh program again, you will see
that the field for runlevel 2 has been changed from 2:off to 2:on. Type

[root@fedora-serverA ~]# chkconfig --list carpald

carpald 0:off 1:off 2:on 3:on 4:off 5:on 6:off

Graphical user interface (GUI) tools are available that will help you manage which
services start up at any given runlevel. In Fedora and other Red Hat–type systems (includ-
ing RHEL), one such tool is the system-config-services utility (see Figure 6-1). To
launch the program, type

[root@fedora-serverA ~]# system-config-services

On a system running OpenSuSE Linux, the equivalent GUI program (see Figure 6-2)
can be launched by typing:

suse-serverA:~ # yast2 runlevel

On an Ubuntu system, the equivalent GUI tool (see Figure 6-3) can be launched by
typing:

yyang@ubuntu-serverA:~$ sudo services-admin

Figure 6-1. Fedora’s GUI Service Configuration tool

161 Chapter 6: Booting and Shutt ing Down

Figure 6-2. OpenSUSE’s GUI Runlevel editor

Figure 6-3. Ubuntu’s Services Settings tool

 162 Linux Administration: A Beginner’s Guide

Although a GUI tool is a nice way to do this task, you may find yourself in a situation
where it is just not convenient or available.

Disabling a Service
To completely disable a service, you must, at a minimum, know the name of the service.
You can then use the chkconfig tool to permanently turn it off, thereby preventing it
from starting in all runlevels.

For example, to disable our “life-saving” carpald.sh program, you could type

[root@fedora-serverA ~]# chkconfig carpald off

If you check the list of runlevels for the carpald.sh program again, you will see
that it has been turned off for all runlevels. Type

[root@fedora-serverA ~]# chkconfig --list carpald

carpald 0:off 1:off 2:off 3:off 4:off 5:off 6:off

To permanently remove the carpald.sh program from under the chkconfig util-
ity’s control, you will use chkconfig’s delete option. Type

[root@fedora-serverA ~]# chkconfig --del carpald

We are done with our sample carpald.sh script, and to prevent it from flooding us
with e-mail notifications in the future (in case we accidentally turn it back on), we can
delete it from the system for good. Type

[root@fedora-serverA ~]# rm -f /usr/local/sbin/carpald.sh

And those are the ABC’s of how services start up and shut down automatically in
Linux. Now go out and take a break.

ODDS AND ENDS OF BOOTING AND SHUTTING DOWN
Most Linux administrators do not like to shut down their Linux servers. It spoils their
uptime (you will recall from an earlier chapter that the “uptime” is a thing of pride
for Linux system admins). Thus, when a Linux box has to be rebooted, it is usually
for unavoidable reasons. Perhaps something bad has happened or the kernel has been
upgraded.

Thankfully, Linux does an excellent job of self-recovery, even during reboots. It is rare
to have to deal with a system that will not boot correctly, but that is not to say that it’ll
never happen—and that’s what this section is all about.

163 Chapter 6: Booting and Shutt ing Down

fsck!
Making sure that data on a system’s hard disk is in a consistent state is an important
function. This function is partly controlled by a runlevel script and another file called the
/etc/fstab file. The File System Check (fsck) tool is automatically run as necessary on
every boot, as specified by the presence or absence of a file named /.autofsck, and also
as specified by the /etc/fstab file. The purpose of the fsck program is similar to that of
Windows ScanDisk: to check and repair any damage on the file system before continuing
the boot process. Because of its critical nature, fsck is traditionally placed early in the
boot sequence.

If you were able to do a clean shutdown, the /.autofsck file will be deleted and fsck
will run without incident, as specified in the /etc/fstab file (as specified in the sixth
field—see the fstab manual page at man fstab). However, if for some reason you had to
perform a hard shutdown (such as having to press the reset button), fsck will need to
run through all of the local disks listed in the /etc/fstab file and check them. (And it isn’t
uncommon for the system administrator to be cursing through the process.)

If fsck does need to run, don’t panic. It is unlikely you’ll have any problems. How-
ever, if something does arise, fsck will prompt you with information about the problem
and ask whether you want to repair it. In general, you’ll find that answering “yes” is the
right thing to do.

Most of the newer distributions of Linux use what is called a journaling file system,
and this makes it easy and quicker to recover from any file system inconsistencies that
might arise from unclean shutdowns and other minor software errors. Examples of file
systems with this journaling capability are ext3, ReiserFS, jfs, and xfs.

If you are running the new ext3 or ReiserFS file system, for example, you will notice
that recovering from unclean system resets will be much quicker and easier. The only
tradeoff with running a journaled file system is the overhead involved in keeping the
journal, and even this depends on the method by which the file system implements its
journaling.

Booting into Single-User (“Recovery”) Mode
Under Windows, the concept of “Recovery Mode” was borrowed from a long-time UNIX
feature of booting into single-user mode. What this means for you under Linux is that if
something gets broken in the startup scripts that affects the booting process of a host, it
is possible for you to boot into this mode, make the fix, and then allow the system to boot
into complete multiuser mode (normal behavior).

If you are using the GRUB boot loader, these are the steps:

 1. First you need to select the GRUB entry that you want to boot from the GRUB
menu and then press the e key. You will next be presented with a sub-menu with
various directives (directives from the /boot/grub/menu.1st file).

 164 Linux Administration: A Beginner’s Guide

 2. Select the entry labeled kernel, and press e again. Now you can add the key-
word single (or the letter s) to the end of the line. Press enter to go back to the
GRUB boot menu, and then press b to boot the kernel into single-user mode.

 3. When you boot into single-user mode, the Linux kernel will boot as normal,
except when it gets to the point where it starts the init program, it will only
go through runlevel 1 and then stop. (See previous sections in this chapter for
a description of all the runlevels.) Depending on the system configuration, you
will either be prompted for the root password or simply given a shell prompt. If
prompted for a password, type the root password and press enter, and you will
get the shell prompt.

 4. In this mode, you’ll find that almost all the services that are normally started are
not running. This includes network configuration. So if you need to change the
Internet Protocol (IP) address, gateway, netmask, or any network-related con-
figuration file, you can. This is also a good time to run fsck manually on any
partitions that could not be automatically checked and recovered. (The fsck
program will tell you which partitions are misbehaving, if any.)

TIP In the single-user mode of many Linux distributions, only the root partition will be automatically
mounted for you. If you need to access any other partitions, you will need to mount them yourself using
the mount command. You can see all of the partitions that you can mount in the /etc/fstab file.

 5. Once you have made any changes you need to make, simply press ctrl-d. This
will exit single-user mode and continue with the booting process, or you can just
issue the reboot command to reboot the system.

SUMMARY
This chapter looked at the various aspects involved with starting up and shutting down
a typical Linux system. We started our exploration with the almighty boot loader. We
looked at GRUB in particular as a sample boot loader/manager because it is the boot
loader of choice among the popular Linux distributions. Next we explored how things
(or services) typically get started and stopped in Linux, and how Linux decides what to
start and stop, and at which runlevel it is supposed to do this. We even wrote a little shell
program, as a demonstration, that helps us to avoid carpal tunnel syndrome. We then
went ahead and configured the system to automatically start up the program at specific
runlevels.

165

7

File Systems

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 166 Linux Administration: A Beginner’s Guide

File systems are the mechanisms by which the data on a storage medium gets
organized. They provide all of the abstraction layers above sectors and cylinders
of disks. In this chapter, we’ll discuss the composition and management of these

abstraction layers supported by Linux. Particular attention will be given to the default
Linux file system, ext2/ext3.

We will also cover the many aspects of managing disks. This includes creating parti-
tions and volumes, establishing file systems, automating the process by which they are
mounted at boot time, and dealing with them after a system crash. We will also touch on
Logical Volume Management (LVM) concepts.

NOTE Before beginning your study of this chapter, you should already be familiar with files,
directories, permissions, and ownership in the Linux environment. If you haven’t yet read Chapter 5,
it’s best to read that chapter before continuing.

THE MAKEUP OF FILE SYSTEMS
Let’s begin by going over the structure of file systems under Linux. This will help to
clarify your understanding of the concept and let you see more easily how to take advan-
tage of the architecture.

i-Nodes
The most fundamental building block of many Linux/UNIX file systems is the i-node. An
i-node is a control structure that points either to other i-nodes or to data blocks.

The control information in the i-node includes the file’s owner, permissions, size,
time of last access, creation time, group ID, and so on. (For the truly curious, the entire
kernel data structure for the ext2 file system is available in /usr/src/kernels/*/include/
linux/ext2_fs.h—assuming, of course, that you have the source tree installed in the /usr/
src directory.) The one information an i-node does not provide is the file’s name.

As mentioned in Chapter 5, directories themselves are special instances of files. This
means each directory gets an i-node, and the i-node points to data blocks containing
information (filenames and i-nodes) about the files in the directory. Figure 7-1 illustrates
the organization of i-nodes and data blocks in the ext2 file system.

As you can see in Figure 7-1, the i-nodes are used to provide indirection so that more
data blocks can be pointed to—which is why each i-node does not contain the filename.
(Only one i-node works as a representative for the entire file; thus, it would be a waste
of space if every i-node contained filename information.) Take, for example, a 6-gigabyte
(GB) disk that contains 1,079,304 i-nodes. If every i-node consumed 256 bytes to store the
filename, a total of about 33 megabytes (MB) would be wasted in storing filenames, even
if they weren’t being used!

167 Chapter 7: F i le Systems

Each indirect block, in turn, can point to other indirect blocks if necessary. With up to
three layers of indirection, it is possible to store very large files on a Linux file system.

Superblocks
The first piece of information read from a disk is its superblock. This small data structure
reveals several key pieces of information, including the disk’s geometry, the amount of
available space, and, most importantly, the location of the first i-node. Without a super-
block, an on-disk file system is useless.

Figure 7-1. The i-nodes and data blocks in the ext2 file system

The i-node structure of a 6KB file

i-node Indirect
block

1KB data
block

1KB data
block

1KB data
block

1KB data
block

1KB data
block

1KB data
block

 168 Linux Administration: A Beginner’s Guide

Something as important as the superblock is not left to chance. Multiple copies of
this data structure are scattered all over the disk to provide backup in case the first one
is damaged. Under Linux’s ext2 file system, a superblock is placed after every group of
blocks, which contains i-nodes and data. One group consists of 8192 blocks; thus, the
first redundant superblock is at 8193, the second at 16,385, and so on. The designers of
most Linux file systems intelligently included this superblock redundancy into the file
system design.

ext3 and ReiserFS
Ext3 and ReiserFS are two popular Linux file systems used by the major Linux distribu-
tions. The ext3 file system is an enhanced extension of the ext2 file system. As of this
writing, the ext2 file system is somewhere around 16 years old. This means two things
for us as system administrators. First and foremost, ext2 is rock-solid. It is a well-tested
subsystem of Linux and has had the time to become well optimized. Second, other file
systems that were considered experimental when ext2 was created have matured and
become available to Linux.

The two file systems that are popular replacements for ext2 are the ext3 and ReiserFS
file systems. Both offer significant improvements in performance and stability, but the
most important component of both is that they have moved to a new method of getting
the data to the disk. This new method is called journaling. Traditional file systems (such
as ext2) must search through the directory structure, find the right place on disk to lay
out the data, and then lay out the data. (Linux can also cache the whole process, includ-
ing the directory updates, thereby making the process appear faster to the user.) Almost
all new versions of Linux distributions now make use of one journaling file system or
the other by default. Fedora (and other Red Hat Enterprise Linux [RHEL] derivatives),
OpenSuSE, and Ubuntu, for example, use ext3 by default.

The problem with not having a journaling file system is that in the event of an unex-
pected crash, the file system checker or file system consistency checker (fsck) program
has to follow up on all of the files on the disk to make sure they don’t contain any dan-
gling references (for example, i-nodes that point to other, invalid i-nodes or data blocks).
As disks expand in size and shrink in price, the availability of these large-capacity disks
means more of us will have to deal with the aftermath of having to fsck a large disk.
And as anyone who has had to do that before can tell you, it isn’t fun. The process can
take a long time to complete, and that means downtime for your users.

Journaling file systems work by first creating an entry of sorts in a log (or journal) of
changes that are about to be made before actually committing the changes to disk. Once
this transaction has been committed to disk, the file system goes ahead and modifies the
actual data or metadata. This results in an all-or-nothing situation; that is, either all or
none of the file system changes get done.

One of the benefits of using a journaling-type file system is the greater assurance
that data integrity will be preserved, and in the unavoidable situations where problems
arise, speed, ease of recovery, and likelihood of success are vastly increased. One such
unavoidable situation might be in the event of a system crash. Here, you may not need to

169 Chapter 7: F i le Systems

run fsck. Think how much faster you could recover a system if you didn’t have to run
fsck on a 1 TB disk! (Haven’t had to run fsck on a big disk before? Think about how
long it takes to run ScanDisk under Windows on large disks.) Other benefits of using
journaling-type file systems are that system reboots are simplified, disk fragmentation
is reduced, and input/output (I/O) operations can be accelerated (this depends on the
journaling method used).

If you want to learn more about the ext2 file system, we recommend that you read the
latest edition of the book titled Linux Kernel Internals, edited by Michael Beck (Addison-
Wesley, 1998). Although the book is dated in many aspects in terms of advancement in
the Linux kernel, the parts about the ext2 file system still hold true, since ext2 is the base
of the ext3 file system.

Which File System to Use?
You might be asking by now, “Which file system should I use?” As of this writing, the
current trend is to shift toward any file system with journaling capabilities. As with all
things Linux, the choice is yours. Your best bet is to try many file systems and see how
they perform with the application you are using the system for. Just keep in mind that
journaling has its own overhead.

MANAGING FILE SYSTEMS
The process of managing file systems is trivial—that is, the management becomes trivial
after you have memorized all aspects of your networked servers, disks, backups, and
size requirements, with the condition that they will never again have to change. In other
words, managing file systems isn’t trivial at all.

Once the file systems have been created, deployed, and added to the backup cycle,
they do tend to take care of themselves for the most part. What makes them tricky to
manage are the administrative issues—such as users who refuse to do housekeeping on
their disks, and cumbersome management policies dictating who can share what disk
and under what conditions, depending, of course, on the account under which the stor-
age/disk was purchased, and …(It sounds frighteningly like a Dilbert cartoon strip, but
there is a good deal of truth behind that statement.)

Unfortunately, there’s no cookbook solution available for dealing with office politics,
so in this section, we’ll stick to the technical issues involved in managing file systems—
that is, the process of mounting and unmounting partitions, dealing with the /etc/fstab
file, and performing file-system recovery with the fsck tool.

Mounting and Unmounting Local Disks
Linux’s strong points include its flexibility and the way it lends itself to seamless man-
agement of file locations. Partitions need to be mounted so that their contents can be
accessed. (In actuality, it is the file system on a partition or volume that is mounted.) The

 170 Linux Administration: A Beginner’s Guide

file systems are mounted so that they appear as just another subdirectory on the system.
This helps to promote the illusion of one large directory tree structure, even though there
may be several different file systems in use. This characteristic is especially helpful to
the administrator, who can relocate data stored on a physical partition to a new location
(possibly a different partition) under the directory tree, with the system users being none
the wiser.

The file system management process begins with the root directory. This partition is
also called slash and likewise symbolized by a slash character (/). The partition contain-
ing the kernel and core directory structure is mounted at boot time. It is possible and usual
for the physical partition that houses the Linux kernel to be on a separate file system, such
as /boot. It is also possible for the root file system (“/”) to house both the kernel and other
required utilities and configuration files to bring the system up to single-user mode.

As the boot scripts run, additional file systems are mounted, adding to the structure
of the root file system. The mount process overlays a single subdirectory with the direc-
tory tree of the partition it is trying to mount. For example, let’s say that /dev/sda2 is the
root partition. It has the directory /usr, which contains no files. The partition /dev/sda3
contains all the files that you want in /usr, so you mount /dev/sda3 to the directory /usr.
Users can now simply change directories to /usr to see all the files from that partition.
The user doesn’t need to know that /usr is actually a separate partition.

NOTE In this and other chapters, we might inadvertently say that a partition is being mounted at
such and such a directory. Please note that it is actually the file system on the partition that is being
mounted. For the sake of simplicity, and in keeping with everyday verbiage, we might interchange
these two meanings.

Keep in mind that when a new directory is mounted, the mount process hides all the
contents of the previously mounted directory. So in our /usr example, if the root partition
did have files in /usr before mounting /dev/sda3, those /usr files would no longer be vis-
ible. (They’re not erased, of course—once /dev/sda3 is unmounted, the /usr files would
become visible again.)

Using the mount Command
Like many command-line tools, the mount command has a plethora of options, most
of which you won’t be using in daily work. You can get full details on these options
from the mount man page. In this section, we’ll explore the most common uses of the
command.

The structure of the mount command is as follows:

mount [options] device directory

where options may be any of those shown in Table 7-1.
The options available for use with the mount -o flag are shown in Table 7-2.

171 Chapter 7: F i le Systems

Table 7-1. Options Available for the mount Command

Option for mount Description

-a Mounts all the file systems listed in /etc/
fstab (this file is examined later in this
section).

-t fstype Specifies the type of file system being
mounted. Linux can mount file systems
other than the ext2 standard. For example,
File Allocation Table (FAT), Virtual File
Allocation Table (VFAT), New Technology
File System (NTFS), ReiserFS, etc. The
mount command can usually sense this
information on its own.

-o options Specifies options applying to this mount
process. These are usually options specific
to the file system type (options for
mounting network file systems may not
apply to mounting local file systems).

Table 7-2. Options Available for Use with the mount -o Parameter

Option for the mount -o Parameter
(for Local Partitions) Description

ro Mounts the partition as read-only.

rw Mounts the partition as read/write
(default).

exec Permits the execution of binaries (default).

noatime Disables update of the access time on
i-nodes. For partitions where the access
time doesn’t matter, enabling this improves
performance.

 172 Linux Administration: A Beginner’s Guide

Issuing the mount command without any options will list all the currently mounted
file systems. For example, type

[root@fedora-serverA ~]# mount

/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

...(OUTPUT TRUNCATED)...

/dev/mapper/VolGroup00-LogVol03 on /tmp type ext3 (rw)

/dev/sda1 on /boot type ext3 (rw)

sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

The following mount command mounts the /dev/sda3 partition onto the /bogus-
directory directory with read-only privileges:

[root@fedora-serverA ~]# mount -o ro /dev/hda3 /bogus-directory

Unmounting File Systems
To unmount a file system, use the umount command (note that the command is not
unmount). Here’s the command format:

umount [-f] directory

where directory is the directory to be unmounted. For example,

[root@fedora-serverA ~]# umount /bogus-directory

unmounts the partition mounted on the /bogus-directory directory.

Table 7-2. Options Available for Use with the mount -o Parameter (cont.)

Option for the mount -o Parameter
(for Local Partitions) Description

noauto Disables automatic mount of this partition
when the -a option is specified (applies
only to the /etc/fstab file).

nosuid Disallows application of SetUID program
bits to the mounted partition.

sb=n Tells mount to use block n as the
superblock. This is useful when the file
system might be damaged.

173 Chapter 7: F i le Systems

When the File System Is in Use
There’s a catch to umount: If the file system is in use (that is, someone is currently access-
ing the contents of the file system or has a file open on the file system), you won’t be able
to unmount that file system. To get around this, you have the following choices:

▼ You can use the lsof or fuser program to determine which processes are keep-
ing the files open, and then kill them off or ask the process owners to stop what
they’re doing. (Read about the kill parameter in fuser in the fuser man
page.) If you choose to kill the processes, be sure you understand the repercus-
sions of doing so (read: Don’t get fired for doing this).

■ You can use the -f option with umount to force the unmount process. It is espe-
cially useful for Network File System (NFS)–type file systems that are no longer
available.

■ Use the Lazy unmount. This is specified with the -l option. This option almost
always works even when others fail. It detaches the file system from the file-
system hierarchy immediately, and it cleans up all references to the file system
as soon as the file system stops being busy.

▲ The safest and most proper alternative is to bring the system down to single-
user mode and then unmount the file system. In reality, of course, you don’t
always have this luxury.

The /etc/fstab File
As mentioned earlier, /etc/fstab is a configuration file that mount can use. This file con-
tains a list of all partitions known to the system. During the boot process, this list is read
and the items in it are automatically mounted with the options specified therein.

Here’s the format of entries in the /etc/fstab file:

/dev/device /dir/to/mount fstype Parameters fs_freq fs_passno

Following is a sample /etc/fstab file:

1) /dev/VolGroup00/LogVol00 / ext3 defaults 1 1

2) LABEL=/boot /boot ext3 defaults 1 2

3) devpts /dev/pts Devpts gid=5,mode=620 0 0

4) tmpfs /dev/shm tmpfs defaults 0 0

5) /dev/VolGroup00/LogVol02 /home ext3 defaults 1 2

6) proc /proc proc defaults 0 0

7) sysfs /sys sysfs defaults 0 0

8) /dev/VolGroup00/LogVol03 /tmp ext3 defaults 1 2

9) /dev/VolGroup00/LogVol01 swap swap defaults 0 0

10) /dev/sr0 /media/cdrom auto user,noauto,exec 0 0

Let’s take a look at some of the entries in the /etc/fstab file that haven’t yet been dis-
cussed. Please note that line numbers have been added to the preceding output to aid
readability.

 174 Linux Administration: A Beginner’s Guide

Line 1 The first entry in our sample /etc/fstab file is the entry for the root volume. The
first column shows the device that houses the file system, i.e., the /dev/VolGroup00/
LogVol00 logical volume (more on volumes later on). The second column shows the
mount point, i.e., the “/” directory. The third column shows the file system type, i.e.,
ext3 in this case. The fourth column shows the options with which the file system should
be mounted—only the default options are required in this case. The fifth field is used
by the dump utility (a simple backup tool) to determine which file systems need to be
backed up. And the sixth and final field is used by the fsck program to determine if
the file system needs to be checked and also to determine the order in which the checks
are done.

Line 2 The next entry in our sample file is the /boot mount point. The first field of
this entry shows the device—in this case, it points to any device with the /boot label.
The other fields mean basically the same thing as the field for the root mount point
discussed previously. In the case of the /boot mount point, you might notice that the
field for the device looks a little different from the usual /dev/<path-to-device> convention.
The use of labels helps to hide the actual device (partition) that the file system is being
mounted from. The device has been replaced with a token that looks like the following:
LABEL=/boot. During the initial installation, the partitioning program of the installer
automatically set the label on the partition. Upon bootup, the system scans the partition
tables and looks for these labels. This is especially useful when Small Computer System
Interface (SCSI) disks are being used. Typically, SCSI has a set SCSI ID. Using labels allows
you to move the disk around and change the SCSI ID, and the system will still know
how to mount the file system even though the device might have changed, for example,
from /dev/sda10 to /dev/sdb10 (see the section “Traditional Disk- and Partition-Naming
Conventions” further on).

Line 4 Next comes the tmpfs file system, also known as a virtual memory (VM) file
system. It uses both the system random access memory (RAM) and swap area. It is not
a typical block device because it does not exist on top of an underlying block device; it
sits directly on top of VM. It is used to request pages from the VM subsystem to store
files. The first field—tmpfs—shows that this entry deals with a VM and, as such, is not
associated with any regular UNIX/Linux device file. The second entry shows the mount
point, /dev/shm. The third field shows the file system type, i.e., tmpfs. The fourth field
shows that this file system should be mounted with the default options. The fifth and
sixth fields have the same meanings as the ones for the previous entries discussed. Note
especially that the values are zero in this case, which makes perfect sense, because there
is no reason to run a dump on a temporary file system at bootup and there is also no
reason to run fsck on it, since it does not contain an ext2/3-type file system.

Line 6 The next notable entry is for the proc-type file system. Information concerning
the system processes (hence the abbreviation proc) are dynamically maintained in this
file system. The proc in the first field of the proc entry in the /etc/fstab file has the same
implication as that of the tmpfs file system entry. The proc file system is a special file

175 Chapter 7: F i le Systems

system that provides an interface to kernel parameters through what looks like any other
file system; that is, it provides an almost human-readable look to the kernel. Although
it appears to exist on disk, it really doesn’t—all the files represent something that is in
the kernel. Most notable is /dev/kcore, which is the system memory abstracted as a file.
People new to the proc file system often mistake this for a large, unnecessary file and
accidentally remove it, which will cause the system to malfunction in many glorious
ways. Unless you are sure you know what you are doing, it’s a safe bet to leave all the
files in the /proc directory alone (more details on /proc appear in Chapter 10).

Line 7 Next comes the entry for the sysfs file system. This is new and necessary in the
Linux 2.6 kernels. Again, it is temporary and special, just like the tmpfs and proc file
systems. It serves as an in-memory repository for system and device status information.
It provides a structured view of a system’s device tree. This is akin to viewing the devices
in Windows Device Manager as a series of files and directories instead of through Control
Panel view.

Line 8 The next entry is for the /tmp mount point. This refers to an actual physical entity
or device on the system. just like the root (“/”) mount point and the /boot mount point.

Line 9 This is the entry for the system swap partition. It is where virtual memory
resides. In Linux, the virtual memory can be kept on a separate partition from the root
partition. (It should be noted that a regular file can also be used for swap purposes in
Linux.) Keeping the swap space on a separate partition helps to improve performance,
since the swap partition can obey rules differently from a normal file system. Also, since
the partition doesn’t need to be backed up or checked with fsck at boot time, the last
two parameters on it are zeroed out. (Note that a swap partition can be kept in a normal
disk file as well. See the man page on mkswap for additional information.)

Line 10 The last entry in the fstab file that is worthy of mentioning is the entry for the
removable media. In this example, the device field points to the device file that represents
the CD-ROM device. The CD-ROM drive here is the master of the secondary Integrated
Drive Electronics (IDE) controller (/dev/hdc). The mount point is /media/cdrom, and
so when a CD-ROM is inserted and mounted on the system, the contents of the CD can
be accessed from the /media/cdrom directory. The auto in the third field means that
the system will automatically try to probe/detect the correct file system type for the
device. For CD-ROMs, this is usually the iso9660 or the Universal Disk Format (UDF) file
system. The fourth field lists the mount options.

NOTE When mounting partitions with the /etc/fstab file configured, you can run the mount
command with only one parameter: the directory you wish to mount to. The mount command
checks /etc/fstab for that directory; if found, mount will use all parameters that have already been
established there. For example, here’s the short command to mount a CD-ROM given the /etc/fstab
file shown earlier:

[root@fedora-serverA ~]# mount /media/cdrom/

 176 Linux Administration: A Beginner’s Guide

Using fsck
The fsck tool (short for File System Check) is used to diagnose and repair file systems
that may have become damaged in the course of daily operations. Such repairs might
be necessary after a system crash in which the system did not get a chance to fully flush
all of its internal buffers to disk. (Although this tool’s name bears a striking resemblance
to one of the expressions often uttered after a system crash, that this tool is part of the
recovery process is strictly coincidental.)

Usually, the system runs the fsck tool automatically during the boot process as it
deems necessary (much in the same way Windows runs ScanDisk). If it detects a file
system that was not cleanly unmounted, it runs the utility. A file system check will also
be run once the system detects that a check has not been performed after a predeter-
mined threshold (e.g., number of mounts or time passed between mounts). Linux makes
an impressive effort to automatically repair any problems it runs across and, in most
instances, does take care of itself. The robust nature of the Linux file system helps in such
situations. Nevertheless, it may happen that you get this message:

*** An error occurred during the file system check.

*** Dropping you to a shell; the system will reboot

*** when you leave the shell.

At this point, you need to run fsck by hand and answer its prompts yourself.
If you do find that a file system is not behaving as it should (log messages are an

excellent hint of this type of anomaly), you may want to run fsck yourself on a running
system. The only downside is that the file system in question must be unmounted in
order for this to work. If you choose to take this path, be sure to remount the file system
when you are done.

The name fsck isn’t the actual title for the ext3 repair tool; it’s actually just a wrap-
per. The fsck wrapper tries to determine what kind of file system needs to be repaired
and then runs the appropriate repair tool, passing any parameters that were passed to
fsck. In ext2, the real tool is called fsck.ext2. For the ext3 file system, the real tool
is fsck.ext3; for the VFAT file system, the tool is fsck.vfat; and for a ReiserFS file
system, the utility is called fsck.reiserfs. For example, when a system crash occurs
on an ext2-formatted partition, you may need to call fsck.ext2 directly rather than
relying on other applications to call it for you automatically.

For example, to run fsck on the /dev/mapper/VolGroup00-LogVol02 file system
mounted at the /home directory, you will run the following commands. First, to unmount
the file system, type

[root@fedora-serverA ~]# umount /home

NOTE The preceding step assumes that the /home file system is not currently being used or
accessed by any process.

177 Chapter 7: F i le Systems

Since we know that this particular file system is ext3, we can call the correct utility
(fsck.ext3) directly or simply use the fsck utility. Type

[root@fedora-serverA ~]# fsck /dev/mapper/VolGroup00-LogVol02

fsck 1.40.8 (12-Jul-2017)

e2fsck 1.40.8 (12-Jul-2017)

/dev/mapper/VolGroup00-LogVol02: clean, 11/655360 files, 37896/655360 blocks

The preceding output shows that the file system is marked clean. To forcefully check
the file system and answer yes to all questions in spite of what your operating system
(OS) thinks, type

[root@fedora-serverA ~]# fsck.ext3 -f -y /dev/mapper/VolGroup00-LogVol02

What If I Still Get Errors?
First, relax. The fsck check rarely finds problems that it cannot correct by itself. When it
does ask for human intervention, telling fsck to execute its default suggestion is often
enough. Very rarely does a single pass of e2fsck not clear up all problems.

On the rare occasions when a second run is needed, it should not turn up any more
errors. If it does, you are most likely facing a hardware failure. Remember to start with
the obvious: Check for reliable power and well-connected cables. Anyone running SCSI
systems should verify that they’re using the correct type of terminator, that cables aren’t
too long, that SCSI IDs aren’t conflicting, and that cable quality is adequate. (SCSI is
especially fussy about the quality of the cables.)

The lost+found Directory
Another rare situation is when fsck finds file segments that it cannot rejoin with the
original file. In those cases, it will place the fragment in the partition’s lost+found
directory. This directory is located where the partition is mounted, so if /dev/mapper/
VolGroup00-LogVol02 is mounted on /home, for example, then /home/lost+found cor-
relates to the lost+found directory for that particular file system.

Anything can go into a lost+found directory—file fragments, directories, and even
special files. When normal files wind up there, a file owner should be attached, and you
can contact the owner and see if they need the data (typically, they won’t). If you encounter
a directory in lost+found, you’ll most likely want to try to restore it from the most recent
backups rather than trying to reconstruct it from lost+found. At the very least, lost+found
tells you if anything became dislocated. Again, such errors are extraordinarily rare.

ADDING A NEW DISK
The process of adding a disk under Linux on the Intel (x 86) platform is relatively easy.
Assuming you are adding a disk that is of similar type to your existing disks (for exam-
ple, adding an IDE disk to a system that already has IDE drives or adding a SCSI disk to

 178 Linux Administration: A Beginner’s Guide

a system that already has SCSI drives), the system should automatically detect the new
disk at boot time. All that is left is partitioning it and creating a file system on it.

If you are adding a new type of disk (like a SCSI disk on a system that only has
IDE drives), you may need to ensure that your kernel supports the new hardware. This
support can either be built directly into the kernel or be available as a loadable module
(driver). Note that the kernels of most Linux distributions come with support for many
popular SCSI controllers, but you will occasionally come across troublesome kernel
and hardware combinations, especially with the new motherboards that have exotic
chipsets.

Once the disk is in place, simply boot the system, and you’re ready to go. If you
aren’t sure about whether the system can see the new disk, run the dmesg command
and see whether the driver loaded and was able to find your disk. For example,

[root@fedora-serverA ~]# dmesg | egrep -i "hd|sd|disk"

Overview of Partitions
For the sake of clarity, and in case you need to know what a partition is and how it
works, let’s do a brief review of this subject. Every disk must be partitioned. Partitions
divide the disk into segments, and each segment acts as a complete disk by itself. Once
a partition is filled, it cannot automatically overflow onto another partition. Various
things can be done with a partitioned disk, such as installing an OS into a single parti-
tion that spans the entire disk, installing several different operating systems into their
own separate partitions in what is commonly called a “dual-boot” configuration, and
using the different partitions to separate and restrict certain system functions into their
own work areas.

This last reason is especially relevant on a multiuser system, where the content of
users’ home directories should not be allowed to overgrow and disrupt important OS
functions.

Traditional Disk- and Partition-Naming Conventions
Under Linux, each disk is given its own device name. The device files are stored under
the /dev directory. IDE disks start with the name hdX, where X can range from a through
z, with each letter representing a physical device. For example, in an IDE-only system
with one hard disk and one CD-ROM, both on the same IDE chain, the hard disk would
be /dev/hda and the CD-ROM would be /dev/hdb. Some standard devices are automati-
cally created during system installation, and others are created as they are connected to
the system.

SCSI disks follow the same basic scheme as IDE, except that instead of starting with
hd, they start with sd. Therefore, the first partition on the first SCSI disk would be /dev/
sda1, the second partition on the third SCSI disk would be /dev/sdc2, and so on.

179 Chapter 7: F i le Systems

NOTE Most newer Linux distributions have replaced the old IDE subsystem with libata. The
implication of this is that drive device names that previously started with /dev/hdX are now named
/dev/sdX instead. The information provided previously is for legacy systems.

When partitions are created, new devices are used. They take the form of /dev/
sdXY, where X is the device letter (as described in the preceding paragraph) and Y is the
partition number. Thus, the first partition on the /dev/sda disk is /dev/sda1, the second
partition would be /dev/sda2, and so on.

VOLUME MANAGEMENT
You may have noticed earlier that we use the terms partition and volume interchangeably
in parts of the text. While they are not exactly the same things, the concepts carry over.
Volume management is a new approach to dealing with disks and partitions. Instead of
viewing a disk or storage entity along partition boundaries, the boundaries are no longer
there and everything is now seen as volumes.

That made perfect sense, didn’t it? Don’t worry if it didn’t; this is a tricky concept.
Let’s try this again with more detail.

This new approach to dealing with partitions is called Logical Volume Management
(LVM) in Linux. It lends itself to several benefits and removes the restrictions, constraints,
and limitations that the concept of partitions imposes. Some of the benefits are

▼ Greater flexibility for disk partitioning

■ Easy online resizing of volumes

■ Easy increases in storage space by simply adding new disks to the storage pool

▲ Use of snapshots

Following are some important volume management terms.

▼ Physical Volume (PV) This typically refers to the physical hard disk(s) or
other physical storage entity, such as a hardware Redundant Array of Inexpen-
sive Disks (RAID) array or software RAID device(s). There can be only a single
storage entity (e.g., one partition) in a PV.

■ Volume Group (VG) Volume groups are used to house one or more physical
volumes and logical volumes into a single administrative unit. A volume group
is created out of physical volumes. VGs are simply a collection of PVs; however,
VGs are not mountable. They are more like virtual raw disks.

■ Logical Volume (LV) This perhaps is the trickiest LVM concept to grasp,
because logical volumes (LVs) are the equivalent of disk partitions in a non-
LVM world. The LV appears as a standard block device. It is on the LV that we

 180 Linux Administration: A Beginner’s Guide

put file systems. It is the LV that gets mounted. It is the LV that gets fsck-ed if
necessary.

LVs are created out of the space available in VGs. To the administrator, an
LV appears as one contiguous partition independent of the actual PVs that
make it up.

▲ Extents There are two kinds of extents: physical extents and logical extents.
Physical volumes (PVs) are said to be divided into chunks, or units of data,
called “physical extents.” And logical volumes (LVs) are said to be divided into
chunks, or units of data, called “logical extents.”

Creating Partitions and Logical Volumes
During the installation process, you probably used a “pretty” tool with a nice graphical
user interface (GUI) front-end to create partitions. The GUI tools available across the
various Linux distributions vary greatly in looks and usability. One tool that can be used
to perform most partitioning tasks, and that has a unified look and feel, regardless of the
Linux flavor, is the venerable fdisk utility. Though it’s small and somewhat awkward,
it’s a reliable partitioning tool. Furthermore, in the event you need to troubleshoot a sys-
tem that has gone really wrong, you should be familiar with basic tools such as fdisk.
Other powerful command-line utilities for managing partitions are sfdisk, cfdisk,
and the much newer parted utility: parted is much more user-friendly and has a lot
more built-in functionalities than the other tools have. In fact, a lot of the GUI partition-
ing tools call the parted program in their back-end.

During the installation of the OS as covered in Chapter 2, you were asked to leave
some free unpartitioned space. We will now use that free space to demonstrate some
LVM concepts by walking through the steps required to create a logical volume.

In particular, we will create a logical volume that will house the contents of our cur-
rent /var directory. Because a separate “/var” volume was not created during the OS
installation, the contents of the /var directory are currently stored under the volume that
holds the root (“/”) tree. The general idea is that because the /var directory is typically
used to hold frequently changing and growing data (such as log files), it is prudent to put
its content on its own separate file system.

The steps involved with creating a logical volume can be summarized this way:

 1. Initialize a regular partition for use by the LVM system (or simply create a parti-
tion of the type Linux LVM (0x8e)).

 2. Create physical volumes from the hard disk partition.

 3. Assign the physical volume(s) to volume group(s).

 4. Finally, create logical volumes within the volume groups, and assign mount
points to the logical volumes after formatting.

The following illustration shows the relationship between disks, physical volumes
(PVs), volume groups (VGs), and logical volumes (LVs) in LVM:

181 Chapter 7: F i le Systems

PV-1 PV-3

PV-2

Volume Group 1

32GB SCSI disk 160GB IDE disk STEP A:
Prepare the storage pool. This pool

 consists of three different hard disks.

STEP B:
Create a volume group by assigning disks
from your storage pool (Step A) to a volume
group. Assuming we use physical extents
(PEs) that are 32MB each, then:
SCSI disk = PV-1 = 32GB = 1000 PE
IDE disk = PV-2 = 160GB = 5000 PE
SATA disk = PV-3 = 64GB = 2000 PE

STEP C:
Create logical volumes (LVs) by using free
space from the parent volume group from
Step B.

1. Create an LV called LV-1, format it, and mount
its file system on the/home directory. The LV
has been created with 3125 logical extents (or
100GB).

2. Create another LV called LV-2, format it, and
mount it at the/var directory; it has been
created with 62 logical extents (or 2GB).

Therefore, there are a total of 87000 PEs
(or ∼224GB) available to the volume group.

64GB SATA disk

/home

/var

Mount point for logical volume
/dev/volume-group-1/LV-2

Mount point for logical volume
/dev/volume-group-1/LV-1

 182 Linux Administration: A Beginner’s Guide

CAUTION The process of creating partitions is irrevocably destructive to the data already on the
disk. Before creating, changing, or removing partitions on any disk, you must be sure of what you are
doing and its consequences.

The following section will be broken down into several parts:

▼ Creating a partition

■ Creating a physical volume

■ Assigning a physical volume to a volume group

▲ Creating a logical volume

The entire process from start to finish may appear a bit lengthy. It is actually a simple
process in itself, but we intersperse the steps with some extra steps, along with some
notes and explanations.

Let’s begin the process. Some LVM utilities that we’ll be using during the process are
listed in Table 7-3.

Table 7-3. LVM Utilities

LVM Command Description

lvcreate Used for creating a new logical volume in a
volume group by allocating logical extents from
the free physical extent pool of that volume
group.

lvdisplay Displays the attributes of a logical volume,
such as read/write status, size, and snapshot
information.

pvcreate Initializes a physical volume for use with the
LVM system.

pvdisplay Displays the attributes of physical volumes,
such as size and PE size.

vgcreate Used for creating new volume groups from
block devices created using the pvcreate
command.

vgextend Used for adding one or more physical volumes
to an existing volume group to extend its size.

vgdisplay Displays the attributes of volume groups.

183 Chapter 7: F i le Systems

Creating a Partition
We will be using the free unpartitioned space on the main system disk, /dev/sda.

 1. Begin by running fdisk with the -l parameter to list the current partition
table. Type

[root@fedora-serverA ~]# fdisk -l /dev/sda

Disk /dev/sda: 10.7 GB, 10737418240 bytes

255 heads, 63 sectors/track, 1305 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x00005158

 Device Boot Start End Blocks Id System

/dev/sda1 * 1 25 200781 83 Linux

/dev/sda2 26 1200 9438187+ 8e Linux LVM

 2. Next, we begin the actual repartitioning process using fdisk again. Type

[root@fedora-serverA ~]# fdisk /dev/sda

The number of cylinders for this disk is set to 1305.

...(OUTPUT TRUNCATED)...

2) booting and partitioning software from other operating systems

 (e.g., DOS FDISK, OS/2 FDISK)

Command (m for help):

You will be presented with a simple fdisk prompt “Command (m for help):”.

 3. Print the partition table again while inside the fdisk program. Type p at the
fdisk prompt to print the partition table.

Command (m for help): p

Disk /dev/sda: 10.7 GB, 10737418240 bytes

255 heads, 63 sectors/track, 1305 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x00005158

 Device Boot Start End Blocks Id System

/dev/sda1 * 1 25 200781 83 Linux

/dev/sda2 26 1200 9438187+ 8e Linux LVM

A few facts worthy of note regarding this output:

▼ The total disk size is approximately 10.7GB.

■ There are currently two partitions defined on the sample system: /dev/sda1
and /dev/sda2.

■ The /dev/sda1 partition is of the type “Linux” (0x83), and the /dev/sda2
partition is of the type “Linux LVM” (0x8e).

 184 Linux Administration: A Beginner’s Guide

■ From the partitioning scheme we chose during the OS installation, we can
deduce that /dev/sda1 houses the /boot file system and /dev/sda2 houses
everything else (see the output of the df command for reference).

■ The entire disk spans 1305 cylinders.

▲ The last partition, i.e., /dev/sda2, ends at the 1200-cylinder boundary.
Therefore, there is room to create a partition that will occupy the space from
cylinder 1201 to the last cylinder on the disk (i.e., 1305).

 4. Type n at the prompt to create a new partition.

Command (m for help): n

NOTE If you are curious about the other things you can do at the fdisk prompt, type m to display
a help menu.

 5. Type p to select a primary partition type.

Command action

 e extended

 P primary partition (1-4)

P

 6. We want to create the third primary partition. Type 3 when prompted for a parti-
tion number:

Partition number (1-4): 3

 7. The next step is to specify the partition size. First we choose the lower limit.
Accept the default value for the first cylinder. Type 1201.

First cylinder (1201-1305, default 1201): 1201

 8. Instead of designating a megabyte value for the size of this partition, we enter
the last cylinder number, thus taking up the remainder of the disk. Accept the
default suggested for the last cylinder. On our sample system, this value is 1305.
Type 1305.

Last cylinder or +size or +sizeM or +sizeK (1201-1305, default 1305):

1305

 9. By default, fdisk creates ext2-type partitions (i.e., 0x83). But we want to create a
partition of type “Linux LVM.” Change the partition type from the default Linux
(0x83) to the “Linux LVM” type. To do this, we use the t (change partition type)
command. Type t.

Command (m for help): t

185 Chapter 7: F i le Systems

 10. Enter the partition number whose type you want to change. We want to change
the type for the /dev/hda3 partition that was just created, so type 3 when
prompted for a partition number.

Partition number (1-4): 3

 11. Enter the partition type for “Linux LVM”. Type 8e at the prompt:

Hex code (type L to list codes): 8e

NOTE You can list the hex codes for the available partition types by typing L.

 12. View the changes you’ve made by viewing the partition table. Type p.

Command (m for help): p

Disk /dev/sda: 10.7 GB, 10737418240 bytes

255 heads, 63 sectors/track, 1305 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x00005158

 Device Boot Start End Blocks Id System

/dev/sda1 * 1 25 200781 83 Linux

/dev/sda2 26 1200 9438187+ 8e Linux LVM

/dev/sda3 1201 1305 843412+ 8e Linux LVM

 13. Once you are satisfied with your changes, commit or write the changes you’ve
made to the disk’s partition table using the w (write table to disk) command:

Command (m for help): w

 14. Quit the fdisk utility. Type q.

Command (m for help): q

 15. When you are back at the shell prompt, reboot the system to allow the Linux
kernel to properly recognize the new partition table. Type

[root@fedora-serverA ~]# reboot

Creating a Physical Volume
Next, create the physical volume itself.

 1. After the system comes back up from the reboot, log back in as the superuser.

 2. First let’s view the current physical volumes defined on the system. Type

[root@fedora-serverA ~]# pvdisplay

 --- Physical volume ---

 186 Linux Administration: A Beginner’s Guide

 PV Name /dev/sda2

 VG Name VolGroup00

 PV Size 9.00 GB / not usable 1003.00 KB

...(OUTPUT TRUNCATED)...

Take note of the physical volume name field (PV Name).

 3. Use the pvcreate command to initialize the partition we created earlier as a
physical volume. Type

[root@fedora-serverA ~]# pvcreate /dev/sda3

Physical volume "/dev/sda3" successfully created

 4. Use the pvdisplay command to view your changes again. Type

[root@fedora-serverA ~]# pvdisplay

 --- Physical volume ---

 PV Name /dev/sda2

 VG Name VolGroup00

...(OUTPUT TRUNCATED)...

--- NEW Physical volume ---

 PV Name /dev/sda3

 VG Name

 PV Size 823.64 MB

...(OUTPUT TRUNCATED)...

Assigning a Physical Volume to a Volume Group
Here we will assign the physical volume created earlier to a volume group (VG).

 1. First use the vgdisplay command to view the current volume groups that
might exist on your system. Type

[root@fedora-serverA ~]# vgdisplay

 --- Volume group ---

 VG Name VolGroup00

 System ID

 Format lvm2

 ...(Output truncated)...

 VG Size 9.00 GB

 PE Size 32.00 MB

 Total PE 288

 Alloc PE / Size 287 / 8.97 GB

 Free PE / Size 1 / 32.00 MB

 VG UUID T4153B-80Zu-KQPs-sWwt-X5sg-0G78-EAiEp0

187 Chapter 7: F i le Systems

From the preceding output, we can tell that

▼ The volume group name (VG Name) is VolGroup00.

■ The current size of the VG is 9GB (this should increase by the time we
are done).

■ The physical extent size is 32MB, and there are a total of 288 PEs.

▲ There is only one physical extent that is free in the VG. It is equivalent to
32MB of space.

 2. Assign the PV to the volume group using the vgextend command. The syntax
for the command is

vgextend [options] VolumeGroupName PhysicalDevicePath

Substituting the correct values in this command, type

[root@fedora-serverA ~]# vgextend VolGroup00 /dev/sda3

 Volume group "VolGroup00" successfully extended

 3. View your changes with the vgdisplay command. Type

[root@fedora-serverA ~]# vgdisplay

 --- Volume group ---

 VG Name VolGroup00

 ...(Output truncated)...

 Act PV 2

 VG Size 9.78 GB

 PE Size 32.00 MB

 Total PE 313

 Alloc PE / Size 287 / 8.97 GB

 Free PE / Size 26 / 832.00 MB

Note that the VG Size, Total PE, and Free PE values have dramatically increased.
We now have a total of 26 free PEs (or 832MB).

Creating a Logical Volume (LV)
Now that we have some room in the VG, we can go ahead and create the final logical
volume (LV).

 1. First view the current LVs on the system. Type

[root@fedora-serverA ~]# lvdisplay | less

 --- Logical volume ---

 LV Name /dev/VolGroup00/LogVol00

 VG Name VolGroup00

 ...(Output truncated)...

 188 Linux Administration: A Beginner’s Guide

--- Logical volume ---

 LV Name /dev/VolGroup00/LogVol02

 VG Name VolGroup00

 ...(Output truncated)...

--- Logical volume ---

 LV Name /dev/VolGroup00/LogVol03

 VG Name VolGroup00

 ...(Output truncated)...

--- Logical volume ---

 LV Name /dev/VolGroup00/LogVol01

 VG Name VolGroup00

The preceding output shows the current LVs—/dev/VolGroup00/LogVol00,
/dev/VolGroup00/LogVol02, /dev/VolGroup00/LogVol03, and so on.

 2. With the background information that we now have, we will create an LV using
the same naming convention that is currently used on the system. We will create
a fourth LV called “LogVol04.” The full path to the LV will be /dev/ VolGroup00/
LogVol04. Type

[root@fedora-serverA ~]# lvcreate -l 26 --name LogVol04 VolGroup00

Logical volume "LogVol04" created

NOTE You can actually name your LV any way you want. We named ours LogVol04 for consistency
only. We could have replaced LogVol04 with another name, like “my-volume,” if we wanted to. The
value for the --name (-n) options determines the name of the LV. The -l option specifies the
size in physical extents units (see Step 1 under “Assigning a Physical Volume to a Volume Group”). We
could have also specified the size in megabytes by using an option like -L 864M.

 3. View the LV you created. Type

[root@fedora-serverA ~]# lvdisplay /dev/VolGroup00/LogVol04

 --- Logical volume ---

 LV Name /dev/VolGroup00/LogVol04

 VG Name VolGroup00

 ...(Output truncated)...

 LV Size 832.00 MB

 Current LE 26

Fedora and RHEL distributions of Linux have a GUI tool that can greatly simplify
the entire management of an LVM system. The command system-config-lvm will
launch the tool, as shown here:

189 Chapter 7: F i le Systems

OpenSuSE distribution also has a capable GUI tool for managing disks, partitions, and
the LVM. Issue the command yast2 lvm_config to launch the utility, shown here:

 190 Linux Administration: A Beginner’s Guide

CREATING FILE SYSTEMS
With the volumes created, you need to put file systems on them. (If you’re accustomed to
Microsoft Windows, this is akin to formatting the disk once you’ve partitioned it.)

The type of file system that you want to create will determine the particular utility
that you should use. In this project, we want to create an ext3-type file system; therefore,
we’ll use the mkfs.ext3 utility. Many command-line parameters are available for the
mkfs.ext3 tool, but we’ll use it in its simplest form here.

Following are the steps for creating a file system:

 1. The only command-line parameter you’ll usually have to specify is the partition
(or volume) name onto which the file system should go. To create a file system
on /dev/VolGroup00/LogVol04, you would issue the following command:

[root@fedora-serverA ~]# mkfs.ext3 /dev/VolGroup00/LogVol04

mke2fs 1.4* (12-Jun-2010)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

...(Output truncated)...

This file system will be automatically checked every 37 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

Once the preceding command runs to completion, you are done with creating
the file system. We will next begin the process of trying to relocate the contents
of the current /var directory to its own separate file system.

 2. Create a temporary folder that will be used as the mount point for the new file
system. Create it under the root folder. Type

[root@fedora-serverA ~]# mkdir /new_var

 3. Mount the LogVol04 logical volume at the /new_var directory. Type

[root@fedora-serverA ~]# mount /dev/VolGroup00/LogVol04 /new_var

 4. Copy the content of the current /var directory to the /new_var directory. Type

[root@fedora-serverA ~]# cp -rp /var/* /new_var/

 5. In order to avoid taking down the system into single-user mode to perform the
following sensitive steps, we will resort to a few old military tricks. Type

[root@fedora-serverA ~]# mount --bind /var/lib/nfs/rpc_pipefs \

/new_var/lib/nfs/rpc_pipefs

The preceding step is necessary because the rpc_pipefs pseudo-file system hap-
pens to be mounted under a subfolder in the /var directory.

191 Chapter 7: F i le Systems

 6. Now you can rename the current /var to /old_var. Type

[root@fedora-serverA ~]# mv /var /old_var

 7. Create a new and empty /var directory. Type

[root@fedora-serverA ~]# mkdir /var

 8. Restore the security contexts for the new /var folder so that the daemons that
need it can use it. Type

[root@fedora-serverA /]# restorecon -R /var

NOTE The preceding step is only necessary on a system running an SELinux-enabled kernel, like
Fedora, RHEL, or Centos.

We are almost done now. We need to create an entry for the new file system in
the /etc/fstab file. To do so, we must edit the /etc/fstab file so that our changes
can take effect the next time the system is rebooted. Open up the file for editing
with any text editor of your choice, and add the following entry into the file:

/dev/VolGroup00/LogVol04 /var ext3 defaults 1 2

TIP You can also use the echo command to append the preceding text to the end of the file. The
command is

echo "/dev/VolGroup00/LogVol04 /var ext3 defaults 1 2" >> /etc/fstab

 9. This will be a good time to reboot the system. Type

[root@fedora-serverA /]# shutdown -r now

 10. Hopefully the system came back up fine. After the system boots, delete the
/old_var and /new_var folders using the rm command.

NOTE If, during system bootup, the boot process was especially slow starting the system “logger
service,” don’t worry too much—it will time out eventually and continue with the boot process. But
you will need to set the proper security contexts for the files now under the /var folder by running the
restorecon -R /var command again, with the actual files now in the directory. Then reboot
the system one more time.

 192 Linux Administration: A Beginner’s Guide

SUMMARY
In this chapter, we covered the process of administering your file systems, from creating
partitions to creating physical volumes, to extending an existing volume group and then
creating the final logical volume. We also went through the process of moving a sensi-
tive system directory onto its own separate file system. The exercise detailed what you
might need to do while managing a Linux server in the real world. With this informa-
tion, you’re armed with what you need in order to manage basic file system issues on a
production-grade Linux-based server in a variety of environments.

Like any operating system, Linux undergoes changes from time to time. Although
the designers and maintainers of the file systems go to great lengths to keep the interface
the same, you’ll find some alterations cropping up occasionally. Sometimes they’ll be
interface simplifications. Others will be dramatic improvements in the file system itself.
Keep your eyes open for these changes. Linux provides and supports superb file systems
that are robust, responsive, and in general a pleasure to use. Take the tools we have dis-
cussed in this chapter and find out for yourself.

193

8

Core System
Services

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 194 Linux Administration: A Beginner’s Guide

Regardless of distribution, network configuration, and overall system design,
every Linux-based system ships with some core services. Some of these services
include init, logging daemon, cron, and others. The functions performed by these

services may be simple, but they are also fundamental. Without their presence, a great
deal of Linux’s power would be missed.

In this chapter, we’ll discuss each of the core services, in addition to another use-
ful system service called xinetd. We’ll also discuss each service’s corresponding con-
figuration file and the suggested method of deployment (if appropriate). You’ll find that
the sections covering these simple services are not terribly long, but don’t neglect this
material. We highly recommend taking some time to get familiar with their implications.
Many creative solutions have been realized through the use of these services. Hopefully,
this chapter will inspire a few more.

THE INIT DAEMON
The init process is the patron of all processes. It is always the first process that gets started
in any Linux/UNIX-based system.

The init daemon as it was traditionally known has been largely replaced on most
new Linux distributions by a new upstart named upstart (pun intended!). According to
Upstart’s documentation, “upstart is an event-based replacement for the init daemon
which handles starting of tasks and services during boot, stopping them during shut-
down, and supervising them while the system is running.” This same description of
upstart pretty much describes the function of the init daemon except that upstart tries to
achieve its stated objectives in a more elegant and robust manner.

Another stated objective of upstart is to achieve complete backward compatibility
with init (sysvinit). Because upstart handles this backward compatibility with init so
well and transparently, the rest of this section will focus mostly on the traditional init
way of doing things. The process ID for init is always 1. Should init ever fail, the rest of
the system will most likely follow suit.

NOTE If one wants to be strictly technically correct, init is not actually the very first process that gets
run. But in order to remain politically correct, we’ll assume that it is! You should also keep in mind that
some so-called security-hardened Linux systems deliberately randomize the process identification
(PID) of init, so don’t be surprised if you ever find yourself on such a system and notice that the PID
of init is not 1.

The init process serves two roles. The first is being the ultimate parent process.
Because init never dies, the system can always be sure of its presence and, if necessary,
make reference to it. The need to refer to init usually happens when a process dies before
all of its spawned child processes have completed. This causes the children to inherit init

195 Chapter 8: Core System Services

as their parent process. A quick execution of the ps -ef command will show a number
of processes that will have a parent process ID (PPID) of 1.

The second job for init is to handle the various runlevels by executing the appropri-
ate programs when a particular runlevel is reached. This behavior is defined by the /etc/
inittab file.

upstart: Die init. Die Now!
As we previously mentioned, upstart is a replacement for the init daemon. upstart works
using the notion of jobs (or tasks) and events.

Jobs are created and placed under the /etc/event.d/ directory. The name of the job is
the filename under this directory. To transparently handle the services that were hitherto
handled by init, jobs have been defined to handle the services and daemons that need to
be started and stopped at the various runlevels (0,1,2,3,4,5,6,S, etc). For example, the job
definition that automatically handles the services that are to be started at runlevel 3 is
defined in a file named: /etc/event.d/rc3. The contents of the file looks like this:

rc3 - runlevel 3 compatibility

This task runs the old sysv-rc runlevel 3 (user defined) scripts. It

is usually started by the telinit compatibility wrapper.

start on runlevel 3

stop on runlevel

console output

script

 set $(runlevel --set 3 || true)

 if ["$1" != "unknown"]; then

 PREVLEVEL=$1

 RUNLEVEL=$2

 export PREVLEVEL RUNLEVEL

 fi

 exec /etc/rc.d/rc 3

end script

Without going into too much detail, the previous job definition can be explained as
follows: The start stanza specifies that the job be run during the occurrence of an event.
The event in this case is the system entering runlevel 3. The stop stanza specifies that the
job be stopped during the occurrence of an event. The script stanza specifies the shell
script code that will be executed using /bin/sh. The exec stanza specifies the path to a
binary on the file system and optional arguments to pass to it.

You can query the status of any job by using the status command. For example, to
query the status of our example rc3 job, run

[root@serverA ~]# status rc3

 196 Linux Administration: A Beginner’s Guide

The initctl command can be used to display a listing of all jobs and their states.
For example, to list all jobs and their states, run

[root@serverA ~]# initctl list

The /etc/inittab File
The /etc/inittab file contains all the information init needs for starting runlevels. The
format of each line in this file is as follows:

id:runlevels:action:process

TIP Lines beginning with the pound symbol (#) are comments. Take a peek at your own /etc/inittab,
and you’ll find that it’s already liberally commented. If you ever do need to make a change to /etc/
inittab, you’ll do yourself a favor by including liberal comments to explain what you’ve done.

Table 8-1 explains the significance of each of the four fields of an entry in the /etc/
inittab file, while Table 8-2 defines some common options available for the action field
in this file.

Table 8-1. /etc/inittab Entries

/etc/inittab Item Description

id A unique sequence of one to four characters that
identifies this entry in the /etc/inittab file.

runlevels The runlevels at which the process should be
invoked. Some events are special enough that they
can be trapped at all runlevels (for instance, the
ctrl-alt-del key combination to reboot). To indicate
that an event is applicable to all runlevels, leave
runlevels blank. If you want something to occur at
multiple runlevels, simply list all of them in this field.
For example, the runlevels entry 123 specifies
something that runs at runlevels 1, 2, or 3.

action Describes what action should be taken. Options
for this field are explained in the next table.

process Names the process (or program) to execute when
the runlevel is entered.

197 Chapter 8: Core System Services

Table 8-2. Options Available for the action Field in the /etc/inittab File

action Field
in /etc/inittab Description

respawn The process will be restarted whenever it terminates.

wait The process will be started once when the runlevel
is entered, and init will wait for its completion.

once The process will be started once when the runlevel
is entered; however, init won’t wait for termination
of the process before possibly executing additional
programs to be run at that particular runlevel.

boot The process will be executed at system boot. The
runlevels field is ignored in this case.

bootwait The process will be executed at system boot, and
init will wait for completion of the boot before
advancing to the next process to be run.

ondemand The process will be executed when a specific
runlevel request occurs. (These runlevels are a, b,
and c.) No change in runlevel occurs.

initdefault Specifies the default runlevel for init on startup. If
no default is specified, the user is prompted for a
runlevel on console.

sysinit The process will be executed during system boot,
before any of the boot or bootwait entries.

powerwait If init receives a signal from another process that
there are problems with the power, this process will
be run. Before continuing, init will wait for this
process to finish.

powerfail Same as powerwait, except that init will not wait
for the process to finish.

powerokwait This process will be executed as soon as init is
informed that the power has been restored.

ctrlaltdel The process is executed when init receives a signal
indicating that the user has pressed the ctrl-alt-
del key combination. Keep in mind that most X
Window System servers capture this key combination,
and thus init may not receive this signal if the X
Window System is active.

 198 Linux Administration: A Beginner’s Guide

Now let’s look at a sample entry from an /etc/inittab file:

If power was restored before the shutdown kicked in, cancel it.

pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"

In this case:

▼ The first line, which begins with the pound sign (#), is a comment entry and is
ignored.

■ pr is the unique identifier.

■ 1, 2, 3, 4, and 5 are the runlevels at which this process can be activated.

■ powerokwait is the condition under which the process is run.

▲ The /sbin/shutdown … command is the process.

The telinit Command
It’s time to ‘fess up: The mysterious force that tells init when to change runlevels is actu-
ally the telinit command. This command takes two command-line parameters. One is
the desired runlevel that init needs to know about, and the other is -t sec, where sec
is the number of seconds to wait before telling init.

NOTE Whether init actually changes runlevels is its decision. Obviously, it usually does, or this
command wouldn’t be terribly useful.

It is extremely rare that you’ll ever have to run the telinit command yourself.
Usually, this is all handled for you by the startup and shutdown scripts.

NOTE Under most UNIX implementations (including Linux), the telinit command is really just
a symbolic link to the init program. Because of this, some folks prefer running init with the
runlevel they want rather than using telinit.

XINETD AND INETD
The xinetd and inetd programs are two popular services on Linux systems; xinetd is the
more modern incarnation of the older inetd. Strictly speaking, a Linux system can run
effectively without the presence of either of them. But some daemons rely solely on the
functionality they provide. So if you need either xinetd or inetd, then you need it, and
there are no two ways about it.

The inetd and xinetd programs are daemon processes. You probably know that dae-
mons are special programs that, after starting, voluntarily release control of the terminal

199 Chapter 8: Core System Services

from which they started. The main mechanism by which daemons can interface with the
rest of the system is through interprocess communication (IPC) channels, by sending mes-
sages to the system-wide log file, or by appending to a file on disk.

The role of inetd is to function as a “super-server” to other network server–related
processes, such as telnet, ftp, tftp, etc. It’s a simple philosophy: Not all server pro-
cesses (including those that accept new connections) are called upon so often that they
require a program to be running in memory all the time. The main reason for the exis-
tence of a super-server is to conserve system resources. So instead of constantly main-
taining potentially dozens of services loaded in memory waiting to be used, they are
all listed in inetd’s configuration file, /etc/inetd.conf. On their behalf, inetd listens for
incoming connections. Thus, only a single process needs to be in memory.

A secondary benefit of inetd falls to those processes needing network connectivity
but whose programmers do not want to have to write it into the system. The inetd pro-
gram will handle the network code and pass incoming network streams into the process
as its standard input (stdin). Any of the process’s output (stdout) is sent back to the
host that has connected to the process.

NOTE Unless you are programming, you don’t have to be concerned with inetd’s stdin/
stdout feature. On the other hand, for someone who wants to write a simple script and make it
available through the network, it’s worth exploring this powerful tool.

As a general rule of thumb, low-volume services (such as tftp) are usually best run
through the inetd, whereas higher-volume services (such as web servers) are better run
as a stand-alone process that is always in memory, ready to handle requests.

Current versions of Fedora, Red Hat Enterprise Linux (RHEL), OpenSuSE, Mandrake,
and even Mac OS X ship with a newer incarnation of inetd called xinetd—the name is
an acronym for “extended Internet services daemon.” The xinetd program accomplishes
the same task as the regular inetd program: It helps to start programs that provide Inter-
net services. Instead of having such programs automatically start up during system ini-
tialization and remain unused until a connection request arrives, xinetd instead stands
in the gap for those programs and listens on their normal service ports. As a result, when
xinetd hears a service request meant for one of the services it manages, it then starts or
spurns the appropriate service.

Inasmuch as xinetd is similar to inetd in function, it should be noted that it includes
a new configuration file format and a lot of additional features. The xinetd daemon uses
a configuration file format that is quite different from the classic inetd configuration
file format. (Most other variants of UNIX, including Solaris, AIX, and FreeBSD, use the
classic inetd format.) This means that if you have an application that relies on inetd, you
may need to provide some manual adjustments to make it work. Of course, you should
definitely contact the developers of the application and let them know of the change
so that they can release a newer version that works with the new xinetd configuration
format as well.

 200 Linux Administration: A Beginner’s Guide

In this section, we will cover the new xinetd daemon. If your system uses inetd, you
should be able to view the /etc/inetd.conf file and see the similarities between inetd and
xinetd.

NOTE Your Linux distribution might not have the xinetd software installed out of the box. The xinetd
package can be installed with yum on a Fedora distro (or RHEL, Centos) by running

yum install xinetd

On a Debian-based distro like Ubuntu, xinetd can be installed using APT by running

sudo apt-get install xinetd

The /etc/xinetd.conf File
The /etc/xinetd.conf file consists of a series of blocks that take the following format:

blockname

{

 variable = value

}

where blockname is the name of the block that is being defined, variable is the
name of a variable being defined within the context of the block, and value is the value
assigned to the variable. Every block can have multiple variables defined within.

One special block is called defaults. Whatever variables are defined within this
block are applied to all other blocks that are defined in the file.

An exception to the block format is the includedir directive, which tells xinetd
to go read all the files in a directory and consider them part of the /etc/xinetd.conf file.
Any line that begins with a pound sign (#) is the start of a comment. The stock /etc/
xinetd.conf file that ships with Fedora looks like this:

This is the master xinetd configuration file. Settings in the

default section will be inherited by all service configurations...

defaults

{

 instances = 50

 log_type = SYSLOG daemon info

 log_on_failure = HOST

 log_on_success = PID HOST DURATION EXIT

 cps = 50 10

}

includedir /etc/xinetd.d

Don’t worry if all of the variables and values aren’t familiar to you yet; we will go
over those in a moment. Let’s first make sure you understand the format of the file.

201 Chapter 8: Core System Services

In this example, the first line of the file is a comment explaining what the file is and
what it does. After the comments, you see the first block: defaults. The first variable
that is defined in this block is instances, which is set to the value of 50. Five vari-
ables in total are defined in this block, the last one being cps. Since this block is titled
defaults, the variables that are set within it will apply to all future blocks that are
defined. Finally, the last line of the file specifies that the /etc/xinetd.d directory must be
examined for other files that contain more configuration information. This will cause
xinetd to read all of the files in that directory and parse them as if they were part of the
/etc/xinetd.conf file.

Variables and Their Meanings
Table 8-3 lists some of the variable names that are supported in the /etc/xinetd.conf file.

You do not need to specify all of the variables when defining a service. The only
required ones are

▼ socket_type

■ user

■ server

▲ wait

Table 8-3. xinetd Configuration File Variables

Variable Description

id This attribute is used to uniquely identify a
service. This is useful, because services exist
that can use different protocols and that need
to be described with different entries in the
configuration file. By default, the service ID is
the same as the service name.

type Any combination of the following values may
be used: RPC if this is a Remote Procedure Call
(RPC) service, INTERNAL if this service is
provided by xinetd, or UNLISTED if this is a
service not listed in the /etc/services file.

disable This is either the value yes or no. A yes value
means that although the service is defined, it is
not available for use.

 202 Linux Administration: A Beginner’s Guide

Table 8-3. xinetd Configuration File Variables (cont.)

Variable Description

socket_type Valid values for this variable are stream,
which indicates that this service is a stream-
based service; dgram, which indicates that
this service is a datagram; or raw, which
indicates that this service uses raw Internet
Protocol (IP) datagrams. The stream value
refers to connection-oriented (Transmission
Control Protocol [TCP]) data streams (for
example, Telnet and File Transfer Protocol
[FTP]). The dgram value refers to datagram
(User Datagram Protocol [UDP]) streams
(for example, the Trivial File Transfer
Protocol [TFTP] service is a datagram-based
protocol). Other protocols outside the scope
of TCP/IP do exist; however, you’ll rarely
encounter them.

protocol Determines the type of protocol (either tcp or
udp) for the connection type.

wait If this is set to yes, only one connection will be
processed at a time. If this is set to no, multiple
connections will be allowed by running the
appropriate service daemon multiple times.

user Specifies the username under which this service
will run. The username must exist in the /etc/
passwd file.

group Specifies the group name under which this
service will run. The group must exist in the
/etc/group file.

instances Specifies the maximum number of concurrent
connections this service is allowed to handle.
The default is no limit if the wait variable is set
to nowait.

server The name of the program to run when this
service is connected.

203 Chapter 8: Core System Services

Table 8-3. xinetd Configuration File Variables (cont.)

Variable Description

server_args The arguments passed to the server. In contrast
to inetd, the name of the server should not be
included in server_args.

only_from Specifies the networks from which a valid
connection may arrive. (This is the built-in TCP
Wrapper functionality.) You can specify this in
one of three ways: as a numeric address, a host-
name, or a network address with netmask. The
numeric address can take the form of a complete
IP address to indicate a specific host (such as
192.168.1.1). However, if any of the ending
octets are zeros, the address will be treated like
a network where all of the octets that are zero
are wildcards (for instance, 192.168.1.0 means
any host that starts with the numbers 192.168.1).
Alternatively, you can specify the number of
bits in the netmask after a slash (for example,
192.168.1.0/24 means a network address of
192.168.1.0 with a netmask of 255.255.255.0).

no_access The opposite of only_from in that instead of
specifying the addresses from which a connection
is valid, this variable specifies the addresses from
which a connection is invalid. It can take the
same type of parameters as only_from.

log_type Determines where logging information for that
service will go. There are two valid values:
SYSLOG and FILE. If SYSLOG is specified,
you must specify to which syslog facility to log
as well (see “The Logging Daemon” later in this
chapter, for more information on facilities). For
example, you can specify

log_type = SYSLOG local0

Optionally, you can include the log level as well.
For example:

log_type = SYSLOG local0 info

 204 Linux Administration: A Beginner’s Guide

Table 8-3. xinetd Configuration File Variables (cont.)

Variable Description

If FILE is specified, you must specify which
filename to log. Optionally, you can also
specify the soft limit on the file size. The
soft limit on a file size is where an extra log
message indicating that the file has gotten
too large will be generated. If the soft limit is
specified, a hard limit can also be specified.
At the hard limit, no additional logging will
be done. If the hard limit is not explicitly
defined, it is set to be 1 percent higher than
the soft limit. An example of the FILE option
is as follows:

log_type = FILE /var/log/mylog

log_on_success Specifies which information is logged on a
connection success. The options include PID to
log the process ID of the service that processed
the request, HOST to specify the remote host
connecting to the service, USERID to log the
remote username (if available), EXIT to log
the exit status or termination signal of the
process, or DURATION to log the length of the
connection.

port Specifies the network port under which the
service will run. If the service is listed in /etc/
services, this port number must equal the value
specified there.

interface Allows a service to bind to a specific interface
and only be available there. The value is the
IP address of the interface that you wish
this service to be bound to. An example of
this is binding less secure services (such as
Telnet) to an internal and physically secure
interface on a firewall and not allowing the
external, more vulnerable interface outside
the firewall.

205 Chapter 8: Core System Services

Examples: A Simple Service Entry and
Enabling/Disabling a Service
Using the finger service as an example, let’s take a look at one of the simplest entries
possible with xinetd:

default: on

description: The finger server answers finger requests. Finger is \

a protocol that allows remote users to see information such as login name and

last login time for local users.

service finger

{

 socket_type = stream

 wait = no

 user = nobody

 server = /usr/sbin/in.fingerd

 disable = yes

}

As you can see, the entry is self-explanatory. The service name is finger, and because
of the socket_type, we know this is a TCP service. The wait variable tells us that there
can be multiple finger processes running concurrently. The user variable tells us that
“nobody” will be the process owner. Finally, the name of the process being run is /usr/
sbin/in.fingerd.

Table 8-3. xinetd Configuration File Variables (cont.)

Variable Description

cps The first argument specifies the maximum
number of connections per second this service
is allowed to handle. If the rate exceeds this
value, the service is temporarily disabled for
the second argument number of seconds. For
example:

cps = 50 10

This will disable a service for 10 seconds if the
connection rate ever exceeds 50 connections per
second.

 206 Linux Administration: A Beginner’s Guide

With our understanding of an xinetd service entry, let’s try to enable and disable a
service.

Enabling/Disabling the Echo Service
If you want a secure system, chances are you will run with only a few services—there
are some people who don’t even run xinetd at all! It takes just a few steps to enable or
disable a service. For example, to enable a service, you would first enable it in the xinetd
configuration file (or inetd.conf if you are using inetd instead), restart the xinetd service,
and finally test things out to make sure you have the behavior you expect. To disable a
service is just the opposite procedure.

NOTE The service we will be exploring is the echo service. This service is internal to xinetd; i.e., it
is not provided by any external daemon.

Let’s step through this process.

 1. Use any plain-text editor to edit the file /etc/xinetd.d/echo-stream and change
the variable disable to no:

This is the configuration for the tcp/stream echo service.

service echo

{

 disable = no

 id = echo-stream

 type = INTERNAL

 wait = no

 socket_type = stream

}

TIP On an Ubuntu-based system, the configuration file for the echo service is /etc/xinetd.d/echo.
The Ubuntu distro goes further to combine the UDP and TCP versions of the echo service in one file.
Fedora, on the other hand, sorts the UDP and TCP versions of the echo service into two separate files
(/etc/xinetd.d/echo-dgram and /etc/xinetd.d/echo-stream).

 2. Save your changes to the file, and exit the editor.

 3. Restart the xinetd service. Under Fedora or RHEL, type

[root@fedora-serverA ~]# service xinetd restart

Note that for other distributions that don’t have the service command
available, we can send a HUP signal to xinetd instead. First, find xinetd’s

207 Chapter 8: Core System Services

process ID (PID) using the ps command. Then use the kill command to
send the HUP signal to xinetd’s process ID. We can verify that the restart
worked by using the tail command to view the last few messages of the
/var/log/ messages file. The commands to find xinetd’s PID, kill xinetd, and
view the log files are

[root@serverA ~]# ps -C xinetd

PID TTY TIME CMD

14024 ? 00:00:00 xinetd

[root@serverA ~]# kill -1 14024

[root@serverA ~]# tail /var/log/messages

Dec 9 12:45:23 serverA xinetd[14024]: xinetd Version 2.3.14 started with libwrap

Dec 9 12:47:45 serverA xinetd[14024]: Starting reconfiguration

Dec 9 12:47:45 serverA xinetd[14024]: Swapping defaults

Dec 9 12:47:45 serverA xinetd[14024]: readjusting service echo-stream

Dec 9 12:47:45 fedora-serverA xinetd[14024]: Reconfigured: new=0 old=1

dropped=0 (services)

 4. Telnet to the port (port 7) of the echo service, and see if the service is indeed run-
ning. Type

[root@fedora-serverA ~]# telnet localhost 7

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Your output should be similar to the preceding, if the echo service has been
enabled. You can type any character on your keyboard at the Telnet prompt and
watch the character get echoed (repeated) back to you.

As you can see, the echo service is one of those terribly useful and life-saving services
that users and system administrators cannot do without.

This exercise walked you through enabling a service by directly editing its xinetd
configuration file. It is a simple process to enable or disable a service. But you should
actually go back and make sure that the service is indeed disabled (if that is what you
want) by testing it. You don’t want to think that you have disabled Telnet and have it
still be running.

TIP You can also quickly enable or disable a service that runs under xinetd by using the
chkconfig utility, which is available in Fedora, RHEL, OpenSuSE, and most other flavors of
Linux. For example, to disable the echo service that you manually enabled, just issue the command
chkconfig echo off.

 208 Linux Administration: A Beginner’s Guide

THE LOGGING DAEMON
With so much going on at any one time, especially with services that are disconnected
from a terminal window, it’s necessary to provide a standard mechanism by which spe-
cial events and messages can be logged. Linux distributions have traditionally used the
syslogd (sysklogd) daemon to provide this service. However, more recently, the newer
Linux distros are standardizing on other software besides syslogd for the logging func-
tion. OpenSuSE, for example, uses the syslog-ng package, Fedora uses the rsyslog pack-
age, and Ubuntu still uses the traditional sysklogd package. The idea remains the same,
and the end results (get system logs) are mostly the same; the main differences between
the new approaches are in the additional feature sets offered. In this section, we will be
concentrating on the logging daemon that ships with Fedora (rsyslog), with references
to syslogd when appropriate. Managing and configuring rsyslog is similar to the way it
is done in syslogd. The new rsyslog daemon maintains backward-compatibility with the
traditional syslog daemon, but offers a plethora of new features as well.

The rsyslog daemon provides a standardized means of performing logging. Many
other UNIX systems employ a compatible daemon, thus providing a means for cross-
platform logging over the network. This is especially valuable in a large heterogeneous
environment where it’s necessary to centralize the collection of log entries to gain an
accurate picture of what’s going on. You could equate this system of logging facilities to
the Event Viewer functionality in Windows.

rsyslogd can send its output to various destinations: straight text files (usually stored
in the /var/log directory), Structured Query Language (SQL) databases, other hosts, etc.
Each log entry consists of a single line containing the date, time, host name, process
name, PID, and the message from that process. A system-wide function in the standard
C library provides an easy mechanism for generating log messages. If you don’t feel like
writing code but want to generate entries in the logs, you have the option of using the
logger command.

Invoking rsyslogd
If you do find a need to either start rsyslogd manually or modify the script that starts it
up at boot, you’ll need to be aware of rsyslogd’s command-line parameters, shown in
Table 8-4.

CONFIGURING THE LOGGING DAEMON
The /etc/rsyslog.conf file contains the configuration information that rsyslogd needs to
run. The default configuration file that ships with most systems is sufficient for most
standard needs. But you may find that you have to tweak the file a little if you want
to do any additional fancy things with your logs—like sending local log messages to
remote logging machines that can accept them, or logging to a database, or reformatting
logs, etc.

209 Chapter 8: Core System Services

Table 8-4. rsyslogd Command-Line Parameters

Parameter Description

-d Debug mode. Normally, at startup, rsyslogd detaches
itself from the current terminal and starts running
in the background. With the -d option, rsyslogd
retains control of the terminal and prints debugging
information as messages are logged. It’s extremely
unlikely that you’ll need this option.

-f config Specifies a configuration file as an alternative to the
default /etc/rsyslog.conf.

-h By default, rsyslogd does not forward messages sent
to it that were destined for another host. This option
will allow the daemon to forward logs received
remotely to other forwarding hosts that have been
configured.

-l hostlist This option lets you list the hosts for which only the
simple hostname should be logged and not the fully
qualified domain name (FQDN). You can list multiple
hosts, as long as they are separated by a colon; for
example,

-l ubuntu-serverA:serverB

-m interval By default, rsyslogd generates a log entry every
20 minutes as a “just so you know I’m running”
message. This is for systems that may not be busy.
(If you’re watching the system log and don’t see a
single message in over 20 minutes, you’ll know for a
fact that something has gone wrong.) By specifying
a numeric value for interval, you can indicate
the number of minutes rsyslogd should wait before
generating another message. Setting a value of zero
for this option turns it off completely.

-s domainlist If you are receiving rsyslogd entries that show the
entire FQDN, you can have rsyslogd strip off the
domain name and leave just the hostname. Simply list
the domain names to remove in a colon-separated list
as the parameter to the -s option. For example:

-s example.com:domain.com

 210 Linux Administration: A Beginner’s Guide

Log Message Classifications
A basic understanding of how log messages are classified in the traditional syslog daemon
way is also useful in helping to understand the configuration file format for rsyslogd.

Each message has a facility and a priority. The facility tells you from which subsystem
the message originated, and the priority tells you how important the message is. These
two values are separated by a period. Both values have string equivalents, making them
easier to remember. The combination of the facility and priority makes up the “selector”
part of a rule in the configuration file. The string equivalents for facility and priority are
listed in Tables 8-5 and 8-6, respectively.

NOTE The priority levels are in the order of severity according to syslogd. Thus, debug is not
considered severe at all, and emerg is the most crucial. For example, the combination facility-and-
priority string mail.crit indicates there is a critical error in the mail subsystem (for example, it
has run out of disk space). syslogd considers this message more important than mail.info,
which may simply note the arrival of another message.

Table 8-5. String Equivalents for the Facility Value in /etc/rsyslog.conf

Facility String Equivalent Description

auth Authentication messages

authpriv Essentially the same as auth

cron Messages generated by the cron subsystem

daemon Generic classification for service daemons

kern Kernel messages

Lpr Printer subsystem messages

Mail Mail subsystem messages

Mark Obsolete, but you may find some books that
discuss it; syslogd simply ignores it

News Messages through the Network News Transfer
Protocol (NNTP) subsystem

security Same thing as auth; should not be used

syslog Internal messages from syslog itself

User Generic messages from user programs

Uucp Messages from the UUCP (UNIX to UNIX
copy) subsystem

Local0-local9 Generic facility levels whose importance can be
decided based on your needs

211 Chapter 8: Core System Services

In addition to the priority levels in Table 8-6, rsyslogd understands wildcards. Thus,
you can define a whole class of messages; for instance, mail.* refers to all messages
related to the mail subsystem.

Format of /etc/rsyslog.conf
rsyslogd’s configuration relies heavily on the concepts of templates. In order to better
understand the syntax of rsyslogd’s configuration file, we will begin by stating a few
key concepts:

▼ Templates define the format of log messages. They can also be used for dynamic
filename generation. Templates have to be defined before they are used in rules.
A template is made of several parts: the template directive, a descriptive name,
the template text, and possibly other options.

■ Any entry in the /etc/rsyslog.conf file that begins with a dollar ($) sign is a
directive.

■ Log message properties refer to well-defined fields in any log message. Example
common message properties are shown in Table 8-7.

■ The percentage sign (%) is used to enclose log message properties.

■ Properties can be modified by the use of property replacers.

▲ Any entry that begins with a pound sign (#) is a comment and is ignored. Empty
lines are also ignored.

Table 8-6. String Equivalents for Priority Levels in /etc/rsyslog.conf

Priority String Equivalent Description

debug Debugging statements

info Miscellaneous information

notice Important statements, but not necessarily
bad news

warning Potentially dangerous situation

warn Same as warning; should not be used

err An error condition

error Same as err; should not be used

crit Critical situation

alert A message indicating an important occurrence

emerg An emergency situation

 212 Linux Administration: A Beginner’s Guide

rsyslogd Templates
The traditional syslog.conf file can be used with the new rsyslog daemon without any
modifications. rsyslogd’s configuration file is named /etc/rsyslog.conf. As mentioned
earlier, rsyslogd relies on the use of templates, and the templates define the format of
logged messages. The use of templates is what allows the use of a traditional syslog.conf
configuration file syntax to be used in rsyslog.conf. Templates that support the syslogd
log message format are hard-coded into rsyslogd and are used by default.

A sample template that supports the use of the syslogd message format is shown here:

$template TraditionalFormat,"%timegenerated% %HOSTNAME% %syslogtag% %msg%\n",<options>

The various fields of the previous sample template are explained in the following list
and in Table 8-7.

▼ $template The directive in this example implies that the line is a template
definition.

■ TraditionalFormat This is a descriptive template name.

Table 8-7. rsyslog’s Message Property Names

property name (propname) Description

msg The MSG part of the message. The actual log
message.

rawmsg The message exactly as it was received from
the socket.

HOSTNAME Hostname from the message.

FROMHOST Hostname of the system the message was
received from. (This may not necessarily be
the original sender.)

syslogtag TAG from the message.

PRI-text The PRI part of the message in a textual form.

syslogfacility-text The facility from the message in text form.

syslogseverity-text Severity from the message in text form.

timereported Timestamp from the message.

MSGID The contents of the MSGID field.

213 Chapter 8: Core System Services

■ %timegenerated% Specifies the timegenerated property.

■ %HOSTNAME% Specifies the HOSTNAME property.

■ %syslogtag% Specifies the syslogtag property.

■ %msg% Specifies the msg property.

■ \n The backslash is an escape character. Here, the “\n” implies a new line.

▲ <options> The options entry is optional. It specifies options influencing the
template as whole.

rsyslogd Rules
Each rule in the rsyslog.conf file is broken down into a selector field, an action field (or
target field), and an optional template name. Specifying a template name after the last
semicolon will assign the respective action to that template. Whenever a template name
is missing, a hard-coded template is used instead. It is, of course, important to make sure
that the desired template is defined before referencing it.

Here is the format for each line in the configuration file:

selector_field action_field ; <optional_template_name>

For example:

mail.info /var/log/messages; TraditionalFormat

Selector Field The selector field specifies the combination of facilities and priorities. An
example selector field entry is

mail.info

In the preceding, “mail” is the facility and “info” is the priority.

Action Field The action field of a rule describes the action to be performed on a message.
This action can range from doing simple things like writing the logs to a file or slightly
more complex things like writing to a database table or forwarding to another host. An
example action field is

/var/log/messages

The previous action example indicates that the log messages should be written to the file
named /var/log/messages.

Other common possible values for the action field are described in Table 8-8.

 214 Linux Administration: A Beginner’s Guide

Table 8-8. Action Field Descriptions

Action Field Description

Regular file (e.g., /var/
log/messages)

A regular file. A full path name to the file
should be specified and should begin with
a slash (/). This field can also refer to device
files, like ttys, or the console, e.g., /dev/
console.

Named pipe (e.g., |/tmp/
mypipe)

A named pipe. A pipe symbol (|) must
precede the path to the named pipe (First
In First Out, or FIFO). This type of file is
created with the mknod command. With
rsyslogd feeding one side of the pipe, you
can have another program running that
reads the other side of the pipe. This is an
effective way to have programs parsing log
output.

@loghost or @@loghost A remote host. The at (@) symbol must
begin this type of action, followed by the
destination host. A single @ sign indicates
that the log messages should be sent via
the traditional UDP protocol. And double
at (@@) symbols imply that the logs should
be transmitted using the TCP protocol
instead.

List of users (e.g., yyang ,
dude, root)

This type of action indicates that the log
messages should be sent to the list of
currently logged-on users. The list of users
is separated by commas (,). Specifying an
asterisk (*) symbol will send the specified
logs to all currently logged-on users.

Discard This action means that the logs should
be discarded and no action should be
performed on them. This type of action
is specified by the tilde symbol (~) in the
action field.

215 Chapter 8: Core System Services

Sample /etc/rsyslog.conf File
Following is a complete sample rsyslog.conf file. The sample is interspersed with com-
ments that explain what the following rules do.

A template definition that resembles traditional syslogd file output

$template myTraditionalFormat,"%timegenerated% %HOSTNAME% %syslogtag%%msg%\n"

Log all kernel messages to the console.

Kern.* /dev/console

Log anything(except mail)of level info or higher into /var/log/messages file.

Exclude private authentication messages!

The rule is using the hard-coded traditional format because a different

template name has NOT been defined.

*.info;mail.none;authpriv.none;cron.none /var/log/messages

Table 8-8. Action Field Descriptions (cont.)

Action Field Description

Database table (e.g.,
>dbhost,dbname,dbuser,
dbpassword;<dbtemplate>)

This type of action is one of the advanced/
new features that rsyslogd supports
natively. It allows the log messages to be
sent directly to a configured database table.
This type of location needs to begin with
the greater-than symbol (>). The parameters
specified after the > sign follow a strict
order. This order is: After the > sign, the
database hostname (dbhost) must be given,
a comma, the database name (dbname),
another comma, the database user (dbuser),
a comma, and then the database user’s
password (dbpassword).

An optional template name (dbtemplate)
can be specified if a semicolon is specified
after the last parameter.

 216 Linux Administration: A Beginner’s Guide

log messages from authpriv facility(sensitive nature) to the /var/log/secure

file. But also use the template (myTraditionalFormat) defined earlier in

the file

authpriv.* /var/log/secure;myTraditionalFormat

Log all the mail messages in one place.

Mail.* -/var/log/maillog

Send emergency messages to all logged on users

*.emerg *

Following is an entry that logs to a database host at the IP address

192.168.1.50 into DB named log_database

. >192.168.1.50,log_database,dude,dude_db_password

THE CRON PROGRAM
The cron program allows any user in the system to schedule a program to run on any
date, at any time, or on a particular day of week, down to the minute. Using cron is an
extremely efficient way to automate your system, generate reports on a regular basis,
and perform other periodic chores. (Not-so-honest uses of cron include having it invoke
a system to have you paged when you want to get out of a meeting!)

Like the other services we’ve discussed in this chapter, cron is started by the boot
scripts and is most likely already configured for you. A quick check of the process listing
should show it quietly running in the background:

[root@fedora-serverA ~]# ps aux | grep crond | grep -v grep

root 1897 0.0 0.4 5088 1152 ? Ss Dec09 0:06 crond

The cron service works by waking up once a minute and checking each user’s crontab
file. This file contains the user’s list of events that they want executed at a particular date
and time. Any events that match the current date and time are executed.

The crond command itself requires no command-line parameters or special signals
to indicate a change in status.

The crontab File
The tool that allows you to edit entries to be executed by crond is crontab. Essentially,
all it does is verify your permission to modify your cron settings and then invoke a text
editor so you can make your changes. Once you’re done, crontab places the file in the
right location and brings you back to a prompt.

Whether or not you have appropriate permission is determined by crontab by
checking the /etc/cron.allow and /etc/cron.deny files. If either of these files exists,
you must be explicitly listed there for your actions to be effected. For example, if the

217 Chapter 8: Core System Services

/etc/cron.allow file exists, your username must be listed in that file in order for you
to be able to edit your cron entries. On the other hand, if the only file that exists is
/etc/cron.deny, unless your username is listed there, you are implicitly allowed to
edit your cron settings.

The file listing your cron jobs (often referred to as the crontab file) is formatted as
follows. All values must be listed as integers.

Minute Hour Day Month Day_Of_Week Command

If you want to have multiple entries for a particular column (for instance, you want a
program to run at 4:00 a.m., 12:00 p.m., and 5:00 p.m.), then you need to have each of these
time values in a comma-separated list. Be sure not to type any spaces in the list. For the
program running at 4:00 a.m., 12:00 p.m., and 5:00 p.m., the Hour values list would read
4,12,17. Newer versions of cron allow you to use a shorter notation for supplying fields.
For example, if you want to run a process every two minutes, you just need to put /2 as
the first entry. Notice that cron uses military time format.

For the Day_Of_Week entry, 0 represents Sunday, 1 represents Monday, and so on, all
the way to 6 representing Saturday.

Any entry that has a single asterisk (*) wildcard will match any minute, hour, day,
month, or day of week when used in the corresponding column.

When the dates and times in the file match the current date and time, the command is
run as the user who set the crontab. Any output generated is e-mailed back to the user.

Obviously, this can result in a mailbox full of messages, so it is important to be thrifty
with your reporting. A good way to keep a handle on volume is to output only error
conditions and have any unavoidable output sent to /dev/null.

Let’s look at some examples. The following entry runs the program /bin/ping -c 5
serverB every four hours:

0 0,4,8,12,16,20 * * * /bin/ping -c 5 serverB

or, using the shorthand method:

0 */4 * * * /bin/ping -c 5 serverB

Here is an entry that runs the program /usr/local/scripts/backup_level_0 at 10:00 p.m.
every Friday night:

0 22 * * 5 /usr/local/scripts/backup_level_0

And finally, here’s a script to send out an e-mail at 4:01 a.m. on April 1 (whatever day
that may be):

1 4 1 4 * /bin/mail dad@domain.com < /home/yyang/joke

NOTE When crond executes commands, it does so with the sh shell. Thus, any environment
variables that you might be used to may not work within cron.

 218 Linux Administration: A Beginner’s Guide

Editing the crontab File
Editing or creating a cron job is as easy as editing a regular text file. But you should be
aware of the fact that the program will, by default, use an editor specified by the EDITOR
or VISUAL environment variable. On most Linux systems, the default editor is vi. But
you can always change this default to any editor you are comfortable with by setting the
EDITOR or VISUAL environment variable.

Now that you know the format of the crontab configuration file, you need to edit the
file. You don’t do this by editing the file directly; you use the crontab command to edit
your crontab file:

[yyang@serverA ~]$ crontab -e

To list what is in your current crontab file, just give crontab the -l argument to
display the content. Type

[yyang@serverA ~]$ crontab -l

no crontab for yyang

According to this output, the user yyang does not currently have anything in the
crontab file.

SUMMARY
In this chapter, we discussed some important system services that come with most
Linux systems. These services do not require network support and can vary from host
to host, making them useful, since they can work whether or not the system is in multi-
user mode.

A quick recap of the chapter:

▼ init is the mother of all processes in the system, with a PID of 1. It also controls
runlevels and can be configured through the /etc/inittab file.

■ upstart is the new program that aims to replace the functionality of init on
most new Linux distributions. upstart also offers additional functionality and
improvement.

■ inetd, although barely used anymore, is the original super-server that listens to
server requests on behalf of a large number of smaller, less frequently used ser-
vices. When it accepts a request for one of those services, inetd starts the actual
service and quietly forwards data between the network and actual service. Its
configuration file is /etc/inetd.conf.

■ xinetd is the “new” version of the classic inetd super-server that offers more
configuration options and better built-in security. Its main configuration file is
/etc/xinetd.conf.

219 Chapter 8: Core System Services

■ rsyslog is the new system-wide logging daemon used on Fedora systems. It
can act as a drop-in replacement for the more common and traditional sysklog
daemon. Some of the advanced features of rsyslogd include writing logs directly
to a configured database and allowing other extensive manipulation of log
messages.

▲ Finally, the cron service allows you to schedule events to take place at certain
dates and times, which is great for periodic events, like backups and e-mail
reminders. All the configuration files on which it relies are handled via the
crontab program.

In each section of this chapter, we discussed how to configure a different service, and
even suggested some uses beyond the default settings that come with the system. It is
recommended that you poke around these services and familiarize yourself with what
can be accomplished with them. Many powerful automation, data collection, and analy-
sis tools have been built around these basic services—as well as many wonderfully silly
and useless things. Don’t be afraid to have fun with them!

221

9

Compiling the
Linux Kernel

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 222 Linux Administration: A Beginner’s Guide

One of Linux’s greatest strengths is that its source code is available to anyone
who wants it. The GNU GPL (General Public License) under which Linux is
distributed even allows you to tinker with the source code and distribute your

changes! Real changes to the source code (at least, those to be taken seriously) go through
the process of joining the official kernel tree. This requires extensive testing and proof
that the changes will benefit Linux as a whole. At the end of the approval process, the
code gets a final yes or no from a core group of the Linux project’s original developers. It
is this extensive review process that keeps the quality of Linux’s code so noteworthy.

For system administrators who have used other proprietary operating systems, this
approach to code control is a significant departure from the philosophy of waiting for the
company to release a patch, a service pack, or some sort of “hotfix.” Instead of having to
wade through public relations, sales engineers, and other front-end units, you have the
option of contacting the author of the subsystem directly and explaining your problem.
A patch can be created and sent to you before the next official release of the kernel, and
get you up and running.

Of course, the flip side of this working arrangement is that you need to be able to
compile a kernel yourself rather than rely on someone else to supply precompiled code.
However, you won’t have to do this often, because production environments, once sta-
ble, rarely need a kernel compile. But if need be, you should know what to do. Luckily,
it’s not difficult.

In this chapter, we’ll walk through the process of acquiring a kernel source tree, con-
figuring it, compiling it, and finally, installing the end result.

CAUTION The kernel is the first thing that loads when a Linux system is booted (after the boot
loader, of course!). If the kernel doesn’t work right, it’s unlikely that the rest of the system will boot.
Be sure to have an emergency or rescue boot medium handy in case you need to revert to an old
configuration. (See the section on GRUB in Chapter 6).

WHAT EXACTLY IS A KERNEL?
Before we jump into the process of compiling, let’s back up a step and make sure you’re
clear on the concept of what a kernel is and the role it plays in the system. Most often,
when people say “Linux,” they are usually referring to a “Linux distribution”—for
example, OpenSuSE Linux is a type of Linux distribution. As discussed in Chapter 1, a
distribution comprises everything necessary to get Linux to exist as a functional operat-
ing system. Distributions make use of code from various open source projects that are
independent of Linux; in fact, many of the software packages maintained by these proj-
ects are used extensively on other UNIX-like platforms as well. The GNU C Compiler, for
example, which comes with most Linux distributions, also exists on many other operat-
ing systems (probably more systems than most people realize).

223 Chapter 9: Compil ing the Linux Kernel

So, then, what does make up the pure definition of Linux? The kernel. The kernel of
any operating system is the core of all the system’s software. The only thing more funda-
mental than the kernel is the hardware itself.

The kernel has many jobs. The essence of its work is to abstract the underlying hard-
ware from the software and provide a running environment for application software
through system calls. Specifically, the environment must handle issues such as network-
ing, disk access, virtual memory, and multitasking—a complete list of these tasks would
take up an entire chapter in itself! Today’s Linux kernel (version 2.6.*) contains almost
six million lines of code (including device drivers). By comparison, the sixth edition of
UNIX from Bell Labs in 1976 had roughly 9000 lines. Figure 9-1 illustrates the kernel’s
position in a complete system.

Although the kernel is a small part of a complete Linux distribution, it is by far the
most critical element. If the kernel fails or crashes, the rest of the system goes with it.
Happily, Linux can boast its kernel stability. Uptimes (the length of time in between
reboots) for Linux systems are often expressed in years.

Figure 9-1. A visual representation of how the Linux kernel fits into a complete system

Application

(Device Drivers/Virtual Memory/Process Managment)

Hardware
(CPU/Memory/Disk)

Application

Userland
Kernel

Sy
st

em
 C

al
ls

Application

System
 Calls Sy

st
em

C
al

ls

 224 Linux Administration: A Beginner’s Guide

FINDING THE KERNEL SOURCE CODE
Your distribution of Linux probably has the source code for the specific kernel version(s)
it supports available in one form or another. These could be in the form of a compiled
binary (*.src.rpm), a source rpm (*.srpm), or the like.

If you need to download a different (possibly newer) version than the one that your
particular Linux distribution provides, the first place to look for the source code is at the
official kernel website: www.kernel.org. This site maintains a listing of web sites mirror-
ing the kernel source, as well as tons of other open source software and general-purpose
utilities.

The main kernel.org site is mirrored around different parts of the world. The mir-
rors are intuitively named using a two-letter country code. Although you can connect to
any of the mirrors, you’ll most likely get the best performance by sticking to your own
country or any country closest to you. Go to www.xx.kernel.org, where xx is the Inter-
net country code for your country. As an example, for the United States, this address is
www.us.kernel.org.

Getting the Correct Kernel Version
The web site listing of kernels available will contain folders for v1.0, v1.1, v2.5, v2.6, and
so forth. Before you follow your natural inclination to get the latest version, make sure
you understand how the Linux kernel versioning system works.

Because Linux’s development model encourages public contributions, the latest ver-
sion of the kernel must be accessible to everyone, all the time. This presents a problem,
however: Software that is undergoing significant updates may be unstable and not of
production quality.

To circumvent this problem, early Linux developers adopted a system of using odd-
numbered kernels (1.1, 1.3, 2.1, 2.3, and so on) to indicate a design-and-development
cycle. Thus, the odd-numbered kernels carry the disclaimer that they may not be stable
and should not be used for situations for which reliability is a must. These develop-
ment kernels are typically released at a high rate, since there is so much activity around
them—new versions of development kernels can be released as often as twice a week!

On the other hand, even-numbered kernels (1.0, 1.2, 2.0, 2.2, 2.4, 2.6, and so on) are
considered ready-for-production systems. They have been allowed to mature under
the public’s usage (and scrutiny). Unlike development kernels, production kernels are
released at a much slower rate and contain mostly bug fixes.

The version of the kernel that we are going to work with in the following sec-
tion is version 2.6.27, which is available at www.kernel.org/pub/linux/kernel/v2.6/
linux-2.6.27.tar.gz.

TIP You can use the wget utility to quickly download the kernel source into your current working
directory by typing

wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.27.tar.gz

225 Chapter 9: Compil ing the Linux Kernel

Unpacking the Kernel Source Code
Most of the software packages you have dealt with so far have probably been Red Hat
Package Manager (RPM) or .deb packages, and you’re most likely accustomed to using
the tools that came with the system (such as RPM, Advanced Packaging Tool [APT], yum,
or YaST) to manage the packages. Kernel source code is a little different and requires
some user participation. Let’s go through the steps to unpack the kernel.

The kernel source consists of a bunch of different files, and because of the sheer num-
ber and size of these files collectively, it is useful to compress the files and put them all in
a single directory structure. The kernel source that you will download from the Internet
is a file that has been compressed and tarred. Therefore, to use the source, you need to
decompress and untar the source file. This is what it means to unpack the kernel. Over-
all, it’s really a straightforward process.

The traditional location for the kernel source tree on the local file system is the /usr/
src directory. For the remainder of this chapter, we’ll assume you are working out of the
/usr/src directory.

NOTE Some Linux distributions have a symbolic link under the /usr/src directory. This symbolic link
is usually named “linux” and is usually a link to a default or the latest kernel source tree. Some third-
party software packages rely on this link in order to compile or build properly!

Copy the kernel tarball that you downloaded earlier into the /usr/src directory.

[root@serverA ~]# cp linux-2.6.*.tar.gz /usr/src/

Change your working directory to the /usr/src/ directory and use the tar command
to unpack and decompress the file. Type

[root@serverA ~]# cd /usr/src/ && tar xvzf linux-2.6.*.tar.gz

You might hear your hard disk whir for a bit as this command runs—the kernel
source is, after all, a large file!

TIP Take a moment to check out what’s inside the kernel source tree. At the very least, you’ll
get a chance to see what kind of documentation ships with a stock kernel. A good portion of the
kernel documentation is conveniently stored in the Documentation directory at the root of the kernel
source tree.

BUILDING THE KERNEL
So now you have an unpacked kernel tree just waiting to be built. In this section, we’re
going to review the process of configuring and building a kernel. This is in contrast to
Windows-based operating systems, such as Windows 200x/Vista, etc., which come pre-
configured and therefore contain support for many features you may or may not want.

 226 Linux Administration: A Beginner’s Guide

The Linux design philosophy allows the individual to decide on the important parts
of the kernel. For example, if you don’t have a Small Computer System Interface (SCSI)
subsystem, what’s the point in wasting memory to support it? This individualized design
has the important benefit of letting you thin down the feature list so that Linux can run
as efficiently as possible. This is also one of the reasons why it is possible to run Linux in
various hardware setups, from low-end systems, to embedded systems, to really high-
end systems. You may find that a box incapable of supporting a Windows-based server
is more than capable of supporting a Linux-based OS.

Two steps are required in building a kernel: configuring and compiling. We won’t get
into the specifics of configuration in this chapter, which would be difficult because of the
fast-paced evolution of the Linux kernel. However, once you understand the basic pro-
cess, you should be able to apply it from version to version. For the sake of discussion,
we’ll cite examples from the v2.6.* kernel that we unpacked in the previous section.

The first step in building the kernel is configuring its features. Usually, your desired
feature list will be based on whatever hardware you need to support. This, of course,
means that you’ll need a list of that hardware.

On a system that is already running Linux, the following command will list all hard-
ware connected to the system via the Peripheral Component Interconnect (PCI) bus:

[root@serverA ~]# lspci

With this list of hardware, you’re ready to start configuring the kernel.

Avoid Needless Upgrades
Bear in mind that if you have a working system that is stable and well behaved,
there is little reason to upgrade the kernel unless one of these conditions holds
for you:

▼ There is a security fix that you must apply.

■ There is a specific new feature in a stable release that you need.

▲ There is a specific bug fix that affects you.

In the case of a security fix, decide whether the risk really affects you; e.g., if the
security issue is found in a device driver that you don’t use, then there is no reason
to upgrade. In the case of a bug fix release, read carefully through the release notes
and decide if the fixes really affect you—if you have a stable system, upgrading the
kernel with patches you never use may be pointless. On production systems, the
kernel shouldn’t simply be upgraded just to have “the latest kernel”; there should
be a truly compelling reason to upgrade.

227 Chapter 9: Compil ing the Linux Kernel

Preparing to Configure the Kernel
Now that we have a rough idea of the types of hardware and features that our new ker-
nel needs to support, we can begin the actual configuration. But first, some background
information.

The Linux kernel source tree contains several files named Makefile (a makefile is
simply a text file that describes the relationships among the files in a program). These
makefiles help to glue together the thousands of other files that make up the kernel
source. What is more important to us here—the makefiles also contain targets. The tar-
gets are the commands, or directives, that are executed by the make program.

The Makefile in the root of the kernel source tree contains specific targets that can
be used in prepping the kernel build environment, configuring the kernel, compiling
the kernel, installing the kernel, and so on. Some of the targets are discussed in more
detail here:

▼ make mrproper This target cleans up the build environment of any stale files
and dependencies that might have been left over from a previous kernel build.
All previous kernel configurations will be cleaned (deleted) from the build
environment.

■ make clean This target does not do as thorough a job as the “mrproper”
 target. It only deletes most generated files. It does not delete the kernel configu-
ration file (.config).

■ make menuconfig This target invokes a text-based editor interface with
menus, option lists, and text-based dialog boxes for configuring the kernel.

■ make xconfig This is an X Window System–based kernel configuration tool
that relies on the Qt graphical development libraries. These libraries are used by
KDE-based applications.

■ make gconfig This target also invokes an X Window System–based kernel
configuration tool, but it relies on the GTK2 (GIMP) toolkit. This GTK2 toolkit is
heavily used in the GNOME desktop world.

▲ make help This target will show you all the other possible make targets and
also serves as a quick online help system.

To configure the kernel in this section, we will make use of only one of the targets. In
particular, we will use the make xconfig command. The xconfig kernel config editor
is one of the more popular tools for configuring the Linux 2.6–series kernels. The graphi-
cal editor has a simple and clean interface, and is almost intuitive to use.

We need to change (cd) into the kernel source directory, after which we can begin
the kernel configuration. But before beginning the actual kernel configuration, you
should clean (prepare) the kernel build environment by using the make mrproper
command. Type

[root@serverA src]# cd linux-2.6.*

[root@serverA linux-2.6.*.*]# make mrproper

 228 Linux Administration: A Beginner’s Guide

Kernel Configuration
Next, we will step through the process of configuring a Linux 2.6.* series kernel. In order
to explore some of the innards of this process, we will enable the support of a specific
feature that we’ll pretend must be supported on the system. Once you understand how
this works, you can apply the same procedure to add support for any other new kernel
feature that you want. Specifically, we’ll enable support for the New Technology File
System (NTFS) file system into our custom kernel.

Most modern Linux distros that ship with the 2.6.* series kernels (where the aster-
isk is a wildcard that represents the complete version number of the kernel) also have
a kernel configuration file for the running kernel available on the local file system as
a compressed or regular file. On our sample system that runs the Fedora distro, this
file resides in the /boot directory and is usually named something like “config-2.6.*.”
The configuration file contains a list of the options and features that were enabled for
the particular kernel it represents. A config file similar to this one is what we aim to
create through the process of configuring the kernel. The only difference between the
file we’ll create and the ready-made one is that we have added further customization
to ours.

Using a known, preexisting config file as a framework for creating our own custom
file helps ensure that we don’t waste too much time duplicating the effort that other
people have already put into finding what works and what doesn’t work!

The following steps will cover how to compile the kernel after you have first gone
through the configuration of the kernel. We will be using the Graphical Kernel configura-
tion utility, so your X Window System needs to be up and running.

 1. To begin with, we’ll copy over and rename the preexisting config file from the
/boot directory into our kernel build environment. Type

[root@serverA linux-2.6.*.*]# cp /boot/config-`uname -r` .config

We use uname -r here to help us obtain the configuration file for the running
kernel. The uname -r command prints the running kernel’s release. Using it
here helps ensure that we are getting the exact version that we want, just in case
other versions are present.

NOTE The Linux kernel configuration editor specifically looks for and generates a file named .config
at the root of the kernel source tree. This file is hidden.

 2. Launch the Graphical Kernel configuration tool. Type

[root@serverA linux-2.6.*.*]# make xconfig

229 Chapter 9: Compil ing the Linux Kernel

A window similar to this will appear:

If the preceding command complains about some missing dependencies, it is
probably saying that you don’t have the appropriate Qt development environ-
ment and a few other necessary packages. Assuming that you are connected to
the Internet, you can take care of its whining by using Yum to install the proper
package(s) over the Internet by typing

[root@serverA ~]# yum install qt3-devel gcc-c++ libXi-devel

Or, on an OpenSuSE system, use YaST to install the required dependencies. Type

yast -i qt3-devel

The kernel configuration window that appears is divided into three panes. The
left pane shows an expandable tree-structured list of the overall configurable
kernel options. The upper-right pane displays the detailed configurable options
of the parent option that currently has the focus in the left pane. Finally, the
lower-right pane displays useful help information for the currently selected con-
figuration item.

 3. We will examine one very important option a little more closely by selecting it in
the left pane. Use your mouse to click the Loadable Module Support item in the
left pane. On almost all Linux distributions, you will see that the support for this
feature is enabled. In the upper-right pane, select the Enable Loadable Module

 230 Linux Administration: A Beginner’s Guide

Support option, and then study the inline help information that appears in the
lower-right pane, as shown in the following illustration.

 4. Next, we’ll add support for the NTFS file system into our custom kernel. In the
left pane, scroll through the list of available sections, and then select the File
Systems section. Then select DOS/FAT/NT Filesystems under that section.

 5. In the upper-right pane, click the box next to the NTFS File System Support
option until a little dot appears in it. Then select the boxes beside the NTFS
Debugging Support and NTFS Write Support options. A check mark should
appear in each box, like the ones shown here, when you are done:

231 Chapter 9: Compil ing the Linux Kernel

NOTE For each option, in the upper-right pane, a blank box indicates that the feature in question
is disabled. A box with a check mark indicates that the feature is enabled. A box with a dot indicates
that the feature is to be compiled as a module. Selecting the box repeatedly will cycle through the
three states.

 6. Finally, save your changes to the .config file in the root of your kernel source
tree. Click File in the menu bar of the Kernel Configuration window, and select
the Save option.

TIP To view the results of the changes you made using the qconf graphical user interface (GUI) tool,
use the grep utility to directly view the .config file that you saved. Type

[root@serverA linux-2.6.*.*]# grep -i ntfs .config

CONFIG_NTFS_FS=m

CONFIG_NTFS_DEBUG=y

CONFIG_NTFS_RW=y

 7. Close the Kernel Configuration window when you are done.

Compiling the Kernel
In the previous section, we stepped through the process of creating a configuration file
for the custom kernel that we want to build. In this section, we will now perform the
actual build of the kernel. But before doing this, we will add one more simple customiza-
tion to the entire process.

A Quick Note on Kernel Modules
Loadable module support is a kernel feature that allows the dynamic loading (or
removal) of kernel modules. Kernel modules are small pieces of compiled code
that can be dynamically inserted into the running kernel, rather than being per-
manently built into the kernel. Features not often used can thus be enabled, but
won’t occupy any room in memory when they aren’t being used. Thankfully, the
kernel can automatically determine what to load and when. Naturally, not every
feature is eligible to be compiled as a module. The kernel must know a few things
before it can load and unload modules, such as how to access the hard disk and
parse through the file system where the loadable modules are stored. Some kernel
modules are also commonly referred to as drivers.

 232 Linux Administration: A Beginner’s Guide

The final customization will be to add an extra piece of information used in the final
name of our kernel. This will help us be able to absolutely differentiate this kernel from
any other kernel with the same version number. We will add the tag “custom” to the ker-
nel version information. This can be done by editing the main Makefile and appending
the tag that we want to the EXTRAVERSION variable.

The compilation stage of the kernel-building process is by far the easiest, but it also
takes the most time. All that is needed at this point is to simply execute the make com-
mand, which will then automatically generate and take care of any dependency issues,
compile the kernel itself, and compile any features (or drivers) that were enabled as
loadable modules.

Because of the amount of code that needs to be compiled, be ready to wait a few min-
utes, at the very least, depending on the processing power of your system. Let’s dig into
the specific steps required to compile your new kernel.

 1. First we’ll add an extra piece to the identification string for the kernel we are
about to build. While still in the root of the kernel source tree, open up the
Makefile for editing with any text editor. The variable we want to change is
close to the top of the file. Change the line in the file that looks like

EXTRAVERSION =

To

EXTRAVERSION = -custom

 2. Save your changes to the file, and exit the text editor.

 3. The only command that is needed here in order to compile the kernel is the make
command. Type

[root@serverA linux-2.6.*]# make

 CHK include/linux/version.h

 UPD include/linux/version.h

.........<OUTPUT TRUNCATED>.........

 LD [M] sound/usb/snd-usb-lib.ko

 CC sound/usb/usx2y/snd-usb-usx2y.mod.o

 LD [M] sound/usb/usx2y/snd-usb-usx2y.ko

 4. The end product of this command (i.e., the kernel) is sitting pretty and waiting
in the path <kernel-source-tree>/arch/i386/boot/bzImage.

 5. Because we compiled portions of the kernel as modules (e.g., the NTFS module),
we need to install the modules. Type

[root@serverA linux-2.6.*]# make modules_install

On a Fedora system, this command will install all the compiled kernel modules
into the /lib/modules/<new_kernel-version> directory. In this example, this

233 Chapter 9: Compil ing the Linux Kernel

path will translate to the /lib/modules/2.6.27-custom/ directory. This is the path
from which the kernel will load all loadable modules, as needed.

Installing the Kernel
So now you have a fully compiled kernel just waiting to be installed. You probably have a
couple of questions: Just where is the compiled kernel, and where the heck do I install it?

The first question is easy to answer. Assuming you have a PC and are working out of
the /usr/src/<kernel-source-tree>/ directory, the compiled kernel that was created in the
previous exercise will be called /usr/src/<kernel-source-tree>/arch/i386/boot/bzImage
or, to be precise, /usr/src/linux-2.6.27/arch/i386/boot/bzImage. The corresponding map
file for this will be located at /usr/src/<kernel-source-tree>/ System.map. You’ll need
both files for the install phase.

The System.map file is useful when the kernel is misbehaving and generating
“Oops” messages. An “Oops” is generated on some kernel errors. It may be due to
kernel bugs or faulty hardware. The “Oops” error is akin to the Blue Screen of Death
(BSOD) in Microsoft Windows. These messages include a lot of detail about the current
state of the system, including several hexadecimal numbers. System.map gives Linux
a chance to turn those hexadecimal numbers into readable names, making debugging
easier. Though this is mostly for the benefit of developers, it can be handy when you’re
reporting a problem.

Let’s go through the steps required to install the new kernel image.

 1. While in the root of your kernel build directory, copy and rename the bzImage
file into the /boot directory:

[root@serverA linux-2.6.*.*]# cp arch/i386/boot/bzImage \

/boot/vmlinuz-< kernel-version >

where kernel-version is the version number of the kernel. For the sample
kernel we are using in this exercise, the filename would be vmlinuz-2.6.27-cus-
tom. So the exact command for this example is

[root@serverA linux-2.6.*.*]# cp arch/i386/boot/bzImage \

/boot/vmlinuz-2.6.27-custom

NOTE The decision to name the kernel image vmlinuz-2.6.27-custom is somewhat arbitrary.
It’s convenient, because kernel images are commonly referred to as vmlinuz, and the suffix of the
version number is useful when you have multiple kernels available. Of course, if you want to have
multiple versions of the same kernel (for instance, one with SCSI support and the other without it),
then you will need to design a more representative name. For example, you can choose a name
like vmlinuz-2.8.50-wireless for the kernel for a laptop running Linux that has special wireless
capabilities.

 234 Linux Administration: A Beginner’s Guide

 2. Now that the kernel image is in place, copy over and rename the correspond-
ing System.map file into the /boot directory using the same naming conven-
tion. Type

[root@serverA linux-2.6.*.*]# cp System.map /boot/System.map-2.6.27-custom

 3. With the kernel in place, the System.map file in place, and the modules in place,
we are now ready for the final step. Type

[root@serverA linux-2.6.*.*]# new-kernel-pkg -v --mkinitrd --depmod --install

< kernel-version >

where kernel-version is the version number of the kernel. For the sample
kernel we are using in this exercise, the kernel version is 2.6.27-custom. So the
exact command for this example is

new-kernel-pkg -v --mkinitrd --depmod --install 2.6.27-custom

The new-kernel-pkg command used here is a nifty little shell script. It may not be
available in every Linux distribution, but it is available in Fedora, Red Hat Enterprise
Linux (RHEL), and OpenSuSE. It automates a lot of the final things we’d ordinarily have
to do manually to set up the system to boot the new kernel we just built. In particular, it
does the following:

▼ It creates the appropriate initial random access memory (RAM) disk image (the
initrd image, i.e., the /boot/initrd-<kernel-version>.img file). The command
to do this manually on systems where new-kernel-pkg is not available is the
mkinitrd command.

■ It runs the depmod command (which creates a list of module dependencies).

▲ And finally, it updates the boot loader configuration (in our case, it updates the
/boot/grub/grub.conf or /boot/grub/menu.lst file).

The new entry that was automatically added to the grub.conf file after running the
preceding command on our sample system was

title Fedora (2.6.27-custom)

 root (hd0,0)

 kernel /vmlinuz-2.6.27-custom ro root=/dev/VolGroup00/LogVol00 rhgb quiet

 initrd /initrd-2.6.27-custom.img

NOTE The one thing that the new-kernel-pkg command does not do is that it does not
automatically make the most recent kernel installed the default kernel to boot. So you may have to
manually select the kernel that you want to boot from the boot loader menu while the system is booting
up. Of course, you can change this behavior by manually editing the /boot/grub/menu.1st file using
any text editor (see Chapter 6).

235 Chapter 9: Compil ing the Linux Kernel

Booting the Kernel
The next stage is to test the new kernel to make sure that your system can indeed boot
with it.

 1. Assuming you did everything the exact way that the doctor prescribed and that
everything worked out the exact way that the doctor said it would, you can
safely reboot the system and select the new kernel from the boot loader menu
during system bootup. Type

[root@serverA ~]# reboot

 2. After the system boots up, you can use the uname command to find out the
name of the current kernel. Type

[root@serverA ~]# uname -r

2.6.27-custom

 3. You will recall that one of the features that we added to our new kernel was to
enable support for the NTFS file system. Make sure that the new kernel does
indeed have support for the NTFS file system by displaying information about
the NTFS module. Type

[root@serverA ~]# modinfo ntfs

filename: /lib/modules/2.6.27-custom/kernel/fs/ntfs/ntfs.ko

license: GPL

version: 2.*

description: NTFS 1.2/3.x driver - Copyright (c) 2001-2009 An-

ton Altaparmakov

...<OUTPUT TRUNCATED>...

TIP Assuming you indeed have an NTFS-formatted file system that you want to access, you can
manually load the NTFS module by typing

[root@serverA ~]# modprobe ntfs

The Author Lied—It Didn’t Work!
The kernel didn’t fly, you say? It froze in the middle of booting? Or it booted all the way
and then nothing worked right? First and foremost, don’t panic. This kind of problem
happens to everyone, even the pros. After all, they’re more likely to try untested software
first. So don’t worry—the situation is most definitely reparable.

 236 Linux Administration: A Beginner’s Guide

First, notice that a new entry was added to the /boot/grub/grub.conf file (or the /boot/
grub/menu.1st file), and the previous entry was not removed. You can safely fall back to
the old kernel that you know works and boot into it. Reboot, and at the GRUB menu,
select the name of the previous kernel that was known to work. This action should bring
you back to a known system state.

Now go back to the kernel configuration, and verify that all the options you selected
will work for your system. For example, did you accidentally enable support for the
Sun UFS file system instead of Linux’s ext3 file system? Did you set any options that
depended on other options being set? Remember to view the informative Help screen for
each kernel option in the configuration interface, making sure that you understand what
each option does and what you need to do to make it work right.

When you’re sure you have your settings right, step through the compilation process
again and reinstall the kernel. Creating an appropriate initial RAM disk image (initrd
file) is also important (see man mkinitrd). If you are running GRUB, you simply need to
edit the /boot/grub/menu.1st file, create an appropriate entry for your new kernel, and
then reboot and try again.

Don’t worry—each time you compile a kernel, you’ll get better at it. When you do
make a mistake, it’ll be easier to go back, find it, and fix it.

PATCHING THE KERNEL
Like any other operating system, Linux periodically requires upgrades to fix bugs,
improve performance, improve security, and add new features. These upgrades come
out in two forms: in the form of a complete new kernel release and in the form of a patch.
The complete new kernel works well for people who don’t have at least one complete
kernel already downloaded. For those who do have a complete kernel already down-
loaded, patches are a much better solution because they contain only the changed code
and, as such, are quicker to download.

Think of a patch as comparable to a Windows hotfix or service pack. By itself, it’s
useless, but when added to an existing version of Windows, you (hopefully) get an
improved product. The key difference between hotfixes and patches is that patches con-
tain the changes in the source code that need to be made. This allows you to review the
source code changes before applying them. This is much nicer than guessing whether a
fix will break the system!

You can find out about new patches to the kernel at many Internet sites. Your dis-
tribution vendor’s web site is a good place to start; it’ll list not only kernel updates, but
also patches for other packages. A primary source is the official Linux Kernel Archive
at www.kernel.org. (That’s where we got the complete kernel to use as the installation
section’s example.)

In this section, we’ll demonstrate how to apply a patch to update Linux kernel
source version 2.6.27 to version 2.6.28. The exact patch file that we will use is named
patch-2.6.28.bz2.

237 Chapter 9: Compil ing the Linux Kernel

Downloading and Applying Patches
Patch files are located in the same directory from which the kernel is downloaded. This
applies to each major release of Linux; so, for example, the patch to update Linux version
2.6.49 to Linux version 2.6.50 may be located at www.kernel.org/pub/linux/kernel/
v2.6/patch-2.6.50.bz2. The test patches (or point release candidates) are stored at the
www.kernel.org web site under the /pub/linux/kernel/v2.6/testing/ directory.

Each patch filename is prefixed with the string “patch” and suffixed with the Linux
version number being installed by the patch. Note that each patch brings Linux up by
only one version; thus, the patch-2.6.50 file can only be applied to linux-2.6.49. For exam-
ple, if you have linux-2.6.48 and wish to bring it up to version 2.6.50, you’ll need two
patches: patch-2.6.49 and patch-2.6.50.

Patch files are stored on the server in a compressed format. In this example, we’ll
be using patch-2.6.28.bz2 (obtained from www.kernel.org/pub/linux/kernel/v2.6/
patch-2.6.28.bz2). You will also need the actual kernel source tarball that you want to
upgrade. In this example, we’ll use the kernel source that was downloaded from www.
kernel.org/pub/linux/kernel/v2.6/linux-2.6.27.tar.gz.

Once you have the files from the www.kernel.org site (or mirror), move them to the
/usr/src directory. We’ll assume that you unpacked the kernel source that you want to
upgrade into the /usr/src/linux-2.6.27 directory. You will next decompress the patch
using the bzip2 utility, and then pipe the resulting output to the patch program, which
will then do the actual work of patching/updating your kernel.

 1. Copy the compressed patch file that you downloaded into a directory one level
above the root of your target kernel source tree. Assuming, for example, that the
kernel you want to patch has been untarred into the /usr/src/linux-2.6.27/ direc-
tory, you would copy the patch file into the /usr/src/ directory.

 2. First, change your current working directory to the top level of the kernel source
tree. This directory in our example is /usr/src/linux-2.6.27/. Type

[root@serverA ~]# cd /usr/src/linux-2.6.27/

 3. It is a good idea to do a test run of the patching process to make sure there are no
errors and that the new patch will indeed apply cleanly. Type

[root@serverA linux-2.6.27]# bzip2 -dc ../patch-2.6.28.bz2|patch -p1 --dry-run

 4. Assuming the preceding command ran successfully without any errors, you’re
now ready to apply the patch. Run this command to decompress the patch and
apply it to your kernel:

[root@serverA linux-2.6.27]# bzip2 -dc ../patch-2.6.28.bz2 | patch -p1

where ../patch-2.6.28.bz2 is the name and path to the patch file. A stream of file-
names is printed out to your screen. Each of those files has been updated by
the patch file. If there were any problems with the upgrade, you will see them
reported here.

 238 Linux Administration: A Beginner’s Guide

TIP You might sometimes see kernel patch files with names like “patch-2.6.42-rc2.bz2” available
at the www.kernel.org web site. The “rc2” in this example, which makes up part of the patch name
and version (and hence, the final kernel version), means that the patch in question is the “release
candidate 2” patch that can be used to upgrade the appropriate kernel source tree to Linux kernel
version 2.6.42-rc2. The same goes for a patch file named “patch-2.6.42-rc6.bz2”—which will be a
“release candidate 6”—and so on.

The -rcX patches are not incremental. They can be applied to “base” kernel versions. For example,
an -rc6 patch named patch-2.6.28-rc6 should be applied on top of the base 2.6.27 kernel source.
This might require that whatever patches that may have been applied to on top of the 2.6.27 kernel
need to first be removed. So assuming we are currently running a kernel version 2.6.27.12, we need
to first download patch-2.6.27.12.bz2 (from www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.27.12.
bz2), decompress the file (bunzip2 patch-2.6.27.12.bz2), and finally use the patch command patch
-p1 -R < ../patch-2.6.27.12 to downgrade/revert to a base 2.6.27 kernel.

If the Patch Worked …
If the patch worked and you received no errors, you’re just about done! You should
then rename the directory holding the patched kernel source tree to reflect the new
version, e.g.,

mv /usr/src/linux-2.6.27 /usr/src/linux-2.6.28).

All that finally needs to be done is to recompile the kernel. Just follow the steps in the
section “Compiling the Kernel” earlier in this chapter.

If the Patch Didn’t Work …
If you had errors during the process of patching the kernel, don’t despair. This probably
means one of two things:

▼ The patch version number cannot be applied to the kernel version number (for
instance, you tried to apply patch-2.6.50.bz2 to Linux-2.6.60).

▲ The kernel source itself has changed. (This happens to developers who forget
that they made changes!)

The easiest way to fix either situation is to erase the kernel located in the directory
where you unpacked it and then unpack the full kernel there again. This will ensure that
you have a pristine kernel. Then apply the patch. It’s tedious, but if you’ve done it once,
it’s easier and faster the second time. Finally, a vanilla kernel source tree contains great
documentation about kernel patching. The file is usually found here: <kernel-source>/
Documentation/applying-patches.txt.

239 Chapter 9: Compil ing the Linux Kernel

TIP You can usually back out of (remove) any patch that you apply by using the -R option with the
patch command. For example, to back out of a patch version 2.6.60 that was applied to Linux kernel
version 2.6.59, while in the root of the kernel source tree, you would type

bzip2 -dc ../patch-2.6.60.bz2 | patch -p1 -R

Backing out of a patch can be risky at times, and it doesn’t always work—that is, your mileage
may vary!

SUMMARY
In this chapter, we discussed the process of configuring and compiling the Linux kernel.
This isn’t exactly a trivial process, but doing it gives you the power to have a fine-grained
control of your computer that simply isn’t possible with most other operating systems.
Compiling the kernel is basically a straightforward process. The Linux development
community has provided excellent tools that make the process as painless as possible.
In addition to compiling kernels, we walked through the process of upgrading kernels
using the patches available from the Linux Kernel web site, www.kernel.org.

When you compile a kernel for the first time, do it on a non-production machine, if
possible. This gives you a chance to take your time and fiddle with the many operational
parameters that are available. It also means you won’t annoy your users if something
goes wrong!

For programmers curious about the kernel’s innards, many references are available
in the form of books and web sites, and, of course, the source code itself is the ultimate
documentation.

241

10

Knobs and Dials: proc
and SysFS File Systems

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 242 Linux Administration: A Beginner’s Guide

Most operating systems offer a mechanism by which the insides of the operating
system can be probed and by which operational parameters can be set when
needed. In Linux, this mechanism is provided by the so-called virtual file

systems (e.g., proc, SysFS). Microsoft Windows operating systems allow this to some
degree through the Registry, and Solaris allows this through the ndd tool. (Solaris has a
proc file system as well.) The /proc directory is the mount point for the proc file system,
and so the two terms are often used interchangeably. The proc file system is also often
referred to as a virtual file system.

In this chapter, we discuss the proc file system and how it works under Linux. We’ll
step through some overviews and study some interesting entries in /proc, and then we’ll
demonstrate some common administrative tasks using /proc. We’ll end with a brief men-
tion of the system file system (SysFS).

WHAT’S INSIDE THE /PROC DIRECTORY?
Since the Linux kernel is such a key component in server operations, it’s important that
there be a method for exchanging information with the kernel. Traditionally, this is done
through system calls—special functions written for programmers to use in requesting
the kernel to perform functions on their behalf. In the context of system administra-
tion, however, system calls mean a developer needs to write a tool for us to use (unless,
of course, you like writing your own tools). When all you need is a simple tweak or to
extract some statistics from the kernel, having to write a custom tool is a lot more effort
than should be necessary.

To improve communication between users and the kernel, the proc file system was
created. The entire file system is especially interesting because it doesn’t really exist
on disk anywhere; it’s purely an abstraction of kernel information. All of the files in
the directory correspond either to a function in the kernel or to a set of variables in the
kernel.

NOTE That proc is abstract doesn’t mean it isn’t a file system. It does mean that a special file
system had to be developed to treat proc differently than normal disk-based file systems.

For example, to see a report on the type of processor on a system, we can consult one
of the files under the /proc directory. The particular file that holds this information is the
/proc/cpuinfo file. The file can be viewed with this command:

[root@serverA ~]# cat /proc/cpuinfo

The kernel will dynamically create the report, showing processor information, and
hand it back to cat so that we can see it. This is a simple yet powerful way for us to
examine the kernel. The /proc directory supports an easy-to-read hierarchy using sub-
directories, and, as such, finding information is easy. The directories under /proc are
also organized such that files containing information about similar topics are grouped

243 Chapter 10: Knobs and Dials: proc and SysFS Fi le Systems

together. For example, the /proc/scsi directory offers reports about the Small Computer
System Interface (SCSI) subsystem.

Even more of an advantage is that the flow of information goes both ways: The ker-
nel can generate reports for us, and we can easily pass information back into the kernel.
For instance, performing an ls -l in the /proc/sys/net/ipv4 directory will show us a lot of
files that are not read-only, but read/write, which means some of the values stored in
those files can be altered on the fly.

“Hey! Most of the /proc files have zero bytes, and one is huge! What gives?” Don’t
worry if you’ve noticed all those zero-byte files—most of the files in /proc are zero bytes
because /proc doesn’t really exist on disk. When you use cat to read a /proc file, the
content of the file is dynamically generated by a special program inside the kernel. As a
result, the report is never saved back to disk and thus does not take up space. Think of it
in the same light as Common Gateway Interface (CGI) scripts for web sites, where a web
page generated by a CGI script isn’t written back to the server’s disk, but regenerated
every time a user visits the page.

CAUTION That one huge file you see in /proc is /proc/kcore, which is really a pointer to the
contents of random access memory (RAM). So if you have 512 megabytes (MB) of RAM, the /proc/
kcore file is also 512MB. Reading /proc/kcore is like reading the raw contents of memory (and, of
course, requires root permissions).

Tweaking Files Inside of /proc
As was mentioned in the preceding section, some of the files under the /proc directory
(and subdirectories) have a read-write mode. Let us examine one of these directories a
little more closely. The files in /proc/sys/net/ipv4 represent parameters in the Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) stack that can be “tuned” dynamically.
Use the cat command to look at a particular file, and you’ll see that most of the files
contain nothing but a single number. But by changing these numbers, you can affect the
behavior of the Linux TCP/IP stack!

For example, the file /proc/sys/net/ipv4/ip_forward contains a 0 (Off) by default. This
tells Linux not to perform IP forwarding when there are multiple network interfaces. But
if you want to set up something like a Linux router, you need to allow forwarding to
occur. In this situation, you can edit the /proc/sys/net/ipv4/ip_forward file and change
the number to 1 (On).

A quick way to make this change is by using the echo command, like so:

[root@serverA ~]# echo "1" > /proc/sys/net/ipv4/ip_forward

CAUTION Be very careful when tweaking parameters in the Linux kernel. There is no safety net to
keep you from making the wrong settings for critical parameters, which means it’s entirely possible
that you can crash your system. If you aren’t sure about a particular item, it’s safer to leave it be until
you’ve found out for sure what it’s for.

 244 Linux Administration: A Beginner’s Guide

SOME USEFUL /PROC ENTRIES
Table 10-1 lists some /proc entries that you may find useful in managing your Linux system.
Note that this is a far cry from an exhaustive list. For more detail, peruse the directories
yourself and see what you find. Or you can also read the proc.txt file in the Documentation
directory of the Linux kernel source code.

Unless otherwise stated, you can simply use the cat program to view the contents of
a particular file in the /proc directory.

Table 10-1. Useful Entries under /proc

Filename Contents

/proc/cpuinfo Information about the CPU(s) in the system.

/proc/interrupts Internetworking Service Request (IRQ) usage
in your system.

/proc/ioports Displays a listing of the registered port regions
used for input or output (I/O) communication
with devices.

/proc/iomem Displays the current map of the system’s
memory for each physical device.

/proc/mdstat Status of Redundant Array of Inexpensive
Disks (RAID) configuration.

/proc/meminfo Status of memory usage.

/proc/kcore This file represents the physical memory of
the system. Unlike the other files under /proc,
this file has a size associated with it. Its size is
usually equal to the total amount of physical
RAM available.

/proc/modules Same information produced as output from
lsmod.

/proc/buddyinfo Information stored in this file can be used for
diagnosing memory fragmentation issues.

/proc/cmdline Displays the parameters passed to the
kernel when the kernel started up (boot time
parameters).

/proc/swaps Status of swap partitions, volume, and/or
files.

245 Chapter 10: Knobs and Dials: proc and SysFS Fi le Systems

Table 10-1. Useful Entries under /proc (cont.)

Filename Contents

/proc/version Current version number of the kernel, the
machine on which it was compiled, and the
date and time of compilation.

/proc/scsi/* Information about all of the SCSI devices.

/proc/net/arp Address Resolution Protocol (ARP) table
(same as output from arp -a).

/proc/net/dev Information about each network device
(packet counts, error counts, and so on).

/proc/net/snmp Simple Network Management Protocol
(SNMP) statistics about each protocol.

/proc/net/sockstat Statistics on network socket utilization.

/proc/sys/fs/* Settings for file system utilization by the
kernel. Many of these are writable values; be
careful about changing them, unless you are
sure of the repercussions of doing so.

/proc/sys/net/core/netdev_
max_backlog

When the kernel receives packets from the
network faster than it can process them, it
places them on a special queue. By default,
a maximum of 300 packets is allowed on the
queue. Under extraordinary circumstances,
you may need to edit this file and change the
value for the allowed maximum.

/proc/sys/net/ipv4/icmp_
echo_ignore_all

Default = 0, meaning that the kernel will
respond to Internet Control Message Protocol
(ICMP) echo-reply messages. Set this to 1
to tell the kernel to stop replying to those
messages.

/proc/sys/net/ipv4/icmp_
echo_ignore_broadcasts

Default = 0, meaning that the kernel will allow
ICMP responses to be sent to broadcast or
multicast addresses.

/proc/sys/net/ipv4/ip_
forward

Default = 0, meaning the kernel will not
forward packets between network interfaces.
To allow forwarding (e.g., for routing), change
this to 1.

 246 Linux Administration: A Beginner’s Guide

Enumerated /proc Entries
A listing of the /proc directory will reveal a large number of directories whose names
are just numbers. These numbers are the process identifications (PIDs) for each running
process in the system. Within each of the process directories are several files describing
the state of the process. This information can be useful in finding out how the system
perceives a process and what sort of resources the process is consuming. (From a pro-
grammer’s point of view, the process files are also an easy way for a program to get
information about itself.)

For example, a long listing of some of the files under /proc shows

[root@serverA ~]# ls -l /proc

dr-xr-xr-x 6 root root 0 2047-12-27 08:54 1

dr-xr-xr-x 6 root root 0 2047-12-27 08:54 1021

dr-xr-xr-x 6 root root 0 2047-12-27 08:54 1048

....<OUTPUT TRUNCATED>....

If you look a little closer at the folder named “1” in the preceding output, you will
notice that this particular folder represents the information about the init process.
(PID=1). A listing of the files under /proc/1/ shows

[root@serverA ~]# ls -l /proc/1

dr-xr-xr-x 2 root root 0 2047-12-27 08:57 attr

-r-------- 1 root root 0 2047-12-27 08:57 auxv

-r--r--r-- 1 root root 0 2047-12-27 08:57 cmdline

....<OUTPUT TRUNCATED>.....

lrwxrwxrwx 1 root root 0 2047-12-27 08:57 exe -> /sbin/init

Again, as you can see from the output, the /proc/1/exe file is a soft link that points
to the actual executable for the init program (/sbin/init). The same logic applies to the
other numeric-named directories that are under /proc—i.e., they represent processes.

Table 10-1. Useful Entries under /proc (cont.)

Filename Contents

/proc/sys/net/ipv4/ip_local_
port_range

Range of ports Linux will use when
originating a connection. Default =
32768–61000.

/proc/sys/net/ipv4/tcp_syn_
cookies

Default = 0 (Off). Change to 1 (On) to enable
protection for the system against SYN flood
attacks.

247 Chapter 10: Knobs and Dials: proc and SysFS Fi le Systems

COMMON PROC SETTINGS AND REPORTS
As was already mentioned, the proc file system is a virtual file system, and as a result,
changes to default settings in /proc do not survive reboots. If you need a change to a value
under /proc to be automatically set/enabled between system reboots, you can either edit
your boot scripts so that the change is made at boot time or use the sysctl tool. The for-
mer approach can, for example, be used to enable IP packet-forwarding functionality in
the kernel every time the system is booted. On a Fedora or other Red Hat–based distro,
you can add the following line to the end of your /etc/rc.d/rc.local file:

echo "1" > /proc/sys/net/ipv4/ip_forward

TIP On an Ubuntu system or other Debian-based distro, the equivalent of the /etc/rc.d/rc.local file
will be the /etc/rc.local file.

Most Linux distributions now have a more graceful way of making persistent changes
to the proc file system. In this section, we’ll look at a tool that can be used to interactively
make changes in real time to some variables stored in the proc file system.

The sysctl utility is used for displaying and modifying kernel parameters in real
time. Specifically, it can be used to tune parameters that are stored under the /proc/sys/
directory of the proc file system. A summary of its usage and options is shown here:

sysctl [options]variable[=value]

Some of the possible options are

Options Explanation

variable
[=value]

Used to set or display the value of a key, where variable is
the key and value is the value to set the key to. For instance,
a certain key is called “kernel.hostname,” and a possible
value for that key may be “serverA. example.com.”

-n Disables printing of the key name when printing values.

-e This option is used to ignore errors about unknown keys.

-w Use this option when you want to change a sysctl setting.

-p < filename > Loads in sysctl settings from the file specified or /etc/
sysctl.conf if no filename is given.

-a Displays all values currently available.

We will use actual examples to demonstrate how to use the sysctl tool. Most
of the examples shown here are Linux distribution–independent—the only differ-
ences you might encounter are that some distros might ship with some of the options
already enabled or disabled. The examples demonstrate a few of the many things you

 248 Linux Administration: A Beginner’s Guide

can do with proc to complement day-to-day administrative tasks. Reports and tun-
able options available through proc are especially useful in network-related tasks. The
examples also provide some background information about the proc setting that we
want to tune.

SYN Flood Protection
When TCP initiates a connection, the first thing it does is send a special packet to the des-
tination, with the flag set to indicate the start of a connection. This flag is known as the
SYN flag. The destination host responds by sending an acknowledgment packet back to
the source, called (appropriately) a SYNACK. Then the destination waits for the source
to return an acknowledgment, showing that both sides have agreed on the parameters of
their transaction. Once these three packets are sent (this process is called the “three-way
handshake”), the source and destination hosts can transmit data back and forth.

Because it’s possible for multiple hosts to simultaneously contact a single host, it’s
important that the destination host keep track of all the SYN packets it gets. SYN entries
are stored in a table until the three-way handshake is complete. Once this is done, the
connection leaves the SYN tracking table and moves to another table that tracks estab-
lished connections.

A SYN flood occurs when a source host sends a large number of SYN packets to a
destination with no intention of responding to the SYNACK. This results in overflow of
the destination host’s tables, thereby making the operating system unstable. Obviously,
this is not a good thing.

Linux can prevent SYN floods by using a syncookie, a special mechanism in the kernel
that tracks the rate at which SYN packets arrive. If the syncookie detects the rate going
above a certain threshold, it begins to aggressively get rid of entries in the SYN table
that don’t move to the “established” state within a reasonable interval. A second layer of
protection is in the table itself: If the table receives a SYN request that would cause the
table to overflow, the request is ignored. This means it may happen that a client will be
temporarily unable to connect to the server—but it also keeps the server from crashing
altogether and kicking everyone off!

First use the sysctl tool to display the current value for the tcp_syncookie set-
ting. Type

[root@serverA ~]# sysctl net.ipv4.tcp_syncookies

net.ipv4.tcp_syncookies = 0

The output shows that this setting is currently disabled (value=0). To turn on
tcp_syncookie support, enter this command:

[root@serverA ~]# sysctl -w net.ipv4.tcp_syncookies=1

net.ipv4.tcp_syncookies = 1

Because /proc entries do not survive system reboots, you should add the following
line to the end of your /etc/sysctl.conf configuration file. To do this using the echo com-
mand, type

echo "net.ipv4.tcp_syncookies = 1" >> /etc/sysctl.conf

249 Chapter 10: Knobs and Dials: proc and SysFS Fi le Systems

NOTE You should, of course, first make sure that the /etc/sysctl.conf file does not already contain
an entry for the key that you are trying to tune. If it does, you can simply manually edit the file and
change the value of the key to the new value.

Issues on High-Volume Servers
Like any operating system, Linux has finite resources. If the system begins to run short
of resources while servicing requests (such as web access requests), it will begin refus-
ing new service requests. The /proc entry /proc/sys/fs/file-max specifies the maximum
number of open files that Linux can support at any one time. The default value on our
Fedora system was 41962, but this may be quickly exhausted on a busy system with a
lot of network connections. Raising it to a larger number, such as 88559, may be useful.
Using the sysctl command again, type

[root@serverA ~]# sysctl -w fs.file-max=88559

fs.file-max = 88559

Don’t forget to append your change to the /etc/sysctl.conf file if you want the change
to be persistent.

Debugging Hardware Conflicts
Debugging hardware conflicts is always a chore. You can ease the burden by using some
of the entries in /proc. These two entries are specifically designed to tell you what’s going
on with your hardware:

▼ /proc/ioports tells you the relationships of devices to I/O ports and whether
there are any conflicts. With PCI devices becoming dominant, this isn’t as big an
issue. Nevertheless, as long as you can buy a new motherboard with Industry
Standard Architecture (ISA) slots, you’ll always want to have this option.

▲ /proc/interrupts shows you the association of interrupt numbers to hardware
devices. Again, like /proc/ioports, PCI is making this less of an issue.

SYSFS
SysFS (short for system file system) is similar to the proc file system previously dis-
cussed in this chapter. The major similarities between the two are that they are both vir-
tual file systems (in-memory file system) and they both provide a means for information
(data structures, actually) to be exported from within the kernel to the user space. SysFS
is usually mounted at the /sys mount point. The SysFS file system can be used to obtain
information about kernel objects, such as devices, modules, the system bus, firmware,
and so on. This file system provides a view of the device tree (among other things) as
the kernel sees it. This view displays most of the known attributes of detected devices,
such as the device name, vendor name, PCI class, IRQ and Direct Memory Access (DMA)

 250 Linux Administration: A Beginner’s Guide

resources, and power status. Some of the information that used to be available in the
Linux 2.4–series kernel versions under the proc file system can now be found under
SysFS. It provides a lot of useful information in an organized (hierarchical) manner.

Virtually all modern Linux distros have switched to using udev to manage devices.
udev is used for managing device nodes under the /dev directory. This function used to
be previously performed by the devfs. The new udev system allows the consistent nam-
ing of devices, which, in turn, is useful for the hot-plugging of devices. udev is able to do
all these wonderful things primarily because of SysFS—it does this by monitoring the /sys
directory. Using the information gleaned from the /sys directory, udev can dynamically
create and remove device nodes as they are attached to or detached from the system.

Another purpose of SysFS is that it provides a uniform view of the device space,
thus providing a sharp contrast to what was previously seen under the /dev directory.
Administrators familiar with Solaris will find themselves at home with the naming con-
ventions used. The key difference between Solaris and Linux, however, is that the rep-
resentations under SysFS do not provide means to access the device through the device
driver. For device driver–based access, administrators will need to continue using the
appropriate /dev entry.

A listing of the top level of the sysfs directory shows these directories:

[root@serverA ~]# ls /sys/

block bus class devices firmware fs kernel module power

The contents of some of the top-level directories under /sys are described as follows:

SysFS Directory Description

block This contains a listing of the block devices (e.g., sda, sr0,
fd0) detected on the system. Attributes that describe
various things (e.g., size, partitions, etc.) about the block
devices are also listed under each block device.

bus This contains subdirectories for the physical buses detected
and registered in the kernel.

class This describes a type or class of device—like an audio,
graphics printer, or network device. Each device class defines
a set of behaviors that devices in that class conform to.

devices All detected devices are listed here. It contains a listing of
every physical device that is detected by the physical bus
types registered with the kernel.

firmware This lists an interface through which firmware can be
viewed and manipulated.

module All loaded modules are listed in subdirectories here.

power This holds files that can be used to manage the power state
of certain hardware.

251 Chapter 10: Knobs and Dials: proc and SysFS Fi le Systems

A deeper look into the /sys/devices directory reveals this listing:

[root@serverA ~]# ls /sys/devices/

isa LNXSYSTM:00 pci0000:00 platform pnp0 pnp1 system virtual

If we look at a sample representation of a device connected to the PCI bus on our
system, we’ll see these elements:

[root@serverA ~]# ls -1 /sys/devices/pci0000:00/0000:00:00.0/

class

config

device

driver

enable

irq

local_cpus

....<OUTPUT TRUNCATED>....

resource

resource0

vendor

The topmost element under the devices directory in the preceding output describes
the PCI domain and bus number. The particular system bus here is the “pci0000:00” PCI
bus, where “0000” is the domain number and the bus number is “00.” The functions of
some of the other files are listed here:

File Function

class PCI class

config PCI config space

detach_state Connection status

device PCI device

irq IRQ number

local_cpus Nearby CPU mask

resource PCI resource host address

resource0 (resource0 …n) PCI resource zero

vendor PCI vendor ID (a list of vendor IDs can be
found in the /usr/share/hwdata/pci.ids file)

 252 Linux Administration: A Beginner’s Guide

SUMMARY
In this chapter, you learned about the proc file system and how you can use it to get a
peek inside the Linux kernel, as well as to influence the kernel’s operation. The tools
used to accomplish these tasks are relatively trivial (echo and cat), but the concept of a
pseudo-file system that doesn’t exist on disk can be a little difficult to grasp.

Looking at proc from a system administrator’s point of view, you learned to find
your way around the proc file system and how to get reports from various subsystems
(especially the networking subsystem). You learned how to set kernel parameters to
accommodate possible future enhancements. Finally, brief mention was made of the all-
new (and very important) SysFS virtual file system.

253

Security and Networking

III

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

255

11

TCP/IP for System
Administrators

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 256 Linux Administration: A Beginner’s Guide

Right from its inception, a key feature of UNIX has been network awareness. To
imagine a UNIX system that is not connected to a network is to imagine a sports
car without a race track. Linux inherits that legacy and keeps it going in full

strength.
To be a system administrator today is to also have a reasonably strong understanding

of the network and the protocols used to communicate over it. After all, if your server is
receiving or sending any information, you are responsible for your server’s actions.

This chapter is an introduction to the guts of the Transmission Control Protocol/
Internet Protocol, better known as TCP/IP. We’ll tackle the contents in two parts: First,
we will walk through the details of packets, Ethernet, TCP/IP, and some related protocol
details. This part may seem a little tedious at first, but perseverance will pay off in the
second part. The second part will walk through several examples of common problems
and how you can quickly identify them with your newfound knowledge of TCP/IP.
Along the way we will use a wonderful tool called tcpdump, a tool that you’ll find indis-
pensable by the end of the chapter.

Please note that the intent of this chapter is not to be a complete replacement for the
many books on TCP/IP, but rather an introduction from the standpoint of someone who
needs to worry about system administration. If you want a more complete discussion on
TCP/IP, we highly recommend TCP/IP Illustrated, Vol. 1, by Richard Stevens (Addison-
Wesley, 1994).

THE LAYERS
TCP/IP is built in layers, thus the references to TCP/IP stacks. In this section, we take a
look at what the TCP/IP layers are, their relationship to one another, and finally, why
they really don’t match the International Organization for Standardization (ISO) seven-
layer Open Systems Interconnection (OSI) model. We’ll also translate the OSI layers into
meanings that are relevant to your network.

Packets
At the bottom of the layering system is the smallest unit of data that networks like deal-
ing with: packets. Packets contain the data that we want to transmit between our systems
as well as some control information that helps networking gear determine where the
packet should go.

NOTE The terms packet and frame are often interchanged when discussing networks. In these
situations, people referring to a frame often mean a packet. The difference is subtle. A frame is the
space in which packets go on a network. At the hardware level, frames on a network are separated by
pre-ambles and post-ambles that tell the hardware where one frame begins and ends. A packet is the
data that is contained within the frame.

257 Chapter 11: TCP/IP for System Administrators

Figure 11-1. A TCP/IP packet on an Ethernet network

Ethernet
Header

IP
Header

TCP
Header

14 bytes

20 bytes

20 bytes

Data
(payload)

1446 bytes

1500 bytes

Frames under Ethernet
In the last few years, the Ethernet specification has been updated to allow frames
larger than 1518 bytes. These frames, appropriately called jumbo frames, can
hold up to 9000 bytes. This, conveniently, is enough space for a complete set of
TCP/IP headers, Ethernet headers, Network File System (NFS) control informa-
tion, and one page of memory (4K to 8K, depending on your system’s architec-
ture; Intel uses 4K pages). Because servers can now push one complete page
of memory out of the system without having to break it up into tiny packets,
throughput on some applications (such as remote disk service) can go through
the roof!

The downside to this is that very few people use jumbo frames, so you need
to make sure your network cards are compatible with your switches, etc.

A typical TCP/IP packet flowing in an Ethernet network looks like that shown in
Figure 11-1.

 258 Linux Administration: A Beginner’s Guide

As we can see in Figure 11-1, packets are layered by protocol, with the lowest layers
coming first. Each protocol uses a header to describe the information needed to move data
from one host to the next. Packet headers tend to be small—the headers for TCP, IP, and
Ethernet in their simplest and most common combined form only take 54 bytes of space
from the packet. This leaves the rest of the 1446 bytes of the packet to data.

Figure 11-2 illustrates how a packet is passed up the protocol stack. Let’s look into
this process a little more closely.

When a host’s network card receives a packet, it first checks to see if it is supposed
to accept the packet. This is done by looking at the destination addresses located in the

Figure 11-2. The path of a packet through the Linux networking stack

Ethernet

Network interface card
(Ethernet card)

Device driver

Ethernet frame handler

IP AppleTalkARP

ICMP TCP UDP

Application “sockets” interface

ApplicationApplication

259 Chapter 11: TCP/IP for System Administrators

packet’s headers. (More about that in “Headers,” later in the chapter.) If the network
card thinks that it should accept the packet, it keeps a copy of it in its memory and gener-
ates an interrupt to the operating system.

Upon receiving this interrupt, the operating system calls on the device driver of the
network interface card (NIC) to process the new packet. The device driver copies the
packet from the NIC’s memory to the system’s memory. Once it has a complete copy,
it can examine the packet and determine what type of protocol is being used. Based on
the protocol type, the device driver makes a note to the appropriate handler for that
protocol that it has a new packet to process. The device driver then puts the packet in a
place where the protocol’s software (“the stack”) can find it and returns to the interrupt
processing.

Note that the stack does not begin processing the packet immediately. This is because
the operating system may be doing something important that it needs to finish before
letting the stack process the packet. Since it is possible for the device driver to receive
many packets from the NIC quickly, a queue exists between the driver and the stack soft-
ware. The queue simply keeps track of the order in which packets arrive and notes where
they are in memory. When the stack is ready to process those packets, it grabs them from
the queue in the appropriate order.

As each layer processes the packet, appropriate headers are removed. In the case of a
TCP/IP packet over Ethernet, the driver will strip the Ethernet headers, IP will strip the
IP headers, and TCP will strip the TCP headers. This will leave just the data that needs
to be delivered to the appropriate application.

TCP/IP Model and the OSI Model
The TCP/IP model is an architectural model that helps describe the components of
the TCP/IP protocol suite. It is also known by other names: Internet reference model,
Department of Defense (DoD) ARPANET reference model. The original TCP/IP model
(RFC 1122) loosely identifies four layers: Link layer, Internet layer, Transport layer, and
Application layer.

The ISO’s OSI (Open Systems Interconnection) model is a well-known reference
model for describing the various abstraction layers in networking. The OSI model has
seven layers: Physical layer, Data Link layer, Network layer, Transport layer, Session layer,
 Presentation layer, and Application layer.

The TCP/IP model was created before the OSI model. Unfortunately, the OSI
model does not have a convenient one-to-one mapping to the original TCP/IP model.
But fortunately, there doesn’t have to be one to make the concepts useful. Software and
hardware network vendors managed to make a mapping, and a general understand-
ing of what each layer of the OSI model represents in each layer of the TCP/IP model
has emerged. Figure 11-3 shows the relative mapping between the OSI model and the
TCP/IP model.

In the following section, we will be discussing the layers of the OSI model in more
detail.

 260 Linux Administration: A Beginner’s Guide

Layer 1 (The Wire)
This is the Physical layer. It describes the actual medium on which the data flows. In a
network infrastructure, a pile of Cat 5 Ethernet cable and the signaling protocol are con-
sidered the Physical layer.

Layer 2 (Ethernet)
This is the Data Link layer. It is used to describe the Ethernet protocol. The difference
between the OSI’s view of Layer 2 and Ethernet is that Ethernet only concerns itself with
sending frames and providing a valid checksum for them. The purpose of the checksum
is to allow the receiver to validate whether the data arrived as it was sent. This is done
by computing the Cyclic Redundancy Check (CRC) of the packet contents and compar-
ing them against the checksum that was provided by the sender. If the receiver gets
a corrupted frame (that is, the checksums do not match), the packet is dropped here.
From Linux’s point of view, it should not receive a packet that the network interface card
knows is corrupted.

Although the OSI model formally specifies that Layer 2 should handle the automatic
retransmission of a corrupted packet, Ethernet does not do this. Instead, Ethernet relies
on higher-level protocols (TCP in this case) to handle retransmission.

Ethernet’s primary responsibility is simple: Get the packet from one host on a local
area network (LAN) to another host on a LAN. Ethernet has no concept of a global net-
work because of limitations on the timing of packets, as well as the number of hosts that

Figure 11-3. The OSI reference model and the TCP/IP model

Application7

2

3

4

1

Application6 Presentation

5 Session

4 Transport Transport

3 Network Internet

2 Data Link
Data Link

1 Physical

OSI Model TCP/IP Model

261 Chapter 11: TCP/IP for System Administrators

can exist on a single network segment. You’ll be pressed to find more than 200 or so
hosts on any given segment due to bandwidth issues and simple management issues. It’s
easier to manage smaller groups of machines.

NOTE Ethernet is increasingly used in metro area networks (MANs) and wide area networks (WANs)
as a framing protocol for connectivity. Although the distance may be great between two endpoints,
these networks are not the standard broadcast-style Ethernet that you see in a typical switch or hub.
Rather, networking vendors have opted to maintain the Layer 2 framing information as Ethernet so
that routers don’t need to fragment packets between networks. From a system administrator’s point
of view, don’t be concerned if your network provider says they use Ethernet in their WAN/MAN—they
haven’t strung together hundreds of switches to make the distance!

Layer 3 (IP)
This is the Network layer. And this is the layer at which the Internet Protocol (IP) exists.
IP is wiser to the world around it than Ethernet. IP understands how to communicate
with hosts inside the immediate LAN as well as with hosts that are not directly con-
nected to you (for example, hosts on other subnets, the Internet, via routers, etc.). This
means that an IP packet can make its way to any other host, so long as a path (route)
exists to the destination host.

IP understands how to get a packet from one host to another. Once a packet arrives
at the host, there is no information in the IP header to tell it which application to deliver
the data to. The reason why IP does not provide any more features than those of a simple
transport protocol is that it was meant to be a foundation for other protocols to rest on.
Of the protocols that use IP, not all of them need reliable connections or guaranteed
packet order. Thus, it is the responsibility of higher-level protocols to provide additional
features if needed.

Layer 4 (TCP, UDP)
This is the Transport layer. Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) are mapped to the Transport layer. TCP actually maps to this OSI layer
quite well by providing a reliable transport for one session, that is, a single connection
from a client program to a server program. For example, using SSH to connect to a server
creates a session. You can have multiple windows running SSH from the same client to
the same server, and each instance of SSH will have its own session.

In addition to sessions, TCP handles the ordering and retransmission of packets. If
a series of packets arrives out of order, the stack will put them back into order before
passing them up to the application. If a packet arrives with any kind of problem or goes
missing altogether, TCP will automatically request the sender to retransmit. Finally, TCP
connections are also bidirectional. This means that the client and server can send and
receive data on the same connection.

UDP, by comparison, doesn’t map quite as nicely to OSI. While UDP understands the
concept of sessions and is bidirectional, it does not provide reliability. In other words,
UDP won’t detect lost or duplicate packets the way TCP does.

 262 Linux Administration: A Beginner’s Guide

Layers 5–7 (HTTP, SSL, XML)
Technically, OSI’s Layers 5–7 each has a specific purpose, but in TCP/IP model lingo,
they’re all clumped together into the Application layer. Technically, all applications that
use TCP or UDP sit here; however, the marketplace generally calls Hypertext Transport
Protocol (HTTP) traffic Layer 7.

Secure Sockets Layer (SSL) is a bit of an odd bird and is not commonly associated
with any layer. It sits squarely between Layer 4 (TCP) and Layer 7 (Application, typi-
cally HTTP), and can be used to encrypt arbitrary TCP streams. In general, SSL is not
referred to as a layer. You should note, however, that SSL can encrypt arbitrary TCP con-
nections, not just HTTP. Many protocols, like Post Office Protocol (POP) and Internet
Message Access Protocol (IMAP), offer SSL as an encryption option, and the emergence
of SSL-virtual private network (VPN) technology shows how SSL can be used as an
arbitrary tunnel.

Extensible Markup Language (XML) data can also be confusing. To date, there is no
framing protocol for XML that runs on top of TCP directly. Instead, XML data uses exist-
ing protocols, like HTTP, Dual Independent Map Encoding (DIME), and Simple Mail
Transfer Protocol (SMTP). (DIME was created specifically for transmitting XML.) For
most applications, XML uses HTTP, which, from a layering point of view, looks like this:
Ethernet -> IP -> TCP -> HTTP -> XML. XML can wrap other XML documents within it.
For example, Simple Object Access Protocol (SOAP) can wrap digital signatures within
it. For additional information on XML itself, take a look at www.oasis-open.org and
www.w3c.org.

Why Use UDP at All?
UDP’s limitations, however, are also its strengths. UDP is a good choice for two
types of traffic: short request/response transactions that fit in one packet (like
Domain Name System [DNS]) and streams of data that are better off skipping lost
data and moving on (like streaming audio and video). In the first case, UDP is bet-
ter, because a short request/response usually doesn’t merit the overhead that TCP
requires in order to guarantee reliability. The application is usually better off add-
ing additional logic to retransmit on its own in the event of lost packets.

In the case of streaming data, developers actually don’t want TCP’s reliabil-
ity. They would prefer that lost packets are simply skipped on the (reasonable)
assumption that most packets will arrive in the desired order. This is because
human listeners/viewers are much better at handling (and much less annoyed by!)
short drops in audio than they are in delays.

263 Chapter 11: TCP/IP for System Administrators

NOTE You may hear references to “Layer 8” from time to time. This is more of a humorous reference/
sarcasm. Layer 8 typically refers to the “political” or “financial” layer, meaning that above all networks
there are people. And people, unlike networks, are nondeterministic. What may make good technical
sense for the network doesn’t always make sense from the upper management’s perspective. A
simple example: two department heads within the same company who don’t get along with each other.
When they find out they share the network, they may demand to get their own infrastructure (routers,
switches, etc.) and get placed on different networks, yet at the same time be able to communicate
with each other—through secure firewalls only. What may have been a nice, simple (and functional)
network is now much more complex than it needs to be, all because of Layer 8.

HEADERS
Earlier in the chapter, we learned that a TCP/IP packet over Ethernet was a series of
headers for each protocol, followed by the actual data being sent. “Packet headers,” as
they are typically called, are simply those pieces of information that tell the protocol how
to handle the packet.

In this section we look at each of these headers (Ethernet, IP, TCP, UDP) using the
tcpdump tool. Most Linux distributions have it preinstalled, but if you don’t, you can
quickly install it using the package management suite in your Linux distro.

NOTE You must have superuser privileges in order to run the tcpdump command.

ICMP
The Internet Control Message Protocol (ICMP) was especially designed for one
host to communicate to another host on the state of the network. Since the data is
used only by the operating system and not by users, ICMP does not support the
concept of port numbers, reliable delivery, or guaranteed order of packets.

Every ICMP packet contains a type that tells the recipient what the nature of
the message is. The most popular type is “Echo-Request,” which is used by the
infamous ping program. When a host receives the ICMP “Echo-Request” mes-
sage, it responds with an ICMP “Echo-Reply” message. This allows the sender
to confirm that the other host is up, and since we can see how long it takes the
message to be sent and replied to, we get an idea of the latency of the network
between the two hosts.

 264 Linux Administration: A Beginner’s Guide

Ethernet
Ethernet has an interesting history. As a result, there are two types of Ethernet head-
ers: 802.3 and Ethernet II. Thankfully, although they both look similar, there is a simple
test to tell them apart. Let’s begin by looking at the contents of the Ethernet header (see
Figure 11-4).

The Ethernet header contains three entries: the destination address, the source
address, and the packet’s protocol type. Ethernet addresses—also called Media Access
Control (MAC) addresses; no relation to the Apple Macintosh—are 48-bit (6-byte)
numbers that uniquely identify every Ethernet card in the world. Although it is pos-
sible to change the MAC address of an interface, this is not recommended, as the
default is guaranteed to be unique, and all MAC addresses on a LAN segment should
be unique.

NOTE A packet that is sent as a broadcast (meaning all network cards should accept this packet)
has the destination address set to ff:ff:ff:ff:ff:ff.

The packet’s protocol type is a two-byte value that tells us what protocol this packet
should be delivered to on the receiver’s side. For IP packets, this value is hex 0800 (deci-
mal 2048).

The packet we have just described here is an Ethernet II packet. (Typically, it is just
called Ethernet.) In 802.3 packets, the destination and source MAC addresses remain in
place; however, the next two bytes represent the length of the packet. The way you can

Figure 11-4. The Ethernet header

Full Ethernet Packet (46–1500 bytes)

RFC 894 requires the
minimum length to be 46 bytes

Destination
Address

Source
Address Type Data CRC

Up to 1486 bytes 4

IP Datagram

Type 0800 means “data” is an IP Datagram

0800

266

265 Chapter 11: TCP/IP for System Administrators

tell the difference between the two types of Ethernet is that there is no protocol type with
a value of less than 1500. Thus, any Ethernet header where the protocol type is less than
1500 is really an 802.3 packet. Realistically, you probably won’t see many (if any) 802.3
packets anymore.

Viewing Ethernet Headers
To see the Ethernet headers on your network, run the following command:

[root@serverA ~]# tcpdump -e

This tells tcpdump to dump the Ethernet headers along with the TCP and IP
headers.

Now generate some traffic by visiting a web site or use SSH to communicate with
another host. Doing so will generate output like this:

15:46:08.026966 0:d0:b7:6b:20:17 0:10:4b:cb:15:9f ip 191: serverA.ssh >

 10.2.2.2.4769: P 5259:5396(137) ack 1 win 17520 (DF) [tos 0x10]

15:46:08.044151 0:10:4b:cb:15:9f 0:d0:b7:6b:20:17 ip 60: 10.2.2.2.4769 >

 serverA.ssh: . ack 5396 win 32120 (DF)

The start of each line is a timestamp of when the packet was seen. The next two
entries in the lines are the source and destination MAC addresses, respectively, for the
packet. In the first line, the source MAC address is 0:d0:b7:6b:20:17, and the destination
MAC address is 0:10:4b:cb:15:9f.

After the MAC address is the packet’s type. In this case, tcpdump saw 0800 and
automatically converted it to ip for us so that it would be easier to read. If you don’t
want tcpdump to convert numbers to names for you (especially handy when your DNS
resolution isn’t working), you can run

[root@serverA ~]# tcpdump -e -n

where the -n option tells tcpdump to not do name resolution. The same two preceding
lines without name resolution would look like this:

15:46:08.026966 0:d0:b7:6b:20:17 0:10:4b:cb:15:9f 0800 191: 10.2.2.1.22 >

 10.2.2.2.4769: P 5259:5396(137) ack 1 win 17520 (DF) [tos 0x10]

15:46:08.044151 0:10:4b:cb:15:9f 0:d0:b7:6b:20:17 0800 60: 10.2.2.2.4769 >

 10.2.2.1.22: . ack 5396 win 32120 (DF)

Notice that in each line, the ip became 0800, the host name serverA became 10.2.2.1,
and the port number ssh became 22. We will discuss the meaning of the rest of the lines
in the section “TCP” later in this chapter.

IP (IPv4)
The Internet Protocol has a slightly more complex header than Ethernet, as we can see in
Figure 11-5. Let’s step through what each of the header values signifies.

 266 Linux Administration: A Beginner’s Guide

The first value in the IP header is the version number.

NOTE The version of IP that is in most common use today is version 4 (IPv4); however, you will be
seeing more of version 6 (IPv6) over the next few years. Version 6 offers many improvements (and
changes) over version 4. Examples of such improvements that IPV6 introduces are an increase in the
usable address space, integrated security, more efficient routing, auto-configuration, etc.

The next value is the length of the IP header itself. We need to know how long the
header is because there may be optional parameters appended to the end of the base
header. The header length tells us how many, if any, options are there. To get the byte
count of the total IP header length, multiply this number by 4. Typical IP headers will
have the header length value set to 5, indicating that there are 20 bytes in the complete
header.

The Type of Service (ToS) header tells IP stacks what kind of treatment should be given
to the packet. As of this writing, the only defined values are minimized delay, maximized
throughput, maximized reliability, and minimized cost. See RFCs 1340 (www.faqs.org/
rfcs/rfc1340.html) and 1349 (www.faqs.org/rfcs/rfc1349.html) for more details. The use
of ToS bits is sometimes referred to as “packet coloring”; they are used by networking
devices for the purpose of rate shaping and prioritization.

The total length value tells us how long the complete packet is, including the IP and
TCP headers, but not including the Ethernet headers. This value is represented in bytes.
An IP packet cannot be longer than 65,535 bytes.

Figure 11-5. The IP header

20 bytes

Data (if any)

Options (if any)

32-bit Source IP Address

32-bit Destination IP Address

16-bit Header Checksum

13-bit Fragment Offset
3-bit
Flags

8-bit Protocol

16-bit Identification

8-bit Time to Live (TTL)

4-bit IP
Version

4-bit Header
Length

8-bit Type of Service
(ToS) 16-bit Total Length (in bytes)

267 Chapter 11: TCP/IP for System Administrators

The identification number field is supposed to be a unique number used by a host
to identify a particular packet. The flags in the IP packet tell us whether the packet is
fragmented. Fragmentation occurs when an IP packet is larger than the smallest maxi-
mum transmission unit (MTU) between two hosts. MTU defines the largest packet that
can be sent over a particular network. For example, Ethernet’s MTU is 1500 bytes. Thus,
if we have a 4000-byte (3980 byte data + 20 byte IP header) IP packet that needs to be
sent over Ethernet, the packet will be fragmented into three smaller packets. The first
packet can be 1500 bytes (1480 byte data + 20 byte IP header), the second packet can also
be 1500 bytes (1480 byte data + 20 byte IP header), and the last packet will be 1040 bytes
(1020 byte data + 20 byte IP header).

The fragment offset value tells us which part of the complete packet we are receiving.
Continuing with the 4000-byte IP packet example, the first fragment will include bytes
0–1479 of data and will have an offset value of 0. The second fragment will include bytes
1480–2959 of data and will have an offset value of 185 (or 1480/8). And the third and
final fragment will include fragments 2960–3999 of data and will have an offset value of
370 (or 2960/8). The receiving IP stack will take these three packets and reassemble them
into one large packet before passing it up the stack.

NOTE IP fragments don’t happen too frequently over the Internet anymore. Thus, many firewalls
take a paranoid approach about dealing with IP fragments, since they can be a source of denial of
service (DoS) attacks.

The time-to-live (TTL) field is a number between 0 and 255 that signifies how much
time a packet is allowed to have on the network before being dropped. The idea behind
this is that in the event of a routing error, where the packet is going around in a circle
(also known as a “routing loop”), the TTL would cause the packet to eventually time
out and be dropped, thus keeping the network from becoming completely congested
with circling packets. As each router processes the packet, the TTL value is decreased
by one. When the TTL reaches zero, the router at which this happens sends a message
via the ICMP protocol (refer to “ICMP” earlier in the chapter), informing the sender
of this.

NOTE Layer 2 switches do not decrement the TTL, only routers. Layer 2 switch loop detection
does not rely on tagging packets, but instead uses the switches’ own protocol for communicating
with other Layer 2 switches to form a “spanning tree.” In essence, a Layer 2 switch maps all adjacent
switches and sends test packets (bridge protocol data units, or BPDUs) and looks for test packets
generated by itself. When a switch sees a packet return to it, a loop is found and the offending
port is automatically shut down to normal traffic. Tests are constantly run so that if the topology
changes or the primary path for a packet fails, ports that were shut down to normal traffic may be
reopened.

The protocol field in the IP header tells us which higher-level protocol this packet
should be delivered to. Typically, this has a value for TCP, UDP, or ICMP. In the tcpdump

 268 Linux Administration: A Beginner’s Guide

output we’ve seen, it is this value that determines whether the output reads udp or tcp
after displaying the source and destination IP/port combination.

The last small value in this IP header is the checksum. This field holds the sum of
every byte in the IP header, including any options. When a host builds an IP packet to
send, it computes the IP checksum and places it into this field. The receiver can then do
the same math and compare values. If the values mismatch, the receiver knows that the
packet was corrupted during transmission. (For example, a lightning strike creating an
electrical disturbance might create packet corruption.)

Finally, the numbers that matter the most in an IP header: the source and destina-
tion IP addresses. These values are stored as 32-bit integers instead of the more human-
readable dotted-decimal notation. For example, instead of 192.168.1.1, the value would
be hexadecimal c0a80101 or decimal 3232235777.

tcpdump and IP
By default, tcpdump doesn’t dump all of the details of the IP header. To see everything,
you need to specify the -v option. The tcpdump program will continue displaying all
matching packets until you press ctrl-c to stop the output. You can ask tcpdump to auto-
matically stop after a fixed number of packets by using the -c parameter followed by the
number of packets to look for. Finally, we can remove the timestamp for brevity by using the
-t parameter. Assuming we want to see the next two IP packets without any DNS decoding,
we would use the following parameters:

[root@serverA:~]# tcpdump -v -t -n -c 2 ip

68.121.105.169 > 68.121.105.170: icmp: echo request (ttl 127, id 21899, len 60)

68.121.105.170 > 68.121.105.169: icmp: echo reply (ttl 64, id 35004, len 60)

In the output we see a ping packet sent and returned. The format of this output is

src > dest: [deeper protocols] (ttl, id, length)

where src and dest refer to the source and destination of the packet, respectively. For TCP
and UDP packets, the source and destination will include the port number after the IP
address. The tail end of the line shows the TTL, IP ID, and length, respectively. Without
the -v option, the TTL is shown only when it is equal to 1.

TCP
The TCP header is similar to the IP header in that it packs quite a bit of information into
a little bit of space. Let’s start by looking at Figure 11-6.

The first two pieces of information in a TCP header are the source and destination
port numbers. Because these are only 16-bit values, their range is 0 to 65535. Typically,
the source port is a value greater than 1024, since ports 1 to 1023 are reserved for sys-
tem use on most operating systems (including Linux, Solaris, and the many variants of
Microsoft Windows). On the other hand, the destination port is typically low; most of the
popular services reside there, although this is not a requirement.

269 Chapter 11: TCP/IP for System Administrators

In tcpdump’s output, we see port numbers immediately after the IP address. For
example, in the output from tcpdump -n -t

192.168.1.1.2046 > 192.168.1.12.79: . 1:1(0) ack 1 win 32120 (DF)

the source port number is 2046 and the destination port number is 79.
The next two numbers in the TCP header are the sequence and acknowledgment

numbers. These values are used by TCP to ensure that the order of packets is correct and
to let the sender know which packets have been properly received. In day-to-day admin-
istrative tasks, you shouldn’t have to deal with them.

In tcpdump’s output, we see sequence numbers in packets containing data. The
format is starting number:ending number. Look at the following tcpdump output from
tcpdump -n -t:

192.168.1.1.2046 > 192.168.1.12.79: P 1:6(5) ack 1 win 32120 (DF)

We see that the sequence numbers are 1:6, meaning that the data started at sequence
number 1 and ended at sequence number 6. In the parenthesized number immediately
following the sequence numbers, we can see the length of the data being sent (five bytes
in this example).

In this sample output, we also see the acknowledgment number. Whenever the
packet has the acknowledgment flag set, it can be used by the receiver to confirm how
much data has been received from the sender (refer to the discussion of the ACK flag

Figure 11-6. The TCP header

Data (if any)

Options (if any)

16-bit Source Port Number 16-bit Destination Port Number

32-bit Sequence Number

32-bit Acknowledgment Number

20 bytes

16-bit TCP Checksum 16-bit Urgent Pointer

16-bit Window Size4-bit Header
Length

6-bit
Reserved

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

 270 Linux Administration: A Beginner’s Guide

later in this section). tcpdump prints ack, followed by the acknowledgment number,
when it sees a packet with the acknowledgment bit set. In this case, the acknowledg-
ment number is 1, meaning that 192.168.1.1 is acknowledging the first byte sent to it by
192.168.1.12 in the current connection.

NOTE In order to make the output more readable, tcpdump uses relative values. Thus, a sequence
number of 1 really means that the data contained within the packet is the first byte being sent. If you
want to see the actual sequence number, use the -S option.

Similar to IP’s header length, TCP’s header length tells us how long the header is,
including any TCP options. Whatever value is in the header length field is multiplied by
4 to get the byte value.

This next part is a bit tricky. TCP uses a series of flags to indicate whether the packet
is supposed to initiate a connection, contain data, or terminate a connection. The flags
(in the order they appear) are: Urgent (URG), Acknowledge (ACK), Push (PSH), Reset
(RST), Synchronize (SYN), and Finish (FIN). Their meanings are as follows:

Flag Meaning

URG Implies that there is urgent data in the packet that should receive
priority processing.

ACK Acknowledgment of successfully received data.

PSH Request to immediately process any received data.

RST Immediately terminates the connection.

SYN Request to start a new connection.

FIN Request to finish a connection.

These flags are typically used in combination with one another. For example, it is
common to see PSH and ACK together. Using this combination, the sender essentially
tells the receiver two things:

 ▼ There is data in this packet that needs to be processed.

 ▲ I am acknowledging that I have received data from you successfully.

You can see which flags are in a packet in tcpdump’s output immediately after the
destination IP address and port number. For example,

192.168.1.1.2046 > 192.168.1.12.79: P 1:6(5) ack 1 win 32120 (DF)

In the preceding line, we see the flag is P for PSH. tcpdump uses the first character
of the flag’s name to indicate the flag’s presence (such as S for SYN or F for FIN). The

271 Chapter 11: TCP/IP for System Administrators

only exception to this is ACK, which is actually spelled out as ack later in the line. (If the
packet has only the ACK bit set, a period is used as a placeholder where the flags are usu-
ally printed.) ACK is an exception, because it makes it easier to find what the acknowl-
edgment number is for that packet. (See the discussion on acknowledgment numbers
earlier in this section; we will discuss flags in greater detail when we discuss connection
establishment and teardown.)

The next entry in the header is the window size. TCP uses a technique called sliding
window, which allows each side of a connection to tell the other how much buffer space it
has available for dealing with connections. When a new packet arrives on a connection,
the available window size decreases by the size of the packet until the operating system
has a chance to move the data from TCP’s input buffer to the receiving application’s buf-
fer space. Window sizes are computed on a connection-by-connection basis. Let’s look at
some output from tcpdump -n -t as an example:

192.168.1.1.2046 > 192.168.1.12.79: . 6:8(2) ack 1 win 32120 (DF)

192.168.1.12.79 > 192.168.1.1.2046: . 1:494(493) ack 8 win 17520 (DF)

192.168.1.1.2046 > 192.168.1.12.79: . 8:8(0) ack 495 win 31626 (DF)

192.168.1.1.2046 > 192.168.1.12.79: . 8:8(0) ack 495 win 32120 (DF)

In the first line, we can see that 192.168.1.1 is telling 192.168.1.12 that it currently has
32,120 bytes available in its buffer for this particular connection. In the second packet,
192.168.1.12 sends 493 bytes to 192.168.1.1. (At the same time, 192.168.1.12 tells 192.168.1.1
that its available window is 17,520 bytes.) 192.168.1.1 responds to 192.168.1.12 with an
acknowledgment saying it has properly accepted everything up to the 495th byte in the
stream, which in this case includes all of the data that has been sent by 192.168.1.12. It’s
also acknowledging that its available window is now 31,626, which is exactly the origi-
nal window size (32,120) minus the amount of data that has been received (493 bytes).
A few moments later, in the fourth line, 192.168.1.1 sends a note to 192.168.1.12 stating
that it has successfully transferred the data to the application’s buffer and that its win-
dow is back to 32,120.

A little confusing? Don’t worry too much about it. As a system administrator, you
shouldn’t have to deal with this level of detail, but it is helpful to know what the num-
bers mean.

NOTE You may have noticed an off-by-one error in the math here. 32,120 – 493 is 31,627, not
31,626. This has to do with the nuances of sequence numbers, calculations of available space, etc.
For the full ugliness of how the math works, read RFC 793 (ftp://ftp.isi.edu/in-notes/rfc793.txt).

The next element in the TCP header is the checksum. This is similar to the IP checksum
in that its purpose is to provide the receiver a way of verifying that the data received isn’t
corrupted. Unlike the IP checksum, the TCP checksum actually takes into account both
the TCP header and the data being sent. (Technically, it also includes the TCP pseudo-
header, but being system administrators, that’s another mess we can skip over.)

 272 Linux Administration: A Beginner’s Guide

Finally, the last piece of the TCP header is the urgent pointer. The urgent pointer points
to the offset of the octet following important data. This value is observed when the URG
flag is set and tells the receiving TCP stack that some important data is present. The TCP
stack is supposed to relay this information to the application so that it knows it should
treat that data with special importance.

In reality, you’ll be hard pressed to see a packet that uses the URG bit. Most appli-
cations have no way of knowing whether data sent to them is urgent or not, and most
applications don’t really care. As a result, a small chord of paranoia should strike you
if you do see urgent flags in your network. Make sure it isn’t part of a probe from the
outside trying to exploit bugs in your TCP stack and cause your servers to crash. (Don’t
worry about Linux—it knows how to handle the urgent bit correctly.)

UDP
In comparison to TCP headers, UDP headers are much simpler. Let’s start by looking at
Figure 11-7.

The first fields in the UDP header are the source and destination ports. These are
conceptually the same thing as the TCP port numbers. In tcpdump output, they appear
in a similar manner. Let’s look at a DNS query to resolve www.example.com into an IP
address as an example with the command tcpdump -n -t port 53:

192.168.1.1.1096 > 192.168.1.8.53: 25851+ A? www.example.com. (31)

In this output, we can see that the source port of this UDP packet is 1096 and the
destination port is 53. The rest of the line is the DNS request broken up into a human-
readable form. The next field in the UDP header is the length of the packet. tcpdump
does not display this information.

Finally, the last field is the UDP checksum. This is used by UDP to validate that
the data has arrived to its destination without corruption. If the checksum is corrupted,
tcpdump will tell you.

Figure 11-7. The UDP packet header

16-bit Source Port Number

16-bit UDP Length

16-bit Destination Port Number

16-bit UDP Checksum

8 bytes

Data (if any)

273 Chapter 11: TCP/IP for System Administrators

A COMPLETE TCP CONNECTION
As we discussed earlier, TCP supports the concept of a connection. Each connection must
go through a sequence to get established; once both sides are done sending data, they
must go through another sequence to close the connection. In this section, we review the
complete process of a simple HTTP request and view the process as seen by tcpdump.
Note that all of the tcpdump logs in this section were generated with the tcpdump -n
-t port 80 command. Unfortunately, because of the complex nature of TCP, we can-
not cover every possible scenario that a TCP connection can take. However, the coverage
given here should be enough to help you determine when things are going wrong at the
network level rather than at the server level.

Opening a Connection
TCP goes through a three-way handshake for every connection that it opens up. The reason
for this is to allow both sides to send each other their state information and give each
other a chance to acknowledge the receipt of that data.

The first packet is sent by the host that wants to open the connection with a server. For
this discussion, we will call this host the client. The client sends a TCP packet over IP and
sets the TCP flag to SYN. The sequence number is the initial sequence number that the
client will use for all of the data it will send to the other host (which we’ll call the server).

The second packet is sent from the server to the client. This packet contains two TCP
flags set: SYN and ACK. The purpose of the ACK is to tell the client that it has received
the first SYN packet. This is double-checked by placing the client’s sequence number
in the acknowledgment field. The purpose of the SYN is to tell the client with which
sequence number the server will be sending its responses.

Finally, the third packet goes from the client to the server. It has only the ACK bit set
in the TCP flags for the purpose of acknowledging to the server that it received its SYN.
This ACK packet has the client’s sequence number in the sequence number field and the
server’s sequence number in the acknowledgment field.

Sound a little confusing? Don’t worry—it is. Let’s try to clarify it with a real example
from tcpdump. The first packet is sent from 192.168.1.1 to 207.126.116.254, and it looks
like this (note that both lines are actually one long line):

192.168.1.1.1367 > 207.126.116.254.80: S 2524389053:2524389053(0)

win 32120 <mss 1460,sackOK,timestamp 26292983 0,nop,wscale 0> (DF)

We can see the client’s port number is 1367 and the server’s port number is 80. The S
means that the SYN bit is set and that the sequence number is 2524389053. The 0 in the
parentheses after the sequence number means that there is no data in this packet. After
the window is specified as being 32,120 bytes large, we see that tcpdump has shown
us which TCP options were part of the packet. The only option worth noting as a sys-
tem administrator is the MSS (Maximum Segment Size) value. This value tells us the

 274 Linux Administration: A Beginner’s Guide

 maximum size that TCP is tracking for a nonsegmented packet for that given connection.
Connections that require small MSS values because of the networks that are being tra-
versed typically require more packets to transmit the same amount of data. More packets
mean more overhead, and that means more CPU required to process a given connection.

Notice that there is no acknowledgment bit set and no acknowledgment field to
print. This is because the client has no sequence number to acknowledge yet! Time for
the second packet from the server to the client:

207.126.116.254.80 > 192.168.1.1.1367: S 1998624975:1998624975(0)

ack 2524389054 win 32736 <mss 1460>

Like the first packet, the second packet has the SYN bit set, meaning that it is telling
the client what it will start its sequence number with (in this case, 1998624975). It’s OK
that the client and server use different sequence numbers. What’s important, though, is
that the server acknowledges receiving the client’s first packet by turning the ACK bit
on and setting the acknowledgment field to 2524389054 (the sequence number that the
client used to send the first packet plus one).

Now that the server has acknowledged receiving the client’s SYN, the client needs to
acknowledge receiving the server’s SYN. This is done with a third packet that has only
the ACK bit set in its TCP flags. This packet looks like this:

192.168.1.1.1367 > 207.126.116.254.80: . 1:1(0) ack 1 win 32120 (DF)

We can clearly see that there is only one TCP bit set: ACK. The value of the acknowl-
edgment field is shown as a 1. But wait! Shouldn’t it be acknowledging 1998624975?
Well, don’t worry—it is. tcpdump has been kind enough to automatically switch into
a mode that prints out the relative sequence and acknowledgment numbers instead of
the absolute numbers. This makes the output much easier to read. So in this packet, the
acknowledgment value of 1 means that it is acknowledging the server’s sequence num-
ber plus one. We now have a fully established connection.

So why all the hassle to start a connection? Why can’t the client just send a single
packet over to the server stating, “I want to start talking, okay?” and have the server
send back an “okay”? The reason is that without all three packets going back and forth,
neither side is sure that the other side received the first SYN packet—and that packet is
crucial to TCP’s ability to provide a reliable and in-order transport.

Transferring Data
With a fully established connection in place, both sides are able to send data. Since we
are using an HTTP request as an example, we will first see the client generate a simple
request for a web page. The tcpdump output looks like this:

192.168.1.1.1367 > 207.126.116.254.80: P 1:8(7) ack 1 win 32120 (DF)

Here we see the client sending seven bytes to the server with the PSH bit set. The
intent of the PSH bit is to tell the receiver to immediately process the data, but because of

275 Chapter 11: TCP/IP for System Administrators

the nature of the Linux network interface to applications (sockets), setting the PSH bit is
unnecessary. Linux (like all socket-based operating systems) automatically processes the
data and makes it available for the application to read as soon as it can.

Along with the PSH bit is the ACK bit. This is because TCP always sets the ACK bit
on outgoing packets. The acknowledgment value is set to 1, which, based on the connec-
tion setup we observed in the previous section, means that there has been no new data
that needs acknowledging.

Given that this is an HTTP transfer, it is safe to assume that since it is the first packet
going from the client to the server, it is probably the request itself.

Now the server sends a response to the client with this packet:

207.126.116.254.80 > 192.168.1.1.1367: P 1:767(766) ack 8 win 32736 (DF)

Here the server is sending 766 bytes to the client and acknowledging the first 8 bytes
that the client sent to the server. This is probably the HTTP response. Since we know that
the page we requested is small, this is probably all of the data that is going to be sent in
this request.

The client acknowledges this data with the following packet:

192.168.1.1.1367 > 207.126.116.254.80: . 8:8(0) ack 767 win 31354 (DF)

This is a pure acknowledgment, meaning that the client did not send any data, but it did
acknowledge up to the 767th byte that the server sent.

The process of the server sending some data and then getting an acknowledgment
from the client can continue as long as there is data that needs to be sent.

Closing the Connection
TCP connections have the option of ending ungracefully. That is to say, one side can tell
the other “stop now!” Ungraceful shutdowns are accomplished with the RST (reset) flag,
which the receiver does not acknowledge upon receipt. This is to keep both hosts from
getting into an “RST war” where one side resets and the other side responds with a reset,
thus causing a neverending ping-pong effect.

Let’s start with examining a clean shutdown of the HTTP connection we’ve been
observing so far. In the first step in shutting down a connection, the side that is ready to
close the connection sends a packet with the FIN bit set, indicating that it is finished. Once
a host has sent a FIN packet for a particular connection, it is not allowed to send anything
other than acknowledgments. This also means that even though it may be finished, the
other side may still send it data. It is not until both sides send a FIN that both sides are
finished. And like the SYN packet, the FIN packet must receive an acknowledgment.

In the next two packets, we see the server tell the client that it is finished sending data
and the client acknowledges this:

207.126.116.254.80 > 192.168.1.1.1367: F 767:767(0) ack 8 win 32736

192.168.1.1.1367 > 207.126.116.254.80: . 8:8(0) ack 768 win 31353 (DF)

 276 Linux Administration: A Beginner’s Guide

We then see the reverse happen. The client sends a FIN to the server, and the server
acknowledges it:

192.168.1.1.1367 > 207.126.116.254.80: F 8:8(0) ack 768 win 32120 (DF)

207.126.116.254.80 > 192.168.1.1.1367: . 768:768(0) ack 9 win 32735 (DF)

And that’s all there is to a graceful connection shutdown.
As we indicated earlier, an ungraceful shutdown is simply one side sending another

the RST packet, which looks like this:

192.168.1.1.1368 > 207.126.116.254.80: R 93949335:93949349(14) win 0

In this example, 192.168.1.1 is ending a connection with 207.126.116.254 by sending a
reset. After receiving this packet, running netstat on 207.126.116.254 (which happens
to be another Linux server) affirmed the connection was completely closed.

HOW ARP WORKS
The Address Resolution Protocol (ARP) is a mechanism that allows IP to map Ethernet
addresses to IP addresses. This is important, because when you send a packet on an Eth-
ernet network, it is necessary to put in the Ethernet address of the destination host.

The reason we separate ARP from Ethernet, IP, TCP, and UDP is that ARP packets
do not go up the normal packet path. Instead, because ARP has its own Ethernet header
type (0806), the Ethernet driver sends the packet to the ARP handler subsystem, which
has nothing to do with TCP/IP.

The basic steps of ARP are as follows:

 1. The client looks in its ARP cache to see if it has a mapping between its IP address
and its Ethernet address. (You can see your ARP cache by running arp -a on
your system.)

 2. If an Ethernet address for the requested IP address is not found, a broadcast
packet is sent out requesting a response from the person with the IP we want.

 3. If the host with that IP address is on the LAN, it will respond to the ARP
request, thereby informing the sender of what its Ethernet address/IP address
combination is.

 4. The client saves this information in its cache and is now ready to build a packet
for transmission.

We can see an example of this from tcpdump with the command tcpdump -e -t
-n arp:

0:a0:cc:56:fc:e4 0:0:0:0:0:0 arp 60: arp who-has 192.168.1.1 tell 192.168.1.8

0:10:4b:cb:15:9f 0:a0:cc:56:fc:e4 arp 42: arp reply 192.168.1.1

(0:10:4b:cb:15:9f) is-at 0:10:4b:cb:15:9f

277 Chapter 11: TCP/IP for System Administrators

The first packet is a broadcast packet asking all of the hosts on the LAN for 192.168.1.1’s
Ethernet address. The second packet is a response from 192.168.1.1 giving its IP/MAC
address mapping.

This, of course, begs the question: “If we can find the MAC address of the destination
host using a broadcast, why can’t we just send all packets to the broadcast?” The answer
has two parts. The first is that the broadcast packet requires that hosts on the LAN receiv-
ing the packet take a moment and process it. This means that if two hosts are having an
intense conversation (such as a large file transfer), all of the other hosts on the same LAN
would incur a lot of overhead checking on packets that don’t belong to them. The second
reason is that networking hardware (such as switches) relies on Ethernet addresses in
order to quickly forward packets to the right place and to minimize network congestion.
Any time a switch sees a broadcast packet, it must forward that packet to all of its ports.
This makes a switch no better than a hub.

“Now, if I need the MAC address of the destination host in order to send a packet to
it, does that mean I have to send an ARP request to hosts that are sitting across the Inter-
net?” The answer is a reassuring no.

When IP figures out where a packet should head off to, it first checks the routing
table. If it can’t find the appropriate route entry, IP looks for a default route. This is the
path that, when all else fails, should be taken. Typically, the default route points to a
router or firewall that understands how to forward packets to the rest of the world.

This means that when a host needs to send something to another server across the
Internet, it only needs to know how to get the packet to the router, and, therefore, it only
needs to know the MAC address of the router.

To see this happen on your network, do a tcpdump on your host and then visit a
web site that is elsewhere on the Internet, such as www.yahoo.com. You will see an ARP
request from your machine to your default route, a reply from your default route, and
then the first packet from your host with the destination IP of the remote web server.

The ARP Header: ARP Works with Other Protocols, Too!
The ARP protocol is not specific to Ethernet and IP. To see why, let’s take a quick peek at
the ARP header (see Figure 11-8).

The first field that we see in the ARP header is the hard type. The hard type field
specifies the type of hardware address. (Ethernet has the value of 1.)

The next field is the prot type. This specifies the protocol address being mapped. In
the case of IP, this is set to 0800 (hexadecimal).

The hard size and prot size fields that immediately follow tell ARP how large the
addresses it is mapping are. Ethernet has a size of 6, and IP has a size of 4.

The op field tells ARP what needs to be done. ARP requests are 1, and ARP replies
are 2.

NOTE There is a variant of ARP called RARP (which stands for Reverse ARP). RARP has different
values for the op field.

 278 Linux Administration: A Beginner’s Guide

Finally, there are the fields that we are trying to map. A request has the sender’s
 Ethernet and IP addresses as well as the destination IP address filled in. The reply fills in
the destination Ethernet address and responds to the sender.

BRINGING IP NETWORKS TOGETHER
Now that we have some of the fundamentals of TCP/IP under our belt, let’s take a look
at how they work to let us glue networks together. In this section, we cover the differ-
ences between hosts and networks, netmasks, static routing, and some basics in dynamic
routing.

The purpose of this section is not to show you how to configure a Linux router, but
to introduce the concepts. Although you may find it less exciting than actually play-
ing, you’ll find that understanding the basics makes playing a little more interesting.
More importantly, should you be looking to apply for a Linux system administrator’s
job, these could be things that pop up as part of the interview questions.

Hosts and Networks
The Internet is a large group of interconnected networks. All of these networks have
agreed to connect with some other network, thus allowing everyone to connect to one
another. Each of these component networks is assigned a network address.

Traditionally, in a 32-bit IP address, the network component typically takes up 8, 16,
or 24 bits to encode a class A, B, or C network, respectively. Since the remainder of the
bits in the IP address is used to enumerate the host within the network, the fewer bits
that are used to describe the network, the more bits are available to enumerate the hosts.
For example, class A networks have 24 bits left for the host component, which means
there can be upward of 16,777,214 hosts within that network. (Classes B and C have
65,534 and 254 nodes, respectively.)

Figure 11-8. The ARP packet header

Ethernet
Destination

Address

Ethernet Header 28-byte ARP request/reply

Ethernet
Source

Address

Sender
Ethernet
Address

Target
Ethernet
Address

Target IP
Address

44621122266 6

Sender IP
AddressType Hard

Type
Prot
Type op

Hard Size

Prot Size

279 Chapter 11: TCP/IP for System Administrators

NOTE There are also class D and class E ranges. Class D is used for multicast, and class E is
reserved for experimental use.

To better organize the various classes of networks, it was decided early in IP’s life
that the first few bits would decide to which class the address belonged. For the sake of
readability, the first octet of the IP address specifies the class.

NOTE An octet is eight bits, which in the typical dotted-decimal notation of IP means the number
before a dot. For example, in the IP address 192.168.1.42, the first octet is 192, the second octet is
168, and so on.

The ranges are as follows:

Class Octet Range

A 0–126

B 128–192.167

C 192.169–223

You probably noted some gaps in the ranges. This is because there are some special
addresses that are reserved for special uses. The first special address is one you are likely
to be familiar with: 127.0.0.1. This is also known as the loopback address. It is set up on
every host using IP so that it can refer to itself. It seems a bit odd to do it this way, but just
because a system is capable of speaking IP doesn’t mean it has an IP address allocated to
it! On the other hand, the 127.0.0.1 address is virtually guaranteed. (If it isn’t there, more
likely than not, something has gone wrong.)

Three other ranges are notable: Every IP address in the 10.0.0.0 network, the 172.16–
172.31 networks, and the 192.168 network is considered a private IP. These ranges are not
allowed to be allocated to anyone on the Internet, and, therefore, you may use them on
your internal networks.

NOTE We define internal networks as networks that are behind a firewall—not really connected to
the Internet—or that have a router performing network address translation at the edge of the network
connecting to the Internet. (Most firewalls perform this address translation as well.)

Subnetting
Imagine a network with a few thousand hosts on it, which is not unreasonable in a
medium-sized company. Trying to tie them all together into a single large network would
probably lead you to pull out all your hair, bang your head on the wall, or possibly both.
And that’s just the figurative stuff.

 280 Linux Administration: A Beginner’s Guide

The reasons for not keeping a network as a single large entity range from technical
issues to political ones. On the technical front, there are limitations to every technology
on how large a network can get before it becomes too large. Ethernet, for instance, cannot
have more than 1024 hosts on a single collision domain. Realistically, having more than
a dozen on an even mildly busy network will cause serious performance issues. Even
migrating hosts to switches doesn’t solve the entire problem, since switches, too, have
limitations on how many hosts they can deal with.

Of course, you’re likely to run into management issues before you hit limitations of
switches; managing a single large network is difficult. Furthermore, as an organization
grows, individual departments will begin compartmentalizing. Human resources is usu-
ally the first candidate to need a secure network of its own so that nosy engineers don’t
peek into things they shouldn’t. In order to support a need like that, you need to create
subnetworks, a task more commonly referred to as subnetting.

Assuming our corporate network is 10.0.0.0, we could subnet it by setting up smaller
class C networks within it, such as 10.1.1.0, 10.1.2.0, 10.1.3.0, and so on. These smaller
networks would have 24-bit network components and 8-bit host components. Since the
first 8 bits would be used to identify our corporate network, we could use the remaining
16 bits of the network component to specify the subnet, giving us 65,534 possible subnet-
works. Of course, you don’t have to use all of them!

NOTE As we’ve seen earlier in this chapter, network addresses have the host component of an IP
address typically set to all zeros. This convention makes it easy for other humans to recognize which
addresses correspond to entire networks and which addresses correspond specifically to hosts.

Netmasks
The purpose of a netmask is to tell the IP stack which part of the IP address is the network
and which part is the host. This allows the stack to determine whether a destination IP
address is on the LAN or if it needs to be sent to a router for forwarding elsewhere.

The best way to start looking at netmasks is to look at IP addresses and netmasks
in their binary representations. Let’s look at the 192.168.1.42 address with the netmask
255.255.255.0:

Dotted Decimal Binary

192.168.1.42 11000000 10101000 00000001 00101010

255.255.255.0 11111111 11111111 11111111 00000000

In this example, we want to find out what part of the IP address 192.168.1.42 is net-
work and what part is host. Now, according to the definition of netmask, those bits that
are zero are part of the host. Given this definition, we see that the first three octets make
up the network address and the last octet makes up the host.

281 Chapter 11: TCP/IP for System Administrators

In discussing network addresses with other people, it’s often handy to be able to state
the network address without having to give the original IP address and netmask. Thank-
fully, this network address is computable, given the IP address and netmask, using a
bitwise AND operation.

The way the bitwise AND operation works can be best explained by observing the
behavior of two bits being ANDed together. If both bits are 1, then the result of the AND
is also 1. If either bit (or both bits) is zero, the result is zero. We can see this more clearly
in this table:

Bit 1 Bit 2 Result of Bitwise AND

0 0 0

0 1 0

1 0 0

1 1 1

So computing the bitwise AND operation on 192.168.1.42 and 255.255.255.0 yields
the bit pattern 11000000 10101000 00000001 00000000. Notice that the first three octets
remained identical and the last octet became all zeros. In dotted-decimal notation, this
reads 192.168.1.0.

NOTE Remember that we need to give up one IP to the network address and one IP to the
broadcast address. In this example, the network address is 192.168.1.0 and the broadcast address is
192.168.1.255.

Let’s walk through another example. This time, we want to find the address range
available to us for the network address 192.168.1.176 with a netmask of 255.255.255.240.
(This type of netmask is commonly given by ISPs to business digital subscriber line
[DSL] and T1 customers.)

A quick breakdown of the last octet in the netmask shows us that the bit pattern for 240
is 11110000. This means that the first three octets of the network address, plus four bits into
the fourth octet, are held constant (255.255.255.240 in binary is 11111111 11111111 11111111
11110000). Since the last four bits are variable, we know we have 16 possible addresses
(24 = 16). Thus, our range goes from 192.168.1.176 to 192.168.1.192 (192 − 176 = 16).

Because it is so tedious to type out complete netmasks, most people use the abbrevi-
ated format, where the network address is followed by a slash and the number of bits in
the netmask. So the network address 192.168.1.0 with a netmask of 255.255.255.0 would
be abbreviated to 192.168.1.0/24.

NOTE The process of using netmasks that do not fall on the class A, B, or C boundaries is
also known as classless interdomain routing (CIDR). You can read more about CIDR in RFC 1817
(www.rfc-editor.org/rfc/rfc1817.txt).

 282 Linux Administration: A Beginner’s Guide

Static Routing
When two hosts on the same LAN want to communicate, it is quite easy for them to find
each other: Simply send out an ARP message, get the other host’s MAC address, and be
done with it. But when the second host is not local, things become trickier.

In order to get two or more LANs to communicate with one another, a router needs
to be put into place. The purpose of the router is to know about the topology of multiple
networks. When you want to communicate with another network, your machine will set
the destination IP as the host on the other network, but the destination MAC address will
be for the router. This allows the router to receive the packet and examine the destina-
tion IP, and since it knows that IP is on the other network, it will forward the packet. The
reverse is also true for packets that are coming from the other network to our network
(see Figure 11-9).

In turn, the router must know what networks are plugged into it. This information
is called a routing table. When the router is manually informed about what paths it can
take, the table is called static, thus the term static routing. Once routes are plugged into the
routing table by a human, they cannot be changed until a human operator comes back
to change them.

Unfortunately, commercial grade routers can be rather expensive devices. They are
typically dedicated pieces of hardware that are highly optimized for the purpose of for-
warding packets from one interface to another. You can, of course, make a Linux-based
router (we discuss this in Chapter 12) using a stock PC that has two or more network
cards. Such configurations are fast and cheap enough for small to medium-sized net-
works. In fact, many companies are already starting to do this, since older PCs that are
too slow to run the latest web browsers and word-processing applications are still plenty
fast to perform routing.

As with any advice, take it within the context of your requirements, budget, and
skills. Open source and Linux are great tools, but like anything else, make sure you’re
using the right tool for the job.

Figure 11-9. Two networks connected by a router

Subnet

Router

Subnet

283 Chapter 11: TCP/IP for System Administrators

Routing Tables
As mentioned earlier, routing tables are lists of network addresses, netmasks, and desti-
nation interfaces. A simplified version of a table might look like this:

Network Address Netmask Destination Interface

192.168.1.0 255.255.255.0 Interface 1

192.168.2.0 255.255.255.0 Interface 2

192.168.3.0 255.255.255.0 Interface 3

Default 0.0.0.0 Interface 4

When a packet arrives at a router that has a routing table like this, it will go through
the list of routes and apply each netmask to the destination IP address. If the resulting
network address is equal to the network address in the table, the router knows to for-
ward the packet on to that interface.

So let’s say that the router receives a packet with the destination IP address set to
192.168.2.233. The first table entry has the netmask 255.255.255.0. When this netmask
is applied to 192.168.2.233, the result is not 192.168.1.0, so the router moves on to the
second entry. Like the first table entry, this route has the netmask of 255.255.255.0. The
router will apply this to 192.168.2.233 and find that the resulting network address is
equal to 192.168.2.0. So now the appropriate route is found. The packet is forwarded out
of interface 2.

If a packet arrives that doesn’t match the first three routes, it will match the default
case. In our sample routing table, this will cause the packet to be forwarded to inter-
face 4. More than likely, this is a gateway to the Internet.

Limitations of Static Routing
The example of static routing we’ve used is typical of smaller networks. Static routing
is useful when there are only a handful of networks that need to communicate with one
another and they aren’t going to change often.

However, there are limitations to this technique. The biggest limitation is human—
you are responsible for updating all of your routers with new information whenever you
make any changes. Although this is usually easy to do in a small network, it means that
there is room for error. Furthermore, as your network grows and more routes get added,
it is more likely that the routing table will become trickier to manage this way.

The second—but almost as significant—limitation is that the time it takes the router
to process a packet is almost proportional to the number of routes there are. With only
three or four routes, this isn’t a big deal. But as you start getting into dozens of routes,
the overhead can become noticeable.

Given these two limitations, it is best to use static routes only in small networks.

 284 Linux Administration: A Beginner’s Guide

Dynamic Routing with RIP
As networks grow, the need to subnet them grows, too. Eventually, you’ll find that you
have a lot of subnets that can’t all be tracked easily, especially if they are being managed
by different administrators. One subnet, for instance, may need to break its network in
half for security reasons. In a situation this complex, going around and telling everyone
to update their routing tables would be a real nightmare and would lead to all sorts of
network headaches.

The solution to this problem is to use dynamic routing. The idea behind dynamic rout-
ing is that each router only knows immediately adjacent networks when it starts up. It
then announces to other routers connected to it what it knows, and the other routers
reply back with what they know. Think of it as “word of mouth” advertising for your
network. You tell the people around you about your network, they then tell their friends,
and their friends tell their friends, and so on. Eventually, everyone connected to the net-
work knows about your new network.

On campus-wide networks (such as a large company with many departments), you’ll
typically see this method of announcing route information. As of this writing, the two
most commonly used routing protocols are RIP and Open Shortest Path First (OSPF).

Routing Information Protocol (RIP) is currently up to version 2. It is a simple protocol
that is easy to configure. Simply tell the router information about one network (making
sure each subnet in the company has a connection to a router that knows about RIP),
and then have the routers connected to one another. RIP broadcasts happen at regular
time intervals (usually less than a minute), and in only a few minutes, the entire campus
network knows about you.

Let’s see how a smaller campus network with four subnets would work with RIP.
Figure 11-10 shows how the network is connected.

NOTE For the sake of simplicity, we’re serializing the events. In reality, many of these events would
happen in parallel.

As illustrated in this figure, router 1 would be told about 192.168.1.0/24 and about the
default route to the Internet. Router 2 would be told about 192.168.2.0/24, router 3 would
know about 192.168.3.0/24, and so on. At startup, each router’s table looks like this:

Router Table

Router 1 192.168.1.

Internet gateway

Router 2 192.168.2.

Router 3 192.168.3.

Router 4 192.168.4.

285 Chapter 11: TCP/IP for System Administrators

Router 1 then makes a broadcast stating what routes it knows about. Since routers 2
and 4 are connected to it, they update their routes. This makes the routing table look like
this (new routes in italics):

Router Table

Router 1 192.168.1.0/24

Internet gateway

Router 2 192.168.2.0/24

192.168.1.0/24 via router 1

Internet gateway via router 1

Router 3 192.168.3.0/24

Router 4 192.168.4.0/24

192.168.1.0/24 via router 1

Internet gateway via router 1

Figure 11-10. A small campus network using RIP

Router 1 Router 2

Router 4 Router 3

The Internet

192.168.1.0/24

192.168.4.0/24

192.168.2.0/24

192.168.3.0/24

 286 Linux Administration: A Beginner’s Guide

Router 2 then makes its broadcast. Routers 1 and 3 see these packets and update their
tables as follows (new routes in italics):

Router Table

Router 1 192.168.1.0/24

Internet gateway

192.168.1.0/24 router via 2

Router 2 192.168.2.0/24

192.168.1.0/24 via router 1

Internet gateway via router 1

Router 3 192.168.3.0/24

192.168.2.0/24 via router 2

192.168.1.0/24 via router 2

Internet gateway via router 2

Router 4 192.168.4.0/24

192.168.1.0/24 via router 1

Internet gateway via router 1

Router 3 then makes its broadcast, which routers 2 and 4 hear. This is where things
get interesting, since this introduces enough information for there to be multiple routes
to the same destination. The routing tables now look like this (new routes in italics):

Router Table

Router 1 192.168.1.0/24

Internet gateway

192.168.2.0/24 via router 2

Router 2 192.168.2.0/24

192.168.1.0/24 via router 1

Internet gateway via router 1

192.168.3.0/24 via router 3

Router 3 192.168.3.0/24

192.168.2.0/24 via router 2

192.168.1.0/24 via router 2

Internet gateway via router 2

287 Chapter 11: TCP/IP for System Administrators

Router Table

Router 4 192.168.4.0/24

192.168.1.0/24 via router 1 or 3

Internet gateway via router 1 or 3

192.168.3.0/24 via router 3

192.168.2.0/24 via router 3

Next, router 4 makes its broadcast. Routers 1 and 3 hear this and update their tables
to the following (new routes in italics):

Router Table

Router 1 192.168.1.0/24

Internet gateway

192.168.2.0/24 via router 2 or 4

192.168.3.0/24 via router 4

192.168.4.0/24 via router 4

Router 2 192.168.2.0/24

192.168.1.0/24 via router 1

Internet gateway via router 1

192.168.3.0/24 via router 3

Router 3 192.168.3.0/24

192.168.2.0/24 via router 2

192.168.1.0/24 via router 2 or 4

Internet gateway via router 2 or 4

192.168.4.0/24 via router 4

Router 4 192.168.4.0/24

192.168.1.0/24 via router 1

Internet gateway via router 1

192.168.3.0/24 via router 3

192.168.2.0/24 via router 3

 288 Linux Administration: A Beginner’s Guide

Once all the routers go through another round of broadcasts, the complete table
would look like this:

Router Table

Router 1 192.168.1.0/24

Internet gateway

192.168.2.0/24 via router 2 or 4

192.168.3.0/24 via router 4 or 2

192.168.4.0/24 via router 4 or 2

Router 2 192.168.2.0/24

192.168.1.0/24 via router 1 or 3

Internet gateway via router 1 or 3

192.168.3.0/24 via router 3 or 1

Router 3 192.168.3.0/24

192.168.2.0/24 via router 2 or 4

192.168.1.0/24 via router 2 or 4

Internet gateway via router 2 or 4

192.168.4.0/24 via router 4 or 2

Router 4 192.168.4.0/24

192.168.1.0/24 via router 1 or 3

Internet gateway via router 1 or 3

192.168.3.0/24 via router 3 or 1

192.168.2.0/24 via router 3 or 1

Why is this mesh important? Let’s say router 2 fails. If router 3 was relying on
router 2 to send packets to the Internet, it can immediately update its tables, reflect-
ing that router 2 is no longer there, and then forward Internet-bound packets through
router 4.

RIP’s Algorithm (and Why You Should Use OSPF Instead)
Unfortunately, when it comes to figuring out the most optimal path from one subnet to
another, RIP is not the smartest protocol. Its method of determining which route to take
is based on the fewest number of routers (hops) between it and the destination. Although
that sounds optimal, what this algorithm doesn’t take into account is how much traffic is
on the link or how fast the link is.

289 Chapter 11: TCP/IP for System Administrators

Looking back at Figure 11-10, we can see where this situation might play itself out.
Let’s assume that the link between routers 3 and 4 becomes congested. Now if router 3
wants to send a packet out to the Internet, RIP will still evaluate the two possible paths
(3 to 4 to 1 and 3 to 2 to 1) as being equidistant. As a result, the packet may end up going
via router 4 when, clearly, the path through router 2 (whose links are not congested)
would be much faster.

OSPF (Open Shortest Path First) is similar to RIP in how it broadcasts information to
other routers. What makes it different is that instead of keeping track of how many hops
it takes to get from one router to another, it keeps track of how quickly each router is talk-
ing to the others. Thus, in our example, where the link between routers 3 and 4 becomes
congested, OSPF will realize that and be sure to route a packet destined to router 1 via
router 2.

Another feature of OSPF is its ability to realize when a destination address has two
possible paths that would take an equal amount of time. When it sees this, OSPF will
share the traffic across both links—a process called equal-cost multipath—thereby making
optimal use of available resources.

There are two “gotchas” with OSPF. Older networking hardware and some lower-
end networking hardware may not have OSPF available or have it at a substantially
higher cost. The second gotcha is complexity: RIP is much simpler to set up than OSPF.
For a small network, RIP may be a better choice at first.

DIGGING INTO TCPDUMP
The tcpdump tool is truly one of the more powerful tools you will use as a system
administrator. The graphical user interface (GUI) equivalent of it, Wireshark, is an even
better choice when a graphical front-end is available. Wireshark offers all of the power of
tcpdump, with the added bonus of richer filters, additional protocol support, the ability
to quickly follow TCP connections, and some handy statistics.

In this section, we walk through a few examples of how you can use tcpdump.

A Few General Notes
Here are a few quick tips regarding these tools before you jump into more advanced
examples.

Wireshark (The Tool Formerly Known as Ethereal)
Wireshark is a graphical tool for taking packet traces and decoding them. Wireshark
used to be known as Ethereal. It offers a lot more features than tcpdump and is a great
way to peer inside of various protocols. You can download the latest version of Wire-
shark from www.wireshark.org.

An extra-nice feature of Wireshark is its cross-platform support. It can work under
native Windows, OS X, and UNIX environments. So, for example, if you have a Windows

 290 Linux Administration: A Beginner’s Guide

desktop and a lot of Linux servers, you can capture packets on the server and then view/
analyze them from any of the other supported platforms.

Before you get too excited about Wireshark, don’t neglect to get your hands dirty
with tcpdump too. In troubleshooting sessions, you don’t always have the time or lux-
ury of pulling up Wireshark, and if you’re just looking for a quick validation that packets
are moving, starting up a GUI tool may be a bit more than you need. The tcpdump tool
offers a quick way to get a handle on the situation. Therefore, learning it will help you
get a quick grip on a lot of situations.

TIP Your Sun Solaris friends may have spoken about snoop. The tcpdump tool and snoop, while
not identical, have a lot of similarities. Learn one, and you’ll have a strong understanding of the other.

Reading and Writing Dumpfiles
If you need to capture and save a lot of data, you’ll want to use the -w option to write all
the packets to disk for later processing. Here is a simple example:

[root@serverA:~]# tcpdump -w /tmp/trace.pcap -i eth0

The tcpdump tool will continue capturing packets seen on the eth0 interface until the
terminal is closed, the process is killed, or ctrl-c is pressed. The resulting file can be loaded
by Wireshark or read by any number of other programs that can process tcpdump-formatted
captures. (The packet format itself is referred to as “pcap.”)

NOTE When the -w option is used with tcpdump, it is not necessary to issue the -n option to
avoid DNS lookups for each IP address seen.

To read back the packet trace using tcpdump, use the -r option. When reading a
packet trace back, additional filters and options can be applied to affect how the packets
will be displayed. For example, to show only ICMP packets from a trace file and avoid
DNS lookups as the information is displayed, do the following:

[root@serverA:~]# tcpdump -r /tmp/trace.pcap -n icmp

Capturing More Per Packet
By default, tcpdump limits itself to capturing the first 68 bytes of a packet. If you’re just
looking to track some flows and see what’s happening on the wire, this is usually good
enough. However, if you need to capture the entire packet for further decoding, you’ll
need to increase this value. To do so, use the -s (snaplen) option. For example, to capture
a full 1500-byte packet and write it to disk, you could use

[root@serverA:~]# tcpdump -w /tmp/dump.pcap -i eth0 -s 1500

291 Chapter 11: TCP/IP for System Administrators

Performance Impact
Taking a packet trace can have a performance impact, especially on a heavily loaded
server. There are two parts to the performance piece: the actual capture of packets and
the decoding/printing of packets.

The actual capture of packets, while somewhat costly, can be minimized with a good
filter. In general, unless your server load is extremely high or you’re moving a lot of
traffic (a lot being hundreds of megabits/second), this penalty is not too significant. The
cost that is there comes from the penalty of moving packets from the kernel up to the
tcpdump application, which requires both a buffer copy and a context switch.

The decoding/printing of packets, by comparison, is substantially more expensive.
The decode itself is a small fraction of the cost, but the printing is high. If your server
is loaded, you want to avoid printing for two reasons: It generates load to format the
strings that are output, and it generates load to update your screen. The latter factor can
be especially costly if you’re using a serial console, since each byte sent over the serial
port generates a high-priority interrupt (higher than the network cards) that takes a
long time to process because serial ports are comparatively so much slower than every-
thing else. Printing decoded packets over a serial port can generate enough interrupt
traffic to cause network cards to drop packets as they are starved for attention from the
main CPU.

To alleviate the stress of the decode/print process, use the -w option to write raw
packets to disk. The process of writing raw packets is much faster and lower in cost than
printing them. Furthermore, writing raw packets means you skip the entire decode/
print step, since that is only done when you need to see the packets.

In short, if you’re not sure, use the -w option to write the packets to disk, copy them
off to another machine, and then read them there.

Don’t Capture Your Own Network Traffic
A common mistake made when using tcpdump is to log in via the network and then start
a capture. Without the appropriate filter, you’ll end up capturing your session packets,
which, in turn, if you’re printing them to the screen, may generate new packets, which
get captured again, and so on. A quick way to skip your own traffic (and that of other
administrators) is to simply skip port 22 (the ssh port) in the capture, like so:

[root@serverA:~]# tcpdump not tcp port 22

If you want to see what other people are doing on that port, add a filter that applies
only to your host. For instance, if you’re coming from 192.168.1.8, you can write

[root@serverA:~]# tcpdump "not (host 192.168.1.8 and tcp port 22)"

Note the addition of the quote marks. This was done so as not to confuse the shell
with the added parentheses, which are for tcpdump.

 292 Linux Administration: A Beginner’s Guide

Why Is DNS Slow?
Odd or intermittent problems are great candidates for using tcpdump. Using a trace of
the packets themselves, you can look at activity over a period of time and identify issues
that may be masked by other activity on the system or a lack of debugging tools.

Let’s assume for a moment that you are using the DNS server managed by your DSL
provider. Everything is working until one day things seem to be acting up. Specifically,
when you visit a web site, the first connection seems to take a long time, but once con-
nected, the system seems to run pretty quickly. Every couple of sites, the connection
doesn’t even work, but clicking “Reload” seems to do the trick. That means that DNS is
working and connectivity is there. What gives?

Time to take a packet trace. Since this is web traffic, we know that there are two
protocols at work: DNS for the hostname resolution and TCP for connection setup. That
means we want to filter all the other noise out and focus on those two protocols. Since
there seems to be some kind of speed issue, getting the packet timestamps is necessary,
so we don’t want to use the -t option. The result is

[root@serverA:~]# tcpdump -n port 80 or port 53

Now visit the desired web site. For this example, we’ll go to www.rondcore.com.
Let’s look at the first few UDP packets:

21:27:40 68.12.10.17.4102 > 206.13.31.12.53: A? rondcore.com (31)

21:27:50 68.12.10.17.4103 > 206.13.31.12.53: A? rondcore.com (31)

21:27:58 206.13.31.12.53 > 68.12.10.17.4102: 1/4/4 A 67.43.6.47 (206)

That’s interesting … we needed to retransmit the DNS request to get the IP address
for the hostname. Looks like there is some kind of connectivity problem here, since we
do eventually get the response back. What about the rest of the connection? Does the
connectivity problem affect other activity?

21:27:58 68.12.10.17.3013 > 67.43.6.47.80: S 1031:1031(0) win 57344 (DF)

21:27:58 67.43.6.47.80 > 68.12.10.17.3013: S 192:192(0) ack 1031 win 5840 (DF)

21:27:58 68.12.10.17.3013 > 67.43.6.47.80: . ack 1 win 58400 (DF)

21:27:58 68.12.10.17.3013 > 67.43.6.47.80: P 1:17(16) ack 1 win 58400 (DF)

......<OUTPUT TRUNCATED>.......

21:27:58 68.12.10.17.3013 > 67.43.6.47.80: . ack 2156 win 56511 (DF)

21:27:58 68.12.10.17.3013 > 67.43.6.47.80: F 94:94(0) ack 2156 win 58400 (DF)

21:27:58 67.43.6.47.80 > 68.12.10.17.3013: . ack 95 win 5840 (DF)

Clearly, the rest of the connection went quickly. Time to poke at the DNS server …

[root@serverA:~]$ ping 206.13.28.12

PING 206.13.28.12 (206.13.28.12) from 192.168.1.15 : 56(84) bytes of data.

64 bytes from 206.13.28.12: icmp_seq=1 ttl=247 time=213.0 ms

64 bytes from 206.13.28.12: icmp_seq=3 ttl=247 time=477.0 ms

64 bytes from 206.13.28.12: icmp_seq=4 ttl=247 time=177.5 ms

....<OUTPUT TRUNCATED>....

10 packets transmitted, 5 received, 50% packet loss, time 9023ms

293 Chapter 11: TCP/IP for System Administrators

Yikes! We’re losing packets, and the jitter on the wire is bad. This explains the odd
DNS behavior. Time to look for another DNS server while this issue is resolved.

Graphing Odds and Ends
When it comes to collecting network information, tcpdump is a gold mine. Presenting
the data collected using tcpdump in some kind of statistical or graphical manner may
sometimes be useful/informative (or a good time-killing exercise at any rate!). Here are
a few examples of things you can do.

Graphing Initial Sequence Numbers
The Initial Sequence Number (ISN) in a TCP connection is the sequence number speci-
fied in the SYN packet that starts a connection. For security reasons, it is important to
have a sufficiently random ISN so that others can’t spoof connections to your server. To
see a graph of the distribution of ISNs that your server is generating, let’s use tcpdump
to capture SYN/ACK packets sent from the web server. To capture the data, we use the
following bit of tcpdump piped to Perl:

[root@serverA:~]# tcpdump -l -n -t "tcp[13] == 18" | perl -ane

'($s,$j)=split(/:/,$F[4],2); print "$s\n";' > graphme

The tcpdump command introduces a new parameter, -l. This parameter tells
tcpdump to line-buffer its output. This is necessary when piping tcpdump’s output
to another program such as Perl. We also introduce a new trick whereby we look into
a specific byte offset of the TCP packet and check for a value. In this case, we used
the figure of the TCP header to determine that the 13th byte holds the TCP flags. For
SYN/ACK, the value is 18. The resulting line is piped into a Perl script that pulls the
sequence number out of the line and prints it. The resulting file, graphme, will simply be
a string of numbers that looks something like this:

803950992

1953034072

3833050563

3564335347

2706314477

We now use gnuplot (www.gnuplot.info) to graph these. You could use another
spreadsheet to plot these, but depending on how many entries you have, that could be
an issue. The gnuplot program works well with large data sets, and it is free.

We start gnuplot and issue the following commands:

[root@serverA:~]$ gnuplot

gnuplot>set terminal png

Terminal type set to 'png'

Options are 'small monochrome'

gnuplot>set output 'syns.png'

gnuplot>plot 'graphme'

gnuplot> quit

 294 Linux Administration: A Beginner’s Guide

Taking a look at the generated syns.png file, we see a graph that shows a good distri-
bution of ISN values. This implies that it is difficult to spoof TCP connections to this host.
Clearly, the more data you have to graph here, the surer you can be of this result. Taking
the data to a statistics package to confirm the result can be equally interesting.

IPV6
IPv6 is the Internet Protocol version 6. It is also referred to as IPng, i.e., Internet Protocol
... the Next Generation. IPv6 offers many new features and improvements over its prede-
cessor IPv4. Some of the advancements previously mentioned are

 ▼ A larger address space.

 ■ Built-in security capabilities. Offers network-layer encryption and authentication.

 ■ A simplified header structure.

 ■ Improved routing capabilities.

 ▲ Built-in auto-configuration capabilities.

IPv6 Address Format
IPv6 is able to offer an increased address space because it is 128 bits long (compared
to the 32 bits for IPv4). Because an IPv6 address is 128 bits long (or 16 bytes), there are
about 3.4 x 10^38 possible addresses available (compared to the roughly 4 billion avail-
able for IPv4).

A human being representing or memorizing (without error) a string of digits that is
128 bits long on paper is not easy. Therefore, several abbreviation techniques exist that
make it easier to represent or shorten an IPv6 address in order to make it more human-
friendly. The 128 bits of an IPv6 address can be shortened by representing the digits in
hexadecimal format. This effectively reduces the total length to 32 digits in hexadecimal.
IPv6 addresses are written in groups of four hexadecimal numbers. The eight groups are
separated by colons (:). A sample IPv6 address is

0012:0001:0000:0000:2345:0000:0000:6789

The leading zeros of a section of an IPv6 address can be omitted, e.g., the sample
address can be shortened to

12:1:0000:0000:2345:0000:0000:6789

The previous rule also permits the previous address to be rewritten as

12:1:0:0:2345:0:0:6789

295 Chapter 11: TCP/IP for System Administrators

One or more consecutive four-digit groups of zeros in an IPv6 address can be short-
ened and represented by double colon symbols (::), as long as this is only done once in
the entire address. Therefore, using this rule, our sample address can be abbreviated to

12:1::2345:0:0:6789

Using the proviso in the previous rule would make the following address invalid
because there is now more than one set of double colons in use:

12:1::2345::6789

IPv6 Address Types
There are several types of IPv6 addresses. Each address type has additional special
address types, or scopes, which are used for different things. Three particularly special
IPv6 address classifications are: unicast, anycast, and multicast addresses. These are dis-
cussed next.

Unicast Addresses
A unicast address in IPv6 refers to a single network interface. Any packet sent to a uni-
cast address is meant for a specific interface on a host. Examples of unicast addresses
are link-local (e.g., ::/128 - unspecified address, ::1/128 - loopback address, fe80::/10 -
 autoconfiguration addresses), global unicast, site-local, and other special addresses.

Anycast Addresses
An anycast address is a type of IPv6 address that is assigned to multiple interfaces (pos-
sibly belonging to different hosts). Any packet sent to an anycast address will be deliv-
ered to the closest interface that shares the anycast type address—”closest” is interpreted
according to the routing protocol’s idea of distance or simply the most easily accessible
host. Hosts in a group sharing an anycast address have the same address prefix.

Multicast Addresses
An IPv6 multicast-type address is similar in functionality to an IPv4-type multicast
address. A packet sent to a multicast address will be delivered to all the hosts (interfaces)
that have the multicast address. The hosts (or interfaces) that make up a multicast group
do not necessarily need to share the same prefix and also do not need to be connected to
the same physical network.

IPv6 Backward Compatibility
The designers of IPv6 built in backward-compatibility functionality into IPv6 to accom-
modate the various hosts or sites that are not fully IPv6-compliant or ready. The support
for legacy IPv4 hosts and sites is handled several ways: compatible addresses (IPv4-
 compatible IPv6 address), mapped address (IPv4-mapped IPv6 address), and tunneling.

 296 Linux Administration: A Beginner’s Guide

Mapped Addresses
Mapped addresses are special unicast-type addresses used by IPv6 hosts. They are used
when an IPv6 host needs to send packets to an IPv4 host via a mostly IPv6 infrastructure.
The format for a mapped IPv6 address is as follows: the first 80 bits are all zeros, fol-
lowed by 16 bits of ones, and then it ends with 32 bits of the IPv4 address.

Compatible Addresses
The compatible type of IPv6 address is used to support IPv4-only hosts or infrastruc-
tures, i.e., those that do not support IPv6 in any way. It can be used when an IPv6 host
wants to communicate with another IPv6 host via an IPv4 infrastructure. The first 96 bits
of a compatible IPv6 address is made up of all zeros and ends with 32 bits of the IPv4
address.

Tunneling
This method is used by IPv6 hosts that need to transmit information over a legacy IPv4
infrastructure using configured tunnels. This is achieved by encapsulating an IPv6 packet
in a traditional IPv4 packet and sending it via the IPv4 network.

SUMMARY
This chapter covered the fundamentals of TCP/IP and other protocols, ARP, subnet-
ting and netmasks, and routing. It’s a lot to digest, but hopefully this simplified version
should make it easier to understand. Specifically, we discussed:

 ▼ How TCP/IP relates to the ISO OSI seven-layer model

 ■ The composition of a packet

 ■ The specifications of packet headers and how to get them using the tcpdump
tool

 ■ The complete process of a TCP connection setup, data transfer, and connection
teardown

 ■ How to calculate netmasks

 ■ How static routing works

 ■ How dynamic routing works with RIP

 ■ Several examples of using tcpdump

 ▲ The next-generation Internet Protocol, IPv6

Because the information here is (substantially) simplified from the real deal, you may
want to take a look at some other books for more information regarding this topic. This
is especially important if you have complex networks that your machines need to live in
or if you need to better understand the operation of your firewall.

297 Chapter 11: TCP/IP for System Administrators

One book we recommend to everyone is TCP/IP Illustrated, Volume 1 by Richard
 Stevens (Addison-Wesley, 1994). This book covers TCP/IP in depth and several popular
protocols that send their data over IP. Stevens does a fantastic job of explaining this com-
plex subject in a clear and methodical manner.

If you need to start out with something a little less meaty, try TCP/IP for Dummies, Fifth
Edition by Candace Leiden, et al. (Hungry Minds, 2003). Although it is a “dummies” book,
you’ll be pleased to see that the coverage does get deep, just at a much slower rate. And
thankfully, the authors didn’t slip on correctness to make it simpler. (Marketing and sales
folks who need to sell networking hardware should be required to read this book!).

As always, the manual pages for the various tools and utilities discussed will always
be a good source of information. For example, the latest version of tcpdump’s man page
can be found at www.tcpdump.org/tcpdump_man.html.

299

12

Network Configuration

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 300 Linux Administration: A Beginner’s Guide

Knowing how to configure your network settings by hand can be terribly
important for several reasons. First and foremost is that when things are
breaking and you can’t start your favorite graphical user interface (GUI), being

able to handle network configuration from the command line is crucial. Another reason
is remote administration: You may not be able to run a graphical configuration tool from
a remote site. Issues such as firewalls and network latency will probably restrict your
remote administration to the command line only. Finally, it’s always nice to be able to
manage network configuration through scripts, and command-line tools are well suited
for scripting.

In this chapter, we will tackle an overview of network interface drivers, the tools nec-
essary for performing command-line administration of your network interface.

MODULES AND NETWORK INTERFACES
Network devices under Linux break the tradition of accessing all devices through the
file abstraction. Not until the network driver initializes the card and registers itself with
the kernel does there exist a mechanism for anyone to access the card. Typically, Ethernet
devices register themselves as being eth X, where X is the device number. The first Ether-
net device is eth0, the second is eth1, and so on.

Depending on how your kernel was compiled, the device drivers for your network
interface cards may have been compiled as a module. For most distributions, this is the
default mechanism for shipping, since it makes it much easier to probe for hardware.

If the driver is configured as a module and you have auto-loading modules set up,
you will need to tell the kernel the mapping between device names and the module to
load in the /etc/modprobe.conf file. For example, if your eth0 device is an Intel PRO/1000
card, you would add the following line to your /etc/modprobe.conf file:

alias eth0 e1000

where e1000 is the name of the device driver.
You will need to set this up for every network card you have in the same system. For

example, if you have two network cards, one based on the DEC Tulip chipset and another
on the RealTek 8169 chipset, you would need to make sure your /etc/modprobe.conf file
includes these lines:

alias eth0 tulip

alias eth1 r8169

where tulip refers to the network card with the Tulip chip on it, and r8169 refers to
the RealTek 8169 card.

NOTE These alias commands will not be the only entries in the /etc/modprobe.conf file.

301 Chapter 12: Network Configuration

TIP The udev sub-system can be used to manipulate the device name assigned to network devices
such as Ethernet cards. This can be useful in overcoming the sometimes unpredictability with which
the Linux kernel names and detects network devices.

You can find a listing of all the network device drivers that are installed for your ker-
nel in the /lib/modules/`uname -r`/kernel/drivers/net directory, like so:

[root@serverA etc]# cd /lib/modules/`uname -r`/kernel/drivers/net

[root@serverA net]# ls

Note that there are backticks (versus single quotes) surrounding the embedded
uname-r command. This will let you be sure you are using the correct driver version for
your current kernel version. If you are using a standard installation of your distribution,
you’ll find that there should be only one subdirectory name in the /lib/modules direc-
tory. But if you have upgraded or compiled your kernel, you may find more than one
such directory.

If you want to see a driver’s description without having to load the driver itself,
use the modinfo command. For example, to see the description of the yellowfin.ko
driver, type

[root@serverA net]# modinfo yellowfin | grep -i description

Keep in mind that not all drivers have descriptions associated with them, but
most do.

Network Device Configuration Utilities (ip and ifconfig)
The ifconfig program is primarily responsible for setting up your network interface
cards (NICs). All of its operations can be performed through command-line options, as
its native format has no menus or graphical interface. Administrators that have used
the Windows ipconfig program may see some similarities, as Microsoft implemented
some command-line interface (CLI) networking tools that mimicked functional subsets
of their UNIX counterparts.

TIP Administrators still dealing with Windows may find the %SYSTEMROOT%\system32\
netsh.exe program a handy tool for exposing and manipulating the details of Windows networking
via the CLI.

NOTE The ifconfig program typically resides in the /sbin directory, which is included in root’s
PATH. Some login scripts, such as those in Fedora, do not include /sbin in the PATH for nonprivileged
users by default. Thus, you may need to invoke /sbin/ifconfig when calling on it as a regular user. If
you expect to be a frequent user of commands under /sbin, you may find it prudent to add /sbin to
your PATH.

 302 Linux Administration: A Beginner’s Guide

A number of tools have been written to wrap around ifconfig’s command-line
interface to provide menu-driven or graphical interfaces, and many of these tools are
shipped with distributions of Linux. Fedora, for example, has a GUI tool called “system-
config-network.” As an administrator, you should at least know how to configure the
network interface by hand; knowing how is invaluable, as many additional options not
shown in GUIs are exposed in the CLI. For that reason, this section will cover the use of
the ifconfig command-line tool.

Another powerful program that can be used to manage network devices in Linux is
the ip program. The ip utility comes with the iproute software package. The iproute
package contains networking utilities (e.g., ip) that are designed to use the advanced
networking capabilities of the Linux kernel. The syntax for the ip utility is a little terser
and less forgiving than that of the ifconfig utility. But the ip command is much more
powerful.

In the following sections we will use both the ifconfig command and the ip com-
mand to configure the network devices on our sample server.

Simple Usage
In its simplest usage, all you need to do is provide the name of the interface being con-
figured and the Internet Protocol (IP) address. The ifconfig program will deduce the
rest of the information from the IP address. Thus, you could enter

[root@serverA /root]# ifconfig eth0 192.168.1.42

This will set the eth0 device to the IP address 192.168.1.42. Because 192.168.1.42 is a
class C address, the calculated default netmask will be 255.255.255.0 and the broadcast
address will be 192.168.1.255.

If the IP address you are setting is a class A or class B address that is subnetted dif-
ferently, you will need to explicitly set the broadcast and netmask addresses on the com-
mand line, like so:

[root@serverA /root]# ifconfig dev ip netmask nmask broadcast bcast

where dev is the network device you are configuring, ip is the IP address you are setting
it to, nmask is the netmask, and bcast is the broadcast address. For example, the follow-
ing will set the eth0 device to the IP address 1.1.1.1 with a netmask of 255.255.255.0 and
a broadcast address of 1.1.1.255:

[root@serverA /root]# ifconfig eth0 1.1.1.1 netmask 255.255.255.0 broadcast 1.1.1.255

To do the same thing using the ip command, you would type

[root@serverA ~]# ip address add 1.1.1.1/24 broadcast 1.1.1.255 dev eth0

To use ip to delete the IP address created previously, type

[root@serverA ~]# ip address del 1.1.1.1/24 broadcast 1.1.1.255 dev eth0

303 Chapter 12: Network Configuration

TIP The ip command allows unique abbreviations to be made in its syntax. Therefore, the previous
command could also have been shortened to

 # ip a ad 1.1.1.1/24 br 1.1.1.255 dev eth0

To use the ip command to assign an IPv6 address (e.g., 2001:DB8::1) to the interface
eth0, you would run the command:

[root@serverA ~]# ip -6 addr add 2001:DB8::1/64 dev eth0

To use ip to delete the IPv6 address created previously, type

[root@serverA ~]# ip -6 addr del 2001:DB8::1/64 dev eth0

The ifconfig command can also be used to assign an IPv6 address to an interface.
For example, we can assign the IPv6 address 2001:DB8::3 to eth2 by running

[root@serverA ~]# ifconfig eth2 inet6 add 2001:DB8::3/64

To display the IPv6 addresses on all interfaces, you can use the ip command like so:

[root@serverA ~]# ip -6 a show

IP Aliasing
In some instances, it is necessary for a single host to have multiple IP addresses. Linux
can support this by using IP aliases. Each interface in the Linux system can have multiple
IP addresses assigned. This is done by enumerating each instance of the same interface
with a colon followed by a number. For example, eth0 is the main interface, eth0:0 is an
aliased interface, eth0:1 is an aliased interface, and so on.

Configuring an aliased interface is just like configuring any other interface: Sim-
ply use ifconfig. For example, to set eth0:0 with the address 10.0.0.2 and netmask
255.255.255.0, we would do the following:

[root@serverA ~]# ifconfig eth0:0 10.0.0.2 netmask 255.255.255.0

To do the same thing using the ip command, type

[root@serverA ~]# ip a add 10.0.0.2/24 dev eth0:0

You can view your changes by typing

[root@serverA ~]# ifconfig eth0:0

eth0:0 Link encap:Ethernet HWaddr 00:0C:29:AC:5B:CD

 inet addr:10.0.0.2 Bcast:10.0.0.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 Interrupt:17 Base address:0x1400

 304 Linux Administration: A Beginner’s Guide

TIP You can list all of the active devices by running ifconfig with no parameters. You can list all
devices, regardless of whether they are active, by using the -a option, like ifconfig -a.

Note that network connections made to the aliased interface will communicate on the
aliased IP address; however, in most circumstances, any connection originating from the
host to another host will use the first assigned IP of the interface. For example, if eth0 is
192.168.1.15 and eth0:0 is 10.0.0.2, a connection from the machine that is routed through
eth0 will use the IP address 192.168.1.15. The exception to this behavior is for applica-
tions that bind themselves to a specific IP address. In those cases, it is possible for the
application to originate connections from the aliased IP address. In the case that a host
has multiple interfaces, the route table will decide which interface to use. Based on the
routing information, the first assigned IP address of the interface will be used.

Confusing? Don’t worry; it’s a little odd to get the idea at first. The choice of source IP
is associated with routing as well, so we’ll revisit this concept later in the chapter.

Setting Up NICs at Boot Time
Unfortunately, each distribution has taken to automating its setup process for network
cards a little differently. We will cover the Fedora (and other Red Hat derivatives) specif-
ics in the next section. For other distributions, you need to handle this procedure in one
of two ways:

 ▼ Use the network administration tool that comes with that distribution to man-
age the network settings. This is probably the easiest and most reliable method.

 ▲ Find the startup script that is responsible for configuring network cards. (Using
the grep tool to find which script runs ifconfig works well.) At the end of the
script, add the necessary ifconfig statements. Another place to add ifconfig
statements is in the rc.local script—not as pretty, but it works equally well.

Setting Up NICs under Fedora and RHEL
Fedora and other Red Hat–type systems use a simple setup that makes it easy to con-
figure network cards at boot time. It is done through the creation of files in the /etc/
sysconfig/network-scripts directory that are read at boot time. All of the graphical tools
under Fedora create and manage these files for you; for other people who like to get under
the hood, the following sections show how to manually manage the configuration files.

For each network interface, there is an ifcfg file in /etc/sysconfig/network-scripts.
This filename is suffixed by the name of the device; thus, ifcfg-eth0 is for the eth0 device,
ifcfg-eth1 is for the eth1 device, and so on.

If you choose to use a static IP address at installation time, the format for the interface
configuration file for eth0 will be as follows:

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=none

305 Chapter 12: Network Configuration

NETMASK=255.255.255.0

IPADDR= 192.168.1.100

GATEWAY=192.168.1.1

TYPE=Ethernet

HWADDR=00:0c:29:ac:5b:cd

TIP Sometimes, if you are running other protocols, Internetwork Packet Exchange (IPX), for
instance, you might see variables that start with IPX. If you don’t have to run IPX (which is typical),
you can safely remove the lines that have IPX in them.

TIP In Fedora, Red Hat Enterprise Linux (RHEL), and Centos distros, the file /usr/share/doc/
initscripts-*/sysconfig.txt explains the options and variables that can be used in the “/etc/sysconfig/
network-scripts/ifcfg-*”, among other things.

If you choose to use Dynamic Host Configuration Protocol (DHCP) at installation
time, your file will look as follows:

DEVICE=eth0

BOOTPROTO=dhcp

ONBOOT=yes

TYPE=Ethernet

HWADDR=00:0c:29:ac:5b:cd

These fields determine the IP configuration information for the eth0 device. Note
how each of these values corresponds to the parameters in ifconfig. To change the
configuration information for this device, simply change the information in the ifcfg file
and run

[root@serverA ~]# cd /etc/sysconfig/network-scripts

[root@serverA network-scripts]# ./ifdown eth0

[root@serverA network-scripts]# ./ifup eth0

If you are changing from DHCP to a static IP address, simply change BOOTPROTO
to equal “none” and add lines for IPADDR, NETWORK, and BROADCAST.

If you need to configure a second network interface card, you can copy the syntax used
in the original ifcfg-eth0 file by copying and renaming the ifcfg-eth0 file to ifcfg-eth1
and changing the information in the new ifcfg-eth1 file to reflect the second network
card’s information. When doing this, you have to make sure that the HWADDR variable
(media access control, or MAC, address) in the new file reflects the MAC address of the
actual physical network device you are trying to configure. Once the new ifcfg-eth1 file
exists, Fedora will automatically configure it during the next boot or the next time the
network service is restarted.

 306 Linux Administration: A Beginner’s Guide

If you need to activate the card immediately, run

[root@serverA ~]# cd /etc/sysconfig/network-scripts

[root@serverA network-scripts]# ./ifup eth1

NOTE It is possible to configure aliased IP addresses using this method as well.

Additional Parameters
The format of the ifconfig command is as follows:

[root@serverA /root]# ifconfig device address options

where device is the name of the Ethernet device (for instance, eth0), address is the IP
address you wish to apply to the device, and options are one of the following:

Option Description

up Enables the device. This option is implicit.

down Disables the device.

arp Enables this device to answer arp requests
(default).

-arp Disables this device from answering arp
requests.

mtu value Sets the maximum transmission unit (MTU)
of the device value. Under Ethernet, this
defaults to 1500. (See the Note following the
table regarding certain Gigabit Ethernet cards.)

netmask address Sets the netmask to this interface to address.
If a value is not supplied, ifconfig calculates
the netmask from the class of the IP address.
A class A address gets a netmask of 255.0.0.0,
class B gets 255.255.0.0, and class C gets
255.255.255.0.

broadcast address Sets the broadcast address to this interface to
address.

pointtopoint address Sets up a point-to-point connection (PPP)
where the remote address is address.

307 Chapter 12: Network Configuration

NOTE Many Gigabit Ethernet cards now support jumbo Ethernet frames. A jumbo frame is 9000
bytes in length, which (conveniently) holds one complete Network File System (NFS) packet. This
allows file servers to perform better, since they have to spend less time fragmenting packets to fit
into 1500-byte Ethernet frames. Of course, your network infrastructure as a whole must support this
in order to benefit. If you have a network card and appropriate network hardware to set up jumbo
frames, it is very much worth looking into how to toggle those features on. If your Gigabit Ethernet card
supports it, you can set the frame size to 9000 bytes by changing the MTU setting when configured
with ifconfig (for example, ifconfig eth0 mtu 9000).

MANAGING ROUTES
If your host is connected to a network with multiple subnets, you need a router or gateway.
This device sits between networks and redirects packets toward their actual destination.
(Typically, most hosts don’t know the correct path to a destination; they only know the
destination itself.)

In the case where a host doesn’t even have the first clue about where to send a packet, it
uses its default route. This path points to a router, which ideally does have an idea of where
the packet should go, or at least knows of another router that can make smarter decisions.

NOTE On Fedora systems, the default route is typically stored as the variable GATEWAY in the
appropriate interface file under /etc/sysconfig/network-scripts.

A typical single-homed Linux host knows of several standard routes. Some of the
standard routes are the loopback route, which simply points toward the loopback device.
Another is the route to the local area network (LAN) so that packets destined to hosts
within the same LAN are sent directly to them. Another standard route is the default
route. This route is used for packets that are destined for other networks outside of the
LAN. Yet another route that you might see in a typical Linux routing table is the link-
local route (169.254.0.0). This is relevant in auto-configuration scenarios.

NOTE Request For Comment (RFC) 3927 offers details about auto-configuration addresses for
IPv4. RFC 4862 offers details about auto-configuration in IPv6. Microsoft refers to their implementation
of auto-configuration as Automatic Private IP Addressing (APIPA) or Internet Protocol Automatic
Configuration (IPAC).

If you set up your network configuration at install time, this setting is most likely
already taken care of for you, so you don’t need to change it. However, this doesn’t mean
you can’t.

NOTE There are actually instances where you will need to change your routes by hand. Typically,
this is necessary when multiple network cards are installed into the same host, where each NIC is
connected to a different network (multihomed). You should know how to add a route so that packets
can be sent to the appropriate network for a given destination address.

 308 Linux Administration: A Beginner’s Guide

Network Device Configuration in Debian-Like Systems
(Ubuntu, Kubuntu, Edubuntu, etc.)
Debian-based systems like Ubuntu use a different mechanism for managing
network configuration. Specifically, network configuration is done via the /etc/
network/interfaces file. The format of the file is simple and well documented.

The entries in a sample /etc/network/interfaces file are discussed next. Please
note that line numbers have been added to aid readability.

1) # The loopback network interface

2) auto lo

3) iface lo inet loopback

4)

5) # The first network interface eth0

6) auto eth0

7) iface eth0 inet static

8) address 192.168.1.45

9) netmask 255.255.255.0

10) gateway 192.168.1.1

11) iface eth0:0 inet dhcp

12)

13) # The second network interface eth1

14) auto eth1

15) iface eth1 inet dhcp

16) iface eth1 inet6 static

17) address 2001:DB8::3

18) netmask 64

Line 1 Any line that begins with the pound sign (#) is a comment and is
ignored. Same thing goes for blank lines.

Line 2 Lines beginning with the word “auto” are used to identify the physical
interfaces to be brought up when the ifup command executes, such as during sys-
tem boot or when the network run control script is run. The entry “auto lo” in this
case refers to the loopback device. Additional options can be given on subsequent
lines in the same stanza. The available options depend on the family and method.

Line 7 The iface directive defines the physical name of the interface being
processed. In this case, it is the eth0 interface. The iface directive in this example
supports the inet option, where inet refers to the address family. The inet option, in
turn, supports various methods. Methods such as loopback (line 3), static (line 7),
and dhcp (line 14) are supported. The static method here is simply used to define
Ethernet interfaces with statically assigned IP addresses.

309 Chapter 12: Network Configuration

Simple Usage
The typical route command is structured as follows:

[root@serverA /root]# route cmd type addy netmask mask gw gway dev dn

The parameters are as follows:

Parameter Description

cmd Either add or del, depending on whether you
are adding or deleting a route. If you are deleting
a route, the only other parameter you need is
addy.

type Either -net or -host, depending on whether
addy represents a network address or a router
address.

Line 8–Line 10 The static method specified in Line 7 allows various options,
like address, netmask, gateway, etc. The address option here defines the interface IP
address (192.168.1.45), the netmask option defines the subnet mask (255.255.255.0),
and the gateway option defines the default gateway (192.168.1.1).

Line 11 The iface directive is being used to define a virtual interface named
eth0:0 that will be configured using DHCP.

Line 15 The iface directive defines the physical name of the interface being
processed. In this case, it is the eth1 interface. The iface directive in this example
supports the inet option, which is using the dhcp option. This means that the inter-
face will be dynamically configured using DHCP.

Line 16–Line 18 These lines assign a static IPv6 address to the eth1 interface.
The address assigned in this example is 2001:DB8::3 with the netmask 64.

After making and saving any changes to the interfaces file, the network inter-
face can be brought up or down using the ifup command. For example, after
creating a new entry for the eth1 device, you would type

yyang@ubuntu-serverA:~$ sudo ifup eth1

To bring down the eth1 interface, you would run

yyang@ubuntu-serverA:~$ sudo ifdown eth1

The sample interfaces file discussed here is a simple configuration. The /etc/
network/ interfaces file supports a vast array of configuration options that we
barely scratched here. Fortunately, the man page (man 5 interfaces) for the file is
well documented.

 310 Linux Administration: A Beginner’s Guide

Parameter Description

addy The destination network to which you want to
offer a route.

netmask mask Sets the netmask of the addy address
to mask.

gw gway Sets the router address for addy to gway.
Typically used for the default route.

dev dn Sends all packets destined to addy through the
network device dn as set by ifconfig.

Here’s how to set the default route on a sample host, which has a single Ethernet
device and a default gateway at 192.168.1.1:

[root@serverA /root]# route add -net default gw 192.168.1.1 dev eth0

To add a default route to a system without an existing default route using the ip
route utility you would type

[root@serverA ~]# ip route add default via 192.168.1.1

To set the default IPv6 route to point to the IPv6 gateway at the address 2001:db8::1
using the ip command, type

[root@serverA ~]# ip -6 route add default via 2001:db8::1

To use the ip command to replace or change an existing default route on a host, you
would use

[root@serverA ~]# ip route replace default via 192.168.1.1

The next command line sets up a host route so that all packets destined for the remote
host 192.168.2.50 are sent through the first PPP device:

[root@serverA /root]# route add -host 192.168.2.50 netmask 255.255.255.255 dev ppp0

To use ip to set a host route to a host 192.168.2.50 via the eth2 interface, you could try

[root@serverA ~]# ip route add 192.168.2.50 dev eth2

To use the ip command to set up an IPv6 route to a network (e.g., 2001::/24) using a
specific gateway (e.g., 2001:db8::3), we run the command:

[root@serverA ~]# ip -6 route add 2001::/24 via 2001:db8::3

311 Chapter 12: Network Configuration

Here’s how to delete the route destined for 192.168.2.50:

[root@serverA /root]# route del 192.168.2.50

To delete using ip, you would type

[root@serverA ~]# ip route del 192.168.2.50 dev eth2

NOTE If you are using a gateway, you need to make sure a route exists to the gateway before you
reference it for another route. For example, if your default route uses the gateway at 192.168.1.1,
you need to be sure you have a route to get to the 192.168.1.0 network first.

To delete an IPv6 route (e.g., to 2001::/24 via 2001:db8::3) using the ip command, run

[root@serverA ~]# ip -6 route del 2001::/24 via 2001:db8::3

Displaying Routes
There are several ways with which you can display your route table: the route com-
mand, netstat command, ip route command, etc.

route
Using route is one of the easiest ways to display your route table—simply run route
without any parameters. Here is a complete run, along with the output:

[root@serverA ~]# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.10.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0

0.0.0.0 my-firewall 0.0.0.0 UG 0 0 0 eth0

You see two networks. The first is the 10.10.2.0 network, which is accessible via the
first Ethernet device, eth0. The second is the 192.168.1.0 network, which is connected via
the second Ethernet device, eth1. The third entry is the link-local destination network,
which is used for auto-configuration hosts. The final entry is the default route. Its actual
value in our example is 10.10.2.1; however, because the IP address resolves to the host
name “my-firewall” in Domain Name System (DNS), route prints its hostname instead
of the IP address.

 312 Linux Administration: A Beginner’s Guide

We have already discussed the destination, gateway, netmask (referred to as genmask
in this table), and iface (interface, set by the dev option on route). The other entries
in the table have the following meanings:

Entry Description

Flags A summary of connection status, where each letter has a
significance:
U The connection is up.
H The destination is a host.
G The destination is a gateway.

Metric The cost of a route, usually measured in hops. This is meant
for systems that have multiple paths to get to the same
destination, but one path is preferred over the other. A path
with a lower metric is typically preferred. The Linux kernel
doesn’t use this information, but certain advanced routing
protocols do.

Ref The number of references to this route. This is not used in the
Linux kernel. It is here because the route tool itself is cross-
platform. Thus, it prints this value, since other operating
systems do use it.

Use The number of successful route cache lookups. To see this
value, use the -F option when invoking route.

Note that route displayed the hostnames to any IP addresses it could look up and
resolve. While this is nice to read, it presents a problem when there are network outages
and DNS or Network Information Service (NIS) servers become unavailable. The route
command will hang on, trying to resolve hostnames and waiting to see if the servers
come back and resolve them. This wait will go on for several minutes until the request
times out.

To get around this, use the -n option with route so that the same information is
shown, but route will make no attempt to perform hostname resolution on the IP
addresses.

To view the IPv6 routes using the route command, type

[root@serverA ~]# route -A inet6

netstat
Normally, the netstat program is used to display the status of all of the network con-
nections on a host. However, with the -r option, it can also display the kernel routing

313 Chapter 12: Network Configuration

table. You should note that most other UNIX-based operating systems require that you
use this method of viewing routes.

Here is an example invocation of netstat -r and its corresponding output:

[root@serverA /root]# netstat -r

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

Default 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

In this example, you see a simple configuration. The host has a single network
interface card, is connected to the 192.168.1.0 network, and has a default gateway set to
192.168.1.1.

Like the route command, netstat can also take the -n parameter so that it does
not perform hostname resolution.

To use the netstat utility to display the IPv6 routing table, we can run the
command:

[root@serverA ~]# netstat -rn -A inet6

ip route
As previously mentioned, the iproute package provides advanced IP routing and network
device configuration tools. The ip command can also be used to manipulate the routing
table on a Linux host. This is done by using the route object with the ip command.

As with most commercial carrier-grade routing devices, a Linux-based system can
actually maintain and use several routing tables at the same time. The previous route
command that we saw was actually only displaying and managing only one of the
default routing tables on the system, i.e., the main table.

For example, to view the contents of table main (as displayed by the route com-
mand), you would type

[root@serverA ~]# ip route show table main

10.10.2.0/24 dev eth0 proto kernel scope link src 10.99.99.45

192.168.1.0/24 dev eth2 proto kernel scope link src 192.168.1.42

169.254.0.0/16 dev eth0 scope link

default via 10.10.2.1 dev eth0

To view the contents of all the routing tables on the system, type

[root@serverA ~]# ip route show table all

To display only the IPv6 routes, type

[root@serverA ~]# ip -6 route show

 314 Linux Administration: A Beginner’s Guide

A SIMPLE LINUX ROUTER
Linux has an impressive number of networking features, including the ability to act as
a full-featured router. For networks that need a low-cost router, a standard PC with a
few network cards can work quite nicely. Realistically, a Linux router is able to move
a few hundred megabits per second, depending on the speed of the PC, the CPU cache,
the type of NIC, Peripheral Component Interconnect (PCI) interfaces, and the speed
of the front-side bus. In fact, several commercial routers exist that are running a
stripped and optimized Linux kernel under their hood with a nice GUI administration
front-end.

Routing with Static Routes
Let us assume that we want to configure a dual-homed Linux system as a router, as
shown in Figure 12-1.

In this network, we want to route packets between the 192.168.1.0/24 network and
the 192.168.2.0/24 network. The default route is through the 192.168.1.8 router, which
is performing network address translation (NAT) to the Internet. (We discuss NAT in
further detail in Chapter 13.) For all the machines on the 192.168.2.0/24 network, we
want to simply set their default route to 192.168.2.1 and let the Linux router figure out
how to forward on to the Internet and the 192.168.1.0/24 network. For the systems on the
192.168.1.0/24 network, we want to configure 192.168.1.15 as the default route so that all
the machines can see the Internet and the 192.168.2.0/24 network.

Figure 12-1. Our sample network

The Internet

192.168.1.0/24

200.1.1.1

192.168.1.8

192.168.1.15 192.168.2.1

Linux
Router

192.168.2.0/24

315 Chapter 12: Network Configuration

This requires that our Linux system have two network interfaces: eth0 and eth1. We
configure them as follows:

[root@serverA /root]# ifconfig eth0 192.168.1.15 netmask 255.255.255.0

[root@serverA /root]# ifconfig eth1 192.168.2.1 netmask 255.255.255.0

The result looks like this:

[root@serverA /root]# ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:30:48:21:2A:36

 inet addr:192.168.1.15 Bcast:192.168.1.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

....<OUTPUT TRUNCATED>....

 Interrupt:9 Base address:0xd000

eth1 Link encap:Ethernet HWaddr 00:02:B3:AC:5E:AC

 inet addr:192.168.2.1 Bcast:192.168.2.255 Mask:255.255.255.0

 UP BROADCAST MULTICAST MTU:1500 Metric:1

....<OUTPUT TRUNCATED>....

 Base address:0xef80 Memory:febe0000-fec00000

Lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

....<OUTPUT TRUNCATED>....

 RX bytes:164613316 (156.9 Mb) TX bytes:164613316 (156.9 Mb)

NOTE It is possible to configure a one-armed router where the eth0 interface is configured with
192.168.1.15 and eth0:0 is configured with 192.168.2.1. However, doing this will eliminate any
benefits of network segmentation. In other words, any broadcast packets on the wire will be seen by
both networks. Thus, it is usually preferred to put each network on its own physical interface.

When ifconfig adds an interface, it also creates a route entry for that interface
based on the netmask value. Thus, in the case of 192.168.1.0/24, a route is added on eth0
that sends all 192.168.1.0/24 traffic to it. With the two network interfaces present, let’s
take a look at the routing table:

[root@serverA /root]# route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

 316 Linux Administration: A Beginner’s Guide

All that is missing here is the default route to 192.168.1.8. Let’s add that using the
route command.

[root@serverA /root]# route add default gw 192.168.1.8

[root@serverA /root]# route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 192.168.1.8 0.0.0.0 UG 0 0 0 eth0

A quick check with ping verifies that we have connectivity through each route:

[root@serverA /root]# ping -c 1 4.2.2.1

PING 4.2.2.1 (4.2.2.1) from 192.168.1.15 : 56(84) bytes of data.

64 bytes from 4.2.2.1: icmp_seq=1 ttl=245 time=15.2 ms

....<OUTPUT TRUNCATED>.....

1 packets transmitted, 1 received, 0% loss, time 0ms

rtt min/avg/max/mdev = 15.277/15.277/15.277/0.000 ms

[root@serverA /root]# ping -c 1 192.168.1.30

PING 192.168.1.30 (192.168.1.30) from 192.168.1.15 : 56(84) bytes of data.

64 bytes from 192.168.1.30: icmp_seq=1 ttl=64 time=0.233 ms

....<OUTPUT TRUNCATED>.....

[root@serverA /root]# ping -c 1 192.168.2.2

PING 192.168.2.2 (192.168.2.2) from 192.168.2.1 : 56(84) bytes of data.

64 bytes from 192.168.2.2: icmp_seq=1 ttl=64 time=0.192 ms

....<OUTPUT TRUNCATED>.....

Looks good. Now it’s time to enable IP forwarding. This tells the Linux kernel that it
is allowed to forward packets that are not destined to it, if it has a route to the destina-
tion. This is done by setting /proc/sys/net/ipv4/ip_forward to 1 as follows:

[root@serverA /root]# echo "1" > /proc/sys/net/ipv4/ip_forward

Hosts on the 192.168.1.0/24 network should set their default route to 192.168.1.15,
and hosts on 192.168.2.0/24 should set their default route to 192.168.2.1. Most impor-
tantly, don’t forget to make the route additions and the enabling of ip_forward part of
the startup scripts.

TIP Need a DNS server off the top of your head? For a quick query against an external DNS server,
try 4.2.2.1, which is currently owned by Verizon. The address has been around for a long time (originally
belonging to GTE Internet) and has numbers that are easy to remember. However, be nice about it—a
quick query or two to test connectivity is fine, but making it your primary DNS server isn’t.

317 Chapter 12: Network Configuration

HOW LINUX CHOOSES AN IP ADDRESS
Now that host A has two interfaces (192.168.1.15 and 192.168.2.1) in addition to the loop-
back interface (127.0.0.1), we can observe how Linux will choose a source IP address to
communicate with.

When an application starts, it has the option to bind to an IP address. If the applica-
tion does not explicitly do so, Linux will automatically choose the IP address on behalf of
the application on a connection-by-connection basis. When Linux is making the decision,
it examines a connection’s destination IP address, makes a routing decision based on the
current route table, and then selects the IP address corresponding to the interface that
the connection will go out of. For example, if an application on host A makes a connec-
tion to 192.168.1.100, Linux will find that the packet should go out of the eth0 interface,
and thus, the source IP address for the connection will be 192.168.1.15.

Let us assume that the application does choose to bind to an IP address. If the appli-
cation were to bind to 192.168.2.1, Linux will use that as the source IP address, regard-
less of which interface the connection will leave from. For example, if the application is
bound to 192.168.2.1 and a connection is made to 192.168.1.100, the connection will leave
out of eth0 (192.168.1.15) with the source IP address of 192.168.2.1. It is now the responsi-
bility of the remote host (192.168.1.100) to know how to send a packet back to 192.168.2.1.
(Presumably, the default route for 192.168.1.100 will know how to deal with that case.)

For hosts that have aliased IP addresses, a single interface may have many IP
addresses. For example, we can assign eth0:0 to 192.168.1.16, eth0:1 to 192.168.1.17, and
eth0:2 to 192.168.1.18. In this case, if the connection leaves from the eth0 interface and the
application did not bind to a specific interface, Linux will always choose the nonaliased
IP address, that is, 192.168.1.15 for eth0. If the application did choose to bind to an IP
address, say, 192.168.1.17, Linux will use that IP address as the source IP, regardless of
whether the connection leaves from eth0 or eth1.

SUMMARY
In this chapter we saw how the ifconfig, ip, and route commands can be used to
configure the IP addresses (IPv4 and IPv6) and route entries (IPv4 and IPv6) on Linux-
based systems. We looked at how this is done in Red Hat–like systems such as Fedora,
and we also looked at how this is done in Debian-like systems such as Ubuntu. We also
saw how to use these commands together to build a simple Linux router.

Although we covered kernel modules earlier in the book, we brought them up again
in the specific context of network drivers. Remember that network interfaces don’t fol-
low the same method of access as most devices with a /dev entry.

Finally, remember that when making IP address and routing changes, be sure to
add any and all changes to the appropriate startup scripts. You may want to schedule a
reboot if you’re on a production system to make sure that the changes work as expected
so that you don’t get caught off-guard later on.

 318 Linux Administration: A Beginner’s Guide

If you’re interested in more details on routing, it is worth taking a closer look at
the next chapter and some of the advanced Linux routing features. Linux offers a rich
set of functions that, while not typically used in server environments, can be used to
build powerful routing systems and networks. For anyone interested in dynamic routing
using Routing Information Protocol (RIP), Open Shortest Path First (OSPF), or Border
Gateway Protocol (BGP), be sure to look into Zebra (www.zebra.org). With Zebra, you
can run a highly configurable dynamic routing system that can share route updates with
any standard router, including commercial hardware, like Cisco hardware.

319

13

The Linux Firewall

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 320 Linux Administration: A Beginner’s Guide

In what feels like a long, long time ago, the Internet was a pretty friendly place. The users
of the network had research to do and thus had better things to do than waste their time
poking at other people’s infrastructure. To the extent security was in place, it was largely

to keep practical jokers from doing silly things. Many administrators made no serious effort
to secure their systems, often leaving default administrator passwords in place.

Unfortunately, as the Internet population grew, so did the threat from the bored and
malicious. The need to put up barriers between the Internet and private networks started
becoming increasingly commonplace in the early 1990s. Papers such as “An Evening with
Berferd” and “Design of a Secure Internet Gateway” by Bill Cheswick signified the first pop-
ular idea of what has become a firewall. (Both papers are available on Bill’s website at www.
cheswick.com/ches.) Since then, firewall technology has been through a lot of changes.

The Linux firewall and packet filtering system has come a long way with these
changes as well; from an initial implementation borrowed from Berkeley Software Dis-
tribution (BSD), through four major rewrites (kernels 2.0, 2.2, 2.4, and 2.6) and three user-
level interfaces (ipfwadm, ipchains, and iptables). The current Linux packet filter and
firewall infrastructure (both kernel and user tools) is referred to as “Netfilter.”

In this chapter, we start with a discussion of how Linux Netfilter works, follow up
with how those terms are applied in the Linux 2.6 toolkit, and finish up with several
configuration examples.

NOTE This chapter provides an introduction to the Netfilter system and how firewalls work, with
enough guidance to secure a simple network. Entire volumes have been written about how firewalls
work, how they should be configured, and the intricacies of how they should be deployed. If you are
interested in security beyond the scope of a basic configuration, you should pick up some of the books
recommended at the end of the chapter.

HOW NETFILTER WORKS
The principle behind Netfilter is simple: Provide a simple means of making decisions on
how a packet should flow. In order to make configuration easier, Netfilter provides a tool
called iptables that can be run from the command line. The iptables tool specifi-
cally manages Netfilter for Internet Protocol version 4 (IPv4). The iptables tool makes
it easy to list, add, and remove rules as necessary from the system.

To filter and manage the firewall rules for IPv6 traffic, most Linux distros provide
the iptables-ipv6 package. The command used to manage the IPv6 Netfilter sub-system
is aptly named ip6tables. Most of the discussion and concepts about IPv4 Netfilter
discussed in this chapter also apply to IPv6 Netfilter.

All of the actual code that processes packets according to your configuration is actu-
ally run inside the kernel. To accomplish this, the Netfilter infrastructure breaks the task
down into several distinct types of operations (tables): network address translation (NAT),
mangle, raw, and filter. Each operation has its own table of operations that can be per-
formed based on administrator-defined rules.

321 Chapter 13: The Linux Firewall

The NAT table is responsible for handling network address translation, that is, making
or changing IP addresses to a particular source or destination IP address. The most com-
mon use for this is to allow multiple systems to access another network (typically the
Internet) from a single IP address. When combined with connection tracking, this is the
essence of the Linux firewall.

NOTE The NAT table has not yet been implemented in the IPv6 Netfilter sub-system as of this
writing.

The mangle table is responsible for altering or marking packets. The number of pos-
sible uses of the mangle table is enormous; however, it is also infrequently used. An
example of its usage would be to change the ToS (Type of Service) bits in the Transmis-
sion Control Protocol (TCP) header so that Quality of Service (QoS) mechanisms can be
applied to a packet, either later in the routing or in another system.

The raw table is used mainly for dealing with packets at a very low level. It is used
for configuring exemptions from connection tracking. The rules specified in the raw
table operate at a higher priority than the rules in other tables.

Finally, the filter table is responsible for providing basic packet filtering. This can be
used to selectively allow or block traffic according to whatever rules you apply to the
system. An example of filtering is blocking all traffic except for that destined to port 22
(SSH) or port 25 (Simple Mail Transport Protocol, or SMTP).

A NAT Primer
Network address translation (NAT) allows administrators to hide hosts on both sides
of a router so that both sides can, for whatever reason, remain blissfully unaware of
the other. NAT under Netfilter can be broken down into three categories: Source NAT
(SNAT), Destination NAT (DNAT), and Masquerading.

SNAT is responsible for changing what the source IP address and port are so that a
packet appears to be coming from an administrator-defined IP. This is most commonly
used in the case where a private network needs to use an externally visible IP address. To
use a SNAT, the administrator must know what the new source IP address is when the
rule is being defined. In the case where it is not known (e.g., the IP address is dynamically
defined by an Internet service provider [ISP]), the administrator should use Masquerad-
ing (defined shortly). Another example of using SNAT is when an administrator wants
to make a specific host on one network (typically private) appear as another IP address
(typically public). SNAT, when done, needs to be done late in the packet- processing
stages so that all of the other parts of Netfilter see the original source IP address before
the packet leaves the system.

DNAT is responsible for changing the destination IP address and port so that a packet
is redirected to another IP address. This is useful for situations where administrators
wish to hide servers in a private network (typically referred to as a demilitarized zone,
or DMZ, in firewall parlance) and map select external IP addresses to an internal address
for incoming traffic. From a management point of view, doing DNAT makes it easier to

 322 Linux Administration: A Beginner’s Guide

manage policies, since all externally visible IP addresses are visible from a single host
(also known as a choke point) in the network.

Finally, Masquerading is simply a special case of SNAT. This is useful in situations where
there are multiple systems inside of a private network that need to share a single dynami-
cally assigned IP address to the outside world, and is the most common use of Linux-based
firewalls. In such a case, Masquerading will make all of the packets appear as if they have
originated from the NAT device’s IP address, thus hiding the structure of your private
network. Using this method of NAT also allows your private network to use the RFC 1918
private IP spaces, as shown in Chapter 11 (192.168.0.0/16, 172.16.0.0/12, and 10.0.0.0/8).

Examples of NAT
Figure 13-1 shows a simple example where a host (192.168.1.2) is trying to connect to
a server (200.1.1.1). Using SNAT or Masquerading in this case would apply a transfor-
mation to the packet so that the source IP address is changed to the NAT’s external IP
address (100.1.1.1). From the server’s point of view, it is communicating with the NAT
device, not the host directly. From the host’s point of view, it has unobstructed access to
the public Internet. If there were multiple clients behind the NAT device (say, 192.168.1.3
and 192.168.1.4), the NAT would transform all of their packets to appear as if they origi-
nated from 100.1.1.1 as well.

Alas, this raises a small problem. The server is going to send some packets back—but
how is the NAT device going to know who to send what packet to? Herein lies the magic:
The NAT device maintains an internal list of client connections and associated server
connections called flows. Thus, in the first example, the NAT is maintaining a record that
“192.168.1.1:1025 converts to 100.1.1.1:49001, which is communicating with 200.1.1.1:80.”
When 200.1.1.1:80 sends a packet back to 100.1.1.1:49001, the NAT device automatically
alters the packet so that the destination IP is set to 192.168.1.1:1025 and then passes it
back to the client on the private network.

In its simplest form, a NAT device is only tracking flows. Each flow is kept open so
long as it sees traffic. If the NAT does not see traffic on a given flow for some time, the
flow is automatically removed. These flows have no idea about the content of the con-
nection itself, only that traffic is passing between two endpoints, and it is the job of the
NAT to ensure the packets arrive as each endpoint expects.

Now let’s look at the reverse case, as shown in Figure 13-2: A client from the Internet
wants to connect to a server on a private network through a NAT. Using DNAT in this
situation, we can make it the NAT’s responsibility to accept packets on behalf of the
server, transform the destination IP of the packets, and then deliver them to the server.
When the server returns packets to the client, the NAT engine must look up the associ-
ated flow and change the packet’s source IP address so that it reads from the NAT device
rather than from the server itself. Turning this into the IP addresses shown in Figure 13-2,
we see a server on 192.168.1.5:80 and a client on 200.2.2.2:1025. The client connects to the
NAT IP address, 100.1.1.1:80, and the NAT transforms the packet so that the destination
IP address is 192.168.1.5. When the server sends a packet back, the NAT device does the
reverse, so the client thinks that it is talking to 100.1.1.1. (Note that this particular form of
NAT is also referred to as port address translation, or PAT.)

323 Chapter 13: The Linux Firewall

Figure 13-1. Using SNAT on a connection

Client: 192.168.1.2
Default route: 192.168.1.1

From: 192.168.1.2:1025
To: 200.1.1.1:80

Eth0: 192.168.1.1

Eth1: 100.1.1.1

From: 100.1.1.1:49001
To: 200.1.1.1:80

Server: 200.1.1.1

NAT

Figure 13-2. Using DNAT on a connection

Server: 192.168.1.5
Default route: 192.168.1.1

Eth0: 192.168.1.1

Eth1: 100.1.1.1

From: 200.2.2.2:1025
To: 192.168.1.5:80

From: 200.2.2.2:1025
To: 100.1.1.1:80

Client: 200.2.2.2

NAT

 324 Linux Administration: A Beginner’s Guide

Connection Tracking and NAT
While NAT appears to be a great way to provide security on the surface, it is unfortu-
nately not enough. The problem with NAT is that it doesn’t understand the contents
of the flows and whether a packet should be blocked because it is in violation of the
protocol. For example, let us assume that we have a network set up, as in Figure 13-2.
When a new connection arrives for the web server, we know that it must be a TCP SYN
packet. There is no other valid packet for the purpose of establishing a new connection.
With a blind NAT, however, the packet will be forwarded, regardless of whether it is a
TCP SYN or not.

In order to make NAT more useful, Linux offers stateful connection tracking. This
feature allows NAT to intelligently examine a packet’s header and determine whether
it makes sense from a TCP protocol level. Thus, if a packet arrives for a new TCP con-
nection that is not a TCP SYN, stateful connection tracking will reject the packet with-
out putting the server itself at risk. Even better, if a valid connection is established and
a malicious person tries to spoof a random packet into the flow, stateful connection
tracking will drop the packet, unless it matches all of the criteria to be a valid packet
between the two endpoints (a difficult feat, unless the attacker is able to sniff the traffic
ahead of time).

As we discuss NAT throughout the remainder of this chapter, keep in mind that
wherever NAT can occur, stateful connection tracking can occur.

NAT-Friendly Protocols
As we cover NAT in deeper detail, you may have noticed that we always seem to be
talking about single connections traversing the network. For protocols that need only
a single connection to work, like HTTP, and for protocols that don’t rely on commu-
nicating the client’s or server’s real IP address, like SMTP, this is great. But what hap-
pens when you do have a protocol that needs multiple connections or passes real IP
addresses? Well, you have a problem.

There are two solutions to handling these protocols: Use an application-aware NAT
or a full application proxy. In the former case, the NAT will generally do the least pos-
sible work to make the protocol correctly traverse the NAT, such as IP address fixes
in the middle of a connection and logically grouping multiple connections together
because they are related to one another. The File Transfer Protocol (FTP) NAT is an
example of both. The NAT must alter an active FTP stream so that the IP address that is
embedded in the packet is fixed to show the IP address of the NAT itself, and the NAT
will know to expect a connection back from the server and know to redirect it back to
the appropriate client.

For more complex protocols or protocols where full application awareness is neces-
sary to correctly secure them, an application-level proxy is typically required. The appli-
cation proxy would have the job of terminating the connection from the inside network
and initiating it on behalf of the client on the outside network. Any return traffic would
have to traverse the proxy before going back to the client.

325 Chapter 13: The Linux Firewall

From a practical point of view, there are few protocols that actually need to traverse a
NAT, and these protocols are typically NAT-friendly already, in that they require a single
client-to-server connection only. Active FTP is the only protocol that is frequently needed
that needs a special module in Netfilter. An increasing number of complex protocols are
offering simple, NAT-friendly fallbacks that make them easier to deploy. For example,
most instant messenger, streaming media, and IP telephony applications are offering
NAT-friendly fallbacks.

As we cover different Netfilter configurations, we will introduce some of the mod-
ules that support other protocols.

Chains
For each table, there exists a series of chains that a packet goes through. A chain is simply
a list of rules that act on a packet flowing through the system. There are five predefined
chains in Netfilter: PREROUTING, FORWARD, POSTROUTING, INPUT, and OUTPUT.
Their relationship to each other is shown in Figure 13-3. You should note, however, that
the relationship between TCP/IP and Netfilter as shown in the figure is logical.

Figure 13-3. The relationship between the predefined chains in Netfilter

Network
Applications

(e.g., Apache, BIND, etc.)
iptables

Configuration
Commands and Listings

TCP/IP Stack

Userspace (management, tools, etc.)

Kernel (packet processing)
Sockets

INPUT OUTPUT

POSTROUTINGPREROUTING FORWARDRouting
Decision

Packets
Out

Packets
In

Netfilter

 326 Linux Administration: A Beginner’s Guide

Each of the predefined chains can invoke rules that are in one of the predefined
tables (NAT, mangle, or filter). Not all chains can invoke any rule in any table; each
chain can only invoke rules in a defined list of tables. We will discuss what tables can
be used from each chain when we explain what each of the chains does in the sections
that follow.

Administrators can add more chains to the system if they wish. A packet matching a
rule can then, in turn, invoke another administrator-defined chain of rules. This makes
it easy to repeat a list of rules multiple times from different chains. We will see examples
of this kind of configuration later in the chapter.

All of the predefined chains are members of the mangle table. This means that at any
point along the path, it is possible to mark or alter the packet in an arbitrary way. The
relationship between the other tables and each chain, however, varies by chain. A visual
representation of all of the relationships can be seen in Figure 13-4.

Let’s step through each of these chains to understand these relationships.

PREROUTING
The PREROUTING chain is the first thing a packet hits when entering the system. This
chain can invoke rules in one of three tables: NAT, raw, and mangle. From a NAT per-
spective, this is the ideal point at which to do a Destination NAT (DNAT), which changes
the destination IP address of a packet.

Figure 13-4. The relationship between predefined chains and predefined tables

PREROUTING PREROUTING

POSTROUTING POSTROUTING

OUTPUT

OUTPUT

NAT Table Filter Table

FORWARD

FORWARD

INPUT

INPUTOUTPUT

Mangle Table

327 Chapter 13: The Linux Firewall

Administrators looking to track connections for the purpose of a firewall should start
the tracking here, since it is important to track the original IP addresses along with any
NAT address from a DNAT operation.

FORWARD
The FORWARD chain is invoked only in the case when IP forwarding is enabled and the
packet is destined for a system other than the host itself. For example, if the Linux system
has the IP address 172.16.1.1 and is configured to route packets between the Internet and
the 172.16.1.0/24 network, and a packet from 1.1.1.1 is destined to 172.16.1.10, the packet
will traverse the FORWARD chain.

The FORWARD chain calls rules in the filter and mangle tables. This means that the
administrator can define packet-filtering rules at this point that will apply to any packets
to or from the routed network.

INPUT
The INPUT chain is invoked only when a packet is destined for the host itself. The rules
that are run against a packet are done before the packet goes up the stack and arrives at
the application. For example, if the Linux system has the IP address 172.16.1.1, the packet
has to be destined to 172.16.1.1 in order for any of the rules in the INPUT chain to apply.
If a rule drops all packets destined to port 80, any application listening for connections
on port 80 will never see any.

The INPUT chain calls on rules in the filter and mangle tables.

OUTPUT
The OUTPUT chain is invoked when packets are sent from applications running on the
host itself. For example, if an administrator on the command-line interface (CLI) tries
to use SSH to connect to a remote system, the OUTPUT chain will see the first packet
of the connection. The packets that return from the remote host will come in through
PREROUTING and INPUT.

In addition to the filter and mangle tables, the OUTPUT chain can call on rules in
the NAT table. This allows administrators to configure NAT transformations to occur on
outgoing packets that are generated from the host itself. While this is atypical, the fea-
ture does enable administrators to do PREROUTING-style NAT operations on packets.
(Remember, if the packet originates from the host, it never has a chance to go through
the PREROUTING chain.)

POSTROUTING
The POSTROUTING chain can call on the NAT and mangle tables. In this chain, admin-
istrators can alter source IP address for the purposes of Source NAT (SNAT). This is also
another point at which connection tracking can happen for the purpose of building a
firewall.

 328 Linux Administration: A Beginner’s Guide

INSTALLING NETFILTER
The good news is that if you have a modern distribution of Linux, you probably already
have Netfilter installed, compiled, and working. A quick check is to simply try running
the iptables command, like so:

[root@serverA ~]# iptables -L

On an Ubuntu system, you would run the command as

yyang@ubuntu-serverA:~$ sudo iptables -L

A quick check to see the IPv6 equivalent is by using the command:

[root@serverA ~]# ip6tables -L

Note that some distributions do not include the /sbin directory in the path and there
is a good chance that the iptables program lives there. If you aren’t sure, try using one
of the following full paths: /sbin/iptables, /usr/sbin/iptables, /usr/local/bin/iptables,
or /usr/local/sbin/iptables. The /bin and /usr/bin directories should already be in your
path and should have been checked when you tried iptables without an absolute path.

If the command gave you a list of chains and tables, you’ve already got Netfilter
installed. In fact, there is a good chance the installation process enabled some filters
already! The Fedora distro, for example, gives an option to configure a basic firewall
at installation time, and OpenSuSE also enables a more extensive firewall during the
operating system (OS) install, while Ubuntu, on the other hand, does not enable any
firewall out of the box.

With Netfilter already present, there isn’t much else to do besides actually configur-
ing and using it!

The following section offers some useful information about some of the options
that can be used when setting up (from scratch) a vanilla kernel that does not already
have Netfilter enabled. The complete process of installing Netfilter is actually two parts:
enabling features during the kernel compilation process and compiling the administra-
tion tools. We will examine the first part.

Enabling Netfilter in the Kernel
Most of Netfilter’s code actually lives inside of the kernel and ships with the standard
kernel.org distribution of Linux. In order to enable Netfilter, you simply need to enable
the right options during the kernel configuration step of compiling a kernel. If you are
not familiar with the process of compiling a kernel, see Chapter 9 for details.

Netfilter, however, has a lot of options. In this section, we cover what those options
are and which ones you want to select just in case you are building your kernel from
scratch and want to use Netfilter.

329 Chapter 13: The Linux Firewall

Required Kernel Options
Three required modules must be supported: Network Packet Filtering, IP Tables, and
Connection Tracking.

The first is found under the Networking Support | Networking Options menu when
compiling the kernel. This provides the basic Netfilter framework functionality in the
kernel. Without this option enabled, none of the other options listed will work. Note that
this feature cannot be compiled as a kernel module; it is either in or out.

The second, IP Tables, is found under Networking Support | Networking Options |
Network Packet Filtering | IP: Netfilter Configuration. The purpose of this module is to
provide the IP Tables interface and management to the Netfilter system. Technically, this
module is optional, as it is possible to use the older ipchains or ipfwadm interfaces; how-
ever, unless you have a specific reason to stick to the old interface, you should use IP Tables
instead. If you are in the process of migrating from your old ipchains/ipfwadm configura-
tion to IP Tables, you will want all of the modules compiled and available to you.

Finally, the Connection Tracking option (which can be found in the same place as
the IP Tables option) offers the ability to add support for intelligent TCP/IP connection
tracking and specific support for key protocols like FTP. Like the IP Tables option, this
can be compiled as a module.

Optional but Sensible Kernel Options
With the options just named compiled into the kernel, you technically have enough to
make Netfilter work for most applications. There are, however, a few options that make
life easier, provide additional security, and support some common protocols. For all
practical purposes, you should consider these options as requirements. All of the follow-
ing options can be compiled as modules so that only those in active use are loaded into
memory. Let’s step through them:

 ▼ FTP Protocol Support This option is available once Connection Tracking is
selected. With it, you can correctly handle active FTP connections through NAT.
Active FTP requires that a separate connection from the server be made back
to the client when transferring data (e.g., directory listings, file transfers, etc.)
By default, NAT will not know what to do with the server-initiated connection.
With the FTP module, NAT will be given the intelligence to correctly handle
the protocol and make sure that the associated connection makes it back to the
appropriate client.

■ IRC Protocol Support This option is available once Connection Tracking is
selected. If you expect that users behind NAT will want to use Internet Relay
Chat (IRC) to communicate with others on the Internet, this module will be
required to correctly handle connectivity, IDENT requests, and file transfers.

■ Connection State Match This option is available once IP Tables Support is
enabled. With it, connection tracking gains the stateful functionality that was
discussed in the section “Connection Tracking and NAT” earlier in the chapter.
This should be considered a requirement for anyone configuring their system as
a firewall.

 330 Linux Administration: A Beginner’s Guide

■ Packet Filtering This option is required if you want to provide packet-filtering
options.

■ REJECT Target Support This option is related to the Packet Filtering option in
that it provides a way of rejecting a packet based on the packet filter by sending
an Internet Control Message Protocol (ICMP) error back to the source of a packet
instead of just dropping it. Depending on your network, this may be useful;
however, if your network is facing the Internet, the REJECT option is not a good
idea. It is better to silently drop packets you do not want rather than generate
more traffic.

■ LOG Target Support With this option, you can configure the system to log a
packet that matches a rule. For example, if you want to log all packets that are
dropped, this option makes it possible.

■ Full NAT This option is a requirement to provide NAT functionality in
Netfilter.

■ MASQUERADE Target Support This option is a requirement to provide an
easy way to hide a private network through NAT. This module internally creates
a NAT entry.

■ REDIRECT Target Support This option allows the system to redirect a packet
to the NAT host itself. Using this option allows you to build transparent proxies,
which are useful when it is not feasible to configure every client in your network
with proper proxy settings or if the application itself is not conducive to connect-
ing to a proxy server.

■ NAT of Local Connections This option allows you to apply DNAT rules to
packets that originate from the NAT system itself. If you are not sure if you’ll
need this later on, go ahead and compile it in.

 ▲ Packet Mangling This option adds the mangle table. If you think you’ll want
the ability to manipulate or mark individual packets for options like Quality of
Service, you will want to enable this module.

Other Options
Many additional options can be enabled with Netfilter. Most of them are set to compile
as modules by default, which means you can compile them now and decide whether you
want to actually use them later without taking up precious memory.

As you go through the compilation process, take some time to look at the other modules
and read their Help sections. Many modules offer interesting little functions that you may
find handy for doing offbeat things that are typically not possible with firewalls. In other
words, these functions allow you to really show off the power of Netfilter and Linux.

Of course, there is a trade-off with the obscure. When a module is not heavily used, it
doesn’t get as heavily tested. If you’re expecting to run this NAT as a production system,
you may want to stick to the basics and keep things simple. Simple is easier to trouble-
shoot, maintain, and, of course, secure.

331 Chapter 13: The Linux Firewall

CONFIGURING NETFILTER
There is a good chance that your distribution of Linux has already configured some
Netfilter settings for you, especially if you are using a relatively recent distribution. This
is usually done via a desktop graphical user interface (GUI) tool or may have been done
during the OS installation.

From an administrative point of view, this gives you three choices: stick to the GUI
for configuring Netfilter, learn how to manage the system using the existing set of scripts,
or move to the command line.

If you choose to stick with a GUI, be aware that multiple GUIs are available for Linux
in addition to the one that may have shipped with your system. The key to your deci-
sion, however, is that once you have made up your mind, you’re going to want to stick to
it. While it is possible to switch between the GUI and CLI, it is not recommended, unless
you know how to manage the GUI configuration files by hand.

Managing the system using the existing set of scripts requires the least amount of
changing from a startup/shutdown script point of view, since you are using the existing
framework; however, it also means getting to know how the current framework is con-
figured and learning how to edit those files.

Finally, ignoring the existing scripts and going with your own means you need
to start from scratch, but you will have the benefit of knowing exactly how it works,
when it starts, and how to manage it. The downside is that that you will need to create
all of the start and stop infrastructure as well. Because of the importance of the fire-
wall functionality, it is not acceptable to simply add the configuration to the end of the
/etc/rc.d/rc.local script, as it runs at the end of startup. Because of the time to boot, the
window between starting a service and starting the firewall offers too much time for
an attack to potentially happen.

Saving Your Netfilter Configuration
At the end of this chapter, you will have some mix of rules defined with iptables com-
mands, possibly a setting in the /proc file system, and the need to load additional kernel
modules at boot time. In order to make these changes persistent across multiple reboots,
you will need to save each of these components so that they start as you expect them to
at boot time.

Saving under Fedora and other Red Hat–type Linux distributions is quite straight-
forward. Simply take the following steps:

 1. Save your Netfilter rules using the following command:

[root@fedora-serverA ~]# /etc/rc.d/init.d/iptables save

 2. Add the appropriate modules to the IPTABLES_MODULES variable in the
/etc/sysconfig/iptables-config file. For example, to add ip_conntrack_ftp and
ip_nat_ftp, make the IPTABLES_MODULES line read as follows:

IPTABLES_MODULES="ip_conntrack_ftp ip_nat_ftp"

 332 Linux Administration: A Beginner’s Guide

TIP The configuration options for the IPv6 firewall (ip6tables) is stored in the /etc/sysconfig/
ip6tables-config file. For example, the IPv6 equivalent of the IPTABLES_MODULES in IPv4 directive
is IP6TABLES_MODULES in the ip6tables-config file.

 3. Make any changes to the kernel parameters as needed using the sysctl utility.
For example, to enable IP forwarding, you would run the following command:

[root@fedora-serverA ~]# sysctl -w net.ipv4.ip_forward=1 >> /etc/sysctl.conf

NOTE Some distributions already have commonly used kernel parameters defined (but disabled)
in the sysctl.conf file, so all that may be needed is to change the existing variables to the desired
value. So make sure to first examine the file for the presence of the setting that you want to change
and tweak that value, instead of appending to the file as we did previously.

For other distributions, the methods discussed here may vary. If you aren’t sure about
how your distribution works, or if it’s proving to be more headache than it is worth,
simply disable the built-in scripts from the startup sequence and add your own. If you
choose to write your own script, you can use the following outline:

#!/bin/sh

Define where iptables and modprobe is located.

IPT="/sbin/iptables"

MODPROBE="/sbin/modprobe"

Add your insmod/depmod lines here.

$MODPROBE ip_tables

$MODPROBE ipt_state

$MODPROBE iptable_filter

$MODPROBE ip_conntrack

$MODPROBE ip_conntrack_ftp

$MODPROBE iptable_nat

$MODPROBE ip_nat_ftp

Flush the current chains, remove non-standard chains, and zero counters.

$IPT -t filter -F

$IPT -t filter -X

$IPT -t filter -Z

$IPT -t mangle -F

$IPT -t mangle -X

$IPT -t mangle -Z

$IPT -t nat -F

$IPT -t nat -X

$IPT -t nat -Z

Add your rules here. Here is a sample one to get you started.

$IPT -A INPUT -i lo -j ACCEPT

Add any /proc settings here.

echo "1" > /proc/sys/net/ipv4/tcp_syncookies

333 Chapter 13: The Linux Firewall

The iptables Command
The iptables command is the key to configuring the Netfilter system. A quick glance
at its online help with the iptables -h command shows an impressive number of
configuration options. In this section, we will walk through some of those options and
learn how to use them.

At the heart of the command is the ability to define individual rules that are made
a part of a rule chain. Each individual rule has a packet-matching criterion and a corre-
sponding action. As a packet traverses a system, it will traverse the appropriate chains,
as we saw in Figure 13-3 earlier in the chapter. Within each chain, each rule will be exe-
cuted on the packet in order. When a rule matches a packet, the specified action is taken
on the packet. These individual actions are referred to as targets.

Managing Chains
The format of the command varies by the desired action on the chain. These are the pos-
sible actions:

iptables -t table -A chain
rule-spec [options]

Append rule-spec to chain.

iptables -t table -D chain
rule-spec

Delete rule-spec from chain.

iptables -t table -I chain
[rulenum] rule-spec
[options]

Insert rule-spec at rulenum. If no rule
number is specified, the rule is inserted
at the top of the chain.

iptables -t table -R chain
rulenum rule-spec [options]

Replace rulenum with rule-spec on
chain.

iptables -t table -L chain
[options]

List the rules on chain.

iptables -t table -F chain
[options]

Flush (remove all) the rules on chain.

iptables -t table -Z chain
[options]

Zero all the counters on chain.

iptables -t table -N chain Define a new chain called chain.

iptables -t table -X [chain] Delete chain. If no chain is specified,
all nonstandard chains are deleted.

iptables -t table target -P
chain

Define the default policy for a chain. If no
rules are matched for a given chain, the
default policy sends the packet to target.

iptables -t table -E chain
[new-chain]

Rename chain to new-chain.

 334 Linux Administration: A Beginner’s Guide

Recall that there are several built-in tables (NAT, filter, mangle, and raw) and five
built-in chains (PREROUTING, POSTROUTING, INPUT, FORWARD, and OUTPUT).
Recall that Figure 13-4 shows their relationships.

However, as rules become more complex, it is sometimes necessary to break them up
into smaller groups. Netfilter lets you do this by defining your own chain and placing it
within the appropriate table.

When traversing the standard chains, a matching rule can trigger a jump to another
chain in the same table. For example, let’s create a chain called “to_net10” that handles
all the packets destined to the 10.0.0.0/8 network that is going through the FORWARD
chain.

[root@serverA ~]# iptables -t filter -N to_net10

[root@serverA ~]# iptables -t filter -A FORWARD -d 10.0.0.0/8 -j to_net10

[root@serverA ~]# iptables -t filter -A to_net10 -j RETURN

In this example, the to_net10 chain doesn’t do anything but return control back to the
FORWARD chain.

To create a sample table named to_net10 for the IPv6 firewall, we would use

[root@serverA ~]# ip6tables -t filter -N to_net10

TIP Every chain should have a default policy. That is, it must have a default action to take in the
event a packet fails to meet any of the rules. When designing a firewall, the safe approach is to set
the default policy (using the -P option in iptables) for each chain to be DROP and then explicitly
insert ALLOW rules for the network traffic that you do want to allow.

TIP The filter table is the default table used whenever a table name is not explicitly specified with
the iptables command. Therefore the rule:

iptables -t filter -N example_chain

 can also be written as:

 # iptables -N example_chain

Defining the Rule-Specification
In the preceding section, we made mention of rule-specification (rule-spec). The rule-spec is
the list of rules that are used by Netfilter to match on a packet. If the specified rule-spec
matches a packet, Netfilter will apply the desired action on it. The following iptables
parameters make up the common rule-specs:

▼ p [!] protocol This specifies the IP protocol to compare against. You
can use any protocol defined in the /etc/protocols file, such as “tcp,” “udp,” or

335 Chapter 13: The Linux Firewall

“icmp.” A built-in value for “all” indicates that all IP packets will match. If the
protocol is not defined in /etc/protocols, you can use the protocol number here.
For example, 47 represents “gre.” The exclamation mark (!) negates the check.
Thus, specifying -p ! tcp means all packets that are not TCP. If this option is not
provided, Netfilter will assume “all.” The --protocol option is an alias for this
option. An example of its usage is

[root@serverA ~]# iptables -t filter -A INPUT -p tcp --dport 80 -j ACCEPT

 For ip6tables, use

[root@serverA ~]# ip6tables -t filter -A INPUT -p tcp --dport 80 -j ACCEPT

 These rules will accept all packets destined to TCP port 80 on the INPUT chain.

■ s [!] address [/mask] This option specifies the source IP address to
check against. When combined with an optional netmask, the source IP can
be compared against an entire netblock. As with -p, the use of the exclamation
mark (!) inverts the meaning of the rule. Thus, specifying -s ! 10.13.17.2 means all
packets not from 10.13.17.2. Note that the address and netmask can be abbrevi-
ated. An example of its usage is

[root@serverA ~]# iptables -t filter -A INPUT -s 172.16/16 -j DROP

 This rule will drop all packets from the 172.16.0.0/16 network. This is the same
network as 172.16.0.0/255.255.0.0.

 To use ip6tables to drop all packets from the IPv6 network range 2001:DB8::/32,
we would use a rule like:

[root@serverA ~]# ip6tables -t filter -A INPUT -s 2001:DB8::/32 -j DROP

■ d [!] address [/mask] This option specifies the destination IP address
to check against. When combined with an optional netmask, the destination IP
can be compared against an entire netblock. As with -s, the exclamation mark
negates the rule, and the address and netmask can be abbreviated. An example
of its usage is

[root@serverA ~]# iptables -t filter -A FORWARD -d 10.100.93.0/24 -j ACCEPT

 This rule will allow all packets going through the FORWARD chain that are des-
tined for the 10.100.93.0/24 network.

■ j target This option specifies an action to “jump” to. These actions are
referred to as targets in iptables parlance. The targets that we’ve seen so far
have been ACCEPT, DROP, and RETURN. The first two accept and drop pack-
ets, respectively. The third is related to the creation of additional chains.

 As we saw in the preceding section, it is possible for you to create your own
chains to help keep things organized and to accommodate more complex

 336 Linux Administration: A Beginner’s Guide

rules. If iptables is evaluating a set of rules in a chain that is not built-in, the
RETURN target will tell iptables to return back to the parent chain. Using
the earlier to_net10 example, when iptables reaches the -j RETURN, it goes
back to processing the FORWARD chain where it left off. If iptables sees the
RETURN action in one of the built-in chains, it will execute the default rule for
the chain.

 Additional targets can be loaded via Netfilter modules. For example, the REJECT
target can be loaded with ipt_REJECT, which will drop the packet and return an
ICMP error packet back to the sender. Another useful target is ipt_REDIRECT,
which can make a packet be destined to the NAT host itself even if the packet is
destined for somewhere else.

■ i interface This option specifies the name of the interface on which a
packet was received. This is handy for instances where special rules should be
applied if a packet arrives from a physical location, such as a DMZ interface. For
example, if eth1 is your DMZ interface and you want to allow it to send packets
to the host at 10.4.3.2, you can use

[root@serverA ~]# iptables -A FORWARD -i eth1 -d 10.4.3.2 -j ACCEPT

■ o interface This option specifies the name of the interface on which a
packet will leave the system. For example,

[root@serverA ~]# iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

 In this example, any packets coming in from eth0 and going out to eth1 are
accepted.

■ [!] -f This option specifies whether a packet is an IP fragment or not. The
exclamation mark negates this rule. For example,

[root@serverA ~]# iptables -A INPUT -f -j DROP

 In this example, any IP fragments coming in on the INPUT chain are automati-
cally dropped. The same rule with negative logic would be

[root@serverA ~]# iptables -A INPUT ! -f -j ACCEPT

■ c PKTS BYTES This option allows you to set the counter values for a par-
ticular rule when inserting, appending, or replacing a rule on a chain. The
counters correspond to the number of packets and bytes that have traversed
the rule, respectively. For most administrators, this is a rare need. An example
of its usage is

[root@serverA ~]# iptables -I FORWARD -f -j ACCEPT -c 10 10

 In this example, a new rule allowing packet fragments is inserted into the
 FORWARD chain, and the packet counters are set to 10 packets and 10 bytes.

337 Chapter 13: The Linux Firewall

■ v This option will display any output of iptables (usually combined with
the -L option) to show additional data. For example,

[root@serverA ~]# iptables -L –v

■ n This option will display any hostnames or port names in their numeric form.
Normally, iptables will do Domain Name System (DNS) resolution for you
and show hostnames instead of IP addresses and protocol names (like SMTP)
instead of port numbers (25). If your DNS system is down, or if you do not want
to generate any additional packets, this is a useful option.

 An example of this is

[root@serverA ~]# iptables -L -n

■ x This option will show the exact values of a counter. Normally, iptables will
try to print values in “human-friendly” terms and thus perform rounding in the
process. For example, instead of showing “10310,” iptables will show “10k.”

 An example of this is

[root@serverA ~]# iptables -L -x

▲ line-numbers This option will display the line numbers next to each rule in
a chain. This is useful when you need to insert a rule in the middle of a chain and
need a quick list of the rules and their corresponding rule numbers.

 An example of this is

[root@serverA ~]# iptables -L –line-numbers

 For IPv6 firewall rules, use

[root@serverA ~]# ip6tables -L --line-numbers

Rule-Spec Extensions with Match
One of the most powerful aspects of Netfilter is the fact that it offers a “pluggable”
design. For developers, this means that it is possible to make extensions to Netfilter
using an application programming interface (API) rather than having to dive deep into
the kernel code and hack away. For users of Netfilter, this means a wide variety of exten-
sions are available beyond the basic feature set.

These extensions are accomplished with the Match feature in the iptables command-
line tool. By specifying a desired module name after the -m parameter, iptables will
take care of loading the necessary kernel modules and then offer an extended command-
line parameter set. These parameters are used to offer richer packet-matching features.

In this section, we discuss the use of a few of these extensions that have, as of this
writing, been sufficiently well tested so that they are commonly included with Linux
distributions.

 338 Linux Administration: A Beginner’s Guide

TIP To get help for a match extension, simply specify the extension name after the -m parameter
and then give the -h parameter. For example, to get help for the ICMP module, use

 [root@serverA ~]# iptables -m icmp -h

icmp This module provides an extra match parameter for the ICMP protocol:

icmp-type [!]typename

where typename is the name or number of the ICMP message type. For example, to
block a ping packet, use the following:

[root@serverA ~]# iptables -t filter -p icmp -A INPUT -m icmp --icmp-type echo-request

For a complete list of supported ICMP packet types, see the module help page with
the -h option.

limit This module provides a method of limiting the packet rate. It will match so long
as the rate of packets is under the limit. A secondary “burst” option matches against
a momentary spike in traffic, but will stop matching if the spike sustains. The two
parameters are

▼ limit rate

▲ limit-burst number

The rate is the sustained packet-per-second count. The number in the second
parameter specifies how many back-to-back packets to accept in a spike. The default
value for number is 5. You can use this feature as a simple approach to slowing down
a SYN flood:

[root@serverA ~]# iptables -N syn-flood

[root@serverA ~]# iptables -A INPUT -p tcp --syn -j syn-flood

[root@serverA ~]# iptables -A syn-flood -m limit --limit 1/s -j RETURN

[root@serverA ~]# iptables -A syn-flood -j DROP

This will limit the connection rate to an average of one per second, with a burst up to
five connections. This isn’t perfect, and a SYN flood can still deny legitimate users with
this method; however, it will help keep your server from spiraling out of control.

state This module allows you to determine the state of a TCP connection through the
eyes of the conntrack module. It provides one additional option:

state state

where state is INVALID, ESTABLISHED, NEW, or RELATED. A state is INVALID if
the packet in question cannot be associated to an existing flow. If the packet is part of an

339 Chapter 13: The Linux Firewall

existing connection, the state is ESTABLISHED. If the packet is starting a new flow, it is
considered NEW. Finally, if a packet is associated with an existing connection (e.g., an
FTP data transfer), then it is RELATED.

Using this feature to make sure that new connections have only the TCP SYN bit set,
we do the following:

[root@serverA ~]# iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

Reading this example, we see that for a packet on the INPUT chain that is TCP, that
does not have the SYN flag set, and the state of a connection is NEW, we drop the packet.
(Recall that legitimate new TCP connections must start with a packet that has the SYN
bit set.)

tcp This module allows us to examine multiple aspects of TCP packets. We have seen
some of these options (like --syn) already. Here is a complete list of options:

▼ source-port [!] port: [port] This option examines the source port of
a TCP packet. If a colon followed by a second port number is specified, a range
of ports is checked. For example, “6000:6010” means “all ports between 6000
and 6010, inclusive.” The exclamation mark negates this setting. For example,
--source-port ! 25 means “all source ports that are not 25.” An alias for
this option is --sport.

■ destination-port [!] port: [port] Like the --source-port option,
this examines the destination port of a TCP packet. Port ranges and negation
are supported. For example, -destination-port ! 9000:9010 means “all
ports that are not between 9000 and 9010, inclusive.” An alias for this option is
--dport.

■ tcp-flags [!] mask comp This checks the TCP flags that are set in a packet.
The mask tells the option what flags to check, and the comp parameter tells the
option what flags must be set. Both mask and comp can be a comma-separated
list of flags. Valid flags are SYN, ACK, FIN, RST, URG, PSH, ALL, and NONE,
where ALL means all flags and NONE means none of the flags. The exclamation
mark negates the setting. For example, to use --tcp-flags ALL SYN,ACK
means that the option should check all flags and only the SYN and ACK flags
must be set.

▲ [!] --syn This checks if the SYN flag is enabled. It is logically equivalent
to --tcp-flags SYN,RST,ACK SYN. The exclamation point negates the
setting.

An example using this module checks if a connection to DNS port 53 originates from
port 53, does not have the SYN bit set, and has the URG bit set, in which case it should
be dropped. Note that DNS will automatically switch to TCP when a request is greater
than 512 bytes.

[root@serverA ~]# iptables -A INPUT -p tcp --sport 53 --dport 53 --tcp-flags !\

SYN URG -j DROP

 340 Linux Administration: A Beginner’s Guide

tcpmss This matches a TCP packet with a specific Maximum Segment Size (MSS). The
lowest legal limit for IP is 576, and the highest value is 1500. The goal in setting an MSS
value for a connection is to avoid packet segmentation between two endpoints. Dial-up
connections tend to use 576-byte MSS settings, whereas users coming from high-speed
links tend to use 1500-byte values. The command-line option for this setting is

mss value:[value]

where value is the MSS value to compare against. If a colon followed by a second value
is provided, an entire range is checked. For example,

[root@serverA ~]# iptables -I INPUT -p tcp -m tcpmss --mss 576 -j ACCEPT

[root@serverA ~]# iptables -I INPUT -p tcp -m tcpmss ! --mss 576 -j ACCEPT

This will provide a simple way of counting how many packets (and how many bytes)
are coming from connections that have a 576-byte MSS and how many are not. To see the
status of the counters, use iptables -L -v.

udp Like the TCP module, the UDP module provides extra parameters to check for a
packet. Two additional parameters are provided:

▼ source-port [!] port:[port] This option checks the source port of
a User Datagram Protocol (UDP) packet. If the port number is followed by a
colon and another number, the range between the two numbers is checked. If the
exclamation point is used, the logic is inverted.

▲ destination-port [!] port:[port] Like the source-port option,
this option checks the UDP destination port.

 For example:

[root@serverA ~]# iptables -I INPUT -p udp --destination-port 53 -j ACCEPT

 This example will accept all UDP packets destined for port 53. This rule is typi-
cally set to allow traffic to DNS servers.

COOKBOOK SOLUTIONS
So you just finished reading this whole chapter and your head is spinning a bit. So many
options; so many things to do. Not to worry—that’s what this section is for: some cook-
book solutions to common uses of the Linux Netfilter system that you can put to imme-
diate use as well as learn from. Of course, if you skipped the chapter up to this point and
just came to here, well, you’ll find some cookbook solutions. However, taking the time
to understand what the commands are doing, how they are related, and how you can
change them is worthwhile. It will also turn a few examples into endless possibilities.

With respect to saving the examples for use on a production system, you will want to
add the modprobe commands to your startup scripts. In Fedora and other Red Hat–type

341 Chapter 13: The Linux Firewall

systems, add the module name to the IPTABLES_MODULES variable in /etc/sysconfig/
iptables-config. For other distributions, add the complete modprobe line to the
/etc/rc.d/rc.local file. Any changes to /proc should also be added to /etc/rc.d/rc.local.
Finally, Fedora users can save their current running iptables rule using the follow-
ing command:

[root@serverA ~]# /etc/rc.d/init.d/iptables save

You can also use the built-in iptables-save command to achieve the same effect
as the previous command, like so:

[root@serverA ~]# iptables-save > /etc/sysconfig/iptables

This will write the currently running iptables rules to the /etc/sysconfig/iptables
configuration file.

The IPv6 equivalent of the command to write out the IPv6 firewall rules to the con-
figuration file is

[root@serverA ~]# ip6tables-save > /etc/sysconfig/ip6tables

Other Linux distributions with Netfilter also have the iptables-save and
ip6tables-save commands. The only trick is to find the appropriate startup file in
which to write the rules.

Rusty’s Three-Line NAT
Rusty Russell, one of the key developers of the Netfilter system, recognized that the
most common use for Linux firewalls is to make a network of systems available to the
Internet via a single IP address. This is a common configuration in home and small office
networks where digital subscriber line (DSL) or Point-to-Point Protocol (PPP) provid-
ers give only one IP address to use. In this section, we honor Rusty’s solution and step
through it here.

Assuming that you want to use your ppp0 interface as your connection to the world
and your other interfaces (e.g., eth0) to connect to the inside network, do the following:

[root@serverA ~]# modprobe iptable_nat

[root@serverA ~]# iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

[root@serverA ~]# echo 1 > /proc/sys/net/ipv4/ip_forward

This set of commands will enable a basic NAT to the Internet. To add support for
active FTP through this gateway, run the following:

[root@serverA ~]# modprobe ip_nat_ftp

If you are using Fedora, Red Hat Enterprise Linux (RHEL), or Centos and want to
make the iptables configuration part of your startup script, run the following:

[root@serverA ~]# /etc/rc.d/init.d/iptables save

 342 Linux Administration: A Beginner’s Guide

NOTE For administrators of other Linux distributions, you can also use the iptables-save
command (which is part of the iptables distribution and thus applies to all Linux distributions).
This command in conjunction with iptables-restore will allow you to save and restore your
iptables settings.

Configuring a Simple Firewall
In this section, we start with a deny-all firewall for two cases: a simple network where no
servers are configured and the same network, but with some servers configured. In the
first case, we assume a simple network with two sides: inside on the 10.1.1.0/24 network
(eth1) and the Internet (eth0). Note that by “server,” we mean anything that needs a con-
nection made to it. This could, for example, mean a Linux system running an ssh daemon
or a Windows system running a web server.

Let’s start with the case where there are no servers to support.
First we need to make sure that the NAT module is loaded and that FTP support for

NAT is loaded. We do that with the modprobe commands:

[root@serverA ~]# modprobe iptable_nat

[root@serverA ~]# modprobe ip_nat_ftp

With the necessary modules loaded, we define the default policies for all the chains. For
the INPUT, FORWARD, and OUTPUT chains in the filter table, we set the destination to
be DROP, DROP, and ACCEPT, respectively. For the POSTROUTING and PRE ROUTING
chains, we set their default policies to ACCEPT. This is necessary for NAT to work.

[root@serverA ~]# iptables -P INPUT DROP

[root@serverA ~]# iptables -P FORWARD DROP

[root@serverA ~]# iptables -P OUTPUT ACCEPT

[root@serverA ~]# iptables -t nat -P POSTROUTING ACCEPT

[root@serverA ~]# iptables -t nat -P PREROUTING ACCEPT

With the default policies in place, we need to define the baseline firewall rule. What
we want to accomplish is simple: Let users on the inside network (eth1) make connec-
tions to the Internet, but don’t let the Internet make connections back. To accomplish this,
we define a new chain called “block” that we use for grouping our state-tracking rules
together. The first rule in that chain simply states that any packet that is part of an estab-
lished connection or that is related to an established connection is allowed through. The
second rule states that in order for a packet to create a new connection, it cannot origi-
nate from the eth0 (Internet-facing) interface. If a packet does not match against either of
these two rules, the final rule forces the packet to be dropped.

[root@serverA ~]# iptables -N block

[root@serverA ~]# iptables -A block -m state --state ESTABLISHED,RELATED -j ACCEPT

[root@serverA ~]# iptables -A block -m state --state NEW -i ! eth0 -j ACCEPT

[root@serverA ~]# iptables -A block -j DROP

343 Chapter 13: The Linux Firewall

With the blocking chain in place, we need to call on it from the INPUT and FORWARD
chains. We aren’t worried about the OUTPUT chain, since only packets originating from
the firewall itself come from there. The INPUT and FORWARD chains, on the other hand,
need to be checked. Recall that when doing NAT, the INPUT chain will not be hit, so we
need to have FORWARD do the check. If a packet is destined to the firewall itself, we
need the checks done from the INPUT chain.

[root@serverA ~]# iptables -A INPUT -j block

[root@serverA ~]# iptables -A FORWARD -j block

Finally, as the packet leaves the system, we perform the MASQUERADE function
from the POSTROUTING chain in the NAT table. All packets that leave from the eth0
interface go through this chain.

[root@serverA ~]# iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

With all the packet checks and manipulation behind us, we enable IP forwarding (a
must for NAT to work) and SYN cookie protection, plus we enable the switch that keeps
the firewall from processing ICMP broadcast packets (Smurf attacks).

[root@serverA ~]# echo 1 > /proc/sys/net/ipv4/ip_forward

[root@serverA ~]# echo 1 > /proc/sys/net/ipv4/tcp_syncookies

[root@serverA ~]# echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

At this point, you have a working firewall for a simple environment. If you don’t run
any servers, you can save this configuration and consider yourself done. On the other
hand, let’s assume you have two applications that you want to make work through this
firewall: a Linux system on the inside network that you need ssh access to from remote
locations and a Windows system from which you want to run BitTorrent. Let’s start with
the ssh case first.

To make a port available through the firewall, we need to define a rule that says, “If
any packet on the eth0 (Internet-facing) interface is TCP and has a destination port of 22,
change its destination IP address to 172.16.1.3.” This is accomplished by using the DNAT
action on the PREROUTING chain, since we want to change the IP address of the packet
before any of the other chains see it.

The second problem we need to solve is how to insert a rule on the FORWARD
chain that allows any packet whose destination IP address is 172.16.1.3 and destination
port is 22 to be allowed. The key word is insert (-I). If we append the rule (-A) to the
 FORWARD chain, the packet will instead be directed through the block chain, because
the rule “iptables -A FORWARD -j block” will apply first.

[root@serverA ~]# iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 22 -j DNAT\

--to-destination 172.16.1.3

[root@serverA ~]# iptables -I FORWARD -p tcp -d 172.16.1.3 --dport 22 -j ACCEPT

We can apply a similar idea to make BitTorrent work. Let’s assume that the Windows
machine that is going to use BitTorrent is 172.16.1.2. The BitTorrent protocol uses ports

 344 Linux Administration: A Beginner’s Guide

6881–6889 for connections that come back to the client. Thus, we use a port range setting
in the iptables command.

[root@serverA ~]# iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 6881:6889 -j

DNAT --to-destination 172.16.1.2

[root@serverA ~]# iptables -I FORWARD -p tcp -d 172.16.1.2 --dport 6881:6889 -j

ACCEPT

Ta da! You now have a working firewall and support for an ssh server and a BitTorrent
user on the inside of your network.

SUMMARY
In this chapter we discussed the ins and outs of the Linux firewall, Netfilter. In particular,
we discussed the usage of the iptables and ip6tables commands. With this infor-
mation, you should be able to build, maintain, and manage a Linux-based firewall.

If it hasn’t already become evident, Netfilter is an impressively complex and rich sys-
tem. Authors have written complete books on Netfilter alone and other complete texts
on firewalls. In other words, you’ve got a good toolkit under your belt with this chapter,
but if you really want to take advantage of the awesome power of Netfilter, start read-
ing now—you’ve got a lot of pages to go. In addition to this chapter, you may want
to take some time to read up on more details of Netfilter. More detailed information
can be obtained from the main Netfilter web site (www.netfilter.org). The book Firewalls
and Internet Security: Repelling the Wily Hacker, Second Edition by Cheswick, Bellovin, and
Rubin (Addison-Wesley, 2003) is also a good text.

Don’t forget that security can be fun, too. The Cuckoo’s Egg by Clifford Stoll (Pocket,
2000) is a true story of an astronomer turned hacker-catcher in the late 1980s. It makes for
a great read and gives you a sense of what the Internet was like before commercializa-
tion, let alone firewalls.

345

14

Local Security

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 346 Linux Administration: A Beginner’s Guide

When you hear about a new attack (or vulnerability) against any operating
system, it would be interesting to find out whether the vulnerability is
exploitable via the network or not. This makes the distinction between local

security and network security, which, although related, have two different approaches to
solving the problem. In this chapter, we focus on local security.

Local security addresses the problem of attacks that require the attacker to be able to
do something on the system itself for the purpose of gaining root access (administrative
access). For example, there is a whole class of attacks that take advantage of applications
that create temporary files in the /tmp directory but do not check the temporary file’s
ownership, its file permissions, or if it is a link to another file before opening and writing
to it. An attacker can create a symbolic link of the expected temporary filename to a file
that he wants to corrupt (e.g., /etc/passwd) and run the application; if the application is
SetUID to root (covered later in this chapter), it will destroy the /etc/passwd file when
writing to its temporary file. The attacker can use the lack of /etc/passwd to bypass pos-
sibly other security mechanisms so that he can gain root access.

For a system that has untrustworthy users on it, this can be a real problem. Univer-
sity environments are often ripe for these types of attacks, since students need access
to servers for homework assignments, but at the same time, pose a great threat to the
system because students can (a) get bored and (b) don’t always think about the conse-
quences of their actions.

Local security issues can also be triggered by network security issues. If a network
security issue results in an attacker being able to invoke any program or application on
the server, he can use a local security-based exploit not only to give himself full access
to the server, but also to escalate his own privileges to the root user. “Script kiddies,” that
is, attackers who use other people’s attack programs because they are incapable of creat-
ing their own, will use these kinds of methods to gain full access to your system. In their
parlance, you’ll be “owned.”

In this chapter, we address the fundamentals of keeping your system secure against
local security attacks. Keep in mind, however, that a single chapter on this topic will not
make you an expert. Security is a field that is constantly evolving and requires constant
updating. The “Hacking Exposed” series of books is an excellent place to jump-start
your knowledge, and the BugTraq mailing list (www.securityfocus.com) is often where
the big security news is picked up in the first place.

In the rest of this chapter, you will notice two recurrent goals: mitigating risk and
simpler is better. The former is another way of adjusting your investment (both in time
and money, the former usually being worth the latter), given the risk you’re willing to
take on and the risk that a server poses if compromised. (A web server dishing up your
vacation pictures on a low-bandwidth link is a lower risk than a server handling large
financial transactions for Wall Street.) The “simpler is better” comment is engineering
101—simple systems are less prone to problems, easier to fix, easier to understand, and
inevitably more reliable. Keeping your servers simple is a desired goal.

347 Chapter 14: Local Security

COMMON SOURCES OF RISK
Security is the mitigation of risk. With every effort of mitigating risk, there is an associ-
ated cost. Costs are not necessarily financial; they can take the form of restricted access,
loss of functionality, or time. Your job as an administrator is to balance the costs of miti-
gating risk with the potential damage that an exploited risk can cause.

An example of balancing risk is running a web server. The risk of opening a service
that can be probed, poked at, and possibly exploited is inherent in exposing any network
accessibility. However, you may find that the risk of exposure is low so long as the web
server is maintained and immediately patched when security issues arise. If the benefit
of running a web server is great enough to justify your cost of maintaining it, then it is a
worthwhile endeavor.

In this section, we look at common sources of risk and examine what things you can
do to mitigate those risks.

SetUID Programs
SetUID programs are executables that have a special attribute (flag) set in their permis-
sion, which allows users to run the executable in the context of the executable’s owner.
This enables administrators to make selected applications, programs, or files available,
with higher privileges to normal users, without having to give those users any admin-
istrative rights. An example of such a program is ping. Because the creation of raw net-
work packets is restricted to the root user (creation of raw packets allows the application
to put any contents within the packet, including attacks), the ping application must run
with the SetUID bit enabled and the owner set to root. Thus, even though user “yyang”
may start the program, the ping program can be run in the context of the root user for
the purpose of placing an Internet Control Message Protocol (ICMP) packet onto the
network. The ping utility in this example is said to be “SetUID root.”

The problem with programs that are running with root privileges is that they have
an obligation to be highly conscious of their security as well. It should not be possible
for a normal user to do something dangerous on the system by using that program.
This means many checks need to be written into the program and potential bugs have
to be carefully removed. Ideally, these programs should be small and do one thing. This
makes it easier to evaluate the code for potential bugs that can harm the system or allow
for the user to gain privileges that he should not have.

From a day-to-day perspective, it is in the administrator’s best interest to keep as
few SetUID root programs on the system as possible. The risk balance here is the avail-
ability of features/functions to users versus the potential for bad things to happen. For
some common programs like ping, mount, traceroute, and su, the risk is low for the
value they bring to the system. Some well-known SetUID programs, like the X Window
System, pose a low-to-moderate risk; however, given the exposure X Window has had, it
is unlikely to be the root of any problems. If you are running a pure server environment
where you do not need X Window, it never hurts to remove it.

 348 Linux Administration: A Beginner’s Guide

SetUID programs executed by web servers are almost always a bad thing. Take great
caution with these types of applications and look for alternatives. The exposure is much
greater, since it is possible for network input (which can come from anywhere) to trigger
this application and affect its execution.

If you find that you must run an application SetUID with root privileges, another
alternative is to find out if it is possible to run the application in a chroot environment
(discussed later in this chapter).

Finding and Creating SetUID Programs
A SetUID program has a special file attribute that the kernel uses to determine if it should
override the default permissions given to an application. When doing a directory list-
ing, the permissions shown on a file in its ls -l output will reveal this little fact. For
example:

[root@serverA ~]# ls -l /bin/ping

-rwsr-xr-x 1 root root 41912 2010-09-14 02:32 /bin/ping

If the fourth letter in the permissions field is an s, the application is SetUID. If the
file’s owner is root, then the application is SetUID root. In the case of ping, we can see
that it will execute with root permissions available to it. Another example is the Xorg
(X Window) program:

[root@serverA ~]# ls -l /usr/bin/Xorg

-rws--x--x 1 root root 1910628 2010-10-17 19:38 /usr/bin/Xorg

As with ping, we see that the fourth character of the permissions is an s and the
owner is root. The Xorg program is, therefore, SetUID root.

To determine if a running process is SetUID, you can use the ps command to see both
the actual user of a process and its effective user, like so:

[root@serverA ~]# ps ax -o pid,euser,ruser,comm

This will output all of the running programs with their process ID (PID), effective
user (euser), real user (ruser), and command name (comm). If the effective user is differ-
ent from the real user, it is likely a SetUID program.

NOTE Some applications that are started by the root user give up their permissions to run as a less
privileged user in order to improve security. The Apache web server, for example, might be started by
the root user in order to bind to Transmission Control Protocol (TCP) port 80 (only privileged users can
bind to ports lower than 1024), but it then gives up its root permissions and starts all of its threads as
an unprivileged user (typically the user “nobody,” “apache,” or “www”).

To make a program run as SetUID, use the chmod command. Prefix the desired per-
missions with a 4 to turn the SetUID bit on. (Using a prefix of 2 will enable the SetGID

349 Chapter 14: Local Security

bit, which is like SetUID, but with group permissions instead of user permissions.) For
example, if we have a program called “myprogram” and we want to make it SetUID
root, we would do the following:

[root@serverA ~]# chown root myprogram

[root@serverA ~]# chmod 4755 myprogram

[root@serverA ~]# ls -l myprogram

-rwsr-xr-x 1 root root 0 2008-02-09 07:40 myprogram

Ensuring that a system has only the absolutely minimum and necessary SetUID pro-
grams can be a good housekeeping measure. A typical Linux distribution can easily have
hundreds of files and executables that are unnecessarily SetUID. Going from directory to
directory to find SetUID programs can be tiresome and error-prone. So instead of doing
that manually, use the find command, like so:

[root@serverA ~]# find / -perm +4000 -ls

Unnecessary Processes
When stepping through startup and shutdown scripts, you may have noticed that a
standard-issue Linux system starts with a lot of processes running. The question that
needs to be asked is do I really need everything I start? You might be surprised at your
answer.

A Real-Life Example: Thinning Down a Server
Let’s take a look at a real-life deployment of a Linux server handling web and
e-mail access outside of a firewall and a Linux desktop/workstation behind a fire-
wall with a trusted user. The two configurations represent extremes: tight con-
figuration in a hostile environment (the Internet) and a loose configuration in a
well-protected and trusted environment (a local area network, or LAN).

The Linux server runs the latest Fedora distro. With unnecessary processes
thinned down, the server has 10 programs running, with 18 processes when no
one is logged in. Of the 10 programs, only SSH, Apache, and Sendmail are exter-
nally visible on the network. The rest handle basic management functions, such
as logging (syslog) and scheduling (cron). Removing nonessential services used
for experimentation only (for example, Squid proxy server), the running program
count can be reduced to 7 (init, syslog, cron, SSH, Sendmail, Getty, and Apache),
with 13 processes running, 5 of which are Getty to support logins on serial ports
and the keyboard.

 350 Linux Administration: A Beginner’s Guide

The underlying security issue goes back to risk: Is the risk of running an appli-
cation worth the value it brings you? If the value a particular process brings you is
zero because you’re not using it, then no amount of risk is worth it. Looking beyond
security, there is the practical matter of stability and resource consumption. If a pro-
cess brings zero value, even a benign process that does nothing but sit in an idle loop
takes memory, processor time, and kernel resources. If a bug were to be found in that
process, it could threaten the stability of your server. Bottom line: If you don’t need it,
don’t run it.

If your system is running as a server, you should reduce the number of processes that
gets run. For example, if there is no reason for the server to connect to a printer, disable
the print services. If there is no reason the server should accept or send e-mail, turn off
the mail server. If no services are run from xinetd, then xinetd should be turned off. No
printer? Turn off Common UNIX Printing System (CUPS). Not a file server? Turn off
Network File System (NFS) and Samba.

Fully thinned down, the server should be running the bare minimum it needs in
order to provide the services required of it.

PICKING THE RIGHT RUNLEVEL TO BOOT INTO
Most default Linux installations will boot straight to the X Window System. This gives
a nice startup screen, a login menu, and an overall positive desktop experience. For a
server, however, all of that is typically unnecessary for the reasons already stated.

Most Red Hat Package Manager (RPM)–based Linux distributions, like Fedora, Red
Hat Enterprise Linux (RHEL), OpenSuSE, Centos, etc., that are configured to boot and
load the X Window (graphical user interface, or GUI) sub-system will boot to runlevel 5.
In such distros, changing the runlevel to 3 will turn X Window off. The /etc/inittab file

By comparison, a Fedora system configured for desktop usage by a trusted
user that has not been thinned down can have as many as 40 processes that handle
everything from the X Window System to printing to basic system management
services.

For desktop systems where the risk is mitigated (for example, where the desk-
top sits behind a firewall and the users are trusted), the benefits of having a lot of
these applications running might well be worth it. Trusted users appreciate having
the ability to easily print and enjoy having access to a nice user interface, etc. For
a server such as the Linux server, the risk would be too great to have unnecessary
programs running, and, therefore, any program or process not needed should be
removed.

351 Chapter 14: Local Security

controls the runlevel that such systems boot into. For example, to make a Fedora server
boot into runlevel 3 (no GUI) instead of runlevel 5, the /etc/inittab file needs to be edited
so that the entry in the file that looks like

id:5:initdefault:

is changed to

id:3:initdefault:

Debian-based systems such as Ubuntu use the /etc/event.d/rc-default file to control
the default runlevel that the system boots into. The default runlevel on such systems is
usually runlevel 2. And the control of whether the X Window sub-system starts up is left
to the run control scripts (rc scripts).

TIP You can see what runlevel you’re in by simply typing runlevel at the prompt. For example,

 [root@serverA /root]# runlevel

To force the change in runlevel when the system is running, invoke the init com-
mand, with the desired runlevel as the parameter. For example, to switch to runlevel 1
(single-user mode), run

[root@serverA ~]# init 1

NON-HUMAN ACCOUNTS
User accounts on a server need not always correspond to humans. Recall that every
process running on a Linux system must have an owner. Running the ps auxww com-
mand on your system will show all of the process owners on the leftmost column of
its output. On your desktop system, for example, you could be the only human user,
but a look at the /etc/passwd files shows that there are several other user accounts on
the system.

For an application to drop its root privileges, it must have another user that it
can run as. Here is where those extra users come into play; each application that
gives up root can be assigned another dedicated user on the system. This user typi-
cally owns all of the application’s files (including executable, libraries, configuration,
and data) and the application processes. By having each application that drops privi-
leges use its own user, the risk of a compromised application having access to other
application configuration files is mitigated. In essence, an attacker is limited by what
files the application has access to, which, depending on the application, may be quite
uninteresting.

 352 Linux Administration: A Beginner’s Guide

LIMITED RESOURCES
To better control the resources available to processes started by the shell, the ulimit
facility can be used. System-wide defaults can be configured using the /etc/security/
limits.conf file. ulimit options can be used to control such things as the number of files
that may open, how much memory they may use, CPU time they may use, how many
processes they may open, etc. The settings are read by the PAM (Pluggable Authentica-
tion Module) libraries when a user starts up.

The key to choosing ulimit values is to consider the purpose of the system. For
example, in the case of an application server, if the application is going to require a lot
of processes to run, then the system administrator needs to ensure that ulimit caps
don’t cripple the functionality of the system. Other types of servers, such as a Domain
Name System (DNS) server for example, should not need more than a small handful of
processes.

It should be noted that there is a caveat here: PAM has to have a chance to run to
set the settings before the user does something. If the application starts as root and then
drops permissions, PAM is not likely to run. From a practical point of view, this means
that having individual per-user settings is not likely to do you a lot of good in most server
environments. What will work are global settings that apply to both root and normal
users. This detail turns out to be a good thing in the end; having root under control helps
keep the system from spiraling away both from attacks and from broken applications.

The Fork Bomb
A common trick that students still play on other students is to log into their work-
stations and run a “fork bomb.” This is a program that simply creates so many pro-
cesses that it overwhelms the system and brings it to a grinding halt. For a student,
this is annoying. For a production server, this is fatal. A simple shell-based fork
bomb using Bourne Again Shell (BASH) is

[yyang@serverA ~]$ while true; do sh -c sh & done

If you don’t have protections in place, this script will crash your server.
The interesting thing about fork bombs is that not all of them are intentional.

Broken applications, systems under denial-of-service attacks, and sometimes just
simple typographical errors entering commands can lead to bad things happen-
ing. By using the limits described in this chapter, you can mitigate the risk of a
fork bomb by restricting the maximum number of processes that a single user can
invoke. While the fork bomb may still cause your system to become highly loaded,
it will still likely remain responsive enough to allow you to log in and deal with the
situation, all the while hopefully maintaining the services offered. It’s not perfect,
but it is a reasonable balance between dealing with the malicious and not being
able to do anything at all.

353 Chapter 14: Local Security

The format of each line in the /etc/security/limits.conf file is as follows:

<domain> <type> <item> <value>

Any line that begins with a pound sign (#) is a comment. The domain value holds the
login of a user or the name of a group; it can also be a wildcard (*). The type refers to the
type of limit as “soft” or “hard.” The item refers to what the limit applies to. The follow-
ing is a subset of items that an administrator might find useful:

Item Description Fedora Defaults

fsize Maximum file size Unlimited

nofile Maximum number of open files 1024

cpu Maximum amount of time (in minutes)
a CPU can be used

Unlimited

nproc Maximum number of processes that a
user can have

4096 (2048 in
Ubuntu/Debian)

maxlogins Maximum number of logins for a user Unlimited

A reasonable setting for most users is to simply restrict the number of processes,
unless there is a specific reason to limit the other settings. If you need to control total disk
usage for a user, you should use disk quotas instead.

An example for limiting the number of processes to 128 for each user would be

* hard nproc 128

If you log out and log in again, you can see the limit take effect by running the ulimit
command with the “-a” option to see what the limits are:

[root@fedora-serverA ~]# ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 6848
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 1024
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

 354 Linux Administration: A Beginner’s Guide

MITIGATING RISK
Once you know what the risks are, mitigating them becomes easier. You may find that
the risks you see are sufficiently low that no additional securing needs to be done. For
example, a Windows XP desktop system used by a trusted, well-experienced user is a
low risk for running with administrator privileges. The risk that the user downloads and
executes something that can cause damage to the system is low. Furthermore, steps taken
to mitigate the risk, such as sticking to well-trusted web sites and disabling the automatic
downloading of files, further alleviate the risk. This well-experienced user may find that
being able to run some additional tools and having raw access to the system are well
worth the risk of running with administrator privileges. Like any nontrivial risk, the list
of caveats is long.

Using Chroot
The chroot() system call (pronounced “cha-root”) allows a process and all of its child
processes to redefine what they perceive the root directory to be. For example, if you
were to chroot("/www") and start a shell, you could find that using the cd command
would leave you at /www. The program would believe it is a root directory, but in reality,
it would not be. This restriction applies to all aspects of the process’s behavior: where it
loads configuration files, shared libraries, data files, etc.

NOTE Once executed, the change in root directory by chroot is irrevocable through the lifetime
of the process.

By changing the perceived root directory of the system, a process has a restricted
view of what is on the system. Access to other directories, libraries, and configuration
files is not available. Because of this restriction, it is necessary for an application to have
all of the files necessary for it to work completely contained within the chroot environ-
ment. This includes any passwd files, libraries, binaries, and data files.

CAUTION A chroot environment will protect against accessing files outside of the directory,
but it does not protect against system utilization, memory access, kernel access, and interprocess
communication. This means that if there is a security vulnerability that can be taken advantage of by
sending signals to another process, it will be possible to exploit it from within a chroot environment.
In other words, chroot is not a perfect cure, but rather more of a deterrent.

Every application needs its own set of files and executables, and thus, the directions
for making an application work in a chroot environment vary. However, the principle
remains the same: Make it all self-contained under a single directory with a faux root
directory structure.

355 Chapter 14: Local Security

An Example Chroot Environment
As an example, let’s create a chroot environment for the BASH shell. We begin by cre-
ating the directory we want to put everything into. Since this is just an example, we’ll
create a directory in /tmp called myroot.

[root@serverA ~]# mkdir /tmp/myroot

[root@serverA ~]# cd /tmp/myroot

Let’s assume we need only two programs: bash and ls. Let’s create the bin direc-
tory under myroot and copy the binaries over there.

[root@serverA myroot]# mkdir bin

[root@serverA myroot]# cp /bin/bash bin/

[root@serverA myroot]# cp /bin/ls bin/

With the binaries there, we now need to check whether these binaries need any librar-
ies. We use the ldd command to determine what (if any) libraries are used by these two
programs.

We run ldd against /bin/bash, like so:

[root@serverA myroot]# ldd /bin/bash

 linux-gate.so.1 => (0x00110000)

 libtinfo.so.5 => /lib/libtinfo.so.5 (0x031f3000)

 libdl.so.2 => /lib/libdl.so.2 (0x00c1c000)

 libc.so.6 => /lib/libc.so.6 (0x00a96000)

 /lib/ld-linux.so.2 (0x00a77000)

We also run ldd against /bin/ls, like so:

[root@serverA myroot]# ldd /bin/ls

 linux-gate.so.1 => (0x00110000)

 librt.so.1 => /lib/librt.so.1 (0x0043b000)

 libselinux.so.1 => /lib/libselinux.so.1 (0x0041e000)

 libacl.so.1 => /lib/libacl.so.1 (0x00a47000)

 libc.so.6 => /lib/libc.so.6 (0x00a96000)

 libpthread.so.0 => /lib/libpthread.so.0 (0x00c23000)

 /lib/ld-linux.so.2 (0x00a77000)

 libdl.so.2 => /lib/libdl.so.2 (0x00c1c000)

 libattr.so.1 => /lib/libattr.so.1 (0x00a40000)

Now that we know what libraries need to be in place, we create the lib directory and
copy the libraries over.

First we create the /tmp/myroot/lib directory:

[root@serverA myroot]# mkdir /tmp/myroot/lib

 356 Linux Administration: A Beginner’s Guide

For shared libraries that /bin/bash needs, we run

[root@serverA myroot]# cp /lib/libtinfo.so.5 lib/

[root@serverA myroot]# cp /lib/libdl.so.2 lib/

[root@serverA myroot]# cp /lib/libc.so.6 lib/

[root@serverA myroot]# cp /lib/ld-linux.so.2 lib/

And for /bin/ls, we need

[root@serverA myroot]# cp /lib/librt.so.1 lib/

[root@serverA myroot]# cp /lib/libselinux.so.1 lib/

[root@serverA myroot]# cp /lib/libacl.so.1 lib/

[root@serverA myroot]# cp /lib/libpthread.so.0 lib/

[root@serverA myroot]# cp /lib/libattr.so.1 lib/

Most Linux distros include a little program called chroot that invokes the chroot()
system call for us, so we don’t need to write our own C program to do it. The pro-
gram takes two parameters: the directory that you want to make the root directory and
the command that you want to run in the chroot environment. We want to use /tmp/
myroot as the directory and start /bin/bash, thus we run:

[root@serverA myroot]# chroot /tmp/myroot /bin/bash

Because there is no /etc/profile or /etc/bashrc to change our prompt, the prompt will
change to bash-3.00#. Now try an ls:

bash-3.00# ls

bin lib

Then try a pwd to view the current working directory:

bash-3.00# pwd

/

NOTE We didn’t need to explicitly copy over the pwd command used previously, because pwd is one
of the many BASH built-in commands. It comes with the BASH program that we already copied over.

Since we don’t have an /etc/passwd or /etc/group file in the chrooted environment
(to help map numeric user IDs to usernames), an ls -l command will show the raw
user ID (UID) values for each file. For example:

bash-3.2# cd lib/

bash-3.2# ls -l

-rwxr-xr-x 1 0 0 128952 Feb 10 18:09 ld-linux.so.2

-rwxr-xr-x 1 0 0 26156 Feb 10 18:14 libacl.so.1

357 Chapter 14: Local Security

....<OUTPUT TRUNCATED>......

-rwxr-xr-x 1 0 0 95188 Feb 10 18:05 libtinfo.so.5

With limited commands/executables in a chroot environment, the environment
isn’t terribly useful for practical work, which is what makes it great from a security
perspective; we give only the minimum files necessary for an application to work, thus
minimizing our exposure in the event the application gets compromised. Keep in mind
that not all chroot environments need to have a shell and an ls command installed—
for example, if the Berkeley Internet Name Domain (BIND) DNS server needs only its
own executable, libraries, and zone files installed, then that’s all you need.

SELinux
Traditional Linux security is based on a Discretionary Access Control (DAC) model. The
DAC model allows the owner of a resource (objects) to control which users or groups
(subjects) can access the resource. It is called discretionary because the access control is
based on the discretion of the owner.

Another type of security model is the Mandatory Access Control (MAC) model.
Unlike the DAC model, the MAC model uses predefined policies to control user and
process interactions. The MAC model restricts the level of control that users have over
the objects that they create. SELinux is an implementation of the MAC model in the
Linux kernel.

The United States government’s National Security Agency (NSA) has taken an
increasingly public role in information security, especially due to the growing concern
over information security attacks that could pose a serious threat to the world’s ability to
function. With Linux becoming an increasingly key component of enterprise computing,
the NSA set out to create a set of patches to increase the security of Linux. The patches
have all been released under the GNU Public License (GPL) license with full source code
and, thus, are subject to the scrutiny of the world—an important aspect given Linux’s
worldwide presence and developer community. The patches are collectively known as
“SELinux,” short for “Security-Enhanced Linux.” The patches have been integrated into
the 2.6 Linux kernel series using the Linux Security Modules (LSM). This integration has
made the patches and improvements far-reaching and an overall benefit to the Linux
community.

SELinux makes use of the concepts of subjects (users, applications, processes, etc.),
objects (files, sockets), labels (metadata applied to objects), and policies (describe the
matrix of access permissions for subjects and objects). Given the extreme granularity of
objects, it is possible to express rich and complex rules that dictate the security model
and behavior of a Linux system. Because SELinux uses labels, it requires a file system
that supports extended attributes.

The full gist of SELinux is well beyond the scope of a single section in this book. If
you are interested in learning more about SELinux, visit the SELinux web site at www.
nsa.gov/selinux.

 358 Linux Administration: A Beginner’s Guide

APPARMOR
AppArmor is Novell’s implementation of the MAC security model. It is Novell’s alter-
native to SELinux (which is used mainly in Red Hat–type distros). AppArmor’s backers
generally tout it as being easier to manage and configure than SELinux. AppArmor’s
implementation of the MAC model focuses more on protecting individual applications—
hence the name Application Armor—instead of attempting a blanket security that
applies to the entire system, as in SELinux. AppArmor’s security goal is to protect sys-
tems from attackers exploiting vulnerabilities in specific applications that are running on
the system. AppArmor is file system–independent. It is integrated into and used mostly
in Novell’s OpenSuSE and SuSE Linux Enterprise (SLE), but it can also be installed and
used in other Linux distributions.

If you are interested in learning more about AppArmor, you can find good documen-
tation at Novell’s site at www.novell.com/linux/security/apparmor.

MONITORING YOUR SYSTEM
As you become familiar with Linux, your servers, and their day-to-day operation, you’ll
find that you start getting a “feel” for what is normal. This may sound peculiar, but in
much the same way you learn to “feel” when your car isn’t quite right, you’ll know when
your server is not quite the same.

Part of getting a feel for the system requires basic system monitoring. For local sys-
tem behavior, this requires that you trust your underlying system as not having been
compromised in any way. If your server does get compromised and a “root kit” that
bypasses monitoring systems is installed, it may be difficult to see what is happening.
For this reason, a mix of on-host and remote host-based monitoring is a good idea.

Logging
By default, most of your log files will be stored in the /var/log directory, with the logrotate
program automatically rotating (archiving) the logs on a regular basis. While it is handy
to be able to log to your local disk, it is often a better idea to have your system send its log
entries to a dedicated log server. With remote logging enabled, you can be certain that
any log entries sent to the log server before an attack are most likely guaranteed not to
be tampered with.

Because of the volume of log data that can be generated, you may find it prudent to
learn some basic scripting skills so that you can easily parse through the log data and
automatically highlight and e-mail anything that is peculiar or should warrant suspi-
cion. For example, a filter that e-mails error logs is useful only to an administrator. This
allows the administrator to track both normal and erroneous activity without having to
read through a significant number of log messages every day.

359 Chapter 14: Local Security

Using ps and netstat
Once you have your server up and running, take a moment to study the output of the
ps auxww command. Deviations from this output should catch your attention in the
future. As part of monitoring, you may find it useful to periodically list what processes
are running and make sure that any processes you don’t expect are there for a reason. Be
especially suspicious of any packet-capture programs, like tcpdump, that you did not
start yourself.

The same can be said about the output of the netstat -an command. Once you
have a sense of what represents normal traffic and normally open ports, any deviations
from that output should trigger interest into why the deviation is there. Did someone
change the configuration of the server? Did the application do something that was unex-
pected? Is there threatening activity on the server?

Between ps and netstat, you should have a fair handle on the goings-on with your
network and process list.

Using df
The df command shows the available space on each of the disk partitions that is
mounted. Running df on a regular basis to see the rate at which disk space gets used
is a good way to see if there is any questionable activity. A sudden change in disk utili-
zation should spark curiosity into where the change came from. For example, a sudden
increase in disk storage usage could be because users are using their home directo-
ries to store vast quantities of MP3 files, movies, etc. Legal issues aside, there are also
other pressing concerns and repercussions for such unofficial use, such as backups and
denial-of-service issues.

The backups might fail because the tape ran out of space storing someone’s music
files instead of the key files necessary for the business. From a security perspective, if the
sizes of the web or File Transfer Protocol (FTP) directories grow significantly without
reason, there may be trouble looming with unauthorized use of your server.

A server whose disk becomes full unexpectedly is also a potential source of a local
(and/or remote) denial-of-service (DOS) attack. A full disk might prevent legitimate
users from storing new data or manipulating existing data on the server. The server may
also have to be temporarily taken offline to rectify the situation, thereby denying access
to other services that the server might be providing.

Automated Monitoring
Most of the popular automated system-monitoring solutions specialize in monitoring
network-based services and daemons. However, most of the popular ones also have
extensive local resource-monitoring capabilities. The automated tools can monitor things
like disk usage, CPU usage, process counts, changes in file system objects, etc. A couple
of these tools include Nagios and Tripwire.

 360 Linux Administration: A Beginner’s Guide

Mailing Lists
As part of managing your system’s security, you should be subscribed to key security
mailing lists, like BugTraq (www.securityfocus.com/archive/1). BugTraq is a moderated
mailing list that generates only a small handful of e-mails a day, most of which may not
pertain to the software you are running. However, this is where critical issues are likely
to show up first. The last several significant worms that attacked Internet hosts were
dealt with in real time on these mailing lists.

In addition to BugTraq, any security lists for software that you are responsible for are
musts. Also look for announcement lists for the software you use. All of the major Linux
distributions also maintain announcement lists for security issues that pertain to their
specific distributions. Major software vendors also maintain their own lists. Oracle, for
example, keeps their information online via their MetaLink web portal and correspond-
ing e-mail lists. While this may seem like a lot of e-mail, consider that most of the lists
that are announcement-based are extremely low-volume. In general, you should not find
yourself needing to deal with significantly more e-mail than you already do.

SUMMARY
In this chapter you learned about securing your Linux system, mitigating risk, and learn-
ing what to look for when making decisions about how to balance features/functions
with the need to secure. Specifically, we covered causes of risk such as SetUID programs,
programs that run as root, and unnecessary programs. We also covered approaches to
mitigating risk through the use of chroot environments and controlling access to users.
We briefly discussed two popular implementations of the Mandatory Access Control
(MAC) security model in Linux: SELinux and AppArmor. Finally, we discussed some of
the things that should be monitored as part of daily housekeeping.

In the end, you will find that maintaining a reasonably secure environment is largely
a case of good hygiene. Keep your server clean of unnecessary applications, make sure
the environment for each application is minimized so as to limit exposure, and patch
your software as security issues are brought to light. With these basic tasks, you’ll find
that your servers will be quite reliable and secure.

On a final note, keep in mind that this section alone does not make you a security
expert, much as the chapter on Linux firewalls didn’t make you a firewall expert. Linux
is always evolving and always improving. You will need to continue to make an effort to
learn about the latest technologies and expand your general security knowledge.

361

15

Network Security

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 362 Linux Administration: A Beginner’s Guide

In Chapter 14, we made the statement: “When you hear about a new attack (or
vulnerability) against any operating system, it would be interesting to find out whether
the vulnerability is exploitable via the network or not.” The answer to the question had

a bearing on how the attack is approached. In other words, does the attack require local
access to the system, or does the attack only need network connectivity to the system? The
former case was covered in Chapter 14. The latter case is covered in this chapter.

Network security addresses the problem of attackers sending malicious network
traffic to your system with the intent either to make your system unavailable (denial-of-
service attack) or to exploit weaknesses in your system to gain access or control of the
system. Network security is not a substitute for good local security practices discussed in
the previous chapter. Both local and network security approaches are necessary to keep
things working the way that you expect them to.

In this chapter, we cover four issues in network security: tracking services, monitor-
ing network services, handling attacks, and tools for testing. These sections should be
used in conjunction with the previous chapter on local security, as well as Chapter 13.

TCP/IP AND NETWORK SECURITY
This chapter assumes you have experience configuring a system for use on a Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) network. Because the focus here is
on network security and not an introduction to networking, this section discusses only
those parts of TCP/IP affecting your system’s security. If you’re curious about TCP/IP’s
internal workings, read Chapter 11.

The Importance of Port Numbers
Every host on an IP-based network has at least one IP address. In addition, every Linux-
based host has many individual processes running. Each process has the potential to be
a network client, a network server, or both. With potentially more than one process being
able to act as a server on a single system, using an IP address alone to identify a network
connection is not enough.

To solve this problem, TCP/IP adds a component identifying a TCP (or User Data-
gram Protocol [UDP]) port. Every connection from one host to another has a source port
and a destination port. Each port is labeled with an integer between 0 and 65535.

In order to identify every unique connection possible between two hosts, the operat-
ing system keeps track of four pieces of information: the source IP address, the destination
IP address, the source port number, and the destination port number. The combination of
these four values is guaranteed to be unique for all host-to-host connections. (Actually,
the operating system tracks a myriad of connection information, but only these four ele-
ments are needed to uniquely identify a connection.)

The host initiating a connection specifies the destination IP address and port num-
ber. Obviously, the source IP address is already known. But the source port number, the
value that will make the connection unique, is assigned by the source operating system.

363 Chapter 15: Network Security

It searches through its list of already open connections and assigns the next available
port number.

By convention, this number is always greater than 1024 (port numbers from 0 to 1023
are reserved for system uses and well-known services). Technically, the source host can
also select its source port number. In order to do this, however, another process cannot
have already taken that port. Generally, most applications let the operating system pick
the source port number for them.

Given this arrangement, we can see how source host A can open multiple connections
to a single service on destination host B. Host B’s IP address and port number will always
be constant, but host A’s port number will be different for every connection. The com-
bination of source and destination IPs and port numbers is, therefore, unique, and both
systems can have multiple independent data streams (connections) between each other.

For a typical server application to offer services, it would usually run programs that
listen to specific port numbers. Many of these port numbers are called well-known ser-
vices because the port number associated with a service is an approved standard. For
example, port 80 is the well-known service port for the HTTP protocol.

In “Using the netstat Command” section, we’ll look at the netstat command as an
important tool for network security. When you have a firm understanding of what port
numbers represent, you’ll be able to easily identify and interpret the network security
statistics provided by the netstat command.

TRACKING SERVICES
The services provided by a server are what make it a server. The ability to provide the
service is accomplished by processes that bind to network ports and listen to the requests
coming in. For example, a web server might start a process that binds to port 80 and lis-
tens for requests to download the pages of a site it hosts. Unless a process exists to listen
to a specific port, Linux will simply ignore packets sent to that port.

This section discusses the usage of the netstat command, a tool for tracking net-
work connections (among other things) in your system. It is, without a doubt, one of the
most useful debugging tools in your arsenal for troubleshooting security and day-to-day
network problems.

Using the netstat Command
To track what ports are open and what ports have processes listening to them, we use the
netstat command. For example:

[root@serverA ~]# netstat -natu

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN

 364 Linux Administration: A Beginner’s Guide

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:5335 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN

tcp 0 0 :::22 :::* LISTEN

tcp 0 132 192.168.1.4:22 192.168.1.33:2129 ESTABLISHED

udp 0 0 0.0.0.0:32768 0.0.0.0:*

tcp 0 0 ::ffff:192.168.1.4:22 ::ffff:192.168.1.90:40587 ESTABLISHED

udp 0 0 0.0.0.0:631 0.0.0.0:*

By default (with no parameters), netstat will provide all established connections
for both network and domain sockets. That means we’ll see not only the connections
that are actually working over the network, but also the interprocess communications
(which, from a security monitoring standpoint, are not useful). So in the command just
illustrated, we have asked netstat to show us all ports (-a)—whether they are listen-
ing or actually connected—for TCP (-t) and UDP (-u). We have told netstat not to
spend any time resolving IP addresses to hostnames (-n).

In the netstat output, each line represents either a TCP or UDP network port, as
indicated by the first column of the output. The Recv-Q (receive queue) column lists the
number of bytes received by the kernel but not read by the process. Next, the Send-Q
(send queue) column tells us the number of bytes sent to the other side of the connection
but not acknowledged.

The fourth, fifth, and sixth columns are the most interesting in terms of system secu-
rity. The Local Address column tells you your server’s IP address and port number.
Remember that your server recognizes itself as 127.0.0.1 and 0.0.0.0, as well as its normal
IP address. In the case of multiple interfaces, each port being listened to will show up on
all interfaces and, thus, as separate IP addresses. The port number is separated from the
IP address by a colon. In the output from the netstat example just shown, the Ethernet
device has the IP address 192.168.1.4.

The fifth column, Foreign Address, identifies the other side of the connection. In the
case of a port that is being listened to for new connections, the default value will be
0.0.0.0:*. This IP address means nothing, since we’re still waiting for a remote host to
connect to us!

The sixth column tells us the state of the connection. The man page for netstat lists
all of the states, but the two you’ll see most often are LISTEN and ESTABLISHED. The
LISTEN state means there is a process on your server listening to the port and ready to
accept new connections. The ESTABLISHED state means just that—a connection is estab-
lished between a client and server.

Security Implications of netstat’s Output
By listing all of the available connections, you can get a snapshot of what the system is
doing. You should be able to explain and account for all ports listed. If your system is
listening to a port that you cannot explain, this should raise suspicions.

Just in case you haven’t yet memorized all the well-known services and their associ-
ated port numbers (all 25 zillion of them!), you can look up the matching information
you need in the /etc/services file. However, some services (most notably those that use

365 Chapter 15: Network Security

the portmapper) don’t have set port numbers, but are valid services. To see which pro-
cess is associated with a port, use the -p option with netstat. Be on the lookout for
odd or unusual processes using the network. For example, if the Bourne Again Shell
(BASH) shell is listening to a network port, you can be fairly certain that something odd
is going on.

Finally, remember that you are mostly interested in the destination port of a connec-
tion; this tells you which service is being connected to and whether it is legitimate. The
source address and source port are, of course, important, too—for cases where some-
body or something has opened up an unauthorized back door into your system. Unfor-
tunately, netstat doesn’t explicitly tell us who originated a connection, but we can
usually figure it out if we give it a little thought. Of course, becoming familiar with the
applications that you do run and their use of network ports is the best way to determine
who originated a connection to where. In general, you’ll find that the rule of thumb is
that the side whose port number is greater than 1024 is the side that originated the con-
nection. Obviously, this general rule doesn’t apply to services typically running on ports
higher than 1024, such as X Window (port 6000).

BINDING TO AN INTERFACE
A common approach to improving the security of a service running on your server is to
make it such that it only binds to a specific network interface. By default, applications
will bind to all interfaces (seen as 0.0.0.0 in the netstat output). This will allow a con-
nection to that service from any interface—so long as the connection makes it past any
Netfilter rules you may have configured. However, if you only need a service to be avail-
able on a particular interface, you should configure that service to bind to the specific
interface.

For example, let us assume that there are three interfaces on your server: eth0, which
is 192.168.1.4; eth1, which is 172.16.1.1; and lo, which is 127.0.0.1. Let us also assume that
your server does not have IP forwarding (/proc/sys/net/ipv4/ip_forward) enabled. In
other words, machines on the 192.168.1.0/24 side cannot communicate with machines
on the 172.16/16 side. The 172.16/16 (eth1) network represents the “safe” or “inside”
network, and, of course, 127.0.0.1 represents the host itself.

If the application binds itself to 172.16.1.1, then only those applications on the
172.16/16 network will be able to reach the application and connect to it. If you do not
trust the hosts on the 192.168.1/24 side (e.g., it is a demilitarized zone, or DMZ), then this
is a safe way to provide services to one segment without exposing yourself to another.
For even less exposure, you can bind an application to 127.0.0.1. By doing so, you arrange
that connections will have to originate from the server itself in order to communicate
with the service. For example, if you need to run the MySQL database for a web-based
application and the application runs on the server, then configuring MySQL to accept
only connections from 127.0.0.1 means that any risk associated with remotely connecting
to and exploiting the MySQL service is significantly mitigated. The attacker would have
to compromise your web-based application and somehow make it query the database on
their behalf (perhaps via a SQL injection attack).

 366 Linux Administration: A Beginner’s Guide

TIP If you need to provide a service to a group of technically proficient users across the
Internet, binding the service to the loopback address (localhost) and then forcing the group to
use SSH tunnels is a great way to provide authenticated and encrypted access to the service.
For example, if you have a Post Office Protocol 3 (POP3) service running on your server, you can
bind the service to the localhost address. This, of course, means nobody will be able to connect
to the POP3 server via a regular interface/address. But if you run an SSH server on the system,
authenticated users can connect via SSH and set up a port-forwarding tunnel for their remote POP3
e-mail client. A sample command to do this from the remote SSH client is ssh -l <username>
-L 1110:127.0.0.1:110. The POP3 e-mail client can then be configured to connect to the
POP3 server at the IP address 127.0.0.1 via port 1110 (127.0.0.1:1110).

SHUTTING DOWN SERVICES
One purpose for the netstat command is to determine what services are enabled on
your servers. Making Linux distributions easier to install and manage right out of the
box has led to more and more default settings that are unsafe, so keeping track of ser-
vices is especially important.

When you’re evaluating which services should stay and which should go, answer the
following questions:

 ▼ Do we need the service? The answer to this question is important. In most situ-
ations, you should be able to disable a great number of services that start up by
default. A stand-alone web server, for example, should not need to run Network
File System (NFS).

■ If we do need the service, is the default setting secure? This question can also help
you eliminate some services—if they aren’t secure and they can’t be made
secure, then chances are they should be removed. For example, if remote login is
a requirement and Telnet is the service enabled to provide that function, then an
alternative like SSH should be used instead, due to Telnet’s inability to encrypt
login information over a network. (By default, most Linux distributions ship
with Telnet disabled and SSH enabled.)

 ▲ Does the service software need updates? All software needs updates from time to
time, such as that on web and FTP servers. This is because as features get added,
new security problems creep in. So be sure to remember to track the server soft-
ware’s development and get updates as necessary.

Shutting Down xinetd and inetd Services
To shut down a service that is started via the xinetd program, simply edit the service’s
configuration file in /etc/xinetd and set disable equal to Yes.

367 Chapter 15: Network Security

You can also use the chkconfig command to disable a service managed by xinetd.
For example, to disable the echo service, you would run

[root@serverA /root]# chkconfig echo off

On Debian-based systems such as Ubuntu, you can use the sysv-rc-conf com-
mand (install it with the apt-get command if you don’t have it installed) to achieve the
same effect. For example, to disable the echo service in Ubuntu, you could run

yyang@ubuntu-serverA:~$ sudo sysv-rc-conf echo off

If you are using a stock inetd, edit the /etc/inetd.conf file and comment out the ser-
vice you no longer want. To disable a service, start the line with a pound sign (#). See
Chapter 8 for more information on xinetd and inetd.

Remember to send the HUP signal to inetd once you’ve made any changes to the
/etc/inetd.conf file and a SIGUSR2 signal to xinetd. If you are using the Fedora (or simi-
lar) distro, you can also type the following command to reload xinetd:

[root@serverA /root]# /etc/rc.d/init.d/xinetd reload

Shutting Down Non-xinetd Services
If a service is not managed by xinetd, then a separate process or script that is started at
boot time is running it. If the service in question was installed by your distribution and
your distribution offers a nice tool for disabling a service, you may find that to be the
easiest approach.

For example, under Fedora, Red Hat Enterprise Linux (RHEL), OpenSuSE, and other
Red Hat–like systems, the chkconfig program provides an easy way to enable and dis-
able individual services. For example, to disable the portmap service from starting in
runlevels 3 and 5, simply run

[root@serverA ~]# chkconfig --level 35 portmap off

The parameter --level refers to the specific runlevels that should be affected by the
change. Since runlevels 3 and 5 represent the two multiuser modes, we select those. The
portmap parameter is the name of the service as referred to in the /etc/init.d/ directory.
Finally, the last parameter can be “on,” “off,” or “reset.” The “on” and “off” options are
self-explanatory. The “reset” option refers to resetting the service to its native state at
install time.

If you wanted to turn the portmap service on again, simply run

[root@serverA ~]# chkconfig --level 35 portmap on

Note that using chkconfig doesn’t actually turn an already running service on or off;
rather, it defines what will happen at the next startup time. To actually stop the running

 368 Linux Administration: A Beginner’s Guide

process, use the control script in the /etc/init.d/ directory. In the case of portmap, we
would stop it with

[root@serverA ~]# /etc/init.d/portmap stop

Shutting Down Services in a Distribution-Independent Way
To prevent a service from starting up at boot time, change the symlink (symbolic link) in
the corresponding runlevel’s rc.d directory. This is done by going to the /etc/rc.d/ direc-
tory (/etc/rc*.d/ folder in Debian), and in one of the rc*.d directories finding the sym-
links that point to the startup script. (See Chapter 6 for information on startup scripts.)
Rename the symlink to start with an X instead of an S. Should you decide to restart a
service, it’s easy to rename it again starting with an S. If you have renamed the startup
script but want to stop the currently running process, use the ps command to find the
process ID number and then the kill command to actually terminate the process. For
example, here are the commands to kill a portmap process and the resulting output:

[root@serverA /root]# ps auxw | grep portmap

bin 255 0.0 0.1 1084 364 ? S Jul08 0:00 portmap

root 6634 0.0 0.1 1152 440 pts/0 S 01:55 0:00 grep portmap

[root@serverA /root]# kill 255

NOTE As always, be sure of what you’re killing before you kill it, especially on a production server.

MONITORING YOUR SYSTEM
The process of locking down your server isn’t just for the sake of securing your server; it
gives you the opportunity to see clearly what normal server behavior should look like.
After all, once you know what normal behavior is, unusual behavior will stick out like a
sore thumb (e.g., if you turned off your Telnet service when setting up the server, seeing
a log entry for Telnet means something is wrong!).

Free and open source commercial-grade applications exist that perform monitoring
and are well worth checking out. Here, we’ll take a look at a variety of excellent tools that
help with system monitoring. Some of these tools may already come installed with your
Linux distributions; some don’t. All are free and easily acquired.

Making the Best Use of syslog
In Chapter 8, we explored rsyslogd, the system logger that saves log messages from vari-
ous programs into text files for record-keeping purposes. By now, you’ve probably seen
the types of log messages you get with rsyslog. These include security-related messages,
such as who has logged into the system, when they logged in, and so forth.

369 Chapter 15: Network Security

As you can imagine, it’s possible to analyze these logs to build a time-lapse image of
the utilization of your system services. This data can also point out questionable activity.
For example, why was the host crackerboy.nothing-better-to-do.net sending so many
web requests in such a short period of time? What was he looking for? Has he found a
hole in the system?

Log Parsing
Doing periodic checks on the system’s log files is an important part of maintaining secu-
rity. Unfortunately, scrolling through an entire day’s worth of logs is a time-consuming
and unerringly boring task that might reveal few meaningful events. To ease the drudg-
ery, pick up a text on a scripting language (such as Perl) and write small scripts to parse
out the logs. A well-designed script works by throwing away what it recognizes as nor-
mal behavior and showing everything else. This can reduce thousands of log entries for
a day’s worth of activities down to a manageable few dozen. This is an effective way
to detect attempted break-ins and possible security gaps. Hopefully, it’ll become enter-
taining to watch the script kiddies trying and failing to break down your walls. Several
canned solutions exist that can also help make parsing through log files easier. Examples
of such programs that you might want to try out are logwatch, gnome-system-log,
ksystemlog, Splunk (www.splunk.com), etc.

Storing Log Entries
Unfortunately, log parsing may not be enough. If someone breaks into your system, it’s
likely that your log files will be promptly erased—which means all those wonderful
scripts won’t be able to tell you a thing. To get around this, consider dedicating a single
host on your network to storing log entries. Configure your local logging daemon to
send all of its messages to a separate/central loghost, and configure the central host
appropriately to accept logs from trusted or known hosts. In most instances, this should
be enough to gather, in a centralized place, the evidence of any bad things happening.

If you’re really feeling paranoid, consider attaching another Linux host to the loghost
using a serial port and using a terminal emulation package, such as minicom, in log
mode and then feeding all the logs to the serially attached machine. Using a serial con-
nection between the hosts helps ensure that one of the hosts does not need network con-
nectivity. The logging software on the loghost can be configured to send all messages to
/dev/ttyS0, if you’re using COM1, or /dev/ttyS1, if you’re using COM2. And, of course,
do not connect the other system to the network! This way, in the event the loghost also
gets attacked, the log files won’t be destroyed. The log files will be safe residing on the
serially attached system, which is impossible to log into without physical access.

For an even higher degree of ensuring the sanctity of logs, you can connect a paral-
lel-port printer to another system and have the terminal emulation package echo every-
thing it receives on the serial port to the printer. Thus, if the serial host system fails or
is damaged in some way by an attack, you’ll have a hard copy of the logs. Note that
a serious drawback to using the printer for logging is that you cannot easily search
through the logs.

 370 Linux Administration: A Beginner’s Guide

Monitoring Bandwidth with MRTG
Monitoring the amount of bandwidth being used on your servers produces some use-
ful information. A common use for this is to justify the need for upgrades. By showing
system utilization levels to your managers, you’ll be providing hard numbers to back up
your claims. Your data can be easily turned into a graph, too (everyone knows how much
upper management and managers like graphs!). Another useful aspect of monitoring
bandwidth is to identify bottlenecks in the system, thus helping you to better balance
the system load. But relative to the topic of this chapter, a useful aspect of graphing your
bandwidth is to identify when things go wrong.

Once you’ve installed a package such as MRTG (Multi-Router Traffic Grapher, avail-
able at www.mrtg.org) to monitor bandwidth, you will quickly get a criterion for what
“normal” looks like on your site. A substantial drop or increase in utilization is some-
thing to investigate, as it may indicate a failure or a type of attack. Check your logs, and
look for configuration files with odd or unusual entries.

HANDLING ATTACKS
Part of securing a network includes planning for the worst case: What happens if some-
one succeeds? It doesn’t necessarily matter how; it just matters that they have. Servers
are doing things they shouldn’t, information is leaking that should not leak, or other
mayhem is discovered by you, your team, or someone else asking why you’re trying to
spread mayhem to them.

What do you do?
Just as a facilities director plans for fires and your backup administrator plans

for recovering data if none of your systems are available, a security officer needs to
plan for how to handle an attack. In this section, we cover key points to consider with
respect to Linux. For an excellent overview on handling attacks, visit the CERT web
site at www.cert.org.

Trust Nothing (and No One)
The first thing you should do in the event of an attack is to fire everyone in the IT depart-
ment. Absolutely no one is to be trusted. Everyone is guilty until proven innocent. Just
kidding.

But seriously … if an attacker has successfully gotten into your systems, there is
nothing that your servers can tell you about the situation that is completely trustworthy.
“Root kits,” or tool kits that attackers use to invade systems and then cover their tracks,
can make detection difficult. With binaries replaced, you may find that there is nothing
you can do to the server itself that helps. In other words, every server that has been suc-
cessfully hacked needs to be completely rebuilt with a fresh installation. Before doing the
reinstall, make an effort to look back at how far the attacker went so as to determine the
point in the backup cycle when the data is certain to be trustworthy. Any data backed up

371 Chapter 15: Network Security

after that should be closely examined to ensure that invalid data does not make it back
into the system.

Change Your Passwords
If the attacker has gotten your root password or may have taken a copy of the password
file, it is crucial that all of your passwords get changed. This is an incredible hassle; how-
ever, it is necessary to make sure that the attacker doesn’t waltz back into your rebuilt
server using the password without any resistance.

Note that it is a good idea to also change your root password if there are any staff
changes. It may seem like everyone is leaving on good terms; however, finding out that
someone on your team had issues with the company afterward could mean that you’re
already in trouble.

Pull the Plug
Once you’re ready to start cleaning up and need to stop any remote access to the system,
you may find it necessary to stop all network traffic to the server until it is completely
rebuilt with the latest patches before reconnecting it to the network. This can be done by
simply pulling the plug on whatever connects the box to the network. Putting a server
back onto the network when it is still getting patches is an almost certain way to find
yourself dealing with an attack again.

NETWORK SECURITY TOOLS
There are countless tools to help monitor your systems, including Nagios (www.nagios.
org), MRTG (www.mrtg.org) for graphing statistics, Big Brother (www.bb4.org), and, of
course, the various tools we’ve already mentioned in this chapter. But what do you use
to poke at your system for basic sanity checks?

In this section, we review a few tools that you can use for testing your system. Note
that no one single tool is enough, and no combination of tools is perfect—there is no
secret “Hackers Testing Tool Kit” that security professionals use. The key to most tools is
how you use them and how you interpret that data gathered by the tools.

A common trend that you’ll see in a few tools listed here is that by their designers’
intent, they were not meant to be security tools. Several of these tools were meant to aid
in basic diagnostics and system management. What makes those tools work well for
Linux from a security perspective is that they offer deeper insight into what your system
is doing. It is that extra insight that often proves to be more helpful than what you may
have originally thought of it.

nmap
The nmap program can be used to scan a host or a group of hosts to look for open TCP
and UDP ports. nmap can go beyond scanning and can actually attempt to connect to the

 372 Linux Administration: A Beginner’s Guide

remote listening applications or ports so that it can better identify the remote application.
This is a powerful and simple way for an administrator to take a look at what their sys-
tem exposes to the network and is frequently used by both attackers and administrators
to get a sense of what is possible against a host.

What makes nmap powerful is its ability to apply multiple scanning techniques. This
is especially useful, because each scanning technique has its pros and cons with respect
to how well it traverses firewalls and the level of stealth desired.

Snort
An intrusion detection system (IDS) provides a way to promiscuously monitor a point in
the network and report on questionable activity seen based on packet traces. The Snort
program (www.snort.org) is an open source IDS and intrusion prevention system (IPS)
that provides extensive rule sets that are frequently updated with new attack vectors.
Any questionable activity can be sent to a logging host, and several open source log-
processing tools are available to help make sense of the information gathered (e.g., the
Basic Analysis and Security Engine, or BASE).

Running Snort on a Linux system that is located at a key entry/exit point in your
network is a great way to track the activity without having to set up a proxy for each
protocol that you wish to support. A commercial version of Snort called SourceFire is
also available. You can find out more about SourceFire at www.sourcefire.com.

Nessus
The Nessus system (www.nessus.org) takes the idea behind nmap and extends it with
deep application-level probes and a rich reporting infrastructure. Running Nessus
against a server is a quick way to perform a sanity check on the server’s exposure.

The key to understanding Nessus is understanding its output. The report will log
numerous comments, from an informational level all the way up to a high level. Depend-
ing on how your application is written and what other services you offer on your Linux
system, Nessus may log false positives or seemingly scary informational notes. Take the
time to read through each one of them and understand what the output is, as not all of
the messages necessarily reflect your situation. For example, if Nessus detects that your
system is at risk due to a hole in Oracle 8 but your server does not even run Oracle, more
than likely, you have hit upon a false positive.

Although Nessus is open source and free, it is owned and managed by a commer-
cial company, Tenable Network Security. You can learn more about Tenable at www.
tenablesecurity.com.

Wireshark/tcpdump
We learned extensively about Wireshark and tcpdump in Chapter 11, where we used
them to study the ins and outs of TCP/IP. While we have seen these tools used only for
troubleshooting, they are just as valuable for doing network security functions.

373 Chapter 15: Network Security

Raw network traces are the food that all of the tools listed in the preceding sections
feed off of in order to gain insight into what your server is doing. However, these tools
don’t have quite the insight into what your server is supposed to do like you do. Thus, it is
useful to be able to take network traces yourself and read through them to see if there is
any questionable activity going on. You may be surprised at what your server is doing!

For example, if you are looking at a possible break-in, you may want to start a raw
network trace from another Linux system that can see all of the network traffic of your
questioned host. By capturing all the traffic over a 24-hour period, you can go back and
start applying filters to see if there is anything that shouldn’t be there. Extending the
example, if the server is supposed to only handle web operations and SSH, with reverse
Domain Name System (DNS) resolution turned off on both, take the trace and apply the
filter “not port 80 and not port 22 and not icmp and not arp.” Any packets that show up
in the output are suspect.

SUMMARY
In this chapter we covered the basics of network security as it pertains to Linux. With
the information here, you should have the knowledge you need in order to make an
informed decision about the state of health of your server and decide what, if any, action
is necessary to better secure it.

As has been indicated in other chapters, please do not consider this chapter a com-
plete source of network security information. Security as a field is constantly evolving
and requires a careful eye toward what is new. Be sure to subscribe to the relevant mail-
ing lists, read the web sites, and, if necessary, pick up a book like Network Security: A
Beginner’s Guide by Eric Maiwald (McGraw-Hill/Osborne, 2003).

375

Internet Services

IV

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

377

16

DNS

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 378 Linux Administration: A Beginner’s Guide

The need to be able map unfriendly numerical IP addresses into people-friendly
format has been of paramount importance since the inception of the Internet in
the 1970s. Although this translation isn’t mandatory, it does make the network

much more useful and easy to work with for humans.
Initially, IP address–to–name mapping was done through the maintenance of a

hosts.txt file that was distributed via FTP to all the machines on the Internet. As the
number of hosts grew (starting back in the early 1980s), it was soon clear that a single
person maintaining a single file of all of those hosts was not a scalable way of manag-
ing the association of IP addresses to hostnames. To solve this problem, a distributed
system was devised in which each site would maintain information about its own
hosts. One host at each site would be considered authoritative, and that single host
address would be kept in a master table that could be queried by all other sites. This is
the essence of the Domain Name Service (DNS).

If the information in DNS wasn’t decentralized as it is, one other choice would be
to have a central site maintaining a master list of all hosts (numbering in the tens of
millions) and having to update those hostnames tens of thousands of times a day—
this alternative can quickly become overwhelming! Even more important to consider
are the needs of each site. One site may need to maintain a private DNS server because
its firewall requires that local area network (LAN) IP addresses not be visible to outside
networks, yet the hosts on the LAN must be able to find hosts on the Internet. If you’re
stunned by the prospect of having to manage this for every host on the Internet, then
you’re getting the picture.

NOTE In this chapter, you will see the terms “DNS server” and “name server” used interchangeably.
Technically, “name server” is a little ambiguous because it can apply to any number of naming schemes
that resolve a name to a number and vice versa. In the context of this chapter, however, “name server”
will always mean a DNS server, unless otherwise stated.

We will discuss DNS in depth, so you’ll have what you need to configure and deploy
your own DNS servers for whatever your needs may be.

THE HOSTS FILE
Not all sites run their own DNS servers. Not all sites need their own DNS servers. In
sufficiently small sites with no Internet connectivity, it’s reasonable for each host to
keep its own copy of a table matching all of the hostnames in the local network with
their corresponding IP addresses. In most Linux and UNIX systems, this table is stored
in the /etc/hosts file.

NOTE There may be other valid reasons why you may want to keep a hosts file locally in spite of
having access to a DNS server. For example, a host may need to look up an IP address locally before
going out to query the DNS server. Typically, this is done so that the system can keep track of hosts

379Chapter 16: DNS

it needs for booting so that even if the DNS server becomes unavailable, the system can still boot
successfully. Less obvious might be the simple reason that you want to give a host a name but you
don’t want to (or can’t) add an entry to your DNS server.

The /etc/hosts file keeps its information in a simple tabular format in a plain-text file.
The IP address is in the first column, and all the related hostnames are in the second col-
umn. The third column is typically used to store the short version of the hostname. Only
white space separates the fields. Pound symbols (#) at the beginning of a line represent
comments. Here’s an example:

Host table for Internal network

127.0.0.1 localhost.localdomain localhost

::1 localhost6.localdomain6 localhost6

192.168.1.1 serverA.example.org serverA # Linux server

192.168.1.2 serverB.example.org serverB # Other Linux server

192.168.1.7 dikkog # Win2003 server

192.168.1.8 trillion # Cluster master node

192.168.1.9 sassy # FreeBSD box

10.0.88.20 laserjet5 # Lunchroom Printer

In general, your /etc/hosts file should contain, at the very least, the necessary host-to-
IP mappings for the loop-back interface (127.0.0.1 for IPv4 and ::1 for IPv6) and the local
hostname with its corresponding IP address. A more robust naming service is the DNS
system. The rest of this chapter will cover the use of the DNS name service.

UNDERSTANDING HOW DNS WORKS
In this section, we’ll explore some background material necessary to your understanding
of the installation and configuration of a DNS server and client.

Domain and Host Naming Conventions
Until now, you’ve most likely referenced sites by their fully qualified domain name (FQDN),
like this one: www.kernel.org. Each string between the periods in this FQDN is signifi-
cant. Starting from the right and moving to the left, you have the top-level domain com-
ponent, the second-level domain component, and the third-level domain component.
This is illustrated further in Figure 16-1 in the FQDN for a system (serverA.example.org)
and is a classic example of an FQDN. Its breakdown is discussed in detail in the follow-
ing section.

The Root Domain
The DNS structure is like that of an inverted tree (upside-down tree); this, therefore,
means that the root of the tree is at the top and its leaves and branches are at the bottom!
Funny sort of tree, you’d say, eh?

 380 Linux Administration: A Beginner’s Guide

At the top of the inverted domain tree is the highest level of the DNS structure, aptly
called the root domain and represented by the simple dot (.).

This is the dot that’s supposed to occur after every FQDN, but it is silently assumed
to be present even though it is not explicitly written. Thus, for example, the proper
FQDN for www.kernel.org is really www.kernel.org. (with the root period/dot at the
end). And the FQDN for the popular web portal for Yahoo! is actually www.yahoo.com.
(likewise).

Coincidentally (or not) this portion of the domain namespace is managed by a bunch
of special servers known as the root name servers. At the time of this writing, there were a
total of 13 root name servers managed by 13 providers. (Each provider may have multiple
servers that are spread all over the world. The servers are distributed for various reasons,
such as security and load balancing.) Also at the time of this writing, 6 of the 13 root name
servers fully support IPv6-type record sets. The root name servers are named alphabeti-
cally. They have names like a.root-server.net, b.root-server.net, …m.root-server.net. The
role of the root name servers will be discussed further on.

The Top-Level Domain Names
The top-level domains (TLDs) can be regarded as the first branches that we would meet
on the way down from the top of our inverted tree structure.

One can be bold and say that the top-level domains provide the categorical orga-
nization of the DNS namespace. What this means in plain English is that the various
branches of domain namespace have been divided into clear categories to fit different
uses (examples of such uses could be geographical, functional, etc.). At the time of this
writing, there were over 270 top-level domains.

The TLDs can be broken down further into the generic top-level domain (e.g., .org, .com,
.net, .mil, .gov, .edu, .int, .biz), country-code top-level domains (e.g., .us, .uk, .ng, and .ca,
corresponding to the country codes for the United States, the United Kingdom, Nigeria, and
Canada, respectively), and other special top-level domains (e.g., the .arpa domain).

The top-level domain in our sample FQDN (serverA.example.org.) is “.org.”

Figure 16-1. FQDN for serverA.example.org

Third-level domain

serverA . example . org

Second-level domain

Top-level domain

Root domain

.

381Chapter 16: DNS

The Second-Level Domain Names
The names at this level of the DNS make up the actual organizational boundary of the
namespace. Companies, Internet service providers (ISPs), educational communities,
nonprofit groups, and individuals typically acquire unique names within this level. Here
are a few examples: redhat.com, caldera.com, planetoid.org, labmanual.org, kernel.org,
and caffenix.com.

The second-level domain in our sample FQDN (serverA.example.org.) is “example.”

The Third-Level Domain Names
Individuals and organizations that have been assigned second-level domain names can
pretty much decide what to do with the third-level names. The convention, though, is
to use the third-level names to reflect hostnames or other functional uses. It is also com-
mon for organizations to begin the subdomain definitions from here. An example of
functional assignment of a third-level domain name will be the “www” in the FQDN
www.yahoo.com. The “www” here can be the actual hostname of a machine under the
umbrella of the yahoo.com domain, or it can be an alias to a real hostname.

The third-level domain name in our sample FQDN (serverA.example.org.) is
“ serverA.” Here, it simply reflects the actual hostname of our system.

By keeping DNS distributed in this manner, the task of keeping track of all the hosts
connected to the Internet is delegated to each site taking care of its own information. The
central repository listing of all the primary name servers, called the root server, is the only
list of existing domains. Obviously, a list of such a critical nature is itself mirrored across
multiple servers and multiple geographic regions. For example, an earthquake in Japan
may destroy the root server for Asia, but all the other root servers around the world can
take up the slack until it comes back online. The only noticeable difference to users is
likely to be a slightly higher latency in resolving domain names. Pretty amazing, isn’t it?
The inverted tree structure of DNS is shown in Figure 16-2.

Figure 16-2. The DNS tree, two layers deep

Root of DNS
.

Country codes

lanl lbl

gov

af
navy

army

nato

planetoidcalderaredhat

Individual
sites:

Top-level
domains: com org net edu int mil

ucr sjsuslashdot hyperreal

 382 Linux Administration: A Beginner’s Guide

Subdomains
“But I just saw the site www.support.example.org!” you say. “What’s the hostname
 component, and what’s the domain name component?”

Welcome to the wild and mysterious world of subdomains. A subdomain exhibits
all the properties of a domain, except that it has delegated a subsection of the domain
instead of all the hosts at a site. Using the example.org site as an example, the sub domain
for the support and help desk department of Example, Inc., is support.example.org.
When the primary name server for the example.org domain receives a request for a host-
name whose FQDN ends in support.example.org, the primary name server forwards the
request down to the primary name server for support.example.org. Only the primary
name server for support.example.org knows all the hosts existing beneath it—hosts such
as a system named “www” with the FQDN of “www.support.example.org.”

Figure 16-3 shows you the relationship from the root servers down to example.org
and then to support.example.org. The “www” is, of course, the hostname.

To make this clearer, let’s follow the path of a DNS request:

 1. A client wants to visit a web site called “www.support.example.org.”

 2. The query starts with the top-level domain “org.” Within “org.” is “example.org.”

 3. Let’s say one of the authoritative DNS servers for the “example.org” domain is
named “ns1.example.org.”

 4. Since the host ns1 is authoritative for the example.org domain, we have to query
it for all hosts (and subdomains) under it.

Figure 16-3. Concept of subdomains

(root domain).

org (top-level domain)

example (organization’s second-level domain)

serverA (host)

other hosts www (hostname for system under support subdomain)

support (subdomain for support department of example.org)

383Chapter 16: DNS

 5. So we query it for information about the host we are interested in: “www.
support.example.org.”

 6. Now ns1.example.org’s DNS configuration is such that for anything ending with
a support.example.org, the server must contact another authoritative server
called “dns2.example.org.”

 7. The request for “www.support.example.org” is then passed on to dns2.example.org,
which returns the IP address for www.support.example.org—say, 192.168.1.10.

Note that when a site name appears to reflect the presence of subdomains, it doesn’t
mean subdomains in fact exist. Although the hostname specification rules do not allow
periods, the Berkeley Internet Name Domain (BIND) name server has always allowed
them. Thus, from time to time, you will see periods used in hostnames. Whether or not
a subdomain exists is handled by the configuration of the DNS server for the site. For
example, www.bogus.example.org does not automatically imply that bogus.example.
org is a subdomain. Rather, it may also mean that “www.bogus” is the hostname for a
system in the example.org domain.

The in-addr.arpa Domain
DNS allows resolution to work in both directions. Forward resolution converts names into
IP addresses, and reverse resolution converts IP addresses back into hostnames. The pro-
cess of reverse resolution relies on the in-addr.arpa domain, where “arpa” is an acronym
for “Address Routing and Parameters Area.”

As explained in the preceding section, domain names are resolved by looking at
each component from right to left, with the suffixing period indicating the root of the
DNS tree. Following this logic, IP addresses must have a top-level domain as well. This
domain is called in-addr.arpa for IPv4-type addresses. In IPv6, the domain is called
ip6.arpa.

Unlike FQDNs, IP addresses are resolved from left to right once they’re under the
 in-addr.arpa domain. Each octet further narrows down the possible host names. Figure 16-4
gives you a visual example of reverse resolution of the IP address 138.23.169.15.

Types of Servers
DNS servers come in three flavors: primary, secondary, and caching. Another special
class of name servers consists of the so-called “root name servers.” Other DNS servers
require the service provided by the root name servers every once in a while.

The three main flavors of DNS servers are discussed next.
Primary servers are the ones considered authoritative for a particular domain. An

authoritative server is the one on which the domain’s configuration files reside. When
updates to the domain’s DNS tables occur, they are done on this server. A primary name
server for a domain is simply a DNS server that knows about all hosts and subdomains
existing under its domain.

 384 Linux Administration: A Beginner’s Guide

Secondary servers work as backups and as load distributors for the primary name serv-
ers. Primary servers know of the existence of secondaries and send them periodic updates
to the name tables. When a site queries a secondary name server, the secondary responds
with authority. However, because it’s possible for a secondary to be queried before its
primary can alert it to the latest changes, some people refer to secondaries as “not quite
authoritative.” Realistically speaking, you can generally trust secondaries to have correct
information. (Besides, unless you know which is which, you cannot tell the difference
between a query response from a primary and one received from a secondary.)

Figure 16-4. Reverse DNS resolution of 138.23.169.15

arpa

in-addr

255

255

255

255

138
1

1

1

1

0

0

0

0 2

2

2

23

169

15

15.169.23.138.in-addr.arpa

385Chapter 16: DNS

Caching servers are just that: caching servers. They contain no configuration files for
any particular domain. Rather, when a client host requests a caching server to resolve a
name, that server will check its own local cache first. If it cannot find a match, it will find
the primary server and ask it. This response is then cached. Practically speaking, caching
servers work quite well because of the temporal nature of DNS requests. Its effective-
ness is based on the premise that if you’ve asked for the IP address to example.org in
the past, you are likely to do so again in the near future. Clients can tell the difference
between a caching server and a primary or secondary server, because when a caching
server answers a request, it answers it “non-authoritatively.”

NOTE A DNS server can be configured to act with a specific level of authority for a particular domain.
For example, a server can be primary for example.org but be secondary for domain.com. All DNS
servers act as caching servers, even if they are also primary or secondary for any other domains.

INSTALLING A DNS SERVER
There isn’t much variety in the DNS server software available, but two particular flavors
of DNS software abound in the Linux/UNIX world: djbdns and the venerable Berkeley
Internet Name Domain (BIND) server. djbdns is a lightweight DNS solution that claims
to be a more secure replacement for BIND. BIND is an older and much more popular
program. It is used on a vast majority of name-serving machines worldwide. BIND is cur-
rently maintained and developed by the Internet Systems Consortium (ISC). More can be
found out about the ISC at www.isc.org. The ISC is in charge of development of the ISC
Dynamic Host Configuration Protocol (DHCP) server/client as well as other software.

Because of the timing between writing this book and the inevitable release of newer
software, it is possible that the version of BIND discussed here will not be the same as
the version that you will have access to; but you shouldn’t worry at all, because most of
the configuration directives, keywords, and command syntax have remained much the
same between recent versions of the software.

Root Name Servers
The root name servers act as the first port of call for the topmost parts of the
domain namespace. These servers publish a file called the “root zone file” to other
DNS servers and clients on the Internet. The root zone file describes where the
authoritative servers for the DNS top-level domains (com, org, ca, ng, hk, uk, etc.)
are located.

A root name server is just an instance of a primary name server—it delegates
every request it gets to another name server. You can build your own root server
out of BIND—nothing terribly special about it!

 386 Linux Administration: A Beginner’s Guide

Our sample system runs the Fedora distribution of Linux, and as such, we will be
using the precompiled binary that ships with this operating system (OS). Software that
ships with Fedora is supposed to be fairly recent software, so you can be sure that the
version of BIND referred to here is close to the latest version that can be obtained directly
from the www.isc.org site (the site even has precompiled Red Hat Package Managers, or
RPMs, for the BIND program).

The good news is that once BIND is configured, you’ll rarely need to concern your-
self with its operation. Nevertheless, keep an eye out for new releases. New bugs and
security issues are discovered from time to time and should be corrected. Of course, new
features are released as well, but unless you have a need for them, those releases are less
critical.

The BIND program can be found under the /Packages/ directory at the root of the
Fedora DVD media. You can also download it to your local file system from any of
the Fedora mirrors (http://download.fedora.redhat.com/pub/fedora/linux/releases/
9/Fedora/i386/os/Packages/).

Assuming you downloaded or copied the BIND binary into your current working
directory, you can install it using the rpm command. Type

[root@fedora-serverA root]# rpm -Uvh bind-9*

If you have a working connection to the Internet, installing BIND can be as simple as
running this command:

[root@fedora-serverA ~]# yum -y install bind

Once this command finishes, you are ready to begin configuring the DNS server.

Downloading, Compiling, and Installing the ISC BIND Software
from Source

If the ISC BIND software is not available in a prepackaged form for your particu-
lar Linux distribution, you can always build the software from source code avail-
able from the ISC site at www.isc.org. It is also possible that you simply want to
take advantage of the most recent bug fixes available for the software, which your
distribution has not yet implemented. As of this writing, the most current stable
version of the software was version 9.5.0, which can be downloaded directly from
http://ftp.isc.org/isc/bind9/9.5.0/bind-9.5.0.tar.gz.

Once the package is downloaded, unpack the software as shown. For this
example, we assume the source was downloaded into the /usr/local/src/ directory.
Unpack the tarball thus:

[root@serverA src]# tar xvzf bind-9.5.0.tar.gz

387Chapter 16: DNS

What Was Installed
Many programs come with the main bind package and bind-utils package that were
installed earlier. The four tools that we are interested in are as follows:

Tool Description

/usr/sbin/named The DNS server program itself

/usr/sbin/rndc The bind name server control utility

/usr/bin/host Performs a simple query on a name server

/usr/bin/dig Performs complex queries on a name server

The remainder of the chapter will discuss some of the programs/utilities listed here,
as well as their configuration and usage.

Understanding the BIND Configuration File
The named.conf file is the main configuration file for BIND. Based on this file’s specifica-
tions, BIND determines how it should behave and what additional configuration files, if
any, must be read. This section of the chapter covers what you need to know to set up a

Change to the bind* subdirectory created by the preceding command. And
then take a minute to study any README file(s) that might be present.

Next configure the package with the configure command. Assuming we want
BIND to be installed under the /usr/local/named/ directory, we’ll run

[root@serverA bind-9.5.0]# ./configure --enable-ipv6 --prefix=/usr/local/named

Create the directory specified by the “prefix” option, using mkdir:

[root@serverA bind-9.5.0]# mkdir /usr/local/named

To compile and install, issue the make ; make install commands:

[root@serverA bind-9.5.0]# make ; make install

The version of ISC BIND software that we built from source installs the name
server daemon (named) and some other useful utilities under the /usr/local/named/
sbin/ directory. The client-side programs (dig, host, nsupdate, etc.) are installed
under the /usr/local/named/bin/ directory.

 388 Linux Administration: A Beginner’s Guide

general-purpose DNS server. You’ll find a complete guide to the new configuration file
format in the html directory of BIND’s documentation.

The general format of the named.conf file is as follows:

statement {

options; // comments

};

The statement keyword tells BIND we’re about to describe a particular facet of
its operation, and options are the specific commands applying to that statement. The
curly braces are required so that BIND knows which options are related to which state-
ments; there’s a semicolon after every option and after the closing curly brace.

An example of this follows:

options {

directory "/var/named"; // put config files in /var/named

};

The preceding bind statement means that this is an option statement. And the par-
ticular option here is the directive that specifies bind’s working directory, i.e., the direc-
tory on the local file system that will hold the name server’s configuration data.

The Specifics
This section documents the most common statements you will see in a typical named.conf
file. The best way to tackle this is to give it a skim, but then treat it as a reference guide
for later sections. If some of the directives seem bizarre or don’t quite make sense to you
during the first pass, don’t worry. Once you see them in use in later sections, the hows and
whys will quickly fall into place.

Comments
Comments can be in one of the following formats:

Format Indicates

// C++-style comments

/*...*/ C-style comments

Perl and UNIX shell script–style comments

In the case of the first and last styles (C++ and Perl/UNIX shell), once a comment
begins, it continues until the end of the line. In regular C-style comments, the closing
*/ is required to indicate the end of a comment. This makes C-style comments easier for
multiline comments. In general, however, you can pick the comment format that you like
best and stick with it. No one style is better than another.

389Chapter 16: DNS

Statement Keywords
You can use the following statement keywords:

Keyword Description

acl Access Control List—determines what kind of access others
have to your DNS server.

include Allows you to include another file and have that file treated as
part of the normal named.conf file.

logging Specifies what information gets logged and what gets ignored.
For logged information, you can also specify where the
information is logged.

options Addresses global server configuration issues.

controls Allows you to declare control channels for use by the rndc
utility.

server Sets server-specific configuration options.

zone Defines a DNS zone.

The include Statement
If you find that your configuration file is starting to grow unwieldy, you may want to
consider breaking up the file into smaller components. Each file can then be included
into the main named.conf file. Note that you cannot use the include statement inside
another statement.

Here’s an example of an include statement:

include "/path/to/filename_to_be_included";

NOTE To all you C and C++ programmers out there: Be sure not to begin include lines with the
pound symbol (#), despite what your instincts tell you! That symbol is used to start comments in the
named.conf file.

The logging Statement
The logging statement is used to specify what information you want logged and where.
When this statement is used in conjunction with the syslog facility, you get an extremely
powerful and configurable logging system. The items logged are a number of statistics
about the status of named. By default, they are logged to the /var/log/messages file. In its
simplest form, the various types of logs have been grouped into predefined categories;
for example, there are categories for security-related logs, a general category, a default cat-
egory, a resolver category, a queries category, etc.

 390 Linux Administration: A Beginner’s Guide

Unfortunately, the configurability of this logging statement comes at the price of
some additional complexity, but the default logging set up by named is good enough for
most uses. Here is a simple logging directive example:

1. logging {

2. category default { default_syslog; };

3. category queries { default_syslog; };

4.

5. };

NOTE Line numbers have been added to the preceding listing to aid readability.

The preceding logging specification means that all logs that fall under the default cat-
egory will be sent to the system’s syslog (the default category defines the logging options
for categories where no specific configuration has been defined).

Line 3 in the listing specifies where all queries will be logged to; in this case, all que-
ries will be logged to the system syslog.

The server Statement
The server statement tells BIND specific information about other name servers it might
be dealing with. The format of the server statement is as follows:

1) server ip-address {

2) bogus yes/no;

3) keys { string ; [string ; [...]] } ;]

4) transfer-format one-answer/many-answers;

5) ...<other options>...

6) };

where ip-address in line 1 is the IP address of the remote name server in question.
The bogus option in line 2 tells the server whether the remote server is sending bad

information. This is useful in the event you are dealing with another site that may be
sending you bad information due to a misconfiguration. The keys clause in line 3 speci-
fies a key_id defined by the key statement, which can be used to secure transactions
when talking to the remote server. This key is used in generating a request signature that
is appended to messages exchanged with the remote name server. The item in line 4,
transfer-format, tells BIND whether the remote name server can accept multiple
answers in a single query response.

A sample server entry might look like this:

server 192.168.1.12 {

bogus no;

transfer-format many-answers;

};

391Chapter 16: DNS

Zones
The zone statement allows you to define a DNS zone—the definition of which is often
confusing. Here is the fine print: A DNS zone is not the same thing as a DNS domain. The
difference is subtle, but important.

Let’s review: Domains are designated along organizational boundaries. A single
organization can be separated into smaller administrative subdomains. Each subdomain
gets its own zone. All of the zones collectively form the entire domain.

For example, .example.org is a domain. Within it are the subdomains .engr.example.
org, .marketing.example.org, .sales.example.org, and .admin.example.org. Each of the
four subdomains has its own zone. And .example.org has some hosts within it that do
not fall under any of the subdomains; thus, it has a zone of its own. As a result, the
“example.org” domain is actually composed of five zones in total.

In the simplest model, where a single domain has no subdomains, the definition of
zone and domain are the same in terms of information regarding hosts, configurations,
and so on.

The process of setting up zones in the named.conf file is discussed in the following
section.

CONFIGURING A DNS SERVER
Earlier, you learned about the differences between primary, secondary, and caching
name servers. To recap: Primary name servers contain the databases with the latest DNS
information for a zone. When a zone administrator wants to update these databases, the
primary name server gets the update first, and the rest of the world asks it for updates.
Secondaries explicitly keep track of primaries, and primaries notify the secondaries when
changes occur. Primaries and secondaries are considered equally authoritative in their
answers. Caching name servers have no authoritative records, only cached entries.

Defining a Primary Zone in the named.conf File
The most basic syntax for a zone entry is as follows:

zone domain-name {

type master;

file path-name;

};

The path-name refers to the file containing the database information for the zone in
question. For example, to create a zone for the domain example.org, where the database
file is located in /var/named/example.org.db, you would create the following zone defi-
nition in the named.conf file:

zone "example.org" {

type master;

file "example.org.db";

};

 392 Linux Administration: A Beginner’s Guide

Note that the directory option for the named.conf file will automatically prefix the
example.org.db filename. So if you designated directory /var/named, the server software
will automatically look for example.org’s information in /var/named/example.org.db.

The zone definition created here is just a forward reference—i.e., the mechanism
by which others can look up a name and get the IP address for a system under the
 example.org domain that your name server manages. It’s proper Internet behavior to
also supply an IP-to-hostname mapping (also necessary if you want to send e-mail
to some sites). To do this, you provide an entry in the in-addr.arpa domain.

The format of an in-addr.arpa entry is the first three octets of your IP address, reversed,
followed by “in-addr.arpa.” Assuming that the network address for example.org is
192.168.1, the in-addr.arpa domain would be 1.168.192.in-addr.arpa. Thus, the corre-
sponding zone statement in the named.conf file would be as follows:

zone "1.168.192.in-addr.arpa" {

type master;

file "example.org.rev";

};

Note that the filenames (example.org.db and example.org.rev) used in the zone sec-
tions here are completely arbitrary. You are free to choose your own naming convention
as long as it makes sense to you.

The exact placement of our sample example.org zone section in the overall named.conf
file will be shown later on.

Additional Options
Primary domains may also use some of the configuration choices from the options state-
ment. These options are

 ▼ check-names

■ allow-update

■ allow-query

■ allow-transfer

■ notify

 ▲ also-notify

Using any of these options in a zone configuration will affect only that zone.

Defining a Secondary Zone in the named.conf File
The zone entry format for secondary servers is similar to that of master servers. For for-
ward resolution, here is the format:

zone domain-name {

type slave;

393Chapter 16: DNS

masters IP-address-list; ;

file path-name;

};

where domain-name is the exact same zone name as specified on the primary name
server, IP-address-list is the list of IP addresses where the primary name server for
that zone exists, and path-name is the full path location of where the server will keep
copies of the primary’s zone files.

Additional Options
A secondary zone configuration may also use some of the configuration choices from the
options statement. Some of these options are

 ▼ check-names

■ allow-update

■ allow-query

■ allow-transfer

 ▲ max-transfer-time-in

Defining a Caching Zone in the named.conf File
A caching configuration is the easiest of all configurations. It’s also required for every
DNS server configuration, even if you are running a primary or secondary server. This
is necessary in order for the server to recursively search the DNS tree to find other hosts
on the Internet.

For a caching name server, we define three zone sections. Here’s the first entry:

zone "." {

type hint;

file "root.hints";

};

The first zone entry here is the definition of the root name servers. The line type
hint; specifies that this is a caching zone entry, and the line file "root.hints";
specifies the file that will prime the cache with entries pointing to the root servers. You
can always obtain the latest root hints file from www.internic.net/zones/named.root.

The second zone entry defines the name resolution for the local host. The second
zone entry is as follows:

zone "localhost" in {

type master;

file "localhost.db";

};

 394 Linux Administration: A Beginner’s Guide

The third zone entry defines the reverse lookup for the local host. This is the reverse
entry for resolving the local host address (127.0.0.1) back to the local hostname.

zone "0.0.127.in-addr.arpa" {

type master;

file "127.0.0.rev";

};

Putting these zone entries into /etc/named.conf is sufficient to create a caching DNS
server. But, of course, the contents of the actual database files (localhost.db, 127.0.0.rev,
example.org.db, etc.) referenced by the file directive are also important. The following
sections will examine the makeup of the database file more closely.

DNS RECORDS TYPES
This section discusses the makeup of the name server database files, i.e., the files that
store specific information that pertains to each zone that the server hosts. The database
files consist mostly of record types—therefore, you need to understand the meaning and
use of the common record types for DNS: SOA, NS, A, PTR, CNAME, MX, TXT, and RP.

SOA: Start of Authority
The SOA record starts the description of a site’s DNS entries. The format of this entry is
as follows:

1) domain.name. IN SOA ns.domain.name. hostmaster.domain.name. (

2) 1999080801 ; serial number

3) 10800 ; refresh rate in seconds (3 hours)

4) 1800 ; retry in seconds (30 minutes)

5) 1209600 ; expire in seconds (2 weeks)

6) 604800 ; minimum in seconds (1 week)

7))

NOTE Line numbers have been added to the preceding listing to aid readability.

The first line contains some details you need to pay attention to: domain.name is, of
course, to be replaced with your domain name. This is usually the same name that was
specified in the zone directive in the /etc/named.conf file. Notice that last period at the
end of domain.name. It’s supposed to be there—indeed, the DNS configuration files
are extremely picky about it. The ending period is necessary for the server to differenti-
ate relative hostnames from fully qualified domain names (FQDNs); for example, the
difference between serverA and serverA.example.org.

395Chapter 16: DNS

IN tells the name server that this is an Internet record. There are other types of records,
but it’s been years since anyone has had a need for them. You can safely ignore them.

SOA tells the name server this is the Start of Authority record.
The ns.domain.name. is the FQDN for the name server for this domain (that

would be the server where this file will finally reside). Again, watch out and don’t miss
that trailing period.

The hostmaster.domain.name. is the e-mail address for the domain administra-
tor. Notice the lack of an @ in this address. The @ symbol is replaced with a period. Thus,
the e-mail address referred to in this example is hostmaster@domain.name. The trailing
period is used here, too.

The remainder of the record starts after the opening parenthesis on line 1. Line 2
is the serial number. It is used to tell the name server when the file has been updated.
Watch out—forgetting to increment this number when you make a change is a mistake
frequently made in the process of managing DNS records. (Forgetting to put a period in
the right place is another common error.)

NOTE To maintain serial numbers in a sensible way, use the date formatted in the following order:
YYYYMMDDxx. The tail-end xx is an additional two-digit number starting with 00, so if you make
multiple updates in a day, you can still tell which is which.

Line 3 in the list of values is the refresh rate in seconds. This value tells the secondary
DNS servers how often they should query the primary server to see if the records have
been updated.

Line 4 is the retry rate in seconds. If the secondary server tries but cannot contact
the primary DNS server to check for updates, the secondary server tries again after the
specified number of seconds.

Line 5 specifies the expire directive. It is intended for secondary servers that have
cached the zone data. It tells these servers that if they cannot contact the primary server
for an update, they should discard the value after the specified number of seconds. One
to two weeks is a good value for this interval.

The final value (line 6, the minimum) tells caching servers how long they should wait
before expiring an entry if they cannot contact the primary DNS server. Five to seven
days is a good guideline for this entry.

TIP Don’t forget to place the closing parenthesis (line 7) after the final value.

NS: Name Server
The NS record is used for specifying which name servers maintain records for this zone.
If any secondary name servers exist that you intend to transfer zones to, they need to be
specified here. The format of this record is as follows:

IN NS ns1.domain.name.

IN NS ns2.domain.name.

 396 Linux Administration: A Beginner’s Guide

You can have as many backup name servers as you’d like for a domain—at least two
is a good idea. Most Internet service providers (ISPs) are willing to act as secondary DNS
servers if they provide connectivity for you.

A: Address Record
This is probably the most common type of record found in the wild. The A record is
used to provide a mapping from hostname to IP address. The format of an A address
is simple:

Host_name IN A IP-Address

For example, an A record for the host serverB.example.org, whose IP address is
192.168.1.2, would look like this:

serverB IN A 192.168.1.2

The equivalent of the IPv4 “A” resource record in the IPv6 world is called the “AAAA”
(quad-A) resource record. For example, a quad-A record for the host serverB whose IPv6
address is 2001:DB8::2 would look like:

serverB IN A AAA 2001:DB8::2

Note that any hostname is automatically suffixed with the domain name listed in
the SOA record, unless this hostname ends with a period. In the foregoing example for
serverB, if the SOA record prior to it is for example.org, then serverB is understood to be
serverB.example.org. If you were to change this to serverB.example.org (without a trail-
ing period), the name server would understand it to be serverB.example.org.example.
org.—which is probably not what you intended! So if you want to use the FQDN, be sure
to suffix it with a period.

PTR: Pointer Record
The PTR record is for performing reverse name resolution, thereby allowing someone
to specify an IP address and determine the corresponding hostname. The format for this
record is similar to the A record, except with the values reversed:

IP-Address IN PTR Host_name

The IP-Address can take one of two forms: just the last octet of the IP address
(leaving the name server to automatically suffix it with the information it has from the
in-addr.arpa domain name) or the full IP address, which is suffixed with a period. The
Host_name must have the complete FQDN. For example, the PTR record for the host
serverB would be as follows:

192.168.1.2. IN PTR serverB.example.org.

A PTR resource record for an IPv6 address in the ip6.arpa domain is expressed simi-
larly to the way it is done for an IPv4 address, but in reverse order. Unlike in the normal

397Chapter 16: DNS

IPv6 way, the address cannot be compressed or abbreviated; it is expressed in the so-
called reverse nibble format (four-bit aggregation). Therefore, with a PTR record for the
host with the IPv6 address “2001:DB8::2,” the address will have to be expanded to its
equivalent of “2001:0db8:0000:0000:0000:0000:0000:0002.”

For example, the IPv6 equivalent for a PTR record for the host serverB with the IPv6
address 2001:DB8::2 would be (single line):

2.0.8.b.d.0.1.0.0.2. IN PTR \

serverB.example.org.

MX: Mail Exchanger
The MX record is in charge of telling other sites about your zone’s mail server. If a host
on your network generates an outgoing mail message with its hostname on it, someone
returning a message would not send it back directly to that host. Instead, the replying
mail server would look up the MX record for that site and send the message there. For
example, MX records are used when a user’s desktop named pc.domain. sends a mes-
sage using its PC-based mail client/reader, which cannot accept Simple Mail Transfer
Protocol (SMTP) mail; it’s important that the replying party have a reliable way of know-
ing the identity of pc.domain.name’s mail server.

The format of the MX record is as follows:

domainname. IN MX weight Host_name

where domainname. is the domain name of the site (with a period at the end, of course);
the weight is the importance of the mail server (if multiple mail servers exist, the one
with the smallest number has precedence over those with larger numbers); and the
Host_name is, of course, the name of the mail server. It is important that the Host_name
have an A record as well.

Here’s an example entry:

example.org. IN MX 10 smtp1

 IN MX 20 smtp2

Typically, MX records occur close to the top of DNS configuration files. If a domain
name is not specified, the default name is pulled from the SOA record.

CNAME: Canonical Name
CNAME records allow you to create aliases for hostnames. A CNAME record can be
regarded as an alias. This is useful when you want to provide a highly available service
with an easy-to-remember name, but still give the host a real name.

Another popular use for CNAMEs is to “create” a new server with an easy-to-
 remember name without having to invest in a new server at all. An example: Suppose a
site has a web server with a hostname of zabtsuj-content.example.org. It can be argued
that zabtsuj-content.example.org is neither a memorable nor user-friendly name. So

 398 Linux Administration: A Beginner’s Guide

since the system is a web server, a CNAME record, or alias, of “www” can be created for
the host. This will simply map the user-unfriendly name of zabtsuj-content.example.org
to a more user-friendly name of www.example.org. This will allow all requests that go to
www.example.org to be passed on transparently to the actual system that hosts the web
content, i.e., zabtsuj-content.example.org.

Here’s the format for the CNAME record:

New_host_name IN CNAME old_host_name

For example, for our sample scenario described earlier, the CNAME entry will be

zabtsuj-content IN A 192.168.1.111

www IN CNAME zabtsuj-content

RP and TXT: The Documentation Entries
Sometimes it’s useful to provide contact information as part of your database—not just
as comments, but as actual records that others can query. This can be accomplished using
the RP (Responsible Person) and TXT records.

A TXT record is a free-form text entry into which you can place whatever information
you deem fit. Most often, you’ll only want to put contact information in these records.
Each TXT record must be tied to a particular hostname. For example,

serverA.example.org. IN TXT "Contact: Admin Guy"

 IN TXT "SysAdmin/Android"

 IN TXT "Voice: 999-999-9999"

The RP record was created as an explicit container for a host’s contact information.
This record states who the responsible person is for the specific host; here’s an example:

serverB.example.org. IN RP admin-address.example.org. example.org.

As useful as these records may be, they are a rarity these days, because it is perceived
that they give away too much information about the site that could lead to social engi-
neering–based attacks. You may find such records helpful in your internal DNS servers,
but you should probably leave them out of anything that someone could query from the
Internet.

SETTING UP BIND DATABASE FILES
So now you know enough about all the DNS record types to get started. It’s time to create
the actual database that will feed the server. The database file format is not too strict, but
some conventions have jelled over time. Sticking to these conventions will make your
life easier and will smooth the way for the administrator who takes over your creation.

399Chapter 16: DNS

NOTE Comment liberally. In this file, comment lines begin with a semicolon. Although there isn’t
a lot of mystery about what’s going on in a DNS database file, a history of the changes is a useful
reference for what was being accomplished and why.

The database files are your most important configuration files. It is easy to create the
forward lookup databases; what usually gets left out are the reverse lookups. Some tools,
like Sendmail and TCP Wrappers, will perform reverse lookups on IP addresses to see
where people are coming from. So it is a common courtesy to have this information.

Every database file should start with a $TTL entry. This entry tells BIND what the
time-to-live value is for each individual record whenever it isn’t explicitly specified. (The
time-to-live, or TTL, in the SOA record is for the SOA record only.) After the $TTL entry
is the SOA record and at least one NS record. Everything else is optional. (Of course,
“everything else” is what makes the file useful!) You may find the following general
format helpful:

$TTL

SOA record

NS records

MX records

A and CNAME records

Let’s walk through the process of building a complete DNS server from start to finish
to better show how the information shown thus far comes together. For this example, we
will build the DNS servers for example.org that will accomplish the following goals:

 ▼ Establish two name servers: ns1.example.org and ns2.example.org.

■ The name servers will be able to respond to queries for IPv6 records that they
know about.

■ Act as a slave server for the sales.example.org zone, where serverB.example.org
will be the master server.

■ Define A records for serverA, serverB, smtp, ns1, and ns2.

■ Define AAAA records (IPv6) for serverA-v6 and serverB-v6.

■ Define smtp.example.org as the mail exchanger (MX) for the example.org
domain.

■ Define www.example.org as an alternative name (CNAME) for serverA.
example.org, and define ftp.example.org as an alternative name for serverB.
example.org.

 ▲ Finally, we will define contact information for serverA.example.org.

Okay, Mr. Bond, you have your instructions. Go forth and complete the mission.
Good luck!

 400 Linux Administration: A Beginner’s Guide

Breaking Out the Individual Steps
In order to accomplish our goal of setting up a DNS server for example.org, we will need
to do a series of steps. Let’s walk through them one at a time.

 1. Make sure that you have installed the BIND DNS server software as described
earlier in the chapter. Use the rpm command to confirm this. Type

[root@serverA ~]# rpm -q bind

bind-9.*

NOTE If you built and installed BIND from source, then the preceding rpm command will not reveal
anything because the RPM database will not know anything about it. But you would know what you
installed and where.

 2. Use any text editor you are comfortable with to create the main DNS server
configuration file, i.e., the /etc/named.conf file. Enter the following text into
the file:

options {

 listen-on port 53 { any; };

 listen-on-v6 port 53 { any; };

 directory "/var/named";

 dump-file "/var/named/data/cache_dump.db";

 statistics-file "/var/named/data/named_stats.txt";

 notify yes;

};

The following zone definitions don't need any modification. The first one

is the definition of the root name servers and sets up our server as a

caching-capable DNS server.

The second one defines localhost.

The third zone definition defines the reverse lookup for localhost.

zone "." in {

 type hint;

 file "root.hints";

};

zone "localhost" in {

 type master;

 file "localhost.db";

};

zone "0.0.127.in-addr.arpa" in {

 type master;

 file "127.0.0.rev";

};

The zone definition below is for the domain that our name server is

authoritative for i.e. the example.org domain name.

401Chapter 16: DNS

zone "example.org" {

 type master;

 file "example.org.db";

};

Below is the zone for the in-addr.arpa domain, for the example.org site.

zone "1.168.192.in-addr.arpa" {

 type master;

 file "example.org.rev";

};

Below is the entry for the sub-domain for which this server is a slave server

IP address of sales.example.orgs master server is 192.168.1.2

zone "sales.example.org" {

 type slave;

 file "sales.example.org.bk";

 masters {192.168.1.2;};

};

Below is the zone for the ip6.arpa domain for the example.org site.

The zone will store its data in the same file as

the 1.168.192.in-addr.arpa domain

zone "0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa" {

 type master;

 file "example.org.rev";

};

 3. Save the preceding file as /etc/named.conf and exit the text editor.

 4. Next we’ll need to create the actual database files referenced in the file sections of
the /etc/named.conf file. In particular, the files we want to create are root.hints,
localhost.db, 127.0.0.rev, example.org.db, and example.org.rev. All the files will
be stored in BIND’s working directory, /var/named/. We’ll create them as they
occur from the top of the named.conf file to the bottom.

 5. Thankfully, we won’t have to manually create the root hints file. Download the
latest copy of the root hints file from the Internet. Use the wget command to
download and copy it in the proper directory. Type

[root@serverA ~]# wget -O /var/named/root.hints \

http://www.internic.net/zones/named.root

 6. Use any text editor you are comfortable with to create the zone file for the local
host. This is the localhost.db file. Enter the following text into the file:

$TTL 1W

@ IN SOA localhost root (

 2006123100 ; serial

 3H ; refresh (3 hours)

 30M ; retry (30 minutes)

 2W ; expiry (2 weeks)

 1W) ; minimum (1 week)

 IN NS @

 IN A 127.0.0.1

 402 Linux Administration: A Beginner’s Guide

 7. Save the preceding file as /var/named/localhost.db and exit the text editor.

 8. Use any text editor to create the zone file for the reverse lookup zone for the local
host. This is the 127.0.0.rev file. Enter the following text into the file:

$TTL 1W

@ IN SOA localhost. root.localhost. (

 2006123100 ; serial

 3H ; refresh

 30M ; retry

 2W ; expiry

 1W) ; minimum

 IN NS localhost.

1 IN PTR localhost.

TIP It is possible to use abbreviated time values in BIND. For example, 3H means 3 hours, 2W
means 2 weeks, 30M implies 30 minutes, etc.

 9. Save the preceding file as /var/named/127.0.0.rev and exit the text editor.

 10. Next create the database file for the main zone we are concerned with, i.e., the
example.org domain. Use a text editor to create the example.org.db file, and
input the following text into the file:

$TTL 1W

@ IN SOA ns1.example.org. root (

 2009123100 ; serial

 3H ; refresh (3 hours)

 30M ; retry (30 minutes)

 2W ; expiry (2 weeks)

 1W) ; minimum (1 week)

 IN NS ns1.example.org.

 IN NS ns2.example.org.

 IN MX 10 smtp.example.org.

ns1 IN A 192.168.1.1 ;primary name server

ns2 IN A 192.168.1.2 ;secondary name server

serverA IN A 192.168.1.1

serverB IN A 192.168.1.2

smtp IN A 192.168.1.25 ;mail server

www IN CNAME serverA ;web server

ftp IN CNAME serverB ;ftp server

serverA IN TXT "Fax: 999-999-9999"

; IPv6 entries for serverA (serverA-v6) and serverB (serverB-v6) are below

serverA-v6 IN AAAA 2001:DB8::1

serverB-v6 IN AAAA 2001:DB8::2

403Chapter 16: DNS

 11. Save the preceding file as /var/named/example.org.db and exit the text editor.

 12. Finally, create the reverse lookup zone file for the example.org zone. Use a text
editor to create the /var/named/example.org.rev file, and input the following
text into the file:

$TTL 1W

@ IN SOA ns1.example.org. root (

 2009123100 ; serial

 3H ; refresh (3 hours)

 30M ; retry (30 minutes)

 2W ; expiry (2 weeks)

 1W) ; minimum (1 week)

 IN NS ns1.example.org.

 IN NS ns2.example.org.

1 IN PTR serverA.example.org. ; Reverse info for serverA

2 IN PTR serverB.example.org. ; Reverse info for serverB

25 IN PTR smtp.example.org. ; Reverse for mailserver

; IPv6 PTR entries for serverA (serverA-v6) and serverB (serverB-v6) are below

$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR serverA-v6.example.org.

2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR serverB-v6.example.org.

 13. We don’t have to create any files to be secondary for sales.example.com. We only
need to add the entries we already have in the named.conf file. (Although the
log files will complain about not being able to contact the master, this is okay,
since we have only shown how to set up the primary master for the zone for
which our server is authoritative.)

 The next step will show how to start the named service. But because the BIND
software is so finicky about its dots and semicolons, and because you may have
had to manually type in all the configuration files, chances are great that you
invariably made some typos (or we made some typos ourselves). So your best
bet will be to carefully monitor the system log files to view error messages as
they are being generated in real time.

 14. Use the tail command in another terminal window to view the logs, and then
issue the command in the next step in a separate window so that you can view
both simultaneously. In your new terminal window, type

[root@serverA named]# tail -f /var/log/messages

 15. We are ready to start the named service at this point. Use the service com-
mand to launch the service. Type

[root@serverA named]# service named start

Starting named: [OK]

 404 Linux Administration: A Beginner’s Guide

TIP On an OpenSuSE system, the equivalent command will be [root@opensuse-serverA]
rcnamed start.

 16. If you get a bunch of errors in the system logs, you will find that the logs will
usually tell you the line number and/or the type of error. So fixing the errors
shouldn’t be too hard. Just go back and put the dots and semicolons where they
ought to be. Another common error is misspelling the configuration file’s direc-
tives, e.g., writing master instead of masters; though both are valid directives,
each is used in a different context.

TIP If you have changed BIND’s configuration files (either the main named.conf or the database file),
you will need to tell it to reread them by sending the named process a HUP signal. Begin by finding the
process ID (PID) for the named process. This can be done by looking for it in /var/run/named/named.
pid. If you do not see it in the usual location, you can run the following command to get it:

[root@serverA ~]# ps -C named
PID TTY TIME CMD
7706 ? 00:00:00 named

 The value under the PID column is the process ID of the named process. This is the PID you want to
send a HUP signal to. You can then send it a HUP signal by typing

[root@serverA ~]# kill -HUP 7706

 Of course, replace 7706 with the correct process ID from your output.

 17. Finally you may want to make sure that your DNS server service starts up dur-
ing the next system reboot. Use the chkconfig command. Type

[root@serverA named]# chkconfig named on

The next section will walk you through the use of tools that can be used to test/query
a DNS server.

THE DNS TOOLBOX
This section describes a few tools that you’ll want to get acquainted with as you work
with DNS. They’ll help you to troubleshoot problems more quickly.

host
The host tool is really a simple utility to use. Its functionality can, of course, be extended
by using it with its various options. Its options and syntax are shown here:

405Chapter 16: DNS

host [-aCdlrTwv] [-c class] [-n] [-N ndots] [-t type] [-W time]

 [-R number] hostname [server]

 -a is equivalent to -v -t *

 -c specifies query class for non-IN data

 -C compares SOA records on authoritative nameservers

 -d is equivalent to -v

 -l lists all hosts in a domain, using AXFR

 -i uses the old IN6.INT form of IPv6 reverse lookup

 -N changes the number of dots allowed before root lookup is done

 -r disables recursive processing

 -R specifies number of retries for UDP packets

 -t specifies the query type

 -T enables TCP/IP mode

 -v enables verbose output

 -w specifies to wait forever for a reply

 -W specifies how long to wait for a reply

In its simplest use, host allows you to resolve hostnames into IP addresses from the
command line. For example:

[root@serverA ~]# host internic.net

internic.net has address 198.41.0.6

We can also use host to perform reverse lookups. For example:

[root@serverA ~]# host 198.41.0.6

6.0.41.198.in-addr.arpa domain name pointer rs.internic.net.

The host command can also be used to query for IPv6 records. For example, to
query (on its listening IPv6 interface) our name server (::1) for the IPv6 address for the
host serverB-v6.example.org, we can run

[root@serverA ~]# host serverB-v6.example.org ::1

Using domain server:

Name: ::1

Address: ::1#53

Aliases:

serverB-v6.example.org has IPv6 address 2001:db8::2

To query for the PTR record for serverB-v6, we can use

[root@serverA ~]# host 2001:db8::2 ::1

Using domain server:

Name: ::1

Address: ::1#53

Aliases:

2.0.8.b.d.0.1.0.0.2.ip6.

arpa domain name pointer serverB-v6.example.org.

 406 Linux Administration: A Beginner’s Guide

dig
The domain information gopher, dig, is a great tool for gathering information about
DNS servers. It is the tool that has the BIND group’s blessing and official stamp.

Its syntax and some of its options are shown here (see the dig man page for the
meaning of the various options):

dig [@global-server] [domain] [q-type] [q-class] {q-opt}

 {global-d-opt} host [@local-server] {local-d-opt}

 [host [@local-server] {local-d-opt} [...]]

Where: domain are in the Domain Name System.

dig’s usage summary is

dig @server domain query-type

where @server is the name of the DNS server you want to query, domain is the domain
name you are interested in querying, and query-type is the name of the record you are
trying to get (A, MX, NS, SOA, HINFO, TXT, ANY, etc.).

For example, to get the MX record for the example.org domain we established in
the earlier project from the DNS server we set up, you would issue the dig command
like this:

[root@serverA ~]# dig @localhost example.org MX

To query our local DNS server for the A records for the yahoo.com domain, sim-
ply type

[root@serverA ~]# dig @localhost yahoo.com

NOTE You will notice that for the preceding command, we didn’t specify the query type, i.e., we
didn’t explicitly specify an “A”-type record. The default behavior for dig is to assume you want an
A-type record when nothing is specified explicitly. You may also notice that we are querying our DNS
server for the yahoo.com domain. Our server is obviously not authoritative for the yahoo.com domain,
but because we also configured it as a caching-capable DNS server, it is able to obtain the proper
answer for us from the appropriate DNS servers.

To query our local IPv6-capable DNS server for the AAAA record for the host
serverB-v6.example.org, type

[root@serverA ~]# dig @localhost serverB-v6.example.org -t AAAA

To reissue one of the previous commands but this time suppress all verbosity using
one of dig’s options (+short), type

[root@serverA ~]# dig +short @localhost yahoo.com

66.94.234.13

216.109.112.135

407Chapter 16: DNS

To query the local name server for the reverse lookup information (PTR RR) for
192.168.1.1, type

[root@serverA ~]# dig -x 192.168.1.1 @localhost

To query the local name server for the IPv6 reverse lookup information (PTR RR) for
2001:db8::2, type

[root@serverA ~]# dig -x 2001:db8::2 @localhost

The dig program is incredibly powerful. Its options are too numerous to properly
cover here. You should read the man page that was installed with dig to learn how to
use some of its more advanced features.

nslookup
The nslookup utility is one of the tools that you will find exists across various operat-
ing system platforms. And so it is probably one of the tools that most people are familiar
with. Its usage is quite simple, too. It can be used both interactively and noninteractively
(i.e., directly from the command line).

Interactive mode is entered when no arguments are given to the command. Typing
nslookup all by itself at the command line will drop you to the nslookup shell. To get
out of the interactive mode, just type exit at the nslookup prompt.

TIP When nslookup is used in interactive mode, the command to quit the utility is exit. But
most people will often instinctively issue the quit command to try to exit the interactive mode.
nslookup will think it is being asked to do a DNS lookup for the hostname “quit”. It will eventually
time out. You can create a DNS record that will immediately remind the user of the proper command
to use. An entry like this in the zone file for your domain will suffice:

use-exit-to-quit-nslookup IN A 127.0.0.1

quit IN CNAME use-exit-to-quit-nslookup

 With the preceding entry in the zone file, whenever anybody queries your DNS server using
nslookup interactively and then mistakenly issues the quit command, the user will get a gentle
reminder that says “use-exit-to-quit-nslookup.”

Usage for the noninteractive mode is summarized here:

nslookup [-option] [name | -] [server]

For example, to use nslookup noninteractively to query our local name server for
information about the host www.example.org, type

[root@serverA ~]# nslookup www.example.org localhost

Server: localhost

Address: 127.0.0.1#53

www.example.org canonical name = serverA.example.org.

Name: serverA.example.org

Address: 192.168.1.1

 408 Linux Administration: A Beginner’s Guide

NOTE The BIND developer group frowns on use of the nslookup utility. It is officially deprecated.

whois
The whois command is used for determining ownership of a domain. Information about
a domain’s owner isn’t a mandatory part of its records, nor is it customarily placed in the
TXT or RP records. So you’ll need to gather this information using the whois technique,
which reports the actual owner of the domain, their snail-mail address, e-mail address,
and technical contact phone numbers.

Let’s try an example for getting information about the example.com domain. Type

[root@serverA ~]# whois example.com

[Querying whois.verisign-grs.com]

[Redirected to whois.iana.org]

[Querying whois.iana.org]

[whois.iana.org]

...<OUTPUT TRUNCATED>...

Registrant:

 Name: Internet Assigned Numbers Authority (IANA)

 Organization: Internet Assigned Numbers Authority (IANA)

...<OUTPUT TRUNCATED>...

Technical Contact:

 Name: Internet Assigned Numbers Authority (IANA)

...<OUTPUT TRUNCATED>...

Nameserver Information:

 Nameserver: a.iana-servers.net.

 IP Address: 192.0.34.43

 ...<OUTPUT TRUNCATED>...

nsupdate
An often-forgotten powerful DNS utility is the nsupdate utility. It is used to submit
Dynamic DNS (DDNS) Update requests to a DNS server. It allows the resource records
(RR) to be added or removed from a zone without manually editing the zone database
files. This is especially useful because DDNS-type zones should not be edited or updated
by hand, since the manual changes are bound to conflict with the dynamic updates
that are automatically maintained in journal files, which may result in zone data being
corrupt.

The nsupdate program reads input from a specially formatted file or from standard
input. The syntax for the command is

nsupdate [-d] [[-y keyname:secret] [-k keyfile]] [-v] [filename]

409Chapter 16: DNS

The rndc Tool
This is the “remote name daemon control” utility. It is handy for controlling the name
server and also debugging problems with the name server.

The rndc program can be used to securely manage the name server. To do this, a
separate configuration file is required for rndc, since all communication with the server
is authenticated with digital signatures that rely on a shared secret, and this shared secret
is typically stored in a configuration file, which is usually named /etc/rndc.conf. You
will need to generate the secret that is shared between the utility and the name server by
using tools such as rndc-confgen (we don’t discuss this feature here).

The usage summary for rndc is listed as follows:

rndc [-c config] [-s server] [-p port]

[-k key-file] [-y key] [-V] command

command is one of the following:

reload Reload configuration file and zones.

reload zone [class [view]]

Reload a single zone.

refresh zone [class [view]]

Schedule immediate maintenance for a zone.

reconfig Reload configuration file and new zones only.

stats Write server statistics to the statistics file.

querylog Toggle query logging.

dumpdb Dump cache(s) to the dump file (named_dump.db).

stop Save pending updates to master files and stop the server.

halt Stop the server without saving pending updates.

trace Increment debugging level by one.

trace level Change the debugging level.

notrace Set debugging level to 0.

flush Flushes all of the server's caches.

flush [view] Flushes the server's cache for a view.

status Display status of the server.

For example, you can use rndc to view the status of the DNS server. Type

[root@serverA ~]# rndc status

number of zones: 7

debug level: 0

xfers running: 0

xfers deferred: 0

soa queries in progress: 1

query logging is OFF

server is up and running

If, for example, you make changes to the zone database file (/var/named/example
.org.db) for one of the zones under your control (e.g., example.org) and you want to

 410 Linux Administration: A Beginner’s Guide

reload just that zone without restarting the entire DNS server, you can issue the rndc
command with the option shown here:

[root@serverA ~]# rndc reload example.org

NOTE You must remember to increment the serial number of the zone after making any changes to it!

CONFIGURING DNS CLIENTS
In this section, we’ll delve into the wild and exciting process of configuring DNS clients!
Okay, maybe they’re not that exciting—but there’s no denying their significance to the
infrastructure of any networked site.

The Resolver
So far, we’ve been studying servers and the DNS tree as a whole. The other part of this
equation is, of course, the client—the host that’s contacting the DNS server to resolve a
hostname into an IP address.

NOTE You may have noticed earlier in the section “The DNS Toolbox” that most of the queries we
were issuing were being made against the DNS server called “localhost.” Localhost is, of course, the
local system whose shell you are executing the query commands from. In our case, hopefully, this
system is serverA.example.org! The reason we specified the DNS server to use was that, by default,
the system will query whatever the host’s default DNS server is. And if it so happens that your host’s
DNS server is some random DNS server that your ISP has assigned you, some of the queries will fail
because your ISP’s DNS server will not know about the zone you manage and control locally. So if we
configure our local system to use our local DNS server to process all DNS-type queries, then we won’t
have to manually specify “localhost” any longer. This is called configuring the resolver.

Under Linux, the resolver handles the client side of DNS. This is actually part of a
library of C programming functions that get linked to a program when the program is
started. Because all of this happens automatically and transparently, the user doesn’t
have to know anything about it. It’s simply a little bit of magic that lets them start brows-
ing the Internet.

From the system administrator’s perspective, configuring the DNS client isn’t magic,
but it’s straightforward. There are only two files involved: /etc/resolv.conf and /etc/
nsswitch.conf.

The /etc/resolv.conf File
The /etc/resolv.conf file contains the information necessary for the client to know what
its local DNS server is. (Every site should have, at the very least, its own caching DNS

411Chapter 16: DNS

server.) This file has two lines. The first indicates the default search domain, and the
second indicates the IP address of the host’s name server.

The default search domain applies mostly to sites that have their own local servers.
When the default search domain is specified, the client side will automatically append
this domain name to the requested site and check that first. For example, if you specify
your default domain to be yahoo.com and then try to connect to the hostname my, the
client software will automatically try contacting my.yahoo.com. Using the same default,
if you try to contact the host www.stat.net, the software will try www.stat.net.yahoo.com
(a perfectly legal hostname), find that it doesn’t exist, and then try www.stat.net alone
(which does exist).

Of course, you may supply multiple default domains. However, doing so will slow
the query process a bit, because each domain will need to be checked. For instance, if
both example.org and stanford.edu are specified, and you perform a query on www.stat.
net, you’ll get three queries: www.stat.net.yahoo.com, www.stat.net.stanford.edu, and
www.stat.net.

The format of the /etc/resolv.conf file is as follows:

searchdomainname

nameserverIP-address

where domainname is the default domain name to search, and IP-address is the IP
address of your DNS server. For example, here’s a sample /etc/resolv.conf file:

search example.org

nameserver 127.0.0.1

Thus, when a name lookup query is needed for serverB.example.org, only the host
part is needed, i.e., serverB. The example.org suffix will be automatically appended to
the query. Of course, this is valid only at your local site, where you have control over
how clients are configured!

The /etc/nsswitch.conf File
The /etc/nsswitch.conf file tells the system where it should look up certain kinds of
configuration information (services). When multiple locations are identified, the /etc/
nsswitch.conf file also specifies the order in which the information can best be found.
Typical configuration files that are set up to use /etc/nsswitch.conf include the password
file, group file, and hosts file. (To see a complete list, open the file in your favorite text
editor.)

The format of the /etc/nsswitch.conf file is simple. The service name comes first on a
line (note that /etc/nsswitch.conf applies to more than just hostname lookups), followed
by a colon. Next come the locations that contain the information. If multiple locations
are identified, the entries are listed in the order in which the system needs to perform
the search. Valid entries for locations are files, nis, dns, [NOTFOUND], and NISPLUS.
Comments begin with a pound symbol (#).

 412 Linux Administration: A Beginner’s Guide

For example, if you open the file with your favorite editor, you might see a line simi-
lar to this:

hosts: files nisplus nis dns

This line tells the system that all hostname lookups should first start with the
/etc/hosts file. If the entry cannot be found there, NISPLUS is checked. If the host cannot
be found via NISPLUS, regular NIS is checked, and so on. It’s possible that NISPLUS
isn’t running at your site and you want the system to check DNS records before it checks
NIS records. In this case, you’d change the line to

hosts: files dns nis

And that’s it. Save your file, and the system automatically detects the change.
The only recommendation for this line is that the hosts file (files) should always

come first in the lookup order.
What’s the preferred order for NIS and DNS? This depends on the site. Whether you

want to resolve hostnames with DNS before trying NIS will depend on whether the DNS
server is closer than the NIS server in terms of network connectivity, if one server is faster
than another, firewall issues, site policy issues, and other such factors.

Using [NOTFOUND=action]
In the /etc/nsswitch.conf file, you’ll see entries that end in [NOTFOUND=action]. This
is a special directive that allows you to stop the process of searching for information after
the system has failed all prior entries. The action can be either return or continue. The
default action is to continue.

For example, if your file contains the line hosts: files [NOTFOUND=return]
dns nis, the system will try to look up host information in the /etc/hosts file only. If the
requested information isn’t there, NIS and DNS won’t be searched.

Configuring the Client
Let’s walk through the process of configuring a Linux client to use a DNS server. We’ll
assume that we are using the DNS server on serverA and we are configuring serverA
itself to be the client. This may sound a bit odd at first, but it is important to recall that
just because a system runs the server does not mean it cannot run the client. Think of it
in terms of running a web server—just because a system runs Apache doesn’t mean you
can’t run Firefox on the same machine and access 127.0.0.1!

Breaking out the steps to configuring the client, we see the following:

 1. Edit /etc/resolv.conf and set the nameserver entry to point to your DNS server.
Per our example:

search example.org

nameserver 127.0.0.1

413Chapter 16: DNS

 2. Look through the /etc/nsswitch.conf file to make sure that DNS is consulted
for hostname resolutions. Edit /etc/nsswitch.conf to make it perform name
lookups.

[root@serverA ~]# grep "^hosts" /etc/nsswitch.conf

hosts: files dns

If you don’t have dns listed, as in this output, use any text editor to include dns
on the hosts line.

 3. Test the configuration with the dig utility. Type

[root@serverA ~]# dig +short serverA.example.org

192.168.1.1

Notice that you didn’t have to explicitly specify the name server to use (like
@localhost) for the preceding query. This is because dig will by default use
(query) the DNS server specified in the local /etc/resolv.conf file.

SUMMARY
In this chapter, we covered all of the information you’ll need to get various types of DNS
servers up and running. We discussed:

 ▼ Name resolution over the Internet

■ Obtaining and installing the BIND name server

■ The /etc/hosts file

■ The process of configuring a Linux client to use DNS

■ Configuring DNS servers to act as primary, secondary, and caching servers

■ Various DNS record types for IPv4 and IPv6

■ Configuration options in the named.conf file

■ Tools for use in conjunction with the DNS server to do troubleshooting

 ▲ Additional sources of information

With the information available in the BIND documentation on how the server should
be configured, along with the actual configuration files for a complete server presented
in this chapter, you should be able to go out and perform a complete installation from
start to finish.

Like any software, nothing is perfect, and problems can occur with BIND and the
related files and programs discussed here. Don’t forget to check out the main BIND web
site (www.isc.org) as well as the various mailing lists dedicated to DNS and BIND soft-
ware for additional information.

415

17

FTP

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 416 Linux Administration: A Beginner’s Guide

The File Transfer Protocol (FTP) has existed for the Internet since around 1971.
Remarkably, the protocol has undergone little change since then. Clients and
servers, on the other hand, have been almost constantly improved and refined.

This chapter covers the Very Secure FTP Daemon (vsftpd) software package.
The vsftpd program is a fairly popular FTP server and is being used by major FTP

sites such as kernel.org, redhat.com, isc.org, and openbsd.org. The fact that these sites
run the software attests to its robustness and security. As the name implies, the vsftpd
software was designed from the ground up to be fast, stable, and secure.

NOTE Like most other services, vsftpd is only as secure as you make it. The authors of the program
have provided all of the necessary tools to make the software as secure as possible out of the box,
but a bad configuration can cause your site to become vulnerable. Remember to double-check your
configuration and test it out before going live. Also remember to check the vsftpd web site frequently
for any software updates.

In this chapter, we will discuss how to obtain, install, and configure the latest ver-
sion of vsftpd. We will show how to configure it for private access as well as anonymous
access. And finally, we will show how to use the ftp client and test out your new FTP
server.

THE MECHANICS OF FTP
The act of transferring a file from one computer to another may seem trivial, but in real-
ity, it is not—at least, not if you’re doing it right. In this section, we step through the
details of the FTP client/server interaction. While this information isn’t crucial to being
able to get an FTP server up and running, it is important when you need to consider
security issues as well as troubleshooting issues—especially troubleshooting issues that
don’t clearly manifest themselves as FTP-related. (“Is the problem with the network, or
is it the FTP server, or is it the FTP client?”)

Client/Server Interactions
The original design of FTP, which was conceived in the early 1970s, assumed something
that was reasonable for a long time on the Internet: Internet users are a friendly bunch.

After the commercialization of the Internet around 1990–1991, the Internet became
much more popular. With the coming of the World Wide Web, the Internet’s user pop-
ulation and popularity increased even more. Along with this came hitherto relatively
unknown security problems. These security problems have made the use of firewalls a
standard on most networks.

The original design of FTP does not play very well with the hostile Internet envi-
ronment that we have today, which necessitates the use of firewalls. Inasmuch as FTP

417Chapter 17: FTP

 facilitates the exchange of files between an FTP client and an FTP server, its design has
some built-in nuances that are worthy of further mention.

One of FTP’s nuances stems from the fact that it utilizes two ports: a control port
(port 21) and a data port (port 20). The control port serves as a communication channel
between the client and the server for the exchange of commands and replies, whereas the
data port is used purely for the exchange of data, which may be a file, part of a file, or a
directory listing. FTP can operate in two modes: active FTP mode and passive FTP mode.

Active FTP
Active-mode FTP was traditionally used in the original FTP specifications. In this
mode, the client connects from an ephemeral port (number greater than 1024) to the
FTP server’s command port (port 21). When the client is ready to transfer data, the
server opens a connection from its data port (port 20) to the Internet Protocol (IP)
address and ephemeral port combination provided by the client. The key here is that
the client does not make the actual data connection to the server but instead informs
the server of its own port by issuing the PORT command; the server then connects back
to the specified port. The server can be regarded as the active party (or the agitator) in
this FTP mode.

From the perspective of an FTP client that is behind a firewall, the active-mode FTP
poses a slight problem. The problem is simply that the firewall on the client side might
frown upon (or disallow) connections originating or initiated from the Internet from a
privileged service port (e.g., data port 20) to nonprivileged service ports on the clients it
is supposed to protect.

Passive FTP
The FTP client issues the PASV command to indicate that it wants to access data in the
passive mode, and the server then responds with an IP address and an ephemeral port
number on itself to which the client can connect in order to do the data transfer. The
PASV command issued by the client tells the server to “listen” on a data port that is not
its normal data port (i.e., port 20) and to wait for a connection rather than initiate one.
The key difference here is that it is the client that initiates the connection to the port and
IP address provided by the server. And in this regard, the server may be considered the
passive party in the data communication.

From the perspective of an FTP server that is behind a firewall, passive-mode FTP is a
little problematic, because a firewall’s natural instinct would be to disallow connections
that originate from the Internet that are destined for ephemeral ports of the systems that
it is supposed to protect. A typical symptom of this behavior is when a client appears
to be able to connect to the server without a problem, but the connection seems to hang
whenever an attempt to transfer data occurs.

To address some of the issues pertaining to FTP and firewalls, many firewalls imple-
ment application-level proxies for FTP, which keep track of FTP requests and open up
those high ports when needed to receive data from a remote site.

 418 Linux Administration: A Beginner’s Guide

OBTAINING AND INSTALLING VSFTPD
The vsftpd package is the FTP server software that ships with most modern Linux
distributions. In particular, it is the FTP server package that comes with most popular
Linux distros. The latest version of the software can be obtained from its official web
site, http://vsftpd.beasts.org. The website also hosts great documentation and the latest
news about the software. But because it is the FTP server solution that ships with Fedora,
you can easily install it from the installation media or directly from any Fedora software
package repository. In this section and the next, we will concentrate on showing how to
install/configure the software from the prepackaged binary.

First we discuss the process of installing the software from a Red Hat Package Man-
ager (RPM) binary.

 1. While logged into the system as the superuser, use the yum command to simulta-
neously download and install vsftpd. Type (enter y for “yes” when prompted)

[root@fedora-serverA ~]# yum -y install vsftpd

...<OUTPUT TRUNCATED>...

NOTE You can also manually download the software from a Fedora repository on the Internet
(http://download.fedora.redhat.com/pub/fedora/linux/releases/9/Fedora/i386/os/Packages/).
Alternatively, you can install directly from the mounted install media (CD or DVD). The software will be
under the /your_media_mount_point/Packages/ directory.

 2. Confirm that the software has been installed. Type

[root@fedora-serverA ~]# rpm -q vsftpd

vsftpd-*

On a Debian-based distribution like Ubuntu, vsftpd can be installed by typing

yyang@ubuntu-serverA:~$ sudo apt-get -y install vsftpd

Configuring vsftpd
Now that we have installed the software, the next step will be to configure it for use. The
vsftpd software that was installed in the preceding section also installed other files and
directories on the local file system. Some of the more important files and directories that
come installed with the vsftpd RPM are discussed in Table 17-1.

The vsftpd.conf Configuration File
As stated earlier, the main configuration file for the vsftpd FTP server is vsftpd.conf.
Performing an installation of the software via RPM will usually place this file in the
/etc/vsftpd/ directory. On Debian-like systems, the configuration file is located at /etc/
vsftpd.conf. The file is quite easy to manage and understand, containing pairs of options
(directives) and values that are in the simple format

option=value

419Chapter 17: FTP

TIP It is an error to put any space between the option, the equal sign (=), and the value.

As with most other Linux/UNIX configuration files, comments in the file are denoted
by lines that begin with the pound sign (#). To see the meaning of each of the directives,
you should consult the vsftpd.conf man page, using the man command like so:

[root@serverA ~]# man vsftpd.conf

TIP vsftpd configuration files are located directly under the /etc directory on Debian-like systems. For
example, the equivalent of the /etc/vsftpd/ftpusers in Fedora is located at /etc/ftpusers in Ubuntu.

The options (or directives) in the /etc/vsftpd/vsftpd.conf file can be categorized
according to the role they play. Some of these categories are discussed in Table 17-2.

NOTE The possible values of the options in the configuration file can also be divided into three
categories: the Boolean options (e.g., YES, NO), the Numeric options (e.g., 007, 700), and the String
options (e.g., root, /etc/vsftpd.chroot_list).

Table 17-1. The vsftpd Configuration Files and Directories

File Description

/usr/sbin/vsftpd This is the main vsftpd executable. It is the
daemon itself.

/etc/vsftpd/vsftpd.conf This is the main configuration file for the vsftpd
daemon. It contains the many directives that
control the behavior of the FTP server.

/etc/vsftpd/ftpusers Text file that stores the list of users not allowed
to log into the FTP server. This file is referenced
by the Pluggable Authentication Module (PAM)
system.

/etc/vsftpd/user_list Text file used to either allow or deny access
to users listed. Access is denied or allowed
according to the value of the userlist_deny
directive in the vsftpd.conf file.

/var/ftp This is the FTP server’s working directory.

/var/ftp/pub This serves as the directory that holds files
meant for anonymous access to the FTP server.

 420 Linux Administration: A Beginner’s Guide

Table 17-2. Configuration Options for vsftpd

Type of Option Description Example

Daemon These options control the
general behavior of the
vsftpd daemon.

listen When enabled, vsftpd will
run in stand-alone mode instead
of being run under a superdaemon
like xinetd or inetd. vsftpd itself
will then take care of listening
for and handling incoming
connections. Default value is NO.

Socket These are the networking
and port-related options.

listen_address Specifies the IP
address on which vsftpd listens for
network connections. This option
has no default value.

anon_max_rate The maximum
data transfer rate permitted, in
bytes per second, for anonymous
clients. The default value is 0
(unlimited).

listen_port This is the port that
vsftpd will listen on for incoming
FTP connections. The default value
is 21.

pasv_enable Enables or disables
the PASV method of obtaining a
data connection. The default value
is YES.

port_enable Enables or disables
the PORT method of obtaining a
data connection. The default value
is YES.

Security These options directly
control the granting or
denial of access to the
server; i.e., the options
offer a built-in access-
control mechanism to the
FTP server.

anonymous_enable Controls
whether anonymous logins are
permitted. If enabled, both the
usernames ftp and anonymous are
recognized as anonymous logins.
The default value is YES.

421Chapter 17: FTP

Table 17-2. Configuration Options for vsftpd (cont.)

Type of Option Description Example

tcp_wrappers Assuming vsftpd
was compiled with tcp_wrappers
support, incoming connections will
be fed through tcp_wrappers access
control. The default value is NO.

local_enable Controls whether
local logins are permitted. If
enabled, normal user accounts in
/etc/passwd may be used to log in.
The default value is NO.

userlist_enable vsftpd Will
load a list of usernames from the
filename specified by the userlist_
file directive when this option is
enabled. And if a user tries to log in
using a name in this file, that user
will be denied access before even
being prompted for a password.
The default value is NO.

userlist_deny This option is
examined if the userlist_enable
option is active. When its value
is set to NO, users will be denied
login, unless they are explicitly
listed in the file specified by
userlist_file. When login is denied,
the denial is issued before the user
is asked for a password; this helps
prevent users from sending clear
text across the network. The default
value is YES.

userlist_file This option specifies
the name of the file to be loaded
when the userlist_enable option is
active. The default value is vsftpd
.user_list.

 422 Linux Administration: A Beginner’s Guide

Table 17-2. Configuration Options for vsftpd (cont.)

Type of Option Description Example

cmds_allowed Specifies a list of
allowed FTP commands. However,
the post-login commands are
always allowed, i.e., USER, PASS,
QUIT; other commands are rejected,
e.g., cmds_allowed=PASV, RETR,
QUIT. This option has no default
value.

File-transfer These options relate to file
transfers to and from the
FTP server.

download_enable If set to NO,
all download requests will be
denied permission. The default
value is YES.

write_enable This option controls
whether any FTP commands that
change the file system are allowed.
These commands are STOR, DELE,
RNFR, RNTO, MKD, RMD, APPE,
and SITE. The default value is NO.

chown_uploads This option
has the effect of changing the
ownership of all anonymously
uploaded files to that of the user
specified in the setting chown_
username. The default value is NO.

chown_username Specifies the
name of the user who is given
ownership of anonymously
uploaded files. The default value
is root.

Directory These options control the
behavior of the directories
served by the FTP server.

use_localtime When enabled,
vsftpd will display directory
listings with the time in the local
system time zone. The default
behavior is to display the time in
Greenwich Mean Time (GMT); i.e.,
the default value is NO.

423Chapter 17: FTP

Starting and Testing the FTP Server
The vsftpd daemon is pretty much ready to run out of the box. It comes with some
default settings that allow it to hit the ground running. Of course, we’ll need to start the
service. After that, the rest of this section will walk through testing the FTP server by
connecting to it using an FTP client.

So let’s start a sample anonymous FTP session. But first we’ll start the FTP service.

 1. Start the FTP service. Type

[root@serverA ~]# service vsftpd start

Starting vsftpd for vsftpd: [OK]

Table 17-2. Configuration Options for vsftpd (cont.)

Type of Option Description Example

hide_ids All directory listings will
show ftp as the user and group for
all files when this option is enabled.
The default value is NO.

 dirlist_enable Enables or disables
the ability to perform directory
listings. If set to NO, a permission-
denied error will be given when a
directory listing is attempted. The
default value is YES.

Logging These options control
how and where vsftpd
logs information.

vsftpd_log_file This option
specifies the main vsftpd log file.
The default value is /var/log/
vsftpd.log.

xferlog_enable This option tells
the software to keep a log of all file
transfers as they occur.

syslogd_enable If enabled, any
log output that would have gone
to /var/log/vsftpd.log goes to the
system log instead. Logging is done
under the File Transfer Protocol
Daemon (FTPD) facility.

 424 Linux Administration: A Beginner’s Guide

TIP If the service command is not available on your Linux distribution, you may be able to
control the service by directly executing its run control script. For example, you may be able to restart
vsftpd by issuing the command

[root@serverA ~]# /etc/init.d/vsftpd start

TIP The ftp daemon is automatically started right after installing the software in Ubuntu via apt-get.
So check to make sure it isn’t already running before trying to start it again. You can examine the
output of the command ps -aux | grep vsftp to check this.

 2. Launch the command-line FTP client program, and connect to the local FTP
server as an anonymous user. Type

[root@serverA ~]# ftp localhost

Connected to localhost (127.0.0.1).

220 (vsFTPd 2.0.8)

Name (localhost:root):

...<OUTPUT TRUNCATED>...

 3. Enter the name of the anonymous FTP user when prompted; i.e., type ftp.

Name (localhost:root): ftp

331 Please specify the password.

 4. Enter anything at all when prompted for the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

 5. Use the ls (or dir) FTP command to perform a listing of the files in the current
directory on the FTP server.

ftp> ls

227 Entering Passive Mode (127,0,0,1,63,215).

150 Here comes the directory listing.

drwxr-xr-x 2 0 0 4096 Aug 29 06:18 pub

226 Directory send OK.

 6. Use the pwd command to display your present working directory on the FTP
server.

ftp> pwd

257 "/"

425Chapter 17: FTP

 7. Using the cd command, try to change to a directory outside of the allowed anon-
ymous FTP directory; e.g., try to change your directory to the /boot directory of
the local file system.

ftp> cd /boot

550 Failed to change directory.

 8. Log out of the FTP server using the bye FTP command.

ftp> bye

221 Goodbye.

Next we’ll try to connect to the FTP server using a local system account. In particular,
we’ll use the username “yyang,” which was created in a previous chapter. So let’s start a
sample authenticated FTP session.

TIP You might have to temporarily disable SELinux on your Fedora server for the following steps.
Use the command setenforce 0 to disable SELinux.

 1. Launch the command-line ftp client program again. Type

[root@serverA ~]# ftp localhost

Connected to localhost (127.0.0.1).

220 (vsFTPd 2.0.8)

 2. Enter yyang as the FTP user when prompted.

Name (localhost:root): yyang

 3. You must enter the password for the user yyang when prompted.

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

 4. Use the pwd command to display your present working directory on the FTP
server. You will notice that the directory shown is the home directory for the user
yyang.

ftp> pwd

257 "/home/yyang"

 426 Linux Administration: A Beginner’s Guide

 5. Using the cd command, try to change to a directory outside of yyang’s FTP
home directory; e.g., try to change your directory to the /boot directory of the
local file system.

ftp> cd /boot

250 Directory successfully changed.

 6. Log out of the FTP server using the bye FTP command.

ftp> bye

221 Goodbye.

As demonstrated by these sample FTP sessions, the default vsftpd configuration on
our sample Fedora system allows these things:

 ▼ Anonymous FTP access This means that any user from anywhere can log into
the server using the username ftp (or anonymous), with anything at all for a
password.

 ▲ Local user logins This means that all valid users on the local system with
entries in the user database (the /etc/passwd file) are allowed to log into the FTP
server using their normal usernames and passwords. This is true with SELinux
in permissive mode. On our sample Ubuntu server, this behavior is disabled out
of the box.

CUSTOMIZING THE FTP SERVER
The default out-of-the-box behavior of vsftpd is probably not what you want for your
production FTP server. So in this section we will walk through the process of custom-
izing some of the FTP server’s options to suit certain scenarios.

Setting Up an Anonymous-Only FTP Server
First we’ll set up our FTP server so that it does not allow access to users that have regular
user accounts on the system. This type of FTP server is useful for large sites that have
files that they want to make available to the general public via FTP. In such a scenario, it
is, of course, impractical to create an account for every single user when users can poten-
tially number into the thousands.

Fortunately for us, vsftpd is ready to serve as an anonymous FTP server out of the
box. But we’ll examine the configuration options in the vsftpd.conf file that ensure this
and also disable the options that are not required.

With any text editor of your choice, open up the /etc/vsftpd/vsftpd.conf file for edit-
ing. Look through the file and make sure that, at a minimum, the directives listed next
are present (if the directives are present but commented out, you might need to remove
the comment symbol [#] or change the value of the option).

427Chapter 17: FTP

listen=YES

xferlog_enable=YES

anonymous_enable=YES

local_enable=NO

write_enable=NO

You will find that the options in the preceding listing are sufficient to enable your
anonymous-only FTP server, and so you may choose to overwrite the existing /etc/ vsftpd/
vsftpd.conf file and enter just the options shown. This will help keep the configuration
file simple and uncluttered.

TIP Virtually all Linux systems come preconfigured with a user called “ftp.” This account is supposed
to be a nonprivileged system account and is especially used for anonymous FTP-type access. You will
need this account to exist on your system in order for anonymous FTP to work. To confirm the account
exists, use the getent utility. Type

[root@serverA ~]# getent passwd ftp

ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

 If you don’t get output similar to this, you can quickly create the FTP system account with the
useradd command. To create a suitable ftp user, type

[root@serverA ~]# useradd -c "FTP User" -d /var/ftp -r -s /sbin/nologin ftp

If you had to make any modifications to the /etc/vsftpd/vsftpd.conf file, you need to
restart the vsftpd service. Type

[root@fedora-serverA ~]# service vsftpd restart

If the service command is not available on your Linux distribution, you may be
able to control the service by directly executing its run control script. For example, you
may be able to restart vsftpd by issuing the command

[root@serverA ~]# /etc/init.d/vsftpd restart

Setting Up an FTP Server with Virtual Users
Virtual users are users that do not actually exist; i.e., these users do not have any privi-
leges or functions on the system besides those for which they were created. This type of
FTP setup serves as a midway point between enabling users with local system accounts
access to the FTP server and enabling only anonymous users. If there is no way to guaran-
tee the security of the network connection from the user end (FTP client) to the server end
(FTP server), it will be foolhardy to allow users with local system accounts to log into the
FTP server. This is because the FTP transaction between both ends usually occurs in plain
text. Of course, this is only relevant if the server contains any data of value to its owners!

The use of virtual users will allow a site to serve content that should be accessible
to untrusted users, but still make the FTP service accessible to the general public. In the

 428 Linux Administration: A Beginner’s Guide

event that the credentials of the virtual user(s) ever become compromised, one can at
least rest assured that only minimal damage can occur.

TIP It is also possible to set up vsftpd to encrypt all the communication between itself and any FTP
clients by using Secure Sockets Layer (SSL). This is quite easy to set up, but the caveat is that the
clients’ FTP application must also support this sort of communication—and unfortunately, not many
FTP client programs have this support. If security is a serious concern, you may want to consider
using OpenSSH’s sftp program instead for simple file transfers.

In this section we are going to create two sample virtual users named “ftp-user1”
and “ftp-user2.” These users will not exist in any form in the system’s user database (the
/etc/passwd file). These steps detail the process:

 1. First we’ll create a plain-text file that will contain the username and password
combinations of the virtual users. Each username with its associated password
will be on alternating lines in the file. For example, for the user ftp-user1, the
password will be “user1,” and for the user ftp-user2, the password will be
“user2.” We’ll name the file plain_vsftpd.txt. Use any text editor of your choice
to create the file. Here we use vi:

[root@serverA ~]# vi plain_vsftpd.txt

 2. Enter this text into the file:

ftp-user1

user1

ftp-user2

user2

 3. Save the changes to the file, and exit the text editor.

 4. Convert the plain-text file that was created in Step 2 into a Berkeley DB format
(db) that can be used with the pam_userdb.so library. The output will be saved
in a file called hash_vsftpd.db stored under the /etc directory. Type

[root@serverA ~]# db_load -T -t hash -f plain_vsftpd.txt /etc/hash_vsftpd.db

NOTE On Fedora systems, you need to have the db4-utils package installed in order to have
the db_load program. You can quickly install it using Yum with the command yum install
db4-utils. Or look for it on the installation media. The equivalent package in Ubuntu is called
db4.5-util and the binary is named db4.5_load.

 5. Restrict access to the virtual users database file by giving it more restrictive
 permissions. This will ensure that it cannot be read by any casual user on the
system. Type

[root@serverA ~]# chmod 600 /etc/hash_vsftpd.db

429Chapter 17: FTP

 6. Next we need to create a PAM file that the FTP service will use as the new vir-
tual users database file. We’ll name the file virtual-ftp and save it under the
/etc/pam.d/ directory. Use any text editor to create the file.

[root@serverA ~]# vi /etc/pam.d/virtual-ftp

 7. Enter this text into the file:

auth required /lib/security/pam_userdb.so db=/etc/hash_vsftpd

account required /lib/security/pam_userdb.so db=/etc/hash_vsftpd

These entries tell the PAM system to authenticate users using the new database
stored in the hash_vsftpd.db file.

 8. Save the changes into a file named virtual-ftp under the /etc/pam.d/ directory.

 9. Let’s create a home environment for our virtual FTP users. We’ll cheat and use
the existing directory structure of the FTP server to create a subfolder that will
store the files that we want the virtual users to be able to access. Type

[root@serverA ~]# mkdir -p /var/ftp/private

TIP We cheated in Step 9 so that we won’t have to go through the process of creating a guest FTP
user that the virtual users will eventually map to, and also to avoid having to worry about permission
issues, since the system already has an FTP system account that we can safely leverage off. Look
for the guest_username directive under the vsftpd.conf man page for further information (man
vsftp.conf).

 10. Now we’ll create our custom vsftpd.conf file that will enable the entire setup.
With any text editor of your choice, open the /etc/vsftpd/vsftpd.conf file for edit-
ing. Look through the file and make sure that, at a minimum, the directives
listed next are present (if the directives are present but commented out, you may
need to remove the comment sign or change the value of the option). Comments
have been added to explain the less-obvious directives.

listen=YES

#We do NOT want to allow users to log in anonymously

anonymous_enable=NO

xferlog_enable=YES

#This is for the PAM service that we created that was named virtual-ftp

pam_service_name=virtual-ftp

#Enable the use of the /etc/vsftpd.user_list file

userlist_enable=YES

#Do NOT deny access to users specified in the /etc/vsftpd.user_list file

userlist_deny=NO

userlist_file=/etc/vsftpd.user_list

tcp_wrappers=YES

local_enable=YES

 430 Linux Administration: A Beginner’s Guide

#This activates virtual users.

guest_enable=YES

#Map all the virtual users to the real user called "ftp"

guest_username=ftp

#Make all virtual users root ftp directory on the server to be /var/ftp/

private/local_root=/var/ftp/private/

TIP If you choose not to edit the existing configuration file and create one from scratch, you will find
that the options specified previously will serve our purpose with nothing additional needed. The vsftpd
software will simply assume its built-in defaults for any option that we didn’t specify in the configuration
file! You can, of course, leave out all the commented lines to save yourself the typing.

 11. We’ll need to create (or edit) the /etc/vsftpd.user_list file that was referenced in
the configuration in Step 10. To create the entry for the first virtual user, type

[root@serverA ~]# echo ftp-user1 > /etc/vsftpd.user_list

 12. To create the entry for the second virtual user, type

[root@serverA ~]# echo ftp-user2 >> /etc/vsftpd.user_list

 13. We are ready to fire up or restart the FTP server now. Type

[root@serverA ~]# service vsftpd restart

 14. We will next verify that the FTP server is behaving the way we want it to by con-
necting to it as one of the virtual FTP users. Connect to the server as ftp-user1
(remember that the FTP password for that user is “user1”).

[root@serverA vsftpd]# ftp localhost

Connected to localhost (127.0.0.1).

220 (vsFTPd 2.0.8)

Name (localhost:root): ftp-user1

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ls -l

227 Entering Passive Mode (127,0,0,1,94,124).

150 Here comes the directory listing.

226 Directory send OK.

ftp> pwd

257 "/"

ftp> cd /boot

550 Failed to change directory.

ftp> bye

221 Goodbye.

431Chapter 17: FTP

 15. We’ll also test to make sure that anonymous users cannot log into the server.

[root@serverA vsftpd]# ftp localhost

Connected to localhost (127.0.0.1).

220 (vsFTPd 2.0.8)

Name (localhost:root): ftp

530 Permission denied.

Login failed.

 16. We’ll finally verify that local users (e.g., the user Ying Yang) cannot log into the
server.

[root@serverA vsftpd]# ftp localhost

Connected to localhost (127.0.0.1).

220 (vsFTPd 2.0.8)

Name (localhost:root): yyang

530 Permission denied.

Login failed.

Everything looks fine.

TIP vsftpd is an IPv6-ready daemon. Enabling the FTP server to listen on an IPv6 interface is
as simple as enabling the proper option in the vsftpd configuration file. The directive to enable is
listen_ipv6, and its value should be set to YES, like so: listen_ipv6=YES. In order to have the vsftpd
software support IPv4 and IPv6 simultaneously, you will need to spawn another instance of vsftpd
and point it to its own config file to support the protocol version you want. The directive listen=YES
is for IPv4. The directives listen and listen_ipv6 are mutually exclusive and cannot be specified in
the same configuration file. On Fedora and other Red Hat–type distros, the vsftpd startup scripts
will automatically read (and start) all files under the /etc/vsftpd/ directory that end with *.conf. So, for
example, you can name one file /etc/vsftpd/vsftpd.conf and name the other file that supports IPv6
something like /etc/vsftpd/vsftpd-ipv6.conf. This is the way it’s supposed to work in theory. Your
mileage may vary.

SUMMARY
The Very Secure FTP Daemon is a powerful FTP server offering all of the features one
would need for running a commercial-grade FTP server in a secure manner. In this chap-
ter, we discussed the process of installing and configuring the vsftpd server on Fedora
and Debian-like systems. Specifically, we covered:

 ▼ Some important and often-used configuration options for vsftpd

■ Details about the FTP protocol and its effects on firewalls

■ Setting up anonymous FTP servers

 ▲ Setting up an FTP server that allows the use of virtual users

 432 Linux Administration: A Beginner’s Guide

This information is enough to keep your FTP server humming for quite a while. Of
course, like any printed media about software, this text will age, and the information
will slowly but surely become obsolete. Please be sure to visit the vsftpd web site from
time to time to not only learn about the latest developments, but also obtain the latest
documentation.

433

18

Apache Web Server

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 434 Linux Administration: A Beginner’s Guide

In this chapter, we discuss the process of installing and configuring the Apache HTTP
server (www.apache.org) on your Linux server. Apache is free software released
under the Apache license. At the time of this writing, and according to a well-

respected source of Internet statistics (Netcraft, Ltd.—www.netcraft.co.uk), Apache has
a web server market share of more than 50 percent. This level of respect from the Internet
community comes from the following benefits and advantages provided by the Apache
server software:

 ▼ It is stable.

■ Several major web sites, including Amazon.com and IBM, are using it.

■ The entire program and related components are open source.

■ It works on a large number of platforms (all popular variants of UNIX, some of
the not-so-popular variants of UNIX, and even Microsoft Windows).

■ It is extremely flexible.

 ▲ It has proved to be secure.

Before we get into the steps necessary to configure Apache, we will review some of
the fundamentals of the Hypertext Transfer Protocol (HTTP) protocol, as well as some
of the internals of Apache, such as its process ownership model. This information will
help you understand why Apache is set up to work the way it does.

UNDERSTANDING THE HTTP PROTOCOL
HTTP (the Hypertext Transfer Protocol) is, of course, a significant portion of the foun-
dation for the World Wide Web, and Apache is the server implementation of the HTTP
protocol. Browsers such as Firefox, Opera, and Microsoft Internet Explorer are client
implementations of HTTP.

As of this writing, the HTTP protocol is at version 1.1 and is documented in RFC 2616
(for details, go to www.ietf.org/rfc/rfc2616.txt).

Headers
When a web client connects to a web server, the client’s default method of making this
connection is to contact the server’s Transmission Control Protocol (TCP) port 80. Once
connected, the web server says nothing; it’s up to the client to issue HTTP-compliant
commands for its requests to the server. Along with each command comes a request header
including information about the client. For example, when using Firefox under Linux as
a client, a web server might receive the following information from a client:

GET / HTTP/1.1

Connection: Keep-Alive

435 Chapter 18: Apache Web Server

User-Agent: Mozilla/5.0 (X11; U; Linux i686)

Host: localhost:80

Accept: text/xml, image/gif, image/jpeg, image/png...

Accept-Encoding: gzip,deflate

Accept-Language: en-us

Accept-Charset: iso-8859-1,*,utf-8

The first line contains the HTTP GET command, which asks the server to fetch a file.
The remainder of the information makes up the header, which tells the server about the
client, the kind of file formats the client will accept, and so forth. Many servers use this
information to determine what can and cannot be sent to the client, as well as for logging
purposes.

Along with the request header, additional headers may be sent. For example, when a
client uses a hyperlink to get to the server site, a header entry showing the client’s origi-
nating site will also appear in the header.

When it receives a blank line, the server knows a request header is complete. Once
the request header is received, it responds with the actual requested content, prefixed
by a server header. The server header provides the client with information about the
server, the amount of data the client is about to receive, the type of data coming in, etc.
For example, the request header just shown, when sent to an HTTP server, results in the
following server response header:

HTTP/1.1 200 OK

Date: Thu, 02 Jun 2009 14:03:31 GMT

Server: Apache/2.0.52 (Fedora)

Last-Modified: Thu, 02 Jun 2009 11:41:32 GMT

ETag: "3f04-1f-b80bf300"

Accept-Ranges: bytes

Content-Length: 31

Connection: close

Content-Type: text/html; charset=UTF-8

A blank line and then the actual content of the transmission follow the response
header.

Ports
The default port for HTTP requests is port 80, but you can also configure a web server to
use a different (arbitrarily chosen) port that is not in use by another service. This allows
sites to run multiple web servers on the same host, with each server on a different port.
Some sites use this arrangement for multiple configurations of their web servers to sup-
port various types of client requests.

When a site runs a web server on a nonstandard port, you can see that port number
in the site’s URL. For example, the address http://www.redhat.com with an added port
number would read http://www.redhat.com:80.

 436 Linux Administration: A Beginner’s Guide

TIP Don’t make the mistake of going for “security through obscurity.” If your server is on a
nonstandard port, that doesn’t guarantee that Internet troublemakers won’t find your site.
Because of the automated nature of tools used to attack a site, it takes very little effort to scan
a server and find which ports are running web servers. Using a nonstandard port does not keep
your site secure.

Process Ownership and Security
Running a web server on a Linux/UNIX platform forces you to be more aware of

the traditional Linux/UNIX permissions and ownership model. In terms of permis-
sions, that means each process has an owner and that owner has limited rights on the
system.

Whenever a program (process) is started, it inherits the permissions of its parent
process. For example, if you’re logged in as root, the shell in which you’re doing all your
work has all the same rights as the root user. In addition, any process you start from this
shell will inherit all the permissions of that root. Processes may give up rights, but they
cannot gain rights.

NOTE There is an exception to the Linux inheritance principle. Programs configured with the SetUID
bit do not inherit rights from their parent process, but rather start with the rights specified by the owner
of the file itself. For example, the file containing the program su (/bin/su) is owned by root and has
the SetUID bit set. If the user yyang runs the program su, that program doesn’t inherit the rights of
yyang, but instead will start with the rights of the superuser (root).

How Apache Processes Ownership
To carry out initial network-related functions, the Apache HTTP server must start with
root permissions. Specifically, it needs to bind itself to port 80 so that it can listen for
requests and accept connections. Once it does this, Apache can give up its rights and run
as a non-root user (unprivileged user), as specified in its configuration files. Different
Linux distributions may have varying defaults for this user, but it is usually one of the
following: nobody, www, apache, wwwrun, www-data, daemon.

Remember that when running as an unprivileged user, Apache can read only the files
that the user has permissions to read.

Security is especially important for sites that use Common Gateway Interface (CGI)
scripts. By limiting the permissions of the web server, you decrease the likelihood that
someone can send a malicious request to the server. The server processes, and corre-
sponding CGI scripts, can break only what they can access. As user nobody, the scripts
and processes don’t have access to the same key files that root can access. (Remember
that root can access everything, no matter what the permissions.)

437 Chapter 18: Apache Web Server

NOTE In the event that you decide to allow CGI scripts on your server, pay strict attention to how
they are written. Be sure it isn’t possible for input coming in over the network to make the CGI script
do something it shouldn’t. Although there are no statistics on this, most successful attacks on sites are
possible because of improperly configured web servers and/or poorly written CGI scripts.

INSTALLING THE APACHE HTTP SERVER
Most modern Linux distributions come with the binary package for the Apache HTTP
server software in Red Hat Package Manager (RPM) format, so installing the software is
usually as simple as using the package management tool on the system. This section walks
you through the process of obtaining and installing the program via RPM and Advanced
Packaging Tool (APT). Mention is also made of installing the software from source code,
if you choose to go that route. The actual configuration of the server covered in later sec-
tions applies to both classes of installation (from source or from a binary package).

On a Fedora system, there are several ways to obtain the Apache RPM. Here are some
of them:

 ▼ Download the Apache RPM (e.g., httpd-*.rpm) for your operating system from
your distribution’s software repository. For Fedora, you can obtain a copy of
the program from http://download.fedora.redhat.com/pub/fedora/linux/
releases/9/Fedora/i386/os/Packages/.

■ You can install from the install media, from the /Packages/ directory on the
media.

 ▲ You can pull down and install the program directly from a repository using the
Yum program. This is perhaps the quickest method if you have a working con-
nection to the Internet. And this is what we’ll do here.

To use Yum to install the program, type

[root@fedora-serverA ~]# yum -y install httpd

To confirm that the software is installed, type

[root@fedora-serverA vsftpd]# rpm -q httpd

httpd-2.*

And that’s it! You now have Apache installed on the Fedora server.
For a Debian-based Linux distribution like Ubuntu, you can use APT to install

Apache by running

yyang@ubuntu-serverA:~$ sudo apt-get -y install apache2

The web server daemon is automatically started after you install using apt-get on
Ubuntu systems.

 438 Linux Administration: A Beginner’s Guide

Apache Modules
Part of what makes Apache so powerful and flexible is that its design allows extensions
through modules. Apache comes with many modules by default and automatically
includes them in the default installation.

If you can imagine “it,” you can be almost certain that somebody has probably
already written a module for “it” for the Apache web server. The Apache module appli-
cation programming interface (API) is well documented, so if you are so inclined (and
know how to), you can probably write your own module for Apache to provide a func-
tionality that you want.

Installing Apache from Source
Just in case you are not happy with the built-in defaults that the binary Apache
package forces you to live with and you want to build your web server software
from scratch, you can always obtain the latest stable version of the program
directly from the apache.org web site. The procedure for building from source is
discussed here.

We’ll download the latest program source into the /usr/local/src/ directory from
the apache.org web site. You can use the wget program to do this. Type

[root@serverA src]# wget http://www.apache.org/dist/httpd/httpd-2.2.8.tar.gz

Extract the tar archive. And then change to the directory that is created during
the extraction.

[root@serverA src]# tar xvzf httpd-2.2.8.tar.gz

[root@serverA src]# cd httpd-2.2.8

Assuming we want the web server program to be installed under the /usr/local/
httpd/ directory, we’ll run the configure script with the proper prefix option.

[root@serverA httpd-2.2.8]# ./configure --prefix=/usr/local/httpd

Run make.

[root@serverA httpd-2.2.8]# make

Create the program’s working directory (i.e., /usr/local/httpd/), and then run
make install.

[root@serverA httpd-2.2.8]# make install

Once the install command completes successfully, a directory structure will
be created under /usr/local/httpd/ that will contain the binaries, the configuration
files, the log files, etc. for the web server.

439 Chapter 18: Apache Web Server

To give you some idea of what kinds of things people are doing with modules, visit
http://modules.apache.org. There you will find information on how to extend Apache’s
capabilities using modules. Some common Apache modules are

 ▼ mod_cgi Allows the execution of CGI scripts on the web server

■ mod_perl Used to incorporate a Perl interpreter into the Apache web server

■ mod_aspdotnet Provides an ASP.NET host interface to Microsoft’s ASP.NET
engine

■ mod_authz_ldap Provides support for authenticating users of the Apache
HTTP server against a Lightweight Directory Access Protocol (LDAP) database

■ mod_ssl Provides strong cryptography for the Apache web server via the
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols

■ mod_ftpd Allows Apache to accept FTP connections

 ▲ mod_userdir Allows user content to be served from user-specific directories
on the web server via HTTP

If you know the name of a particular module that you want (and if the module is
popular enough), you might find that the module has already been packaged in an
RPM format, and so you can install it using the usual RPM methods. For example, if
you want to include the SSL module (mod_ssl) in your web server setup, on a Fedora
system, you can issue this Yum command to automatically download and install the
module for you:

[root@serverA ~]# yum install mod_ssl

Alternatively, you can go to the Apache modules project web site and search for,
download, compile, and install the module that you want.

TIP Make sure the run-as user is there! If you build Apache from source, the sample configuration
file (httpd.conf) expects that the web server will run as the user daemon. Although that user exists
on almost all Linux distributions, if something is broken along the way, you may want to check the user
database (/etc/passwd) to make sure that the user daemon does indeed exist.

STARTING UP AND SHUTTING DOWN APACHE
Starting up and shutting down Apache on most Linux distributions is easy. To start
Apache on a Fedora system or any other Red Hat–like system, use this command:

[root@serverA ~]# service httpd start

To shut down Apache, enter this command:

[root@serverA ~]# service httpd stop

 440 Linux Administration: A Beginner’s Guide

After making a configuration change to the web server that requires you to restart
Apache, type

[root@serverA ~]# service httpd restart

TIP On a system running OpenSuSE or SLE (SuSE Linux Enterprise), the commands to start and
stop the web server, respectively, are

[opensuse-serverA ~]# rcapache2 start

 and

[opensuse-serverA ~]# rcapache2 stop

TIP On a Debian system like Ubuntu, you can start Apache by running

yyang@ubuntu-serverA:~$ sudo /etc/init.d/apache2 start

 The Apache daemon can be stopped by running

yyang@ubuntu-serverA:~$ sudo /etc/init.d/apache2 stop

Starting Apache at Boot Time
After installing the web server, if you find that the web service is one that you want the
system to provide at all times, you will need to configure the system to automatically
start the service for you between system reboots. It is easy to forget to do this on a sys-
tem that has been running for a long time without requiring any reboots, because if you
ever had to shut down the system due to an unrelated issue, you might be baffled as to
why the web server that has been running perfectly without incident failed to start up
after starting the box. So it is good practice to take care of this during the early stages of
configuring the service.

Most Linux flavors have the chkconfig utility available, which can be used for
controlling which system services start up at what runlevels.

To view the runlevels the web server is configured to start up in, type

[root@fedora-serverA ~]# chkconfig --list httpd

httpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off

This output shows that the web server is not configured to start up in any runlevel
in its out-of-the-box state. To change this and make Apache start up automatically in
runlevels 2, 3, 4, and 5, type

[root@fedora-serverA ~]# chkconfig httpd on

In Ubuntu, you can use either the sysv-rc-conf or the update-rc.d utility to
manage the runlevels in which Apache starts up.

441 Chapter 18: Apache Web Server

NOTE Just in case you are working with an Apache version that you installed from source, you
should be aware that the chkconfig utility will not know about the startup and shutdown scripts
for your web server unless you explicitly tell the utility about it. And as such, you’ll have to resort to
some other tricks to configure the host system to automatically bring up the web server during system
reboots. You may easily grab an existing startup script from another working system (usually from the
/etc/init.d/ directory) and modify it to reflect correct paths (e.g., /usr/local/httpd/) for your custom
Apache setup. Existing scripts are likely to be called httpd or apache2.

TESTING YOUR INSTALLATION
You can perform a quick test of your Apache installation using its default home page.
To do this, first confirm that the web server is up and running using the following
command:

[root@serverA httpd-2.2.8]# service httpd status

httpd (pid 31090 31089 31084 31083 31081) is running...

On our sample Fedora system, Apache comes with a default page that gets served to
visitors in the absence of a default home page (e.g., index.html or index.htm). The file
that gets displayed to visitors when there is no default home page is /var/www/error/
noindex.html.

TIP If you are working with a version of Apache that you built from source, the working directory
from which web pages are served is <PREFIX>/htdocs. For example, if your installation prefix is /usr/
local/httpd/, then web pages will, by default, be under /usr/local/httpd/htdocs/.

To find out if your Apache installation went smoothly, start a web browser and tell
it to visit the web site on your machine. To do this, simply type http://localhost (or the
Internet Protocol Version 6 [IPv6] equivalent, http://[::1]/) in the address bar of your web
browser. You should see a page stating something to the effect that “your Apache HTTP
server is working properly at your site.” If you don’t, retrace your Apache installation
steps and make sure you didn’t encounter any errors in the process.

CONFIGURING APACHE
Apache supports a rich set of configuration options that are sensible and easy to follow.
This makes it a simple task to set up the web server in various configurations.

This section walks through a basic configuration. The default configuration is actu-
ally quite good and (believe it or not) works right out of the box, so if the default is
acceptable to you, simply start creating your Hypertext Markup Language (HTML) doc-
uments! Apache allows several common customizations. After we step through creating

 442 Linux Administration: A Beginner’s Guide

a simple web page, we’ll show how you can make those common customizations in the
Apache configuration files.

Creating a Simple Root-Level Page
If you like, you can start adding files to Apache right away in the /var/www/html direc-
tory for top-level pages (for a source install, the directory would be /usr/local/httpd/
htdocs). Any files placed in that directory must be world-readable.

As mentioned earlier, Apache’s default web page is index.html. Let’s take a closer
look at creating and changing the default home page so that it reads “Welcome to
 serverA.example.org.” Here are the commands:

[root@serverA ~]# cd /var/www/html/

[root@serverA html]# echo "Welcome to serverA.example.org" >> index.html

[root@serverA html]# chmod 644 index.html

You could also use an editor such as vi, pico, or emacs to edit the index.html file and
make it more interesting.

Apache Configuration Files
The configuration files for Apache are located in the /etc/httpd/conf/ directory on a
Fedora or Red Hat Enterprise Linux (RHEL) system, and for our sample source install,
the path will be /usr/local/httpd/conf/. The main configuration file is usually named
httpd.conf on Red Hat–like distributions like Fedora. On Debian-like systems, the main
configuration file for Apache is named /etc/apache2/apache2.conf.

The best way to learn more about the configuration files is to read the httpd.conf file.
The default configuration file is heavily commented, explaining each entry, its role, and
the parameters you can set.

Common Configuration Options
The default configuration settings work just fine right out of the box, and for basic needs,
may require no further modification. Nevertheless, site administrators may need to cus-
tomize their web server or web site further.

This section discusses some of the common directives or options that are used in
Apache’s configuration file.

ServerRoot
This is used for specifying the base directory for the web server. On Fedora, RHEL,
and Centos distributions, this value, by default, is the /etc/httpd/ directory. The default
value for this directive in Ubuntu, OpenSuSE, and Debian Linux distributions is /etc/
apache2/.

Syntax: ServerRoot directory-path

443 Chapter 18: Apache Web Server

Listen
This is the port(s) on which the server listens for connection requests. It can also be used
to specify the particular IP addresses over which the web server accepts connections. The
default value for this directive is 80 for nonsecure web communications.

Syntax: Listen [IP-address:] portnumber

For example, to set Apache to listen on its IPv4 and IPv6 interfaces on port 80, you
would set the Listen directive to read

Listen 80

To set Apache to listen on a specific IPv6 interface (e.g., fec0::20c:dead:beef:11cd) on
port 8080, you would set the Listen directive to read

Listen [fec0::20c:dead:beef:11cd]:8080

ServerName
This directive defines the hostname and port that the server uses to identify itself. At
many sites, servers fulfill multiple purposes. An intranet web server that isn’t getting
heavy usage, for example, should probably share its usage allowance with another ser-
vice. In such a situation, a computer name such as “www” (fully qualified domain name,
or FQDN=www.example.org) wouldn’t be a good choice, because it suggests that the
machine has only one purpose.

It’s better to give a server a neutral name and then establish Domain Name System
(DNS) Canonical Name (CNAME) entries or multiple hostname entries in the /etc/hosts
file. In other words, you can give the system several names for accessing the server,
but it needs to know only about its real name. Consider a server whose hostname is
dioxin.eng.example.org that is to be a web server as well. You might be thinking of
giving it the hostname alias www.sales.example.org. However, since dioxin will know
itself only as dioxin, users who visit www.sales.example.org might be confused by see-
ing in their browsers that the server’s real name is dioxin.

Apache provides a way to get around this through the use of the ServerName direc-
tive. This works by allowing you to specify what you want Apache to return as the host-
name of the web server to web clients or visitors.

Syntax: ServerName fully-qualified-domain-name[: port]

ServerAdmin
This is the e-mail address that the server includes in error messages sent to the client.

It’s often a good idea, for a couple of reasons, to use an e-mail alias for a web site’s
administrator. First, there may be more than one administrator. By using an alias, it’s
possible for the alias to expand out to a list of other e-mail addresses. Second, if the

 444 Linux Administration: A Beginner’s Guide

 current administrator leaves, you don’t want to have to make the rounds of all those web
pages and change the name of the site administrator.

Syntax: ServerAdmin e-mail_address

DocumentRoot
This defines the primary directory on the web server from which HTML files will be
served to requesting clients. On Fedora distros and other Red Hat–like systems, the
default value for this directive is /var/www/html/. On OpenSuSE and SEL distributions,
the default value for this directive is /srv/www/htdocs.

TIP On a web server that is expected to host plenty of web content, the file system on which the
directory specified by this directive resides should have a lot of space.

MaxClients
This sets a limit on the number of simultaneous requests that the web server will
service.

LoadModule
This is used for loading or adding other modules into Apache’s running configuration.
It adds the specified module to the list of active modules.

Syntax: LoadModule module filename

User
This specifies the user ID the web server will answer requests as. The server process will
initially start off as the root user, but will later downgrade its privileges to those of the
user specified here. The user should only have just enough privileges to access files and
directories that are intended to be visible to the outside world via the web server. Also,
the user should not be able to execute code that is not HTTP- or web-related.

On a Fedora system, the value for this directive is automatically set to the user named
“apache.” In OpenSuSE Linux, the value is set to the user called “wwwrun.”

Syntax: User unix_userid

Group
This specifies the group name of the Apache HTTP server process. It is the group with
which the server will respond to requests. The default value under the Fedora and RHEL
flavors of Linux is “apache.” In OpenSuSE Linux, the value is set to the group “www.” In
Ubuntu, the default value is “www-data.”

Syntax: Group unix_group

445 Chapter 18: Apache Web Server

Include
This directive allows Apache to specify and include other configuration files at runtime.
It is mostly useful for organization purposes; you can, for example, elect to store all the
configuration directives for different virtual domains in appropriately named files, and
Apache will automatically know to include them at runtime.

Syntax: Include file_name_to_include_OR_path_to_directory_to_include_

UserDir
This directive defines the subdirectory within each user’s home directory, where users
can place personal content that they want to make accessible via the web server. This
directory is usually named public_html and is usually stored under each user’s home
directory. This option is, of course, dependent on the availability of the mod_userdir
module in the web server setup.

A sample usage of this option in the httpd.conf file is

UserDir public_html

ErrorLog
This defines the location where errors from the web server will be logged to.

Syntax: ErrorLog file_path| syslog[: facility]

Example: ErrorLog /var/log/httpd/error_log

Quick How-To: Serving HTTP Content from User Directories
After enabling the UserDir option, and assuming the user yyang wants to make
some web content available from within her home directory via the web server,
following these steps will make this happen:

 1. While logged into the system as the user yyang, create the public_html
folder.

yyang@serverA ~]# mkdir ~/public_html

 2. Set the proper permissions for the parent folder.

yyang@serverA ~]# chmod a+x .

 3. Set the proper permissions for the public_html folder.

yyang@serverA ~]# chmod a+x public_html

 446 Linux Administration: A Beginner’s Guide

LogLevel
This option sets the level of verbosity for the messages sent to the error logs. Acceptable
log levels are emerg, alert, crit, error, warn, notice, info, and debug. The default log level
is “warn.”

Syntax: LogLevel level

Alias
The Alias directive allows documents (web content) to be stored in any other location
on the file system that is different from the location specified by the DocumentRoot
directive. It also allows you to create abbreviations (or aliases) for path names that might
otherwise be quite long.

Syntax: Alias URL_path actual_file_or_directory_path

 4. Create a sample page named index.html under the public_html folder.

yyang@serverA ~]# echo "Ying Yang's Home Page" >> ~/public_

html/index.html

As a result of these commands, files placed in the public_html directory for a
particular user and set to world-readable will be on the Web via the web server.

To access the contents of that folder via HTTP, you would need to point a web
browser to this URL:

http://<YOUR_HOST_NAME>/~<USERNAME>

where YOUR_HOST_NAME is the web server’s fully qualified domain name or
IP address. And if you are sitting directly on the web server itself, you can simply
replace that variable with localhost.

For the example shown here for the user yyang, the exact URL will be http://
localhost/~yyang. And the IPv6 equivalent is http://[::1]/~yyang.

TIP On a Fedora system with the SELinux sub-system enabled, you may have to do
a little more to get the UserDir directive working. This is because of the default security
contexts of the files stored under each user’s home directory. By default, the context is
user_home_t. For this functionality to work properly, you will have to change the context
of all files under ~/username/public_html/ to httpd_sys_content_t. This allows Apache
to read the files under the public_html directory. The command to do this is

[yyang@serverA ~]$ chcon -Rt httpd_sys_content_t public_html/

447 Chapter 18: Apache Web Server

ScriptAlias
The ScriptAlias option specifies a target directory or file as containing CGI scripts that
are meant to be processed by the CGI module (mod_cgi).

Syntax: ScriptAlias URL-path actual_file-path_OR_directory-path

Example: ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

VirtualHost
One of the most-used features of Apache is its ability to support virtual hosts. This
makes it possible for a single web server to host multiple web sites as if each site had
its own dedicated hardware. It works by allowing the web server to provide different,
autonomous content, based on the hostname, port number, or IP address that is being
requested by the client. This is accomplished by the HTTP 1.1 protocol, which specifies
the desired site in the HTTP header rather than relying on the server to learn what site
to fetch from its IP address.

This directive is actually made up of two tags: an opening <VirtualHost> tag
and a closing </VirtualHost> tag. It is used to specify the options that pertain to a
particular virtual host. Most of the directives that we discussed previously are valid
here, too.

Syntax: <VirtualHost ip_address_OR_hostname[:port] >

 Options

< /VirtualHost >

Suppose, for example, that we wanted to set up a virtual host configuration for a host
named www.another-example.org. To do this, we can create a VirtualHost entry in the
httpd.conf file (or use the Include directive to specify a separate file), like this one:

<VirtualHost www.another-example.org>

 ServerAdmin webmaster@another-example.org

 DocumentRoot /www/docs/another-example.org

 ServerName www.another-example.org

 ErrorLog logs/another-example.org-error_log

</VirtualHost>

Don’t forget that it is not enough to configure a virtual host using Apache’s
VirtualHost directive—the value of the ServerName option in the VirtualHost con-
tainer must be a name that is resolvable via DNS (or any other means) to the web
server machine.

NOTE Apache’s options/directives are too numerous to be covered in this section. But the software
comes with its own extensive online manual, which is written in HTML so that you can access it in a
browser. If you installed the software via RPM, you might find that documentation for Apache has been

 448 Linux Administration: A Beginner’s Guide

packaged into a separate RPM binary, and as a result, you will need to install the proper package
(e.g., httpd-manual) to have access to it. If you downloaded and built the software from source code,
you will find the documentation in the manual directory of your installation prefix (e.g., /usr/local/
httpd/manual). Apache’s documentation is also available online at the project’s web site (http://httpd
.apache.org/docs-2.0).

TROUBLESHOOTING APACHE
The process of changing configurations (or even the initial installation) can sometimes
not work as smoothly as you’d like. Thankfully, Apache does an excellent job at report-
ing in its error log file why it failed or what is failing.

The error log file is located in your logs directory. If you are running a stock Fedora
or RHEL-type installation, this is in the /var/log/httpd/ directory. If you installed Apache
yourself using the installation method discussed earlier in this chapter, the logs are in the
/usr/local/httpd/logs/ directory. In these directories, you will find two files: access_log
and error_log.

The access_log file is simply that—a log of which files have been accessed by people
visiting your web site(s). It contains information about whether the transfer completed
successfully, where the request originated (IP address), how much data was transferred,
and what time the transfer occurred. This is a powerful way of determining the usage of
your site.

The error_log file contains all of the errors that occur in Apache. Note that not all
errors that occur are fatal—some are simply problems with a client connection from
which Apache can automatically recover and continue operation. However, if you started
Apache but still cannot visit your web site, then take a look at this log file to see why
Apache may not be responding. The easiest way to see the most recent error messages is
by using the tail command, like so:

[root@serverA html]# tail -n 10 /var/log/httpd/error_log

If you need to see more log information than that, simply change the number 10 to
the number of lines that you need to see. And if you would like to view the errors or
logs in real time as they are being generated, you should use the -f option for the tail
command. This provides a valuable debugging tool, because you can try things out with
the server (such as requesting web pages or restarting Apache) and view the results of
your experiments in a separate virtual terminal window. The tail command with the
-f switch is shown here:

[root@serverA html]# tail -f /var/log/httpd/error_log

This command will constantly tail the logs until you terminate the program (using
ctrl-c).

449 Chapter 18: Apache Web Server

SUMMARY
In this chapter, we covered the process of setting up your own web server using Apache
from the ground up. This chapter by itself is enough to get you going with a top-level
page and a basic configuration.

It is highly recommended that you take some time to page through the Apache man-
ual. It is well written, concise, and flexible enough that you can set up just about any
configuration imaginable. In addition to the manual documentation, several good books
about Apache have been written. Ben Laurie and Peter Laurie’s Apache: The Definitive
Guide, Third Edition (O’Reilly, 2002) covers the details of Apache quite well. The text
focuses on Apache and Apache only, so you don’t have to wade through hundreds of
pages to find what you need.

451

19

SMTP

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 452 Linux Administration: A Beginner’s Guide

The Simple Mail Transfer Protocol (SMTP) is the de facto standard for mail transport
across the Internet. Anyone who wants to have a mail server capable of sending
and receiving mail across the Internet must be able to support it. Many internal

networks have also taken to using SMTP for their private mail services because of its
platform independence and availability across all popular operating systems. In this
chapter, we’ll first discuss the mechanics of SMTP as a protocol and its relationship to
other mail-related protocols, such as Post Office Protocol (POP) and Internet Message
Access Protocol (IMAP). Then we will go over the Postfix SMTP server, one of the easier
and more secure SMTP servers out there.

UNDERSTANDING SMTP
The SMTP protocol defines the method by which mail is sent from one host to another.
That’s it. It does not define how the mail should be stored. It does not define how the
mail should be displayed to the recipient.

SMTP’s strength is its simplicity, and that is due, in part, to the dynamic nature of net-
works during the early 1980s. (The SMTP protocol was originally defined in 1982.) Back
in those days, people were linking networks together with everything short of bubble
gum and glue. SMTP was the first mail standard that was independent of the transport
mechanism. This meant people using Transmission Control Protocol/Internet Protocol
(TCP/IP) networks could use the same format to send a message as someone using two
cans and a string.

SMTP is also independent of operating systems, which means each system can use its
own style of storing mail without worrying about how the sender of a message stores his
mail. You can draw parallels to how the phone system works: Each phone service pro-
vider has its own independent accounting system. However, they all have agreed upon
a standard way to link their networks together so that calls can go from one network to
another transparently.

Rudimentary SMTP Details
Ever had a “friend” who sent you an e-mail on behalf of some government agency
informing you that you owe taxes from the previous year, plus additional penalties?
Somehow, a message like this ends up in a lot of people’s mailboxes around April
Fool’s Day. We’re going to show you how they did it and, what’s even more fun, how
you can do it yourself. (Not that we would advocate such behavior, of course.)

The purpose of this example is to show how the SMTP protocol sends a message
from one host to another. After all, more important than learning how to forge an
e-mail is learning how to troubleshoot mail-related problems. So in this example, you
are acting as the sending host, and whichever machine you connect to is the receiv-
ing host.

453Chapter 19: SMTP

The SMTP protocol requires only that a host be able to send straight ASCII text to
another host. Typically, this is done by contacting the SMTP port (port 25) on a mail
server. You can do this using the Telnet program. For example,

[root@serverA /root]# telnet mailserver 25

where the host mailserver is the recipient’s mail server. The 25 that follows mailserver
tells Telnet that you want to communicate with the server’s port 25 rather than the nor-
mal port 23. (Port 23 is used for remote logins, and port 25 is for the SMTP server.)

The mail server will respond with a greeting message such as this:

220 mail ESMTP Postfix

You are now communicating directly with the SMTP server.
Although there are many SMTP commands, the four worth noting are

 ▼ HELO

■ MAIL FROM:

■ RCPT TO:

 ▲ DATA

The HELO command is used when a client introduces itself to the server. The param-
eter to HELO is the hostname that is originating the connection. Of course, most mail
servers take this information with a grain of salt and double-check it themselves. For
example:

HELO example.org

If you aren’t coming from the example.org domain, many mail servers will respond
by telling you that they know your real IP address, but they may or may not stop the
connection from continuing.

The MAIL FROM: command requires the sender’s e-mail address as its argument.
This tells the mail server the e-mail’s origin. For example:

MAIL FROM: suckup@example.org

means the message is from suckup@example.org.
The RCPT TO: command requires the receiver’s e-mail address as an argument. For

example:

RCPT TO: manager@example.org

means the message is destined to manager@example.org.
Now that the server knows who the sender and recipient are, it needs to know what

message to send. This is done by using the DATA command. Once issued, the server will
expect the entire message, with relevant header information, followed by one empty

 454 Linux Administration: A Beginner’s Guide

line, a period, and then another empty line. Continuing the example, suckup@example.
org might want to send the following message to manager@example.org:

DATA

354 End data with <CR><LF>.<CR><LF>

Just an FYI, boss. The project is not only on time, but it is within

budget, too!

Regards –

SuckUp_to Upper_Management

.

250 2.0.0 Ok: queued as B9E3B3C0D

And that’s all there is to it. To close the connection, enter the QUIT command.
This is the basic technique used by applications that send mail—except, of course,

that all the gory details are masked behind a nice GUI application. The underlying trans-
action between the client and the server remains mostly the same.

Security Implications
Sendmail, the mail server a majority of Internet sites use, is the same package most Linux
distributions use. Like any other server software, its internal structure and design are
complex and require a considerable amount of care during development. In recent years,
however, the developers of Sendmail have taken a paranoid approach to their design to
help alleviate these issues. The Postfix developers took it one step further and wrote the
server from scratch with security in mind. Basically, they ship the package in a tight secu-
rity mode and leave it to us to loosen it up as much as we need to for our site. This means
the responsibility falls to us for making sure we keep the software properly configured
(and thus not vulnerable to attacks).

These are some issues to keep in mind when deploying any mail server:

 ▼ When an e-mail is sent to the server, what programs will it trigger?

■ Are those programs securely designed?

■ If they cannot be made secure, how can you limit their damage?

 ▲ Under what permissions do those programs run?

In Postfix’s case, we need to back up and examine its architecture.
Mail service has three distinct components. The mail user agent (MUA) is what the user

sees and interacts with, such as the Eudora, Outlook, Evolution, and Mutt programs. An
MUA is responsible only for reading mail and allowing users to compose mail. The mail
transport agent (MTA) handles the process of getting the mail from one site to another;
Sendmail and Postfix are MTAs. Finally, the mail delivery agent (MDA) is what takes the
message, once received at a site, and gets it to the appropriate user mailbox.

Many mail systems integrate these components. For example, Microsoft Exchange
Server integrates the MTA and MDA functionalities into a single system. (If you consider

455Chapter 19: SMTP

the Outlook Web Access interface to Exchange Server, it is also an MUA.) Lotus Domino
also works in a similar fashion. Postfix, on the other hand, works as an MTA only, pass-
ing the task of performing local mail delivery to another external program. This allows
each operating system or site configuration to use its own custom tool, if necessary (that
is, to be able to use a special mailbox store mechanism).

In most straightforward configurations, sites prefer using the Procmail program to
perform the actual mail delivery (MDA). This is because of its advanced filtering mecha-
nism, as well as its secure design from the ground up. Many older configurations have
stayed with their default /bin/mail program to perform mail delivery.

INSTALLING THE POSTFIX SERVER
In this section, we will cover the installation of the Postfix mail server. We chose it for its
ease of use and because it was written from the ground up to be simpler than Sendmail.
(The author of Postfix also argues that the simplicity has led to improved security.) Post-
fix can perform most of the things that the Sendmail program can do—in fact, the typical
installation procedure for Postfix is to replace the Sendmail binaries completely.

In this section, we install Postfix in one of two ways: either using the Red Hat Pack-
age Manager (RPM) method (recommended) or via source code.

Installing Postfix via RPM in Fedora
To install Postfix via RPM, simply use the Yum tool as follows:

[root@fedora-serverA ~]# yum -y install postfix

Once the command runs to completion, you should have Postfix installed. Since
Sendmail is the default mailer that gets installed in Fedora and Red Hat Enterprise Linux
(RHEL) distros, you will need to disable it using the chkconfig command and then
enable Postfix.

[root@fedora-serverA ~]# chkconfig sendmail off

[root@fedora-serverA ~]# chkconfig postfix on

Finally, we can flip the switch and actually start the Postfix process. With a default
configuration, it won’t do much, but it will confirm whether the installation worked as
expected.

[root@fedora-serverA ~]# service sendmail stop
[root@fedora-serverA ~]# service postfix start

TIP The proper way to change the mail subsystem on a Fedora-based distribution is to use the
system-switch-mail program. This program can be installed using Yum as follows: yum
install system-switch-mail.

 456 Linux Administration: A Beginner’s Guide

Installing Postfix via APT in Ubuntu
Postfix can be installed in Ubuntu by using Advanced Packaging Tool (APT). Ubuntu,
unlike other Linux distributions, does not ship with any MTA software preconfigured
and running out of the box. You need to explicitly install and set one up. To install the
Postfix MTA in Ubuntu, run the command

yyang@ubuntu-serverA:~$ sudo apt-get -y install postfix

The install process will offer a choice of various Postfix configuration options during
the install process. The choices are

 ▼ No configuration This option will leave the current configuration unchanged.

■ Internet site Mail is sent and received directly using SMTP.

■ Internet with smarthost Mail is received directly using SMTP or by running a
utility such as fetchmail. Outgoing mail is sent using a smarthost.

■ Satellite system All mail is sent to another machine, called a smarthost, for
delivery.

 ▲ Local only The only delivered mail is the mail for local users. The system does
not need any sort of network connectivity for this option.

We will select the first option, No configuration, on our sample Ubuntu server. The
install process will create the necessary user and group accounts that Postfix needs.

With the script in place, double-check that its permissions are correct with a quick
chmod.

Installing Postfix from Source Code
Begin by downloading the Postfix source code from www.postfix.org. As of this
writing, the latest stable version was postfix-2.5.1.tar.gz. Once you have the file
downloaded, use the tar command to unpack the contents.

[root@serverA src]# tar xvzf postfix-2.5.1.tar.gz

Once it is unpacked, change into the postfix-2.5.1 directory and run the make
command, like so:

[root@serverA src]# cd postfix-2.5.1

[root@serverA postfix-2.5.1]# make

The complete compilation process will take a few minutes, but it should work
without event.

457Chapter 19: SMTP

Since Postfix will replace your current Sendmail program, you’ll want to make
a backup of the Sendmail binaries. This can be done as follows:

[root@serverA postfix-2.5.1]# mv /usr/sbin/sendmail /usr/sbin/sendmail.OFF

[root@serverA postfix-2.5.1]# mv /usr/bin/newaliases /usr/bin/newaliases.OFF

[root@serverA postfix-2.5.1]# mv /usr/bin/mailq /usr/bin/mailq.OFF

Now we need to create a user and a group under which Postfix will run. You
may find that some distributions already have these accounts defined. If so, the
process of adding a user will result in an error.

[root@serverA postfix-2.5.1]# useradd -M -d /no/where -s /no/shell postfix

[root@serverA postfix-2.5.1]# groupadd -r postfix

[root@serverA postfix-2.5.1]# groupadd -r postdrop

We’re now ready to do the make install step to install the actual software. Post-
fix includes an interactive script that prompts for values of where things should go.
Stick to the defaults by simply pressing the enter key at each prompt.

[root@serverA postfix-2.5.1]# make install

With the binaries installed, it’s time to disable Sendmail from the startup scripts.
We can do that via the chkconfig command, like so:

[root@serverA postfix-2.5.1]# chkconfig sendmail off

The source version of Postfix includes a nice shell script that handles the startup
and shutdown process for us. For the sake of consistency, let’s wrap it into a stan-
dard startup script that can be managed via chkconfig. Using the techniques
learned from Chapter 6, we create a shell script called /etc/init.d/postfix. We can
use the following code listing for the postfix script:

#!/bin/sh

Postfix Start/Stop the Postfix mail system

#

#chkconfig: 35 99 01

TIP If the compile step fails with an error about being unable to find “db.h” or any
other kind of “db” reference, there is a good chance your system does not have the
Berkeley DB developer tools installed. While it is possible to compile the Berkeley DB
tools yourself, it is not recommended, as Postfix will fail if the version of DB being used
in Postfix is different from what other system libraries are using. To fix this, install the
db4-devel package. This can be done using Yum as follows:

yum -y install db4-devel

 458 Linux Administration: A Beginner’s Guide

CONFIGURING THE POSTFIX SERVER
By following the previous steps, you have now compiled (if you built from source) and
installed the Postfix mail system. The make install script will exit and prompt you for
any changes that are wrong, such as forgetting to add the postfix user. Now that you
have installed the Postfix server, you can change directories to /etc/postfix and configure
the Postfix server.

You configure the server through the /etc/postfix/main.cf configuration file. It’s obvi-
ous from its name that this configuration file is the main configuration file for Postfix.

#

. /etc/init.d/functions

[-f /usr/sbin/postfix] || exit 0

See how we were called.

case "$1" in

start)

 echo "Starting postfix: "

 /usr/sbin/postfix start

 echo "done"

 touch /var/lock/subsys/postfix

;;

stop)

 echo -n "Stopping postfix: "

 /usr/sbin/postfix stop

 echo "done"

 rm -f /var/lock/subsys/postfix

;;

*)

echo "Usage: postfix start|stop"

exit 1

esac

exit 0

With the script in place, double-check that its permissions are correct with a
quick chmod.

[root@serverA postfix-2.5.1]# chmod 755 /etc/init.d/postfix

Then we use chkconfig to add it to the appropriate runlevels for startup.

[root@serverA postfix-2.5.1]# chkconfig --add postfix

[root@serverA postfix-2.5.1]# chkconfig postfix on

459Chapter 19: SMTP

The other configuration file of note is the master.cf file. This is the process configuration
file for Postfix, which allows you to change how Postfix processes are run. This can be
useful for setting up Postfix on clients so that it doesn’t accept e-mail and forwards to a
central mail hub. For more information on doing this, see the documentation at www.
postfix.org. Now let’s move on to the main.cf configuration file.

The main.cf File
The main.cf file is too large to list all of its options in this chapter, but we will cover the
most important options that will get your mail server up and running. Thankfully, the
configuration file is well documented and explains clearly what each option is used for.

The sample options that we discuss next are enough to help you get a basic Post-
fix mail server up and running at a minimum. The first option we will look at is the
myhostname parameter.

myhostname
This parameter is used to set the name that Postfix will be receiving e-mail for. Typi-
cal examples of mail server hostnames are mail.example.com or smtp.example.org. The
syntax is

myhostname = serverA.example.org

mydomain
This parameter is the mail domain that you will be servicing, such as example.com or
google.com. The syntax is

mydomain = example.org

myorigin
All e-mail sent from this e-mail server will look as though it came from this parameter.
You can set this to either $myhostname or $mydomain, like so:

myorigin = $mydomain

Notice that you can use the value of other parameters in the configuration file by
placing a $ sign in front of the variable name.

mydestination
This parameter lists the domains that the Postfix server will take as its final destination
for incoming e-mail. Typically, this value is set to the hostname of the server and the
domain name, but it can contain other names, as shown here:

mydestination = $myhostname, localhost.$mydomain, $mydomain, \

mail.$mydomain, www.$mydomain, ftp.$mydomain

 460 Linux Administration: A Beginner’s Guide

If your server has more than one name, for example, serverA.example.org and
 serverA.another-example.org, you will want to make sure you list both names here.

mail_spool_directory
You can run the Postfix server in two modes of delivery: directly to a user’s mailbox or
to a central spool directory. The typical way is to store the mail in /var/spool/mail. The
variable will look like this in the configuration file:

mail_spool_directory = /var/spool/mail

The result is that mail will be stored for each user under the /var/spool/mail
directory, with each user’s mailbox represented as a file. For example, e-mail sent to
yyang@example.org will be stored in /var/spool/mail/yyang.

mynetworks
The mynetworks variable is an important configuration option. This lets you configure
what servers can relay through your Postfix server. You will usually want to allow relay-
ing from local client machines and nothing else. Otherwise, spammers can use your mail
server to relay messages. An example value of this variable would be

mynetworks = 192.168.1.0/24, 127.0.0.0/8

If you define this parameter, it will override the mynetworks_style parameter.
The mynetworks_style parameter allows you to specify any of the keywords class,
subnet, or host. These settings tell the server to trust these networks that the server
belongs to.

CAUTION If you do not set the $mynetworks variable correctly and spammers begin
using your mail server as a relay, you will quickly find a surge of angry mail administrators
e-mailing you about it. Furthermore, it is a fast way to get your mail server blacklisted by one
of the spam control techniques, like DNS Blacklist (DNSBL) or Realtime Blackhole Lists (RBL).
Once your server is blacklisted, very few people will be able to receive mail from you, and you
will need to jump through a lot of hoops to get unlisted. Even worse, no one will tell you that you
have been blacklisted.

smtpd_banner
This variable allows you to return a custom response when a client connects to your mail
server. It is a good idea to change the banner to something that doesn’t give away what
server you are using. This just adds one more slight hurdle for hackers trying to find
faults in your specific software version.

smtpd_banner = $myhostname ESMTP

461Chapter 19: SMTP

inet_protocol
This parameter is used to invoke the Internet Protocol Version 6 (IPv6) capabilities of the
Postfix mail server. It is used to specify the Internet protocol version that Postfix will use
when making or accepting connections. Its default value is ipv4. Setting this value to
ipv6 will make Postfix support IPv6. Example values that this parameter accepts are

inet_protocols = ipv4 (DEFAULT)

inet_protocols = ipv4, ipv6

inet_protocols = all

inet_protocols = ipv6

There are tons of other parameters in the Postfix configuration file that we did not
discuss here. You might see them commented out in the configuration file when you
set the preceding options. These other options will allow you to set security levels and
debugging levels, among other things, as required.

Now we will move on to running the Postfix mail system and maintaining your mail
server.

Checking Your Configuration
Postfix includes a nice tool for checking a current configuration and helping you trouble-
shoot it. Simply run

[root@serverA ~]# postfix check

This will list any errors that the Postfix system finds in the configuration files or
with permissions of any directories that it needs. A quick run on our sample system
shows this:

[root@serverA ~]# postfix check

postfix: fatal: /etc/postfix/main.cf, line 91: missing '=' after attribute

name: "mydomain example.org"

Looks like we made a typo in the configuration file. When going back to fix any
errors in the configuration file, be sure to read the error message carefully and use the
line number as guidance, not as absolute. This is because a typo in the file could mean
that Postfix detected the error well after the actual error took place. In this example,
a typo we made on line 76 didn’t get caught until line 91 because of how the parsing
engine works. However, by carefully reading the error message, we knew the problem
was with “mydomain,” so it was only a quick search before we found the real line.

Let’s run the check again.

[root@serverA ~]# postfix check

[root@serverA ~]#

Groovy! We’re ready to start using Postfix.

 462 Linux Administration: A Beginner’s Guide

RUNNING THE SERVER
Starting the Postfix mail server is easy and straightforward. Just pass the start option
to the postfix run control script:

[root@serverA ~]# /etc/init.d/postfix start

When you make any changes to the configuration files, you need to tell Postfix to
reload itself to make the changes take effect. Do this by using the reload option:

[root@serverA ~]# /etc/init.d/postfix reload

Checking the Mail Queue
Occasionally, the mail queues on your system will fill up. This can be caused by network
failures or various other failures, such as other mail servers. To check the mail queue on
your mail server, simply type the following command:

[root@serverA ~]# mailq

This command will display all of the messages that are in the Postfix mail queue. This
is the first step in testing and verifying that the mail server is working correctly.

Flushing the Mail Queue
Sometimes after an outage, mail will be queued up, and it can take several hours for the
messages to be sent. Use the postfix flush command to flush out any messages that
are shown in the queue by the mailq command.

The newaliases Command
The /etc/aliases file contains a list of e-mail aliases. This is used to create site-wide e-mail
lists and aliases for users. Whenever you make changes to the /etc/aliases file, you need to
tell Postfix about it by running the newaliases command. This command will rebuild
the Postfix databases and inform you of how many names have been added.

Making Sure Everything Works
Once the Postfix mail server is installed and configured, you should test and test again
to make sure that everything is working correctly. The first step in doing this is to use a
local mail user agent, like pine or mutt, to send e-mail to yourself. If this works, great—
you can move on to sending e-mail to a remote site, using the mailq command to see
when the message gets sent. The final step is to make sure that you can send e-mail to
the server from the outside network (that is, from the Internet). If you can receive e-mail
from the outside world, your work is done.

463Chapter 19: SMTP

Mail Logs
On Fedora, RHEL, and Centos systems, by default, mail logs go to /var/log/maillog, as
defined by the rsyslogd configuration file. If you need to change this, you can modify the
rsyslogd configuration file, /etc/rsyslog.conf, by editing the following line:

mail.* /var/log/maillog

Most sites run their mail logs this way, so if you are having problems, you can search
through the /var/log/maillog file for any messages.

Debian-based systems, like Ubuntu, store the mail-related logs in the /var/log/
mail.log file.

OpenSuSE and SuSE Linux Enterprise (SLE) store its mail-related logs in the files
/var/log/mail, /var/log/mail.err, /var/log/mail.info, and /var/log/mail.warn.

If Mail Still Won’t Work
If mail still won’t work, don’t worry. SMTP isn’t always easy to set up. If you still have
problems, walk logically through all of the steps, and look for errors. The first step is to
look at your log messages, which might show that other mail servers are not responding.
If everything seems fine there, check your Domain Name System (DNS) settings. Can the
mail server perform name lookups? Can it perform Mail Exchanger (MX) lookups? Can
other people perform name lookups for your mail server? It is also possible that e-mails
are actually being delivered but are being marked as junk or spam at the recipient end.
Check the junk or spam mail folder at the receiver’s end.

Proper troubleshooting techniques are indispensable for good system administra-
tion. A good resource for troubleshooting is to look at what others have done to fix simi-
lar problems. Check the Postfix web site at www.postfix.org, or check the newsgroups at
www.google.com for the problems or symptoms of what you might be seeing.

SUMMARY
In this chapter, we learned the basics of how SMTP works. We also installed and learned
how to configure a basic Postfix mail server. With this information, you have enough
knowledge to set up and run a production mail server.

If you’re looking for additional information on Postfix, start with the online docu-
mentation at www.postfix.org. The documentation is well written and easy to follow.
There is a wealth of information on how Postfix can be extended to perform a number of
additional functions that are outside the scope of this chapter.

Another excellent reference on the Postfix system is The Book of Postfix: State-of-the-Art
Message Transport by Ralf Hildebrandt and Patrick Koetter (No Starch Press, 2005). This
book covers the Postfix system in excellent detail.

As with any other service, don’t forget to keep up on the latest news on Postfix. Secu-
rity updates do come out from time to time, and it is important that you update your
mail server to reflect these changes.

465

20

POP and IMAP

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 466 Linux Administration: A Beginner’s Guide

In Chapter 19, we covered the differences between mail transport agents (MTAs),
mail delivery agents (MDAs), and mail user agents (MUAs). When it comes to the
delivery of mail to specific user mailboxes, we assumed the use of Procmail, which

delivers copies of e-mail to users in the mbox format. The mbox format is a simple text
format that can be read by a number of console mail user agents, like pine, elm, and mutt,
as well as some GUI-based mail clients.

The key to the mbox format, however, is that the client has direct access to the mbox
file itself. This works well enough in tightly administered environments where the
administrator of the mail server is also the administrator of the client hosts; however, this
system of mail folder administration might not scale well in certain scenarios. Sample
scenarios that might prove to be a bit thorny are

 ▼ Users’ inability to stay reasonably connected to a fast/secure network for file
system access to their mbox file (e.g., roaming laptops).

■ Users demand local copies of e-mail for offline viewing.

■ Security requirements dictate that users not have direct access to the mail store
(e.g., Network File System [NFS]-shared mail spool directories are considered
unacceptable).

 ▲ Mail user agents do not support the mbox file format (typical of Windows-based
clients).

To deal with these cases, the Post Office Protocol (POP) was created to allow for
network-based access to mail stores. Many early Windows-based mail clients used the
POP protocol for access to Internet e-mail, since it allowed users to access UNIX-based
mail servers (the dominant type of mail server on the Internet until the rise of Microsoft
Exchange in the late 1990s).

The idea behind POP is simple: A central mail server is managed such that it remains
online at all times and can receive mail for all of its users. Mail that is received is queued
on the server until a user connects via POP and downloads the queued mail. The mail on
the server itself can be stored in any format (e.g., mbox), so long as the POP protocol is
adhered to. When a user wants to send an e-mail, the e-mail client relays it through the
central mail server via Simple Mail Transfer Protocol (SMTP). This allows the client to
disconnect from the network and gives the well-connected mail server the task of deal-
ing with forwarding the message to the correct destination server, taking care of retrans-
mits, delays, etc. Figure 20-1 shows this relationship.

Early users of POP found certain aspects of the protocol too limiting. Such features
as being able to keep a master copy of a user’s e-mail on the server with only a cached
copy on the client were missing. This led to the development of the Internet Message
Access Protocol (IMAP) protocol, the earliest Request for Comments (RFC) version being
IMAP2 in 1988 (RFC 1064). The IMAP protocol extended to version 4 (IMAPv4) in 1994.
Most clients are compatible with IMAPv4. Recent extensions have taken it to IMAP4rev1
(RFC 3501).

467 Chapter 20: POP and IMAP

The essence of how IMAP has evolved can be best understood by thinking of mail
access as working in one of three distinct modes: online, offline, and disconnected. The
online mode is akin to having direct file system access to the mail store (e.g., having read
access to /var/mail). The offline mode is how POP works, where the client is assumed to
be disconnected from the network except when explicitly pulling down its e-mail. In
offline mode, the server normally does not retain a copy of the mail.

Disconnected mode works by allowing users to retain cached copies of their mail
stores. When connected, any incoming/outgoing e-mail is immediately recognized and
synchronized; however, when the client is disconnected, changes made on the client are
kept until reconnection, when synchronization occurs. Because the client only retains a
cached copy, a user can move to a completely different client and resynchronize his or
her e-mail.

By using the IMAP protocol, you will have a mail server that will support all three
modes of access.

Figure 20-1. Sending and receiving mail with SMTP and POP

Internet Internet

Receiving mail Sending mail

SMTP
Server

Note: the SMTP
server and the POP

server can be the
same system.

POP
Server

Mail
Spool

SMTP
Server

Workstations

Workstations

 468 Linux Administration: A Beginner’s Guide

After all is said and done, supporting both POP and IMAP is usually a good idea. It
allows users the freedom to choose whatever mail client and protocol best suits them. In
this chapter, we cover the installation and configuration of the University of Washing-
ton (UW) IMAP server, which includes a POP server hook. This particular mail server
has been available for many years. The installation process is also easy. For a small to
medium-sized user base (up to a few hundred users), it should work well.

If you’re interested in a higher-volume mail server for IMAP, consider the Cyrus or
Courier IMAP server. Both offer impressive scaling options; however, they come at the
expense of needing a slightly more complex installation and configuration procedure.

POP AND IMAP BASICS
Like the other services we have discussed so far, POP and IMAP each need a server pro-
cess to handle requests. The server processes listen on ports 110 and 143, respectively.

Each request to and response from the server is in clear-text ASCII, which means it’s
easy for us to test the functionality of the server using Telnet. This is especially useful
for quickly debugging mail server connectivity/availability issues. Like an SMTP server,
one can interact with a POP or IMAP server using a short list of commands.

To get a look at the most common commands, let’s walk through the process of con-
necting and logging on to a POP server and an IMAP server. This simple test allows you
to verify that the server does in fact work and is providing valid authentication.

Although there are many POP commands, a few worth mentioning are

 ▼ USER

 ▲ PASS

A few noteworthy IMAP commands are

 ▼ LOGIN

■ LIST

■ STATUS

■ EXAMINE/SELECT

■ CREATE/DELETE/RENAME

 ▲ LOGOUT

INSTALLING THE UW-IMAP AND POP3 SERVER
The University of Washington produces a well-regarded IMAP server that is used in
many production sites around the world. It is a well-tested implementation; thus, it is the
version of IMAP that we will install.

469 Chapter 20: POP and IMAP

Most Linux distributions have prepackaged binaries for UW-IMAP in the distros
repositories. For example, UW-IMAP can be installed in Fedora by using Yum like so:

[root@serverA ~]# yum -y install uw-imap

On Debian-like systems, such as Ubuntu, UW-IMAP can be installed by using
Advanced Packaging Tool (APT) like so:

yyang@ubuntu-serverA:~$ sudo apt-get -y install uw-imapd

Installing UW-IMAP from Source
Begin by downloading the UW-IMAP server to /usr/local/src. The latest version of
the server can be found at ftp://ftp.cac.washington.edu/imap/imap.tar.Z. Once it
is downloaded, unpack it as follows:

[root@serverA src]# tar xvzf imap.tar.Z

This will create a new directory under which all of the source code will be pres-
ent. For the version we are using, we will see a new directory called imap-2007b
created. Change into the directory as follows:

[root@serverA src]# cd imap-2007b/

The defaults that ship with the UW-IMAP server work well for most installa-
tions. If you are interested in tuning the build process, open the makefile (found
in the current directory) with an editor and read through it. The file is well docu-
mented and shows what options can be turned on or off. For the installation we are
doing now, we will want to stick with a simple configuration change that we can
issue on the command line.

In addition to build options, the make command for UW-IMAP requires that
you specify the type of system that the package is being built on. This is in contrast
to many other open source programs that use the ./configure program (also
known as Autoconf) to automatically determine the running environment. The
options for Linux are as follows:

Parameter Environment

ldb Debian Linux

lnx Linux with traditional passwords

lnp Linux with Pluggable Authentication Modules (PAM)

lmd Mandrake Linux (also known as Mandriva Linux)

lrh Red Hat Linux 7.2 and later

 470 Linux Administration: A Beginner’s Guide

Parameter Environment

lr5 Red Hat Enterprise 5 and later (should cover recent Fedora
versions)

lsu SuSE Linux

sl4 Linux with Shadow passwords (requiring an additional library)

sl5 Linux with Shadow passwords (not requiring an additional
library)

slx Linux needing an extra library for password support

A little overwhelmed with the choices? Don’t be. Many of the choices are for old
versions of Linux that are not used anymore. If you have a Linux distribution that
is recent, the only ones you need to pay attention to are lsu (SuSE), lrh (Red Hat),
lmd (Mandrake), slx, and ldb (Debian).

If you are using SuSE, Red Hat/Fedora, Debian, or Mandrake/Mandriva, go ahead
and select the appropriate option. If you aren’t sure, the slx option should work on
almost all Linux-based systems. The only caveat with the slx option is that you may
need to edit the makefile and help it find where some common tool kits, such as OpenSSL,
are. (You can also simply disable those features, as we do in this installation.)

To keep things simple, we will follow the generic case and disable OpenSSL
but enable Internet Protocol version 6 (IPv6) support. To proceed with the build,
simply run

[root@serverA imap-2007b]# make slx IP=6 SSLTYPE=none

The entire build process should take only a few minutes, even on a slow machine.
Once complete, you will have four executables in the directory: mtest, ipop2d,
ipop3d, and imapd. Copy these to the /usr/local/sbin directory, like so:

[root@serverA imap-2007b]# cp mtest/mtest /usr/local/sbin/

[root@serverA imap-2007b]# cp ipopd/ipop2d /usr/local/sbin/

[root@serverA imap-2007b]# cp ipopd/ipop3d /usr/local/sbin/

[root@serverA imap-2007b]# cp imapd/imapd /usr/local/sbin/

Be sure their permissions are set correctly. Since they only need to be run by root, it is
appropriate to limit their access accordingly. Simply set their permissions as follows:

[root@serverA imap-2007b]# cd /usr/local/sbin

[root@serverA sbin]# chmod 700 mtest ipop2d ipop3d imapd

[root@serverA sbin]# chown root mtest ipop2d ipop3d imapd

That’s it.

471 Chapter 20: POP and IMAP

Running UW-IMAP
Most distributions automatically set up UW-IMAP to run under the superdaemon xinetd
(for more information on xinetd, see Chapter 8). Sample configuration files to get the
IMAP server and the POP3 servers running under xinetd in Fedora are shown here.

For the IMAP server, the configuration file is /etc/xinetd.d/imap.

service imap

{

 socket_type = stream

 wait = no

 user = root

 server = /usr/sbin/imapd

 log_on_success += HOST DURATION

 log_on_failure += HOST

 disable = no

}

For the POP3 server, the configuration file is /etc/xinetd.d/ipop3.

service pop3

{

 socket_type = stream

 wait = no

 user = root

 server = /usr/sbin/ipop3d

 log_on_success += HOST DURATION

 log_on_failure += HOST

 disable = no

}

TIP You can use the chkconfig utility in Fedora, Red Hat Enterprise Linux (RHEL), Centos, and
OpenSuSE to enable and disable the IMAP and POP services running under xinetd. For example, to
enable the IMAP service under xinetd, simply run chkconfig imap on. This will change the
“disable = yes” directive to “disable = no” in the /etc/xinetd.d/imap file.

TIP If you are working with the UW-IMAP package that was compiled and installed from source,
don’t forget to change the server directive in the xinetd configuration file to reflect the correct path. In
our example, the proper path for the compiled IMAP server binary would be /usr/local/sbin/imapd.

Before telling xinetd to reload its configuration, you will want to check that your
/etc/ services file has both POP3 and IMAP listed. If /etc/services does not have the pro-
tocols listed, simply add the following two lines:

pop3 110/tcp

imap 143/tcp

 472 Linux Administration: A Beginner’s Guide

Finally, tell xinetd to reload its configuration. If you are using Fedora, RHEL, or
 Centos, this can be done with the following command:

[root@fedora-serverA bin]# service xinetd reload

If you are using another distribution, you might be able to restart xinetd by passing
the restart argument to xinetd’s run control, like so:

yyang@ubuntu-serverA:~$ sudo /etc/init.d/xinetd restart

If everything worked, you should have a functional IMAP server and POP3 server.
Using the commands and methods shown in the earlier section “POP and IMAP Basics”
we can connect and test for basic functionality.

TIP If you get an error message along the way, check the /var/log/messages file for additional
information.

Checking Basic POP3 Functionality
We begin by using Telnet to connect to the POP3 server (localhost in this example). From
a command prompt, type

[root@serverA ~]# telnet localhost 110

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

+OK POP3 localhost.localdomain 2006k.101 server ready

The server is now waiting for you to give it a command. (Don’t worry that you don’t
see a prompt.) Start by submitting your login name as follows:

USER yourlogin

where yourlogin is, of course, your login ID. The server responds with

+OK User name accepted, password please

Now tell the server your password using the PASS command

PASS yourpassword

where yourpassword is your password. The server responds with

+OK Mailbox open, <X> messages

where X represents the number of messages in your mailbox. You’re now logged in and can
issue commands to read your mail. Since we are simply validating that the server is work-
ing, we can log out now. Simply type QUIT, and the server will close the connection.

473 Chapter 20: POP and IMAP

QUIT

+OK Sayonara

Connection closed by foreign host.

That’s it.

Checking Basic IMAP Functionality
We begin by using Telnet to connect to the IMAP server (localhost in this example). From
the command prompt, type

[root@serverA ~]# telnet localhost 143

The IMAP server will respond with something similar to

* OK [CAPABILITY.......<OUTPUT TRUNCATED>....... localhost.localdomain

The server is now ready for you to enter commands. Note that like the POP server,
the IMAP server will not issue a prompt.

The format of commands with IMAP is

<tag> <command> <parameters>

where tag represents a unique value used to identify (tag) the command. Example tags
are A001, b, box, c, box2, 3, etc. Commands can be executed asynchronously, meaning
that it is possible for you to enter one command and while waiting for the response, enter
another command. Because each command is tagged, the output will clearly reflect what
output corresponds to what request.

To log into the IMAP server, simply enter the login command, like so:

A001 login <username> <password>

where <username> is the username you wish to test and password is the user’s pass-
word. If the authentication is a success, the server will respond with something like

A001 OK [CAPABILITY ...<OUTPUT TRUNCATED>... User <username> authenticated

That is enough to tell you two things:

 ▼ The username and password are valid.

 ▲ The mail server was able to locate and access the user’s mailbox.

With the server validated, you can log out by simply typing the logout command,
like so:

A002 logout

The server will reply with something similar to

* BYE servera.example.org IMAP4rev1 server terminating connection

A002 OK LOGOUT completed

 474 Linux Administration: A Beginner’s Guide

OTHER ISSUES WITH MAIL SERVICES
Thus far, we’ve covered enough material to get you started with a working mail server,
but there is still a lot of room for improvements. In this section, we step through some of
the issues you may encounter and some common techniques to address them.

SSL Security
The biggest security issue with the POP3 and IMAP servers is that in their simplest con-
figuration, they do not offer any encryption. Advanced IMAP configurations offer richer
password-hashing schemes, and most modern full-featured e-mail clients support them.
Having said this, your best bet is to encrypt the entire stream using Secure Sockets Layer
(SSL) whenever possible.

The way that we have configured this instance of the UW-IMAP server, we have not
used SSL to keep the first install simple. (It’s always nice to know that you can get some-
thing working first before tinkering too much with it!) If you do want to use SSL, you
will need to take the following steps:

 1. Recompile UW-IMAP, this time with SSL enabled.

Change the xinetd configuration files to use the imaps and pop3s services instead
of imap and pop3, respectively. (The imaps service runs on TCP port 993, and
pop3s runs on TCP port 995.)

 2. Install an SSL certificate.

Make sure that your clients use SSL. In Outlook, this choice is a simple check box in
the “Add Mailbox” configuration options.

Recompiling with SSL enabled may require more tinkering, depending on your
installation. For the Linux types that are defined (Red Hat/Fedora, SuSE, etc.), the SSL
libraries are already defined in the makefile. If you are running another distribution, you
may need to explicitly set the SSL variables in the makefile first.

For example, to compile with SSL capability on Fedora, simply run

[root@serverA imap-2007b]# make clean ; make slx

TIP The binary version of the UW-IMAP package that was installed using the distribution’s package
management system (Yum or APT) supports SSL.

Don’t forget to copy the newly compiled binaries to the /usr/local/sbin directory and
set their permissions accordingly.

With respect to creating an SSL certificate, you can create a self-signed certificate
quite easily using OpenSSL. Simply run

[root@serverA imap-2007b]# openssl req -new -x509 -nodes -out imapd.pem \

-keyout imapd.pem -days 3650

475 Chapter 20: POP and IMAP

This will create a certificate that will last ten years. Place it in your OpenSSL certifi-
cates directory. On RHEL, Fedora, and Centos, this is the /etc/pki/tls directory.

NOTE Users will receive a warning that the certificate is not properly signed if you use this method
of creating a certificate. If you do not want this warning, you will need to purchase a certificate from
a Certificate Authority (CA) like VeriSign. Depending on your users, this may be a requirement.
However, if all you need is an encrypted tunnel for passwords to be sent through, a self-signed
certificate works fine.

Testing IMAP Connectivity with SSL
Once you move to an SSL-based mail server, you may find that your tricks in checking
on the mail server using Telnet don’t work anymore. This is because Telnet assumes no
encryption on the line.

Getting past this little hurdle is quite easy; simply use OpenSSL as a client instead of
Telnet, like so:

[root@serverA ~]# openssl s_client -connect 127.0.0.1:993

In this example, we are able to connect to the IMAP server running on 127.0.0.1, even
though it is encrypted. Once we have the connection established, we can use the com-
mands that we went over in the “Checking Basic IMAP Functionality” section of this
chapter.

Availability
In managing a mail server, you will quickly find that e-mail qualifies as one of the most
visible resources on your network. When the mail server goes down, everyone will
know—they will know quickly, and worst of all, they will let you (the administrator)
know, too. Thus, it is important that you consider how you will be able to provide 24/7
availability for e-mail services.

The number-one issue that threatens mail servers is “fat fingering” a configuration—
in other words, making an error when doing basic administration. There is no solution to
this problem other than being careful! When dealing with any kind of production server,
it is prudent to take each step carefully and make sure that you meant to do what you’re
typing. When at all possible, work as a normal user rather than root and use sudo for
specific commands that need root permissions.

The second big issue with managing mail servers is hardware availability. Unfortu-
nately, this is best addressed with money—making an investment upfront in a good case,
adequate cooling, and as much redundancy as you can afford is a good way to make sure
that the server doesn’t take a fall over something silly like a CPU fan going out. Dual-
power supplies are another way to help keep mechanical things from failing on you.
Also, disks configured in a RAID system help mitigate the risk of failure.

 476 Linux Administration: A Beginner’s Guide

Finally, consider expansion and growth early in your design. Your users will inevi-
tably consume all of your available disk space. The last thing you will want is to start
bouncing mail because the mail server has run out of disk space! To address this issue,
consider using disk volumes that can be expanded on the fly and RAID systems that
allow new disks to be added quickly. This will allow you to add disks to the volume with
minimal downtime and without having to move to a completely new server.

Log Files
Although we’ve mentioned this earlier in the chapter, watching the /var/log/messages
and /var/log/maillog files is a prudent way to manage and track the activity in your mail
server. The UW-IMAP server provides a rich array of messages to help you understand
what is happening with your server and troubleshoot any peculiar behavior.

A perfect example of the usefulness of log files came in writing this chapter, specifi-
cally the SSL section. After compiling the new version of the server, we forgot to copy
the imapd file to /usr/local/sbin. This led to a puzzling behavior when we tried to con-
nect to the server using Evolution (a popular open source e-mail client). We tried using
the openssl s_client command to connect, and it gave an unclear error. What was
going on?

A quick look at the log files using the tail command revealed the problem:

Dec 27 21:27:37 serverA imapd[3808]: This server does not support SSL

Dec 27 21:28:03 serverA imapd[3812]: imaps SSL service init from 127.0.0.1

Well, that more or less spells it out for us. Retracing our steps, we realized that we
forgot to copy the new imapd binary to /usr/local/sbin. A quick run of the cp command,
a restart of xinetd, and we were greeted with success.

In short, when in doubt, take a moment to look through the log files. You’ll probably
find a solution to your problem there.

SUMMARY
In this chapter we covered some of the theory behind IMAP and POP3, we ran through
the complete installation for the UW-IMAP software, and we discussed how to manually
test connectivity to each service. With this chapter, you have enough information to run
a simple mail server capable of handling a few hundred users without a problem.

Finally, we covered enabling SSL on your server and basic concerns in making sure
your mail server is available 24/7. This method of security is an easy way to keep clear-
text passwords embedded in IMAP traffic from making their way into hands that should
not have them.

If you find yourself needing to build out a larger mail system, take the time to read
up on the Cyrus and Courier mail servers. If you find that your environment requires
more groupware functionality (like the one provided with Microsoft Exchange Server),
you might want to check out other software, such as Scalix, Open-Xchange, Zimbra, and

477 Chapter 20: POP and IMAP

Kolab. All provide significant extended capabilities at the expense of additional com-
plexity in configuration. However, if you need a mail server that has more bells and
whistles, you may find the extra complexity a necessity.

As with any server software that is visible to the outside world, you will want to
keep up-to-date with the latest releases. Thankfully, the UW-IMAP package has shown
sufficient stability and security so as to minimize the need for frequent updates, but a
watchful eye is still nice. Finally, consider taking a read through the latest IMAP and
POP RFCs to understand more about the protocols. The more familiar you are with the
protocols, the easier you’ll find troubleshooting to be.

479

21

The Secure Shell
(SSH)

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 480 Linux Administration: A Beginner’s Guide

One unfortunate side effect of connecting a computer into a public network (such
as the Internet) is that, at one point or another, some folks out there will try to
break into the system. This is obviously not a good thing.

In Chapter 15, we discussed techniques for securing your Linux system, all of which
are designed to limit remote access to your system to the bare essentials. But what if you
need to perform system administrative duties from a remote site? Traditional Telnet is
woefully insecure, because it transmits the entire session (logins, passwords, and all) in
cleartext. How can you reap the benefits of a truly multiuser system if you can’t securely
log into it?

NOTE Cleartext means that the data is unencrypted. In any system, when passwords get sent over
the line in cleartext, a packet sniffer could reveal what a user’s password is. This is especially bad if
that user is root!

To tackle the issue of remote login versus password security, a solution called Secure
Shell (SSH) was developed. SSH is a suite of network communication tools that are col-
lectively based on an open protocol/standard that is guided by the Internet Engineer-
ing Task Force (IETF). It allows users to connect to a remote server just as they would
using Telnet, rlogin, FTP, etc.—except that the session is 100 percent encrypted. Someone
using a packet sniffer merely sees encrypted traffic going by. Should they capture the
encrypted traffic, decrypting it could take a long time.

In this chapter, we’ll take a brief and general look at the cryptography concept. Then
we’ll examine the versions of SSH, where to get it, and how to install and configure it.

UNDERSTANDING PUBLIC KEY CRYPTOGRAPHY
A quick disclaimer is probably necessary before proceeding: “This chapter is by no means
an authority on the subject of cryptography and, as such, is not the definitive source for
cryptography matters.” What you will find here is a general discussion along with some
references to good books that approach the topic more thoroughly.

Secure Shell relies on a technology called public-key cryptography. It works similarly to a
safe deposit box at the bank: You need two keys to open the box, or at least multiple layers
of security/checks have to be crossed. In the case of public-key cryptography, you need
two mathematical keys: a public one and a private one. Your public key can be published
on a public web page, printed on a T-shirt, or posted on a billboard in the busiest part of
town. Anyone who asks for it can have a copy. On the other hand, your private key must
be protected to the best of your ability. It is this piece of information that makes the data
you want to encrypt truly secure. Every public key/private key combination is unique.

The actual process of encrypting data and sending it from one person to the next requires
several steps. We’ll use the popular Alice and Bob analogy, and go through the process one
step at a time as they both try to communicate in a secure manner with one another. Fig-
ures 21-1 through 21-5 illustrate an oversimplified version of the actual process.

481 Chapter 21: The Secure Shel l (SSH)

Figure 21-1. Alice fetches Bob’s public key.

Network
Public key

Alice Bob

Figure 21-2. Alice uses Bob’s public key, along with her private key, to encrypt and sign the data, respectively.

Network

Alice

Bob’s public key
+ Alice’s private key
+ Data

= Encrypted data

Bob

Figure 21-3. Alice sends the encrypted data to Bob.

Encrypted data
Network

Alice Bob

Figure 21-4. Bob fetches Alice’s public key.

NetworkPublic key

Alice Bob

 482 Linux Administration: A Beginner’s Guide

Looking at these steps, notice that at no point was the secret (private) key sent over
the network. Also note that once the data was encrypted with Bob’s public key and
signed with Alice’s private key, the only pair of keys that could decrypt and verify it
were Bob’s private key and Alice’s public key. Thus, if someone intercepted the data in
the middle of the transmission, they wouldn’t be able to decrypt the data without the
proper private keys.

To make things even more interesting, SSH regularly changes its session key. (This
is a randomly generated, symmetric key for encrypting the communication between the
SSH client and server. It is shared by the two parties in a secure manner during SSH con-
nection setup.) In this way, the data stream gets encrypted differently every few minutes.
Thus, even if someone happened to figure out the key for a transmission, that miracle
would be valid for only a few minutes until the keys changed again.

Key Characteristics
So what exactly is a key? Essentially, a key is a large number that has special math-
ematical properties. Whether someone can break an encryption scheme depends on
their ability to find out what the key is. Thus, the larger the key is, the harder it will be
to discover it.

Low-grade encryption has 56 bits. This means there are 256 possible keys. To give
you a sense of scale, 232 is equal to 4 billion, 248 is equal to 256 trillion, and 256 is equal
to 65,536 trillion. While this seems like a significant number of possibilities, it has been
demonstrated that a loose network of PCs dedicated to iterating through every pos-
sibility could conceivably break a low-grade encryption code in less than a month. In
1998, the Electronic Frontier Foundation (EFF) published designs for a (then) $250,000
computer capable of cracking 56-bit keys in a few seconds to demonstrate the need
for higher-grade encryption. If $250,000 seems like a lot of money to you, think of the
potential for credit card fraud if someone successfully used that computer for that
purpose!

Figure 21-5. Bob uses Alice’s public key, along with his private key, to verify and decrypt the data, respectively.

Alice’s public key
+ Bob’s private key

+ Encrypted data
= Decrypted data

Network

Alice Bob

483 Chapter 21: The Secure Shel l (SSH)

NOTE The EFF published the aforementioned designs in an effort to convince the U.S. government
that the laws limiting the export of cryptography software were sorely outdated and hurting the United
States, since so many companies were being forced to work in other countries. This finally paid off
in 2000, when the laws were loosened up enough to allow the export of higher-grade cryptography.
Unfortunately, most of the companies doing cryptography work had already exported their engineering
to other countries.

For a key to be sufficiently difficult to break, experts suggest no fewer than 128 bits.
Because every extra bit effectively doubles the number of possibilities, 128 bits offers a
genuine challenge. And if you want to really make the encryption solid, a key size of 512
bits or higher is recommended. SSH can use up to 1024 bits to encrypt your data.

The tradeoff to using higher-bit encryption is that it requires more math-processing
power for the computer to churn through and validate a key. This takes time and, there-
fore, makes the authentication process a touch slower—but most people feel this tradeoff
is worthwhile.

NOTE Though unproven, it is believed that even the infamous National Security Agency (NSA) can’t
break codes encrypted with keys higher than 1024 bits.

Cryptography References
SSH supports a variety of encryption algorithms. Public-key encryption happens to be
the most interesting method of performing encryption from site to site and is arguably
the most secure. If you want to learn more about cryptography, here are some good
books and other resources to look into:

 ▼ PGP by Simson Garfinkel, et al. (O’Reilly and Associates, 1994)

■ Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition by
Bruce Schneier (John Wiley & Sons, 1995)

■ Cryptography and Network Security: Principles and Practice, Third Edition by Wil-
liam Stallings (Prentice Hall, 2002)

■ http://tools.ietf.org/id/draft-ietf-secsh-connect-25.txt

 ▲ www.apps.ietf.org/rfc/rfc3766.html

The PGP book is specific to the PGP program, but it also contains a hefty amount of
history and an excellent collection of general cryptography tutorials. The Applied Cryp-
tography book might be a bit overwhelming to many, especially nonprogrammers, but it
successfully explains how actual cryptographic algorithms work. (This text is considered
a bible among cypherheads.) Finally, Cryptography and Network Security is heavier on
principles than on practice, but it’s useful if you’re interested in the theoretical aspects of
cryptography rather than the code itself.

 484 Linux Administration: A Beginner’s Guide

UNDERSTANDING SSH VERSIONS AND DISTRIBUTIONS
The first version of SSH that was made available by DataFellows (now F-Secure) restricted
free use of SSH to noncommercial activities; commercial activities required that licenses
be purchased. But more significant than the cost of the package is the fact that the source
code to the package is completely open. This is important to cryptographic software,
for it allows peers to examine the source code and make sure there are no holes that
may allow hackers to break the security. (In other words, serious cryptographers do not
rely on security through obscurity.) Since the U.S. government has relaxed some of its
encryption laws, work on the OpenSSH project has increased, and it is a popular alterna-
tive to some of the commercial versions of the SSH protocol.

Because the SSH protocol has become an IETF standard, there are also other devel-
opers actively working on SSH clients for other operating systems. There are many
Microsoft Windows clients, Macintosh clients, and even a Palm client, in addition to the
standard UNIX clients. You can find the version of OpenSSH that we will be discussing
at www.openssh.org.

OpenSSH and OpenBSD
The OpenSSH project is being spearheaded by the OpenBSD project. OpenBSD is a ver-
sion of the Berkeley Software Distribution (BSD) operating system (another UNIX vari-
ant) that strives for the best security of any operating system available. A quick trip to
their web site (www.openbsd.org) shows that they have gone ten years with only two
remote exploits in their default installation. Unfortunately, this level of fanaticism on
security comes at the expense of not having the most whiz-bang-feature-rich tools avail-
able, since they require that anything added to their distribution gets audited for security
first. This has made OpenBSD a popular foundation for firewalls.

The core of the OpenSSH package is considered part of the OpenBSD project and, thus,
is simple and specific to the OpenBSD operating system. To make OpenSSH available to
other operating systems, a separate group exists to make OpenSSH portable whenever
new releases come out. Typically, this happens quickly after the original release.

NOTE Since we are targeting Linux, we will use the versions suffixed with a p, indicating that they
have been ported.

Alternative Vendors for SSH Clients
The SSH client is the client component of the SSH protocol suite. It is what allows users
to interact with the service(s) provided by an SSH server daemon.

Every day, many people work within heterogeneous environments, and it’s impos-
sible to ignore all the Windows 98/NT/2000/XP/2003/Vista and Mac OS systems out
there. In order to allow these folks to work with a real operating system (Linux, of course!),
there must be a mechanism for logging into such systems remotely. Because Telnet is not

485 Chapter 21: The Secure Shel l (SSH)

secure, SSH provides an alternative. Virtually all Linux/UNIX systems come with their
own built-in SSH clients, and as such, there isn’t any need to worry about them; how-
ever, the non-UNIX operating systems are a different story. Here is a quick rundown of
several SSH clients and other useful SSH resources:

▼ PuTTY, for Win32 (www.chiark.greenend.org.uk/~sgtatham/putty) This is
probably one of the oldest and most popular SSH implementations for the Win32
platforms. It is extremely lightweight—one binary with no dynamic link libraries
(DLLs), just one executable. Also on this site are tools like pscp, which is a Win-
dows command-line version of Secure Copy (SCP).

■ OpenSSH, for Mac OS X That’s right—OpenSSH is part of the Mac OS X sys-
tem. When you open the terminal application, you can simply issue the ssh
command. (It also ships with an OpenSSH SSH server.) Mac OS X is actually a
UNIX-based and UNIX-compliant operating system. One of its main core com-
ponents—the kernel—is based on the BSD kernel.

■ MindTerm (Multiplatform) (www.appgate.com/products/80_MindTerm) This
program supports versions 1 and 2 of the SSH protocol. Written in 100 percent
Java, it works on many UNIX platforms (including Linux), as well as Windows
and Mac OS. See the web page for a complete list of tested operating systems.

■ FreeSSH, for Windows (www.freessh.org) The FreeSSH web site tries to keep
track of programs that implement the SSH protocol. The site lists both free and
commercial SSH client and server implementations.

▲ SecureCRT, for Windows (www.vandyke.com/products/securecrt) This is a
commercial implementation of SSH.

The Weakest Link
You’ve probably heard the saying, “Security is only as strong as your weakest link.”
This particular saying has significance in terms of OpenSSH and securing your network:
OpenSSH is only as secure as the weakest connection between the user and the server.
This means that if a user uses Telnet from host A to host B and then uses ssh to host C,
the entire connection can be monitored from the link between host A and host B. The fact
that the link between host B and host C is encrypted becomes irrelevant.

Be sure to explain this to your users when you enable logins via SSH, especially if
you’re disabling Telnet access altogether. Unfortunately, taking the time to tighten down
your security in this manner will be soundly defeated if your users Telnet to a host across
the Internet so that they can ssh into your server. And more often than not, they won’t
have the slightest idea of why doing that is a bad idea.

NOTE When you Telnet across the Internet, you are crossing several network boundaries. Each of
those providers has full rights to sniff traffic and gather any information they want. Someone can easily
see you reading your e-mail. With SSH, you can rest assured that your connection is secure.

 486 Linux Administration: A Beginner’s Guide

Installing OpenSSH via RPM in Fedora
This is perhaps the easiest and quickest way to get SSH up and running on any Linux
system. It is almost guaranteed that you will already have the package installed and run-
ning on most modern Linux distributions. Even if you choose a bare-bones installation
(i.e., the most minimal option during operating system installation), OpenSSH is usually
a part of that minimum. This is more the norm than the exception. But again, just in case
you are running a Linux distribution that was developed on the planet Neptune but at
least has Red Hat Package Manager (RPM) installed, you can always download and
install the precompiled RPM package for OpenSSH. On our sample Fedora system, you
can query the RPM database to make sure that OpenSSH is indeed installed by typing

[root@serverA ~]# rpm -qa | grep -i openssh

openssh-*

openssh-server-*

....<OUTPUT TRUNCATED>.....

And, if by some freak occurrence, you don’t have it already installed (or you acciden-
tally uninstalled it), you can quickly install an OpenSSH server using Yum by issuing
this command:

[root@serverA ~]# yum -y install openssh-server

Installing OpenSSH via APT in Ubuntu
The Ubuntu Linux distribution usually comes with the client component of OpenSSH
preinstalled, but you have to explicitly install the server component if you want it.
Installing the OpenSSH server using Advanced Packaging Tool (APT) in Ubuntu is as
simple as running

yyang@ubuntu-serverA:~$ sudo apt-get -y install openssh-server

The install process will also automatically start the SSH daemon for you after install-
ing it.

You can confirm that the software is installed by running

yyang@ubuntu-serverA:~$ dpkg -l openssh-server

DOWNLOADING, COMPILING, AND INSTALLING
OPENSSH FROM SOURCE

As previously mentioned, virtually all Linux versions ship with OpenSSH; however, you
may have a need to roll your own version from source for whatever reason (e.g., you are

487 Chapter 21: The Secure Shel l (SSH)

running a version of Linux that was developed on the planet Pluto!). This section will
cover downloading the OpenSSH software and the two components it needs: OpenSSL
and zlib. Then you will compile and install the software. If you want to stick with the
precompiled version of OpenSSH that ships with your distribution, you can skip this
section and move straight to the section “Server Startup and Shutdown.”

As of this writing, the latest version of OpenSSH was 4.7p1. You can download this
from www.openssh.com/portable.html. Select the site that is closest to you, and down-
load openssh-4.7p1.tar.gz to a directory with enough free space (/usr/local/src is a good
choice, and we’ll use it in this example).

Once you have downloaded OpenSSH to /usr/local/src, unpack it with the tar com-
mand, like so:

[root@serverA src]# tar xvzf openssh-4.7p1.tar.gz

This will create a directory called openssh-4.7p1 under /usr/local/src.
Along with OpenSSH, you will need OpenSSL version 0.9.8 or later. As of this writ-

ing, the latest version of OpenSSL was openssl-0.9.8*.tar.gz. You can download that from
www.openssl.org. Once you have downloaded OpenSSL to /usr/local/src, unpack it with
the tar command, like so:

[root@serverA src]# tar xvzf openssl-0.9.8*.tar.gz

Finally, the last package you need is the zlib library, which is used to provide compres-
sion and decompression facilities. Most modern Linux distributions have this already,
but if you want the latest version, you need to download it from www.zlib.net. The latest
version, as of this writing, was version 1.2.3. To unpack the package in /usr/local/src after
downloading, use tar, like so:

[root@serverA src]# tar xvzf zlib-1.2.3.tar.gz

The following steps will walk through the process of compiling and installing the
various components of OpenSSH and its dependencies.

 1. Begin by going into the directory that zlib was unpacked into, like so:

[root@serverA src]# cd /usr/local/src/zlib-*

 2. Then run configure and make, like so:

[root@serverA zlib-*]# ./configure

[root@serverA zlib-*]# make

This will result in the zlib library being built.

 3. Install the zlib library by running

[root@serverA zlib-*]# make install

The resulting library will be placed in the /usr/local/lib directory.

 488 Linux Administration: A Beginner’s Guide

 4. Now you need to compile OpenSSL. Begin by changing to the directory that the
downloaded OpenSSL was unpacked to, like so:

[root@serverA ~]# cd /usr/local/src/openssl-0.9.8*

 5. Once you are in the OpenSSL directory, all you need to do is run configure
and make. OpenSSL will take care of figuring out the type of system it is on and
configure itself to work in an optimal fashion. The exact commands are

[root@serverA openssl-0.9.8*]# ./config

[root@serverA openssl-0.9.8*]# make

Note that this step may take a few minutes to complete.

 6. Once OpenSSL is done compiling, you can test it by running

[root@serverA openssl-0.9.8*]# make test

 7. If all went well, the test should run without problems by spewing a bunch of
stuff on the terminal. If there are any problems, OpenSSL will report them to
you. If you do get an error, you should remove this copy of OpenSSL and try the
download/unpack/compile procedure again.

 8. Once you have finished the test, you can install OpenSSL by running

[root@serverA openssl-0.9.8*]# make install

This step will install OpenSSL into the /usr/local/ssl directory.

 9. You are now ready to begin the actual compile and install of the OpenSSH pack-
age. Change into the OpenSSH package directory, like so:

[root@serverA ~]# cd /usr/local/src/openssh-4*

 10. As with the other two packages, you need to begin by running the configure
program. For this package, however, you need to specify some additional param-
eters. Namely, you need to tell it where the other two packages got installed. You
can always run ./configure with the --help option to see all of the param-
eters, but you’ll find that the following ./configure statement will probably
work fine:

[root@serverA openssh-4*]# ./configure --with-ssl-dir=/usr/local/ssl/

 11. Once OpenSSH is configured, simply run make and make install to put all of
the files into the appropriate /usr/local directories.

[root@serverA openssh-4*]# make

[root@serverA openssh-4*]# make install

That’s it—you are done. This set of commands will install the various OpenSSH
binaries and libraries under the /usr/local directory. The SSH server, for example, will

489 Chapter 21: The Secure Shel l (SSH)

be placed under the /usr/local/sbin directory, and the various client components will be
placed under the /usr/local/bin/ directory.

Please note that even though we just walked through how to compile and install
OpenSSH from source, the rest of this chapter will assume that we are dealing with
OpenSSH as it is installed via RPM or APT (as discussed in previous sections).

SERVER STARTUP AND SHUTDOWN
If you want users to be able to log into your system via SSH, you will need to make sure
that the service is running and start it if it is not. You should also make sure that the ser-
vice gets started automatically between system reboots.

On our Fedora server, we’ll check the status of the sshd daemon. Type

[root@serverA ~]# service sshd status

sshd (pid 2242 2101) is running..

The sample output shows the service is up and running. On the other hand, if the
service is stopped, issue this command to start it:

[root@serverA ~]# service sshd start

TIP On an OpenSuSE distro, the command to check the status of sshd is

opensuse-serverA:~ # rcsshd status

 And to start it, the command is

opensuse-serverA:~ # rcsshd start

If, for some reason, you do need to stop the SSH server, type

[root@serverA ~]# service sshd stop

If you make configuration changes that you want to go into effect, you can restart the
daemon at any time by simply running

[root@serverA ~]# service sshd restart

On a Debian-based Linux distro like Ubuntu, you can use the run control scripts for
OpenSSH to control the daemon. For example, to start it, you would run

yyang@ubuntu-serverA:~$ sudo /etc/init.d/ssh start

To stop the daemon, run

yyang@ubuntu-serverA:~$ sudo /etc/init.d/ssh stop

 490 Linux Administration: A Beginner’s Guide

SSHD CONFIGURATION FILE
Most Linux systems already have the OpenSSH server configured and running with
some defaults out of the box. On most RPM-based Linux distributions, such as Fedora,
Red Hat Enterprise Linux (RHEL), or OpenSuSE, the configuration file for sshd usually
resides under the /etc/ssh/ directory and is called sshd_config. Debian-based distros also
store the configuration files under the /etc/ssh/ directory. For the OpenSSH version that
we installed from source earlier, the configuration file is located under the /usr/local/etc/
directory.

Next we’ll discuss some of the configuration options found in the sshd_config file.

▼ AuthorizedKeysFile Specifies the file that contains the public keys that can
be used for user authentication. The default is /<User_Home_Directory>/.ssh/
authorized_keys.

■ Ciphers This is a comma-separated list of ciphers allowed for protocol version
2. Examples of supported ciphers are 3des-cbc, aes256-cbc, aes256-ctr, arcfour,
and blowfish-cbc.

■ HostKey Defines the file containing a private host key used by SSH. The default
is /etc/ssh/ssh_host_rsa_key or /etc/ssh/ssh_host_dsa_key for protocol version 2.

■ Port Specifies the port number that sshd listens on. The default value is 22.

■ Protocol This specifies the protocol versions sshd supports. The possible values
are 1 and 2. Note that protocol version 1 is generally considered insecure now.

■ AllowTcpForwarding Specifies whether Transmission Control Protocol (TCP)
forwarding is permitted. The default is yes.

■ X11Forwarding Specifies whether X11 forwarding is permitted. The argument
must be yes or no. The default is no.

 ▲ ListenAddress Specifies the local address that the SSH daemon listens on.
By default, OpenSSH will listen on both Internet Protocol version 4 (IPv4) and
Internet Protocol version 6 (IPv6) sockets. But if you need to specify a particular
interface address, you can tweak this directive.

NOTE sshd_config is a rather odd configuration file. You will notice that unlike other Linux
configuration files, comments (#) in the sshd_config file denote the default values of the options; i.e.,
comments represent already compiled-in defaults.

USING OPENSSH
OpenSSH comes with several useful programs that we will cover in this section. First,
there is the ssh client program. Second, there is the Secure Copy (scp) program. And
finally, there is the Secure FTP program. The most common application you will prob-
ably use is the ssh client program.

491 Chapter 21: The Secure Shel l (SSH)

Secure Shell (SSH)
With the ssh daemon started, you can simply use the ssh client to log into a machine
from a remote location in the same manner that you would with Telnet. The key differ-
ence between ssh and Telnet, of course, is that your SSH session is encrypted, while your
Telnet session is not.

The ssh client program will usually assume that you want to log into the remote
system (destination) as the same user with which you are logged into the local system
(source). However, if you need to use a different login (for instance, if you are logged in
as root on one host and want to ssh to another and log in as the user yyang), all you need
to do is provide the -l option along with the desired login. For example, if you want to
log into the host serverB as the user yyang from serverA, you would type

[root@serverA ~]# ssh -l yyang serverB

Or you could use the username@host command format, like so:

[root@serverA ~]# ssh yyang@serverB

You would then be prompted with a password prompt from serverB for the user
yyang’s password.

But if you just want to log into the remote host without needing to change your login
at the remote end, simply run ssh, like so:

[root@serverA ~]# ssh serverB

With this command, you’ll be logged in as the root user at serverB.
Of course, you can always replace the hostname with a valid IP address, like

[root@serverA ~]# ssh yyang@192.168.1.50

To connect to a remote SSH server that is also listening on an IPv6 address (e.g.,
2001:DB8::2), you could try

[root@serverA ~]# ssh -6 yyang@2001:DB8::2

CREATING A SECURE TUNNEL
This section covers what is commonly called the poor man’s virtual private network
(VPN). Essentially, you can use SSH to create a tunnel from your local system to a remote
system. This is a handy feature when you need to access an intranet or another system
that is not exposed to the outside world on your intranet. For example, you can ssh to a
file server machine that will set up the port forwarding to the remote web server.

Let’s imagine a scenario like this:
We have a system with two network interfaces. The system’s hostname is serverA.

One of the interfaces is connected directly to the Internet. The other interface is con-
nected to the local area network (LAN) of a company. Assume the first interface (the

 492 Linux Administration: A Beginner’s Guide

wide area network, or WAN, interface) has a public/routable-type IP address of 1.1.1.1
and the second interface has a private-type IP address of 192.168.1.1. The second inter-
face is connected to the LAN (network address 192.168.1.0), which is completely cut off
from the Internet. The only service that is allowed on the WAN interface is the sshd dae-
mon. The LAN has various servers and workstations that are only accessible by the hosts
on the inside (including serverA).

Assume one of the internal servers hosts a web-based accounting application that
user yyang needs to access from home. The internal web server’s hostname is “accounts,”
with an IP address of 192.168.1.100. And the user yyang’s home workstation hostname is
homeA. We already said the internal network is cut off from the Internet and home sys-
tems are part of the public Internet, so what gives? The setup is illustrated in Figure 21-6.

Figure 21-6. Port forwarding with SSH

HostA

WAN interface—
1.1.1.1

ServerA—SSH
server

Accounts—192.168.1.100
Web server hosting

accounting application Other internal hosts

192.168.1.0
Network

User yyang’s
home system—

SSH client

Internet

LAN interface—
192.168.1.1

493 Chapter 21: The Secure Shel l (SSH)

Enter the poor man’s VPN, aka SSH tunneling. The user yyang will set up an SSH
tunnel to the web server running on “accounts” by following these steps.

 1. While sitting in front of her home system—hostA—the user yyang will log into
the home system as herself.

 2. Once logged in locally, she will create a tunnel from port 9000 on the local system
to port 80 on the system running the web-based accounting software (named
accounts).

 3. In order to do this, yyang will connect via SSH to serverA’s WAN interface
(1.1.1.1) by issuing this command from her system at home (hostA):

[yyang@hostA ~]# ssh –L 9000:192.168.1.100:80 1.1.1.1

NOTE The syntax for the port-forwarding command is

ssh -L local_port:destination_host:destination_port ssh_server

 where local_port is the local port you will connect to after the tunnel is set up, destination_
host:destination_port is the host:port pair where the tunnel will be directed, and
ssh_server is the host that will perform the forwarding to the end host.

 4. After yyang successfully authenticates herself to serverA and has logged into
her account on serverA, she can then launch any web browser installed on her
workstation (hostA).

 5. User yyang will need to use the web browser to access the forwarded port (9000)
on the local system and see if the tunnel is working correctly. For this example,
she needs to type the Uniform Resource Locator (URL) http://localhost:9000
into the address field of the browser.

 6. If all goes well, the web content being hosted on the accounting server should
show up on yyang’s web browser—just as if she were accessing the site from
within the local office LAN (i.e., the 192.168.1.0 network).

 7. To close down the tunnel, simply close all windows that are accessing the tunnel
and then end the SSH connection to serverA by typing exit at the prompt you
used to create the tunnel.

The secure tunnel affords you secure access to other systems within an intranet or
a remote location. It is a great and inexpensive way to create a virtual private network
between your host and another host. It is not a full-featured VPN solution, since you
can’t easily access every host on the remote network, but it gets the job done. In this
project, you port-forwarded HTTP traffic. You can tunnel almost any protocol, such as
Virtual Network Computing (VNC) or Telnet. You should note that this is a way for
people inside a firewall or proxy to bypass the firewall mechanisms and get to comput-
ers in the outside world.

 494 Linux Administration: A Beginner’s Guide

OpenSSH Shell Tricks
It is also possible to create a secure tunnel after you have already logged into the
remote SSH server. That is, you don’t have to set up the tunnel when you are set-
ting up the initial SSH connection. This is especially useful for the times that you
have a shell on a remote host and you need to hop around onto other systems that
would otherwise be inaccessible.

SSH has its own nifty little shell that can be used to accomplish this and other
neat tricks.

To gain access to the built-in SSH shell, press shift-~c on the keyboard after log-
ging into an SSH server. You will be dropped to a prompt similar to this one:

ssh>

To set up a tunnel similar to the one that we set up earlier, type this command
at the ssh prompt/shell:

ssh> -L 9000:192.168.1.100:80

To leave or quit the SSH shell, just press enter on your keyboard, and you’ll be
dropped back to your normal login shell on the system.

While logged in remotely to a system via SSH, simultaneously typing the tilde
character (~) and the question mark (?) will display a listing of all the other things
you can do at the ssh prompt.

[root@serverA ~]# ~?

These are the supported escape sequences:

~. Terminate connection

~ Open a command line

~R Request rekey (SSH protocol 2 only)

~^Z Suspend SSH

~# List forwarded connections

~& Background SSH (when waiting for connections to terminate)

~? This message

~~ Send the escape character by typing it twice

Note that escapes are recognized only immediately after newlines.

495 Chapter 21: The Secure Shel l (SSH)

Secure Copy (SCP)
Secure Copy (scp) is meant as a replacement for the rcp command, which allows you to
do remote copies from one host to another. The most significant problem with the rcp
command is that users tend to arrange their remote-access settings to allow far too much
access into your system. To help mitigate this, instruct users to use the scp command
instead, and then completely disable access to the insecure rlogin programs. The format
of scp is identical to rcp, so users shouldn’t have problems with this transition.

For example, say user yyang is logged into her home workstation and wants to copy
a file named .bashrc located in the local home directory to her home directory on ser-
verA. The command to do this is

[yyang@hostA ~]$ scp .bashrc serverA:/home/yyang

If she wants to copy the other way—i.e., from the remote system, serverA, to her local
system, hostA—the arguments only need to be reversed, like so:

[yyang@hostA ~]$ scp serverA:/home/yyang/.bashrc .

Secure FTP (SFTP)
Secure FTP is a subsystem of the ssh daemon. You access the Secure FTP server by using
the sftp command-line tool. To sftp from a system named hostA to an SFTP server
running on serverA as the user yyang, type

[root@hostA ~]# sftp yyang@serverA

You will then be asked for your password, just as you are when you use the ssh cli-
ent. Once you have been authenticated, you will be given a prompt like the following:

sftp>

You can issue various SFTP commands while at the SFTP shell. For example, to list
all the files and directories under the /tmp folder on the SFTP server, you can use the ls
command:

sftp> ls -l

drwxr-xr-x 2 yyang yyang 4096 Jan 30 21:56 Desktop

-rw-r--r-- 1 yyang yyang 1344 Jan 22 21:13 anaconda-huu

.....<OUTPUT TRUNCATED>......

For a listing of all the commands, just type a question mark (?).

sftp> ?

Available commands:

cd pathChange remote directory to 'path'

lcd pathChange local directory to 'path'

 496 Linux Administration: A Beginner’s Guide

chgrp grp pathChange group of file 'path' to 'grp'

chmod mode pathChange permissions of file 'path' to 'mode'

chown own pathChange owner of file 'path' to 'own'

.....<OUTPUT TRUNCATED>......

You will notice that some of the commands look strikingly familiar to the FTP com-
mands in Chapter 17. This client is handy if you forget the full name of a file you are
looking for.

Files Used by the OpenSSH Client
The configuration files for the SSH client and SSH server typically reside in the directory
/etc/ssh/ on a distribution. (If you have installed SSH from source into /usr/local, the
full path will be /usr/local/etc/ssh/.) If you want to make any system-wide changes to
defaults for the SSH client, you need to modify the ssh_config file.

TIP Remember that the sshd_config file is for the server daemon, while the ssh_config file is for
the SSH client!

Within a user’s home directory, SSH information is stored in the directory ~user-
name/.ssh/. The file known_hosts is used to hold host key information. This is also
used to guard against man-in-the-middle attacks. SSH will alert you when the host
keys change. If the keys have changed for a valid reason—for instance, if the server
was reinstalled—you will need to edit the known_hosts file and delete the line with the
changed server.

SUMMARY
The Secure Shell tool is a superior replacement to Telnet for remote logins. Adopting the
OpenSSH package will put you in the company of many other sites that are disabling
Telnet access altogether and allowing only SSH access through their firewalls. Given
the wide-open nature of the Internet, this change isn’t an unreasonable thing to ask of
your users.

Here are the key issues to keep in mind when you consider Secure Shell:

▼ SSH is easy to compile and install.

■ Replacing Telnet with SSH requires no significant retraining.

■ SSH exists on many platforms, not just UNIX.

▲ Without SSH, you are exposing your system to potential network attacks in
which crackers can “sniff” passwords right off your Internet connections.

497 Chapter 21: The Secure Shel l (SSH)

In closing, you should understand that using OpenSSH doesn’t make your system
secure immediately. There is no replacement for a set of good security practices. Fol-
lowing the lessons from Chapter 15, you should disable all unnecessary services on any
system that is exposed to untrusted networks (such as the Internet); allow only those
services that are absolutely necessary. And that means, for example, if you’re running
SSH, you should disable Telnet, rlogin, and rsh.

499

Intranet Services

V

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

501

22

Network File
System (NFS)

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 502 Linux Administration: A Beginner’s Guide

Network File System (NFS) is the UNIX/Linux way of sharing files and
applications across the network. The NFS concept is somewhat similar to that
of Microsoft Windows disk sharing, in that it allows you to attach to a disk and

work with it as if it were a local drive—a handy tool for sharing files and large storage
space among users.

Aside from their similar roles, there are some important differences between NFS
and Microsoft Windows shares that require different approaches to their management.
The tools that you use to manage network drives are (of course) different as well. In this
chapter, we discuss those differences; however, the primary focus of the chapter is to
show you how to deploy NFS under the Linux environment.

THE MECHANICS OF NFS
As with most network-based services, NFS follows the usual client and server para-
digms; that is, it has its client-side components as well as its server-side components.

Chapter 7 covered the process of mounting and unmounting file systems. The same
idea applies to NFS, except each mount request is qualified with the name of the server
from which the disk share is coming. Of course, the server must be configured to allow
the requested partition to be shared with a client.

Let’s look at an example. Assume there exists an NFS server named serverA that
needs to share its local /home partition or directory over the network. In NFS parlance,
it is said that the NFS server is exporting its /home partition. Assume there also exists
a client system on the network named clientA that needs access to the contents of the
/home partition being exported by the NFS server. Finally, assume all other require-
ments are met (permissions, security, compatibility, etc.).

In order for clientA to access the /home share being exported by serverA, clientA
needs to make an NFS mount request for /home to be exported so that it can mount it
locally, such that the share appears locally as the /home directory. The command to issue
this mount request can be as simple as

[root@clientA ~]# mount serverA:/home /home

Assuming that the command was run from the host named clientA, all of the users
on clientA would be able to view the contents of /home as if it were just another direc-
tory. Linux would take care of making all of the network requests to the server.

Remote procedure calls (RPCs) are responsible for handling the requests between the
client and the server. RPC technology provides a standard mechanism for any RPC cli-
ent to contact the server and find out to which service the calls should be directed. Thus,
whenever a service wants to make itself available on a server, it needs to register itself
with the RPC service manager, portmap. Portmap takes care of telling the client where
the actual service is located on the server.

503 Chapter 22: Network Fi le System (NFS)

Versions of NFS
NFS is not a static protocol. Standards committees have helped NFS evolve to take
advantage of new technologies, as well as changes in usage patterns. At the time of this
writing there are three well-known versions of the protocol: NFS version 2 (NFSv2), NFS
version 3 (NFSv3), and NFS version 4 (NFSv4). There also existed an NFS version 1, but
it was very much internal to SUN and, as such, never saw the light of day!

NFSv2 is the oldest of the three. NFSv3 is the standard with perhaps the widest use.
NFSv4 has been in development for a while and is the newest standard. NFSv2 should
probably be avoided if possible and should be considered only for legacy reasons. NFSv3
should be considered if stability and widest range of client support are desired. NFSv4
should be considered if its bleeding-edge features are needed and probably for very new
deployments where backward compatibility is not an issue.

Perhaps the most important factor in deciding which version of NFS to consider
would be the version that your NFS clients will support.

Here are some of the features of each NFS version:

▼ NFSv2 Mount requests are granted on a per-host basis and not on a per-user
basis. It uses Transmission Control Protocol (TCP) or User Datagram Protocol
(UDP) as its transport protocol. Version 2 clients have a file size limitation of less
than 2 gigabytes (GB) that they can access.

■ NFSv3 This version includes a lot of fixes for the bugs in NFSv2. It has more
features than version 2 of the protocol. It also has performance gains over version
2 and can use either TCP or UDP as its transport protocol. Depending on the local
file system limits of the NFS server itself, clients can access files over 2GB in size.
Mount requests are also granted on a per-host basis and not on a per-user basis.

 ▲ NFSv4 This version of the protocol uses a stateful protocol such as TCP or
Stream Control Transmission Protocol (SCTP) as its transport. It has improved
security features thanks to its support for Kerberos; e.g., client authentication can
be conducted on a per-user basis or a principal basis. It was designed with the
Internet in mind, and as a result, this version of the protocol is firewall-friendly,
and it listens on the well-known port 2049. The services of the RPC binding
protocols (e.g., rpc.mountd, rpc.lockd, rpc.statd) are no longer required in this
version of NFS because their functionality has been built into the server; in other
words, NFSv4 combines these previously disparate NFS protocols into a single
protocol specification. (The portmap service is no longer used.) It includes sup-
port for file access control list (ACL) attributes, and can support both version 2
and version 3 clients. NFSv4 introduces the concept of the pseudo-file system.

The version of NFS used can be specified at mount time by the client via the use
of mount options. For a Linux client to use NFSv2, the mount option of nfsvers=2
is used. For NFSv3, the mount option is specified by nfsvers=3. And for NFSv4, the
nfsvers option is not supported, but this version can be used by specifying nfs4 as
the file system type.

 504 Linux Administration: A Beginner’s Guide

The rest of this chapter will concentrate mostly on NFSv3 because it is considered quite
stable in Linux, it is well known, and it also has the widest cross-platform support.

Security Considerations for NFS
Unfortunately, NFS is not a secure method for sharing disks. The steps necessary to
make NFS more secure are no different from those for securing any other system. The
only catch is that you must be able to trust the users on the client system, especially
the root user. If you’re the root user on both the client and the server, there is a little
less to worry about. The important thing in this case is to make sure non-root users
don’t become root—which is something you should be doing anyway! You should
also strongly consider using NFS mount flags, such as the root_squash flag dis-
cussed later on.

If you are in a situation where you cannot fully trust the person with whom you
need to share a resource, it will be worth your time and effort to seek alternative meth-
ods of sharing resources (such as read-only sharing of the resources).

As always, stay up-to-date on the latest security bulletins coming from the Com-
puter Emergency Response Team (www.cert.org), and keep up with all the patches from
your distribution vendor.

Mount and Access a Partition
Several steps are involved in a client’s making a request to mount a server’s partition
(these steps mostly pertain to NFSv2 and NFSv3):

 1. The client contacts the server’s portmapper to find out which network port is
assigned as the NFS mount service.

 2. The client contacts the mount service and requests to mount a partition. The
mount service checks to see if the client has permission to mount the requested
partition. (Permission for a client to mount a partition is based on the /etc/
exports file.) If the client does have permission, the mount service returns an
affirmative.

 3. The client contacts the portmapper again, this time to find out on which port the
NFS server is located. (Typically, this is port 2049.)

 4. Whenever the client wants to make a request to the NFS server (for example, to
read a directory), an RPC is sent to the NFS server.

 5. When the client is done, it updates its own mount tables but doesn’t inform the
server.

Notification to the server is unnecessary, because the server doesn’t keep track of
all clients that have mounted its file systems. Because the server doesn’t maintain state
information about clients and the clients don’t maintain state information about the
server, clients and servers can’t tell the difference between a crashed system and a really

505 Chapter 22: Network Fi le System (NFS)

slow system. Thus, if an NFS server is rebooted, all clients will automatically resume
their operations with the server as soon as the server is back online.

ENABLING NFS IN FEDORA
Almost all the major Linux distributions ship with support for NFS in one form or
another. The only task left for the administrator is to configure it and enable it. On our
sample Fedora system, enabling NFS is easy.

Because NFS and its ancillary programs are RPC-based, you need to first make sure
that the system portmap (for Ubuntu, Debian, etc.) or rpcbind (for Fedora, Red Hat
Enterprise Linux [RHEL], etc.) service is installed and running.

First make sure that the rpcbind package is installed on the system. On a Fedora
distro, type

[root@serverA ~]# rpm -q rpcbind

If the output indicates that the software is not installed, you can use Yum to install it
by running

[root@serverA ~]# yum -y install rpcbind

To check the status of the rpcbind on Fedora, type

[root@serverA ~]# service rpcbind status

rpcbind (pid 1661) is running...

If the rpcbind service is stopped, start it like so:

[root@serverA ~]# service rpcbind start

Before going any further, use the rpcinfo command to view the status of any RPC-
based services that might have registered with portmap. Type

[root@serverA ~]# rpcinfo -p

 program vers proto port service

 100000 4 tcp 111 portmapper

 100000 4 udp 111 portmapper

....<OUTPUT TRUNCATED>....

Because we don’t yet have NFS running on the sample system, this output does not
show too many RPC services. To start the NFS service, enter this command:

[root@serverA ~]# service nfs start

Starting NFS services: [OK]

Starting NFS quotas: [OK]

Starting NFS daemon: [OK]

Starting NFS mountd: [OK]

 506 Linux Administration: A Beginner’s Guide

Running the rpcinfo command again to view the status of RPC programs regis-
tered with the portmapper shows this output:

[root@serverA ~]# rpcinfo -p

program vers proto port service

100000 4 tcp 111 portmapper

100011 2 tcp 738 rquotad

....<OUTPUT TRUNCATED>....

100003 4 tcp 2049 nfs

100005 1 udp 32892 mountd

This output shows that various RPC programs (mountd, nfs, rquotad, etc.) are
now running.

To stop NFS without having to shut down, enter this command:

[root@serverA ~]# service nfs stop

In order to have the NFS service automatically start up with the system with the next
reboot, use the chkconfig command. First check the runlevels for which it is currently
configured to start by typing

[root@serverA ~]# chkconfig --list nfs

nfs 0:off 1:off 2:off 3:off 4:off 5:off 6:off

The service is disabled by default on a Fedora system; enable it to start up automati-
cally by typing

[root@serverA ~]# chkconfig nfs on

ENABLING NFS IN UBUNTU
Ubuntu and other Debian-like distributions still rely on portmap instead of rpcbind
used in the Fedora distro. Installing and enabling an NFS server in Ubuntu is as easy as
installing the following components: nfs-common, nfs-kernel-server, and portmap.

To install these using Advanced Packaging Tool (APT), run the following command:

yyang@ubuntu-serverA:~$ sudo apt-get -y install nfs-common \

> nfs-kernel-server portmap

The install process will also automatically start up the NFS server, as well as all its
attendant services for you. You can check this by running

yyang@ubuntu-serverA:~$ rpcinfo -p

To stop the NFS server in Ubuntu, you can type

yyang@ubuntu-serverA:~$ sudo /etc/init.d/nfs-kernel-server stop

507 Chapter 22: Network Fi le System (NFS)

THE COMPONENTS OF NFS
Versions 2 and 3 of the NFS protocol rely heavily on RPCs to handle communications
between clients and servers. RPC services in Linux are managed by the portmap service.
As mentioned before, this ancillary service is no longer needed in NFSv4.

The following list shows the various RPC processes that facilitate the NFS service
under Linux. The RPC processes are mostly relevant only in NFS versions 2 and 3, but
mention is made wherever NFSv4 applies.

▼ rpc.statd This process is responsible for sending notifications to NFS clients
whenever the NFS server is restarted without being gracefully shut down. It
provides status information about the server to rpc.lockd when queried. This
is done via the Network Status Monitor (NSM) RPC protocol. It is an optional
service that is started automatically by the nfslock service on a Fedora system.
It is not used in NFSv4.

■ rpc.rquotad As its name suggests, rpc.rquotad supplies the interface between
NFS and the quota manager. NFS users/clients will be held to the same quota
restrictions that would apply to them if they were working on the local file sys-
tem instead of via NFS.

■ rpc.mountd When a request to mount a partition is made, the rpc.mountd dae-
mon takes care of verifying that the client has enough permission to make the
request. This permission is stored in the /etc/exports file. (The upcoming section
“The /etc/exports Configuration File” tells you more about the /etc/exports file.)
It is automatically started by the NFS server init scripts. It is not used in NFSv4.

■ rpc.nfsd The main component to the NFS system, this is the NFS server/dae-
mon. It works in conjunction with the Linux kernel to either load or unload the
kernel module as necessary. It is, of course, still relevant in NFSv4.

NOTE You should understand that NFS itself is an RPC-based service, regardless of the version of
the protocol. Therefore, even NFSv4 is inherently RPC-based. The fine print lies in the fact that most
of the previously used ancillary RPC-based services (e.g., mountd, statd) are no longer necessary
because their individual functions have now been folded into the NFS daemon.

■ rpc.lockd The rpc.statd daemon uses this daemon to handle lock recovery on
crashed systems. It also allows NFS clients to lock files on the server. It is the
nfslock service, no longer used in NFSv4.

■ rpc.idmapd This is the NFSv4 ID name-mapping daemon. It provides this
functionality to the NFSv4 kernel client and server by translating user and group
IDs to names, and vice versa.

■ rpc.svcgssd This is the server-side rpcsec_gss daemon. The rpcsec_gss pro-
tocol allows the use of the gss-api generic security application programming
interface (API) to provide advanced security in NFSv4.

▲ rpc.gssd This provides the client-side transport mechanism for the authentica-
tion mechanism in NFSv4.

 508 Linux Administration: A Beginner’s Guide

Kernel Support for NFS
NFS is implemented in two forms among the various Linux distributions. Most distribu-
tions ship with NFS support enabled in the kernel. A few Linux distributions also ship with
support for NFS in the form of a stand-alone daemon that can be installed via a package.

As far back as Linux 2.2, there has been kernel-based support for NFS, which runs
significantly faster than earlier implementations. As of this writing, kernel-based NFS
server support is considered production-ready. It is not mandatory—if you don’t com-
pile support for it into the kernel, you will not use it. If you have the opportunity to try
kernel support for NFS, it is highly recommended that you do so. If you choose not to
use it, don’t worry—the nfsd program that handles NFS server services is completely
self-contained and provides everything necessary to serve NFS.

NOTE On the other hand, clients must have support for NFS in the kernel. This support in the kernel
has been around for a long time and is known to be stable. Almost all present-day Linux distributions
ship with kernel support for NFS enabled.

CONFIGURING AN NFS SERVER
Setting up an NFS server is a two-step process. The first step is to create the /etc/exports
file. This file defines which parts of your server’s disk get shared with the rest of your
network and the rules by which they get shared. (For example, is a client allowed only
read access to the file system? Are they allowed to write to the file system?) The second
step is to start the NFS server processes that read the /etc/exports file.

The /etc/exports Configuration File
This is the primary configuration file for the NFS server. This file lists the partitions that
are sharable, the hosts they can be shared with, and with what permissions. The file
specifies remote mount points for the NFS mount protocol.

The format for the file is simple. Each line in the file specifies the mount point(s) and
export flags within one local server file system for one or more hosts.

Here is the format of each entry in the /etc/exports file:

/directory/to/export client|ip_network(permissions) client|ip_network(permissions)

▼ /directory/to/export This is the directory you want to share with other users,
for example, /home.

■ client This refers to the hostname(s) of the NFS client(s).

■ ip_network This allows the matching of hosts by IP addresses (e.g., 172.16.1.1)
or network addresses with a netmask combination (e.g., 172.16.0.0/16).

▲ permissions These are the corresponding permissions for each client. Table 22-1
describes the valid permissions for each client.

509 Chapter 22: Network Fi le System (NFS)

Following is an example of a complete NFS /etc/exports file. Please note that line
numbers (1–4) have been added to the listing to aid readability.

1) # /etc/exports file for serverA

2) #

3) /home hostA(rw) hostB(rw) clientA(ro,no_root_squash)

4) /usr/local 172.16.0.0/16(ro)

Lines 1 and 2 are comments and are ignored when the file is read. Line 3 exports the
/home file system to the machines named hostA and hostB, and gives them read/write
(rw) permissions, as well as to the machine named clientA, giving it read-only (ro) access,
but allowing the remote root user to have root privileges on the exported file system
(/home).

Line 4 exports the /usr/local/ directory to all hosts on the 172.16.0.0/16 network.
Hosts in the network range are allowed read-only access.

Table 22-1. NFS Permissions

Permission Option Meaning

secure The port number from which the client requests a mount
must be lower than 1024. This permission is on by
default. To turn it off, specify insecure instead.

ro Allows read-only access to the partition. This is the default
permission whenever nothing is specified explicitly.

rw Allows normal read/write access.

noaccess The client will be denied access to all directories below
/dir/to/mount. This allows you to export the directory
/dir to the client and then to specify /dir/to as inaccessible
without taking away access to something like /dir/from.

root_squash This permission prevents remote root users from having
superuser (root’s) privileges on remote NFS-mounted
volumes. The “squash” here literarily means to squash
the power of the remote root user.

no_root_squash This allows the root user on the NFS client host to access
the NFS-mounted directory with the same rights and
privileges that the superuser would normally have.

all_squash Maps all user IDs (UIDs) and group IDs (GIDs) to the
anonymous user. The opposite option is no_all_squash,
which is the default setting.

 510 Linux Administration: A Beginner’s Guide

Telling the NFS Server Process about /etc/exports
Once you have an /etc/exports file written up, use the exportfs command to tell
the NFS server processes to reread the configuration information. The parameters for
exportfs are as follows:

exportfs Command Option Description

-a Exports all entries in the /etc/exports file. It
can also be used to unexport the exported
file systems when used along with the u
option, e.g., exportfs -ua.

-r Re-exports all entries in the /etc/exports file.
This synchronizes /var/lib/nfs/xtab with the
contents of the /etc/exports file. For example,
it deletes entries from /var/lib/nfs/xtab that
are no longer in /etc/exports and removes
stale entries from the kernel export table.

-u clientA:/dir/to/mount Unexports the directory /dir/to/mount to the
host clientA.

-o options Options specified here are the same as
described in Table 22-1 for client permissions.
These options will apply only to the file
system specified on the exportfs command
line, not to those in /etc/exports.

-v Be verbose.

Following are examples of exportfs command lines.
To export all file systems,

[root@serverA ~]# exportfs -a

To export the directory /usr/local to the host clientA with the read/write and
no_root_squash permissions,

[root@serverA ~]# exportfs -o rw,no_root_squash clientA:/usr/local

In most instances, you will simply want to use exportfs -r.
Note that Fedora and RHEL systems have a capable graphical user interface (GUI)

tool (see Figure 22-1) that can be used for creating, modifying, and deleting NFS shares.
The tool is called system-config-nfs. It can be launched from the command line by
executing the following:

[root@serverA ~]# system-config-nfs

511 Chapter 22: Network Fi le System (NFS)

The showmount Command
When configuring NFS, it is helpful to use the showmount command to see if everything
is working correctly. The command is used for showing mount information for an NFS
server.

By using the showmount command, you can quickly determine if you have config-
ured nfsd correctly.

After you have configured your /etc/exports file and exported all of your file systems
using exportfs, you can run showmount -e to see a listing of exported file sys-
tems on the local NFS server. The -e option tells showmount to show the NFS server’s
export list. For example,

[root@serverA ~]# showmount -e localhost

Export list for localhost:

/home *

Figure 22-1. NFS server configuration utility

 512 Linux Administration: A Beginner’s Guide

If you simply run the showmount command with no options, it will list clients con-
nected to the server. For example,

[root@serverA ~]# showmount localhost

Hosts on localhost:

*

192.168.1.100

You can also run this command on clients by passing the server hostname as the last
argument. To show the exported file systems on the NFS server (serverA) from an NFS
client (clientA), you can issue this command while logged into clientA:

[root@clientA ~]# showmount -e serverA

Export list for serverA:

/home *

Troubleshooting Server-Side NFS Issues
When exporting file systems, you may find that the server appears to be refusing the
client access, even though the client is listed in the /etc/exports file. Typically, this hap-
pens because the server takes the IP address of the client connecting to it and resolves
that address to the fully qualified domain name (FQDN), and the hostname listed in the
/etc/exports file isn’t qualified. (For example, the server thinks the client hostname is
clientA.example.com, but the /etc/exports file lists just clientA.)

Another common problem is that the server’s perception of the hostname/IP pairing
is not correct. This can occur because of an error in the /etc/hosts file or in the Domain
Name System (DNS) tables. You’ll need to verify that the pairing is correct.

For NFSv2 and NFSv3, the NFS service may fail to start correctly if the other required
services, such as the portmap service, are not already running.

Even when everything seems to be set up correctly on the client side and the server
side, you may find that the firewall on the server side is preventing the mount process
from completing. In such situations, you will notice that the mount command seems to
hang without any obvious errors.

CONFIGURING NFS CLIENTS
NFS clients are remarkably easy to configure under Linux, because they don’t require
any new or additional software to be loaded. The only requirement is that the kernel be
compiled to support the NFS file system. Virtually all Linux distributions come with this
feature enabled by default. Aside from the kernel support, the only other important fac-
tor is the options used with the mount command.

513 Chapter 22: Network Fi le System (NFS)

The mount Command
The mount command was originally discussed in Chapter 7. The important parameters
to use with the mount command are the specification of the NFS server name, the local
mount point, and the options specified after the -o on the mount command line.

The following is an example of a mount command line:

[root@clientA ~]# mount -o rw,bg,soft serverA:/home /mnt/home

Here, serverA is the NFS server name. The -o options are explained in Table 22-2.
These mount options can also be used in the /etc/fstab file. This same entry in the

/etc/fstab file would look like this:

serverA:/home /mnt/home nfs rw,bg,soft 0 0

Again, serverA is the NFS server name, and the mount options are rw, bg and soft,
explained in Table 22-2.

Table 22-2. Mount Options for NFS

mount -o Command Option Description

bg Background mount. Should the mount initially
fail (for instance, if the server is down), the
mount process will send itself to background
processing and continue trying to execute until
it is successful. This is useful for file systems
mounted at boot time, because it keeps the
system from hanging at the mount command if
the server is down.

intr Specifies an interruptible mount. If a process has
pending I/O on a mounted partition, this option
allows the process to be interrupted and the I/O
call to be dropped. For more information, see
“The Importance of the intr Option,” later in this
section.

hard This is an implicit default option. If an NFS
file operation has a major timeout, then a
“server not responding” message is reported
on the console and the client continues retrying
indefinitely.

 514 Linux Administration: A Beginner’s Guide

Table 22-2. Mount Options for NFS (cont.)

mount -o Command Option Description

soft Enables a soft mount for this partition,
allowing the client to time out the connection
after a number of retries (specified with the
retrans=r option). For more information,
see “Soft vs. Hard Mounts,” later in this
section.

retrans= n The value n specifies the maximum number of
connection retries for a soft-mounted system.

rsize= n The value n is the number of bytes NFS uses
when reading files from an NFS server. The
default value is dependent on the kernel, but
is currently 4096 bytes for NFSv4. Throughput
can be improved greatly by requesting a
higher value (e.g., rsize=32768).

wsize= n The value n specifies the number of bytes
NFS uses when writing files to an NFS
server. The default value is dependent on the
kernel, but is currently something like 4096
bytes for NFSv4. Throughput can be greatly
improved by asking for a higher value (e.g.,
wsize=32768.) This value is negotiated with
the server.

proto= n The value n specifies the network protocol to
use to mount the NFS file system. The default
value in NFSv2 and NFSv3 is UDP. NFSv4
servers generally support only TCP. Therefore,
the valid protocol types are udp and tcp.

nfsvers= n Allows the use of an alternate RPC version
number to contact the NFS daemon on the
remote host. The default value depends on
the kernel, but the possible values are 2 and 3.
This option is not recognized in NFSv4, where
instead, you’d simply state nfs4 as the file
system type.

515 Chapter 22: Network Fi le System (NFS)

Soft vs. Hard Mounts
By default, NFS operations are hard, which means they continue their attempts to contact
the server indefinitely. This arrangement is not always beneficial, however. It causes a
problem if an emergency shutdown of all systems is performed. If the servers happen to
get shut down before the clients, the clients’ shutdowns will stall while they wait for the
servers to come back up. Enabling a soft mount allows the client to time out the connec-
tion after a number of retries (specified with the retrans=r option).

There is one exception to the preferred arrangement of having a soft mount with a
retrans=r value specified: Don’t use this arrangement when you have data that must
be committed to disk no matter what and you don’t want to return control to the appli-
cation until the data has been committed. (NFS-mounted mail directories are typically
mounted this way.)

Cross-Mounting Disks
Cross-mounting is the process of having serverA NFS-mounting serverB’s disks and
serverB NFS-mounting serverA’s disks. While this may appear innocuous at first, there is
a subtle danger in doing this. If both servers crash, and if each server requires mounting

Table 22-2. Mount Options for NFS (cont.)

mount -o Command Option Description

sec= value Sets the security mode for the mount operation
to value:

▼ sec=sys Uses local UNIX UIDs and
GIDs to authenticate NFS operations
(AUTH_SYS). This is the default setting.

■ sec=krb5 Uses Kerberos V5 instead of
local UIDs and GIDs to authenticate users.

■ sec=krb5i Uses Kerberos V5 for user
authentication and performs integrity
checking of NFS operations using secure
checksums to prevent data tampering.

▲ sec=krb5p Uses Kerberos V5 for user
authentication and integrity checking,
and encrypts NFS traffic to prevent traffic
sniffing.

 516 Linux Administration: A Beginner’s Guide

the other’s disk in order to boot correctly, you’ve got a chicken and egg problem. ServerA
won’t boot until serverB is done booting, but serverB won’t boot because serverA isn’t
done booting.

To get around this problem, make sure you don’t get yourself into a situation where
this happens. All of your servers should be able to completely boot without needing to
mount anyone else’s disks for anything. However, this doesn’t mean you can’t cross-
mount at all. There are legitimate reasons for needing to cross-mount, such as needing to
make home directories available across all servers.

In these situations, make sure you set your /etc/fstab entries to use the bg mount
option. By doing so, you will allow each server to background the mount process for
any failed mounts, thus giving all of the servers a chance to completely boot and then
properly make their NFS mountable partitions available.

The Importance of the intr Option
When a process makes a system call, the kernel takes over the action. During the time
that the kernel is handling the system call, the process has no control over itself. In the
event of a kernel access error, the process must continue to wait until the kernel request
returns; the process can’t give up and quit. In normal cases, the kernel’s control isn’t a
problem, because typically, kernel requests get resolved quickly. When there’s an error,
however, it can be quite a nuisance. Because of this, NFS has an option to mount parti-
tions with the interruptible flag (the intr option), which allows a process that is waiting
on an NFS request to give up and move on.

In general, unless you have reason not to use the intr option, it is usually a good
idea to do so.

TIP Keep those UIDs in sync! Every NFS client request to an NFS server includes the UID of the
user making the request. This UID is used by the server to verify that the user has permissions to
access the requested file. However, in order for NFS permission-checking to work correctly, the UIDs
of the users must be synchronized between the client and server. (There is the all_squash
/etc/exports option that can circumvent this.) Having the same username on both systems
is not enough. A Network Information Service (NIS) database or a Lightweight Directory Access
Protocol (LDAP) database may help in this situation.

Performance Tuning
The default block size that gets transmitted with NFS versions 2 and 3 is 1 kilobyte (KB)
(for NFSv4, it is 4KB). This is handy, since it fits nicely into one packet, and should any
packets get dropped, NFS has to retransmit just a few packets. The downside to this is
that it doesn’t take advantage of the fact that most networking stacks are fast enough to
keep up with segmenting larger blocks of data for transport and that most networks are
reliable enough that it is extremely rare to lose a block of data.

517 Chapter 22: Network Fi le System (NFS)

Given these factors, it is often better to optimize for the case of a fast networking
stack and a reliable network, since that’s what you’re going to have 99 percent of the
time. The easiest way to do this with NFS is to use the wsize (write size) and rsize
(read size) options. A good size to use is 8KB for NFS versions 2 and 3. This is especially
good if you have network cards that support jumbo frames.

An example entry with wsize and rsize is as follows:

serverA:/home /mnt/home nfs nfsvers=3,rw,bg,wsize=8192,rsize=8192 0 0

TROUBLESHOOTING CLIENT-SIDE NFS ISSUES
Like any major service, NFS has mechanisms to help it cope with error conditions. In this
section, we discuss some common error cases and how NFS handles them.

Stale File Handles
If a file or directory is in use by one process when another process removes the file or
directory, the first process gets an error message from the server. Typically, this error is
“Stale NFS file handle.”

Most often, stale file handles occur when you’re using a system in the X Window
System environment and you have two terminal windows open. For instance, the first
terminal window is in a particular directory, say, /mnt/usr/local/mydir/, and that direc-
tory gets deleted from the second terminal window. The next time you press enter in the
first terminal window, you’ll see the error message.

To fix this problem, simply change your directory to one that you know exists, with-
out using relative directories (for example, cd /tmp).

Permission Denied
You’re likely to see the “Permission denied” message if you’re logged in as root and are
trying to access a file that is NFS-mounted. Typically, this means that the server on which
the file system is mounted is not acknowledging root’s permissions.

This is usually the result of forgetting that the /etc/exports file will, by default, enable
the root_squash option. And so if you are experimenting from a permitted NFS cli-
ent as the root user, you might wonder why you are getting access-denied errors even
though the remote NFS share seems to be mounted properly.

The quick way around this problem is to become the user who owns the file you’re
trying to control. For example, if you’re root and you’re trying to access a file owned by
the user mmellow, use the su command to become mmellow:

[root@clientA ~]# su - mmellow

When you’re done working with the file, you can exit out of mmellow’s shell and
return to root. Note that this workaround assumes that mmellow exists as a user on the
system and has the same UID on both the client and the server.

 518 Linux Administration: A Beginner’s Guide

A similar problem is when users obviously have the same usernames on the client
and the server but still get permission-denied errors. This may be because the actual UIDs
associated with the usernames on both systems are different. For example, the user mmel-
low may have a UID of 501 on the host clientA, but a user with the same name, mmellow,
on serverA may have a UID of 600. The simple workaround to this might be to create
users with the same UIDs and GIDs across all systems. The scalable workaround to this
might be to implement a central user database infrastructure, such as LDAP or NIS, so
that all users have the same UIDs and GIDs, independent of their local client systems.

SAMPLE NFS CLIENT AND NFS SERVER
CONFIGURATION

In this section we’ll put everything we’ve learned thus far together by walking through
the actual setup of an NFS environment. We will set up and configure the NFS server.
Once that is accomplished, we will set up an NFS client and make sure that the directo-
ries get mounted when the system boots.

In particular, we want to export the /usr/local file system on the host serverA to a par-
ticular host on the network named clientA. We want clientA to have read/write access
to the shared volume and the rest of the world to have read-only access to the share.
Our clientA will mount the NFS share at its /mnt/usr/local mount point. The procedure
involves these steps:

 1. On the server—serverA—edit the /etc/exports configuration file. You will share
/usr/local. Input this text into the /etc/exports file.

/usr/local clientA(rw,root_squash) *(ro)

 2. Save your changes to the file when you are done editing, and exit the text
editor.

 3. On the Fedora server, first you need to check if the rpcbind is running. If it is not
running, start it.

[root@serverA ~]# service rpcbind status

rpcbind is stopped

[root@serverA ~]# service rpcbind start

TIP On an OpenSuSE system, the equivalent of the preceding commands are rcportmap
status and rcportmap start. And on other distributions that do not have the service
command, you can try looking under the /etc/init.d/ directory for a file possibly named portmap.
You can then manually execute the file with the status or start option to control the portmap
service, e.g., by entering

/etc/init.d/portmap status

519 Chapter 22: Network Fi le System (NFS)

 4. Next start the NFS service, which will start all the other attendant services it
needs.

[root@serverA ~]# service nfs start

From its output, the nfs startup script will let you know if it started or failed to
start up.

 5. To check if your exports are configured correctly, run the showmount
command:

[root@serverA ~]# showmount -e localhost

 6. If you don’t see the file systems that you put into /etc/exports, check /var/log/
messages for any output that nfsd or mountd might have made. If you need
to make changes to /etc/exports, run service nfs reload or exportfs -r
when you are done, and finally, run a showmount -e to make sure that the
changes took effect.

 7. Now that you have the server configured, it is time to set up the client. First,
see if the rpc mechanism is working between the client and the server. You will
again use the showmount command to verify that the client can see the shares. If
the client cannot, you might have a network problem or a permissions problem
to the server. From clientA, issue the command

[root@clientA ~]# showmount -e serverA

Export list for serverA:

/usr/local (everyone)

 8. Once you have verified that you can view shares from the client, it is time to
see if you can successfully mount a file system. First create the /mnt/usr/local/
mount point, and then use the mount command as follows:

[root@clientA ~]# mkdir -p /mnt/usr/local

[root@clientA ~]# mount -o rw,bg,intr,soft serverA:/usr/local /mnt/usr/local

 9. You can use the mount command to view only the NFS-type file systems that are
mounted on clientA. Type

[root@clientA ~]# mount -t nfs

 10. If these commands succeed, you can add the mount command with its options
into the /etc/fstab file so that they will get the remote file system mounted upon
reboot.

serverA:/usr/local /mnt/usr/local nfs rw,bg,intr,soft 0 0

 520 Linux Administration: A Beginner’s Guide

COMMON USES FOR NFS
The following ideas are, of course, just ideas. You are likely to have your own reasons for
sharing disks via NFS.

▼ To hold popular programs. If you are accustomed to Windows, you’ve probably
worked with applications that refuse to be installed on network shares. For one
reason or another, these programs want every system to have its own copy of
the software—a nuisance, especially if you have a lot of machines that need the
software. Linux (and UNIX in general) rarely has such conditions prohibiting
the installation of software on network disks. (The most common exceptions are
high-performance databases.) Thus, many sites install heavily used software on
a special partition that is exported to all hosts in a network.

■ To hold home directories. Another common use for NFS partitions is to hold
home directories. By placing home directories on NFS-mountable partitions,
it’s possible to configure the Automounter and NIS or LDAP so that users can
log into any machine in the network and have their home directory available
to them. Heterogeneous sites typically use this configuration so that users can
seamlessly move from one variant of UNIX to another without worrying about
having to carry their data around with them.

▲ For shared mail spools. A directory residing on the mail server can be used to
store all of the user mailboxes, and the directory can then be exported via NFS to
all hosts on the network. In this setup, traditional UNIX mail readers can read a
user’s e-mail straight from the spool file stored on the NFS share. In the case of
large sites with heavy e-mail traffic, multiple servers might be used for provid-
ing Post Office Protocol version 3 (POP3) mailboxes, and all the mailboxes can
easily reside on a common NFS share that is accessible to all the servers.

SUMMARY
In this chapter, we discussed the process of setting up an NFS server and client. This
requires little configuration on the server side. The client side requires a wee bit more
configuration. But in general, the process of getting NFS up and running is relatively
painless. Here are some key points to remember:

▼ NFS has been around for a long time now, and as such, it has gone through sev-
eral revisions of the protocol specifications. The revisions are mostly backward-
compatible, and each succeeding revision can support clients using the older
versions.

■ NFS version 4 is the newest revision and is loaded with a lot of improvements
and features that were not previously available. As of this writing, the indus-
try has been a little slow to adopt this version, probably because everybody is
waiting for somebody else to adopt it and discover and fix any bugs or issues it
might have. But it is gradually becoming popular.

521 Chapter 22: Network Fi le System (NFS)

■ The older NFS protocols (versions 2 and 3) are implemented as a stateless proto-
col. Clients can’t tell the difference between a crashed server and a slow server;
thus, recovery is automatic when the server comes back up. (In the reverse
situation, when the client crashes and the server stays up, recovery is also
automatic.)

 ▲ The key server processes in NFSv2 and NFSv3 are rpc.statd, rpc.quotad, rpc.
mountd, and rpc.nfsd. Most of these functions have been rolled into one in
NFSv4.

NFS is a powerful tool for sharing storage volumes across network clients. Be sure to
spend some time experimenting with it before using it to try to meet your environment’s
resource-sharing needs.

523

23

Network Information
Service (NIS)

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 524 Linux Administration: A Beginner’s Guide

The Network Information Service (NIS) facilitates the sharing of critical data stored
in flat files among systems on a network. Typically, files such as /etc/passwd and
/etc/group, which ideally would remain uniform across all hosts, are shared via

NIS. Making such files available via NIS would allow any properly configured NIS,
client-networked machine to access the data contained in these shared files and use the
network versions of these files as extensions to the local versions. However, NIS is not
limited to sharing just those two files. Any tabular file in which at least one column has
a unique value throughout the file can be shared via NIS. Such files are common on
Linux/UNIX systems, e.g., the Sendmail aliases file, the Automounter files, or the /etc/
services file.

The main benefit derived from using NIS is that you can maintain a central copy of
the data, and whenever that data is updated, it automatically propagates to all of the net-
work users. To your users, features of NIS help to give the appearance of a more uniform
system—no matter what host they may be working on.

If you’re coming from a Windows background, you might think of NIS as the Linux/
UNIX solution for some of the services offered by Active Directory. NIS, of course, is a
much older technology and, as such, does not attempt to solve (or create) the plethora
of issues that Active Directory tackles.

In this chapter, we’ll explore NIS, how it works, and how it can benefit you. We
will then explain how to set up the client and server portions of the NIS configuration.
Finally, we’ll discuss some of the tools related to NIS.

INSIDE NIS
The Network Information Service is really just a simple database that clients can query. It
contains a series of independent tables. Each table is created from straight text files (such
as /etc/passwd), which are tabular in nature and have at least one column that is unique
for every row (a database of key/value pairs). NIS keeps track of these tables by name
and allows querying to happen in one of two ways:

▼ Listing the entire table

▲ Pulling a specific entry to match a search for a given key

Once the databases are established on the server, clients can query the server for
database entries. Typically this happens when a client is configured to look to the NIS
map when an entry cannot be found in the client’s local database. A host may have a
simple file containing only those entries needed for the system to work in single-user
mode (when there is no network connectivity)—for example, the /etc/passwd file. When
a program makes a request to look up user password information, the client checks its
local passwd file and sees that the user doesn’t exist there; the client then makes a request
to the NIS server to look for a corresponding entry in the passwd table. If the NIS does
have an entry, it is returned to the client and then to the program that requested the

525 Chapter 23: Network Information Service (NIS)

 information in the first place. The program itself is unaware that NIS was used. The same
is true if the NIS map returns an answer that the user password entry does not exist. The
program would be passed the information without its knowing how much activity had
happened in between.

Of course, this applies to all the files that we tell NIS to share. Other popular shared
files include /etc/group and /etc/hosts.

NOTE Although it is technically correct to refer to NIS’s tables as a database, they are more
typically called maps (in this context, we are mapping keys to values). Using the /etc/passwd file
as an example, we map a user’s login name (which we know is always unique) to the rest of the
password entry.

Here is a listing of some daemons and processes that are associated with NIS:

▼ ypserv This daemon runs on the NIS server. It listens for queries from clients
and responds with answers to those queries.

■ ypxfrd This daemon is used for propagating and transferring the NIS data-
bases to slave servers.

▲ ypbind This is the client-side component of NIS. It is responsible for finding
an NIS server to be queried for information. The ypbind daemon binds NIS cli-
ents to an NIS domain. It must be running on any machines running NIS client
programs.

THE NIS SERVERS
NIS can have only one authoritative server where the original data files are kept (this is
somewhat similar to Domain Name System, or DNS). This authoritative server is called
the master NIS server. If your organization is large enough, you may need to distribute
the load across more than one machine. This can be done by setting up one or more sec-
ondary (slave) NIS servers. In addition to helping distribute the load, secondary servers
provide a mechanism to better handle server failures. The secondary NIS server can con-
tinue answering queries even while the master or other secondary servers are down.

NOTE A server can be both a server and a client at the same time.

Secondary NIS servers receive updates whenever the primary NIS server is updated
so that the masters and slaves remain in sync. The process of keeping the secondary serv-
ers in sync with the primary is called a server push. As part of its update routine, the NIS
master also pushes a copy of the map files to the secondary server. Upon receiving these
files, the secondary servers update their databases as well. The NIS master does not con-
sider itself completely up-to-date until the secondary servers are up-to-date as well.

 526 Linux Administration: A Beginner’s Guide

NOTE A server pull mechanism also exists for NIS. However, this solution is typically reserved for
more complex configurations, such as when you have hundreds of slave servers. In a smaller network,
this should not be an issue.

Domains
Primary NIS servers establish domains that are similar to the domains of a domain con-
troller (DC) in Windows. A significant difference is that the NIS domain does not require
the NIS server administrator to explicitly allow a client to join. (Bear in mind that the
NIS model assumes that all clients are members of the same administrative domain and
are thus managed by the same system administrators.) Furthermore, the NIS server only
centralizes information/data; it does not perform authentication by itself—it defers to
other system routines for this. The process of authenticating users is left to each indi-
vidual host; NIS merely provides a centralized list of users.

TIP Since NIS domains must be given names, it’s a good practice (though not mandatory) to use
names that are different from your DNS domain names. You’ll have a much easier time discussing your
network domains with fellow administrators when everyone knows which is which.

CONFIGURING THE MASTER NIS SERVER
Linux distributions typically have the client-side software for NIS already installed as a
part of the initial operating system installation. This arrangement helps make it easy to
set up any system as an NIS client from the get-go—some distributions will even give
you the choice of configuring a machine to use NIS during the operating system (OS)
install.

Because not every system needs to act as an NIS server, you may have to manually
install the NIS server component. This is usually painless. The software required can be
easily downloaded from your distribution’s software repository (e.g., web site or install
media).

After installing the NIS server software, all that is usually left for you to do is enable
the service (if it isn’t enabled already) and configure it. To make sure that the NIS server
(ypserv) is started automatically between system boots, the chkconfig tool can be used.

First, we’ll install the server-side software for the NIS server. On a Fedora system
and most other Red Hat Package Manager (RPM)–based Linux systems, the software
package that provides the NIS server is aptly named ypserv*.rpm (where * represents
the available version number).

Here we’ll use the Yum program to quickly download and install the package from
the Internet. Issue the yum command:

[root@serverA ~]# yum -y install ypserv

527 Chapter 23: Network Information Service (NIS)

TIP On an OpenSuSE system, you can quickly install the ypserv package if it isn’t already installed
by using the YaST utility by typing yast -i ypserv.

TIP On a Debian-based distro, like Ubuntu, you can install the NIS package by running

sudo apt-get -y install nis

Once NIS is installed and enabled, you’ll need to configure it. There are four steps to
doing this:

 1. Establish the domain name.

 2. Start the ypserv daemon to start NIS.

 3. Edit the makefile.

 4. Run ypinit to create the databases.

The steps are examined in detail in the following section.

Establishing the Domain Name
Setting the NIS domain name is done with the domainname command. Let’s say we’re
setting up an NIS domain called nis.example.org.

First, use the domainname command to view the system’s current NIS domain. Type

[root@serverA ~]# domainname

(none)

Now we’ll go ahead and set the NIS domain like this:

[root@serverA ~]# domainname nis.example.org

Run the domainname command again to view your changes. Type

[root@serverA ~]# domainname

nis.example.org

To make your NIS domain name stick between each system reboot on a Fedora sys-
tem and most other Red Hat–type systems, you can create a variable called NISDOMAIN
in the /etc/sysconfig/network file. Open up the file for editing, and append an entry
similar to this one at the end of the file:

NISDOMAIN=nis.example.org

We’ll use the echo command to make the change to the /etc/sysconfig/network
file. Type

[root@serverA ~]# echo "NISDOMAIN=nis.example.org" >> /etc/sysconfig/network

 528 Linux Administration: A Beginner’s Guide

TIP In other Linux distributions, you can achieve the same effect by adding the domainname
command with the proper value to one of the rc scripts that gets executed while the system is booting;
for example, you can edit the /etc/init.d/ypserv script. Do a search for the line containing domainname,
and if you can’t find one, add one anywhere after the first line. The line should read like so:

domainname nis.example.org

 Don’t forget to replace nis.example.org with your own NIS domain name. The domain name
should be set before the NIS server (ypserv) starts.

Starting NIS
The ypserv daemon is responsible for handling NIS requests. Starting the ypserv dae-
mon is easy on a Fedora, Red Hat Enterprise Linux (RHEL), or Centos system. We’ll use
the service command to start it here. For other Linux distributions, you can directly
execute the ypserv startup script (/etc/ini.d/ypserv) if you like, and for an OpenSuSE
system, you can use the rcypserv command with the proper parameter.

NIS is a Remote Procedure Call (RPC)–based service, and so you need to also make
sure that the portmapper program is up and running before attempting to start NIS.
The portmapper service on a Fedora system runs under rpcbind, so to start port-
mapper, just type

[root@serverA ~]# service rpcbind start

On our sample Fedora system, we’ll start the NIS service like so:

[root@serverA ~]# service ypserv start

To confirm that the ypserv service has registered itself properly with the portmapper,
use the rpcinfo command as shown here:

[root@serverA ~]# rpcinfo -p | grep ypserv

100004 2 udp 618 ypserv

100004 1 udp 618 ypserv

If you need to stop the NIS server at any time, you can do so with the command

[root@serverA ~]# service ypserv stop

Editing the Makefile
You’ve seen the use of the make command to compile programs in many other chapters.
The make tool doesn’t do the compilation, however—it simply keeps track of what files
need to be compiled and then invokes the necessary program to perform the compila-
tion. The file that actually contains the instructions for make is called a makefile.

529 Chapter 23: Network Information Service (NIS)

The make tool is efficient because the programs it invokes are arbitrary. For example,
you can substitute your preferred compiler in place of the one that comes with a particu-
lar Linux distribution. When make sees that a file’s date and time have been modified,
make takes that to mean that the file’s contents have been modified. If the file has been
modified, that tells make that the file needs to be recompiled.

Putting this concept to work on NIS is straightforward. In this case, there’s a series of
straight text files that need to be converted into database format. We want a tool that will
reconvert any files that have been changed—you can see how make fits the bill!

Changing over to the /var/yp directory, we see a file called Makefile (yes, all one
word). This file lists the files that get shared via NIS, as well as some parameters for how
they get shared and how much of each one gets shared. Open up the Makefile file with
your favorite editor, and you can see all the configurable options. Let’s step through the
options in the Makefile file that apply to Linux.

But before proceeding, you should make a backup of the original untainted Makefile.
You can use the copy (cp) command to do this:

[root@serverA ~]# cp /var/yp/Makefile /var/yp/Makefile.original

The following section discusses some directives in the Makefile file that are of par-
ticular interest to us in this chapter. Sections of a sample Makefile are also quoted here,
along with their comments for clarity.

Designating Slave Servers: NOPUSH
If you plan to have NIS slave servers, you’ll need to tell the master NIS server to push the
resulting maps to the slave servers. Change the NOPUSH variable to false if you want
slave servers.

NOTE If you don’t need slave servers now but think you will need them later, you can change this
option when you do add the servers.

If we have only one server, we don't have to push the maps to the slave

servers (NOPUSH=true). If you have slave servers, change this

to "NOPUSH=false" and put all hostnames of your slave servers in the file

/var/yp/ypservers.

NOPUSH=true

Remember to list the hostnames of your slave servers in the /var/yp/ypservers file.
And for each hostname you list there, be sure to list a corresponding entry in the /etc/
hosts file.

Minimum UIDs and GIDs: MINUID and MINGID
When accounts are added, the minimum user ID (UID) and group ID (GID) created in
the /etc/passwd and /etc/group files will be different, depending on your Linux distribu-
tion. Be sure to set the minimum UID and GID values that you are willing to share via

 530 Linux Administration: A Beginner’s Guide

NIS. Obviously, you don’t want to share the root entry via NIS, so the minimum should
never be zero.

We do not put password entries with lower UIDs (the root and system

entries) in the NIS password database for security. MINUID is the

lowest UID that will be included in the password maps. If you

create shadow maps, the UserID for a shadow entry is taken from

the passwd file. If no entry is found, this shadow entry is

ignored.

MINGID is the lowest GID that will be included in the group maps.

MINUID=500

MINGID=500

Merging Shadow Passwords with Real Passwords: MERGE_PASSWD
So that NIS can be used for other systems to authenticate users, you will need to allow
the encrypted password entries to be shared through NIS. If you are using shadow pass-
words, NIS will automatically handle this for you by taking the encrypted field from the
/etc/shadow file and merging it into the NIS-shared copy of /etc/passwd. Unless there
is a specific reason why you do not want to enable sharing of the encrypted passwords,
leave the MERGE_PASSWD setting alone.

Should we merge the passwd file with the shadow file?

MERGE_PASSWD=true|false

MERGE_PASSWD=true

Merging Group Shadow Passwords with Real Groups: MERGE_GROUP
The /etc/group file allows passwords to be applied to group settings. Since the /etc/group
file needs to be publicly readable, some systems have taken to supporting shadow group
files—these are similar in nature to shadow password files. Unless you have a shadow
group file, you need to set the MERGE_GROUP setting to false.

Should we merge the group file with the gshadow file ?

MERGE_GROUP=true|false

MERGE_GROUP=false

Designating Filenames
The following Makefile segment shows the files that are preconfigured to be shared via
NIS. Just because they are listed here, however, does not mean they are automatically
shared. This listing simply establishes variables for later use in the Makefile.

YPPWDDIR = /etc

531 Chapter 23: Network Information Service (NIS)

This variable (YPPWDDIR) specifies the location of the passwd, group, and shadow files.

YPSRCDIR = /etc

The YPSRCDIR variable is generally used to specify the directory location of the other
source files for NIS. It is used mostly for the network-related files, such as the hosts file,
protocols, file, and services file. The variable is used extensively in the rest of the file to
specify the location of other files that might be of interest.

The listing that follows shows the actual usage of the YPPWDDIR and YPSRCDIR
variables in the Makefile:

These are the files from which the NIS databases are built. You may edit

these to taste in the event that you wish to keep your NIS source files

separate from your NIS server's actual configuration files.

GROUP = $(YPPWDDIR)/group

PASSWD = $(YPPWDDIR)/passwd

SHADOW = $(YPPWDDIR)/shadow

GSHADOW = $(YPPWDDIR)/gshadow

....<OUTPUT TRUNCATED>....

ALIASES = /etc/aliases

HOSTS = $(YPSRCDIR)/hosts

SERVICES = $(YPSRCDIR)/services

AUTO_MASTER = $(YPSRCDIR)/auto.master

AUTO_HOME = $(YPSRCDIR)/auto.home

AUTO_LOCAL = $(YPSRCDIR)/auto.local

TIMEZONE = $(YPSRCDIR)/timezone

What Gets Shared: The all Entry
In the following Makefile entry, all of the maps listed after the all: are the maps that
get shared:

all: passwd group hosts rpc services netid protocols mail \

netgrp shadow publickey networks ethers bootparams printcap \

amd.home auto.master auto.home auto.local passwd.adjunct \

timezone locale netmasks

Notice that the line continuation character, the backslash (\), is used to ensure that
the make program knows to treat the entire entry as one line, even though it is really
three lines. In addition, note that the second, third, and fourth lines begins with a pound
sign (#), which means the rest of the line is commented out.

Given this format, you can see that the maps configured to be shared are passwd,
group, hosts, rpc, services, netid, protocols, and mail. These entries corre-
spond to the filenames listed in the preceding section of the Makefile. Of course, not all
sites want these entries shared, or they want some additional maps shared (such as the
Automounter files auto.master and auto.home). To change any of the maps you want
shared, alter the line so that the maps you don’t want shared are listed after a # symbol.

 532 Linux Administration: A Beginner’s Guide

For example, let’s say you want only the passwd and group maps shared over NIS.
You’d change the all: line to read as follows:

all: passwd group \

 # hosts rpc services protocols netgrp mail \

 # shadow publickey networks ethers bootparams amd.home \

 # passwd.adjunct

Note that the order of the maps in the all: line doesn’t matter. The placement of the
foregoing entries simply makes them easily read.

Using ypinit
Once you have the Makefile ready, you need to initialize the YP (NIS) server using the
ypinit command.

NOTE Remember that you must already have the NIS domain name set before you run the ypinit
command. This is done with the domainname utility, as shown in “Establishing the Domain Name”
earlier in this chapter.

[root@serverA ~]# /usr/lib/yp/ypinit -m

Here, the -m option tells ypinit to set the system up as a master NIS server. Assum-
ing we are running this command on our sample system named serverA, we would see
the system respond as follows:

At this point, we have to construct a list of the hosts which will run

NIS servers. serverA.example.org is in the list of NIS server hosts.

Please continue to add the names for the other hosts, one per line.

When you are done with the list, type a <control D>.

next host to add: serverA.example.org

next host to add:

Continue entering the names of any secondary NIS servers if you plan on having
them. Press ctrl-d when you have added all necessary servers. These entries will be
placed in the /var/yp/ypservers file for you; if needed, you can change them by editing
the file later.

You will next be prompted to confirm that the information you entered is correct.

The current list of NIS servers looks like this:

serverA.example.org

Is this correct? [y/n: y] y

We need a few minutes to build the databases...

Building /var/yp/nis.example.org/ypservers...

gethostbyname(): Success

Running /var/yp/Makefile...

533 Chapter 23: Network Information Service (NIS)

gmake[1]: Entering directory '/var/yp/nis.example.org'

Updating passwd.byname...

failed to send 'clear' to local ypserv: RPC: Program not registeredUpdating

passwd.byuid...

failed to send 'clear' to local ypserv: RPC: Program not registeredUpdating

group.byname...

...<OUTPUT TRUNCATED>...

serverA.example.org has been set up as a NIS master server.

Now you can run ypinit -s serverA.example.org on all slave servers.

(Ignore any error messages that may have resulted from this command for now. The pos-
sible errors are discussed in more detail in the following section.)

Once you are done, ypinit will run the make program automatically for you, build
the maps, and push them to any secondary servers you have indicated.

This might be a good time to make sure that the rpcbind and NIS server services are
running. Start them with the commands that follow if they are not running:

[root@serverA ~]# service rpcbind restart

[root@serverA ~]# service ypserv restart

On a Debian-based distro, like Ubuntu, you can start the portmap service and the nis
service by running

yyang@ubuntu-serverA:~$ sudo /etc/init.d/portmap restart

yyang@ubuntu-serverA:~$ sudo /etc/init.d/nis restart

Makefile Errors
Any errors that may have occurred from running the ypinit command in the previous
section were most likely not fatal errors.

If you made a mistake in the Makefile, you may get an error when ypinit runs the
make program. If you see this error,

gmake[1]: *** No rule to make target '/etc/shadow', needed by 'passwd.byname'. Stop.

don’t worry about it. This means you have specified a file to share that doesn’t exist (in
this error message, the file is /etc/shadow). You can either create the file or go back and
edit the Makefile so that the file is not shared. (See the earlier section “What Gets Shared:
The all Entry.”)

Another common error message is

failed to send 'clear' to local ypserv: RPC: Program not registered

Updating passwd.byuid...

failed to send 'clear' to local ypserv: RPC: Program not registered

gmake[1]: *** No rule to make target '/etc/gshadow', needed by 'group.byname'.

Stop.

gmake[1]: Leaving directory '/var/yp/serverA.example.org'

 534 Linux Administration: A Beginner’s Guide

There are actually two error messages here. You can ignore the first one, which indi-
cates that the NIS server hasn’t been started yet. The second error message is the same
one described in the preceding paragraph. Once you’ve fixed it, type the following com-
mand to rebuild the maps, as described in the next section:

[root@serverA ~]# cd /var/yp ; make

Updating NIS Maps
If you have updated the files configured to be shared by NIS with the rest of your net-
work, you need to rebuild the map files. (For example, you may have added a user to the
central /etc/passwd file.) To rebuild the maps, use the following make command:

[root@serverA ~]# cd /var/yp ; make

CONFIGURING AN NIS CLIENT
Thankfully, NIS clients are much easier to configure than NIS servers! To set up an NIS
client, you need to do the following:

 1. Edit the /etc/yp.conf file.

 2. Set up the startup script.

 3. Edit the /etc/nsswitch.conf file.

Editing the /etc/yp.conf File
The /etc/yp.conf file contains the information necessary for the client-side daemon,
ypbind, to start up and find the NIS server. You need to make a decision regarding how
the client is going to find the server, either by using a broadcast or by specifying the
hostname of the server.

The broadcast technique is appropriate when you need to move a client around to
various subnets and you don’t want to have to reconfigure the client so long as an NIS
server exists in the same subnet. The downside to this technique, of course, is that you
must make sure there is an NIS server in every subnet.

NOTE When you use the broadcast method, you must have an NIS server in every subnet
because routers will not normally forward broadcast traffic; i.e., broadcasts do not span multiple
subnets. If you are uncertain whether a particular NIS server is in the same subnet, you can find out
by pinging the broadcast address. (Some systems have enabled protection against smurf attacks
and so may not respond to broadcast pings—you may have to temporarily disable that protection
to test properly.) If the NIS server is one of the hosts that responds, you know for sure that the
broadcast method will work.

535 Chapter 23: Network Information Service (NIS)

The other technique for client-to-server contact is specifying the hostname of the
server. This method works well when you need to subnet your network, but you don’t
need an NIS server in every subnet. This allows a client to move anywhere inside your
network and still be able to find the NIS server—however, if you need to change a client
so that it points to another NIS server (to balance the network load, for example), you’ll
need to change that yourself.

The syntax for the two methods for the client to find the server are

▼ Broadcast method If you choose the broadcast technique, edit the /etc/yp.conf
file on the client so that it reads as follows:

domain nis.example.org broadcast

where nis.example.org is the name of our sample NIS domain. Remember
that if you need failover support, you will need to have two NIS servers in every
subnet in order for broadcast to find the second server.

▲ Server hostname method If you want to specify the name of the NIS server
directly, edit the /etc/yp.conf file so that it reads as follows:

domain nis.example.org server serverA

where nis.example.org is the name of our sample NIS domain, and serverA
is the name of the NIS server to which we want this client to refer.

NOTE Remember that you also need to have an entry for serverA in the /etc/hosts file. At the
time NIS is started, you may not yet have access to DNS, and you most certainly don’t have access
to the NIS hosts table yet! For this reason, the client must be able to do the hostname-to-Internet
Protocol (IP) resolution without the aid of any other services.

Enabling and Starting ypbind
The NIS client runs a daemon called ypbind in order to communicate with the server.
Typically, this is started in the /etc/init.d/ypbind startup script. Check your startup
scripts with the chkconfig program, and verify that ypbind will start automatically at
the desired runlevels.

The following shows the steps to control ypbind and manage its startup scrips:

▼ To start the daemon without having to reboot, use this command:

[root@serverA ~]# service ypbind start

■ If you need to stop the daemon, type

[root@serverA ~]# service ypbind stop

 536 Linux Administration: A Beginner’s Guide

▲ Use the chkconfig utility to enable ypbind’s automatic startup in runlevels 3
and 5. Type

[root@serverA ~]# chkconfig --level 35 ypbind on

On a Debian-based Linux distro, like Ubuntu, the ypbind service is controlled by the
nis run-control script. So starting nis will automatically start the ypbind service too. For
example, to start the ypbind service, run the following command:

yyang@ubuntu-serverA:~$ sudo /etc/init.d/nis start

EDITING THE /ETC/NSSWITCH.CONF FILE
The /etc/nsswitch.conf file is responsible for telling the system the order in which to
search for information. The format of the file is as follows:

filename: servicename

where filename is the name of the file that needs to be referenced, and servicename
is the name of the service used to find the file. Multiple services can be listed, separated
by spaces. Here are examples of some valid services:

files Use the actual file on the host itself.

yp Use NIS to perform the lookup.

nis Use NIS to perform the lookup (nis is an alias yp).

dns Use DNS for the lookup (applies only to hosts).

[NOTFOUND=return] Stop searching.

nis+ Use NIS+. (Due to the experimental status of the NIS+
implementation under Linux as of this writing, avoid
using this option.)

ldap Use the Lightweight Directory Access Protocol (LDAP).

Here is an example entry in the /etc/nsswitch.conf file:

passwd: files nis

This entry means that search requests for password entries will first be done in the
/etc/ passwd file. If the requested entry isn’t found there, NIS will then be checked.

The /etc/passwd file should already exist and contain most of the information
needed. You may need to adjust the order in which certain servicenames are listed
in the file.

537 Chapter 23: Network Information Service (NIS)

GUI Tools for NIS
Fedora, RHEL, and Centos have some graphical user interface (GUI) tools that can
make it easy to configure a host as an NIS client. The first one is the ncurses-based
command-line tool, named authconfig-tui. This is shown here:

To launch this tool, just type

[root@fedora-serverA ~]# authconfig-tui

The second tool is the system-config-authentication tool, shown here:

 538 Linux Administration: A Beginner’s Guide

NIS AT WORK
The illustration in Figure 23-1 shows a sample usage of NIS. The illustration shows a
user’s login attempt before NIS was deployed. The second part of the illustration shows
the same user’s login attempt after NIS has been deployed for use.

The user testuser will attempt to log into his local system as a user that does not
exist in the host’s (serverB) local /etc/passwd file. The attempt will fail.

This tool requires your X Window System to be running. To launch it, type

[root@fedora-serverA ~]# system-config-authentication

OpenSuSE Linux has some nice GUI tools that can aid in configuring both the
NIS server and the NIS client. The server configuration tool is shown here:

To launch this tool, type

opensuse-serverA:~ # yast nis_server

or

opensuse-serverA:~ # yast2 nis_server

To launch the NIS client configuration tool in OpenSuSE, type

opensuse-serverA:~ # yast nis

539 Chapter 23: Network Information Service (NIS)

After configuring NIS, a similar login attempt by the user is successful. It is success-
ful because at this point, serverB has been configured as an NIS client to serverA. The
client—serverB—will again still check its local /etc/passwd file for an entry for testuser,
but upon not finding it, it will next consult the NIS server at serverA. The NIS server
has knowledge of the user and will pass on the same info to serverB, which will then
perform the actual authentication.

Figure 23-1. Before and after NIS

1
Testuser will try to
log into serverB.

BEFORE NIS

ServerB

ServerB

Testuser

4
Testuser will
try to log into
ServerB again.

7
Testuser will be
allowed to log in
upon proper
authentication.

2
ServerB will consult its local /etc/passwd
file but will not find an entry for any user
called testuser. ServerB will refuse to
allow testuser to log in.

5
ServerB will consult its local /etc/etc/passwd
file but will not find an entry for any user
called testuser. ServerB will refuse to allow
testuser to log on.

6
ServerB will query the NIS database on
ServerA. ServerA will then respond with
whatever information it has for testuser.

3
Testuser will say something like:
%$#@ & *%$ %#

ServerB ServerA

AFTER NIS

 540 Linux Administration: A Beginner’s Guide

Testing Your NIS Client Configuration
After the /etc/yp.conf and /etc/nsswitch.conf files have been properly configured and the
ypbind client daemon is all set up, you should be able to use the ypcat command to dump
a map from the NIS server to your screen. To do this, type the following command:

[root@serverA ~]# ypcat passwd

yyang:1hqO5GYbH$iYAZfvruqFa4jPoHpiA210:500:500:Ying Yang:/home/yyang:/bin/bash

which dumps the passwd map to your screen—that is, of course, if you are sharing your
passwd map via NIS. If you aren’t, pick a map that you are sharing, and use the ypcat
command with that filename.

If you don’t see the map dumped out, you need to double-check your client and
server configurations and try again.

CONFIGURING A SECONDARY NIS SERVER
As your site grows, you’ll undoubtedly find that there is a need to distribute the NIS

service load to multiple hosts. NIS supports this through the use of secondary NIS serv-
ers. These servers require no additional maintenance once they are configured, because
the master NIS server sends them updates whenever you rebuild the maps (with the
make command, as described in “Editing the Makefile” earlier in this chapter).

There are three steps to setting up a secondary NIS server:

 1. Set the NIS domain name.

 2. Set up the NIS master to push to the slave.

 3. Run ypinit to initialize the slave server.

Setting the Domain Name
As when configuring a master NIS server, you should establish the NIS domain name
before starting up the actual initialization process for a secondary server (serverB):

[root@serverB ~]# domainname my_domain_name

where my_domain_name is the NIS domain name for your site.
Of course, the secondary server’s domain name must be set up so that it automati-

cally becomes established at boot time. If you are using the Fedora version of Linux, as
in our sample system, you can do this by setting the NISDOMAIN variable in the /etc/
sysconfig/network file. Otherwise, you can edit your /etc/init.d/ypserv file so that the
first thing it does after the initial comments is set the domain name there.

NOTE Be sure to set the domain name by hand before you continue with the ypinit step of the
installation.

541 Chapter 23: Network Information Service (NIS)

Setting Up the NIS Master to Push to Slaves
If you haven’t already configured the master NIS server that will push to the slave NIS
servers, you should do so now. This requires two tasks: First, edit the /var/yp/ypservers
file so that it includes all the secondary NIS servers to which the master server will push
maps. For example, if you want the master server to push maps to the hosts serverB and
serverC, you’ll edit /var/yp/ypservers so that it looks like this:

serverA

serverB

serverC

where serverA is the hostname of the master NIS server.
Second, you’ll need to make sure the Makefile has the line NOPUSH=false. See the

“Designating Slave Servers: NOPUSH” section earlier in the chapter details.

Running ypinit
With these setup steps accomplished, you’re ready to run the ypinit command to ini-
tialize the secondary server. Type the following command on the secondary NIS server:

[root@serverB ~]# /usr/lib/yp/ypinit -s serverA

where the -s option tells ypinit to configure the system as a slave server, and serverA
is the name of the NIS master server.

The output of this command will complain about ypxfrd not running—you can
ignore this. What the secondary server is trying to do is pull the maps from the master
NIS server, using the ypxfrd daemon. This won’t work, because you didn’t configure
the master NIS server to accept requests to pull maps down via ypxfrd. Rather, you con-
figured the master server to push maps to the secondaries whenever the master has an
update. The server process at this point must be started by hand. It’s the same process as
for the primary server: ypserv. To get it started, run this command:

[root@serverB ~]# service ypserv start

NOTE Be sure to have the server process start as part of the boot process. You can use the
chkconfig program to do this. The ypserv program should start in runlevels 3 and 5.

To test the secondary server, go back to the master server and try to do a server-side
push. Do this by running the make program again on the master NIS server, as follows:

[root@serverA ~]# cd /var/yp ; make

Updating passwd.byname...

Updating passwd.byuid...

Updating group.byname...

 542 Linux Administration: A Beginner’s Guide

...<OUTPUT TRUNCATED>...

Updating mail.aliases...

This should force all of the maps to be rebuilt and pushed to the secondary server.

NIS TOOLS
To help you work with NIS, a handful of tools have been written to let you extract infor-
mation from the database via the command line:

▼ ypcat

■ ypwhich

■ ypmatch

▲ yppasswd

The first tool, ypcat, dumps the contents of an NIS map. This is useful for scripts
that need to pull information out of NIS: ypcat can pull the entire map down, and then
grep can be used to find a specific entry. The ypcat command is also useful for simple
testing of the NIS service. For example, to use ypcat (and grep) to dump and search for
the entry for user yyang in the passwd database, type

[root@serverA ~]# ypcat passwd | grep yyang

yyang:1hqO5GYbH$iYAZfvruqFa4jPoHpiA210:500:500:Ying Yang:/home/yyang:/bin/bash

The ypwhich command returns the name of the NIS server that is answering your
requests. This is also a good diagnostic tool if NIS doesn’t appear to be working as
expected. For example, let’s say you’ve made a change in the master NIS tables, but your
change can’t be seen by a specific client. You can use ypwhich to see to which server the
client is bound. If it’s bound to a secondary server, it might be that the secondary server
is not listed in the primary server’s /var/yp/ypservers file.

Here is an example of ypwhich usage:

[root@serverA ~]# ypwhich

The ypmatch command is a close relative of ypcat. Rather than pulling an entire
map down, however, you supply a key value to ypmatch, and only the entry corre-
sponding to that key is pulled down. Using the passwd map as an example, we can pull
down the entry to the user yyang with this simple command:

[root@serverA ~]# ypmatch yyang passwd

The yppasswd command is the NIS version of the standard Linux passwd com-
mand. The difference between the two is that the yppasswd command allows the user to
set his or her password on the NIS server. The behavior is otherwise identical to passwd.

543 Chapter 23: Network Information Service (NIS)

In fact, many sites rename the standard passwd command to something like passwd.
local and then create a symlink from passwd to yppasswd.

Using NIS in Configuration Files
One of the most popular uses of NIS is the sharing of the /etc/passwd file so that every-
one can log into all hosts on the network by making a single modification to the master
/etc/passwd map. Some distributions of Linux automatically support this feature once
they see NIS running. Others still require explicit settings in /etc/passwd so that the login
program knows to check NIS as well as the base password file.

Let’s assume you need to add the special tokens to your /etc/passwd file to allow
logins from users listed in the NIS passwd file.

Here is the basic setting you might need to add to your client’s /etc/passwd file to
allow host login for all users listed in the NIS passwd list:

+:*:::::

NOTE Any glibc-based (e.g., Fedora, RHEL, Red Hat) systems do not need this addition to the /etc/
passwd file, but having it there will not confuse glibc or otherwise make it behave badly.

And here is the setting if you want to prevent anyone from logging into that host
except for those listed explicitly in the /etc/passwd file:

+::::::/bin/false

This overrides all the user’s shell settings so that when a login to the client is
attempted, the login program tries to run /bin/false as the user’s login program. Since
/bin/false doesn’t work as a shell, the user is immediately booted out of the system.

To allow a few explicitly listed users into the system while still denying everyone
else, use the sample entries that follow in the /etc/passwd file:

+username

+username2

+username3

+::::::/bin/false

This allows only username, username2, and username3, specifically, to log into the
system.

IMPLEMENTING NIS IN A REAL NETWORK
In this section, we’ll discuss deployment of NIS in real networked environments. This isn’t
so much a cookbook as it is a collection of samples. After all, we’ve already described the
details of configuring and setting up NIS servers and clients. No need to repeat that!

 544 Linux Administration: A Beginner’s Guide

Obviously, there will be exceptions to each scenario described here. Some small net-
works might generate an unusually high amount of NIS traffic, for some reason. On the
other hand, some large networks might have such light NIS traffic that only a single
master is needed. In any case, apply a liberal dose of common sense to the following,
and you should be fine.

A Small Network
We define a small network to be one with fewer than 30 to 40 UNIX/Linux systems, all
of which exist on the same subnet.

In this case, a single NIS master server is more than enough. Unless any of the sys-
tems in your network are generating an unreasonable amount of NIS requests, all of the
other systems can be configured as clients to query the master server via either broad-
cast or direct connection. If you don’t expect to segment your network, you’ll probably
want to stick with using broadcast, because it simplifies the process of adding hosts to
the network.

The NIS server itself shouldn’t have to be too beefy. If you have a powerful machine
handling the task, don’t be afraid to have it share the load with another lightweight ser-
vice or two. (Dynamic Host Configuration Protocol, or DHCP, is often a good candidate
for load sharing.)

A Segmented Network
Segmented networks introduce complexity to the process of handling broadcast-style
services, such as Address Resolution Protocol (ARP) or DHCP. For a growing network,
however, segmenting is likely to be a necessity. By segmenting your traffic into two or
more discrete networks, you can better keep traffic on each segment down to a control-
lable level. Furthermore, this arrangement helps you impose tighter security for inside
systems. For instance, you can put Accounting and Human Resources onto another sub-
net to make it harder for Engineering to put sniffers on the network and get to confiden-
tial information.

For NIS, segmenting means two possible solutions. The first solution assumes that
even though you have a larger network, it doesn’t require a lot of NIS traffic. This is typi-
cally the case in heterogeneous networks where Microsoft Windows has made its way to
many desktop workstations. In this case, keeping a single NIS master server is probably
enough. In any event, this network’s clients should be configured to contact the server
directly instead of using broadcasts. This is because only those clients on the same subnet
as the NIS server will be able to contact it via broadcasts, and it’s much easier to keep all
your client workstations configured consistently.

On the other hand, if you think there is enough NIS traffic, splitting the load across
multiple servers—one for each subnet—is a good idea. In this case, the master NIS server
is configured to send updates to the secondaries whenever the maps are updated, and
clients can be consistently configured to use broadcasts to find the correct NIS server.
When you use broadcasts, clients can be moved from one subnet to another without your
having to reassign their NIS server.

545 Chapter 23: Network Information Service (NIS)

Networks Bigger Than Buildings
It isn’t uncommon for networks to grow bigger than the buildings they’re located in.
Remote offices connected through a variety of methods mean a variety of administrative
decisions—and not just concerning NIS!

For NIS, however, it is crucial that a server be located at each side of every wide area
network (WAN) link. For example, if you have three campuses connected to each other in
a mesh by T1 links, you should have at least three NIS servers, one for each campus. This
arrangement is needed because NIS relies on low-latency links in order to perform well,
especially given that it is an RPC-based protocol. (Doing a simple ls -l command can
result in literally hundreds of lookups.) Furthermore, in the event one of the WAN links fails,
it is important that each site be able to operate on its own until the link is reestablished.

Depending on the organization of your company and its administration, you may
or may not want to split NIS so that multiple NIS domains exist. Once you get past
this administrative decision, you can treat each campus as a single site and decide how
many NIS servers need to be deployed. If you intend to keep a uniform NIS space, there
should be only one NIS master server; the rest of the NIS servers at other campuses
should be slaves.

SUMMARY
In this chapter, we discussed the process of installing master NIS servers, slave NIS serv-
ers, and NIS clients, as well as how to use some of the tools available on these servers.
Here are the key points to remember about NIS:

▼ Although similar in nature to Windows domain controllers, NIS servers are not
the same. Namely, NIS servers do not perform authentication.

■ Because anyone in your network can join an NIS domain, it is assumed that your
network is already secure. Most sites find that the benefits of this arrangement
outweigh the risks.

■ Once the Makefile file is set up and ypinit has been run, master NIS servers
do not need additional setups. Changes to the files that you need to share via
NIS (such as /etc/passwd) are updated and propagated by running cd /var/
yp;make.

■ NIS slave servers are listed in the master server’s file, /var/yp/ypservers.

■ NIS slave servers receive their information from the server via a server push.

■ Setup of an NIS slave server is little more than running the ypinit -s command.

■ NIS clients need their /etc/yp.conf and /etc/nsswitch.conf files to be configured
properly.

▲ Be sure to establish the NIS-isms in the client-side password file whenever your
particular Linux distribution requires it. Most Red Hat–based systems do not
require these NIS-isms.

547

24

Samba

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 548 Linux Administration: A Beginner’s Guide

Samba is a powerful suite of applications for allowing UNIX-based systems (such as
Linux) to interoperate with Windows-based and other operating systems. It is an
open source implementation of the Server Message Block/Common Internet File

System (SMB/CIFS) protocol suite.
Samba transparently provides file and print sharing services to Windows clients.

It is able to do this through the use of the native Microsoft networking protocols
SMB/CIFS. From a system administrator’s point of view, this means being able to
deploy a UNIX-based server without having to install Network File System (NFS),
and some kind of UNIX-compatible authentication support on all the Windows clients
in the network. Instead, the clients can use their native tongue to talk to the server—
which means fewer hassles for you and seamless integration for your users.

This chapter covers the procedure for downloading, compiling, and installing Samba.
Thankfully, Samba’s default configuration requires little modification, so we’ll concen-
trate on how to perform customary tasks with it and how to avoid some common pitfalls.
In terms of administration, you’ll get a short course on using Samba’s Web Administra-
tion Tool (SWAT) and on the smbclient command-line utility.

No matter what task you’ve chosen for Samba to handle, be sure to take the time to
read the program’s documentation. It is well written, complete, and thorough. For the
short afternoon it takes to get through most of it, you’ll gain a substantial amount of
knowledge.

NOTE Samba has actually been ported to a significant number of platforms—almost any variant
of UNIX you can imagine, and even several non-UNIX environments. In this discussion, we are, of
course, most interested in Samba/Linux, but keep in mind that Samba can be deployed on your other
UNIX systems as well.

THE MECHANICS OF SMB
To fully understand the Linux/Samba/Windows relationship, you need to understand
the relationships of the operating systems to their files, printers, users, and networks. To
better see how these relationships compare, let’s examine some of the fundamental issues
of working with both Linux-based systems and Windows in the same environment.

Usernames and Passwords
The Linux/UNIX login/password mechanism is radically different from the Windows
PDC (Primary Domain Controller) model and the Windows Active Directory model.
Thus, it’s important for the system administrator to maintain consistency in the logins
and passwords across both platforms. Users may need to work in heterogeneous envi-
ronments and may need access to the different platforms for various reasons. It is thus
useful to make working in such environments as seamless as possible without having
to worry about users needing to reauthenticate separately on the different platforms or
worry about cached passwords that don’t match between servers, etc.

549Chapter 24: Samba

Relative to Samba, there are several options for handling username and password
issues in heterogeneous environments. Some of these are

▲ The Linux Pluggable Authentication Modules (PAM) Allows you to authen-
ticate users against a PDC. This means you still have two user lists—one local
and one on the PDC—but your users need only keep track of their passwords on
the Windows system.

■ Samba as a PDC Allows you to keep all your logins and passwords on the
Linux system, while all your Windows boxes authenticate with Samba. When
Samba is used with a Lightweight Directory Access Protocol (LDAP) back-end
for this, you will have a scalable and extensible solution.

▲ Roll your own solution using Perl Allows you to use your own custom script.
For sites with a well-established system for maintaining logins and passwords,
it isn’t unreasonable to come up with a custom script. This can be done using
WinPerl and Perl modules that allow changes to the Security Access Manager
(SAM) to update the PDC’s password list. A Perl script on the Linux side can
communicate with the WinPerl script to keep accounts synchronized.

In the worst-case situation, you can always maintain the username and password
databases of the different platforms by hand (which some early system admins did
indeed have to do!), but this method is error-prone and not much fun to manage.

Encrypted Passwords
Starting with Windows NT 4/Service Pack 3, Windows 98, and Windows 95 OSR2,
 Windows uses encrypted passwords when communicating with the PDC and any server
requiring authentication (including Linux and Samba). The encryption algorithm used
by Windows is different from UNIX’s, however, and, therefore, is not compatible.

Here are your choices for handling this conflict:

▼ Edit the Registry on Windows clients to disable the use of encrypted passwords.
The Registry entries that need to be changed are listed in the docs directory in the
Samba package. As of version 3 of Samba, this option is no longer necessary.

▲ Configure Samba to use Windows-style encrypted passwords.

The first solution has the benefit of not pushing you to a more complex password
scheme. On the other hand, you may have to apply the Registry fix on all your clients.
The second option, of course, has the opposite effect: For a little more complexity on the
server side, you don’t have to modify any of your clients.

Samba Daemons
The Samba code is actually composed of several components and daemons. We will
examine three of the main daemons here, namely, smbd, nmbd, and winbindd.

The smbd daemon handles the actual sharing of file systems and printer services
for clients. It is also responsible for user authentication and resource-locking issues. It

 550 Linux Administration: A Beginner’s Guide

starts by binding to port 139 or port 445 and then listens for requests. Every time a cli-
ent authenticates itself, smbd makes a copy of itself; the original goes back to listening
to its primary port for new requests, and the copy handles the connection for the client.
This new copy also changes its effective user ID from root to the authenticated user. (For
example, if the user yyang authenticated against smbd, the new copy would run with
the permissions of yyang, not the permissions of root.) The copy stays in memory as long
as there is a connection from the client.

The nmbd daemon is responsible for handling NetBIOS name service requests. nmbd
can also be used as a drop-in replacement for a Windows Internet Name Server (WINS).
It begins by binding itself to port 137; unlike smbd, however, nmbd does not create a
new instance of itself to handle every query. In addition to name service requests, nmbd
handles requests from master browsers, domain browsers, and WINS servers—and as
such, it participates in the browsing protocols that make up the popular Windows Net-
work Neighborhood of systems. The services provided by the smbd and nmbd daemons
complement each other.

Finally, the service provided by winbindd can be used to query native Windows
servers for user and group information, which can then be used on purely Linux/UNIX
platforms. It does this by using Microsoft Remote Procedure Call (RPC) calls, PAM, and
the name service switch (NSS) capabilities found in modern C libraries. Its use can be
extended through the use of a PAM module (pam_winbind) to provide authentication
services. This service is controlled separately from the main smb service and can run
independently.

NOTE With the release of Windows 2000, Microsoft moved to a pure Domain Name System (DNS)
naming convention as part of its support for Active Directory in an attempt to make name services
more consistent between the Network Neighborhood and the hostnames that are published in DNS.
In theory, you shouldn’t need nmbd anymore, but the reality is that you will, especially if you intend to
allow non–Windows 2000 hosts on your network to access your Samba shares.

Installing Samba via RPM
Precompiled binaries for Samba exist for most Linux distributions. This section will show
how to install Samba via Red Hat Package Manager (RPM) on a Fedora distribution. To
provide the server-side services of Samba, three packages are needed on Fedora and Red
Hat Enterprise Linux (RHEL)–type systems. They are

▼ samba*.rpm This package provides an SMB server that can be used to provide
network services to SMB/CIFS clients.

■ samba-common*.rpm This package provides files necessary for both the
server and client packages of Samba—files such as configuration files, log files,
man pages, PAM modules, and other libraries.

▲ samba-client*.rpm It provides the SMB client utilities that allow access to SMB
shares and printing services on Linux and non-Linux-type systems. The package
is used on Fedora, OpenSuSE, and other RHEL-type systems.

551Chapter 24: Samba

Assuming you have a working connection to the Internet, installing Samba can be as
simple as issuing this command:

[root@serverA ~]# yum -y install samba

You can similarly install the samba-client package like so:

[root@serverA ~]# yum -y install samba-client

You may also choose to install the RPM package from the distribution’s install media’s
/mount_point/Packages/ directory using the usual RPM commands, e.g.,

[root@serverA ~]# rpm -ivh /media/dvdrom/Packages/samba-*.rpm

Installing Samba via APT
The essential components of the Samba software on Debian-like distros, such as Ubuntu,
are split into samba*.deb and samba-common*.deb packages. Getting the client and
server components of Samba installed in Ubuntu is easy as running the following
apt-get command:

yyang@ubuntu-serverA:~$ sudo apt-get -y install samba

As with installing most other services under Ubuntu, the installer will automatically
start the Samba daemons after installation.

Compiling and Installing Samba from Source
Samba comes prepackaged in binary format on most Linux distributions. But as with
all the other services we’ve discussed in this book, you should be able to compile the
software yourself in the event you want to upgrade the package to a new release. Since
its inception, Samba has had users across many different UNIX/Linux platforms and so
has been designed to be compatible with the many variants. There is rarely a problem
during the compilation process.

As of this writing, the latest version of Samba was 3.2.0. You should therefore remem-
ber to change all references to the version number (3.2.0) in the following steps to suit the
version you are using.

Begin by downloading the Samba source code from www.samba.org into the direc-
tory where you want to compile it. For this example, we’ll assume this directory is
/usr/local/src. You can download the latest version directly from http://us4.samba.org/
samba/ftp/samba-latest.tar.gz.

 1. Unpack Samba using the tar command.

[root@serverA src]# tar xvzf samba-latest.tar.gz

 2. Step 1 creates a subdirectory called samba-3.2.0 for the source code. Change into
that directory. Type

[root@serverA src]# cd samba-3.2.0/

 552 Linux Administration: A Beginner’s Guide

TIP Using your favorite text editor, start by reading the file titled Manifest. This explains all the
files that came with Samba and gives you the location of the Samba documentation. While this isn’t
immediately crucial, it will help you in the long run.

 3. Within the samba-3.2.0 directory, there will be another subdirectory called
source. Change into that directory like so:

[root@serverA samba-3.2.0]# cd source/

TIP The Samba source directory may or may not contain the configure script. You may confirm this
by doing a listing (ls) of the files in the folder. If the configure script is not present, you’ll have to create
it using the autogen.sh script under the source directory of the Samba source tree.

 4. We’ll run Samba’s configure script and enable support for smbmount. The other
options that you might want to consider are listed in Table 24-1. Here we’ll
enable only the smbmount option and accept the other defaults. Type

[root@serverA source]# ./configure --with-smbmount

 5. Begin compiling Samba by running the make command.

[root@serverA source]# make

 6. Next, run make install.

[root@serverA source]# make install

 7. We are done. You will find all the Samba binaries and configuration files installed
under the /usr/local/samba/ directory. You can now carry on using them as you
would if you had installed Samba via RPM. Of course, you should watch out for
the paths!

NOTE The /usr/local/samba/bin directory is typically not found in the search path for most shells.
You can either add it to your path or simply copy the binaries from /usr/local/samba/bin to a location
where they will be searched (e.g., /usr/sbin/ or /usr/bin/).

SAMBA ADMINISTRATION
This section describes some typical Samba administrative functions. We’ll see how to start
and stop Samba, how to do common administrative tasks with SWAT, and how to use
smbclient. Finally, we’ll examine the process of using encrypted passwords.

553Chapter 24: Samba

Starting and Stopping Samba
Most distributions of Linux have scripts and programs that will start and stop Samba
without your needing to do anything special. They take care of startup at boot time
and stopping at shutdown. On our sample system running Fedora with Samba installed
via RPM, the service command and the chkconfig utility can be used to manage
Samba’s startup and shutdown.

For example, to start the smbd daemon, you can execute this command:

[root@serverA ~]# service smb status

And to stop the service, type

[root@serverA ~]# service smb stop

Table 24-1. Common Samba Configuration (./configure) Options

Samba Configuration
(./configure) Option Description

--prefix=PREFIX Install architecture-independent files in
PREFIX.

--with-smbmount Include support for the smbmount command.
The smbmount command allows you to
attach shares off of NT servers (or other
Samba servers), much as you mount NFS
partitions.

--with-pam Include PAM support (default=no).

--with-ldapsam Include LDAP SAM 2.2–compatible
configuration (default=no).

--with-ads Active Directory support (default=auto).

--with-ldap LDAP support (default=yes).

--with-pam_smbpass Build PAM module for authenticating against
passdb back-ends.

--with-krb5=base-dir Locate Kerberos 5 support (default=/usr).

--enable-cups Turn on Common UNIX Printing System
(CUPS) support (default=auto).

 554 Linux Administration: A Beginner’s Guide

After making any configuration changes to Samba, you can restart it with this com-
mand to make the changes go into effect:

[root@serverA ~]# service smb restart

The smb service on Fedora will not automatically start up with the next system reboot.
You can configure it to start up automatically using the chkconfig utility, like so:

[root@serverA ~]# chkconfig smb on

TIP Starting the Samba that we installed from source earlier can be done from the command line
with this command:

[root@serverA ~]# /usr/local/samba/sbin/smbd -D

 The only command-line parameter used here (-D) tells smbd to run as a daemon. The nmbd daemon
can be started in the same manner with

[root@serverA ~]# /usr/local/samba/sbin/nmbd -D

 Stopping Samba without the use of proper scripts is a little trickier. But in general, you may have to
use the ps command to list all of the Samba processes. From this list, find the instance of smbd that
is owned by root and kill this process. This will also kill all of the other Samba connections.

USING SWAT
As mentioned, SWAT is the Samba Web Administration Tool, with which you can man-
age Samba through a browser interface. It’s an excellent alternative to editing the Samba
configuration files (smb.conf and the like) by hand.

Prior to version 2.0 of Samba, the official way to configure it was by editing the smb.
conf file. Though verbose in nature and easy to understand, this file was rather cumber-
some to deal with because of its numerous options and directives. Having to edit text
files by hand also meant that setting up shares under Microsoft Windows was still easier
than setting up shares with Samba. Some individuals developed graphical front-ends to
the editing process. Many of these tools are still being maintained and enhanced—you
can read more about them by visiting Samba’s web site at www.samba.org. As of version
2.0, however, the source for Samba ships with SWAT.

The SWAT software is packaged separately on Fedora and RHEL systems. The binary
RPM that provides SWAT is named samba-swat. In this section, we’ll install the RPM for
SWAT using the Yum program.

Setting Up SWAT
What makes SWAT a little different from other browser-based administration tools is
that it does not rely on a separate web server (like Apache). Instead, SWAT performs all
the needed web server functions without implementing a full web server.

555Chapter 24: Samba

Setting up SWAT is pretty straightforward. Here are the steps:

 1. Use Yum to download and install SWAT. Type

[root@serverA ~]# yum -y install samba-swat

TIP SWAT is packaged with the main Samba source tree, and so it gets built when you build Samba
itself from source. For our previous compile and build of Samba, the SWAT binary was installed under
the /usr/local/samba/sbin/ directory.

 2. Confirm that you have the samba-swat package installed. Type

[root@serverA ~]# rpm -q samba-swat

samba-swat-3.*

 3. SWAT runs under the control of the superdaemon, xinetd. It is disabled by
default. Check its status by typing

[root@serverA ~]# chkconfig --list swat

swat off

 4. Enable it by typing

[root@serverA ~]# chkconfig swat on

 5. Restart xinetd to make your changes take effect. Type

[root@serverA ~]# service xinetd restart

 6. Finally, you can connect to SWAT’s web interface using a web browser on the
system where it is installed. Point the web browser to SWAT’s Uniform Resource
Locator (URL):

http://localhost:901/

Upon entering this URL, you will be prompted for a username and password with
which to log into SWAT. Type root as the username and type root’s password. Upon
successfully logging in, you will be presented with a web page similar to the one in
Figure 24-1.

And that is pretty much all there is to installing and enabling SWAT on a Fedora
system.

NOTE SWAT’s default xinetd configuration allows you to connect to SWAT only from the same
machine on which you are running Samba (i.e., the local host). This was done for the purpose of
security, since you don’t want to allow random people to be able to connect remotely to your server
and “help” you configure your Samba server.

 556 Linux Administration: A Beginner’s Guide

CAUTION Logging in as root through SWAT causes the root password to be sent from the web
browser to the Samba server. Therefore, avoid doing administration tasks across an untrusted network.
Preferably, connect only from the server itself, or set up a Secure Shell (SSH) tunnel between the
client host and the Samba server host.

THE SWAT MENUS
When you connect to SWAT and log in as root, you’ll see the main menu shown in
 Figure 24-1. From here, you can find almost all the documentation you’ll need for
Samba’s configuration files, daemons, and related programs. None of the links point
to external web sites, so you can read them at your leisure without connecting to
the Net.

At the top of SWAT’s main page are buttons for the following menu choices:

Figure 24-1. Samba Web Administration Tool

557Chapter 24: Samba

Home The main menu page

Globals Configuration options that affect all operational aspects of Samba

Shares For setting up disk shares and their respective options

Printers For setting up printers

Wizard This will initiate a Samba configuration wizard that will walk
you through setting up the Samba server

Status The status of the smbd and nmbd processes, including a list
of all clients connected to these processes and what they are
doing (the same information that’s listed in the smbstatus
command-line program)

View The resulting smb.conf file

Password Password settings

Globals
The Globals page lists the settings that affect all aspects of Samba’s operation. These set-
tings are divided into five groups: base, security, logging, browse, and WINS. To the left
of each option is a link to the relevant documentation for the setting and its values.

Shares
In Microsoft Windows, setting up a share can be as simple as selecting a folder (or creat-
ing a new one), right-clicking it, and allowing it to be shared. Additional controls can be
established by right-clicking the folder and selecting Properties.

Using SWAT, these same actions are accomplished by creating a new share. You can
then select the share and click Choose Share. This brings up all the configurable param-
eters for the share.

Printers
The Printers page for SWAT lets you configure Samba-related setting for printers that are
currently available on the system. Through a series of menus, you can add printer shares,
delete them, modify them, etc. The one thing you cannot do here is add printers to the
main system—you must do that by some other means (see Chapter 26).

Status
The Status page shows the current status of the smbd and nmbd daemons. This infor-
mation includes what clients are connected and their actions. The page automatically
updates every 30 seconds by default, but you can change this rate if you like (it’s an

 558 Linux Administration: A Beginner’s Guide

option on the page itself). Along with status information, you can turn Samba on and off
or ask it to reload its configuration file. This is necessary if you make any changes to the
configuration.

View
As you change your Samba configuration, SWAT keeps track of the changes and figures
out what information it needs to put into the smb.conf file. Open the View page, and you
can see the file SWAT is putting together for you.

Password
Use the Password page if you intend to support encrypted passwords. You’ll want to
give your users a way to modify their own passwords without having to log into the
Linux server. This page allows users to do just that.

NOTE It’s almost always a good idea to disallow access to your servers for everyone except support
personnel. This reduces the chances of mistakes being made that could affect the performance or
stability of your server.

CREATING A SHARE
We will walk through the process of creating a share under the /tmp directory to be
shared on the Samba server. We’ll first create the directory to be shared and then edit
Samba’s configuration file (/etc/samba/smb.conf) to create an entry for the share.

Of course, this can be done easily using SWAT’s web interface, which was installed
earlier, but we will not use SWAT here. SWAT is easy and intuitive to use. But it is prob-
ably useful to understand how to configure Samba in its rawest form, and this will also
make it easier to understand what SWAT does in its back-end so that you can tweak
things to your liking. Besides, one never knows when one might be stranded in the
 Amazon jungle without any nice graphical user interface (GUI) configuration tools avail-
able. So let’s get on with it:

 1. Create a directory under the /tmp/ folder called testshare. Type

[root@serverA ~]# mkdir /tmp/testshare

 2. Create some empty files (foo1, foo2, moo3) under the directory you created in
Step 1. Type

[root@serverA ~]# touch /tmp/testshare/{foo1,foo2,moo3}

 3. Set up the permissions on the testshare folder so that its contents can be browsed
by other users on the system. Type

[root@serverA ~]# chmod -R 755 /tmp/testshare/*

559Chapter 24: Samba

 4. Open up Samba’s configuration file for editing in any text editor of your choice,
and append the entry listed next to the end of the file. Please omit the line num-
bers 1–5. The lines are added only to aid readability.

1) [samba-share]

2) comment=This folder contains shared documents

3) path=/tmp/testshare

4) public=yes

5) writable=no

▼ Line 1 is the name of the share (or “service” in Samba parlance). This is the
name that SMB clients will see when they try to browse the shares stored on
the Samba server.

■ Line 2 is just a descriptive/comment text that users will see next to a share
when browsing.

■ Line 3 is important. It specifies the location on the file system that stores the
actual content to be shared.

■ Line 4 specifies that no password is required to access the share (this is called
“connecting to the service” in Samba-speak). The privileges on the share
will be translated to the permissions of the guest account. If the value were
set to “no” instead, the share would not be accessible by the general public,
but only by authenticated and permitted users.

▲ Line 5, with the value of the directive set to “no,” means that users of this
service may not create or modify the files stored therein.

TIP Samba’s configuration file has options and directives that are too numerous to cover here.
But you can learn more about the other possible options by reading the man page for smb.conf
(man smb.conf).

 5. Save your changes to the /etc/samba/smb.conf file, and exit the editor.

You should note that we have accepted all the other default values in the file.
You may want to go back and personalize some of the settings to suit your
environment.

One setting you may want to change quickly is the directive (“workgroup”) that
defines the workgroup. This controls what workgroup your server will appear
to be in when queried by clients or when viewed in the Windows Network
Neighborhood.

Also note that the default configuration may contain other share definitions.
You should comment (or delete) those entries if it is not your intention to
have them.

 560 Linux Administration: A Beginner’s Guide

 6. Use the testparm utility to check the smb.conf file for internal correctness (i.e.,
absence of syntax errors). Type

[root@serverA ~]# testparm –s | less

...<OUTPUT TRUNCATED>...

[samba-share]

comment = This folder contains shared documents

path = /tmp/testshare

guest ok = Yes

Study the output for any serious errors, and try to fix them by going back to cor-
rect them in the smb.conf file.

Note that because you piped the output of testparm to the less command,
you may have to press q on your keyboard to quit the command.

 7. Now restart (or start) Samba to make the software acknowledge your changes.
Type

[root@serverA ~]# service smb restart

We are done creating our test share. In the next section, we will attempt to access
the share.

TIP On Debian-based distributions, like Ubuntu, you can restart the smb daemon by running

yyang@ubuntu-serverA:~$ sudo /etc/init.d/samba restart

Using smbclient
The smbclient program is a command-line tool that allows your Linux-based system
to act as a Windows client. You can use this utility to connect to other Samba servers or
even to actual Microsoft Windows servers. smbclient is a flexible program and can be
used to browse other servers, send and retrieve files from them, or even print to them.
As you can imagine, this is also a great debugging tool, since you can quickly and easily
check whether a new Samba installation works correctly without having to find a Win-
dows client to test it.

In this section, we’ll show you how to do basic browsing, remote file access, and
remote printer access with smbclient. However, remember that smbclient is a flex-
ible program, limited only by your imagination.

NOTE The smbclient program is packaged separately in Ubuntu. You’ll have to explicitly install
it by running a command, like

yyang@ubuntu-serverA:~$ sudo apt-get -y install smbclient

561Chapter 24: Samba

Browsing a Server
With so many graphical interfaces around, we’ve come to equate browsing with “point
and click.” But when your intention is to simply find out what a server has to offer, it’s
not enough of a reason in itself to support an entire GUI.

Using smbclient with the -L option allows you to view the offerings of a Win-
dows file server or Samba server without having to use a GUI. Here’s the format of the
command:

[root@serverA ~]# smbclient -L hostname

where hostname is the name of the server. For example, if we want to see what the local
host (i.e., serverA) has to offer, we type

[root@serverA ~]# smbclient -L localhost

You will be prompted for a password. You can just press enter to complete the
command.

To list the shares on the Samba server again without being prompted for a password,
you can use the -U% option. This implies that you want to be authenticated as the guest
user, which has no password. Type

[root@serverA ~]# smbclient -U% -L localhost

Domain=[MYGROUP] OS=[Unix] Server=[Samba 3.0.28-0.fc8]

Sharename Type Comment

--------- ---- -------

samba-share Disk This folder contains shared documents

IPC$ IPC IPC Service (Samba Server Version 3*)

Domain=[MYGROUP] OS=[Unix] Server=[Samba 3.0.28-0.fc8]

....<OUTPUT TRUNCATED>....

Notice the presence of the share we created earlier in line 4 of the preceding output.

Remote File Access
The smbclient utility allows you to access files on a Windows server or a Samba server
with a command-line hybrid Disk Operating System (DOS)/File Transfer Protocol (FTP)
client interface. For its most straightforward usage, you’ll simply run the following:

[root@serverB ~]# smbclient //server/share_name

where server is the server name (or IP address), and share_name is the share name
to which you want to connect. By default, Samba automatically sets up all users’ home
directories as shares. (For instance, the user yyang can access her home directory on the
server serverA by going to //serverA/yyang.)

 562 Linux Administration: A Beginner’s Guide

The following are some command-line parameters you may need to use with
smbclient to connect to a server:

Parameter for smbclient Description

- I destIP The destination IP address to which you want to
connect.

- U username The user you want to connect as. This will be used
instead of the user you are logged in as.

- W name Sets the workgroup name to name.

- D directory Starts from directory.

Once connected, you’ll be able to browse directories using the cd, dir, and ls com-
mands. You can also use get, put, mget, and mput to transfer files back and forth. The
online help explains all of the commands in detail. Simply type help at the prompt to see
what is available.

Let us attempt an actual connection to the share we created earlier (samba-share). To
better demonstrate the process, the connection will be made from a different host named
clientB.

We’ll use the smbclient utility to connect to the server, connecting as a guest by
specifying the -U% option. After connecting, we will be dropped down to an smb shell
with the prompt “smb: \>”.

While connected, we’ll do a listing of the files available on the share using the ls
command. Then we’ll try to download one of the files that resides on the share using the
FTP-like command get.

Finally, end the connection using quit. A sample session on clientB connecting to
serverA is shown here:

[root@clientB ~]# smbclient -U% //serverA/samba-share

Domain=[MYGROUP] OS=[Unix] Server=[Samba 3.0.28-0.fc8]

smb: \> ls

 . D 0 Sat Mar 15 15:27:42 2012

 .. D 0 Sat Mar 15 15:27:14 2012

 foo1 A 0 Sat Mar 15 15:27:42 2012

 foo2 A 0 Sat Mar 15 15:27:42 2012

 moo3 A 0 Sat Mar 15 15:27:42 2012

 59501 blocks of size 8192. 55109 blocks available

smb: \> get foo2

getting file \foo2 of size 0 as foo2 (0.0 kb/s) (average 0.0 kb/s)

smb: \> quit

The file (foo2) that was downloaded from serverA should be in the current working
directory on the local file system of clientB.

563Chapter 24: Samba

MOUNTING REMOTE SAMBA SHARES
If your kernel is configured to support the SMB file system (as are most kernels that come
with typical Linux distributions), you can actually mount a Windows share or Samba
share onto your local system in much the same way you would mount an NFS export or
a local volume. This is handy for accessing a large disk on a remote server without hav-
ing to shuffle individual files across the network.

While logged into clientB, you can use the mount command with the proper options
to mount a Samba share that resides on serverA.

First, create the mount point if it does not exist. Type

[root@clientB ~]# mkdir -p /mnt/smb

Then run the command to do the actual mounting:

[root@clientB ~]# mount -t smbfs -o guest //serverA/samba-share /mnt/smb

You can also specify cifs as the file system type, like so:

[root@clientB ~]# mount -t cifs -o guest //serverA/samba-share /mnt/smb

where //serverA/samba-share is the remote share being mounted, and /mnt/smb is the
mount point.

TIP On a system with SELinux running in enforcing mode (such as Fedora, RHEL, Centos, etc.),
you might need to temporarily disable SELinux (setenforce 0) on the Samba server to allow the
remote clients to remotely mount the Samba shares, after which you can then debug any SELinux
issues.

NOTE On Debian-based distros, like Ubuntu, you might have to install the smbfs package, if it is
not already installed, in order to be able to use the mount.smbfs command. This can be done
running the command

yyang@ubuntu-serverA:~$ sudo apt-get -y install smbfs

To unmount this directory, use the umount command, as in

[root@clientB ~]# umount /mnt/smb

CREATING SAMBA USERS
When configured to do so, Samba will honor requests from users that are stored in user
databases that are, in turn, stored in various back-ends—e.g., LDAP (ldapsam, tdbsam,
xmlsam) or MySQL (mysqlsam).

Here, we will add a sample user that already exists in the local /etc/passwd file to
Samba’s user database. We will accept and use Samba’s native/default user database

 564 Linux Administration: A Beginner’s Guide

back-end (tdbsam) for demonstration purposes, as the other possibilities are beyond the
scope of this chapter.

Let’s create a Samba entry for the user yyang. We will also set the user’s Samba
password.

Use the smbpasswd command to create a Samba entry for the user yyang. Choose a
good password when prompted to do so. Type

[root@serverA ~]# smbpasswd -a yyang

New SMB password:

Retype new SMB password:

Added user yyang.

The new user will be created in Samba’s default user database, tdbsam.
With a Samba user now created, you can make the shares available to only authenti-

cated users, such as the one we just created for the user yyang.
If the user yyang now wants to access a resource on the Samba server that has been

configured strictly for her use (a protected share or nonpublic share), the user can use the
smbclient command shown here; for example,

[root@clientB ~]# smbclient –U yyang –L //serverA

It is, of course, also possible to access a protected Samba share from a native Microsoft
Windows box. One only needs to supply the proper Samba username and corresponding
password when prompted on the Microsoft Windows system.

Allowing Null Passwords
If you need to allow users to have no passwords (which is a bad idea, by the way, but
for which there might be legitimate reasons), you can do so by using the smbpasswd
program with the -n option, like so:

[root@serverA ~]# smbpasswd -n username

where username is the name of the user whose password you want to set to empty.
For example, to allow the user yyang to access a share on the Samba server with a

null password, type

[root@serverA ~]# smbpasswd -n yyang

User yyang password set to none.

You can also do this via the SWAT program using its web interface.

Changing Passwords with smbpasswd
Users who prefer the command line over the web interface can use the smbpasswd com-
mand to change their Samba passwords. This program works just like the regular passwd
program, except this program does not update the /etc/passwd file by default. Because
smbpasswd uses the standard protocol for communicating with the server regarding

565Chapter 24: Samba

password changes, you can also use this to change your password on a remote Windows
machine.

For example, to change the user yyang’s Samba password, issue this command:

[root@serverA ~]# smbpasswd yyang

New SMB password:

Retype new SMB password:

Samba can be configured to allow regular users to run the smbpasswd command
themselves to manage their own passwords; the only caveat is that they must know their
previous/old password.

TIP There are several web-based front-ends that can be configured to allow users to manage their
passwords by themselves—Webmin, for example, has a module for this.

USING SAMBA TO AUTHENTICATE AGAINST
A WINDOWS SERVER

Thus far, we’ve been talking about using Samba in the Samba/Linux world. Or, to put it
literarily, we’ve been using Samba in its native environment, where it is lord and master
of its domain (no pun intended). What this means is that our Samba server, in combina-
tion with the Linux-based server, has been responsible for managing all user authentica-
tion and authorization issues.

The simple Samba setup that we created earlier in the chapter had its own user data-
base, which mapped the Samba users to real Linux/UNIX users. This allowed any files
and directories created by Samba users to have the proper ownership contexts. But what
if we wanted to deploy a Samba server in an environment with existing Windows serv-
ers that are being used to manage all users in the domain? And we don’t want to have to
manage a separate user database in Samba? Enter …the winbindd daemon.

The winbindd daemon is used for resolving user accounts (users and groups) infor-
mation from native Windows servers. It can also be used to resolve other kinds of system
information. It is able to do this through its use of pam_winbind (a PAM module that
interacts with the winbindd daemon to help authenticate users using Windows NTLM
authentication), the ntlm_auth tool (a tool used to allow external access to winbind’s
NTLM authentication function), and libnss_winbind (winbind’s Name Service Switch
library) facility.

The steps to set up a Linux machine to consult a Windows server for its user authen-
tication issues are straightforward. They can be summarized in this way:

 1. Configure Samba’s configuration file (smb.conf) with the proper directives.

 2. Add winbind to the Linux system’s name service switch facility (/etc/nsswitch.
conf).

 566 Linux Administration: A Beginner’s Guide

 3. Join the Linux/Samba server to the Windows domain.

 4. Test things out.

Here we present a sample scenario where a Linux server named serverA wishes to
use a Windows server for its user authentication issues. The Samba server is going to act
as a Windows domain member server. The Windows server we assume here is running
the Windows 200x Server operating system, and it is a domain controller (as well as
the WINS server). Its IP address is 192.168.1.100. The domain controller is operating in
mixed mode. (Mixed mode operation provides backward compatibility with Windows
NT–type domains, as well as Windows 200x–type domains.) The Windows domain name
is “WINDOWS-DOMAIN.” We have commented out any share definitions in our Samba
configuration, so you’ll have to create or specify your own (see the earlier parts of the
chapter for how to do this). Let’s break down the process in better detail:

 1. First, create an smb.conf file similar to this one:

#Sample smb.conf file

[global]

workgroup = WINDOWS-DOMAIN

security = DOMAIN

username map = /etc/samba/smbusers

log file = /var/log/samba/%m

smb ports = 139 445

name resolve order = wins bcast hosts

wins server = 192.168.1.100

idmap uid = 10000-20000

idmap gid = 10000-20000

template primary group = "Domain Users"

template shell = /bin/bash

winbind separator = +

Share definitions

#[homes]

comment = Home Directories

browseable = no

writable = yes

 2. Edit the /etc/nsswitch.conf file on the Linux server so that it will have entries
similar to this one:

passwd: files winbind

shadow: files winbind

group: files winbind

 3. On Fedora, RHEL, and Centos distributions, start the winbindd daemon using
the service command. Type

567Chapter 24: Samba

[root@serverA ~]# service winbind start

Starting Winbind services: [OK]

 4. Join the Samba server to the Windows domain using the net command. Assum-
ing the Windows Administrator account password, type

[root@serverA ~]# net rpc join -U root% windows_administrator_password

Joined domain WINDOWS-DOMAIN

where the password for the account in the Microsoft Windows domain with
permission to join systems to the domain is windows_administrator_password.

 5. Use the wbinfo utility to list all users available in the Windows domain to make
sure that things are working properly. Type

[root@serverA ~]# wbinfo -u

TROUBLESHOOTING SAMBA
The following are a few typical solutions to simple problems one might encounter with
Samba:

▼ Restart Samba This may be necessary because either Samba has entered an
undefined state or (more likely) you’ve made major changes to the configuration
but forgot to reload Samba so that the changes take effect.

■ Make sure the configuration options are correct Errors in the smb.conf file
are typically in directory names, usernames, network numbers, and hostnames.
A common mistake is when a new client is added to a group that has special
access to the server, but Samba isn’t told the name of the new client being added.
Don’t forget that for syntax-type errors, the testparm utility is your ally.

▲ Monitor encrypted passwords These may be mismatched—the server is con-
figured to use them and the clients aren’t, or (more likely) the clients are using
encrypted passwords and Samba hasn’t been configured to use them. If you’re
under the gun to get a client working, you may just want to disable client-side
encryption using the regedit scripts that come with Samba’s source code (see the
docs subdirectory).

SUMMARY
In this chapter, we discussed the process of compiling, installing, and configuring Samba
so that your Linux-based server can integrate with a Windows-based network. Samba
is a powerful tool with the potential to replace Microsoft Windows servers dedicated to
file and printer sharing.

Reading through tons of documentation probably isn’t your favorite way to pass
the day, but you’ll find the Samba documentation complete, helpful, and easy reading.

 568 Linux Administration: A Beginner’s Guide

At least skim through the files to see what’s there, so you know where you can go to
get additional information when you need it. With all the Samba texts available today
(some free, some not), you should have everything you need to configure even the most
complex setup. Two excellent texts dedicated to everything Samba immediately come
to mind: Samba-3 by Example, by John Terpstra, and The Official Samba-3 HOWTO and
Reference Guide, by John Terpstra and Jelmr Vernooij, both published by Prentice Hall
(March, 2004). These are available in print and in electronic formats. The online version
of the books can be found at www.samba.org.

569

25

LDAP

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 570 Linux Administration: A Beginner’s Guide

The Lightweight Directory Access Protocol (LDAP) has been referred to as many
things, including the best thing since sliced bread. But it is actually a set of open
protocols used to access and modify centrally stored information over a network.

LDAP is based on the X.500 standard (X.500 is an Industry Standards Organization [ISO]
standard that defines an overall model for distributed directory services), but is a more
lightweight version of the original standard. RFC 2251 explains the relationship thus:
“LDAP is designed to provide access to directories supporting the X.500 models, while
not incurring the resource requirements of the X.500 directory access protocol. Like
traditional databases, an LDAP database can be queried for the information it stores.”

LDAP was developed by the University of Michigan in 1992 as a lightweight alterna-
tive to the Directory Access Protocol (DAP). LDAP itself does not define the directory
service. It instead defines the transport and format of messages used by a client to access
data in a directory (such as the X.500 directory).

LDAP is extensible, relatively easy to implement, and based on an open standard
(i.e., it is nonproprietary). This chapter will provide an introduction to the world of direc-
tory services, as implemented by OpenLDAP. Essential concepts governing the architec-
ture and use of LDAP will be touched upon.

LDAP BASICS
LDAP is a global directory service. This directory can be used to store all sorts of infor-
mation. The directory can be regarded as a database of sorts. But unlike traditional data-
bases, an LDAP database is especially suited for read, search, and browse operations
instead of write operations. It is with reads that LDAP shines the most.

Here are some popular LDAP implementations:

▼ OpenLDAP, an open LDAP suite

■ Novell’s NetWare Directory Service (eDirectory)

■ Microsoft’s Active Directory

■ iPlanet Directory Server (This was split between Sun and Netscape a while back.
Netscape Directory Server has since been acquired by Red Hat, which has, in
turn, released it to the open source community.)

▲ IBM’s SecureWay Directory

LDAP Directory
Just as in the popular Domain Name System (DNS), the directory entries in LDAP are
arranged in a hierarchical tree structure. As in most hierarchical structures, the further
you go down the tree, the more precise the content stored therein. The hierarchical tree
structure of LDAP is known formally as the directory information tree (DIT). The top of
the directory hierarchy has a root element. The complete path to any node in the tree

571Chapter 25: LDAP

structure, which uniquely identifies it, is known as the distinguished name (DN) of the
node or object.

Again, just as in DNS, the structure of an LDAP directory usually reflects geographic
and/or organizational boundaries. Geographic boundaries can be along country lines,
state lines, city lines, or the like. Organizational boundaries can, for example, be along
functional lines, departmental lines, or organizational units.

For example, a company named Example, Inc. may decide to structure its directory
tree using a domain-based naming structure. This company may have different subdivi-
sions (organizational units, or OUs) within the company, such as the Engineering depart-
ment, the Sales department, and the R&D department. The LDAP directory tree of such
a company is illustrated in Figure 25-1.

The DN of a sample object in the directory tree shown in the figure is “dn: uid=yyang,
ou=sales,dc=example,dc=org.”

Client/Server Model
As with most network services, LDAP adheres to the usual client/server paradigm. A
typical interaction between the client and the server goes like this:

▼ An LDAP client application connects to an LDAP server. This is sometimes
called “binding to a server.”

■ Based on the access restrictions configured on the server, the LDAP server either
accepts or refuses the bind/connection request. Assuming it accepts…

Figure 25-1. LDAP tree for example.org

Example, Inc.
(the organization) dc = example, dc = org

Organizational
units

ou = sales

uid = mmellow

ou = RD ou = engineering

uid = yyang

(dn: uid = yyang, ou = sales, dc = example, dc = org)

 572 Linux Administration: A Beginner’s Guide

■ The client has the choice of querying the directory server, browsing the informa-
tion stored on the server, or attempting to modify/update the information on
the LDAP server.

▲ Again, based on access restrictions, the server can allow or deny any of the
operations attempted by the client. In the event that the server cannot answer a
request, it may forward or refer the client to another upstream LDAP server that
may have a more authoritative response to the request.

Uses of LDAP
LDAP is a distributed directory service and can be used as storage for various types of
information. Just about any kind of information can be stored in an LDAP directory—
information as varied in nature as plain textual information, images, binary data, or
 public key certificates.

Over the years, various LDAP schemas have been created to allow the storage of dif-
ferent data sources in an LDAP directory. Here are some examples of uses of LDAP:

▼ LDAP can serve as a complete identity management solution for an organiza-
tion. It can provide authentication and authorization services for users. In fact,
the services provided by the Network Information Service (NIS) can be com-
pletely replaced by LDAP.

■ The information stored in DNS records can be stored in LDAP.

■ LDAP can be used to provide “yellow pages” services for an organization (for
instance, users’ or employees’ contact info—phone numbers, addresses, depart-
ments, etc.).

■ Mail routing information can be stored in LDAP.

▲ A Samba schema exists that allows a Samba server to store extensive object attri-
butes in LDAP. This allows Samba to function as a robust drop-in replacement
for Microsoft Windows NT domain controllers in environments where redun-
dancy and replication are needed.

LDAP Terminologies
If you are going to master LDAP-speak, you might as well know the essential LDAP
technical jargon. In this section, we attempt to define some terms you will often come
across when dealing with LDAP:

▼ Entry (or object) This is one unit in an LDAP directory. Each entry is qualified
by its distinguished name (DN), e.g., “dn: uid=yyang,ou=sales,dc=example,
dc=com.”

■ Attributes These are pieces of information associated with an entry, e.g., an
organization’s address or people’s phone numbers.

573Chapter 25: LDAP

■ objectClass This is a special type of attribute. All objects in LDAP must have
an objectClass attribute. The objectClass definition specifies which attributes
are required for each LDAP object. It specifies the object classes of an entry.
The values of this attribute may be modified by clients, but the objectClass
attribute itself cannot be removed.

 The objectClass definitions are themselves stored in schema files.

■ Schema A schema is a collection of rules that determines the structure and
contents of the directory. The schema contains the attribute type definitions,
object-class definitions, etc.

 The schema lists the attributes of each object type and whether these attributes
are required or optional. Schemas are usually stored in plain-text files.

 Examples of schemas are

▼ core.schema This schema defines the basic LDAPv3 attributes and objects.
It is a required core schema in the OpenLDAP implementation.

▲ inetorgperson.schema Defines the inetOrgPerson object class and its
associated attributes. This object is often used to store people’s contact
information.

▲ LDIF This stands for the LDAP Data Interchange Format. It is a plain-text file
for LDAP entries. Files that import or export data to and from an LDAP server
must be in this format. The data used for replication among LDAP servers are
also in this format.

OPENLDAP
OpenLDAP is the open source implementation of LDAP that runs on Linux/UNIX sys-
tems. OpenLDAP is a suite of programs made up of the following components: slapd,
slurpd, and libraries, which implements the LDAP protocol, along with various client-
and server-side utilities.

Server-Side Daemons
The server side consists of two main daemons:

▼ slapd This is a stand-alone LDAP daemon. It listens for LDAP connections from
clients and responds to the LDAP operations it receives over those connections.

▲ slurpd This is a stand-alone LDAP replication daemon. It is used to propagate
changes from one slapd database to another. It is the daemon used for synchro-
nizing changes from one LDAP server to another. It is only needed when more
than one LDAP server is in use.

 574 Linux Administration: A Beginner’s Guide

OpenLDAP Utilities
The OpenLDAP utilities are a set of command-line tools used for querying, viewing,
updating, and modifying the data stored in the OpenLDAP directory. On a Fedora Core
system and Red Hat Enterprise Linux (RHEL), this suite of programs is provided by the
openldap-clients*.rpm package, and some of them are provided by the openldap-server*.
rpm package. The programs are listed in Table 25-1.

INSTALLING OPENLDAP
In order to get the OpenLDAP server and client components up and running, these pack-
ages are required on Fedora, RHEL, and Centos systems:

▼ openldap-2*.rpm Provides the configuration files and libraries for Open-LDAP.

■ openldap-clients*.rpm Provides the client programs needed for accessing and
modifying OpenLDAP directories.

▲ openldap-servers*.rpm Provides the servers (slapd, slurpd) and other utilities
necessary to configure and run LDAP.

TIP If you are configuring only the client side, you won’t need the openldap-servers*.rpm
package.

We will use the yum program to automatically download and install the open-ldap-
servers package on our sample system. The steps are listed here:

 1. While logged in as root, first confirm which of the packages you already have
installed by querying the Red Hat Package Manager (RPM) database.

[root@serverA ~]# rpm -qa| grep -i openldap

openldap-2*

...<OUTPUT TRUNCATED>...

NOTE The installation process of most Linux distributions will automatically include the base
OpenLDAP software as a part of the minimum software installed. This is done so that the system can
be configured as an LDAP client from the get-go without any additional hassle.

 2. Our sample system already has the basic openldap libraries in place, so we
will go ahead and install the OpenLDAP client and server packages using
yum. Type

[root@serverA ~]# yum -y install openldap-servers openldap-clients

 3. Once the installation completes successfully, you can go on to the configuration
section.

575Chapter 25: LDAP

Table 25-1. OpenLDAP Utilities

Utility Description

ldapmodify Used for modifying entries in LDAP. It accepts input either
directly from the command line or via a file.

ldapadd The ldapadd command is actually a hard link to the
ldapmodify -a command. It is used to add new entries
to an LDAP database. (The functionality provided by the
ldapadd command can be obtained by adding the -a
option to the ldapmodify command.)

ldapdelete Used for deleting entries from an OpenLDAP directory.

ldappasswd Sets the password for an LDAP user.

ldapsearch Used for querying/searching an LDAP directory.

slapadd Accepts input from an LDIF file to populate an LDAP
directory. Located under the /usr/sbin/ directory.

slapcat Dumps the entire contents of the LDAP directory into an
LDIF-type file. Located under the /usr/sbin/ directory.

slapindex Used for reindexing the LDAP database according to the
actual current database content. Located under the /usr/
sbin/ directory.

slappasswd Used for generating properly hashed/encrypted pass-
words that can be used with various privileged directory
operations. Located under the /usr/sbin/ directory.

Installing OpenLDAP in Ubuntu
The OpenLDAP server can be installed on Debian-based Linux distros, like Ubuntu,
by using Advanced Packaging Tool (APT). The command to install the software is

yyang@ubuntu-serverA:~$ sudo apt-get -y install slapd

Among other things, the install process will start you off in setting up a basic LDAP
server configuration by asking some questions (e.g., admin password). The Open-
LDAP server (slapd) process will also be automatically started after the installation.

The OpenLDAP client utilities on Debian-like distros are provided in the
ldap-utils*.deb package. This can be installed by running

yyang@ubuntu-serverA:~$ sudo apt-get install ldap-utils

 576 Linux Administration: A Beginner’s Guide

CONFIGURING OPENLDAP
Depending on what you want to do with your directory, configuring your directory
server can be a real pain or it can be a simple process. Setting up your directory is usu-
ally easy if you are working on a brand-new deployment, where you don’t have to worry
about any legacy issues, existing users or data, etc. For environments with existing infra-
structure, extra precautionary measures have to be taken.

CAUTION If you are deploying LDAP in an environment where you have to worry about backward-
compatibility issues, legacy architectures, existing users, or existing data, then you are advised to
approach your OpenLDAP rollout with great caution. This may take months of planning in some
situations. The planning should include extensive testing and actual staging of the current environment
on test systems.

The pam_ldap and nss_ldap Modules
The pam_ldap module provides a means for Linux/UNIX hosts to authenticate
against LDAP directories. The module was developed by the PADL software com-
pany (www.padl.com). It allows PAM-aware applications to authenticate users
using information stored in an LDAP directory. Examples of PAM-aware applica-
tions are the login program, some mail servers, some File Transport Protocol (FTP)
servers, OpenSSH, and Samba.

The nss_ldap module is a set of C library extensions that allow applications to
look up users, groups, hosts, and other information by querying an LDAP direc-
tory. The module allows applications to look up information using LDAP, as well
as using the traditional methods, such as flat files or NIS. The module was also
developed by the PADL software company.

On Fedora systems, as well as RHEL systems, these modules are provided by
the nss_ldap*.rpm package. These modules are required on systems where LDAP
is to be used as a replacement for the traditional authentication mechanisms.

Let’s check if the package is already installed by typing

[root@serverA openldap]# rpm -q nss_ldap

nss_ldap-*

If you find that the package is not installed, you can quickly install it by using
the yum command thus:

[root@serverA openldap]# yum -y install nss_ldap

577Chapter 25: LDAP

Another important factor to give adequate thought to when configuring your LDAP
directory service is the structure of the directory. For example, you should have answers
to these questions before proceeding: “What are the organizational divisions in your
establishment?” “Along what boundaries will the structure be built?” Other questions
that you should also keep in mind are: “How sensitive is the information you want to
store in the directory?” “Will more than one LDAP server be required?”

Configuring slapd
The slapd.conf file is the configuration file for the slapd daemon. On Fedora and Red
Hat–like distros, the full path to the file is /etc/openldap/slapd.conf. In this section, we
will dissect the default configuration file that comes with our Fedora system and discuss
some of its interesting portions. Please note that most of the rest of the discussion here
will concentrate on the Fedora distro.

NOTE On Debian-like distros, the configuration file for slapd is located at /etc/ldap/slapd.conf.

Here is a truncated version of the slapd.conf file. Most of the comment entries in the
original file have been removed, as well as some other configuration directives that we
don’t want to address here. We display only the stripped-down version of the file that is
relevant to our current discussion. Line numbers have been added to the beginning of
each line to aid readability.

1 # See slapd.conf(5) for details on configuration options.

2 # This file should NOT be world-readable.

3 #

4 include /etc/openldap/schema/core.schema

5 include /etc/openldap/schema/cosine.schema

6 include /etc/openldap/schema/inetorgperson.schema

7 include /etc/openldap/schema/nis.schema

8 #

9 pidfile /var/run/openldap/slapd.pid

10 argsfile /var/run/openldap/slapd.args

11 database bdb

12 suffix "dc=my-domain,dc=com"

13 rootdn "cn=Manager,dc=my-domain,dc=com"

14 # Cleartext passwords, especially for the rootdn, should

15 # be avoided. See slappasswd(8) and slapd.conf(5) for details.

16 #

17 rootpw {crypt}ijFYNcSNctBYg

18 #

19 # The database directory MUST exist prior to running slapd AND

20 # should only be accessible by the slapd and slap tools.

21 # Mode 700 recommended.

22 directory /var/lib/ldap

 578 Linux Administration: A Beginner’s Guide

From the preceding listing:

▼ Lines 1–3 are comment entries. Any text after the pound (#) symbol is a
comment.

■ Lines 4–7 are include statements. The include statement is used to instruct
slapd to read additional configuration information from the file(s) specified.
In this case, the additional files being pulled in are the specified OpenLDAP
schema files stored under the /etc/openldap/schema/ directory. At a minimum,
the core.schema file must be present.

■ In line 9, the pidfile directive points to the path of the file that will hold slapd’s
process ID.

■ In line 10, the argsfile directive is used for specifying the path to a file that
can be used to store command-line options used for starting slapd.

■ In line 11, the database option marks the beginning of a new database instance
definition. The value of this option depends on the back-end that will be used to
hold the database. In our sample slapd.conf file, bdb (Berkeley DB) is used as
the database type. Other supported database back-end types are ldbm, sql, tcl,
and meta. Some database back-ends are described in Table 25-2.

■ In line 12, the suffix directive specifies the DN suffix of queries that will be
passed to this particular database back-end. It defines the domain for which the
LDAP server provides information or for which the LDAP server is authoritative.
This entry should be changed to reflect your organization’s naming structure.

■ In line 13, the rootdn directive specifies the DN of the superuser for the LDAP
directory. This user is to the LDAP directory what the UNIX/Linux root user is
to a Linux system. The user specified here is not subject to any access controls or
administrative restrictions for operations on the database in question. The DN
specified here need not exist in the directory.

■ In line 17, the rootpw directive specifies the password for the DN specified by
the rootdn directive. Needless to say, a very strong/good password should be
used here. The password can be specified in plain text (very, very bad idea), or
the hash of the password can be specified. The slappasswd program can be
used to generate password hashes.

▲ Finally, in line 22, the directory directive specifies the path to the BDB files
containing the database and associated indices.

Having gone through a few important directives in the slapd.conf file, we will now
make a few changes to the file to customize it for our environment:

 1. While logged into the system as root, change to OpenLDAP’s working direc-
tory. Type

[root@serverA ~]# cd /etc/openldap/

579Chapter 25: LDAP

 2. Make a backup of any existing slapd.conf file by renaming it. This is so that you
can always revert to it in case of mistakes. Type

[root@serverA openldap]# mv slapd.conf slapd.conf.original

 3. Use any text editor to create a new /etc/openldap/slapd.conf file using the fol-
lowing text:

include /etc/openldap/schema/core.schema

include /etc/openldap/schema/cosine.schema

include /etc/openldap/schema/inetorgperson.schema

include /etc/openldap/schema/nis.schema

pidfile /var/run/openldap/slapd.pid

Table 25-2. OpenLDAP Database Back-ends

Database Back-end Type Description

bdb Berkeley DB instance definition. This is the
recommended database back-end type. It uses the
Sleepycat Berkeley DB to store data.

ldbm LDAP DBM type. Easy to configure, but not as durable
as the bdb database back-end type. It also uses Berkeley
DB, GNU DBM, and MDBM to store data.

sql Uses a SQL database back-end to store data.

ldap Used as a proxy to forward incoming requests to
another LDAP server.

meta Metadirectory database back-end. It is an improve-
ment on the LDAP-type back-end. It performs LDAP
proxying with respect to a set of remote LDAP servers.

monitor Stores information about the status of the slapd daemon.

null Operations to this database type succeed, but do
nothing. This is the equivalent of sending stuff to /dev/
null in Linux/UNIX.

passwd Uses the system’s plain-text /etc/passwd file to serve
user account information.

tcl An experimental back-end that uses a Tcl interpreter
that is embedded directly into slapd.

perl Uses a Perl interpreter that is embedded directly into
slapd.

 580 Linux Administration: A Beginner’s Guide

argsfile /var/run/openldap/slapd.args

database bdb

suffix "dc=example,dc=org"

rootdn "cn=Manager,dc=example,dc=org"

#

The hashed password below was generated using the command:

"slappasswd -s test". Run the command and paste the output here.

rootpw {SSHA}gJeD9BJdcx5L+bfgMpmvsFJVqdG5CjdP

directory /var/lib/ldap

 4. Save your changes to the file and exit the editor.

Starting and Stopping slapd
After setting up slapd’s configuration file, the next step will be to start the daemon. Start-
ing it on a Fedora system is easy. But first, we’ll use the service command to check the
status of the daemon.

[root@serverA ~]# service ldap status

slapd is stopped

The sample output shows that the daemon is not currently running. Start it with this
command:

[root@serverA openldap]# service ldap start

And if you find that the LDAP service is already running, you can instead issue the
service command with the restart option, like so:

[root@serverA ~]# service ldap restart

TIP If you get a warning message about DB_CONFIG not existing under the /var/lib/ldap directory
whenever you start the LDAP service on Red Hat–like distros, such as Fedora, you can fix this warning
by using the sample DB_CONFIG file that ships with the distribution. The sample file is stored under
/etc/openldap/, and the command to copy and rename the file is

[root@serverA ~]# cp /etc/openldap/DB_CONFIG.example /var/lib/ldap/DB_CONFIG

TIP Watch out for the permissions of the OpenLDAP configuration files. For example, the slapd
daemon will refuse to start on a Fedora or RHEL system if the “ldap” user cannot read the slapd.conf
file. Also, the contents of the database directory (/var/lib/ldap) must be owned by the user called “ldap”
in order to avoid funny errors.

If you want the slapd service to start up automatically with the next system reboot, type

[root@serverA openldap]# chkconfig ldap on

581Chapter 25: LDAP

CONFIGURING OPENLDAP CLIENTS
The notion of clients takes some getting used to in the LDAP world. Almost any sys-
tem resource or process can be an LDAP client. And fortunately or unfortunately, each
group of clients has its own specific configuration files. The configuration files for Open-
LDAP clients are generally named ldap.conf, but they are stored in different directories,
depending on the particular client in question.

Two common locations for the OpenLDAP client configuration files are the /etc/
openldap/ directory and the /etc/ directory. The client applications that use the Open-
LDAP libraries (provided by the openldap*.rpm package)—programs like ldapadd,
ldapsearch, Sendmail, and Evolution—consult the /etc/openldap/ldap.conf file, if it
exists. The nss_ldap libraries instead use the /etc/ldap.conf file as the configuration file.

In this section, we will set up the configuration file for the OpenLDAP client tools.
This configuration file is straightforward; we will only be changing one of the direc-
tives in it.

Open the /etc/openldap/ldap.conf file in any text editor, and change this line in the
listing

BASE dc=example,dc=com

to look like this

BASE dc=example,dc=org

TIP One other particular variable/directive that you might also want to change in the /etc/openldap/
ldap.conf file, if you are using the client tools from a host other than the server itself, is the HOST
directive. This should be set to the IP address of the remote LDAP server. But because we are using
the LDAP clients directly on the LDAP server itself, we have left the HOST directive at its default,
HOST 127.0.0.1.

Creating Directory Entries
The LDAP Data Interchange Format (LDIF) is used to represent entries in an LDAP direc-
tory in textual form. As stated earlier, data in LDAP is presented and exchanged in this
format. The data in an LDIF file can be used to manipulate, add, remove, and change the
information stored in the LDAP directory. The format for an LDIF entry is

dn: <distinguished name>

<attribute_description>: <attribute_value>

<attribute_description>: <attribute_value>

dn: <yet another distinguished name>

<attribute_description>: <attribute_value>

<attribute_description>: <attribute_value>

...

 582 Linux Administration: A Beginner’s Guide

The LDIF file is slightly strict in its format. You should keep these points in mind:

▼ Multiple entries within the same LDIF file are separated by blank lines.

■ Entries that begin with the pound sign (#) are regarded as comments and are
ignored.

■ An entry that spans more than one line can be continued on the next line by
starting the next line with a single space or tab character.

▲ The space following the colon (:) is important for each entry.

In this section, we will use a sample LDIF file to populate our new directory with
basic information to set up our DIT, as well as with information describing two users,
named bogus and testuser, respectively.

 1. The sample LDIF file is presented next. Use any text editor to input the text in
the listing into the file. Be careful with the white spaces and tabs in the file, and
make sure that you maintain a newline after each DN entry, as shown in our
sample file.

dn: dc=example,dc=org

objectclass: dcObject

objectclass: organization

o: Example inc.

dc: example

dn: cn=bogus,dc=example,dc=org

objectclass: organizationalRole

cn: bogus

dn: cn=testuser,dc=example,dc=org

objectclass: organizationalRole

cn: testuser

 2. Next, save the file as sample.ldif, and exit your text editor.

 3. Use the ldapadd utility to import the sample.ldif file into the OpenLDAP direc-
tory. Type

[root@serverA ~]# ldapadd -x -D "cn=manager,dc=example,dc=org" -W -f sample.ldif

Enter LDAP Password:

adding new entry "dc=example,dc=org"

adding new entry "cn=bogus,dc=example,dc=org"

adding new entry "cn=testuser,dc=example,dc=org"

These are the parameters used in this ldapadd command:

▼ x means to use simple authentication instead of Simple Authentication and
Security Layer (SASL).

■ D specifies the distinguished name with which to bind to the LDAP direc-
tory (i.e., the binddn parameter specified in the slapd.conf file).

583Chapter 25: LDAP

■ W allows the user to be prompted for the simple authentication password
instead of specifying the password in plain text on the command line.

 ▲ f specifies the file from which to read the LDIF file.

 4. Enter the password that you created using the slappasswd utility earlier, i.e.,
the password that was specified in the /etc/openldap/slapd.conf file for the
rootpw directive. We used “test” as the password in our example.

We are done populating the directory.

SEARCHING, QUERYING, AND MODIFYING
THE DIRECTORY

Here we will use a couple of OpenLDAP client utilities to retrieve information from our
directory.

 1. First, we’ll use the ldapsearch utility to search for and retrieve every entry in
the database directory by typing

[root@serverA ~]# ldapsearch -x -b 'dc=example,dc=org' '(objectclass=*)'

extended LDIF

...<OUTPUT TRUNCATED>...

example.org

dn: dc=example,dc=org

objectClass: dcObject

objectClass: organization

o: Example inc.

dc: example

bogus, example.org

dn: cn=bogus,dc=example,dc=org

objectClass: organizationalRole

cn: bogus

...<OUTPUT TRUNCATED>...

numResponses: 4

numEntries: 3

 2. Let’s repeat the search again, but without specifying the -b option and also mak-
ing the output less verbose. Type

[root@serverA ~]# ldapsearch -x -LLL '(objectclass=*)'

dn: dc=example,dc=org

objectClass: dcObject

objectClass: organization

o: Example inc.

dc: example

 584 Linux Administration: A Beginner’s Guide

dn: cn=bogus,dc=example,dc=org

objectClass: organizationalRole

cn: bogus

dn: cn=testuser,dc=example,dc=org

objectClass: organizationalRole

cn: testuser

Here, we didn’t need to explicitly specify the basedn to search because that
information is already defined in our /etc/openldap/ldap.conf file.

 3. We’ll next narrow down our query by searching only for the entry for the object
whose common name (cn) is equal to bogus. Issue this command to do this:

[root@serverA ~]# ldapsearch -x -LLL -b 'dc=example,dc=org' '(cn=bogus)'

dn: cn=bogus,dc=example,dc=org

objectClass: organizationalRole

cn: bogus

 4. Now we’ll attempt to perform a privileged operation on a directory entry using
the ldapdelete utility. Let’s delete the entry for the object with the DN of
“cn=bogus,dc=example,dc=org.” Issue this command:

[root@serverA ~]# ldapdelete -x -W -D 'cn=Manager,dc=example,dc=org' \

'cn=bogus,dc=example,dc=org'

Enter LDAP Password:

Enter the password for the cn=Manager,dc=example,dc=org DN to complete the
operation.

 5. Let’s use the ldapsearch utility again to make sure that that entry has indeed
been removed. Type

[root@serverA ~]# ldapsearch -x -LLL -b 'dc=example,dc=org' '(cn=bogus)'

This command should return nothing.

USING OPENLDAP FOR USER AUTHENTICATION
We will describe setting up the OpenLDAP server (and client) that we configured earlier
in the chapter to also manage Linux user accounts. We will be using some of the migra-
tion scripts that come with the software to pull/migrate the users that already exist in the
system’s /etc/passwd file into LDAP.

Configuring the Server
Setting up a Linux system to use LDAP as the storage back-end for user account infor-
mation is easy once you have all the other basic OpenLDAP configuration issues taken
care of.

585Chapter 25: LDAP

The software comes with useful scripts to ease the migration of various databases
into an OpenLDAP directory. These scripts are stored under the /usr/share/openldap/
migration/ directory on Fedora, RHEL, and Centos distros.

We will begin by customizing the /usr/share/openldap/migration/migrate_common.
ph file to suit our particular setup.

 1. Open the file for editing, and look for the lines/entries similar to these:

$DEFAULT_MAIL_DOMAIN = "padl.com";

$DEFAULT_BASE = "dc=padl,dc=com";

For example, we will change these variables to read

$DEFAULT_MAIL_DOMAIN = "example.org";

$DEFAULT_BASE = "dc=example,dc=org";

 2. We will use one of the migration scripts (migrate_base.pl) to create the base
structure for our directory. Type

[root@serverA ~]# cd /usr/share/openldap/migration/

 3. And then execute the script thus:

[root@serverA migration]# ./migrate_base.pl > ~/base.ldif

This command will create a file named base.ldif under your home directory.

 4. Make sure slapd is running, and then import the entries in the base.ldif file into
the OpenLDAP directory. Type

[root@serverA ~]# ldapadd -c -x -D "cn=manager,dc=example,dc=org" \

-W -f ~/base.ldif

 5. Now we need to export the current users in the system’s /etc/passwd file into an
LDIF-type file. We will use the /usr/share/openldap/migration/migrate_passwd.
pl script. Type

[root@serverA ~]# cd /usr/share/openldap/migration/

[root@serverA migration]# ./migrate_passwd.pl /etc/passwd > \

~/ldap-users.ldif

 6. Next, we can begin importing all the user entries in the ldap-users.ldif file into
our OpenLDAP database. We will use the ldapadd command. Type

[root@serverA ~]# ldapadd -x -D "cn=manager,dc=example,dc=org" -W -f \

 ~/ldap-users.ldif

 7. Enter the rootdn’s password when prompted.

 586 Linux Administration: A Beginner’s Guide

Configuring the Client
Configuring a client system to use an LDAP directory for user authentication is as easy
as pie on a Fedora or RHEL system. Fedora has a graphical user interface (GUI) tool
(system-config-authentication) that really dumbs down the procedure.

 1. To launch the tool from the command line, type

[root@clientB ~]# system-config-authentication

A window similar to the one shown next will open.

 2. In the Authentication Configuration window, select the Enable LDAP Support
option.

 3. Next, click the Configure LDAP button. A window similar to this one will open.

587Chapter 25: LDAP

 4. Enter the appropriate information for your particular environment. Here, we
specify the Base DN as “dc=example,dc=org” and the LDAP server as serverA
(you can also specify an IP address).

 5. Click OK.

We just described a simple way to enable a Fedora client system to use an Open-
LDAP server for its user authentication. We did not bother with a lot of details, because
this is just a proof of concept. Here are some of the details you may have to deal with in
a real production environment:

▼ Home directories You may have to make sure that users’ home directories are
available to them when logging in from any system. One way to do this is by
sharing user home directories via Network File System (NFS) and exporting the
share to all client systems.

■ Security Our sample setup did not have any security measures built into the
infrastructure. This should be of paramount importance in a production envi-
ronment so that user passwords do not go flying across the network in plain
text.

▲ Other issues There are more issues that we didn’t address here, but we’ll leave
those as a mental exercise for you to stumble over and ponder on.

TIP You should have a look at the FreeIPA project (www.freeipa.org) for a canned identity
management solution that combines and extends various concepts and solutions discussed in this
chapter. FreeIPA is an integrated solution that uses Linux (Fedora), Fedora Directory Server, MIT
Kerberos, NTP, and DNS.

SUMMARY
In this chapter we covered some LDAP basics. We concentrated mostly on the open
source implementation of LDAP known as OpenLDAP. We discussed the components of
OpenLDAP—the server-side daemons and the client-side utilities used for querying and
modifying the information stored in an LDAP directory. We created a simple directory
and populated it with some sample entries.

We barely scratched the surface of the topic. LDAP is too large a topic to be done any
justice in a single chapter. But hopefully, we whetted your appetite and got you started
in the right direction with some essential concepts and ideas.

589

26

Printing

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 590 Linux Administration: A Beginner’s Guide

Printing under Linux and UNIX typically has not been a straightforward process.
With the advent of the Common UNIX Printing System (CUPS), Linux printing
is much easier to configure and use. Previously, the printers most widely

supported were PostScript printers from Hewlett-Packard and other manufacturers.
As Linux has become a viable desktop workstation, a better printing solution was
needed, and the solution is CUPS. This chapter will cover the installation of the CUPS
system, along with the administrative tasks involved in maintaining your printing
environment.

PRINTING TERMINOLOGIES
There are several printing systems available in the Linux world today, all more or less
based on the venerable Berkeley Software Distribution (BSD) printing system. Here are
some printing terms to be familiar with:

▼ Printer A peripheral device usually attached to a host computer or the
network.

■ Job The file or set of files that is submitted for printing.

■ Spooler The software that manages print jobs. It is responsible for receiving
print jobs, storing jobs, queuing jobs, and finally, sending the jobs to the physical
hardware that will do the actual printing. Spoolers run as daemon processes that
are always sitting and waiting to service print requests, and for this reason, they
are often referred to as “print servers.” These are examples of spoolers:

▼ LPD This is the original BSD Line Printer Daemon. It is the oldest print-
ing system.

■ LPRng This is an enhanced, extended, and portable implementation of
the Berkeley LPR spooler functionality. It merges the best features of the
System V printing system with that of the Berkeley system.

▲ CUPS This provides a portable printing layer for UNIX-based systems.
It uses the Internet Printing Protocol (IPP) as the basis for managing print
jobs and queues.

■ PDL This stands for page description language. Printers accept input in this form.
PostScript and PCL are examples of PDLs.

■ PostScript PostScript files are programs. It is a stack-based programming
language. Most UNIX/Linux programs generate output in PostScript format
for printing. PostScript-based printers are printers that directly support this
format.

591 Chapter 26: Printing

■ Ghostscript A software-based PostScript interpreter for non-PostScript print-
ers, it is used for software-driven printing. It will generate the language of a
printer from PostScript. Examples are Aladdin Ghostscript (commercial ver-
sion), GNU Ghostscript (free version), and ESP Ghostscript (CUPS).

▲ Filter A special program or script that processes data (jobs) before it is sent to
the printer. A spooler sends the job to the filter, and then the filter passes it on to
the printer. File format translation and accounting usually take place at the filter-
ing layer.

THE CUPS SYSTEM
CUPS is gaining widespread acceptance in Linux and the UNIX community as a whole.
Even the new version of Apple’s OS X supports CUPS. What this means is that you
have a ubiquitous printing environment no matter what operating system you are using.
Along with the standard UNIX printing protocol of LPR, CUPS supports Samba print-
ing and the new Internet Printing Protocol. Using the concept of print classes, the CUPS
system will print a document to a group of printers for use in high-volume printing
environments. It can act as a central print spooler or just supply the printing method for
your local printer.

Running CUPS
This section deals with the process of installing CUPS and controlling the service.

The CUPS software was developed by Easy Software Products and is available at
www.cups.org. There are two methods of installation: through your Linux distribution
or by compiling from source. The first method is highly recommended, as the distribu-
tions typically have all of the popular printer support built into CUPS. When compiling
by hand, you have to get drivers for your printers yourself.

Installing CUPS
As with most of the software we’ve dealt with thus far, the CUPS software also comes in
two forms: You have the CUPS source code itself, from which you can build the software,
and you also have the prepackaged Red Hat Package Manager (RPM) or .deb binaries.

If you have to compile CUPS from source, follow the directions that come with the
software package. The source code for CUPS can be found at www.cups.org. Installation
instructions are bundled with the software. You will also want to look at the Foomatic
package, located at www.linuxprinting.org; this site provides numerous printer drivers
for various printing systems, including CUPS.

If you have a Linux distribution, such as Fedora, Red Hat Enterprise Linux (RHEL),
OpenSuSE, Mandrake, Ubuntu, Kubuntu, etc., CUPS should be available as an RPM

 592 Linux Administration: A Beginner’s Guide

package or .deb package; in fact, CUPS is the default printing system used on those
distributions.

Sticking with your distribution’s package version of CUPS is the recommended
method for installing CUPS. The distribution vendor has done the hard work to make
sure that CUPS works well with their system. If you are unfortunate enough to have a
Linux distribution that doesn’t have CUPS, you can always compile the software from
source code.

Because most systems have CUPS already installed during the initial operating sys-
tem installation, you should first query the system’s software database to see if the soft-
ware is installed already. Type

[root@serverA ~]# rpm -q cups

cups-*

If this query returns nothing, you can quickly install CUPS on a Fedora and other
Red Hat–like distros by typing

[root@serverA ~]# yum install cups

For Debian-like Linux distros, such as Ubuntu, you can use dpkg to check if the soft-
ware is already installed by running

yyang@ubuntu-serverA:~$ dpkg -l cupsys

If the software is not already installed on the Ubuntu server, you can install it using
Advanced Packaging Tool (APT), by running

yyang@ubuntu-serverA:~$ sudo apt-get install cupsys

On an OpenSuSE system, you should be able to type this command to get CUPS
installed:

[root@serverA ~]# yast -i cups

Once you have installed the CUPS software, you need to turn on the CUPS daemon.
On a Fedora system, you would do the following:

[root@serverA ~]# service cups restart

To start the CUPS service on OpenSuSE, you would use the rccups command, as in

opensuse-serverA:~ # rccups start

On a non–Red Hat system (like Ubuntu), you might be able to start CUPS by execut-
ing the startup script directly, like this:

yyang@ubuntu-serverA:~$ sudo /etc/init.d/cupsys start

593 Chapter 26: Printing

This will start the CUPS printing system and allow you to connect to the web inter-
face and add printers.

Configuring CUPS
The main configuration file for the CUPS print daemon is called cupsd.conf. It is usually
located in the /etc/cups/ directory. It is a plain-text file with directives (syntax) similar to
that of the Apache web server. The directives determine how the server operates.

The file is well commented, and all that usually needs to be done is to uncomment
certain lines in the file to turn certain functions on or off.

Here are some interesting directives used in the cupsd.conf file:

▼ Browsing This directive controls whether network printer browsing is
enabled.

■ BrowseProtocols This specifies the protocols to use when collecting and dis-
tributing shared printers on the local network.

■ BrowseInterval This specifies the maximum amount of time between brows-
ing updates.

■ BrowseAddress This specifies an address to send browsing information to.

■ ServerName This directive specifies the hostname that is reported to clients.

■ Listen This defines the address and port combination that the CUPS daemon
should listen on.

NOTE The CUPS software is Internet Protocol version 6 (IPv6)–ready. To make the CUPS daemon
listen on both IPv4 and IPv6 sockets, you could set the listen directive to something like Listen
*:631. And if you need to explicitly configure a specific IPv6 address (e.g., 2001:db8::1) for the CUPS
server to listen on, you need to enclose the IPv6 address in square brackets—for example, Listen
[2001:db8::1]:631.

■ Location This specifies access control and authentication options for the speci-
fied Hypertext Transfer Protocol (HTTP) resource or path.

 A particularly interesting location is the root location, represented by the slash
symbol (/). This location in the default cupsd.conf file looks like this (please
note that line numbers have been added to the listing to aid readability):

1) <Location />

2) Order Allow, Deny

3) Deny All

4) Allow localhost

5) </Location>

 594 Linux Administration: A Beginner’s Guide

■ Line 1 This is the start of the Location directive; here, it defines the start of
“/”—which is the path for all get operations, i.e., the topmost level of the web
server.

■ Line 2 This is the Order directive. It defines the default access control for the
location in question. These are the possible values for the Order directive:

▼ Deny,Allow Allow requests from all hosts by default; then check the
Deny directive(s), followed by the Allow directive(s).

▲ Allow,Deny Deny requests from all hosts by default; then check the
Allow directive(s), followed by the Deny directive(s).

■ Line 3 This Deny directive specifies the host(s) to deny access. In this case, the
“All” keyword means all hosts. Note that the preceding Order directive trans-
lates to Deny requests by default, but check/honor the Allow directive followed
by any Deny directives.

■ Line 4 The Allow directive specifies the host(s) to be allowed access. In this
case, the only host allowed is the localhost, i.e., the loopback address (127.0.0.1).
Due to the Order directive, any values specified in the Deny directive will super-
sede the Allow directive.

▲ Line 5 This is the closing tag for the Location directive.

TIP To change the default behavior of CUPS from allowing only access from the localhost to
the /admin location in cupsd.conf, you could, for example, change the Allow directive from “Allow
127.0.0.1” to “Allow All” and then comment out the “Deny All” directive or change to “Deny None.”

ADDING PRINTERS
The first step after you have finished installing and starting the CUPS service is to log
into the web interface. The web interface is available through port 631. In your web
browser, you just have to type http://localhost:631. By default, you must be logged into
the same server that you are trying to administer. An interesting thing to note is that 631
is the same port that CUPS uses for accepting print jobs. When you connect to the web
page, you will see a page similar to Figure 26-1.

NOTE If you want to administer printers from locations other than the server you are working on,
you need to modify the cupsd.conf file to allow other hosts to connect. In particular, you need to set
the proper access controls to the “/admin” location in the file.

595 Chapter 26: Printing

Local Printers and Remote Printers
Adding printers is easy in CUPS. An important piece of information you will need is
how the printer is attached to your system. Printers can be connected to hosts using
two broad methods: locally attached printers and network printers. Several modes
or possibilities exist under each method. The modes with which CUPS addresses the
printer resources are specified by using what is known as the device Uniform Resource
Information (URI) in CUPS. These are the possible device URIs that can be configured
in CUPS:

▼ Directly connected (local) A stand-alone home system running Linux will
most likely be connected to the printer directly through the use of a printer cable
(commonly called a parallel cable) or will perhaps connect using a Universal
Serial Bus (USB) cable to the printer’s USB port. This is an example of a locally

Figure 26-1. CUPS administration web page

 596 Linux Administration: A Beginner’s Guide

attached printer. In CUPS lingo, some possible device URIs for locally attached
printer are specified as

▼ parallel:/dev/lp* For a printer attached to the parallel port

■ serial:/dev/ttyS* For a printer attached to the serial port

▲ usb:/dev/usb/lp* For a printer attached to the USB port

■ IPP (network) IPP is an acronym for the Internet Printing Protocol. It allows a
printer to be accessed over the network using IPP. Most modern operating sys-
tems support this protocol, and so this is usually not a problem. An example of
an IPP device URI in CUPS is ipp://hostname/ipp/.

■ LPD (network) LPD is the Line Printer Daemon. CUPS supports printers that
are attached to systems running this daemon. Most UNIX/Linux systems (even
some Windows servers) support this daemon. So if a printer is attached to a host
that supports LPD, CUPS can be used to make that printer available on the net-
work to other hosts that do not necessarily support LDP. Virtually all HP laser
printers with network connectivity also natively support LPD.

A sample device URI to address an LPD printer is lpd://hostname/queue, where
hostname is the name of the machine where LPD is running.

■ SMB (network) SMB is the Service Message Block. This is the foundation of
file and printer sharing on Windows networks. Linux/UNIX hosts also support
SMB through the use of the Samba software. For example, if a Windows sys-
tem (or a Samba server) has a printer shared on it, CUPS can be configured to
access and make that printer available to its own clients. A sample device URI
to address an SMB printer resource is smb://servername/sharename, where share-
name is the name by which the printer has been shared on the Windows box or
on the Samba server.

▲ Networked Printer (duh!) This refers to a class of printers that have built-in
networking capabilities. These printers don’t need to be connected to any stand-
alone system. They usually have some form of network interface of their own—
whether Ethernet, wireless, or some other method of connecting directly to a
network. A popular type of this printer group is the HP Jetdirect series. A sample
URI to address such printers is socket://ip_address:port, where ip_address is the
IP address of the printer, and port is the port number on which the printer listens
for print requests. This is usually port 9100 on the HP Jetdirect series.

Using the Web Interface
There are several ways in which printers can be added and configured in CUPS: through
a web interface using a browser of some sort, through the command line, and by using
a purpose-built and distribution-specific GUI tool (e.g., yast2 printer, system-
config-printer). The first method is probably the easiest because it uses a kind of
wizard to walk you through the entire process. The second method is probably the most

597 Chapter 26: Printing

universal because the syntax is similar regardless of the Linux distribution. And the third
method is like a coin toss—you get what you get!

This section will walk you through setting up a printer through the CUPS web inter-
face. We will set up an imaginary printer with the following properties:

Name: Imagine-printer

Location: Building 3

Description: You only need to imagine to print here.

Connection Type: Local. Connected to Parallel port

Make: HP

Model: LaserJet Series

Let’s begin the process.

NOTE If prompted for a username and password at any point throughout the process, type root as
the user and enter root’s password.

 1. While logged into the system running CUPS, launch a web browser and connect
to CUPS at this URL:

http://localhost:631

 2. Click the Add Printer link.

 3. On the Add Printer page, enter the information for the printer that was provided
earlier, that is, the name, location, and so on.

 4. Click the Continue button when done.

 5. On the next page, use the drop-down box to select LPT #1 from the list, and then
click Continue.

 6. At the Make/Manufacturer page, select the make for the printer (HP in this
example), and click Continue.

TIP The printer makes and manufacturers shown in the list obviously do not cover all the printer
makes that exist. If you need more variety/coverage, on a Fedora or RHEL-type system, you can
install the gutenprint-cups RPM package. That package provides additional drivers for various printer
manufacturers besides the ones that ship with the basic open source version of the CUPS software.
The cupsys-driver-gutenprint .deb package will provide extra drivers on Debian-like systems, such
as Ubuntu.

 7. Here you will select the model/driver for the printer. Select the HP Laserjet
Series (or pick the closest one to that) from the list of models shown, and then
click Add Printer. (You might be prompted to enter a username and password at
this point.)

 598 Linux Administration: A Beginner’s Guide

 8. You will be presented with a page confirming that the printer has been success-
fully added. Click the printer name here (Imagine-printer).

 9. Next, you will see a page similar to the one shown here. The page shows the
properties for the printer that was just added.

599 Chapter 26: Printing

Observe that the software automatically created the proper device URI (parallel:
/dev/lp0) to address the printer with.

Now put on your best imagination hat and imagine that you have clicked the Print
Test page” link on the properties page for the printer that was just added. Next imagine
the test page being printed successfully!

Using the Command-Line Tools to Add a Printer
Using the command line is the second method for adding a printer to the CUPS system.
Once you are comfortable with how CUPS works, you may find managing the CUPS
system through its command-line interface to be a little faster. To add a printer from
the command line, you need some pertinent information, such as the printer name, the
driver, and the URI.

This section will detail a simple example for setting up a printer through the use of
the CUPS command-line tools. As in the preceding example, we will set up an imaginary
printer. The new printer that we add will have mostly the same properties as the previ-
ous one, but we will change the name of the printer (also called the printer queue). We will
name the second printer “Imagine-printer-number-2.” We will also use a different device
URI to address the printer instead of the parallel port used previously. This time, we will
assume that the printer is a networked printer with the IP address of 192.168.1.200 listen-
ing on port 9100; that is, the device URI will be - socket://192.168.1.200:9100.

 1. While logged into the system as the superuser, launch any virtual terminal and
list the printer queues that you currently have configured for your system. Use
the lpstat utility. Type

[root@serverA ~]# lpstat -a

Imagine-printer accepting requests since Sat 22....PST

 2. Now issue the lpadmin command to add the printer. Please note that the entire
command is long because of all its options, and so it spans several lines in this
sample listing. Type

[root@serverA ~]# lpadmin -p "Imagine-printer-number-2" -E \

-v socket://192.168.1.200 \

-P /usr/share/cups/model/laserjet.ppd.gz \

-D "You only need to imagine to print here" \

-L "Building 3"

 3. Use the lpstat command again to list all the printers that are present. Type

[root@serverA ~]# lpstat -a

Imagine-printer accepting requests since Sat 22.....8 AM PST

Imagine-printer-number-2 accepting requests9 AM PST

 4. You can also view the printer you just added on the CUPS web interface. Point
your web browser to this URL:

http://localhost:631/printers

 600 Linux Administration: A Beginner’s Guide

ROUTINE CUPS ADMINISTRATION
Setting up the printer(s) is one half of the battle in managing a printing environment.
The preceding section hopefully gave you enough information to get you going in that
regard. This section will discuss some routine printer administration tasks—tasks such
as deleting printers, managing the printer queue, and viewing print job statuses. We will
use both the command-line tools and the web interface for some of these tasks.

Setting the Default Printer
On a system with multiple print queues set up, it may be desirable to set up a particular
printer (queue) as the default printer for clients to use. The default printer is the printer
that is used whenever a printer name is not specified explicitly for printing by clients.

For example, to set up the printer named “Imagine-printer-number-3” as the default
printer on the system, type

[root@serverA ~]# lpadmin -d imagine-printer-number-3

Enabling and Disabling Printers
Disabling a printer is akin to taking the printer temporarily offline. In this state, the
printer queue can still accept print jobs, but it will not actually print them. The print jobs
are queued up until the printer is put in an enabled state or restarted. This is useful for
situations when the physical print device is not working properly and the system admin-
istrator does not wish to interrupt users’ printing.

To disable a printer named “imagine-printer-number-3,” type

[root@serverA ~]# cupsdisable imagine-printer-number-3

To enable the printer named “imagine-printer-number-3,” type

[root@serverA ~]# cupsenable imagine-printer-number-3

Accepting and Rejecting Print Jobs
Any printer managed by CUPS can be made to accept or reject print jobs. This is a depar-
ture from the disabled state of a printer in the sense that a printer that is made to reject
print jobs will simply not accept any print requests. Making a printer reject print jobs is
useful for situations where a printer needs to be put out of service for a long period but
not deleted completely.

Whenever a printer is made to reject print jobs, it will first complete any print jobs in
its queue and will immediately stop accepting any new requests.

601 Chapter 26: Printing

As an example, to make a printer named “imagine-printer-number-3” reject print
jobs, type

[root@serverA ~]# /usr/sbin/reject imagine-printer-number-3

Use the lpstat command to view the state of this printer. Type

[root@serverA ~]# lpstat -a imagine-printer-number-3

Imagine-printer-number-3 not accepting requests since Mar 01 00:00 -

 Rejecting Jobs

To make the printer named “imagine-printer-number-3” resume accepting print
jobs, type

[root@serverA ~]# /usr/sbin/accept imagine-printer-number-3

View the printer’s status again. Type

[root@serverA ~]# lpstat -a imagine-printer-number-3

Imagine-printer-number-3 accepting requests since Mar 01 00:00

Managing Printing Privileges
In its out-of-the-box state, any printer managed by CUPS can be sent print jobs by users. In
large multiuser environments, it may be necessary to control which users or groups have
access to which printer(s). This may be for security reasons or purely due to issues of office
politics. CUPS offers a simple way to do this, through the use of the lpadmin utility.

For example, to allow only the users named yyang and mmellow to print to the
printer named “imagine-printer,” type

[root@serverA ~]# lpadmin -p imagine-printer -u allow:yyang,mmellow

To perform the opposite of this command and deny the users yyang and mmellow
access to the printer, type

[root@serverA ~]# lpadmin -p imagine-printer -u deny:yyang,mmellow

To remove all the preceding restrictions and allow all users to print to the printer
named “imagine-printer” type

[root@serverA ~]# lpadmin -p imagine-printer -u allow:all

Deleting Printers
To delete a printer named “bad-printer” from the command line, type

[root@serverA ~]# lpadmin -x bad-printer

 602 Linux Administration: A Beginner’s Guide

MANAGING PRINTERS VIA THE WEB INTERFACE
Most of the preceding tasks can also be performed from the CUPS web interface. Using
buttons and links, you can easily delete printers, control print jobs, modify the properties
of a printer, stop printers, reject print jobs, and so on.

For example, as an administrator, you may need to periodically check the print
queues to make sure that everything is going smoothly. Clicking the Jobs tab (or going
directly to http://localhost:631/jobs) on the web interface will bring up a page similar
to Figure 26-2. As you can see in Figure 26-2, you have several options for manipulating
jobs in the queue. If there are no jobs in the queue, you will only see a button called Show
Completed Jobs.

You can also perform a host of other administrative tasks by pointing your browser
to the Admin page for CUPS. On your local system, the URL for this page is http://
localhost:631/admin/.

Figure 26-2. Jobs tab of CUPS administration web page

603 Chapter 26: Printing

USING CLIENT-SIDE PRINTING TOOLS
Now that we’ve covered the aspects of installing CUPS and administering the system, it
is time to cover how to do the actual printing with the Linux system.

When a client machine prints, the job gets sent to the print server and is spooled.
Spooling is simply the act of putting a print job into the print queue. This is also known
as a print job. The job typically has a couple of states that it can be in. One is in progress.
The other is paused, where the administrator has paused printing. The printer being out
of paper can also be a reason for a job being paused. When something goes awry with the
printer, print jobs can queue up and create a problem when the printer comes back up.

In this section, we’ll look at some commands that can be used to print, as well as
commands that can be used to manage print queues. We cover the user’s view and inter-
action with the printing system.

lpr
The lpr command is the command the user uses to print documents. Most PostScript
and text documents can be printed by directly using the lpr command. If you are using
AbiWord or StarOffice, you will have to set up those applications to print to the correct
device.

Let’s create a plain-text file that we’ll attempt to print. The file will contain the simple
text “Hello Printer” and be named test-page.txt.

 1. Type the following:

[root@serverA ~]# echo "Hello Printer" >> test-page.txt

 2. Find out the name of the default printer configured on the system. Type

[root@serverA ~]# lpstat -d

system default destination: Imagine-printer

 3. Send the test-page.txt file to the default printer. Type

[root@serverA ~]# lpr test-page.txt

This will print the document test-page.txt to the default printer, which is usually
the first printer that was installed.

 4. Now send the same document to the other imaginary printer that was installed
earlier, the printer named “Imagine-printer-number-2.” Type

[root@serverA ~]# lpr -P Imagine-printer-number-2 test-page.txt

Once you have entered this command, the printer should start printing fairly
quickly, unless you are printing a large file.

 5. To see the status of your print job, use the lpq command (discussed next).

 604 Linux Administration: A Beginner’s Guide

lpq
After you have submitted the job, you can view what is on the print spooler by using
the lpq command. If you’ve just printed a job and notice that it doesn’t come out of the
printer, use the lpq command to display the current list of jobs that are spooled on the
printer. Typically, you’ll see a bunch of jobs in the queue, and upon further investigation,
you may discover that the printer is out of paper. If you need to unspool the print job
from the printer, you can use the lprm command discussed in the next section.

For example, to see the status of the print request that was sent to the default printer,
type

[root@serverA ~]# lpq –av

To view the status of the print job sent to the second printer, type

[root@serverA ~]# lpq –av -P Imagine-printer-number-2

As shown in both of the preceding outputs, both print jobs are stuck in the imaginary
print queues because we didn’t use our imagination well enough. We’ll remove print
jobs next.

lprm
When you’ve suddenly realized that you didn’t mean to print the document you just
printed, you might have a chance to delete it before it gets printed. To do this, use the
lprm command. This will unspool the print job from the printer.

For example, to delete the print job with an ID of 2 from the default printer, type

[root@serverA ~]# lprm 2

To remove a job from a specific printer, simply add the -P option. For example, to
remove the job with ID “2” from the printer named “Imagine-printer-number-2,” type

[root@serverA ~]# lprm 2 -P imagine-printer-number-2

If you are the root user, you can purge all print jobs from the printer named
 “Imagine-printer” by issuing the lprm command as follows:

[root@serverA ~]# lprm -P imagine-printer -

The dash (-) at the end of this command means “all jobs.”

TIP Regular users can typically only manage their own print jobs; that is, user A cannot ordinarily go and
delete a job submitted by user B from the print queue. The superuser can, of course, control everybody’s
print jobs. Also, you should understand that the window between sending a job to the printer and being
able to delete the job is very narrow. Therefore, you may find that the lprm request fails because the
command was issued too late. This will usually result in an error like “lprm: Unable to lprm job(s)!” As root,
you may, of course, use the dash (-) option to clear the print queue of all jobs at any time.

605 Chapter 26: Printing

SUMMARY
This chapter discussed the Common UNIX Printing System (CUPS). We touched on sim-
ple printer management tasks, such as adding printers via the CUPS web interface and
from the command line, managing printers, and managing print jobs under Linux.

Usage of some common client tools to manage print jobs in Linux was discussed,
with examples provided. We also discussed some of the configuration directives that are
used in CUPS’ main configuration file, cupsd.conf.

However, we were only able to scratch the surface of the abilities and features of
CUPS. Fortunately, the software comes with extensive online documentation, which is
a highly recommended read if you are plan on using CUPS extensively to deploy and
manage printers in your environment. The same documentation is also available online
at the CUPS home page, www.cups.org.

Once you have printing set up on your Linux server, you’ll find that it does its job
quite nicely and lets you focus on new and interesting challenges. Problems that arise
with printing services afterward typically point to problems with the printer itself, such
as paper jams, user abuse, or office politics.

607

27

DHCP

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 608 Linux Administration: A Beginner’s Guide

Manually configuring IP addresses for a handful of systems is a fairly simple
task. However, manually configuring IP addresses for an entire department,
building, or enterprise of heterogeneous systems can be daunting.

The Linux DHCP (Dynamic Host Configuration Protocol) client and server can assist
with these tasks. The client machine is configured to obtain its IP address from the net-
work. When the DHCP client software is started, it broadcasts a request onto the network
for an IP address. If all goes well, a DHCP server on the network will respond, issuing an
address and other necessary information to complete the client’s network configuration.

Such dynamic addressing is also useful for configuring mobile or temporary
machines. Folks who travel from office to office can plug their machines into the local
network and obtain an appropriate address for their location.

In this chapter, we’ll cover the process of configuring a DHCP server and client. This
includes obtaining and installing the necessary software and then walking through the
process of writing a configuration file for it. At the end of the chapter, we’ll step through
a complete sample configuration.

NOTE DHCP is a standard. Thus, any operating system that can communicate with other DHCP
servers and clients can work with the Linux DHCP tools. One common solution includes using a
Linux-based DHCP server in office environments where there are a large number of Windows-based
clients. The Windows systems can be configured to use DHCP and contact the Linux server to get
their IP addresses. The Windows clients will not necessarily know nor care that their IP configuration
information is being provided by a Linux server, because DHCP is a standards-based protocol, and
most implementations try to adhere to the standard.

THE MECHANICS OF DHCP
When a client is configured to obtain its address from the network, it asks for an address
in the form of a DHCP request. A DHCP server listens for client requests. Once a request
is received, it checks its local database and issues an appropriate response. The response
always includes the address and can include name servers, a network mask, and a default
gateway. The client accepts the response from the server and configures its local settings
accordingly.

The DHCP server maintains a list of addresses it can issue. Each address is issued
with an associated lease, which dictates how long a client is allowed to use the address
before it must contact the server to renew the lease. When the lease expires, the client is
not expected to use the address any more. As such, the DHCP server assumes that the
address has become available and can be put back in the server’s pool of addresses.

The implementation of the Linux DHCP server includes several key features com-
mon to many DHCP server implementations. The server can be configured to issue any
free address from a pool of addresses or to issue a specific address to a specific machine.
In addition to serving DHCP requests, the Linux DHCP server serves Bootstrap Protocol
(BOOTP) requests.

609Chapter 27: DHCP

THE DHCP SERVER
Dynamic Host Configuration Protocol Daemon (DHCPD), the DHCP server, is respon-
sible for serving IP addresses and other relevant information upon client request. Since
the DHCP protocol is broadcast-based, a server will have to be present on each subnet
for which DHCP service is to be provided.

Installing DHCP Software via RPM
The Internet Systems Consortium (ISC) DHCP server is the de facto implementation for
Linux distributions. This version is available in many Linux distributions in a prepack-
aged format, usually Red Hat Package Manager (RPM).

In this section we run through the process of installing the ISC DHCP software using
RPM. On Linux systems running Fedora, Red Hat Enterprise Linux (RHEL), or Centos,
the ISC DHCP software is separated into two different packages. These are

▼ dhclient*.rpm The dhclient package provides the ISC DHCP client daemon.

▲ dhcp*.rpm The dhcp package includes the ISC DHCP server service and relay
agent.

On most Linux distributions, you will most likely have the DHCP client-side soft-
ware already installed. Let’s check to see what we have already installed on our sample
Fedora-based system. Type

[root@serverA cups]# rpm -qa | grep dhclient

dhclient-*

From the sample output in this listing, we notice that the dhclient package is already
installed.

To set up the DHCP server on a Fedora-based distro, we need to install the necessary
package. We will use yum to automatically download and install the software. Type

[root@serverA ~]# yum install dhcp

Once this command completes successfully, you should have the necessary software
installed.

Installing DHCP Software via APT in Ubuntu
On our Ubuntu server, we’ll use dpkg to query the local software database for the dhcp
client software. Type

yyang@ubuntu-serverA:~$ dpkg -l | grep dhcp

ii dhcp3-client <OUTPUT TRUNCATED>.... DHCP client

From the sample output in this listing, we notice that the dhcp client package is
already installed.

 610 Linux Administration: A Beginner’s Guide

Downloading, Compiling, and Installing
the ISC DHCP Software from Source
If the ISC DHCP software is not available in a prepackaged form for your particu-
lar Linux distribution, you can always build the software from source code avail-
able from the ISC site at www.isc.org. It is also possible that you simply want to
take advantage of the most recent bug fixes available for the software, which your
distribution has not yet implemented.

As of this writing, the most current stable version of the software was ver-
sion 4.1.0a1, which can be downloaded directly from http://ftp.isc.org/isc/dhcp/
dhcp-4.1.0a1.tar.gz.

Once the package is downloaded, unpack the software as shown. For this
example, we assume the source was downloaded into the /usr/local/src/ directory.
Unpack the tarball thus:

[root@serverA src]# tar xvzf dhcp-4.1.0a1.tar.gz

Change to the dhcp* subdirectory created by this command. Then take a min-
ute to study any Readme file(s) that might be present.

Next configure the package with the configure command.

[root@serverA dhcp-4.1.0a1]# ./configure --prefix=/usr/local/

To compile and install, issue the make; make install commands.

[root@serverA dhcp-4.1.0a1]# make ; make install

This version of ISC DHCP software that we built from source installs the DHCP
server (dhpcd) daemon under the /usr/local/sbin/ directory and the DHCP client
(dhcpclient) under the /usr/local/sbin/ directory.

To install the dhcp server software on an Ubuntu distro, type

yyang@ubuntu-serverA:~$ sudo apt-get install dhcp3-server

Once this command completes successfully, you should have the necessary dhcp
server software installed.

Configuring the DHCP Server
The default primary configuration file of the ISC DHCP server is /etc/dhcpd.conf (in
the Ubuntu distro, the file is located at /etc/dhcp3/dhcpd.conf). The configuration file
encapsulates two ideas:

611Chapter 27: DHCP

▼ A set of declarations to describe the networks, hosts, or groups attached to the
system and possibly the range of addresses that can be issued to each respec-
tive entity. Multiple declarations can be used to describe multiple groups of cli-
ents. Declarations can also be nested in one another when multiple concepts are
needed to describe a set of clients or hosts.

▲ A set of parameters that describes the overall behavior of the server. Parameters
can be global or local to a set of declarations.

NOTE Since every site has a unique network with unique addresses, it is necessary that every site
be set up with its own configuration file. If this is the first time you are dealing with DHCP, you might
want to start with the sample configuration file presented toward the end of this chapter and modify it
to match your network’s characteristics.

Like most configuration files in UNIX, the file is ASCII text and can be modified using
your favorite text editor. The general structure of the configuration file is as follows:

Global parameters;

Declaration1

 [parameters related to declaration1]

 [nested sub declaration]

Declaration2

 [parameters related to declaration2]

 [nested sub declaration]

As this outline indicates, a declaration block groups a set of clients. Different param-
eters can be applied to each block of the declaration.

Declarations
We may want to group different clients for several reasons, such as organizational
requirements, network layout, and administrative domains. To assist with grouping
these clients, we introduce the following declarations:

group Individually listing parameters and declarations for each host again and again
can make the configuration file difficult to manage. The group declaration allows you
to apply a set of parameters and declarations to a list of clients, shared networks, or
subnets. The syntax for the group declaration is as follows:

group label

 [parameters]

 [subdeclarations]

where label is a user-defined name for identifying the group. The parameters block
contains a list of parameters that are applied to the group. The subdeclarations are

 612 Linux Administration: A Beginner’s Guide

used in the event that a further level of granularity is needed to describe any additional
clients that may be a member of the current declaration.

Ignore the parameters field for now. We will go into further detail about it in the
upcoming section “Parameters.”

host A host declaration is used to apply a set of parameters and declarations to a
particular host in addition to the parameters specified for the group. This is commonly
used for fixed address booting or for the BOOTP clients. The syntax for a host declaration
is as follows:

host label

 [parameters]

 [subdeclarations]

The label is the user-defined name for the host group. The parameters and
subdeclarations are as described in the group declaration.

shared-network A shared-network declaration groups a set of addresses of members
of the same physical network. This allows parameters and declarations to be grouped for
administrative purposes. The syntax is

shared-network label

 [parameters]

 [subdeclarations]

The label is the user-defined name for the shared network. The parameters and
subdeclarations are as described in the previous declaration.

subnet The subnet declaration is used to apply a set of parameters and/or declarations
to a set of addresses that match the description of this declaration. The syntax is as
follows:

subnet subnet-number netmask netmask

 [parameters]

 [subdeclarations]

The subnet-number is the network that you want to declare as being the source of
IP addresses to be given to individual hosts. The netmask is the netmask (see Chapter 12
for more details on netmasks) for the subnet. The parameters and subdeclarations
are as described in the previous declaration.

range For dynamic booting, the range declaration specifies the range of addresses that
are valid to issue to clients. The syntax is as follows:

range [dynamic-bootp] starting-address[ending-address];

613Chapter 27: DHCP

The dynamic-bootp keyword is used to alert the server that the following range of
addresses is for the BOOTP protocol. The starting-address and optional ending-
address fields are the actual addresses of the start and end blocks of IP addresses. The
blocks are assumed to be consecutive and in the same subnet of addresses.

Parameters
We introduced this concept briefly earlier in the chapter. Turning on these parameters
will alter the behavior of the server for the relevant group of clients. We’ll discuss these
parameters in this section.

always-reply-rfc1048 This is used primarily for BOOTP clients. There are BOOTP clients
that require the response from the server to be fully BOOTP Request For Comments
(RFC) 1048–compliant. Turning on this parameter ensures that this requirement is met.
This parameter’s syntax is as follows:

always-reply-rfc1048;

authoritative The DHCP server will normally assume that the configuration information
about a given network segment is not known to be correct and is not authoritative. This
is so that if a user unknowingly installs a DHCP server without fully understanding
how to configure it, it does not send spurious DHCPNAK messages to clients that have
obtained addresses from a legitimate DHCP server on the network. This parameter’s
syntax is as follows:

authoritative;

not authoritative;

default-lease-time The value of seconds is the lease time allocated to the issued IP address
if the client did not request any specific duration. This parameter’s syntax is as follows:

default-lease-time seconds;

dynamic-bootp-lease-cutoff BOOTP clients are not aware of the lease concept. By default,
the DHCP server assigns BOOTP clients an IP address that never expires. There are
certain situations where it may be useful to have the server stop issuing addresses for a
set of BOOTP clients. In those cases, this parameter is used.

The date is specified in the form W YYYY/MM/DD HH:MM:SS, where W is the day
of the week in cron format (0=Sunday, 6=Saturday), YYYY is the year, MM is the month
(01=January, 12=December), DD is the date in two-digit format, HH is the two-digit hour
in 24-hour format (0=Midnight, 23=11 p.m.), MM is the two-digit representation of min-
utes, and SS is the two-digit representation of the seconds. This parameter’s syntax is as
follows:

dynamic-bootp-lease-cutoff date;

 614 Linux Administration: A Beginner’s Guide

dynamic-bootp-lease-length Although the BOOTP clients don’t have a mechanism for
expiring the addresses they receive, it’s sometimes safe to have the server assume that
they aren’t using the address anymore, thus freeing it for further use. This is useful if the
BOOTP application is known to be short in duration. If so, the server can set the number
of seconds accordingly and expire it after that time has past.

CAUTION Use caution with this option, as it may introduce problems if it issues an address before
another host has stopped using it.

This parameter’s syntax is as follows:

dynamic-bootp-lease-length seconds;

filename In some applications, the DHCP client may need to know the name of a file
to use to boot. This is often combined with next-server to retrieve a remote file for
installation configuration or diskless booting. This parameter’s syntax is as follows:

filename filename;

fixed-address This parameter appears only under the host declaration. It specifies the
set of addresses assignable to the client. This parameter’s syntax is as follows:

fixed-address address [, address.];

get-lease-hostnames If this parameter is set to true, the server will resolve all addresses
in the declaration scope and use that for the hostname option. This parameter’s syntax
is as follows:

get-lease-hostnames [true | false];

hardware In order for a BOOTP client to be recognized, its network hardware address
must be declared using a hardware clause in the host statement. Here, hardware-type
must be the name of a physical hardware interface type. Currently, only the Ethernet and
Token Ring types are recognized.

The hardware-address (sometimes referred to as the media access control, or
MAC, address) is the physical address of the interface, typically a set of hexadecimal
octets delimited by colons. The hardware statement may also be used for DHCP clients.
This parameter’s syntax is as follows:

hardware hardware-type hardware-address;

615Chapter 27: DHCP

max-lease-time A client has the option to request the duration of the lease. The request
is granted as long as the lease time doesn’t exceed the number of seconds specified by
this option. Otherwise, it’s granted a lease to the maximum of the number of seconds
specified here. This parameter’s syntax is as follows:

max-lease-time seconds;

next-server Thenext-server statement is used to specify the host address of the server
from which the initial boot file (specified in the filename statement) is to be loaded.
Here, server-name is a numeric IP address or a domain name. This parameter’s syntax
is as follows:

next-server server-name;

server-identifier Part of the DHCP response is the address for the server. On multihomed
systems, the DHCP server issues the address of the first interface. Unfortunately, this
interface may not be reachable by all clients of a server or declaration scope. In those rare
instances, this parameter can be used to send the IP address of the proper interface that
the client should communicate to the server. The value specified must be an IP address
for the DHCP server, and it must be reachable by all clients served by a particular scope.
This parameter’s syntax is as follows:

server-identifier hostname;

server-name The server-name statement can be used to inform the client of the name
of the server from which it is booting. Name should be the name that will be provided
to the client. This parameter is sometimes useful for remote clients or network install
applications. This parameter’s syntax is as follows:

server-name Name;

use-lease-addr-for-default-route Some network configurations use a technique known as
ProxyARP so that a host can keep track of other hosts that are outside its subnet. If your
network is configured to support ProxyARP, you’ll want to configure your client to use
itself as a default route. This will force it to use ARP (the Address Resolution Protocol) to
find all remote (off the subnet) addresses.

CAUTION The use-lease-addr-for-default-route command should be used
with caution. Not every client can be configured to use its own interface as a default route.

This parameter’s syntax is as follows:

use-lease-addr-for-default-route[true|false];

 616 Linux Administration: A Beginner’s Guide

Options
Currently, the DHCP server supports more than 60 options. The general syntax of an
option is as follows:

option option-name [modifiers]

Table 27-1 summarizes the most commonly used DHCP options.

A Sample dhcpd.conf File
The following is an example of a simple DHCP configuration file:

subnet 192.168.1.0 netmask 255.255.255.0

 # Options

 option routers 192.168.1.1;

 option subnet-mask 255.255.255.0;

 option domain-name "example.org";

 option domain-name-servers ns1.example.org;

 # Parameters

 default-lease-time 21600;

 max-lease-time 43200;

 # Declarations

 range dynamic-bootp 192.168.1.25 192.168.1.49;

 # Nested declarations

 host clientA

 hardware ethernet 00:80:c6:f6:72:00;

 fixed-address 192.168.1.50;

In this example, a single subnet is defined. The DHCP clients are instructed to
use 192.168.1.1 as their default router (gateway address) and 255.255.255.0 as their
subnet mask.

DNS information is passed to the clients; they will use example.org as their domain
name and ns1.example.org as their DNS server.

A lease time of 21,600 seconds is set, but if the clients request a longer lease, they may
be granted one that can last as long as 43,200 seconds.

The range of IP addresses issued starts at 192.168.1.25 and can go as high as 192.168.1.49.
The machine with a MAC address of 00:80:c6:f6:72:00 will always get assigned the IP
address 192.168.1.50.

General Runtime Behavior
Once started, the daemon patiently waits for a client request to arrive prior to perform-
ing any processing. When a request is processed and an address is issued, it keeps track
of the address in a file called dhcpd.leases. On Fedora, RHEL, and Centos systems, this
file is stored in the /var/lib/dhcp/ directory.

617Chapter 27: DHCP

On Debian-based distros, like Ubuntu, the client leases are stored under the /var/lib/
dhcp3/ directory.

THE DHCP CLIENT DAEMON
The ISC DHCP client daemon (named dhclient), included with many popular Linux
distributions, is the software component used to talk to a DHCP server described in
the previous sections. If invoked, it will attempt to obtain an address from an available
DHCP server and then configure its networking configuration accordingly.

Configuring the DHCP Client
The client is typically run from the startup files, but it can also be run by hand. It’s typi-
cally started prior to other network-based services, since other network services are of no
use unless the system itself can get on the network.

On the other hand, the client can be invoked at the command line any time after
startup. The client daemon can be started without additional options … but it will
attempt to obtain a lease on all interfaces configured on the system.

Table 27-1. Common dhcpd.conf Options

Option Description

Broadcast-address An address on the client’s subnet specified as the
broadcast address

domain-name The domain name the client should use as the local
domain name when performing host lookups

domain-name-servers The list of Domain Name System (DNS) servers for
the client to use to resolve hostnames

host-name The string used to identify the name of the client

nis-domain The name of the client’s NIS (Sun Network
Information Services) domain

nis-servers A list of the available NIS servers available to
the client

routers A list of IP addresses for routers the client is to use,
in order of preference

subnet-mask The netmask the client is to use

 618 Linux Administration: A Beginner’s Guide

Here is how to start the client from the command line in its most basic form:

[root@clientB ~]# dhclient

......<OUTPUT TRUNCATED>.....

Sending on LPF/eth0/00:0c:29:f8:b8:88

Sending on Socket/fallback

DHCPDISCOVER on lo to 255.255.255.255 port 67 interval 7

DHCPREQUEST on eth0 to 255.255.255.255 port 67

DHCPACK from 192.168.1.1

SIOCADDRT: File exists

bound to 192.168.1.36 -- renewal in 188238 seconds.

NOTE On Fedora, RHEL, and Centos systems, network configuration scripts are available to
automatically set up the system as a DHCP client between each system reboot so that you will not
need to manually run the dhclient daemon each time the system needs an IP address. To set this
up, all that usually needs to be done is to edit the file /etc/sysconfig/network-scripts/ifcfg-eth* and
make sure that, at a minimum, the BOOTPROTO variable is set to dhcp, as in this sample listing:

DEVICE=eth0

BOOTPROTO=dhcp

ONBOOT=yes

Optionally, the client daemon can be started with additional flags that slightly mod-
ify the behavior of the software. For example, you can optionally specify the interface
(such as eth0) for which an address lease should be requested.

The full syntax of the command is shown here:

Usage: dhclient [-1dqr] [-nw] [-p <port>] [-sserver]

 [-cfconfig-file] [-lflease-file][-pfpid-file] [-eVAR=val]

 [-sfscript-file] [interface]

Some of the options are described in Table 27-2.

Table 27-2. dhclient Command-Line Options

Option Description

-p Specifies a different User Datagram Protocol (UDP) port for
the DHCP client to use instead of the standard port 68.

-d Forces the DHCP client to run as a foreground process instead
of its normal behavior of running as a background process.
This is useful for debugging.

619Chapter 27: DHCP

Table 27-2. dhclient Command-Line Options (cont.)

Option Description

-q The -q flag prevents any messages, other than errors, from
being printed to the standard error descriptor.

-r This option tells the dhclient program to explicitly release
the current lease, and once the lease has been released, the
client exits.

-1 The -1 flag causes dhclient to try once to get a lease. If it fails,
dhclient exits with exit code two.

-cf Specifies the location of the configuration file for the dhclient
program. The default location is /etc/dhclient.conf.

-lf Specifies the location of the lease database. The default value is
the /var/lib/dhcp/dhclient.leases file.

-pf Defines the file that stores dhclient’s process ID.

interface Specifies an interface to have dhclient configure.

SUMMARY
DHCP is a useful tool for dynamically configuring the addresses for large groups of
machines or mobile workstations. Since DHCP is an open protocol, the architecture and
platform of the server and the client are irrelevant.

A computer running Linux can serve DHCP requests. The software to do this is
highly configurable and has mechanisms to persist after machine failures.

Software also exists to configure the networking of a Linux-based machine from a
DHCP server on the network. This client daemon has a number of options that make it
able to speak to a variety of DHCP servers.

621

28

Virtualization

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 622 Linux Administration: A Beginner’s Guide

Virtualization technologies have been around in various forms for a long time. This
technology has been especially pervasive and more commonplace in recent years.
This recent pervasiveness has been due to many factors: necessity, reduction in

cost, new innovations, simpler implementations, etc.
Simply put, virtualization is making something look like something else. Technically

speaking, virtualization refers to the abstraction of computer resources. This abstraction
can be achieved in various ways: via software, hardware, or a mix of both.

In this chapter we discuss some abstraction concepts and techniques that are com-
mon in Linux platforms today.

WHY VIRTUALIZE?
As mentioned in the beginning of this chapter, virtualization has become quite common-
place in recent times. And one of the reasons for this has been the necessity for it.

The necessity for virtualization has been borne out of different reasons, such as firms
and individuals being more environmentally conscious/sensitive (ten virtual machines
running on one server have a smaller carbon footprint than ten physical machines serv-
ing the same purpose), the need to save costs on hardware (ten virtual machines are, or
should be, cheaper than ten physical machines), the need to increase return on invest-
ment on existing hardware or increased server utilization, improved server and applica-
tion availability and reduced server downtimes (achieved by virtualization platforms
that support live host migration), better cross-platform support (for example, virtualiza-
tion makes it possible to run a Microsoft Windows operating system within Linux or a
Linux-based operating system within Microsoft Windows), etc.

Virtualization provides a great environment for testing and debugging new applica-
tions and/or operating systems, since virtual machines can be wiped clean quickly or
restored to a known state. In the same vein, virtual machines can be used to test and run
legacy or old software.

Another reason why virtualization has become so commonplace is due to the ease
with which it can be implemented today. If “ceteris” is “paribus” (if other things are
equal), it is possible for a typical Linux system administrator to set up an environment
for machine virtualization in less than ten minutes.

Virtualization Concepts
In this section we try to lay the groundwork for common virtualization concepts and
terminologies that appear in the rest of this chapter and that are used in everyday discus-
sions about virtualization:

▼ Guest OS (VM) This is also known as a virtual machine (VM). It is the operat-
ing system that is being virtualized.

■ Host OS This is the system or host on which the guest operating systems
(VM) run.

623 Chapter 28: Virtual izat ion

■ Hypervisor (VMM) A hypervisor is also referred to as the virtual machine
monitor (VMM). A hypervisor provides a CPU-like interface to virtual machines
or applications. The hypervisor is at the heart of the entire virtualization concept.
It can be implemented with support built natively into the hardware, purely in
software, or a combination of both.

■ Hardware emulation This is when software is used to emulate the instruc-
tion set of different CPU architectures. The resulting VMs that run in this type
of environment typically run slowly, due to the sheer amount of processing
required for the emulation. An example virtualization solution that provides
hardware emulation is Bochs (http://bochs.sourceforge.net).

■ Full virtualization This is also known as bare-metal or native virtualization.
The host CPU(s) has extended instructions that allow the VMs to directly inter-
act with it. Guest operating systems that can use this type of virtualization do
not need any modification. As a matter of fact, the VMs do not know—and
need not know—that they are running in a virtual platform. Hardware virtual
machine (HVM) is a vendor-neutral term used to describe hypervisors that sup-
port full virtualization.

 In full virtualization, the virtual hardware seen by the guest OS is functionally
similar to the hardware the host OS is running on.

 Examples of vendor CPUs and platforms that support the required extended
CPU instructions are Intel Virtualization Technology (Intel VT), AMD Secure
Virtual Machine (SVM/AMD-V), and IBM System z series.

 Examples of virtualization platforms that support full virtualization are kernel-
based virtual machines (KVM), Xen, IBM’s z/VM, VMware, Virtualbox, and
Microsoft’s Hyper-V.

▲ Paravirtualization This is a virtualization technique. Essentially, this class of
virtualization is done via software. Guest operating systems that use this type
of virtualization typically need to be modified. To be precise, the kernel of the
guest OS (VM) needs to be modified to run in this environment. This required
modification is the one big disadvantage of paravirtualization. This type of vir-
tualization is currently relatively faster than its full virtualization counterparts.

 Examples of virtualization platforms that support full virtualization are Xen and
UML (User Mode Linux).

VIRTUALIZATION IMPLEMENTATIONS
There are many virtualization implementations that run on Linux-based systems (and
 Windows-based systems). Some are more mature than others. Some are easier to set
up and manage than others, but the objective remains pretty much the same across the
board.

We’ll briefly look at some of the more popular virtualization implementations in this
section.

 624 Linux Administration: A Beginner’s Guide

QEMU
QEMU falls into the class of virtualization called machine emulators. It can emulate
a completely different machine architecture from the one on which it is running (e.g.,
emulating an ARM architecture on an x86 platform). The code for QEMU is mature and
well tested, and as such, it is relied upon by many other virtualization platforms and
projects.

Xen
This is a popular virtualization implementation, with a large community following. The
code base is quite mature and well tested. It supports both the full and paravirtualization
methods of virtualization. Xen is considered a high-performing virtualization platform.
It is commercially backed by Citrix Systems, and the Xen open source interest is main-
tained at www.xen.org.

User-Mode Linux (UML)
This is one of the earliest virtualization implementations for Linux. As the name implies,
virtualization is implemented entirely in user space. This singular attribute gives it the
advantage of being quite secure, since its components run in the context of a regular user.
Running entirely in user space also gives this implementation the disadvantage of not
being very fast. More information about UML can be found at http://user-mode-linux
.sourceforge.net.

Kernel-based Virtual Machines (KVM)
This is the first official Linux virtualization implementation to be implemented in the
kernel. It currently supports only full virtualization.

KVM is discussed in more detail later on in this chapter.

VMware
This is one of the earliest and most well-known mainstream commercial virtualization
implementations. It offers great cross-platform support, excellent user and management
interface, and great performance. There are several VMware products families designed
to cater to various needs (from desktop needs all the way to enterprise needs). Some ver-
sions of VMware are free (e.g., VMware Server), and some are purely commercial (e.g.,
VMware ESX Server, VMware Workstation, etc.).

Virtualbox
This is a popular virtualization platform. It is well known for its ease of use and nice user
interface. It has great cross-platform support. It supports both full and paravirtualization

625 Chapter 28: Virtual izat ion

virtualization techniques. There are two versions of Virtualbox: a purely commercial ver-
sion and an open source edition, which is free for personal and educational use.

Hyper-V
This is Microsoft’s virtualization implementation. It currently can only be used on hard-
ware that supports full virtualization (i.e., Intel VT and AMD-V processors). It has a
great management interface and is well integrated into the Windows Server 2008 operat-
ing system.

KERNEL-BASED VIRTUAL MACHINES (KVM)
Kernel-based Virtual Machines (aka KVM) is the official Linux answer and contribu-
tion to the virtualization space. KVM works by turning the Linux kernel into a hyper-
visor. Current stable implementations of KVM are supported on the x86 platforms that
support virtualization CPU extensions (like the ones provided in Intel-VT and AMD-V
lines).

Because KVM is implemented right in the Linux kernel, it has great support across
a wide variety of Linux distros. The main difference across the different distros is prob-
ably the virtual machine management tools and user space tools that have been built
around the specific implementation. However, if one chooses to go with a bare-bones
KVM setup, it is possible to use the same set of instructions on any Linux distro.

The /proc/cpuinfo pseudo file system entry provides details about the running CPU
on a Linux system. Among other things, the entry shows the flags/extensions that the
running CPU supports.

On an Intel platform, the flag that shows support for full hardware-based virtualiza-
tion is the vmx flag. To check if an Intel processor has support for vmx, we could grep
for the desired flag in /proc/cpuinfo, like so:

[root@intel-serverA ~]# grep -i "vmx" /proc/cpuinfo

flags : fpu pae mce cx8 apic ...<OUTPUT TRUNCATED>... vmx

The presence of vmx in the previous sample output shows that necessary CPU exten-
sions are in place on the Intel processor.

On an AMD platform, the flag that shows support for full hardware-based virtualiza-
tion is the Secure Virtual Machine (svm) flag. To check if an Intel processor has support
for svm, we could grep for the desired flag in /proc/cpuinfo, like so:

[root@amd-serverA ~]# grep --color -i svm /proc/cpuinfo

flags : fpu vme de pse 3dnowext ...<OUTPUT TRUNCATED>...svm

The presence of svm in the previous sample output shows that necessary CPU exten-
sions are in place on the AMD processor.

 626 Linux Administration: A Beginner’s Guide

KVM Example
As mentioned earlier, KVM has great cross-platform/distro support. In this following
section, we will look at a sample KVM implementation on the Fedora distribution of
Linux.

We will be using a set of tools that are based on the Libvirt C library. In particu-
lar, we will be using the “Virtual Machine Manager” (virt-manager) application tool
kit. virt-manager is a desktop user interface for managing virtual machines. It com-
prises both full-blown graphical user interface (GUI) front-ends and command-line
utilities.

In this example, we will use the “Virt Install” tool (virt-install). virt-install
is a command-line tool that provides an easy way to provision virtual machines. It also
provides an application programming interface (API) to the virt-manager application for
its graphical VM creation wizard.

The specifications on our sample host system are

▼ Hardware supports full virtualization (specifically, AMD-V)

■ 4 gigabytes (GB) of RAM

■ Sufficiently free space on the host OS

▲ Host OS is running Fedora flavor of Linux

For our sample virtualization environment, our objectives are

▼ Use the built-in KVM virtualization platform.

■ Set up a guest OS (VM) running a Fedora distribution of Linux. We will install
Fedora using the install media in the DVD drive (/dev/sr0) of the host system.

■ Allocate a total of 10GB of disk space to the VM.

▲ Allocate 1GB RAM to the VM.

We will use the following steps to achieve our objectives:

 1. Use Yum to install the “Virtualization” package group. This package group com-
prises the python-virtinst, kvm, qemu, virt-manager, and virt-viewer packages.
Type

[root@serverA ~]# yum groupinstall 'Virtualization'

 2. Start the libvirtd service. Type

[root@serverA ~]# service libvirtd start

Starting libvirtd daemon: [OK]

627 Chapter 28: Virtual izat ion

 3. Use the chkconfig utility to make sure that the libvirtd service starts up
automatically during the next system boot. Type

[root@serverA ~]# chkconfig libvirtd on

 4. Use the virsh utility to make sure that virtualization is enabled and running
properly on the system. Type

[root@serverA ~]# virsh -c qemu:///system list

Id Name State

As long as the previous output does not return any errors, we are fine.

 5. On our sample server, we will store all the files pertaining to each VM under
their own folder, using the virtual machine name as the parent folder name.

So, for our sample VM with the name fedora-VM, we will begin by creating the
directory structure that will house the VM. Type

[root@serverA ~]# mkdir -p /home/vms/fedora-VM/

 6. We will use the virt-install utility that comes with the python-virtinst
package to set up the virtual machine. The virt-install utility will run you
through a quick setup wizard by asking a series of questions at the console.
Launch virt-install by running

[root@serverA ~]# virt-install --hvm

 7. We will set the name of our virtual machine (VM) to fedora-VM.

What is the name of your virtual machine? fedora-VM

 8. We will allocate 1GB, or 1000 megabytes (MB), of RAM to the VM.

How much RAM should be allocated (in megabytes)? 1000

 9. We will store the disk image under the /home/vms/fedora-VM/ directory and
name the virtual disk fedora-VM-disk.

What would you like to use as the disk (file path)? \

/home/vms/fedora-VM/fedora-VM-disk.img

 10. Specify the virtual disk size to be 10GB when prompted.

How large would you like the disk (/home/vms/fedora-VM/fedora-VM-disk) to

be (in gigabytes)? 10

 11. We will enable graphics support for the VM.

Would you like to enable graphics support? (yes or no) yes

 628 Linux Administration: A Beginner’s Guide

 12. The physical optical drive device on our sample server is at /dev/sr0. We will
specify this as the virtual CD device.

What is the virtual CD image, CD device or install location? \

/dev/sr0

 13. The newly configured VM should start up immediately in the “Virt Viewer”
window. The VM will attempt to boot from the install media in the optical drive
referenced by /dev/sr0. A window similar to the one shown here will open.

 14. From here on, you can continue the installation as if you were installing on a
regular machine. That’s it!

Setting Up KVM in Ubuntu/Debian
We had mentioned early on that one main difference between the virtualization
implementations on the various Linux distros is in the management tools built
around the virtualization solution.

629 Chapter 28: Virtual izat ion

The KVM virtualization that was set up earlier was done using the manage-
ment tools (virt-manager, ZENworks Virtual Machine Management, etc.) that were
designed to work seamlessly on Fedora, Red Hat Enterprise Linux (RHEL), and
Centos platforms. Here, we will run through a quick and dirty setup of KVM vir-
tualization that should work with little modification on any Linux distro.

NOTE Libvirt and virt-manager have been ported for use on the newest versions of
the Ubuntu Linux distro. Virt-manager can be easily installed with

yyang@ubuntu-serverA:~$ sudo apt-get install virt-manager.

Specifically, we will look at how to set up KVM in a Debian-based distro,
like Ubuntu. The processor on our sample Ubuntu server supports the neces-
sary CPU extensions. We will be installing on a computer with an Intel-VT–based
processor.

The target virtual machine will be a desktop version of Ubuntu and will be
installed using the ISO image downloaded from http://releases.ubuntu.com/
releases/8.04/ubuntu-8.04-desktop-i386.iso.

 1. Install the KVM and QEMU packages. On the Ubuntu server, type

yyang@ubuntu-server:~$ sudo apt-get -y install kvm qemu

 2. Manually load the kvm-intel module. Type

yyang@ubuntu-server:~$ sudo modprobe kvm-intel

NOTE Loading the kvm-intel module will also automatically load the required kvm
module. On an AMD-based system, the required module is instead called kvm-amd.

 3. We are going to run KVM as a regular user, so we need to add our sample
user (yyang) to the kvm system group. Type

yyang@ubuntu-server:~$ sudo adduser yyang kvm

 4. Log out of the system and log back in as the user yyang so that the new
group membership can take effect.

 5. Create a folder in the user’s home directory to store the virtual machine,
and change into that directory. Type

yyang@ubuntu-server:~$ mkdir -p /home/yyang/vms/ubuntu-VM

yyang@ubuntu-server:~$ cd /home/yyang/vms/ubuntu-VM

 630 Linux Administration: A Beginner’s Guide

 6. We will use the qemu-img utility to create a disk image for the virtual
machine. The image will be 10GB in size. The file that will hold the virtual
disk will be named “disk.img.” Type

yyang@ubuntu-server:~/vms/ubuntu-VM$ qemu-img create disk.img -f qcow2 10G

TIP The -f option specified with the qemu-img command is used to specify the
disk image format. Here we use the -qcow2 format. This format offers space-saving
options by not allocating the entire disk space specified up front. Instead, a small file
is created, which grows as data is written to the virtual disk image. Another interesting
virtual image disk format is the -vmdk option, which allows the creation of virtual disks
that are compatible with VMware virtual machines.

 7. Once the virtual disk image is created, we can fire up the installer for the
VM by passing the necessary options to the kvm directly. The command to
do this is

yyang@ubuntu-server:~/vms/ubuntu-VM$ kvm -m 1024 \

-cdrom ubuntu-8.04-desktop-i386.iso \

-boot d disk.img

NOTE The options that were passed to the kvm command are

 -m Specifies the amount of memory to allocate to the VM. In this case, we specified
1024MB, or 1GB.

 -cdrom Specifies the virtual CD-ROM device. In this case, we point to the ISO
image that was downloaded earlier and saved under the current working directory.

 -boot d Specifies the boot device. In this case, “d” means CD-ROM. Other options
are floppy (a), hard disk (c), and network (n).

 disk.img Specifies the raw hard disk image. This is the virtual disk that was
created earlier using qemu-img.

TIP Due to some issues with the graphical boot screen found on some installers, you
may have to add the -no-kvm switch to the kvm command used to start the installation
of the operating system into the VM.

 8. The newly configured VM should start up immediately in the QEMU win-
dow. The VM will attempt to boot from the ISO image specified by the
-cdrom option. A window similar to the one shown here will open.

631 Chapter 28: Virtual izat ion

SUMMARY
Numerous virtualization technologies and implementations exist today. Some of them
have been around much longer than others, but the ideas and needs remain almost the
same. Virtualization is obviously not a panacea for every information technology prob-
lem, but its use and value is also too great to be ignored.

 9. From here on, you can continue the installation as if you were installing on
a regular machine.

 10. Once the operating system has been installed into the VM, you can boot
the virtual machine by using the kvm command:

yyang@ubuntu-server:~/vms/ubuntu-VM$ kvm -m 1024 disk.img

You will notice in the preceding steps that we didn’t need to specify the ISO
image as the boot media anymore since we are done with the installation. That’s it!

 632 Linux Administration: A Beginner’s Guide

We had a high-level walkthrough of virtualization and common virtualization con-
cepts in this chapter. We looked at common virtualization offerings in the Linux world.
We paid particular attention to the KVM platform because of its native and complete
integration into the Linux kernel. Finally, we gave two examples of actually setting up
and using KVM. The first example used the “Virtual Machine Manager” toolset, which
is based on the Libvirt library. The second example demonstrated setting up and using
KVM in other Linux distros that don’t use the Virtualization Manager toolset.

633

29

Backups

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 634 Linux Administration: A Beginner’s Guide

Aserver that is not backed up is a disaster waiting to happen. Performing backups
is a critical part of any server’s maintenance, no matter what operating system
you use. In this chapter, we discuss the backup options that come with Linux

distros. Many commercial packages exist as well, and you can purchase them for
anywhere from a few hundred to many thousands of dollars. The best package for you
depends on your site and its needs.

EVALUATING YOUR BACKUP NEEDS
Developing a backup solution is no trivial task. It requires that you consider the inter-
actions among all the parts of your network, the servers, and the resources distributed
among them. Even trickier is deciding the order in which backups are performed. For
example, if you want to back up multiple partitions in parallel, you could end up los-
ing the benefits of that parallelism if there is contention on the Small Computer System
Interface (SCSI) bus! And, of course, you must arrange for backups to occur regularly
and to be verified regularly.

Unfortunately, no cookbook solution exists for setting up network backups. Every
organization has different needs based on its site(s), its network, and its growth pattern.
To make an educated decision, you need to consider the following questions:

▼ How much data do you need to back up?

■ What kind of hardware will you use for the backup process?

■ How much network throughput do you need to support?

■ How quickly must the data be recovered?

■ How often is data expected to be recovered?

▲ What kind of tape management do you need?

How Much Data?
Determining an accurate count of the data to be backed up is the most important issue
for estimating your network backup needs. What makes this question tough to answer is
that you must include anticipated growth in your determination. Given that most shops
have tight purse strings, when planning for backup, it’s always wise to try and plan as
far ahead as financially possible.

It is also important to consider how often your data changes and with what fre-
quency. Data that changes often (such as databases) needs to be backed up frequently
and quickly, whereas data that rarely changes (such as the contents of the /etc directory)
doesn’t need to be backed up often (if ever).

When examining your requirements, take careful stock of compressible versus non-
compressible data. With local disks becoming large, many individuals have taken to

635 Chapter 29: Backups

 keeping private music/image/video collections on their work systems that have nothing
to do with the organization. It may be prudent to spell out your organization’s policy on
this so that expectations are set: If users think that all of the systems are being backed up,
they may be taken aback when they find out that their MP3 collection wasn’t covered in
that. On the flip side, you may be taken aback by a sudden increase in capacity require-
ments when a user discovers peer to peer (P2P) or brings their MP3 collection to work.

What Kind of Media?
The type of hardware you choose should reflect the amount of data you need to back up,
the frequency of when you’re backing it up, and whether it is necessary that backups get
rotated to an offsite location.

Four common choices are available: tape, disk, recordable CDs, and recordable DVDs.
Of the four, tape has been around the longest and offers the widest available choices in
media density, form factor, and mechanisms.

Among your choices for tape, selecting the specific type can be tricky. Many of the
high-density options are appealing for the obvious reason that you can cram more data
onto a single tape. Of course, high-capacity tapes and tape drives typically cost more.
Work toward finding an optimum solution that backs up the most system data at the best
price, balanced with your requirements for media capacity.

NOTE Many advertisements for tape drives boast impressive capacities, but keep in mind that these
numbers are for the compressed data on the tape, not the actual data. The amount of uncompressed
data on the tape is usually about half the compressed capacity. This is important to note, because
compression algorithms achieve various levels of compression, depending on the type of data being
compressed. For example, textual data compresses quite well. Certain graphics or sound formats get
little to no compression at all. When you estimate the amount of data you can store on a single unit,
be sure to consider the mix of data on your servers.

Disk-based backups are a relatively new phenomenon. The concept is simple: If the
primary goal of backups is to protect against simple accidents (file deletions, primary
disk going bad, etc.), then this works well. Transfers are fast, media are cheap, and build-
ing a home-brew Random Array of Independent Disks (RAID) system using a low-
cost PC, a low-end RAID controller, and a few commodity disks can be done relatively
cheaply. More expensive commercial solutions, such as those from NetApp, offer more
high-capacity options for larger installations. Using this method, scheduled file copies
can be automated with no tape swapping, and additional capacity can be added cheaply.
The downside to this method is that offsite storage is not so easy. While getting hot-
swappable hard disks is possible, they are not nearly as robust as a tape when it comes
to being handled and moved. (A tape can be dropped several times with practically no
risk. The same cannot be said of dropping a hard disk!)

With recordable CDs and recordable DVDs, low-cost backups have become a real
possibility. These optical media are easy to use and are the cheapest. Unfortunately, they
also hold a lot less than their tape and disk counterparts, and have questionable lifetimes.

 636 Linux Administration: A Beginner’s Guide

If the amount of data that needs to be backed up is not too great or the data does not
change once backed up (such as pictures, etc.), this type of media works well. The media
lifetime varies by vendor. For the purpose of backups, it is not unreasonable to expect a
few years from optical media.

A combination between fixed and removable media is also increasing in popular-
ity. In combination solutions, regular backups are done to disk, with periodic backups
moved from the backup disk to tape.

In all of the preceding backup options, plan for media failure. That is, plan to move
backed-up data to new media every few years. This is necessary to ensure that you’re
not just using new media, but that the drive itself is still correctly calibrated and modern
equipment can still read and write it. In some cases, you may need to even consider the
data format. After all, data that can be read but not understood doesn’t do anyone any
good. (Consider, for example, whether you could read a floppy disk given to you from
your first computer today.)

Performance Considerations of Tape
When looking closely at tape-based backups, consider where the tape drive itself will
be kept and what system it will be connected to. Will the tape be on a busy server that
already has a lot of active disks? Will it be kept on a dedicated server with dedicated
spooling disks? Is there any contention on the bus used to transfer data to it? (For exam-
ple, if you’re backing up to a SCSI tape drive, does that SCSI chain have other devices
that are busy?)

Finally, are you able to feed data to the tape drive fast enough so that it can stream? If
the tape drive cannot stream, it will stop writing until it gets more data. This pause may
be as long as several seconds on a slow mechanism, while the drive realigns itself with
the tape and finds the next available position to write data. Even if the pause is brief,
when it occurs thousands of times during a single backup, it can increase your backup
runtimes by many hours.

How Much Network Throughput?
Unfortunately, network throughput is easily forgotten in the planning of backup opera-
tions. But what good do you get from a really fast backup server and tape drive if you
feed in the data through a thin straw?

Take the necessary time to understand your network infrastructure. Look at where
the data is coming from and where it’s going. Use Simple Network Management Protocol
(SNMP) tools, such as MRTG (www.mrtg.org), to collect statistics about your switches
and routers. If you need to back up machines that are connected via hubs, consider a
backup sequence that won’t back up two machines on the same collision domain at the
same time.

Gathering all this information will help you estimate the bandwidth necessary to
perform backups. With your analysis done, you’ll be able to figure out which upgrades
will net you the best return for your money.

637 Chapter 29: Backups

How Quickly Must the Data Be Recovered?
When requests to restore data from tape arrive, you’re likely to be under the gun to get
the data back to the user(s) as quickly as possible. How long your users have to wait
will depend on the tool used for backup. This means you need to incorporate the cost of
response time into your backup evaluation. How much are you willing to spend to get
the response time you need for a restore?

Disk-based restores are, of course, the fastest. They also offer the possibility of online
backups, where users can visit the backup server themselves and copy the file back.
Recordable CDs and DVDs are also quick, since the file can be quickly pulled from disc
and given to the user as well. Tape, by comparison, is much slower. The specific file/data
on the tape needs to be found, the archive read, and an individual file extracted. Depend-
ing on the speed of the tape and the location of the file, this can take a little bit of time.

What Kind of Tape Management?
As the size of your backups grows, so will the need to manage the data you back up. This
is where commercial tools often come into play. When evaluating your choices, be sure
to consider their indexing and tape management. It does you no good to have 50 tapes’
worth of data if you can’t find the right file. And unfortunately, this problem only gets
worse as you start needing more tapes for each night’s backups.

Managing the Tape Device
The tape device interacts with Linux just as most other devices do: as a file. The filename
will depend on the type of tape drive, your chosen mode of operation (auto-rewind or
non-rewind), and how many drives are attached to the system.

SCSI tape drives, for example, use the following naming scheme:

Device Name Purpose

/dev/stX Auto-rewinding SCSI tape device; X is the number of the tape drive.
Numbering of tape drives is in the order of the drives on the SCSI chain.

/dev/nstX Non-rewinding SCSI tape device; X is the number of the tape drive.
Numbering of tape drives is in the order of the drives on the SCSI chain.

Let’s say you have a single SCSI tape drive. You can access it using either of these file-
names: /dev/st0 or /dev/nst0. If you use /dev/st0, the drive will automatically rewind the
tape after each file is written to it. If you use /dev/nst0, on the other hand, you can write
a single file to the tape, mark the end of file, but then stay at the tape’s current position.
This lets you write multiple files to a single tape.

NOTE Non-SCSI devices will obviously use a different naming scheme. Unfortunately, there is no
standard for naming backup devices if they are not SCSI devices. The QIC-02 tape controller, for
example, uses the /dev/tpqic* series of filenames. If you use a non-SCSI tape device, you will need
to find its corresponding driver documentation to see what device name it will use.

 638 Linux Administration: A Beginner’s Guide

You may find it handy to create a symbolic link from /dev/tape to the appropriate
device name for the rewinding mode and a link from /dev/nrtape for the non-rewinding
mode (for example, /dev/tape/dev/st0 and /dev/nrtape/dev/nst0). This will make it easier
to remember the name of the tape device when issuing commands. See Chapter 5 for
information on using the ln command to create symbolic links.

What makes these backup device files different from disk files is that there is no
file-system structure. Files are continuously written to the tape until it’s full or until an
end-of-file marker is written. If a tape device is in non-rewind mode, the write head is
left in the position immediately after the last end-of-file marker, ready for the next file to
be written.

Think of tape devices as similar to a book with chapters. The book’s binding and the
paper, like the tape itself, provide a place to put the words (the files). It’s the markings
of the publisher (the backup application) that separate the entire book into smaller sub-
sections (files). If you (the reader) were an auto-rewinding tape drive, you would close the
tape every time you were done with a single file and then have to search through the tape
to find the next position (chapter) when you’re ready to read it. If, however, you were a
non-rewinding tape drive, you would leave the tape open to the last page you read.

Using mknod and scsidev to Create the Device Files
If you don’t have the file /dev/st0 or /dev/nst0, you can create one using the mknod
command. The major number for SCSI tape drives is 9, and the minor number dictates
which drive and whether it is auto-rewinding. The numbers 0 through 15 represent
drive numbers 0 through 15, auto-rewinding. The numbers 128 through 143 repre-
sent drive numbers 0 through 15, non-rewinding. The tape drive is a character device.

So, to create /dev/st0, we would type this mknod command:

[root@serverA ~]# mknod /dev/st0 c 9 0

And to create /dev/nst0, we would use this command:

[root@serverA ~]# mknod /dev/nst0 c 9 128

Another choice for creating device names is to use the scsidev program. This will
create device entries under the /dev/scsi directory that reflect the current state of your
SCSI hardware, with the appropriate device type (block or character) and correspond-
ing major and minor numbers. This method, unfortunately, has yet another naming
scheme.

The naming scheme for tape devices created using scsidev is as follows:

/dev/scsi/sthA-0cBiTlL

where A is the host number, B is the channel number, T is the target ID, and L is the logi-
cal unit (lun) number.

All the different naming schemes may seem frustrating, which is understandable.
The key to all of them, however, is that they are still using the same major and minor

639 Chapter 29: Backups

numbers. In other words, they all refer to the same driver! In the end, you could decide
to call your rewinding and non-rewinding tape devices “Lara” and “Adere,” respec-
tively, so long as they had the correct major and minor numbers.

Manipulating the Tape Device with mt
The mt program provides simple controls for the tape drive, such as rewinding the tape,
ejecting the tape, or seeking a particular file on the tape. In the context of backups, mt is
most useful as a mechanism for rewinding and seeking.

All of the mt actions are specified on the command line. Table 29-1 shows the param-
eters for the command.

Table 29-1. Parameters for the mt Command

mt Command Parameter Description

-f tape_device Specifies the tape device. The first non-rewinding
SCSI tape device is /dev/nst0.

fsf count Forward-spaces a number (count) of files. The tape
is positioned on the first block of the next file; for
example, fsf 1 would leave the head ready to read
the second file of the tape.

asf count Positions the tape at the beginning of the file
indicated by count. Positioning is done by first
rewinding the tape and then forward-spacing over
count file marks.

rewind Rewinds the tape.

erase Erases the tape.

status Gives the status of the tape.

offline Brings the tape offline and, if applicable, unloads
the tape.

Load Loads the tape (applies to tape changers).

Lock Locks the drive door (only applies to certain tape
drives).

unlock Unlocks the drive door (only applies to certain tape
drives).

 640 Linux Administration: A Beginner’s Guide

NOTE If you do not use a non-rewinding tape device, the tape drive will automatically rewind after
you perform your operation with mt. This can be rather frustrating if you are seeking a specific file!

▼ To rewind the tape in /dev/nst0, use this command:

[root@serverA ~]# mt -f /dev/nst0 rewind

▲ To move the head so that it is ready to read the third file on the tape, use this
command:

[root@serverA ~]# mt -f /dev/nst0 asf 2

COMMAND-LINE TOOLS
Linux comes with several tools that help you perform backups. Though they lack admin-
istrative front-ends, they are simple to use—and they get the job done. Many formal
backup packages actually use these utilities as their underlying backup mechanism.

dump and restore
The dump tool works by making a copy of an entire file system. The restore tool can
then take this copy and pull any and all files from it.

To support incremental backups, dump uses the concept of dump levels. A dump level
of 0 means a full backup. Any dump level above 0 is an incremental relative to the last
time a dump with a lower dump level occurred. For example, a dump level of 1 covers all
the changes to the file system since the last level 0 dump, a dump level of 2 covers all of
the changes to the file system since the last level 1 dump, and so on—all the way through
dump level 9.

Consider a case in which you have three dumps: the first is a level 0, the second is a
level 1, and the third is also a level 1. The first dump is, of course, a full backup. The sec-
ond dump (level 1) contains all the changes made since the first dump. The third dump
(also a level 1) also has all the changes since the last level 0. If a fourth dump were made
at level 2, it would have all the changes since the third level 1.

The dump utility stores all the information about its dumps in the /etc/dumpdates
file. This file lists each backed-up file system, when it was backed up, and at what dump
level. Given this information, you can determine which tape to use for a restore. For
example, if you perform level 0 dumps on Mondays, level 1 incrementals on Tuesday
and Wednesday, and then level 2 incrementals on Thursday and Friday, a file that was
last modified on Tuesday but got accidentally erased on Friday can be restored from
Tuesday night’s incremental backup. A file that was last modified during the preceding
week will be on Monday’s level 0 tape.

641 Chapter 29: Backups

NOTE Thedump tool comes with most popular Linux distros. If it isn’t installed by default in your distro,
you should be able to easily install it using the distro’s package management system. This utility is file
system–dependent, and the version for Linux only works on Linux’s native file system (ext2 and ext3). If
you use another file system, such as ReiserFS, JFS, or XFS, be sure to use the appropriate dump tool.

Using dump
The dump tool is a command-line utility. It takes many parameters, but the most relevant
are shown in Table 29-2.

Table 29-2. Parameters for the dump Tool

dump Command Parameter Description

-n The dump level, where n is a number between 0
and 9.

-a Automatically sizes the tape. This is the default
behavior of dump if -b, -B, -d, or -s (as
documented later in this table) are not specified.

-j Uses bzip2 compression. Note that bzip2, while
being an excellent compression scheme, comes at
the expense of needing more CPU. If you use this
method of compression, be sure your system is
fast enough to feed the tape drive without the tape
drive pausing. Also note that this option may break
compatibility with other UNIX systems.

-z Uses gzip compression. Note that this option may
break compatibility with other UNIX systems.

-b blocksize Sets the dump size to blocksize, which is
measured in kilobytes.

-B count Specifies a number (count) of records per tape
to be dumped. If there is more data to dump than
there is tape space, dump will prompt you to insert
a new tape.

-f filename Specifies a location (filename) for the resulting
dumpfile. You can make the dumpfile a normal
file that resides on another file system, or you can
write the dumpfile to the tape device. The SCSI tape
device is /dev/st0.

 642 Linux Administration: A Beginner’s Guide

For example, here is the command to perform a level 0 dump to /dev/st0 of the /dev
/hda1 file system:

[root@serverA ~]# dump -0 -f /dev/st0 /dev/hda1

Suppressing the Tape Size Calculation
The dump tool must know the size of the tape it is working with. It uses this information
to provide multivolume backups so that it can prompt the operator to insert the next tape
when it is ready. But if you don’t know the size of your tape and the -a option is unable
to calculate it, you may still know if the dump will fit on the tape. (For example, you may
know that the partition you are dumping is 2 gigabytes (GB) and the tape capacity is 5GB
uncompressed.) In this situation, you can use a little trick to keep dump from calculating
the tape size. Instead of dumping straight to the device, send the output to the standard
output (stdout), and then use the cat program to redirect the dump to the tape. Using
the example in the previous section, you would enter this command:

 [root@serverA ~]# dump -0 -f - /dev/hda1 | cat >> /dev/st0

Since you’re sending the output to standard out, you can also use this opportunity
to apply your own compression filters to the stream instead of relying on hardware
 compression or the built-in compression command-line switches. For example, to use
gzip to compress your dump, you’d type

[root@serverA ~]# dump -0 -f - /dev/hda1 | gzip --fast -c >> /dev/st0

Table 29-2. Parameters for the dump Tool (cont.)

dump Command Parameter Description

-u Updates the /etc/dumpdates file after a successful
dump.

-d density The density of the tape in bits per inch.

-s size The size of the tape in feet.

-W Displays what file systems need to be dumped
without actually performing any dumps. This is
based on the information in the /etc/dumpdates and
/etc/fstab files.

-L label Labels the dump with a name that can be read by
the restore command.

-S Performs a size estimate without performing the
actual dump.

643 Chapter 29: Backups

CAUTION It’s considered dangerous to dump file systems that are being actively used. The only
way to be 100 percent sure that a file system is not in use is by unmounting it first. Unfortunately, few
people can afford the luxury of unmounting a system for the time necessary to do a backup. The next
best thing is to go through the unappealing task of verifying backups on a regular basis. Verification is
best done by testing to see if the restore program (discussed in “Using restore” later in this chapter)
can completely read the tape and extract files from it. It’s tedious, and it isn’t fun. But many a system
administrator head has rolled over bad backups—don’t be one of them!

Using dump to Back Up an Entire System
The dump utility works by making an archive of one file system. If your entire system
comprises multiple file systems, you need to run dump for every file system. Since dump
creates its output as a single large file, you can store multiple dumps to a single tape by
using a non-rewinding tape device.

Assuming we’re backing up to a SCSI tape device, /dev/nst0, we must first decide
which file systems we’re backing up. This information is in the /etc/fstab file. Obviously,
we don’t want to back up files such as /dev/cdrom, so we skip those. Depending on our
data, we may or may not want to back up certain partitions (such as swap and /tmp).

Let’s assume this leaves us with /dev/sda1, /dev/sda3, /dev/sda5, and /dev/sda6. To
back up these to /dev/nst0, compressing them along the way, we would issue the follow-
ing series of commands:

[root@serverA ~]# mt -f /dev/nst0 rewind

[root@serverA ~]# dump -0uf - /dev/sda1 | gzip --fast -c >> /dev/nst0

[root@serverA ~]# dump -0uf - /dev/sda3 | gzip --fast -c >> /dev/nst0

[root@serverA ~]# dump -0uf - /dev/sda5 | gzip --fast -c >> /dev/nst0

[root@serverA ~]# dump -0uf - /dev/sda6 | gzip --fast -c >> /dev/nst0

[root@serverA ~]# mt -f /dev/nst0 rewind

[root@serverA ~]# mt -f /dev/nst0 eject

The first mt command is to make sure the tape is completely rewound and ready
to accept data. Then come all the dump commands run on the partitions, with their
outputs piped through gzip before going to the tape. To make the backups go a little
faster, the --fast option is used with gzip. This results in compression that isn’t as
good as normal gzip compression, but it’s much faster and takes less CPU time. The
-c option on gzip tells it to send its output to the standard out. We then rewind the
tape and eject it.

Using restore
The restore program reads the dumpfiles created by dump and extracts individual
files and directories from them. Although restore is a command-line tool, it does offer
a more intuitive interactive mode that lets you go through your directory structure from
the tape. Table 29-3 shows the command-line options for the restore utility.

 644 Linux Administration: A Beginner’s Guide

A typical invocation of restore is as follows:

[root@serverA ~]# restore -ivf /dev/st0

This will pull the dump file from the device /dev/st0 (the first SCSI tape device), print
out each step restore takes, and then provide an interactive session for you to decide
which files from the dump get restored.

Should a complete file system be lost, you can re-create the file system using the
mke2fs command and then restore to populate the file system. For example, let’s say
our external Serial Advanced Technology Attachment (SATA) drive (/dev/sdb), which
has a single partition on it (/dev/sdb1), fails. After replacing it with a new drive, we
would re-create the file system like so:

[root@serverA ~]# mke2fs /dev/sdb1

Table 29-3. Command-Line Options for the restore Utility

restore Utility Option Description

-I Enables interactive mode for restore. The utility
will read the directory contents of the tape and then
give you a shell-like interface in which you can move
directories around and tag files you want to recover.
When you’ve tagged all the files you want, restore
will go through the dump and restore those files.
This mode is handy for recovering individual files,
especially if you aren’t sure which directory they’re in.

-r Rebuilds a file system. In the event you lose
everything in a file system (a disk failure, for instance),
you can simply re-create an empty file system and
restore all the files and directories of the dump.

-b blocksize Sets the dump’s block size to blocksize kilobytes.
If you don’t supply this information, restore will
figure this out for you.

-f filename Reads the dump from the file filename.

-T directory Specifies the temporary workspace (directory) for
the restore. The default is /tmp.

-v The verbose option; it shows you each step restore
is taking.

-y In the event of an error, automatically retries instead of
asking the user if he or she wants to retry.

645 Chapter 29: Backups

Next, we have to mount the partition in the appropriate location. We’ll assume this is
the /home partition, so we type the following:

[root@serverA ~]# mount /dev/sdb1 /home

Finally, with the dump tape in the SCSI tape drive (/dev/st0), we perform the restora-
tion using the following command:

[root@serverA ~]# cd /home; restore -rf /dev/st0

TIP If you used gzip to compress your dump, you’ll need to decompress it before restore
can do anything with it. Simply tell gzip to uncompress the tape device and send its output to the
standard out. Standard out should then be piped to restore, with the -f parameter set to read
from standard in (stdin). Here’s the command:

[root@serverA ~]# gzip -d -c /dev/st0 | restore -ivf -

tar
In Chapter 5, we discussed the use of tar for creating archives of files. What we didn’t
discuss is the fact that tar was originally meant to create archives of files onto tape (tar
= tape archive). Because of Linux’s flexible approach of treating devices the same as files,
we’ve been using tar as a means to archive and unarchive a group of files into a single
disk file. Those same tar commands could be rewritten to send the files to tape instead.

The tar command can archive a subset of files much more easily than dump can. The
dump utility works only with complete file systems, but tar can work on mere directo-
ries. Does this mean tar is better than dump for backups? Well, sometimes ….

Overall, dump turns out to be much more efficient than tar at backing up entire
file systems. Furthermore, dump stores more information about the file, requiring a bit
more tape space, but making recovery that much easier. On the other hand, tar is truly
cross-platform—a tar file created under Linux can be read by the tar command under
any other UNIX platform. gzip-ed tar files can even be read by the WinZip program!
Whether you are better off with tar or dump depends on your environment and needs.

rsync
No discussion of traditional open source backup solutions is complete without men-
tioning the rsync utility. rsync is used for synchronizing files, directories, or entire
file systems from one location to another. The location could be from a local system
to another networked system, or it can be within the local file system. It does its best
to minimize the amount of data transmitted by using so-called delta encoding (differ-
ences between sequential data) when appropriate. rsync lends itself to being script-
able and, as such, is easily included in cron jobs or other scheduled tasks that run
regularly on systems.

Many graphical user interface (GUI) front-ends have been developed that rely heav-
ily on rsync in their back-end to do the grunt work.

 646 Linux Administration: A Beginner’s Guide

MISCELLANEOUS BACKUP SOLUTIONS
Several open source projects exist that aim to provide enterprise-grade backup solutions.
A few of them are AMANDA, Bacula, Dirvish, Mondo, and BackupPC. They all have
their strengths and weaknesses, but provide robust backup solutions nonetheless. They
all also have nice GUI front-ends to them, which make them attractive to administrators
of varying skill levels.

The Advanced Maryland Automatic Network Disk Archiver (AMANDA) is a backup
system that allows the use of a single master backup server to back up multiple hosts over
network to tape drives or disks or optical media.

Bacula is a network-based backup program. It a suite of programs that allows the
backup, recovery, and verification of data across a heterogeneous network of systems.

Dirvish is a disk-based, rotating network backup system. Dirvish is especially inter-
esting because it is dedicated to the purpose of backing up to disk rather than tape.

While not exactly a traditional backup solution, Mondo Rescue is another software
product worthy of mention. It is more of a disaster-recovery suite. It supports Linux
Virtual Machine (LVM), RAID, and other file systems. It is usually best to create Mondo
archives right after a system has been built and configured. The created Mondo images
or archives can be used to easily and quickly restore an operating system (OS) image
back to a bare-bones system.

BackupPC is another popular open source backup software product for backing up
Linux and Microsoft Windows PCs and laptops to a server’s disk. The project is hosted
at http://backuppc.sourceforge.net.

SUMMARY
Backups are one of the most important aspects of system maintenance. Your systems
may be superbly designed and maintained, but without solid backups, the whole pack-
age could be gone in a flash. Think of backups as your site’s insurance policy.

This chapter covered the fundamentals of tape drives under Linux, along with some
of the command-line tools for controlling tape drives and for backing up data to tape
drives. With this information, you should be able to perform a complete backup of your
system. Thankfully, dump, restore, tar, and rsync are not your only options for
backup under Linux. Many commercial and noncommercial backup packages exist as
well. High-end packages, such as Legato and Veritas, have provided Linux backup sup-
port for quite some time now and offer impressive solutions. Simpler programs, such
as bru and Lone-tar, are good for the handful of servers that are manageable by a single
person. Open source projects, like AMANDA, Dirvish, Mondo, and BackupPC, are also
viable and robust choices.

Whichever way you decide to go about the task of backing up your data, just make
sure that you do it!

647

▼ A
A (Address) record, 396
access permissions, 88–89
access_log file, Apache, 448
ACK flag, TCP, 270–275
acknowledgement numbers, TCP header, 269–270
action field, rsyslogd rules, 213–215
active FTP mode, 417
AD (Active Directory), Windows vs. Linux, 13–14
Address Resolution Protocol (ARP), 277
administrators. See system administrators
Advanced Packaging Tool. See APT (Advanced

Packaging Tool)
Alias directive, Apache, 446
all:, NIS, 531–532
AMANDA (Advanced Maryland Automatic Disk

Archiver), 646
anonymous FTP access, 426–427
anycast addresses, IPv6, 295
Apache web server, 433–449

configuring, 441–448
HTTP protocol, 434–437
installing Apache HTTP server, 437–439

starting up and shutting down, 439–441
testing installation, 441
troubleshooting, 448

AppArmor, 358
Application layer, OSI, 262–263
APT (Advanced Packaging Tool)

installing DHCP in Ubuntu, 609
installing OpenLDAP in Ubuntu, 575
installing OpenSSH in Ubuntu, 486
installing Postfix in Ubuntu, 455
installing Samba via, 551–552
overview of, 47
uninstalling software in Ubuntu, 59–60

arguments, PAM configuration, 92–93
ARP (Address Resolution Protocol), 276–278
attacks, handling network, 370–371
authconfig-tui tool, NIS, 538
authentication

PAM. See PAM (Pluggable Authentication
Modules)

using OpenLDAP, 584–587
using Samba against Windows server, 565–567
Windows vs. Linux, 13–14

authorization, Windows vs. Linux, 13–14
automated monitoring, 359

INDEX

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 648 Linux Administration: A Beginner’s Guide

▼ B
backticks, 109
BackupPC software, 646
backups, 633–646

command-line tools, 640–646
evaluating needs, 634–640
Master Boot Record, 144–145
miscellaneous solutions, 646
server, 17
slapd.conf files, 579

backward compatibility, IPv6, 295–296
Bacula backup program, 646
bandwidth, monitoring server, 370
BASH (Bourne Again Shell)

command line shortcuts, 108–110
defined, 79
environment variables, 104–106
introduction to, 102–107
job control, 103–104
overview of, 102–103
pipes, 106–107
redirection, 107

bash package, 49–51
.bashrc file, 78
Basic Input Output System (BIOS), Fedora, 21
Berkeley Software Distribution (BSD), 5, 7, 484
BIND (Berkeley Internet Name Domain) server

configuration file, 387–391
installing from source, 386–387
overview of, 385–386
setting up database files, 398–404
subdomains used in, 383

binding to interface, network security, 365–366
BIOS (Basic Input Output System), Fedora, 21
bitwise AND operation, netmasks, 281
block device files, 113
/boot directory

disk partitioning in, 25–27
kernel configuration, 228
kernel installation, 234
working with GRUB, 146, 150

boot floppy, GRUB, 147–148
boot loader

GRUB as. See GRUB (GRand Unified Bootloader)
installing Fedora using, 32–34
LILO as, 152
overview of, 142

booting
enabling and disabling services at, 159–162, 368
fsck tool and, 163
init process and, 153–154
kernel, 235
rc scripts during, 154–159
setting up NICs during, 304–307
into single-user mode, 163–164
starting Apache during, 440–441
using boot loader. See boot loader
using bootstrapping, 152–153

bootstrapping, 152–159

Bourne Again Shell. See BASH (Bourne Again Shell)
broadcast method, NIS client, 535
broadcast, packets sent as, 264
broken source code, 68
BSD (Berkeley Software Distribution), 5, 7, 484
bye FTP command, 425–426
bzip2 command, 122, 237

▼ C
caching servers, DNS, 385, 393–394
Canonical Name (CNAME), 397–398, 443
carpald.sh script, 156, 158–162
cat command, 125–126, 147, 243–246
cd command, 425–426
CD-ROMs

creating backups with, 635–636
creating boot/rescue, 145
installing Fedora with, 21
installing Ibuntu with, 38
package group selection using, 35

cdrecord utility, 145
certificates, SSL, 475
cfdisk utility, 180
CGI (Common Gateway Interface) scripts, 436–437
chains, 325–327, 333–334, 342
character devices, 114
checksum value, IP header, 268, 271–272
chkconfig utility

Apache, 440–441
echo service, 207
enabling and disabling services, 159–162
NFS, 506
non-xinetd services, 367–368
Postfix, 458
Samba, 553–554
startup script, 157–158
UW-IMAP, 471

chmod command, 116–119, 348–349, 458
chown command, 116
chroot environment, 354–357
CIDR (classless interdomain routing), 281
cleartext passwords, 476, 480
clients, configuring

DHCP, 617–619
DNS, 410–413
FTP, 416–417
NFS, 512–519
NIS, 534–540
OpenLDAP, 581–583, 586–587
printing tools, 603–604

CNAME (Canonical Name), 397–398, 443
command line, 101–140

adding printers, 599–600
BASH, 102–107
configuring Netfilter, 331
dhclient options, 618–619
documentation tools, 110–112
editors, 137–139
file types/ownership/permissions, 112–118

649Index

managing and manipulating, 119–128
moving user and home directory, 128–135
overview of, 102
RPM options, 46
shortcuts, 108–110
standards, 139
su command, 136–137
typing into console at shell prompt, 49
uname command, 135–136
user management, 81–85
who command, 136

commercial distributions, 4–5
Common Gateway Interface (CGI) scripts, 436–437
Common UNIX Printing System. See CUPS (Common

UNIX Printing System)
compression, 122
concatenate files, 125–126
configuration files, 12–13
configure (config) scripts, 64–65, 68
Connection State Match, enabling Netfilter in kernel, 329
Connection Tracking, enabling Netfilter in kernel, 329
connections, TCP, 273–276
control flags, PAM, 92
copy files, 119–120
core services. See services, core system
cost, of risk mitigation, 347
Courier IMAP server, 468
cp command, copy files, 119–120
cron program, 216–218
crontab file, 216–218
cross-mounting disks, NFS, 515–516
cryptography, public key, 480–483
CUPS (Common UNIX Printing System)

adding printers, 594–599
defined, 590
installing, 591–592
managing printers via web interface, 602
overview of, 591
routine administration, 600–601
running, 591

Cyrus server, 468

▼ D
DAC (Discretionary Access Control), 357
daemons, defined, 198–199
data, determining backup, 634–635
Data Encryption Standard (DES), 76
data port, FTP, 417
database

configuring slapd, 578–579
NIS tables as, 524–525
setting up BIND, 398–404

DataFellows (F-Secure), 484
date and time, OS installation, 36
DDNS (Dynamic DNS), 407
Debian-based systems, 47. See also Ubuntu
debugging, 95, 226, 249
declarations, DHCP server, 611–612

Department of Defense (DoD) ARPANET model, 259
DES (Data Encryption Standard), 76
destination address, Ethernet, 264–265
Destination NAT (DNAT), 322–323
destination port number, 268, 272, 362–363
/dev directory, 178
df command, 127–128, 359
DHCP (Dynamic Host Configuration Protocol), 607–619

configuring client, 617–619
configuring server, 610–617
installing Fedora, 23–24
installing server, 609–610
for load sharing in small NIS network, 544
mechanics of, 608
setting up NICs at boot time, 305

DHCPD (Dynamic Host Configuration Protocol
 Daemon), 609

dhcpd.leases file, 616–617
dig utility, DNS, 406–407, 413
DIME (Dual Independent Map Encoding), XML, 262
dir command, 424
directories

creating, 122
i-nodes within, 166
overview of, 112
removing, 123
showing location of, 127
showing present working, 123

directory information tree (DIT), LDAP, 570–571
Dirvish backup system, 646
Discretionary Access Control (DAC), 357
disk-based backups, 635
disks

adding new, 177–179
cross-mounting in NFS, 515–516
du command for, 126–127
mounting and unmounting local, 169–170
naming conventions, 178–179
partitions, 178
reading superblock information on, 167–168
synchronizing, 128

distributions (distros), 4–6
DIT (directory information tree), LDAP, 570–571
DNAT (Destination NAT), 321–323
DNS Blacklist (DNSBL), 460
DNS (Domain Name Service) server, 377–413

Active Directory using, 13
configuring, 391–394
configuring clients, 410–413
creating quick query against, 316
hosts file, 377–378
how it works, 378–383
installing, 385–391
overview of, 377
record types, 394–398
setting up BIND database files, 398–404
tools, 404–410
types of, 383–385
viewing odd behavior of, 292–293

 650 Linux Administration: A Beginner’s Guide

documentation
command line tools, 110–112
kernel, 225
looking for software, 64
RP and TXT records, 398

DocumentRoot, Apache, 444
DoD (Department of Defense) ARPANET model, 259
domain names

DNS, 378–381
master NIS server, 527–528
secondary NIS server, 540

domains
Linux vs. Windows, 13
NIS server, 526
subdomains vs., 382–383

DPMS (Debian Package Management System), 47
APT, 47

drivers, listing installed device, 301
du command, 126–127, 129
dual-boot configuration, 18–19, 178
Dual Independent Map Encoding (DIME), XML, 262
dump utility, 174, 640–645
DVD-ROMs, OS installation, 21–22
Dynamic DNS (DDNS), 407
Dynamic Host Configuration Protocol. See DHCP

 (Dynamic Host Configuration Protocol)
Dynamic Host Configuration Protocol Daemon

 (DHCPD), 609
dynamic routing, with RIP, 284–289

▼ E
echo command, 191, 243
Echo-Reply message, ICMP, 263
Echo-Request message, ICMP, 263
echo service, 206–207
editors, command line, 137–139
editors, vi editor, 136–137
EFF (Electronic Frontier Foundation), 482
Electronic Frontier Foundation (EFF), 482
emacs editor, 137–138
encryption

IMAP and POP3 issues, 474–475
password, 76
with public key cryptography, 480–483
for remote users. See SSH (Secure Shell)
Samba password, 549
Secure Sockets Layer and, 262

enumerated /proc entries, 246
environment, designing server, 17
environment variables, 104–106, 108
equal-cost multipath, OSPF, 289
error messages

client-side NFS, 517
with fsck tool, 176–177
GNU package installation, 66
Makefile, 533–534
Oops, 233

PAM, 95
UW-IMAP, 472

error_log file, Apache, 445, 448
/etc/group file, 80
/etc/password file, 75–79
/etc/shadow file, 79–80
Ethernet, 257, 264–265, 276–277
Everyone permission, 88
exit command, 130, 407
export command, 105
ext2 and ext3 file systems, 168–169, 190–191
Extensible Markup Language (XML), OSI layer, 262
extents, 180

▼ F
facilities, log message, 210
fdisk utility, 180–182, 183–185
Fedora

extra print drivers for, 597
GUI service configuration tool, 160
GUI software management tool, 60
GUI user manager tool, 85–86
hardware compatibility list, 16
installing Apache in, 437
installing CUPS in, 592
installing DHCP software via RPM in, 609
installing NFS in, 505–506
installing OpenSSH via RPM in, 486, 489
installing Postfix via RPM in, 455
installing Samba via RPM in, 550–551
installing software via RPM on, 43–46
installing UW-IMAP in, 469
managing LVM in, 188–189
overview of, 7
setting up NICs under, 304–307

Fedora, installing, 20–37
boot loader configuration, 32–34
disk partitioning setup, 24–32
initial system configuration, 36–37
network configuration, 23–24
overview of, 21–23
package group selection, 34–36
project prerequisites, 20–21
root password setting, 24
time zone selection, 24

FHS (File Hierarchy Standard), 139
File System Check tool. See fsck tool
file systems, 165–192

/etc/fstab file, 173–175
adding new disk, 177–179
creating, 190–191
mounting and unmounting local disks, 169–170
overview of, 166–169
proc. See proc file system
umounting, 172–173
using fsck tool, 176–177
using mount command, 170–172
volume management. See volume management

651Index

File Transfer Protocol. See FTP (File Transfer Protocol)
file types/ownership/permissions, 112–118

block devices, 113
change mode: chmod, 116–119
changing group: chgrp, 116
changing ownership: chown, 115–116
character devices, 114
directories, 112
hard links, 113
listing files: ls, 114–115
named pipes, 114
normal files, 112
symbolic links, 113

filenames, 108, 166, 530–531
files, managing and manipulating, 119–128

compression, 121–122
concatenate, 125–126
copy, 119–120
creating directory, 122
disk free, 127–128
disk utilization, 126–127
display files one screen at a time, 126
finding, 121
link, 120–121
locate, 127
move, 120
remove directory, 123
show directory location of file, 127
show present working directory, 123
synchronize disks, 128
tape archive, 123–125

filter, printing, 591
filter table, Netfilter, 321, 326–327, 334
FIN flag, TCP, 270, 275–276
find command, 121, 127, 349
firewall, Linux, 319–344

chains, 325–337
configuring Netfilter, 331–340
configuring simple, 342–344
cookbook solutions, 340–341
FTP issues, 417
how NAT works, 321–324
how Netfilter works, 320–321
installing Netfilter, 328–330
NAT-friendly protocols, 324–325
three-line NAT, 341–342

Foomatic package, 591
fork bombs, 352
FORWARD chain, Netfilter, 327, 333–334, 342–344
forward resolution, DNS, 383
FQDNs (fully qualified domain names), 379–383
fragmentation, IP header, 267
frames, 256–257
Free Virtual Window Manager (FVWM), 11
FreeIPA project, 587
FreeSSH, 485
fsck tool, 163–164, 168–169, 174–177
ftp account, 427

FTP (File Transfer Protocol), 418–431
customizing server, 426–431
enabling Netfilter with, 329
installing Linux with, 19
mechanics of, 416–417
obtaining/installing vsftpd, 418–423
quickly downloading, 63
starting and testing, 423–426
support for NAT, 324–325, 342

full NAT, 330
full virtualization, 623
fully qualified domain names (FQDNs), 379–383
functions, disabling unused server, 17
fuser program, 173
FVWM (Free Virtual Window Manager), 11

▼ G
gateways. See routers
GECOS (General Electric Comprehensive Operating

System), 77
GET command, HTTP, 435
Ghostscript software, 591
GIDs (group IDs), 74
Globals page, Samba, 557
GNOME, 11, 34, 49
GNU (GNU’s Not UNIX), 7, 62–67, 591
GParted Live CD, 19
GPL (GNU Public License), 7–9, 357
GRand Unified Bootloader. See GRUB (GRand Unified

Bootloader)
Graphical Kernel configuration tool, 228–231
graphical user interface. See GUI (graphical user

 interface)
grep command, 129, 231, 304
group IDs (GIDs), 74, 529–530
groupadd command, 84–85, 97–98
groupdel command, 84, 99
groupmod command, 85, 99
groups

access permissions for, 88
configuring Apache, 444
creating/modifying/deleting user, 97–98
merging group shadow passwords with real, 530
overview of, 74–80

GRUB (GRand Unified Bootloader), 142–152
adding new kernel to boot, 150–152
backing up MBR, 144–145
booting into Recover Mode, 163–164
bootstrapping, 152–153
configuring, 148–149
conventions used in, 144
creating boot floppy, 147–148
creating boot/rescue CD, 145
installing, 144–148
overview of, 142–143
Stages 1 and 2, 143

GRUB Legacy, 142

 652 Linux Administration: A Beginner’s Guide

GUI (graphical user interface)
configuring host as NIS client, 537–538
configuring Netfilter, 331
Linux vs. Windows, 10–11
RPM Package Managers, 60–61
typing commands at shell, 49
user managers, 85–87

gutenprint-cups RPM package, 597
gzip command, 121–122
gzip.tar, 62

▼ H
“Hacking Exposed” books, 346
hard links, 113–114
hard mounts, NFS clients, 515
hardware

building kernel to support, 226–227
debugging conflicts in proc, 249
installation considerations, 16
managing availability in mail servers, 475–476

hardware emulation, virtualization, 623
HCLs (hardware compatibility lists), 16
headers, HTTP, 434–435
headers, TCP/IP, 263–272

Ethernet, 264–265
IPv4, 265–268
overview of, 263–272
packet, 258–259
TCP, 268–272
UDP, 272

Hello program, installing GNU software, 63
help, match extension, 337
/home directory

disk partitioning setup, 25–29
mounting, 12
moving user and its, 128–135
overview of, 77–79

Host OS, virtualization, 622
hostname, 23–24, 535
hosts

DNS, 378–381, 404–405
how Linux chooses IP address, 317
networks and, 277–278
used by OpenSSH clients, 496

HTTP (Hypertext Transfer Protocol)
installing Linux using, 19
OSI layer, 262
quickly downloading, 63
serving content from user directories, 443–444
XML using, 262

Hyper-V, 625
Hypervisor, 623

▼ I
i-nodes, 113, 166–167
I/O ports, debugging hardware conflicts, 249
ICMP (Internet Control Message Protocol), 263, 330
IDE disks, naming conventions, 178–179

identification number field, IP header, 267
IDS (intrusion detection system), 371
IMAP (Internet Message Access Protocol)

availability and, 475–476
basics of, 468
checking functionality, 473
higher-volume mail servers for, 468
installing UW-IMAP server, 468–470
log files, 476
overview of, 466–468
running UW-IMAP server, 471–472
SSL security for, 474–475

in-addr.arpa domain, DNS, 383
include statement, 389, 445, 578
inetd program, 198–200
inheritance principle, Linux, 436
init command

booting and, 153–154, 164
core system services and, 194–198
enumerated proc entries and, 246
forcing change in runlevel, 351

initctl command, upstart, 196
initdefault, bootstrapping, 153
Initial Sequence Number (ISN), TCP, 293–294
initrd image, 149, 150
INPUT chain, Netfilter, 327, 333–334, 342–343
install command, Apache, 438
INSTALL file, 64
install switch, Ubuntu, 59
installing Linux, server configuration, 15–41

boot loader, 32–34
carrying out installation, 21–23
dual-booting issues, 18–19
dual partitioning setup, 23–32
hardware/environmental considerations, 16
initial system configuration, 36–37
installing Ubuntu Server, 37–41
methods of, 19–20
network configuration, 23
overview of, 16
package group selection, 34–36
project prerequisites, 20–21
root password setting, 23
server design, 16–18
Time Zone selection, 23

interface, binding to, 365–366
Internet Control Message Protocol (ICMP), 263, 330
Internet Message Access Protocol. See IMAP (Internet

Message Access Protocol)
Internet Printing Protocol (IPP), 590, 596
Internet reference model, 259
Internet Relay Chat (IRC), 329
Internet Systems Consortium (ISC), 385
interprocess communication (IPC) channels, 199
interrupts, 249, 259
intr option, configuring NFS clients, 516
intrusion detection system (IDS), 371
IP addresses

configuring hosts and networks, 277–278
configuring with DHCP. See DHCP (Dynamic Host

Configuration Protocol)

653Index

how ARP works, 276–277
how Linux chooses, 317
how NAT works, 321–324
installing Fedora, 23
IP aliasing for multiple, 303–304
netmasks, 280–281
port numbers and, 362–363
subnetting, 279–280

IP aliasing, 303–304
ip command, 302–303, 310–311, 313
IP layer, OSI, 261
IP tables, Netfilter, 329
ip6tables-restore command, 342
ip6tables-save command, 341–342
IPC (interprocess communication) channels, 199
ipconfig command, 301–307, 315
IPng. See IPv6
IPP (Internet Printing Protocol), 590, 596
iptables command

configuring firewall, 342
configuring Netfilter, 333
installing Netfilter, 328
managing chains, 333–334
rule-spec extensions with Match, 337–340
rule-specification, 334–337
saving Netfilter configuration, 331–332
three-line NAT using, 341–342

IPv4
autoconfiguration addresses, 307
configuring vsftpd, 431
header, 264–268
IPv6 backward compatibility with, 295–296
packet flow, 320
tcpdump and, 268

IPv6, 294–296, 307, 320, 431
IRC (Internet Relay Chat), 329
ISC (Internet Systems Consortium), 385
ISN (Initial Sequence Number), TCP, 293–294
ISO images, 20, 37–38

▼ J
jobs, print, 590, 600–601
joe text editor, 138
journaling file systems, 163, 168
jumbo frames, Ethernet, 257, 307

▼ K
KDE (K Desktop Environment) package group, 11,

34–36, 49
kernel

adding new boot entry to GRUB, 150–152
adding only needed features to, 17
as core of operating system, 4
differences, 6
enabling Netfilter in, 328–330
execution, 153
Linux vs. Windows, 10–11
loading, 153

recompiling, 18
support for NFS, 508

Kernel-based Virtual Machines (KVM), 624–631
kernel, compiling, 221–239

applying patches, 236–239
booting, 235
building, 225–227
configuring, 227–231
correcting mistakes, 235–236
finding source code, 224–225
installing, 233–234
overview of, 222–223, 231–233

keyboard layout, Fedora installation, 22
kill command, 134–135, 207, 368
konsole, KDE, 49
KVM (Kernel-based Virtual Machines), 624–631

▼ L
Launch Terminal command, 49
Layer 8, OSI, 263
layers, TPC/IP packet, 256–259
LDAP Data Interchange Format (LDIF), 573, 582–583
LDAP (Lightweight Directory Access Protocol), 569–587

client/server model, 571–572
directory, 570–571
OpenLDAP configuration, 576–580, 581–583
OpenLDAP installation, 574–575
OpenLDAP, overview of, 573–574
OpenLDAP, user authentication, 584–587
OpenLDAP utilities, 574
overview of, 570
searching, querying and modifying directory,

583–584
terminologies, 572–573
uses of, 572

ldapadd utility, 583–585
LDIF (LDAP Data Interchange Format), 573, 582–583
leases, DCHP, 616–617
/lib/security files, PAM, 89–90
libraries, 68. See also PAM (Pluggable Authentication

Modules)
libvirtd service, 626–627
licenses, 7, 36
Lightweight Directory Access Protocol. See LDAP

(Lightweight Directory Access Protocol)
LILO (Linux Loader), 142, 152
Line Printer Daemon (LPD), 596
links, hard and symbolic, 113
Linux Kernel Archive, 236
Linux Loader (LILO), 142, 152
Linux, overview of

advantages of open source software, 8–9
operating system, 4–7
Windows vs., 9–13

Linux Standard Base Specification (LSB), 139
Listen, configuring Apache, 443
ln command, 120–121
LoadModule module, Apache, 444
local printers, adding, 595–596
local security, 345–360

 654 Linux Administration: A Beginner’s Guide

choosing limited resources, 352–353
non-human accounts and, 351
overview of, 346
picking right runlevel to boot to, 350–351
sources of risk, 346–350

local user login, vsftpd, 426
localhost, 410
log files

Apache error, 448
BIND configuration, 389–390
IMAP and POP, 476
monitoring system using, 358
parsing, 369
Postfix mail, 463
storing entries, 369
vsftpd configuration, 422–423

LOG Target Support, Netfilter, 330
logging daemon, 208–216
Logical Volume Management (LVM), 180–188
logical volumes (LVs), 179–182, 187–188
login

Fedora, 37
Ibuntu, 40
IMAP, 473
local user, 426
remote. See SSH (Secure Shell)
who command for, 136

LogLevel, Apache, 446
logout command, IMAP, 473
lost+found directory, fsck tool, 177
Low memory warning message, 32
lpadmin command, 599, 601
LPD (Line Printer Daemon), 596
LPD spooler, 590
lpq command, 604
lpr command, 603
lprm command, 604
LPRng spooler, 590
lpstat command, 599
ls command, 52, 114–115, 129–130
LSB (Linux Standard Base Specification), 139
lsb_release command, 136
LSM (Linux Security Models), 357
lspci command, 226–227
lvcreate command, 182
lvdisplay command, 182
LVM (Logical Volume Management), 180–188
LVM-type partitions, 28–32, 39–40
LVs (logical volumes), 179–182, 187–188

▼ M
MAC (Mandatory Access Control), 357
MAC (Media Access Control) addresses, 264–265, 277
Mac OS X, OpenSSH for, 485
mail delivery agent (MDA), SMTP, 454–455
Mail Exchanger (MX) record, 397, 448
mail queue, running Postfix server, 462
mail transport. See SMTP (Simple Mail Transfer Protocol)
mail transport agent (MTA), SMTP, 454–455
mail user agent (MUA), SMTP, 454–455

mailing lists, security, 360
main.cf file, 459–461
make command, 232, 438, 469–470, 552
make tool, 65–66, 528–529
Makefile, 227, 232, 528–534
man command, 110–111, 419
Mandatory Access Control (MAC), 357
mangle table, Netfilter, 321
mapped addresses, IPv6, 296
maps, NIS, 524, 531–532, 534
Masquerading, 321, 343
Master Boot Record (MBR), 142, 144–145, 148
master NIS server, 525, 526–534
master.cf file, 459
match extensions, 337–340
MaxClients, Apache, 444
Maximum Segment Size (MSS) values, 273–274
mbox format, 466
MBR (Master Boot Record), 142, 144–145, 148
MD5 (Message-Digest algorithm 5), 76
MDA (mail delivery agent), SMTP, 454–455
Media Access Control (MAC) addresses, 264–265, 277
media, choosing backup, 635–636
Memory Test utility, 34
menus, SWAT, 556–557
MERGE_GROUP, 530
MERGE_PASSWD, 530
Message-Digest algorithm 5 (MD5), 76
micro-kernel, 10
MindTerm (Multiplatform), 485
mkbootdisk utility, 145
mkdir command, 122
mkfs.ext3 tool, 190–191
mknod command, 114, 638–639
modinfo command, 301
modprobe commands, 340–341, 342
modules

Apache, 438–439
kernel, 229–231, 300–301
PAM, 89, 91–92

Mondo Rescue backup software, 646
monitoring system, 358–360, 368–370
monolithic kernel, 10
more command, 126
mounting

/etc/fstab file, 173–175
installing RPM, 51–52
local disks, 169–170
in NFS, 503–505, 511–516, 519
overview of, 170–172
partitions, 164, 175
remote Samba shares, 563
Windows vs. Linux, 11–12

moving files, 120
MQSQUERADE Target Support, Netfilter, 330
MRTG (Multi-Router Traffic Grapher), 370–371, 636
MSS (Maximum Segment Size) values, 273–274
mt command, 639–640
MTA (mail transport agent), SMTP, 454–455
MUA (mail user agent), SMTP, 454–455
Multi-Router Traffic Grapher (MRTG), 370–371, 636

655Index

Multiboot Specification, and GRUB, 142
multicast addresses, IPv6, 295
Multiplatform (MindTerm), 485
multiple users, Linux vs. Windows, 9–10
mv command, 120
MX (Mail Exchanger) record, 397, 448

▼ N
Nagio, 371
Name Server (NS) record, 395–396
named pipes, 114
named.conf file, 387–393, 403–404
naming conventions

DNS domain and host, 378–381
GRUB, 144
kernel patches, 237
kernels, 233
logical volumes, 188
NIS server domains, 526
specifying group name to file, 116
tape backups, 636–637
traditional disk and partition, 178–179

NAT (Network Address Translation)
configuring firewall, 342–344
connection tracking and, 324
examples of, 322–323
protocols friendly to, 324–325
three-line, 341–342

NAT of Local Connections, 330
NAT tables, 321, 326–327
Neosmart EasyBCD, 19
Nessus system, 372
Netfilter

chains, 325–327
configuring, 331–340
configuring firewall, 342–344
installing, 328–330
NAT under, 321–324
overview of, 320–321
resources for, 344

netmasks, 280–281
netstat command, 312–313, 359, 363–368
Network Address Translation. See NAT (Network

 Address Translation)
network configuration, 299–318

how Linux chooses IP addresses, 317
installing Fedora, 23–24
installing Ibuntu Server, 39
IP aliasing, 303–304
ip and ipconfig, 301–302
kernel modules and, 300–301
Linx router, 314–316
managing routes, 307–313
setting up NICs at boot time, 304–307

Network File System. See NFS (Network File System)
Network Information Service. See NIS (Network Infor-

mation Service)
network interface cards (NICs), 259, 301–302, 304–307
Network Packet Filtering, 329
network security, 361–373

binding to interface for, 365–366
handling attacks, 370–371
monitoring system, 368–370
netstat command for, 363–365
shutting down services for, 366–368
TCP/IP and, 362–363
using Nessus for, 372
using nmap for, 371–372
using Snort for, 372
using Wireshock and tcpdump for, 372–373

network throughput, and backup, 636–637
Network Time Protocol (NTP) server, 36
networks

hosts and, 277–278
local security issues of, 346
netmasks, 280–281
static routing, 282–283
subnetting, 279–280
users in Linux vs. Windows, 9–10

new-kernel-pkg command, 234
New Technology File System (NTFS), 18–19
newaliases command, Postfix server, 462
NFS (Network File System), 501–521

components, 507
configuring clients, 512–517
configuring server, 508–512
enabling in Fedora, 505–506
enabling in Ubuntu, 506
installing Linux using, 19
kernel support for, 508
mounting and accessing partitions with, 504–505
overview of, 502
sample client and server configuration, 518–519
security issues, 504
support for mounting, 11–12
troubleshooting client-side issues, 517–518
uses for, 520
versions of, 503–504

NICs (network interface cards), 259, 301–302, 304–307
NIS (Network Information Service), 523–545

configuring client, 534–536
configuring master server, 526–534
configuring secondary server, 540–542
editing /etc/nsswitch.conf file, 536–538
implementing in real network, 543–545
overview of, 524–525
sample usage of, 538–540
servers, 525–526
tools, 542–543

NISPLUS, 411–412
nmap program, 371–372
nmbd daemon, Samba, 550
non-human accounts, security and, 351
noncommercial distributions, 4–5
NOPUSH variable, NIS, 529
normal files, 112
normal user, 74
Novell, AppArmor, 358
NS (Name Server) record, 395–396
nslookup utility, DNS, 407–408
nss_ldap module, 576

 656 Linux Administration: A Beginner’s Guide

nss_ldap*.rpm package, 576
nsupdate utility, DNS, 408
NTFS (New Technology File System), 18–19
NTLDR (NT Loader), Windows, 33
NTLM (NT LAN Manager), 13
NTP (Network Time Protocol) server, 36
null passwords, Samba, 564

▼ O
objectClass, LDAP, 573
octets, 279
offline mode, POP, 467
online mode, IMAP, 467
Oops error, 233
Open Shortest Path First (OSPF), 288–289
open source software, 5–0
Open Systems Interconnection (OSI) model, 259–263
OpenBSD, 484
OpenLDAP

configuring, 576–580
configuring clients, 581–583
installing, 574–575
searching, querying and modifying directory,

583–584
user authentication with, 584–587
utilities, 574–575

OpenSSH
creating secure tunnel, 491–494
files used by client, 496
installing from source code, 486–489
installing via APT in Ubuntu, 486
installing via RPM in Fedora, 486
for Mac OS X, 485
overview of, 484
using Secure Copy, 495
using Secure FTP, 495–496
using ssh client, 491
weakest link and, 485

OpenSSL
installing OpenSSH from source, 487–488
testing IMAP connectivity, 475

OpenSuSE
configuring master NIS server on, 527
configuring NFS on, 518
configuring NIS with, 539
GUI Runlevel editor, 160–161
GUI software management tool, 61
GUI user manager tool, 86–87
hardware compatibility list, 16
installing CUPS on, 592
kernel configuration using YaST, 229
managing LVM with, 189
using syslog-ng daemon, 208

operating system
overview of, 3–7
showing name of, 135–136

OSI (Open Systems Interconnection) model, 259–263
OSPF (Open Shortest Path First), 288–289
OUTPUT chain, Netfilter, 327, 333–334, 342
owner, access permissions, 88

ownership
in Apache, 436
changing file, 115

▼ P
packages

Debian. See DPMS (Debian Package Management
System)

Fedora, 34–36
RPM, 43–46

Packet Filtering, Netfilter, 330
Packet Mangling, Netfilter, 330
packets, 256–259, 264. See also firewall, Linux
page description language (PDL), 590
PAM (Pluggable Authentication Modules), 89–96

configuring, 90–93
debugging, 95
defined, 13
example configuration file, 93–94
files and their locations, 90
fixing configuration errors, 95
how it works, 89–90
Samba usernames and passwords, 549

pam_ldap module, 576
paravirtualization, 623
parsing logs, 369
parted utility, 180
Partition Magic, 19
partitions

creating, 183–185
creating logical volumes and, 180–182
mounting, 164, 169–170
mounting and accessing with NFS, 504–505
mounting with /etc/fstab file configured, 175
overview of, 178
setting up disk, 24–32
traditional naming conventions, 178–179
unmounting, 172–173
volumes vs., 179

passive FTP mode, 417
passwd command, 96–97
Password page, Samba, 558
passwords

/etc/shadow encrypted file for, 79–80
changing after attack, 371
choosing good, 76
editing makefile, 530
Fedora, 24, 37
Ibuntu, 40
Samba, 548–549, 564–565, 567
security risk of not using SSH, 496

PASV command, passive FTP mode, 417
patches, 6, 236–239, 357
PDL (page description language), 590
performance

configuring NFS clients, 516–517
improving server, 17
tcpdump, 291

Perl, 549
Permission denied message, NFS, 517–518

657Index

permissions
access with, 88–89
Apache, 436
installing Postfix from source code, 458
NFS, 509
setting values, 116–119

Physical layer, OSI, 260
physical volume (PV), 179–182, 185–187
pico editor, 139
PIDs (process identifications), 194, 246
ping utility, 316, 348–349
pipes, 106–107, 114
Pluggable Authentication Modules. See PAM (Pluggable

Authentication Modules)
Pointer record (PTR), 396–397
POP (Post Office Protocol), 466–476

availability and, 475–476
basics of, 468
checking POP3 functionality, 472–473
installing UW-IMAP, 468–470
log files and, 476
overview of, 466–468
running UW-IMAP, 471–472
SSL security for, 474–475
testing connectivity with SSL, 475

port 80, HTTP requests, 435–436
PORT command, active FTP mode, 417
port forwarding, with SSH, 492
port numbers, 362–363
portmap service, 503, 506, 512, 528
ports, FTP, 417
ports, HTTP, 435–436
Post Office Protocol. See POP (Post Office Protocol)
postfix flush command, 462
Postfix SMTP server, 454–461
POSTROUTING chain, Netfilter, 327, 333–334, 342–343
PostScript files, 590
PREROUTING chain, Netfilter, 326, 333–334, 342–344
primary DNS server, 383, 391–392
print jobs, 590, 600
printenv command, 105, 106
printer queue, 599
printers

adding, 594–599
defined, 590
deleting, 601
enabling and disabling, 600
managing via web interface, 602
setting default, 600

Printers page, Samba, 557
printing, 589–605

adding printers, 594–599
client-side tools for, 603–604
CUPS system, 591–594
environment variables, 105
managing via web interface, 602
routine CUPS administration, 600–601
terminologies, 590–591

priority levels, log message, 210–211
privileges, printing, 601

proc file system, 242–252
common settings and reports, 247–248
directories, 242–243
enumerated entries, 246
overview of, 242
sysfs file system vs., 249–251
useful entries, 244–246

proc-type file system, 174–175
process identifications (PIDs), 194, 246
processes

background of, 104
controlling resources available to, 352–353
listing with ps command, 131–133
sending signals to running, 134–135
showing all owners of, 351
shutting down unnecessary, 349–350

Procmail, 455, 466
properties, log message, 211–212
protocols, NAT-friendly, 323–324
ps command

enabling and disabling echo service, 207
listing processes, 131–133, 348, 554
monitoring system using, 359
shutting down services, 368

PSH flag, TCP, 270, 274–275
PTR (Pointer record), 396–397
PuTTY, 485
PV (physical volume), 179–182, 185–187
pvcreate command, 182, 186
pvdisplay command, 182, 185–187
pwd command, 123, 131, 424–425

▼ Q
QEMU, 624
queues, TPC/IP, 259
quit command, 407

▼ R
r (Read permission), 88
RARP (Reverse ARP), 277
raw table, Netfilter, 321, 326–327
RBL (Realtime Blackhole Lists), 460
rc scripts, 154–159
rcp command, 495
Read permission (r), 88
README files, 64
Realtime Blackhole Lists (RBL), 460
record types, DNS, 394–398
Recovery Mode, booting into, 163–164
Red Hat Enterprise Linux. See RHEL (Red Hat Enter-

prise Linux)
Red Hat Package Manager. See RPM (Red Hat Package

Manager)
REDIRECT Target Support, Netfilter, 330
ReiserFS file system, 168–169
REJECT Target Support, Netfilter, 330
remote file access, Samba, 561–562
remote login. See SSH (Secure Shell)

 658 Linux Administration: A Beginner’s Guide

remote printers, adding, 595–596
Remote Procedure Call (RPC), 503, 507, 528
reparse points, 11
request headers, HTTP protocol, 434–435
requests, DCHP, 608
resolution, DNS, 383
resolver, DNS, 410–411
Responsible Person (RP) record, 398
restore utility, 640, 643–645
Reverse ARP (RARP), 277
reverse resolution, DNS, 383–384
RHEL (Red Hat Enterprise Linux)

extra print drivers for, 597
as GUI user manager tool, 85–86
hardware compatibility list, 16
installing software on, 43–46
managing LVM, 188–189
overview of, 7
setting up NICs under, 304–307

Ring 0, 10
RIP (Routing Information Protocol), 284–289
risk. See local security
rm command, 67, 191
rmdir command, 123
rndc tool, 409–410
/root directory

file system management on, 170
installing GRUB on, 146
minimizing SetUIDs, 347–349
mitigating risk, 354–357
for superuser, 79

root domain, DNS, 379–380
root hints file, BIND, 401
root name servers, DNS, 380, 385
root password, 23, 371
root users, 74, 348
route command, 309–313, 316
routers

dynamic, 284–289
managing routes, 307–313
static, 282–283

Routing Information Protocol (RIP), 284–289
routing tables, 282–283
RP (Responsible Person) record, 398
RPC (Remote Procedure Call), 503, 507, 528
rpcbind service, 505, 518, 528
rpcinfo command, 505–506, 528
rpm command, 48–51, 386, 400
RPM (Red Hat Package Manager)

capabilities of Yum, 57–58
installing Apache HTTP server, 437
installing DHCP software, 609
installing for SWAT, 554–555
installing OpenSSH in Fedora, 486
installing packages, 51–54
installing Postfix in Fedora, 455
installing Samba, 550–551
installing software, 43–46
package validation, 56–57

picking right runlevel to boot into, 350–351
querying for information, 48
querying for packages, 48–51
uninstalling software, 54–55
verifying packages, 55–56

rsize command, NFS, 517
RST flag, TCP, 270, 275
rsync utility, 645
rsyslog. See logging daemon
rule-specification (rule-spec), 333–340
runlevels, 153–154, 196, 350–351

▼ S
Samba, 547–568

administration, 552–554
authenticating against Windows server, 565–567
configuring, 553
creating shares, 558–562
creating users, 563–565
daemons, 549–550
encrypted passwords, 549
installing, 550–552
mounting remote shares, 563
storing object attributes in LDAP, 571
troubleshooting, 567
usernames and passwords, 548–549
using SWAT, 554–558

Samba Web Administration Tool (SWAT), 554–558
/sbin directory, 301
schema, LDAP, 573
scp command, 495
ScriptAlias option, Apache, 447
SCSI disks, 177–178
SCTP (Stream Control Transmission Protocol), 503
search features, yum, 57–58
second-level domain names, DNS, 381
secondary DNS servers, 384, 392–393
secondary (slave) NIS servers, 525, 529, 540–542
Secure Copy (scp) command, 495
Secure FTP (SFTP) commands, 495–496
Secure Shell. See SSH (Secure Shell)
Secure Sockets Layer (SSL), 262, 428, 474–475
SecureCRT, for Windows, 485
security

Apache, 436
file system, 191
firewall. See firewall, Linux
kernel, 6, 226
kill command and, 134
local. See local security
network. See network security
NFS, 504
SMTP, 454–455
vsftpd, 416, 420–422

segmented networks, using NIS, 544
SELinux, 357, 425, 563
Sendmail, 457
sequence numbers, TCP header, 269

659Index

Server Message Block (SMB), 19, 596
server pull, NIS, 526
server push, NIS, 525
server statement, BIND configuration, 390
ServerAdmin, Apache, 443–444
ServerName, Apache, 443
ServerRoot, Apache, 442
servers

configuring DHCP, 610–617
configuring for OpenLDAP user authentication,

584–585
configuring FTP, 423–431
configuring NFS, 508–512, 518–519
DNS. See DNS (Domain Name Service) server
implementing multiusers, 10
installing DHCP, 609–610
installing Linux. See installing Linux, server

 configuration
mechanics of DHCP, 608
NIS, 525–526

service command
anonymous-only FTP server setup, 427
enabling/disabling echo service, 206
Samba startup and shutdown, 553–554
starting and stopping slapd, 580
starting FTP, 424
starting NIS, 528

services
binding to interface, 365–366
enabling and disabling, 159–162, 205–207
shutting down for network security, 366–368
tracking with netstat command, 363–365

services, core system, 193–219
cron program, 216–218
init daemon, 194–198
logging daemon, 208–216
overview of, 194
xinetd and inetd, 198–207

setenforce o, 425
SetGID bit, 88–89
SetUID programs, 347–349, 436
sfdisk utility, 180
SFTP (Secure FTP) commands, 495–496
sh shell, 217
shadow passwords, 530
shares, Samba, 557–562, 563
shell

/etc/password file, 79
BASH. See BASH (Bourne Again Shell)
definition of, 102
installing GRUB from GRUB, 145–147
SSH. See SSH (Secure Shell)

shortcuts, command line, 108–110
showmount command, NFS, 511–512, 519
shutdown

Apache, 439–440
OpenSSH, 489
Samba, 553–554
slapd, 580

signals, sending to running processes, 134–135
Simple Mail Transfer Protocol. See SMTP (Simple Mail

Transfer Protocol)
single users

booting into recovery mode, 163–164
Linux vs. Windows, 9–10

slapd daemon, LDAP, 573, 577–580, 585
slappasswd utilty, 583
slave servers. See secondary (slave) NIS servers
SLE (SuSE Linux Enterprise), 61, 86–87
sliding window, 271
slurpd daemon, LDAP, 573
SMB (Server Message Block), 19, 596
smbclient utility, 560–562
smb.conf file, 554
smbd daemon, 549–550
smbfs package, 563
smbmount command, 552
smbpasswd command, 564–565
SMTP (Simple Mail Transfer Protocol), 451–463

configuring Postfix server, 458–461
installing Postfix server, 455–458
overview of, 452
running server, 462–463
security implications of, 454–455
sending and receiving mail with POP and, 466–467
understanding, 452–454

SNAT (Source NAT), 321–323
snoop tool, 290
Snort, 372
SOA (Start of Authority) record, DNS, 394–395
soft mounts, NFS clients, 515
software, installing, 43–69

building from source code, 67–68
in DPMS. See DPMS (Debian Package Management

System)
in GNU, 62–67
overview of, 43
in RPM, 43–46
in Ubuntu, 58–61

software, open source. See open source software
source address, Ethernet, 264–265
source code

finding kernel, 224
installing CUPS from, 591
installing DHCP from, 610
installing GNU software from, 62–67
installing OpenSSH from, 486–489
installing Postfix from, 456–458
installing Samba from, 551–552
installing UW-IMAP from, 469–470
problems when building from, 68–69
unpacking, 225

source directory, Samba, 552
Source NAT (SNAT), 321–323
source number, TCP header, 268
source port, 272, 362–363
SourceFire, 371
speed, with window managers, 11
spins, 4

 660 Linux Administration: A Beginner’s Guide

splashimage entry, GRUB, 151
spoolers, 590
ssh client program, 491–494
SSH (Secure Shell), 479–497

alternative vendors for, 484–485
development of, 484
installing OpenSSH from source, 486–489
OpenSSH and OpenBSD, 484
server startup and shutdown, 489
SSHD configuration file, 490
using OpenSSH, 490–496
using public key cryptography, 480–483

ssh_config file, 496
sshd daemon, 489
sshd_config file, 490
SSL (Secure Sockets Layer), 262, 428, 474–475
stale file handles, 517
standards, command line, 139
Start of Authority (SOA) record, DNS, 394–395
start stanza, upstart, 195
startup

Apache, 439–441
creating scripts, 157–159
managing scripts, 78
NIS, 528–529
OpenSSH, 489
Postfix, 458
Samba, 553–554
slapd, 580

stateful connection tracking, NAT, 323
statement keywords, BIND, 389
static routing, 314–316
status command, upstart, 195–196
Status page, Samba, 557–558
stdin/stdout feature, inetd, 199
storage, log entry, 369
Stream Control Transmission Protocol (SCTP), 503
su command, 129–131, 136–137, 348–349
subdomains, and DNS, 382–383
subnetting, 279–280
sudo command, 59
superblocks, 167–168
SuSE Linux Enterprise (SLE), 61, 86–87
Swap, 25–26, 28–29
SWAT (Samba Web Administration Tool), 554–558
symbolic links, 113–114
SYN, 248–249, 270, 273–274
synaptic package manager, 61
sync command, 128
syncookies, 248–249
sysctl command, 247–249
sysfs file system, 175, 249–251
syslog, 368–370, 389–390
syslogd, 208, 210–213
system administrators. See also TCP/IP, for system

administrators
using Samba, 552–554
using sudo command, 59

system calls, 242

system-config-authentication tool, 538–539, 586–587
system-config-lvm command, 188–189
system swap partition, 175
system.map file, 233–234

▼ T
tables, 326, 524–525
tac command, 126
tail command, 207
tape archive, 123–125
tape-based backups, 635–640
tar command

backup using, 645
defined, 62–63
installing Postfix from source code using, 456
installing Samba from source, 551
moving user and its home directory, 129
tape archive, 123–125

tarball, 62, 225
targets, iptables command, 333
TCP/IP, for system administrators, 255–297

ARP, 276–278
bringing IP networks together, 278–289
complete connection, 273–276
Ethernet, 264–265
IPv4, 265–268
IPv6, 294–296
network security and, 362–363
OSI model layers, 259–263
overview of, 255, 263
packets, 256–259
TCP, 268–272
tcpdump tool, 289–294
UDP, 272

TCP/IP model, 259
TCP (Transmission Control Protocol)

complete connection, 273–276
header, 268–272
mapping to Transport layer, 261
NFS versions using, 503

tcpdump tool, 265, 269–271
capturing more per packet with, 290
complete TCP connections using, 273–276
graphing initial sequence numbers using, 293–294
how ARP works, 276–277
IP and, 268
network security and, 372–373
not capturing own network traffic, 291
overview of, 289–294
performance impact of, 291
reading and writing fireflies, 290
using Wireshark vs., 289–290
viewing odd behavior of DNS, 292–293

telinit command, 198
Telnet, 453, 472–473, 480, 485
templates, rsyslog, 211–213
terminal emulators (pseudo-terminals), 49

661Index

testing
Apache installation, 441
software, 66–67

testparm utility, 560
text files, 12–13, 75
textinfo, documentation, 112
third-level domain names, DNS, 381
three-line NAT, 341–342
three-way handshake, TCP, 273–274
time-to-live (TTL) field, IP header, 267
time zones, 24, 36, 39
TLDs (top-level domain names), DNS, 380–381
/tmp directory, 25–29, 346, 558–559
tmpfs file system, 174
top-level domain names (TLDs), DNS, 380–381
Torvalds, Linus, 8–9
ToS (Type of Service) header, IP stacks, 266
traceroute, and SetUID, 348–349
Transmission Control Protocol/Internet Protocol. See

TCP/IP, for system administrators
Transport layer, OSI, 261–262
troubleshooting

Apache web server, 448
client-side NFS, 517–518
Postfix mail, 463
Samba, 567
server-side NFS, 512

TTL (time-to-live) field, IP header, 267
tunneling, IPv6, 296
tunneling, SSH, 493–494
TXT record, 398
Type of Service (ToS) header, IP stacks, 266

▼ U
Ubuntu

configuring master NIS server, 527
echo service on, 206
enabling NFS in, 506
extra print drivers for, 597
GUI software management tools on, 61
GUI user manager tool, 86–87
hardware compatibility list, 16
installing, 37–41
installing Apache in, 437
installing CUPS in, 592
installing DHCP software in, 609
installing OpenLDAP in, 575
installing OpenSSH in, 486
installing Postfix in, 455
installing Samba in, 551
installing UW-IMAP in, 469
mounting remote Samba shares on, 563
network device configuration in, 308–309
OpenSSH server startup and shutdown in, 489
picking runlevel to boot into, 351
Services Settings tool, 160–161
setting up KVM in, 628–629
software management in, 58–59

udev system, 250, 301

UDP (User Datagram Protocol), 261–262, 272, 503
UIDs (user IDs), 74, 516, 529–530
ulimit command, 352–353
UML (user-mode Linux), 624
umount command, 172–173, 563
uname command, 135–136, 228, 235, 301
unicast addresses, IPv6, 295
Uniform Resource Information (URI), CUPS, 595–596
UNIX, 5, 9–10, 548
unmounting, local disks, 170
unpacking, kernel source code, 225
unset command, 106
untar command, 63
upgrades, 226. See also patches
upstart, 194–196
URG flag, TCP, 270
urgent pointer, TCP, 272
URI (Uniform Resource Information), CUPS, 595–596
user accounts, non-human, 351
User Datagram Protocol (UDP), 261–262, 272, 503
user IDs (UIDs), 74, 516, 529–530
user-mode Linux (UML), 624
useradd command, 81–83, 96–97, 427
userdel command, 84, 99
UserDir, Apache, 443–445
usermod command, 84, 98–99, 130
usernames, Samba, 548–549
users

access permissions, 88–89
creating, 96–97
creating Samba, 563–565
defining, 74
deleting, 99
FTP virtual, 427–431
group, 97–98
Ibuntu, 40
Linux vs. Windows, 9–10
managing from command-line, 81–85
managing using GUI, 85–87
modifying attributes, 98–99
moving home directory of, 128–135
nonprivileged account, 36
Pluggable Authentication Modules, 89–96
startup scripts, 78
storing information in text files, 74–80
switching, 136–137

UTC (Coordinated Universal Time), 24, 40
UW-IMAP server, 468–472, 474–475

▼ V
validation, package, 56–57
verification, package, 55–56
version, correct kernel, 224–225
version number, IP header, 266
Very Secure FTP Daemon. See vsftpd (Very Secure FTP

Daemon)
vgdisplay command, 182, 186–187
vgextend command, 182, 187
VGs (volume groups), 179–182, 186–187

 662 Linux Administration: A Beginner’s Guide

vgvreate command, 182
vi editor, 136–137
View page, Samba, 558
viewing, Ethernet headers, 265
vim editor, 137
virsh utility, 627
virt-install utility, 626–627
virt-manager tool, 626
virtual users, FTP server, 427–431
Virtualbox, 624–625
VirtualHost directive, Apache, 447–448
virtualization, 621–632

concepts, 622–623
implementations, 623–625
Kernel-based Virtual Machines, 625
KVM example, 626–631
necessity for, 622

VM (virtual machine), 622, 626–631
VMM (virtual machine monitor), 622
VMware, 624
vmx flag, KVM, 625
volume groups (VGs), 179–182, 186–187
volume management, 179–189

assigning physical volume to volume group,
186–187

creating logical volume, 187–189
creating partitions, 183–185
creating partitions and logical volumes, 180–182
creating physical volume, 185–186
overview of, 179–180

volume, partition vs., 179
vsftpd (Very Secure FTP Daemon)

configuration files and directories, 418–419
configuration options, 420–423
defined, 416
obtaining, 418
setting up anonymous-only FTP server, 426–427
setting up FTP server with virtual users, 427–431
starting and testing FTP server, 423–426
supporting IPv4 and IPv6, 431

vsftpd.conf file, 418–423

▼ W
w command, 88, 136
WANs (wide area networks), NIS, 545
web interface, 596–599, 602–603
web servers, 348, 350. See also Apache web server
well-known services, 363
wget program, 63, 438
whereis command, 127
which command, 127
who command, 136

whois command, 408
wide area networks (WANs), NIS, 545
wildcards, 108
winbindd daemon, Samba, 550, 565–566
window managers, Linux, 11
window size, TCP header, 271
WindowMaker, 11
Windows, Linux vs., 9–13
Wireshock, 289–290, 372–373
Write permission (w), 88
wsize command, NFS, 517

▼ X
x (Excute permission), 88
X Window System, 10–11, 17, 348–349
Xen, 624
xinetd program, 198–207
XML (Extensible Markup Language), OSI layer, 262
Xorg program, 348
xterm, 49

▼ Y
YaST (Yet Another Setup Tool), 61, 229
Yet Another Setup Tool (YAST), 61, 229
ypbind daemon, NIS, 525, 534–536
ypcat command, 540
ypcat command, NIS, 542
ypinit command, 532–534, 541–542
ypmatch command, NIS, 542
yppasswd command, NIS, 542–543
ypserv daemon, NIS, 525, 526–527, 528
ypwhich command, NIS, 542
ypxfrd daemon, NIS, 525, 541–542
yum-arch command, 58
yum command

creating boot/rescue CD, 145
installing OpenLDAP, 574
installing Postfix via RPM in Fedora, 455
installing UW-IMAP in Fedora, 469
kernel configuration using, 229
setting up SWAT, 554–555
software management with, 57–58

▼ Z
zlib library, 487
zones

BIND database files, 401–402
named.conf file, 391–394

