

Introduction to Linux :
Installation and Programming

Editedby:

N. B. Venkateswarlu, Ph.D

GVP Callege af Engineering

Madhurawada, Visakhapatnam - 530041

BSP BS Publications
4-4-309, Giriraj Lane, Sultan Bazar,
Hyderabad - 500 095 A. P.
Phane:040-23445688

Copyright © 2008, by Publisher

!
All rights reserved.

No part of the book is to be printed/published without the written permission of the Publisher.
However, some parts of the book have been reproduced with acknowledgement from other
sources, and the rights to them are governed by the licensing rules that originally applied
to them."

Published by

BSP BS Publications
- 4-4-309, Giriraj Lane, Sultan Bazar,

Hyderabad - 500 095 A.P.
Phone: 040-23445688
e-mail: contactus@bspublications.net

Printed at:

Adithya Art Printers

Hyderabad.

ISBN: 978-81-7800-169-1

Contents

1. Introduction to Linux Operating System
1.1 Introduction to OS .. I

1.2 Introduction to Linux File System .. 8

1.3 Man pages .. 15

1.4 The First Command 'cat' ... 16

1.5 Command History ... : 18

1.6 Conclusions ... 18

2. Basic Unix commands
2.1 vi editor .. 19

2.2 Redirection Operators ... 21

2.3 SOlne UNIX commands .. 24

2.4 Conclusions ... 39

3. File Filters
3.1 File Related Commands ... 40

3.2 Introduction to Piping ... 61

3.3 Some other means of Joining Commands .. 63

3.4 awk command ... 63

3.5 backup commands .. 72

3.6 Conclusions ... 75

(xvi) Contents
4. Processes in Lmux

4.1 Introduction ... 76

4.2 Users Process in Linux ... 82

4.3 Terminal Handling .. 88

4.4 Conclusions ... 90

5. Shell Programming
5.1 Introduction ... 91

5.2 Programming Constructs .. 96

5.3 Conclusions ... 116

6. Debian Linux Installation Guidelines
6.1 Installing Debian Linux .. 117

6.2 Installing Additional Packages ... 130

6.3 Configuring X .. 139

6.4 Conclusions ... 143

7. Redhat Fedora Core 4 Installation Guidelines
7.1 Introduction ... 144

7.2 Configuring X windows and Installing packages 150

7.3 Conclusions ... 152

8. Installing Apache: The Web server
8.1 Introduction ... 153

8.2 Basic Configuration, and Configuring Apache .. 156

8.3 Conclusions ... 166

9. Samba Installation "3nd Configuration
9.1 Introduction to File Sharing .. 167

9.2 Compiling from Sources ... 167

9.3 Installing Samba .. 168

9.4 Introduction to NFS .. 171

9.5 Conclusions ... 174

10. Installing SMTP Mail Server
10.1 Introduction .. ,,: 175

10.2 Postfix as MTA 177

10.3 Conclusions ... 179

(xvii) Contents

11. Installing Common Unix Printing System (CUPS)
11.1 Introduction ... 180

I 1.2 Building and Installing CUPS .. 181

11.3 Managing printers .. 184

11.4 Conclusions ... 187

12. Installing Sq uid Proxy and Firewalls
12.1 Introduction ... 188

12.2 Setting Firewall .. 188

12.3 Proxy servers .. 197

12.4 Setting Squid Proxy server ... 197

12.5 Conclusions ... 204

13. Users and Account Management
13.1 Account and related files ... 205

13.2 Account Configuration fi les ...•...... 209

13.3 Creating Users ... 213

13.4 Testing an account ... : 215

13.5 Removing an account .. 216

13.6 Allocating Root permissions .. 216

13.7 Conclusions ... 218

14. A brief Introduction to Unix Devices and File System
14.1 Introduction ... 219

14.2 Devices-Gateways to the K:ernel ... 219

14.3 Disk Drives, Partitions, and File System .. 224

14.4 Conclusions ... 236

15. Linux System Startup and Shutdown
15.1 Introduction ... 237

15.2 A Brief Outline ofx86 Linux Booting Process ... 237

15.3 Conclusions ... 252

16. System Logging
16. I Introduction ... 253

16.2 Logging .. 253

16.3 Accounting .. 256

16.4 Available Graphical Tools .. 258

16.5 So What? ... 260

16.6 Conclusions ... 260

(xviii) Contents

17. Networks: A Brief Introduction
17.1 Introduction ... 261

17.2 Ethernet Basics .. 265

17.3 TCP/IP Basics ... 267

17.4 Basics of Transport Layer and Services ... 279

17.5 Services on Internet .. 285

17.6 Conclusions ... 287

18. Compiling C and C++ Programs under Linux
18.1 Introduction to C compiler .. 288

18.2 Detailed Analysis of Compilation Process ... 289

18.3 Functions with Variable Number of Arguments .. 317

18.4 Compiling a Multi Source "C" Program ... 318

18.5 How mainO is Executed on Linux .. 320

18.6 Compiling Single Source C++ Program .. 326

18.7 Combining C and C++ Programs ... 335

18.8 Better C Coding Practices ... 350

18.9 Conclusions ... 350

19. GNU Debugger
19.1 Introduction ... 351

19.2 Debugging using GDB ... 351

19.3 Conclusions ... 384

20. Make
20.1 Introduction ... 385

20.2 Syntax of Make files ... 385

20.3 Automake, Autoconf ... 394

20.4 Conclusions ... 395

21. Revision Control System
21.1 Introduction ... 396

21.2 Conclusions ... 414

22. Lex and Yacc
22.1 Introduction ... 415

22.2 Lex Specification File -... 415

22.3 Yacc - a Parser Generator .. 451

22.4 Conclusions ... 472

(xix) Contents

23. A brief tour of Python
23.1 Introduction ... 473

23.2 Invoking Python 474

23.3 Conclusions ... 491

24. Introduction to perl
24.1 Introduction ... 492

24.2 Conclusions ... 541

25. A peep into Ruby
25.1 Introduction ... 542

25.2 Object Oriented Programming through Ruby ... 557

25.3 Profiling ... 558

25.4 Calling Unix system calls from Ruby .. 558

25.5 Conclusions ... 559

26. X Windows Architecture and GUI Programming
26.1 Introduction ... 560

26.2 GTK Programming .. 556

26.3 Qt Programming .. 578

26.4 Glade: A visual designer tool for GTK, GNOME .. 578

26.5 Conclusions ... 580

References .. 581

Index .. 583

"This page is Intentionally Left Blank"

List of Figures

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 7.1

Figure 7.2

Figure 7.3

A Typical Operating System ... I

Unix Kernel ... 2

Micro Kernel Architecture , ... 2

Windows NT Kernel ... 2

Hierarchical File System ... 8

Boot up Menu of Redhat Linux .. 144

Disk Setup Screen .. 145

Boot Loader Setting Screen.. 146

Figure 7.4 Network Settings screen .. _ 146

Figure 11.1 CUPS architecture 181

Figure 11.2 Web based CUPS administration tool .. 185

Figure 14.1 OS view of an Inode based file system .. 226

Figure 14.2 Inode Structure ... 227

Figure 14.3 Indexed Allocation of Data Blocks ... 228

Figure 14.4 The Virtual File System ... 230

Figure 14.5 I-Node Structure ... 231

Figure 15.1 Typical start-up process for x86 based Linux ... 237

Figure 16.1 Security Log ... 258

Figure 16.2 System Monitor .. 259

Figure 16.3 System Resources .. : 259

Figure 18.1 Stages in C Program Compilation .. 288

Figure 18.2 Disassembly for a.o, b.o, and main.o .. 305

Figure 18.3 Relocation.Records for b.o and main.o .. 306

Figure 18.4 How aO, bO, and mainO Appear in the Final Executable 307

Figure 18.5 Segment layout of an ELF binary ... 324

Figure 18.6 Stack layout of an ELF binary .. 325

Figure 18.7 Startup process of an ELF binary .. 326

Figure 26.1 X Widows Architecture .. 560

Figure 26.2 A sample Glade window ... 578

Figure 26.3 Handling Signals .. 579

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

"This page is Intentionally Left Blank"

List of Tables

Table 1.1

Table 2.1
Table 2.2

Table 2.3
Table 6.1

Table 8.1
Table 8.2
Table 8.3

Major Linux Directories ... 10
UNIX file types .. 28
find options .. 3 I
find tests .. 33
Common NIC cards and their drivers under Linux .. 120

Possible directory structure apache SW distribution 153
Short list of loadable modules for apache web server 154
Description of global section items ... 156

Table 8.4 Directives in main section and their explanations ... 158
Table 8.5 Getting CGI to Work ... 163

Table 13.1
Table 13.2
Table 13.3
Table 13.4
Table 15.1
Table 15.2
Table 15.3
Table 15.4
Table 16.1
Table 17.1
Table 17.2
Table 17.3

dot files for a number of shell or commands .. 208
Account configuration files ... 210
/etc/passwd .. 210
Special accounts .. 212
Run levels ... 243
inittab actions ... 246
Linux start-up scripts .. 248
System status commands .. 251
Common syslog facilities .. 254
Options with arp command ... 266
Example fnternet domains ... 268

Example Country Codes .. 268
Table 17.4 Network classes .. 270
Table 17.5 Networks reserved for private networks .. 270
Table 17.6 Reserved IP addresses ... 271
Table 17.7 Reserved Ports ... 280
Table 17.8 Columns for netstat ... : 281
Table 17.9 Fields of /etc/inetd.conf filetd.conf.. ... 282

Table 17.10 RFCs for Protocols .. 283
Table 17. I I SMTP commands .. 284
Table 18.1 The Predefined Macros ... 298
Table 22.1 Lex variables .. 422
Table 22.2 Lex Functions .. 423
Table 25. I Functions to convert one type to another type ... 546

"This page is Intentionally Left Blank"

1 Introduction to Linux Operating System

1.1 Introduction to Operating System
In the annals of computer sCience, the most commendable development one could consider
is the emergence of the operating system which enables even a lay man to avail the services
of computers without joining computer science program! An Operating System is the
software layer between the hardware and user (shown in Figure 1.1) giving a compact and
convenient interface to the user.

utilities I appltcatlOns

operating system

hardware

Figure 1.1 A Typical Operating System.

An Operating System is responsible for the following functions

• Device management using device drivers
• Process management using processes and threads
• Inter-process communication
• Memory management
• File systems

In addition, all operating systems come with a set of standard utilities. The utilities allow
common tasks to be performed such as

• being able to start and stop processes
• being able to organize the set of available applications
• organize files into sets such as directories
• view files and sets of files
• edit files
• rename, copy, delete files
• communicate between processes

1.1.1 Kernel
The kernel of an operating system is the part responsible for all other operations. When a
computer boots up, it goes through some initialization activities, such as checking memory.
It then loads the kernel and switches control to it. The kernel then starts up all the prOC1es
needed to communicate with the users and the rest of the environment (e.g. the LAN). he
kernel is always loaded into memory, and the kernel functions run continuously, hand ng
processes, memory, files and devices. The traditional structure of a kernel is a lay red
system, as in Unix where all layers are part of the kernel, and each layer can talk to 0 y a
few other layers. Application programs and utilities lie above the kernel.

2 Introduction to Linux : Installation and Programming

The Unix kernel looks like (Figure 1.2)

User Apfhcanons

I System Call Interface J
I

I FIle System I IPC

Process Scheduler
I [Character I Block I Control

Memory
I DevIce Drivers I Management

I Hardware Control I

Figure 1.2 Unix Kernel.

Most of the currently prevalent Operating Systems use instead a micro kernel, of minimal
size. Many traditional kernel operations are made into user level services. Communication
bearing service is often carried out by an explicit message passing mechanism. Mach is one
of the major micro-kernel operating systems whose concepts are used by many others
(see Figure 1.3).

User mode

I 1 '--_--'

thread device
management drivers

hardware

Kernel mode

Figure 1.3 Micro Kernel Architecture.

Some systems, such as Windows NT (Figure 1.4) use a mixed approach [Gary Nutt].

I applications

Object security process virtual
manager monitor manager

memory
IO manager

manager
, micro-kernel

I hardware abstraction layer "I

hardware

Figure 1.4 Windows NT Kernel.

Introduction to Linux Operating System 3

1.1.2 Distinguished Applications

An Operating System has been described as an "application with no top" [Venkateswarlu).
Other applications interact with it, through a large variety of entry pOints. In order to use an
0/5, you need to be supplied with at least some applications that already use these entry
points.

All Operating Systems come bundled with a set of "utilities" which do this. For example

Windows95 has a shell that allows programs to be started from the Start
button. There is a standard set of applications supplied
MSDOS starts up with COMMAND.COM to supply a command line prompt, and a
sef of utilities
UniX has a set of command line shells and a huge variety of command line
utilities
X-Windows supplies a login shell (xdm). Others supply file managers, session
managers, etc which can be used to provide a variety of interfaces to the
underlying Unix/POSIX system.

1.1.3 Command Interpreter

Users interact with operating systems through the intermediary of a command interpreter.
This utility responds to user inputs in the following ways:

start or stop applications
allow the user to switch cont:rol between applications
allow control over communication between an application and other applications
or the user.

The command interpreter may be character-based, as in the Unix shells or MSDOS
COMMAND.COM, or can be a GUI shell like the Windows 3.1 Program Manager. The
interpreter may be simple, or with the power of a full programming language. It may be
imperative (as in the Unix shells), use message passing (as in AppleScript) or use visual
programming metaphors such as drag-and-drop for object embedding (as in Microsoft's
OLE). It is important to distinguish between the command interpreter and the underlying
Operating System. The command interpreter may only use a subset of the capabilities
offered by the Operating System; it may offer them in a clumsy or sophisticated way; it'may
require complex skills or be intended for novices

1.1.4 Differences between DOS and Unix

• Unix is multi user and multi tasking operating system whereas DOS is single
user, single task system.

• All the commands in Unix should be given in lower case while the DOS
commands are case insensitive.

• Unlike Unix, DOS is more virus prone.
• Processor will be in protected mode in Unix whereas DOS uses unprotected

mode.
• DOS uses only 640KB of RAM during boot time unlike Unix which uses all the

available RAM.
• Unix needs an administrator which is not the case with DOS.
• Unix employs time sharing operating system. Where as DOS supports a pseudo

time sharing known as Terminate and Stay Resident (TSR) programs.
• Unix supports both character user interface and graphical interface (X Windows)

unlike DOS which supports only character user interface.

4 Introduction to Linux : Installation and Programming

• User requires legal username and password to use Unix machines. DOS
systems can be used by anyone without any username and password.

• Unix uses single directory tree (/) irrespective of how many drives or partitions
are there. Where as in DOS, a separate directory tree exists for each partition.

• Unix supports NFs to share files.
• Till recently, DOS did not have proper WWW browser.

1.1.5 Linux and the Open Source Movement

Linus Torvalds [Matt Welsh], a student at the University of Helsinki, created the first version
of "Linux" in August 1991. Released as an open-source software under the Free Software
Foundation's GNU General Public License (GPL), Linux quickly grew into a complete
operating-system package, with contributions from hundreds of programmers. Since the
release of version 1.0 in 1994, organizations have been able to download free copies of
Linux. One could also purchase commerCial distributions of Linux from companies such as
5lack"Vare, Red Hat etc who also provide consultancy, services, and maintenance [Carla
Schroder].

Many people raise a question about Linux "if it's released under the Free Software
Foundation's GPL, shouldn't it be free?". The answer is no. A company can charge money for
products that include Linux, as long as the source code is made available. The GPL allows
people to distribute (and charge for) their own versions of free software [Carla Schroder].
According to the Free Software Foundation, the "free" in free software refers to freedom or
liberty, not price. In the foundation's definition, organizations have the freedom to run
software for any purpose, study how it works, modify, improve and re-release it.

Another common misconception about Linux is that it's a complete operating system. In
reality Linux refers to the" kernel or core" of the operating system. Combining Linux with a
set of open-source GNU programs from the Free Software Foundation turns it into what most
people know as Linux "forming both the full operating system and the core of most Linux
distributions". Distributions are the versions of Linux, GNU programs, and other tools that
are offered by different companies, organizations, or individuals. Popular distributions. include
Red Hat, Debian, SuSE, Caldera, and others. Each distribution might be based on a
different version of the Linux kernel, but all migrate forward over time, picking up core
changes that are made to the kernel and keeping everything in somewhat loose
synchronization.

Eric S. Raymond's famous essay, "The Cathedral and the Bazaar," argues that most
commercial software is built like cathedrals by small groups of artisans working in isolation.
Open-source software, like Linux, is developed collectively over the Internet, which serves as
an electronic bazaar for innovative ideas. The first of the two programming styles is closed
source - the traditional factory-production model of proprietary software, in which customers
get a sealed block of computer binary that they cannot examine, modify, or evolve. The
other style is open-source, the Internet engineering tradition in which software source code
is generally available for inspection, independent peer review, and rapid evolution. Linux
operating environment is the standard-bearer of the open source approach.

With Open Source products like Linux, new changes come through an open development
model, meaning that all new versions are available to the public, regardless of their quality.
"Linux' s versioning scheme is designed to let users understand whether they're using a
stable version or a development version," says Jim Enright, director of Oracle's Linux
program office. "Even decimal-numbered releases [such as 2.0, 2.2, and 2.4] are considered
stable versions, while odd-numbered releases [such as 2.3 and 2.5] are beta-quality releases
intended for developers only."

For much of the 1990s, Linux was primarily an experiment: something that developers
fiddled with and used on local servers to see how well it worked and how secure it was.
Then, with the internet boom of the late 1990s, many companies started using Linux for
their Web servers, fueling the first wave of corporate Linux adoption leading to over 30
percent penetration of web server market by 2002.

Introduction to Linux Operating System 5

Open source movement today is no more about just Linux, there are hundreds of
thousands of software products being worked on in the Free/Open Source Software (FOSS)
mode-Apache, MySQL, Postgres, Firefox ,Jboss etc are some of the other popular members
of this growing family who have proved themselves in the real world. Also, its influence is no
more confined to CSE/IT areas alone; Open Source solutions are today available for many of
the simulation, computing, design and visualization needs of the entire Scientific and
Engineering community.

It is for reasons such as the above that most of the major global players in the computing
arena such as IBM, Intel, Oracle, HP etc all have started their own in-house FOSS initiatives.

1.1.6 So What Makes Linux So Popular?
Here are a few of the reasons - though obviously every Linux user will have his/her own
reasons to add.

It's Free
Linux is free. Really and truly free. One can browse to any of the distributors of Linux , find
the "download" link and download a complete copy of the entire operating system plus extra
software without paying any thing. One can also buy a boxed version of course. For a
iiominal price, the CDs are available, manuals get door-delivered, plus there is telephone or
online support. By comparison, "home" versions of popular commercial OS would cost
thousands of rupees.

With Linux you also don't have to worry about paying again every time you upgrade the
operating system - the upgrades are obviously free too. With commercial OS, upgrades also
have to be paid for every time one is announced.

It's Open Source
This means two things: First, that the CDs (or the download site) contain an entire copy of
the source code for Linux. Secondly, the user can legally make modifications to improve it.

While this might not mean much to non- programmers, there are thousands of people
with programming capability who could improve the code or fix problems quickly. When a
problem is found, it is sent off to the coordinating team in charge of the module in question,
who will update the software and issue a patch. What all this boils down to is that bugs in
Linux get fixed much faster than any other operating system.

It's Modular
Commercial Operating Systems normally get installed as a complete unit. One cannot, for
example, install them without their Graphica! User Interface, or without its printing support -
- install everything or nothing.

Linux, on the other hand, is a very modular operating system. One could install or run
exactly the bits and pieces of Linux that are needed. In most cases, the choice is on one of
the predefined setups from the installation menu, but is not compulsory. In some cases this
makes a lot of sense. For example, while setting up a server, one might want to disable the
graphical user interface once it is set up correctly, thus freeing up memory and the processor
for the more important task at hand.

It also allows the users to upgrade parts of the operating system without affecting the
rest. For example, one could get the latest version of Gnome or KDE without changing the
kernel.

It's got More Choices
Also due to its modularity, there is more choice of components to use. One example is the
user interface. Many users choose KDE, which is very easy to learn for users with Windows
experience. Others choose Gnome, which is more powerful but less similar to Windows.
There are also several simple alternatives for less-powerful computers, which make less
demands on the hardware available.

6 Introduction to Linux : Installation and Programming

It's Portable

Linux runs on practically every piece of equipment which qualifies as a computer. It can be
run on huge multiprocessor servers or a PDA. Apart from Pentiums of various flavors, there
are versions of Linux (called "ports") on Atari, Amiga, Macintosh, PowerMac, PowerPC, NeXT,
Alpha, Motorola, MIPS, HP, PowerPC, Sun Sparc, Silicon Graphics, VAX/MicroVax, VME, Psion
5, Sun UltraSparc, etc.

It's got lots of Extras

Along with the Linux CD, normally quite a lot of software gets thrown in, which is not usually
included with operating systems. Using only the applications that come with Linux, one could
set up a full web, ftp, database and email server for example. There is a firewall built into
the kernel of the operating system, one or more office suites, graphics programs, music
players, and lots more. Different distributions of Linux offer different "extra programs".
Slackware, for example, is quite simple (though it still provides all the commonly needed
programs), while SuSE Linux comes with seven CDs and a DVD-ROM!

It is Stable

All applications can crash, but in many systems, the only recourse is to switch off and reboot
(and with some new "soft-switch" PCs, even that doesn't work - you have to pull out the
power cable).

In comparison, Linux is rock-solid. Every application runs independently of all others - if
one crashes, it crashes alone. Most Linux servers run for months on end, never shutting
down or rebooting. Even the GUI is independent of the kernel of the operating system.

It's got Networking

The networking facilities offered by Linux are positively awe-inspiring. One can use terminal
sessions, secure shells, share drives from across the world, run a wide variety of servers and
much more. The user can, for example, connect XWindows to another Linux PC across a
network. If there is more than one computer, one does not have to physically use the
screen, keyboard and mouse connected to each computer - from any computer connect to
any other computer, running applications etc. as if they were on the local system.

Multiple OS's on a PC

Dual options having Windows as well as Linux are possible and one could select which
one of them to load every time you switch on. Linux can read Windows' files - it supports the
FAT and FAT32 file system's, and sometimes NTFS, so it's quite easy to transfer files from
one operating system to the other.'The opposite, however, is not possible.

- - \

Generally, Windows applications cannot run under Linux, though there is a module called
WINE which runs various small Windows programs in Linux. However, Open Office - an open
source product loaded on to the Linux system-- can read and write MS-Office files. There are
also other office suite options like Star Office, KOffice, GnomeOffice, WordPerfect Office, etc.

Can Windows and Linux machines interact via network? Definitely. You can use SAMBA to
share files or connect to shared directories or printers. With SAMBA, the Linux computer
could be set up funGtion as a full NT server - complete with authentication, file/printer
sharing and so on. Apart from that, Linux comes with excellent FTP, Web and similar services
which are accessible to all computers.

Linux Configuration Tool

LinuxConf is a popular utility which allows the configuration of most parts of Linux and its
applications from one place.

Introduction to Linux Operating System 7

Salient Features of Linux

Here are some of the benefits and features that Linux provides over single-user operating
systems and other versions of UNIX for the Pc.

.. Full multitasking and 32-bit support : Linux, like all other versions of UNIX, is a
real multitasking system, allowing multiple users to run many programs on the same
system at once. The performance of a 50 MHz 486 system running Linux is
comparable to many low- to medium-end workstations, such as those from Sun
Microsystems and DEC, running proprietary versions of UNIX. Linux is also a full 32-
bit operating system, utilizing the special protected-mode features of the Intel 80386
and 80486 processors.

• GNU software support : Linux supports a wide range of free software written by
the GNU Project, including utilities such as the GNU C and C++ compiler, gawk,
grOff, and so on. Many of the essential system utilities used by Linux are GNU
software.

• The X Window System : The X Window System is the de facto industry standard
graphics system for UNIX machines. A free version of The X Window System (known
as "Xfree86") is available for Linux. The X Window System is a very powerful
graphics interface, supporting many applications. For example, one can have multiple
login sessions in different windows on the screen at once. Other examples of X
Windows applications are Seyon, a powerful telecommunications program; Ghostscript, a
PostScript language processor; and XTetris, an X Windows version of the popular game.

• TCP lIP networking support : TCP/IP ("Transmission Control Protocol/Internet
Protocol") is the set of protocols which links millions of computers into a worldwide
network known as the Internet. With an connection, one can have access to
the Internet or to a local area network from your Linux system. Or, using SLIP
("Serial Line Internet Protocol"), you can access the Internet over the phone lines
with a modem.

• Virtual memory and shared libraries: Linux can use a portion of the hard drive as
virtual memory, expanding the total amount of available RAM. Linux also implements
shared libraries, allowing programs which use standard subroutines to find the code
for these subroutines in the libraries at runtime. This saves a large amount of space,
as each application does'l't store its own copy of these common routines.

Linux Distributions

Here are some of the more popular distributions of Linux.

* Mandrake
* Red Hat
* SuSE
* Caldera
* Corel
* Debian
* Slackware
* TurboLinux

8 Introduction to Llnux : Installation and Programming

1.2 Introduction to .linux File System

Files are stored on devices such as hard and floppy disks. 0/5 defines a file system on the
devices. Many 0/5 use a hierarchical file system (See Figure 1.5).

root

directory directory directory

j j
file directory

/\
file directory

Figure 1.5 Hierarchical File System.

A directory is a file that keeps a list of other files. This list Is the set of children of that
directory node in the file system. A directory cannot hold any other kind of data.

On MSDOS a file system resides on each floppy or partition of the hard disk. The device
name forms part of the file name [5. Prata J.

On Unix there is a single file system. Devices are mounted into this file system. (Use the
command mount for this.)

1.2.1 File and Directory Naming

An individual node of the file system has its own name. Naming conventions differ between
O/S's. In MSDOS, a name is constructed of upto 8+3 characters. Windows95 uses some
tricks on top of the MSDOS file system to give \\Iong file names" of upto 255 characters. In
"standard Unix" (POSIX) a name may consist of upto 256 characters.

The full file names are constructed by concatenating the directory names from the root
down to the file, with some special separator between names. This is known as absolute path
naming. In MSDOS, the full path name also includes the drive name.

Example: MSDOS

C: \expsys\lectures\search. txt

Example: Unix

/usr/usrs/os

/usr/usrs/os/myfile

Introduction to Linux Operating System

Relative naming means that files are named from some special directory:

. current directory (Unix and MSDOS)

.. parent directory (Unix and MSDOS)

'" home directory (some Unix shells)

"'user home directory of user (some shells)

Example: Unix

"'fred/ . ./bi II/dirl/'/ . ./file 1

9

If just the name itself is given without any special prefixes (such as I, ., .. , "') then it
refers to the file in the current working directory.-

1.2.2 Linux Directory Tree

Like all good operating systems, Linux allows the privilege of storing information indefinitely
(or at least until the next disk crash [Chrish Drake]) in abstract data containers called files.
The organization, placement and usage of these files comes under the general umbrella of
the file hierarchy. As a system administrator, we need to be very ·familiar with the file
hierarchy. To maintain the system, install software and manage user accounts we have to
have better idea of it.

At a first glance, the file hierarchy structure of a typ.ical Linux host the root directory
contain something like:

bin

boot

dev

etc

home

lib

Why was it done like this?

lost+found root

mnt

proc

sbin

tmp

usr

var

Historically, the location of certain files and utilities has not always been standard (or fixed).
This has lead to problems with development and upgrading between different "distributions"
of Linux. The Linux directory structure (or file hierarchy) was based on existing flavors of
UNIX, but as it evolved, certain inconsistencies developed. These were often small things like
the location (or placement) of certain configuration files, but it resulted in difficulties porting
software from host to host.

To combat this, a file standard was developed. This is an evolving process, to date
resulting in a fairly static model for the Linux file hierarchy. Here, we will examine how the
Linux file hierarchy is structured, how each component relates to the overall OS and why
certain files are placed in certain locations.

10 Introduction to Linux : Installation and Programming

The root

The top level of the Linux file hierarchy is referred to as the root (or /) [Kernigham]. The
root directory typically contains several other directories including the following given in
Table 1.1.

Table 1.1 Major Linux Directories.

Directory Contains

bini Required Boot-time binaries

boot! Boot configuration files for the OS loader and kernel image

Dev/ Device files
,

etc/ System configuration files and scripts

home/ User/Sub branch directories
-

lib/ Main OS shared libraries and kernel modules -
lost+found/ Storage directory for "recovered" files

mnt/ Temporary point to connect devices to

proc/ Pseudo directory structure containing information about the kernel,
currently running processes and resource a!location

root/ Linux (non-standard) home directory for the root user. Alternate location
being the / directory itself

sbin/ System administration binaries and tools

tmp/ Location of temporary files

usr/ Difficult to define - it contains almost everything else including local
binaries, libraries, applications and packages (including X Windows)

var/ Variable data, usually machine specific. Includes spool directories for mail
and news

Generally, the root should not contain any additional files - it is considered bad form to
create other directories off the root, nor should any other files be placed there.

Why root?

The name "root" is based on the analogous relationship between the UNIX files system
structure and a tree! Quite simply, the file hierarchy is an inverted tree.

Every part of th .. e file system eventually can be traced back to one central point, the root.
The concept of a "root" structure has now been (partially) adopted by other operating systems
such as Windows NT. However, unlike other operating systems, UNIX doesn't have any
concept of "drives". While this will be explained in detail in a later chapter, it is important to
be aware of the tollowing:

The file system may be spread over several physical devices; different parts of the file
hierarchy may exist on totally separate partitions, hard disks, CD-ROMs, network file system
shares, fioppy disks and other devices.

This separation is transparent to the file system hierarchy, user and applications.
Different "parts" of the file system will be "connected" (or mounted) at startup; other parts
will be dynamically attached as required.

Introduction to Linux Operating System 11

In the following pages, we ,examine some of the more important dirE-dory structures in
the Linux file hierarchy.

/home Home for all users
The /home directory structure contains the home directories for most login-enabled users
(some notable exceptions being the root user and (on some systems) the www/web user).
While most small systems will contain user directories directly off the /home directory (for
example, /home/]amiesob), on larger systems is common to subdivide the home structure
based on classes (or groups) of users, for example:

/home/admin
/home/fi nance
/home/humanres
/home/mgr
/home/staff

Administrators
Finance users
Human Resource users
Managers
Other people

One must be extremely careful when allowing a user to have a home directory in a
location other than the /home branch. The problem occurs when the system administrator
has to back-up the system - it is easy to miss a home directory if it isn't grouped with others
in a common branch such as /home.

/root is the home directory for the root user. That is, when he log's in with username as
root he will be placed in his directory. If, for some strange reason, the /root directory
doesn't exist, then the root user will be logged in the / directory - this is actually the
traditional location for root users.

It is advisable that a system administrator should never use the root account for day to
day user-type interaction; the root account should only be used for system administration
purposes only.

/usr and /var

It is often slightly confusing to see that /usr and /Var both contain similar directories:

/usr

XllR6 games libexec src
bin i486-linux-libcS local tmp
dict include man
doc info sbin
etc lib share

/Var
catman local log preserve spool
lib lock nis run tmp

It becomes even more confusing when you start examining the maze of links which
intermingle the two major branches.

To put it simply, /var is for VARiable data/files. /usr is for USeR accessible data,
programs and libraries. Unfortunately, history has confused things - files which should have
been placed in the /usr branch have been located in the /var branch and vice versa. Thus to
"correct" things, a series of links have been put in place.

•

12 Introduction to Linux : Installation and Programming

The following are a few highlights of the /var and /usr directory branches:

/usr/local
All that is installed on a system after the operating system package itself should be
placed in the /usr/local directory. Binary files sho.uld be located in the /usr/local/bin
(generally /usr/local/bin should be included in a user's PATH setting). By placing all installed
software in this branch, it makes backups and upgrades of the system far easier - the
system administrator can back-up and restore the entire /tlsr!1ocal system with more ease
than backing-up and restoring software packages from mUltiple branches (I.e .. /usr/src,
/usr/bin etc.).

An example of a /usr/local directory is listed below:

bin games lib rsynth cern
man sbin volume-l.ll info
mpeg speak www etc java
netscape src

As you can see, there are a few standard directories (bin, lib and src) as well as some
that contain installed programs.

Linux is a verY popular platform for C/C++, Java and Perl program development. As we
will discuss in later chapters, Linux also allows the system administrator to actually modify
and recompile the kernel. Because of this, compilers, libraries and source directories are
treated as "core" elements of the file hierarchy structure.

The /usr structure plays host to three important directories:
/usr/include holds most of the standard C/C++ header files - this directory will be

referred to as the primary include directory in most Makefiles.
/usr/lib holds most static libraries as well as hosting subdirectories containing libraries

for other (non C/C++) languages including Perl and TCL. It also plays host to configuration
information for Idconfig.

/usr/src holds the source files for most packages installed on the system. This is
traditionally the location for the Linux source directory (/usr/src/linu)(), for example:

linux Iinux-2.6.3l redhat.

/var/spool
This directory has the potential for causing a system administrator a bit of trouble as it is
used to store (possibly) large volumes of temporary files associated with printing, mail and
news. /Var/spool may contain something like:

at Ip Ipd mqueue samba uucppublic
cron mail rwho uucp

In this case, there is a printer spool directory called Ip (used for storing print request for
the printer Ip) and' a /var/spool/mail directory that contains files for each user's incoming
mail.

Keep an eye on the space consumed by the files and directories found in
/var/spool. If a device (like the printer) isn't working or a large volume of e-mail
has been sent to the system, then much of the hard drive space can be quickly
consumed by files stored in this location.

/var/log
Linux maintains a particular area in which to place logs (or files which contain records of
events). This directory is /var/log.

Introduction to Linux Operating System

This directory usually contains:

cron lastlog maillog.2
cron.l log.nmb messages
cron.2 log.smb messages. 1
dmesg maillog messages.2
httpd maillog.l samba

/usr/XllR6

samba-log.
samba.l
samba.2
secure
secure.l

secure.2
sendmail.st
spooler
spooler.l
spooler.2

uucp
wtmp
xferlog
xferlog.l
xferlog.2

13

X-Windows provides UNIX with a very flexible graphical user interface. Tracing the -X
Windows file hierarchy can be very tedious, especially when your are trying to locate a
particular configuration file or trying to removed a stale lock file.

Most of X Windows is located in the /usr structure, with some references made to it in the
/var structure.

Typically, most of the action is in the /usr/XllR6 directory (this is usually an alias or link
to another directory depending on the release of Xli - the X Windows manager). This will
contain:

bin doc include lib man

The main X Windows binaries are located in /usr/XllR6/bin. This may be accessed via an
alias of /usr/bin/Xll .

Configuration files for X Windows are located in /usr/XllR6/lib. To really confuse things,
the X Windows configuration utility, xf86config, is located in /usr/XllR6/bin, while the
configuration file it produces is located in /etc/Xll (XF86Config)!

Because of this, it is often very difficult to get an "overall picture" of how X Windows is
working - my best advice IS read up on it before you start modifying (or developing with) it.

bin's
A very common mistake amongst first time UNIX users is to incorrectly assume that all "bin"
directories contain temporary files or files marked for deletion. This misunderstanding comes
about because:

• People aSSOCiate the word "bin" with rubbish
• Some unfortunate GUI based operating systems use little icons of "trash cans" for the

purposes of storing deleted/temporary files.

However, bin is short for binary - binary or executable files. There are four major bin
directories (none of which should be used for storing junk files:)

• /bin
• /sbin
• /usr/bin
• /usr/local/bin
All of the bin directories serve similar but distinct purposes; the division of binary files

serves several purposes including ease of backups, administration and logical separation.
Note that while most binaries on Linux systems are found in one of these four directories,
not all are.

14 Introduction to Llnux : Installation and Programming

fbin
This directory must be present for the OS to boot. It contains utilities used during the
startup; a typical listing would look something like:

mail df gzip mount stty
arch dialog head mt su
ash dircolors hostname mt-GNU
sync
bash dmesg ipmask mv tar
cat dnsdomainname kill netstat tcsh
chgrp domainname killall ping telnet
chmod domainname-yj:: In ps touch
chown du login pwd true
compress echo Is red ttysnoops
cp ed mail rm umount
cpio false mailx rmdir umssync
csh free mkdir . setserial uname
cut ftp mkfifo setterm zcat
date getoptprog mknod sh zsh
dd gunzip more sin

Note that this directory contains the shells and some basic file and text utilities '(Is, pwd,
cut, head, -tall, ed etc). Ideally, the /bin directory will contain as few files as possible as this
makes it easier to take a direct copy for recovery boot/root disks.

fsbin
/sbin Literally "System Binaries". This directory contains files that should generally only be
used by the root user, though the Linux file standard dictates that no access restrictions
should be placed on normal users to these files. It should be noted that the PATH setting for
the root user includes /sbin, while it is (by default) not included in the PATH of normal
users.

The /sbin directory should contain essential system administration scripts and programs,
including those concerned with user management, disk administration, system event control
(restart and shutdown programs) and certain networking programs.

As a general rule, if users need to run a program, then it should not be located in /sbin. A
typical directory listing of /sbin looks like:

adduser runlevel pidof swapoff umount
ifconfig chattr dumpe2fs

fsck
mkfs.minix kilialiS liloconfig-color

makepkg
rmmod mount setup pkgtool

agetty clock swapon rarp update

ksyms e2fsck fsck.minix
init mkdosfs
mklost+found rmt netconfig Isattr

rdev
arp setup. tty pkgtool.tty telinit

vidmode
insmod debugfs explodepkg

genksyms
mkswap Idconfig Ismod mke2fs
rootfiags netconfig.color plipconfig reboot xfsck
badblocks shutdown tune2fs halt
installpkg depmod fdisk mkfs remov
mkxfs lilo makebootdisk

pkg route netconfig. tty
bdflush swapdev
kbdrate dosfsck
modprobe liloconfig ramsize

Introduction to Linux <?.!..pe_ra_t_in--"9'-S-'Y'-s_te_m ______________________ 1S_

We should note that:

lusrlsbin - used for non-essential admin tools.

lusr/local/sbin - locally installed admin tools.

lusr/bin

This directory contains most of the user binaries - in other words, programs that users will
run. It includes standard user applications including editors and email clients as well as
compilers, games and various network applications.

lusr/local/bin

To this point, we have examined directories that contain programs that are (in general) part
of the actual operating system package. Programs that are instaHed by the system
administrator after that pOint should be placed in /usr/local/bin. The main reason for doing
this is to make it easier to back up installed programs during a system upgrade, or in the
worst case, to restore a system after a crash.

letc is one place where the root user will spend' a lot of time. It is not only the home to
the all important passwd file, but contains just about every configuration file for a system
(including those for networking, X Windows and the file system).

The /etc branch also contains the skel, Xll and rc.d directories.

/etc/skel contains the skeleton user files that are placed in a user's directory when their
account is created.

/etc/Xll contains configuration files for X Windows.

/etc/rc.d is contains rc directories - each directory is given by the name rcn.d (n is the
run level) - each directory may contain multiple files that will be executed at the particular
run level. A sample listing of a /etc/rc.d directory looks something like:

Iproc

init.d

rc

rc.local rcO.d

rc.sysinit rcl.d

rc2.d

rc3.d

rc4.d

rcS.d

rc6.d

The /proc directory hierarchy contains files associated with the executing kernel. The files
contained in this structure contain information about the state of the system's resource
usage (how much memory, swap space and CPU is being used), informatfoA about each
process and various other useful pieces of information.

Idev
We will be discussing /dev in detail in the next chapter, however, for the time being, you
should be aware that this directory is the primary location for special files called device
files.

1.3 man pages
All the Unix command information are organized. in a special fashion like the following
[Shelley Powers].

• The user-level commands are all in Section One.

• Section Two is the Unix Application Programmer's Interface, API (i.e. C functions
directly supported by Unix).

16 Introduction to Linux : Installation and Programming

• Section Three is library extensions to these.

• Section Four defines devices known to Unix.

• Section Five defines common file formats.

• Sections Local and New are for stuff we have added to our local system.
If we run man command with a name first it will check for commands with that name.

:

man sleep

man 2 sleep

This displays details of sleep library function if available

man 3 sleep

This displays details of sleep system call if exists any.

apropos command can be used to displays names of all the commands whose manual
page contains a search pattern.
Example:

apropos TERM

This displays names of the Unix commands, system calls or iibrary functions whose manual
page contains the search pattern TERM.

1. 4 The first command 'cat'
In order to login from Unix/Linux machines, you have to first get username and password.
Approach your system administrator. Once you get them, power on the machine and you
may find boot loader options from which you can select Linux or Unix. Wait for a while and if
possible go through the system messages appearing on the screen. After loading all the
necessary drivers you may find 'login' prompt either in character mode or in graphical mode.
Now enter your username and password.

You may be interested to create a file or view a file. The simplest command available in
Unix system to create and view files is 'cat'. Follow the following exercise to create and see
the files.

To create files.
Example:

cat> ABC

This is a test file.
I wish you find happy to create first file.

Introduction to Linux Operating System 17

This is also used to see the file(s) content. If the file contains more lines then it simply
scrolls the matter of that file.

Example:

cat ABC

This command is also used to create duplicates to a file.

Example:

cat ABC >XYZ

or

cat <ABC > XYZ

XYZ becomes duplicate copy of file ABC.

This cat command can be used to see the of more than one file.

Example:

cat ABC XYZ

This cat command can be used to join the content of two or more files and create another
file.

Example:

cat ABC XYZ > MNO

Now MNO file contains the content"of both file XYZ and ABC.

While joining two or more files and creating a combined file we can add interactive input
also.

Example:

cat ABC - XYl > ppp

You type what ever you wanted followed by control D at the end.

Now file PPP contains content of ABC, the interactive input and the content of file XYZ in
the same order. By changing the location of -, we can add interactive input between any two
files.

18 Introduction to Llnux : Installation and Programming

1.S Command History
The shell, bash has a command history for convenience, i.e. most recently executed
commands are stored in history buffer which users can browse through any time without
retyping the same. For example, the list of previous commands may be obtained by
executing the following command.

history

!n

\

(n is an integer) will re-execute the nth command.

!!

This executes the most recent command

!cp

This executes the most recent command which starts with cpo

Up arrow, down arrows can be used in some shells to recollect the commands from
command history buffer.

1.6 Conclusions
This chapter explores operating system concepts. The reasons that have made Linux as
popular is also examined, along with its file system organization and architecture. Some
numerical, examples were also included to demonstrate the capabilities of the LinuxjUnix file
system.

2 Basic Unix Commands

2.1 vi Editor
A popular Unix1 editor since 1970s, vi is a screen editor which is based on an earlier editor
known as elvls [Richard L Peterson]. The editor has three modes: In the Input Mode,
whatever user keys in will be written into the document. Command Mode allows the user to
enter commands. It is reached from the Input mode by pressing the ESC key and hence is
also referred to as ESC mode. If the ESC key is pressed while in command mode one will get
a beep sound. In the third mode, called the colon mode, users can run commands and also
do some document editing. Thus it is not considered a separate mode but a mixture by some
users! !.

In a nutshell, the following is the summary of useful commands to immediately work
under UNIX:

1. vi filename -- opens the vi editor to work with the given filename.
2. Initially, a screen will be opened with the command mode.
3. To enter text, press i. The input mode will be displayed at bottom right part of the

screen.
4. On preSSing Esc key, the command mode reemerges. One could press

:w to save the matter and resume editing.
:wq to save the matter and quit the vi editor.
:q! to quit the editor without saving.

5. The three modes present in vi editor are: i) Command mode Ii) input mode iii) Colon
mode

6. In command mode, commands can be entered.
A. press i to insert text before the current cursor position.
B. press I to insert text at the beginning of the line.
C. press a to insert text after the cursor position.
D. press A to insert text at the end of the current line.

E. press 0 to open a new liRe below the current line.
F. press 0 to open a new line above the current line.
G. press r to replace the present character with a character.
H. press R to replace a group of characters from current cursor position.
I. press x to delete present character.
J. press J to join the next line to the end of the current line.
K. press dd to delete the current line.
L. press 4dd to delete 4 lines from the current line.
M. press dw to delete the current word.
N. press 7dw to delete 7 words from the current word onwards.
o. press 30i*Esc (Invisible command) to insert 30 *'s at the cursor position.
P. press u to undo the effect of the previous command on the document.

lIn this book we assume UnIX and Lmux are synonymous

20 Introduction to Linux : Installation and Programming

Q. press. to repeat the previous command.

R. press yy to copy the entire line in to the buffer.

s. press yw to copy the entire word in to buffer.

T. press p to place the copied or deleted information below the cursor.

U. press P to place the copied or deleted information above the cursor.

7. Colon mode commands
Search and substitute commands
1. :/raja searches for the string "raja" in the forward direction. Press n to repeat the

search.

2. :?raja search for the string in the backward direction. Press n to repeat the above
search.

3. :s/raja/rama replaces the first occurrence of "raja" with "rama".

4. a;/raja/rama/g replaces all "raja"'s with rama in the present line.

5. :g/raja/s/raJa/rama/g replaces all "raja"'s by "rama" in the entire file.

Block delete commands
1. :ld delete the line 1.

2. :l,5d deletes the lines from 1 to 5.

$ Means last line of the file .

. Means present line (i.e.) present line.

3. :10,$d deletes lines from 10th line to the last line of the file.

4. :l,$d deletes lines from 1 to last line of the file.

5. :.,$d deletes lines from present line to the last line.

6. :.-3,.d deletes the lines from present line and above 2 lines

(deletes 3 lines including the cursor line).

7. :.,.+4d deletes the lines from the present cursor line followed 3

lines(total4 lines).

8. :-1,. +3d deletes the lines one above the cursor line followed by it 3

lines.

9. :18 cursor goes to 18 th line of the file.

Block copy commands
1. :1,5 co 10 copies the lines from 1 to 5 after .1Oth line

2. :1,$ co $ copies the lines from 1 to last line after last line

3. :.,.+5 co 8 copies lines from present line to 5 lines after 8th line

4. :-3,. co 10 copies the lines from present cursor line and above 3

lines after 10 th line.

Block moving commands
1. :1,5 mo 9 moves lines from 1 to 5 after 9th line.

2. :1,$ mo $ moves lines from 1 to $ after last line.

3. :.,.+5 mo 10 moves lines from present line and next 5 lines after 10 th

line onwards.

4. :.-3,. mo 10 moves present line and above 3 lines after 10 th line.

Basic Unix Commands 21

Importing & Exporting the files

1. :1,5 w filename writes lines 1 to 5 in the specified filename.

2. :1,5 w! filename overwrites lines 1 to 5 in the specified filename.

3. :r filename Adds the content of filename after the current line.

8. Book mark command

Bookmarks (markers) are not visible and are useful to jump from one line to another
quickly. Markers should be in lower case. To have the marker on a specified line press
m followed by a lower case alphabet (say a) then marker for that line is set as a. To
go to the marked line press' a C back quote)followed a. e.g.: go to 500 th line, press
mb (b is the marker). To go to the 500 th line from anywhere in the document press
'b. Then the cursor goes to the 500 th

2.2 Redirection Operators
For any program whether it is developed using C, C++ or Java" by default three streams are
available known as input stream, output stream and error stream. In programming
languages, to refer to them some symbolic names are used (i.e. they are system defined
variables).

For example

• In C, stdin, stdout and stderr.
• In C++, cin, cout, and cerro
• In Java, System. in, System. out and System. err.
By default is input is from keyboard and output and error are sent to monitor. With the

help of redirection operators, we can send them to a file or to a device.

Unix, supports the following redirection operators are available.

• standard output operator

• < standard input operator

• < < here the document

• > > appending operator

2.2.1 Standard Input, Output Redirection operators

Unix supports input, output redirection. We can send output of any command to a file by
using> operator.

Example:

command >aaa

Output of the given command is sent to the file. First, file aaa is created if not existing
otherwise its content is erased and then output of the command is written.

cat aa >aaaa

Here, aaaa file contains the content of the file aa.

22 Introduction to Llnux : Installation and Programming

We can let a command to take necessary input from a file with < operator (standard input
operator).

cat<aa

This displays output of file aa on the screen.

cat aa aal aa3>aa12

This creates the file aa12 which contains the content of all the files aa, aal and aa3 in
order.

cat <aa >as

This makes cat command to take input from the file aa and write its output to the file as.
That is, it works like a cp command.

Unix has a nice (intelligent) command line interface. Thus, all the following commands
works in the same manner.

cat <aa >as
cat >as <aa
<aa cat >as
<aa >as cat
>as cat <aa
>as <aa cat

This discussion is with any command. For example, consider the following C
program which takes three integers and writes their values.

#include<stdio.h>

void mainO
{

int x,y,z;
scanf("%d%d%d", &x, &y, &z);
printf("%d\n%d\n%d\n", x, y, z);
}

Let the file name be a.c and by using the either of the following commands, its machine
language file a is created.

gcc -0 a a.c
cc -0 a a.c

Basic Unix Commands 23

When we start this program a by simply typing a at the dollar prompt, it takes 3 values
and displays given values on the screen.

a>res

This program takes three values interactively and writes the same into file res. You can
check by typing cat res.

a<res

cat <aa >as

cat >as <aa

<aa cat >as

<aa >as cat

>as cat <aa

>as <aa cat

This command takes necessary input from the file res and displays the results on the
screen.

as.

a <res >as

a >as <res

<res a >as

<res >as a

>as a <res

>as <res a

All, of these commands takes three values from the file res and write the same in the file

2.2.2 The» and « Operators

Similarly, » operator can be used to append standard output of a command to a file.

Example

command»aaa

This makes, output of the given command to be appended to the file aaa. If the file aaa is
not existing, it will be created afresh and then standard output is written.

Here the document operator(< <)

This is used with shell programs. This signifies that the data is here rather in a separate
file.

24

Example:

grep Rao«end
I like PP Reddy
I know Mr. PN Rao since 1987
I wanted to see Raj today
Mr. Rao, please see me today
end

Introduction to Llnux : Installation and Programming

The above sequence of commands when executed at the dollar prompt, we will get those
lines having rao as output of grep command. Here, by using « operator we are mentioning
that the data is directly available here. The command takes input till we enter 'end'.

cat«END
This will display
Whatever we type
Interactively on the screen again
END

The above workout displays whatever we have typed till the string "END". Make sure that
we enter the string "END" on a fresh line.

cat«END >outputfile
This will display
Whatever we type
Interactively on the screen again
END

The above command writes whatever we have typed at till "END" string into the file
"outputfile".

2.3 Some Unix Commands
2.3.1 more command
This command is used to see the content of the files page by page or screen by screen
fashion. This is very useful if the file contains more number of lines.
Example:

more filenames(s)

more file1 file2

This displays content of the files file1 and file2 one after another.

more <file1

Basic Unix Commands 25

This also displays the content of the file1 in screen by screen fashion.

more file1 file2 ... filen > XXX

This command creates file XXX such that it contains the content of all the given files in
the strictly same order.

more +/rao filename

This command displays the content of the given file starting from the line which contains
the string "rao".

more + 10 filename

This command displays the content of the file from 10'th line.

2.3.2 pg command
This command is also used to see the content of the files in page by page fashion. However,
this is not available in recent versions. Rather more command is in wide use and is more
flexible.

2.3.3 nl command
This command is used to display the content of the file along with line numbers.
Example:

nl filename

2.3.4 tail command

tail filename(s)

This command displays last 10 lines of the given file(s).

tail -1 filename{s)

This command displays last 1 line of the given file(s).

tail +2 filename{s)

This command displays second line to last line of the given file(s)

2.3.5 head command

head filename(s)

26 Introduction to Linux : Installation and Programming

This command displays first 10 lines of the given file(s).

head -2 filename(s)

This command displays first 2 lines of the given file(s)

2.3.6 mkdir command

This is used to create a new directory.

mkdir rao

This creates rao directory in the current directory.

mkdir /tmp/rao

This creates rao directory in /tmp directory.

mkdir /bin/rao

This fails for normal users because of permissions (/bin belongs to super user).

2.3.7 rmdir command

This is used to remove empty directory only.

rmdir rao

This removes rao directory of current working directory.

rmdir /tmp/rao

This removes rao directory in /tmp directory . .
2.3.8 pwd command

displays where currently we are located.

2.3.9 cd directoryname

This changes the current working directory to the given directory.

cd

This command takes you to your home directory.

Basic Unix Commands

2.3.10 Is command
This command displays names of the files and directories of current directory.

a1

a2

a3

a4

a5

27

The following command displays names of files and directories of current directory in long
fashion. That is, file permissions, owner name, group, links, time stamps, size and names.

Is -I

total 4

-rw-r--r-- 1 root root o Feb 13 23:55 a1

-rw-r--r-- 1 root root o Feb 1323:55 a2

-rw-r--r-- 1 root root o Feb 13 23:56 a3

-rw-r--r-- 1 root root o Feb 1323:55 a4

-rw-r--r-- 1 root root 290 Feb 13 23: 59 a5

In Unix, files whose names starts with. are called as hidden files. If we want to see their
details also then we have to use -a option (Of course either alone or with other options).

For example, the following command displays other files also whose names starts with '.' .

Is -al

total 12

drwxr-xr-x 2 root root 4096 Feb 1400:01 .

drwxr-x--- 29 root root 4096 Feb 1400:01 ..

-rw-r--r-- 1 root root o Feb 13 23:55 a1

-rw-r--r-- 1 root root o Feb 1323:55 a2

-rw-r--r-- 1 root root o Feb 1323:56 a3

-rw-r--r-- 1 root root o Feb 13 23:55 a4

-rw-r--r-- 1 root root 882 Feb 1400:01 a5

-rw-r--r-- 1 root root o Feb 1400:01 .aa1

28 Introduction to Linux : Installation and Programming

A Note on File types

UNIX supports a small number of different file types. The following Table 2.1 summarizes
these different file types. What the different file types are and what their purpose is will be
explained as we progress. File types are signified by a single character.

Table 2.1 UNIX file types

File type Meaning

- a normal file

d a directory

I symbolic link

b block device file

c character device file

p a fifo or named pipe

For current purposes one can think of file types as falling into three categories
[Richard Stevens]

• "normal" files,

Files under UNIX are just a collection of bytes of information. These bytes might form a
text file or a binary file.

When we run Is -I command we will see some lines starts with - indicating they are
normal files.

• directories or directory files,

Remember, for UNIX a directory is just another file which happens to contain the names
of files and their I-node. An I-node is an operating system data structure which is used
to store information about the file (explained later).

When we run Is -I command we will see some lines starts with d indicating they are
normal files.

• special or device files.

Explained in more detail later on in the text these special files provide access to devices
which are connected to the computer. Why these exist and what they are used for will be
explained.

Run the following commands.

Is -I /dev/ttyS*

We will see that every line to start with 'c' indicating they are character special files; it is
acceptable to us as they refer to terminals which are character devices.

Is -I /dev/hda*

We will see that every line to start with 'b' indicating they are block special files; it is
acceptable to us as they refer to disk partitions which are block devices.

Basic Unix Commands

The following command displays details of the files in chronological order.

Is -a It

total 12

drwxr-xr-x 2 root
drwxr-x--- 29 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

Is -I filename

root

root

root

root

root

root
root

root

4096 Feb 1400:03 .

4096 Feb 1400:03 ..

1451 Feb 1400:03 a5

o Feb 14 00:01 .aa1

o Feb 13 23:56 a3

o Feb 13 23:55 a2

o Feb 13 23:55 a1

o Feb 13 23:55 a4

It displays only that file details if it exists.

Is -I directoryname

It displays the files and directory details in the given directory.

29

All the options -a, -t etc can be also used. Moreover, Unix commands will be having
excellent command line interface. Thus, all the following commands are equivalent.

Is -a -I -t

Is -a It
Is -a -t -I

Is -at I

Is -I -a -t

Is -Iat

Is -I -t -a

Is -Ita

Is -t -I -a

Is -tla

Is -t -a -I

Is -tal

-R option with Is corr1mand displays details of files and subdirectories recursively.

Example:
Is -aiR / (Of course you can go for a cup of coffee and come back before you see the
prompt again!!).

This command displays all the files in Unix system.

30 Introduction to L1nux : Installation and Programming

2.3.11 find command

A common task for a Systems Administrator is searching the UNIX file hierarchy for files
which match certain criteria. Some common examples of what and why a Systems
Administrator may wish to do this include

• searching for very large files

• finding where on the disk a particular file is

• deleting all the files owned by a particular user

• displaying the names of all files modified in the last two days.

Given the size of the UNIX file hierarchy and the number of files it contains this isn't a
task that can be done by hand. This is where the find command becomes useful.

The find command

The find command is used to search through the directories of a file system looking for files
that match a specific criteria. Once a file matching the criteria is found the find command
can be told to perform a number of different including running any UNIX command on
the file.

find command format

The format for the find command

-find [path-Jist] [expression]

path-Jist is a list of directories in which the find command will search for files. The command
will recursively descend through all sub-directories under these directories. The expression
component is explained in the next section.

Both the path and the expression are optional. If you run the find command without any
parameters it uses a default path as the current directory, and a default expression as
printing the name of the file. Thus, when we run find command we may get all the entries of
current directory.

find expressions

A find expression can contain the following components

• options,

These modify the way in which the find command operates.

• tests,

These decide whether or not the current file is the one you are looking for.

• actions,

Specify what to do once a file has been selected by the tests.

• and operators.

Used to group expressions together.

Basic Unix Commands 31

find options

Options are normally placed at the start of an expression. Table 2.2 summarizes some of the
find commands options.

Table 2.2 find options

Option -Effect

-daystart for tests using time measure time from the beginning of today

'process the contents of a directory before the directory .

-maxdepth number is a positive integer that specifies the maximum number
number of directories to descend

-mindepth number number is a positive integer that specifies at which level to start
applying tests

-mount don't cross over to other

-xdev don't cross over to other partitions

For example

The following are two examples of using find's options. Since I don't specify a path in which
to start searching the default value, the current directory, is used.

find -mindepth 2

./Adirectory/oneFile

In this example the mindepth option tells find to only find files or directories which are at
least two directories below the starting pOint.

find -maxdepth 1

This option restricts find to those files which are in the current directory.

find tests

Tests are used to find particular files based on

• when the file was last accessed

• when the file's status was last changed

• when the file was last modified

• the size of the file

• the file's type

• the owner or group owner of the file

• the file's name

• the file's inode number

• the number and type of links the file has to it

• the file's permissions

32 Introduction to Llnux : Installation and Programming

Table 2.3 summarizes find's tests. A number of the tests take numeric values. For
example, the number of days since a file was modified. For these situations the numeric
value can be specified using one of the following formats (in the following n is a number)

• +n

greater than n

• -n
less than n

• n
equal to n

For example

Some examples of using tests are shown below. Note that in all these examples no command
is used. Therefore the find command uses the default command which is to print the names
of the files.

• find. -user david
Find all the files under the current directory owned by the user david

• find / -name *.html
Find all the files one the entire file system that end in .html. Notice that the * must be
quoted so that the shell doesn't interpret it (explained in more detail below). Instead
we want the shell to pass the *.html to the find command and Ihave it match
filenames.

• find /home -size +2500k -mtime -7

Find all the files under the /home directory that are greater than 2500 kilobytes in size
and have been in modified in the last seven days.

The last example shows it is possible to combine multiple tests. It is also an example of
using numeric values. The +2500 will match any value greater than 2500. The -7 will match
any value less than 7.

find actions
Once the files are found, some operations have to be done on them .. The find command
provides a number of actions most of which allow to either

• execute a command on the file, or
• display the name and other information about the file in a variety of formats
For the various find actions that display information about the file you are urged to

examine the manual page for find

Executing a command
find has two actions that will execute a command on the files found. They are -exec and -ok.

The format to use them is as follows

-exec command;
-ok command;
command is any UNIX command.

The main difference between exec and ok is that ok will ask the user before executing the
command. exec just does it.

Basic Unix Commands 33

Table 2.3 find tests

Test Effect

-amin n file last access n minutes ago

-anewer file the current file was access more recently than file

-atime n file last accessed n days ago

-cmin n file's status was changed n minutes ago

-cnewer file the current file's status was more recently than file's

-ctime n file's status was last changed n days ago

-mmin n file's data was last modified n minutes ago

-mtime n the current file's data was modified n days ago

-name pattern the name of the file matches pattern -iname is a case insensitive
version of -name -regex allows the use of REs to match filename

-nouser-nogroup the file's UID or GID does not match a valid user or group

-Qerm mode the file'spermissions match mode leither symbolic or numeric)

-size n[bck] the file uses n units of space, b is blocks c is bytes k is kilobytes

-type c the file is of type c where c can be block device file, character device
file directory, named pip_e regular file, symbolic socket

-uid n -gid n the file's UID or GID matches n

-user uname the file is owned by the user with name uname

For example

Some examples of using the exec and ok actions include

• find. -exec grep hello \{\} \;

Search all the files under the local directory for the word hello.

• find / -name *.bak -ok rm \{\} \;

Find all files ending with .bak and ask the user if they wish to delete those files.

{} and;

The exec and ok actions of the find command make special use of {} and; characters. Since
both {} and ; have special meaning to the shell they must be quoted when used with the
find command.

{} is used to refer to the file that find has just tested. So in the last example rm \{\} will
delete each file that the find tests match.

The; is used to indicate the end of the command to be executed by exec or ok.

For example :

This command is used to locate files in the Unix directory tree.

find directoryname -name filenametobefound

Example

find / -name core

34 Introduction to Llnux : Installation and Programming

This command displays all the occurrences of the file named core under Ldirectory .
• ,' .. "!:

find. -ctlme 2 -name

This command displays names of those files which are created in the last two days and
are in the current directory. .'

find . -mtime 2 -name

This command displays names of those files which are modified in the last two days and
are in the current directory.

find. -size 10 -name

This command displays names of those files whose size is greater than 10 blocks of size
512 bytes and are in the current directory. . .

find. -type d -name

This command displays names of directories in the current directory.

2.3.12 cp command
cp command is used to dup/(ci!fte a file(s).

Syntax
cp source destination

cp al.c/tmp creates al.c file in /tmp directory which contaIns same content
as that of file a 1. c of current working dIrectory.

cp /bln/ls /tmp/AA Creates a new file AA In /tmp directory with the content of
/bin/ls

cp /tmp/al.c Creates al.c file in current working directory wIth the content of
file /tm()/al.c

C() al.c a2.c Creates a2.c In current workinQ dIrect with the content of al.c

cp *.c/tmp Copies aI/ files with extension c in current directory to /tmp
directory

cp /tmp/*.c Copies aI/ files with extension c in jtmp dIrectory to current
workIng directory

c() /bin/* /tm() Co()ies aI/ files of /bln directory to /tm()

cp -r Copies aI/ flies, subdirectories and files In them of the source
sourcedlrectory directory to detination directory.
destinationdirectory

cp *.1: /bin This command will falf If you are a normal user as we do not
have permissions usualfy on /bin directory. However, it wlfl work
for super (root) user.

Basic Unix Commands 35

2.3.13 mv command
mv command is used to move file(s) from one directory to another directory or to rename
the file.

The options include

-i interactive confirmation of overwrites

-f force a copy

-R recursively copy to a directory

Syntax

mv source destination

mv al.c /tmp creates al.c file in /tmp directory while file al.c of current
working directory is removed.

mval.ca2.c Creates a2.c in current working direct with the content of al.c
while aLc is disappeared

mv *.c/tmp Moves all files with extension c in current directory to /tmp
directory

mv/tmp/*.c Moves all files with extension c in /tmp directory to current
working directory

mv /bin/* /tmp Moves all files of/bin directory to /tmp

The options include

-i interactive confirmation of overwrites

-f force a move

2.3.14 wc command

wc filename or wc<filename

These command displays number of lines, words and characters in the given file.

wc -I filename

This displays number lines in the given file.

wc -w filename

This displays number words in the given file.

wc -c filename

This displays number characters in the given file.

36 Introduction to Linux : Installation and Programming

2.3.15 Link Files
Unix supports to types of links (shortcuts) for files and directories known as hard links and
symbolic links.

Example:

In a1 a6

Here, a6 becomes hard link to the file al. Whatever operations we do on a6 is really seen
from a1 also. The reverse also is true. In fact, a6 will not take extra disk space. If we delete
a1 (or a6) yet the file content is accessible through other name. .

Hard links can not be created to directories. Moreover, they can not be created to the files
of other partitions.

Is -I a1 a6 gave the following result

-rw-r--r-- 2 root root

-rw-r--r-- 2 root root

In a1 a7

20 Feb 1400:13 a1

20 Feb 1400: 13 a6

Is -al a1 a6 a7 gave the following result

-rw-r--r-- 3 root root

-rw-r--r-- 3 root root

-rw-r--r-- 3 root root

20 Feb 1400:13 a1

20 Feb 1400: 13 a6

20 Feb 1400: 13 a7

We can observe that link count is increasing whenever a new hard link is created for a
file. Similarly, whenever we remove a hard link file link count is reduced.

rm a6

Is -I a1 a7 gives results

-rw-r--r-- 2 root root

-rw-r--r-- 2 root root

20 Feb 1400: 13 a1

20 Feb 14 00: 13 a7

I-node numbers or hard link and original files are same.

Is-lia1a7

264826 -rw-r--r-- 2 root root

264826 -rw-r--r-- 2 root root

20 Feb 14 00: 13 a1

20 Feb 14 00: 13 a7

Basic Unix Commands

Symbolic Links

In-sa1a8

Is -I a1 a8

-rw-r--r-- 1 root root

Irwxrwxrwx 1 root root

37

20 Feb 1400: 13 a1

2 Feb 1400:20 a8 -> a1

We can see the difference. Though, whatever operations we do on symbolic link really
takes place on the original file yet if we delete original file the information of the file can not
be aq:essible through symbolic link unlike hard link files. Of"'c:ourse, if we delete symbolic link
yet the information is accessible through original name. Moreover, inode numbers or original
file and symbolic link files are different. In fact, symbolic link file will take separate disk block
in which path of the original file is saved.

Is -Ii a1 a8

264826 -rw-r--r-- 3 root root 20 Feb 14 00: 13 a1

264831 Irwxrwxrwx 1 root root 2 Feb 1400:20 a8 -> a1

Main advantages of symbolic link files is that they can be used to create links for
directories anp also to the files of other partitions. In fact, symbolic links are used for SW
fine tuning. For example check for file 'X' in Linux system, which is normally symbolic link to
the appropriate X server (Check in lusr/XllR6/bin).

Is -I /usr/XllR9/bin/X gave me the following results

Irwxrwxrwx 1 root root 7 Feb 7 06:31 /usr/XllR6/bin/X -> XFree86

If we want to change to some other X server, simply we change X to point to that and
-start the X server.

2.3.16 Wildcards
Unix has special meaning for some characters such as *, ?, ., I, [,]. Words in the commands
that contain these characters are treated as patterns (model) for filenames. The word is

a list of file names, according to the type of pattern. If we want that the shell
not to expand these characters then we have to pre-pend \ before them. This way we can
make these characters to get escape from shells normal interpretation and is known as
escaping and thus these characters are called as escape characters.

The following expansions are made by most shells, including bash:

* matches any string (including nUll)

? matches any single character As a special case, any. beginning a word must be
matched explicitly.

I root directory

. any character

38 Introduction to Llnux : Installation and Programming

Example:

The direCtory contains the files

The

tmp

tmp1

tmp2

tmp10

tmpx

pattern *1*

The pattern t??? matches tmp1 and tmp2

the

The pattern tmp[O-9] matches with tmp1 and tmp2

The pattern tmp[!O-9] matches with tmpx only

The pattern tmp[a-z] matches with tmpx only

The pattern tmp* matches with all files.

This models can be used with any command.

For example

files

Is -I tmp[O-9] displays details of files tmp1 and tmp2 only

rm tmp* deletes all files whose names starts with tmp.

2.3.17 Printing

Ipr [options] files ...

Ipr -#2 filename prints two copies of the given file

tmpl and

Ipq prints the printer queue status along with printer process job id.

tmp10.

Iprm jobid removes specified printer job id from printer queue (only legal owner can

do this. Exception for super user).

2.2.18 Mtools
Mtools are used to copy files from/to floppy's.

Basic Unix Commands

mcopy rao a:

mcopy a: \rao

mdel a:\rao
mdir

mcd

2.4 Conclusions

copies file rao of PWD to floppy.

copies file rao from floppy to C.W.D

removes file rao from floppy
displays content of floppy

changes directory in floppy

39

This chapter gives overview of most commonly used Linux commands. It starts with popular
editor in Unix family 1 vi and then explains redirection operators. It explores link files and also
printing under Linux/Unix.

3 File Filters

3.1 Introduction
Linux/Unix operating system supports a variety of file processing utilities called filters. This
chapters explores the filters along with some other useful commands.

3.1.1 uniq command
This command displays uniq lines of the given files. That is if successive lines of a file are
same then they will be removed. By default output will be on to the screen. This can be used
to remove successive empty lines to the given file.

cat list-l list-2 Iist-3 I sort I uniq final.list

Concatenates the list files, sorts them, removes duplicate lines, and finally writes the
result to an output file.

The useful -c option prefixes each line of the input file with its number of occurrences.
Let the file "testfile" contains the following lines.

This line occurs only once.
This line occurs twice.
This line occurs twice.
This line occurs three times.
This line occurs three times.
This line occurs three times.

Then, the following command is executed the result is as displayed below.

uniq -c testfile

1 This line occurs only once.
2 This line occurs twice.
3 This line occurs three times.

Similarly, when the following command is executed the result is displayed as below.

sort testfile I uniq -c I sort -nr

3 This line occurs three times.
2 This line occurs twice.
1 This line occurs only once.

File Filters 41

3.1.2 grep command
This command is used to select lines from a file having some specified string.

grep "rao" xyz

This displays those lines of the file xyz having string rao.

grep "[rR]ao" xyz

This displays those lines of the file xyz having strings either "Rao", or "rao".

grep "[rR]a[uo]" xyz

This displays those lines of the file xyz having strings either "Rao", or "Rau", or "rao", or
"rau".

grep "I\rao" xyz

This displays those lines of the file xyz which starts with string "rao"

grep "rao$" xyz

This displays those lines of the file xyz which ends with string "rao".

grep "I\rao$" xyz

This displays those lines of the file xyz which contains the string "rao" only. No more
characters in the line.

grep "1\$" xyz

This displays empty lines of the file xyz.

grep "1\[rR]ao" xyz

This displays those lines of the file xyz which starts with either "Rao" or "rao".

grep "[rR]ao$" xyz

This displays those lines of the file xyz which ends with "Rao" or "rao".

-n option if we use with grep command it displays line numbers also.

grep -n "rao" xyz

42 Introduction to Linux : Installation and Programming

This displays those lines of file xyz which are having the string "rao" along with their line
numbers.

-v option if we use with grep command it displays those lines which does not have the
given search pattern.

grep -v "rao" xyz

This displays those lines of the file xyz which does not contain the string "rao".

3.1.3 fgrep (fixed grep) and egrep grep) commands
. fgrep is used search for a group of strings. One string has to be separated from other by a
new line.

$fgrep'rao

>ram

>raju' filename

This command displays those lines having either rao or ram or raju.

fgrep will not accept regular expressions.

egrep is little more different. It also ·takes a group of strings. while specifying strings
piping (I) can be used as separator.

Example:

egrep 'rao I ram I raju' filename

In addition it accepts regular expressions also.

3.1.4 cut command
This is used to split files vertically.

cut -fl,3 filename

This displays l'st and 3'rd words of each line of the given file. Between word to word TAB
should be available.

cut -d":" -fl,3/etc/passwd

This displays username, UID of each legal user of the machine. Here, with -d option we
are specifying that: is the field separator between word to word.

File Filters 43

Cut command can not change the natural order of the fields. That is, the following
command also gives same result as that of the above command.

cut -d":" -f3,l/etc/passwd

cut -d":" -fl-3 filename

This displays first word to third word from each line of the given file.

cut -f': II -f3- filename

This displays third word to till last word of each line of the given file.

cut -c3-5 filename

This displays 3'rd character to 5'th character of each line of the given file.

cut -d":" -f1 /etc/passwd > a1

File a1 contains usernames of legal users of the machine.

cut -d":" -f3/etc/passwd > a3

File a3 contains UID's of each legal user of the machine.

3.1.5 paste command
This is used to join files vertically.

paste a3 a1 >a31

cat a31

This displays

0 root
1 bin

2 daemon

3 adm
4 Ip
5 sync

6 shutdown
7 halt

44

8 mail

9 news
10 uucp

11 operator

12 games

13 gopher

14 ftp

99 nobody

38 ntp

32 rpc

69 vcsa

28 nscd

74 sshd
37 rpm

47 mailnull
51 smmsp

25 named
42 gdm

80 desktop

101 rao

39 canna
78 fax

57 nut

paste -d"I" a3 a1 >a13

Introduction to Linux : Installation and Programming

This command places the given field separator while joining the files contents vertically.

cat a13

Olroot
11bin
21daemon

31adm
411p

51sync

61shutdown

71halt
81mail

91news

10luucp

File Filters

1110perator

121games

131gopher

141ftp

991nobody

431xfs

251named

421gdm

391canna

491wnn

781fax

571nut

3.1.6 join command
This is used to join files. Unlike paste it works similar to join operation of DBMS.

Let the files content are :

File aa1 contains

ll11NBV Rao

1211pp Raj

116lTeja

119lRani

File aa2 contains

111IProf

112 I Asst Prof

12111ecturer

116lProf

join -t"I" -j 1 1 aa1 aa2

This command produces the following result:

111INBV RaolProf

1211pp Raj !lecturer

116lTeja I Prof

join -till" -j 11 -0 1.1 2.2 aa1 aa2

45

46 Introduction to Linux : Installation and Programming

This command produces output such as the following. That is, first field from the first file
and second field from the second file is displayed.

111 I Prof
12111ecturer
116lProf

join -t"I" -al -0 1.1 2.2 aal aa2

This command gives the following results.

111 I Prof .
12111ecturer
116lProf
1191

join -t"I" -a2 -0 1.1 2.2 aal aa2

This command gives the following results.

111 I Prof
IAsst Prof
12111ecturer
1161 Prof

3.1.7 tr command
This command can be used for transliteration. That is replacing a character with another
character. It accepts standard input and gives standard output.

tr '*' '-' <xyz

This command replaces all the occurrences of character * with - in the given file xyz.

tr '*/' '-?' <xyz

This command replaces all the occurrences of * with - and / with ? in the given file. In
both the situations output appears on the screen. By standard redirection operator output
can be stored in a file.
Example

tr '*' '-' <xyz >pqr

tr '[a-z]' '[A-Z]' < xyz

File Filters 47

This command replaces all lower case characters of the file xyz to uppercase.

tr -d '*' <xyz

This command removes all occurrences of * in the given file xyz.

tr -s '*' <xyz

This command replaces multiple consecutive *'s with a single * in the given file.

3.1.8 df command
This command displays details about the each of the mounted partition, percentage of free
ness, percentage of occupation etc. •

Filesystem
/dev/hdb5
none

3.1.9 du command

1K-blocks Used Available Use% Mounted on
6048288 5163420 577632 90% /

62520 0 62520 0% /dev/shm

This command displays disk usage(usually in multiples of 1K blocks).

du command without any argument displays disk usage of all files, subdirectories of
current working directory.

du directoryname

This displays disk usage of all files sub-directories of the given directory.

Please note that du command will not display the actual size of the file in bytes. Rather,
number of 1K blocks assigned for the file. Try the following and find out the difference.

du filename
Is -I filename
du -b filename

3.1.10 who command
This displays details about the users such as user name, terminal on which working and since
when they are working.

root :0
root pts/O
root pts/1

Feb 900:22
Feb 900:25 (:0.0)
Feb 920:25 (:P.:O)

48 Introduction to Llnux : installation and Programming

3.1.11 w command
This displays details about the users in addition to what command they are working now.

w
Presents who users are and what they are doing in the following fashion.

USER TTY FROM
root :0
root pts/O :0.0

w username

Displays what that user is doing.

w -i

displays details sorted by idle time

3.1.12 rm command
This is used to remove file(s)
Example:

rm xyz

LOGIN@ IDLE JCPU PCPU WHAT
12:22am? O.OOs 1.66s /usr/bin/gnome-

12:2Sam O.OOs 0.81s 0.03s w

This command removes file xyz (If it is not write protected).
Only legal owner of the file can remove file (Exception for super user).

rm fl f2 f3 fn

Removes all files fl, f2, ... fn ..

rm a*.c

Removes all files with extension c and primary name starts with a.

rm a?c

Removes all files with extension c and primary is two characters length with first
character as a.

rm a[0-9]*.c
Removes all files with extension c and primary name starting with a and second character

as digit.

rm a[!a-zA-ZO-9J*.c

File Filters 49

Removes all files with extension c and primary name starting with a and second character
is other than alphanumeric.

rm -R directoryname

Removes all files, sub-directories of the given directory recursively.

rm -i file(s)

Interactive deletion. That is, it prompts before deleting the file(s).

rm -F file(s)

File(s) are deleted forcibly (ignoring permissions).

3.1.13 unlink filename
This command also removes the given file.

3.1.14 ulimit command
Unix system has resource limits such as limits on number of processes, maximum allowed
file size, etc.
Example:

ulimit -a

core file size
data seg size
file size
max locked memory

max memory size
open files
pipe size
stack size
cpu time

max user processes
virtual memory

ulimit

(blocks, -c) 0
(kbytes, -d) 231122
(blocks, -f) 231122
(kbytes, -I) unlimited

(kbytes, -m) unlimited
(-n) 1024
(512 bytes, -p) 8
(kbytes, -s) 8192
(seconds, -t) unlimited

(-u) 1016
(kbytes, -v) unlimited

This command displays file size limit on the system currently.

ulimit -f 121212
This changes file size limit to 121212.
Similarly, we can change resource limits such as max data, text segment sizes etc.

50 Introduction to Llnux : Installation and Programming

3.1.15 chmod command

With the help of chmod command we can change permissions or a file or a directory.

For any file or directory which is available in Unix system there exists three types of
owners given as :

• Owner (real user)

• Group Member

• O+-hers
For the purpose of administration, users are grouped such that resources can be

appropriated. For example, the administrator can appropriate for all second year B.Tech
students 1 hour CPU time, 20 hours of 'Ferminal time, 3 pages of hard copy and 10MB of
space. Except the disk space others are allocated on weekly basis. These appropriations can
be different for final year students. Also, groups makes users to share the files.

Similarly, for any file or a directory three types of operations can be carried out known
as:

• Read
• Write

• Execute
If we have reading permissions on a file we can see the content of the file or some other

command such as cat which wants to read the file on behalf of us also works. Similarly if we
have writing permissions on a file we can modify the content of the file (please note the file
can be deleted by only legal owner of the file and super user even if you have writing
permissions). Similarly, if we have execution permissions for a file then it can be loaded into
RAM and executed if it is executable file. If the file is not executable and having executable
permissions will have no effect on the file. You will be knowing in the next chapters that if we
want to run a shell script (a simple text file) it has to be given executable permissions.

Similarly, if we have reading permissions on a directory we can run Is command on it. If
we have writing permissions on a directory we can create file or directory in it (try to create
a file in fbin). If we have executable permissions then we can enter into it.

For example create a file xyz and run the following command.

Is -I xyz

The result may look like this:

-rw-r--r-- ______ xyz

The first string in the above commands output is called as mode string or permissions string
which indicates what permissions are available to the file for user, group and others. The first
character In the above string is - indicates that xyz is file. There are some characters such as
d,b,c,p,1 to Indicate that xyz is directory, character speCial file (character device), block special
file (block device), pipe file or link file respectively which are explained later.

The next three characters "rw-" indicated that the user can read, write but not execute.
Similarly "r-" for group and others indicates that group members and others can only read
the xyz.

File Filters 51

The chmod command supports two ways of changing file/directory permissions.

• Octal Approach
• Symbol ic Approach

Octal approach of changing File Permissions
In octal approach, we specify three digit octal number to change permissions such as:

chmod 700 xyz

Is -I xyz

Output of the above command looks like:

-rw-------- _____ xyz

In this approach, we have to specify the required permissions without what are the
previous permissions. Thus this technique is called as absolute approach.

Here, we assume (no answer for why and why not other numbers)

• Read - 4
• Write - 2
• Execute - 1
If want all the three permissions then we use 7 (sum of 4+2+1) and vice versa. Like

this in the above example 700 we have used as we want all the permissions to be available
for the user and none to others and group. '

chmod 000 xyz

Is -I xyz

xyz

Now if we try to run the following commands, we can not succeed as there is no reading
permission for us.

cat xyz

vi xyz

chmod 400 xyz

Is -I xyz

-r-------- xyz

52 Introduction to Linux : Installation and Programming

Now if we try to run the following commands, we can succeed as there is reading
permission for us. However, we can not modify the file content using vi command as we do
not have writing permissions.

cat xyz

vi xyz

chmod 200 xyz

Is -I xyz

xyz

Now if we try to run the following commands, we can not succeed as there is no reading
permission for us. '

cat xyz

vi xyz

However, the following command may succeed.

cat»xyz
Asas
AS,as
Asa
Aas

"d

Symbolic way of changing Fite Permissions

Similarly, we call change permissions with symbolic approach.
Here, we use the following symbols

• AII-a
• User-u
• Group-g
• Others-o
• Read - r
• Write-w
• Execute - x
• = to assign permissions
• + to add permissions
• to remove permissions

File Filters

For example run the following command.

chmod u=rwx xyz

Is -I xyz

We will see

-rwx------ xyz

chmod u-x,go+r xyz

Is -I xyz

We wil see

-rw-r--r--

A Note on Sticky bit, setgid bit, setuid bit

Sticky bit on a file

xyz

53

In the past having the sticky bit set on a file meant that when the file was executed the code
for the program would "stick" in RAM. Normally once a program has finished its code was
taken out of RAM and that area used for something else [Robert Love].

The sticky bit was used on programs that were executed regularly. If the code for a
program is already in RAM the program will start much quicker because the code doesn't
have to be loaded from disk.

However today with the advent of shared libraries and cheap RAM most modern Unix's
ignore the sticky bit when it is set on a file.

Sticky bit on a directory
The /tmp directory on is used by a number of programs to store temporary files
regardless of the user. For example when you use elm (a UNIX mail program) to send a mail
message, while you are editing the message it will be stored as a file in the /tmp directory.
Please note that every user will have his own privacy rules on the files stored in such
directories.

Modern UNIX operating systems (including Linux) use the sticky bit on a directory to
make /tmp directories more secure [David Evans]. Try the command Is -Id /tmp what do
you notice about the file permisSions of /tmp.
If the sticky bit is set on a directory you can only delete or rename a file In that directory if
you are

• the owner of the directory,

• the owner of the file, or
• the super user

54 Introduction to Linux : Installation and Programming

Changing passwords-setuid bit??
When you use the passwd command to change your password the command will actually
change the contents of either the /etc/passwd or /etc/shadow files. These are the files where
your password is stored. However, we can not directly edit /etc/passwd as we don't have
permissions for the same.

Check the file permissions on the /etc/passwd file?
Is -I /etc/passwd
-rw-r--r-- 1 root ·root 697 Feb 1 21:21 /etc/passwd

Now the file belongs to root and others do not have write permission thus we are unable
to modify through vi. Then how do does the passwd command change my password in
/etc/passwd file?

The answer is setuid and setgid.
Let's have a look at the permissions for the passwd command (first we find out where it is).

Is -I /usr/bin/passwd
-rws--x--x 1 root bin 7192 Oct 16 06: 10 /usr/bin/passwd

Notice the s symbol in the file permissions of the passwd command, this specifies that this
command is setuid.

When we execute the passwd command a new process is created. The real UID and GID
of this process will match my UID and GID. However the effective UID and GID (the values
used to check file permissions) will be set to that of the command. Thus, we are able to
modify the file /etc/passwd which belongs to root.

Similarly, setgid bit is useful while enforcing locks on files.

3.1.16. umask command
This command when executed without any argument it displays the current value of the
umask. This umask value is used to change the default permissions of any file or directory
created. By changing the umask value we can change default permissions of a file or
directory created.
Example:

cat>p1
add
adjda
Ad

Is -I p1
-rw-r--r-- 1 root root 4 Feb 1000:32 p1
umask 000
cat>p3
ads
sad
sdsd
Ad

Is -I p3
-rw-rw-rw- 1 root root 9 Feb 1000:35 p3

File Filters 55

We can see that permissions of files p1 and p3 are different.

Unix Kernel uses a mask known as file creation mask (octal 666) [Kernigham]. While a
file is created this mask and umask jOintly plays role in deciding the permissions of a file.
Default umask value is 022. Thus, when file p1 is created this is used. Whereas while p3 is
created umask value is taken as 000, which we have specified.

P1 P3

File Mask (Binary) 110110110 110110110

Umask 000010010 (022) 000000000 (000)

Exclusive-OR 110100100 110110110

Permissions rw-r--r-- rw-rw-rw-

The same is applicable to default directory permissions also. Unix Kernel uses default
directory creation mask as 777.

Directory 11 is created after changing the umask where as directory 12 is created before
changing. We can see the difference in the permissions.

drwxrwxrwx

drwxr-xr-x

3.1.17 chown command

2 root root

2 root root

4096 Feb 1000:4311

4096 Feb 1000:4412

With the help of chown command, we can change owner ship of a file or directory. Only real
owner (exception for the super user) of the file or directory can change owner ship of a file
or directory. Once it IS changed, he/she will not have any authority revert it back.

chown username filename

Example

chown rao xyz.c

3.1.18 chgrp command

With the help of chgrp command we can change group membership of a file. For example:

chgrp groupname filename

3.1.19 id command

The id command can be used to discover username, UlD, group name and GlD of any user.

For example, when we have executed id command on our machine we got the following
output.

uid=500(venkat) gid= 100(users) groups= 100(users)

56 Introduction to Linux : Installation and Programming

3.1. 20 diff command
This is used to compare the contents of two files in general.
Example

diff pl p2

If the content of pl and p2 are exactly same it displays nothing. Otherwise it displays the
difference information in a special format such as the following:

lcl

< ass

> add
3d2

< ass

3.1.21 sed command

Sed is a stream editor. A stream editor is used to perform basic text transformations on an
input stream (a file or input from a pipeline). While in some ways similar to an editor
which permits scripted edits (such as ed), sed works by making only one pass over the
input(s), and is consequently more efficient. But it is sed's ability to filter text in a pipeline
which particularly distinguishes it from other types of editors.

We have seen vi editor in previous chapters. Sed uses almost same commands while
processing the files.

The following options are used with sed.

-n shows only those lines on which sed actually acted. Sed's default behavior is to
display the line what it has read from the file and also to display the line after applying the
command. However, if we specify the -n option it displays only the lines after applying the
action.

-f Usually the commands are enclosed in between single quotes. However, if we want the
sed command to be stored in a file (like shell or awk script) and sed to use it then we will
use this option.

In the following pages, we Llse the file 'ABC' with the following content for
experimentation purpose.

I am not happy with your Progress.
I think you have to improve a lot.

Why you are not serious?
Make sure you take things with whole heart.

sed -n " ABC

This command displays nothing.

sed" ABC

File Filters 57

This command gives the following output which we can find as the file content. Actually,
sed's default behavior is displaying the lines what ii has read. Thus, we see the file content
as it is. However, when we use -n option (above command), nothing is displayed as -n
option displays lines content after applying our command; which is nothing is this case.

I am not happy with your Progress.

I think you have to improve a lot.

Why you are not serious?

Make sure you take things with whole heart.

sed -n 'l,2p' ABC

This command displays first two lines of the file as shown below.

I am not happy with your Progress.

I think you have to improve a lot.

sed 'l,2p' ABC

This command displays first two lines two times and next lines once. This is because,
sed's default behavior is to display the lines read. In addition, we have asked two print first
two lines. Thus, first two lines are printed twice.

I am not happy with your Progress.

I am not happy with your Progress.

I think you have to improve a lot.

I think you have to improve a lot.

Why you are not serious?

Make sure you take things with whole heart.

sed 'l,2d' ABC

This command displays 3'rd and fourth lines of the files as shown below.

Why you are not serious?

Make sure you take things with whole heart.

sed -n 'l,2d' ABC

This command displays nothing. Why?

58 Introduction to Linux : Installation and Programming

Now, run the following commands and see the content of the file 'pp'.

sed '1,2d' ABC>pp

cat pp

Why you are not serious?

Make sure you take things with whole heart.

sed 'l,/Why/p' ABC

This command displays lines from l'st line to the (first) line having the'pattern 'Why'.

I am not happy with your Progress.

I am not happy with your Progress.

I think you have to improve a lot.

I think you have to improve a lot.

Why you are not serious?

Why you are not serious?

Make sure you take things with whole heart.

sed -n 'l,/Why/p' ABC

I am not happy with your Progress.

I think you have to improve a lot.

Why you are not serious?

sed 'l,/Why/w ppl' ABC

The above command writes the selected lines into the file ppl.

I am not happy with your Progress.

I think you have to improve a lot.

Why you are not serious?

Make sure you take things with whole heart.

cat ppl

I am not happy with your Progress.

I think you have to improve a lot.

Why you are not serious?

File Filters

Run the following commands and check the difference.

sed -n 'l,/Why/w pp2' ABC

cat pp2

I am not happy with your Progress.

I think you have to improve a lot.

Why you are not serious?

sed '/not/s/not/NOT /g' ABC

59

The above command replaces all the occurrences of the string 'not' with 'NOT'.
Remember, original file is not changed.

I am NOT happy with your Progress.

I think you have to improve a lot.

Why you are NOT serious?

Make sure you take things with whole heart.

sed '1 r pp1' ABC

The above command reads the content from the file 'pp1 '. That is, it displays 1 'st line of
the file ABC and then the content of the file pp1 and then remaining content of file ABC.

Thus, the result is as follows.

I am not happy with your Progress.

I am not happy with your Progress.

I think you have to improve a lot.

Why you are not serious?

I think you have to improve a lot.

Why you are not serious?

Make sure you take things with whole heart.

We can ask sed to take instructions from a file. To explain, we now create a file say, 'ff'
with the sed command in it.

cat >ff

/not/s/not/NOT /g

"d

sed -f ff ABC

60 Introduction to Linux : Installation and Programming

Now with the help of -f option, we are informing sed to take commands from the file 'ff'.
The result is as follows.

I am NOT happy with your Progress.

I think you have to improve a lot.

Why you are NOT serious?

Make sure you take things with whole heart.

sed -n '1,3 w pp2' ABC

This command prints first three lines to file pp2, which we can check by running the
following command.

cat pp2

sed -n '1",2 w pp2' ABC

This command prints every alternative line from first line. We can check the same by
running the following command.

cat pp2

sed '1"'2d' ABC

This command prints 2'nd and fourth lines while deleting l'st, 3'rd, etc., line.

sed 'l,/Why/d' ABC

This command displays all the lines other than the lines from lIst line to the line which
contains the pattern 'Why'.

sed 'l,/Why/s/not/NOT/' ABC

This command replaces the pattern 'not' with 'NOT' in the lines starting from lIst line to
the line having the pattern 'Why'.

sed '1,2s/notjNOTI' ABC

This command replaces the pattern 'not' with 'NOT' in the lines 1 to 2.

3.1.22 cmp command
The cmp utility compares two files of any type and writes the results to the standard output.
By default, cmp is silent if the files are the same; if they differ, the byte and line number at
which the first difference occurred is reported.

File Filters 61

Bytes and lines are numbered beginning with one.

Example: cmp file1 file2

3.1.22 comm command

comm - compare two sorted files line by line

Compare sorted files LEFT JILE and RIGHT JILE line by line.

-1 suppress lines unique to left file

-2 suppress lines unique to right file

-3 suppress lines that appear in both files

Example: comm p1 p2

3.1.23 Software Patching
Normally SW products are supplied either as binary distribution or source distribution. In
source distribution, all the source program files are supplied to the customer and the
customer is required to compile on his target machine to get binary or executable code of the
SW. Moreover, it is common that SW systems are released in incremental fashion. When a
new release is made, a patch file (difference file) is prepared by comparing with the previous
release files. This can downloaded by the customer who is having previous release and by
applying the SW patching he can get recent version of the SW source which he can compile
to get updated version of SW running on his machine.

Example:

diff p1 p2>p3

Here p3 can be called as patch file.

patch p1 :<P3 will change the content of the file p1 as p2.
patch p2 <p3 will change the p.2 file content as pl.

3.2 Introduction to Pipes
Unix operating system supports a unique approach through which we can join two
commands and generate new command with the help of pipe concept.
For example

command11command2

62 Introduction to Linux : Installation and Programming

Here, whatever output first command generates becomes standard input for the second
command. We can develop complex UNIX command sequences by joining many commands
while maintaining this input output relation ships. Whenever left "and side of piping symbol
does not generate we may get broken pipe error.

For example

Is -Ilgrep "I'd"

This command displays details of only the directories of the current working directory.
That is output of Is -I command becomes input to grep command which displays only those
lines which starts with d (they are nothing but details of files).

Is -Ilgrep "/\d"lwc-1

This command displays number of directories in the given file.

grep "bash$" /etc/passwdlwc -I

This command displays number of users of the machine whose default shell is bash.

cut -t":" -f 3 /etc/passwdlsort -nltail -1

This command displays a number which is largest used UID number in the system. Here,
cut command first extract UID's of all the users in the system from the /etc/passwd file, and
the same becomes input to sort; which sorts these numbers in numerical order and sends to
tail command as input which in turn displays the largest number (last one).

3.2.1 tee command

tee command is used to save intermediate results in a piping sequence. It accepts a set of
filenames as arguments and sends its standard input to all these file while giving the same
as standard output. Thus, use of this in piping sequence will not break the pipe.

For example if you want to save details of the directories of current working directory
while knowing their using the above piping sequence we can use tee as follows. Here, the file
xyz will have the details of directories saved.

Is -llgrep "/\d"ltee xyzlwc-I

The following piping sequence writes the number of directories into the file pqr while
displaying the same on the screen.

Is -Ilgrep "/\d"ltee xyzlwc -iltee pqr

File Filters 63

3.3 Some Other Means of Joining Commands
Unix supports some other means of joining command such as the following.

Command 1&&Command2

Here, if first command is successfully executed then second command is executed.
For example:

Is xl&&cat xl

Here, 'Is xl' command first checks whether xl file is available or not. If it succeeds, i.e. it
xl exists then the second executes. That is, we will see the output of the file xl.

CommandlilCommand2

Here, if first command is failed then second command is executed.

For example:

Is xlilecho File xl not found

Here, 'Is xl' command first checks whether xl file is available or not. If it fails, i.e. it xl
does not exists then the second command is executed. That is, we will see that xl file is not
found .

We can also enclose a set of commands which has to be executed one after another in
between parenthesis. For example:

(Is; cat /etc/passwd)

We can send output of a group of file into a file or directory.

(Is; cat /etc/passwd) > outputfile

We can also enclose a set of commands which has to be executed one after another in
between curly braces. .

3.4 awk command
This facility is very much useful for small scale database applications requiring no precision.

Syntax of awk command

awk option 'BEGIN{}
{

}
END{}' filename

64 Introduction to Linux : Installation and Programming

Awk command considers the given file as database file; each line of the file is considered
as a record, each word of a line is taken as field [Venkateswarlu]. Whatever operations we
wanted to execute, we have write in the BEGIN section which are really executed before
processing any record. The operations which are required to be executed after processing all
the records has to be written in END section. Instructions which are required to be executed
on every record has to be written in the middle block. It is not necessary that every awk
command to have all the three blocks. However, opening curly braces should immediately
follow the BEGIN and END words and should be on the same line as that of BEGIN, END
words. Awk supports a limited amount of C style programming constructs. However, we can
not say that it can be used in place of C though!. Whi1e running, instructions in the BEGIN
block are executed, then instructions in the middle block are executed on every record and
the instructions in END block are executed at the last.

Normally, awk assumed space or TAB as the field separator between word to word.
However, if a file contains some other character as field separator, the same can be informed
through -d option.

awk uses the following things:
NF= number of fields
NR= number of records
OFS=output field separator
$0 = current record as a whole
$1, $2, $3 ... = first, second, third etc., fields of current record

awk '{ print $O} , filename

awk '{ printf "%s", $O}' fHename

These commands displays the content of the file

awk -F":" '{ print $3, $1}' /etc/passwd
awk -F":" '{ printf "%3d %s", $3, $1 }' /etc/passwd

These commands displays UID's and usernames of the legal users of the machine.

awk '{ printf "%3d %s", NR, $O}' filename

This command displays file content along with line numbers. Here, NR value refers to the
record number. .

Like "grep", find string "fleece" (the {print} command is the default if nothing is specified)

awk '/fleece/' file

Select lines 14 through 30 of file

awk 'NR==14, NR==30' file

File Filters 65

Select just one line of a file

awk 'NR==12' file

awk "NR==$l" file

Rearrange fields l' and 2 and put colon in between

awk '{print $2 ":" $1}' file

All lines between BEGIN and END lines (you can substitute any strings for BEGIN and
END, but they must be between slashes)

awk '/BEGIN/ ,1END/' file

Print number of lines in file (of course wc -I does this, too)

awk 'END{print NR}' file

We can use variables in awk wherever we wanted and their initial value will be taken as O.

The following prints no of lines, words, characters.

awk '{ w +=NF c +=length($O)} END{ print NR, w, c} , filename

Substitute every occurrence of a string XYZ by the new string ABC: Requires nawk.

nawk '{gsub(/XYZ/, "ABC"); print}' file

Print 3rd field from each line, but the colon is the field separate

awk -F: '{print $3}' file

Print out the last field in each line, regardless of how many fields:

awk '{print $NF}' file

To print out a file with line numbers at the edge:

awk '{print NR, $O}' somefile

66 Introduction to Linux : Installation and Programming

This is less than optimal because as the line number gets longer in digits, the lines get
shifted over. Thus, use printf:

or

awk '{printf "%3d %s", NR, $O}' somefile

Print out lengths of lines in the file

awk '{print length($O)}' somefile

awk '{print length}, somefile

Print out lines and line numbers that are longer than 80 characters

awk 'length 80 {printf "%3d. %s\n", NR, $O}' somefile

Total up the lengths of files in characters that results from "Is -I"

Is -I I awk 'BEGIN{total=O} {total += $4} END{print total},

Print out the longest line in a file

awk 'BEGIN {maxlength = O} \
{ \ if (length($O) maxlength) { \

maxlength = length($O) \

longest = $0 \

} \
} \

END {print longest}' somefile

How many entirely blank lines are in a file?

awk '/"$/ {x++} END {print x}' somefile

Print out last character of field 1 of every line

awk '{print substr($l,length($l),l)}' somefile

comment out only #include statements in a C file. This is useful if you want to run "cxref'
which will follow the include links.

awk '/#include/{printf "/* %s */\n", $0; next} {print}' file.c I cxref -c $*

File Filters 67

If the last character of a line is a colon, print out the line. This would be useful in getting
the pathname from output of Is -IR:

awk '{ \
lastchar = substr($O,length($O),l) \
if (Iastchar == ":") \

print $0 \
}' somefile

Here is the complete thing Note that it even sorts the final output

Is -IR I awk '{ \
lastchar = substr($O,length($O),l) \
if (Iastchar == ":") \
dirname = substr($O,l,length($O)-l) \

else \
if ($4 20000) \

printf "%lOd %25s %s\n", $4, dirname, $8 \
}' I sort -r

The following is used to break all long lines of a file into chunks of length 80:

awk '{ line = $0
while (Iength(line) 80)
{

print substr(line,l,80) line = substr(line,81,length(line)-80)
}

if (length(line) 0) print line
}' somefile.with.long.lines>whatever

If you want to use awk as a programming language, you can do so by not processing any
file, but by enclosing a bunch of awk commands i r ,urly braces, activated upon end of file.
To use a standard UNIX "file" that has no lines, . IJev/nuli.

Here's a simple example:

awk 'END{print "hi there everyone"}' < /dev/null

Here's an example of using this to print out the ASCII characters:

awk' { for(i=32; i<127; i++) \
printf "%3d %30 %c\n", i,i,i \
}' </dev/null

68 Introduction to Linux : Installation and Programming

Sometimes you wish to find a field which has some identifying tag, like X= in front.
Suppose your file (playfilel) looked like:

5030 X=10 Y=100 Z=-2

X=12 89 10032 Y=900

1 2 3 4 5 6 X= 1000

Then to select out the X= numbers from each do

awk '{ for (i=l; i <=NF; i++) \

if ($i N /X=.*/) \
print substr($i,3) \
}' playfilel

Note that we used a regular expression to find the initial part: /X=.*/
Pull an abbreviation out.of a file of abbreviations and their translation. Actually, this can

be used to translate anything, where the first field is the thing you are looking up and the
2nd field is what you want to output as the translation.

nawk '$1 == abbrev{print $2}' abbrev=$l translate.tile

Join lines in a file that end in a dash. That is, if any line ends in -, join it to the next line.
This only joins 2 lines at a time. The dash is removed.

awk '/-$L{oldline = $0 \

getline \

print su-bstr(oldline,l,ler;1gth(oldline)-l) $0 \

next} \
{print}' somefile

Function in nawk to round: function round(n) { return int(n+O.5) }

If you have a file of a"ddresses with empty lines between the sections, you can use the
following to search for strings in a section, and print out the whole section. Put the following
into a file called "section.awk":

BEGIN {FS = "\n"; RS = ""; OFS = "\n"} $0 N searchstring { print}

Assume your names are in a file called "rolodex". Then use the following nawk command
when you want to find a section that contains a string. In this example, it is a person's
name:

nawk -f section.awk searchstring=Wolf rolodex

File Filters 69

We assume the following data in the file EMPLOYEE having employee ID, name,
designation, department, salary, no of dependents and age in each line.

1111 NB Venkateswarlu IProfessorlCSEI2700012142

1211GV Saradamba I ProfessorlCHEM 13200012146
1221 PN Rao IAssistant Professor I Civil 126000 13154

awk -F"I" '{ printf "%s %d", $2 , $1}' EMPLOYEE

This command displays names of the employees and their ID's in a tabular fashion.

awk -F"I" '$2 IV /Rao/{ printf "%s %d", $2, $1}' EMPLOYEE

This command displays names of the employees and their ID's whose name contains the
string "Rao".

awk -F" I" '$2 IV /Ra[ou]/{ printf "%s %d", $2 , $1}' EMPLOYEE

This command displays names of the employees and their ID's whose name contains the
string "Rao" or "Rau" .

. awk -F" I" '$2 IV j/"Rao/{ printf "%s %d", $2 , $1}' EMPLOYEE

This command displays names of the employees and their ID's whose name starts with
the string "Rao".

awk -F"I" '$2 IV /"Ra[ou]/{ printf "%s %d", $2 , $1}' EMPLOYEE

This command displays names of the employees and their ID's whose name starts with
the string "Rao" or "Rau"

awk -F"I" '$2 I'V /Rao$/{ printf "%s %d", $2 , $1}' EMPLOYEE

This command displays names of the employees and their ID's whose name ends with
the string "Rao".

awk -F"I" '$2 IV /Ra[ou]$/{ printf "%s %d", $2 , $1}' EMPLOYEE

This command displays names of the employees and their ID's whose name ends with
the string "Rao" or "Rau".

awk -F"I" '$2 IV /"Ra[ou]$/{ printf "%s %d", $2 , $1}' EMPLOYEE

70 Introduction to Linux : Installation and Programming

This command displays names of the employees and their lO's whose name contains the
strings "Rao" or "Rau".

awk -F"I" '$2'" /"[rR]a[ou]$/{ printf "%s %d", $2, $1}' EMPLOYEE

This command displays names of the employees and their lO's whose name contains the
strin9s "Rao", "rao" , "Rau" or "rau".

awk -F"I" '$4 >10000 { printf "%s %d", $2, $1}' EMPLOYEE

This cqmmand displays names of the employees and their lO's whose salary is more than
10000.

awk -F"I"'{ s+=$4 p+=$6} END { printf "%d %d", s/NR, p/NR}' EMPLOYEE

This command displays average salary and average number of dependents of the
employees.

awk -F"I'''$4<5000{s+=$4 p+=$6}END{printf "%d %d",s/NR,p/NR}' EMPLOYEE

This command displays average salary and average number of dependents of the
employees whose salary is less than 5000.

awk -F"I"'$6<50{s+=$4 p+=$6}END{printf"%d %d",s/NR,p/NR}' EMPLOYEE

This command displays average salary and average number of dependents of the
employees whose age is more than 50.

awk -F"I" , {
If ($4 >5000) n1++
Else n2++
}END{ printf "%d %d", n1, n2 }' EMPLOYEE

This command displays no of employees whose salary is greater than 5000 and less than
5000.

awk -F"I" , {
If ($4 >5000)
{
n1++

sl+=$4
}
else
{

n2++
s2+=$4
}
}END{ printf "%d %d", sl/n1, s2/n2 }' EMPLOYEE

File Filters 71

This command displays average salary of employees whose salary is greater than 5000
and less than 5000.

We can use arrays also. Their initial values also taken as zeros.

awk -F"I" , {
if ($4 >5000).
{

5[1]++
5[2]+=$4

}

else
{

5[3]++
5[4]+=$4

}

}END{ printf "%d %d", 5[2]/5[1], s[4]/s[3] }' EMPLOYEE

This command displays average salary of employees whose saJary is greater than 5000
and less than 5000.

We can use content addressable arrays. That is, the element indexes for these arrays can
be strings rather than usual integers.

awk -F"I" '{ s[$3]++} END{ for(desig in s) printf "%s %d", desig, s[desig] }' EMPLOYEE

The above command displays designation and number of people having that designation.

awk '{ 1=(80-length($0»/2
1=0;
While(I<I)
{

printf "%s", " "
1++;
}

printf "%s", $O}' filename

This program prints every line of the program centered on the screen.

awk '{ 1=(80-length($0»/2
for(I=O;I<I; 1++)
{
printf "%s", " "
}

printf "%s", $O}' filename
This program prints every line of the program centered on the screen.

72 Introduction to Linux : Installation and Programming

3.5 Backup Commands
We sure that everyone know that "Data is more important than SW". After all, by paying
some more salary, a SW system can be generated by trillions of SW programmers. However,
the data can not be developed or created; especially time dependent data if it is lost. Thus,
in all the applications at most importance is given to the safe data storage. One of the prime
responsibilities of a system administrator is data safety. Normally, to safeguard against
viruses, power failures, disk failures, backup's are taken. In UNIX, tar, cpio commands are in
wide use.

3.S.1 tar command
This command is used to join a group of files and prepare a archive file.

tar -cvf a.tar directoryname(s)orfilename(s)

This command creates a archive file a.tar by joining the given files or files in the given
directories.

tar -cvZf a.tZ directoryname(s)orfilename(s)

This command creates compressed tar archive.

tar -cvzf a.tgz directoryname(s)orfilename(s)

This command creates gzipped tar archive.

tar -xvf a.tar

This command extracts all files from the archive.

tar -xvZf a.tZ

This command extracts all files from the compressed archive.

tar -xvzf a.tgz

This command extracts all files from the gzipped archive.

tar -xvf a.tar fileordirectoryname

This extracts the given file or directory from the archive.

tar -xvZf a.tZ fileordirectoryname

This extracts the given file or directory from the archive.

tar -xvzf a.tgz fileordirectoryname

This extracts the given file or directory from the archive.

File Filters 73

3.5.2 cpio command
This is also used for backup purpose. Normally this command requires list of filenames as
input and the result is archive file which appears on the standard output.

Islcpio -0 > archivefilename

The above command creates archive having all the files of current directory.

cpio -i <archivefilename

This command restores all the files from the archive file.

cpio -i abc <archivefilename

This command restored the file abc from the given archive file.

cpio -i "* .c" <archivefilename

This command restores all the files with extension c from the archive file.
We can create the archive on the tapes or other devices also.

find. -ctime 2 -print Icpio -ov > /dev/rmtO

This command creates backup file on magnetic tape rmtO and stores all the files which
are created in the recent 2 days.

3.5.3 Zi.p and Unzip Commands
In Windows world, pkzip and pkunzip (or Winzip) are in very wide use for archiving; Their
counterparts in Unix world is zip and unzip. The archives created in Windows can be used on
Unix system with these commands and vice-versa.

To Create Archive

ziR zipfilename filestobezipped

Example

zip a.zip /home/rao/progs

This command creates an archive file a.zip by joining all the files of directory
Ihome/rao/progs.

To Extract files
unzip a.zip

74 Introduction to Linux : Installation and Programming

This commands extracts all file from a.zip file to current working directory.

unzip a.zip filename

This commands extracts file "filename" from a.zip file to current working directory.

3.5.4 File Compression
In Linux we compress files as and when required. Commands such as compress, gzip,
bunzip.

compress filename creates filename.Z
uncompress filename.Z creates filename

gzip filename creates filename.gz

gzip -d filename.gz creates filename

bzip2 filename creates filename.bz2

bunzip filename.bz2 creates filename

3.5.4 mount and umount commands

Unix operating system supports mount and umount commands to mount devices such as
HD's, FD's and CD's as and when required and do the operations. In order to carry out these
operations, user should have super user privileges. When we mount a device then the
directory tree available on that device becomes integral part of Unix directory tree such that
whatever operations we can do on any Unix files or directories can be carried out on this
mounted files and directories also. It is necessary that the device has to be mounted under
an empty directory. More over, only some types of file systems a Unix kernel allow to
mount under a directory. Please check the configuration files of your current kernel
capabilities (check /etc/filesystems in the case of Redhat Linux).

For example if we assume that on /dev/hdal partition Windows 95 is installed and we
want the same to be available under directory /mnt (usually /mnt is empty directory), then
execute the following command as a super user.

mount -t msdos /dev/hdal /mnt

Check for command.com file to check whether partition is mounted or not.

To umount the partition

umount /mnt

Now check for command.com file!.
Once a device is mounted, all the Unix commands such as cp, mv, rm can be executed on

the files in it.

File Filters 75

Please check for some messages such as "/dev/hdaS as mounted as /". Some of the
partitions are mounted during the mount time. Check files such as: /etc/fstab, /etc/mtab or
/etc/Vsftab.

3.6 Conclusions
This chapter discusses about variety of commands for processing files such as awk, grep,
cut, paste, diff, sed, etc.,. Also Unix permissions is explained in detail. Software patching
is also explained with lucid examples. In addition, backup commands such as tar, cpio are
explained in a lucid manner along with compression utilities.

4 Processes in Li n ux

4.1 Introduction
The boot process in Linux (in most of Unix variants) has two stages: the bootloader stage
and the kernel stage. In the following pages we describe booting process in general in Unix
and Linux specifically.

The main components of the bootloader stage are the hardware stage, the firmware
stage, the first-level bootloader, and the second-level bootloader. The booting process begins
when the hardware is powered on. after some initialization (power of self test, POST), control
goes to the firmware. Firmware, also referred to as "BIOS" on some architectures, detects
the various devices on the system, including memory controllers, storage devices, bus
bridges, and other hardware. The firmware, based on the settings, hands over control to a
minimal bootloader known as the master boot record, which could be on a disk drive, on a
removable media, or over the network. The bootloader may be available in the boot block of
bootable partition also. In BIOS setting, in what sequence drives are required to be checked
for this bootloader is specified. On those systems in which multiple operating systems are
installed, this bootloaders (such as LILa, GRUB, Windows NT loader, OS/2 Loader) will be
displaying a menu from which user can select which as they want to load now. Normal
usage is that if only one as is installed on the system bootstrap program is said to be
available in the MBR or boot block. Otherwise they are said to be having bootloader. For
example, if we install only DOS on a disk it contains 446 bytes long bootstrap program is
seen in the boot block. Where as if Linux is installed, bootloader such as LILa or GRUB is
available in boot area of the bootable partition [Chris Drake]. The actual job of transferring
control to the operating system is performed by the second-stage bootloader (commonly
referred to as simply the "boot loader"). This bootloader allows the user to choose the kernel
to be loaded, loads the kernel and related parameters onto memory, initializes the kernel,
sets up the necessary environment, and finally "runs" the kernel [G. Nutt].

The next stage of booting is the kernel stage, when the kernel takes control. It sets up
the necessary data structures, probes the devices present on the system, loads the
ne!;essary device drivers, and initializes the devices.

The kernel will begin initializing itself and the hardware devices for which support is
compiled in. The process will typically include the following steps.

• Detect the CPU and its speed, and calibrate the delay loop

• Initialize the display hardware

• Probe the PCI bus and build a table of attached peripherals and the resources they
have been assigned

• Initialize the virtual memory management system, including the swapper kswapd

Initialize all compiled-in peripheral drivers; these typically include drivers for IDE
hard disks, serial ports, real-time clock, non-volatile RAM, and AGP bus. Other
drivers may be compiled in, but it is increasingly common to compile as stand-alone
modules those drivers that are not required during this stage of the boot process.
Note that drivers must be compiled in if they are needed to support the mounting of
the root filesystem. If the root filesystem is an NFS share, for example, then drivers
must be compiled in for NFS, TCP/IP, and low-level networking hardware.

Processes in Linux n

• The kernel can then run the first true process (called /sbin/init. Depending on your
vendor and system, the init utility is located in either /etc or /sbin.) to the root
filesystem (strictly speaking, kswapd and its associates are not processes, they are
kernel threads)., although the choice can be overridden by supplying the boot=
parameter to the kernel at boot time. The init process runs with uid zero (Le., as root)
and will be the parent of all other processes. Note that kswapd and the other kernel
threads have process IDs but, even though they start before init, init still has process
ID 1. This is to maintain the Unix convention that init is the first process.

• This init process uses the ·configuration file /etc/inittab information and creates
terminal handling activity (process) and checks the integrity of file systems, mounts
file systems, sets up swap partitions (or swap files), starts system services ..

Content of /etc/inittab:

inittab This file describes how the INIT process should set up
the system in a certain run-level.

Author: Miquel van Smoorenburg,

Modified for RHS Linux by Marc Ewing and Donnie Barnes

Default runlevel. The runlevels used by RHS are:
0 - halt (Do NOT set initdefault to this)
1 - Single user mode
2 - Multiuser, without NFS (The same as 3, if you do not have networking)
3 - Full Multiuser mode
4 - unused

5 - X11
6 - reboot (Do NOT set initdefault to this)

id: 5: initdefault:

System initialization.
si: :sysinit:/etc/rc.d/rc.sysinit

IO:O:wait:/etc/rc.d/rc 0
11: l:wait:/etc/rc.d/rc 1
12:2:wait:/etc/rc.d/rc 2

13:3:wait:/etc/rc.d/rc 3
14:4:wait:/etc/rc.d/rc 4
15:5:wait:/etc/rc.d/rc 5
16:6:wait:/etc/rc.d/rc 6

78

Things to run in every runlevel.

ud: :once:/sbin/update

Trap CTRL-ALT-DELETE

Introduction to Linux : Installation and Programming

ca: :ctrlaltdel :/sbin/shutdown -t3 -r now

When our UPS tells us has failed, assume we have a few minutes

of power left. Schedule a shutdown for 2 minutes from now.

This does, of course, assume you have powered installed and your

UPS connected and working correctly.

pf: :powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"

If power was restored before the shutdown kicked in, cancel it.

pr: 12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"

Run gettys in standard

1: 2345: respawn :/sbin/mingetty ttyl

2: 2345: respawn :/sbin/mingetty tty2

3: 2345: respawn :/sbin/mingetty tty3

4: 2345: respawn :/sbin/mingetty tty4

5: 2345: respawn :/sbin/mingetty tty5

6: 2345: respawn :/sbin/mingetty tty6

Run xdm in runlevel 5

xdm is now a separate service

x: 5: respawn :/etc/Xll/prefdm -nodaemon

The above file contains records with specific structure. Here is an explanation of the them.

• The first field us just a descriptor or identifier and should kept as unique .

• The 2nd field is which runlevel(s) does this entry apply to.

A runlevel is a state for the system. Usually, you have runlevels 0,1,2,3,4,5,6 and
additional levels are also supported in other systems.

For example, runlevel 1 (or S) usually means a single shell running, as few processes as
possible, maybe no login, maybe just asking for root's password. While runlevel 5 may mean
6 logins in text mode, a graphical login, and a web server running. The system starts, when
init loads in an undefined state (sometimes called N), and then will switch to one runlevel or
another depending on what the runlevel argument to the bootloader to the kernel was, and
the contents of /etc/inittab.

Processes in Llnux 79

• The 3rd field seems to be some specific keyword that /sbin/init understands such
as wait, respawn, once, etc given as:

o boot - The process is started only on bootup and is not restarted if it dies. init
doesn't wait for it to complete running before continuing to the next command
and can run many processes simultaneously. This action is rarely used.

o bootwait - The process is started only on bootup, and init waits for it to finish
running and die before continuing. It doesn't restart the process once it finishes
or dies. Notice that line 2 of the listing employs bootwait with a utility to mount
and check file systems.

o off - If the process is currently running, a warning signal is sent and after 20
seconds, the process is killed by the dreaded kill -9 command. Line 16 shows
that when the run level is changed to 2 (multiple user), terminal 1 is killed. The
user who was logged on is logged off and must log on again - adding a
level of security that keeps the root user from changing run levels and then
walking away from the terminal, thereby giving access to anyone who happens
to sit there.

o once - When the specified run level comes, the process is started. init doesn't
wait for its termination before continuing and doesn't restart it if it dies. Like
boot, once isn't used very often.

o ondemand - This action has same meaning as respawn but is used mostly with
a, b, and c levels (user defined). See respawn, below, for more information.

o powerfail - The action takes place only when a power failure is at hand. A Signal
19 is the most common indication of a power failure. Usually, the only action
called by a powerfail is a sync operation.

o powerwait - When a power failure occurs, this process is run and init waits until
the processing finishes before processing any more commands. Again, sync
operations are usually the only reason for the action.

o respawn - This action restarts the process if it dies after it has been started. init
doesn't wait for it to finish before continuing to other commands. Notice in lines
8-15 that respawn is the action associated with the terminals. Once they are
killed, you want them to respawn and allow another login.

o syncinit - Not available on all systems, this action tells init to reset the default
sync interval, which is the interval, in seconds, between times the modified
memory disk buffers are written to the physical disk. The default time is 300
seconds, but it can be set to anything between 15 and 900.

o sysinit - Before init tries to access the console, it must run this entry. This
action is usually reserved for devices that must be initialized before run levels
are ascertained. Line 1 shows that the TCB - used for user login and
authentication - is initialized even before the console is made active, allowing
any user to log on.

o wait - This action starts the process at the specified run level and waits until it
completes before moving on. It is associated with scripts that perform run-level
changes. You want them to fully complete operation before anything else
happens. Notice that lines 4-7 use this action for every run level change.

• The 4th field the program/script that is to be called along with any parameters.

80 Introduction to Linux : Installation and Programming

Some the items in /etc/inittab are given and explained their use in the following
paragraphs.

si: :sysinit:/etc/rc.d/rc.sysinit

This line calls /etc/rc.d/rc.sysinit.

Also note that any "wait" lines will wait until the system has booted before they start.
This rc.sysinit loads hostname, starts system logs, loads keyboard keymap, mounts swap

partitions, initializes usb ports, checks file system, and mount the filesystems read/write.

After /sbin/init finishes with /etc/rc.d/rc.sysinit (which was specified by the "sysinit" line),
it then switches to the default runlevel (which is defined by the "initdefault" line in
/etc/inittab) .

Changing runlevels should leave any processes running that are in both the old and new
runlevels.

Scripts prefixed with S will be started when the runlevel is entered, eg /etc/rc5.d/S99xdm

• Scripts prefixed with K will be killed when the runlevel is entered, eg
/etc/rc6.d/K20apache

• Xll login screen is typically started by one of S99xdm, S99kdm, or S99gdm.

l: 2345: respawn :/sbin/getty 9600 ttyl

• Always running in runlevels 2, 3, 4, or 5
• Displays login on console (ttyl)

2:234:respawn:/sbin/getty 9600 tty2

• Always running in runlevels 2, 3, or 4

• Displays login on console (tty2)

13:3:wait:/etc/init.d/rc 3

• Run once when switching to runlevel 3 ..

• Uses scripts stored in /etc/rc3.d/

ca: 12345 :ctrlaltdel :/sbin/shutdown -tl -a -r now

• Run when control-a It-delete is pressed

Usually on those terminals which are defined in /etc/inittab, getty prompts for the user's
login name. Then, login prompts the user to type his/her password by printing a prompt. If
the user enters the password (which does not appear on the screen) and the password is
incorrect, the system responds with a generic message. In reality, The login command
accepts the password typed by the user and encrypts it using the same mechanism the
passwd command uses to put the password in the /etc/passwd file. If the encrypted values
match, the password is correct. Otherwise, the password the user types is incorrect. The
login command can't decrypt the password once it has been encrypted. When the password

Processes in Linux 81

is typed properly, the login process enters the next phase. The next phase of the process
starts after the user has typed the correct password for the login. This phase establishes the
environmental parameters for the user. For example, the user's login shell is started, and the
user is placed in the home directory. The init command starts the user's login shell as
specified in the /etc/passwd file. The user's initial environment is configured, and the shell
starts executing. Once the shell is started, the user executes commands as desired. When
the user logs off, the shell exits, init starts up getty again, and the process loops around.

To know What Is Running and How Do We Change It?
The -r parameter of the who command shows the run level at which your machine is
currently operating as well as the two most recent previous run levels. For example,

who -r
run level 2 May 410:072 1 0

The above command shows that the current run level is 2 and has been since May 4 at
10:07. On some systems, the three numbers to the right show the current run level, the
previous run level, and the next previous run level. On other systems, the three numbers
represent the process termination status, process lO, and process exit status.

Changing run levels requires root permission and can be done with either the init or the
shutdown command.

During system reboot, the bootloader stage is preceded by a shutdown of the previously
running system. This involves terminating running processes, writing back cache buffers to
disk, unmounting file systems, and performing a hardware reset.

The shutdown command, on the other hand, is usually in /usr/sbin. The init command is
very simple. It lets you specify a number behind it and the machine then changes to that run
level. For example

init 3

immediately begins changing the machine to run level 3.

The shutdown command interacts with init and offers more parameters and options. A -g
option lets you specify a grace period of seconds to elapse before beginning the operation
(the default is 60), -i signifies which run level you want to go to, and -y carries out the action
without asking for additional confirmation. Thus, to change to run level 3 in 15 seconds, the
command would be

shutdown -g15 -i3 -y

Once the command is typed, a warning message is broadcast telling users that the run
level is changing (this is true with init as well). The system then waits the specified number
of seconds - giving users the chance to save files and log off - before making the change.
Contrast this with init command, which tells users that the run level is changing and
immediately begins changing it without giving them time to prepare.

init 6
This command also make the system to shutdown properly.

82 Introduction to Linux : Irtstallation and Programming

4.2 Users Processes'
As mentioned earlier, PID of the init process is 1. This process starts terminal handling
processes (such as getty, mingetty, agetty, uugetty) on each of the lines mentioned in the
/etc/inittab file. Thus, these processes becomes child processes to init process. In Unix
system, child processes PID will be larger than parent. When a user log's in with legal user
name and password, getty process will die in place of it shell will become active. Thus, on
some terminals on which user is logged in shell processes will be running where as on other
terminals getty process will be running. We can check by running the commands "ps -al" or
"ps -AI".

The command lipS" displays details of the processes running on the current terminal and
which belongs to the user.

PID TTY
1175 tty1
1283 tty1

TIME CMD
00:00:00 bash
00:00:00 ps

The command "ps -AI" displays details of all the processes running on the system. For
brevity reasons, only few lines of the output only displayed here.

F5 UID PID PPID C PRI NI ADDR 5Z WCHAN TTY TIME CMD
45 0 1 0 1 75 0 - 343 schedu ? 00:00:04 init
45 0 1103 1 0 82 0 - 336 schedu tty 3 00:00:00 mingetty
45 0 1104 1 0 82 0 - 336 schedu tty4 00:00:00 mingetty
45 0 1105 1 0 82 0 - 337 schedu tty5 00:00:00 mingetty
45 0 1106 1 0 82 0 - 337 schedu tty6 00:00:00 mingetty
45 0 1175 1101 0 76 0 - 1091 wait4 tty 1 00:00:00 bash
45 0 1229 11021 85 0 - 1089 schedu tty 2 00:00:00 bash
4R 0 1284 1175081 0 - 791 tty 1 00:00:00 ps

Vie can observe from the above output that on terminals tty1 and tty2, we have logged
in. Thus, 5hell (bash) is running. Where as on other terminals, mingetty is running. Also,
please note that the command ps is also became as a process while gathering information
about the processes. Also, note that bash is in sleeping state while lipS" is running. Also, note
that PPID's of mlngetty and bash are same. That is both of them are child processes of init
process. When we login with valid user name and password mingetty will die and in place
bash (shell) becomes active and is also child to init process whose PID is 1.

When we run any piping command, each command will be made as a process.

Run the following command.

ps -Allmoreltail -4ltee aa

45 0 1229 1102 0 85 0 - schedu tty2 00:00:00 bash
4R 0 1326 1175 0 80 0 - 792 - tty 1 00:00:00 ps
05 0 1327 1175 0 76 0 - 926 pipe_w tty1 00:00:00 more
05 0 1328 1175 0 76 0 - 926 pipe_w tty1 00:00:00 tail
05 0 1329 1175 0 76 0 - 852 pipe_w tty1 00:00:00 tee

Processes in Linux 83

The programs written by the users also becomes a's processes when we start them.
When a user enters a command at the dollar prompt it will be first received by the shell then
it parses the command and identifies from where input has to be taken and to where output
has to be sent. Then it calls a system call known as forkO which in turn returns PID of a new
process which resembles the shell. Now shell assigns the duty to this new process to run the
command typed by the user and goes to sleeping state while the new child process starts
continuing the assigned duty. When it completes or encounters an error it indicates the
same to the parent (shell) and then dies. Thus, in Unix systems processes will be getting
created and completing the assigned duties.

For example, compile and run the following program "aa.c".

#include<stdio.h>
int mainO
{
/* This program is an infinite loop program doing nothing. */

To Compile

To Run

while(1);
}

gcc -0 aa aa.c

Aa or .faa

As the above program is infinite loop program we will not see dollar prompt. By pressing*
ALT + F2 or other function keys F3, F4, F5 or F6 we can get another terminal. Login into it
and run the "ps -AI" command. We find the following line.

ORO 1371 117596 85 0 - 335- tty 1 00:00:57 aa

"
The line shows that process "aa" is running on terminal tty1 since 57 seconds.
With the help of kill command we can kill any process. Of course, only legal owner of the

process can kill his process, exception for super user.
For example, you can run from another terminal the following command to kill the

process "aa". After executing command, press ALT + F1 to goto tty1 and their you will find
the message "Killed".

kill -9 1371

In the above command, the number 9 is known as a signal number. Usually, when we
press some key sequences such as ctrl +c or ctrl +d etc., some special SW signals are sent
to the current process. They are called as SW interrupts. Please do not confuse with events
of current days programming languages such as Java, etc.,. These SW interrupts or signals
are like processor interrupts (which arrives from peripherals and which runs their service
routines), and these signal's arrivals also makes processes to run some programs known
as signal handlers. For example, when we press ctrl + c, the process terminates. In Unix

·We asswne you are working character mode,

84 Introduction to Linux : Installation and Programming

terminology, this ctrl + c is also called as SIGINT. Similarly, there are many signals
available in Unix system and each signal has its default behavior. If one wants, we can make
to run some other program when a signal arrives to a process and this is known CiS signal
handling. We can make some signals to be ignored by a process. However, not all the signals
to be made ignored by a process. One such a signal is signal number 9 or SIGQUIT which is
called as uninterruptible signal. That is, it will be delivered to the process at any cost and the
default action is going to take place. This signal's default action is to kill the process. Thus,
when we run the above command, process "aa" which is an infinite loop program will be
terminated.

We can logout by killing the bash (shell) process. For example, ,

kill -9 1229

4.2.1 Background and Foreground Processes
Unix supports background processes. To run any command in background, simply we have
to append & while running the command. It displays terminal name and PID of the
background process in responses.

For example execute :

Is &

aa &

We can checkup that the process "aa" is running by typing "ps _AI" command.

A process is said to be in background process, if its parent shell can accept another
command to the user. That is its parent shell is Running state. Where as a process is said to
be in foreground process if its parent shell is in sleeping state. That is it can not take any
more commands from the user.

If we happened to have a dumb terminal (normally used in old Unix flavors) and you can
have only one terminal we have in it then it is not possible to enjoy the "benefit of multi
tasking as shell can normally take one command at a time. Thus, by using background
concept, we can start a program and put it in the background such that the shell can take
another command from the user.

However, if we can not make a program which requires interactive input to be in
background; we may get error message such as "stopped tty output".

Try at the command prompt the following command.

vi filename&

For a background process, key board (standard input) is not logically connected thus the
programs which requires Interactive input can be kept in the background. If we want them to
be run in background, then we have to create a data file which contains the required data for
this program and then start this program while specifying it is supposed to take necessary
data from the data file. For example in the following manner.

program <datfile &

Processes In Llnux 85

Also, output of a background process appears on to the same terminal to which it is
invoked. It may be possible that this output may mingle with current foreground process on
that terminal and may make the screen messy. In order to take care of this situation, the
background process can started such that its output is· sent to a file rather than to terminal
such as:

progl'am >output &

For example, consider the following program whose executable file name as "bb".

#include<stdio.h>
int mainO
{
while(l) printf(ll"); }

This program continuously prints l's. To know the effect of the output of a background
process, execute the following commands at command prompt one after another.

sleep 10
bb &
vi filename

We may find, even if we don't type anything, l's will be coming on to the vi editor screen.
We may find difficult to type anything into the file. Of course, when we save finally these l's
will not be saved into the file. However, vi editor working becomes clumsy because of this
background process. Thus it is better to redirect output of a background process.

In total, if we want a process which requires to be kept in background and needs
interactive input and gives standard output then the same can be started in the following
manner.

program <inputflle >outputfile at

For example, consider the following C program which takes three Integers and writes their
values.

#include<stdio.h>
void mainO
{
int x,y,z;
scanf("%d%d%d", &X, &y, &z);
printf("%d\n%d\n%d\n", x, y, Z);
}

Let the file name be a.c and by using the either of the following commands, its machine
language file a is created.

gcc -0 a a.c
cc -0 a a.c

86 Introduction to Linux : Installation and Programming

When we start this program a by simply typing a at the dollar prompt, it takes 3 values
and displays given values on the screen.

a>res &

We should get an error.

cat>res

10
20
11
I\d

This program takes three values interactively and writes the same into file res. You can
check by typing cat res.

a<res &

This should give results on the screen.

a <res >as &

This command takes necessary input from the file res and displays the results in the file
"as".

If we want a piping command to be kept in background, then for each component of the
piping sequence we have to append &.

command1&lcommand2&lcommand&

A background process gets killed if its parent (shell) dies. That if we logout. However, if
we start a background process prepended with nohup it is continue to run even if logout.

For example

nohup command &

Similarly, if we want a piping command we want run in background and continue to run
even after we log out then we have start the same in the following manner.

nohup command 1&1 nohup command2&1 nohup command&

4.2.2 at command

Unix also supports a facility known as at with the help of which we can instruct the Unix to
start a program at a specified time on a specified date. It needs a file having the commands
to be executed on that date and time.

Processes in Linux

For example, the file "xxx" contains the following statements.

aa>pp

Ipr pp

rm pp

To run the above commands on Nov 30 at 4pm the following command can be used.

at -f xxx 4pm Nov 30

To see what jobs are submitted to at command we can execute command "atq".

87

With the help of "atrm" command we can remove a submitted job from at commands
queue.

4.2.3 time command
Sometimes, we may need to know how much time a program is taking. This can be known
with the help of "time" command.

Example

time Is

This command displays three times to name, user time, system time and elapsed time.

• User time is the actual CPU time consum,ed by the users program.
• System time is the CPU time consumed by the OS on behalf of the users program

while administering the system such as allocating memory, resources, CPU etc.

• Elapsed time is the time elapsed between the instant of starting a program and till we
seen dollar prompt again.

User time is most important one. When we want to compare two programs we may use
their user times only.

A Note on Identification Numbers Used in Linux Systems

Process UIO and GIO

In order for the operating system to know what a process is allowed to do it must store
information about who owns the process (UID and GID). The UNIX operating system stores
two types of UID and two types of GID.

Real UIO and GIO
A process' real UID and GID will be the same as the UID and GID of the user who ran the
process. Therefore any process you execute will have your UID and GID.

The real UID and GID are used for accounting purposes.

Effective UIO and GIO
The effective UID and GID are used to determine what operations a process can perform. In
most cases the effective UID and GID will be the same as the real UID and GID.

However using special file permissions it is possible to change the effective UID and GID.
How and why you would want to do this is examined later in this chapter.

88 Introduction to Linux : Installation and Programming

4.3 Terminal Handling
Since its development, Unix systems are equipped with terminals which may be connected to
machine via serial lines such as RS232. These terminals may use different control sequences
while communicating with Unix system via serial line driver. This serial driver which may
perform some low-level conversions (handling "c, "d characters for flow control and
translating DEL and ERASE characters) on what we type from the terminal before it is passed
to the program which we are running. As there is no standard among the plethora of
terminals, a large part of satisfactory terminal emulation is carried out at the host operating
system.

Both "termcap" and "terminfo" contain some features for allowing programs to know what
Escape sequences to expect from a terminal type, although not every Unix program uses
these features. For example /etc/termcap contains speCifications about various terminals
which users can use to log into the system. This information is used by terminal-emulation
programs to adjust what the individual keys transmit.

The "term" and/or "TERM" environment variables are typically used to tell the system
which records to look up in term info or termcap. The man page for your user shell should
describe how these may be set.

You should be able to do at least

echo $TERM

to see the current setting.
To find out the serial-port/pseudo-terminal parameters, the "stty -a" command can be

used, e.g.,

stty -a
speed 38400 baud;
rows = 25; columns = 80; ypixels = 0; xpixels = 0;
eucw 1:0:0:0, scrw 1:0:0:0
intr = "c; quit = "I; erase = "?; kill = "u;
eof = "d; eol = <undef>; eol2 = <undef>; swtch = <undef>;
start = "q; stop = "s; susp = "z; dsusp = "y;
rprnt = "r; flush = "0; werase = "w; Inext = "v;
-parenb -parodd cs8 -cstopb -hupel cread -elocal -Ioblk
-crtscts -crtsxoff -parext
-ignbrk brkint ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl -iuelc
ixon -ixany -ixoff imaxbel
isig icanon -xcase echo echoe echok -echonl -noflsh
-tostop echoctl -echoprt echoke -defecho -flusho -pendin iexten
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -of del tab3

We can also use either of the following commands to know the terminal information.

stty
stty -everything

In the above commands output last line contains - before some wQfds are see indicating-
the respective terminal characters are set. Where as others are not set.

Processes in Linux 89

If we wanted to change terminal behaviors we can use command stty. For example, the
best way to set the number of rows and columns displayed is by using the "stty" command:

stty rows 24 cols 80

Also we can change "termcap" entry for a given terminal to achieve the same effect.

stty -echo

Now whatever we type at dollar prompt will not appear on the screen. If we enter the
following command then terminal characteristics will return to previous style.

sttyecho

For example try the following also.

stty -echo; cat >destfile; sttyecho

Now you can type whatever you want and press at the end Ad as usual. The destfile
contains what we have typed.

Try the following and identify what happens.

stty -echo; cat >destfile

Also, If we execute reset command (or stty sane) at the dollar prompt then terminal
behavior returns to previous style.

Run the following command sequences to know the effect of cbreak mode.
tty cbreak
cat
<type whatever you wanted>
I\d

We may find when we enter enter key afresh line will be-appearing.
For example when we execute the following command at the dollar prompt then end of

file (eof) become I\a.

stty eof \I\a

To see the effect try to create a file using cat command. By pressing ctrl + a we are able
to stop giving input to cat command.

cat >filename
Adsdasds
Asdkjdsa
Asdkjds
Adsds
I\a

90 Introduction to Linux : Installation and Programming

Similarly, we can make ctrl + b as ctrl + c, we can run the following command.

stty intr \"b

4.3.1 Reading Verrrry Long Lines from the Terminal
Sometimes, you want a very long line of input to write a file. It might come from your
personal computer, a device hooked to your terminal, or just an especially long set of
characters that you have to type on the keyboard. Normally the UNIX terminal driver holds
all characters you type until it sees a line terminator or interrupt character. Most buffers
have room for 256 characters.

If you're typing the characters at the keyboard, there's an easy fix: Hit CTRL-d every 200
characters or so to flush the input buffer. You won't be able to backspace before that pOint,
but the shell will read everything in.

Or, to make UNIX pass each character it reads without buffering, use stty to set your
terminal to cbreak (or non-canonical) input mode.
For example:

% stty cbreak
% cat> file
enter the very long line

[CTRL-c]

% stty -cbreak

Run the following command sequences to know the effect of raw mode. You may find cat
command not responding to "d and "c signals also!!

stty cbreak
cat

<type whatever you wanted>
Ad

While you're in cbreak mode, special keys like BACKSPACE or DELETE won't be
processed; they'll be stored in the file. Typing CTRL-d will not make cat quit. To quit, kill cat
by pressing your normal interrupt key - say, CTRL-c.

4.4 Conclusions
This chapter explains about processes in Linux. How to make a processes as background
and foreground is explained. How to kill a processes is explained giving emphasis to Linux
signals. At the end commands such as at, and time are explained. A brief outline of terminal
handling in Linux/Unix is also included.

5 Shell Programmin,g

5. 1 Introduction
Why Shell Programming? A working knowledge of shell scripting is essential to everyone
wishing to become reasonably adept at system administration, even if they do not anticipate
ever having to actually write a script. Consider that as a Linux machine boots up, init process
is initiated first then it executes the shell scripts in /etc/rc.d to restore the system
configuration and set up services. A detailed understanding of these startup scripts is
important for analyzing the behavior of a system, and possibly modifying it [Kernigham].

Writing shell scripts is not hard to learn, since the scripts can be built in bite-sized
sections and there is only a fairly small set of shell-specific operators and options to learn.
The syntax is simple and straightforward, similar to that of invoking and chaining together
utilities at the command line, and there are only a few "rules" to learn. Most short scripts
work right the first time, and debugging even the longer ones is straightforward. A shell
script is a "quick and dirty" method of prototyping a complex application. Getting even a
limited subset of the functionality to work in a shell script, even if slowly, is often a useful
first stage in project development. This way, the structure of the application can be tested
and played with, and the major pitfalls found before proceeding to the final coding in C,
C++, Java, or Perl. Shell scripting hearkens back to the classical UNIX philosophy of breaking
complex projects into Simpler subtasks, of chaining together components and utilities. Many
consider this a better, or at least more esthetically pleasing approach to problem solving
than using one of the new generation of high 'powered all-in-one languages, such as Perl,
which attempt to be all things to all people, but at the cost of forcing you to alter your
thinking processes to fit the tool.

When we want to execute some set of commands one after another without users
physical intervention and presence (batch operations), shell scripts are very handy.

Moreover, for small scale database applications where precision, speed and security is
little botheration, shell scripts are very preferable and SW project cost may tremendously
reduces.

Shell scripts are very much employed in developing automatic SW installation scripts and
for fine tuning the SW's installed.

When not to use shell scripts

• resource-intensive tasks, especially where speed is a factor (sorting, hashing, etc.)
• procedures involving heavy-duty math operations, especially floating point arithmetic,

arbitrary precision calculations, or complex numbers (use C++ or FORTRAN instead)
• cross-platform portability required (use C instead)
• complex applications, where structured programming is a necessity (need type

checking of variables, function prototypes, etc.)
• mission-critical applications upon which you are betting the ranch, or the future of

the company
• situations where security is important, where you need to guarantee the integrity of

your system and protect against intrusion, cracking, and vandalism
• project consists of subcomponents with interrocking dependencies
• extensive file operations required (Bash is limited to -serial file access, and that o' 'y'

in a particularly clumsy and inefficient line-by-line fashion)

92 Introduction to Llnux : Installation and Programming

• need multi-dimensional arrays
• need data struct!,res, such as linked lists or trees
• need to generate or manipulate graphics or GUIs
• need direct access to system hardware
• need port or socket I/O
• need to use libraries or interface with legacy code
• proprietary, closed-source applications (shell scripts are necessarily Open Source)

If any of the above applies, consider a more powerful scripting language, perhaps Perl,
TcI, Python, or possibly a high-level compiled language such as C, C++, or Java. Even then,
prototyping the application as a shell script might still be a useful development step.

Shell programs also called as shell scripts. In the simplest case, a script is nothing more
than a list of system commands stored in a file. If we want to execute a set of commands
many times repeatedly, we can write the same in a file and execute which saves the effort of
retyping that particular sequence of commands each time they are needed.

5.1.1 Invoking the script
Having written the script, you can invoke it by sh scriptname, or alternately bash
scriptname. (Not recommended is using sh < scriptname as this effectively disables reading
from stdin within the script.)

Much more convenient is to make the script itself directly executable with chmod.

Either
chmod 555 scriptname (gives everyone read/execute permission)

or
chmod +rx scriptname (gives everyone read/execute permission)
chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by ,fscriptname.
As a final step, after testing and debugging, you would likely want to move it to

/usr/local/bin (as root, of course), to make the script available to yourself and all other users
as a system-wide executable. The script could then be invoked by simply typing scriptname
from the command line.

It is shell programming practice in which line starting with #! at the head of a script tells
your system that this file Is a set of commands to be fed to the command Interpreter
indicated. The #! is actually a two-byte "magic number", a special marker that deSignates a
file type, or in this case an executable shell script . Immediately following the #! is a path
name. This is the path to the program that interprets the commands in the script, whether it
be a shell, a programming language, or a utility. This command interpreter then executes
the commands in the script, starting at the top (line 1 of the script), ignoring comments.

#!/bin/sh
#!/bin/bash
!/usr/bin/perl
!/usr/bin/tcl
#!/bin/sed -f
#!/usr/awk -f

Shell Programming 93

Each of the above script header lines calls a different command interpreter, be it /bin/sh,
the default shell (bash in a Linux system) or otherwise. Using #!/bln/sh, the default Bourne
Shell in most commercial variants of UNIX, makes the script portable to non-Linux machines,
though you may have to sacrifice a few Bash-specific features (the script will conform to the
POSIX sh standard).

#! can be omitted if the script consists only of a set of generic system commands, using
no internal shell directives.

Variables are at the heart of every programming and scripting language. They appear in
arithmetic operations and manipulation of quantities, string parsing, and are indispensable
for working in the abstract with symbols - tokens that represent something else. A variable is
nothing more than a location or set of locations in computer memory holding an item of
data.

Unlike many other programming languages, Bash does not segregate its variables by
"type". Essentially, Bash variables are character strings, but, depending on context, Bash
permits integer operations and comparisons on variables. The determining factor is whether
the value of a variable contains only digits

Shell programming supports prominently the following type of variables:

• Shell Variables
• Environment Variables
• Positional Variables

5.1.2 Shell Variables

X=Helio (no spaces before and after =)
The above statement at the bash prompt defines a shell variable X and assigns a value for

it. Anywhere, $X indicates the value of the variable X.
Very often shell variables are used to reduce typing burden. For example, in the following

examples after defining shell variable DIR the same can be used where ever we need to type
/usr/lib.

DIR=/usr/lib

Is $DIR displays listing of /usr/lib directory

cd $DIR moves to /usr/lib directory

Is $DIR/libm* .so displays all files /usr/lib which satisfies libm* .so model

5.1.3 Environment Variables
Variables that affect the behavior of the shell and user interface Note In a more general context,
each process has an "environment", that is, a group of variables that hold information that the
process may reference. In this sense, the shell behaves like any other process. Every time a shell
starts, it creates shell variables that correspond to its own environmental variables. Updating or
adding new shell variables causes the shell to update its environment, and all the shell's child
processes (the commands it executes) inherit this environment. Caution: The space allotted to
the environment is limited. Creating too many environmental variables or ones that use up
excessive space may cause problems.

94 Introduction to Linux : Installation and Programming

If we execute "env" command at the dollar prompt we may find the details of all the
environment variables defined in current shell. The output may look like

PATH=/bin :/sbin :/usr/local/bin
MANPATH=/usr/man :/usr/man/manl :/usr/man/man2
IFS=
TERM=VT100
HOST=darkstar
USER=guest
HOME=/usr/guest
MAIL=/var/spool/mail/guest
MAILCHECK=300

Environment variables are used by shell and other application programs. For example, the
value of MAILCHECK, i.e. 300 indicates that the mailer has to check for every 300 seconds
for new arrivals and intimate the same to the user. A dynamic business user can set this
variable value to a low value such that the mailer informs the user within the specified
time period about new mails arrival.

Similarly, PATH environment variable is used by shell in locating the executable file of the
commands typed by the user. System will check for the executable files in the directories of
the PATH variable and if found it will be loaded and executed. Otherwise, we may get error
"bad command or file not found".

Let the following C language file named "a.c":

#include<stdio.h>
mainO
{
printf("Hello\n");
}

To compile:

gcc -0 aa a.c

The file a.c is the C language source file and "aa" will become executable file.
Very often (if PATH is set properly) by simply typing "aa" at the $ prompt we can run the

above program. If in the value of PATH variable dot (". ") is not available then we may get
error "bad command or file not found" as the system is not in position to identify the file
"aa". By typing ./aa we can run program (this problem is very much seen Redhat L1nux
distributions) .

Similarly, if we created executable file name as "test" (normally, new users behavior)
then if we type "test" at the dollar prompt the above program may not run. This is because,
there exists a UNIX command "test". Thus when you try to start "test" command instead of
running our developed program, Unix command test runs. This may be also attributed to
PATH problem only. When we type test, the system will check first say program "test" in/bin
or /usr/bin then system and the same is executed. Thus, never our can run. Thus, we can
add . (dot) to PATH in the following manner such that the above problem is not seen . •

PATH=.: $ PATH

Shell Programming 95

If a script sets environmental variables, they need to be "exported", that is, reported to
the environment local to the script. This is the function of the export command.

Main difference between shell variables and environment variables is that the latter are
inheritable to sub-shells. Environment variables defined in a shell or modified in a shell are
visible in its sub-shells only. That is, parent shells do not see the environment variables
defined in its sub-shell or the modifications done to environment variables in the sub-shells.
Please note that when you see $ prompt, you are in bash shell.

Note

X=Hello
Y=How
echo $PATH
echo $X
echo $Y
export Y

bash
echo $PATH
echo $X
echo $Y
Z=Raj
export Z
echo $Z

csh
echo $PATH
echo $X
echo $Y
Z=Raj
export Z
echo $Z
exit or AC

Ad

echo $PATH
echo $X
echo $Y
Z=Raj
export Z
echo $Z

I I displays value of PATH environment variable
I I displays value of X shell variable
I I displays value of X shell variable
I I makes Y as environment variable

I I a sub-shell bash is created run ps -AI in other terminal to see
II displays value of PATH environment variable which is same as above

I I displays nothing as X shell variable is not inherited
I I displays how as Y is environment variable

I I displays Z variable value

II another sub shell is initiated
II displays value of PATH environment variable which is same as above

I I displays nothing as X shell variable is not inherited
I I displays how as Y is environment variable

I I displays Z variable value
I I to come out from C shell

I I to come out from bash sub-shell

II displays value of PATH environment variable which is same as above
I I displays X shell variable value
I I displays how as Y is environment variable

II displays nothing as Z is not visible

A script can export variables only to child processes, that is, only to commands or processes
which that particular script initiates. A script invoked from the command line cannot export
variables back to the command line environment. Child processes cannot export variables
back to the parent processes that spawned them.

96 Introduction to Llnux : Installation and Programming

5.1.4 Positional Parameters
These parameters are arguments passed to the script from the command line - $0, $1, $2,
$3 ... Here, $0 is the name of the script itself, $1 is the first argument, $2 the second, $3 the
third, and so forth. After $9, the arguments must be enclosed in brackets, for example,
${10},${11}, ${12}.

Also, the following parameters can be also used in shell scripts

$# number of command line arguments
$* list of command line arguments
$@ list of command line arguments
$$ PID of the current shell
$? Exit status of most recent command. Usually it is zero if the command is

successful.
$! PID of most recent background job

5.2 Programming Constructs
Like all programming languages, Shell also supports variety of programming constructs such
as loops, if conditions, arrays, etc. In the following sections, we explain the same.

5.2.1 if-then-else-fi condition
Like high level languages Shell supports if condition. The syntax is as follows:

• if [expr]
then

statements
fi

• if [expr]
then

statements
else

statements
fi

• if [expr]
then

statements
elif [expr]
then

statements
elif [expr]
then

statements
else

statements
fi

Shell Programming 97

The expressions can be using the variables as described or numbers or filenames and
relational operators. Any number of elif clauses can be used in third style which is commonly
called as nested if statement. However, it has to terminate with an else block.

if [$1 -gt $2]
then

echo $1
else

echo $2
fi

The above program takes two numbers along the command line and displays the
maximum of them.

Similar to -gt we can also use -ge, -It, -Ie, -ne, and -eq to compare numeric values of
two arguments.

File testing operations
Some times, we may required to find our whether given file is having reading permissions or
writing permissions, etc or we may required to check whether given name is a file or a
directory etc. The following can be used if conditions expression with the argument.

-r true if the file/directory is having reading permissions
-w true if the file/directory is having writing permissions
-x true if the file/directory is having execution permissions
-f true if the given argument is file
-d true if the given argument is directory
-c true if the argument if character special file
-b true if the given argument is block special file

if [-f $1]
then

echo Regular file
elif [-d $1]
then

echo Directory
elif [-c $1]
then

echo character special file
elif[-b $1]
then

echo Block special file

else
echo others

fi

98 Introduction to Linux : Installation and Programming

For the above shell script if we give /etc/passwd as argument we will get message
"Regular file". If we give /etc as argument we will get message "Directory". If we give
/dev/ttySO as argument we will get message "character special file". If we give /dev/hda1 as
argument we will get message "block special file".

Example:

String comparison
= is equal to

if ["$a" = "$b"]

= = is equal to

Example: if ["$a" == "$b"] This is a synonym for =.

Example: [$a == z*] # true if $a starts with an "z" (pattern matching)
Example: [$a == "z*"] # true if $a is equal to z*
Example: ["$a" == "z*"] # true if $a is equal to z*

! = is not equal to

Example:

if ["$a" ! = "$b"] #true if both the strings are different

This operator uses pattern matching within a [[...]] construct.

-z string is "null", that is, has zero length

Example: if [-z "$1"] #true if $1 is null

-n string is not "null".

Example: if [-n "$1"] # true if $1 is not null

• Write a shell program which takes two file names and if their contents are same then
second one will be deleted.

Ans

ifdiff$l $2
then

rm $2
fi

Shell Programming 99

• Write a shell script which says Good Morning, Good Evening, Good Afternoon
depending on the present time.

x=' datelawk '{ print $4 }' lawk -F: '{ print $1 }"

if [$x -It 3]
then
echo "Good Night"

elif [$x -It 12]
then
echo "Good Morning"

elif [$x -It 16]
then

echo "Good Evening"
elif [$x -It 22]
then
echo "Good Night"

fi

5.2.2 case construct
The following lines in file abc and is having world permissions and its name is entered in
/etc/profile file. What happens?

Ans:

case $LOGNAME in
guest) echo "It is common directory. don't disturb files" , ,

root) echo "Don't be Biased"; ;
*) echo "Don't waste your time on internet" ; ;

esac

If the username is guest first message will display at the login time, whereas root user logs
in, the second message is displayed otherwise the third one is displayed.
• Explain what happen if you run this shell script?

#!/bin/sh
usage= "usage:

-help display help
--opt display options"

case $# in
1)
case "$1" in
--help) echo "$usage"; exit 0; ;
--opt) echo" 1 for kill"; ;

exitO;;
*) echo "$usage"; exit 0;-;

esac

100 Introduction to Llnux : Installation and Programming

Ans:
If the above shell program name is assumed as XX, if you enter XX at command line without
arguments or with option --help It will display the following message.

--help display help
--opt display options

otherwise It will display the foliowlng message.

1 for kill

5.2.3 while loop
Like any other high level language, shell also supports loops which can be used to execute
some set of instructions repeatedly, probably in given number of times.

The following styles of while loop are used to execute a group of statements eternally.

while:
do

done
or
while true
do

done

The following while loop structure is used execute a group of statements as long as the
expression is true.

while [expr]
do

done

Here, the expr can be having relational or string comparison operations between
command line arguments, environment variables, shell variables or literals both numbers or
strings. As long as the expr is true the statements between do and done will be executed.

while command
do

done

Shell Programming 101

The above style of while loop execute the group of statements as long as the given
command is executed successfully.

while test command
do

done

This version of while loop also behaves similar to the above while loop.

• Write a shell program which informs as soon as a specified user whose name is given
along the command line is logged into the system.

while:
do

if wholgrep $1 >/dev/null
then

echo $1 is logged in
exit

else

fi
done

sleep 60

• Write a shell program which takes a source file name and other duplicate file names as
command line arguments and creates the duplicate copies of the first file with the
names given as subsequent command line arguments.

Solution 1:

while ["$2"]
do

cp $1 $2
shift

done

Solution 2:

X=$1
shift
while ["$1"]
do

cp $X $1
shift

done

102 Introduction to Linux : Installation and Programming

Solution 3:

X=$l
shift
while [$# -ne 0]
do

cp $X $1
shift

done

• Write a shell program which takes a source file name and directories names as
command line arguments and prints message yes if the file is found in any of the
given directories.

Solution 1 :

X=$l
shift
while ["$1"]
do
if [-f $l/$X]

then
echo Yes

exit
else
shift

fi
done
echo No

• The following program takes primary name of a C language program and it executes
the same if it compiles successfully otherwise automatically it brings the vi editor to
edit the C language program. This repeats till the program is corrected to have no
compile time errors.

while true
gcc -0 $1 $1.c
case "$?" in
O)echo executing

$1
exit ;;

*)vi $1.c ;;
esac
done

Shell Programming

• Write a shell script to lock your terminal till you enter a password.

trap" "123
echo terminal locked
read key
pw=xxxxxx
while ["$pw" = "xxxxxx"
do
echo Enter password
stty -echo
read pw
stty sane
done

5.2.4 until loop

until [expr]
do

done

103

Here, the expr can be having relational or string comparison operations between
command line arguments, environment variables, shell variables or literals both numbers or
strings. As long as the expr is false the statements between do and done will be executed.

until command
do

done

The group of statements between do and done will be executed as long the command is
failure.

• Write a shell program which informs as soon as a specified user whose name is given
along the command line is logged into the system.

until if wholgrep $1 >/dev/null
do
sleep 60

done
echo $1 is logged in

104 Introduction to Linux : Installation and Programming

• Write a shell program which takes a source file name and other duplicate file names as
command line arguments and creates the duplicate copies of the first file with the
names given as subsequent command line arguments.

Solution 1 :

until [$# -eq 1]

do

cp $1 $2

shift

done

Solution 2 :

X=$l

shift

until [$# -eq 0

do

cp $X $1

shift

done

• Write a shell program which takes a source file name and directories names as
command line arguments and prints message yes if the file is found in any of the
given directories.

X=$l

shift

until [$# -ne 0]

do

if [-f $l/$X]

then

else

shift

fi

done

echo No

echo Yes

exit

<I

Shell Progl'llmmlng 105

• The following program takes primary name of a C language program and it executes
the same if it compiles successfully otherwise automatically it brings the vi editor to
edit the C language program. This repeats till the progr?m is corrected to have no
compile time errors.

until gcc -0 $1 $1.c
vi $1.c
done
echo executing
$1

5.2.5 for loop

for var in list
do

done

• What is the output of

for x in .
do
Is $x

done

Ans: lists all file names in P. W.D.

• What is the output of

for x in *
do

Is $x
done

Ans: lists all file names in P.W.D.

• What is the output of

for x in ..
do

Is $x
done

Ans : lists all file names of parent directory of P.W.D ..

106 Introduction to Linux : Installation and Programming

• What is the output of the following program

IFS=#

for x in .# ..

do

Is $x

done

Ans: lists file names in P. W.D and its parent directory.

• Write a shell program which takes a source file name and other duplicate file names as
command line arguments and creates the duplicate copies of the first file with the names
given as subsequent command line arguments.

X=$l

shift

for Yin $*

do

cp $X $Y

shift

done

• Write a shell program which takes a source file name and directories names as command
line arguments and prints message yes if the file is found in any of the given directories
else prints no.

X=$l

shift

forY in $*

do

if [-f $Y/$X]

then

fi

done

echo No

echo Yes

exit

Shell Programming

• What does the following script does?

a="$l"

shift

readonlya

for 1 in $*

do

cp $a $1

shift

done

107

Ans: - makes the first command line argument as readonly. Then duplicates of the same
will be created with the names $2 $3 ... and so on.

• What is the output of following shell script.

set 'who am i'

for in i *

do

mv $i $i.$1

done

Ans: - it adds username as extension to files of P.W.D.

• What does the following shell script.

for x in 'Is'

do

chmod u=rwx $x

done.

Ans: - changes permissions of files in P.W.D as rwx for users.

• What does the following shell script does.

for x in *.ps

do

compress $x

mv $x.ps.Z /backup
done

Ans : - It compresses all postscript files in P.W.D and moves to /backup directory.

108 Introduction to Linux : Installation and Programming

.'>. What does the following shell script does.

for i in $*

do

cc -C $i.c

done

Ans : -creates object files for those c program files whose primary names are given along
the command line to the above shell script.

• What does the following shell script does.

for i in * .dvi

do

dvips $i.dvi I Ipr

done

Ans : - It converts all dvi files in P.W.D and converts to postscript and redirects to printer.

• Explain what happens if you run the following shell script.

1=1
for i in $*
do
J=I
for j in $*
if [$1 -ne $J
then

if diff $i $j
then

rm $j
else

J=' expr $J + 1 '
fi

fi
done
1=' expr $1 + l'
done
echo $1

Ans : Takes a set of file names along the command line and removes if there exists
duplicate files.

Shell Programming 109

• Write a shell program such that files (only) of P.W.D will contain PID of the current
shell (in which shell script is running) as their extension.

for x in 'Is'

do

if [! -d $x]
then

mv $x $x.$$
fi

crone

• Two files contains a list of words to be searched and list of filenames respectively.
Write a shell script which display search word and its number of occurrences over all
the files as a tabular fashion.

echo "Word Filename Occurrences"
for x in 'cat $filel '

do
for y in 'cat $file2'

do
1=0

for z in 'cat $y'
do

done

if ["$x" == "$y"]
then

1=' expr $1 + 1 '
fi

echo $x $y $1
done

• Two files contains a list of words to be searched and list of filenames respectively.
Write a shell script which qisplay search word over all the files and display as a table
with yes or !lo for each word and file combination respectively.

echo "Word Filename Occurrences"
for x in 'cat $filel '

do

done

for y in 'cat $file2'
do

done
echo $x $y $1

110 Introduction to L1nux : Installation and Programming

• Write a shell script which accepts in command line user's name and informs you as
soon as he/she log into system.

uname=$l

while:

do

who I grep "$uname">/dev/null

if [$? -eq 0]

then

echo $uname is logged in

exit

else

sleep 60

done

• Write a shell script which lists the filenames of a directory_(reading permissions are
assumed to be available) which contains more than specified no of characters.

read size

foreach x

do

y=' wc -c $x'

if [$y -gt $size]

echo $x

fi

done

• Write a shell script which displays names of c programs which uses a specified
function.

read functname

for prog in *.c

do

if grep $functname $prog

then

echo $prog

fi

done

Shell Programming

• Write a shell script which displays names of the directories in PATH one line each.

Ans:

IFS=:

set' echo $PATH'

for i in $*
do

echo $i

done

IFS=:

for i in $PATH

do

echo $i

done

111

• A file (ABC) having a list of search words. Write a program that takes a file name as
command line argument and print's success if at least one line of the file contains all
the search words of ABC otherwise display failure.

cat $1 I
while read xx

do

FLAG=l

for y in 'cat ABC'

do

if ! grep $y $xx

then

FLAG=O

break

fi

done

if $FLAG -eq 1

then

echo "SUCCESS"

exit

fi

done

echo "FAILURE"

112 Introduction to Linux : Installation and Programming

• Write a shell script which removes empty files from PWD and changes other files time
stamps to current time.

for x in .

do

if [-f $x]

then

if [-s $x]

then

else

fi

fi

done

touch $x

rm $x

* Write a program to calculate factorial value

#!jbin/sh

factorialO

{

if ["$1" -gt "1"]; then

i=' expr $1 - l'

j = 'factorial $i'

k=' expr $1 * $j'

echo $k

else

echo 1

fi

}

while:

do

echo "Enter a number:"

read x

factorial $x

done

Shell Programming

• Write a program which reads a digit and prints its BCD code.

#!/bin/sh

convert_dig itO

{

}

case $1 in

0) echo "0000 \c" ;;

1) echo "0001 \c" ;;

2) echo "0010 \c" ;;

3) echo "0011 \c" ;;

4) echo "0100 \c" ;;

5) echo "0101 \c" ;;

6) echo "0110 \c" ;;
7) echo "0111 \c" ;;

8) echo" 1000 \c" ;;

9) echo "1001 \c" ;;
*) echo

echo "Invalid input $1, expected decimal digit"
.,

"
esac

decimal=$l
stringlength=' echo $decimal I wc -c'

char=l

while ["${char}" -It "${stringlength}"]

do

convert_digit' echo $decimallcut -c ${char}'

char=' expr ${char} + l'
done

echo

113

* Write a program which reads a filename along the command line and prints
frequency of the occurrence of words.

#!/bin/sh
Count the frequency of words in a file.

Syntax: frequency.sh textfile.txt

114

INFILE=$l

WORDS=/tmp/words. $$. txt

COUNT =/tmp/count.$$. txt

if [-z "$INFILE"]; then

Introduction to Linux : Installation and Programming

echo "Syntax: 'basename $0' textfile.txt"

fi

echo "A utility to count frequency of words in a text file"

exit 1

if [! -r $INFILE]; then

fi

echo "Error: Can't read input file $INFILE"

exit 1

> $WORDS
> $COUNT

First, get each word onto its own line ...

Save this off to a temporary file ($WORDS)
The "tr '\t' , "' replaces tabs with spaces;

The "tr -s ' 111 removes duplicate spaces.

The "tr ' , '\n' replaces spaces with newlines.

Note: The "tr "[:punct:]"" requires GNU tr, not UNIX tr.
cat $INFILE I tr "[:punct:]" , , I tr '\t' , , I tr -s ' , I tr' , '\n' I while read f

do

echo $f > > $WORDS

done

Now read in each line (word) from the temporary file $WORDS '"

while read f
J

do

Have we already encountered this word?

grep -- " ${f}$" $COUNT > /dev/null 2>&1

if ["$?" -ne "0"]; then

fi

No, we haven't found this word before ... count its frequency
NUMBER=' grep -cw -- "${f}" $WORDS'

Store the frequency in the $COUNT file

echo "$NUMBER $f' > > $COUNT

,done < $WORDS

Shell Programming

Now we have $COUNT which has a tally of every word found, and how

often it was encountered. Sort it numerically for legibility.

We can use head to limit the number of results - using 20 as an example.

echo "20 most frequently encountered words:"

sort -rn $COUNT I head -20

Now remove the temporary files.

#rm -f $WORDS $COUNT

5.2.6 Arrays

115

A useful facility in the C-shell is the ability to make arrays out of strings and other variables.
The round parentheses' (..)' do this. For example, look at the following commands.

set array = (abc d)

echo $array[l]

a

echo $array[2]

b

echo $array[$#array]

d

set noarray = ("a b cd")

echo

abcd

echo $noarray[$#noarray]

abcd

The first command defines an array containing the elements' abc d'. The elements of
the array are referred to using square brackets '[.. J' and the first element is '$array[lJ'.
The last element is '$array[4J'. NOTE: this is not the same as in C or C++ where the first
element of the array is the zero'th element!

The speCial operator' $#' returns the number of elements in an array. This gives us a
simple way of finding the end of the array. For example

echo $#path

23

echo "The last element in path is $path[$#path]"

The last element in path is .

116 Introduction to Llnux : Installation and Programming'

Bash arrays
The original Bourne shell does not have arrays. Bash version 2.x does have arrays, however.
An array can be assigned from a string of words separated by white spaces or the individual
elements of the array can be set individually.

colours=(red white green)
colou rs[3] = "yellow"
An element of the array must be referred to using curly braces.
echo ${colours[l]}
white

Note that the first element of the array has index O. The set of al\ elements is
referred to by ${colours[*]}.
echo ${colours[*]}
red white green yel\ow
echo ${#colours[*]}
4

As seen the number of elements in an array is given by ${#colours[*]}.

5.3 Conclusions
In • this chapter shell programming is explained in detail. It emphasizes the need for shell
programming and its limitations. Shell constructs such as if, while, until and for loop etc., are '
explained. How arrays can be used in shell also dealt in a nutshell fashion. Also, user configuration
is explained in detail.

6 Debian Linux Installation Guidelines

6.1 Installing Debian Linux
This material is taken from www.aboutdebian.com/instaIl3.htm and is under GNU public license.
Debian allows you to select from several different "flavors" of installs (compact, vanilla, etc.).
We'll be using the vanilla flavor in this procedure because it offers the widest variety of driver
support.

The procedure below does a very basic OS install. This keeps things simple, results in a more
secure configuration, and allows you learn more. Another advantage is that it doesn't clutter up
memory with unnecessary processes. The main knock against Debian over the years has been
it's installation routine. They're working on making it better but it still has a ways to go before it
compares with the install routines of the commercial distros.

Always only try to install the latest stable release of Debian. The second most
important things is to gather the following details which are essential while configuring X
windows.

• Monitor details (Horizontal Sync, Vertical Refresh, Resolutions permitted).
• Display card details (Video Memory supported, Video chipset, Other features).
• Keyboard type (PS/2, USB, Locale?).
• Mouse type (PS/2, USB, Scroll?).
• Also decide what resolutions and colour depth we want to run the system on.

We will need to know it to select the appropriate XFree86 video "server". A list of appropriate
XFree86 servers for most supported video cards can be found at:

www.xfree86.org/4.1.0/Status.html

While it is possible to set up Debian on a second partition of an existing system and set
up a dual-boot configuration, we wouldn't recommend it if this is our first time installing
Linux. In order to set up a dual-boot we'll need to over-write the MBR (Master Boot Record)
of our hard-drive, and if we mess that up we could lose access to our entire system.

The options we select in this procedure are more appropriate for a server system
(external Internet server or internal file server). One thing we may want to check before we
get started is in the BIOS setup of our system. Some systems have a "PnP OS" option in the
BIOS. Make sure this is set to No before we get started.

Now that you've got everything you need you can go to the system you'll be installing
Debian on and begin the installation procedure.

1. Insert CD #1 into the CD-ROM drive and boot the system off of it. The Welcome screen
appears with a boot: prompt at the bottom. At this prompt, type in:

vanilla

and hit Enter. The Release Notes screen is displayed with Continue highlighted so
hit Enter and the Installation Menu will appear.

118 Introduction to Linux : Installation and Programming

The Installation Menu has two parts - upper area has a Next: and Alternate:
and possibly an Alternatel: selection - lower part is the steps that we will
progress through using the Next: selection.

2. If our hard-disk has existing partitions blow them away now

• Arrow down to Alternatel: Partition a Hard Disk and press Enter to run
the cfdisk partitioning utility. If we are installing Debian onto the first hard-
drive, highlight /dev/hda (for IDE drives) or /dev/sda (for SCSI drives). If
we only have one hard-drive it will already be highlighted. Pressing Enter will
display a screen about Lilo limitations. If we have an older system (which will
have an older BIOS) we should read this.

• Pressing Enter with Continue highlighted will start cfdisk and the existing
partitions will be displayed. (The up and down arrow keys will highlight
partitions in the upper part of the cfdisk display. The left and right arrow keys
highlight the available menu selections in the lower part of the display.) Use
the arrow keys to highlight them and select Delete. After all partitions have
been deleted, be sure to select the Write selection to update the
partition table or nothing will change.

• After writing the updates to the drive's partition table we will be back at
caddis's main screen. Highlight the Quit selection and press Enter to return to
the installation menu.

• When you use cfdisk to remove existing partitions you "jump ahead" in the
installation steps so you'll have to take a step back at this pOint. Back at the
installation menu, arrow down to Configure the Keyboard and press Enter.
This will put you back at the correct place in the installation routine so go to
the next step in this procedure.

3. With the Next: Configure the Keyboard highlighted, press Enter and u.s.
English (QWERTY) will be highlighted. Just press Enter if this is your desired
selection and you'll be returned to the installation menu with the Next: step
highlighted.

4. This next step partitions the hard-drive. With the Next: Partition a Hard Disk
selected press Enter.

o The first screen displays the list of connected hard-drive(s). Usually there's
only one drive and it's already highlighted. If y"ou have more than one IDE
drive select /dev/hda for IDE drives or /dev/sda for SCSI drives and press
Enter.

o The LILa warning about 8-gig or larger drives on older systems with an older
BIOS is displayed with Continue highlighted so just hit Enter to start cfdisk.

Note: The top part of the cfdisk display lists the partitions and free space and you
use the up and down arrow keys to select those. The lower part of the display are
the available menu options and you use the left and right arrow keys to select
those.

o You should have a single line that says Pri/Log Free Space with the total
free space on the disk displayed on the right. Right arrow over to the New
selection and press Enter.

Note: You need to create a root partition and a swap partition (for virtual memory).
You typically want a swap partition with a size that is double the amount of RAM in
your system. For example, if you have 64 meg of RAM, you'll want a swap partition
that's 128 meg in size. Be sure to set a root partition size which leaves enough
free space for the desired-size swap partition.

Debian Llnux Installation Guidelines 119

Note also: If you have a large disk, you may want to leave a gig or two free for
partitioning as other file types. As you will see, cfdisk can create a huge variety of
partitions and you may want to try creating a FAT16 (DOS), Win9S (FAT32), or NTFS
partition later to experiment with exchanging files with other platforms.

o With Primary highlighted press Enter but don't accept the default
partition size value. This default is the entire disk and you won't have any
room left for a swap partition. Enter a size in megabytes using the
considerations mentioned above (3000 MB in my example).

o Once you've entered a value and press Enter you'll be given options as to
where to locate the primary partition. Accept the default Beginning option
and press Enter and the new partition will be displayed.

o Press the down arrow key to highlight the free space and use the right arrow
key to highlight the New selection and press Enter and again accept the
Primary selection by pressing Enter.

o The default partition size value is whatever disk space remains. Enter the
desired size of your swap partition (I used 2S6 due to my system having
128 meg of RAM) and press Enter. You will again be presented with the
location selection and you can just accept Beginning and press Enter.

o With this new partition highlighted, arrow over to the menu selection Type
and press Enter which will display some of the different partition types cfdisk
supports. Note at the bottom of the screen is a prompt that says Press a
key to continue and when you do even more partition types will be
displayed.

o At the bottom of this second screen of partition types you'll see the Enter
file system type: with the value defaulted to S2. This is the Linux Swap
type which is what we want to just hit Enter.

o You should now have listed the root partition, the swap partition, and any
free space remaining. Be sure to arrow over to the Write menu
selection and press Enter so that all your changes get written to the disk's
partition table.

o Once the partition table is updated arrow over to the Quit selection and
press Enter to exit out of cfdisk and return to the installation menu.

5. The installation menu will automatically highlight the Initialize and Activate a
Swap Partition (hda2) so you can just press Enter. If you want to scan for bad
blocks (a good idea even with new drives) Tab to Yes and press Enter, and then
answer Yes at the Are you sure? prompt.

6. You are then prompted to Initialize the Linux Native partition (the first partition
you created - hda1). When you select to do this you are asked if you want to scan
for bad blocks. If you do, Tab to Yes (this could take quite a long time with a
large partition) or you can accept the default No and press Enter. Then answer Yes
at the Are you sure? prompt. Then answer Yes to the prompt to mount the root
filesystem.

7. The next item in the installation menu is Install Kernel and Driver Modules. The
installation routine detects that you are doing a CD-ROM install and asks you if you
want to use this drive as the default installation medium. Accept the default Yes to
this by pressing Enter.

S. Configure Device Driver Modules is where you are given the chance to load
additional drivers. A message about loaded drivers appears with Continue already
highlighted so just press Enter.

You are then presented with a list of module (driver) categories. Each category
has a bunch of modules listed and you have to highlight them and press Enter to

120 Introduction to Llnux : Installation and Programming

install them. If you are prompted for any "Command line arguments" just leave it
blank and press Enter.

Install the listed modules from the following categories. Don't try and install any
hardware drivers for hardware that isn't installed and ready.

o net - select ppp support (useful for more than just modems) and if you're
connecting your system to a network select your NIC driver if it's listed.
Many times it's eaSy to figure out which driver you need because the driver
name coincides with the name of the NIC. However this is not always the
case. The 'driver is often based on the chipset used by the card, not the card
manufacturer or model. In the table below (Table 6. 1) are some common
NICs and the driver you need for them.

Note: Many drivers will prompt you for command line options. If you have a good
hub or switch and a decent card, you should not have to enter any command-line
options for the cards to work. They auto-negotiated a 100 mb, full-duplex connection.

Table 6.1 Common NIC cards and their drivers under Linux.

NIC Driver

3CS09-B (ISA) 3cS09
3C90S (PCI) 3cS9x
SMC 1211 rtl8139
SiS 900
Allied Telesyn AT2SS0

SMC 8432BT tulip
SMC EtherPower 10/100
Netgear FX31
Linksys EtherPCI
Kingston KNT40T

'Kingston KNE100TX
D-Link DFESOOTX
D-Link DFE340TX
D-Link DE330CT

Many other cards use the pcnet32 or lance drivers. If your NIC is not one of
the ones listed above you may find it, and its corresponding driver name, in the
Ethernet HOWTO list.

Note that We had problems using some SMC cards (9432 in particular) and got
errors saying "too much work at interrupt" and the card does not work properly.
Your safest bet is to use a 3Com 3CS09-B (ISA) or 3C90S (PCI) card. They're
widely supported,

ipv4 - The following modules are for a system which would be connected to the
Internet for firewall or proxy capability (but not needed if this will be a network file
server). For our purposes, select the following:

• ip_masq_autofw - kernel support for firewall functionality
• ip_masq_ftp - (same as above)
• ip_masq_irc - (same as above)
• ip_masq_mfw - (same as above)
• ip_masq_portfw - (same as above)
• ip_masq_raudio - (same as above)

Debian Linux Installation Guidelines 121

9. fs - The following are modules you'd want if this would be a system which is not
going to be directly connected to the Internet such as an internal file, print, or
application server. For our purposes, select all of the following:

o binfmt_aout - for backward compatibility
o binfmt_misc - (same as above)
o nfs - for UNIX/Linux network file storage
o nfsd - (same as above)

(Note that lockd is selected automatically with nfs.)
Tip: If you didn't see the above ipv4 and fs selections listed it's likely because

you didn't enter "vanilla" at the start of this procedure. You'll want to start the
installation over at Step 1.

10. Because you selected net modules, the next step in the installation menu is to
Configure the Network.

o Enter a hostname for your system. If this is gOing to be an Internet server,
use a name that describes its function (ex: "www" or "mail"). If it's going to
be in an internal domain in your company, use a name that uniquely
identifies it. If this is going to be a home Web/e-mail server using dynamic
DNS you'll want to pick something that's really unique (something that isn't
already being used by anyone else using the same dynamic DNS service). If
none of these apply, you can just accept the default "debian" name.

o Select the No response to the question asking you if you want to use DHCP
or BOOTP.

Next you have to enter an IP address for your system. If you're installing this
machine on an existing network, MAKE SURE IT'S AN AVAILABLE IP ADDRESS!.
If you choose an IP address that's used by another system you'll cause all kinds
of problems. (You can use a different system to try and ping the address you
plan to use to make sure there are no replies to it.) If you don't know what IP
address to use don't accept the default since it's commonly assigned in home
networks.

Note: If you're installing this machine on an existing network, even a home
network, try this:

Go to a Windows machine that's also on the network
Open a DOS window
At the DOS prompt type in winipcfg or ipconfig (one of them should work)

and see what the IP address of the machine is
Think of an address for your Linux system where the first three "octets" are

the same. For example, if the Windows machine has an address of
192.168.10.23, the address for you Linux machine should be 192.168.10.xxx
(you make up a number for "xxx" from 1 to 254)
Try to ping the number you come up with. For example, if the number you

come up with for xxx is 45, at the DOS prompt type in ping 192.168.10.45
and make sure there are no responses to the ping. This means the address
isn't being used by another system so you can use it for your Linux system.

o The subnet mask will be automatically calculated for you based on the
class of the IP address you entered and it should be OK as long as you're
not on a subnetted LAN.

o Enter a gateway address if you know what it is (the default route off your
network). If it's a home network you probably not have a gateway
(unless you have a cable/DSL router). Don't just accept the default entry

122 Introduction to Linux : Installation and Programming

as a system that's not a gateway may already have this address. The
procedure above using a Windows system already on the network may
display a default gateway address. If not, just back-space out the default
value and press Enter leaving the field blank.

o You will then be prompted for a domain name. Enter your domain name
if you already have one. If you're just playing around, use your last
name (for example smith.net). You'll see why on the Internet Servers
page. If you accepted the default "debian" host name earlier, your
system will then be referred to as "debian.smith.net". Don't worry about
conflicting with a real domain that may have that name since this
machine won't have a DNS record created on any ISP's DNS server.

Note: There are up to three types of "domains" to consider when you are asked for
a domain name in Linux. If this will be a system in your Internet domain space,
naturally you would use that name. Companies can also set up an internal domain
space which has the same type of naming hierarchy as the Internet domain naming
system. This type of domain name can be anything you want because it is not visible
to the outside world nor do you have to "register" the name with any domain naming
authority. In other words, a company can have a public (Internet) domain name
(registered through someone like Network Solutions) and a private (internal) domain
name. They can be the same or they can be different.

The third type of domain are familiar to those who work with Windows NT
networks. These domains only have a single-word domain, not the dotted hierarchy
found on the Internet and in internal Linux/UNIX networks. Linux does not support
these type of domains. However, starting with Windows 2000, Windows servers also
started using the dotted hierarchy domain naming convention. If you have any such
Windows servers on your network, your Linux system can be put into this domain
space (I.e. be given the same dotted domain name as your Windows 2000 servers).

o At the prompt for a DNS address, enter the address of one of your ISP's
DNS servers. (Most companies don't have heir own DNS servers and will
usually use the DNS servers of their ISP or WAN service provider.) Here
again you don't want to just accept the default because that address may
be used by another machine on the network which isn't a DNS server. If
you're not sure of your ISP's DNS server addresses, just backspace out
the existing address and leave it blank.

Note :, If you enter your ISP's DNS server address, some network-related functions
(like establishing a telnet session) may operate slowly until your get your system
connected to the Internet so it can "see" the ISP's DNS server. However, this is the
only viable entry to use on networks that don't have their own DNS server.

11. Back at the installation menu Install the Base System is highlighted so just press
Enter and the file copying and extraction will begin.

12. The next three selections refer to setting up the system to boot up.

o Select Make System Bootable
o Select the default Install LILO in the MBR and press Enter when the

"Securing LILO" message appears
o You don't need to Make a Boot Floppy so arrow down to Alternate:

Reboot the System press Enter and answer Yes to the confirmation.

Be sure to remove the CD as the system reboots to force it to boot off hard-
drive. This next phase of the as installation will install some basic software and
configure some basic OS operations. You may see some errors messages in all of
the text that's displayed during the boot process. Don't worry about those at this
point.

Deblan Llnux Installation Guidelines 123

Once the system reboots you'll have to press Enter at the screen saying that
Debian is installed and the configuration process begins.

13. Tab over to the No selection when the prompt appears asking you if your hardware
clock is set to Greenwich Mean Time.

14. For the time zone select your geographic area (if you're In the US, choose "US" and
not "America") and press Enter. Then select your correct time zone and press Enter.

15. The next series of dialogs will be password and account related. Note that the cursor
will not move and nothing will be displayed when you enter passwords.

o First you'll be asked if you want to use MDS passwords. Use default No
selection.

o Next you'll be asked if you want to use shadow passwords. Use the
default Yes selection.

o You'll have to press Enter about an informational message about root
passwords. Then you'll be prompted to enter, and re-enter, a password
for the root (super-user) account. REMEMBER IT.

o Finally you'll be asked to create a non-root user account entering the
username, full name, and password. Create one for yourself using your
first name.

16. When asked if you want to remove the PCMCIA files accept the default Yes answer.
17. When asked Do you want to use PPP to install the system? use the default No

answer.
18. At this point the apt (package installer) configuration begins. Before continuing,

place the CD #1 back in the drive. What apt is going to do is scan the CDs and
create an inventory of the packages on them and store it in a database for later use.

19. After the CD #1 is scanned it will ask if you have another CD to scan. Pop in CD #2,
Tab to the Yes selection and press Enter. Repeat this process until ali seven CDs
have been scanned.

20. Once CD #7 has been scanned, remove it and put CD #1 back in the drive. This
time, accept the default No to the prompt asking if you have another CD to scan and
press Enter.

21. When prompted to add another apt source accept the default No answer and
press Enter.

22. Answer No to the prompt about using security updates from security.debian.org.
(We'll take care of this later.)

23. The next window to appear is the System Configuration window where you are asked
if you want to run the tasksel task selection utility. Accept the default Yes by
pressing Enter.

24. The Task Installer appears with a list of task packages you can select using the space
bar. Only select following at this time:

o X window system
o C and C++
o Tab to Finish and press Enter.

25. Accept the default No to running dselect at this time.

26. At this point a list of packages to be installed are presented with a prompt asking "Do
you want to continue?" with Yes being the default so just press Enter.

27. You'll be prompted to insert CD#l but it should already be in the drive so just press
Enter.

124 Introduction to Llnux : Installation and Programming

28. Just press Enter when the informational message about "kernel link failures".

29. Accept the default No answer to configuring less.
30. Accept the default No answer to adding a mime handler.

31. Next you'll have to select a locale for those applications that use this information. If
you are in the US, arrow down to the en_US ISO-8859-1 selection and press the
Space Bar to select it. Then Tab to OK and press Enter.

32. Accept the default Leave alone for the default locale selection by pressing Enter

33. Press Enter at the informational message about statd using tcpwrappers.

34. When prompted to "Allow SSH protocol 2 only" Tab over to No and press Enter.

35. Press Enter at the informational message about privileged separation.

36. Accept the default Yes answer to install ssh-keysign SUID root by pressing Enter.
37. Answer No to the prompt to run the sshd server.

38. Accept the default path for the CVS repositories by pressing Enter and then press
Enter again when the prompt to Create the repository directory appears.

39. CVS is a version control system that tracks changes to source files which is useful if
you are going to use your system for development work - i.e. programming. For this
install, press Enter at the CVS informational message and accept the default No
answer to th.e prompt about starting the CVS pserver.

40. Accept the default Yes to the prompt about managing the X server wrapper using
debconf.

41. Accept the default Yes to the prompt about managing the XFree86 configuration
using debconf.

42. Select your video card's chipset manufacturer from the list presented and press
Enter. If you're not sure what it is, use to the vga selection.

43. Accept the default Yes to the prompt about using the kernel's framebuffer interface.
44. Accept the indicated X rule set by pressing Enter.

45. Press Enter at the informational message about keyboard types.
46. Select the appropriate keyboard type based on what you read in the previous

informational message and press Enter. The default pc104 value is for the Windows
types of keyboards most often found in the US.

47. Enter the appropriate keyboard layout based on your locale an,d press Enter.

48. Press Enter at the informational message regarding mice and trackballs.

49. On the mouse port selection screen, select /dev/psaux if you have a PS/2 mouse.
For older serial-type mice, use /dev/ttySO if it's conneted to COMI or /dev/ttyS1
if it's connected to COM2. Then Tab to OK and press Enter.

50. On the mouse selection screen, if you have a name-brand select the model which
matches it, or simply select the generic model entry.

51. Answer appropriately to the prompt about whether you have an LCD monitor or not.

52. Press Enter at the informational screen about monitors. Then select Simple from the
list of selection methods and press Enter.

53. Select your monitor's size and press Enter.
54., If you have a 15" monitor, you'll want only the 640x480 value for the resolution. If

you have a 17" monitor have only the 800x600 value selected (i.e. de-select the
640x480 selection) using the Space Bar. Then Tab to OK and press Enter.

Deblan Llnux Installation Guidelines 125

55. At the color depth selection, a recommended value based on your earlier selections
will be at the top o(the list (highlighted) so just press Enter.

56. At this point more packages will be installed. At some point during this installation
you may be prompted to select an ispell dictionary from a list presented. Simply
select the appropriate dictionary for your locale.

57. If you get a prompt about erasing the .deb files accept the default Yes by pressing
Enter and then pressing Enter again to continue.

58. Next you see a message about helping you configure your mail system. Debian
installs the Exim e-mail server software by default which is a shame. 99% of the
UNIX/Linux world uses Sendmail. On the Internet Servers page we'll remove Exim
and install Sendmail but for now:

o Press Enter at the "Press Return" prompt

o Select option 5 to not configure Exim

THAT'S IT! The installation is complete. And you'll be sitting at a text-based shell
prompt. Before we reboot the system there a couple commands we need to enter to
compensate for the differences in the installation routines between woody and
potato. This will put on the "same page" as the potato installation before moving on
to the subsequent guide pages.

59. Start out by logging in as the 'root' super user (I.e. enter root at the login: prompt
and then whatever you entered above for a root password. This will place you at a
shell prompt.

60. Unfortunately, when you choose to install the X-Windows system in Woody it sets the
system up to bring up a GUI login prompt when the system is booted. We don't want
that.

Recall that back on the Basics page we showed what files are involved in the Linux
boot process, including the symbolic links in the rc2.d directory. You can disable the
running of the GUI login routine by renaming the symbolic link to the shell script
which runs the GUI login routine. Recall also that any symbolic link that starts with
an upper-case 's' causes its associated script to be run at startup. Use the following
mv (move) command to rename this link so that it starts with an underscore
character so its aSSOCiated script won't be run when the system is booted:

mv /etc/rc2.d/S99xdm /etc/rc2.d/_S99xdm

61. Next, we want to be able to telnet into the system. Potato takes care of this by
default but Woody doesn't (defaulting to the more secure SSH instead) so we'll have
to install the telnet server daemon. With CD#l in the drive, enter the following
command:

apt-get install telnetd

You'll find out more about apt-get on the Packages page. For now, we're pretty
much at the same point system-wise as the end of the potato installation. So now
you can reboot the system by removing the CD from the drive and pressing
Ctrl-Alt-Del.

We're not actually done with the initial setup of the system yet. The rest will be covered
on the Packages page. For now though, try taking your new Debian system out for a spin
around the block in the next section.

126 Introduction to Linux : Installation and Programming

As your system reboots a lot of messages will be displayed. With a faster system you
won't be able to read them all. You can use the Shift-PgUp and Shift-PgDn key combos to
scroll through this previously-displayed text to look for any error messages, etc. Don't be too
concerned about error messages at this point. We still have to install and update the
packages.

Once your system restarts you'll be presented with a login prompt. Because Linux is a
multi-user OS you have to indentify yourself to the OS via a login. Log in using the root
username and the root password you entered during the install.

Once you log in the shell prompt debian: IV# is displayed. The # indicates you're logged
in as root. (Non-root users get a $ prompt.) The debian is the hostname you gave to the
system during the install. The IV indicates that you have been placed in root's home
directory. Whenever you first log in you will see this prompt because every user defaults to
their home directory at login. (User home directories are created automatically when the
user accounts are created on the system.)

All non-root users have a sub-directory under the /home directory. The names of these
home sub-directories for non-root users match the user names (ex: thome/fred). The root
user is a little different. root's home directory is off the root of the file system. Instead of
thome/root it's at /root. It's important to understand that /root is the root user's home
directory. Don't confuse it with the "root" of the file system, which is denoted by a single
slash (/).

Since you're in the root user's home directory, look at the files the install routine created
by typing in Is and preSSing Enter. You won't see anything because there's nothing there.
Kind of. There are no user files there. However, there are some system files there. Try typing
in Is -laF and pressing Enter. You'll see two files that start with a period, the .bashrc and
.profile files. They're both kind of the same thing, like a config.sys file on DOS systems.

The .bashrc file sets certain environment defaults when you use the bash shell. The
.profile does the same thing, regardless of which shell you use. You can look at the contents
of the .profile file by typing in

cat .profile

('cat' is the equivalent of the DOS TYPE command which just "types out" the contents of a
text file on the screen.) As you can see, it's mainly just the setting of the PATH variable and
you can see what the value of your path is set to. Notice I said your path. In UNIX/Linux
each user gets their own path.

Now lets look at the .bashrc file. Type in

cat.bashrc

There's a little more here but most of it is commented out. In most UNIX/Linux configuration
files any line that begins with a pound character· (#) are comments (or are commands
that have been commented out as in the case of numerous alias commands in the .bashrc
file).

#!/bin/sh

This is known as the "bang" or "shebang" line. It specifies the path to the shell that the script
should be run in. (You can run a shell script under a different shell than the one you're
currently using.)

Deblan Llnux Installation Guidelines 127

alias commands let you substitute one command for another, or "create" your own
command. Note the line in the .bashrc file:

alias rm='rm -i'

This just substitutes the standard alias command with itself but using the -i command-line
switch. The -i command-line switch is interactive mode, which means it will prompt you for a
confirmation whenever you use the rm command to delete a file (a safety measure).

You can also "create" your own commands by aliasing existing commands with a different
name. For example, you could enter the following line in the .bashrc file:

alias zapfilz='rm -i'

to "create" a zapfilz command.

Linux defaults it's "virtual terminal" sessions (what you use when you are working at a
shell prompt) to the "tty" (teletype) specification. However, some text editors don't get along
with the tty terminal type very well. They work better with a "VT100" type of terminal. (The
term "terminal" refers to the old "green screen" keyboard/screen devices that were
commonly used with mainframes.) Since you tend to work with text files quite a bit in Linux,
it would be beneficial to set our virtual terminal sessions to use the VT100 terminal type.

Lets use the infamous vi text editor to edit the .bashrc file to change our default terminal
type to VT100. We'll do this using an export statement.

1. At the shell prompt type in vi .bashrc to open the file in the editor and the contents will
be displayed.
Note that there already is one export statement in the .bashrc file. This statement is
what sets our shell prompt to display the hostname and current working directory.

2. Press the down arrow key until you get to a blank line in a file (the position of the
command in the file isn't important).

3. Press the 'a' key (for append).

Note : If you screw things up and you want to quit without saving, just press the
following keys in the given order:

Esc : q ! Enter

4. Type in the following line (don't start the line with a pound sign):

export TERM='vtl00'

5. Now press the following keys in the given order to save the changes and exit vi:

Esc : w q Enter

Note that what we just did changes a startup file. It won't have any effect until the
next time you log in. However, just enter that same command at the shell prompt and
it will take effect immediately. Once your enter it at the shell prompt, you can make
sure it took effect by entering this command at the shell prompt:

128 Introduction to Linux : Installation and Programming

echo $TERM

You can also try entering this command the next time you log in to make sure that the
statement you entered into the .bashrc file is correct. $TERM is the environment variable
which stores the current terminal value. All environment variables are upper-case. You use
the $ character in front of them to indicate you want to echo the contents of the variable. If
you didn't use the $ in the above command the word TERM would simply be echoed to the
screen.

The vi editor is legendary in it's difficulty to master. For one, it's a line editor, not a full-
screen editor. For another, it has an "edit" mode and a "command" mode. (We went into edit
mode above when we pressed the 'a' key above, and went back to command mode when we
hit the Esc key.) There are entire books written on vi. It's only fair to mention though, that
vi's keystroke combinations were devised in such a manner that once you get really good
with vi, you'll rarely have to take your fingers off the "home" positions on the keyboard. The
reason you want to at least become familiar with vi is because every Linux and UNIX system
will have it, no· matter how old or eccentric a distro it is. That can't be said about any other
editor.

Keep in mind that changes made to the .profile only take effect when you're logged in as
the same user that you are logged in as when you make the changes. Each user has their
own .profile file located in their home directory (but as the root super-user you can edit
everyone's .profile file if you want to set up a standard).

The same is true of the .bashrc file, except that, in addition to it only being valid for the
current login, it is also only valid if you choose to run the bash shell. Likewise, every user
that is set up to use the bash shell by default (which is the default shell in Linux) will have a
.bashrc file in their home directory.

If you type in:

echo $SHELL

you'll see that you are using the Linux-default bash shell.

Here's something you can try. Log out of the system using the exit command. Start to
log back in as root, but this time use the wrong password. You'll simply get an error message
saying it was incorrect and another login prompt. At this second login prompt, use the
correct password. Right above the shell prompt you'll see the message:

1 failure since last login
-

The "failure" the system is referring to is a login failure for the- user account you just
logged in as (works for all users, not just root). This is good to know as it will let-you know if
someone has been trying to hack in using this particular username.

What's next? If your system is connected to a network you should try seeing if you can
ping another workstation on your network. You can use the procedure in Step 11 of the
installation above (using winipcfg or ipconfig) to find the IP address of any Windows system
on your network. For example, if the address of another- system on your network is
192.168.10.12 you'd type in

Deblan Linux Installation Guidelines 129

ping 192.168.10.12

and see if you get "64 bytes from" the address. Left on its own, Linux ping will just keep
pinging so press Ctrl-C to end it.

If you don't get any ping responses or get errors indicating that the "Network is
unreachable" you can enter the ifconfig (not ipconfig as with Windows) and check the
settings for your ethO interface (this is the NIC). The 10 interface is the local loop back which
is only used for testing.

If no ethO interface is listed, you want to check to see if the kernel driver module got
loaded at boot up. Enter the Ismod command. You should see 3c59x or whatever driver you
specified during the install listed.

If the module IS loaded (but ethO doesn't show up in the ifconfig list) it means that the
kernel "sees" the NIC. It's just not being brought up automatically at bootup. Check to see if
it's set to be brought up automatically by typing out the contents of the interface
configuration file with the command:

cat /etc/network/interfaces

and look for the line:

auto ethO

If there is no line like this, or if "ethO" isn't on the line, or if it has a pound character (#) at
the beginning of the line (commented out) that's the problem. On the Packages we'll install a
text editor called ee. You can wait until this editor is installed to open this file and correct the
problem or you can try to edtt it using the vi editor.

If the module ISN'T loaded try loading it with the command:

modprobe 3c59x,

Substitute the "3c59x" for the name of the NIC module you selected during the installation.
After doing this you may also need to bring the interface up manually. Use the ifconfig
command to see if ethO is now listed. If not, bring it up with the command:

ifconfig ethO up 192.168.10.50 netmask 255.255.255.0

substituting an address and subnet mask appropriate for your network. If you couldn't load
the module you may have specified the wrong driver module during the installation or your
NIC may be bad or, if this is a used non-PCI NIC, may have had the default IRQ, etc.
settings changed at some pOint.

While the above installation procedure got you an operational system, it's pretty much
bare-bones at this pOint.

130 Introduction to Llnux : Installation and Programming

Like any other Linux distributions Debian packages are also available both as source
distributions and binary distribution. Binary Debian packages are called debs and end with
the deb extension. Package name is generally in the following format:

PACKAGE VERSION-RELEASE ARCH.deb - Eg.

enlightenment 0.16.6-3 i386.deb

Library packages always being with lib - Eg.

libldap2_2.1.30-3_i386.deb

Development binaries or libraries always have -dev after the package name - Eg.

Iibldap2-dev 2.1.30-3 i386.deb

All the debian packages can be downloaded from ftp.debian.org or any of its mirrors.

6.2 Installing Additional Packages
Using dpkg and apt-get of package management tools are a very versatile collection for
every aspect related to Debian packages. They can be used to bUild, extract, inspect,
remove, debug. and list packages!. Some common options are:

dpkg -I - Lists the installed packages in the system along with their status and

version information.

dpkg -I - Shown informatIon related to the package

dpkg -i - Installs the package(s) specified as arguments

- dpkg -s - Shows information about an installed package

dpkg -S - Shows the package to which a file belongs

dpkg -r - Removes a package from the system

dpkg -P - Purges all files related to the package

dpkg -x - Extracts a package into its contents

Other utilities :

dpkg-reconfigure - Re-configures an installed package. This can be used to generate the
configuration of the package again. Eg. Reconfiguring X Windows after a hardware upgrade

apt-cache search - Lets you run a search for a package in your current APT cache

apt-cache show
cache

- Shows information about a queried package from the current APT

The apt-get command also can be used to install, configure packages under Debian Linux.

apt-get install <package name>

Debian Linux Installation Guidelines 131

6.2.1 dmesg command
The messages which crop-up during booting are very important and useful. At any time if
we want to see the bootup messages we can use dmesg command. For example on my
machine the following output is given.

Linux version 2.6.9-1.667 (bhcompile@tweety.build.redhat.com) (gcc version 3.4.2
20041017 (Red Hat 3.4.2-6.fc3» #1 Tue Nov 214:41:25 EST 2004

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 000000000009fcOO (usable)

B1OS-e820: 000000000009fcOO - OOOOOOOOOOOaOOOO (reserved)

B1OS-e820: OOOOOOOOOOOfOOOO - 0000000000100000 (reserved)

BIOS-e820: 0000000000100000 - 000000000f7fOOOO (usable)

BIOS-e820: 000000000f7fOOOO - 000000000f7f3000 (ACPI NVS)

B1OS-e820: 000000000f7f3000 - 000000000f800000 (ACPI data)

B1OS-e820: OOOOOOOOfecOOOOO - 00000000fec01000 (reserved)

B1OS-e820: OOOOOOOOfeeOOOOO - 00000000fee01000 (reserved)

B1OS-e820: OOOOOOOOffbOOOOO - 0000000100000000 (reserved)

OMB HIGHMEM available.

247MB LOWMEM available.

zapping low mappings.

On node 0 totalpages: 63472

DMA zone: 4096 pages, LIFO batch: 1

Normal zone: 59376 pages, LIFO batch:14

HighMem zone: 0 pages, LIFO batch: 1

DMI 2.2 present.

ACPI: RSDP (vOOO IntelR) @ OxOOOf6cdO

ACPI: RSDT (v001 IntelR AWRDACPI Ox42302e31 AWRD OxOOOOOOOO) @ OxOf7f3000

ACPI: FADT (v001 IntelR AWRDACPI Ox42302e31 AWRD OxOOOOOOOO) @ OxOf7f3040

ACPI: MADT (v001 IntelR AWRDACPI Ox42302e31 AWRD OxOOOOOOOO) @ OxOf7f6d40

ACPI: DSDT (v001 INTELR AWRDACPI Ox00001000 MSFT Ox0100000c) @ OxOOOOOOOO

ACPI: PM-Timer 10 Port: Ox408

Built 1 zonelists

Kernel command line: ro root=LABEL=/12 rhgb quiet

mapped 4G/4G trampoline to ffff4000.

Initializing CPU#O

CPU 0 irqstacks, hard=023d5000 soft=023d4000

PID hash table entries: 1024 (order: 10, 16384 bytes)

Detected 2794.983 MHz processor.

Using tsc for high-res timesource

Console: colour VGA+ 80x25

Dentry cache hash table entries: 32768 (order: 5, 131072 bytes)

Inode-cache hash table entries: 16384 (order: 4, 65536 bytes)

132 Introduction to Linux : Installation and Programming

Memory: 247368k/253888k available (2068k kernel code, 5836k reserved, 647k data,
144k init, Ok highmem)

Calibrating delay loop ... 5521.40 BogoMIPS (lpj=2760704)

Security Scaffold v1.0.0 initialized

SELinux: Initializing.

SELinux: Starting in permissive mode

There is already a security framework initialized, register_security failed.

selinux_register_security: Registering secondary module capability

Capability LSM initialized as secondary

Mount-cache hash table entries: 512 (order: 0,4096 bytes)

CPU: After generic identify, caps: bfebfbff 000000000000000000000000

CPU: After vendor identify, caps: bfebfbff 0000000000000000 00000000

monitor/mwait feature present.

using mwait in idle threads.

CPU: Trace cache: 12K uops, L1 D cache: 16K

CPU: L2 cache: 1024K

CPU: After all inits, caps: bfebf3ff 00000000 00000000 00000080

Intel machine check architecture supported.

Intel machine check reporting enabled on CPU#O.

CPUO: Intel P4/Xeon Extended MCE MSRs (12) available

CPU: Intel(R) Pentium(R) 4 CPU 2.80GHz stepping 04

Enabling fast FPU save and restore ... done.

Enabling unmasked SIMD FPU exception support ... done.

Checking 'hit' instruction ... OK.

ACPI: IRQ9 SCI: Level Trigger.

checking if image is initramfs ... it is

Freeing initrd memory: 387k freed

NET: Registered protocol family 16

PCI: PCI BIOS revision 2.10 entry at Oxfb4cO, last bus=l

PCI: Using configuration type 1

mtrr: v2.0 (20020519)

ACPI: Subsystem revision 20040816

ACPI: Interpreter enabled

ACPI: Using PIC for interrupt routing

ACPI: PCI Root Bridge [PCIO] (00:00)

PCI: Probing PCI hardware (bus 00)

PCI: Ignoring BARO-3 of IDE controller 0000:00:lf.1

PCI: Transparent bridge - OOOO:OO:le.O

ACPI: PC! Interrupt Routing Table [,--SB_.PCIO,_PRT]

ACPI: PCI Interrupt Routing Table [,--SB_,PCIO,HUBO._PRT]

ACPI: PCI Interrupt Link [LNKA] (IRQs 3 4579 *10 11 12 14 15)

Debian Linux Installation Guidelines

ACPI: PCI Interrupt Link [LNKB] (IRQs 3 4 *5 7 9 10 11 12 14 15)

ACPI: PCI Interrupt Link [LNKC] (IRQs 3 4 5 7 *9 10 11 12 14 15)

ACPI: PCI Interrupt Link [LNKD] (IRQs 3 4579 10 *11 12 14 15)

ACPI: PCI Interrupt Link [LNKE] (IRQs 3 4 5 7 9 10 11 12 14 15) *0, disabled.

ACPI: PCI Interrupt Link [LNKF] (IRQs 3 4 5 7 9 10 *11 12 14 15)

ACPI: PCI Interrupt Link [LNKO] (IRQs 3 4 5 7 9 10 11 12 14 15) *0, disabled.

ACPI: PC! Interrupt Link [LNK1] (IRQs *3 4 5 7 9 10 11 12 1415)

Linux Plug and Play Support vO.97 (c) Adam Belay

usbcore: registered new driver usbfs

usbcore: registered new driver hub

PCI: Using ACPI for IRQ routing

ACPI: PCI Interrupt Link [LNKA] enabled at IRQ 10

ACPI: PCI interrupt 0000:00:02.0[A] -> GSI 10 (level, low) -> IRQ 10

ACPI: PCI interrupt OOOO:OO:ld.O[A] -> GSI 10 (level, low) -> IRQ 10

ACPI: PCI Interrupt Link [LNKD] enabled at IRQ 11

ACPI: PCI interrupt 0000:00:ld.1[B] -> GSI 11 (level, low) -> IRQ 11

ACPI: PCI Interrupt Link [LNKC] enabled at IRQ 9

ACPI: PCI interrupt 0000:00:ld.2[C] -> GSI 9 (level, low) -> IRQ 9

ACPI: PCI Interrupt Link [LNK1] enabled at IRQ 3

ACPI: PCI interrupt 0000:00:ld.7[D] -> GSI 3 (level, low) -> IRQ 3

ACPI: PCI interrupt 0000:00:lf.1[A] -> GSI 9 (level, low) -> IRQ 9

ACPI: PCI Interrupt Link [LNKB] enabled at IRQ 5

ACPI: PCI interrupt 0000:00:lf.3[B] -> GSI 5 (level, low) -> IRQ 5

ACPI: PC! interrupt 0000:00:lf.5[B] -> GSI 5 (level, low) -> IRQ 5

ACPI: PCI Interrupt Link [LNKF] enabled at IRQ 11

ACPI: PCI interrupt 0000:01:06.0[A] -> GSI 11 (level, low) -> IRQ 11

apm: BIOS version 1.2 Flags Ox07 (Driver version 1.16ac)

apm: overridden by ACPI.

audit: initializing netlink socket (disabled)

audit(1129580303.823:0): initialized

Total HugeTLB memory allocated, 0

VFS: Disk quotas dquoC6.5.1

Dquot-cache hash table entries: 1024 (order 0,4096 bytes)

SELinux: Registering netfilter hooks

Initializing Cryptographic API

ksign: Installing public key data

Loading keyring

- Added public key 6ECDA687281A73E5

- User ID: Red Hat, Inc. (Kernel Module GPG key)

pci_hotplug: PCI Hot Plug PCI Core version: 0.5

vesafb: probe of vesafbO failed with error -6

133

134 Introduction to Linux : Installation and Programming

ACPI: Fan [FAN] (on)

ACPI: Processor [CPUO] (supports Cl, 2 throttling states)

ACPI: Thermal Zone [THRM] (56 C)

isapnp: Scanning for PnP cards ...

isapnp: No Plug & Play device found

Real Time Clock Driver v1.12

Linux agpgart interface vO.l00 (c) Dave Jones

agpgart: Detected an Intel 845G Chipset.

agpgart: Maximum main memory to use for agp memory: 196M

agpgart: Detected 8060K stolen memory.

agpgart: AGP aperture is 128M @ Oxd8000000

serio: i8042 AUX port at Ox60,Ox64 irq 12

serio: i8042 KBD port at Ox60,Ox64 irq 1

Serial: 8250/16550 driver $Revision: 1.90 $ 8 ports, IRQ sharing enabled

ttySO at I/O Ox3f8 (irq = 4) is a 16550A

RAMDISK driver initialized: 16 RAM disks of 16384K size 1024 blocksize

divert: not allocating diverCblk for non-ethernet device 10

Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2

ide: Assuming 33MHz system bus speed for PIO modes; override with idebus=xx

ICH4: IDE controller at PCI slot 0000: 00: H.l

ACPI: PClinterrupt OOOO:OO:H.l[A] -> GSI 9 (level, low) -> IRQ 9

ICH4: chipset revision 2

ICH4: not 100% native mode: will probe irqs later

ideO: BM-DMA at OxfOOO-Oxf007, BIOS settings: hda: DMA, hdb: DMA

idel: BM-DMA at Oxf008-0xfOOf, BIOS settings: hdc:pio, hdd:pio

Probing IDE interface ideO ...

hda: SAMSUNG SP0411N, ATA DISK drive

hdb: SAMSUNG CDRW/DVD SM-352F, ATAPI CD/DVD-ROM drive

Using cfq io scheduler

ideO at OxlfO-Oxlf7,Ox3f6 on irq 14

Probing IDE interface idel ...

Probing IDE interface ide1. ..

Probing IDE interface ide2 ...

ide2: Wait for ready failed before probe!

Probing IDE interface ide3 ...

ide3: Wait for ready failed before probe!

Probing IDE interface ide4 ...

ide4: Wait for ready failed befcrre probe!

Probing IDE interface ideS ...

ideS: Wait for ready failed before probe!

Debian Linux Installation Guidelines 135

hda: max request size: 1024KiB

hda: 78242976 sectors (40060 MB) w/2048KiB Cache, CHS=16383/255/63, UDMA(100)

hda: cache flushes supported

hda: hdal hda2 < hda5 hda6 hda7 hda8 hda9 >

hdb: ATAPl 52X DVD-ROM CD-R/RW drive, 2048kB Cache, UDMA(33)

Uniform CD-ROM driver Revision: 3.20

ide-floppy driver 0.99.newide

usbcore: registered new driver hiddev

usbcore: registered new driver usbhid

drivers/usb/input/hid-core.c: v2.0:USB HID core driver

mice: PS/2 mouse device common for all mice

'input: AT Translated Set 2 keyboard on isa0060/serioO

input: PS/2 Generic Mouse on isa0060/seriol

md: md driver 0.90.0 MAX_MD_DEVS=256, MD_SB_DISKS=27

NET: Registered protocol family 2

lP: routing cache hash table of 512 buckets, 16Kbytes

TCP: Hash tables configured (established 16384 bind 4681)

Initializing IPsec netlink socket

NET: Registered protocol family 1

NET: Registered protocol family 17

ACPI: (supports SO 51 54 55)

ACPl wakeup devices:

SLPB PCIO HUBO UARl USBO USBl USB2 USB3 MODM

Freeing unused kernel memory: 144k freed

kjournald starting. Commit intervalS seconds

EXT3-fs: mounted filesystem with ordered data mode.

SELinux: Disabled at runtime.

SELinux: Unregistering netfilter hooks

inserting floppy driver for 2.6.9-1.667

Floppy drive(s): fdO is 1.44M

FDC 0 is a post-1991 82077

sis900.c: v1.08.07 11/02/2003

ACPI: PCl interrupt 0000:01:06.0[A] -> GSl 11 (level, low) -> IRQ 11

divert: allocating divert_blk for ethO

ethO: SiS 900 Internal MIl PHY transceiver found at address 1.

ethO: Using transceiver found at address 1 as default

ethO: SiS 900 PCI Fast Ethernet at OxcOOO, IRQ 11, 00:11:5b:02:06:9f.

ACPI: PCI interrupt 0000:00:1f.5[B] -> GSI 5 (level, low) -> IRQ 5

PCI: Setting latency timer of device 0000:00:1f.5 to 64

inteI8xO_measure_ac97 _clock: measured 49426 usecs

intel8xO: clocking to 48000

136 Introduction to Llnux : Installation and Programming

hw random hardware driver 1.0.0 loaded

ACPI: PCI interrupt 0000:00:ld.7[D] -> GSI 3 (level, low) -> IRQ 3

ehci_hcd 0000:00:ld.7: EHCI Host Controller

PC!: Setting latency timer of device 0000:00:ld.7 to 64

ehci_hcd 0000:00:ld.7: irq 3, pci mem 1212eOOO

ehci_hcd 0000:00:ld.7: new USB bus registered, assigned bus number 1

PCI: cache line size of 128 is not supported by device 0000:00:ld.7

ehci_hcd 0000:00:ld.7: USB 2.0 enabled, EHCI 1.00, driver 2004-May-10

hub 1-0:1.0: USB hub found

hub 1-0:1.0: 6 ports detected

USB Universal Host Controller Interface driver v2.2

ACI'I: PCI interrupt OOOO:OO:ld.O[A] -> GSI 10 (level, low) -> IRQ 10

uhci_hcd OOOO:OO:ld.O: UHCI Host Controller

PCI: Setting latency timer of device OOOO:OO:ld.O to 64

uhci_hcd OOOO:OO:ld.O: irq 10, io base 0000d800

uhci_hcd OOOO:OO:ld.O: new USB bl!s registered, assigned bus number 2

hub 2-0: 1.0: USB hub found

hub 2-0: 1.0: 2 ports detected

ACPI: PCI interrupt 0000:00:ld.1[B] -> GSI 11 (level, low) -> IRQ 11

uhci_hcd 0000: 00: 1d.1: UHCI Host Controller

PCI: Setting latency timer of device 0000:00:ld.1 to 64

uhcLhcd 0000:00: 1d.1: irq 11, io base OOOOdOOO

uhci_hcd 0000:00:ld.1: new USB bus registered, assigned bus number 3

hub 3-0: 1.0: USB hub found

hub 3-0:1.0: 2 ports detected

ACPI: PC(jnterrupt 0000:00:ld.2[C] -> GSI9 (level, low) -> IRQ 9

uhci_hcd 0000:00:ld.2: UHCI Host Controller

PCI: Setting latency timer_of device 0000:00:ld.2 to 64

uhci_hcd 0000:00:ld.2: irq 9, io base 0000d400

uhci_hcd 0000:00:ld.2: new USB bus registered, assigned bus number 4

hub 4-0: 1.0: USB hub found

hub 4-0:1.0: 2 ports detected

md: Autodetecting RAID arra')'s.

md: autorun ".

md: ". autorun DONE.

NET: Registered protocol family 10

Disabled Privacy Extensions on device 02369aOO(lo)

IPv6 over IPv4 tunneling driver

divert: not allocating divert_blk for non-ethernet device sitO

ACPI: Power Button (FF) [PWRF]

ACPI: Sleep Button (CM) [SLPB]

Debian Linux Installation Guidelines

EXT3 FS on hda1, internal journal

device-mapper: 4.1.0-ioctl (2003-12-10) initialised: dm@uk.sistina.com

cdrom: open failed.

EXT2-fs warning (device hda7): ext2_fiILsuper: mounting ext3 filesystem as ext2

Adding 522072k swap on /dev/hda8. Priority:-1 extents: 1

parportO: PC-style at Ox378 (Ox778) [PCSPP,TRISTATE,EPP]

parportO: irq 7 detected

ip_tables: (C) 2000-2002 Netfilter core team

ip_conntrack version 2.1 (1983 buckets, 15864 max) - 356 bytes per conntrack

ethO: Media Link On 100mbps full-duplex

i2c /dev entries driver

parportO: PC-style at Ox378 (Ox778) [PCSPP,TRISTATE,EPP]

parportO: irq 7 detected

IpO: using parportO (polling).

IpO: console ready

ethO: no IPv6 routers present

ACPI: PCI interrupt 0000:00:02.0[A] -> GSI 10 (level, low) -> IRQ 10

[drm] Initialized i915 1.1.020040405 on minor 0:

mtrr: base(Oxd8020000) is not aligned on a size(Ox258000) boundary

ISO 9660 Extensions: Microsoft Joliet Level 3

ISOFS: changing to secondary root

6.2.2 Ispci command

137

This command displays all the PCI buses in the system and all devices connected to them.
The information is very useful while debugging drivers. For example the following output is
given on my machine.

00:00.0 Host bridge: Intel Corp. 82845G/GL[Brookdale-G]/GE/PE DRAM Controller/Host-
Hub Interface (rev 03)

00:02.0 VGA compatible controller: Intel Corp. 82845G/GL[Brookdale-G]/GE Chipset
Integrated Graphics Device (rev 03)

00: 1d.0 USB Controller: Intel Corp. 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) USB UHCI
Controller #1 (rev 02) ,

00:ld.1 USB Controller: Intel Corp. 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) USB UHCI
Controller #2 (rev 02)

00:ld.2 USB Controller: Intel Corp. 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) USB UHCI
Controller #3 (rev 02)

00: 1d. 7 USB Controller: Intel Corp. 82801DB/DBM (ICH4/ICH4-M) USB2 EHCI Controller
(rev 02)

00: 1e.0 PCI bridge: Intel Corp. 82801 PCI Bridge (rev 82)

OO:lf.O ISA bridge: Intel Corp. 8280lDB/DBL (ICH4/ICH4-L) LPC Interface Bridge
(rev 02)

138 Introduction to Llnux : Installation and Programming

00:lf.1IDE interface: Intel Corp. 82801DB (ICH4) IDE Controller (rev 02)

00: If.3 5MBus: Intel Corp. 82801DB/DBl/DBM (ICH4/ICH4-l/ICH4-M) 5MBus Controller
(rev 02)

00: If.5 Multimedia audio controller: Intel Corp. 82801DB/DBl/DBM (ICH4/ICH4-l/ICH4-
M) AC'97 Audio Controller (rev 02) ,.

01 :06.0 Ethernet controller: Silicon Integrated Systems [SiS] SiS900 PCl Fast Ethernet
(rev 02)

6.2.3 Ismod command
Ismod command shows the status of all the modules currently available in the Linux kernel.
The device driver modules are loaded during the bootup time or after the booting. However,
this command displays all the modules currently seen in kernel space. For example Ismod
command gave the following output.

Module

nls_utf8

i915

parport_pc

Ip

parport

autofs4

i2c_dev

i2c_core

sunrpc

ipt_REJECT

ipt_state

ip_conntrack

iptable_filter

ip_tables

dm_mod

button

battery

ac

md5

ipv6

uhci_hcd

ehci_hcd

hw_random

snd_intel8xO

snd_ac97 _codec

snd_pcm_oss

snd_mixer _oss

Size Used by

1985 1

76869 2

24705 1

11565 0

41737 2 parport_pc,lp

24005 0

10433 0

22081 1 i2c_dev

160421 1

6465 1

1857 3

40693 1 ipt_state

2753 1

1,P193 3 ipt_REJECT,ipt_state,iptable_filter

54741 0

6481 0

8517 0

4805 0

4033 1

232577 8

31449 0

31557 0

5589 0

34829 2

64401 1 snd_intel8xO

47609 0

17217 2snd_pcm_oss

Deblan Llnux Installation Guidelines

snd_pcm 97993 2 snd_inteI8xO,snd_pcm_oss

snd_timer 29765 1 snd_pcm

snd_page_alloc 9673 2 snd_inteI8xO,snd_pcm

gameport 4801 1 snd_intel8xO

snd_mpu401_uart 8769 1 snd_intel8xO

snd_rawmidi 26725 1 snd_mpu401_uart

snd_seq_device 8137 1 snd_rawmidi

snd 54053 11

snd_intel8xO ,snd_ac97 _ codec,snd_pcm_oss,snd_mixer _oss,snd_pcm,snd_timer,snd

mpu401_uart,snd_rawmidi,snd_seq_device

soundcore 9889 2 snd

sis900 18629 0

floppy 58609 0

ext3 116809 1

jbd 74969 1 ext3

rmmod command can be used to remove a driver from memory

139

modprob command can be used to load and remove drivers to/from memory. It has lot of
options. For example modprob -I will display all modules currently available in kernel
space along with their location details.

6.2.4 mii-tool
command can be used to view and set properties of network interface. For example the same
gave the following output on machine.

ethO: negotiated 100baseTx-FD, link ok

cd record command can be used to use CD on your machine.

discover command

Discover is a set of libraries and utilities for gathering and reporting information about system's
HW by using OS-specific modules and provides system-independent interface for querying XML
data sources about this HW. We can find the same at http://alioth.debian.org/projects/pkg-
discover.

6.3 Configuring X

Debian also has a post-install system for configuring XFree86-running the dpkg-reconfigure.
xserver-xfree86 command will let you reconfigure the X

140 Introduction to Linux : Installation and Programming

The XF86Config File is the main config file is used by XFree86. This configuration file
requires many sections which are required to be filled by us. Important sections are:

"Files" - configures file paths for fonts etc.

"Module" - for enabling X server extensions

"InputDevice" - for handling keyboard, mouse etc

"Monitor" - for monitor hardware configuration

"Device" - configures the display card

"Screen" - defines the resolution and colours to use

"ServerLayout" - aggregates all configuration

Configuring Input Devices

Keyboard section supports:

Model (vendor, extensions)

Layout (language, locale)
Geometry (number of keys etc)

Other for support special keys

For example this is a sample for specifying about our keyboard.

Section "InputDevice"

Identifier "KeyboardO"

Driver "Keyboard"

Option "XkbModel" "pcl04"

Option "XkbLayout" "us,cz,de"
Option "XKbOptions" "grp: aICshift_toggle"

Option "XkbGeometry"· "pc(pcl04)"

EndSection

Mouse section supports:

Device - Serial, Bus, PS/2, USB

Protocol - Logitech, (IM)PS/2, Intellimouse etc.

ZAxisMapping - for mouse wheel

Emulate3Buttons

For example the following is seen in my configuration file.

Section "InputDevice"

Identifier "MouseO"

Driver "mouse"

Debian Llnux Installation Guidelines

Option "Protocol" "IMPS/2"

Option "Device" "/dev/psaux"

Option "lAxisMapping" "4 5"

Option "Emulate3Buttons"

EndSection

Configuring the Monitor

Main options:

HorizSync

VertRefresh

Other options

141

The following is seen in my X configuration file. Actually if your X windows is not running
then gather horizontal and vertical frequencies from your monitors documentation and enter
the same here.

Section "Monitor"

Identifier "Samtron"

VendorName "Monitor Vendor"

ModelName "Monitor Model"

HorizSync 30.0 - 55.0

VertRefresh 50.0 - 120.0

EndSection

X Drivers
XFree86 ships with drivers for most low and high end video cards; out of which vesa driver
can run a basic X display on all video cards. Most common drivers that ship with XFree86 are

AT! ati

Cirrus Logic cirrus

Intel i810 i810

Matrox mga

NVidia nv

SiS sis

53 s3

Configuring the Display Card

Driver - driver to use

BusID - PCI / AGP bus ID

VideoRam - (optional)

Hardware-specific options

142 Introduction to Llnux : Installation and Programming

The following type information has to be entered in device section.

Section "Device"

Identifier "CardO"

Driver "radeon"

VendorName "An Technologies Inc"

BusID "PCI:l:O:O"

EndSection

"Screen" section is used to write information about the monitor and video card are
combined to define colour and resolutions to use

Device - which display device to use

Monitor - which monitor to use

DefaultColorDepth - default colour depth

Display subsection - to configure resolution

Depth - configured colour depth

Modes - resolution to use

An example Screen Section.

Section "Screen"

Identifier "ScreenO"

Device "CardO"

Monitor "Samtron"

DefaultColorDepth 24

SubSection "Display"

Depth 24

Modes "1024x768"

EndSubSection

EndSection

The following steps can be used to configure X Windows when you are unable to configure
the same during normal installations .

• Have XFree86 automatically generate the skeletal config file
• Command: XFree86 -configure
• This should generate the /root/XF86Config.new config file
• Move this to /etc/Xll/XF86Config-4 and customise the following sections:

Deblan Linux Installation Guidelines

InputDevice - for mouse

Screen - for colour depth and resolution

(The keyboard, monitor and device defaults should work just fine)

• Test out whether X starts correctly by running: XFree86

• Launch desktop using startx

Configuring X Clients

• Simple example: exec gnome-session
This will start the Gnome Desktop .

To start KDE, we can use the following exec startkde

6.3.1 X Windows across the Network

143

Since X Windows is based a client server protocol, it is possible to attach a X client to
another X Server over the network.

On the server :

Ensure that the X Server is listening on its TCP ports. Debian does not configure the X Server to
listen on its TCP ports by default. This can be changed by editing the /etc/Xll/xinit!xserverrc file
and removing the -nolistentcp option .

X Server must allow other clients to connect to it. The xhost command can be used for
this. Eg. Running "xhost +" turns off all access· control.

On the client end set the DISPLAY variable. This is used by any X Client to determine
which X server to connect to. Generally it is set to "0:-9" - meaning the Oth display on the
local machine. To connect to a X Server over the network using its IP address, we can use:

export DISPLAY=x.X.X.X:O

where x.x.x.x is the IP address of the server machine. : 0 specifies that we want to use
the Oth display . This is the default can be over-written if you are running multiple X servers
on your system.

Start the client. Once this environment is set, all subsequent X clients will be shown or.
the server. that the client application is still running on the client machine and would
use its resOUrces - the server is just its display

6.4 Conclusions

This chapter details Debian Linux installation in step by step fashion. In addition, how to
. install packages after installing the basic Linux is emphasized. Also, it explains how X
windows can be configured manually.

7 Redhat Fedora Core 4 Installation
Guidelines

7.1 Introduction
The following information is extracted from Stanton finley .net/fedora_core_ 4_installation_
notes_nocss.html and is under GNU license. We assume an i386 to i686 system (32 bit)
with, an "always on" LAN or broadband connection configured "DHCP" and at least 10 GB of
free disk space for the Fedora partition . Instructions for dual booting Windows and Fedora
are included as well as a section on setting up an graphics card. For the most part the steps
should be followed in the order that they were written as certain programs should be
installed and certain configurations made in order to facilitate later steps. However after the
base installation is complete additional user selected program installations are, of course,
optional.

1. Download and burn the five Fedora Core 4 CDs from iso images or the DVD iso image
from fedora.redhat.com/download. (You should get FC4-i386-discl.iso, FC4-i386-
disc2.iso, FC4-i386-disc3.iso, FC4-i386-disc4.iso and FC4-i386-rescuecd.iso.) The CD
iso images or the DVD iso image are also available using bittorrent.

2. Partition your hard disk with one of the disk partition creation/editing tools on the
System Rescue CD available at http://www.sysresccd.org/. We could also use a
commercial product such as PartitionMagic (www.symantec.com/partitionmagic). The

3. Configure your bios settings to boot first from the CD drive.

4. Insert the first Fedora Core 4 CD or the DVD and reboot your machine.

5. We will get the following screen (Figure 7.1). We can select the "boot" prompt hit
enter.

Figure 7.1 Boot up Menu of Redhat Linux.

Redhat Fedora Core 4 Installation Guidelines 145

5. We will get the following screen (Figure 7.1). We can select the "boot" prompt hit
enter.

6. Hit enter for "ok" and enter again for "Test" to test your CD or DVD media or the right
arrow key to select the "Continue" box and hit enter to skip this test. (We recommend
testing your media to determine if your CDs or DVDs are properly burned). If your
media passes you will be given an opportunity to check additional CDs or DVDs. When
you are finished testing hit enter for "ok", right arrow to the "Continue" box and hit
enter to continue.

7. When Anaconda, the Fedora Core installer loads click "Next" at the "Welcome .. " page.

8. Click "Next" at the "Language Selection" page for default English or select your
language.

9. Click "Next" at the "Keyboard Configuration" page for default U. S. English or select
your language.

10. Select "custom" on the "Installation Type" page. Click "Next".

11. Select "automatically partition" on the "Disk Partitioning Setup" page (see Figure 7.2).
Click "Next". If you elect to manually edit your partition with Disk Druid, double click
on the partition, select the "swap" file type, and configure your swap space size to
equal about twice your computer's physical memory size. Double click on the
remainder of the partition to configure it as a Linux ext3 file system. At minimum you
must designate this remaining space (probably Idev/hda2 or Idev/sda2) as the root "I"
partition mount pOint. Refer the chapter on "Devices and File systems".

Fedora

Disk Setup

Choo.e whe,e you would Ilk"
FedO, .. C_ 10 b. installed.

If you cIo no! k_ how 10
your 5oY50tem or if you

need help ... IIIt USing !II.,

n,,", .. 1 pat1i1ionlng tools.,.,....
10 !he produa 'r.

If you d .. .-omaw.:
pallilioning. you C&I1 cl1hOf
a«rept III. amen! p'nld""
_"II' (dick Null. 0' modify

Sotlllp UIl"ll lie _nu&1
p&lIiIIoning tool.

Figure 7.2 Disk Setup Screen.

12. If you are going to dual boot Windows and Fedora and you already have Windows installed
on another partition select "keep all partitions and use existing free space" on the
"Automatic Partitioning" page. Otherwise select "Remove all partitions on this system" to
use all of your hard disk for Fedora or choose "Remove all Unux partitions on this system"
for a fresh install over any existing Unux partitions. Click "Next".

146

fedora

; Boot Loader
Configuration

· By "',",uk. oil. CIIUII bool
; loader ts In'5taUed on fw:!

Introduction to Llnux : Installation and Programming

> .ys ...
In ... U GRU8 .. ,..." boot

i Iold., •• -",<1 Cha..,. boot
· Ioad.r.

\'00"" .. _ ... __ .-.... _ ,
HIoc.'tlo __ • __ ,

Q u .. JjjlWljIl___ ,
yo..<.n.lso(1Ioo·M .. iIfoo-""""""-' , i ;-p,;;.;l

· beslde ... ".._ j':l .
bootp;a_ ... doooseyow 11
del .. 1t boollble os. '(01/

I <On""' 1""'fOld In 1M g} .,,"'u...,., unl ... you choo." •
,ufef.lufl boot im.age.

You /fItVldd . edit. 4'lII GJ

Figure 7.3 Boot Loader Setting Screen.

13. Click "Next" on the "Disk Setup" page.

14. If you are dual booting Windows and Fedora Check the "other" check box on the "Boot
Loader Configuration" page. Click "edit". Type "Windows" in the "label" box and
uncheck the "default boot target" check box. Click "ok".

15. Click the "default" check box next to "Fedora Core" to make it your default boot
operating system. Click "Next".

16. Leave "ethO" and hostname "automatically via DHCP" on the "Network Configuration"
page. Click "Next".

TO ____ _ .t.st_
ond...., diet !oil t.Iit
"*tfKt_ vou{.n ___ h """

..... --.... -
Figure 7.4 Network Settings screen.

Redhat Fedora Core 4 Installation Guidelines 147

17. Leave "Enable firewall" selected on the "Firewall Configuration" page and click the
check boxes for ·"ssh", "http", "https", "ftp" and "smtp". Leave "Enable SELinux"
"active". Click "Next".

18. Click on the map for your location on the "Time Zone Selection" page. Click "Next".

19. Set your preferred root password on the "Set Root Password" page. Click "Next".

20. You will see a message "Reading package information ... ".
21. Scroll down the "Package Group Selection" page and click in the "everything" box

under "miscellaneous". Click "Next".

(There has been some criticism from some quarters regarding the fact that I
recommend doing an "everything" installation. From my point of view there are
several good reasons to do so. There are many wonderful packages in a Fedora Core
"everything" installation including a web server and all the packages needed to make
it work with modern scripting language support. Installing everything supplies the
novice with a huge Linux playground containing hundreds of great programs to
explore. If you install everything there will be no question that package dependencies
and inter-dependencies are met. Everything will be there and everything will "just
work" including the kernel development packages in ca'se you need to compile
something such· as a proprietary driver for your video card. Why not install
everything? In this day and age bandwidth and disk space are cheap and plentiful.)

22. You will see a message "Checking dependencies ... "
23. Click "Next" on "About to Install" page.

24. Click "continue" to get to the "Installing Packages" page. You will see a "Formatting /
file system ... " message, a "Starting install process ... " message, a "Preparing to
install ... " message, and you will eventually be prompted to insert the remainder of the
installation CDs unless you are using the DVD. (It took about an hour to install
"everything" on my system.)

25. When the installation is complete remove the last CD or the DVD and click "reboot" for
the first boot screen.

26. After Fedora reboots click "Next" on the "Welcome" page.

27. Click the appropriate radio button to agree to the license agreement and Click "Next".

28. If you are already connected to an "always on" LAN or broadband connection click on
the "Network Time Protocol" tab, click in the "Enable Network Time Protocel" check
box, click the down arrow in the "Server" box, select "clock.redhat.com" , click "Add"
and click "Next". You will see a message "Contacting NTP Server. Please wait" ... ".

On the "Display" page select your preferred screen resolution and color depth based
upon the capabilities of your monitor. If your monitor's screen resolution is not
available in the dialog box or if Fedora did not recognize your monitor or graphics card
you will have an opportunity to configure them later. Click "Next".

30. On the "System User" page choose a user name (in lower case, not "root"), a full
name (any case), and a password for that default user. Click "Next".

31. Click "play test sound" on the "Sound Card" page to test your sound system. Your
. should hear three chords in sequence. If you don't you can try to configure your sound

card later. Click "No" or "Yes" in the "Did you hear the sample sound?" dialog box.
Click "Next".

32. Click "Next" on the "Additional CDs" page.

33. Click "Next" on the "Finish Setup" page.
34. Log in as "root" with the root password you selected earlier.

148 Introduction to Llnux : Installation and Programming

35. Click "log in anyway" if a Gnome error message appears on first boot. We will correct
this later.

36. When Fedora finishes booting to the graphical interface click on the top panel, hold
your left mouse button down, drag the top panel to the bottom of the screen, and
release the mouse button.

37. Click "Applications" > "System Tools". Right click on "Terminal" and select "Add this
launcher to panel".

38. Right click on the terminal icon on the bottom panel and select "move". Move the icon
to the left near the other icons and click to position It there.

39. Click on the terminal icon. This will open the terminal.
40. Type:

gedit /boot/grub/grub.conf

41. Hit enter and gedit will open. Revise the "hiddenmenu" and "kernel" lines in grub.conf
so that your file looks like this:

grub.conf generated by anaconda

Note that you do not have to rerun grub after making changes to this file
NOTICE: You have a /boot partition. This means that

all kernel and initrd paths are relative to /boot/, ego

root (hdO,l)

kernel /vmlinuz-version ro root=/dev/VoIGroupOO/LogVoIOO
initrd /initrd-version.img

#boot=/dev/hda

default=O
timeout=5

splashimage=(hdO,l)/grub/splash.xpm.gz
#hiddenmenu
title Fedora Core 4 (2.6.11-1.1369]C4)

root (hdO,O)

kernel /vmlinuz-2 .6.11-1.1369 JC4 ro root=/ dev /VoIGroupOO/LogVoIOO
vga=788 sellnux=O

inltrd /initrd-2.6. 11-1. 1369]C4.lmg

title Windows
rootnoverlfy (hdO,O)

chainloader + 1

Disabling the "hiddenmenu" with the "#" comment and removing "rhgb quiet" from
the kernel line will cause the operating system selection menu to display immediately
upon boot and will also disable the graphical boot screens so that you will see the boot
sequence scroll by in text. You may also choose to disable SELinux here by including
"selinux=O" on the kernel line. Leave out the "selinux=O" if you wish to keep SELInux
enabled. If you choose to use SELinux (Security Enhanced Linux) you should search
the web for information about it and how it impacts a Linux installation. Click on the
"save" Icon in gedit and close it. Close the terminal.

Redhat Fedora Core 4 Installation Guidelines 149

42. Click on "Desktop" > "System Settings" > "Server Settings" > "Services" and deselect
system services that you will not immediately use. When you click on each of them
you will see a description as to what they are for. If you're not sure, leave them in
there. (I deselected "anacron", "apmd", "atd", "canna", "cpuspeed", "cups", "cups-
config-daemon", "hpoj", "mDNSResponder", "mdmonitor", "nfslock", "nifd", "pcmcia",
"rpcgssd", "rpcidmapd", and "send mail" .) Click the "save" icon. You should also select
"Edit Runlevel" on the menu, select "Run level 3", deselect the same system services as
you just did for run levelS, and save them as well by clicking the "save" icon. Then
close the service configuration screen. (Run level 3 is for text mode only without X
windows and we will use this run level later when configuring the nVidia driver.)

43. If a Gnome error message appeared on first boot and you had to click "log in anyway",
open the terminal and type:

gedit /etc/hosts

Hit enter and gedit will open. Place your cursor after "local host" and hit tab. Then
type in the characters that appear on your root terminal screen after "root@" up to but
not including the space and tilde ("'). When you are finished, your hosts file should
look something like this:

not remove the following line, or various programs

that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost xl-6-00-04-5a-5e-ac-83

Click on the "save" icon in gedit and close it. This will eliminate the Gnome error
message that appears on boot-up on some systems.

44. In the root terminal type:

gedit /etc/modprobe.conf
Hit enter and gedit will open. Add these lines to the bottom of the file:

alias net-pf-l0 off

alias ipv6 off

Add a carriage return if required. (There should be a blank line at the bottom of
these flies.) Click on the "save" icon in gedit and close it. This will speed up browsing
and file transfers in some cases by decreasing DNS lookup time.

45. Click on "Desktop" > "System Settings" > "Login Screen". Under the "Timed Login"
section click on the "Login a user automatically after a specified number of seconds"
check box. Type or select your default user name that you selected during installation
(lower case, not "root") in the "Timed login username:" box and type "5" in the
"Seconds before login:" box. Click "close".

46. Click "Desktop" > "Log Out" > "Restart the computer" and click "ok".

4 7. After boot up you should be logged in as the default user. Click on the top panel, hold
your left mouse button down, drag the top panel to the bottom of the screen, and
release the mouse button.

48. Click the red flashing up2date icon in the lower right. Click "Forward". Click
"Forward". Click "Forward". Click "Apply". Click on the up2date icon in the lower
right again. Click on the "Launch up2date ... " box. Type in your root password and
click "ok". Click on the "Package Exceptions" tab, click on "kernel*" and click on

150 Introduction to Linux : Installation and Programming

the "Remove" box. Click "ok" again. Click on "yes" to install the key. Click
"Forward". Click "Forward" again. After the headers are downloaded click on the
"select all packages" check box and click "Forward". You will see a progress dialog
"Testing package set / solving RPM dependencies". Click "Yes" on each instance if
you get messages" ... not signed with a GPG signature ... " When this is complete
the updates will be downloaded. (This may take a very long time depending upon
your connection speed the first time you run up2date and you may think that your
installation has hung but it actually has not. If you don't have the patience for this
configure yum as described below and do a "yum update" as root instead.) Click
"Forward" to install the updates and "Forward" again to complete. Click "Finish".
"Click "Close". Click "Activate" in the Subscription Alert box if it appears, launch
up2date, and check for updates again as described above. Click "Desktop" > "Log
Out"> "Restart the computer" and click "ok" to reboot. Nflte: If you get errors with
up2date or yum with error messages similar to "file /usr/share/doc/HTML/en
/common/xml.dcl conflicts between attempted installs of kdelibs-3.4.2-0.fc4.1 and
kde-i18n-Polish-3.4.2-0.fc4.1" do as root a "yum remove kde-i18n-Polish", then a
"yum update", and finally a "yum install kde-i18n-Polish".

7.2 Configuring X Windows
Run the following command and modify the section as explained in previous chapter.

gedit /etc/Xll/xorg.conf

Hit enter and gedit will open. Scroll down to the "Monitor" section. Find the "HorizSync"
line and enter your monitor's supported horizontal frequency range. The line should look
something like "HorizSync 30.0 - 70.0". Enter your monitor's supported vertical frequency
range opposite "VertRefresh". The line should look something like "VertRefresh 50.0 -
160.0". Scroll down to the "Screen" section and opposite each instance of "modes" enter you
monitor's supported pixel resolution, starting with the highest. The line should look
something like "Modes "1024x768" "800x600" "640x480"". You should be able to get these
values from your monitor's manual or from a search for your monitor by manufacturer and
model number on the Internet. Hit the "save" button in gedit and exit gedit. Log out and log
back in.

Click "Desktop" > "System Settings" > "Display". Type your root password in the dialog
box presented and hit enter. Click the down arrow on the right of the "Resolution:" box and
select your preferred pixel resolution. Click the down arrow on the right of the "Color Depth:"
box and select your preferred color depth. Click "OK". Log out and log back in.

Click "Desktop" > "Preferences" > "Screen Resolution". Click the down arrow on the right
of the "Resolution:" box and select your preferred pixel resolution. Click the down arrow on
the right of the "Refresh rate:" box and select the highest refresh rate available. A refresh
rate of 85 Hz or more will decrease noticeable flicker significantly and may eliminate it
completely. Click "Apply". Log out and log back in.

7.2.1 Installing Other Packages under Redhat distributions after
Installing base system

To Install

rpm -ivh packagefile

Redhat Fedora Core 4 Installation Guidelines 151

for example

rpm -Ivh apache-1.3-12.rpm

The options mean: -i=install, -v =verify, -h=print hash marks as a progress meter.

The installation may fail because some other package(s) are needed to resolve
dependencies: install them first.

A package may be removed using the command rpm -e packagename, e.g.

rpm -e apache

Notice that the package name is used, not the name of the file which contained the
package: that file probably isn't around any more.

Upgrading to a new version is just like installing, uSing

rpm -Uvh packagefile

Again the operation may fail because of a dependency that would be broken. If significant
changes to the form of configuration files have taken place between versions of the software,
RPM will normally save the older configuration file, and advise where. The differences
between the files must be investigated and resolXfed.

What is installed?

RPM has facilities to:

To list the installed packages:

rpm -qa (pipe this through more, or grep)

To find the package a file belongs to:

rpm -qf filename

This later option is useful to find out what some cryptic filename actually means:

rpm -qf imrc

There are numerous options to specify exactly how much information these commands
return.

Verifying package integrity

RPM is useful for verifying that a system is in pristine condition: checking for accidents orl
even cracking. This compares the current state of files with the same information from the
original, pristine, sources.

rpm -Va verifies all installed packages. Again, pipe this to more

rpm -Vf filename verifies the package containing a file, for example rpm -Vf /bin/vi

verifies the vi editor package.

152 Introduction to Llnux : Installation and Programming

If there is no problem nothing is displayed. If there are any discrepancies, a string of 8
characters is displayed, the letter "c" if the file is possibly a configuration file (which you
might have modified) and then the file name.

The string of characters denotes the failure of certain tests: if the character is displayed a
test has failed; a "." means the test passed.

The tests are:

5 - an MD5 checksum D - a device has changed in some way

5 - the file size U - the user who "owns" the file
L - a link to, or from, the file G - the group owning the file
T - the file modification time M - the file mode - including permissions

If a test fails investigation is called for: the change may be innocuous and deliberate, or
may be a symptom of a more serious problem

7.3 Conclusions
ThiS chapter explore how to install Redhat Fedora core version 4. It explains how to partition
the disk, how to select key board, language and packages while installing the Redhat
release. In addition, it illustrates how to configure X windows manually if we encounter any
difficulty during automatic installation.

8 Installing Apache· The Web Server

8.1 Introductioh
Web pages, web hosting, web page development, web server etc., became normal usage
words these days .. It's old news that the internet has rlJade information available on a scale
never before seen in human history. It's old news that the most popular way to provide this
information is HTML. It's even old news that Apache serves more than 60% of all web pages,
thus making it more popular than all other web servers combined.

Most distributions of Linux include pre-compiled of and many include the
source code as well. Usually the easiest thing to do is just install Apache from your CD's. But
if you want the latest version of Apache or insist on pristine sources, you're going to want to
download. Everything Apache can be found at http://www.apache.org/ including source
code, documentation, helper applications, and (for the code-head) more information about
the Apache API than you can take in one sitting, and of course, binaries for Linux ..

Download the file httpd-2_0_S4.tar.bz2 from www.apache.org
Now uncompress the file using bunzip2 command.

bunzip2 httpd-2-0_S4.tar.bz2
Now extract the files from tar archives using:

tar -xvf httpd-2_0_S4.tar

Now decide about the apache directory organization. Table 8.1 demonstrates the possible
directory structure for apache.

Table 8.1 Possible directory structure apache SW distribution.

Basic config.layout options

Option Meaning

prefix This is the basic top level directory of most things apache.This option is
almost purely at your discretion

execprefix The prefix for binary files.Typically /usr

bindir Where apache places binary files.Typically $execprefix/bin

sbindir Where apache places system binaries.Typically $execprefix/s/:Jin

Where apache looks for what can best be described asapache-specific
libexecdir helper files. These include such things as dynamic modules, which we'll

discuss later. Typically /usr/lib/apache

mandir Where apache will install the manpage(s)Typically /usr/man

sysconfdir Where apache looks by default for the runtime config files. Typically
/etc/httpd/conf

datadir Used to mark the top level of the directory tree containing the data to
be served. Typically the same as $prefix

Table 8.1 Contd •••

154 Introduction to Linux : Installation and Programming

Basic config.layout options

Optibn Meaning

iconsdir Where apache looks for icons representing varioys mime-types when
serving ftp directories as web-pages. Typically $datadir/icons

htdocs
This is the "document root", where your main "index.html" lives.
Typically $datadir/htdocs

cgidir The default location for cgi executables. Typically $datadir/cgi-bin

includedir
Location for include files for compiling apache add-ons. Typically
$prefix/inc!uce /apache

localstatedir Where apache stores state files. Typically /var

runtimedir Where apache will store runtime state files. Typically $/oca/statEfdfr/run

logfiledir Default location of apache log files. Typically $/oca/statedir//og/apache

Where apache will store cached fIles if you've included the proxy
proxycachedir module as part of the configuration. Typically

$/oca/statedir/cache/apache

Now that you've decided your file layout structure, you need to consider what capabilities
you want your web server to have. Several things that we take for granted about web
servers may not be default behavior. In general, the apache team included the most useful
modules (see Table 8.2) as part of the source distributions default configuration, but you
should probably take a good look at src/Configuration.tmp/. Most modules can either be
included statically in the binary or can be loaded dynamically by the server as needed (DSO -
- Dynamic Shared Object).

Both methods have theIr pros and cons, and in general the normal guidelines for static vs.
dynamic apply. The static method is the easiest, and makes for faster servers. The downside
IS that your web server can suffer "Microsoft Syndrome" and can begin to take on swiss army
knife features at the expense of memory efficiency and executable size. Using dynamic
shared modules makes your overall executable size smaller, meaning less resources are
required to handle multiple instances (apache uses the fork-ahead server model for those C
coders keeping score at home) and children spawn faster. The downsides are that there is a
measurable latency to loading/linking the module into apache on the fly, and DSO's don't
execute quite as fast as static modules. Since benchmarking these tradeoffs is highly traffic-
pattern dependant, and patterns tend to change over time, it's a real tough call at design
time.

Table 8.2 Short list of loadable modules for apache web server.

Mod Name Description

actions Executing CGI script based on media type or request method

autoindex Automatic directory listings

cgi Invoking CGI scripts

env Altering the environment passed to CGI and SS! pages

imap Improved support for server Side Image maps

include Support for Server Side Includes

log_config Configurable logging support.

Table 8.2 Contd ...

Installing Apache: The Web Server 155

Mod Name Description

mime_magic Support for media types based on file contents (type).

mime Support for media types based on common but braindead MIME type.

negotiation Support for content negotiation.

proxy Provides for HTIP 1.0 caching proxy support.

rewrite URI to filename rewriting on the fly.

Allows setting env variables based on request attributes. This is useful
setenvif to deal with buggy browsers, or to deny cool features to MSIE users

just for the fun of it.

so Supports loading shared modules at runtime.

status Provides information on server status and performance.

userdir Supports user-specific directories (member home pages).

vhost_alias Dynamically configured mass virtual hosting.

Once you have decided your layout, and made your decisions about modules, you're
ready to configure the source code for compilation. This important step sets up the makefiles
to be compatible with Linux and also sets up the proper linking options for your modules. Go
to the root of the apache source tree, and enter the command

'/configure --with-Iayout= MyLayoutName \
--enable-module= module_name \
--enable-module= module_name2 \
--enable-shared= shared_module_name \
--enable-shared= shared_module_name2 \
--disable-module= unwanted_module_name

In our case we have simply used ./configure to let everything to be default.
To build apache just enter the command

make

If our Linux box has a proper development environment set up (and it should, or you
probably would have already skipped ahead to the configuration section) everything should
go smoothly. Once the build has completed, installing apache is just a matter of typing

make install

We now need a way to start and stop apache on our system. Most distro's have a fairly
good SYSV init template to copy somewhere in the /etc/rc directories, but apache provides a
program called apachectl to start and stop the server if you want to use it.

In principle we may have to edit the file httpd.conf to make apache to meet our needs.
However, we can simply test the bare version with the following steps.

/ usr /Iocal/ apache2/bin/ acpachectl start

Now start a web browser such as Fire Fox and then enter the web page as http://iocalost.
If web page is displayed indicating apache web server is running.

156 Introduction to L1nux : Installation and Programming

8.2 Basic Configuration
In order to configure the apache web server we have modify/edit the file /etc/httpd/conf/
httpd.conf. The config file is broken up into three sections, the Global Section, the Main (or
default server) section, and the Virtual Hosts section.

8.2.1 Global Section
This section controls behavior that is global to all instances of apache running on your system.
The example configuration file contains excellent documentation for each of the options. Below is
a table (Table 8.3) containing some general guidance for use when modifying the options.

Table S.3 Description of global section items.

Directive Hints

ServerRoot
If you configured sysconfdir to be /etc/httpd/conf then
make this ''/etc/httpd''

This file 'is used by apache to decide if it's running or not.

LockFile
If the path does not start with a leading /, apache will
assume the path is relative to the ServerRoot defined
above. (RedHat /var/lock/httpd.lock)

This file IS where apache stores the process id of the server. If

pidfile the path does not start with a leading "/" apache will assume
the path is relative to the ServerRoot defined above.
(Redhat /var/run/httpd.pid)

This file stores internal server information, but is not

ScoreBoard File
needed on most Linux configurations. Just to be safe,
create a place for it.
(RedHat /var/run/httpd.scoreboard)

This is the number of seconds before net traffic times out.
TimeOut The default on this is 300, which is 5 minutes. It can be set

much lower, but values below 30 tend to cause problems.

KeepAlive Allows persistant connections. Unless you have a good
reasons to not want them, set this to "on".

MaxKeepAliveRequests
This determines the maximum number of Requests allowed on a
persistant channel before it closes. 100 is a reasonable number

KeepAliveTimeout
Determines how 19n9 a KeepAlive channel will remain open
if idle. 15 is a good number.

Sets the desired number of servers that are idle, awaiting
requests. If there are ever less than this many of idle child
processes, apache will start spawning more until this

M inSpa reServers number is reached. Too many wastes resources. Too few
and spIkes in server hits could degrade performance. 2 is a
good number for home or SOHO, 3 - 5 for a business or
small university.

Sets the maximum desired number of idle servers. If there
are more idle servers than desired, apache will begin to kill

MaxSpareServers off children, reclaiming their resources. 10 is the default,
while for the hobbyist or SOHO user, a value of 5 can be
used to save resources.

Table 8.3 Contd ...

Installing Apache: The Web Server 157

Directive Hints

The number of children to spawn at startup. The default is
5. Busy sites should set this higher, but not too high or

StartServers you'll spend your first minute and a half spawning children
and not serving requests. Apache will dynamically adjust
the number of processes later, so setting this value very
high is almost never useful.

This sets a ceiling on the number of child processes that
MaxClients can be spawned. It can be set up to 256 without modifying

source code.

This sets the maximum number of requests that a child
process will handle before dying. It is mainly useful on IRIX

MaxRequestsPerChild and SunOS where there are noticeable memory leaks in the
libraries. A vaule .of ° will allow unlimited requests per
child, and is claimed to be safe on Linux. I recommend a
value of 1000, or 10000 for heavily loaded sites.

Determines the address and port number that apache will
bind. This can be used to limit apache to a specific address.

Listen For instance, you can use Listen 127.0.0.1:80 to cause
apache to respond only to requests from the localhost. The
usual value is 80, which tells apache to listen on the HTTP
port of all interfaces. Multiple Listen directives can be used.

Detemines which IP addresses apache will respond to. This
is used on machines with multiple IP addresses (either

BindAddress through multiplexing or using multiple interfaces). The
normal value is *, which causes apache to listen on all
addresses.

This is only useful if you have loaded mod_status, and tells
apache to keep track of extended information on a per

ExtendedStatus request basis. It cannot be used on a virtualhost by
virtualhost basis. Set this value to "on" if you've decided to
compile mod_status as a built-in module (recommended).

Apache has a list of modules that should be active. This
ClearModuleList directive clears that list. It is assumed. that you will then

turn on what you want using the AddModule directive.

Modules are sort of complicated. When you compile
apache, it gets a list of included modules, not all of which

AddModule are "turned on". This directive is used to activate a built-in
module. It can be used even if you haven't used the
ClearModuleList directive.

This directive is used to load a dynamically loaded module
(as oppossed to a built-in module. Order of execution can

LoadModule be important, so pay close attention to the example
configuration and the documentation for any alternative
modules you load.

This is used to conditionally execute directives based on
whether or not a specific value is defined, usually by means

<IfDefine> </IfDefine> of a command line switch (-D fool. One use for this is for a
startup script to check for the existance of a module, and
load/configure it if it exists (RedHat's startup script does
this, for example).

158 Introduction to Linux : Installation and Programming

8.2.2 Main (Default Server) Section

Section 2 of the configuration file deals with the default server. The default server (or main
server) is the one that will handle any requests not captured by a <VirtuaIHost> stanza in your
configuration. Directives and instructions that you set in this section (given in Table 8.4) are, in
general, inherited by virtual hosts as well, so you can set some good default behaviors here
rather than duplicating a lot of effort. Settings inside <VirtuaIHost> stanzas will override these
options for that particula'r virtual host only.

Table 8.4 Directives in main section and their explanations.

Directive Notes
Here for historical reasons, and for setting the

Port
SERVER_PORT environment variable for CGI and SS!. Set
this to whatever your HTTP port will be (usually 80). Note:
This does NOT apply to virtual hosts.

Sets the user that apache will handle requests as. For
security reasons, apache changes its effective UID before
handling requests, so all of your documents must be

User accessible to this user. For this reason, it is useful to create a
user called www or apache to use with your web server.
Running as the user nobody or as UID -1 does not work on all
systems or with all libraries.

Just as apache changes its UID, it also changes its GID. This

Group
is the group to change to. Once again, nobody can cause you
some difficult to track-down problems, so it's probably a good
idea to create a group.

ServerAdmin Set this to the e-mail address that should receive all error
notifications.

Set this to the fully qualified domain name of the server. Also
ServerName used when setting up name-based virtual hosts. If you don't

set this, you will likely encounter problems on startup.
Set this to the directory to search for the main index file for
this server. Apache will search for a file that matches your

DocumentRoot Directorylndex in this directory to display when no other
page is requested
(as when you request http://www.example.com)
When using the mod_userdir module, this allows you to map
requests to user's home directories instead of to the

UserDir document root tree. Set this to "www" to map requests for
http://example.org/'v(oo to Nfoo/www on the example.org
server, for example. For security reasons, if you use this, also
use UserDir Disabled root.

Used with mod_dir, this option sets the search order for files
when a user requests a directory listing by specifying a "/" at
the end of a directory name or for the document root.

Directorylndex Normally this will just return "index.html" , but you could
specify Directorylndex index.html index.php index.pl
index.cgi to have apache search for each of these files,
returning the first one it found.

Table 8.4 Contd •••

Installing Apache: The Web Server 159

Directive Notes
Generally set to "off" to save the latency time of the DNS
lookup, you can set this to either "on" or "double". "On" is

HostNameLookups useful to pass the hostname as REMOTE_HOST to CGI/SSI's
and "Double" is the ultra-paranoid setting to detect spoofed
requests. On heavily loaded sites this can cause some real
slowdown, and most poeple don't need it.

ErrorLog Sets the name of the file to use for error logging. As of
version 1.3, you can also direct errors to the syslog facility.
Sets the level of information that apache will send to the
error log. Defaults to "error". Possible options are "emerg",

Log Level "alert", "crit", "error", "warn", "notice", "info", and "debug".
These options follow the general content guidelines 'for
syslog(3).

When using mod_log_con fig (recommended), this directive
allows you to customize the format of the log file. The options

Log Format are many and various. Read the documentation. The most
commonly used is Log Format "o/oh 0101 0/ou 0/ot \"O/or\"
o/o>s 0/ob" for main host, and LogFormat "O/ov 0101 0/ou 0/ot
\ "O/or\" O/o>s 0/ob" for virtual hosts.

Allows for transparent redirection of requests. Typically used

Alias for icon, library image, and cgi directory redirection on a
wholesale baSis. Aliases are processed after <Location>
stanzas and before < Directory> stanzas.

ScriptAlias
Has the same result as Alias, but also marks the directory as
containing cgi scripts, so apache will process them as such.
If uSing mod_mime (recommended) this directive maps file
extensions to handlers. An example of this is using

Add Handler AddHandler cgi-script .cgi to cause any file with the
extension .cgi to be treated as a cgi file. This overrides any
previous mappings.

If using mod_mime (recommended) this directive maps file
extensions to MIME types. One particularly forward looking
use for this directive is mapping the ".xhtml" extension to
text/html. An example of this is using AddType text/html
.xhtml to cause any file with the extension .xhtml to be

AddType treated as html by the client. Converting your html to xhtml
will generally only have small impacts on presentation, which
can almost always be mediated with proper adjustments to
CSS. While it isn't fully desirable to treat xhtml as html, no
major browser is fully XHTML aware as of yet, so
waddayagonnadoo?

Allows you to set custom pages or scripts to handle HTTP
exceptions and errors. This lets you get away from the
canned error messages and allows for a more friendly and

ErrorDor.ument effective way to handle things like broken links and access
denial. Example: ErrorDocument 404 errordocs/404.cgi
would invoke a custom error script when a file is not found on
the server (bad typing or broken/obsolete link).

160 Introduction to Llnux : Installation and Programming

S.2.3 Virtual Servers
Virtual servers are a way for a single invocation of apache to serve multiple domain names.
There are three ways to go about it, named based, port based, and address based. Port
based is commonly used to serve HTTP and HTTPS from the same server. Address based
virtual hosting is used primarily for backwarc npatibility to HTTP 1.0 clients, which don't
transmit the desired hostname as part of the request. The most commonly used method of
virtual hosting is named based, where multiple domain names share the same IP address
(CNAME aliasing) and is commonly used by web hosting services to preserve IP space, and
by SOHO's who wish to serve something like www.my_business.com and
www.my_personal_page.net from the same server. One caveat is that named based virtual
hosting cannot be used with SSL secure ser\ters because of the way the SSL protocol works.

The third section of the apache configuration file deals with virtual servers. Virtual servers
are defined in a <VirtuaIHost> stanza. Stanzas are almost like HTML tags they start with
a <keyword> in angle braces, and end with </keyword>. Other common examples of
stanzas are <Location>, <Directory>, and <If Define>. Directives inside stanzas only
apply within the scope defined by that stanza. Fo.r instance, if you added

<Directory /home/foouser/pubJic_html/* >
Order Deny, Allow
Deny from Joe
Allow from All

</Directory>

then the user Joe would have no access to files located under /home/foouser/public_html,
but his access would remain unaffected for all other areas of your server.

Let's give an example of setting up a name based virtual host. We will assume that
www.example.com and www.foo.org point to the same IP address. In your httpd.conf file
you would add the following:

NameVirtualHost *
<Virtual Host>

ServerAdmin webmaster@example.com
DocumentRoot /www/docs/example.com
ServerName example.com
ErrorLog logs/example.com_error

</VirtuaIHost>

<VirtuaIHost>
ServerAdmin webmaster@foo.org
DocumentRoot /www/docs/foo.org
ServerName foo.org
ErrorLog logs/foo.org_error

</VirtuaIHost>

This is about all you need- to get started. Of course, you may want to enable or disable
certain features for each virtual host, like disabling cgi or enabling paranoid DNS lookups for
logging purposes. Simply place the appropriate directives in the virtual hosts stanza, and
you're done.

Installing Apache: The Web Server 161

But what if you want to host hundreds of virtual hosts? Your httpd.conf would grow
quick huge, be slow to load, and consume a lot of resources. The answer comes from
dynamically configured mass virtual hosting provided by mOd_vhost_alias. If you enable this
module, either as a dynamic module or built-in, you can use something like this:

Turn off Canonical Names so CGI/SSI works properly

UseCanonicalName off

Set the logging format for all virtual hosts

LogFormat "%V %h %1 %u %t \"%r\" %s %b" vcommon

CustomLog logs/access_log vcommon

Dynamically include server names in file requests

VirtualDocumentRoot /www/vhosts/%O/htdocs

VirtualScriptAlias /www/vhosts/%O/cgi-bin

With this setup, a request to http://www.virtualhost.com/foo/bar.htmlwould map to a
request for the file /www/vhosts/www.virtualhost.com/htdocs/foo/bar.html. You can still use
<Oirectqry> and other stanzas to control things on a directory by directory basis.

One interesting thing you can do with virtual hosts is make your own web server perform
differently by how you access it. For instance, on my web server at home, I have my DNS
set up with several aliases to the web server, like "docs", "weather", "mirror", "daily", "rfc",
and "howto". I then access my web server by different name, like ''http://rfc'' or
''http://weather'' to access the right sets of pages.

8.2.4 Logging Options

Apache offers a very well rounded set of logging options, including options to place logs from
virtual hosts into separate files. USing configurable logs via mod_log_config, you can
ac;complish just about any type of logging you desire, including logging cookies, .conditional
logging, or passing logs to a logging host via syslog. Maintaining a separate logging host is
almost always beneficial to large sites.

8.2.5 Authorization Options

Another issue that garnered some interest was Apache authorization methods. There are
dozens of ways to authorize and authenticate access in apache.

8.2.6 Dynamic Content
Dynamic content is a fairly fun thing to play with. It includes things like negotiated content
(for folks who want their web-pages gif-free and in French), CGI, PHP, Perl generated pages,
and SSI (Server Side Includes).

8.2.7 Negotiated Content

Beginning with HTTP 1.1, compliant browsers have been able to send information to the
server specifying additional information and preferences along with their requests for web
documents. The browser can, for example, inform the web server that it will accept GIF
images, but would really prefer PNG or JPEG if they're available. Apache can parse these
preferences and react to them. The common request headers that Apache understands are
Accept, Accept-Language, Accept-Charset, and Accept-Encoding.

162 Introduction to Linux : Installation and Programming

Apache's negotiation rules can be quite complex, so it's a real good idea to read the
documentation if you really want to fine-tune your website, but basic negotiation is actually
quite easy. First, ensure that mod_negotiation is enabled for your server (since it is compiled
in by default, unless you changed that, your're OK). Second, add a handler for type-map,
usually by including the configuration directive

Add Handler type-map .var

and third by setting up the type-map files themselves. Then instead of hyper-linking to an
image file or web-page, you hyperlink to the .var file, and let Apache sort out what should
get served. An example file that would serve a page in a preferred language might be helpful
here. If you create a file called foo. var, and create a hyperlink to it, and fill in the contents
like this:

URI: foo.english.html
Content-type: text/html
Content-language: en

URI: foo.french.html
Content-type: text/html
Content-language: fr

URI: foo.german.html

Content-type: text/html
Content-language: de

Now when the user clicks on the link, Apache looks for a which language the browser says
it prefers (the Accept-language header), and will return the right file. You can do the same
thing with images. If you had a link like and the foo.var file
contained

URI: foo.jpeg
Content-type: image/jpeg; qs=0.8

URI: foo.gif

Content-type: image/gif; qs=0.5

URI: foo.png
Content-type: image/png; qs=0.3

then apache would look for the Accept-encoding header in the request, and return the type
of image that was 1) in the list of acceptable encodings, and 2) had the highest qs value
(these range from 1.000 to 0.000)

Now lets say you have a case where none options in your .var file are acceptable to the
browser. Apache will return error 406 (NOT ACCEPTABLE), and a hyperlinked list of the
possible options. This can be a cool feature with translated pages, but tends not to work too
well with images, as you can probably imagine.

Installing Apache: The Web Server 163

8.2.8 Transparent Content Negotiation
Now, it's often not that much fun to do all of this work setting up the .var files, checking
all the links for validity, reconfiguring your browser's preferences for each test run, etc. So
Apache offers what is called "transparent content negotiation". If you enable Multiviews in
the Options directive, have files like foo.en.html, foo.fr.html, foo.de.html, and foo.html, and
simply hyper-link to "foo", with no extension, Apache will fake up a type-map on the fly, and
serve the best match. It's often a good idea to have a "default", like foo.html which, since it
has no encoding or language specified at all, is always acceptable to the browser.

http,/!hoohoo.ncsa uiuc.edu/cgi/

8.2.9 CGI
CGI refers to the Common Gateway Interface, and is the most common method of executing
external programs or scripts on the server side to generate content. Even things like PHP
make use of the concepts of CGI to perform their functions and features. CGI can also be
your worst security nightmare, so use it carefully, and pay close attention to your server
configuration. Probably the best instructions on enabling CGI in Apache ever written is the
CGI HOWTO included with the Apache documentation (Table 8.5). Look it over carefully. For
those who don't want to click the mouse, be aware that the default setting for the Options
directive is "All", which allows executing CGI's from anywhere they are found. This can be a
big security hole in and of itself, so if your web server will be visible from the internet pay
close attention to your server configuration.

Table 8.S Getting CGI to Work.

Modules Configuration
Directives

mod_alias AddHandler

mod_cgi Options

mod_mime 5criptAiias

If you wish to allow execution of CGI on your web server, you should include mod cqi,
mod mime, and mod alias in your server. You may also want to add a couple lines to
your configuration file:

Add Module mod_mime.c
AddModule mod_cgLc
AddModule mod_alias.c
5criptAIias /cgi-bin/ /home/httpd/cgi-bin/
AddHandler cgi-script cgi

ScriptAlias maps requests for http://www.example.com/cgi-bin/foo to the script
/home/httpd/cgi-bin/foo, and tells Apache that every file in the cgi-bin directory should
be treated as a CGI script. The AddHandler directive tells apache that files that ends with
.cgi should be treated as a CGI program; that is, if the file exists and is executable, Apache
should run it. This example will work anywhere in the document tree, not just the cgi-bin
directory. You only need this line if you wish to allow execution of CGI's outSide the
5criptAlias'ed directory. You could drop thiS directive into < VirtualHost> or <Directory>
stanzas to limit its scope. No matter how you choose to configure your CGI access, you may
want to consider security along every step of the way.

164

Options -ExecCGI

< Directory /foo/bar/ >

Options +ExecCGI

<Directory>

Introduction to Linux : Installation and Programming

<Directory /home/httpd/*/www/cgi-bin/ >

Options +ExecCGI

<Directory>

This disables CGI execution globally , but allows it for the /foo/bar directory and any
directory with a name that matches /home/httpd/*/www/cgi-bin. This might be useful to
allow execution of CGI's from user's home directories. Interaction between ScriptAlias,
Options, and the Add Handler directives can be tricky, (ScriptAlias and ScriptAliasMatch
override Options, for example, while Options and the Handler work hand in hand) .so it will
require some experimentation on your part until you are comfortable with the way things
work.

Since this is strictly an Apache tutorial, we're not going to cover how to write CGI scripts,
but if there is enough interest, KPLUG will do a CGI HOWTO in the future.

8.2.10 Configuring Apache for PHP

Simply add the following lines to your httpd.conf file.

Use the next line if PHP is a DSO, omit it otherwise

LoadModule php4_module /path/to/php3/module/libphp4.so

These lines need to go in for both DSO and static

AddModule mod_php4.c

AddType application/x-httpd-php4 .php4 .php

$,2.11 Configuring Apache for mod_perl

for Apache: : Registry Mode

Alias /perl/ "/home/httpd/cgi-binj"

for Apache:: Perlrun Mode

Alias /cgi-perl/ "/home/httpd/cgi-bin/"

For /perl/* as apache modules written in perl

<Location /perl>
Perlrequire /path/to/apache/modules/perl/startup.peri

PerlModule Apache:: Registry

SetHandler perl-script

PeriHandler Apache:: Registry

Options ExecCGI

PerlSendHeader On

Installing Apache: The Web Server

</Location>
For /cgi-perl/* handling as embedded perl
<Location /cgi-perl>

5etHandier perl-script
PerlHardler Apache: :PerlRun
Options ExecCGI
Perl5endHeader On

</Location>

For mod_perl status information
<Location /perl-status>

5etHandier perl-script
PerlHandler Apache: :5tatus
order deny, allow
deny from all
allow from localhsot

</Location>

Include the next line if mod_perl is a D50
LoadModule perl_module /path/to/apache/modules/libperl.so

AddModule mod_per1.c

8.2.12 Server Side Includes (SSI)

165

Much like html pages with embedded scripts, 55I is just another set of what can be thought
of as almost HTML tags. 55I allows for an easy way to include right in the middle of a web
page such things as file modification time, values of environment variables, current date and
time, and even the output of programs and scripts. It differs from standard CGI in that the
"included" information is parsed right into an html file, rather than the entire content being
generated by a program or script. The apache documentation carries a quite good tutorial.
Probably the most common use for 55I's is including a standard footer or header on web
pages.

8.2.13 Config"uring Apache for SSI

There isn't much to do, really. Just configure and compile mod_include (either as D50 or
static), and add a few lines to the config file:

Use this to allow 55I in files. This can go in stanzas, too.
Options + Includes
Or you can have 55I but disable executing scripts via 55I with
Options + InciudesNOEXEC

Use this if mod_include is a D50
LoadModule includes module

/path/to/apache/modules/mod include.so

166

AddModule mod_lndude.c

AddType text/html .shtml
Add Handler server-parsed .shtml

Introduction to Llnux : InstaUatlon and Programming

Optionally, you could run *all* html files through the 551 parser.

This does no harm to non 551 html files, but slows you down a bit
AddHandler server-parsed .html

8.3 Conclusions
This chapter deals with installation and configuration of Apache, a popular Web server. It
explains how the same can be built R"om the sources. In addition, it deals with how to make
the web server to work for perl, CGI, PHP scripts.

\
\

9 Samba Installation and Configuration

9.1 Introduction to File Sharing and Samba
It is not uncommon to have intranets with different types of operating systems. Thus, a user
needs to handle files generated on machines different from the one on which he or she is
currently working. File sharing is employed to solve this need. Main objectives of file sharing are:

• to share files on your machine with others on the network
• to access files that are shared by others
• to enable organizations to create and maintain central data stores
• to run File servers with complex access control on stored data, so that access

privileges and restrictions could be incorpgrated
• to enable a file server to share data with networks running different operating

systems, e.g., Windows or Unix. Linux contains software to do both these things
File sharing services on Linux is provided through two methods namely.
1. Linux-with-Linux file sharing is implemented with a set of protocols called NFS

(Network File Service). NFS is basically a UDP based protocol that allows Linux and
Unix systems to access files stored on other machines. Nowadays, NFS supports TCP-
based file services also.

2. Linux-with-Windows file sharing is implemented using the Samba package. Samba is
Free Software that implements the 5MB and NetBIOS protocols. It lets a Linux user
create shareware so that the files can be accessed over the network from a Windows
machine.

Introduction to Samba

Samba can be used with Linux to provide transparent access between machines running
Linux and machines running Windows. Samba itself runs on a Linux machine and makes
shared files and printers available to Windows machines, as if they are available on a
Window machine or server. Thus, Samba has several practical applications which can
generally be categorized as follows:

1. Using a Linux server as a simple peer-to-peer server. There is no user authentication
involved and no need for passwords.

2. Using a Linux server as a member server on an existing Windows NT domain. The
existing Windows domain controller will use NT authentication tools to control file
permissions and access.

3. Using a Linux server as a primary domain controller with its own user authentication
and control mechanisms.

Which of these three applications of Samba is used, determines how Samba is configured
on the Linux machine.

9.2 Compiling Samba from source
Samba - From Source:

• Download source code from a Samba mirror (details at www.samba.org)
• Uncompress source code and read the README file and other required documents
• Using the configure utility, configure Samba -e.g., change the prefix to /usr/local/samba/

so that you have all Samba related files in one directory

168 Introduction to Llnux : Installation and Programming

After downloading samba, the following commands are to be run:

gunzip samba-3.x.x.tar.gz

tar -xvf samba-3.x.x

./configure

cd samba-3.x.x/source

make

make install

If needed, PATH environment variable should be changed so as to contain samba binaries
path.

Samba has to be manually started - E.g., smbd -D, nmbd -D

9.3 Installing Samba
Some useful Samba binaries are :

• smbd - The 5MB / CIFS daemon [samba]
• nmbd - The NetBIOS server daemon [samba]
• smbpasswd - The Samba Password tool [samba-common]
• net - Multipurpose tool for administering Samba [samba-common]
• smbclient - Linux-based Samba client [smbclient]
• testparm - Tests whether the Samba config files are correct [samba-common]
• nmblookup - Resolves a NetBIOS name into its IP address [samba-common]

By executing the command apt-get, install samba smbclient samba-doc swat can be also
done assuming binaries are available with Linux distribution.

We can also start Samba using: /etc/init.d/samba start

9.3.1 Configuring Samba Server

The Main configuration is smb.conf. Binaries expect to find this file as /etc/samba/smb.conf.
Samba maintains its configuration in /var/lib/samba/ and other cached configuration in
/var/cache/samba/ .

Default Samba logs - log.smbd and log.nmbd - can be found in /var/log/samba/. Samba
also maintain a file called smbpasswd which stores information about 5MB user accounts and
their passwords

There is a browser-based utility called SWAT (Samba Web Administration Tool) that one
can use over a network to configure and monitor Samba. From the local browser, one can
initiate the same by typing http:Lllocalhost:901 .

The smb.conf file supplied with Debian has six sections:
1. [global] - contains many subsections for network-related things such as the

domain/workgroup name, WINS, some printing settings, authentication, logging and
accounting, etc.

2. [homes] - for file sharing of user home directories
3. [netlogon] - commented out by default, for setting the server to act as a domain

controller

4. [printers] - for printer sharing of locally-attached printers

5. [print$] - to set up a share for Windows printer drivers

Samba Installation and Configuration 169

6. [cdrom] - commented out by default, to optionally share the server's CD-ROM drive

Each section has a series of statements that follow the:

option = value

format and these statements are typically unique to each section (i.e. one has to put the
right statements in the right section).

• Minimal Options include: (M = Mandatory, 0 = Optional, s = string, m = multiple
options, b = boolean)

• workgroup: M,s : The workgroup or domain that the Samba server will be a part of
• netbios name: O,s : How the server will be known on the network
• server string: O,s : Description of the Samba server
• security: O,m : The server role that the Samba server will perform-can be one of user

(domain controller is enabled), share (only per-share level access control and
authentication is enabled), domain (authentication information is picked up from
another domain controller or server).

• encrypt passwords: M,b : Whether passwords sent by a client should be encrypted or
not

• passdb backend: M,s : What type of database to use for picking up user accounts
• printing: O,m : Printing system to use
• log level: O,s : Verbosity of the log messages
• preferred master : M,b : Is the server going to be the master browser of the

workgroup?
• local master: M,b : Should nmbd try to become the local master of the workgroup?
• domain master: M,b : Primary domain controller?
• domain logons : M,b : Enable domain logons?
• logon home: M,s : The network path for the logon home share

Sample Samba Global Configuration
[global]

workgroup = NRCFOSS

netbios name = laptop

server string = Samba Test Server

security = user

encrypt passwords = yes

passdb backend = smbpasswd:/etc/samba/smbpasswd

printing = cups

log level = 1

preferred master = yes

local master = yes

domain master = yes

domain logons = yes

logon home = \ \Iaptop\homes

logon drive = x:

170 Introduction to Linux : Installation and Programming

9.3.2 Configurating Samba Shares
Samba share section can be used to write instructions to export Linux files / directories and
make them available on other machines. Basic Samba share options are:

comment - Description of what the share is about

path - Absolute path of the directory being shared
read only - Whether the share is read-only or read-write
guest ok - Should unauthenticated users be allowed to view the share?
browseable - Should the share show up while "browsing" the Samba server?

valid users - List of users who are allowed to see this share
force user - The user on whose behalf all directory operations are done
read list - Users with read-only access to the share's data; this is generally used in
conjugation with the force user option. If this option is given, filesystem based access control
is not used.

write list - Users who have full read-write access to the share's data

Sample Samba Share
[mydata]

comment = MyData Share

path = /mydata
read only = no
guest ok = no

browseable = yes

[homes]
comment = Home Directory of %U

path = /home/%U
read only = no
guest ok = no
browseable = no

force user = %U

Another Sample Samba Share
[test]

comment = Test Share for Force User

path = /usr/local/test

read only = no

guest ok = yes

browseable = yes
force user = admin

read list = userone usertwo admin
write list = userone userthree admin
valid users ,= userone usertwo userthree admin

Samba Installation and Configuration 171

9.3.4 Managing Samba Users
Samba can only authenticate users against passwords stored in its own database; it can not
authenticate users again the Linux passwd file. However, it is necessary to have a mapping
between Linux system users and Samba users-for each Samba user, a valid system user with the
same name should also exist; otherwise Samba will not be able to lookup the user. In the
simplest of scenarios, Samba can store its accounts in the smbpasswd The smbpasswd utility
can be used to manipulate the smbpasswd file.

• To add a user: smbpasswd -a <username>
• To change a user's password: smbpasswd <username>
• To delete a user: smbpasswd -x <username>
• Lookup man smbpasswd for help

9.3.3 Samba Clients

To test out Samba authentication and configuration, run the smbclient utility
smbclient -Llocalhost -U<username>

smbclient \\ \\ < machine> \\ <share-name> -U < username>

Testing out Samba from Windows

• Log on as a local user
• Open up "Network Neighbourhood" and browse the complete network
• Locate the "Workgroup" of interest that is setup on the Linux machine and click on it
• Inside the workgroup, select the machine and test the accessibility
• There will be a prompt for a password and, if authenticated, the shares defined in the

Samba server will be shown
• Try doing some operations on the share to validate whether the access control is

happening correctly or not

9.4 Introduction to NFS
NFS is a file sharing protocol primarily used on the Linux/Windows world. NFS is completely
transparent for a user or application-there is no change in the way a user or application
would access a file on disk or over NFS. NFS is commonly implemented over UDP; it depends
on RPC to perform most of its functions. On Debian, the NFS server package is called: nfs-
kernel-server. Installing this package will install NFS on the Linux system.

The nfs-common package is installed by default. This package contains files needed by
both NFS servers and NFS clients. To set up an NFS server one has to install the server
package with the command:

apt-get install nfs-kernel-server

When the installation is over, the following message will appear:

Not starting NFS kernel daemon: No exports.

Installing this package creates the /etc/exports file. The user has to enter at least one
line in the file for each directory that is to be "exported" (shared), specifying who have
permissions to access it and what are the permission level. If there are no lines in this file,
the NFS server will not start as there is nothing to export.

172 Introduction to Linux : Installation and Programming

As an example using NFS server as a file server storing user files, let us assume that a
user with the username 'bgates' uses a workstation with the hostname 'woodyS'. The NFS
server is to be set up so that the users can store their files on it. A home directory is to be
created for the users and the a line to be entered in the /etc/exports file to make it
available to them.

/home/bgates woody5(rw,sync)

Thereafter, one has to either reboot the system or manually start the NFS server with the
commands in the order listed:

/etc/init.d/nfs-common
/ etc/ init.d/ nfs-kernel-server

The /etc/exports file follows the format:

/directory-to-share client(permissions,sync-type)

Note that there is no space between the client and the permissions/sync values. The
client can be specified using one of the following:

• a resolvable host name (i.e. there is an entry in the server's /etc/hosts file for
the client or DNS page is used to set up a LAN DNS server)

• the IP address of a client
• a network or subnet address (with the subnet mask provided) to specify all the

clients on the network or subnet .
• an internal domain name with the wildcard character * to specify all the

computers in the domain (*.yourdomain.com)

Among the variety of permissions, the three most common ones are:

• ro - Read Only (this is the default if none is specified)
• rw - Read/Write
• no._access - blocks inheritance

"Inheritance" means that if someone is given certain permissions to a directory, the same
permissions "flow down" to apply to all subdirectories under it. If the permission is to be
given to the director, but not to some or all of the subdirectories, an entry is to be
added to the /etc/exports file for each subdirectory specifying the no_access permission.

The sync-type can either be sync or async. Generally, sync is recommended as it flushes
writes to the disk more often. If no option is chosen, there will be a message when the NFS
server starts that it's defaulting to sync operation. If there is a message that a "<hostname>
has non-inet address" when the NFS server starts, it usually means the hostname specified in
the /etc/exports file is not resolvable (no entry in the /etc/hosts file).

For example:

/ export/ docs 172.16.0.0/255.255.0.0(ro,sync)

would give all users with machines on the 172.16.0.0 network read-only access to a shared
documents directory.

Samba Installation and Configuration 173

If there is a second Linux or UNIX system on the network, one could use it to test drive
NFS. Towards this, the following action is to be taken on the Debran server:

• Edit the fete/exports file as follows:
o Recall that during the Debian as installation a user account is created. This

user's home directory is the one to be specified for share.
o Enter the hostname of the other Linux or UNIX system for the client.

o Specify rw permissions and sync operation.

o Exit the editor saving the file.

• If necessary, edit the fete/hosts file on the Debian server so that it contains the
hostname and IP address for the second Linux or UNIX system.

• If necessary, start the NFS server processes by entering the following commands
in the order shown:

/ete/init.d/nfs-eommon start
/ete/init.d/nfs-kernel-server start

(The nfs-eommon script is so named because it is run on both NFS clients and servers.)

• Go to the second Linux or UNIX system and try and mount the shared directory on
the Debian server. The steps to do this will vary depending on which Linux
distribution or flavor of UNIX on the second system. If the "second Linux or UNIX
system" is also a Debian system, do the following:

o Make sure the Debian server (which we're assuming is named "sarge") is in
the second system's fete/hosts file

o Enter the following to enable client NFS, create a local "mount
pOint", and mount the remote server's share to the local mount point:

/ete/init.d/nfs-eommon start
mkdir /mnt/private
mount sarge:/home/bgates /mnt/private

Naturally, the bgates has to be replaced with the name of the user account created on
the server during the as installation.

Note the syntax of the mount command above. It's:

mount server-name:/path-to-share-on-server /path-to-/oca/-mount-point

As a result, one can access the remote shared directory on the server by going to its
mount point on the local system like:

cd /mnt/private

To unmount the share, you use the local mount point like so:

umount /mnt/private

174 Introduction to Linux : Installation and Programming

NFS has many other features: to see what shares are available, show what shares have
been mounted, auto-mounting when a client boots up, etc. The user could play around and
expLore the various features.

It should be noted that an NFS server does keep ports open. If a system is going to be
connected to the Internet, NFS functionality should be disabled to close those ports.

Unlike NFS, Samba is implemented completely in user space and does not depend on the
kernel at all.

9.5 Conclusions
This chapter explains file sharing through Samba and NFS. It explains how Samba can be
compiled from the sources and configured. In addition, it explores how NFS sharing can be
done under Linux.

10 Installing SMTP Mail Server

10.1 Introduction
Nowadays everyone is habituated to use emails while communicating with others. Unlike
good old postal system, this is more reliable, inexpensive and fast in delivery. In addition, we
can easily find out whether the message is delivered or not.

One could claim that the email is the first fruit to be enjoyed by the people because of the
developments in computer network and Internet. This also uses the client server concept and
TCP/IP protocol. In the following sections, first we try to explain some terms and then
explore how emailing practically takes place.

Mail-boxes

A mail-box is a file, or possibly a d+rectory of files, where incoming messages are stored.

User Agents

A mail user agent, or MUA, is an application run directly by a user. User agents are used to
compose and send out-going messages as well as to display, file and print messages which
have arrived in a user's mail-box. Examples of user agents are elm, mailx, mh, zmail,
Netscape.

Transfer Agents

Mail transfer agents (MTAs) are used to transfer messages between machines. User agents
give the message to the transfer agent, who may pass it onto another transfer agent, or
possibly many other transfer agents. Users may give messages to transfer agents directly,
but this requires some expertise on the part of the user and is only recommended for
experts.

Transfer agents are responsible for properly routing messages to their destination. While
their function is hidden from the average user, theirs is by far the most complex part of
getting messages from their source to their destination. The most common transfer agent is
sendmail(lm).

Delivery Agents

Delivery agents are used to place a message into a user's mail-box. When the message
arrives at its destination, the final transfer agent will give the message to the appropriate
delivery agent, who will add the message to the user's mail-box. The standard delivery agent
for Solaris, starting with 2.5, is maiLiocal(lm).

Mailing Lists and Aliases

A mailing list is an e-mail address like any other, except that whereas a typical e-mail
address represents a single reCipient, a mailing list typically represents many recipients.

Each recipient address on a mailing list or alias can be an ordinary user or another mailing
list or alias. These recipients can be at different hosts or all at the same; it doesn't matter.

176 Introduction to Llnux : Installation and Programming

History of SMTP

SMTP, which stands for Simple Mail Transfer Protocol, is the de facto standard for email
receipt and delivery. SMTP used TCP/IP protocol to exchange email messages between two
MTA's via intermediate MTA's using store and forward principle. Many SMTP servers are
available for Linux such as Send mail, Postfix, qmail, Exim. Today SMTP servers not only
accept, relay and deliver email, but also perform other functions like Authentication, SPAM
filtering and Access Control

10.1.1 How mail is delivered?
• Mail client connects to the SMTP server saying that it has an email to send
• SMTP server authenticates the client to ensure that it is allowed to relay through it
• SMTP server accepts the message and give a success code to the mail client as well as

a message ID
• SMTP server checks the recipient(s) of the message and does a local delivery if the

recipient(s) are local; if the recipient(s) are not local, then the SMTP server initiates a
remote mail delivery

• SMTP server connects to the remote mail server and tries to deliver the email
• Remote mall server authenticates the delivery and accepts the email if it is authorized

to receive email for the recipient(s)
• The remote mail server delivers the email to the recipient(s) mailbox
• Recipient(s) open the mailbox (using protocol like IMAP or POP3 or locally on the shell)

and read the email.

10.1.2 Role of DNS in Mail Delivery

DNS plays a very important role in delivering email Mail eXchanger (MX) records are
maintained by domain name servers (DNS) to tell MTAs where to send mail messages. An
MX record can be specified for a specific host, or a wild-card MX record can specify the
default for a specific domain. The MX record tells an MTA where a message, whose ultimate
target is a given host in a given domain, should be sent to next, i.e., which intermediate
hosts should be used to ultimately deliver a message to the target host. These MX records
vary depending on the domain. To illustrate, here is an example of how a message from
a.eng.sun.com destined for b.ucsb.edu might be routed:

MX records are maintained by DNS only (i.e., not hosts files or NIS). If no MX records are
available for a given host, send mail will try to send to that host directly. Once sendmail
determines which host to attempt to send the message to: an intermediate host as indicated
by an MX record, or a direct connection to the target host, it uses gethostbynameO to
determine the IP-address of the target machine in order to make a connection. The
gethostbynameO library routine may use DNS, an /etc/hosts file, or some other name
service (e.g., NIS, LDAP, ...) to perform its name-to-IP-address look-Up.

Thus, to be able to deliver an email to a remote mail server, a SMTP server first has to
use DNS to query the mail server of a specific recipient.

• On receiving information of the destination mail server from the MX record, a SMTP
server will initiate a connection as soon as possible

• If the connection fails, then the SMTP server will keep trying again and again until it
get a "permanent" error. The SMTP server can also query the DNS to get information
about other mail servers that are available for the recipient and then try to initiate a
mail delivery through them.

Installing SMTP Mail Server

10.1.3 POP3 Server
Post office Protoq)I (POP3) runs on a server continuously sends and receives emails. When a
user connects to this server, user's local MUA will read the users email's into his 10ca1
machine (which are automatically removed from POP3 server).

10.1.4 IMAP4 Server
The Internet Message Access Protocol version 4 allows users to see their MUA's to read, send
emails. Unlike POP3 the email messages are not deleted or downloaded to user's local
machines. Moreover, we can login from any where to see emails.

10.2 Postfix as an MTA
Postfix is a SMTP server written as replacement for Sendmail and is designed to be secure
and easy-to-use yet powerful SMTP server ships under the IBM Public License version 1.0. It
is available as source code as well as binary packages under most distributions. It is a very
flexible and advanced SMTP server-can be used to run a simple single domain mail server as
well as very busy and high traffic mail servers

10.2.1 Installing Postfix

If the binary has been downloaded, then use the Debian repository:

apt-get install postfix

If the source code has been downloaded, then execute the following commands to install
postfix. However, before compiling, it should be ensured that libdb-dev (Berkley DB development
package) is installed which is needed by Postfix.

uncompress the source code
cd to the source directory
Configure the software and generate the Makefiles.

make -f Makefile.in MAKELEVEL= Makefiles

make

make install

The Postfix Directory Structure
Postfix uses the following directories for storing configuration, data and binaries:

/etc/postfix - for configuration files
/usr/sbin - for server / system binaries
/usr/bin - for user level binaries (like mailq)

/var/spool/postfix - for storing the mail queue

As usual, the Postfix, by default, delivers email into /var/spool/mail/ < username> file.

178 Introduction to L1nux : Installation and Programming

10.2.2 Postfix Configuration Files
• /etc/postflx/maln.d - This is the major Postfix configuration file. It controls all the

settings and details of the Postfix MTA
• /etc/postfix/master.cf - Master process configuration file; controls how different Postfix

components are initiated and run
• /ete/aliases - Email and system aliases for email delivery
• /etc/postfix/access - The Postfix access table; configures Postfix to selectively accept

or reject email
• /etc/postfix/relocated - Handles bounce messages for users who have moved

Basic Postfix Configuration

Configure the main.cf file for the following options:

myorigin - Value = Domain; will be used for all outgoing email

mydestination - Value = Domains; what domains to receive emails for. These domains are
considered to be "hosted" on Postfix and Postfix will accept all email meant for these
domains

mynetworks - Value = Network subnets; what networks can clients relay from - emails from
these networks configured here are accepted unconditionally - irrespective to whom they are
addressed

relayhost - Value = host; This configuration is not mandatory - configures Postfix
outgoing email through the configured host.

Configure the main.cf file for the following options:

smtpd banner - Value = string; Specifies what sort of banner to show for SMTP connections

myhostname - Value = hostname ; Specifies what the

machine running postfix will be identified as

home mailbox - Value = Mailbox / Maildir ; Specifies the format and location of a user's
mailbox

local recipient maps - configures how to look up valid local recipients and deliver email to
them; empty value disables recipient lookups

. The, MaUdir Mailbox Format

,Malldlr mailbox format replaces the mbox format. Unlike mbox format where all mall messages
are stored in a single file such that each message is separated by a delimiter, Maildir format
stores all messages In a directory with each message being stored in a separate file with the
filename is a timestamp - the time at this the message was delivered. Maildir mailboxes are fast,

, don't need to be locked during operation, can be operated on simultaneously, are NFS-safe and
very easy to use!. USing latest filesytems such as ReiserFS, which can effiCiently store thousands
of files In a Single directly, Maildir becomes even more useful

Installing SMTP Mall Server

Testing Mail Delivery

• The socket / tel net method

tel net Icoalhost 25

• Using the mail command
• Logs are collected in /var/log/mail. *
• Log paths can be further customized by changing the syslog
configuration in /etc/syslog.conf

10.2.3 Installing It Running Courier-IMAP/POP3

To install POP3 and IMAP server run the following.

apt-get install courier-pop courier-imap

179

There is no need for elaboration configuration required and configuration is stored in
/etc/courier directory.

To start the IMAP & POP3 Services:

/etc/init.d/courier-authdaemon start
/etc/init.d/courier-imap start

/etc/init.d/courier-pop start

We can test out using a mail client or by telnetting to ports 143 (IMAP) or 110 (POP3)

10.3 Conclusions
This chapter explains about how to install and configure postfix, a SMTP MTA under Linux.
Also, it explains how to install POP3 and IMAP4 services under Debian Linux.

11 Installing Common Unix Printing System

11.1 Introduction
Printing within UNIX has historically been done using one of two printing systems - the
Berkeley Line Printer Daemon ("LPD") [RFC1179] and the AT&T Une Printer system. These
printing systems were designed in the 70's for printing text to line printers; vendors have
since added varying levels of support for other types of printers.

Replacements for these printing systems have emerged [LPRng, Palladin, PLP], however
none of the replacements change the fundamental capabilities of these systems.

Over the last few years several attempts at developing a standard printir'lg interface have
been made, including the draft POSIX Printing standard developed by the Institute of
Electrical and Electronics Engineers, Inc. ("IEEE") [IEEE-1387.4] and Internet Printing
Protocol ("IPP") developed by the Internet Engineering Task Force ("IETF") through the
Printer Working Group ("PWG") [IETF-IPP]. The POSIX printing standard defines a common
set of command-line tools as well as a C interface for printer administration and print jobs,
but has been shelved by the IEEE.

The Internet Printing Protocol defines extensions to the HyperText Transport Protocol 1.1
[RFC2616] to provide support for remote printing services. IPP/1.0 was accepted by the IETF
as an experimental Request For Comments [RFC] document in October of 1999. Since then
the Printer Working Group has developed an updated set of specifications for IPP/1.1 which
have been accepted by the IETF and are awaiting publication as proposed standards. Unlike
POSIX Printing, IPP enjoys widespread industry support and is poised to become the
standard network printing solution for all operating sysl:ems.

Linux systems
• All printing systems on Linux make use of the excellent PostScript system called

GhostScript (www.ghostscript.org).
• Ghostscript is a PostScript interpreter that is most cOrQmonly used on Linux
• Implements an excellent PostScript engine that can take as inputs formats like JPEG,

TIFF, PS & rext and output data in formats like X Windows output, raster formats and
PDF

• Also handles conversion of PS output for non-PS printers;
• can be used a baSiC, spooler less printing system
• Most printing systems today use a combination of multiple tools (postscript

interpreters, filters, rasterist;!s etc) to process and print documents
• The printing system ,converts PostScript into a raster format and then converts that

into a printer specific language to send commands to the printer
CUPS uses IPP/1.1 to provide a complete, modern printing system for UNIX that can be

e"tended to support new printers, devices, and protocols while providing compatibility with
existing UNIX applications. CUPS is free software provided under the terms of the GNU
General Public License and GNU Library General Public License

CUPS Features

• IPP/l.1 Support
• Supports banner pages, authentication, print accounting and quota

Installing Common Unix Printing System 181

• Supports parallel, serial, usb, IPP and JetDirect-based printers as also printers shared
through other printing systems such as CUPS, Ipd and Windows

• TLS (encryption) support
• Portable command set compatible with LPRng and LPD
• Excellent web-based interface for printer administration, configuration and

management
• PPD-based drivers, rich API and imaging libraries
• Foomatic Printer database (from linuxprlnting.org) has good support for CUPS

CUPS Architecture (see Figure 11.1)

• The scheduler is a server application that handles HTTP requests - the HTTP server
servers print requests as well as printer / CUPS administration requests

• Filters are what convert input into intermediate formats and finally to a printer speCific
format (like texttops)

• Backend are what allow CUPS to communicate to the actual printer - through a
hardware port or the network

Figure 11.1 CUPS architecture.

11.2 Building and Installing CUPS
This chapter shows how to build and install the Common UNIX Printing System. If you are
installing a binary distribution from the CUPS web site, proceed to the section titled,
Installing a Binary Distribution.

Installing from Source

,hts sectton describes how to compile and install CUPS on your system from the source code.
Riiquirements
you',l need ANSI-compliant C and C++ compilers to build CUPS on your system. As Its name
In\ll(es, CUPS is designed to run on the UNIX operating system, however the CUPS Interlace
liblaryand most of the filters and backend supplied with CUPS should also compile and run
under Microsoft Windows .
. "'"POt the image file filters and PostScript RIP, you'll need the JPEG, PNG, TIFF, and ZUB

libpries. CUPS will build without these, but with significantly reduced functionality. Easy
Sottware Products maintains a mirror of the current versions of these libraries at :

ftp:/Iftp.easysw.com/pub/libraries

The documentation is formatted using the HTMLDOC software. If you need to make
changes you can get the HTMLDOC software from :

http://www.easysw.com/htmldoc

182 Introduction to Llnux : Installation and Programming

Finally, you'll need a make program that understands the include directive - FreeBSD,
NetBSD, and OpenBSD developers should use the gmake program.

Compiling CUPS
CUPS uses GNU autoconf to configure the makefiles and source code for your system. Type
the following command to configure CUPS for your system:

./configure

The default installation will put the CUPS software in the jete , /usr, and /var directories
on your system, which will overwrite any existing printing commands on your system. Use
the --prefix option to install the CUPS software in another location:

./configure --prefix=/some/directory

If the PNG, JPEG, TIFF, and ZLIB libraries are not installed in a system default location
(typically /usr/inc/ude and /usr/lib) you'll need to set the CFLAGS, CXXFLAGS, and LDFLAGS
environment variables prior to running configure:

setenv CFLAGS "-I/some/directory"
setenv CXXFLAGS "-I/some/directory"
setenv LDFLAGS "-L/some/directory"
setenv DSOFLAGS "-L/some/directory"
./configure ...

or:

CFLAGS="-I!some/directory"i export CFLAGS
CXXFLAGS="-I/some/directory"i export CXXFLAGS
LDFLAGS="-L/some/directory"i export LDFLAGS
DSOFLAGS="-L/some/directory"i export DSOFLAGS

./configure ...

To enable support for encryption; you'll also want to add the "--enable-ssl" option:

./configure --enable-ssl

SSL and TLS support require the OpenSSL library, available at:

http://www.openssl.org
If the OpenSSL headers and libraries are not installed in the standard directories, use the

--with-openssl-includes and --with-openssl-libs options:

./configure --enable-ssl \
--with-openssl-includes=/foo/bar/include \
--with-openssl-libs=/foo/bar/lib

Installing Common Unix Printing System

Once you have configured things, just type:

make

to build the software.

Use the "install" target to install the software:

make install

Once you have installed the software you can start the CUPS server by typing:

/usr/sbin/cupsd

Installing from Binaries

183

CUPS comes in a variety of binary distribution formats. Easy Software Products provides
binaries in TAR format with installation and removal scripts ("portable" distributions), and in
RPM and DPKG formats for Red Hat and Debian-based distributions. Portable distributions
are available for all platforms, while the RPM and DPKG distributions are only available for
Linux.

Installing a Portable Distribution

To install the CUPS software from a portable distribution you will need to be logged in as
root; doing an su is good enough. Once you are the root user, run the installation script
with:

./cups.install .

After asking you a few yes/no questions the CUI:'S software will be Installed and the
scheduler will be started automatically.

Installing an RPM Distribution
To install the CUPS software from an RPM distribution you will need to be logged in as root;
doing an su is good enough. Once you are the root user, run RPM with:

rpm -e Ipr

rpm -i cups-l.l-linux-M.m.n-intel.rpm

After a short delay the CUPS software will be installed and the scheduler will be started
automatically.

Installing an Debian Distribution

To install the CUPS software from a Debian distribution you' will need to be logged in as rooti
doing an su is good enough. Once you are the root user, run dpkg with:

dpkg -i cups-l.l-linux-M.m.n-intel.deb

After a short delay the CUPS software will be installed and the scheduler will be started
automatically.

184 Introduction to Llnux : Installation and Programming

11.3 Managing Printers
This chapter describes how to add your first printer and how to manage your printers.

The Basics
Each printer queue has a name associated with it; the printer name must start with any
printable character except" ", "!", and "@". It can contain up to 127 letters, numbers, and
the underscore C). Case is not significant, e.g. "PRINTER", "Printer", and "printer" are
considered to be the same name.

Printer queues also have a device associated with them. The device can be a parallel port,
a network interface, and so forth. Devices within CUPS use Uniform Resource Identifiers
("URIs") which are a more general form of Uniform Resource Locators ("URLs") that are used
in your web browser. For example, the first parallel port in Linux usually uses a device URI of
parallel :/dev/lp1.

You can see a complete list of supported devices by running the Ipinfo(8) command:

Ipinfo -y
network socket
network http
network ipp
network Ipd
direct parallel:/dev/lp1
serial serial :/dev/ttyS1 ?baud= 115200
serial serial:/dev/ttyS2?baud=115200
direct usb:/dev/usb/lpO
network smb

The -v option specifies that you want a list of available devices. The first word in each line
is the type of device (direct, file, network, or serial) and is followed by the device URI or
method name for that device. File devices have device URIs of the form
file:/directory/filename. while network devices use the more familiar method://server or
method:/ /server/path format.

Finally, printer queues usually have a PostScript Printer Description ("PPD") file associated
with them. PPD files describe the capabilities of each printer, the page sizes supported, etc.,
and are used for and non-PostScript printers. CUPS includes PPD files for HP
LaserJet, HP DeskJet, EP$ON \9-pin, EPSON 24-pin, and EPSON Stylus printers.

Adding First Printer
CUPS provides two methods fbr adding printers: a command-line program called Ipadmin(S)
and a Web Interface. The Ipadmin command allows you to perform most printer
administration tasks from the comlliand-line and is located in /usr/sbin. The Web interface is
located at:

http://localhost:
and steps you through printer configuration. If you don't like command-line interfaces, try

the Web interface instead.

Adding Your First Printer from the Command-Line
Run the Ipadmin command with the -p option to add a printer to CUPS:

/usr/sbin/lpadmin -p printer -E -y device -m ppd

Installing Common Unix Printing System 185

For a HP DeskJet printer connected to the parallel port this would look like:

/usr/sbin/lpadmin -p DeskJet -E -y parallel:/dey/lpl -m deskjet.ppd

Similarly, a HP LaserJet printer using a JetDirect network interface at IP address
11.22.33.44 would be added with the command:

/usr/sbin/lpadmin -p LaserJet -E -y socket:/ /11.22.33.44 -m laserjet.ppd

As you can see, deskjet.ppd and laserjet.ppd are the PPD files for the HP DeskJet and HP
LaserJet drivers included with CUPS. You'll find a complete list of PPD files and the printers
they will work with in Appendix C. "Printer Drivers" .
For a dot matrix printer connected to the serial port, this might look like:

/usr/sbin/lpadmin -p DotMatrix -E -m epson9.ppd \
-yserial: / dey / ttySO?baud = 9600+size =8+ parity= none+flow=soft

Here you specify the serial port (e.g. 50,51, dO, d1), baud rate (e.g. 9600, 19200,
38400, 115200, etc.), number of bits, parity, and flow control. If you do not need flow
control, delete the "+flow=soft" portion.

Administering CUPS through Web
Cups can be administered very easily through its web based administration page. To
configure CUPS, just type: http://localhost:631! in your web browser to open the CUPS
management interface (see Figure 11 .2) .

6ApPlc_
COWUftOf'I UNIX S.rstMn .. MQzill.l f'i rf. k»:

f" !;'")!iow l;o j!ooio....... I.... !!tIp

. $- . fI v eb ',; hnpi i\ocolho>t&3U

U RedH&.lnc. •. Shop) Praducts

.. O<tlS. 1:48PM.

Figure 11.2 Web based CUPS administration tool.

186 Introduction to Llnux : Installation and Programming

Using CUPS Configured Printers

To use a printer configured through CUPS, we can use the Ipr command:

Ipr -P <destination> <filename>

<filename> can be any text, PostScript or graphic file ·

A destination is the name of the printer that' you want to print to. If you want to print to
the default printer, then it is not to give a destination; the default printer will

be automatically selected

CUPS Configuration Files

• CUPS is configured through the /etc/cups/cupsd.conf config file
• The file format is very similar to the Apache configuration file format
• This file manages the following things:

_ Server Identity
Server Options

_ Network and Browsing Options
Security and Access Control Options

• CUPS will function just fine with the default server options
• Printer configuration is stored in the •

/etc/cups/printers.conf file - we will look at this file in detail

printers.conf Sample

<Printer myprinter>

Info Laser Printer

Location anokha

DeviceURI parallel:/dev/lpO

State Idle

Accepting Yes

JobSheets none none

PageLimit 0

KLimit 0

</Printer>

CUPS Drivers

• CUPS drivers are stored in the /usr/share/cups/model/ directory
• This directory contains PPD (PostScript Printer Definition) files that define the specific

features and details of a printer
• A new PPD downloaded from the Internet could be copied here and would be available

for use inside CUPS after it is restarted.
• If the PPD is a foomatic-based PPD, then it will need the cupsomatic filter stored in the

/usr/lib/cups/filter/ directory.

Installing Common Unix Printing System 187

Sharing Printers

• Sharing printers is very easy with CUPS
• As long as network browsing support is enabled correctly in the configuration files, the

printers on other machines will be deteclled automatically
• This simplifies the mapping of printers in a network - you just have to configure the

printer in one machine and as long as all other machines support and enable the CUPS
browse protocol, the configured printer will automatically show-up in the network
nodes

• On the server where the printer is configured, you may wish to introduce a separate
section to allow only specific machines to print to the attached printer

11.4. Conclusions
This chapter explores Common Unix Printing System (cups) with the main emphasis on its
installation and administration. Web based and command line based administration of the
same is explained.

/

12 Installing Squid Proxy and Firewall

12.1 Introduction
A firewall is a system or router that sits between an external network (i.e. the Internet) and
an internal network. This internal network can be a large LAN at a business organization or
our networked home PCs. Thus, a firewall has two network connections, one for the external
network and one for the internal network. The purpose of the firewall is to protect what is on
our side from (i.e. in our LAN) from the other side people. This is achieved by enforcing
some security policies with which all Internet related services will be continued on our LAN.
Decision based bridging of traffic between two connections is called "routing" or "IP
forwarding". What this means is that any firewall, by its' very nature, is a router.

There are several tools which watch what packets are passing in and out of your Linux
box: the most common one is • tcpdump' (which understands more than TCP these days),
but a nicer one is . ethereal'. Such programs are known as' packet sniffers'.

Evidently three types of firewalls are in use known as packet-filtering firewall, application
gateway (screened-host firewall) and proxy firewall (application level circuit gateway).

The packet filtering firewall is implemented in the OS itself and it makes decisions about
routing to protect the system. An application gateway firewall is implemented at the
network architecture and system configuration level. A proxy firewall is implemented as a
separate program which establishes connections with remote servers on behalf of the client.

12.2 Setting Firewalls
Linux kernel contains advanced tools for packet filtering - the process of controlling network
packets as they attempt to enter, move through, and exit your system.

Netfilter is a set of hooks inside the Linux kernel that allows kernel modules to register
callback functions with the network stack. A registered callback function is then called back
for every packet that traverses the respective hook within the network stack.

iptables is the userspace command line program used to configure the Linux 2.4.x and
2.6.x IPv4 packet filtering ruleset. It is targeted towards system administrators. Iptables can
be used

• listing the contents of the packet filter ruleset
• adding/removing/modifying rules in the packet filter ruleset
• isting/zeroing per-rule counters of the packet filter ruleset

iptables is a generic table structure for the definition of rulesets. Each rule within an IP
table consists of a number of classifiers (iptables matches) and one connected action
(iptables target).

netfilter, ip_tables, connection tracking (ip_conntrack, nCconntrack) and the Network
Address Translation subsystem together build the major parts of the framework

The 2.4 kernel contains three tables also called rule lists namingly INPUT, OUTPUT, and
FORWARD.

• Every packet being sent in or out of the machine is subject to one of these lists.

Installing Squid Proxy and Firewall 189

• When a packet enters the system via a network interface, the kernel decides if it is
destined for the local system (INPUT) or another destination (FORWARD) to determine
the rule list to use with it.

• If a packet originates on the system and attempts to leave the system, the kernel will
check it against the OUTPUT list.

• Regardless of destination. when packet match a particular rule on one of the rule list,
they are designated for a particular target or action to be applied to them.

A chain is a checklist of rules. Each rule says . if the packet header looks like this, then
here's what to do with the packet'. If the rule doesn't match the packet, then the next rule
in the chain is consulted. Finally, if there are no more rules to consult, then the kernel
looks at the chain policy to decide what to do. In a security- conscious system, this policy
usually tells the kernel to DROP the packet.

1. When a packet comes in (say, through the Ethernet card) the kernel first looks at the
destination of the packet: this is called . routing'.

2. If it's destined for this box, the packet passes downwards in the diagram, to-the INPUT
chain. If it passes this, any processes waiting for that packet will receive it.

3. Otherwise, if the kernel does not have forwarding enabled, or it doesn't know how to
forward the packet, the packet is dropped. If forwarding is enabled, and the packet is
destined for another network interface (if you have another one), then the packet goes
rightwards on our diagram to the FORWARD chain. If it is ACCEPTed, it will be sent
out.

4. Finally, a program running on the box can send network packets. These packets pass
through the OUTPUT chain immediately: if it says ACCEPT, then the packet continues
out to whatever interface it is destined for.

Difference between ipchains &. iptables

How does IPTables differ from IPChains?
There are many differences between iptables and ipchains. The most prominent of them are
listed here:

Traversal of chains

In IPChains, all incoming packets pass through the input chain, irrespective of whether they
are destined for the local machine or some other machine. Similarly, all outgoing packets are
sent through the output chain, even if they are meant to be forwarded. iptables clearly
classifies traffic into either the INPUT, OUTPUT or FORWARD chains, thus making packet
filtering more efficient.

This feature of IPTables is perhaps the most significant improvement over ipchains.
iptables can keep track of all the aspects of a TCP/IP connection like destination and source
IP addresses, port numbers associated, timeouts, retransmissions, TCP sequencing etc.
Thus, spurious packets which do not belong to an existing connection are easily recognized
and can be conveniently logged/dropped. This stateful firewalling is more powerful than the
simple packet filtering provided by ipchalns.

IPTables provides advanced features like rate-limited packet matching, filtering based on
a combination of tcp flags, MAC addresses, user, group and process ids. Unlike IPChains,
IPTables handles tasks such as NAT and packet mangling with separate modules. There are
many differences between the two in terms of syntax as well.

• In iptables , packets are applied against only one chain.

• In iptables, DROP is used instead of DENY.

• In iptables, the order in which rules appear matters.

• In iptables, interfaces must be used in the appropriate chains.

190 Introduction to Linux : Installation and Programming

Incoming interfaces must be used in the INPUT or FORWARD chains, and OUTPUT
interfaces must be used in FORWARD or OUTPUT chains.

For more specific information, consult the Linux 2.4 Packet Filtering HOWTO from
http://www.netfilter.org web site.

When the iptables command is passed the L parameter, it lists the rules in a table. To
view the current rules, type the following as the root user:

iptables L

The output will list all of the rules that are for the default table. These rules show
IPTables that have not been configured. The default policy is to allow everything (as noted
by policy ACCEPT, and there are no additional rules defined.)

Ideally the default policy of each table should be to deny traffic. that way, unless
something sp'ecifically matches a rule in the list, it will be denied access to and from the
network.

The order in which rules appear is very important! If a rule is listed first that accepts all
traffic, other rules in the list will not be applied because the packets will have already been
accepted.

IPTables command options
There are three built-in tables in the Linux kernel's netfilter, and each has built-in chains. the
iptables command is used to configure these tables.

1. filter - A table that is used for routing network packets. This is default table, and is
assumed by iptables if the t parameter is not specified.
INPUT - Network packets that are destined for the server.
OUTPUT - Network packets that originate on the server.
FORWARD - Network packets that are routed through the server.

2. nat - A table that is used for NAT. NAT is a method of translating internal IP address
to external IP addresses.
PREROUTINGnetwork packets that can be altered when they arrive at the server.
OUTPUTNetwork packets that originate on the server
POSTROUTING - Network packets that can be altered right

3. mangle - A table that is used for altering network packets.
INPUT - Network packets that are destined for the server.
OUTPUT - Network packets that originate on the server.
FORWARD - Network packets that are routed through the server.
PREROUTINGnetwork packets that can be altered when they arrive at the server.
POSTROUTING - Network packets that can be altered right before they are sent out.

Commands tell IPTables to perform a specific action, and only one command is allowed
per Iptables command string. Except for the help command, all commands are written In
uppercase characters.

The iptables commands are:
A

- The speCified rule is appended to the end of the chain.

C

- Checks a rule before adding to a userdefined chain.

D

- Deletes a rule from chain.

Installing Squid Proxy and Firewall 191

E
- Renames a userdefined rule.

F·
- Flushes a chain, which deletes all rules inside a chain.

h
- Lists help for iptables command

- Inserts a rule into a chain.
L

- Lists the rules in a chain.

N
- Creates a new chain.

P
- Defines a default policy for a chain.

R
- Replaces a rule in a chain.

x
- Deletes a userspecified chain.

z
- Sets the byte and packet counters in all chains for a table to zero.

Parameters are specified after commands when building a rule. The parameters specify
certain aspects of a packet, such as packet's protocol, source, or destination.

p,
protocol

p

p

- Sets the IP protocol for the rule. The protocol can be tcp, udp, icmp, or all. The all
option is default. A ! means not.

tcp - means where the protocol is tcp.

! udp - means that the protocol is not udp.

when p
tcp is used as a parameter, additional options are available that allow rules to be
further defined. These match options are:

sport,
sourceport

- Sets the source port of packet. Either a service name, port number , or port range
must follow the option.

dport,
destinationport

- Sets the destination port for packet. It is specified in the same way as -sport option.
tcpflags

- When this option is specified, flags on the packet may be analyzed to see if they
match the rule. The available flags are

192 Introduction to Llnux : Installation and Programming

SYN, ACK, FIN, RST, URG, PSH, ALL, or NONE.
These match options are available for UDP protocol (p udp)

sport,
sourceport

- Sets the source port of packet. Either a service .name, port number, or port range
must follow the option.

dport,

destinationport

- Sets the destination port for packet. It is specified in the same way as -sport option.
Only one option may be specified when p

icmp is used
icmptype

- Sets the name or number of the ICMP type to match with the rule. The available
types can be found by typing:

iptables p

icmp h

at the command line.

An example of using this rule is:
iptables A
p

icmp -icmptype
echorequest

DROP

This command will append a rule to the default table that will drop echo requests (pings).

s,
source

s

s

- Sets the source for particular packet. The parameter is followed by an IP address, a
network address with a netmask, or a hostname as shown in following examples:

192.168.1.1

192.168.1.0/255.255.255

d,
destination

- The destination of the packet. The parameter is followed by an IP address, a network
address with a netmask, or a .

j,

jump

- A target is specified with the j parameter to tell the rule to send packet to that target.
Targets may be value as ACCEPT, DROP, QUEUE, RETURN. If no target is specified,
nothing is done with packet except that the counter is incremented by one.

Installing Squid Proxy and Firewall 193

i,
ininterface

o

- For INPUT, FORWARD, and PREROUTING
chains, the I parameter specifies the interface on which the packet is arriving at the
server. A ! tells this parameter no to match. A + wild card character used to match all
interfaces that match particular string.

-out-interface - For FORWARD, OUTPUT, and

POSTROUTING chains, the 0 parameter specifies the interface on which the packet is
leaving the server. A ! tells this parameter no to match.

The final step in creating a rule is to tell IPTables what you want to do with a packet that
matches the rest of rule. This is called defining a target, and once a packet matches a rule it
is sent off to the target.

If the rule specifies an ACCEPT target for matching packet, the packet skips the rest of
the rule checks and is allowed to continue to its destination.

If a rule specifies a DROP target, that packet is refused access to the system and nothing
is sent back tc the host that sent the packet.

If a rule specifies a REJECT target, The packet is dropped, but an error packet is sent to
the packet's originator.

Every chain has a default policy to ACCEPT, DROP, REJECT, or QUEUE the packet to
passed to user space. If none of the rules in the chain apply to the packet, then the packet is
dealt with in accordance with the default policy.

DNAT This target modifies the destination address of a packet and can only be used in the
PREROUTING & OUTPUT chains of the nat table.

todestination
ipaddress[ipaddress]

[:portport].

A destination IP address or address range can be specified. If the ports are specified,
the destination port is modified.

MASQUERADEThis
extended target is used in the

POSTROUTING chain of the, nat table. It is used for NAT when one of the connections
has a dynamic address, like a dial up connection such as pointtopoint (PPP).

SNATIhe
SNAT target is like the MASQUERADE extended target, but Is used when doing NAT
between two Interfaces with static addresses. The SNAT target can only be defined in
POSTROUTING chain of the nat table.

Here are some examples of some IPTables rules and what they do:
Allowing www
iptables A
INPUT p
tcp -dport www j
ACCEPT

,,.

194 Introduction to Llnux : Installation and Programming

This command appends a rule to the filter table since no table is defined with t. The rule
is appended to the INPUT chain in the filter table, as noted by INPUT after A. This rule looks
for packets where the protocol is tcp and the destination port is www service, or port 80 as
listed in /etc/services file. The target for this rule is to let the packet pass through to its
destination, which is accomplished by sending the packet to the ACCEPT target.

Forwarding

iptables A

FORWARD i

pppO 0

ethO m

state \

state

j

ACCEPT

The lines above append (A) a new- rule to the filter table to the forwarding chain
(FORWARD) from the outside interface out to the internal interface where the packet's state
is either a previously established connection or a related connection. As long as the default
policy for the FORWARD chain is to DROP packets, a new connection from the outside will
not match this rule and will be dropped.

Doing masquerading (NAT)

iptables t

nat A

POSTROUTING 0

pppO j

MASQUERADE

Or, where X.X.X.x is a valid static IP address on the external interface.

iptables t

nat A

POSTROUTING 0

ethl j

SNAT to

x.x.x.x

This examples are of doing NAT, or masquerading, and although they match the same
packets they jump to different targets.

The first example matches an traffic that is going out on the outgoing interface. The
target is MASQURADE which is used to do NAT on interfaces with dynamic IP addresses, such
as pppO (dialup) interface.

Installing Squid Proxy and Firewall 195

The second example matches the same traffic, but forwards traffic to the 5NAT target.
The -to option is specified with the target, to the packets are modified to look as if they are
coming from X.X.X.x IP address.

In this example
iptables A

OUTPUT P
icmp icmptype

echorequest

j

ACCEPT

iptables A

INPUT P
icmp icmptype

echoreply
j

ACCEPT

• iptables is being configured to allow the firewall to send ICMP echorequests (pings)
and in turn, accept the expected ICMP echoreplies.

• set rules that allow telnet inside the network, but not outside:

iptables A

OUTPUT P
tcp destinationport
telnet d

198.168.0.0 j
ACCEPT

iptables A

OUTPUT P
tcp destination port

telnet d
! 198.168.0.0
j

REJECT

Each rule specifies a set of conditions the packet must meet, and what to do if it meets
them (a 'target'). For example, you might want to drop all ICMP packets coming from the
IP address 127.0.0.1. 50 in this case our conditions are that the protocol must be ICMP and
that the source address must be 127.0.0.1. Our target is 'DROP'. 127.0.0.1 is the
'Ioopback' interface, which you will have even if you have no real network connection. You
can use the 'ping' program to generate such packets (it simply sends an ICMP type

196 Introduction to Llnux : Installation and Programming

8 (echo request) which all cooperative hosts should obligingly respond to with an ICMP type
o (echo reply) packet). This makes it useful for testing.

ping -c 1127.0.0.1

PING 127.0.0.1 (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: Icmp_seq=O ttl=64 time=0.2 ms

--- 127.0.0.1 ping statistics ---

1 packets transmitted, '1 packets received, 0% packet loss

round-trip min/avg/max = 0.2/0.2/0.2 ms

iptables -A INPUT -s 127.0.0.1 -p icmp -j DROP

pir1g -c 1127.0.0.1

PING 127.0.0.1 (127.0.0.1): 56 data bytes

--- 127.0.0.1 ping statistics ---

1 packets transmitted, 0 packets received, 100% packet loss

You can see here that the first ping succeeds (the '-c l' tells ping to only send a single
packet).

Then we append (-A) to the 'INPUT' chain, a rule specifying that for packets from
127.0.0.1 (' -s 127.0.0.1') with protocol ICMP (' -p icmp') we should jump to DROP ('-j
DROP').

Then we test our rule, using the second ping. There will be a pause before the program
gives up waiting for a respqnse that will never come.

We can delete the rule in one of two ways. Firstly, since we know that it is the only rule
in the input chain, we can use a numbered delete, as in:

iptables -D INPUT 1

To delete rule number 1 In the INPUT chain.

The second way is to mirror the -A command, but replacing the -A with -D. This Is
useful when you have a complex chain of rules and you don't want to have to count them
to figure out that it's rule 37 that you want to get rid of. In this case, we would use:

iptables -D INPUT -s 127.0.0.1 -p icmp -j DROP

The syntax of -D must have exactly the same options as the -A (or -lor -R) command.
If there are multiple identical rules in the same chain, only the first will be deleted.

Installing Squid Proxy and Firewall 197

12.3 Proxy Servers
A web proxy server is an intermediate server between local network and the internet. This is
useful to provide better security and reduce network traffic for frequently accessed internet
data by caching them locally.

A caching proxy is a server, which 'sits between' web browsers, such as Netscape or
Internet Explorer and remote web sites. The proxy stores local copies of files as they are
downloaded, and if a file is requested that has already been downloaded the local copy is
supplied, rather than repeating the download. This save money (sometimes) and bandwidth
(always). Squid is the leading caching proxy available: leading in terms of performance,
reliability, versatility and scalability. Squid is an open-source project: its home is
http://www.sguid-cache.org. Squid is immensely scalable:all the large ISPs use It. It has
provision for several servers ('neighbors') to share cached files. This scalability makes it look
more complex to configure than it really is. Squid also has provision for restricting access in
various ways. It isn't wise to leave squid security wide open: it can lead to unauthorized use
of your server, and of your Internet connection.
Squid supports:

• proxying and caching of HTTP, FTP, and other URLs
• proxying for SSL
• cache hierarchies
• ICP, HTCP, CARP, Cache Digests
• transparent caching
• WCCP (Squid v2.3 and above)
• extensive access .controls
• HTTP server acceleration
• SNMP caching of DNS lookups

12.4 Setting Proxy Server: SQUID
On a Debian Linux system, you can use the apt-get program to automatically download and
install squid from the Internet, as follows:

apt-get install squid

Installing From Source If you prefer to install Squid from the source files, then you can do
this on just about any Unix system. First, you will need to obtain the latest source code from
the Squid web Site, at http://www.sguid-cache.org/ and read the INSTALL file which is
provided with the Squid source code.

tar -xvzf squid-*-src.tar.gz
cd squid -*
(In the above * indicates the squid release number).

Now enter the following commands in order to configure, compile and install squid

./configure
make
make install

This will by default, install into "/usr/local/squid". Type ./configure --help to view all
available options.

198 Introduction to Llnux : Installation and Programming

12.4.1 Configuring Squid

Everything in Squid is configured using a single configuration file, called squid.conf. The
actual file is /etc/squid/squid.conf. By default, Squid comes with a configuration file that Is
mostly correct and almost usable It contains default settings for many of the options that
require a setting, and should, by itself, allow access to your Squid configuration in a fairly
secure manner from your local server only.

To allow Squid to be used as a proxy server for your entire network, we have to configure
before we begin using Squid. Configuring squid can be a bit obscure: remember that there
are thousands of options because the product is used by the largest ISPs in the world, with
hundreds of servers in 'farms' all cooperating with each other.

By default, Debian Linux creates a user called 'proxy', in the group called 'proxy', and
makes this user the owner of the /var/spool/squid directory which is where Squid stores its
cache.

It makes sense to run the squid process as this (unprivileged) 'pr6xy' user, for security
purposes. That way, anyone managing to hack the squid process using a buffer overflow or
Similar attack will not end up with root access to your machine.

Basic configuration
To the basic (as supplied) squid configuration file, add the following op,tions:

The http_port is the port number on the local server that Squid binds itself to and listens
for incoming requests, its default port is 3128 but can be changed if needed (8080 is also a
common cache port).

http_port 192.168.1.1 :8080

acl privatenet src 192.168.0.0/255.255.0.0

http_access allow privatenet

cache_effective_user proxy

cache_effective_group proxy

The ad privatenet src statement above needs to reflect your internal network. For
example, allow the entire 192.168.x.x network to access squid since there are not any of
these on the Internet, as all of them must be private.

The cache_dir tag specifies the location where the cache will reside in the filesystem. ufs
identifies the storage format for the cache. The "100" specifies the maximum allowable size
of the cache (in MB), and should be adjusted to suit your needs. The 16 and 256 specify the
number1 of directories contained inside the first and second level cache store.

cache_dir ufs /var/spool/squid 100 16 256

When Squid proxies any FTP requests, this is the password used when logging in with an
anonymous FTP account.

ftp_user Squid@example.com
The dns,-nameservers specifies which DNS should be queried for name resolution. Squid

will normally use the values located in the /etc/resolv.conf file, but can be overridden here.

dns_nameservers 127.0.0.1

Installing Squid Proxy and Firewall 199

If you need logs, uncomment the lines for cache_access_log and cache_log.

cache_store_log: enter 'none' here; you can't use the so why waste the
space.

emulate_httpd_log: change this to 'on', so common log analysis tools can work
on the squid logs as well as http logs.

12.4.2 Setting Access Controls
The ACL's will help to avoid some of the more obscure problems, such as bandwidth-chewing
loops, cache tunneling with SSL CONNECTs and other strange access problems. Access
control is done on a per-protocol basis: when Squid accepts an HTTP request, the list of HTTP
controls is checked. Similarly, when an ICP request is accepted, the ICP list is checked before
a reply is sent.

Assume that you have a list of IP addresses that are to have access to your cache. If you
want them to be able to access your cache with both HTTP and ICP, you would have to enter
the list of IP addresses twice: you would have lines something like this:

http_access deny 10.0.1.0/255.255.255.0

http_access allow 10.0.0.0/255.0.0.0
icp_access allow 10.0.0.0/255.0.0.0

Rule sets like the above are great for small organizations: they are straight forward.

For large organizations, though, things are more convenient if you can create classes of
users. We can then allow or deny classes of users in more complex relationships. Let's look
at an example like this, where we duplicate the above example with classes of users:

classes

acl mynetwork src 10.0.0.0/255.0.0.0
acl servernet src 10.0.1.0/255.255.255.0

what HTTP access to allow classes

http_access deny servernet

http_access allow mynet

what ICP access to allow classes
icp_access deny servernet
icp_access allow mynet

AcI-operators are checked in the order that they occur in the file (i.e. from top to
bottom). The first acl-operator line that matches causes Squid to drop out of the acl list.
Squid will not check through all acl-operators if the first denies the request.

In the previous example, we used a src acl: this checks that the source of the request is
within the given IP range. The src acl-type accepts IP address lists in many formats, though
we used the subnet/netmask in the earlier example. CIDR (Classless Internet Domain
Routing) notation can also be used here.

Let see another example. The http_access allow http for all privatenet members in
addition to localhost.

acl privatenet src 192.168.0.0/255.255.0.0

200 Introduction to Linux : Installation and Programming

http_access allow localhost

http_access allow privatenet
http_access deny all

This rule defines an ACL called BADPC with a single source IP address of 192.168.1.25. It
then denies access to the ACL.

acl BADPC src 192.168.1.25
http_access deny BADPC

Current day/time
Squid allows one to allow access to specific sites by time. Often businesses wish to filter out
irrelevant sites during work hours. The Squid time. acl type allows you to filter by the current
day and time. By combining the dstdomain and time acls you can allow access to specific
sites (such as your the sites of suppliers or other associates) during work hours, but allow
access to other sites after work hours.

The layout is quite compact:

acl name time [day-list] [start_hour:minute-end_hour:minute]

Day list is a list of single characters indicating the days that the acl applies to. Using the
first letter of the day would be ambiguous (since, for example, both Tuesday and Thursday
start with the same letter). When the first letter is ambiguous, the second letter is used: T
stands for Tuesday, H for Thursday. Here is a list of the days with their single-letter
abbreviations:

5 - Sunday M - Monday T - Tuesday W - Wednesday H - Thursday F - Friday A - Saturday

Start_hour and end_hour are values in military time (17:00 instead of 5:00). End_hour
must always be larger than start_hour; this means (unfortunately) that you cannot do the
following:

since start_time must be smaller than end_time, this won't work:
acl darkness 17:00-6:00

The only alternative to the darkness example above is something like this:

acl night time 17:00-24:00
acl early-morning time 00:00-6:00

As you can see from the original definition of the time acl, you can specify the day of the
week (with no time), the time (with no day), or both the time and day (?check!?). You can,
for example, create a rule that specifies we'ekends without specifying that the day starts at
midnight and ends at the following midnight. The following acl will match on either Saturday
or Sunday.

ad time SA

Installing Squid Proxy and Firewall 201

The following example is too basic for real-world use. Unfortunately creating a good
example requires some of the more advanced features of the http_access line; these are
covered in the next section of this chapter, and examples are included there.

Allowing Web access during the weekend only

acl myNet src 10.0.0.0/16
acl workdays time MTWHF
allow web access only on the weekends!

http_access deny workdays
http_access allow myNet
The following is a mixed rule, it uses two ACLs to deny access. This rule denies PC during

an ACL called CLEANTIME which is in effect MondayFriday 3 to 6PM.

ad PC src 192.168.1.25
ad CLEANTIME MTWHF 15:0018:00

http_access deny PC CLEANTIME
For example, consider this set of acl elements:

ad daytime time 09:00-16:00
acl subnetl src 172.20.1.0/255.255.255.0
ad subnet2 src 172.20.2.0/255.255.255.0
ad all src 0/0

http_access allow subnetl
http_access deny subnet2 daytime
http_access allow subnet2
http_access deny all

The machines on subnet 1 can use the proxy (and therefore presumably the Internet) all
the time; those on subnet 2 only during off-hours. Remember that ad elements are checked
in order until one applies.

Destination Port
Web servers almost always listen for incoming requests on port 80. Some servers (notably
site-specific search engines and unofficial sites) listen on other ports, such as 8080. Other
services (such as IRC) also use high-numbered ports. Because of the way HTTP is designed,
people can connect to things like IRC servers through your cache servers (even though the
IRC protocol is very different to the HTTP protocol). The same problems can be used to
tunnel tel net connections through your cache server. The major part of the HTTP
specification that allows for this is the CONNECT method, which is used by clients to connect
to web servers using SSL.

Since you generally don't want to proxy anything other than the standard supported
protocols, you can restrict the ports that your cache is willing to connect to. The defauft
Squid config file limits standard HTTP requests to the port ranges defined in the Safe_ports
squid.conf acl. SSL CONNECT requests are even more limited, allowing connections to only
ports 443 and 563.

202 Introduction to Llnux : Installation and Programming

Port ranges are limited with the port acl type. If you look in the default squid.conf, you
will see lines like the following:

acl Safe_ports port 80 21 443 563 70 210 1025-65535

The format is pretty straight-forward: destination ports 443 OR 563 are matched by the
first acl, 80 21 443, 563 and so forth by the second line. The most complicated section of the
examples above is the end of the line: the text that reads "1024-65535".

The "-" character is used in squid to specify a range. The example thus matches any port
from 1025 all the way up to 65535. These ranges are inclusive, so the second line matches
ports 1025 and 65535 too. .

The only low-numbered ports which Squid should need to connect to are 80 (the HTTP
port), 21 (the FTP port), 70 (the Gopher port), 210 (wais) and the appropriate SSL ports. All
other low-numbered ports (where common services like telnet run) do not fall into the 1024-
65535 range, and are thus denied.

The following http_access line denies access to URLs that are not in the correct port
ranges. You have not seen the! http_access operator before: it inverts the decision. The line
below would read "deny access if the request does not fall in the range specified by acl
Safe_ports" if it were written in English. If the port matches one of those specified in the
Safe_ports acl line, the next http_access line is checked. More information on the format of
http_access lines is given in the next section AcI-operator lines.
http_access deny ! Safe_ports

Protocol (FTP, HTTP, SSL)
Some people may wish to restrict their users to specific protocols. The proto acl type allows
you to restrict access by the URL prefix: the http:// or ftp:// bit at the front. The following
example will deny request that uses the FTP protocol.

Denying access to FTP sites

acl ftp proto FTP
acl myNet src 10.0.0.0/16
acl all src 0.0.0.0/0.0.0.0

http_access deny ftp
http_access allow mynet
http_access deny all

The following rule will block all files that end in the file extensions ".mp3". The "i"
means treat them as case insensitive which matches both upper and lower case.

acl FILE_MP3 urlpath_regex i
\.mp3$

http_access deny FILE_MP3
By default, Squid stores some information in a few log files as follows:

cache_access_log /var/log/squid/access.log
cache_log /var/log/ squid/ cache. log
cache_store_log none

Installing Squid Proxy and Firewall 203

With the above lines, Squid will store error messages in the file /var/log/squid/cache.log (this
should be checked periodically), and access messages in the file /var/log/squid/access.log. There
are a number of useful programs that can analyze the access log file, including SARG (Squid
Analysis Report Generator).

We may want to allow access to your cache from a number of networks. This is
accomplished by using various acl and http_access lines.

Note that an acl line defines a network or other access device, whereas the http_access
{acl) (a "ow/deny) line grants or denies access to the acl that you have defined. Therefore,
you should put your acl lines before the http_access lines in your configuration file.

Talking to an External (Upstream) Proxy
It may be to use an upstream proxy for Squid. This can speed Internet access
up noticeably; for example, when your ISP also has a Squid cache that 'many users access.
The ISP's cache can, over time, build up a large cache of many different sites, allowing faster
access to those sites to your network.

For intercache communication, Squid supports a protocol known as 'ICP'. ICP allows
caches to communicate to each other using fast UDP packets, sending copies of sma" cached
files to each other within a single UDP packet if they are available.

To use an upstream proxy effectively, you should first determine what address it is (e.g.:
proxyserver.yourisp.com), and what cache and ICP port (if any) it uses. Using an upstream
proxy that supports ICP is simple, using a line like this one:

cache_peer proxy.yourisp.com parent 31283130
prefer_direct off

The cache_peer line specifies the host name, the cache type ("parent"), the proxy port
(31-28) and the ICP port (in this case, the default, which is 3130).

Sibling Proxies and Sharing Caches
Note that in a high volume Situation, or a company with several connections to the Internet,
Squid supports a multiparent, multisibling hierarchy of caches, provided that a" of the caches
support ICP. For example, your company may operate two caches, each with their own
Internet connection but sharing a common network backbone. Each cache could have a
cache_peer line in the configuration file such as:

cache_peer theotherproxy.yournetwork.com sibling 3128 3130

Note that the peer specification has changed to Sibling, which means that we will fetch
files from the other cache if they are present there, otherwise we will use our own Internet
connection.

Denying Bad Files
There are a number of files that won't allow users to fetch, including the notorious
WINBUGFIX. EXE file that was distributed with the Melissa virus. A simple ACL line to stop
this file from being downloaded is as follows:

acl nastyfile dstdomJegex i
WIN[. *]BUG[. *]EXE

http_access deny nastyfile

204 Introduction to Llnux : Installation and Programming

To block some domains the blacklist is created, populated and secured, you place the
appropriate "BAD_DOMAINS" access control policy in the configuration file.

ad BAD_DOMAINS dstdomJegex i
"/etc/squid/bad_domains"

http_access deny BAD_DOMAINS

19.2.3 Starting squid the first time

• I

The first time squid runs it must build the cache directory tree in /var/spool. To ensure
that this happens, run squid manually once: squid -z (to create the directories) then squid
(to run the daemorV.

Check squid is running by looking for two processes named squid and (squid) in the
process table.

Starting squid at boot time
Use ntsysv to ensure that squid starts at boot.

12.5 Conclusions
This chapter explains about firewalls in general with specific emphasis on a popular proxy
firewall, SQUID. It describes various types of firewalls and specifically packet filtering. How,
Ipchains, and iptables are used in creating f1rewalls is explained in a lucid manner.

13 Users and Account Management

13.1 What is a UNIX account?
A UNIX account is a collection of logical characteristics that specify who the user is, what the
user is allowed to do and where the user is allowed to do it. These characteristics include a

• login (or user) name,
• password,
• numeric user identifier or UID,
• a default numeric group identifier or GID,

Many accounts belong to more than one group but all accounts have one default group.

• home directory,
• login shell,
• possibly a mail alias,
• mail file, and
• collection of start-up files.

13.1.1 Login names
The account of every user is assigned a unique login (or user) name. The username uniquely
identifies the account for people. The operating system uses the user identifier number CUID)
to uniquely identify an account. The translation between UID and the username is carried out
reading the /etc/passwd file (/etc/passwd is introduced below).

13.1.2 Login name format
On a small system, the format of login names is generally not a problem since with a small
user population it is unlikely that there will be duplicates. However on a large site with
hundreds or thousands of users and multiple computers, assigning a login name can be a
major problem. With a larger number of users it is likely that you may get a number of
people with names like David Jones, Darren Jones.

The following is a set of guidelines. They are by no means hard and fast rules but using
some or all of them can make life easier for yourself as the Systems Administrator, or for
your users.

• Unique
This means usernames should be unique not only on the local machine but also across
different machines at the same site. A login name should identify the same person and .
only one person on every machine on the site. This can be very hard to achieve at a
site with a large user population especially if different machines have different
administrators.

The reason for this guideline is that under certain circumstances it is possible for
people with the same username to access accounts with the same username on
different machines.

• up to 8 characters
UNIX will ignore or disallow login names that are longer. Dependent on which platform
you are using.

206 Introduction to Linux : Installation and Programming

• Lowercase
Numbers and upper case letters can be used. Login names that are all upper case
should be avoided as some versions of UNIX can assume this to mean your terminal
doesn't recognise lower case letters and every piece of text subsequently sent to your
display is in uppercase.

• Easy to remember
A random sequence of letters and numbers is hard to remember and so the user will
be continually have to ask the Systems Administrator "what's my username?"

• No nicknames
A username will probably be part of an email address. The username will be one
method by which other users identify who is on the system. Not all the users may
know the nicknames of certain individuals.

• A fixed format
There should be a specified system for creating a username. Some combination of first
name, last name and initials is usually the best. Setting a policy allows you to
automate the procedure of adding new users. It also makes it easy for other users to
work out what the username for a person might be.

13.1.3 Passwords
An account's password is the key that lets someone in to use the account. A password should
be a secret collection of characters known only by the owner of the account.

Poor chOice of passwords is the single biggest security hole on any multi-user computer
system. As a Systems Administrator we should follow a strict-set of guidelines for passwords
(after all if someone can break the root account's password, your system is going bye, bye).
In addition we should promote the use of these guidelines amongst your users.

Password guidelines
An example set of password guidelines might include

• use combinations of upper and lower case characters, numbers and punctuation
characters,

• don't use random combinations of characters if they break the following two rules,
• be easy to remember, If a user forgets their password they can't use the system and

guess whom they come and see. Also the user SHOULD NOT have to write their
password down.

• be quick to type, One of the easiest and most used methods for breaking into a system
is simply watching someone type in their password. It is harder to do if the password
is typed in quickly.

• a password should be at least 6 characters long, The shorter a password is the easier
it is to break. Some systems will not allow passwords-shorter than a specified length.

• a password should not be any longer than 8 to 10 characters, Most systems will look
as if they are accepting longer passwords but they simply ignore the extra characters.
The actual size is system specific but between eight and ten characters is generally
the limit.

• do not use words from ANY language, Passwords that are words can be cracked.
• do not use combinations of just words and numbers, Passwords like hello1 are just as

easy to crack as bello.
• use combinations of words separated by punctuation characters or acronyms of

uncommon phrases/song lines, They should be easy to remember but hard to crack.
e.g. b1gsh1p

• change passwords regularly, Not too often that you forget which password is currently
set.

• never reuse passwords.

Users and Account Management 207

13.1.4 The UID
Every account on a UNIX system has a unique user or login name that is used by users to
identify that account. The operating system does not use this name to identify the account.
Instead each account must be assigned a unique user identifier number (UID) when it is
created. The UID is used by the operating system to identify the account.

UIO guidelines

In choosing a UID for a new user there are a number of considerations to take into account
including

• choose a UID number between 100 and 32767 (or 60000), Numbers between 0 and 99
are reserved by some systems for use by system accounts. Different systems will have
different possible maximum values for UID numbers. Around 32000 and 64000 are
common upper limits.

• UIDs for a user should be the same across machines, Some network systems
(e.g. NFS) require that users have the same UID across all machines in the network.
Otherwise they will not work properly.

• you may not want to reuse a number. Not a hard and fast rule. Every file is owned by
a particular user id. Problems arise where a user has left and a new user has been
assigned the UID of the old user. What happens when you restore from backups some
files that were created by the old user? The file thinks the user with a particular UID
owns it. The new user will now own those files even though the username has
changed.

13.1.5 Home directories
Every user must be assigned a home directory. When the user logs in it is this home
directory that becomes the current directory. Typically all user home directories are stored
under the one directory. Many modern systems use the directory /home. Older versions used
/usr/users. The names of home directories will match the username for the account.

For example, a user rama would have the home directory /home/rama
In some instances it might be decided to further divide users by placing users from

different categories into different sub-directories.

For example, all staff accounts may go under thome/staff while students are placed under
thome/students. These separate directories may even be on separate partitions.

13.1.6 Login shell
Every user account has a login shell. A login shell is Simply the program that is executed
every time the user logs in. Normally it is one of the standard user shells such as Bourne,
csh, bash etc. However it can be any executable program.

One common method used to disable an account is to change the login shell to the
program /bin/false. When someone logs into such an account /bin/false is executed and the
login: prompt reappears.

13.1.7 Dot files
A number of commands, vi, the mail system and a variety of shells, can be
customized using dot files [Kernigham]. A dot file is usually placed into a user's home
directory and has a filename that startS with a . (dot). This files (see Table 13.1) are
examined when the command is first executed and modifies how it behaves.

Dot files are also known as rc files, Le., "run command".

208 Introduction to Llnux : In&tallatlo" and Programming

Table 13.1 dot files for a number of shell or commands.

Filename Command Explanation

"'f,cshrc /bin/csh Executed every time C shell started.

"'/.Iogin /bin/csh Executed after .cshrc when logging in
with C shell as the login shell.

/etc/profile /bin/sh Executed during the login of every user
that uses the Bourne shell or its
derivatives.

"'/.profile /bin/sh located in user's home directory.
Executed whenever the user logs in
when file Bourne shell is their login shell

"'/.Iogout /bin/csh executed just prior to the system
logging the user out (when the csh is
the login shell)

'" /. bash_logout /bin/bash executed just prior to the system
logging the user out (when bash is the
looin shell)

"'/.bash_history /bin/bash records the list of commands executed
using the current shell

",/.forward incoming mail Used to forward mail to another address
or a command

"'/.exrc vi used to set options for use in vi

Shell's dot files
These shell dot files, particularly those executed when a shell is first executed, are
responsible ·for

• setting up command aliases, Some shells (e.g. bash) allow the creation of aliases for
various commands. A common command alias for old MS-DOS people is dir, usually
set to mean the same as Is -I.

• setting values for shell variables like PATH and TERM.

13.1.S Skeleton directories
Normally all new users are given the same startup files. Rather than create the same files
from scratch all the time, copies are usually kept in a directory called a skeleton directory.
This means when you create a new account you can simply copy the startup files from the
skeleton directory Into the user's home directory.

The standard skeleton directory Is /etc/skel. It should be remembered that the files in the
skeleton directory are dot files and will not show up if you simply use Is /etc/skel. As
mentioned earlier, we will have to use the -a switch for Is to see dot flies.

13.1.9 The mail file
When someone sends. mail to a user that mail message has to be stored somewhere so that
it can be read. Under UNIX each user is assigned a mail file. All user mail files are placed in
the same directory. When a new mail message arrives it is appended onto the end of the
user's mail file.

Users and Account Management 209

The location of this directory can change depending on the operating system being used.
Common locations are

/usr/spool/mail,

/Var/spool/mail,

This is the standard Linux location in some Linux variants.

• /usr/mail

• /Var/mail.

On some sites it is common for users to have accounts on a number of different
computers. It is easier if all the mail fora particular user goes to the one location. This
means that a user will choose one machine as their mail machine and want all their email
forwarded to their account on that machine.

There are at least two ways by which mail can be forwarded

• the user can create a .forward file in their home directory (see Table 13.1), or
• the administrator can create an alias.

Mail aliases

If you send an e-mail message that cannot be delivered (e.g. you use the wrong address)
typically the mail message will be forwarded to the postmaster of your machine. There is
usually no account called postmaster (though recent distributions of Linux do). postmaster is
a mail alias.

When the mail delivery program gets mail for postmaster it will not be able to find a
matching username. Instead it will look up a specific file, usually /etc/aliases or
/etc/mail/names (Linux uses /etc/aliases). This file will typically have an entry like

postmaster: root

This tells the delivery program that anything addressed postmaster should actually be
delivered to the user root.

Site aliases
Some companies will have a set policy for e-mail aliases for all staff. This means that when
you add a new user you also have to update the aliases file.

13.2 Account configuration files
Most of the characteristics of an account mentioned above are stored in two or three
configuration files. All these files are text files, each account has a one-line entry in the file
with each line divided into a number of fields using colons.

Table 13.2. lists the configuration files examined and their purpose. Not all systems will
have the /etc/shadow file. On some platforms the shadow file will exist but its filename will
be different.

210 Introduction to Linux : Installation and Programming

Table 13.2 Account configuration files.

file Purpose

/etc/passwd the password file, holds most of an account
characteristics including username, UID,
GID, GCOS information, login shell, home
directory and in some cases the password

/etc/shadow the shadow password file, a more secure
mechanism for holding the password,
common on more modern systems

/etc/group the group file, holds characteristics about a
system's groups including group name, GID
and group members

13,2.1 /etc/passwd
/etc/passwd is the main account configuration file. Table 13.3 summarizes each of the fields
in the /etc/passwd file. On some systems the encrypted password will not be in the passwd
file but will be in a shadow file.

Table 13.3/etc/passwd.

Field Name Purpose

login name the user's login name

encrypted password * encrypted version of the user's password

UID n'umber the user's unique numeric identifier

default GID the user's default group id

GCOS information no strict purpose, usually contains full
name and address details, sometimes
called the comment field

home directory the directory in which the user is placed
when they log in

login shell the program that is run when the user logs
in

* not on systems with a shadow password file

Everyone can read /etc/passwd

Every user on the system must be able to read the /etc/passwd file. This is because many of
the programs and commands a user executes must access the information in the file. For
example, when you execute the command Is -I command part of what the command must do
is translate the UID of the file's owner into a username. The only place that information is
stored is in the /etc/passwd file.

Users and Account Management 211

This is a problem
Since everyone can read the /etc/passwd file they can also read the encrypted password.
The problem isn't that someone might be able to decrypt the password. The method used

to encrypt the passwords is supposedly a one way encryption algorithm. You aren't supposed
to be able to decrypt the passwords.

The way to break into a UNIX system is to obtain a dictionary of words and encrypt the
whole dictionary. You then compare the encrypted words from the dictionary with the
encrypted passwords. If you find a match you know what the password is.

Studies have shown that with a carefully chosen dictionary, between 10-20% of
passwords can be cracked on any machine.

An even greater problem is the increasing speed of computers. One modern super
computer is capable of performing 424,400 encryptions a second. This means that all six-
character passwords can be discovered in two days and all seven-character passwords within
four months.

The solution to this problem is to not store the encrypted password in the /etc/passwd
file. Instead it should be kept in another file that only the root user can read. Remember the
passwd program is setuid root.

This other file in which the password is stored is usually referred to as the shadow
password file. It can be stored in one of a number of different locations depending on the
version of UNIX you are using. A common location, and the one used by the Linux shadow
password suite, is /etc/shadow.

13.2.2 fete/shadow file
Typically the shadow file consists of one line per user containing the encrypted password and
some additional information including

• username,
• the date the password was last changed,
• minimum number of days before the password can be changed again,
• maximum number of days before the password must be changed,
• number of days until age warning is sent to user,
• number of days of inactivity before account should be removed,
• absolute date on which the password will expire.

The additional information is used to implement password aging.

13.2.3 Groups
As we understood earlier that a group is a logical collection of users. Users with similar needs
or characteristics are usually placed into groups. A group is a collection of user accounts that
can be given special permissions. Groups' are often used to restrict access to certain files and
programs to everyone but those within a certain collection of users.

/etc/group

The fetc/group file maintains a list of the current groups for the system and the users that
belong to each group. The fields in the /etc/group file include

> • the group name,
A unique name for the group.

• an encrypted password (this is rarely used today) ,

• the numeric group identifier or GID, and

• the list of usernames of the group members separated by commas.

212 Introduction to Linux : Installation and Programming

A user can in fact be a member of several groups. Any extra groups the user is a member
of are specified by entries in the /etc/group file. ,.

It is not necessary to have an entry in the /etc/group file for the default group. However if
the user belongs to any other groups they must be added to the /etc/group file.

13.2.4 Special accounts
All UNIX systems come with a number of special accounts. These accounts already exist and
are there for a specific purpose. Typically these accounts will all have UIDs that are less than
100 and are used to perform a variety of administrative duties. Table 13.4. lists some of the
special accounts that may exist on a machine.

Table 13.4 Special accounts.

Username UID Purpose

root a The super user account. Used
by the Systems Administrator
to perform a number of tasks.
Can do anything. Not subject
to any restrictions

daemon 1 Owner of many of the system
daemons (programs that run
in the background waiting for
things to happen).

bin 2 The owner of many of the
standard executable programs

root
The root user, also known as the super user is probably the most important account on a
UNIX system. This account is not subject to the normal restrictions placed on standard
accounts. It is used by the Systems Administrator to perform administrative tasks that can't
be performed by a normal account.

Restricted actions

Some of the actions for which you'd use the root account include

• creating modifying user accounts,
• shutting the system down,
• configuring hardware devices like network interfaces and printers,
• changing the ownership of files,
• setting and changing quotas and priorities, and
• setting the name of a machine.

Be careful
We should always be careful when logged in as root. When logged in as root we must know
what every command we type is going to do. Remember the root account is not subject to
the normal restrictions of other accounts. If we execute a command as root it will be done,
whether It deletes all the files on y\our system or not.

Adding a user is a fairly mechanical task that is usually automated either through shell
scripts or on many modern systems with a GUI based program. However it is still important
that the Systems Administrator be aware of the steps involved in creating a new account. If
you know how it works you can fix any problems which occur.

Users and Account Management 213

13.3 Creating Users
In summary, the steps to create a user include

• adding an entry for the new user to the /etc/passwd file,
• setting an initial password,
• adding an entry to the /etc/group file,
• creating the user's home directory,
• creating the user's mail file or setting a mail alias,
• creating any start-up files required for the user,
• testing that the addition has worked, and
• possibly sending an introductory message to the user.

Other considerations

When adding a new account, user management tasks that are required include

• making the user aware of the site's policies regarding computer use,
• getting the user to sign an "acceptable use" form,
• letting the user know where and how they can find information about their system, and
• possibly showing the user how to work the system.

Adding an /etc/passwd entry

For every new user, an entry has to be added to the /etc/passwd file. There are a variety of
methods by which this is accomplished including

• using an editor, This is a method that is often used. However it can be unsafe and it is
generally not a good idea to use it.

• the command vipw, or Some systems (usually BSD based) provide this command.
vipw invokes an editor so the Systems Administrator can edit the passwd file safely.
The command performs some additional steps that ensures that the editing is
performed consistently. Some distributions of Linux supply vipw.

• a dedicated adduser program [Richard L Peterson]. Many systems, Linux included,
provide a program (the name will change from system to system) that accepts a
number of command-line parameters and then proceeds to perform many of the steps
involved in creating a new account. The Linux command is called adduser .

useradd is an executable program which significantly reduces the complexity of
adding a new user. A solution to the previous exercise using useradd looks like this

useradd -c "David Jones" david
useradd will automatically create the home directory and mail file, copy files from

skeleton directories and a number of other tasks.
• With the help of GUI based facility for user management. On my machine,

Applications -> system settings -> Users and Groups.

NEVER LEAVE THE PASSWORD FIELD BLANK.

If you are not going to set a password for a user put a * in the password field of /etc/passwd
or the /etc/shadow file. On most systems, the * character is considered an invalid password
and it prevents anyone from using that account.

If a password Is to be set for the account then the passwd command must be used. The
user should be forced to immediately change any password set by the Systems Administrator

/ etc/ group entry

214 Introduction to Llnux : Installation and Programming

While not strictly necessary, the /etc/group file should be modified to include the user's
login name in their default group. Also if the user is to be a member of any other group they
must have an entry in the /etc/group file.

Editing the /etc/group file with an editor should be safe.

The home directory

Not only must the home directory be created but the permissions also have to be set
correctly so that the user can access the directory.

The permissions of a home directory should be set such that

• the user should be the owner of the home directory,
• the group owner of the directory should be the default group that the user belongs to,
• at the very least, the owner of the directory should have rwx permissions, and
• the group and other permissions should be set as restrictively as possible.

The startup files

Once the home directory is created the startup files can be copied in or createa. Again you
should remember that this will be done as the root user and so root will own the files. You
must remember to change the ownership.

Setting up mail

A new user will either

• want to read their mail on this machine, or
• want to read their mail on another machine.

The user's chOice controls how you configure the user's mail.

A mail file

If the user is going to read their mail on this machine then you must create them a mail file.
The mail file must go in a standard directory (usually /var/spool/mail under Linux). As with
home directories it is importa.nt that the ownership' and the permissions of a mail file be set
correctly. The requirements are

• the user must be able to read and write the file, After all, the user must be able to
read and delete mail messages.

• the group owner of the mail file should be the group mail and the group should be able
to read and write to the file, The programs that deliver mail are owned by the group
mail. These programs must be able to write to the file to deliver the user's mail.

• no-one else should have any access to the file, No-one wants anyone else peeking at
their private mail.

Mail aliases and forwards

If the user's main mail account is on another machine, any mail that is sent to this machine
should be forwarded to the appropriate machine. There are two methods

a mail alias, or

a file "'/.forward

Both methods achieve the same result. The main difference is that the user can change
the .forward file if they wish to. They can't modify a central alias.

Users and Account Management 215

Additional steps
Simply creating the accounts using the steps introduced above is usually not all that has to
be done. Most sites may include additional steps in the account creation process such as

• sending an initial, welcoming email message, Such an email can serve a number of
purposes, including informing the new users of their rights and responsibilities. It is
important that users be made aware as soon as possible of what they can and can't
do and what support they can expect from the Systems Administration team.

• creating email aliases or other site specific steps.

13.4 Testing an account
Once the account is created, at least in some instances, you will want to test the account
creation to make sure that it has worked. There are at least two methods you can use

• login as the user
• use the su command.

The su command

The su command is used to change from one user account to another. To a certain extent it
acts like logging in as the other user. The standard format is su username.

Su

Password:

Time to become the root user. su without any parameter lets you become the root user,
as long as you know the password. In the following the id command is used to prove that I
really have become the root user. You'll also notice that the prompt displayed by the shell
has changed as well. In particular notice the # character, commonly used to indicate a shell
with root permission.

id
uid=O(root) gid=O(root)
groups=O(root),l(bin),2(daemon),3(sys),4(adm),6(disk),lO(wheel)

When you do use the "-" argument of the su command, it simulates a full login. This means
that any startup files are executed and that the current directory becomes the home
directory of the user account you "are becoming". This is equivalent to logging in as the
user.

su - david
If you run su as a normal user you will have to enter the password of the user you are trying
to become. If you don't specify a username you will become the root user (if you know the
password).

The "_" switch

The su command is used to change from one user to another. By default, su david will
change your UID and GID to that of the user david (if you know the password) but won't
change much else. Using the - switch of su it is possible to simulate a full login including
execution of the new user's startup scripts and changing to their home directory.

su as root
If you use the su command as the root user you do not have to enter the new user's
password. su will immediately change you to the new user. su especially with the - switch is
useful for testing a new account.

216 Introduction to Llnux : Installation and Programming

13.5 Removing an account
Deleting an account involves reversing the steps carried out when the account was created.
It is a destructive process and whenever something destructive is performed, care must
always be taken. The steps that might be carried out include

• disabling the account,
• backing up and removing the associated files
• setting up mail forwards.

Situations under which you may wish to remove an account include

• as punishment for a user who has broken the rules, or In this situation you may only
want to disable the account rather than remove it completely.

• an employee has left.

Disabling an account

Disabling an account ensures that no-one can login but doesn't delete the contents of the
account. This is a minimal requirement for removing an account. There are two methods for
achieving this

• change the login shell, or Setting the login shell to /bin/false will prevent logins.
However it may still be possible for the user to receive mail through the account USing
POP mail programs like Eudora.

• change the password.

The * character is considered by the password system to indicate an illegal password.
One method for disabling an account is to insert a * character into the password field. If you
want to re-enable the account (with the same password) simply remove the *.

Another method is to simply remove the entry from the /etc/passwd and /etc/shadow
files all together.

Remove the user's files

All the files owned by the account should be removed from where ever they are in the file
hierarchy. It is unlikely for a user to own files that are located outside of their home directory
(except for the mail file). However it is a good idea to search for them. Another use for the
find command.

Mail for old users

On some systems, even if you delete the user's mail file, mail for that user can still
accumulate on the system. If you delete an account entirely by removing it from the
password field, any mail for that account will bounce.

In most cases, a user who has left will want their mail forwarded onto a new account. One
solution is to create a mail alias tor the user that points to their new address.

userdel and usermod

userdel is the companion command to useradd and as the name suggests it deletes or
removes a user account from the system. usermod allows a Systems Administrator to
modify the details of an existing user account.

13.6 Allocating root privilege
Many of the menial tasks, like creating users and performing backups, require the access
which the root account provides. This means that these tasks can't be allocated to junior
members of staff without giving them access to everything else on the system. In most
cases you don't want to do this.

Users and Account Management 217

There is another problem with the root account. If you have a number of trusted
Systems Administrators the root account often becomes a group account. The problem with
this is that since everyone knows the root password there is no way by which you can know
who is doing what as root. There is no accountability. While this may not be a problem on
your individual system on commercial systems it is essential to be able to track what
everyone does.

sudo

A solution to these problems is the sudo command.

sudo allows you to allocate certain users the ability to run programs as root without
giving them access to everything. For example, you might decide that the office secretary
can run the adduser script, or an operator might be allowed to execute the backup script.

sudo also provides a solution to the accountability problem. sudo logs every command
people perform while using it. This means that rather than using the root account as a group
account, you can provide all your Systems Administrators with sudo access. When they
perform their tasks with sudo, what they do will be recorded.

For example

To execute a command as root using sudo you login to your "normal" user account and
then type sudo followed by the command you wish to execute. The following example shows
what happens when you can and can't executable a particular command using sudo.

sudo Is We trust you have received the usual lecture from the local System
Administrator. It usually bOils down to these two things:

#1) Respect the privacy of others.

#2) Think before you type.

Password:

sudo cat

Sorry, user david is not allowed to execute "/bin/cat" as root on mc.

If the sudoers file is configured to allow you to execute this command on the current
machine, you will be prompted for your normal password. You'll only be asked for the
password once every five minutes.

/etc/sudoers

The sudo configuration file is usually /etC/sudoers or in some instances /usr/local/etC/sudoers.
sudoers is a text file with lines of the following format

username hostname=command

An example sudoers file might look like this

Root
david
bob
jo ALL=/usr/local/bin/adduser

ALL=ALL
ALL=ALL

cq-pan=/usr/local/bin/backup

218 Introduction to Llnux : Installation and Programming

In this example the root account and the user david are allowed to execute all commands
on all machines. The user bob can execute the /usr/local/bin/backup command but only on
the machine cq-pan. The user jo can execute the adduser command on all machines. The
sudoers man page has a more detail example and explanation.

By allowing you to specify the names of machines you can use the same sudoers file on all
machines. This makes it easier to manage a number of machines. All you do is copy the same
file to all your machines (there is a utility called rdist which can make this quite simple).

sudo advantages
sudo offers the following advantages

• accountability because all commands executed using sudo are logged, Logging on a
UNIX computer, as you'll be shown in a later chapter, is done via the syslog system.
What this means is that on a Redhat machine the information from sudo is logged in
the file /Var/log/messages.

• menial tasks can be allocated to junior staff without providing root access,
• using sudo is faster than using su,
• a list of users with root access is maintained,
• privileges can be revoked without changing the root password.

Some sites that use sudo keep the root password in an envelope in someone's draw. The
root account is never used unless in emergencies where it is required.

13.7 Conclusions
This chapter explores about users and account management. It emphasizes creating users
with some specific privileges and assigning them to be able to run some commands to do a
specific administration task. Also it explains how mail aliases can be done in Linux.

14 A brief Introduction to Unix Devices and
Fi Ie systems

14.1 Introduction

In linux system devices also abstracted same as files. In this chapter first we try to explain
about linux devices notations, device drivers, major and minor number and physical
organization of the data on the disk.

In the first chapter, we have examined the overall logical structure of the Linux file
system. This was a fairly abstract view that didn't explain how the data was physically
transferred on and off the disk. Nor in fact, did it really examine the concept of "disks" or
even "what" the file system "physically" existed on.

14.2 Devices - Gateways to the kernel
A device is just a generic name for any type of physical or logical system component that the
operating system has to interact with (or "talk" to).

Physical devices include such things as hard disks, serial devices (such as modems,
mouse(s) etc.), CDROMs, sound cards and tape-backup drives.

Logical devices include such things as virtual terminals [every user is allocated a terminal
when they log in - this is the point at which output to the screen is sent (STDOUT) and
keyboard input is taken (STDIN)J, memory, the kernel itself and network ports.

14.2.1 Device files
Device files are special types of "files" that allow programs to interact with devices via the
OS kernel. These "files" (they are not actually real files in the sense that they do not contain
data) act as gateways or entry pOints into the kernel or kernel related "device drivers".

As explained in first chapter, /dev is the location where most device files are kept. A
listing of /dev will output the names of hundreds of files. The following is an edited extract
from the MAKEDEV (a Linux program for making device files - we will examine it later) man
page on some of the types of device file that exist in /dev:

• std
Standard devices. These include mem - access to physical memory; kmem - access to
kernel virtual memory;null - null device; port - access to I/O ports;

• Virtual Terminals
This are the devices associated with the console. This is the virtual terminal tty_,
where can be from 0 though 63.

• Serial Devices
Serial ports and corresponding dialout device. For device ttyS_, there is also the
device cua_ which is used to dial out with.

• Pseudo Terminals
(Non-Physical terminals) The master pseudo-terminals are pty[p-s][O-9a-f] and the
slaves are tty[p-s][O-9a-f].

220 Introduction to Linux : Installation and Programming

• Parallel Ports
Standard parallel ports. The devices are IpO, Ip1, and Ip2. These correspond to
ports at Ox3bc, Ox378 and Ox278. Hence, on some machines, the first printer port
may actually be Ip1.

• Bus Mice
The various bus mice devices. These include: logimouse (Logitech bus mouse),
psmouse (PS/2-style mouse), msmouse (Microsoft Inport bus mouse) and
atimouse (AT! XL bus mouse) and Jmouse (J-mouse).

• Joystick Devices
Joystick. Devices jsO and js1.

• Disk Devices
Floppy disk devices. The device fd_ is the device which autodetects the format, and
the additional devices are fixed format (whose size is indicated in the name). The
other devices are named as fd_. The single letter _ identifies the type of floppy
disk (d = 5.25" DD, h = 5.25" HD, D = 3.5" DD, H = 3.5" HD, E = 3.5" ED). The
number _ represents the capacity of that format in K. Thus the standard formats are
fd_d360_fd_h1200 fd D720_fd_H1440_and fd_E2880_
Devices fdO_ through fd3_ are floppy disks on the first controller, and devices fd4_
through fd7 _ are floppy disks on the second controller.
Hard disks : The device hdx provides access to the whole disk, with the
partitions being hdx[0-20]. The four primary partitions are hdx1 through hdx4,
with the logical partitions being numbered from hdx5 though hdx20. (A primary
partition can be made into an extended partition, which can hold 4 logical partitions).
Drives hda and hdb are the two on the first controller. If using the new IDE driver
(rather than the old HD driver), then hdc and hdd are the two drives on the
secondary controller. These devices can also be used to access IDE CDROMs if using
the new IDE driver.
SCSI hard disks: The partitions are similar to the IDE disks, but there is a limit of
11 logical partitions (sd_5 through sd_15). This is to allow there to be 8 SCSI
disks.
Loopback disk devices: These allow you to use a regular file as a block device.
This means that images of file systems can be mounted, and used as normal.
There are 8 devices, loopO through loop7.

• Tape Devices
SCSI tapes. These are the rewinding tape devicest_ and the non-rewinding tape
device nst_.
QIC-80 tapes. The devices are rmt8, rmt16, tape-d, and tape-reset.
Floppy driver tapes (QIC-117). There are 4 methods of access depending on the
floppy tape drive. For each of access methods 0, 1, 2 and 3, the devices rft_
(rewinding) and nrft_ (non-rewinding) are created.

• CDROM"'Devices
SCSI CD players. Sony -cDU-31A CD player. Mitsumi CD player. Sony CDU-535 CD
player. LMS/Philips CD player.
Sound Blaster CD player. The kernel is capable of supporting 16 CDROMs, each of
which is accessed as sbpcd[0-9a-f]. These are assigned in groups of 4 to each
controller.

• Audio
These are the audio devices used by the sound driver. These include mixer, sequencer,
dsp, and audio.
Devices for the PC Speaker sound driver. These are pcmixer. pxsp, and pcaudio.

A Brief Introduction to Unix Devices and File Systems 221

• Miscellaneous
Generic SCSI devices. The devices created are sgO through sg7. These allow
arbitrary commands to be sent to any SCSI device. This allows for querying
information about the device, or controlling SCSI devices that are not one of disk,
tape or CORaM (e.g. scanner, writable CORaM).
While the /dev directory contains the device files for many types of devices, only those
devices that have device drivers present in the kernel can be used or usable. For
example, while your system may have a /dev/sbpcd, it doesn't mean that your kernel
can support a Sound Blaster CD. To enable the support, the kernel will have to be
recompiled with the Sound Blaster driver included.

14.2.2 Device Drivers
Device drivers are coded routines used for interacting with devices. They essentially act as
the "go between" for the low level hardware and the kernel/user interface.

Device drivers may be physically compiled into the kernel (most are) or may be
dynamically loaded in memory as required.

Popularly two types are devices and device drivers are available namingly character
oriented and block oriented (In previous chapters we have discusses about them in brief).

If you were to examine the output of the Is -al command on a device file, something
like:

15 -al/dev/ttyS*

crw--w--w- 1 james users 4, 0 Mar 31 09:28 /dev/ttySO

crw--w--w- 1 james users 4, 0 Mar 31 09:28 /dev/ttyS1

In this case, we are examining the device file for the console. There are two major
differences in the file listing of a device file from that of a "normal" file, for example:

Is -al iodev.html -rw-r--r-- 1 james users7938 Mar 31 12:49 iodev.html

The first difference is the first character of the "file permissions" grouping - this is actually
the file type. On directories this is a "d", on "normal" files it will be blank but on devices it
will be "c" or "b". This character indicates c for character mode or b for block mode. This is
the way in which the device interacts - either character by character or in blocks of
characters. Do remember that we have already discussed about this in previous chapters.

For example, devices like the console output (and input) character by character.

However, devices like hard disks read and write in blocks. You can see an example of a
block device by the following:

Is -al/dev/had
brw-rw---- 1 root disk 3, 0 Apr 28 1995/dev/hda

(hda is the first hard drive)

The second difference is the two numbers where the file size field usually is on a normal
file. These two numbers (delimited by a comma) are the major and minor device numbers.

222 Introduction to Linux : Installation and Programming

14.2.2.1 Major and minor device numbers
Major and minor device numbers are the way in which the kernel determines which device is
being used, therefore what device driver is required. The kernel maintains a list of its
available device drivers, given by the major number of a device file. When a device file is
used (we will discuss this in the next section), the kernel runs the appropriate device driver,
passing it the minor device number. The device driver determines which physical device is
being used by the minor device number. For example:

Is -al/dev/had brw-rw---- 1 root disk 3, 0 Apr 28 1995/dev/had
Is -al/dev/hdb brw-rw---- 1 root disk 3, 64 Apr 28 1995/dev/hdb

What this listing shows is that a device driver, major number 3, controls both hard drives
hda and hdb. When those devices are used, the device driver will know which is which
(physically) because hda has a minor device number of 0 and hdb has a minor device
number of 64.

Usually, other operating systems provide separate system calls to interact with each
device. This means that each program needs to know the exact system call to talk to a
particular device. With UNIX and device files, this need is removed. With the standard open,
read, write, append etc., system calls (provided by the kernel), a program may access any
device (transparently) while the kernel determines what type of device it is and which device
driver to use to process the call. Here, major and minor number of the devices on which
required the file is located are used by the kernel.

Using files also allows the system administrator to set permissions on particular devices
and enforce security - we will discuss this in detail later.

The most obvious advantage of using device files is shown by the way in which as a user,
you can interact with them. For example, instead of writing a special program to play .AU
sound files, you can simply:

cat test.au > /dev/audio

This command pipes the contents of the test.au file into the audio device. Two things to
note: 1) This will only work for systems with audio (sound card) support compiled into the
kernel (I.e. device drivers exist for the device file) and 2) this will only work for .AU files -
try it with a .WAV and see (actually, listen) what happens. The reason for this is that .WAV
(a Windows audio format) has to be interpreted first before it can be sent to the sound card.

Creating device files
There are two ways to create device files - the easy way or the hard way!

The easy way involves using the Linux command MAKEDEV. This is actually a script that
can be found in the /dev directory. MAKEDEV accepts a number of parameters (you can
check what they are in the man pages. In general, MAKEDEV is run as:

/dev/MAKEDEV device
where device is the name of a device file. If for example, you accidentally erased or

corrupted your console device file (/dev/console) then you'd recreate it by issuing the
commend:

/dev/MAKEDEV console

NOTE! This must be done as the root user

A Brief Introduction to Unix Devices and File Systems 223

We can use mknod command also for this purpose. With the mknod command you must
know the major and minor device number as well as the type of device (character or block).
To create a device file using mknod, you issue the command:

For example, to create the device file for COM1 a.k.a. /dev/ttysO (usually where the
mouse is connected) you'd issue the command:

mknod /dev/ttySO c 4240

Is -al /dev > /mnt/device_file_listing

Device files are used directly or indirectly in every application on a Linux system. When a
user first logs in, they are assigned a particular device file for their terminal interaction. This
file can be determined by issuing the command:

Tty

For example:

tty

/dev/ttyp1

Is -al /dev/ttypl

crw------- 1 jamiesob tty4, 193 Apr 2 21: 14 /dev/ttyp1

Notice that as a user, I actually own the device file! This is so I can write to the device file
and read from it. When I log out, it will be returned to: /

c--------- 1 root root 4, 193 Apr 2 20:33 /dev/ttyp1

Try the following:

read X < /dev/ttyp1 ; echo "I wrote $X" echo "hello there" > /dev/ttyp1

You should see something like:

read X < /dev/ttypl ; echo "I wrote $X" hello

I wrote hello

echo "hello there" > /dev/ttypl

hello there

224 Introduction to Llnux : Installation and Programming

A very important device file is that which is assigned to your hard disk. In my case
/dev/hda is my primary hard disk, its device file looks like:

brw-rw---- 1 root disk 3, 0 Apr 28 1995/dev/hda

Note that as a normal user, I can't directly read and write to the hard disk device file -
why do you think this is?

Reading and writing to the hard disk is handled by an intermediary called the file system.
We will examine the role of the file system in later sections, but for the time being, you
should be aware that the file system decides how to use the disk, how to find data and
where to store information about what is on the disk.

Bypassing the file system and writing directly to the device file is a very dangerous thing
- device drivers have no concept of file systems, files or even the data that is stored in them;
device drivers are only interested in reading and writing chunks of data (called blocks) to
physical sectors of the disk. For example, by directly writing a data file to a device file, you
are effectively instructing the device driver to start writing blocks of data onto the disk from
where ever the disk head was sitting! This can (depending on which sector and track the
disk was set to) potentially wipe out the entire file structure, boot sector and all the data.
Not a good idea to try it. NEVER should you issue a command like:

cat some_file> /dev/hda1

As a normal user, you can't do this - but you can as root!

Reading directly from the device file is also a problem. While not physically damaging the
data on the disk, by allowing users to directly read blocks, it is possible to obtain information
about the system that would normally be restricted to them. For example, was someone
clever enough to obtain a copy of the blocks on the disk where the shadow password file
resided (a file normally protected by file permissions so users can view it), they could
potentially reconstruct the file and run it through a crack program.

14.3 Disk Drives, Partitions and File systems
Device files and partitions
We can use variety of hard disks such as IDE, SCSI and RAID type. Normally, for a desktop
systems IDE drives are sufficient and SCSI drives are used for server machines because of
performance reasons. Whenever high level data safety and response times are needed RAID
drives are.

Partitions are non-physical (I am deliberately avoiding the use of the word "logical"
because this is a type of partition) divisions of a hard disk. IDE Hard disks may have 4
primary partitions, one of which must be a boot partition if the hard disk is the primary
(modern systems have primary and secondary disk controllers) master (first hard disk) [this
is the partition BIOS attempts to load a bootstrap program from at boot time].

Each primary partition can be marked as an extended partition which can be further
divided into four logical partitions. By default, Linux provides device files for the four primary
partitions and 4 logical partitions per primary/extended partition. For example, a listing of
the device files for my primary master hard disk reveals:

brw-rw---- 1 root disk 3, 0 Apr 28 1995 /dev/had first IDE drive
brw-rw---- 1 root disk 3, 1 Apr 28 1995 /dev/hda1 first partition

A Brief Introduction to Unix Devices and File Systems 225

(like C: in Windows)
brw-rw---- 1 root disk 3, 2 Apr 28 1995/dev/hda2
brw-rw---- 1 root disk 3, 3 Apr 28 1995/dev/hda3
brw-rw---- 1 root disk 3, 4 Apr 28 1995/dev/hda4
brw-rw---- 1 root disk 3, 5 Apr 28 1995/dev/hda5
brw-rw---- 1 root disk 3, 6 Apr 28 1995/dev/hda6
brw-rw---- 1 root disk 3, 7 Apr 28 1995/dev/hda7
brw-rw---- 1 root disk 3, 8 Apr 28 1995/dev/hda8
brw-rw---- 1 root disk 3, 9 Apr 28 1995/dev/hda9
Also, note the following notations.

/dev/hdb second IDE drive
/dev/hdc third hard disk

/dev/hdd fourth hard disk

/dev/sd* SCSI drives

Partitions are usually created by using a system utility such as fdisk. Generally fdisk will
ONLY be used when a new operating system is installed or a new hard disk is attached to a
system.

Why partitions are needed?

1. To have more then one OS installed on a same machine.
2. To organize the SW
3. To safeguard against viruses
4. If we use entire disk as a single partition we may see the following situation in which

a small file (which is in physically stored in inner most tracks) taking more time than
a large file (which is physically stored in outer most tracks). Main reasons for this
differences in horizontal latency times, i.e. times required for the head to move to
required track. In order reduce this effect disk partitions are used.

5. Certain directories will contain data that will only need to be read, others will need to
be both read and written. It is possible (and good practice) to mount these partitions
restricting such operations.

6. Directories including /tmp and /var/spool can fill up with files very quickly, especially
if a process becomes unstable or the system is purposely flooded with email. This
can cause problems. For example, let us assume that the /tmp directory is on the
same partition as the /home directory. If the /tmp directory causes the partition to
be filled no user will be able to write to their /home directory, there is no space. If
/tmp and /home are on separate partitions the filling of the /tmp partition will not
influence the /home directories.

7. By spreading the file system over several partitions and devices, the 10 load is
spread around. It is then possible to have multiple seek operations occurring
simultaneously - this will improve the speed of the system.

How many partitions are recommended for a practical system?
1. One partition for swapping
2. One partition for users, i.e. for /home directory. Such that migration becomes easy.
3. One partition for /usr. Usually, in large organizations application SW takes more time

for installing and fine tuning. Whenever, we wanted to upgrade the kernel, if we
happened to have a separate partition for application programs, i.e. /usr then after
installing new kernel this partition can be simply mounted.

226 Introduction to L1nux : Installation and Programming

4. One empty partiti"on for experimental purpose. During migration this is very helpful.
5. One partition for /usr/local. That is, here we can install site specific, licensed SW and

if required they can be made available for other systems through NFS.
a. A separate partition for /boot.
b. A separate partition for /tmp
c. A separate partition for /var/spool

Every partition on a hard disk has an associated file system (the file system type is
actually set when fdisk is run and a partition is created). It is quite possible that the file
system structure is spread over multiple partitions and devices, each a different "type" of file
system.

Unux can support (or "understand", access, read and write to) many types of file systems
including: minix, ext, ext2, umsdos, msdos, proc, nfs, is09660, xenix, Sysv, coherent, hpfs.

A file system is simply a set or rules and algorithms for accessing files. Each system is
different; one file system can't read the other. Like device drivers, file systems are
compiled into the kernel - only file systems compiled into the kernel can be accessed by the
kernel.

To see what file systems our kernel supports can be known from /etc/filesystems file. If
we want our kernel to use other file systems then we may have to recompile the same.

14.3.1 Unix File System Architecture
In Unix operating system point of view, a hard disk partition is considered as a 1-D array of
disk blocks, where a disk block can be a physical sector or multiples of physical sector on the
disk. It contains four important areas as shown in Figure 14.1; and to name boot block,
super block, inode blocks and data blocks.

Boot Block Super Block Inode Blocks Data Blocks

Figure 14.1 OS view of an Inode based file system.

• Boot block contains the bootstrap program with the help which operating system is
loaded into RAM during the boot time. If the partition is not bootable partition then
this block will be empty.

• Super block contains technical information such as
The size of the partition
The physical address of the first data block
The number and list of free blocks
Information of what type of file system uses the partition
When the partition was last modified

• Inode area contains some set of blocks which contains inode's of the files and
directories.

• Data Block area actually contains the files or directories content.

The inode is used to store all information about a file (which we call as meta data of the
file but the content of the file), and there exists one inode per file for directory for every
legal file and directory of the file system .. The inode contains: owner identification number,
group identification number, time last modified, time last accessed, time created, size, file
permissions, number of links, data blocks numbers (pointers) in which file information is
stored, etc as shown in Figure 14.2. Some operating systems such as MINIX and XENIX file
systems uses until second level indirection only.

A Brief Introduction to Unix Devices and File Systems 227

• Inode is a 64 byte long data structure or record which contains file/directories meta-
data.

• 0 is the inode no for root directory" / ". That is, first 64 bytes record in mode blocks of
the disk belongs to root directory.

• The inode number of a file/directory refers to inode record number in the inode area
of the disk.

• inode of a file/directory is also called as Binary name of a file or file descriptor or file
handle of a file.

• Content of a directory is the names of the files and subdirectories and their inode
numbers.

UID

GID

Permissions

Time such as last access time,
creation time, modified time

No of Links

10 direct addresses

1st level indirect address

2nd level indirect address

3 rd level indirect address

Figure 14.2 Inode Structure.

First 10 data block numbers of the file in which file information is available is stored
directly in its inode. This allows direct accessing of the file information from the inode itself
after knowing the block number in which the required data byte is located. If the file is
bigger than 10 data blocks, then the next data block numbers of the file are stored in an
index block and this index block number is stored in l'st level indirection or in a single
indirect block as shown below. If the file occupies still more number of data blocks double
indirect block and a triple indirect block's are also used (See Figure 14.3 where only first two
levels are shown for brevity reasons).

Let Block size = B

Block addresses = b bytes

Blocking factor = N = B / b

Thus in this data block allocation strategy which uses third level indirection, largest
possible single file size = 10 + N + N2 + N3 blocks = (10 + N + N2 + N3

) * B bytes

228 Introduction to Llnux : Installation and Programming

How do know in which data blocks file /home/rao/a.c information is available.

• First, root directory (I) inode record (O'th inode) is read and the data block numbers in
which that directory information is available is read.

• The data blocks are read and then inode number of home is identified.
• The inode record of "home" directory is read and then the data block numbers in

which its contents are stored are identified.
• These data blocks are read and then inode number of directory "rao" is known.
• The inode record of "rao" directory is read and then the data block numbers in which

its contents are stored are identified.
• These data blocks are read and then inode number of directory "a.c" is known.
• The inode record of "a.c" is read and then the data block numbers in which its

contents are stored are identified and by accessing them from disk its content can be
used.

I data I

double §
Figure 14.3 Indexed Allocation of Data Blocks.

Assuming that a file's inode is already available in RAM (i.e. , already located) and then
to access any byte of the file, we require at most 4 disk accesses . where as to know the
data block no which contains this required byte we may require at most 3 disk accesses.

Inode no's of a file and its hard link file will be same whereas a file and its soft link will
not be same.

Whenever a hard link file is created , link count of the files inode will be incremented by 1
whenever either a hard link file or original file is deleted, link count value will be reduced by 1

When the link count value becomes 0 then all the data blocks consumed by that file will
be marked as free and even the inode is marked as free.

Symbolic links are extensively used to fine tune the application software , they can be
also used to link files in different partitions.

Whenever we open a file from a program such as C or C++, the file's info such as mode
of opening, permissions, offset, pOinter to the virtual node (which contains inode or other
file system specific information) etc all are maintained in a row of a table known as Open
file table. This row index is known as file descriptor of that file. This no is meaningful and is
associated with that file as long as that process is running and the file is not closed in that

A Brief Introduction to Unix Devices and File Systems 229

process. This no is also known as binary name of that file and it can be called as dynamic no
associated with that file. Where as inode number of a file is static number associated with
the file.

Problem 1

A UNIX filesystem which uses 1K block size and 2 byte block addresses. Calculate what is the

largest possible single file size.

Sol. : A = 1 KB

B = 2 bytes

N = 1024/ 2 = 512

So , Largest single file size = 10 + 512 + 5122 + 512 3 blocks

'" = 5123 blocks

Problem 2

= 128 X 2 X 512 X 2 X 512 X 1 KB

= 128 GB

A disk is formatted with 2 KB block size and 4 byte addresses, then find out the largest

possible single file size?

Sol.: N = 2 KB / 4 = 512

Max single file size = 256 GB

Problem 3

Calculate maximum possible disk space which can be spent on index blocks for a single file.

Sol. :

Max no of data blocks spend on Index blocks

= 1 + (1 + N) + (1 + N + N 2) blocks

Inode in Unix :

Inode of a file doesn't contain the name of the file

14.3.2 The Virtual File System

The Llnux kernel contains a layer called the VFS (or Virtual File System). The VFS processes

all file-oriented 10 system calls. Based on the device that the operation is being performed

on, the VFS decides which file system to use to further process the call.

The exact list of processes that the kernel goes through when a system call is received

follows along the lines of:

• A process makes a system call

• The VFS decides what file system is associated with the device file that the system call

was made on.

230 Introduction to Linux : Installation and Programming

• The file system uses a series of calls (called Buffer Cache Functions) to interact with

the device drivers for the particular device.

• The device drivers interact with the device controllers (hardware) and the actual

required processes are performed on the device.

• Figure 14.4 Represents this.

Use.:c process

System c all (trap)

System calls inte.:cf ac e

VFS

Linux K erne!

110 request

Disk c ontrole.:c
\ Hardware

Figure 14.4 The Virtual File System.

A Brief Introduction to Unix Devices and File Systems

I-Node.

Othernfo D
lock Addre.s; r----::...--

direct

\
single Indlre:t
double Indirect
triple mdlrea

'-----J __

o
o
o
o

· D --------- . .
• • D

DO
D Datablock,conta,n, actual file dat.

.. \r
Figure 14.5 I-Node Structure.

See Figure 14.5 is a grap.hical representation on an I-Node.

231

Linux file system, ext2/ext3 uses a decentralized file system management scheme
involving a "block group" concept. What this means is that the file systems are divided into
a series of logical blocks. Each block contains a copy of critical information about the file
systems (the super block and information about the file system) as well as an I-Node, and
data block allocation tables and blocks. Generally, the information about a file (the I-Node)
will be stored close to the data blocks. The entire system is very robust and makes file
system recovery less difficult.

The ext2/ext3 file system also has some special features which make it stand out from
existing file systems including:

• Logical block size - the size of data blocks can be defined when the file system is
created; this is not dependent on physical data block size.

• File system state checks - the file system keeps track of how many times it was
"mounted" (or used) and what state it was left in at the last shutdown.

• The file system reserves 5% of the file system for the root user - this means that if a
user program fills a partition, the partition is still useable by root (for recovery)
because there is reserve space.

14.3.3 Creating file systems

mkfs

Before a partition can be mounted (or used), it must first have a file system installed on it -
with ext2, this is the process of creating I-Nodes and data blocks. This process is the
equivalent of formatting the partition (similar to MSDOS's "format" command). Under Linux,
the command to create a file system is called mkfs.

232 Introduction to Linux : Installation and Programming

The command is issued in the following way:

where:

mkfs [-c] [-t fstype] filesys [blocks] ego mkfs -t ext2 /dev/fdO # Make a
ext2 file system on a disk

• -c forces a check for bad blocks
• -t fstype specifies the file system type
• filesys is either the device file associated with the partition or device OR is the

directory where the file system is mounted (this is used to erase the old file system
and create a new one)

• blocks specifies the number of blocks on the partition to allocate to the file system
• Be aware that creating a file system on a device with an existing file system will cause

ail data on the old file system to be erased.

Assuming /dev/hdbl is the 2GB partition and /dev/hdb2 is the 500 MB partition, we can
create ext2 file systems using the commands:

mkfs -t ext2 -c /dev/hdbl

mkfs -t ext2 -c /dev/hdb2

This assumes the default block size and the default number of I-Nodes. If we wanted to
be more specific about the number of I-Nodes and block size, we could specify them. mkfs
actually calls other programs to create the file system - in the ext2 case, mke2fs. Generally,
the defaults are fine - however, if we knew that we were only storing a few large files on a
partition, then we'd reduce the I-Node to data block ratio. If we knew that we were storing
lots of small files on a partition, we'd increase the I-Node to data block ration and probably
decrease the size of the data blocks (there is no point using 4K data blocks when the file size
average is around lK).

14.3.4 Mounting and Un-mounting Partitions and Devices

Mount
To attach a partition or device to part of the directory hierarchy you must mount its
associated device file.

First, we have to find a mount point - a directory where the device will be attached.
This directory will exist on a previously mounted device (with the exception of the root
directory U) which is a special case) and will be empty. If the directory is not empty, then
the files in the directory will 110 longer be visible while the device to mounted to it, but will
reappear after the device has been disconnected (or unmounted).

To mount a device, you use the mount command:

mount [switches] device_file mounCpoint

With some devices, mount will detect what type of file system exists on the device,
however it is more usual to use mount in the form of:

mount [switches] -t file_system_type device_file mount_point

A Brief Introduction to Unix Devices and File Systems 233

Generally, only the root user can use the mount command - mainly due to the fact that
the device files are owned by root. For example, to mount the first partition on the second
hard drive off the /usr directory and assuming it contained the ext2 fiie system you'd enter
the command:

mount -t ext2 /dev/hdbl /usr

A common device that is mounted is the floppy drive. A floppy disk generally contains the
msdos file system (but not always) and is mounted with the command:

mount -t msdos /dev/fdO /mnt

Note that the floppy disk was mounted under the /mnt directory? This is because the
/mnt directory is the usual place to temporally mount devices.

To see what devices you currently have mounted, simply type the command mount.
Typing it on my system reveals:

/dev/hda3 on / type ext2 (rw)
/dev/hdal on /dos type msdos (rw)
none on /proc type proc (rw)
/dev/cdrom on /cdrom type is09660 (ro)
/dev/fdO on /mnt type msdos (rw)

Each line tells me what device file is mounted, where it is mounted, what file system type
each partition is and how it is mounted (ro = read only, rw = read/write). Note the strange
entry on line three - the proc file system? This is a special "virtual" file system used by Linux
systems to store information about the kernel, processes and current resource usages. It is
actually part of the system's memory - in other words, the kernel sets aside an area of
memory which it stores information about the system in - this same area is mounted onto
the file system so user programs can easily gain this information.

To release a device and disconnect it from the file system, the umount command is used.
It is issued in the form:

Umount deVice_file or umount mounCpoint

For example, to release the floppy disk, you'd issue the command:

umount /mnt or umount /dev/fdO

Again, you must be the root user or a user with privileges to do this. We can't unmount a
deyice/mount point that is in use by a user (the user's current working directory is within the
mount pOint. We may get device busy error message) or is in use by a process. Nor can
you unmount devices/mount pOints which in turn have devices mounted to them.

234 Introduction to Llnux : Installation and Programming

Mounting with the /etc/fstab file

In true UNIX fashion, there' is a file which governs the behavior of mounting devices at boot
time. In Linux, this file is /etc/fstab. But there is a problem - if the fstab file lives in the /etc
directory (a directory that will always be on the root partition (/)), how does the kernel get
to the file without first mounting the root partition (to mount the root partition, you need to
read the information in the /etc/fstab file!)? The answer to this involves understanding the
kernel (a later chapter) - but in short, the system cheats! The kernel is "told" (how it is told
doesn't concern us yet) on which partition to find the root file system; the kernel mounts this
in read only mode, assuming the Linux native ext2 file system, then reads the fstab file and
re-mounts the root partition (and others) according to instructions in the file.

An example line from the fstab file uses the following format:

The first three fields are self explanatory; the fourth field, mount_options defines how the
device will be mounted (this includes information of access mode ro/rw, execute permissions
and other information) - information on this can be found in the mount man pages (note that
this field usually contains the word "defaults"). The fifth and sixth fields will usually either not
be included or be "1" - these two fields are used by the system utilities dump and fsck
respectively - see the man pages for details.

As an example, the following is my /etc/fstab file:

/dev/hda3/ext2

/dev/hda l/dos

defaults

msdos

/dev/hda2 swap swap

none / proc proc defaults

defaults

1 1

1 1

1 1

As you can see, most of my file system exists on a single partition (this is very bad!) with
my DOS partition mounted on the /dos directory (so I can easily transfer files on and off my
DOS system). The third line is one which we have not discussed yet - swap partitions. The
swap partition is the place where the Linux kernel keeps pages swapped out of virtual
memory. Most Linux systems should access a swap partition - you should create a swap
partition with a program such as fdisk before the Linux OS is installed. In this case, the entry
in the /etc/fstab file tells the system that /dev/hda2 contains the swap partition - the system
recognizes that there is no device nor any mount point called "swap", but keeps this
information within the kernel (this also applies to the fourth line pertaining to the proc file
system).

14.3.5 Checking the file system
It is a sad truism that anything that can go wrong will go wrong - especially if you don't have
backups! In any event, file system "crashes" or problems are an inevitable fact of life for a
System Administrator.

A Brief Introduction to Unix Devices and File Systems 235

Crashes of a non-physical nature (i.e. the file system becomes corrupted) are non-fatal
events - there are things a system administrator can do before issuing the last rites and
restoring from one of their copious backups:)

You will be informed of the fact that a file system is corrupted by a harmless, but feared
. little messages at boot time, something like:

Can't mount /dev/hdal

If you are lucky, the system will ignore the file system problems and try to mount the
corrupted partition READ ONLY.

It is at this point that most people enter a hyperactive frenzy of swearing, violent
screaming tantrums and self-destructive cranial impact diversions (head butting the wall).

It is important to establish that the problem is logical, not physical. There is little you can
do if a disk head has crashed (on the therapeutic side, taking the offending hard disk into the
car park and beating it with a stick can produce favorable results). A logical crash is
something that is caused by the file system becoming confused. Things like:

• Many files using the one data block.
• Blocks marked as free but being used and vice versa.
• Incorrect link counts on I-Nodes.
• Differences in the "size of file" field in the I-Node and the number of data blocks

actually used.
• Illegal blocks within files.
• I-Nodes contain information but are not in any directory entry (these type of files,

when recovered, are placed in the lost+found directory).
• Directory entries that point to illegal or unallocated I -Nodes. are the product of file

system confusion. These problems will be detected and (usually) fixed by a program
called fsck.

fsck

fsck is actually run at boot time on most Linux systems. Every x number of boots, fsck will
do a comprehensive file system check. In most cases, these boot time runs of fsck
automatically fix problems - though occasionally you may be prompted to confirm some fsck
action. If however, fsck reports some drastic problem at boot time, you will usually be
thrown in to the root account and issued a message like:

fsck returned error code - REBOOT NOW!

It is probably a good idea to manually run fsck on the offending devIce at this point (we

will get onto how in a minute).

At worst, you will get a message saying that the system can't mount the file system at all
and you have to reboot. It is at this pOint you should drag out your rescue disks (which of
course contain a copy of fsck) and reboot using them. The reason for booting from an
alternate source (with its own file system) is because it is quite possible that the location of
the fsck program Usbin) has become corrupted as has the fsck binary itself! It is also a good
idea to run fsck only on unmounted file systems.

236 Introduction to Llnux : Installation and Programming

Using fsck

fsck is run by issuing the command:

fsck file_system

where file_system is a device or directory from which a device is mounted.

fsck will do a check on all I-Nodes, blocks and directory entries. If it encounters a problem
to be fixed, it will prompt you with a message. If the message asks if fsck can SALVAGE, FIX,
CONTINUE, RECONNECT or ADJUST, then it is usually safe to let it. Requests involving
REMOVE and CLEAR should be treated with more caution.

In recent Linux versions such as Redhat Fedora, Debian when system finds problem with
file system we will be given the choice of pressing Control-D for "normal startup" (which is
actually just a reboot which won't help the problem at all) or entering the root password for
system maintenance. When presented with these errors and this choice, do the following:

• Enter the root password.
". Run the command fsck -fp Idev/hdal (or whatever your root partition is).

• Repeat the above command until no errors are displayed.
• Reboot the system using the init 6 command.
• Run the command bad blocks -sv Idev/hdal (or whatever your root partition is). It

will take awhile.

One way to tell if your hard-drive is starting to fail is to turn the system off for about 30
minutes. If you don't have problems for the first hour or so of using, but then problems start
popping up, the hard-drive is failing. That's because failing hard-drives are more sensitive to
heat and the hotter the drive gets the more likely it is to have problems. Replace these heat-
sensitive drives ASAP

What caused the problem?

Problems with the file system are caused by:

• People turning off the power on a machine without going through the shutdown
process - this is because Linux uses a very smart READ and WRITE disk cache - this
cache is only flushed (or written to disk) periodically and on shutdown. fsck will
usually fix these problems at the next boot.

• Program crashes - problems usually occur when a program is using several files and
suddenly crashes without closing them. fsck usually easily fixes these problems.

• Kernel and system crashes - the kernel may become unstable (especially if you are
using new, experimental kernels) and crash the system. Depending on the
circumstances, the file system will usually be recoverable.

14.4 Conclusions
This chapter explains about UNIX devices with emphaSis on how the system interacts with them.
In addition, it explores disk drives, device drivers, disk partitioning and Linux file system
organization. The meta data structure I-node is explained and some numerical examples are
included to display the power of Linux system. Also, how file system checking can be done in
Unux is explained.

15 Linux System Startup and Shutdown

15.1 Introduction
Being a multi-tasking, multi-user operating system means that Linux is a great deal more
complex than an operating system like MS-DOS. Before the Linux operating system can
perform correctly, there are a number of steps that must be followed, and procedures
executed. The failure of anyone of tliese can mean that the system will not start, or if it
does it will not work correctly. It IS important for the Systems Administrator to be aware of
what happens during system startup so that any problems that occur can be remedied.

It is also important for the Systems Administrator to understand what the correct
mechanism is to shut a LinuX machine down. A Linux machine should (almost) never be just
turned off. There are a number of steps to carry out to ensure that the operating system and
many of its support functions remain in a consistent state.

15.2 A brief outline of the x86 Linux boot process
The most fundamental and obvious difference between x86 boards and embedded systems
based on PPC, ARM, and others is that the x86 board will ship with one or more layers of
manufacturer-supplied "black box" firmware that helps you with power-on initialization and
the task of loading the operating system out of secondary storage. This firmware takes the
system from a cold start to a known, friendly software environment ready to run your
operating system. Figure 15.1 is a diagram of the typical PC boot process, with considerably
more detail than you tend to find in PC-centric literature:

...-------,
I RAM controller

initlahzed
BIOS decompressed

Into shadow RAM

Boot candidates
scanned for signature

Shadow RAM
write-protected

Potential boot
devices evaluated

RAM disk
mounted

I Oevlce driver
mOdule$loeded

Figure 15.1 Typical start-up process for x86 based Linux.

238 Introduction to Llnux : Installation and Programming

For cost reasons, modern PC main board BIOS code is always stored compressed in flash.
The only directly executable code in that chip is a tiny boot stub. Therefore, the first task on
power-up is to initialize the mGlin board chipset enough to get the DRAM controller working
so that the main BIOS code can be decompressed ou,t of flash into a mirror area in RAM,
referred to as shadow RAM. This area is then write-protected and control is passed to the
RAM-resident code. Shadow RAM is permanently stolen by the main board chipset; it cannot
later: be reclaimed by the operating system. For legacy reasons, special hardware mappings
are set up so that the shadow RAM areas appear in the CPU's real-mode memory map at the
locations where old operating systems like MS-DOS would expect to find them.

Keep in mind that the PC is an open architecture. This openness even extends down to
firmware modules within the BIOS itself. Once the power-on initialization (POI) code has run,
the next step it takes is to enumerate peripherals, and optionally install hooks provided by
expansion ROMs in those peripherals. (Some of those expansion ROMs -- for instance, the
video BIOS in a system that has onboard integrated video hardware -- will physically reside
in the main BIOS image, but conceptually they are separate entities). The reasons the BIOS
has to do this redundant initialization are:

1. The main BIOS itself needs basic console services to announce messages and allow the
user to override default start-up behavior and configure system-specific parameters.

2. Historical issues limit the size of a user-supplied bootloader program to slightly less
than 512 bytes. Since this isn't enough space to implement all the possible device
drivers that might be required to access different displays and storage devices, it's
necessary for the BIOS to install standardized software interfaces for all installed,
recognized hardware that might be required by the bootloader.

Once all the BIOS-supported system peripherals are initialized, the main code will
run through candidate boot devices (in accordance with a user-configurable preference list)
looking for a magic signature word. Storage devices for IBM-compatible PCs have historically
used a sector size of 512 bytes, and therefore the BIOS only loads the first 512 bytes from
the selected boot device. The operating system's installation program is responsible for
storing sufficient code in that zone to bootstrap the remainder of the IPL process.

Although it would be possible to write a minimalist Linux bootloader that would fit into
such a space, practical Linux bootloaders for the PC consist of two stages: a small stub that
lives in the boot sector, and a larger segment that lives somewhere else on the boot
medium, usually insid,e the partition that contains the root file system. LILO and grub are the
best-known boot loaders for mainstream Linux installations, and SYSLINUX is a popular
choice for embedded distributions.

15.2.1 Using a RAM disk

The primary purpose of the boot loader is to load the operating system kernel from
secondary storage into RAM. In a Linux system (x86 or otherwise), the boot loader can also
optionally load an initial RAM disk image. This is a small file system that resides entirely in
RAM. It contains a minimal set of modules to get the operating system off the ground before
mounting the primary root file system. The original design purpose for initial RAM disk
support in the kernel was to provide a means whereby numerous optional device drivers

Linux System Startup and Shutdown 239

could be made available at boot time (potentially drivers that needed to be loaded before the
root file system could be mounted).

You can get an idea of the original usage scenario for the RAM disk by considering a
bootable Linux installation CD-ROM. The disk needs to contain drivers for many different
hardware types, so that it can boot properly on a wide variety of different systems. However,
it's desirable to avoid building an enormous kernel with every single option statically linked
(partly for memor-y space reasons, but also to a lesser degree because some drivers "fight"
and shouldn't be loaded simultaneously). The solution to this problem is to link the bare
minimum of drivers statically in the kernel, and to build all the remaining drivers as
separately loadable modules, which are then placed in the RAM disk. When the unknown
target system is booted, the kernel (or start-up script) mounts the RAM disk, probes the
hardware, and loads only those modules appropriate for the system's current configuration.

We can compress the boot copy of the root file system, and there is no run time
performance hit. Although it's possible to run directly out of a compressed file system,
there's obviously an overhead every time your software needs to access that file system.
Compressed file systems also have other annoyances, such as the inability to report free
space accurately (since the estimated free space is a function of the anticipated compression
ratio of whatever data you plan to write into that space).

15.2.2 In a nutshell what is booting?

The process by which a computer is turned on and the UNIX operating system starts
functioning - booting - consists of the following steps

• finding the kernel, The first step is to find the kernel of the operating system.
How this is achieved is usually particular to the type of hardware used by the
computer.

• starting the kernel, In this step the kernel starts operation and in particular goes
looking for all the hardware devices that are connected to the machine.

• starting the processes. All the work performed by a UNIX computer is done by
processes. In this stage, most of the system processes and daemons are started. This
step also includes a number of steps which configure various services necessary for
the system to work.

15.2.3 Finding the Kernel

For a UNIX computer to be functional it must have a kernel. The kernel provides a number of
essential services which are required by the rest of the system in order for it to be functional.
This means that the first step in the booting process of a UNIX computer is finding out where
the kernel is. Once found, it can be started, but that's the next section.

In IBM PC, the ROM program typically does some hardware probing and then looks in a
number of predefined locations (the first floppy drive and the primary hard drive partition)
for a bootstrap program.

As a bare minimum, the ROM program must be smart enough to work out where the
bootstrap program is stored and how to start executing it.

·-246 Introduction to Llnux : Installation and Programming

The ROM program generally doesn't know enough to know where the kernel is or what to
do with it.

The bootstrap program

At some stage the ROM program will execute the code stored in the boot block of a device
(typically a hard disk drive). The code stored in the boot block is referred to as a bootstrap
program. Typically the boot block isn't big enough to hold the kernel of an operating system
so this intermediate stage is necessary.

The bootstrap program is responsible for locating and loading (starting) the kernel of the
UNIX operating system into memory. The kernel of a UNIX operating system is usually
stored in the root directory of the root file system under some system-defined filename.
Newer versions of Linux, including Redhat, put the kernel into a directory called /boot.

The most common bootstrap program in the Linux world is a program called LILa till
recently. In the mean time other programs such as Grub also became available.

A boot loader generally examines the partition table of the hard-drive, identifies the
active partition, and then reads and starts the code in the boot sector for that partition. This
is a simplification. In reality the boot loader must identify, somehow, the sectors in which the
kernel resides.

other features a boot loader (under Linux) offers include

• using a key press to bring up a prompt to modify the boot procedure, and
• the passing of parameters to the kernel to modify its operation

Booting on a PC

The BIOS on a PC generally looks for a bootstrap program in one of two places (usually in
this order)

• the first (A:) floppy drive, or
• the first (C:) hard drive.
• CORaM
By playing with your BIOS settings you can change thiS order or even prevent the BIOS

from checking one or the other.

The BIOS loads the program that is on the first sector of the chosen drive and loads it into
memory. This bootstrap program then takes over.

On the floppy

On a bootable floppy disk the bootstrap program simply knows to load the first blocks on the
floppy that contain the kernel into a specific location in memory.

A normal Linux boot floppy contains no file system. It simply contains the kernel copied
into the first sectors of the disk. The first sector on the disk contains the first part of the
kernel which knows how to load the remainder of the kernel into RAM.

Making a boot disk

The simplest method for creating a floppy disk which will enable you to boot a Linux
computer is

• insert a floppy disk into a computer already running Linux
• login as root
• change into the /boot directory
• copy the current kernel onto the floppy dd if=vmlinuz of=/dev/fdO The name of the

kernel, vmlinuz, may change from system to system. For my machines it vmlinux-
2.6.31.

• tell the boot disk where to find the root disk rdev /dev/fdO /dev/hdal

Unux System Startup and Shutdown 241

Where /dev/fdO is the device for the floppy drive you are using and /dev/hdal is the
device file for your root disk. You need to make sure you replace /dev/fdO and
/dev/hdal with the appropriate values for your system.

15.2.4 Starting the kernel
Okay, the boot strap program or the ROM program has found your system's kernel. What
happens during the startup process? The kernel will go through the following process

initialise its internal data structures, Things like ready queues, process control blocks and
other data structures need to be readied.
check for the hardware connected to your system, It is important that you are aware
that the kernel will only look for hardware that it contains code for. If your system has a
SCSI disk drive interface your kernel must have the SCSI interface code before it will be
able to use it.
verify the integrity of the root file system and then mount it, and

• create the process 0 (swapper) and process 1 (init).
The swapper process is actually part of the kernel and is not a "real" process. The init

process is the ultimate parent of all processes that will execute on a UNIX system.
Once the kernel has initialized itself, init will perform the remainder of the startup

procedure.

Kernel boot messages
When a UNIX kernel is booting, it will display messages on the main console about what it is
doing. Under Linux, these messages are also sent to syslog ·and are by default appended
onto the file /var/log/messages. The following is a copy of the boot messages on my
machine with some additional comments to explain what is going on.

start kernel logging
Feb 2 15:30:40 beldin kernel: klogd 1.3-3, log source = /proc/kmsg started.
Loaded 4189 symbols from /boot/System.map.
Symbols match kernel version 2.0.31.
Loaded 2 symbols from 3 modules.

Configure the console
Console: 16 point font, 400 scans
Console: colour VGA+ 80x25, 1 virtual console (max 63)

Start PCI software
pcibios_init BIOS33 Service Directory structure at OxOOOf9320
pcibios_init : BIOS32 Service Directory entry at OxfOOOO
pcibios_init : PCI BIOS revision 2.00 entry at Oxf0100
Probing PCI hardware.
calibrating delay loop .. ok - 24.01 BogoMIPS

check the memory
Memory: 30844kj32768k available (736k kernel code, 384k reserved, 804k data)

start networking
Swansea University Computer Society NET3.035 for Linux 2.0
NET3: Unix domain sockets 0.13 for Linux NET3.035.
Swansea University Computer Society TCP/IP for NET3.034
P Protocols: IGMP, ICMP, UDP, TCP
FS: Diskquotas version dquoC5.6.0 initialized

242 Introduction to L1nux : Installation and Programming

check the CPU and find that it suffers from the Pentium bug

hecking 386/387 coupling ... Hmm, FDIV bug i586 s'i'stem

hecking 'hit' Instruction ... Ok.

Lnux version 2.0.31 (root@porky.redhat.com) (gcc version 2.7.2.3) #1 Sun Nov 9
21:45:23 EST 1997

start swap

tarting kswapd v 1.4.2.2

start the serialdrivers

tyOO at Ox03f8 (irq = 4) is a 16550A

ty01 at Ox02f8 (irq = 3) is a 16550A

start drivers for the clock, drives

Real Time Clock Driver v1.07

Ramdlsk driver initialized: 16 ramdisks of 4096K size

hda: FUJITSU M1636TAU, 1226MB w/128kB Cache, CHS=622/64/63

hdb: SAMSUNG PLS-30854A, 810MB w/256kB Cache, CHS=823/32/6

ideO at OxlfO-Ox1f7,Ox3f6 on irq 14

Floppy drive(s): fdO is 1.44M

FDC 0 is a post-1991 82077

md driver 0.35 MAX_MD_DEV=4, MAX_REAL=8

scsi : 0 hosts.

scsi : detected total.

Partition check:

hda: hda1 hda2 < hda5 >

hdb: hdb1

mount the root file system an start swap

VFS: Mounted root (ext2 fllesystem) readonly.

Adding Swap: 34236k swap-space (priority -1)

XT2-fs warning: mounting unchecked fs, running e2fsck is recommended ysctl: ip
forwarding off

ansea University Computer Society IPX 0.34 for NET3.035

IPX Portions Copyright (c) 1995 Caldera, Inc.

Appletalk 0.17 for Unux NET3.035

ethO: 3c509 at Ox300 tag 1, 10baseT port, address 00 20 af 33 b5 be, IRQ 10.

3c509.c: 1.12 6/4/97 becker@cesdis.gsfc.nasa.gov

ethO: Setting Rx mode to 1 addresses.

15.2.5 Starting the processes
So at this stage the kernel has been loaded, it has initialized its data structures and found all
the hardware devices. At this stage your system can't do anything. The operating system

Llnux System Startup and Shutdown 243

kernel only supplies services which are used by processes. The question is how are these
other processes created and executed. This discussion is already done in Chapter on
Processes.

On a UNIX system the only way in which a process can be created is by an existing
process performing a fork operation. A fork creates a brand new process that contains copies
of the code and data structures of the original process. In most cases the new process will
then perform an exec that replaces the old code and data structures with that of a new
program.

But who starts the first process?

init is the process that is the ultimate ancestor of all user processes on a UNIX system. It
always has a Process ID (PID) of 1. init is started by the operating system kernel so it is the
only process that doesn't have a process as a parent. init is responsible for starting all other
services provided by the UNIX system. The services it starts are specified by init's
configuration file, /etc/inittab.

Run levels

'init is also responsible for placing the computer into one of a number of run levels. The run
level a computer is in controls what services are started (or stopped) by init. Table 15.1
summarizes the different run levels used by popular Linux releases. At anyone time, the
system must be in one of these run levels.

When a Linux system boots, init examines the /etc/inittab file for an entry of type
initdefault. This entry will determine the initial run level of the system (see Table 15.1).

Table 15.1 Run levels.

Run level Description

0 Halt the machine

1 Single user mode. All file systems mounted,
only small set of kernel processes running.
Only root can login.

2 mUlti-user mode, without remote file sharing

3 multi-user mode with remote file sharing,
processes, and daemons

4 user definable system state

5 used for to start X11 on boot

6 shutdown and reboot

abc ondemand run levels

s or S same as single-user mode, only really used
by scripts

244 Introduction to Llnux : Installation and Programming

Under Unux, the telinit command is used to change the current run level. telinit is actually
a soft link to inlt. tellnit accepts a single character argument from the following

00123456

The run level is switched to this level.

o Q q

Tells init that there has been a change to /etc/inittab (its configuration file) and that it
should re-examine it.

o S s
Tells Inlt to swltci"t to single user mode.

/etc/inittab

/etc/inittab is the configuration file for init. It is a colon delimited field where # characters
can be used to comments. Each line corresponds to a single entry and Is broken Into
four fields

o the identifier
One or two characters to uniquely identify the entry.

o the run level
Indicates the run level at which the process should be executed

o the action
Tells init how to execute the process

o the process
The full path of the program or shell script to execute.

What happens

When init is first started it determines the current run level (by matching the entry in
/etc/inlttab with the action initdefault) and then proceeds to execute all of the commands of
entries that match the run level.

The following Is an example /etc/inittab taken from a Redhat machine with some
comments added.

Specify the default run level

Id: 3: initdefault:

System Initialisation.

sl: :sysinit:/etc/rc.d/rc.sysinit

when first entering various runlevels run the related start-up scripts before
going any further

10:0:wait:/etc/rc.d/rc 0

11: 1 :wait:/etc/rc.d/rc 1

12:2:wait:/etc/rc.d/rc 2

13:3:walt:/etc/rc.d/rc 3

14:4:wait:/etc/rc.d/rc 4

15:5:wait:/etc/rc.d/rc 5

Llnux System Startup and Shutdown

16:6:wait:/etc/rc.d/rc 6
Things to run in every runlevel.

ud: :once:/sbin/update

245

call the shutdown command to reboot the system when the use does the
three fingered salute

ca: :ctrlaltdel:/sbin/shutdown -t3 -r now

A powerfail signal will arrive if you have a uninterruptible power supply (UPS) if
this happens shut the machine down safely

pf:: powerfail :/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"

If power was restored before the shutdown kicked in, cancel it.
pr: 12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown
Cancelled"

Start the login process for the virtual consoles

1: 12345: respawn :/sbin/mingetty tty1
2: 2345: respawn :/sbin/mingetty tty2
3: 2345:respawn:/sbin/mingetty tty3
4: 2345: respawn :/sbin/mingetty tty4
5: 2345: respawn :/sbin/mingetty tty5

6: 2345: respawn :/sbin/mingetty tty6

If the machine goes into runlevel 5, start X

x: 5: respawn :/usr/bin/X11/xdm -nodaemon

The identifier
The identifier, the first field, is a unique two character identifier. For inittab entries that
correspond to terminals the identifier will be the suffix for the terminals device file.

For each terminal on the system a getty process must be started by the init process. Each
terminal will generally have a device file with a name like /dev/tty??, where the ?? will be
replaced by a suffix. It is this suffix. that must be the identifier in the /etc/inittab file.

Run levels
The run levels describe at which run levels the specified action will be performed. The run
level field of /etc/inittab. can contain multiple entries, e.g. 123, which means the action will
be performed at each of those run levels.

Actions
The action's field describes how the process will be executed. There are a number of pre-
defined actions that must be used. Table 15.2 lists and explains them.

246 Introduction to Linux : Installation and Programming

Table 15.2 Inittab actions.

Action Purpose

Respawn restart the process if it finishes

wait init will start the process once and wait until it has finished before
going on to the next entry

once start the process once when the runlevel is entered

boot perform the process durinq system boot (will iqnore the run level field)

bootwait a combination of boot and wait

off do nothing

initdefault specify the default run level

sysinit execute process during boot and before any boot or bootwait entries

powerwait executed when init receives the SIGPWR signal which indicates a
problem with the power init will wait until the process is completed

ondemand execute whenever the ondemand runlevels are called (a b c). When
these runlevels are called there is NO change in run level.

powerfail same as powerwait but don't wait (refer to the man page for the action
powerokwait)

ctrlaltdel executed when init receives SIGINT signal (usually when someone
does CTRL-ALT-DEL

15.2.6 Daemons and Configuration Files
Init is an example of a daemon. It will only read its configuration file, /etc/inittab, when it
starts execution. Any changes you make to /etc/inittab will not influence the execution of
init until the next time it starts, i.e. the next time your computer boots.

There are ways in which you can tell a daemon to re-read its configuration files. One
generic method, which works most of the time, is to send the daemon the HUP signal. For
most daemons the first step in doing this is to find out what the process id (PID) is of the
daemon. This isn't a problem for init. Why?

It's not a problem for inlt because init always has a PID of 1.

The more accepted method for telling init to re-read its configuration file is to use the
telinit command. telinit q or init q will tell init to re-read its configuration file.

:15.2.7 System Configuration
There are a number of tasks which must be completed once during system startup which
must be completed once. These tasks are usually related to configuring your system so that
it will operate. Most of these tasks are performed by the /etc/rc.d/rc.sysinit script.

It is this script which performs the following operations

• sets up a search path that will be used by the other scripts
• obtains network configuration data
• activates the swap partitions of your system
• sets the hostname of your system

Every UNIX computer has a hostname. You can use the UNIX command hostname to
set and also display your machine's hostname.

Linux System Startup and Shutdown 247

• sets the machines NIS domain (if you are using one)
• performs a check on the file systems of your system
• turns on disk quotas (if being used)
• sets up plug'n'play support
• deletes old lock and tmp files
• sets the system clock
• loads any kernel modules.

Terminal logins

In a later chapter we will examine the login procedure in more detail. This is a brief summary
to explain how the login procedure relates to the boot procedure.

For a user to login there must be a getty process (Redhat Linux uses a program called
mingetty, slightly different name but same task) running for the terminal they wish to use. It
is one of init's responsibilities to start the getty processes for all terminals that are physically
connected to the main machine, and you will find entries in the /etc/inittab file for this.

Please note this does not include connections over a network. They are handled with a
different method. This method is used for the virtual consoles on your Linux machine and
any other dumb terminals you might have connected via serial cables. You should be able
see the entries for the virtual consoles in the example /etc/inittab file from above.

15.2.8 Start-up scripts
Most of the services which init starts are started when init executes the system start scripts.
The system startup scripts are shell scripts written using the Bourne shell (this is one of the
reasons you need to know the Bourne shell syntax). You can see where these scripts are
executed by looking at the inittab file.

IO:O:wait:/etc/rc.d/rc 0

11:1:wait:/etc/rc.d/rc 1

12:2:wait:/etc/rc.d/rc 2

13:3:wait:/etc/rc.d/rc 3

14:4:wait:/etc/rc.d/rc 4

15:5:wait:/etc/rc.d/rc 5

16:6:wait:/etc/rc.d/rc 6

These scripts start a number of services and also perform a number of configuration
checks including

• checking the integrity of the machine's file systems using fsck,
• mounting the file systems,
• designating paging and swap areas,
• checking disk quotas,
• clearing out temporary files in /tmp and other locations,

starting up system daemons for printing, mail, accounting, system logging,
networking, cron and syslog.

248 Introduction to Llnux : Installation and Programming

In the UNIX world there are two styles for startup files: BSD and System V. Redhat Linux
uses the System V style and the following section concentrates on this format. Table 15.3
summarizes the files and directories which are associated with the Redhat startup scripts. All
the files and directories in Table 15.3 are stored in the /etc/rc.d directory.

Table 15.3 Linux start-up scripts.

Filename Purpose

rcO.d rc1.d rc2.d directories which contain links to scripts which are executed
rc3.d rc4.d rcS.d when a particular runlevel is entered
rc6.d

rc A shell script which is passed the run level. It then executes the
scripts in the appropriate directory.

init.d Contains the actual scripts which are executed. These scripts
take either start or stop as a parameter

rc.sysinit run once at boot time to perform specific system initialisation
steps

rc.local the last script run, used to do any tasks specific to your local
setup that isn't done in the normal SysV setup

rC.serial not always present, used to perform special configuration on any
serial ports

The Linux Process

When init first enters a run level it will execute the script /etc/rc.d/rc (as shown in the
example /etc/inittab above). This script then proceeds to

• determine the current and previous run levels
• kill any services which must be killed
• start all the services for the new run level.

The /etc/rc.d/rc script knows how to kill and start the services for a particular run level
because of the filenames in the directory for each run level. The following are the filenames
from the /etc/rc.d/rc3.d directory on my system.

Is rc3.d

K10pnserver KSSrouted S40atd S60lpd S8Spostgresql

K20rusersd S01kerneid S40crond S60nfs S8Ssound

K20rwhod S10network S40portmap 57Skeytable 591smb

K2Sinnd 51Snfsfs 540snmpd 580sendmail 59910cal

K2Snews 520random 54Spcmcia 58Sgpm

K30ypbind 530syslog 5S0inet 58Shttpd

You will notice that all the filenames in this, and all the other rcX.d directories, use the
same format.

[5K]numberService

Where number is some integer and Service is the name of a service.

All the files with names starting with 5 are used to start a service. Those starting with K
are used to kill a service. From the rc3.d directory above you can see scripts which-start
services for the Internet (5S0inet), PCMCIA cards (54Spcmcia), a Web server (58Shttpd) and
a database (58Spostgresql).

Llnux System Startup and Shutdown 249

The numbers in the filenames are used to mdicate the order in which these services
should be started and killed. You'll notice that the script to start the Internet services comes
before the script to start the Web server; obviously the Web server depends on the Internet
services.

/etc/rc.d/init.d

If we look closer we can see that the files in the rcX.d directories aren't really files.

Is -I rc3.d/S50inet

Irwxrwxrwx 1 root root 14 Dec 19 23:57 rc3.d/S50inet -> .. /init.d/inet
The files in the rcX.d directories are actually soft links to scripts in the /etc/rc.d/init.d

directory. It is these scripts which perform all the work.

Starting and stopping

The scripts in the /etc/rc.d/init.d directory are not only useful during the system startup
process, they can also be useful when you are performing maintenance on your system.
You can use these scripts to start and stop services while you are working on them.

For example, lets assume you are changing the configuration of your Web server. Once
you've finished editing the configuration files (in /etc/httpd/conf on a Redhat machine) you
will need to restart the Web server for it to see the changes. One way you could do this
would be to follow this example

/etc/rc.d/init.d/httpd stop
Shutting down http:

/etc/rc.d/init.d/httpd start
Starting httpd: httpd

This example also shows you how the scripts are used to start or stop a service. If you
examine the code for /etc/rc.d/rc (remember this is the script which runs all the scripts in
/etc/rc.d/rcX.d) you will see two lines. One with $i start and the other with $i stop. These
are the actual lines which execute the scripts.

Lock files
All of the scripts which start services during system startup create lock files. These lock files,
if they exist, indicate that a particular service is operating. Their main use is to prevent
startup files starting a service which is already running.

When you stop a service one of the things which has to occur is that the lock file must be
deleted.

Damaged file systems

In the next two chapters we'H examine file systems in detail and provide solutions to how
you can fix damaged file systems. The two methods we'll examine include

• the fsck command, and
• always maintaining good backups.

250 Introduction to Linux : Installation and Programming

Shutting down
We should not just simply turn a UNIX computer off or reboot it. Doing so will usually cause
some sort of damage to the system especially to the file system. Most of the time the
operating system may be able to recover from such a situation (but NOT always).

Commands to shutdown

There are a number of different methods for shutting down and rebooting a system including

• the shutdown command

The most used method for shutting the system down. The command can display
messages at preset intervals warning the users that the system is coming down.

• the halt command
Logs the shutdown, kills the system processes, executes sync and halts the processor.

• the reboot command
Similar to halt but causes the machine to reboot rather than halting.

sending init a TERM signal, init will usually interpret a TERM signal (signal number 15)
as a command to go into single user mode. It will kill of user processes and daemons.
The command is kill -15 1 (init is always process number 1). It may not work or be
safe on all machines.

the fasthalt or fastboot commands These commands create a file /fastboot before
calling halt or reboot. When the system reboots and the start-up scripts find a file
/fastboot they will not perform a fsck on the file systems.

The most used method will normally be the shutdown command. It provides users with
warnings and is the safest method to use.

shutdown
The format of the command is

shutdown [-h I -r] [-fqs] [now I hh:ss I +mins]

The parameters are

• -h
Halt the system and don't reboot.

• -r
Reboot the system

• -f
Do a fast boot.

• -q
Use a default broadcast message.

• -s
Reboot into single user mode by creating a /etc/singleboot file.

The time at which a shutdown should occur are specified by the now hh:ss +mins options.

• Now
Shut down immediately.

• hh:ss
Shut down at time hh:ss.

• +mins
Shut down mins minutes in the future.

Llnux System Startup and Shutdown

The default wait time before shutting down is two minutes.

The procedure for shutdown is as follows

251

• five minutes before shutdown or straight away if shutdown is in less than five minutes
The file /etc/nologin is created. This prevents any users (except root) from logging in.
A message is also broadcast to air logged in users notifying them of the imminent
shutdown.

• at shutdown time. All users are notified. init is told not to spawn any more getty
processes. Shutdown time is written Into the file /var/log/wtmp. All other processes
are killed. A sync is performed. All file systems are unmounted. Another sync is
performed and the system is rebooted.

The other commands

The other related commands including reboot, fastboot, halt, fasthalt all use a Similar format
to the shutdown command. Refer to the man pages for more information.

Table 15.4 summarizes some of the commands that can be used to examine the current
state of your machine. Some of the information they display includes

• amount of free and used memory,
• the amount of time the system has been up,
• the load average of the system, Load average is the number processes ready to be run

and is used to give some idea of how busy your system is.
• the number of processes and amount of resources they are consuming.

Some of the commands are explained below in Table 15.4. For those that aren't use your
system's manual pages to discover more.

Table 15.4 System status commands.

Command Purpose

free display the amount of freE' and used memory

uptime how long has the system been running and what is the current load
average

ps one off snap shot of the current processes

top continual listing of current processes

uname display system information including the hostname, operating system
and version and current date and time

top

ps provides a one-off snap shot of the processes on your system. For an on-going look at the
processes Linux generally comes with the top command. It also displays a collection of other
information about the state of your system including

• uptime, the amount of time the system has been up
• the load average,
• the total number of processes,
• percentage of CPU time in user and system mode,
• memory usage statistics
• statistics on swap memory usage

252 Introduction to L1nux : Installation and Programming

The top command displays the process on your system ranked iil order from the most
CPU intensive down and updates that display at regular intervals. It also provides an
interface by which you can manipulate the nice value and send processes signals.

The nice value
The nice value specifies how "nice" your process is being to the other users of the system. It
provides the system with some Indication of how important the process is. The lower the
nice value the higher the priority. Under linux the nice value ranges from -20 to 19.

By default a new process inherits the nice value of its parent. The owner of the process
can increase the nice value but cannot lower it (give it a higher priority). The root account
has complete freedom in setting the nice value.

nice
The nice command is used to set the nice value of a process when it first starts.

renice
The renice command is used to change the nice value of a process once it has started.

15.3 Conclusions
This chapters explores Llnux booting process. It outlines first linux booting and then explains
each task involved in a detailed manner. All the configurations files and how to modify them
is explained in a lucid manner.

System logging 253

16 System Logging

16.1 Introduction
There will be times when you want to reconstruct what happened in the lead up to a problem.
Situations where this might be desirable include

• you believe someone has broken into your system,
• one of the users performed an illegal action while online, and
• the machine crashed mysteriously at some odd time.
• We want to know who made un-successful login attempts in the last 24 hours.
• We want to continuously monitor the disk usage of users and wam them if it exceeds nmits.

This is where

• logging, and
The recording of certain events, errors, emergencies.

• accounting.
Recording who did what and when. become useful.

This chapter examines the methods under Linux by which logging and accounting are
performed. In particular It will examine

• the syslog system,
• process accounting, and
• login accounting.

Managing log and accounting files

Both logging and accounting tend to generate a great deal of information especially on a
busy system. One of the decisions the Systems Administrator must make is what to do with
these files. Options include

• don't create them in the first place,
The head in the sand approach. Not a good idea.
keep them for a few days, then delete them, and If a problem hasn't been identified
within a few days then assume there is no reasons to keep the log files. Therefore
delete the existing ones and start from scratch.
keep them for a set time and then archive them. Archiving these files might include
compressing them and storing them onlme or copying them to tape.

Centralize

J If you are managing mult1ple computers it is advisable to centralize the logging and accounting
files so that they all appear on the one machine. This makes maintaining and observing the
files easier.

16.2 Logging
The ability to log error messages or the actions carried out by a program or script is fairly
standard. On earlier versions of UNIX each individual program would have its own
configuration file that controlled where and what to log. This led to multiple configuration and
log files that made it difficult for the Systems Administrator to control and each program had
to know how to log.

254 Introduction to Linux : Installation and Programming

syslog

The syslog system was devised to provide a central logging facility that could be used by all
programs. This was useful because Systems Administrators could control where and what
should be logged by modifying a single configuration file and because it provided a standard
mechanism by which programs could log information.

Components of syslog

The syslog system can be divided into a number of components

• default log file,
On many systems messages are logged by default into the file /var/log/messages

• the syslog message format,
• the application programmer's interface,

The API programs use to log information.
• the daemon, and

The program that directs logging information to the correct location based on the
configuration file.

• the configuration file.
Controls what information is logged and where it is logged.

syslog message format

syslog uses a standard message format for all information that is logged. This format
includes

• a facility,
The facility is used to describe the part of the system that is generating the message.
Table 16.1 lists some of the common facilities.

• a level,
The level indicates the severity of the message. In lowest to highest order the levels
are debug info notice warning err crit alert emerg and a string of characters containing
ill message.

Table 16.1 Common syslog facilities.

Facility Source

kern the kernel

mail the mail system

Ipr the print system

daemon a variety of system daemons

auth the login authentication system

syslog's API

In order for syslog to be useful application programs must be able to pass messages to the
syslog daemon so it can log the messages according to the configuration file ..

System logging 255

There are at least two methods which application programs can use to send messages to
syslog. These are:

• logger,
logger is a UNIX command. It is designed to be used by shell programs which wish to
use the syslog facility.

• the syslog API.
The API (application program interface) consists of a set of the functions (openlog
syslog closelog) which are used by programs written in compiled languages such as C
and C++. This API is defined in the syslog.h file. You will find this file in the system
include directory /usr/include.

syslogd

syslogd is the syslog daemon. It is started when the system boots by one of the startup
sCripts. syslogd reads its configuration file when it startups or when it receives the HUP
signal. The standard configuration file is /etc/syslog.conf. syslogd receives logging messages
and carries out actions as specified in the configuration file. Standard actions include

• appending the message to a specific file,
• forwarding the message to the syslogd on a different machine, or
• display the message on the consoles of all or same of the logged in users.

/ etc/ syslog.conf
By default syslogd uses the file /etc/syslog.conf as its configurati'on file. It is possible using a
command line parameter of syslogd to use another configuration file.

A syslog configuration file is a text file. Each line is divided into two fields separated by
one or more spaces or tab characters

• a selector, and
Used to match log messages.

• an action.
Specifies what to do with a message if it is matched by the selector

The selector

The selector format is facility. level where facility and level match those terms introduced in
the syslog message format section from above.

A selector field can include

• multiple selectors separated by ; characters
• multiple facilities, separated by a , character, for a single level
• an * character to match all facilities or levels

The level can be specified with or without a =. If the = is used only messages at exactly
that level will be matched. Without the = all messages at or above the specified level will be
matched.

syslog.conf actions

The actions in the syslog configuration file can take one of four formats

• a path name starting with /
Messages are appended onto the end of the file.

• a hostname starting with a @
Messages are forwarded to the syslogd on that machine.

• a list of users separated by commas
Messages appear on the screens of those users if they are logged in. an asterix
Messages are displayed on the screens of all logged in users.

256 Introduction to Llnux : Installation and Programming

For example
The following is an example syslog configuration file taken from the Linux manual page for
syslog.conf

Log all kernel messages to the console.

Logging much else clutters up the screen.

#kern.* /dev/console

Log anything (except mail) of level info or higher.

Don't log private authentication messages!

*. info; mail.none; authpriv. none /var/log/messages

The authpriv file has restricted access.

authpriv.* /var/log/secure

Log all the mail messages in one place.

mail. * /var/log/maillog

Everybody gets emergency messages, plus log them on another

machine.

*.emerg *

Save mail and news errors of level err and higher in

special file.

uucp,news.crit /var/log/spooler

16.3 Accounting
Accounting was developed when computers were expensive resources and people were
charged per command or CPU time. In today's era of cheap, powerful computers its rarely
used for these purposes. One thing accounting is used for is as a source of records about the
use of the system. Particular useful if someone is trying, or has, broken into your system.

In the following sections we will examine

• login accounting.
• process accounting

16.3.1 Login accounting
The file /var/log/wtmp is used to store the username, terminal port, login and logout times
of every connection to a Linux machine. Every time you login or logout the wtmp file is
updated. This task is performed by init.

last
The last command is used to view the contents of the wtmp file. There are options to limit
interest to a particular user or terminal port.

last reboot
The above command displays log of all reboots since the log file is created.

System logging 257

lastb

This command displays details about un-successful login attempts .

ac

The last command provides rather rudimentary summary of the information in the wtmp file.
As a Systems Administrator it is possible that you may require more detailed summaries of
this information. For example, you may desire to know the total number of hours each user
has been logged in, how long per day and various other mformation.

The command that provides this information is the ac command .

Installing ac

It is possible that you will not have the ac command installed . The ac command is part of
the psacct package . If you don't have ac installed you will have to use rpm or glint to install
the package .

16.3.2 Process accounting
Also known as CPU accounting, process accounting records the elapsed CPU time, average
memory use, I/O summary, the name of the user who ran the process, the command name
and the time each process finished .

Turning process accounting on

Process accounting does not occur until it is turned on using the accton command.

accton /var/log/acct

Where /var/log/acct is the file in which the process accounting information will be stored .
The file must already exist before it will work. You can use any filename you wish but many
of the accounting utilities rely on you using this file.

lastcomm

lastcomm is used to display the list of commands executed either for everyone, for particular
users, from particular terminals or just information about a particular command . Refer to the
lastcomm manual page for more information .

lastcomm -f /var/log/acct

The above command the following results .

Lastcomm root ttyp2 0 .55 secs Sun Jan 25 16 :21

Is

Is

accton

The sa command

root ttyp2

root ttyp2

root ttyp2

0.03 secs Sun Jan 25 16:21

0 .02 secs Sun Jan 25 16:21

0.01 secs Sun Jan 25 16:21

The sa command is used to provide more detailed summaries of the information stored by
process accounting and also to summarize the information into other files.

Refer to the manual pages for the sa command for more information.

258 Introduction to Llnux : Installation and Programming

16.4 Available Graphical Tools
In the recent years, many Linux variants are supporting GUI facilities for viewing the logs.
For example, on my desktop from the system tools option I have selected System log's
option. The following window crapped up.

I
ii' •

If we want to search for a specific thing also we can do here. For example, we wanted to
check entries with venkat both Security log and System log (see Figure 16.1).

.. ion for use • .

: IOoct 13 12:04: lllocalhost sudo(pam_unix)[4330]: authenecation failure: '
Oct 13 11:04:22 Iocalhost su(pam_unix)[4311j: session closed fOf

13 16:15:32Iocalhost gdm(pamJlniKI[487O]: authenticallon failure;
lOOct 13 16:15:47Iocalhost gdm(pam_untx)[4870j: authentication failu",; l'.Ii ••••• :)00ct 13 16:20 181ocalhost gdm(pam_unix)[4870]: authentication failure; f' : 1Ooct 13 16:20:26Iocalhost gdm(pamJlnixl[4870j: authentication failure;

:1 Oct 13 16:21:23Iocalhost su(pamJlntx)[5343]: for
: Oct 13 16:21:26Iocalhost su(pa",-unix)[5343]: session closed for
!ODet 13 16:22: 30 localhost gdm(pamJA'lixl[5367]: authentication failure;
lOOct 13 16:22:37Iocalhost gdm(pa",-unix)[5367]: authentication failure;

Figure 16.1 Security Log.

Also, from system tools we can select system monitor to see the details about memory usage
of the system and also per process basis resource consumption (see Figures 16.2 and 16.3)

System logging

file "EdIt Ji'- ueip
_____ -= ___ ________ =-___ : __________ ____ ____

CPUHlsID!Y

Swap:.. 796 K d S10 M8

Device.

_. __ ... __
l. __ . .lded.sh1lL tm.nlsJ2J..MJLDlw"",L-------1l%::=:J ... _. ____

•••• - •••• ¥-¥.¥¥¥--•• •• -

Sea.t:th:

xonetd

udevd

syslogd

sshd

sslHgent

sstr.>gent

smoutd

- _ .. 1

sendl!1l11t accepii(19

rpc.idmapd

i More Info» 1

Figure 16.2 System Monitor.

VIf(W; . [My Processes 1" II'

;; I

roo(3.6 MB Obyt.,. 0 2411

root 22. 7 MB 0 bytes 0 6101
roo(2.5 MB o bytes -10 1114

root J,2 MB o bytes 0 2127

root 5.0 M[l o byh!' 0 2400

root 5.3 MB o byte. 0 5988

root 4.2 MB o bytes 0 5571

roo(3.7MB o bytes 0 5220

root 4.7MB o bytes 0 5031

root 1.6MB o bytes 0' 3132

root 2.7 MB o bytes 0 2]1 7

root 7.8MB o byte. 0 2430

root 3.2 MB o byte, 0 2205

!End Erocm !

______ ._ .. ___ __ "._ _._ .. _ J

Figure 16.3 System Resources.

o

259

260 Introduction to Linux : Installation and Programming

16.5 So what?
This section has given a very brief overview of process and login accounting and the associated
commands and files . What use do these systems fulfill for a Systems Administrator? The main
one is that they allow you to track what is occurring on your system and who is doing it. This
can be useful for a number of reasons

• tracking which user's are abusing the system
figuring out what is normal for a user If you know that most of your users never use
commands like sendmail and the C compilers (via process accounting) and then all of a
sudden they start using this might be an indication of a break in.

• justifying to management the need for a larger system Generally .management won't
buy you a bigger computer just because you want one. In most situations you will
have to put together a case to justify why the additional expenditure is necessary.
Process and login account could provide some of the necessary information.

16.6 Conclusions
This chapter explains how to monitor processes in the system with the help of syslog facility.
Also, process accounting is explained and how it can be used to manage the users is explained.

17 Networks: A Brief Introduction

17.1 Introduction
Networks, connecting computers to networks and managing those networks are probably the
most Important, or at least the most hyped, areas of computing at the moment. This and
the following chapter introduce the general concepts associated with TCP/IP-based networks
and in particular the knowledge required to connect and use Linux computers to those
networks.

This chapter examines how you connect a Linux machine and configure it to provide basic
network connections and services for other machines. This chapter introduces the process
and knowledge for connecting a Linux machine to a TCP/IP network from the lowest level up
using the following steps

• network hardware
Briefly looks at the hardware peripherals that allow network connections and in
particular the network hardware which Linux supports.

• network support in the Linux kernel
Many of the networking services require support from the kernel of the operating
system. This section examines what support for network services the Linux kernel
provides.

• configuring the network connection
Once the hardware is installed and the kernel rebuilt the network connection must be
configured. Linux/UNIX uses a number of specific commands to perform these tasks.

Each of these steps requires an understanding of the operation and basics of TCP/IP
networks.

17.1.1 A brief overview of TCP/IP Model
Popularly three addresses are used in computer networks which are explained in detail later.
They are:

• Network card or Ethernet address which IS 48 bits long and IS physical.
• IP address which is 32 bits (as of now) and is logical.
• Port address which is 16 bits and is logical.

A simply practical analogy
We can assume port number as person's name, Flat number In an apartment bldg and door
number of the apartment as network card address, and postal code as IP address. With the
help of PIN number (is logical like IP address as it is not written on a city!!) a postal packet
is delivered to a city. Further, with the help of door number it will be delivered to the
apartment watchmen; which is further delivered to a specific flat based on flat number
(Probably door number and flat number can be considered as physical as they are written
really!!). Then, with the help of person name the packet is really delivered to the actual
person (name is considered as logical like port as it is not written on the face of a person!!).

In the same manner a packet (datagram) is delivered from destination machine
router. In a nutshell steps involved in a packets delivery to an application (program) on a
destination machine is as follows.

1. A packet is delivered to destination LAN with the help of network address (a portion of
destination machine's IP address which is seen in the packet itself) of it. That is, all
the packets which are bound to a machine will have same IP address irrespective of
their source. Also, all the packets which are bound to machines of a LAN will be having
their network part of their IP addresses as same.

262 Introduction to Llnux : Installation and Programming

2. Actually, LAN protocols are used to deliver a packet in a LAN and LAN protocols
requires Ethernet address for this. When a packet arrives to destination router, using
the arp protocol destination machines network card address is found and is used for
actual delivery of packet to the machine.

3. When a packet arrives to a machine, with the help of port number available in it, the
same will be hand overed to a program (running on that machine) which. is looking for
packets arrivals with this port number.

17.1.2 Network Hardware
Th,e first step in connecting a machine to a network is to find out what sort of network
hardware you will be using. The aim of this unit and this chapter is not to give you a detailed
introduction to networking hardware. Before you can use a particular type of networking
hardware, or any hardware for that matter, there must be support for that device in the Linux
kernel. If the kernel doesn't support the required hardware then you can't use it. Currently
the Linux kernel offers support for the networking hardware outlined in list below. For more
detailed information about hardware support under Linux refer to the Hardware Compatibility
HOWTO available from your nearest mirror of the Linux Documentation Project.

• arcnet
• ATM http://lrcwww.epfl.ch/linux-atm/
• AX25, amateur radio
• EQL
EQL allows you to treat multiple pOint-to-point connections (SLIP, PPP) as a sil1gle logical
TCP/IP connection.
• FDDI
• Frame relay
• ISDN
• PLIP
• PPP
• SLIP
• radio modem, STRIP, Starmode Radio IP
http://mosquitonet.standford.edu/ {mosquitonet. htmll strip.html}
• token ring
• X.25
• WaveLan, wireless, card, and
• Ethernet
In most "normal" situations the networking hardware being used will be either

• Modem
A modem is a serial device so your Linux kernel should support the appropriate serial
port you have in your computer. The networking protocol used on a modem will be
either SLIP or PPP which mu'st also be supported by the kernel.

• Ethernet
Possibly the most common form of networking hardware at the moment. There are a
number of different Ethernet cards. You will need to make sure that the kernel
supports the particular Ethernet card you will be using. The Hardware Compatibility
HOW-TO includes this information.

17.1.3 Network devices
Only way a program can gain access to a physical device is via a device file. Network
hardware is still hardware so it follows that there should be device files for networking
hardware. Under other versions of the UNIX operating system this is true. It is not the case
under the Linux operating system.

Networks: A Brief Introduction 263

Device files for networking hardware are created, as necessary, by the device drivers
contained in the Linux kernel. These device files are not available for other programs to use.
This means I can't execute the command

cat < /etc/passwd > /dev/ethO

The only way information can be sent via the network is by going through the kernel.

Remember, the main reason UNIX uses device files is to provide an abstraction which is
independent of the actual hardware being used. A network device file must be configured
properly before you can use it send and receive information from the network. The process
for configuring a network device requires a bit more background information than you have
at the moment. The following provides that background and a later section in the chapter
examines the process and the commands in more detail.

The installation process for most Linux variants will normally perform some network
configuration for you. To find out what network devices are currently active on your system
have a look at the contents of the file /proc/net/dev

cat /proc/net/dev

Inter-I Receive I Transmit
face I packets errs drop fifo frame I packets errs drop fifo colis carrier

10: 91 0 0 0 0 91 0 0 0 0 0

ethO: 0 0 0 0 0 60 0 0 0 0 60

On this machine there are two active network devices. 10: the loopback device and ethO:
an Ethernet device file. If a computer has more than one Ethernet interface (network
devices are usually called network interfaces) you would normally see entries for eth1 eth2
etc.

IP aliasing (talked about more later) is the ability for a single Ethernet card to have more
than one Internet address (why this is used is also discussed later). The following example
shows the contents of the /proc/net/dev file for a machine using IP aliaSing. It is not normal
for an Ethernet card to have multiple IP addresses, normally each Ethernet card/interface will
have one IP address.

cat /proc/net/dev
Inter-I Receive I Transmit

face Ipackets errs drop fifo framelpackets errs drop fifo colis carrier

10: 285968 0 0 0 0 285968 0 0 0 0 0
ethO:61181891 59 59 0 89 77721923 0 0 0 11133617 57

ethO:O: 48849 0 0 0 0 212 0 0 0 0 0

ethO:1: 10894 0 0 0 0 210 0 0 0 0 0

ethO:2: 481325 0 0 0 0 259 0 0 0 0 0
ethO:3: 29178 0 0 0 0 215 0 0 0 o 0

We can see that the device files for an aliased Ethernet device uses the format ethX:Y
where X is the number for the Ethernet card and Y is the number of the aliased device.
Since aliased devices use the same Ethernet card they must use the same network, after all
you can't connect a single Ethernet card to two networks.

264 Introduction to linux : Installation and Programming

17.1.4 Kernel support for networking
Ensuring that the kernel includes support for your networking hardware is only the first step.
In order to supply certain network services it is necessary for them to be compiled into the
kernel. The following is a list of some of the services that the Linux kernel can support

• IP accounting
IP accounting must be compiled into the kernel and is configured with the ipfwadm
command. IP accounting allows you to track the number of bytes and packets
transmitted over the network connection. This is useful in situations where you must
track the network usage of your users. For example, if you are a Internet Service
Provider.

• IP aliasing
Essentially, IP aliasing allows your computer to pretend it is more than one computer. In a
normal configuration each network device is allocated a single IP address. However there
are times when you wish to allocate multiple IP addresses to a computer with a single
network interface. The most common example of this is web sites, for example, the
web sites http://cq-pan.cqu.edu.au/, http://webclass.cqu.edu.au/, and http://webfuse.cqu.
edu.au/ are all hosted by one computer. This computer only has one Ethernet card and
uses IP aliasing to create aliases for the Ethernet card. The Ethernet card's real IP address
is 138.77.37.37 and its three alias addresses are 138.77.37.36, 138.77.37.59 and
138.77.37.108.
Normally the interface would only grab the network packets addressed to
138.77.37.37 but with network aliaSing it will grab the packets for all three addresses.
You can see this in action by using the arp command. Have a look at the hardware
addresses for the computers cq-pan, webclass and webfuse. What can you tell?

/sbin/arp

Address
centaurus.cqu. EDU .AU
webfuse.cqu. EDU .AU
cq-pan.cqu .EDU.AU
science.cqu.EDU.AU
borric.cqu.EDU.AU
webclass.cqu. EDU .AU
138.77 .37.46

• IP firewall

Hwtype HWaddress
ether AA:00:04:00:0B:1C
ether 00:60:97:3A:AA:85
ether 00:60:97:3A:AA:85
ether 00:00:F8:01:9E:DA
ether 00:20:AF:A4:39:39
ether 00:60:97:3A:AA:85

(incomplete)

Flags Mask
C
C
C
C
C
C

ethO

!face
ethO
ethO
ethO
ethO
ethO
ethO

This option allows you to use a Linux computer to implement a firewall. A firewall
works by allowing you to selectively ignore certain types of network connections. By
doing this you can restrict what access there is to your computer (or the network
behind it) and as a result help increase security.
The firewall option is closely related to IP accounting, for example it is configured with
the same command, ipfwadm.

• IP encapsulation
IP encapsulation is where the IP packet from your machine is wrapped inside another
IP packet. This is of particular use mobile IP and IP multicast.

• IPX
IPX protocol is used in Novel Netware systems. Including IPX support in the Linux
kernel allows a Linux computer to communicate with Netware machines.

• IPv6
IPv6, version 6 of the IP protocol, is the next generation of which is slowly being
adopted. IPv6 includes support for the current IP protocol. Linux support for IPv6 is
slowly developing. You can find more information at http://www.terra.net/ipv6/

Networks : A Brief Introduction 265

• IP masquerade
IP masquerade allows multiple computers to use a single IP address. One situation
where this can be useful is when you have a single dialup connection to the Internet
via an Internet Service Provider (ISP). Normally, such a dialup connection can only be
used by the machine which is connected. Even if the dialup machine is on a LAN with
other machines connected they cannot access the Internet. However with IP
masquerading it is possible to allow all the machines on that LAN access the Internet.

• Network Address Translation
Support for network address translation for Linux is still at an alpha stage. Network
address translation is the "next version" of IP masquerade. See http://www.csn.tu-
chemnitz.de/HyperNews/get/linux-ip-nat.html for more information.

• IP proxy server
Mobile IP
Since an IP address consists of both a network address and a host address it can
normally only be used when a machine is connected to the network specified by the
network address. Mobile IP allows a machine to be moved to other networks but still
retain the same IP. IP encapsulation is used to send packets destined for the mobile
machine to its new location. See http://anchor.cs.binghamton.edu/mobileip/ for more
information.

• IP multicast
IP multicast IS used to send packets simultaneously to computers and separate IP
networks. It is used for a variety of audio and video transmission. See
http://www.teksouth.com/linux/multicast/ for more information.

17.2 Ethernet Basics
The following provides very brief background information on Ethernet which is a LAN
protocol.

17.2.1 Ethernet addresses
Every Ethernet card has built into it a 48 bit address (called an Ethernet address or a Media
Access Control (MAC) address or HW address). The high 24 bits of the address are used to
assign a unique number to manufacturers of Ethernet addresses and the low 24 bits are
assigned to individual Ethernet cards made by the manufacturer.

Some example Ethernet addresses, you will notice that Ethernet addresses are written
using 6 tuple's of HEX numbers, are listed below

OO:OO:OC:03:79:2F
OO:40:F6:60:4D:A4

Ethernet is a broadcast medium

Every packet, often called an Ethernet frame, of information sent on Ethernet contains a
source and destination MAC address. The packet is placed on a Ethernet network and every
machine, actually the Ethernet card, on the network looks at the packet. If the card
recognizes the destination MAC as its own it "grabs" the packet and passes it to the Network
access layer.

It is possible to configure your Ethernet card so that it grabs all packets sent on the
network. This is how it is possible to "listen in" on other people on a Ethernet network.

A single Ethernet network cannot cover much more than a couple of hundred meters.
However, how far depends on the type of cabling used.

266 IntroductioR to Linux : Installation and Programming

17.2.2 Converting hardware addresses to Internet addresses
The network access layer, the lowest level of the TCP/IP protocol stack is responsible for
converting Internet addresses into hardware addresses. This is how TCP/IP can be used over
a large number of different networking hardware.

Address Resolution Protocol
The mapping of Ethernet addresses into Internet addresses is performed by the Address
Resolution Protocol (ARP). ARP maintains a table that contains the translation between IP
address and Ethernet address.

When the machine wants to send data to a computer on the local Ethernet network the
ARP software is asked if it knows about the IP address of the machine (remember the
software deals in IP addresses). If the ARP table contains tne IP address the Ethernet
address is returned.

If the IP address is not known a packet is broadcast to every host on the local network,
the packet contains the required IP address. Every host on the network examines the packet.
If the receiving host recognizes the IP address as its own, it will send a reply back that
contains its Ethernet address. This response is then placed into the ARP table of the original
machine (so it knows it next time).

The ARP table will only contain Ethernet addresses for machines on the local network.
Delivery of information to machines not on the local network requires the intervention of
routing software which is introduced later in the chapter.

arp
On a UNIX machine you can view, modify, remove the contents of the ARP table using the
arp command. arp -a will display the entire table.

That is, we can see the arp cache, remove a hosts entry from the arp cache, etc. In a
networked system when a packet arrives at router machine (often a UNIX machine) then the
IP address to Ethernet address mapping is needed. This is achieved by arp protocol. These
mappings are stored in arp cache such that next time another packet arrives with the same
IP address then its Ethernet or physical address is calculated by carrying out a lookup
operation on this arp cache. With arp command we can modify, view, delete the entries of
this cache.

Some other options of arp command are Table 17.1

Table 17.1 Options with arp command.

arp -a Displays all entries are displayed

arp -a hostname Displays entry of the given host

arp -d hostname Removes the entry of the specified host

arp -s hostname Creates manually ARP entry for the host with the given hardware
HW_addr address (HW address has to be given in hexadecimal separated

by colons)

To see how new entries are added to the cache the next example shows the ping
command; Ping is often used to test a network connection and to see if a particular machine
is alive. In this case we are pinging src.doc.ic.ac.uk.

ping src.doc.ic.ac.uk

Networks: A Brief Introduction

PING src.doc.ic.ac.uk (138.77.37.102): 56 data bytes
64 bytes from 138.77.37.102: icmp_seq=O ttl=64 time=19.0 ms

--- pug.cqu.edu.au ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 19.0/19.0/19.0 ms

267

Now checkup the arp cache by running arp -a command. We will not find any new entry.
Now, you can try by pinging a machine in our LAN and see the arp cache content. We find an
entry for this local machine.

17.2.3 SLIP, PPP
SUP and PPP, used to connect machines via serial lines (and modems) are not broadcast
media. They are simple "point-to-point" connections between two computers. This means
that when information is placed on a SLIP/PPP connection only the two computers at either
end of that connection can see the information. SLIP/PPP are usually used when a computer
is connected to a network via a modem or a serial connection.

17.3 TCP/IP Basics
Before going any further it is necessary to introduce some of the basic concepts related to
TCP/IP networks. An understanding of these concepts is essential for the next steps in
connecting a Linux machine to a network. The concepts introduced in the following includes

• Hostnames
Every machine (also known as a host) on the Internet has a name. This section
introduces hostnames and related concepts.

• IP addresses
Each network interface on the network also has a unique IP address. This section
discusses IP addresses, the components of an IP address, subnets, network classes
and other related isstles.

• Name resolution
Human beings use hostnames while the IP protocols use IP addresses. There must be
a way, name resolution, to convert hostnames into IP addresses. This section looks at
how this is achieved.

• Routing
When network packets travel from your computer to a Web site in the United States
there are normally a multitude of different paths that packet can take. The deciSions
about which path it takes are performed by a routing algorithm. This section briefly
discusses how routing occurs.

17.3.1 Hostnames
Most computers on a TCP/IP network are given a name, usually known as a host name (a
computer can be known as a host). The hostname is usually a simple name used to uniquely
identify a computer within a given site. A fully qualified host name, also knowll as a ' ,
fully qualified domain name (FQDN), uses the following format \

hostname.site.domain.country

• Hostname
A name by which the computer is known. This name must be uniqtle to the site on
which the machine is located.

• Site
A short name given to the site (company, University, government department etc) on
which the machine resides.

268 Introduction to Linux : Installation and Programming

Domain
Each site belongs to a specific domain. A domain is used to group sites of similar
purpose together. Table 17.2 provides an example of some domain names. Strictly
speaking a domain name also Includes the country.

• Country
Specifies the actual country in which the machine resides. Table 17.3 provides an
example of some country names. You can see a list of the country codes at
http://www.bcpl.net/ ... lspath/isocodes.html

Table 17.2 Example Internet domains.

Domain Purpose

edu Educational institution university or school

com Commercial company

gov Government department

Net coml!anies

Table 17.3 Example Country Codes.

Country_ code Country

nothinq or us United States

au Australia

uk United Kingdom

in India

ca Canada

fr France

hostname
Under Linux the hostname of a machine is set using the hostname command. Only the root
user can set the hostname. Any other user can use the hostname command to view the
machine's current naMe.

hostname
darkstar.org

To change hostname:

hostname fred

hostname
fred

Changes to the hostname performed using the hostname command will not apply after
rebooting. The hostname is set during start-up from one of configuration files,
/etc/sysconfig/network If we wish a change in hostname to be retained after you reboot you
will have to change this file.

A fully qualified name must be unique to the entire Internet. Which implies every
hostname on a site should be unique.

It is not always necessary to specify a fully qualified name; especially to refer to a
machine in local LAN.

Networks: A Brief Introduction 269

17.3.2 IP/Internet Addresses
Alpha-numeric names, like hostnames, cannot be handled efficiently by computers, at least
not as efficiently as numbers. For this reason, hostnames are only used for us humans. The
computers and other equipment Involved in TCP/IP networks use numbers to identify hosts
on the Internet. These numbers are called IP addresses. This IS because It is the Internet
Protocol (IP) which provides the addressing scheme.

IP addresses are currently 32 bit numbers (i.e. in IPv4); IPv6 the next generation of IP
uses 128 bit address. IP addresses are usually wntten as four numbers separated by full
stops (called dotted deCimal form) e.g. 132.22.42.1. Since IP addresses are 32 bit numbers,
each of the numbers in the dotted deCimal form are restricted to between 0-255 (32 bits
divide by 4 numbers gives 8 bits per number and 255 is the biggest number you can
represent using 8 bits). This means that 257.33.33.22 is an invalid address.

Dotted Quad to Binary

The address 132.22.42.1 in dotted decimal form is actually stored on the computer as
10000100 00010110 00101010 00000001. Each of the four decimal numbers represent one
byte of the final binary number

o 32 = 10000100
o 22 = 00010110
o 42 = 00101010

1 = 00000001

Networks and hosts

An IP address actually consists of two parts

o a network portion, and

This is used to identify the network that the machine belongs to. Hosts on the same
network will have this portion of the IP address in common. This is one of the reasons
why IP masquerading is required for mobile computers (e.g. laptops). If you move a
computer to a different network you must give it a different IP address which includes
the network address of the new network it is connected to.

o the host portion.

o This is the part which uniquely identifies the host on the network.

The network portion of the address forms the high part of the address (the bit that
appears on the left hand side of the number). The size of the network and host portions
of an IP address is specified by another 32 bit number called the netmask (also
known as the subnet mask).

To calculate which part of an IP address is the network and which the host the IP address
and the subnet mask are treated as binary numbers (see diagram 15.?). Each bit of the
subnet mask and the IP address are compared and

• if the bit is set in both the IP address and the subnet mask then the bit is set in the
network address,

• if the bit is set in the IP address but not set In the subnet mask then the bit is set in
the host address.

For example

IP address

netmask

network address

host address

138.77 .37 .21

255.255.255.0

138.77.37.0

0.0.0.21

10001010 01001101 00100101 00010101

11111111 11111111 11111111 00000000

10001010 01001101 00100101 00000000

00000000 00000000 00000000 00010101

270 Introduction to Linux : Installation and Programming

The Internet is a network of networks

The structure of IP addresses can give you some idea of how the Internet works. It is a
network of networks. We start with a collection of machines all connected via the same
networking hardware, a local area network. All the machines on this local area network will
have the same network address, each machine also has a unique host address.

The Internet is formed by connecting a lot of local area networks together. Usually, in a
LAN one machine is called as router. Actually, all these routers are connected with some
hierarchy involving MAN's, WAN's. These WAN's are connected; forming Internet. While
connecting LAN's, MAN's and WAN's, we use variety of intermediate units known as
repeaters, bridges, routers and gateways.

Network Classes

During the development of the TCP/IP protocol stack IP addresses were divided into classes.
There are three main address classes, A, Band C. Table 17.4 summarizes the differences
between the three classes. The class of an IP address can be deduced by the value of the
first byte of the address.

Table 17.4 Network classes.

Class First byte value Netmask Number of hosts

A 1 to 126 255.0.0.0 16 million

B 128 to 191 255.255.0.0 64,000

C 192 to 223 255.255.255.0 254

Multicast 224 - 239 240.0.0.0

If you plan on setting up a network ihat is connected to the Internet the addresses for
your network must be allocated to you by central controlling organization. You can't just
choose any set of addresses you wish, chances are they are already taken my some other
site.

If your network will not be connected to the Internet you can choose from a range of
addresses which have been set aside for this purpose. These addresses are shown in
Table 17.5

Table 17.5 Networks reserved for private networks.

Network class Addresses

A 10.0.0.0 to 10.255.255.255

B 172.16.0.0 to 172.31.255.255

C 192.168.0.0 to 192.168.255.255

The addresses 127.0.0.X are special IP addresses. It refers to the local host. The local
host allows software to address the local machine in exactly the same way it would address a
remote machine. Usually these addresses are uses to test network SW's developed.

Assigning IP addresses in a LAN: A example from Class C Networks

Some IP addresses are reserved for specific purposes and you should not assign these
addresses to a machine. Table 17.6 lists some of these addresses

Networks: A Brief Introduction 271

Table 17.6 Reserved IP addresses.
,-
i Address Purpose

L-- xx.xx.xx.O __
xX.xx.xx.1

xx.xx.xx.255 broadcast address

_ _____L_loo back address
* this is not a set standard

Gateways and routers are able to distribute data from one network to another because
they are actually physically connected to two or more networks through a number of network
interfaces.

As mentioned earlier the network address is the IP address with a host address that is all
O's. The network address is used to identify a network. The broadcast address is the IP
address with the host address set to all l's and is used to send information to all the
computers on a network, typically used for routing and error information.

Subnetting is also used in practice to devide a larger network of an organization into a set
of small nets.

17.3.3 Name resolution
The process of taking a hostname and finding the IP address is called name resolution.
This is very much needed as computers works on the basis of numbers, i.e. addresses;
whereas humans finds comfort dealing with symbolic things, i.e. names.

Methods of name resolution
There are two methods that can be used to perform name resolution

• the /etc/hosts file, and
• the Domain Name Service.

/etc/hosts

One way of performing name resolution is to maintain a file that contains a list of
hostnames and their equivalent IP addresses. When we want to know a machine's IP address
we look up the file. If any network SW need's IP address it will check in this file. Under
UNIX/Linux the file is /etc/hosts. /etc/hosts is a text file with one line per host. Each line has
the format

IP _address hostname

or

IP _address hostname alias

Comments can be indicated by using the hash # symbol. Aliases are used to indicate
shorter names or other names used to refer to the same host.

Problems with /etc/hosts

272 Introduction to Linux : Installation and Programming

With over 3 million machines on the Internet it should be obvious that this is not a smart
solution as the file size increases and lookup operation takes more time. Also, updating this
file IS not easy task ..

Domain name service (DNS)

The Internet Domain Name System (DNS) was developed as a distributed database to solve
this problem. Its primary goal is to allow the allocation of host names to be distributed
amongst multiple naming authorities, rather than centralized at a single pOint.

DNS structure

The DNS is arranged as a hierarchy, both from the perspective of the structure of the names
maintained within the DNS, and in terms of the delegation of naming authorities. At the top
of the hierarchy IS the root domain "." which is administered by the Internet Assigned
Numbers Authority (lANA). Administration of the root domain gives the lANA the authority to
allocate domains beneath the root.

The process of assigning a domain to an organizational entity is called delegating, and
involves the administrator of a domain creating a sub-domain and assigning the authority for
allocating sub-domains of the new domain the sub domain's administrative entity.

Even though the DNS supports many levels of sub-domains, delegations should only be
made where there IS a requirement for an organization or organizational sub-division to
manage their own name space. Any sub-domain administrator must also demonstrate they
have the technical competence to operate a domain name server, or arrange for another
organization to do so on their behalf.

Domain Name Servers

The DNS is implemented as collection of inter-communicating name servers. At any given
level of the DNS hierarchy, a name server for a domain has knowledge of all the immediate
sub-domains of that domain.

For each domain there IS a primary name server, which contains authoritative information
regarding Internet entities within that domain. In addition Secondary name servers can be
configured, which periodically download authoritative data from the primary server.
Secondary name servers provide backup to the primary name server when it is not
operational, and further improve the overall performance of the DNS, since the name servers
of a domain that respond to queries most quickly are used in preference to any others.

/ etc/ resolv.conf

When performing a name resolution most UNIX machines -will check their /etc/hosts first
and then check with their name server. How does the machine know where its domain name
server is. The answer is in the /etc/resolv.conf file.

resolv.conf is a text file with three main types of entries

comments

Anything after a # is a comment and ignored.

• domain name

Defines the default domain. This default domain will be appended to any hostname that
-does not contain a dot. ----
name server address

This defines the IP address of the machines domain name server. It is possible to have
multiple name servers defined and they will be queried in order (useful if one goes down).

Networks : A Brief Introduction

For example

The /etc/resolv.conf file from my machine is listed below.

domain cqu.edu.au

nameserver 138.77.5.6

nameserver 138.77.1.1

17.3.4 Routing

273

So far we've looked at names and addresses that specify the location of a host on the
Internet. We now move onto routing. Routing is the act of deciding how each individual
datagram (packet) finds its way through the multiple different paths to its destination.

Simple routing
For most UNIX/Linux computers the routing decisions they must make are simple. If the
datagram is for a host on the local network then the data is placed on the local network and
delivered to the destination host. If the destination host is on a remote network then the
datagram will be forwarded to the local gateway. The local gateway will then pass it on
further.

Routing tables
Routing is concerned with finding the right network for a datagram. Once the right network
has been found the datagram can be delivered to the host.

Most hosts (and gateways) on the Internet maintain a routing table. The entries in the
routing table contain the information to know where to send datagrams for a particular
network.

Constructing the routing table

The routing table can be constructed in one of two ways

• constructed by the Systems Administrator, sometimes referred to as static routes,
• dynamically created by a number of different available routing protocols

The dynamiC creation by routing protocols IS complex and beyond the scope of this
subject.

Making the connections Physically

Ifconfig

Network interfaces are configured using the ifconfig command and has the standard format
for turning a device on

ifconfig device_name IP_address netmask netmask up

For example

• ifconfig ethO 138.77.37.26 netmask 255.255.255.0 up
Configures the first Ethernet address with the IP address of 138.77.37.26 and the
netmask of 255.255.255.0.

• ifconfig 10 127.0.0.1'
Configures the loopback address appropriately.
Other parameters for the ifconfig command include

274 Introduction to Linux : Installation and Programming

• up and down
These parameters are used to take the device up and down (turn it on and off). ifconfig
ethO down will disable the ethO interface and will require an ifconfig command like the
first example above to turn it back on.

• -arp
Will turn on/off the address resolution protocol for the specified interface.

• -pointtopoint addr
Used to specify the IP address (addr) of the computer at the far end of a point to point
link.

Configuring the name resolver
Once the device/interface is configured you can start using the network. However you'll only
be able to use IP addresses. At this stage the networking system on your computer will not
know how to resolve hostnames (convert hostnames into IP addresses).

This is where the name resolver and its associated configuration files enter the picture.
In particular the three files we'll be looking at are

• /etc/resolv.conf
• Specifies where the main domain name server is located for your machine.

• /etc/hosts.conf

•
Allows you to specify how the name resolver will operate. For example, will it ask the

domain name server first or look at a local file.

• /etc/hosts
A local file which specifies the IP/hostname association between common or local

computers.

/etc/resolv.conf

The /etc/resolv.conf is the main configuration file for the name resolver code. Its format
is quite simple. It is a text file with one keyword per line. There are three keywords typically
used, they are:

• domain
this keyword specifies the local domain name.

• search
this keyword specifies a list of alternate domain names to search for a hostname

• nameserver
this keyword, which may be used many times, specifies an IP address of a domain
name server to query wh'en resolving names

An example /etc/resoiv.conf might look something like:

domain maths.wu.edu.au

search maths.wu.edu.au wu.edu.au

nameserver 192.168.10.1
nameserver 192.168.12.1

Networks: A Brief Introduction 275

This example specifies that the default domain name to append to unqualified names (i.e.
hostnames supplied without a domain) is maths.wu.edu.au and that if the host Is not found
in that domain to also try the wu.edu.au domain directly. Two name servers entry are
supplied, each of which may be called upon by the name resolver code to resolve the name.

/ etc/host.conf

The /etc/host.conf file is where you configure some items that govern the behavior of the
name resolver code.

The format of this file is described in detail in the resolv+ man page. In nearly all
circumstances the following example will work for you:

order hosts,bind

multi on

This configuration tells the name resolver to check the /etc/hosts file before attempting to
query a name server and to return all valid addresses for a host found in the /etc/hosts file
instead of just the first.

/etc/hosts

We have already discusses about this file in previous sections. In a well managed system
the only hostnames that usually appear in this file are an entry for the loopback interface
and the local hosts name such as the following.

/etc/hosts
localhost loopback
192.168.0.1 this. host. name

Configuring routing

Routing is a huge and complex topic. It is not possible to provide a detailed introduction in
the confines of this text. If you need more information you should take a look at the NET-3
HOW-TO, the Network Administrators Guide and other documentation.

Ok, so how does routing work ? Each host keeps a special list of routing rules, called a
routing table. This table contains rows which typically contain at least three fields, the first is
a destination address, the second is the name of the interface to which the datagram is to be
routed and the third is optionally the IP address of another machine which will carry the
datagram on its next step through the network.

In Linux you can see this table by using the following command:

cat /proc/net/route
or by using either of the following commands:

/sbin/route -n

/bin/netstat -r

276 Introduction to Linux : Installation and Programming

The routing process is fairly simple: an incoming datagram is received, the destination
address (who it is for) is examined and compared with each entry in the table. The entry that
best matches that address is selected and the datagram is forwarded to the specified
interface. If the gateway field is filled then the datagram is forwarded to that host via the
specified interface, otherwise the destination address is assumed to be on the network
supported by the interface.

To manipulate this table a special command is used. This command takes command line
arguments and converts them into kernel system calls that request the kernel to add, delete
or modify entries in the routing table. The command is called . route'.

A simple example. Imagine we have an Ethernet network. We have been told it is a class-
C network with an address of 192.168.1.0. You've been supplied with an IP address of
192.168.1.10 for our use and have been told that 192.168.1.1 is a router connected to the
Internet.

The first step is to configure the interface as described earlier. We would use a command
like:

ifconfig ethO 192.168.1.10 netmask 255.255.255.0 up

We now need to add an entry into the routing table to tell the kernel that datagrams for
all hosts with addresses that match 192.168.1.* should be sent to the Ethernet device. You
would use a command similar to:

route add -net 192.168.1.0 netmask 255.255.255.0 ethO

Note the use of the . -net' argument to tell the routE program that this entry is a network
route. Your other chOice here is a . -host' route which is a route that is specific to one IP
address.

This route will enable you to establish IP connections with all of the hosts on your
Ethernet segment. But what about all of the IP hosts that aren't on your Ethernet segment?

It would be a very difficult job to have to add routes to every possible destination
network, so there is a special trick that is used to simplify this task. The trick is called the
• default' route. The default route matches every possible destination, but poorly, so that if
any other entry exists that matches the required address it will be used instead of the default
route. The idea of the default route is simply to enable you to say "and everything else
should go here". In the example I've contrived you would use an entry like:

route add default gw 192.168.1.1 ethO

The . gw' argument tells the route command that the next argument is the IP address, or
name, of a gateway or router machine which all datagrams matching this entry should be
directed to for further routing.

So, your complete configuration would look like:

ifconfig ethO 192.168.1.10 netmask 255.255.255.0 up
route add -net 192.168.1.0 netmask 255.255.255.0 ethO
route add default gw 192.168.1.1 ethO

Networks : A Brief Introduction 277

These steps are actually performed automatically by the startup files on a properly
configured Linux box.

Startup files

In the previous section we've looked at the individual steps used to configuring networking
on a simple Linux machine. On a normal Linux machine these steps are performed
automatically in the system startup files (refer back to chapter 12 for a discussion on these).
While the commands introduced in the previous section are standard Linux/UNIX commands
the startup and associated configuration files used by different distributions. This section
briefly summarizes the startup files which are used on a Redhat 5.0 machine.

The files used include

/etc/sysconfig/network

A text file which defines shell variables for hostname, domain, gateway and
gateway device.

/etc/sysconfig/network-scripts

A collection of scripts used to perform common tasks including bringing
network interfaces up and down.

/etc/rc.d/init.d/network

A shell script which actually brings up the networking on start-up. Linked to
from a number of scripts in the rcX.d directories.

17.3.5 Network "management" tools

nslookup

The nslookup command is used to query a name server and is supplied as a debugging tool.
It is generally used to determine if the name server is working correctly and for querying
information from remote servers. nslookup can be used from either the command line or
interactively. Giving nslookup a hostname will result in it asking the current domain name
server for the IP address of that machine. nslookup also has an Is command that can be
used to view the entire records of the current domain name server.

For example

Nslookup

nslookup rambo

netstat

Server

Address

Name

Address

netstat

circus.cqu.edu.au

138.77.5.6

jasper.cqu.edu.au

138.77.1.1

The netstat command is used to display the status of network connections to a UNIX
machine. One of the functions it can be used for is to display the contents of the kernel
routing table by using the -r switch.

278 Introduction to Linux : Installation and Programming

For example

The following examples are from two machines on CQU's Rockhampton campus. The first one
is from tel net jasper

netstat -rn

Kernel routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

138.77.37.0 0.0.0.0 255.255.255. a U a a 109130 ethO

127.0.0.0 0.0.0.0 255.0.0.0 U a a 9206 10

0.0.0.0 138.77.37.1 0.0.0.0 UG a a 2546951 ethO

netstat -rn

Routing tables

Destination Gateway Flags Refcnt Use Interface

127.0.0.1 127.0.0.1 UH 56 7804440 100

default 138.77.1.11 UG 23 1595585 Ina

138.77.32 138.77.1.11 UG a 19621 Ina

138.77.16 138.77.1.11 UG a 555 Ina

138.77.8 138.77.1.11 UG a 385345 Ina

138.77.80 138.77.1.11 UG a a Ina

138.77.72 138.77.1.11 UG a a Ina

138.77.64 138.77.1.11 UG a a Ina

138.77.41 138.77.1.11 UG a a Ina

traceroute

For some reason or another, users on one machine cannot connect to another machine or if
they can any information transfer between the two machines is either slow or plagued by
errors. What do you do?

The traceroute command provides a way of discovering the path taken by information as
it goes from one machine to another and can be used to identify where problems might be
occurring. On the Internet that path may not always be the same.

traceroute knuth

traceroute to knuth.cqu.edu.au (138.77.36.20), 30 hops max, 40 byte packets
1 knuth.cqu.EDU.AU (138.77.36.20) 2 ms 2 ms 2 ms

jasper is one network away from aldur

traceroute jasper

traceroute to jasper.cqu.edu.au (138.77.1.1), 30 hops max, 40 byte packets

1 centaurus.cqu.EDU.AU (138.77.36.1) 1 ms 1 ms 1 ms

2 jasper.cqu.EDU.AU (138.77.1.1) 2 ms 1 ms 1 ms

Networks: A Brief Introduction

A machine still on the CQU site but a little further away

bash$ traceroute jade

traceroute to jade.cqu.edu.au (138.77.7.2), 30 hops max, 40 byte packets

1 centaurus.cqu.EDU.AU (138.77.36.1) 1 ms 1 ms 1 ms

2 hercules.cqu.EDU.AU (138.77.5.3) 4 ms 2 ms 12 ms

3 jade.cqu.EDU.AU (138.77.7.2) 3 ms 13 ms 3 ms

17.4 Basics of Transport layer and Services

279

The chapter starts by giving an overview of how network services work and then moves onto
describing in detail how the UNIX operating system starts network services. The chapter
closes with a detailed look at some specific network services including file/print sharing,
messaging (email) and the World-Wide Web.

The provision of network services like FTP, telnet, e-mail and others relies on these
following components

• network ports,
Network ports are the logical (that means that ports are an imaginary construct which
exists only in software) connections through which the information flows into and out
of a machine. A single machine can have thousands of programs all sending and
receiving information via the network at the same time. The delivery of this
information to the right programs is achieved through ports.

• network servers,
Network servers are the programs that sit listening at pre-defined ports waiting for
connections from other hosts. These servers wait for a request, perform some action
and send a response back to the program that requested the action. In general
network servers operate as daemons.

• network clients, and
Users access network services using client programs. Example network clients include
Netscape, Eudora and the ftp command on a UNIX. machine. network protocols.

Network protocols specify how the network clients and servers communicate. They
define the small "language" which both understand.

17.4.1 Ports
All network protocols, including http ftp SMTP, use either TCP or UDP to deliver information.
Every TCP or UDP header contains two 16 bit numbers that are used to identify the source
port (the port through which the information was sent) and the destination port (the port
through which the information must be delivered.) Similarly, the IP header also contains
numbers which describe the IP addresses of the computers which are sending and receiving
the current packet.

Since port numbers are 16 bit numbers, there can be approximately 64,000 (216 is about
64,000) different ports. Some of these ports are used for predefined purposes. The ports 0-
256 are used by the network servers for well known Internet services (e.g. telnet, FTP,
SMTP). Ports in the range from 256-1024 are used for network services that were originally
UNIX specific. Network client programs and other programs should use ports above 1024.

280 Introduction to Llnux : Installation and Programming

Table 17.7 lists some of the port numbers for well known services.

Table 17.7 Reserved Ports.

Port number Purpose

20 ftp-data

21 ftp

23 telnet
25 5MTP (mail)
80 httplWWWl

119 nntp (network news)

This means that when you look at a TCP/UDP packet and see that it is addressed to port
25 then you can be sure that it is part of an email message being sent to a 5MTP server. A
packet destined for port 80 is likely to be a request to a Web server.

Reserved ports
50 how does the computer know which ports are reserved for special services? On a UNIX
computer this is specified by the file /etc/services. Each line in the services file is of the
format

service-name port/protocol aliases

Where service-name is the official name for the service, port is the port number that it
listens on, protocol is the transport protocol it uses and aliases is a list of alternate names.

The following is an extract from an example /etc/services file. Most /etc/services files will
be the same, or at least very similar.

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
ftp-data 20/tcp
np 211tcp
tel net 23/tcp
smtp 25/tcp mail
nntp 119/tcp usenet # Network News Transfer
ntp 123/tcp # Network Time Protocol

We should be able to match some of the entries in the above example, or in the
/etc/services file on your computer, with the entries in Table 17.1.

The netstat command can be used for a number of purposes including looking at all of
the current active network connections. The following is an example of the output that
netstat can produce (it's been edited to reduce the size).

Networks: A Brief Introduction 281

netstat -a
active Internet connections (including servers)

proto Recv-Q Send-Q Local Address Foreign Address (State) User

root

tcp 1

tcp 0

tcp 0

tcp 0

tcp 1

tcp 0

tcp 0

tcp 0

tcp 0

tcp 0

7246 cq-pan.cqu.edu.au:www lore.cs.purdue.e:42468 CLOSING root

o cq-pan.cqu.edu.au:www sdlab142.syd.cqu.: 1449 CLOSE root

o cq-pan.cqu.edu.au:www dialup102-4-9.swi:1498 FIN_WAIT2 root

22528 cq-pan.cqu.edu.au:www 205.216.78.103:3058 CLOSE root

22528 cq-pan.cqu.edu.au:www barney.poly.edu:47547 CLOSE root

o cq-pan.cqu.edu.au:www eda.mdc.net:2395 CLOSE root

22528 cq-pan.cqu.edu.au:www eda.mdc.net:2397 CLOSE root

o cq-pan.cqu.edu.au:www cphppp134.cyberne:1657 FIN_WAIT2 root·

22528 cq-pan.cqu.edu.au:www port3.southwind.c:1080 CLOSE root

9 cq-pan.cqu.edu.:telnet dinbig.cqu.edu.au:1107 ESTABLISHED root

tcp 0 o cq-pan.cqu.edu.au:ftp ppp2-24.INRE.ASU.:1718 FIN_WAIT2 root

Explanation
Table 17.8 explains each column of the output. Taking the column descriptions from the
table, it is possible to make some observations

All of the entries, but the last two, are for people accessing this machine's (cq-
pan.cqu.edu.au) World-Wide Web server. You can say this because of cq-
pan.cqu.edu.au:www.This tells us that the port on the local machine is the www
port (port 80).
In the second last entry, I am telneting to cq-pan from my machine at home.
At that stage my machine at home was called dinbig.cqu.edu.au. The telnet client is
using port 1107 on dinbig to talk to the telnet daemon.
the last entry is someone connecting to CQ-PAN's ftp server,
the connection for the first entry is shut down but not all the data has been sent
(this is what the CLOSING state means). This entry, from a machine from Purdue
University in the United States, still has 7246 bytes still to be acknowledged

Table 17.8 Columns for netstat.

Column Explanation name
Proto the name of the transport protocol (TCP or UDP) being used

Recv-Q the number of bytes not copied to the receiving process

Send-Q the number of bytes not yet acknowledged by the remote host

Local the local hostname (or IP address) and port of the connection Address

Foreign
the remote hostname (or IP address) and remote port Address

State the state of the connection (only used for TCP because UDP doesn't
establish a connection), the values are described in the man page

User some systems display the user that owns the local program serving the
connection

282 Introduction to Linux : Instaltatlon and Programming

17.4.2 Network servers
The /etc/services file specifies which port a particular protocol will listen on. For example
SMTP (Simple Mail Transfer Protocol, the protocol used to transfer mail between different
machines on a TCP/IP network) uses port 25. This means that there is a network server that
listens for SMTP connections on port 25.

This begs some questions

• How do we know which program acts as the network server for which protocol?
• How is that program started?

How network servers start
There are two methods by which network servers are started

executed as a normal program (usually in the start-up files)
Servers s.tarted in this manner will show up in a ps list of all the current running
processes. These servers are always running, waiting for a connection on the specified
port. This means that the server is using up system resources (RAM etc) because it is
always in existence but it also means that it is very quick to respond when requests arrive
for their services.
by the inetd daemon
The il'letd daemon listens at a number of ports and when information arrives, it starts the
appropriate network server for that port. Which server, for which port, is specified in the
configuration file /etc/inetd.conf.

Starting a network server via inetd is usually done when there aren't many connections
for that server. If a network server is likely to get a large number of connections (a busy
mail or WWW server for example) the daemon for that service should be started in the
system startup files and always listen on the port.

The reason for this is overhead. Using inetd takes longer.
The /etc/inetd.conf file specifies the network servers that the inetd daemon should execute.
The inetd.conf file consists of one line for each network service using the following format
(Table 17.9 explains the purpose of each field).

service-name socket-type protoco.l flags user server_program args

Table 17.9 Fields of /etc/inetd.conf file.

Field Purpose

service-name The service name the same as that listed in /etc/services

The type of data delivery services used (we don't cover this).
socket-type Values are generally stream for TCP, dgram for UDP and raw for

direct IP

protocol the transport protocol used, the name matches that in
/etc/protocols file

flags
how inetd is to behave with regards this service (not explained any
further)

user
the username to run the server as, usually root but there are some
exceptions, generally for security reasons

server ,Qrogram the full path to the program to run as the server

args command line arguments to pass to the server program

Networks: A Brief Introduction 283

How it works

Whenever the machine receives a request on a port (on which the inetd daemon is listening
on), the inetd daemon decides which program to execute on the basis of the /etc/inetd.conf
file.

17.4.3 Network clients
A network client is simply a program (whether it is text based or a GUI program) that knows
how to connect to a network server, pass requests to the server and then receive replies.

By default when you use the command tel net jasper, the tel net client program will
attempt to connect to port 23 of the host jasper (23 is the telnet port as listed in
/etc/services).

It is possible to use the telnet client program to connect to other ports. For example the
command telnet jasper 25 will connect to port 25 of the machine jasper.

17.4.4 Network protocols
Each network service generally uses its own network protocol that specifies the services it
offers, how those services are requested and how they are supplied. For example, the ftp
protocol defines the commands that can be used to move files from machine to machine.
When you use a command line ftp client, the commands you use are part of the ftp protocol.

Request for comment (RFCs)

For protocols to be useful, both the client and server must agree on using the same protocol.
If they talk different protocols then no communication can occur. The standards used on the
Internet, including those for protocols, are commonly specified in documents called Request
for Comments (RFCs). (Not all RFCs are standards). Someone proposing a new Internet
standard will write and submit an RFC. The RFC will be distributed to the Internet community
who will comment on it and may suggest changes. The standard proposed by the RFC will be
adopted as a standard if the community is hJppy with it.

Table 17.10 RFCs for Protocols.

Protocol RFC

FTP 959

Telnet 854

SMTP 821

DNS 1035

TCP 793

UDP 768

Table 17.10 lists some of the RFC numbers which describe particular protocols. RFCs can
and often are very technical and hard to understand unless you are familiar with the area
(the RFC for ftp is about 80 pages long).

Text based protocols

Some of these protocols smtp ftp nntp http are text based. They make use of simple text-
based commands to perform their duty. Table 17.11 contains a list of the commands that
smtp understands. smtp (simple mail transfer protocol) is used to transport mail messages
across a TCP/IP network.

284 Introduction to Linux : Installation and Programming

Table 17.11 SMTP commands.

Command Purpose
HELO hostname start-up and give your hostname

MAIL FROM: sender-address mail is coming from this address
TO: recipient-address please send it to this address

VRFY address does this address actually exist (verify)

EXPN address expand this address

DATA I'm about to start giving you the body of the mail
message

RSET oops, reset the state and drop the current mail
message

NOOP do nothing

DEBUG [level] set debugging level

HELP give me some help please

QUIT close this connection

How it works

When transferring a mail message a client (such as Eudora) will connect to the SMTP server
(on port 25). The client will then carry out a conversation with the server using the
commands from Table 17.11. Since these commands are just straight text you can use
tel net to simulate the actions of an email client.

Doing this actually has some real use. I often use this ability to check on a mail address
or to expand a mail alias. The following shows an example of how I might do this.

The text in bold is what I've typed in. The text in italics are comments I've added after
the fact.

beldin: "'$ telnet localhost 25
Trying 127.0.0.1...

Connected to localhost.

Escape character is '1\]'.

220-beldin.cqu.edu.au Sendmail 8.6.12/8.6.9 ready at Wed, 1 May 1996
13:20:10 +1 000

220 ESMTP spoken here

vrfy david check the address david
250 David Jones <david@beldin.cqu.edu.au

vrfy joe check the address joe

550 joe ... User unknown

vrfy postmaster check the address postmaster

250 <postmaster@beldin.cqu.edu.au

expn postmaster postmaster is usually an alias, who is it really??

250 root <postmaster@beldin.cqu.edu.au

Networks: A Brief Introduction 285

17.5 Services on Intranet
The following is a list of the most common services that an Intranet might supply (by no
means all of them). This is the list of services we'll discuss in more detail in this chapter. The
list includes

• file sharing,
The common ability to share access to applications and data files. It's much simpler to
install one copy of an application on a network server than it is to install 35 copies on
each individual Pc.

• print sharing, and
The ability for many different machines to share a printer. It is especially economically
if the printer IS an expensive, good quality printer.

• electronic mail.
Sometimes called messaging. Electronic mail is fast becoming an essential tool for
most businesses.

In the subsequent chapters we shall discuss about them independently.

17.5.1 finger command
This command is used to know the information about the user such as when he has logged
into machine, when did he/she see their email, etc in addition to content of .plan (and other
files) of his home directory.

Example:

finger root gave the following result.

Login: root Name: root

Directory: /root Shell: /bin/bash
On since Tue Feb 1209:55 (IST) on :0 (messages off)

On since Tue Feb 12 09:59 (1ST) on pts/O from :0.0

New mail received Tue Feb 12 10:01 2002 (IST)

Unread since Sun Feb 1000:03 2002 (1ST)

Plan:

I have class at 9.00AM

10.00AM

4.30 to 9.00PM

If any user wants to convey any thing to the people who fingers his account he can write
rn his .plan file. Best thing we can write is our schedule today. Such that, other people can
see and accordingly they can start interactive sessions such as talk, chat, or calling by phone
etc.

If this command is executed without any arguments then displays details of all currently
logged in users (similar to who command) such as:

Login Name Tty Idle Login Time Office Office Phone

rao pts/2 Feb 12 10:37 (Iocalhost)

root root *:0 Feb 1209:55

root root pts/O Feb 12 10:33 (:0.0)
root root pts/1 Feb 12 10:36

286 Introduction to Llnux : Installation and Programming

Remote Login Services

17.5.2 rlogin
With the help of this command it is possible to login to remote machine if we happened to
have legal username and password on that machine. When we do so, the current machine
becomes terminal to that remote machines. After that whatever file we create it will be
stored in that remote machine. When we run a command, that remote machines processor
and RAM is used for running the same.

Example:

rlogin IPaddressormachinename -I username

It will prompt the password and after entering valid password we will see that remote
machines prompt. For proper functioning TERM environment variable on local machine
should be set appropriately such that it matches with that remote machine. Usually, rlogin is
used for GUI based remote login service unlike telnet service.

17.5.3 telnet command:

tel net IPaddressormachinename

The following output appear on the screen

Trying 127.0.0.1...

Connected to localhost.localdomain (127.0.0.1).
Escape character is I,,],.

Red Hat Linux release 9 (Shrike)
Kernel 2.4.20-8 on an i686

login:
Login incorrect

login:

When we enter legal username and password then we will be logging into that remote
machine and we will see its prompt. Here also the local machine becomes dumb terminal for
the remote machine.

Unlike rlogin service this supports only character based remote login service.

17.5.4 ftpcommand
This command is used to transfer files from one machine to another machine.

ftp Ipaddressormachiename .

Networks: A Brief Introduction 287

This command gives a prompt namingly ftp> after we enter legal user name and
password of that remote machine. Once we have logged in, we can download files with
command get filename. We can use commands such as Is, cd etc on remote machine
directory while mis, mcd commands can be used on local machine. We can set transfer as
ascii or binary by simply typing ascii or binary commands at ftp> prompt.

We can put files of the local directory using put filename command. On some ftp servers
we can download files using mget and upload files using mput command.

If we execute ftp command without any argument then we will see ftp> prompt. Using
open Ipaddressormachinename we can connect to remote machine for file transfer. By
type! symbol at the ftP> prompt we can exit from the ftP program.

There are many ftp servers are available in the internet for free download. While logging
into those servers we can login with anonymous as username and our email address as
password. Thus these servers are often called as anonymous servers. From these servers we
can download only. If we have some SW is available and want to be available freely to others
we have to contact these servers administrators who can give permission temporarily to
upload our SW into their servers.

17.6 Conclusions
This chapter explores the basics of TCP/IP networks. Ethernet address, IP address, port
address, network address are explained in a lucid manner and how they are used when a
packet is traveling from one host to another host.

•

18 Compiling C and
C++ Programs Under Linux

18.1 Introduction to C Compiler
The easiest case of compilation is when you have all your source code set in a single file.
Lets assume there is a file named 'x.c' that we want to compile. We will do so using a
commands similar to:

ee x.e (In most of the flavors of Unix's)

gee x.e (In Gnu C compiler)

ace x.e (In Solaris)

Every compiler might show its messages (errors, warnings, etc.) differently, but in all
cases, you'll get a file 'a.out' as a result, if the compilation completed successfully . Note that
some older systems (e .g. SunOS) come with a C compiler that does not understand ANSI-C,
but rather the older 'K&R' C style . In such a case, you'll need to use gcc (hopefully it is
installed), or learn the differences between ANSI-C and K&R C (not recommended if you
don't really have to), or move to a different system. This "a.out" file has some format which
we will explain in the next chapters.

Compilation in general is split into roughly 5 stages (as shown in Figure 18.1) :
Preprocessing, Parsing, Translation, Assembling, and Linking

C or C++
Sou roe Code
(.C or .C File)

GNU C or C++ Assembly
Compiler Code

(.S File)

GNU
Assembler

(gas)

User-Supplied or Static libraries

' 1

\ •• Relocatable ! GNU linked
Object File ! linker Executable

(.0 File) • . (or Shared library)

System-Supplied or Static libraries
(.50 or .3 files)

Figure 18.1 Stages in C Program Compilation .

18.1.1 Understanding Of Compilation Steps
Now that we've learned that compilation is not just a simple process, lets try to see what is
the complete list of steps taken by the compiler in order to compile a C program.

1. Driver - what we invoked as "cc" or "gcc". This is actually the "engine", that drives the
whole set of tools the compiler is made of. We invoke it, and it begins to invoke the
other tools one by one, passing the output of each tool as an input to the next tool.

Compiling C and C++ Programs Under Linux 289

2. C Pre-Processor - normally called "cpp". It takes a C source file, and handles all the
pre-processor definitions (#include files, #define macros, conditional source code
inclusion with #ifdef, etc.)

3. The C Compiler - normally called "ccl". This is the actual compiler, that translates the
Input file into assembly language.

4. Optimizer - sometimes comes as a separate module and sometimes as the found
inside the compiler module. This one handles the optimization on a representation of
the code that is language-neutral. This way, you can use the' same optimizer for
compilers of different programming languages.

S. Assembler - sometimes called "as". This takes the assembly code generated by the
complier, and translates It into machine language code kept in object files.

6. linker-Loader - This is the tool that takes all the object files (and C libraries), and links
them together, to form one executable file, in a format the operating system supports.
A Common format these days is known as "ELF". On SunOS systems, and other older
systems, a format named "a.out" was used. This format defines the internal structure
of the executable file - location of data segment, location of source code segment,
location of debug information and so on.

If we run the following commands we get the executable files of ,he above programs
namingly cpp (don't confuse cpp as cp plus plus! !), eel, as and collect2. "

gee -print-prog-name=epp

gee -print-prog-name=eel

gec -print-prog-name=as

gcc -print-prog-name=eollect2

The compilation is split in to many different phases; not all compiler employs exactly the
same phases, and sometimes (e.g. for C++ compilers) the Situation is even more complex.
But the basic idea is quite similar - split the compiler into many different parts, to give the
programmer more flexibility, and to allow the compiler developers to re-use as many
modules as possible in different compilers for different languages (by replacing the
preprocessor and compiler modules), or for different architectures (by replacing the
assembly and linker-loader parts).

18.2 Detailed Analysis of Compilation Process
Suppose that you want the resulting program to be called with another name other than
"a.out" then we can use the follOWing line to compile it:

ee -0 executable_filename x.e

gec -0 executable_filename x.c

18.2.1 Running The Resulting Program
Once we created the program, we wish to run it. This is usually done by simply typing its
name at the command prompt.

executable_filename

290 Introduction to Linux : Installation and Programming

However, this requires that the current directory be in our PATH (which is a variable
telling our Unix shell where to look for programs we're trying to run). In many cases, this
directory is not placed in our PATH. Thus in order to run our program we can try:

./ executable_filename

This time we explicitly told our Unix shell that we want to run the program which is in the
current directory. If we're lucky enough, this will suffice. However, yet one more obstacle
could block our path - file permission flags.

When a file is created in the system, it is immediately given some access permission
flags. These flags tell the system who should be given access to the file, and what kind of
access will be given to them. Traditional Unix systems use 3 kinds of entities to which they
grant (or deny) access: The user which owns the file, the group which owns the file, and
everybody else. Each of these entities may be given access to read the file ('r'), write to the
file ('w') and execute the file ('x').

Now, when the compiler created the program file for us, we became owners of the file.
Normally, the compiler would make sure that we get all permissions to the file - read, write
and execute. It might be, thought that something went wrong, and the permissions are set
differently. In case, we can set the permissions of the file properly (the owner of a file
can normally change the permission flags of the file), using a command like this:

chmod u+rwx executable_filename

This means "the user ('u') should be given ('+') permissions read ('r'), write ('w') and
execute ('x') to the file 'executable_filename'. Now we'll surely be able to run our program.
Again, normally you'll have no problem running the file, but if you copy it to a different
directory, or transfer it to a different computer over the network, it might loose its original
permissions, and thus you'll need to set them properly, as shown above. Note too that you
cannot just move the file to a different computer an expect it to run - it has to be a computer
with a matchmg operating system (to understand the executable file format), and matching
CPU architecture (to understand the machine-language code that the executable file
contains).

Finally, the run-time environment has to match. For example, if we compiled the program
on an operating system with one version of the standard C library, and we try to run it on a
version with an incompatible standard C library, the program might crush, or complain that it
cannot find the relevant C library. This is espeCially true for systems that evolve quickly (e.g.
Linux with IibcS vs. Linux with Iibc6), so beware.

18.2.2 The C Preprocessor
The preprocessor is what handles the logic behind all the # directives in C. It runs in a single
pass, and essentially is just a substitution engine [Aho].

Consider the following simple program with the definitions of a symbolic constants (also
called as manifest constants) and a macro. In the following program NUM is defined and
during the pre-processing stage where ever NUM is written in the program, there 3 will be
replaced. In many production programs, you prefer from use a macro in place of a fixed

Compiling C and C++ Programs Under Linux 291

constant such that in future if we want to change the fixed constant, we change this macro
line only [Michael K Johnson J. This makes programmer life easy.

#define NUM 3

#define NORM(a,b) sqrt(a*a+b*b)

int mainO
{

int i;

float val;

for(i=O; i < NUM ;i++)

printf("Hello %d \n", i);

val=NORM(2,3);

return 0;

}

To only preprocess the C language program:

gee -E filename.e

The following is the output after preprocessing. For the simplicity sake we did not include
any header file such as "stdio.h". The bold and underlined text matter in the following text is
the result after preprocessing.

int mainO
{

int i;

float val;

for(i=O;i<J,;i++)

printf("Helio %d \n", i);

val=sqrt(2*2 +3*3);

return 0;
}

292 Introduction to Linux : Installation and Programming

The gee -E runs only the preprocessor stage. This places all include files into your .c file, and
also translates all macros into inline C code and replaces all the occurrences of symbolic
constants with their values or definitions. You can add -0 file to redirect result of preprocessing
In to a file. That is, using command like the following.

gee -E filename.e -0 outputfilename

#undef

#undef fulfills the inverse functionality of #define. It eliminates to the list of defined
constants the one that has the name passed as a parameter to #undef:

#define MAX_WIDTH 100
char str1[MAX_WIDTH];
#undef MAX_WIDTH
#define MAX_WIDTH 200
char str2[MAX_ WIDTH];
#ifdef, #ifndef, #if, #endif, #else and #elif

These directives allow to discard part of the code of a program if a certain condition is not
fulfilled.

#ifdef allows that a section of a program is compiled only if the defined constant that is
specified as the parameter has been defined, independently of its value. Its operation is:

#ifdef name
II code here
#endif

For example:

#include<stdio.h>
int mainO
{

int i=O;

#ifdef DEBUG
for(i=O; i<NUM; i++)
#endif

printf("Hello %d \n", i);

return 0;
}

Compiling C and C++ Programs Under Linux 293

If we compile the above program with "gee -0 DEBUG filename.e" and run we will find
for loop is executed. We can check the same from the output of preprocessing stage with -E
option.

If we compile the above program with "gee filename.e" and run we will find no loop is
executed. That is if DEBUG is defined that for loop is included in the program and compiled
otherwise it is not included.

Similarly, execute the following program

#include<stdio.h>

int mainO

{

int i=O;

#if DEBUG==l

for(i=O;i<NUM;i++)

#endif

printf("Helio %d \n", i);

return 0;

}

If we compile the above program with "gee -0 DEBUG=1 filename.e" or "gee -0
DEBUG filename.e" and run we will find for loop is executed. We can check the same from
the output of preprocessing stage with -E option.

If we compile the above program with "gcc filename.c" and run then we will find that no
for loop is executed.

#ifndef serves for the oPPosite for #ifdef. The code between the #ifndef directive and
the #endif directive is only compiled if the constant name that is specified has not been
defined previously. For example:

#ifndef MAX_WIDTH

#define MAX_WIDTH 100

#endif

char str[MAX_WIDTH);

For example:

#include<stdio.h>

#ifndef N

#define N 100

#endif

294

int mainO
{

int i=O;

for(i=O;i<N;i++)

printf("J-Ielio %d \n", i);

return 0;
}

Introduction to Llnux : Installation and Programming

Compile the above program with both the following commands and check how the
program behaves by running the resulting executable programs.

gee filename.e

gee -0 N=5 filename.e

In the first case, the defined constant N has not yet been defined it would be defined
with a value of 100. Thus for loop runs 100 times. Where as in the second case, we are
giving constant N value as 5 along with gcc command. Thus, it will be considered as 5 and
thus for loop runs five times.

Also, the #if, #else and #elif (elif = else if) directives serve (see the above .example)
so that the portion of code that follows is compiled only if the specified condition is met. The
condition can only serve to evaluate constant expressions. For example:

#if MAX_WIDTH>200

#undef MAX_WIDTH

#define MAX_WIDTH 200

#elsif MA2CWIDTH<50

#undef MAX_WIDTH

#define MAX_WIDTH 50

#else

#undef MAX_WIDTH

#define MAX_WIDTH 100

#endif

char str[MAX_WIDTH);

. ,

Compiling C and C++ Programs Under Linux 295

Notice how the structure of chained directives #if, #elsif and #else finishes with
#endif.

These conditional compilation statements enable the programmer to control the execution
of preprocessor directives, and the compilation of program code. Each of the conditional
preprocessor directives evaluates a constant integer expression. Cast expressions, sizeofO
expressions, and enumeration constants cannot be evaluated in preprocessor directives. The
conditional preprocessor construct is much like the if selection structure.

Consider the following preprocessor code:

#if !defined(NULL)

#define NULL 0

#endif

These directives determine if NULL is defined. The expression defined(NULL) evaluates to
1 if NULL is defmed; 0 otherwise. If the result is 0, !defined(NULL) evaluates to 1, and NULL
IS defined.

We can also use logical AND and OR operators of C language also here like the following
manner.

#Iine

#if (SIMVAL!= 2 && SIMVAL!= 3)

#error SIMVAL must be defined to either 2 or 3

#endif

When we compile a program and errors happen during the compiling process, the compiler
shows the error that happened preceded by the name of the file and the line within the file
where it has taken place.

The #Iine directive allows us to control both things, the line numbers within the code files
as well as the file name that we want to appear when an error takes place. Its form is the
following one:

. #line number "filename"

Where number is the new line number that will be assigned to the next code line. The line
number of successive lines will be increased one by one from this. The filename is an
optional parameter that serves to replace the file name that will be shown in case of error
from this directive until another one changes it again or the end of the file is reacAed. For
example:

#Iine 1 "assigning variable"

int a?;

This code will generate an error that will be shown as error in file "assigning variable",
line 1.

296 Introduction to Linux : Installation and Programming

This #Iine preprocessor directive causes the subsequent source code lines to be
renumbered starting with the specified constant integer value. The directive

#Iine 100

Starts line numbering from 100 beginning with the next source code line.
The directive normally is used to help make the messages produced by syntax errors and

compiler warnings more meaningful. The line numbers do not appear in the source file.

#error
This directive aborts the compilation process when it is found returning the error that is
specified as the parameter:

#ifndef _cplusplus
#error A C++ compiler is required
#endif

This example aborts the compilation process if the defined constant _cplusplus is not
defined.

#warning
This directive does not aborts the compilation process when it is found returning the error
that is specified as the parameter:

#ifndef _cplusplus
#warning A C++ compiler is required
#endif

If the defined constant _cplusplus is not defined this example gives warning message
and continues the compilation process

#include
This directive has also been used assiduously in other sections of this tutorial. When the
preprocessor finds an #include directive it replaces it by the whole content of the specified
file. There are two ways to specify a file to be included:

#include "file"
#include <file>

The only difference between both expressions is the directories in which the compiler is
going to look for the file. In the first case where the file is specified between quotes, the file
is looked for in the same directory that includes the file containing the directive. In case that
it is not there, the compiler looks for the file in the default directories where it is configured
to look for the standard header files.

If the' file name is enclosed between angle-brackets < > the file is looked for directly
where the compiler is configured to look for the standard header files.

The # And ## Operators

The # and ## preprocessor operators are available in ANSI C. The # operator causes a
replacement text token to be converted to a string surrounded by double quotes as explained
before.

Compiling C and C++ Programs Under Linux 297

Consider the following macro definition,

#define HELLO(x) printf("Hello, " #x "\n");

When HELLO(John) appears in a program file, it is expanded to

printf("Hello, " "John" "\n");

The string "John" replaces #x in the replacement text. Strings separated by white space
are concatenated during preprocessing, so the above statement is equivalent to,

printf("Hello, John\n");

Note that the # operator must be used in a macro with arguments because the operand
of # refers to an argument of the macro.

The ## operator concatenates two tokens. Consider the following macro definition,

#define CAT(p,q) p ## q

When CAT appears in the program, its arguments are concatenated and used to replace
the macro. For example, CAT(O,K) is replaced by OK in the program. The ## operator must
have two operands.

Program example:

#include <stdio.h>

#include <stdlib.h>

#define HELLO(x) printf("Hello, " #x "\n");

#define SHOWFUNCCx) Use ## Func ## x

int main(void)
{

/ /new concatenated identifier, UseFuncOne

char * SHOWFUNCCOne);

char * SHOWFUNCCTwo);

SHOWFUNCCOne) = "New name, UseFuncOne";

SHOWFUNCCTwo) = "New name, UseFuncTwo";

HELLO(Birch);

printf("SHOWFUNCCOne) -> %s \n",SHOWFUNCCOne»;

printf("SHOWFUNCCOne) -> %s \n",SHOWFUNCCTwo»;

system("pause") ;

return 0;
}

298 Introduction to Linux : Installation and Programming

There are standard predefined macros as shown in Table 18.1. The identifiers for each of
the predefined macros begin and end with two underscores. These identifiers and the defined
identifier cannot be used in #define or #undef directive.

There are a lot more predefined macros extensions that are compilers specific, please
check your compiler documentation. The standard macros are available with the same
meanings regardless of the machine or operating system your compiler installed on.

#include<stdio. h>

int mainO

{

printf("%d %s %s %s %s\n", _LINE_, _DATE_, _TIME_, _FILE_);

}

Table 18.1 The Predefined Macros.

Symbolic Constant Explanation

DATE
The date the source file is compiled (a string of the

- - form "mmm dd yyyy" such as "Jan 19 1999").

LINE
The line number of the current source code line

- - (an integer constant).

- FILE_ The presumed names of the source file (a string).

_TIME
The time the source file is compiled (a string literal

- of the form :hh:mm:ss).

STDC
The integer constant 1. This is intended to indicate

- - that the implementation is ANSI C compliant.

#pragma

This directive is used to specify diverse options to the compiler. These options are specific for
the platform and the compiler you use. Consult the manual or the reference of your compiler
for more information on the possible parameters that you can define with #pragma.

If we use -save-temps option with gcc compiler, it saves the temporary files which it
creates while machine language file is created.

For example:

gcc -save-temps a.c

The above command creates files "a.i", "a.s", "a.o" and "a.out" (in the order). That is "a.i" is
created after preprocessing and is text file. The file "a.s" is created by assembler from the
file "a.i". The file "a.o" is object file created from "a.s" and finally "a.out" is created after
linking.

The -M option displays dependencies among the files needed for make command. For
example, if we have a file "a.h" which another file "b.h" and "a.h" is included in "a.c" and if
we execute the following command

gcc -M a.c

We get the following output.

a.o: a.c /usr/include/stdio.h <other system defined header files> a.h b.h

Compiling C and C++ Programs Under Linux 299

This knoWledge is needed from create make files which we define in the forthcoming
chapters.

Similarly, -H option with gcc produce output how the files are included during
preprocessing stage. That first which file is included and then which file is included, etc. Try
the following command.

gee -H a.c
Also, try both the options and observe the output.
gec -M -H a.c

18.2.3 The Assembler
Consider the following program.

#include<stdio.h>

int mainO
{

int i=3;

printf("Hello %d \n", i*2);

return 0;
}

Assembly code generated by gcc .

. file "b.c"

.section .rodata

.LCO:

.string "Hello %d \n"

.text

.globl main
.type main,@function

main:
push I %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

movl $0, %eax

subl %eax, %esp
movl $3, -4(%ebp)

subl $8, %esp
movl -4(%ebp), %eax

sail $1, %eax
pushl %eax

300 Introduction to Linux : Installation and Programming

pushl $.LCO

call printf

addl $16, %esp

movl $0, %eax

leave

ret

.Lfe1:

.size main,.Lfe1-main

.ident "GCC: (GNU) 3.2.220030222 (Red Hat Linux 3.2.2-5)"

The program gcc itself is actually just a front end that executes various other programs
corresponding to each stage in the compilation process [Ronald F Gulmette]. To get it to
print out the commands it executes at each step, use gee -y

gee -5
gcc -S will take .c files as input and output .s assembly files in AT&T syntax. If you wish to
have Intel syntax, add the option -masm=intel. To gain some association between variables
and stack usage, use add -fverbose-asm to the flags [PatrickAlken].

In addition, gcc can be called with various optimization options that can do interesting
things to the assembly code output. There are between 4 and 7 general optimization classes
that can be specified with a -ON, where 0 <= N <= 6. 0 is no optimization (default), and 6 is
usually maximum, although often no optimizations are done past 4, dep'ending on
architecture and gcc version.

There are also several fine-grained assembly options that are specified with the -f flag.
The most interesting are -funroll-loops, -flnllne-functions, and -fomit-frame-polnter. Loop
unrolling means to expand a loop so that there are n copies of the code for n iterations of
the loop (i.e. no]mp statements to the top of the loop). On modern processors, this
optimization IS negligible. Inlinlng functions means to effectively convert all functions In a file
to macros, and place copies of their code directly In line in the calling function (like the C++
inline keyword). This only applies for functions called in the same C file as their definition. It
is also a relatively small optimization. Omitting the frame pOinter (aka the base pointer)
frees up an extra register for use in your program. If you have more than 4 heavily used
local variables, this may be rather large advantage, otherwise it is just a nuisance (and
makes debugging much more difficult).

18.2.4 Creating Object Files but not linked files
If we need to create only object files from the C or C++ source files -c option can be used.
Usually this option is used with individual C flies to create their object files; further, these
object files can be used in creating libraries (explained in next chapters) and SW system.

gee -e filename.e
We will get file with the name "filename.o".

Let's suppose we have files' a.c', . b.c' and' c.c'. We write:

gee -e a.e b.e e.e
This creates files' a.o', . b.o' and' e.o'. Next we link them into one file called' myprog'.

gee -0 myprog a.o b.o e.o

Compiling C and C++ Programs Under Linux 301

18.2.5 Creating Debug-Ready Code

Normally, when we write a program, we want to be able to debug it - that is, test it using a
debugger that allows running it step by step, setting a break point before a given command
IS executed, looking at contents of variables during program execution, and so on. In order
for the debugger to be able to relate between the executable program and the original
source code, we need to tell the compiler to insert information to the resulting executable
program that'll help the debugger. This information is called "debug information". In order to
add that to our program, lets compile it differently:

gcc -g file.c -0 executable_filename

The '-g' flag tells the compiler to use debug info, and is recognized by mostly any
compiler out there. You will note that the resulting file is much larger than that created
without usage of the '-g' flag. The difference in size is due to the debug information. We may
still remove this debug information using the strip command, like this:

strip executable_filename

You'll note that the size of the file now is even smaller than if we didn't use the '-g' flag in
the first place. This is because even a program compiled without the '-g' flag contains some
symbol information (function names, for instance), that the strip command removes. You
may read the subsequent sections to know more about strip command.

18.2.6 Creating Optimized Code

After we created a program and debugged it properly, we normally want it to compile into an
efficient code, and the resulting file to be as small as possible. The compiler can help us by
optimizing the code, either for speed (to run faster), or for space (to occupy a smaller
space), or some combination of the two. The basic way to create an optimized program
would be like this:

gcc -0 file.c -0 executable_filename

The '-0' flag tells the compiler to optimize the code. This also means the compilation will
take longer, as the compiler tries to apply various optimization algorithms to the code. This
optimization is supposed to be conservative, in that It ensures us the code will still perform
the same functionality as it did when compiled without optimization (well, unless there are
bugs in our compiler). Usually can define an optimization level by adding a number to the ,-
A' flag. The higher the number - the better optimized the resulting program will be, and the
slower the compiler will complete the compilation. One should note that because optimization
alters the code in various ways, as we increase the optimization level of the code, the
chances are higher that an improper optimization will actually alter our code, as some of
them tend to be non-conservative, or are simply rather complex, and contain bugs. For
example, for a long time it was known that using a compilation level higher than 2 (or was it
higher than 3?) with gcc results bugs in the executable program. After being warned, if we
still want to use a different optimization level (lets say 4), we can do it this way:

gcc -04 single_compile.c -0 single_compile

302 Introduction to Linux : Installation and Programming

And we're done with it. If you'll read your compiler's manual page, you'll soon notice that
it supports an almost infinite number of command line options dealing with optimization.
Using them properly requires thorough understanding of compilation theory and source code
optimization theory, or you might damage your resulting code. A good compilation theory
course (preferably based on "the Dragon Book" by Aho, Sethi and Ulman) could do you good.

Also, some other options such as -floop-optimize, -finline-functions, or f-no-inline-
functions etc can be used depending upon the requirement.

18.2.7 Getting Extra Compiler Warnings

Normally the compiler only generates error messages about erroneous code that does not
comply with the C standard, and warnings about things that usually tend to cause errors
during runtime. However, we can usually Instruct the compiler to give us even more
warnings, which is useful to improve the quality of our source code, and to expose bugs that
will really bug us later. With gcc, this is done using the '-W' flag. For example, to let the
compiler to use all types of warnings it is familiar with; we'll use a command line like:

cc -Wall filename.c -0 filename

This will first annoy us - yve'li get all sorts of warnings that might seem irrelevant.
However, it is better to eliminate the warnings than to eliminate the usage of this flag.
Usually, this option will save us more time than it will cause us to waste, and if used
consistently; we will get used to coding proper code without thinking too much about it. One
should also note that some code that works on some architecture with one compiler might
break if we use a different compiler, or a different system, to compile the code on. When
developing on the first system, we'll never see these bugs, but when moving the code to a
different platform, the bug will suddenly appear. Also, in many cases we eventually will want
to move the code to a new system, even if we had no such intentions initially.

Note that sometimes '-Wall' will give you too many errors, and then you could try to use
some less verbose warning level. Read the compiler's manual to learn about the various '-W'
options, and use those that would give you the greatest benefit. Initially they might sound
too strange to make any sense, but if you are (or when you will become) a more experienced
programmer, you will learn which could be of good use to you.

18.2.8 Linking Libraries

Whenever we use library functions other than standard libc functions, we have to include
appropriate header file and at the same time during compilation we have to use -I option to
inform the compiler that it has to link with the specified library. For example, if we use any
mathematical functions such as sqrtO, powO, log100 etc in our program aa.c then we have
to compile the same with -1m option. That is:

gcc -0 aa aa.c -1m

In the above command, -1m informs the gcc that it has to search for a library file "
libm.so. *" in standard directories. Similarly, if we use any X windows library functions we
may have to give -lx11 or -Ixt along the command line with gcc command which makes it to
search for library files "libx11.so. * " and "libxt.so. *" in standard directories.

If we want to instruct the gcc that it has to search for some other directories for the
required library files, we have to use -L option with it. In the chapter on "Libraries" we have
described about this in detail.

Compiling C and C++ Programs Under Linux 303

It is also common that functions are developed as separate files and use them and create
final executable file. Whether we are using the standard library function or the one's
developed by us the compiler toolchain (the ones explained in Figure 18.1) has to be able to
build the executable according to specifications that the kernel understands and expects.

The part of the toolchain that makes sure that your program meets the kernel's
expectations is the linker, Id. Actually, the linker performs several functions that are crucial
to the process of building a working executable, and so it's worth taking a deeper look at this
little-known portion of the compiler toolchain.

What the Linker Does 1

Any time you run an executable, the kernel must create a new virtual address space for the
process to run in and then load (or copy) the executable into that newly created space.

As we discussed earlier each process is given its own virtual address space, which is
partitioned Into identical large sections (as depicted in Figure 18.5 such as text, data, stack,
and heap). The kernel expects that the start of these large sections of a process will always
be located at the same virtual address.

In order for that to be possible, every program must be set up according to the
specifications that the kernel expects at the time that it's compiled, and that's one of the
linker's jobs. The linker and the kernel share an understanding of how the virtual address
space should be laid out, and the linker knows how to put all the pieces of a program that
you're compiling into the proper sections of the virtual address space. It also adjusts things
so that all of the different addresses that are used by the program point where they should.
(We'll talk more about this in minute.)

One section of the virtual address space contains the actual machine code instructions
that make up the program -- the section labeled "Other Program Data," which contains the
code (or text) segment. Let's see how the linker bUilds this part of the executable.

Object Files

As we discussed earlier, after the compiler (gcc) and the assembler (as) finish their
respective jobs, they hand off a set of relocatable object modules to the linker, which must
then make a functioning executable out of them.

You might be wondering what "relocatable" means in this particular context. In this case,
it doesn't mean "may be relocated," but rather "must be relocated." The linker builds the
code segment by placing the code from each object module -- one after another -- in the
code segment portion of the virtual address space as though it were placing different sized
books in a bookshelf.

When the assembler builds each object module, there's absolutely no way that it can
know exactly where that module will reside in the virtual address space, so it doesn't bother
to try to figure it out. Instead, it lets the linker adjust the addresses in every module. This
adjustment process is known as "relocation" (and this is where the term "relocatable object
module" comes from).

Disassembling Object Files

In order to appreciate what the linker has to do in order to make all of this work, let's take a
closer look at an object file and see just what it contains. Since they contain assembly code
that's been run through the assembler, we can "disassemble" the object file in order to
recover the original assembly code.

1 Benjamin Chelf,chelf@codesourcery.com.

304 Introduction to Linux : Installation and Programming

Listing of the three files: a.c, b.c, and main.c are as follows ..

File a.c

int a 0
{

int i = 0;

i++;

foo:

i-- ;

goto foo;

}

File b.c

int bO

{

bO;

}

File main.c

mainO

{

aO;

bO;

}

Compile these functions separately. That is,

gcc -c a.c

gcc -c b.c

gcc -c main.c

Once they've been compiled into the object modules a.o, b.o, and main.o, we can run the
command objdump -d on each of them in order to see what their assembly code looks like
(see Figure 18.2).

Compiling C and C++ Programs Under Linux

a.o: file format elf32-i386

00000000 <a>:
0: push %ebp
1: mov %esp,%ebp

3: sub $Ox4,%esp
6: movl $OxO ,Oxfffffffc(%ebp)
d: lea Oxfffffffc(%ebp), %eax

10: incl (%eax)

12: lea Oxfffffffc(%ebp), %eax

15: decl (%eax)

17: jmp 12 <a+Ox12>

b.o: file format elf32-i386

00000000 :

0: push %ebp

1: mov %esp,%ebp

3: sub $Ox8,%esp
6: call 7 <b+Ox7>

b: mov %ebp,%esp

d: pop %ebp
e: ret

main.o: file format elf32-i386
00000000 <main>:

0: push %ebp
1 : mov %esp,%ebp

3: sub $Ox8,%esp
6: call 7 <main+Ox7>
b: call c <main+Oxc>

10: mov %ebp,%esp
12: pop %ebp

13: ret

Figure 18.2 Disassembly for a.o, b.o, and main.o

305

In each listing, the first column starts at 0 and increases. This is the location (or address)
of- the assembly language instruction which is listed in the subsequent columns. The
assembler always starts building an object module at address o. The linker must relocate all
of these instructions to their new virtual addresses.

There are two other areas of importance in the address to the linker: the jumps (or
branches) made by the code, and calls to functions.

Relative Jumps

306 Introduction to Linux : Installation and Programming

In the assembly code for a.o, notice that the instruction at address 17 reads "jmp 12
<a+Ox12>" (and corresponds to the goto in a.c). Indicating that the program should jump to
the instruction at address 12 (which is "lea Ox fffffffc(%ebp),%eax").

However, the destination address 12 was specified as being relative to the start of the aO
function. That's what the "<a+Ox12>" means: jump to the instruction that's 12 bytes after
the start of the aO function. This means that no matter where the aO function is placed in
the virtual address space, the jump always knows where to go. This is called a relative jump,
and nearly every compiler creates code that uses them.

The use of relative jumps is one characteristic of what's known as "positiqn-independent
code" (PIC). In addition to being relocatable, modules compiled in PIC mode can be turned
into shared libraries, which can also used simultaneously by multiple processes, reducing
the memory use of the entire system. We'll talk more about shared libraries in next month's
column.

Because the compiler generated the relative jump, the linker only needs to relocate the
jump instruction to its new place in the virtual address space. The actual instruction itself
doesn't need to be -::hanged. However, the linker does need to change an instruction
whenever functions are being called.

Calling Functions in Other Modules
Let's look at disassembly for b.o, specifically the instruction at address 6: "call 7

<b+Ox7>". This means we should call a function. However, it looks like the call is to a
function at address 7, which is right in the middle of an instruction. What's going on here?

It turns out that 7 is not an actual address, but rather an offset or index into a table. As
b.c is compiled, a table of functions that are called from within b.c is created. This table
contains "relocation records" and can be listed by running "objdump -x" on b.o.

The relocation records for b.o and main.o are shown in Figure 18.3 (note that they have
been slightly edited because of space constraints). You can see that the value of the offset
for "an is 7 , which corresponds to the call to the function aO in b.c.

b.o:

RELOCATION RECORDS FOR [.text]:
OFFSET VALUE

00000007 a

maln.o:

RELOCATION RECORDS FOR [.text]:
OFFSET VALUE

00000007 a
OOOOOOOc b

Figure 18.3 Relocation Records for b.o and main.o

When the linker processes b.o, it takes a look at the relocation records and sees if the
function aO is present in any of the other 1>bject modules (or system libraries). If the
relocation record were not found, an "unsatisfied reference" error would be generated.

However, as the function aO does exist (in a.o), the call instruction is then rewritten -- or
patched -- in order to be able to use the virtual address of the aO function within a.o.

We can examine the two call instructions in main.o and how that generates two relocation
records (to the functions aO and bO).

Compiling C and C++ Programs Under Llnux 307

The Finished Product
Let's take a look at what the three modules look like once the linker has finished its task.
Figure 18.4 contains a dump of the final executable (obtained by running "objdump _dOl on
the executable).

08048430 <a>:
8048430: push %ebp
8048431: mov %esp,%ebp

8048433: sub $Ox4,%esp

8048436: movl $OxO ,Oxfffffffc(%ebp)

804843d: lea Oxfffffffc(%ebp), %eax

8048440: inel (%eax)

8048442: lea Oxfffffffc(%ebp),%eax
8048445: deel (%eax)

8048447: jmp 8048442 <a+Ox12>

08048450 :

8048450: push %ebp
8048451: mov %esp,%ebp

8048453: sub $Ox8, %esp
8048456: call 8048430 <a>

804845b: mov

804845d: pop

%ebp,%esp

%ebp

08048460 <main>:
8048460: push %ebp

8048461: mov %esp,%ebp
8048463: sub $Ox8, %esp

8048466: call 8048430 <a>
804846b: call 8048450
8048470: mov %ebp,%esp

8048472: pop %ebp

Figure 18.4 How aO, bO, and mainO Appear in the Final Executable.

Also note that the jmp instruction at Ox 8048447 in the aO function is the same as it
was in the a.o file. Although the "12" has been replaced in the output with the correct virtual
address, it's still really "<a+Ox12>". The call instructions to aO and bO have also had the
correct addresses inserted.

308 Introduction to L1nux : Installation and Programming

18.2.9 Monitoring Compilation Times
It is possible with -time option to know the actual CPU time taken by preprocessor, ccl,
and linker etc. The -Q option gives detail information about the compilation.

gcc -time bloc a.c
ccl 0.02 0.01
as 0.00 0.00
ccl 0.01 0.01
as 0.00 0.00
collect2 0.02 0.01

gcc -Q bl.c a.c

main
Execution times (seconds)
life analysis : 0.01 (33%) usr 0.00 (0%) sys 0.01 (14%) wall
preprocessing 0.01 (33%) usr 0.01 (100%) sys 0.00 (0%) wall
parser : 0.00 (0%) usr 0.00 (0%) sys 0.03 (43%) wall
final : 0.00 (0%) usr 0.00 (0%) sys 0.01 (14%) wall
TOTAL 0.03 0.01 0.07
LCM

Execution times (seconds)
parser : 0.00 (0%) usr 0.00 (0%) sys 0.01 (33%) wall
global alloc 0.01 (100%) usr 0.00 (0%) sys 0.01 (33%) wall
TOTAL 0.01 0.00 0.03

Architecture Specific Optimizations

Some of the features of compiler are very specific to computer architecture. It is wise to
specify the architecture type along the command line to gcc command such that the
resultant executable file is created which exploits the available architectural features of the
processor. For this we use option -march. For example:

gcc -march=pentium4 a.c
gcc -march=athlon-xp a.c
gcc -march=i386 a.c
gcc -march=i686 a.c

18.2.10 Specifying Include Directories Along The Command Line
With the help of -I option we can specify a set of directory names along with gcc command
to search for include files (header files). Directories named by -I are searched before the
standard system include directories. It is dangerous to specify a standard system include
directory with -I option.

Compiling C and C++ Programs Under Llnux 309

Example:

gee -0 aa aa.e -I /home/venkat/lib

To know which directories are searched by the gcc from find Include files, run the
following command.

gee -print-search-dirs

Output is as follows:

install: /usr/lib/gcc-lib/i386-redhat-linux/3. 2. 2/

programs: =/usr/lib/gcc-lib/i386-redhat-linux/3.2.2/:/usr/lib/gcc-1ib/i386-redhat-
Iinux/3.2.2/:/usr/llb/gcc-lib/i386-redhat-linux/:/usr/lib/gcc/i386-redhat-
Iinux/3.2.2/:/usr/lib/gcc/i386-redhat-linux/:/usr/lib/gcc-Iib/i386-redhat-
Iinux/3.2. 2/ .. / .. / . ./ .. /i386-redhat-linux/bin/i386-redhat-linux/3. 2.2/ :/usr/lib/gcc-lib/i386-
redhat-linux/3.2.2/ .. / . ./ . ./ . ./i386-redhat-linux/bin/

libraries: =/usr/lib/gcc-lib/i386-redhat-linux/3.2.2/:/usr/lib/gcc/i386-redhat-
Iinux/3. 2.2/ :/usr/lib/gcc-lib/i386-redhat-linux/3. 2 .2/ .. / . ./ . ./ .. /i386-redhat-linux/lib/i386-
redhat-linux/3. 2.2/ :/usr/lib/gcc-lib/i386-redhat-linux/3. 2.2/ . ./ .. / .. / .. /i386-redhat-
linux/lib/ :/usr/lib/gcc-lib/i386-redhat-linux/3 .2.2/ . ./ .. / . ./i386-redhat-
Iinux/3.2. 2/ :/usr/lib/ gcc-lib/i386-redhat-linux/3 .2. 2/ .. / . ./ . ./ :/lib/i386-redhat-
Iinux/3. 2.2/ :/lib/ :/usr/lib/i386-redhat-linux/3. 2. 2/ :/usr/lib/

18.2.11 Size Command
The size program prints out the size in bytes of each of the text, data, and BSS sections,
along with the total size in decimal and hexadecimal.

size a.out
text data bss dec hex filename

1458 276 8 1742 6ce a.out

An executable file contains code, data and BSS (block started by symbol). However,
when a program is loaded and a process is created then it will have five conceptually
different areas.of memory allocated to it (More details can be discussed in next chapters):

Code
Also referred as the text segment (The respective portion in the executable file is called as
the "text section), this is the area in which the executable instructions reside. Linux and Unix
arrange things so that multiple running instances of the same program share their code if
possible; only one copy of the instructions for the same program resides in memory at any
time.

310 Introduction to Linux : Installation and Programming

Initialized data

Statically allocated and global data that are initialized with nonzero values live in the data
segment. Each process running the same program has its own data segment. The portion of
the executable file containing the data segment is the data section.

Zero-initialized data

Global and statically allocated data that are initialized to zero by default are kept in what is
colloquially called the ass area of the process. Each process running the same program has
its own BSS area. When running, the BSS data are placed in the data segment. In the
executable file, they are stored in the ass section.

In order to support above statements, the following programs are compiled and on their
executable file's size command is executed.

#include <stdio.h>

mainO

{

static int a[2048]={9,9,O,O};

}

Result of the size of on the executable file of the above program.

text data bss dec hex filename

702 8464 4 9170 23d2 a.out

#include <stdio.h>

int a[2048]={9,9,O,Q};

mainO

{

}

Result of the size of on the executable file of the above program.

text data bss dec hex filename

702 8464 4 9170 23d2 a.out

The above two programs results suggests that both initialized static and global variables
occupies data segment.

#include <stdio.h>

int a[2048];

mainO

{

}

Compiling C and C++ Programs Under Linux

Result of the size of on the executable file of the above program.

text
702

data
252

bss
8224

#include <stdio.h>
mainO
{

static int a[2048];
}

dec
9178

hex filename
23da a.out

Result of the size of on the executable file of the above program.
text data bss dec hex filename
702 252 8224 9178 23da a.out

311

The above two programs results suggests that both un initialized static and global
variables occupies BSS segment.

#include <stdio.h>
mainO
{

int a[2048];

}

Result of the size of on the executable file of the above
observed if the array is initialized to values)

program.(same results will be

text data bss dec
706 252 4 962

hex filename
3c2 a.out

The above program's results suggests that the automatic arrays will not occupy either
data or BSS segments.

Heap
The heap is where dynamic memory (obtained by maliocO and friends) comes from. As
memory is allocated on the heap, the process's address space grows. It is also typical for the
heap to start immediately after the BSS area of the data segment.

Stack
The stack segment is where local variables are allocated. Local variables are all variables
declared inside the opening left brace of a function body (or other left brace) that aren't
defined as static. Also stack is used for storing function parameters, as well as for "invisible"
bookkeeping information generated by the compiler, for function return value and for storing
return address representing the return from a function to its caller. Variables stored on the
stack "disappear" when the function containing them returns; the space on the stack is
reused for subsequent function calls.

312 Introduction to Linux : Installation and Programming

When a program is running, the initialized data, BSS, and heap areas are usually placed
into a single contiguous area: the data segment. The stack and code segments are separate
from the data segment.

18.2.12 The strip command
This command discards all symbols from object files. It modifies the object files themselves
instead of writing the modified copies with different names. It can work on archive files also.
This may reduce the executable file size substantially with simple programs. Of course, after
executing strip command the resulting executable file can be executed without any difficulty.

strip a.out

If we want the resulting file to be written in another file with -0 option.

strip a.out -0 a #here file "a" is executable file after stripping

strip -s a.out -0 a # removes all symbols from executable file

strip -g a.out -0 a # removes debugging information from the executable file

Checkup the size of the executable file (using Is -I command) after and before
the strip command to see the file size change. -

The strip program removes the symbols such as the program's variables and function
names from the object (executable) file. (The symbols are not loaded into memory when the
program runs.) This can save significant disk space for a large program, which make it
impossible to debug a core dump if it occur. (On modern systems this isn't worth the
trouble; don't use strip.) Even after removing the symbols, the file is still larger than what
gets loaded into memory since the object file format maintains additional data about the
program, such as what shared libraries it may use, if any.

18.2.13 The as command
It is also possible to first create an assembly code (from C source), and then object code and
then finally executable code.

gee -5 file.c

as file.s -0 fi/e.o

gcc fi/e.o

#creates file.s

object file aa.o is created

executable file a.out is created

By simply typing a.out at the command prompt we can execute the program.

It is also possible to add some assembly programs if needed to the generated assembly
program (Next chapter's talks about this in detail).

18.2.14 The Idd command
This command prints the shared libraries required by each of the programs given along the
command line. Also, if we specify the shared library name along the command line it
displays what other shared libraries It uses.

Compiling C and C++ Programs Under Llnux

For example
Idd lusr/lib/lynx gives the following output

Iibncurses.so.5 => /usr/lib/libncurses.so.5 (Ox40033000)

Iibssl.so.4 => /lib/libssl.so.4 (Ox40072000)
Iibcrypto.so.4 => /lib/libcrypto.so.4 (Ox400a7000)
Iibc.so.6 => /lib/tls/libc.so.6 (Ox42000000)
libz.so.l => /usr/lib/libz.so.l (Ox40198000)
Iibresolv.so.2 => /lib/libresolv.so.2 (Ox401a6000)

313

libgssapi_krb5.so.2 = > /usr/kerberos/lib/libgssapi_krb5.so.2 (Ox401b9000)

Iibkrb5.so.3 => /usr/kerberos/lib/libkrb5.so.3 (Ox401ccOOO)
Iibk5crypto.so.3 => /usr/kerberos/lib/libk5crypto.so.3 (Ox4022aOOO)
libcom_err.so.3 => /usr/kerberos/lib/libcom_err.so.3 (Ox4023aOOO)
Iibdl.so.2 => /lib/libdl.so.2 (Ox4023cOOO)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (Ox40000000)

Idd lusr/lib/libncurses.so.5 gives the following output

Iibc.so.6 => /lib/tls/libc.so.6 (Ox42000000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (Ox40000000)

18.2.15 Creating Dynamic Executable and Static Executable
By default, gcc creates dynamic executable files. Usually, the resulting file size will be
smaller than the statically linked executable file.

gcc aa.c

Is -I a.out command displays the size as:

-rwxr-xr-x 1 root root 11531 Nov 30 01:32 a.out

gcc -static aa.c

Is -I a.out command displays the size as:

-rwxr-xr-x 1 root root 423439 Nov 30 01:34 a.out

From check whether the executable file is statically linked or dynamically linked, we can
use:

file objectfilename

314

For example:

gcc aa.c
file a.out

Introduction to Llnux : Installation and Programming

The above command gives the following results.

a.out: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
dynamically linked (uses shared libs), not stripped

gcc -static aa.c
file a.out

The above command gives the following results.

a.out: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
statically linked, not stripped

The above commands can work on stripped executable files also.

18.2.16 Indent Command
With the help of this command, we can change the appearance of a C program by inserting
or deleting white spaces.
Example

18.2.17 splint command
With the help of this command we can check C programs for security vulnerabilities,
common programming mistakes., certain language constructs that may cause portability
problems, syntax and data type errors. In fact, this identifies syntactical errors better than
the compiler and produces errors in better human understandable form.

#include <stdio.h>
int main 0
{

int a, *x;
a=1.656;
x=1009;
scanf("%d",a);
x=(char *)malloc(lO);
free(x);
printf("%d", *x);
return 0;
}

Compiling C and C++ Programs Under Llnux

Result of splint command on the above file:

aa.c: (in function main)

aa.c:5:1: Assignment of double to int: a = 1.656

To allow all numeric types to match, use +relaxtypes.

aa.c:6:1: Assignment of int to int *: x = 1009

Types are incompatible. (Use -type to inhibit-warning)

aa.c:7:12: Format argument 1 to scanf (%d) expects int * gets int: a

315

Type of parameter is not consistent with corresponding code in format string.

(Use -formattype to inhibit warning)

aa.c:7:9: Corresponding format code

aa.c:7:1: Return value (type int) ignored: scanf("%d", a)

Result returned by function call is not used. If this is intended, can cast result
to (void) to eliminate message. (Use -retvalint to inhibit warning)

aa.c:8:1: Assignment of char * to int *: x = (char *)malloc(10)

To make char and int types equivalent, use +charint.

aa.c:10:15: Variable x used after being released

Memory is used after it has been released (either by passing as an only param
or assigning to an only global). (Use -usereleased to inhibit warning)

aa.c:9:6: Storage x released

aa.c:10:15: Dereference of possibly null pOinter x: *x

A possibly null pOinter is dereferenced. Value is either the result of a function
which may return null (in which case, code should check it is not null), or a
global, parameter or structure field declared with the null qualifier. (Use -
nullderef to inhibit warning)

aa.c:8:3: Storage x may become null

Now run splint command on the following program.

#include<stdio.h>

void ffO
{

int *p=(int *) malloc(10);
}

int mainO

{

char *p="rama";

free(p);

printf("%s\n", p);
}

Output of splint.

316 Introduction to Linux : installation and PIogrammlng

nuLc: (in function ff)
nuLc:5:2: Fresh storage p not released before return

A memory leak has been detected. Storage allocated locally is not released
before the last reference to it is lost. (Use -mustfreefresh to inhibit
warning)
nuLc:4:27: Fresh storage p created

nuLc:4:6: Variable p declared but not used
A variable is declared but never used. Use /*@unused@*/ in front of
declaration to suppress message. (Use -va ruse to inhibit warning)

nuLc: (in function main)
nul.c:9:6: Function call may modify observer p: p

Storage declared with observer is possibly modified. Observer storage may not
be modified. (Use -modobserver to inhibit warning)
nul.c:8:9: Storage p becomes observer

nul.c:9:6: Observer storage p passed as only param: free (p)
Observer storage is transferred to a non-observer reference. (Use
-observertrans to inhibit warning)
nul.c:8:9: Storage p becomes observer

nul.c: 10: 16: Variable p used after being released
Memory is used after it has been released (either by passing as an only param
or assigning to an only global). (Use -usereleased to inhibit warning)
nul.c:9:6: Storage p released

nuLc:ll:2: Path with no return in function declared to return int
There is a path through a function declared to return a value on which there·
is no return statement. This means the execution may fall through without
returning a meaningful result to the caller. (Use -noret to inhibit warning)

18.2.18 Use of ccl command
We can execute cc1 command directly. However, it needs "a.i" file, i.e. the file after
preprocessing. It gives statistics such as the following.

Output

main

/usr/lib/gcc-lib/i386-redhat-linux/cc1 a.i

Execution times (seconds)
preprocessing : 0.01 (6%) usr 0.00 (0%) sys 0.01 (6%) wall
parser : 0.01 (6%) usr 0.00 (0%) sys 0.01 (6%) wall
flow analysis 0.01 (6%) usr 0.00 (0%) sys 0.01 (6%) wall
mode switching : 0.01 (6%) usr 0.00 (0%) sys 0.01 (6%) wall
global alloc 0.01 (6%) usr 0.00 (0%) sys 0.01 (6%) wall
reg stack 0.01 (6%) usr 0.00 (0%) sys 0.01 (6%) wall
rest of 0.01 (6%) usr 0.00 (0%) sys 0.01 (6%) wall
compilation
TOTAL : 0.16 0.01 0.17

Compiling C and C++ Programs Under Llnux 317

18.3 Functions with Variable Number of Arguments
Most of the young C programmers wonders how it became possible for C standard library
developers to write functions such as printfO, scanfO to take variable number of arguments.
Also, it is often desirable to implement a function where the number of arguments is not
known, or is not constant, when the function is written.

int f(int, ...) {

}

In order to achieve this, the functions declared in the <stdarg.h> header file must be
included. This introduces a new type, called a va_list, and three functions that operate on
objects of this type, called va_start, va_arg, and va_end.

Before manipulating variable argument list, va_start must be called whose prototype is:

void va_start(valist ap, parmN);

The va_start macro initializes ap for subsequent use by the functions va_arg and va_end.
The second argument to va_start, parmN is the identifier naming the rightmost parameter in
the variable parameter list in the function definition (the one just before the , ...). The
identifier parmN must not be declared with register storage class or as a function or array
type.

The arguments supplied can be accessed by calling va_argO macro repeatedly. This is
peculiar because the type returned is determined by an argument to the macro. Note that
this is impossible to implement as a true function, only as a macro. It is defined as

type va_arg(va_list ap, type);

Each call to this macro will extract the next argument from the argument list as a value of
the specified type (If the next argument is not of the specified type, the behavior is
undefined). Take care here to avoid problems which could be caused by arithmetic
conversions. Use of char or short as the second argument to va_arg is invariably an error:
these types always promote up to one of signed int or unsigned int, and float converts to
double. Note that it is implementation defined whether objects declared to have the types
char, unsigned char, unsigned short and unsigned bitfields will promote to unsigned Int,
rather complicating the use of va_argo This may be an area where some unexpected
subtleties arise; only time will tell.

The behavior is also undefined if va_arg is called when there were no further arguments.

When all the arguments have been processed, the va_end function should be called. This
will prevent the va_list supplied from being used any further. If va_end is not used, the
behavior is undefined.

The entire argument list can be re-traversed by calling va_start again, after calling
va_end. The va_end function is declared as

void va_end(va list ap);

318 Introduction to Linux : Installation and Programming

The following example shows the use of va_arg, and va_end to implement a
function that returns the average of its integer arguments.

#include <stdlib.h>

#indude <stdarg.h>

#include <stdio.h>

int AVG(int nargs, ...){

register int i;

}

int avg;

va_list ap;

va_start(ap, nargs);

avg=O;

for(i = 1; i <= nargs; i++)

avg+= va_arg(ap, int);

va_end(ap);

return (avg/nargs);

void f(void) {

printf("%d\n",AVG(3, 33,44,55));

}

mainO{

}

fO;
exit(O);

18.4 Compiling A Multi-Source "C" Programs
We have learned how to compile a single-source program properly (hopefully by now you
played a little with the compiler and tried out a few examples of your own). Yet, sooner or later
you'll see that having all the source in a single file is rather limiting, for several reasons:

• As the file grows, compilation time tends to grow, and for each little change, the whole
program has to be re-compiled.

• It is very hard, if not impossible, that several people will work on the same project
together in this manner.

• Managing your code becomes harder. Backing out erroneous changes becomes nearly
impossible.

• Also, developing programs as a single file limits code sharing or reusing.

Compiling C and C++ Programs Under Linux 319

The solution to this would be to split the source code into multiple files, each containing a
set of closely-related functions (or, in C++, all the source code for a single class).

There are two possible ways to compile a multi-source C program. The first is to use a
single command line to compile all the files. Suppose that we have a program whose source
is found in files "main.c", "a.c" and "b.c". We could compile it this way:

gcc main.c a.c b.c -0 hello_world

This will cause the compiler to compile each of the given files separately, and then link
them all together to one executable file named "hello_world". Two comments about this
program: .

1. If we define a function (or a variable) in one file, and try to access them from a second
file, we need to declare them as external symbols in that second file. This is done
using the C "extern" keyword.

2. The order of presenting the source files on the command line may be altered. The
compiler (actually, the linker) will know how to take the relevant code from each file
into the final program, even if the first source file tries to use a function defined in the
second or third source file.

The problem with this way of compilation is that even if we onJy make a change in one of
the source files, all of them will be re-compiled when we run the compiler again. In order to
overcome this limitation, we could divide the compilation process into two phases -
compiling, and linking. Let us first see how this is done, and then we will explain.

cc -c main.cc
cc -c a.c
cc -c b.c
cc main.o a.o b.o -0 hello_world

The first 3 commands have each taken one source file, and compiled it into "object file",
(as explained above) with the same names, but with a ".0" suffix. It is the "-c" flag that tells
the compiler only to create an object file, and not to generate a final executable file just yet.
The object file contains the code for the source file in machine language, but with some
unresolved symbols. For example, the "main.o" file refers to a symbol named "func_a",
which is a function defined in file "a.c". Surely we cannot run the code like that. Thus, after
creating the 3 object files, we use the 4th command to link the 3 object files into one
program. The linker (which is invoked by the compiler now) takes all the symbols from the 3
object files, and links them together - it makes sure that when "func_a" is invoked from the
code in object file "main.o", the function code in object file "a.o" gets executed. Further
more, the linker also links the standard C library into the program, in this case, to resolve
the "printf" symbol properly.

To see why this complexity actually helps us, we should note that normally the link phase
is much faster than the compilation phase. This is especially tnre when doing optimizations,
since that step is done before linking. Now, lets assume we change the source file "a.c", and
we want to re-compile the program. We'll only need now two commands:

cc -c a.c
cc main.o a.o b.o -0 hello_world

320 Introduction to Llnux : Installation and Programming

In our small example, it's hard to notice the speed-up, but in a case of having few tens of
files each containing a few hundred lines of source-code, the time saving is Significant; not to
mention even larger projects.

18.5 How mainO is executed on Linux2

In the previous sections, we have explained how from compile C language programs in
addition to other tools usage. In the following paragraphs, we try from answer the question
how does Linux execute mainO? On Linux, our C mainO function is executed by the
cooperative work of GCC, libc and Linux's binary loader. Preferably read chapter on
"Assembly Programming under Linux" also. We will use the following simple C program
("simple.c") to illustrate how it works. .

Int mainO

{
return(O);

}

gee -0 Simple simple.c

To see what's in the executable, let's use a tool "objdump". More about this command
will be discussed in the next chapters.

objdump -f simple

simple: file format elf32-i386

architecture: 1386, flags Ox00000112:

EXEC_P, HAS_SYMS,D_PAGED

start address Ox080482dO

From the output we can understand that the file is "ELF32" format and the start address
is "Ox080482dO".

ELF is acronym for Executable and Linking Format. It's one of the several object and
executable file formats used on Unix systems. For our discussion, the interesting thing about
ELF is· its header format. Every ELF executable has ELF header, which is the following. More
details about ELF is given in a separate chapter.

typedef struct
{

unsigned char e_ident[ECNIDENT]; /* Magic number and other info */

2 httD:/Iwww.linuxgazeU$.com!Copyright02oo2.Hyouck .. Hawk .. Kim.This material may be distributed only
subject to the terms and conditions set forth in the Open Publication License, v I. 0 or later (the latest version is
available at http://www.opencontent.orglopenpubO.

Compiling C and C++ Programs Under Llnux 321

Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32_Addre_entry; /* Entry point virtual address */
Elf32_Off e_phoff; * Program header table file offset */

/* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize;

Elf32_Half e_shnum;

Elf32_Half e_shstrndx;
} Elf32_Ehdr;

/* Program header table entry size */
/* Program header table entry count */
/* Section header table entry size * /
/* Section header table entry count * /
/* Section header string table index */

In the above structure, there is "e_entry" field, which is starting address of an executable.

What's starting address "Ox080482dO"?

For this question, let's disassemble the machine language file "simple". There are several
tools to disassemble an executable. We will use objdump for this purpose also ..

objdump --disassemble simple

The output is a little bit long, so we will not show entire output from objdump. Our
intention is see what's at address Ox080482dO. Here is the output.

080482dO <_start>:

80482dO: 31 ed xor %ebp,%ebp

80482d2: 5e pop %esi
80482d3: 89 e1 mov %esp,%ecx
80482d5: 83 e4 fO and $OxfffffffO, %esp
80482d8: 50 push %eax
80482d9: 54 push %esp
80482da: 52 push %edx
80482db: 6820840408 push $Ox8048420
80482eO: 6874820408 push $Ox8048274
80482e5: 51 push %ecx
80482e6: 56 push %esi
80482e7: 68 dO 83 04 08 push $Ox80483dO
80482ec: e8 cb ff ff ff call 80482bc <_inlt+Ox48> .
80482f1: f4 hit
80482f2: 89 f6 mov %esi,%esi

322 Introduction to Llnux : Installation and Programming

Those people who knows assembly language can understand that the executable file
contains some kind of starting routine called "_start" at the starting address. It clears a
register, push some values into stack and call a function. According to this instruction, the
stack frame should look like this.

Stack Top -------------------
Ox80483dO

esi

ecx

Ox8048274

Ox8048420

edx

esp

eax

If you look at disassembled output from objdump carefully, you can that the addresses
pushed into stack are addresses of functions. To summarize:

Ox80483dO : This is the address of our mainO function.

Ox8048274: _init function.

Ox8048420: _fini function _init and _fini is initialization/finalization functions of
Gee.

Let us look for address 80482bc from the disassembly output.

80482bc: ff 25 48 95 04 08

Here *Ox8049548 is a pointer operation.

jmp *Ox8049548

It just jumps to an address stored at address Ox8049548.

As we know that this object file "simple" is dynamically linked, the address may be filled
during run time. As explained earlier, If you issue the command "Idd simple" we get the
following result.

Iibc.so.6 = > /lib/i686/libc.so.6 (Ox42000000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (Ox40000000)

You can see all the libraries dynamically linked with simple. And all the dynamically linked
data and functions have "dynamic relocation entry" in executable file i.e. in ELF records.

Compiling C and C++ Programs Under Llnux

We can see all dynamic link entries with objdump command.

objdump -R simple
simple: file format elf32-i386
DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0804954c R_386_GLOB_DAT _gmon_start_
08049540 R_386_JUMP _SLOT _register _frame_info
08049544 R_386_JUMP _SLOT _deregister _frame_info
08049548 R_386_JUMP _SLOT _libc_start_main

323

Here address Ox8049548 is called "jump slot", which perfectly makes sense. And
according to the table, actually we want to call _Iibc_start_main.

The _libc_start_main is a function in Iibc.so.6. If you look for _Iibc_start_main in glibc
source code, the prototype looks like this.

extern int BP _SYM (_libc_start_main)(int *main)(int, char **, char**),
int argc,
char * _unbounded * _unbounded ubp_av,
void (*init) (void),
void (*fini) (void),
void (*rtld_fini) (void),
void * _unbounded stack_end)
attribute ((noreturn));

And all the assembly instructions do is set up argument stack and call _Iibc_start_main.
What this function does is setup/initialize some data structures/environments and call our

mainO·
Let's look at the stack frame with this function prototype.

Stack Top -------------------
Ox80483dO main

esi argc

ecx argv

Ox8048274 init

Ox8048420

edx

esp

eax this is 0

324 Introduction to Llnux : Installation and Programming

According to this stack frame, esi, ecx, edx, esp, eax registers should be filled with
appropriate values before _libc_start_mainO is executed. And clearly this registers are not
set by the startup assembly instructions shown before. Instead kernel involves in between.

Really, when we execute a program by entering a name at the shell prompt, this is what
happens on Linux machine.

1. The shell calls the kernel system call "execve" with argc/argv.

2. The kernel system call handler gets control and start handling the system call. In
kernel code, the handler is "sys_execve". On x86; the user-mode application passes all
required parameters to kernel with the following registers.

• ebx: pointer to program name string

• ecx: argv array pOinter
• edx: environment variable array pOinter.

3. The generic execve kernel system call handler, which is do_execve, is called. What It
does is set up a data structure and copy some data from user space to kernel space
and finally calls search_binary_handlerO. Linux can support more than one executable
file format such as a.out and ELF at the same time. For this functionality, there is a
data structure "struct Iinux_binfmt", which has a function pOinter for each binary
format loader. And search_binary_handlerO just up an appropriate handler and
calls it. In our case, 10ad_elCbinaryO is the handler. Here is the bottom line of the
function. It first sets up kernel data structures for file operation to read the ELF
executable image in. Then it sets up a kernel data structure: code size, data segment
start, stack segment start, etc. And it allocates user mode pages for this process and
copies the argv and environment variables to those allocated page addresses. Finally,
argc, the argv pOinter, and the environment variable array pOinter are pushed to user
mode stack by create_elCtablesO, and start_threadO starts the process execution
rolling.

Layout of segment created can be represented with Figure 18.5 Yellow parts represent
correspondent program sections. Shared libraries are not shown here; their layout duplicates
layout of program.

Figure 18.5 Segment layout of an ELF binary.

Compiling C and C++ Programs Under Llnux 325

Stack layout
Initial stack layout is very important, because it provides access to command line and
environment of a program. Here is a picture (Figure 18.6) of what is on the stack when
program is launched :

[dword] program args (pointers)

[dword] end of args (i er)

[dword] environment variables (pointers)

[dword] end of environment (integer)

Figure 18.6 Stack layout of an ELF binary.

By the time, when the _start assembly instruction gets control of execution, the stack
frame contain

Stack Top
argc

argv pointer

env pOinter

To Summarize

1. GCC build your program with crtbegin.o/crtend.o/gcrt1.o And the other default
libraries are dynamically linked by default. Starting address of the executable is set to
that of _start.

2. Kernel loads the executable and setup text/data/bss/st9ck, especially, kernel allocate
page(s) for arguments and environment variables and pushes all necessary
information on stack.

3. Control is passed to _start. _start gets all information from stack setup by kernel, sets
up argument stack for _libcstart_main, and calls it.

4. The _libc_start_main initializes necessary stuffs, especially C library(such as malloc)
and environment and calls our main.

5. Our main is called with main(argv, argv) Actually, here one interesting point is the
signature of main. The _Iibc_start_main thinks main's signature as main(int, char **,
char **).

326 Introduction to Linux : Installation and Programming

The same procedure can be explained in Figure 18.7 along with the names of the
functions.

arch/i386/kernel!proces

fs/exec.c

fs/exec.c

fs/binfmCelf.c

include/asm-
i386/processor.h

on user side one types in program name and
strikes enter

shell calls libc function

libc calls kernel ...

arrive to kernel side

open file and do some preparation

find out type of executable

load ELF (and needed libraries) and create user
segment

and finally pass control to program code

Figure 18.7 Startup process of an ELF binary3.

18.6 Compiling A Single-Source "C++" Program
Now that we saw how to compile C programs, the transition to C++ programs is rather
simple. All we need to do is use a C++ compiler, in place of the C compiler we used so far.
So, if our program source is in a file named 'executable filename.ee' ('cc' to denote C++
.code. Some programmers prefer a suffix of 'C' for C++ code), we will use a command such
as the following:

g++ file.cc -0 executable_filename

Or on some systems you'll use "CC" instead of "g++" (for example, with Sun's compiler for
Solaris), or "aCC" (HP's compiler), and so on. You would note that with C++ compiler'S there
is less uniformity regarding command line options, partially beqlUse until recently the
language was evolving and had no agreed standard. But still, at least with g++, you will use
"-g" for debug information in the code, and "-0" for optimization.

18.7 Combining C and C++ programs
While developing practical SW systems, we may encounter the need for mixed language
programming. That is, we may be required to use some C programs and some other C++
programs while building the SW system. This can be achieved in many ways. In the chapter
on Assembly Language, we will discuss about how to mix assembly within C program.

In the case of C and C++ mixed programming, we can compile C programs using gcc
compiler and create object files and using g++ compiler we can compile C++ programs and
create object files. All the object files can be used to create final executable file.

3 source for figures 2.3 and 4 is linuxassembly.com

Compiling C and C++ Programs Under Linux 327

For example, consider the following C function in a file a.c. We can use the same in C++
program (g1.C) by specifying that "a.c" file is external file and contains C code as shown in
the program "g1.C".

File a.c:

int LCM(int x, int y)
{

int a=x<y?y:x;

while(a<=(x*y»
{

if((a%x==O)&&(a%y==O» return a;

a++;
}

}

File g1.C

#include<iostream.h>
extern "C" {
#include "a.c"
}

int mainO
{

int x,y;

cout«"Enter Two Integers"«endl;

cin»x»y;

cout«"LCM="«LCM(x,y)«endl;

}

To compile and run this C++ program, we can enter the following commands.

g++ -0 gl g1.C
./gl

328 Introduction to Llnux : Installation and Programming

Note: Please note that we can directly use the C file which is having a function code
as there is no difference exists between functions of C and c++. That is, we can as
well modify the g1.C to have the following code.

#include<iostream.h>

int LCM(int,int);
int mainO
{

int x,y;

cout«"Enter Two Integers"«endl;

cin»x»y;

cout«"LCM="«LCM(x,y)«endl;

}

To compile and run the g1.C, execute the following commands.

g++ -0 gll g1.C a.c
./gll

In the following example, we have explained how a C function (the one defined in the
above a.c file) can be used in C++ and specifically from a member function of a class. A
header file "a.h" is used in C++ program "RAT.C". This header file contains preprocessor
directives to indicate the C++ compiler that LCM is an external "c" function . Compile
"RAT.C" to object file. Then both the object files are linked to get the finally executable file
(Note: this "RAT.C" defines a class to represent rational number and over loads + operator
between rational number type of objects).

File a.h

#ifdef _cplusplus
extern "C" {
#endif
extern int LCM(int, int);
#ifdef _cplusplus
}

#endif

File RAT.C
#include<iostream.h>

Compiling C and C++ Programs Under Linux

#include "a.h"

class RAT
{

int p,q;

public:
void INPO
{
cin»p»q;

TRIMO;
}

void OUTO
{

cout «p«"/"«q«endl;
}

RAT operator+(RAT X)
{

RATT;

int Icm=LCM(q,X.q);
T.p=p*lcm/q+X.p*lcm/X.q;
T.q=lcm;

T.TRIMO;
return T;
}
void TRIMO
{
int a=p>q?q:p;

1* Finding GCF */
while(a)
{

if((p%a==O)&&(q%a==OJ) break;

a-- . ,
}

/* Divide both numerator and denominator with GCF*/

p=p/a; q=q/a;

}
};

329

330

int mainO

{

RAT A,B,C;

A.INPO;

B.INPO;

C=A+B;

C.OUTO;

}

To compile and Test

gcc -c a.c

g++ -c RAT.C

g++ RAT.o a.o

.fa.out

1 2

2 3

7/6

Introduction to Linux : Installation and Programming

Similarly, if we want a c++ function to be used in a C program, first we have to mention
that C++ function is having external linkage for C language.

An example C++ file

extern "C" int abs(int x)

{

return (x<O?-x:x);

}

Header file "y.h"

#ifdef _cplusplus

extern "C"

#endif

int abs(int x);

Compiling C and C++ Programs Under Linux

C file "z.c"

#include<stdio.h>
#include "y.h"

int mainO
{

int p=-19;

printf("%d\n", abs(p));

}

To create executable file, continue the following manner.

gcc -c z.c

g++ -c y.C
g++ -0 aa z.o y.o

./aa

331

You can declare at most one function of an overloaded set as extern "(" because only one
C function can have a given name. If you need to access overloaded functions from C, you
can write C++ wrapper functions with different names as the following example
demonstrates.

File having C++ overloaded functions (yy.C)

int abs(int x)
{

return (x<O?-x:x);
}

float abs(float x)
{

return (x<O?-x:x);
}

double abs(double x)
{

return (x<O?-x:x);
}

extern "C" int abs_int(int x){ return abs(x); }

extern "C" float abs_f1oat(f1oat x){ return abs(x); }

extern "c" double abs_double(double x){ return abs(x); }

332

Header file "yy.h" contains

#ifdef _cplusplus
extern "C"
#endif
int abs_int(int x);

double abs_float(float x);
float abs_double(double x);

Introduction to Llnux : Installation and Programming

The c program which calls the functions in C++ program contains the following.

#include<stdio.h>
#include "yy.h"

int mainO
{

int p=-19;

float x=1.212;
double y=-1.222222;

printf("%d %f %If\n", abs_int(p), abs_float(x), abs_double(y));
}

To create executable file, continue the following manner.

gcc -c zz.c

g++ -c yy.C

g++ -0 aaa zz.o yy.o

./aaa

We may also need wrapper functions to call template functions because template
functions cannot be declared as extern "C": The above "yy.C" C++ program can be changed
as follows to achieve this.

template<c1ass A>
A abs(A x)

{

return (x<O?-x:x);
}

extern "C" int abs_int(int x){ return abs(x); }

extern "C" float abs_f1oat(float x){ return abs(x); }
extern "C" double abs_double(double x){ return abs(x); }

Compiling C and C++ Programs Under Llnux 333

As usual, compile this C++ program separately and C program separately and link using
g++. "-

The following examples, explains how to pass C++ class type of objects/addresses to C
functions.

The following header file "RAT. hit has to be included in both C and C++ programs. In C++
program if this header is included, class RAT will be defined and at the same time function fO
will declared as external., Sjmilarly, if this header file is included in a C program, then class
RAT will not get Rather, an incomplete declaration of structure with the same
name RAT gets defined. addition, declarations of the functions fO, XYZO are included.

We did write extern "C" functions in C++ that access class RAT objects and call them
from C code. This became possible as unlike C++, C will not distinguish pOinters whether
they are of class RAT type or struct RAT type. Thus, it became possible to send class RAT
type of object to C function. However, this is not a good programming practice though.

#ifndef RAT_H

#define RAT_H

#ifdef _cplusplus

class RAT
{

int p,q;
public:

void INPO{ cin»p»q;}
void OUTO{ cout«p«"\t"«q«endl;}
};

#else

typedef

struct RAT

RAT;
#endif

#ifdef _cplllspius

extern "C" {

#endif

#if defined(_STDC_) II defined(_cplusplus)
extern void f(RAT *);
extern void XYZ(RAT *);

#else

extern void fO; /* K&R style */

334

extern void XYZO i
#endif

#ifdef _cplusplus
}

#endif

#endif /*RAT_H*/

The c++ program file (pp.C)

#Include<iostream.h>
#include "RAT.h"

void XYZ(RAT *P)

{

P->INPOi

P->OUTOi
}

int mainO
{

RAT Ai

f(&A)i

}

The C program file (pq.c)

#include "RAT.h"
void f(RAT *A)
{

XYZ(A)i
}

Introduction to Llnux : Installation and Programming

To compile and run the program, do execute the following commands.

g++ -c pp.C
gcc -c pq.c

g++ -0 pp pp.o pq.o

./pp

Compiling C and C++ Programs Under Llnux 335

18.8 Better C coding practice
There are many rules, practices and suggestions exists for C coding. Better coding practices
will help in improving readability, understandability of the code developed.

For example, some people recommend creating abstract data types of the form:

typedef struct T *T;

Then values of the abstract type can be declared as:

T t;
making t look like an object in its own right. However this obscures the fact that t is a
reference to an object, rather than an object itself. This also prevents passing t by value
rather than by reference.

Thus in the following paragraphs we shall explore better ,coding practices.

Comments
Comments can add immensely to the readability of a program, but used heaVily or poorly
placed they can render good code completely incomprehensible. It is far better to err on the
side of too few comments rather than too many - at least then people can find the code!
Also, if your code needs a comment to be understood, then you should look for ways to
rewrite the code to be clearer. And comments that aren't there won't get out of date. (An
inaccurate or misleading comment hurts more than a good comment helps! Be sure that your
comments stay right.)

Good places to put comments are:
• a broad overview at the beginning of a module
• data structure definitions
• global variable definition
• at the beginning of a function
• tricky steps within a function

If you do something weird, a comment to explain why can save future generations from
wondering what drug you were on and where to get it. If you do something clever, brag
about it. Not only will this inflate your ego, but it will also subtly tip off others as to where to
look first for bugs. Finally, avoid fancy layout or decoration.

/* single line comments look like this */

/*
* Important single line comments look like multi-line comments.
*/

/*
* Multi line comments look like this. Put the opening and closing
* comment sequences on lines by themselves. Use complete sentences

* with proper English grammar, capitalization, and punctuation.
*/

/* but you don't need to punctuate or capitalize one-liners * /

336 Introduction to Llnux : Installation and Programming

The opening / of ali comments should be indented to the same level as the code to which
it applies, for example:

if (fubar()) {

}

If you put a comment on the same line as code, set it off from the code with a few tabs.
Don't continue such a comment across multiple lines. For example:

printf("hi\n"); /* hello revisited */

In fact, try to avoid such comments altogether - if it's not important enough to warrant a
complete sentence, does it really need to be said?

The size of the comment should be proportional to the size of the code that it refers to.
Consequently, properties of code that, can fit within a single 24-line screen should not be
commented unless they are not obvious. By contrast, even obvious global properties and
invariants may need to be made explicit. This doesn't have to be through comments, though.
The assertO macro is an excellent' , executable comment".

Line Breaking
Lines should be limited to 80 characters in Width, so as to fit into standard terminal displays
without wrapping. How you choose to break your lines and indent the subsequent continued
lines is left up to you. One method that you might like to use is to attempt to break lines
before operators (particularly the logical boolean operators if the statement contains them)
and half-indent the subsequent line by an additional two spaces. Whichever way you choose,
please try to be consistent.

Whitespace
Whitespace should be used to form the statement into as close an approximation to english
as possible. This means that whitespace should be used between binary operators and
operands, between conditionals and their conditions ('if' is not a function), and after commas
used to seperate parameters. Note that whitespace between function names and parameters
is discouraged, as the function call is considered an indivisible unit. This rule can be bent in
the interests of shorter lines, as long as the ultimate aim of keeping a line readable is kept in
mind.

While the authors will not attempt to perscribe use of empty lines in code, typically empty
lines should be used to seperate logical sections (like paragraphs in english text). It Is
possible to overuse empty lines to make less code fit on a screen, hence making code more
difficult to read.

Brace Placement
Opening braces should be on the same line as the conditional or declarative statement that
the brace is a part of. Closing braces should be on a line by themselves. This style was
adopted to try and keep code length to a minimum, while retaining reasonable readability.
The authors realise that not everyone agrees with this pOSition, but we don't care :0).
Seriously, there is probably no objective reasoning to prefer this to a brace-on-next-line
style, so we chose the one we're most comfortable with.

Compiling C and C++ Programs Under Llnux 337

Another issue in brace placement is whether to brace single statements in a conditional.
While the authors recommend bracing all statements in conditionals, as it makes adding
more statements to it later easier and less error-prone, they see this as somewhat less
important than other issues

Source File Organization

Use the following organization for source files:

includes of system headers

includes of local headers

type and constant definitions

global variables

functions

A reasonable variation might be to have several repetitions of the last three sections.

Within each section, order your functions in a .. bottom up" manner - defining functions
before their use. The benefit of avoiding redundant (hence error-prone) forward declarations
outweighs the minor irritation of having to jump to the bottom of the file to find the main
functions.

In header files, use the following organization:

type and constant definitions

external object declarations

external function declarations

Again, several repetitions of the above sequence might be reasonable. Every object and
function declaration must be preceded by the keyword extern.

Also, avoid having nested includes.

Declarations and Types

Avoid exporting names outside of individual C source files; i.e., declare as static every
function and global variable that you possibly can.

When declaring a global function or variable in a header file, use an explicit extern. For
functions, provide a full ANSI C prototype. For example:

extern int errno;

extern void free(void *);

Do not use parameter names in function prototypes - you are increasing the risk of a
name collision with a previously-defined macro, e.g.:

#define fileptr stdin

extern int foo(FILE *fileptr);

338 Introduction to Linux : Installation and Programming

Instead, doc ument parameter names only as necessary uSing comments:

extern void veccopy(double * /*dst*/, double * /*src*/, size_t);

Why the extern? It is OK to declare an object any number of times, but in all the source
files there can be only one definition. The extern says "This is only a declaration." (A
definition is something that actually allocates and initializes storage for the object.)

Header files should never contain object definitions, only type definitions and object
declarations. This is why we require extern to appear everywhere except on the real
definition.

In function prototypes, try not to use const. Although the ANSI standard makes some
unavoidable requirements in the standard library, we don't need to widen the problem any
further. What we are trying to avoid here is a phenomenon known as "const poisoning",
where the appearance of const in some prototype forces you to go through your code and
add const all over the place.

Don't rely on C's implicit int typing; i.e., don't say:

extern foo;

say:

extern int foo;

Similarly, don't declare a function with implicit return type. If it returns a meaningful
integer value, declare it into If it returns no meaningful value, declare it void. (By the way,
the C standard requires you to declare mainO as returning int.)

Provide typedefs for all struct and union types, and put them before the type declarations.
Creating the typedef eliminates the clutter of extra struct and union keywords, and makes
your structures look like first-class types in the language. Putting the typedefs before the
type declarations allows them to be used when declaring circular types. It is also nice to
have a list of all new reserved words up front.

typedef struct Foo Foo;

typedef struct Bar Bar;

struct Foo {

Bar *bar;

};

struct Bar {

Foo *foo;

};

Compiling C and C++ Programs Under Linux

This give a particularly ntce scheme of exporting opaque objects in header files.

In header.h:

typedef struct Faa Faa;

In source.C:

#include "header.h"

struct Faa { .. };

Then a client of header.h can declare a

Faa *x;

339

but cannot get at the contents of a Faa. In addition, the user cannot declare a plain (non
pointer) Faa, and so is forced to go through whatever allocation routines you provide. We
strongly encourage this modularity technique.

If an enum IS intended to be declared by the user (as opposed to just being used as
names for integer values), give it a typedef too. Note that the typedef has to come after the
enum declaration.

Don't mix any declarations in with type definitions; i.e., don't say:

struct faa {

int x;

} object;

Also don't say:

typedef struct {

int x;

} type;

Declare each field of a structure on a line by itself. Think about the order of the fields. Try
to keep related fields grouped. Within groups of related fields, pick some uniform scheme for
organizing them, for example alphabetically or by frequency of use. When all other
considerations are place larger fields first, as C's alignment rules may then permit the
compiler to save space by not introducing "holes" in the structure layout.

Use of the Preprocessor

For constants, consider using :

enum { Red = OxFOO, Blue = OxOFO, Green = OxOOF };

static canst float pi = 3.14159265358;

instead of #defines, which are rarely visible in debuggers.

340 Introduction to Linux : Installation and Programming

Macros should avoid side effects. If possible, mention each argument exactly once. Fully
parenthesize all arguments. When the macro is an expression, parenthesize the whole macro
body. If the macro is the inline expansion of some function, the name of the macro should be
the same as that of the function, except fully capitalized. When continuing a macro across
multiple lines with backslashes, line up the backslashes way over on the right edge of the
screen to keep them from cluttering up the code.

#define OBNOXIOUS(X)

(save = (X),

dosomethingwith(X),

(X) = save)

Try to write macros so that they are syntactically expressions. C's comma and conditional
operators are particularly valuable for this. If you absolutely cannot write the macro as an
expression, enclose the macro body in do { ... } while (0). This way the expanded macro
plus a trailing semicolon becomes a syntactic statement.

If you think you need to use #ifdef, consider restricting the dependent code to a single
module. For instance, if you need to have different code for Unix and MS_DOS, instead of
having #ifdef UNIX and #ifdef dos everywhere, try to have files unix.c and dos.c with
identical interfaces. If you can't avoid them, make sure to document the end of the
conditional code:

#ifdef FUBAR

some code

#else

other code

#endif /* FUBAR */

Some sanctioned uses of the preprocessor are:

• Commenting out code: Use #if O.

• Using GNU C extensions: Surround with #ifdef _GNUC_.

• Testing numerical limits: Feel free to conditionalize on the constants in the standard
headers <float.h> and <limits.h>.

If you use an #if to test whether some condition holds that you know how to handle, but
are too lazy to provide code for the alternative, protect it with #error, like this:

#include <limits.h>

#if INT_MAX > UCHAR_MAX

enum { Foo = UCHAR_MAX + 1, Bar, Baz, Barf };

#else

#error "need int wider than char"

#endif

Compiling C and C++ Programs Under Linux 341

Naming Conventions

Names should be meaningful in the application domain, not the implementation domain.
This makes your code clearer to a reader who is familiar with the problem you're trying to
solve, but is not familiar with your particular way of solving it. Also, you may want the
Implementation to change some day. Note that well-structured code is layered internally, so
your implementation domain is also the application domain for lower levels.

Names should be chosen to make sense when your program is read. Thus, all names
should be parts of speech which will make sense when used with the language's syntactic
keywords. Variables should be noun clauses. Boolean variables should be named for the
meaning of their "true" value. Procedures (functions called for their side-effects) should be
named for what they do, not how they do it. Function names should reflect what they return,
and boolean-valued functions of an object should be named for the property their true value
implies about the object. Functions are used in expressions, often in things like if's, so they
need to read appropriately. For instance,

if (checksize(s»

is unhelpful because we can't deduce whether checksize returns true on error or non-
error; instead

if (validsize(s»

makes the point clear and makes a future mistake in using the routine less likely.

Longer names contain more information than short names, but extract a price in
readability. Compare the following examples:

for (elementindex = 0; elementindex < DIMENSION; ++elementindex)

printf("%d\n", element[elementindex]);

for (i = 0; i < DIMENSION; ++i)

printf("%d\n", element[i]);

In the first example, you have to read more text before you can recognize the for-loop
idiom, and then you have to do still more hard work to parse the loop body. Since clarity is
our goal, a name should contain only the information that it has to.

Carrying information in a name is unnecessary if the declaration and use of that name is
constrained within a small scope. Local variables are usually being used to hold intermediate
values or control information for some computation, and as such have little importance in
themselves. For example, for array indices names like i, j, and k are not just acceptable,
they are desirable.

Similarly, a global variable named x would be just as inappropriate as a local variable
named elementindex. By definition, a global variable is used in more than one function or
module (otherwise it would be static or local), so all of it's uses will not be visible at once.
The name has to explain the use of the variable on its own. Nevertheless there is still a
readability penalty for long names: casefold is better than case_fold_fla9_seCby_main .

•

342 Introduction to Linux : Installation and Programming

In short, follow to make variable name size proportional to scope:

length(name(variable» '" log(countlines(scope(variable)))

Use some consistent scheme for naming related variables. If the top of memory is called
physlim, should the bottom be membase? Consider the suffix -max to denote an incluSive
limit, and -lim to denote an exclusive limit.

Don't take this too far, though. Avoid " Hungarian"-style naming conventions which
encode type information in variable names. They may be systematic, but they'll screw you if
you ever need to change the type of a variable. If the variable has a small scope, the type
will be visible in the declaration, so the annotation is useless clutter. If the variable has a
large scope, the code should modular against a change in the variable's type. In general, I
think any deterministic algorithm for producing variable names will have the same effect.

Nevertheless, if the type name is a good application-domain description of the variable,
then use it, or a suitable abbreviation. For instance, when implementing an ADT I would
write:

/*
* Execute registered callback and close socket.

*/
void

chan_c1ose(Chan *chan) /* No better name for parameter than "chan" */

{

(*chan- >deactivate)(chan- > arg);

(void) c1ose(chan->fd);
}

but when using the ADT I would write:

/*
* Log a message when the watched-for event happens.

*/
struct Monitor {

int (*trigger)(void *region);

void *region;

char *message;

Chan *Iog; /* describes how Chan is used */

};

There are weaknesses in C for large-scale programming - there is only a single, flat name
scope level greater than the module level. Therefore, libraries whose implementations have
more than one module can't guard their inter-module linkage from conflicting with any other
global identifiers. The best solution to this problem is to give each library a short prefix that
it prepends to all global identifiers.

Compiling C and C++ Programs Under Linux 343

Abbreviations or acronyms can shorten things up, but may not offer compelling savings
over short full words. When a name has to consist of several words (and it often doesn't),
separate words by underscores, not by BiCapitalization. It will look better to English-readers
(the underscore is the space-which-is-not-a-space). Capitalization is reserved for distinguishing
syntactic namespaces.

C has a variety of separately maintained namespaces, and distinguishing the names by
capitalization improves the odds of C's namespaces and scoping protecting you from
collisions while allowing you to use the same word across different spaces. C provides
separate namespaces for:

Preprocessor Symbols
Since macros can be dangerous, follow tradition fully capitalize them, otherwise following the
conventions for function or variable names.

#define NUSERTASKS 8
#define ISNORMAL(S) (S)->state == Normal)

Any fully capitalized names can be regarded as fair game for #ifdef, although perhaps not
for #if.

Labels
Limited to function scope, so give it a short name, lowercase. Give meaningful name such
that the corresponding goto statement can be read aloud, and name it for why you gc there,
not what you do when you get there. For instance,

goto bounds_error;

IS more helpful than

goto restore_pointer;

Structure, Union, or Enumeration Tags

Having these as separate namespaces creates an artificial distinction between structure,
union, and enumeration types and ordinary scalar types. i.e. you can't simplify a struct type
to a scalar type by replacing

struct Foo { long bar; };

with

typedef long Foo;

since you stili have the "struct" keyword everywhere, even when the contents are not being
examined. The useless "struct" keywords also clutter up the code. Therefore we advocate
creating a typedef mirror of all struct tags:

typedef struct Foo Foo;

344 Introduction to Linux : Installation and Programming

Capitalize the tag name to match the typedef name.

Structure or Union Members

Each structure or union has a separate name space for its members, so there is no need to
add a distinguishing prefix. When used in expressions they will follow a variable name, so
make them lowercase to make the code look nice. If the type of a member is an ADT, the
name of the type is often a good choice for the name of the variable (but in lowercase). You
do not prefix the member names, as in:

struct timeval { unsigned long tv_sec; long tv_usec; };

for they are already in a unique namespace.

Ordinary Identifiers

all other ordinary identifiers (declared in ordinary declarators, or as enumerations constants).

Typedef Names

Capitalized, with no _t suffix or other cutesy thing to say "I'm a type" - we can see that
from it's position in the declaration! (Besides, all names ending with _t are reserved by
POSIX.) The capitalization is needed to distinguish type names from variable names - often
both want to use the same application-level word.

Enumeration Constants
Capitalize. If absolutely necessary, consider a prefix.

enum Fruit { Apples, Oranges, Kumquats};

Function Names

Lowercase. If they are static (and most should be), make the name short and sweet. If they
are externally-visibly, try to give then a prefix unique to the module or library.

Function Parameters

Since they will be used as variables in the function body, use the conventions for variables.

Variables

Lowercase.

Lastly, develop some standard idioms to make names automatic. For instance:

int i, j, k; /* generic indices */

char *s, *t; /* string pOinters */

char *buf; /* character array */

double x, y, z; /* generic floating-point */
size_t n, m, size; /* results of sizeof or arguments to malloc */

Foo foo, *pfoo, **ppfoo; /* sometimes a little hint helps */

Compiling C and C++ Programs Under Linux 345

Indentation and Layout
Try to stay inside the mythical 79 column limit. If you can't, look for a tasteful place to break
the line (there are some ideas below). Avoid ideas that would lead to indenting that doesn't
align on a tab stop. If worst comes to worst, grit your teeth and tolerate the long line.

Use real tab characters for Tabs are always 8 spaces. This policy has the
following advantages:

• It doesn't require a fancy editor; not everyone uses emacs.
• It is easy to write miscellaneous program text processing tools that count leading tabs.
• It encourages you to break deeply nested code into functions.
If you use short names and write simple code, your horizontal space goes a long way

even with tab indenting.
Use the One True Brace Style (lTBS) as seen in K&R. The following quotation from Henry

Spencer's Ten Commandments for C Programmers says it better than I can:
Thou shalt make thy program's purpose and structure clear to thy fellow man by using

the One True Brace Style, even if thou likest it not, for thy creativity is better used in solving
problems than in creating beautiful new impediments to understanding.

- The Eighth Commandment

The rationale behind this brace style, straight from the horse's (Dennis') mouth, is that the
braces are just line noise to make the compiler happy, and so don't deserve to be specially
set. apart. (The GNU style is a particularly bad offender in this regard!) Also, the lTBS
conserves vertical space, which is important for those of us working on 24 line displays. (It
also helps avoid excessive eye movement on big displays.)

Purists point out that lTBS is inconsistent since it has one style for statements and
another for functions. That's okay since functions are special anyway (you can't nest them).
It's also good to know that with most editors you can get to the top of the current function
by searching backward for the regexp "{.

Avoid unnecessary curly braces, but if one branch of an if·is braced, then the other should
be too, even if it is only a single line. If an :nner nested block is braced, then the outer
blocks should be too.
Some examples:

if (foo == 7) {

barO;
} else if (foo == 9) {

barf 0;
bletchO;

} else {

boondoggleO;
frobnicate() ;

}

do {

for (i = 0; i < n; ++i)
a[i] = 0;

plughO;
xyzzyO;

} while (!blurf());

346 Introduction to Linux : Installation and Programming

In switch statements, be sure every case ends with either a break, continue, return, or /*
fall through */ comment. Especially don't forget to put a break on the last case of a switch
statement. If you do, I promise someone will forget to add one someday when adding new
cases.

switch (phase) {
case New:

printf("don't do any coding tonight\n");

break;

case Full:

printf("beware Iycanthropes\n");

break;
case Waxing:
case Waning:

printf("the heavens are neutral\n");

break;
default:

}

/*

* Include occasional sanity checks in your code.

*/
fprintf(stderr, "and here you thought this couldn't happen!\n");

abortO;

This last example also illustrates how to handle labels, including case labels and goto
labels: put each label on a line by itself, and outdent it by a tab stop. However, if outdenting
a label would take it all the way out to the left edge of the screen, insert a leading space.

Use goto sparingly. Two harmless places to use it are to break out of a multilevel loop, or
to jump to common function exit code. (Often these are the same places.)

Layout your functions like this:

/*
* Optional comment describing the function.

*/
type
name(args)

{

declarations

code

}

Compiling C and C++ Programs Under Linux 347

It IS important that the name of the function be in the first column of text with no
indentation. Some text processing utilities (e.g. etags) rely on this to find function
definitions. Even if you don't use such tools, it's extremely helpful to know that the regular
expression /\name matches the single definition of the function.

Note that we will not be using old-style function definitions where the args are declared
outside the parameter list. Include a blank line between the local variable declarations and
the code. Also feel free to include other blank lines, particularly to separate major blocks of
code.

Multiple declarations can go on one line, but if the line gets too long don't try to continue
it in some fancy way, just start a new declaration on the next Ime. Avoid declarations in all
but the most complex inner blocks. Avoid initializations of automatic variable in declarations,
since they can be mildly disconcerting when stepping through code with a debugger. Don't
declare external objects inside functions, declare them at file scope. Finally, don't try to go
into denial over C's .. declaration by example" syntax. Say:

char *p;

not:

char* p;

In the long run, such fights with the language will only cause you grief. (One of the
reason's Stroustrup's original C++ book was practically unreadable was because he was
constantly fighting with C.)

Use spaces around keywords. Use spaces around binary operators, except . and - >, for
they are morally equivalent to array subscripts, and the " punctuation" operator ','. Don't
use spaces around unary operators, except sizeof and casts. Example:

x = -y + z + sizeof (Foo) -+ bar();

Note that function call is a unary operator, so don't use a space between a function name
and the opening parenthesis of the arguments. The reason for making an exception for sizeof
is that it is a syntactic keyword, not a function. These rules lead to:

if (something)

for syntactic keywords, and

foo(something)

for functions. Don't parenthesize things unnecessarily; say

return 7;

not

return (7);

and especially not

return(7) ;

Remember, return is the exact antonym of function call! The parsing precedence of the
bitwise operations (&, I, /\, can be surprising. Always use full parentheses around these
operators.

348 Introduction to Llnux : Installation and Programming

Some C style guides take this a bit too far, though. One author went as far as to suggest
that C programmers should rely on * and / bind more tightly than + and -, and parenthesize
the rest. This is a good way to write Lisp code, but it makes C look ugly. A C programmer
should be able to recognize its idioms and be able to parse code like:

while (*s++ = *t++)

If an expression gets too long to fit in a line, break it next to a binary operator. Put the
operator at the beginning of the next line to emphasize that it is continued from the previous
line. Don't add additional indenting to the continued line. This strategy leads to particularly
nice results when breaking up complicated conditional expressions:

if (x == 2 II x == 3 II x == 5 II x == 7
II x == 11 II x == 13 II x == 17 II x == 19)

printf("x is a small prime\n");

This example also illustrates why you shouldn't add additional indenting when continuing
a line - in this case, it could get confused with the condition body. Avoid breakpoints that will
give the reader false notions about operator precedence, like this:

if (x == 2 II x > 10
&& x < 12 II x = = 19)

If you're breaking an expression across more than two lines, try to use the same kind of
breakpoint for each line. Finally, if you're getting into really long expressions, your code is
probably in need of a rewrite.

Avoid sloppiness. Decide what your style is and follow it precisely. I often see code like
this:

struct foo
{

};

int baz ;
int barf,:
char * x, *y;

All those random extra spaces make me wonder if the programmer was even paying
attention!

The indent utility can automatically check most of these indentation conventions. The
style given here corresponds to the indent options

-bap -bad -nbc -bs -cia -di1 -is

which can be specified in a file named indent.pro in your home directory. Note that indent
tends to mess up typedef-defined identifiers unless they are explicitly given on the command
line.

Compiling C and C++ Programs Under Llnux

Expressions and Statements
In C, aSSignments are expressions, not statements. This allows multiple assignlnent

a = b = c = 1;

and assignment within expressions

if (!(bp = malloc(sizeof (Buffer)))) {

perror("malloc") ;

abortO;

}

349

This capability can sometimes allow concise code, but at other times it can obscure
important procedure calls and updates to variables. Use good judgement.

The C language lacks a true boolean type, therefore its logic operations (! = = > < > =
<=) and tests (in the conditional operator ?: and the if, while, do, and for statements) have
some interesting semantics. Every boolean test is an impliCit comparison against zero (0).
However, zero is not a simple concept. It represents:

• the integer zero for all integral types

• the floating point 0.0 (positive or negative)

• the nul character

• the null pOinter

In order to make your intentions clear, explicitly show the comparison with zero for all
scalars, floating-point numbers, and characters. This gives us the tests

(i == 0)

instead of

(i) (!x)

(x != 0.0) (c == '\0')

(c)

An exception is made for pOinters, since 0 is the only language-level representation for
the null pOinter. (The symbol NULL is not part of the core language - you have to include a
special header file to get it defined.) In short, pretend that C has an actual boolean type
which is returned by the logical operators and expected by the test constructs, and pretend
that the null pOinter is a synonym for false.

Write infinite loops as:

for (;;)

not

while (1)

350 Introduction to Linux : Installation and Programming

The former is idiomatic among C programmers, and is more visually distinctive.

Feel free to use a for loop where some of the parts are empty. The purpose of for is to
centralize all loop control code in one place. If you're thinking "for each of these things, we
have to do something," use a for loop. If a for statement gets too long to fit in a line, turn it
into a while. If your loop control is that complicated, it probably isn't what for is for (pun
intended).

Never return from the function mainO, explicitly use exitO. They are no longer equivalent
- there is an important distinction when using the atexitO feature with objects declared
locally to mainO. Don't worry about the details, just use this fact to program consistently.
This does spoil the potential for calling mainO recursively, which is usually a silly thing to do.

Functions

Functions should be short and sweet. If a function won't fit on a single screen, it's probably
too long. Don't be afraid to break functions down into smaller helper functions. If they are
static to the module an optimizing compiler can inline them again, if necessary. Helper
functions can also be reused by other functions.

However, sometimes it is hard to break things down. Since functions don't nest, variables
have to be communicated through function arguments or global variables. Don't create huge
interfaces to enable a decomposition that is just not meant to be.

Further Reading

There is a wonderful Web page on Programming in C which features such goodies as Rob
Pike's Notes on Programming in C, Henry Spencer's The Ten Commandments for C
Programmers, and the ANSI C Rationale. These are all required reading.

18.9 Conclusions
This chapter explains about the compiling C program's in Linux/Unix environment. The
compilation stages and their objectives are explained in a step by step fashion. Also, multi file
programming is also explained. At the end, how a "c++" program can be compiled under
Linux/Unix is also explained. Also, how C, C++, programs can be mixed also explained in a
step by step fashion. Moreover, how actually mainO is initiated and how Linux as coordinates
the same is a special dealing in this chapter.

19 GNU Debugger

19.1 Introduction
GNU Debugger mainly concerned with debugging of program's of some languages run on
LInUx operating system. This debugger consists of gdb command and commands that run
with gdb shell. The gdb command concerns with what is to be debugged and shell commands
with how it is to be debugged.

19.1.1 Bugs And Debugging

A bug is an error. Debugging means detecting the bugs. Bugs occur at specification or design
or coding times. If a program is incorrectly specified, inevitably fail to perform as required.
Bugs that occur at design time lead to incorrect results. Bugs that occur at coding time are
detected and removing using many methods. These methods include debuggers and some
system defined functions and displaying of messages at runtime.

Normally, We debug program's by including printf statements in the code as and when
reqUire. Apart from this, there are three types of debugging is carried out.

• First, we can do debugging using constants defined by # define.

• Second, debugging can be done by system defined macros. Macros and their description
is as follows :

Macro

LINE

FILE

DATE

Description

A decimal constant representing the current line number.

A string representing the current file name.

A string of the form "Mmm:dd:yyyy", the current date.

TIME A string of the form "hh:mm:ss", the current time.

• Third is the debuggers provided and used with Linux. They are gdb, sdb and dbx.
There are front ends for gdb (such as xxgdb, tgdb, ddd)which makes it more user
friendly.

19.2 Debugging Using gdb
GDB, a short name of gnu debugger is a free software protected by GNU General Public
License (GPL). GDB allows user to see what is happening when a program is getting
executed.

GDB can do the following things.

• Start your program, specifying anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened, when your program has stopped.

• Change things in your program, so that you can experiment with correcting effects of
one bug and learn about others.

GDB can be also used to debug Fortran programs if Fortran compiler is loaded. GDB is
invoked with a shell command gdb. Once started, it reads commands from the terminal until
we press quit command.

352 Introduction to Linux : Installation and Programming

We can run gdb command without options. But in general we run it as follows.

gdb program

Here program is the name of the executable file to be debugged.

In order to run a file using gdb, the program must be compiled with -g option. This option
makes debugging information attached to original executable file. If we want to know more
details about gdb, we can run the same with -help option as shown below.

gdb -help

This command displays the following output.

This is the GNU debugger. Usage:

gdb [options] [executable-file [core-file or process-id]]

gdb [options] --args executable-file [inferior-arguments ...]

Options:

--args Arguments after executable-file are passed to inferior

--[no]async Enable (disable) asynchronous version of CLI

-b BAUDRATE Set serial port baud rate used for remote debugging.

--batch Exit after processing options.

--cd=DIR Change current directory to DIR.

--command=FILE Execute GDB commands from FILE.

--core=COREFILE Analyze the core dump COREFILE.

--pid=PID Attach to running process PID.

--dbx DBX compatibility mode.

--directory=DIR Search for source files in DIR.

--epoch Output information used by epoch emacs-GDB interface.

--exec= EXECFILE Use EXECFILE as the executable.

GNU Debugger

--fullname Output information used by emacs-GOB interface.

--help Print this message.

--interpreter=INTERP

Select a specific interpreter / user interface

--interpreter=INTERP

Select a specific interpreter / user interface

--mapped Use mapped symbol files if supported on this system.

--nw Do not use a window interface.

--nx Do not read .gdbinit file.

--quiet Do not print version number on startup.

--readnow Fully read symbol files on first access.

--se=FILE- Use FILE as symbol file and executable file.

--symbols=SYMFILE Read symbols from SYMFILE.

--tty = TTY Use TTY for input/output by the program being debugged.

--version. Print version information and then- exit.

-w Use a window interface.

--write Set writing into executable and core files.

--xdb XDB compatibility mode.

Example 1
Let us consider a simple program (ex1.c) and see how we can debug using gdb.

#include<stdio.h>

int mainO

353

354

{

printf("Helio How are you?\n");

return 23;
}

Introduction to Llnux : Installation and Programming

First compile the same using -g option. That is, execute the following command.

ge e -g exl.e

In order to debug the resultant executable file, execute the following command which
gives many details before displaying gdb prompt (i.e. (gdb))

gee a.out
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GOB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see· the conditions.

There is absolutely no warranty for GOB. Type "show warranty" for details.

This GOB was configured as "i386-redhat-linux-gnu" ...

(gdb) r

Starting program: /root/nav/a .out

Hello How are You?

Program eXited with code 023.

(gdb) 9

. If we want to start gdb and do not interested to see all those messages then we can start
gdb with -q option such as:

gdb -q a.out

(gdb) r

Starting program: /root/a.out

Hello How are You?

Program exited with code 023.

(gdb) ,q

GNU Debugger

19.2.1 Commands which can be used at gdb prompt

Break:

Break command is used to set a breakpoint at any line of a file or any function.

Synopsis:
Break [file :] function

355

Here file is name of file and function is the name of function where breakpoint is needed.
If we want a break point at a line. The execution stops just before that instr4ction. If we give
a break pOint for a function, the execution stops at the first statement of function.
Run: Run command is used to run the program being debugged. If we type this command
while program is being debugged then we are asked if we want to do it from the beginning.

Synopsis:

Run [arglist]

Arglist is the list of command line arguments. It is optional. The short form of run is'r'

Back Trace:

Back trace command is used for displaying program stack. This display the runtime stack of
program.

Synopsis:
bt:

This command enables us to know the functions and their information that are currently
active. bt is short form of back trace.

Print:

Print command is used to display the values of variables and expressions at the moment of
program.

Synopsis:

Print Expr:

Expression might be a single variable or an expression in general. If we give name of
variable proceeded by '&' symbol for expr then the address where the value is stored
displayed. The short form of print is p.

Continue:

Continue command continues the execution of a program from a break point until the next
break pointy or end of the program.

Synopsis:

Continue:

Continue helps in flow of program from break point to break point enabling the programmers
detect the points where bug is present. Short form of is C.

Next:

Next command is used to executed the next line of program being debugged. It step-over
any function calls in the line.

Synopsis:

Next:

This command steps over any function calls in the line it treats the line with function call as a
single instruction. Short form is in.

356 Introduction to Llnux : Installation and Programming

Step:
Step command is same as next except that it steps into any function that occurs in the line.

Synopsis:
Step command is same as next except that it steps il)to any function that occurs in the line.

Synopsis:
Step:
This command helps in tracking even the functions that occur in the line thus making the
process of a file much more clearer than with next.

Edit:
Edit helps in finding the line of program where execution was stopped.

Synopsis:
Edit [file :] function

List:
List command types the text of program in the vicinity where it is presently stopped.
Function is name of function and file is name of file.

Help:
Help command shows information about command name.

Help [name]

Here name of command is optionc;tl. If it is not given, then the information about gdb
commands is displayed.

Quit:
This is used for exiting from gdb.

Synopsis:

Quit

Short from of quite is q.

Example 2
Consider another example (ex2.c) which takes command line arguments.

#include<stdio.h>
int main(int N, char *a[])

{

int i;

for(i=O;i<N;i++)
printf("a[iJ\n"); ,

return 23;
}

GNU Debugger

Compile the above program with -g option and then start gdb. That is :

gee -g ex2.e

gdb -q a.out

(gdb)r Ram Rao 123

Starting program: /root/a.out Ram Rao 123

/root/a.out

Ram

Rao

123

Program exited with code 04

(gdb)g

357

If we want, we can write all the commands which we want to give to gdb in a file and
then ask gdb to use them while debugging our program. For example, let the file "abc"
contains the following gdb commands.

break 2

break 3

r Ram Rao 123

next

next

next

next

next

next

next

next

next

next

q

Now, start gdb as follows:

gdb -q a.out -x abc

358 Introduction to Llnux : Installation and Programming

Example 3

Some other gdb commands are explained using the following example. In the following
output of a gdb session, you can see (bold underlined ones) how gdb commands can be used
while debugging a program.

Line No. Program Text

1 # include <stdioh>

2 int isprime (int x)

3 {

4 int i;

5 for (i=2; i <=x/2; i++)

6 if (x % i = = 0)

7 return 0;

8 return 1;

9 }

10 int main (

11{

12 int I, x;

13 for (I=1; 1< = 3; 1++)

14 {

15 printf ("Enter a number")

16 scanf ("%d",&x);

17 if (! isprime (x))

18 printf ("not a prime number\n")

19 else

20 printf (" a prime number")

21 }

22 return 0;

23 }

Now the commands are executed for this program gdbex.c at the command prompt.

gcc -g gdbex.c

gdb -q a.out

(gdb) r

GNU Debugger

Starting program: /root/a.out.

Enter a number 23

It is a prime number.

Enter a number 44

Not a prime number

Enter a number 31
A prime number

Program is eXited with code 060

Here the program is executed until end as it has no break pOints.

Now we keep breakpomts

(gdb) break 18
Breakpoint 1 at OX80483 Fe: file gdbex.c line 18.

Here a breakpoint at; Itne 18 is created with number 1.

Now turn the program.

(gdb) r

Starting program: /root/a-out

Enter a number 23
It is a prime

Enter a number 44

Break point/main () at gdbex.c: 18

18 printf ("not a prime")'

Here it is observed that execution of program stopped at line 18.

We can print the values of variable currently as follows:

(gdb) prjnt x

$ 1 = 44

(gdb) print Btx

$ 2 = (int *) OXFFF ecb 4

Here address of x is displayed

(gdb) print I

$ 3 = 2

(gdb) print Btl

$ 4 = (int *)) OXbFFF ecbo

In for requires a special mention.

359

Info command gives information of files when it is being debugged. The information
consists of addresses, registers, args, breakpoints, catch points, files functions, local
variables, macros, memory and procedures

(gdb) info locals

x = 44

i = 2

360 Introduction to Llnux : Installation and Programming

-,'he above gave information about local variables in the program.

(gdb) info registers
eax OXO 0
ecx OXO 0
edx OXO 0
ebx OX42130a14 1708544020
esp OXFFFecbo OXbFFFecbO
ebp OXbFFFecb8 OXbFFFecb8
esi OX40015360 1073828704
edc OX80484sc 134513756
eip OX80483fe OX80483fe
e flags OX243 582
es OX236 35
ss OX2b 43
es Ox2b 43
es OX2b 43
Fs OXO 0
Gs OX33 51

The above gave information about values of registers.

(gdb) info arqs
no arguments
this is regarding command line arguments
(gdb) jnfo functjons
All defined Functions
File gdbex .c
int isprime (int)
Non-debugging symbols
OX08048254 - init
OX0804827C - scanf
the above gave info about functions
(gdb) info breakpoints
Num Type
1 breakpoint la

Disp

Y
breakpoint already hit 1 time.

Enb AddressWhat
OX080483Fe in main at gdbex.C;8

The above gave information about breakpoints currently active.
(gdb) info files
This gives information about files are follows:
Name of targets and file being debugged.
Unix child process.
Using the running image of child process 2077

GNU Debugger

Local execfile
'/root/a-out', fitype ELF32-i386
entry point; OX80482ac.

(gdb) info proc
process 2077
cmdline = a.out

cmd = /root

exe = /a.out.
(gdb) list

13 for (I = 1,1 <=3, 1 + +)
14 {

15 printf ("Enter a number");
16 scanf ("%d", &x)
17 if (!isprime (x»
18 printf ("not a prime number");
19 else
21 }
22 }

Back tracing at this stage is as follows:
(gdb)Jg

0 main () at gdbex. C: 18
1.0X4215574 in,libcstarUT'.3in (

from lib/tls/.libc. so.6
(gdb) break 5

break point 2 at OX8048362: File of gdbex.c lines

(gdb) "
continuing
not a prime number
enter a number 7
'breakpoint 2, isprime(x=7) at gdbex.c:5
5 For (i=2; i< =x/2; i ++)
(gdb) jnfo locals
i = 1108544020

contains garbage as it is not get initialized
(gdb) Hu
6 if (x % ==0)
(gdb) info locals

i = 2
i is initialized.

(gdb) "

361

362

continuing
is a prime number
program exited with code 0260
This ends the program
(gdb) delete 1
(gdb) delete

Introduction to Linux : Installation and Programming

Delete all breakpoints? 1 y or n 2 y
The first deletes a specific
Breakpoint named 1 and second deletes all breakpoints.
(gdb) break 16
breakpoint 3 at OX80483 ds: file gdbex.c, line 10.

isprime (x = 23) at gdbex.c:5
5 For (i =, i<=x/2, i ++)

this step made 2 steps forward (one into the function is prime)
(gdb)
continuing
it is prime
break point 3, main () at gdbex.c: 16
16 scan F ("%d", & x);

(gdb) mil
enter a number 56
17 (Fcl, isprime (x))
(gdb) next
18 printf ("not a prime");
her it is observed that next stepper over function is prime in line 17.-
(gdb)
enter a number 33
not a prime
program exited with code. 060.
(gdb) break isprime

break point 1 at OX6; File gdbex.c, line 5
(gdb) r
starting program: /root/a .out
enter a number 54
breakpoint 1, is prime (x=54) at gdbex.c.5
5 for (i =2; i <=x/2; i ++)
here break point is given for a function
(gdb) break main
breakpoint 2 at OX8048369: File gdbex.c, line 13
(gdb) [
starting program: /root/a .out
breakpoint 2 main () at gdbex.c: 13
13 For (i =1; i <=3; i ++)

GNU Debugger

Example 4

(gb) break 5
breakpoint 5, at OX8048362: File gdbex.c Line 5.

delete all breakpoints/y orn) y
(gdb) break 5
breakpoint 1, at OX8048362: File gdbex.c, line 5
(gdb) [
starting program: /root/a.out
enter a number 34
breakpoint, is prime (x=34) at gdbex.c:5
for (i =2; i <=x/2; i ++)
(gdb) In
0 is prime (x=34) at gdbex .. c: 5
1 OX0804887 in main () at gdbex.c:17
#2 42015574 in lib_start_main ()
From /lib/tls/libc.so.6.

363

The following program is also taken to explain about how gdb can be used for debugging
programs. The example gdb-example.c, is listed below. It is a simple, yet buggy program
that we will run under gdb.

#include "stdio.h"

void
print_scrambled(char *message)
{

}

int i = 3;
do {

printf("%c", (*message)+i);
} while (*++message);
printf("\n") ;

int
mainO
{

char * bad_message = NULL;
char * good_message = "Hello, world.";

prinCscrambled(good_message);
print_scrambled(bad_message) ;

}

gcc -g gdb-example.c -0 gdb-example

364 Introduction to Llnux : Installation and Programming

The backtrace command produces a list of the function calls, which is known as either a
backtrace or a stack trace.

Reading backtraces is fairly straightforward. The data associated with each function call in
the list is known as a stack frame. The outermost frame is the initial function that your
program started in, and is printed at the bottom of the list. Each frame is given a number (0,
1, 2, etc.). Following the frame number is an associated memory address, which is almost
entirely useless and which you can ignore. Then each frame contains the name of the
function that was called, its arguments, the name of the file where the function appears, and
line number. So, the stack trace for our program says that at line 20 of gdb-example.c in
function main, the print_scrambled function was called--and that the program got to line
eight of gdb-example.c inside the prinCscrambled function.

Getting more information
Getting a backtrace may provide enough information, but it is sometimes helpful to get more
information, such as the values of arguments or local variables. Another convenience
provided by gdb is listing a small segment of the code around where the program is currently
stopped so you can see which statements have been executed and which ones are about to
be. The following gdb session demonstrates how to do these things as well as how to switch
to previous stack frames using the up command.

gdb -q gdb-example

This GOB was configured as "i386-redhat-linux-gnu"".Using host libthread_db library
"/lib/tls/libthread_db.so.1" .

(gdb) DUl

Starting program: /home/newren/examples/gdb-example

Program received signal SIGSEGV, Segmentation fault.

Ox0804835b in print_scrambled (message=OxO) at gdb-example.c:8

8 printf("%c", (*message)+i);

(gdb) backtrace
#0 Ox0804835b in print_scrambled (message=OxO) at gdb-example.c:8

#1 Ox080483c3 In main 0 at gdb-exatnple.c:20

(gdb) .I.W
3 void

4 print_scrambled(char *message)

5 {
6 Int i = 3;
7 do {

8 printf("%c", (*message)+i);

9 } while (*++message);

10 prlntf("\n");

11 }
12

GNU Debugger

(gdb) info 10CIIs
i = 3
(gdb) info lras
message = OxO
(gdb) up
#1 Ox080483c3 in main 0 at gdb-example.c:20
20 prinCscrambled(bad_message);
(gdb) lW
15 {
16 char * bad_message = NULL;
17 char * good_message = "Hello, world.";
18
19 print_scrambled(good_message);
20 prinCscrambled(bad_message);
21 }
(gdb) info locals
bad_message = OxO
good_message = Ox80484a1 "Hello, world."
(gdb) info arqs
No arguments.
(gdb) SIlli1
The program is running. Exit anyway? (y or n) y

\ 365

- From the gdb output, it is fairly clear that the list, info locals, and Info args commands get
informioltion about the currently selected stack frame. Besides using the up command to go
choose a previous frame, you can also use the down command to choose a later one or use
the frame command (with a numeric argument) to choose which stack frame to switch to.

Walking through the progrlm
gdb can also allow you to walk through the program while it is running so that you can trace
its steps carefully. The following gdb session illustrates this, using the break, print, next, and
step commands.

Example 5

gdb -q gdb-example

This GOB was configured as "i386-redhat-linux-gnu" ... Using host libthread_db library
"/lib/tls/libthread_db.so.1".

(gdb) break main

Breakpoint 1 at Ox804839c: file gdb-example.c, line 16.

(gdb) DIll

366 Introduction to Llnux : Instatlatlon and Programming

Starting program: /home/newren/examples/gdb-example

Breakpoint 1, main 0 at gdb-example.c: 16
16 char * bad_message = NULL;

(gdb) print bad_message

$1 = Ox8048410 "U\211 %G%@VS"
(gdb) nul
17 char * good_message = "Hello, world.";
(gdb) print bad_message
$2 ::: OxO

(gdb)...nut

19 prinCscrambled(good_message);
(gdb) nul
Khoor/ #zruog$
20 print_scrambled(bad_message);

(gdb) iWl
print_scrambled (message:::OxO) at gdb-example.c:6
6 int i = 3;

(gdb) iWl
8 printf("%c", (*message)+i);

(gdb) .mm
Program received signal SIGSEGV, Segmentation fault.

Ox0804835b in print_scrambled (message=OxO) at gdb-example.c:8

8 printf("%c", (*message)+i);

(gdb) print (*message)+i

Cannot access memory at address OxO

(gdb) SU!i.t
The program is running. Exit anyway? (y or n) y

The break command sets a breakpoint--a location in the program where gdb should stop
when it gets to there. Breakpoints can be set at the beginning of a function or at specific
lines in program file. There are many things that can be done with breakpoints, such as
making them conditional or temporary. In this example, a common and simple usage case
was shown that had gdb stop at the beginning of the main function.

The next and step commands were used to make gdb move forward in the program. For
statements that do not Involve functions, the next and step commands are identical and
merely make gdb execute one statement. For statements that involve a function, however,
the two commands are different. next tells gdb to execute the entire function, while step tells
gdb to move inside the function.

The print command. displays the value of variables or expressions. In the example, the
bad_message variable was ·shown both before and after it was initialized. Later in the
example, gdb responded that it could not display the expression (*message)+i because a
pOinter (the message variable) had a NULL (meaning invalid) value. In fact, this is the bug in
this program--print_scrambled does not check to see whether Its argument contains a valid
value.

GNU Debugger

More on setting breakpoints
Example 6

367

Finally, as mentioned above, gdb has a variety of ways to set breakpoints. The example
below demonstrates setting breakpoints at a specific line number and in a function in Q
library used by the program.

gdb -q gdb-example
This GDB was confifjured as "i386-redhat-linux-gnu" ... Using host libthread_db
library "/lib/tls/libthread_db.so.l".
(gdb) break gdb-example,cj19
Breakpoint 1 at Ox80483d2: file gdb-example.c, line 19.
(gdb) break prjntf
Function "printf" not defined.
Make breakpoint pending on future shared library load? (y or [nJ) y

Breakpoint 2 (printf) pending.
(gdb) DID
Starting program: /data/home/newren/floss-development/developing-with-
gnome/examples/debugging/gdb/gdb-example
Breakpoint 1, main 0 at gdb-example.c:19
19 prinCscrambled(good_message);
(gdb) where
#0 main 0 at gdb-example.c: 19
(gdb) gm1

Continuing.

Breakpoint 3, Ox004692a6 in printf 0 from /lib/tls/libc.so.6
(gdb) wbJwl
#0 Ox004692a6 in printf 0 from /lib/tls/libc.so.6
#1 Ox08048394 in print_scrambled (message=Ox80484c9 "Hello, world.")

at gdb-example.c:8 .
#2 Ox080483dd in main 0 at gdb-example.c:19
(gdb) gml
Continuing.

Breakpoint 3, Ox004692a6 in printf 0 from /lib/tls/libc.so.6
(gdb) whmt
#0 Ox004692a6 in printf 0 from /lib/t1s/libc.so.6
#1 Ox08048394 in print_scrambled (message=Ox80484ca "ello, world. l

,)

at gdb-example.c:8
#2 Ox080483dd in main 0 at gdb-example.c:19
(gdb) delete 3
(gdb) gmt
Continuing.
Khoor/#zruogl

368 Introduction to Llnux : Installation and Programming

Program received signal SIGSEGV, Segmentation fault.
Ox08048383 in print_scrambled (message=OxO) at gdb-example.c:8
8 prlntf("%c", (*message)+i);
(gdb) gyjt
The program is running. Exit anyway? (y or n) y

The cont command (shorthand form of "continue") just Instructs gdb to continue running
until It either hits another breakpoint or the program ends. There where command Is
Identical to the backtrace command (it is merely an alias). The delete command removes a
breakpoint, given the number of the breakpoint (the command "info breakpoints" can come
in handy in connection with delete).

Segment Violations
What is a segmentation fault?

Segmentation fault Is when your program attempts to use memory locations that have
not been reserved for the program. Memory locations are reserved for the program by using
malloc In C, and new in C++.

The following common mistakes that lead to segmentation faults
• dereferencing NULL
• dereferenclng an un initialized pOinter
• dereferencing a pOinter that has been freed (or deleted, in C++) or that has gone out

of scope (in the case of arrays declared in functions)
• writing off the end of an array.
• a recursive function that uses all of the stack space. On some systems, this will cause

a "stack overflow" report, and on others, it will merely appear as another type of
segmentation fault.

The strategy for debugging all of these problems is the same: load the core file into GOB,
do a backtrace, move into the scope of your code, and list the lilies of code that caused the
segmentation fault.

Example 7
For Instance, running on a Unux system, here's an example seSSion with the file example.c.

#include<stdio.h>
void fooO
{

}

char *x = 0;
*x = 3;

int malnO
{

fooo;
return 0;

}

gcc -g -0 example example.c
./example

GNU Debugger 369

The' above program if executed gives segment violation as it is trying to store 3 at
address O. Some times, core dumped message also appears and a file named core with
extension as process's PID is seen in the current working directory. If in your configuration
file such as /etc/profile core file size is mentioned as zero ten core file will not be created.
Thus, if you want to create core file for analyzing your program crash then you can run the
following command at shell prompt and then run your program, say example.

ulimit -S -c 100000

'/example

Now to debug your program along with core file(refer also bug-buddy4), run the following
command.

gdb -q example corefilename

This just loads the program called example along with the core file which contains all the
information needed by GDB to reconstruct the state of execution when the invalid operation
caused a segmentation fault.

Once we've loaded up gdb, we get the following:

Program terminated with signal 11, Segmentation fault.

Some information about loading symbols

#0 Ox0804838c in fooO 0 at t.cpp:4

4 *x = 3;

So, execution stopped inside the function called fooO on line 4, which happened to be the
assignment of the number 3 to the location pOinted to by x.

Simply printing the value of the pOinter can often lead to the solution. In this case:

(gdb) pril)t x

$1 = OxO

Printing out x reveals that it pOints to memory address OxO (the Ox indicates that the
value following it is in hexadecimal, traditional for printing memory addresses). The address
OxO is invalid -- in fact, it's NULL If you dereference a pOinter that stores the location OxO
then you'll definitely get a segmentation fault, just as we did.

If we'd gotten something more complicated, such as execution crashing inside a system
call or library function (perhaps because we passed an uninitialized pointer to fgets), we'd
need to figure out where we called the library function and what might have happened to
cause a segment fault within it. Here's an example from another debugging session:

4 A command bug-buddy is available in Fedora releases which can be used for bug reporting graphically.

370

Example 8

#include<stdio.h>

#include<string.h>

void fooO
{

}

char *x = 0;
strcpy(x, "Hello");

int mainO

{

fooO;

return 0;

}

Introduction to Linux : Installation and Programming

gcc -g -0 example1 example1.c

./example

#0 Ox40194f93 in strcpy 0 from /lib/tls/libc.so.6

(gdb)

This time, the segment fault occurred because of something inside strcpy. Does this mean
the library function did something wrong? Nope! It means that we probably passed a bad
value to the function. To debug this, we need to see what we passed into strcpy.

So let's see what function call we made that led to the segment fault.

(gdb) backtrace
#0 Ox40194f93 in strcpy 0 from /lib/tls/libc.so.6

#1 Ox080483c9 in fooO 0 at t.cpp:6

#2 Ox080483e3 in main 0 at t.cpp: 11

(gdb)

Backtrace lists the function calls that had been made at the time the program crashed.
:ach function is directly above the function that called it. So foo was called by main in this
case. The numbers on the side (#0, # 1, #2) also indicate the order of calls, from most
recent to longest ago. .

To move from viewing the state within each function (encapsulated in the idea of a stack
frame), we can use the up and down commands. Right now, we know we're in the strcat
stack frame, which contains all of the local variables of strcat, because it's the top function

GNU Debugger 371

on the stack. We want to move "up" (toward the higher numbers); this is the opposite of
how the stack is printed.

(gdb) .Y.R

#1 Ox080483c9 in fooO 0 at t.cpp:6

6 strcpy(x, "Hello");

(gdb)

This helps a little -- we know that we have a variable called x and a constant string. We
should probably lookup the strcat function at this point to make sure that we got the order of
arguments correct. Since we did, the problem must be with x.

(gdb) print x
$1 = OxO

There it is again: a NULL pointer. The strcpy function must be dereferencing a NULL
pointer that we gave it, and even though it's a library function, it doesn't do anything
magical.

Example 9

The following example also gives segment violation because of the above reasons.

#include <stdio.h>

int main (int argc, char **argv)

{

}

int i;

pnntf ("Hello, world!\n");

/* print first characters of command-line arguments */

for (i=O; i<=argc; i++) {

printf ("%c", argv[i][O]);

}

printf ("\1,");

return 0;

./a.out rao rama
Hello, world!

372 Introduction to Linux : Installation and Programming

Segmentation fault (core dumped)
Is -I core.*
-rw------- 1 root root 1818624 Apr 29 12:04 core.4969

gdb -q a.out core.4969

Using host libthread_db library "/lib/tls/libthread_db.so.1".
Core was generated by . ,fa.out rao rama'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/tls/libc.so.6 ... done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2 ... done.
Loaded symbols for /lib/ld-linux.so.2
#0 Ox080483b6 in main (argc=3,

argv=Oxfee4f394) at a4.c:11
11 printf ("%c", argv[i][O]);
(gdb) print i
$1 = 3
(gdb) print argv[iJ
$2 = OxO
(gdb) q

As we did not give third argument along the command line, when i value is 3 the argv[i]
is observed to be zero. Thus we are getting segment violation.

Another common mistake is not checking the return from malloc to make sure that the
system isn't out of memory. In addition, another common mistake is to assume that a
function that calls malloc doesn't return NULL even though it returns the result of malloc.
Note that in C++, when you call new, it will throw an exception, bad_alloc, if sufficient
memory cannot be allocated. Your code should be prepared to handle this situation cleanly,
and if you choose to catch the exception and return NULL inside a function that ordinarily
returns a new'ed pOinter, this advice still holds.

char *create_memoryO
{

}

char *x = malloc(10);
if(x == NULL)
{

NULL;
}
strcpy(x, "a string");
return x;

void use_memoryO
{

}

char *new_memory = create_memoryO;
new_memory[O] = 'A'; /* make it a capital letter */

GNU Debugger 373

We did a good thing by checking to make sure that malloc succeeds before using the
memory in create_memory, but we don't check to make sure that create_memory returns a
valid pOinter!. This is a bug that won't catch you until you're running your code on a real
system unless you explicitly test your code in low memory situations.

Dereferencing an Uninitialized Pointer
Figuring out whether or not a pointer has been initialized is a bit harder than figuring out
whether a pOinter is NULL. The best way to avoid using an uninitialized pOinter is to set your
pOinters to NULL when you declare them (or immediately initialize them). That way, if you do
use a pOinter that hasn't had memory allocated for it, you will immediately be able to tell.

If you don't set your pOinters to NULL when you declare them, then you'll have a much
harder time of it (remember that non-static variables aren't automatically initialized to
anything In C or C++). You might need to figure out if Ox4025e800 is valid memory. One
way you can get a sense of this in GOB is by printing out the addresses stored in other
pOinters you've allocated. If they're fairly close together, you've probably correctly allocated
memory. Of course, there's no guarantee that this rule of thumb will hold on all systems.

In some cases, your debugger can tell you that an address is invalid based on the value
stored in the pointer. For instance, in the following example, GOB indicates that the char* x,
which I set to point to the memory address "30", is not accessible.

(gdb) print x
$1 = Ox1e <out of bounds>
(gdb) print *x
Cannot access memory at address Ox1e

Generally, though, the best way to handle such a situation is just to avoid having to rely
on memory's being close together or obviously invalid. Set your variables to NULL from the
beginning.

Dereferencing Free'd Memory
This is another tricky bug to find because you're working with memory addresses that look
valid. The best way to handle such a situation is again preventative: set your pOinter to point
to NULL as soon as you've freed it. That way, if you do try to use it later, then you'll have
another "dereferencing NULL" bug, which should be much easier to track.

Another form of this bug is the problem of dealing with memory that has gone out of
scope. If you declare a local array such as

char *return_bufferO
{

}

char x[10];
strncpy(x, "a stnng", sizeof(x));
return x;

then the array, x, will no longer be valid once the function returns. This is a really tricky bug
to find because once again the memory address will look valid when you print it out in GOB.
In fact, your code might even work sometimes (or just display weird behavior by printing
whatever happens to be on the stack in the location that used to be the memory of the array
x). Generally, the way you'll know if you have this kind of bug is that you'll get garbage
when you print out the variable even though you know that it's initialized. Watch out for the
pOinters returned from functions. If that pOinter is causing you trouble, check the function
and look for whether the pOinter is pointing to a local variable in the function. Note that it is
perfectly fine to return a pOinter to memory allocated in the function using new or malloc,
but not to return a pointer to a statically declared array (e.g., char x[10]).

374 Introduction to Llnux : Installation and Programming

Writing off the end of the array
Generally, if you're writing off the bounds of an array, then the line that caused the segment
fault in the first place should be an array access. (There are a few times when this won't
actually be the case -- notably, if the fact that you wrote off an array causes the stack to be
smashed -- basically, overwriting the pOinter that stores where to return after the function
completes.)

Of course, sometimes, you won't actually cause a segment fault writing off the end of the
array. Instead, you might just notice that some of your variable values are changing
periodically and unexpectedly. This is a tough bug to crack; one option is to set up your
debugger to watch a variable for changes and run your program until the variable's value
changes. Your debugger will break on that instruction, and you can poke around to figure out
if that behavior is unexpected.

(gdb) watch [variable name]

Hardware watch pOint l: [variable name]

(gdb) continue

Hardware watch point l: [variable name]

Old value = [valuel]

New value = [value2]

This approach can get tricky when you're dealing with a lot of dynamically allocated
memory and it's not entirely clear what you should watch. To simplify things, use simple test
cases, keep working with the same inputs, and turn off randomized seeds if you're using
random numbers!

Stack Overflows

A stack overflow isn't the same type of pOinter-related problem as the others. In this case,
you don't need to have a single explicit pOinter in your program; you just need a recursive
function without a base case. Nevertheless, this is a tutorial about segmentation faults, and
on some systems, a stack overflow will be reported as a segmentation fault. (This makes
sense because running out of memory on the stack will violate memory segmentation.)

To diagnose a stack overflow in GDB, typically you just need to do a backtrace:

Explanation of Normal Recursion and Tail recursion in GDB Way

In this section, we would like to demonstrate the conceptual difference between normal
recursion (also called as straight or self recursion) and tail recursion. For this purpose, we
have used two versions of the functions to calculate factorial v"alue of an integer. See,
programs factl.c and fact2.c.

As we have mentioned earlier that whenever we call a function a activation record (or
stack frame) is created and memory for arguments and local variables of that function are
allocated in it. The memory needed for this is used from stack part of the program.

This is true even with recursive functions. That is, for each function call of a recursive
function also a stack frame is created in the direct recursion. Where as in the case of tail
recursive realizations of recursive functions one stack frame is used for all recursive calls.
Thus, stack utilization will be better. However, in some compilers this will not become
practical unless we enable optimization flags during compilations.

GNU Debugger 375

In order to explain these concepts, factl.c is compiled with -g and debugged with gdb.
Similarly, fact2.c (tail recursive version) is also compiled with -g option and debugged with
gdb. In addition, fact2.c is compiled with -g .and -06 options and debugged with gdb. We
have specified break point after line 6 and input is given as 4 in all experiments. In each
experiment, we have asked gdb to print stack frame details using bt command. You can find
that no of stack frames with third experiment are always less. Also, you can find from the
following experiment how during rewinding stage of recursive function calls number of stack
frames reduces. The following output is captured using "script" facility of the Linux system.

You can also recompile factl.c with -g and -06 and debug and carry the same
experiment. You may find that same number of stack frames is used here also. This supports
that writing a function a tail recursive fashion is important and also the compiler has identify
the same during optimizations.

Example 10

cat factl.c
#include <stdio.h>
int fact(int n)

{

if(n==O) return 1;
else
return (n * fact(n-1));
}

int main 0
{

}

int N;
printf("Enter a Integer\n ");
scanf("%d", &N);

printf("Factorial Value=%d\n", fact(N));
return 0;

gee -g faetl.e

gdb -q a.out
Using host libthread_db library 1/lib/tls/libthread_db.so.1".
(gdb) break 6
Breakpoint 1 at Ox80483b1: file factl.c, line 6.(gdb) r
Starting program: /root/gdb/a.out
Enter a Integer
4

Breakpoint 1, fact (n=4) at fact1.c:6
6 return (n * fact(n-1));
(gdb) n

376 Introduction to Llnux : Installation and Programming

Breakpoint 1, fact (n=3) at fact1.c:6

6 return (n * fact(n-1));

(gdb) !l

Breakpoint 1, fact (n=2) at fact1.c:6

6 return (n * fact(n-1));

(gdb) !l

Breakpoint 1, fact (n=1) at fact1.c:6

6 return (n * fact(n-1));

(gdb) bt
#0 fact (n=1) at factl.c:6

#1 Ox080483be in fact (n=2) at fact1.c:6

#2 Ox080483be in fact (n=3) at fact1.c:6

#3 Ox080483be in fact (n=4) at factl.c:6

#4 Ox08048418 in main 0 at factl.c:1S

(gdb) !l
7 }

(gdb) bt
#0 fact (n=1) at factl.c:7

#1 Ox080483be in fact (n=2) at factl.c:6

#2 Ox080483be in fact (n=3) at factl.c:6

#3 Ox080483be in fact (n=4) at factl.c:6

#4 Ox08048418 in main 0 at factl.c:1S

(gdb) !l

7 }

(gdb) 111
#0 fact (n=2) at fact1.c:7

#1 Ox080483be in fact (n=3) at factl.c:6

#2 Ox080483be in fact (n=4) at factl.c:6

#3 Ox08048418 in main 0 at factl.c:1S

(gdb) !l

7 }

(gdb) bt
#0 fact (n=3) at fact1.c:7

1 Ox080483be in fact (n=4) at fact1.c: 6

#2 Ox08048418 in main 0 at factl.c:1S

(gdb) !l

7 }

(gdb) bt
#0 fact (n=4) at fact1.c:7

GNU Debugger

1 Ox08048418 in main 0 at faetl.e: 15

(gdb) .!1

Factorial Value=24

main 0 at faetl.c:16

16 return 0;
(gdb) bt
#0 main 0 at fact1.e: 16
(gdb) !!

17 }

(gdb) !!

Ox004fbe33 in _libc_start_main 0
from /lib/tls/libe.so.6

(gdb) !!

Single stepping until exit from function _libc_start_main,

which has no line number information.

Program exited normally.

(gdb) sa

Example 11

cat fact2.e

#include <stdio.h>

int fact(int n, int a)

{

if(n==O) return a;

else

return (fact(n-1,a*n));

}

int main 0
{

int N;

printf("Enter a Integer\n");

seanf("%d", &N);

printf("Factorial Value=%d\n", fact(N,l));

return 0;
}

3n

378 Introduction to Linux : Installation and Programming

gee -g fact2.e

gdb -q a.out

Using host libthread_db library n/lib/tls/libthread_db.so.l n.

(gdb) break 6

Breakpoint 1 at Ox80483bO: file fact2.c, line 6.(gdb) r

Starting program: /root/gdb/a.out

Enter a Integer

4

Breakpoint I, fact (n=4, a=l) at fact2.c:6

6 return (fact(n-l,a*n));

(gdb),n

Breakpoint I, fact (n=3, a=4) at fact2.c:6

6 return (fact(n-l,a*n));

(gdb) ,n

Breakpoint I, fact (n=2, a=12) at fact2.c:6

6 return (fact(n-l,a*n));

(gdb) ,n

Breakpoint I, fact (n=1, a=24) at fact2.c:6

6 return (fact(n-l,a*n));

(gdb) .bJ;
#0 fact (n=I, a=24) at fact2.c:6

#1 Ox080483c5 in fact (n=2, a=12) at fact2.c:6

#2 Ox080483c5 in fact (n=3, a=4) at fact2.c:6

#3 Ox080483c5 in fact (n=4, a=l) at fact2.c:6

#4 Ox0804841d in main 0 at fact2.c: 15

(gdb) ,n

7 }

(gdb) .bJ;
#0 fact (n=1, a=24) at fact2.c:7

#1 Ox080483c5 in fact (n=2, a=12) at fact2.c:6

#2 Ox080483c5 in fact (n=3, a=4) at fact2.c:6

#3 Ox080483c5 in fact (n=4, a=l) at fact2.c:6

#4 Ox0804841d in main 0 at fact2.c:15

(gdb) ,n

7 }

(gdb) .In

GNU Debugger

#0 fact (n=2, a=12) at fact2.c:7

#1 Ox080483c5 in fact (n=3, a=4) at fact2.c:6

#2 Ox080483c5 In fact (n=4, a=l) at fact2.c:6

#3 Ox0804841d in main 0 at fact2.c: 15

(gdb) .!!
7 }

(gdb) .In
#0 fact (n=3, a=4) at fact2.c:7

#1 Ox080483c5 in fact (n=4, a=l) at fact2.c:6

#2 Ox0804841d in main 0 at fact2.c: 15

(gdb) .n
7 }

(gdb) .In

#0 fact (n=4, a=l) at fact2.c:7

#1 Ox0804841d in main 0 at fact2.c: 15

(gdb) .n
Factorial Value=24

main 0 at fact2.c: 16

16 return 0;

(gdb).In

#0 main 0 at fact2.c: 16

(gdb) .!!
17 }

(gdb) .!!
Ox004fbe33 in _libc_start_main 0

from /lib/tls/libc.so.6

(gdb) .!!
Single stepping until exit from function _libc_start_main,

which ha'> no line number information.

Program exited normally.

(gdb) g

gee -g -06 fact2.e

gdb -q a.out

Using host libthread_db library "/lib/tls/libthread_db.so.1".

(gdb) break 6
Breakpoint 1 at Ox80483dc: file fact2.c, line 6.(gdb) r

Starting program: /root/gdb/a.out

Enter a Integer

379

380 Introduction to Linux : Installation and Programming

4

Breakpoint 1, fact (n=3, a=4) at fact2.c:6

6 return (fact(n-1,a*n));

(gdb) n.
4 if(n==O) return a;

(gdb) n.

Breakpoint 1, fact (n=2, a=12) at fact2.c:6

6 return (fact(n-1,a*n));

(gdb) n.
4 if(n==O) return a;

(gdb) ,Ig

#0 fact (n=1, a=24) at fact2.c:4

#1 Ox08048438 in main 0 at fact2.c:4

(gdb) n.

Breakpoint 1, fact (n=1, a=24) at fact2.c:6

6 return (fact(n-1,a*n));

(gdb) bt
#0 fact (n=1, a=24) at fact2.c:6

#1 Ox08048438 in main 0 at fact2.c:4

(gdb) n.
4 if(n==O) return a;

(gdb) bt
#0 fact (n=O, a=24) at fact2.c:4

#1 Ox08048438 in main 0 at fact2.c:4

(gdb) n.
7 }

(gdb) ,Ig

#0 fact (n=O, a=24) at fact2.c:7

#1 Ox08048438 in main 0 at fact2.c:4

(gdb) n.
main 0 at fact2.c:3
3 {

(gdb) bt
#0 main 0 at fact2.c:3

(gdb) n.
4

(gdb) n.
3

if(n==O) return a;

{

GNU Debugger

(gdb)n
Factorial Value=24

17 }

(gdb) n

Ox004fbe33 in _Iibc_start_m!lin 0
from /lib/tls/libc.so.6

(gdb) .!l
Single stepping until exit from function _libc_start_main,

which has no line number information.

Program exited normally.

(gdb) 9

exit

Attaching To an Already Running Process

381

We want to debug a program that cannot be launched from the command line. This may be
because the program is launched from some system daemon (such as a CGI program on the
web). Or perhaps the program takes very long time to run its initialization code, and starting
it with a debugger attached to it will cause this startup time to be much longer. There are
also other reasons, but hopefully you got the pOint. In order to do that, we will launch the
debugger in this way:

gdb debug_me 9561

Here we assume that "debug_me" is the name of the program executed, and that 9561 is
the process id (PID) of the process we want to debug.

What happens is that gdb first tries lookill9 for a "core" file named "9561" (we'll see what
core files are in the next section), and when it won't find it, it'll assume the supplied number
is a process ID, and try to attach to it. If there process executes exactly the same program
whose path we gave to gdb (not a copy of the file. it must be the exact same file that the
process runs), it'll attach to the program, pause its execution, and will let us continue
debugging it as if we started the program from inside the debugger. Doing a "where" right
when we get gdb's prompt will show us the stack trace of the process, and we can continue
from there. Once we exit the debugger, It will detach itself from the process, and the process
will continue execution from where we left it.

In order to demonstrate this, we are using the following program which displays natural
numbers from 0 onwards such that one will be printed for every 5 seconds.

Example 12

File a7.c

#include<stdio.h>
int N=O;

void fO
{

printf("%d\n",N++);

382

}

void ffO
{

fO;
sleep(5);
}

int mainO
{

while(1)

ffO;
return 0;
}

gcc -g a7.c
,fa.out &

[1] 5167

o

gdb -q a.out 5167

1

2

Introduction to Llnux : Installation and Programming

Using host libthread_db library 1/lib/tls/libthread_db.so.1".

Attaching to program: /root/gdb/a.out, process 5167
Reading symbols from /lib/tls/llbc.so.6 ... done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2 ... done.

Loaded symbols for /lib/lcj-linux.so.2
Ox004ca7a2 in _dl_sysinfo_intBO 0

from /lib/ld-linux.so.2
(gdb) r
The program being debugged has been started already.

Start it from the beginning? (y or n) n

Program not restarted.

(gdb) R!
#0 Ox004ca7a2 in _dl_sysinfo_intBO 0

from /lib/ld-linux.so.2
#1 Ox00570110 in _nanosleep_nocancel 0

from /lib/tls/libc.so.6

GNU Debugger

#2 Ox0056ff33 in sleep ()

from /lib/tls/libc.so.6

#3 OxOS04S3d5 in ff () at a7.c:ll

#4 OxOS04S3fb in main 0 at a7 .c: 17

(gdb) n.

Single stepping until exit from function _dLsysinfo_intSO,

which has no line number information.

Ox00570110 in _nanosleep_nocancel 0
from /lib/tls/libc.so.6

(gdb) n.

Single stepping until exit from function _nanosleep_nocancel,

which has no line number information.

Ox0056ff33 in sleep () from /lib/tls/libc.so.6

(gdb) n.

Single stepping until exit from function sleep,

which has no line number information.

ff 0 at a7.c:12

12 }

(gdb) n.

OxOS04S3fb in main 0 at a7.c:17

17 ff();

(gdb)n.

3

4

5

6

7

q

S

9

10

(press AC)

Program received signal SIGINT, Interrupt.

Ox004ca7a2 in _dl_sysinfo_intSO 0
from /lib/ld-linux.so.2

(gdb) g

The program is running. Quit anyway (and detach it)? (y or n) y

Detaching from program: /root/gdb/a.out, process 5167

11

12

13

383

384

Now run ps command.

PID TTY TIME CMD

5145 pts/3 00:00:00 bash

5167 pts/3 00:00:00 a.out
5171 pts/3 00:00:00 ps

14
15
16

19.3 Conclusions

Introduction to Llnux : Installation and Programming

This chapter explores the use of gdb command for debugging C programs under Linux. It
explains how to mark break pOints to find out run time errors in a C program. Also, it
explains how core file can be used while debugging a crashed program.

20 Make

20.1 Introduction
Make is most commonly used in Unux/Unix for automating SW system compiling and
development. Compiling a program made of one source file is easy compared to the ones which
is made of many sources. It is not uncommon a SW system to have multiple source files; and a
function in one source file may be calling another function in another file. Thus, when a program
(file) is modified or rebuilt, make helps in saving the memory space and reducing SW compilation
time by re-compiling only those files which depends on the modified file.

As mentioned above, the purpose of make utility is to determine automatically which
pieces of a large program need to be recompiled, and issue the commands to recompile
them. This is done based on time stamps of the files in SW system and the specification file
(also called as makefile) which contains dependencies among the source files. We can use
make With any programming language whose compiler can be run with a shell command.
Make IS not limited to programs. We can use it to describe any task where some files must
be updated automatically from others whenever the other one changes.

The make command has a lot of built in knowledge such as how a object file is to be created
from a C/C++ source, how a C file to be generated from lex/yacc specification files, etc.,.
However, we must provide a file that tells make how your application is constructed and this file
is called the make file whose name can be makefile or Makefile (or any other thing).

The make file most often reSides in the same directory is the other source files for the
project. We can have many different make files on the same machine at anyone time for
different SW systems. The combination of the make command and a make file provides a
very powerful tool for SW managing projects.

20.2 SYNTAX OF MAKE FILES
A makefile consists of a set of dependencies and rules. A dependency has a target (a file to
be created) and a set of source files upon which it is dependent. The rules describe how to
create the target from the dependent file.

The make file is read by the make command, which determines the target file or files on
which make command to be executed and then compares the dates and times of the source
files to decide which rules need to be invoked to construct the target. Also, the make
command uses the makefile to determine the order in which the targets have to be made
and the correct sequence of rules to invoke.

20.2.1 Options and parameters to make:
Example 1
For example consider the following files:

File a.c

void fO
{

printf("Hello\n") ;
}

386

File b.c

void ffO
{

printf("How are you?\n");

}

File a.h

void fO;
void ffO;

File main.c

#include<stdio.h>

#include"a.h"

int mainO
{

fO;

ffO;

return 0;

}

Introduction to Linux : Installation and Programming

For the above examples, the following file "makefile" is written which indicates the
dependencies among the files.

myapp: main.o. a.o b.o
gcc -0 myapp main.o a.o b.o

main 0: main.c. a.h

gcc -c main.c

a.o: a. c
gcc -c a.c

b.o: b.c
gcc -c b.c

20.2.2 Dependencies
In the above example, the main.o is affected by changes to main.c and a.h, and it needs to
be recreated by recompiling man.c if either of the two files changes.

Make 387

Similarly, the final target file (executable) "myapp" depends on main.o, a.o and b.o;
which in turn have their dependencies mentioned above.

In a makefile, we rite these rules by writing the name of the target, a colon, spaces or
tabs and then a space or tab separated list of files that are used to create the target file. The
dependency list for our example is

myapp: main 0 a.o b.o
main.o: main.c a.h
a.o: a.c
b.o: b.c

We can see quite easily that, if b.c changes, then we need to recompile b.o and also we
need to rebuild myapp.

20.2.3 Rules
The second part of the makefile specifies the rules that describe how to create a target. In
our example, what command should be used after the make command has determined that
a.o needs rebuilding.

A very strange and unfortunate syntax of makefile's: the difference between a space and
tab. All rules must be on line that start with a tab; a space won't do.

Run the make command by typing simply make at the command prompt. We will get the
following messages on the screen.

gcc -c main.c
gcc -c a.c
gcc -c b
gcc -0 myapp main.o a.o b.o

Now, you can run the program "myapp" by Simply typing the following at command
prompt.

'/myapp

We can invoke the make command with the -f option along with make file name if it is
different from default make file name's such as makefile or Makefile.

If we invoke the above example in a directory containing no source code files, we get this
make error message.

make: * * * no rule to make target 'main.c', needed by 'main.o' stop.

Also, the above makefile can be modified as shown below as make command can employ
it's own target generation rules.

myapp: main.o. a.o b.o
gcc -0 myapp main.o a.o b.o
main 0: main.c. a.h
a.o: a. c
b.o: b.c

388 Introduction to Linux : Installation and Programming

Run the above makefile (modified) by typing make commandyt the command prompt.
We get the following messages on the screen.

cc -0 a.o a.c
cc -0 b.o b.c
cc -0 main main.c
gcc -0 myapp main.o a.o b.o

Further, we can modify the makefile to have the following lines only (Test it) as make
command has inherent mechanism to know how a.o and b.o can be generated, i.e. it
assumes that a.o can be generated from a.c and b.o from b.c. Thus, it uses it's default object
file creation command "cc -0".

myapp: main.o. a.o b.o
gcc -0 myapp main.o a.o b.o

main 0: main.c. a.h

For example, if a.c file is modified then when we run make command, we find the
following messages indicating that a.o is recreated and myapp also recreated.

gcc -c a.c
gcc -0 myapp main.o a.o b.o

In order to simulate the above without really changing a.c file, we can run "touch a.c"
command followed by make. As a.c file time stamp is changing, the program "myapp" is
recreated.

Also, we can ask make to create the required target only. For example, the following
commands are acceptable.

make myapp
make a.o
make main.o

I Ito create myapp program

I Ito create object file a.o
I Ito create object file main.o

20.2.4 Options to be used with make command
-c Dir
Change to directory dir before reading the makefile's or doing anything else. If multiple -c
options are specified. Each is interpreted relative to the previous one. -cl -c etc is equivalent
- c/etc.

For example let us take the above mentioned example whose files are in x directory and
also in y directory. Suppose that if the object files of x were removed then when we give a
command

make -C Y -f mkfile
make -c dkp - f mkfil

Make

The files in the DPK directory will be taken and thus we get an output as

-d

make: Entering directory '/home/ ravi / dpk'

make: 'myapp' is upto date

make: Leaving directory 'home/ravi/dpk'

389

print debugging information in addition to normal processing. The debugging information
says which files are being considered for remaking which file-times are being compared and
with what results, which files actually need to be remade, which implicit rules are considered
and which are applied every-thing.

Example: make -d -f makefile

- e
Give variables taken from the environment precedence over variables from makefile's.

-f file

- i

-I dir

make -e -f makefile

make: 'myapp' is upto date

Use file as a makefile

For using the -f option we must first create makefile's with the required rules.

Ignore all errors in commands executed to remake files

make -i -f makefile

myapp is upto date

Specifies a directory dir to search for included make files. If several - I options are used to
specify several directories. The directories are searched in the order specified.

Unlike the arguments to other flags of make, directories given with -I flags may come
directly after the flag : Idir is allowed , as well as -I dir. This syntax is allowed for
compatibility with the (pre flag of gcc).

-j jobs

Specifies the number of job (commands) to run simultaneously.

-k

Continues as much as possible often an error. While the target that failed, and those that
depend on it. Can not be remade, the other dependencies of these targets can be processed
all the same.

390 Introduction to Linux : Installation and Programming

Let us consider the file b.c is modified as follows. Note that semicolon is missing with the
printfO function.

- n

void ff (

{

printf ("How are you?")

}

make -k -f makefile

cc -c 3.c

b.c: 4: parse error at end of input

make: * * * [b.O] error 1

make: Target 'myapp' not remade because of errors.

As the error we made is not ignorable the makefile is now updated.

This options prints the commands that would be executed (but are not executed really)
them.

make -n -f makefile

gcc -c -0 a.o a.c

gcc -c b.c -0 b.o

Do not remake the file, even if it is older then its dependencies, and do not remake
anything on account of changes in file. Initially the file is treated as very old and its rules are
ignored.

-p

print the database (rules and variables values) that results from reading the make files; I
then execute as usual or as otherwise specified. This also prints the version information
given by the -v switch.

make -p -f makefile

-q

"Question mode" Do not run any commands, or print anything; just return an exit status that
is zero if the specified target already exists (up to date). Non zero otherwise.

-r

eliminate use of the built-in implicit rules. Also clear out the default list of suffix rules.

Make 391

-s
silent operation do not print the commands as they are executed.

make -s - f makefile

- S (capital)

cancel the effect of the - k option. This is never necessary except in a recursive make where
- k might be inherited from the top-level make via MAKE FLAGS or if you set - k in
MAKE FLAGS in the env.

- t

make.-s -f makefile

make: myap is upto date.

Touch files (mark them up to date without really charging them) instead of running their
commands this is used to pretend that the commands were done, in order to fool future
invocations of make.

-y

Print the version of the make program plus a copyright, a list of authors and a notice that

make -v

GNU make version 3.791 by Richard Stalman and Roland McGrath

Built for 1686-pc-linux - gnu

Copyright © 1988. 89, 90, 91, 92, 93, 94, 95 ,96, 97, 98, 99, 2000

Free software foundation, Inc.

This is free software, see the source for copying conditions.

There is no warranty: not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

-w
print a message containing the working directory before and often other processing. This

may be useful for tracking down errors from complicated rest of recursive make commands.

make -w -f makefile

make: Entering directory '/home/ravi/dpk'

make. makefile: No such file or directory

make: * * * NO rule to make target 'mkfile'. Stop.

Make. Leaving directory '/home/ravi/dpk'

- W (capital)

- w file

392 Introduction to Llnux : Installation and Programming

Pretend that the target file has just been modified. When used with the -n flag. This
chows you what would happen if you were to modify that file, without - n. It is almost the
same as running a touch command on the given file before running make. Except that the
modification time is changed only in the imagination of make.

make -w -f makefile

make. Nothing to be done for makefile

Whatever we have explained till now explains only a fraction of what make can do really.
Make has extensive set of facilities and structure With the help of which we can write
efficient, re-usable make scripts quickly.

A typical makefile may contain lines of the following types:

• Variable Definitions - these lines define values for variables. For example:

CFLAGS = -06 -g -Wall

SRCS = main.c file1.c file2.c

CC = gcc

• Dependency Rules - these lines define under what conditions a given file (or a type of
file) needs to be re-compiled, and how to compile it. For example:

main.o: main.c

gcc -g -Wall -c main.c

Note that each line in the commands list must begin with a TAB character.
"make" is quite picky about the makefile's syntax.

• Comments - Any line beginning with a "#" sign, or any line that contains only white-
space.

For example, our example makefile can be modified as a structured one as:

CFLAGS
earlier

-g -06 -Wall

SRCS

CC = gcc

myapp:a.o b.o m.o

= main.c a.c b.c

gcc -0 myapp m.o a.o b.o

main.o:main.c a.h

clean: /bin/rm -f main.o a.o b.o

/ / these options use is discussed

Make 393

The above program can be invoked as usual to create myapp. We can execute "make
clean" to remove all object files created during the process of make file's execution.

When make is invoked, it first evaluates all variable assignments, from top to bottom, and
when it encounters a rule "A" whose target matches the given target (or the first rule, if no
target was supplied), it tries to evaluate this rule. First, it tries to recursively handle the
dependencies that appear in the rule. If a given dependency has no matching rule, but there
is a file in the disk with this name, the dependency is assumed to be up-to-date. After all the
dependencies were checked, and any of them required handling, or refers to a file newer
than the target, the command list for rule "A" is executed, one command at a time.

When we try to compile the same source code with different compilers, or on different
platforms, we write makefile's with little more flexible manner. Lets see the same makefile,
but this time with the introduction of variables:

use "gcc" to compile source files.

CC = gcc

the linker is also "gcc". It might be something else with other compilers.

LD = gcc

Compiler flags go here.
CFLAGS = -g 06 -Wall

LDFLAGS =

use this command to erase files.
RM = /bin/rm -f

list of generated object files.
OBJS = main.o file 1. 0 file2.0

program executable file name.
PROG = myapp

top-level rule, to compile everything.

all: $(PROG)

rule to link the program
$(PROG): $(OBJS)

$(LD) $(LDFLAGS) $(OBJS) -0 $(PROG)

rule for file "main.o".
main.o: main.c a.h

$(CC) $(CFLAGS) -c main.c

394

rule for file "a.o".

a.o: a.c

$(CC) $(CFLAG5) -c a.c

rule for file "b.o".

b.o: b.c

$(CC) $(CFLAG5) -c b.c

Introduction to Llnux : Installation and Programming

rule for cleaning re-compilable files.

clean:

$(RM) $(PROG) $(08J5)

To use one rule for all source files as all can be compiled in the same way, we may follow
the following approach.

linking rule

$(PROG): $(08J5)

$(LD) $(LDFLAG5) $(08J5) -0 $(PROG)

now comes a meta-rule for compiling any "c" source file.

%.0: %.c

$(CC) $(CFLAG5) -c $<

Here, meta-rule indicates the following:

1. The "%" character is a wildcard, that matches any part of a file's name. If we mention
"%" several times in a rule, they all must match the same value, for a given rule
invocation. Thus, our rule here means "A file with a '.0' suffix is dependent on a file
with the same name, but a '.c' suffix".

2. The "$<" string refer9'to the dependency list that was matched by the rule (in our case
- the full name of the source file). There are other similar strings, such as "$@" which
refers to the full target name, or "$*", that refers the part that was matched by the
"0/0" character.

Main crunch in writing make files is identifying dependencies. It is advised that
programmers interested in this issue read about the compiler's "-M" flag (discussed in
previous chapter on compiling), and read the manual page of "makedepend" carefully.

20.3 Automake, autoconf
Aside from using the previously described methods there is a way to pay less attention to the
Makefiles and bUild rules and concentrate on code you write. This is possible with the magic
suite named autoconf/automake. It's really an amazing beast doing all of filthy work for you.
Apart from taking care of Makefiles with all dependencies and other stuff for your projects, it
has a mechanism to detect your system specific parameters before the compilation and
building steps are performed. 5tart With writing the Makefile.am to define what exactly you
want to build.

Make 395

bin PROGRAMS hello hello_SOURCES hello.c sayhi.c misc.C ui.c
AUTOMAKE_OPTIONS = foreign

The last line tells automake it's not the GNU package, e.g. it does not contain standard
files named NEWS, README, AUTHORS and ChangeLog that are necessary if you want your
package to be GNU compliant.

After you have Makefile.am in the project directory, there is another input file for the
suite named configure.in. It's responsible for the system specific parameters checking I
mentioned before. The minimalist configure.in is below.

AC_INIT(hello.c) # Initializes the configure script. On start it will check for the # main
source file specified here first.

AM_INIT_AUTOMAKE(hello, 1.0) # Tells automake we have project named "hello" version
1.0

AC_PROG_CC # Adds a check for C compiler

AC_OUTPUT(Makefile) # The output file is Makefile. A,II the build stuff will be put there

Now you are done with the autoconf/automake input specification. Run the following
programs now in the order given.

aclocal autoconf automake -a -c

This will finally create the configure script, Makefile.in and add some default documentation
to your project. Now it's finally ready to compile, debug and even to distribute.

Everyone who wants to build your program on his or her Linux computer needs to run
'/configure make

We run '/configure so Makefile is created from Makefile.in. This is how the
autoconf/automake is organized. It generates Makefile.in from your Makefile.am. Then
Makefile.in is processed by '/configure script so all the system specific things would be
considered and included into the final Makefile. It will also have a default install and uninstall
targets which are extremely useful for your program users.

20.4 Conclusions
This chapter explains make utility that is used for SW development. Simple and lucid
examples are given such that a new entrant can understand and use make for real time
SW development.

21 Revision Control System

21.1 Introduction
Software development is an incremental process involving updating of source files and
testing their functionality and reverting back to previous version of the same if not behaving
as expected by us. Thus, we may often find need to have the content of file(s) of a specified
date and time. Revision control system's (RCS) will come to rescue us for this type of
situations. RCS stores the differences of versions of a file. Files can be restored without
regard to the system manager. RCS software maintains two fundamental commands" ci
"(check in) -to check in the file and" co "(check out) - to check out the file.

Res is a file management tool designed to aid development of text files (programs,
documents, almost any printable file) under UNIX. RCS meets an important need in
managing large projects. It allows to automate many of the tasks involved in co-ordinating a
team of people who are editing and using files. These tasks include maintaining all versions
of a file in a recoverable form, preventing several people from modifying the same code
simultaneously, helping people to merge two different development tracks into a single
version, ensuring that a single program is not undergoing multiple simultaneous versions and
maintaining logs for versions and other changes.

By using RCS, we can restore files without regard with the system manager. RCS won't
protect from disk crash, but they can protect from many cases of accidental file deletion (or)
corruption. This tool is developed to manage multiperson development projects, ensuring
that only one person has write access to a file at one time and making it possible to go back
to any previous versions of a file. They are handy for any user who has important files that
change frequently.

21.1.1 Creation of a file under RCS management
)i- Create a subdirectory called RCS in the directory where you keep the code (or)

other text files you want to protect .
., It is not essential, but a good idea to add the characters id somewhere in the

file you want to place under RCS. Out this in a comment filed i.e. use /*id*/
in a C program and # id in a shell script.

). Place the file under revision control. This is done by typing:

ci filename

and to retrieve the file, use the following command:

co filename
j.. Basic Operations

The two fundamental commands for using RCS are ci and co. These command ci -
"check in" and co- "checkout" are the one's that RCS software maintains.

RCS creates a separate RCS file for every file under its management. This file stores a
description of the file, the entire change log, the current version of the file, list of users who
are allowed to access the file, the file's date and time and list of changes that lets RCS
reproduce any obsolete version of the file at will. On many system, by default, RCS is in the
strict-access mode. This mode has two important features:

j.. No one is allowed to check in a file without locking it first.
, No one can modify a file unless that user (person) checked it out locked.

Revision Control System 397

The first version of a file under RCS control is given number 1.1 Succeeding versions that
descend linearly this file are numbered 1.2, 1.3 etc.

RCS gives the first "branch" beginning at version 1.3, the number 1.3.1. It numbers the
second branch beginning at this point 1.3.2 etc. The first version along the first branch is
1.3.1.1 and the second is 1.3.1.2 etc.

The tool "rcsmerge' exists to help you merge versions from different branches of
development and the tool "rcsdiff" is used to find out the differences between the two files
and to create a new version that incorporates the modifications to both files.

RCS stores the differences between version of a file.

NAME

rcs - change RCS file attributes

SYNOPSIS

rcs options file

DESCRIPTION

rcs creates new RCS files (or) changes attributes of existing ones. An RCS file contains
multiple revisions of text, an access list, a change log, descriptive text, and some control
attributes. Path names matching an ReS suffix denote RCS files, all other denote working
files.

OPTIONS

-i :create and initialise a new RCS file, but do not deposit any revision. If the RCS file has no
path prefix, try to place it first into the subdirectory./RCS and then into the current directory.
If the RCS file already exists, print an error message.

For example with the following commands a.c file is created and the same is deposited to
rcs system.

touch a.c.

rcs -i a.c

RCS file: a.c,v

Enter description, terminated with a single :'(or)

end of file.

Note : This is NOT the log message !

» This is a rcs file of a.c.

».

Check the content of the file created by running vi command on it.

vi a.c,v

Head;
Access;

398

Symbols;
Locks, strict;
Comment @ * @;

Desc
@ this is a rcs file of a.c.
@

Introduction to Linux : Installation and Programming

-a logins : Append the login names appearing in the comma-separated list logins to the
access list of the RCS file.

For example to give access to priya, we can run the following command.s

rcs -apriya a.c
RCS file: a.c,v
done

Now check the content of file a.c,v by running vi command on it and we can see that the
user name is seen in the Access list.

vi a.c,v

Head;
Access;

priya
Symbols;
Locks, strict;
Comment @ * @;

Desc
@ this is a rcs file of a.c.
@

-A oldfile : Append the access list of old file to the access list of the RCS file.
For example create another file, say b.c and run the following command to access list.

rcs -i b.c
RCS file: b.c,v
Enter description, terminated with a single '.'(or)

end of file.

Note : This is NOT the log message !
» temporary file
».
done

Now we can assign access to user dolly for this file "b.c".

Revision Control System

rcs - adolly b.c

Res file: b.c,v

done

399

Now when we run the following command then user names who has permissions for b.c
will be added to a.c file.

rcs -Ab.c. a.c

Res file: a.c,v

done

Now, see the content of file a.c,v.

VI a.c,v

head;

access;

priya;

dully;

symbols;

locks, strict;

comment @ * @;

desc

@ this is a rcs file of a.c.
@

- e [Iogms] : Erase the login names appearing in the comma-separated list logins from the
access list of the ReS file. If logins are omitted, erase the access list.

Now to remove dolly from access list of a file we can use -e option as below.

rcs - edolly a.c

Res file: a.c,v

done

vi a.c,v

head;

access;

priya;
symbols;

locks, strict;

400

comment @ * @;

desc
@ this is a rcs file of a.c.
@

Introduction to Linux : Installation and Programming

- b [rev] : set the default branch to rev. If rev is omitted, eh default branch is reset to the
highest branch on the trunk. If rev begins with a period, then the default branch is
prepended to it. If rev is a branch number followed by a period, then the latest revision on
that branch is used.

The following command sets the 1.1 as the revision of the file a.c.

rcs -bi.i a.c
RCS file: a.c,v
done

Run vi command to check the same in the revision file.

vi a.c/v
head 1.1;
branch 1.1.1;

access;
priya;

symbols;

locks, strict;
comment @ * @;

desc
@ this is a rcs file of a.c.
@

- C string: Set the comment leader to string. An res -i without -c guesses the comment
leader from the suffix of the working file name.

res -cDIE a.c
Res file: a.c, V
Done

Now, check the a.c,v file output by opening the same using vi command.

vi a.c/V
=> the string "DIE" overwrites over the comment string.

Comment @ DIE @

- I [rev) : Look the revision with number rev. If a branch is given, lock the latest revision on
that branch. If rev is omitted, lock the latest revision on the default branch locking prevents
overlapping changes.

Revision Control System

The following command lock the file with the given revision.

rcs -11.1 a.c
RCS file: RCS/a.c,V

1.1 locked

done

vi a.c,v

=> The 'lock' file is modified as

lock

root 1.1; strict;

- Rev: msg : Replace revision rev's with log message.

res -ml.l: FORV al.c
RCS file: a.c, v

Done

vi al.c,v

Also, we can a RCS file using ci command. For example,

touch al.c
ci a1.c

RCS/a.c, v a.c

Enter description, "terminated with single'.' (or) end of file.
> > This is a1 file

> > initial revision 1.1
done

vi al.c,v
head;1
access;
symbols;

locks, strict;

comment @ * @;

1.1
data 2004.08.07.02 .. 10.16; author root;

State Exp;

401

402

Branches;

Next;
Desc
@ this Is al file
@

1.1
log

@ initial revision
@

vi al.e,v
=> The log message is modified as 'FOR U',

log
@ FOR U

@

Introduction to Llnux : Installation and Programming

- n name [: [rev]] : Associate the symbolic name with the branch (or) revision· rev. Delete
the symbolic name, if both: and rev are omitted, print an error message if name is already
associated with another No. Arcs -n name: RCS/A associates name with the current latest
revision of all the named RCS files.

For example,

res -nAng:l.l a1.e
RCS file: a1.c,v
Done

vi al.e,v

The symbol field is modified as

Symbols

Ang: 1.1 ;

- N name [: [rev]]: act like -n, except override any previous assignment of name.

res -Ngel:l.l al.e
RCS file: a1.c,v
Done

vi al.e, v
=> the symbol field is modified as

symbols

gel: 1.1;

Revision Control System 403

-0 range: Delete the revision given by range. A range consisting of a single revision no.
means that revision. A range consisting of a branch no. means the latest revision on that
branch. A range of the form rev1: rev2 means revisions rev1 to rev2 on the same branch:
rev means from the beginning of the branch containing rev upto and including rev and rev:
means from revision rev to the end of the branch containing rev.

To create new revision 1.2 and 1.3 of a1.c,v file

co -I al.c
RCS/a1.c,v a1.c
Revision 1.1 (locked)
Done

vi al.C'
=> the a1.c file

ci al.c
RCS/a1\c,v a1.c
New 1.2; previous: 1.1

Done

co -I al.c
RCS/a1.c,v a1.c
Revision 1.2 (locked)
Done

vi al.c
=> Update the a1.c file

RCS/a1.c,v a1.c
New revision 1.3; previous: 1.2
Done
To delete revisions from a file (say revisions 1.2 and 1.3) run the following command with

-0 option.

res -01.2:1.3 al.c
RCS file: a1.c,
Deleting revision: 1.3
Deleting revision: 1.2
Done

vi al.c,v
head 1.1;
access;

I
I

@

404 Introduction to Linux : Installation and Programming

-q: Run quietly, do not print diagnostics

: Run interactively, even if the standard input is not a terminal.

- s State (: [rev]: Set the state attribute of the revision rev to state. If rev is a branch no.,
assume the latest revision on that branch. If rev is omitted, assume the latest revision on

the default branch. A useful set of states is Exp. (experimental) stab (stable) and Rei
(released). By default ci(1) sets the state of a revision to EXp.

rcs -sExp:l.l al.c
ReS file: a1.c,v
Done

vi al,c,v
The state file is modifjed as

Date - - - - - - - state Exp;

rcs -sstab: 1.1 al.c
ReS file: a1. c,v
Done

vi a.c,v,,_
The state field is modified as

Date - - - - - - - - - - -state stab;
- t [file] : Write descriptive text from the contents of the named file into the ReS file,
deleting the existing text. If the file is omitted obtain the text from standard input,
terminated by end-of-file (or) by a line containing. By itself.

vi D.e
This is Linux world

rcs -tD.C al.c
ReS file: a1.c, v

Done

vi al.c, v
head 1.1:

I
I
I
desc
@ this is Linux word
@

-t - string : Write descriptive text from the string into the ReS file, deleting the existing text

Revision Control System

res -t"GNU" al.e
ReS file: a1.c, V
Done

vi al.e,v
Head 1.1;

I
I
I

desc
@GNU
@

405

-T: Preserves the modification time on the Res file unless a revision is removed. This option
can suppress extensive re-compilation caused by a make (1) dependency of some copy of
the working file.

On the Res file

-V: Prints ReS's version numbers

res -v al.e
ReS version 5.7

-Vn : Emulate ReS version n.

- X suffixes: Use suffices to characterize ReS files.

-z zone : Use zone as the default time zone. This option has no effect; it is present for
compatibility with other Res commands.

-K Subset: set the default key word substitution to subset. The affect of key substitution is
described in co (1). Giving an explicit -k option to co, rcs diff and rcs merge overrides this
default.
- u [rev] : Unlock the revision with number rev. If a branch is given, unlock the latest
revision on that branch. If rev is omitted, remove the latest lock held by the caller. Normally
only the locker of a revision can unlock it.
- L: Set locking to strict. Strict locking means that the owner of an Res file is not exempt
from locking for check in. * This option should be used for files that are shared.
- U: Set locking to non -strict. Non-strict locking means that the owner of a file need not lock
a revision for check in. * This option should not be used for files that are shared.
- M: Do not send mail when breaking somebody else's lock. This options meant for programs
that warn users by other uses.
- u [rev]:

406

touch gel .. c
ci gel.c

RCS/gel.c,v gel.c

Introduction to Llnux : Installation and Programming

Enter description terminated with single'.' (or)

Note: This is not the log message!

> > this

> >
initial revision 1.1

done
initial revision 1.1

done

'cs -11.1 gel.c
RCS file: RCS/gel.c,v

1. 1 (locked)
done

res - u1.1 gel.c
RCS file: gel. C, V

1.1 unlocked

done.

21.1.2 ci-Check in command
ci is one of the fundamental command used by the RCS. When a file is check in , RCS deletes
source file and creates (or) modifies a file called source, v where source is the name of the
original and, v is an extension that indicates an RCS file.

To do a simple check in, use the following command :

ci filename
This creates a new RCS version of your file. If he file is not currently managed by RCS, this
command places the file under RCS management, gives it the version no. 1.1 , and prompt
for a description of the file. If the file is already being managed by RCS, this command will
assign the next higher version number in the sequence (1.2 follows 1.1) and will prompt for
a description of the changes have made since the last check in.

The following example shows what happens when checking a version 1.4 of a file called
my test.

ci mytest
My test, v my test

New revision 1.4; previous revision: 1.3

Enter log message :

(terminate with "D (or) single'.')

The prompt> > indicates that RCS is waiting for a line of text

Revision Control System 407

RCS warns if a checking a file has not been modified since it was check out. We can force it
to check the file in by typing y response to its warning message:

ci my test

My test, v my test
New revision: 1.8; previous revision: 1.7
File my test is unchanged with respect to revision 1.7
Checking anyway? [ny] (n) : y
Used by itself, the command ci deletes the working version of the file
If you want to retain a read-only version of the file,
Enter the command :

ci -u filename
in this case, a copy of filename for reference is retained .The ci command may refer to let
'check in a file, printing the message :
ci error; no lock set by your name.
This can only occur under two circumstances :

1. If you did not lock the file upon checkout in the strict-access mode.
2. If someone locked the file after you checked it out in open-access mode.

If you want to do a checking, followed immediately by a checkout. You may want to install a
version reflecting the current state of your program (possible as a back up), then continue
editing immediately. other than using two operations, RCS lets you perform both with the
command

ci - I filename
This updates the RCS file and gives a lock with a fresh copy of working file, allowing to edit
continue immediately.

NAME
ci-checkin RCS revisions

SYNOPSIS
ci[options] file

DESCRIPTION
ci stores new revisions into RCS files. Each pathname matching an RCS suffix is taken to be
RCS file. All others are assumed to be working files containing new revisions. Ci deposits the
contents of each working file into the corresponding RCS file. For ci to work, the caller's login
must be on the access list, except if the access list is empty (or) the caller is the super user
(or) the owner of the file. To append a new revision to an existing branch, the top revision
on that branch must be locked by the caller, otherwise,' only a new branch can be created.
This restriction is not enforced for the owner of the file if non-strict locking is used. A lock
held by someone else can be broken with the RCS command.

Unless if option is given, ci checks whether the revision to be deposited differs from the
preceding one. Ordinary ci removes the working file and nay lock ci - I keeps and ci -u
removes any lock and then they both generate a new working file much as if co -I (or) co-u
had been applied-to the preceding revision.

)

408 Introduction to Llnux : Installation and Programming

When reverting, any -n and -s options apply to the preceding revision. For each revision
deposited, ci prompts for a log message. The log message should summarize the change
and must be terminated by end of the file (or) by a line containing by itself. If RCS file does
not exist, ci creates it and deposits the contents of the working file as the initial revision
(default number: 1.1). The access list is initialized to empty. Instead of the log message, ci
requests descriptive text.

The number rev of the deposited revision can be given an of the options -f, -I, -I, -j, -k, -
I, -m, -q, - r (or) -u. *rev can be symbolic, numeric (or) mixed. Symbols names in rev must
already be defined. If rev is $, ci determines the revision no form keyboard values in the
working file.

If rev begins with a period, then the default branch is prepended to it. If rev is a branch
no. followed by a . Then the latest revision on that branch is used.

If rev is a revision no, it must be higher than the latest one on the branch to which rev
belongs, (or) must start a new branch. ¥

If rev is a branch rather than a revision no, the new revision is appended to that branch.
The level number is obtained by incrementing the tip revision no. If the caller locked a non-
tip revision, a new branch is started at that revision by incrementing the highest branch no.
at that revision. The default initial branch and level no's are 1.

If rev is omitted and the caller has no lock, but owns the file and locking is not set to
strict, then the revision is appended to the default branch.

Options

-mmsg : uses the string msg as the logmessage for all revisions checked in.

touch nw.c

ci new.c

RCS/nw, c.v

» raja
».
Initial revision : 1.1
done

co -I nw.c

....................... nw.c

RCS / nw.c,v nw.c

Revision 1.1 (locked)

done

vi nw.c

ci -mnaveen nw.c
RCS/nw.c.v nw.c

new revision: 1.2; previous revision: 1.1

done

vi nw.c.v
The log message is changed to Naveen

Revision Control System

- name :assign the symbolic name to the number of the checked-in revision

eo -I nw.e
RCS/nw.c,v nw.c

new revision: 1'.2, previous revision :1.1

done

vi nW.e,v
The log message is changed to Naveen

- n name: assign the symbolic name to the number of the checked-in revision.

eo -I nw.e
RCS / nw.c, v

revision 1.2

done

vi nW.e
ci -nrp nw.e

vi nW.e,v

..... nw.c

symbolic name is changed to rp.

409

- s state: set the state of checked-in revisirn to the identifier state. The default state is expo

eo -I nw.e

ei -sExp nw.e

vi nw.e, v
state is expo

-t file: write descriptive text from the contents of the named file into the RCS file, deleting
the existing text.

eo -I nw.e
eo -t gel.e nw.e

vi nW.e,v

text is changed to raj.

410 Introduction to Llnux : Installation and Programming

-t -string:write descriptive text from the string into the ReS file

co -I nw.c
ci -t"raja" nw.c
vi nw.c,v

text is changed to raja.

-wlogin : uses login or the author field of the deposited revision.

-v : Print ReS'S version number.

-x suffixes : specifies the suffices for ReS files. A non-empty suffix matches any
path name ending in the suffix.

-z zone : specifies the date output format in keyword substitution and specifies the default
time zone for date in the -date option.

-q [rev] : quiet mode, diagnostic output is not printed.

-M [rev] : set the modification time on any new working file to be the date of the retrieved
revision.

-d [date] : uses date for the checkin date and time

-1 [rev] : interactive mode, the user is prompted and questioned even if the standard input is
not a terminal.

-1 [rev] : interactive mode, the user is prompted and questioned even if the standard input is
not a terminal.

-f [rev] : forces a deposit; the new revision is deposited even it is not different from the
preceding one.
touch sS.c
ci ss.c

ReS / ss.C, v ss.C

» pittichi
».

initial revision : 1.1
done

Revision Control System

co -I 55.C

vi 55.C

ci 55.C

ReS / SS.cn, ss.c

new revision; 1.2; previous revision: 1.2; previous revision: 1.1

done

co -I 55.C

ci -f1.4 55.C

ReS / sS.cn, ss.c,v

new revision 1.4; previous revision: 1.2;

done

411

-k [rev] : searches the working file for keyword values to determine its revision number,
creation date, state and author, assign these values to the deposited revision , rather than
computing them locally

-j [rev] just checkin and do not initialise; report an error if the ReS file does not already
exist.

-I [rev] works like -r, except it performs an additional co -I for the deposited revision.

-u [rev] : works like -I, except that the deposited revision is not locked. The -I , bare - r
and -u options are mutually exclusive and silently override each other for example, is -u -r
is equipment to ci - r because -r overrides -u.

-rrev : checkin revision rev.

-r : with other ReS commands, a bare - r option specifies the most recent revision on
the default branch, but with ci, a bare -r option re-established the default behavio'ur of
releasing a lock and removing the working file.

412 Introduction to Llnux : Installation and Programming

21.1.3 CO-CHECK OUT COMMAND
Co-check out command can be used recover or restore file of any date or version.

Syntax of the co command.
co [options] file ...

co retrieves a revision from each RCS file and stores· it into the corresponding working
file. Revisions of an RCS file can be checked out locked or unlocked. Lock-ing a revision
prevents overlapping updates. A revision checked out for reading or processing (e.g.,
compiling) need not be locked. A revision checked out for editing and later checkin must
normally blocked. Checkout with locking fails if the revision to be checked out is currently
locked by another user. (A lock can be broken with rcs(l).) Checkout with .Iocking also
requires the caller to be on the access list of the RCS file, unless he is the owner of the file or
the super user, or the access list is empty. Checkout without locking is not subject to access
list restrictions, and is not affected by the presence of locks.

A revision or branch number can be attached to any of the options -f, -I, -I, -M, -p, -q,
-r, or -u. The options -d (date), -s (state), and -w (author) retrieve from a single branch,
the selected branch, which is either specified by one of -f, ... , -u, or the default branch. A co
command applied to an RCS file with no revisions creates a zero length working file.

OPTIONS

-r[rev]
retrieves the latest revision whose number is less than or equal to rev. If rev indicates a
branch rather than a revision, the latest revision on that branch is retrieved. If rev is
omitted, the latest revision on the default branch option of is retrieved. If rev is $, co
determines the revision number from keyword values in the working file. Otherwise, a
revision is composed of one or more numeric or symbolic fields separated by periods. If rev
begins with a period, then the default branch (normally the trunk) is prepended to it. If rev is
a branch number followed by a period, then the latest revision on that branch is used.

-I[rev]
same as -r, except that it also locks the retrieved revision for the caller.

-u[rev]
same as -r, except that it unlocks the retrieved revision if it was locked by the caller. If rev
is omitted, -u retrieves the revision locked by the caller, if there is one; otherwise, it
retrieves the latest revision on the default branch.

-f[rev]
forces the overwriting of the working file; useful in connection with -q.

-kkv
Generate keyword strings using the default form, e.g. $Revision: S.13 $ for the Revision

keyword. A locker's name is inserted in the value of the Header, Id, and Locker keyword
strings only as a file is being locked, i.e. by ci -I and co -I. This is the default.

-kkvl

Revision Control System 413

Like -kkv, except that a locker's name is always inserted if the given revision is currently
locked.

-kk

Generate only keyword names in keyword strings; omit their values. For example, for the
revision keyword, generate the string $Revision$ instead of Revision: 5.13 $. This option is
useful to ignore differences due to keyword substitution when comparing different revisions
of a file. Log messages are inserted after Log keywords even f -kk is specified, since this
tends to be more useful when merging changes.

-ko
Generate the old keyword string, present in the working file just before it was checked in.

For example, for the Revision keyword, generate the string $Revision: 1.1 $ instead of
$Revision: 5.13 $ if that is how the string appeared when the file was checked in. This can
be useful for file formats that cannot tolerate any changes to substring's that happen to take
the form of keyword strings.

-kb

Generate a binary image of the old keyword string. This acts like -ko, except it performs
all working file input and output in binary mode. This makes little difference on POSIX and
Unix hosts, but on DOS-like hosts one should use rcs -i -kb to initialize an ReS file intended
to be used for binary files.

-kv

Generate only keyword values for keyword strings. For example, for the Revision
keyword, generate the string 5.13 instead of $Revision: 5.13 $. This can help generate files
in programming languages where it is hard to strip keyword delimiters like $Revision: $
from a string.

-p[rev]

prints the retrieved revision on the standard output rather than storing it in the working file.
This option is useful when co is part of a pipe.

-q[rev]
quiet mode; diagnostics are not printed.

-I[rev]

interactive mode; the user is prompted and questioned even if the standard input is not a
terminal.

-M[rev]

Set the modification time on the new working file to be the date of the retrieved revision.

-sstate
retrieves the latest revision on the selected branch whose state is set to state.

414 Introduction to Llnux : Installation and Programming

-T

Preserve the modification time on the ReS file even if the ReS file changes because a lock is
added or removed. This option can suppress extensive recompilation caused by a make
dependency of some other copy of the working file on the ReS file.

-w[login]

retrieves the latest revision on the selected branch which was checked in by the user with
login name 109m. For each pair, co joins revisions revl and rev3 with respect torev2. This
means that all changes that transform rev2 [nto revlare applied to a copy of rev3. This is
particularly oseflil ifrevl and rev3 are the ends of two branches ttlat have rev2 as a common
ancestor. If revl<rev2<rev3 on the same branch, joining generates a new revision which is
like rev3, but with all changes that lead from revl to rev2 undone. If changes fromrev2 to
revl overlap with changes from rev2 to rev3, For the initial pair, rev2 can be omitted.

-v Print ReS's version number.

-Vn Emulate ReS version n, where n can be 3, 4, or 5. This can be useful when
interchanging ReS files with others who are running older versions of ReS.

-xsuffixes

Use suffixes to characterize ReS files.

21.2 Conclusions

sw management is explained and how ReS can be used under Linux to manage the code in
a SW project. Few illustrative examples are included to let students to practice.

22 Lex and Yacc

22.1 Introduction
First phase in the compiler development is tokenization. That is, the input or source program
is decomposed into tokens which are also koown as lexeme's(thus this phase is also called
as lexical analysis). Each wm be having its own lexical rules. Only after extracting
the tokens, syntactical analysis is carried out to test the validity of the expression in terms of
that language specific grammatical rules. After this, actual transformation to machine
language (via assembly language in the case of C language) takes place.

Lex library is widely used for lexical analysis. However, in the recent years, under Free
Software Foundation license, Flex (fast lexical analyzer) is distributed along with Gnu
compiler package which can be effectively used for lexical analysis purpose. In compiler
construction terminology these SW which are used for lexical analysis are called as scanners.

In addition to scanner development, Lex/Flex is also used for some other applications in
system administration where text processing is needed.

22.2 Lex Specification File
In essence, while using lex or flex we have to first create a specification file (used to specify
the tokenization rules, i.e. regular expressions to represent the tokens of the language and
also C code, called as rules) and has to be presented to lex command which generates a C
language file known as lex.yy.c (in which yylexO and other functions given in Table 22. 2
are defined) which when compiled with gcc (with -If I option) we get an executable file
which does the required tokenization.

The flex input or specification file consists of three sections namingly definitions, rules and
user code.

%{

%}

definitions

%%

rules
%%

user code

416 Introduction to Llnux : Installation and Programming

22.2.1 The Definitions Section
The definitions section contains declarations of simple name definitions to simplify the
scanner specification, and declarations of start conditions, which are explained in a later
section.
Name definitions have the form:

Name definition
The "name" is a word beginning with a letter or an underscore ('_') followed by zero or more
letters, digits, '_', or '-' '(dash). The definition is taken to begin at the first non-White-space
character following the name and continuing to the end of the line. The definition can
subsequently be referred to using "{name}", which will expand to "(definition)". For
example,

DIGIT [0-9]
ID [a-z][a-zO-9]*

defines "DIGIT" to be a regular expression which matches a single digit, and "ID" to be a
regular expression which matches a letter followed by Lero-or-more letters-or-digits. A
subsequent reference to

{DIGIT}+"."{DIGIT}*

is identical to

([0-9])+"."([0-9])*

and matches one-or-more digits followed by a '.' followed by zero-or-more digits.

22.2.2 The Rules Section
The rules section of the flex input contains a series of rules of the form:

Pattern action

where the pattern must be unindented and the action must begin on the same line.
See below for a further description of patterns and actions.

22.2.3 The User Code Section
The user code section is simply copied to 'Iex.yy.c' verbatim. It is used for companion
routines which call or are called by the scanner. The presence of this section is optional; if it
is missing, the second '%%' in the input file may be skipped, too.

In the definitions and rules sections, any indented text or text enclosed in '%{' and '%}'
is copied verbatim to the output (with the '%{' and '%}' removed). The '%{', and '%}"
must appear unindented on lines by themselves.

In the rules section, any indented or %{ } text appearing before the first rule may be
used to declare variables which are local to the scanning routine and (after the declarations)
code which is to be executed whenever the scanning routine is entered. Other indented or
%{} text in the rule section is still copied to the output, but its meaning is not well-defined
and it may weWcause compile-time errors (this feature is present for POSIX compliance; see
below for other such features).

Lex and Yacc 417

In the definitions section (but not in the rules section), an un indented comment (Le., a
line beginning with "/*") is also copied verbatim to the output up to the next "*/".

22.2.4 Patterns
The patterns in the input are written using an extended set of regular expressions. These are:

'x'

match the character ' x'

, ,

any character (byte) except new line

'[xyzJ'

a "character class"; in this case, the pattern matches either an 'x', a 'y', or a 'z'

, [abj-oZJ'

a "character class" with a range in it; matches an 'a', a 'b', any letter from' j' through
'0', or a 'Z'

, [I\A-ZJ'

a "negated character class", i.e., any character but those in the class. In this case, any
character EXCEPT an uppercase letter.

, [AA-Z\nJ'

any character EXCEPT an uppercase letter or a new line

, r*1

zero or more r's, where r is any regular expression

'r+'

one or more r's

, r?'

418 Introduction to Llnux : Installation and Programming

zero or one r's (that is, "an optional r")

, r{2,S}'

anywhere from two to five r's

, r{2,}'

two or more r's

, r{4}'

exactly 4 r's

, {name}'

the expansion of the "name" definition (see above)

, "[xyz]\"foolll

the literal string: '[xyz]"foo'

'\x'

if x is an 'a', 'b', 'f', 'n', 'r', 't', or 'v', then the ANSI-C interpretation of\x, Otherwise,
a literal' x' (used to escape operators such as '*')

'\0'

a NUL character (ASCII code 0)

, \123'

the character with octal value 123

'\x2a'

the character with hexadecimal value 2a

, (r)'

Lex and Yacc 419

match an r; parentheses are used to override precedence (see below)

'rs'

the regular expression r followed by the regular expression 5; called "concatenation"

, rls'

either an r or an 5

, r/s'

an r but only if it is followed by an s. The text matched by 5 is included when determining
whether this rule is the longest match, but is then returned to the input before the action is
executed. So the action only sees the text matched by r. This type of pattern is called trailing
context. (There are some combinations of 'r/s' that flex cannot match correctly; see notes in
the Deficiencies / Bugs section below regarding "dangerous trailing context".)

, Ar'

an r, but only at the beginning of a line (i.e., which just starting to scan, or right after a
new line has been scanned).

, r$'

an r, but only at the end of a line (i.e., just before a new line). Equivalent to "r/\n". Note
that flex's notion of "new line" is exactly whatever the C compiler used to compile flex
interprets '\n' as; in particular, on some DOS systems you must either filter out \r's in the
input yourself, or explicitly use r/\r\n 'for "r$".

, <s>r'

an r, but only in start condition 5 (see below for discussion of start conditions)
<sl,s2,s3>r same, but In any of start conditions 51,52, or 53

, <*>r'

an r in any start condition, even an exclusive one.

, «EOF»'

. <sl,s2>«EOF»'

an end-of-file when in start condition 51 or 52

420 Introduction to Llnux : Installation and Programming

Note that inside of a character class, all regular expression operators lose their special
meaning except escape ('\') and the character class operators, '-', ,]" and, at the beginning
of the class, '1\'.

The regular expressions listed above are grouped according to precedence, from highest
precedence at the top to lowest at the bottom. Those grouped together have equal
precedence. For examp·le,

foolbar*

is the same as

(foo) I (ba(r*))

since the '*' operator has higher precedence than concatenation, and concatenation
higher than alternation (' I '). This pattern therefore matches either the string "foo" or the
string "ba" followed by zero-or-more r's. To match "foo" or zero-or-more "bar'''s, use:

foo I (bar)*

and to match zero-or-more "foo"'s-or-"bar"'s:

(foo I bar)*

In addition to characters and ranges of characters, character classes can also contain
character class expressions. These are expressions enclosed inside' [': and . :'] delimiters
(which themselves must appear betw<3en the '[' and,], of the character class; other elements
may occur inside the character class, loo). The valid expressions are:

,[:alnum:] [:alpha:] [:blank:]

[:cntrl:] [:digit:] [:graph:]

[:Iower:] [:print:] [:punct:]

[:space:] [:upper:] [:xdigit:]

These expressions all designate a set of characters equivalent to the corresponding
standard C • isXXX' function. For example, • [:alnum:]' designates those characters for which
. isalnumO' returns true - i.e., any alphabetic or numeric. Some systems don't provide
. isblankO', so flex defines' [:blank:], as a blank or a tab.

For example, the following character classes are all equivalent:

[[:alnum:]]

[[: alpha:] [: digit:]

[[:alpha:]O-9]

[a-zA-ZO-9]

Lex and Yacc 421

If your scanner is case-insensitive (the '-i' flag), then '[: upper:]' and '[: lower:]' are
equivalent to . [:alpha:]',

Some notes on patterns :

• A negated character class such as the example "[I\A-Z]" above will match a new line
unless "\n" (or an equivalent escape sequence) is one of the characters explicitly
present in the negated character class (e,g., "[I\A-Z\n]"). This is unlike how many
other regular expression tools treat negat,ed character classes, but unfortunately the
inconsistency is historically entrenched. Matching new lines means that a pattern like
[1\"]* can match the entire input unless there's another quote in the input.

• A rule can have at most one Instance of trailing context (the 'f' operator or the '$'
operator). The start condition, '1\', and "«EOF»" patterns can only occur at the
beginning of a pattern, and, as well as with 'I' and '$', cannot be grouped inside
parentheses. A '1\' which does not occur at the beginning of a rule or a '$' which does
not occur at the end of a rule loses its special properties and is treated as a normal
character. The following are illegal:

foo/bar$

<sc1 >foo<sc2> bar

Note that the first of these, can be written "foo/bar\n". The f.ollowing will result in
'$' or '1\' being treated as a normal character:

fooj(bar$)

foojl\bar

If what's wanted is a "foo" or a bar-followed-by-a-new line, the following could be
used (the special' j' action is explained below):

foo

bar$ /* action goes here * /

A similar trick will work for matching a foo or a bar-at-the-beginning-of-a-line.

22.2.5 How the input is matched
When the generated scanner is run, it analyzes its input looking for strings which match any
of its patterns. If it finds more than one match, it takes the one matching the most text (for
trailing context rules, this includes the length of the trailing part, even though it will then be
returned to the input). If it finds two or more matches of the same length, the rule listed first
in the flex input file is chosen.

Once the match is determined which satisfying one of the regular expression or rule, the
text corresponding to the match (called the token) is made available in the global character
pOinter vvtext (see Table 22.1 for other lex specific variables), and its length in the
global integer yyleng. The action corresponding to the matched pattern is then executed (a
more detailed description of actions follows), and then the remaining input is scanned for
another match.

422 Introduction to Linux : Installation and Programming

If no match is found, then the default rule is executed: the next character in the input is
considered matched and copied to the standard output. Thus, the simplest legal flex input is:
(see Example 1).

%%

which generates a scanner that simply copies its input (one character at a time) to its
output.

Note that yytext can be defined in two different ways: either as a character pOinter or as
a character array. You can control which definition flex uses by including one of the special
directives . %pointer' or . %array' in the first (definitions) section of your flex input. The
default is • %pointer', unless you use the' -I' lex compatibility option, in which case yytext
will be an array. The advantage of using' %pointer' is substantially faster scanning and no
buffer overflow when matching very large tokens (unless you run out of dynamic memory).
The disadvantage is that you are restricted in how your actions can modify yytext (see the
next section), and calls to the • unputO' function destroys the present contents of yytext,
which can be a considerable porting headache when moving between different lex versions.

The advantage of • %array' is that you can then modify yytext to your heart's content,
and calls to • unputO' do not destroy yytext (see below). Furthermore, existing lex programs
sometimes access yytext externally using declarations of the form:

extern char yytext[];

This definition is erroneous when· used with . %pointer', but correct for • %array' .

• %array' defines yytext to be an array of YVLMAX characters, which defaults to a fairly
large value. You can change the size by simply #define'ing YVLMAX to a different value in the
first section of your flex input. As mentioned above, with • %pointer' yytext grows dynamically
to accommodate large tokens. While this means your • %pointer' scanner can accommodate
very large tokens (such as matching entire blocks of comments), bear in mind that each time
the scanner must resize yytext it also must rescan the entire token from the beginning, so
matching such tokens can prove slow. yytext presently does not dynamically grow if a call to
• unputO' results in too much text being pushed back; instead, a run-time error results.

Actions
Each pattern in a rule has a corresponding action, which can be any arbitrary C statement. The
pattern ends at the first non-escaped white space character; the remainder of the line is its action.
If the action is empty, then when the pattern is matched the input token is simply discarded.

Table 22.1 Lex variables.

yyin Of the type FILE*. This points to the current file being parsed by the lexer.

Yyout Of the type FILE*. This pOints to the location where the output of the lexer will be
written. By default, both yyin and yyout point to standard input and output.

yytext The text of the matched pattern is stored tn this variable (char*).

yyleng Gives the length of the matched pattern.

yylineno Provides current line number information. (Mayor may not be supported by the
lexer.)

Lex and Yacc 423

Table 22.2 Lex Functions.

yylexO The function that starts the analysis. It is automatically generated by Lex.

yywrapO This function is called when end of file (or input) is encountered. If this
function returns 1, the parsing stops. So, this can be used to parse
multiple files. Code can be written in the third section, which will allow
multiple files to be parsed. The strategy is to make yyin file pointer point
to a different file until all the files are parsed. At the end, yywrapO can
return 1 to indicate end of parsing.

yyless(int n) This function can be used to push back all but first 'n' characters of the
read token.

yymoreO This function tells the lexer to append the next token to the current token.

Example 1
This contains no patterns and no actions. Thus, any string matches and default action, i.e.
printing takes place.

%{
%}
%%
%%
mainO
{

yylexO;
return 0;
}

Let the lex specification file as exO.lex. Then, run the following sequence of commands.

lex exO.lex (creates lex.yy.c)

gcc -0 exO lex.yy.c -If I

To Use the generated program .

./exO < filename

This displays the content of the file "filename".
Even this exO program can take standard input. That is, we can simply type its name

along the command line .

. /exO
dd
ds
dads
Ad

424 Introduction to Linux : Installation and Programming

We can also say from this program "exO" from go on take input till we type a specified
string with the help of "Here the document «<)" .

./exO «END

dsdsa asdd

asdkads asdk
asdkd asd
asdsd
adsd sdd

END

This simply displays what ever we have typed on the screen again.

Example 2
A lex program which adds line numbers to the given file and displays the same onto the
standard output

%{
/*

*/

int lineno=l;

%}

line .*\n

%%
{line} {

%%

mainO
{

yylexO;

return 0;
}

printf("%5d %s",lineno++,yytext); }

If we assume this file name is "exl.lex", at the command prompt we have to execute the
following commands to use lex.

lex exl.lex (creates lex.yy.c)

gcc -0 exl lex.yy.c -If I

Lex and Yacc

To use the program .

. /exl < filename

This displays the content of the file "filename" along with line numbers.

This "exl" program takes standard input also. Try at the command prompt.

'/exl
dd

ds
dads

"d

Also try at the command prompt the following .

Example 3

./exl «END
dsdsa asdd

asdkads asdk
asdkd asd

asdsd
adsd sdd

END

425

This is also a lex specification program which adds line numbers to the given file and displays
the same onto standard output Only difference is that mainO is not included unlike previous
example. However, automatically, mainO is added by the lex.

%{
/*

*/

int lineno=l;

%}

line . *\n

%%

{line}

%%

{ printf("%Sd %s",lineno++,yytext); }

426 Introduction to Linux : Installation and Programming

Try at the command prompt the following commands.

lex ex2.lex (creates lex. yy. c)

gcc -0 ex2 lex.yy.c -If I

./ex2 < filename

Example 4

This is a lex specification program which adds line numbers to the given file and displays the
same onto standard output. However, it explains about the use of external variable yyin. The
resultant program takes filename to be tokenized as command line argument unlike previous
programs exO, ex1 and ex2.

%{
/*

*/

int Iineno=l;
%}

line . *\n

%%

{line}
%%

{ printf("%5d

main(int argc, char*argv[])
{
extern FILE *yyin;
yyin=fopen(argv[1], "r");
yylexO;
return 0;
}

%s",lineno++,yytext); }

If we assume this file name is "ex3.lex", at the command prompt we have to execute the
following commands to use lex.

lex ex3.lex (creates lex.yy.c)

gcc -0 ex3 lex.yy.c -If I

How to Use the program .

./ex3 filename

./ex3 < filename

Lex and Vacc 427

Both the commands displays the file "filename" content on the screen along with the line
numbers.

Also, try at the command prompt and note the difference .

Example 5

./ex3
dd

ds

dads
Ad

./ex3 «END
dsdsa asdd
asdkads asdk

asdkd asd
asdsd

adsd sdd

END

This specification program is an attempt to emulate od command.

%{

%}

character

new line

0/0%

{character}

{new line} {
0/0%

\n

{ printf("%o ",yytext[O]); }

printf("%o ", '\n');}

main(int argc, char*argv[])
{

extern FILE *yyin;
yyin=fopen(argv[1], "r");

yylexO;
printf("\n");

return 0;

}

428 Introduction to Llnux : Installation and Programming

Let the specification file be "exS.lex". Run the following commands.

lex exS.lex

gcc -0 exS lex.yy.c -If I

./exS filename

Compare the result with the following command.

od -t oC filename

Example 6

This program is an attempt to extract only comments from a C program and display the
same on standard output

%{

%}

comment

%%

{comment}
%%

V*·**V

ECHO;

main(int argc, char*argv[])

{

extern FILE *yyin;

yyin =fopen(argv[1], "r");

yylexO;

printf("\n");

return 0;

}

Let the above specification file be "ex6.lex". Run the following commands.

lex ex6.lex

gcc -0 ex6 lex.yy.c -If I

./ex6 filename.c

Lex and Yacc 42$

Example 7
This lex specification program is an attempt to replace all nonnull sequences of white spaces by
a single blank character. Here, pattern 'ws" is specified as a series of spaces of tab characters
and action is specified as return or print a single space. Any other string is returned as it is.

%{
%}
ws [\t]

%%
{ws}+ {printf(n n); }

{printf(n%sn, yytext);}

0/00/0

main(lnt argc, char*argv[])
{
extern FILE *yyin;
yyin=fopen(argv[1], nrn);
yylex();
printf(n\nn);
return 0;
}

Let the above specification file be "ex7.lex". Run the following commands.

lex ex7.lex

Example 8

gcc -0 ex7 lex.yy.c -If I
./ex7 filename

This specification program replaces all the occurrences of nraman with nRAMAn and nsitan with
nSITA '. This example is used from explain that we can use a string as a direct pattern in the
specification file.

%{
%}

0/0%

nraman

nsitan

%%

{printf(nRAMAn); }

{printf(nSITAn); }

main(int argc, char*argv[])
{
extern FILE *yyin;
yyin=fopen(argv[1], nrn);
yylexO;
printf(n\nn) ;
return 0;
}

430 Introduction to Linux : Installation and Programming

Let the above specification file be "ex8.lex". Run the following commands.

Example 9

lex

gcc -0 ex8 lex.yy.c -If I

./ex8 filename

This lex specification program is used to count all occurrences of "rama" and "sita" in a given
file.

%{
int count=O;

%}

"rama" {count++;}

"sita" {count++; }

main(int argc, char*argv[])

{

extern FILE *yyin;

yyin=fopen(argv[1], "r");

yylexO;

printf("No of Occurrences=%d\n",count);

return 0;

}

Let the abOve specification file be "ex9.lex". Run the following commands.

lex ex9.lex

gcc -0 ex9 lex.yy.c -If I

'/ex9 filename

Lex and Yacc 431

Example 10
This lex specification program is used from generate a C program which removes all the
occurrences of "sita" and "rama" in the given file.

%{
%}

0/00/0

"rama"
"sita"

ECHO;

%%

Let the above specification file be "ex9a.lex". Run the following commands.

lex ex9a .Iex
gcc -0 ex9a lex.yy.c -If I
./ex9a< filename

Example 11
This lex specification program is used to count and print the number of pages, lines, words
and characters in a given file.

%{

int Iines=O ,words=O ,characters=O,pages=O;

%}
%START InWord
Newline [\n]
WhiteSpace [\t]
NewPage [\f]

{NewPage} {BEGIN 0; characters++;pages++;}
{Newline} {BEGIN 0; characters++;lines++;}
{WhiteSpace} {BEGIN 0; characters++;}
< InWord >. characters+ +;

0/00/0

int mainO
{

yylexO;

{BEGIN InWord; characters++; words++;}

printf("%d %d %d %d\n",lines,words,characters,pages);
"}

432 Introduction to Linux : Installation and Programming

Let the above specification file be "exIO.lex". Run the following commands.

lex exlO.lex

gcc -0 exl0 lex.yy.c -If I

./exl0 filename

Example 12

This lex specification program also can be used from find no of lines, words and characters in

a given file. Here, yyleng indicates the length of the string yytext.

%{

int Iines=O,words=O,characters=O;

%}

word [A \t\n]+

eol \n

0/0%

{word}

{eol}

%%

int mainO

{

yylexO;

{words++;characters+=yyleng;}

{characters++; lines++;}

{ characters++; }

printf("%d %d %d \n",lines,words,characters);

}

Let the ab'ove specification file be "exll.1ex". Run the following commands.

lex eXll.1ex

gee -0 exll lex.yy.c -If I

'/exll filename

Lex and Vacc 433

Example 13
ThIS lex specification program is to replace all the occurrences of the word "username" with
users login name.

%{
%}

°/0°/0

username printf("%s",getloginO);

°/0%

main(int argc, char*argv[])
{

extern FILE *yyin;

yyin=fopen(argv[1], "r");

yylexO;

printf("\n") ;

return 0;

}

Let the above specification file be "ex12.lex". Run the following commands.

lex ex12.lex

gcc -0 ex12 lex.yy.c -If I

'/ex12 filename

Example 14

This lex specification program is to extract all html tags in the given file.

%{
%}

%%

"<"[">]*>

°/0%

{printf("%s\n", yytext); }

main(int argc, char*argv[])
{

extern FILE *yyin;

yyin =fopen(argv[l], "r");

yylexO;

printf("\n") ;

return 0;

}

434 Introduction to Linux : Installation and Programming

Let the above specification file be "ex13.lex". Run the following commands.

lex eX13.lex
gcc -0 ex13 lex.yy.c -If I

'/ex13 filename.html

Example 15
This lex specification program is from generate a program which simulates cat command to
create files. While giving input first "start" word has from be typed and at the end "end"
word has ffom be typed.

%{
%}

%%
"start"
"end" exit(-1);

ECHO;
%%

main(int argc, char*argv[])

{

extern FILE *yyin;
yyout=fopen(argv[1], "w");

yylexO;

printf("\n");

return 0;
}

Let the above specification file be "ex14.lex". Run the following commands.

lex eX14.lex
gcc -0 ex14 lex.yy.c -If I

'/ex14 filename

Example 16
This lex specification program is to eliminate multiple spaces and tabs and replace with a
single space and remove empty lines. Here, yytext is processed in our actions.

%{

#indude<stdlib.h>

#include<stdio.h>

Lex and Yacc

int emptyline=O;

%}

SPACES [\t]
eol \n

%%

{SPACES}+ {printf(" "); }

\nl. {
char c=yytext[O];

if(!isspace(c)) {

if(c=='\n')

{

emptyline= 1;

putchar(c);

}

if(emptyline)putchar(c);

emptyline=O;
}

}

%%

main(int argc, char*argv[])
{

extern FILE *yyin;
yyin=fopen(argv[l],lr");

yylexO;
printf("\n") ;

return 0;
}

Example 17

435

This lex specification program is to display only C comments in a given C file. Here, whenever
"/*" pattern is encountered in the input, we have written code to process next characters in
the input till we encounter the pattern "*/". Whenever, "/*" pattern is encountered the C code
will be executed. Here, we have used lex specific function (see Table 8.2)inputO is used to
read characters from the lex input buffer and print them till it encounters "*/" pattern.

%{
%}

%%

"/*" {char c;

436

int done=O;

ECHO;

do

{

Introduction to Linux : Installation and Programming

while« c=input())! ='*'), putchar(c);

putchar(c);

while« c=input())= = '* ') putchar(c);

putchar(c);

if(c=='/') done=l;

} while(!done);
}

\n
%%

main(int argc, char*argv[])
{

extern FILE *yyin;

yyin=fopen(argv[1], "r");

yylexO;
printf("\n") .

return 0;

}

Example 18
This lex specification file is to display a file's content by replacing \\:" with \t

%{

%}

%%

":" {printf("\t");}

\nl. ECHO;
%%

main(int argc, char*argv[])

{

extern FILE *yyin;

yyin=fopen(argv[1], "r");

yylexO;

Lex and Yacc

printf("\n");

return 0;

}

Let the above specification file be "ex!7.lex". Run the following commands.

lex ex17.lex

gcc -0 ex!7 lex.yy.c -If I

./ex!7 /etc/passwd

437

REJECT directs the scanner to proceed on to the "second best" rule which matched the
input (or a prefix of the input). The rule is chosen as described above in "How the Input is
Matched", and yytext and yyleng set up appropriately. It may either be one which matched
as much text as the originally chosen rule but came later in the flex input file, or one which
matched less text

Example 19

For example, to count all instance of she and he, including the instances of he that are
included in she, use the following action:

%{
int s=O;

%}

%%

she {s++; REJECT;}

he {s++}

\n I

%%

main(int argc, char*argv[])
{

extern FILE *yyin;

yyin=fopen(argv[!], "r");

yylexO;

printf("No of occurrences of he including in he in she=%d\n",s);

return 0;

}

After counting the occurrences of she, the lex command rejects the input string and then
counts the occurrences of he. Because he does not include she, a REJECT action is not
necessary on he.

438 Introduction to Llnux : Installation and Programming

Example 20
The following lex specification file is used to generate a C program which counts number of
words in a file other than the word "inc!".

%{
int nw=O;

%}
%%

inc! nw--; REJECT;

[" \t\n]+ nw++;
%%

main(int argc, char*argv[))
{

extern FILE *yyin;
yyin=fopen(argv[1],"r");

yylexO;

printf("No of words other than the word incl=%d\n",nw);
return 0;
}

Example 21
The following lex specification program generates a C program which takes a string "abcd"
and prints the following output. From terminate the program enter "d.

abcd

abc
ab
a
%{
%}
%%
alablabclabcd
.I\n

%%

printf(l%s\n",yytext);REJECT

main(int argc, char*argv[])
{

extern FILE *yyin;
yyin=fopen(argv[lJ,lr");

yylexO;
return 0;
}

Lex and Yacc 439

Example 22
The following lex specification file generates a C program which extract http, ftp or tel net
tags from the given file.

%{
%}
%%

(ftplhttpltelnet):VV[1\ \n < > "] *
.I\n
%%

main(int argc, char*argv[])
{

extern FILE *yyin;
yyin=fopen(argv[1], "r");
yylexO;
return 0;
}

The above program is supposed extract URL's with capitol letters such as HlTP, FTP or
TELENT then we tell flex to build a case-insensitive lexer using the "-i" option.

Example 23
The following lex program generates a C program which takes standard input as output of
Unix date and gives either of the following messages

Good Morning
Good Afternoon
Good Evening

%{
%}

%%

Morning
Afternoon
Evening

%%

{Morning}
{Afternoon}
{Evening}

[](00101102103104105106107108109110111)[:]
[](12113114115116117)[:]
[](18119120121122123)[:]

printf("Good Morning ");
printf("Good Afternoon ");
printf("Good Evening ");

If we assume that executable file name of the generated C program is "greet" then we
can run the following command from see the output.

date I greet

BEGIN followed by the name of a start condition places the scanner in the corresponding
start condition.

440 Introduction to Linux : Installation and Programming

Example 24
The . yymoreO' tells the scanner that the next time it matches a rule, the corresponding token
should be appended onto the current value of yytext rather than replacing it. First, . yymoreO'
depends on the value of yyleng correctly reflecting the size of the current token, so you must
not modify yyleng if you are using • yymoreO'. Second, the presence of . yymoreO' in the
scanner's action entails a minor performance penalty in the scanner's matching speed.

Example 25
The yyless(n)' returns all but the first n characters of the current token back to the input
stream, where they will be rescanned when the scanner looks for the next match. yytext and
yyleng are adjusted appropriately (e.g., yyleng will now be equal to n). An argument of 0 to
yyless will cause the entire current input string to be scanned again. Unless you've changed
how the scanner will subsequently process its input (using BEGIN, for example), this will
result in an endless loop. Note that yyless is a macro and can only be used in the flex input
file, not from other source files.

Example 26
The following lex specification file is used to generate scanner program for a toy Pascal-like
language which extracts integers type of numbers, float type of numbers, key words such as
if, procedure etc.

%{
#include <math.h>
#include<stdlib.h>

%}

DIGIT [0-9J

10 [a-zJ[a-zO-9J*

0/0%

{DIGIT} + {
printf("An integer: %s (%d)\n", yytext,

atoi(yytext));
}

{DIGIT}+"."{DIGIT}* {

printf("A float: %s (%g)\n", yytext,
atof(yytext));

}

if/then / begin lend / procedure/function {

printf("A keyword: %s\n", yytext);

}

{IO} printf("An identifier: %s\n", yytext);

Lex and Yacc 441

Example 27

"+"I"-"I"*"I"/" printf("An operator: %s\n", yytext);

"{"[\"{$\;$} }\n]*"}" /* eat up one-line comments */

[\t\n]+ /* eat up whitespace */

printf("Unrecognized character: %s\n", yytext);

%%

maine argc, argv)
int argc;
char **argv;
{

++argv, --argc; /* skip over program name */
if (argc > 0)

else

yylexO;
}

yyin = fopen(argv[O], "r");

yyin = stdin;

A lex input file that changes all numbers to !lexadecimal in input file while ignoring all others.

%{

#inc/ude<stdlib.h>
%}

digit [0-9]
number {digit}+
%%

{number} { int n = atoi(yytext); printf("%x", n); }
. {;}
%%

main(int argc, char*argv[])
{

extern FILE *yyin;
yyin =fopen(argv[l], "r");
yylexO;
return 0;
}

442 Introduction to Linux : Installation and Programming

Example 28
The lex specification file generates a C program which counts number of word with length 1
character, 2 characters vice versa in the given input.

%{
int leng[100];

%}
0/0%

[a-z]+

·I\n
0/0%

leng[yyleng]++ ;

main(int argc, char*argv(])
{

extern FILE *yyin;
int i;
for(i=1;i<100;i++) leng[i]=O;
yyin=fopen(argv[1], "r");
yylexO;
printf("Word Length Frequency\n");
for(i=l;i< 100;i++)
printf("%l1d %10d\n",i,leng[i]);
return 0;
}

Example 29

%{
int leng[100];

%}
%%
[a-z]+

·I\n
0/0%

leng[yyleng]++ ;

int yywrapO
{
int i;
printf("Word Length Frequency\n");

for(i=1;i<100ii++)
if(leng[i]) printf("%l1d %10d\n",i,leng[i]);
return 1;
}

Lex and Yacc

main(int argc, char*argv[])
{

extern FILE *yyin;

int i;

for(i=1;i<100;i++) leng[i]=O;

yyin=fopen(argv[l], "r");

yylexO;

return 0;
}

Example 30

443

This lex specification file is used to generate a C program' which counts how many times a
given alphabet is next to another alphabet in the given input (This frequency table is called
as diagram in natural language processing terminology and also in algorithms.

%{
#include<stdlib.h>

int F[26](26];

%}
%%

[A-Za-z](A-Za-z] {

F[toupper(yytext[O])-65] [to! ipper(yytext[1])-65] + +; REJECT;

}

.I\n
%%

main(int argc, char*argv[])

{

extern FILE *yyin;

int i,j;

for(i=0;i<26;i++)

for(j=0;j<26;j+-+JFtt}[jj=0;

yyin=fopen(argv[1], "r");

yylexO;

for(i=0;i<26;i++){

for(j=0;j<26;j++) printf("%d", F[i](j]);

printf("\n") ;

}

return 0;

}

444 Introduction to Linux : Installation and Programming

If we give the following input to the program which is created compiling lex.yy.c file
generated from the above lex specification file.

Result is:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

02000000000000000000000000

00200000000000000000000000

00020000000000000000000000

00002000000000000000000000

00000200000000000000000000

00000020000000000000000000

00000002000000000000000000

00000000200000000000000000

00000000020000000000000000

00000000002000000000000000

00000000000200000000000000

00000000000020000000000000

00000000000002000000000000

00000000000000200000000000

00000000000000020000000000

00000000000000002000000000

00000000000000000200000000

00000000000000000020000000

00000000000000000002000000

00000000000000000000200000

00000000000000000000020000

00000000000000000000002000

00000000000000000000000200

00000000000000000000000020

00000000000000000000000002

10000000000000000000000000

Example 31

In the C program generated by the lex specification file, when yylexO finished with the first
file, it calls yywrapO, which opens the next file, and yylexO continues. When yywrapO has
exhausted all the command line arguments, it returns I, and yylexO returns with value 0
(but we don't use the return value).

Lex and Yacc 445

Like previous examples, this also extracts URL's from the given files whose names are
given along the command line to the above program.

%{
#include <stdio.h>
#include <errno.h>
int file_num;
int file_num_max;
char **files;
extern int errno;
%}
%%
(ftplhttp):VV[" \n<>"]*
.I\n
%%

printf("%s\n", yytext);

int main(int argc, char *argv[]) {

}

file_num=l;
file_num_max = argc;
files = argv;
if (argc > 1) {

}

if ((yyin = fopen(argv[file_num],"r"» == 0) {
perror(argv[file_num));
exit(l);

}

while(yylexO)

return 0;

int yywrapO {
fclose(yyin);

}

if (++file_num < file_num_max) {

} else {

}

if ((yyin = fopen(files[file_num],"r"» == 0) {
perror(files[file_num]);
exit(l);

}

return 0;

return 1;

446 Introduction to Linux : Installation and Programming

Start Conditions
Also, flex provides a mechanism for conditionally activating rules. Any rule whose pattern is
prefixed with "<sc>" will only be active when the scanner is in the start condition named
"sc". For example,

<STRING>[A"]* { }

will be active only match is found when the scanner is in the "STRING" start condition. Also,
if we want same action to be done for a given regular expression under different states, we
may have to enter all the states names like the following manner

<STRING, ERROR, WARNING> ''*'' ;

where STRING, ERROR, and WARNING are different states.

Example 32
This example is used to remove C comments from the file. It uses states facility available in
the lex. Initially, lex is assumed to be in INITIAL state and when "/*" pattern is found it will
be changing to COMMENT state. When it is in COMMENT state then pattern "*/" puts the lex
in again INITIAL state. When it is in COMMENT state, whatever it encounters it will be eaten
whereas if it is in INITIAL state simply the same is displayed.

%{
%}

%s COMMENT

%%

< INITIAL> "/ /". *
<INITIAL>"/*"
<INITIAL>.

<INITIAL>[\nJ
<COMMENT>"*/"
<COMMENT>.
<COMMENT> [\nJ
%%

mainO {
yylexO;

}

Example 33

BEGIN COMMENT;
ECHO;
ECHO;
BEGIN INITIAL;

The following lex specification file is used to generate a C program which is used to generate
a html file from a data file.

The input format is that of a textual spreadsheet. Each spreadsheet entry is numbered
using an alphabetical character (indicating the row) and an integer (indicating the column).

Lex and Yacc 447

To make the task easier, we can assume several things. First there will not be more than 26
columns. Second, that the entries will be ordered in the obvious way, i.e. A1, followed by B1,
." then A2, followed by 62, etc. Third, there will only be one entry per line and that all
entries exist in the file. Finally, we are going to assume that there are no spreadsheet
equations.

An example input might be

AO = "Name"
60 = "SSN"
CO = "HW1"
DO = "HW2"
Ai = "Scott Smith"
61 = "123-44-5678"
Cl = 82
Dl = 44.2
A2 = "Sam Sneed"
62 = "999-88-7777"

C2 = 92
D2 = 84

For output, we what to generate the appropriate HTML table. In html, tables are
surrounded by <table> ... </table>. Each row of the table is surrounded by <tr> ... </tr>
and each entry in a row by <td> ... <ltd>. For the above input we would want to output:

<table>
<tr>
<td> Name <ltd>
<td> SSN <ltd>
<td> HWl <ltd>
<td> HW2 <ltd>
</tr>
<tr>
<td> Scott Smith <ltd>
<td> 123-44-5678 <ltd>
<td> 82 <ltd>
<td> 44.2 <ltd>
</tr>
<tr>
<td> Sam Sneed <ltd>
<td> 999-88-7777 <ltd>
<td> 92 <ltd>
<td> 84 <ltd>

</tr>
</table>

448 Introduction to Llnux : Installation and Programming

When viewed with a viewer, this looks like:

Name SSN

Scott Smith
Sam Sneed

HW1 HW2

123-44-5678 82

999-88-7777 92

Lex specification for the conversion

%%

44.2

84

"AO {printf("<table>\n<tr>\n");}

"A[0-9]* {printf("</tr> \n<tr> \n");}

"rB-Z] [0-9]*

[0-9]* {printf("<td> "); ECHO; printf(" </td>\n");}
[0-9]*"."[0-9]* {printf("<td> "); ECHO; printf(" </td>\n");}

\"[""]*\" {printf("<td> "); yytext[yyleng-1]
<ltd> \n",yytext+ 1);}

[\n]
ECHO;

%%

main() {

printf("<html>\n");

yylexO;

printf(" </tr> \n </table> \n</html> \n");

}

Example 34

I. , printf("%s

The following specification file is for the opposite purpose. That is, given html languages
<table> specification such the following it has to extract only field's information.

Sample Input:

<table>
<tr>

<td> Name <ltd>
<td> SSN <ltd>
<td> HW1 <ltd>
<td> HW2 <ltd>

</tr>
<tr>

<td> Scott Smith <ltd>
<td> 123-44-5678 <ltd>

Lex and Yacc .

<td> 82 <ltd>

<td> 44.2 <ltd>

</tr>

<tr>

<td> Sam Sneed <ltd>

<td> 999-88-7777 <ltd>

<td> 92 <ltd>

<td> 84 <ltd>

</tr>

</table>

Sample output:

449

Name SSN HW1 HW2 Scott Smith 123-44-5678 82 44.2 Sam Sneed 999-88-7777 92 84

Lex Specification File

%{
%}

%s TABL REC DATA

%%

<INITIAL> "<table>"

<TABL>"<Vtable>"

<TABL> <tr> BEGIN REC;

<REC> <Vtr> BEGIN TABL;

<REC><td> BEGIN DATA;

<DATA> <Vtd> BEGIN REC;

<DATA>. ECHO;

<DATA> [\t\n]

<REC>[\t\n]

<TABL>[\t\n]

%%

mainO {

yylexO;

}

BEGIN TABL;

BEGIN INITIAL;

450 Introduction to Llnux : Installation and Programming

Example 35

The above specification file can be also written as the following by combining last three state
conditions.

%{
%}

%s TABL REC DATA

%%
<INITIAL>" <table>"

<TABL>" <Vtable>"

<TABL> <tr> BEGIN REC;

<REC><Vtr> BEGIN TABL;

<REC><td> BEGIN DATA;

<DATA> <Vtd> BEGIN REC;

<DATA>. ECHO;

<DATA,REC,TABL>[\t\n]
%%

mainO {

yylexO;

}

Example 36

BEGIN TABL;

BEGIN INITIAL;

This example is used to explain yymoreO and other pattern usage. Run the program by
giving input like BOMBAYB.

%{
int flag=O;

%}

%%
B[I\B]*

}

{ if (flag == 0) {

flag = 1;

yymoreO;

else {

flag = 0;

printf("%s", yytext);

printf("%d\n",yyleng);

Lex and Yacc

}

}

int mainO

{

yylexO;

}

22.3 Yacc - A Parser Generator

451

Normally, syntax analysis is employed to validate or check the syntax of any program. SW
systems which are used for this purpose is referred as parsers. It is also possible to create a
simple parser usmg Lex alone by making extensive use of the user-defined states (Le. start-
conditions). However, such a parser quickly becomes un-maintainable, as the number of
user-defined states tends to explode.

Once our input file syntax contains complex structures, such as "balanced" brackets, or contains
elements which are context-sensitive, compiler-compilers such as Vacc (vet another compiler
compiler) is best available altemative. "Context-sensitive" in this case means that a word or
symbol can have different interpretations, depending on where it appears in the input language. For
example in C, the '*' character is used for both multiplication, and to specify indirection (i.e. to
dereference a pointer to a piece of memory). That is, it's meaning is "context-sensitive".

Yacc provides a general tool for imposing structure on the input to a computer program.
That is, yacc user prepares a specificatIon of the input process (grammar rules) as explained
in detail in the following sections. Then, when yacc command is used with this specification
file as input, it generates a C language program which checks the grammar (specified in the
.v file) in the given input file. This generated C language program in turn calls lexical
analyzer, probably generated by using Lex command, to pick up the basiC items (called
tokens) and test their syntactical validity according to the speCified grammatical rules. Thus,
both lex and yacc commands are used while writing compilers. For detailed discussion on
compilers one can refer [Aho, 1985].

To summarize, the steps in developing compilers (parsers) using Yacc and Lex are:

• Write the grammar in a .y file (also specify the actions here that are to be taken in C).

• Write a lexical analyzer to process input and pass tokens to the parser whenever it is
needed. This can be done using Lex command as explained in previous section. That
is, we may prepare Lex specification file also.

• Write error handling routines (like yyerrorO).

• Run yacc command on .y file such that it gives v.tab.c file and v.tab.h file.

• Run lex command on lex speCification file such that it gives lex.vv.c file.

• Compile code produced by Yacc and lex as well as any other relevant source files.

• Test the resulting executable file by giving input file.

452 Introduction to Linux : Installation and Programming

22.3.1 The Yacc Specification Rules
Like lex, yacc has it's own specification language. A yacc specification is structured along the
same lines as a Lex specification. By convention, a Yacc file has the suffix .y. The Yacc
compiler is invoked from the compile line as yacc -dv file.y

%{
/* C declarations and includes */

%}
/* Yacc token and type declarations */

0/00/0

/* Yacc Specification

in the form of grammar rules like this:

*/
symbol symbols tokens

{ $$ = my-c_code($l); }

%%

/* C language program (the rest) */

The Yacc Specification rules are the place where you "glue" the various tokens together
that lex has conveniently provided to you.

Each grammar rule defines a symbol in terms of:

• other symbols

• tokens (or terminal symbols) which come from the lexer.

Each rule can have an associated action, which is executed after all the component
symbols of the rule have been parsed. Actions are basically C-program statements
surrounded by curly braces.

Terminal and non-terminal symbols

Terminal symbol: Represents a class of syntactically equivalent tokens. Terminal symbols
are of three types:

Named token: These are defined via the %token identifier. By convention, these are all
upper case.

Character token: A character constant written in the same format as in C. For example, +
is a character token.

Literal string token: is written like a C string constant. For example, ''&It;<'' is a literal
string token.

The lexer returns named tokens.

Non-terminal symbol: Is a symbol that is a group of non-terminal and terminal symbols.
By convention, these are all lower case.

For example, in English one of the valid form of a sentence is the one having subject,
verb and object.

Sentence: Subject Verb Object

Lex and Yacc 453

Similarly, in US style, date is represented as:

Date: Month / Day / Year

Here, Date can be termed as Non-terminal and Month, 'I', Day, and Year can be termed
as terminals (i.e. they are not further decomposable). In Yacc specification, the same rule
can be specified as:

Date: MONTH 'I' DAY 'I' YEAR { /*actions */}

Actual values for MONTH, DAY and YEAR are returned from the lexical analyzer by
tokenizing the given input.

Similarly, Context-free grammar production such as:

p->AbC

will have equivalent Yacc Rule as:

p : AbC {/* actions */}

The general style for coding the rL!les is to have all Terminals in upper-case and all non-
terminals in lower-case (Surprise!!. Exactly opposite to Automata Theory or compiler
construction books notation's).

Also, we can use few Yacc specific declarations which begins with a %sign in yacc
specification file such as:

1. %union It defines the Stack type for the Parser. It is a union of various
datas/structures/ objects.

2. %token These are the terminals returned by the yylex function to the yacc. A token
can also have type associated with it for good type checking and syntax directed
translation. A type of a token can be specified as %token <stack member>
tokenName.

3. %type The type of a non-terminal symbol in the Grammar rule can be specified with
this.

Tl.e format is %type <stack member> non-terminal.

4. O/oiloassoc Specifies that there is no associativity of a terminal symbol. ,
" 5. %Ieft Specifies the left associativity of a Terminal Symbol

6. %right Specifies the right assocoativity of a Terminal Symbol.

7. %start Specifies the L.H.S non-terminal symbol of a production rule which should be
taken as the starting point of the grammar rules.

8. %prec Changes the precedence level associated with a particular rule to that of the
following token name or literal.

454 Introduction to Llnux : Installation and Programming

Let us discuss about how to write a parser to recognize US style date.

File date.y

%token NUMBER SLASH NL
0/0%

date

INUMBER SLASH NUMBER SLASH NUMBER NL {printf(IOK"); }

%%

void yyerror(char *s)
{

printf("Error\n") ;
}

File date.lex

%{
#include"y.tab.h"

%}

%%

[0-9]+

"V"
'\n'

return NUMBER;
return SLASH;

return NL;

Run the following command.

yacc -dv date.y

This command generates the files y.tab.c, y.tab.h and y.output.

File y.tab.h contains:

#ifndef VYERRCODE

#define VYERRCODE 256

#endif

#define NUMBER 257
#define SLASH 258
#define NL 259

Lex and Yacc 455

The file y.tab.c contains the C code for the parser which recognizes the given grammatical
rules (here it is date format) in a given input file.

Also, run the following commands to generate the final parser.

lex date.lex

gcc -0 DATE y.tab.c lex.yy.c -Iy -If I

Run the program DATE and enter interactively a string other than of the format
12/31/1998 and observe the error message. Otherwise, it displays the message OK.

As mentioned earlier, Yacc uses symbolic tokens. In the above Yacc specification file we
have declared symbolic Tokens such as NUMBER, NL, and SLASH using %token declaration.
When we run Yacc command on this specification file it generates the file y.tab.h (an
example is shown above) in which for all these token a number aSSigned starting from 257.

Also, observe that these symbolic tokens are used in lex specification file, in which when a
regular expression match occurs, yylexO returns this symbolic token. That is, the lexical
analyzer, yylexO generated by lex command takes responsibility of reading input stream and
recognizing low level structures (regular expressions) historically called as terminal symbols
and communicates these tokens to the parser which in turn recognizes the nonterminals, i.e.
grammatical structures.

Tokens also will have assigned values during the scanning process and the same is
assigned to variable yylval which is defined internally by Yacc.

Example 37
This example is to develop parser which recognizes strings of form a"b", where n>=1.

Yacc Specification File (ab.y)

%token A B
%%

start: anbn '\n' {return O;}

anbn: A B

I A anbn B

%%

#include"lex.yy.c"

Lex Specification File (ab.lex)

%%

a return(A);

b return(B);

retu rn (yytext[0]) ;

\n return('\n');

456 Introduction to Llnux : Installation and Programming

To create parser which recognizes strings of for anbn, run the following commands

lex ab.lex
yacc -dv ab.y

gcc -0 anbn y.tab.c lex.yy.c -Iy -If I

Run the resulting program (anbn) and check by giving pattern such as:

aabb or aaaabbbb.

If we do not give matching input it gives error message "Syntax Error". Otherwise it
displays nothing.

Example 38

The following is a little modified version of the above program with error checking and better
user interface when match occurs.

Yacc Specification File (ab1.y)

%token A B

%%

start: anbn '\n' {printf(" is in anbn\n");

anbn: A B

I A anbn B

0/0%

#include Ilex.yy.c"

yyerror(s)

char *s;

{

printf("%s, it is not in anbn\n", s);

}

Lex Specification File(abl.lex)

0/00/0

a return(A);

b return(B);

return (yytext[O]) ;

\n return('\n');

return 0; }

lex and Yacc

To create parser, run the following commands

lex abl.lex
yacc -dv ab1.y
gcc -0 anbnl y.tab.c lex.yy.c -Iy -If I

Run the resulting program (anbnl) and check by giving pattern such as:

aabb or aaaabbbb

Example 39
This example is also to explain simple yacc example.

Yacc Specification File(two.y)

%token DING DONG BELL
%%

rhyme sound place

sound DING DONG

place BELL

%%

#include "Iex.yy.c"

Lex Specification File (two.lex)

%%

"ding"
"dong"
"bell"

return (DING);
return (DONG);
return (BELL);

To create parser which accepts "ding dong bell", run the following commands

lex two.lex .
yacc -dv two.y
gcc -0 two y.tab.c lex.yy.c -Iy -If I

457

After creating parser if we give input "ding dong bell" it accepts otherwise rejects, i.e. it
gives an error message "Syntax Error".

458 Introduction to Llnux : Installation and Programming

Example 40
This Yacc speCification and lex speCification program's are for testing balanced parentheses.

Yacc Specification File (bp.y)

%{
#include <ctype.h>
#include <stdio.h>
#include "y.tab.h"
extern int yydebug;
%}
%token OPEN CLOSE
0/0%

lines : s '\n' {printf("OK\n"); }

s
1 OPEN s CLOSE s

void yyerror(char * s)
{

fprintf (stderr, "%s\n", s);
}

int yywrapO{return 1; }
int main(void) {
yydebug=l;
return yyparseO;}

Lex Specification File (bp.lex)

%{
#include"y.tab.h"
%}

%%
[\t) { /* skip blanks and tabs */ }
"(" return OPEN;
")" return CLOSE;
\nl. { return yytext[O); }

Lex and Yacc 459

To create parser which accepts strings having balanced parentheses, run the following
commands

lex bp.lex
yacc -dv bp.y

gcc -0 bp y.tab.c lex.yy.c -Iy -If I

Test the generated parser (bp) by giving the following input.

«()) or «)«)()))

Example 41

The following Yacc and Lex specification files are used to generate parser which recognizes
arithmetic expressions involving + and -.

Yacc Specification File (ath.y)

%{
%}

%token NAME NUMBER EQUL PLUS MINUS

%%

Stmt : NAME EQUL exp

I exp

exp : NUMBER PLUS NUMBER

I NUMBER MINUS NUMBER

I NUMBER MINUS exp

I NUMBER PLUS exp

%%

void yyerror(char * s)

{

printf ("%s\n", s);

}

460 Introduction to Linux : Installation and Programming

int yywrapO{return 1;}

int main(void) {return yyparseO;}

Lex Specification File (ath.lex)

%{
#include"y. tab. h"

%}

[a-zA-Z_J[a-zA-Z'-0-9]* return NAME;

[0-9]+ return NUMBER;

"+" return PLUS;

"-" return MINUS;

"=" return EQUL;

To create parser which accepts arithmetic expressions with +, - operators, run the
following commands

lex ath.lex
yacc -dv ath.y

gcc -0 ath y.tab.c lex.yy.c -Iy -If I

Run the command "ath" and enter the following expressions

1+2+3-2 or 1-2-3-5+4

Example 42

This Vacc and Lex specification files can be used to generate a tiny language which can be
used (simulation only!!) to control a thermostat. It accepts commands such as "on", "off"
etc.

Vacc Specification File (thermo.y)

%{
#include <stdio.h>
#include <string.h>
void yyerror(const char *str)
{

fprintf(stderr,"error: %s\n",str);
}

Lex and Yacc

int yywrapO
{

return 1;

}

mainO
{

yyparseO;
}

%}

%token NUMBER TOKHEAT STATE TOKTARGET TOKTEMPERATURE

%%

commands:

I commands command

command:

heat_switch

heat_switch:

TOKHEAT STATE

{

printf("\tHeat turned on or off\n");
}

targeCset:

TOKTARGET TOKTEMPERATURE NUMBER
{

printf("\tT emperatu re set\n ");

}

Lex Specification File (thermo. lex)

%{
#include <stdio.h>

461

462

#include "y.tab.h"
%}
0/0%
[0-9]+

heat
onloff
target
temperature

Introduction to Linux : Installation and Programming

return NUMBER;
return TOKHEAT;
return STATE;
return TOKTARGET;

return TOKTEMPERATURE;

\n /* ignore end of line */;

[\t]+ /* ignore whitespace */;
%%

To parser which accepts the above language, run the following commands

lex thermo. lex
yacc -dv thermo.y

gcc -0 thermo y.tab.c lex.yy.c -Iy -If I

Example 43
The following Yacc and Lex specification files are used to recognize addresses which are in a
specific format only.

Yacc Specification File (add.y) .
%{
#include <stdio.h>
void yyerror(const char *str)
{

fprintf(stderr,"error: %s\n",str);
}

Int yywrapO
{

return 1;
}

%}

%token CAPSTRING CAPLETTER NUMBER STATE ZIPPLUSFOUR COMMA HASH
DOT NEWLINE DOORNO

%%

Lex and Yacc

sentence: firstline second line thirdline { printf("Have a valid address.\n"); }

firstline: firstname surname NEWLINE

I firstname middlename surname NEWLINE

secondline: DOORNO street NEWLINE

I DOORNO street HASH NUMBER NEWLINE

thirdline: city STATE COMMA zip NEWLINE

firstname: CAPSTRING ;

middlename: CAPLETTER DOT;

surname: CAPSTRING ;

street: CAPSTRING

I CAPSTRING street

city: CAPSTRING

I CAPSTRING city

zip: ZIPPLUSFOUR

int main(void) {

yyparseO;
return 0;

}

463

464

Lex Specification File (add.lex)

%{
#include "y.tab.h"
%}
0/0%

Introduction to Linux : Installation and Programming

[\t]+ /* ignore whitespace */;
[A-Z][a-z]+ { return CAPSTRING; };
[A-Z][A-Z] {return STATE; }
[A-Z] {return CAPLETTER; }
[0-9]+ {return NUMBER; }
[0-9]+-[0-9]+-[0-9]+ {return DOORNO; }

PIN-[O-9][O-9][O-9][O-9][O-9][O-9] {return ZIPPLUSFOUR; }

\, {return COMMA; }

{return HASH; }

\. {return DOT; }

\n {return NEWUNE; }

0/0%

To create parser which accepts addresses, run the following commands

lex add.lex

yacc -dv add.y

gcc -0 add y.tab.c lex.yy.c -Iy -If I

Sample input which is accepted by the parser developed is:

Ravi Teja

12-33-33 First Street

Visakhapatnam AP, PIN-121212

22.3.2 Use of Pseudovariables

While writing actions for each grammar rule, we can make use of pseudo variables supported
by the Yacc. As earlier, when a grammar rule is matched, every symbol in the
rule will have a value which is returned by yylexO. Usually, this is assumed to be integer
unless redefined by the user. These values are maintained as a separate stack known as
value stack in addition to parse stack which maintains the symbols.

Lex and Yacc 485

The variable $$ represents the value of nonterminal and $1, $2, .. as the values of
symbols on the right hand side of the nonterminal(rule). Thus, in the following example,

expr : expr PLUS term { $$ = $1 + $3; }

$$ refers to expression value and $1 and $3 refers to both the operands. That is sum of
these operands are assigned to the expression.

In order to tell YACC about the new type of yylval, we add this line to the header of our
YACC grammar:

#define YVSTYPE char *
extern YVSTYPE yylval;

Also, we can use the %union in yacc file such that we can declare that yylval to be a
union of an integer, a string pOinter, and a character.

%union { int jnteger_value; char *string_value; char op_value; }

NOw, we can declare' both terminals and nonterminals as either integer or char type
using the following manner. -

%token <int> OPRND1

%token<char> OPR1
%token<integer> exp

Run the Yacc command and check how the union is declared in the y.tab.h file.

Example 44
This Yacc specification file used to develop calculator which accepts single digit operands.
Also, here we are not using any lexical specification file. The necessary lexical analysis
program (yylex(» is written directly.

Yacc specification File (calc.y)

%{
#indude<stdio.h>
#include<stdllb.h>
%}

%token PLUS MINUS MUl DIV NEWUNE RPAR lPAR
%token NUMBER

/* grammar rules & actions section */

%%

Introduction to Llnux : lristallatlon and Programming

/* These two rules are for reading expressions from the keyboard */

lines : lines line

line : expr NEWLINE { prlntf("%d\n> ", $l)j }
{ prlntf (If> ")j } I NEWLINE

/* Grammar rules for Integer expressions evaluation * /

expr : expr PLUS term { $$ = $1 + $3; }

I expr MINUS term { $$ = $1 - $3j }

I term { $$ = $lj } /* default action */

term : term MUL factor { $$ = $1 * $3; }

I term DIV factor { if ($3 == 0)
yyerror("divide by zero");

else

$$ = $1/ $3;
}

I factor { $$ = $1; } /* default action */

factor : LPAR expr RPAR { $$ = $2j }

I NUMBER { $$ = $lj } /* default action *;

%%

yylexO {

/* My lexer * /
Int Cj

do {

c=getcharO;
switch (c) {

case '0': case '1': case '2': case '3': case '4': case '5': case '6':
case '7': case '8': case '9':

yylvat= c - '0';

return NUMBERj
case '+': return PLUS;

Lex and Vacc

}

case '-'; return MINUS;

case '*'; return MUL;

case 'I'; return DIV;
case '('; return LPAR;
case ')'; return RPAR;

case '\n'; return NEWLINE;
}

} while (c!= EOF);

return(EOF);

mainO {
printf("> ");

VvparseO;
}

To generate the calculator program (executable file), run the following commands.

vacc -dv calc. V

gcc -0 calc v.tab.c -IV

Example 45

467

This Yacc and Lex specification programs are used to generate a calculator which is flexible
than the previous one. It accepts, integer and float type arguments.

Yacc Specification File (calculator. V)

%{
#include <stdio.h>
%"'}

%union{ double real; 1* real value *1
int integer; /* integer value *1

}

%token <real> REAL

%token <integer> INTEGER

%token PLUS MINUS TIMES DIVlqE LP RP NL

%tvpe <real> rexpr

468

%type <integer> iexpr

%Ieft PLUS MINUS

%Ieft TIMES DIVIDE

%Ieft UMINUS

lines: /* nothing */
I lines line

line: NL

I iexpr NL

Introduction to Llnux : Installation and Programming

{ printf("%d) %d\n", lineno, $1);}

I rexpr NL

{ printf("%d) %15.BIf\n", lineno, $1);}

iexpr: INTEGER

I iexpr PLUS iexpr

{ $$ = $1 + $3;}

I iexpr MINUS iexpr

{ $$ = $1 - $3;}

I iexpr TIMES iexpr

{ $$ = $1 * $3;}

I iexpr DIVIDE iexpr

{ if($3) $$ = $1 / $3;

}

else { fprintf(stderr, "divide by zero\n");

yyerrorO;
}

I MINUS iexpr %prec UMINUS

{ $$ = - $2;}

I LP iexpr RP

{ $$ = $2;}

rexpr: REAL

I rexpr PLUS rexpr

{ $$ = $1 + $3;}

Lex and Yacc

I rexpr MINUS rexpr

{ $$ = $1 - $3;}
I rexpr TIMES rexpr

{ $$ = $1 * $3;}
I rexpr DIVIDE rexpr

{ if($3) $$ = $1 / $3;

}

else { fprintf(stderr, "divide by zero\n");

yyerror();
}

I MINUS rexpr %prec UMINUS

{ $$ = - $2;}

I LP rexpr RP

{ $$ = $2;}

I iexpr PLUS rexpr

{ $$ = (double)$l + $3;}

I iexpr MINUS rexpr

{ $$ = (double)$l - $3;}
I iexpr TIMES rexpr

{ $$ = (double)$l * $3;}
I iexpr DIVIDE rexpr

{ if($3) $$ = (double)$l / $3;

}

else { fprintf(stderr, "divide by zero\n");

yyerrorO;
}

I rexpr PLUS iexpr

{ $$ = $1 + (double)$3;}

I rexpr MINUS iexpr

{ $$ = $1 - (double)$3;}

I rexpr TIMES iexpr

{ $$ = $1 * (double)$3;}

I rexpr DIVIDE iexpr

{ if($3) $$ = $1 / (double)$3;

}

else { fprintf(stderr, "divide by zero\n");

yyerrorO;

}

0/0%

469

470

#include "lex. yy .c"

int lineno;

introduction to Linux : Installation and Programming

Lex Specification File (calculator. lex)

integer

dreal

ereal

real

nr

%%

[\t]

[0-9]+

([0-9]*\.[0-9]+)

([0-9]*\. [0-9]+[Ee][+-]?[0-9]+)

{dreal} I {ereal}

\n

{integer} {sscanf(yytext, "%d", &yylval.integer);

return INTEGER;

}

{real}

}

{ sscanf(yytext, "%If", &yylval.real);

return REAL;

\+ { return PLUS;}

\- { return MINUS;}

* { return TIMES;}

V { return DIVIDE;}

\({ return LP;}

\) { return RP;}

{nl} { extern int lineno; lineno++;

return NL;

}

{ retu rn yytext[0]; }

To create parser which accepts arithmetic expressions with +, - operators, run the
following commands

lex calculator.lex

yacc -dv calculator.y

gcc -0 calculator y.tab.c lex.yy.c -Iy -If I

Lex and Yacc 471

Example 46
The following Yacc and Lex specification files are used to generate a program which identify
the number of words in the given mput file.

Yacc Specification File (words.y)

%{
#include<stdlib.h>

#include<string.h>

int yylexO;

#include "words.h"

int nwords=O;

#define MAXWORDS 100

char * words[MAXWORDS];

%}

%token WORD

%%

text

I text WORD; {

}

if($2<0) printf("New Word\n");

else printf("Matched\n");

int find_word(char *x)
{

int i;

for(i=O;i<nwords;i++) if(strcmp(x,words[i])==O) return i;

words[nwords++]=strdup(x);

return -1;
}

int mainO

{

yyparseO;

printf("No of Words=%d\n", nwords);
}

472

void yyerror(char *a)
{

}

int yywrapO
{

return 1;
}

Introduction to Llnux : Installation and Programming

Lex Specification File (words. lex)

%{
#include "y.tab.h"

int find_word(char *);

extern int yylval;

%}

[a-zA-ZJ+ {yylval::::find_word(yytext); return WORD;}

.I\n
%%

To create parser which counts the number of words in a given file, run the following
commands

lex words.lex
yacc -dv words. y

gcc -0 words y.tab.c lex.yy.c -Iy -If I

Tracing the execution of a Yacc generated parser can be done by including the following
lines to the Yacc specification file and while compiling give -DYVDEBUG option.

extern in yydebug;
yydebug::::l;

22.4 Conclusions
This chapter discusses about the use of Lex and Yacc libraries for developing lexical analysis
programs (compilers), file processing utilities and parsers. Many practical and lucid examples
are given to explain each concept of lex and yacc library.

23 A Brief Tour of Phython

23.1 Introduction
Python is an interpreted language, which can save you considerable time during program
development because no compilation and linking IS necessary unlike other programming
languages such as C, C++, etc.,. The interpreter can be used interactively, which makes it
easy to experiment with features of the language, to write throw-away programs, or to test
functions during bottom-up program development. It is also a handy desk calculator.

It has high-level data types built in, such as flexible arrays and dictionaries that would
cost you days to implement efficiently in C. Because of its more general data types Python is
applicable to a much larger problem domain than Awk or even Perl, yet many things are at
least as easy in Python as in those languages.

Python allows you to split up your program in modules that can be reused in other Python
programs. It comes with a large collection of standard modules that you can use as the basis
of your programs -- or as examples to start learning to program in Python. Some of these
modules provide things like file I/O, system calls, sockets, and even interfaces to graphical
user interface toolkits like Tk.

Python allows writing very compact and readable programs. Programs written in Python
are typically much shorter than equivalent C or C++ programs, for several reasons:

• the high-level data types allow you to express complex operations in a single statement;
• statement grouping is done by indentation instead of beginning and ending brackets;
• no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in
function or module to the interpreter, either to perform critical operations at maximum
speed, or to link Python programs to libraries that may only be available in binary form (such
as a vendor-spedflc graphics library). Once you are really hooked, you can link the Python
interpreter into an application written in C and use it as an extension or command language
for that application.

In summary, python has following characteristics.
1. Easy to learn and program and is object oriented.
2. Rapid application development
3. Readability is better
4. It can work with other languages such as C, C++ and Fortran.
5. Extensive modules support is available.
6. Powerful interpreter

Some of the success1 stories are:

1. Zope: Commercial grade CMS
2. Redhat installation scripts
3. SciPy: A numerical Algorithms module
4. Envisage: Scientific Computing environment
5. MayaVi: A 3D data visualization system

I www.pythonology.com/success

474 Introduction to Llnux : Installation and Programming

23.2 Invoking Python
Python can be used either in interactive mode or in interpreted mode.

By typing the command "python" at the command prompt, we will see the following
prompt. At this prompt, we can run python instruction; even we can use the same as desk
calculator. Typing an end-of-file character (Control-I;i on Unix, Control-Z on Windows) at the
primary prompt causes the interpreter to exit with a zero exit status. If that doesn't work,
you can exit the interpreter by typing the following commands: "import sys; sys.exitO".

Python 2.3.4 (#1, Oct 26 2004, 16:42:40)

[GCC 3.4.220041017 (Red Hat 3.4.2-6.fc3)1 on Iinux2

Type "help", "copyright", "credits" or "license" for more information.

»> 2+3

5

»> 3*3+4/2-3

8

»> x=2

»> y=3

»> z=x+y

»> print z

5

Python can allow us to use complex numbers also.

»> x=complex(l,2)

> > > y=complex(2,3)

»> x+y

(3+Sj)

»> z=x*y

»> x.imc!g

2.0

»> z.imag

7.0

»> z.real

-4.0

»> z
(-4+7j)

»>

A Brief Tour of Phython 475

In interactive mode, the last printed expression is assigned to the variable _. This means
that when you are using Python as a desk calculator, it is somewhat easier to continue
calculations, for example :

length=10
»> height=20
> > > height * length
200
»> print_
200

To exit from python we can use Ad or the following.

»> import sys
»> sys.exit(10)

You can check up the exit status by executing "echo $?" command at the shell prompt;
note you will see 10.

We can also use python on python programs (such as ex.py) either of the following ways
at the shell prompt.

python ex.py

python<ex.py

Also, python can be used as:

python -c "command" arguments.

For example the following command at the shell prompt displays 10.

python -c "print 10"

23.2.1 Data Types
Python supports variety of variables types such as integers, float, complex, strings, list,
dictionary and classes.

For example the following example demonstrates the use of variable of numeric type at
python prompt.

»> x=int(12.12)

»> x
12
»> x=float(12)

476

»> x
12.0

»> x,y=1,30

»> x,y

(1, 30)

»> x,y=int(1.2),float(2)

»> x,y

(1, 2.0)

»> x=1.22121212112122121

»> x
1.2212121211212212

»> y=float(x)

»> y

1.2212121211212212

»> x=y=z=O

»> x,y,z

(0, 0, 0)

»>

Introduction to Llnux : Installation and Programming

Python assignment is done by reference. Also, variables are either mutable (lists,
dictionaries) or immutable type (strings, numbers). Python supports strings equipped with
variety of built in operations. It supports Unicode strings also.

Strings can be enclosed in single quotes or double quotes. Like Unix shell, we can use
backslash character to escape from normal interpretation of the character.

String literals can span multiple lines in several ways. Continuation lines cl:m be used,
with a backslash as the last character (similar to definition of a C macro) on the line
indicating that the next line is a logical continuation of the line.

hello = "Hello\n\

My Dear.\n\

FOSS users."

print hello

Hello

My Dear

FOSS users.

Strings can be surrounded in a pair of matching triple-quotes: """ or "' to print verbatim.
End of lines do not need to be escaped when using triple-quotes, but they will be Included in
the string.

A Brief Tour of Phython

For example:

»> print III'" Hello
... How are
... my dear"""
Hello

How are

my dear

you\n

you

Strings can be concatenated (glued together) with the + operator, and repeated with *:

> > > word = 'Hello'
»> word
Hello
»> '<' + word*S + '>'
'< HelioHelioHelioHelioHelio >'

The built-in function lenO returns the length of a string:

»> s = 'Hello'
»> len(s)
5

Like C, strings can be subscripted, with the first character has subscript (index) O. In
reality, there is no separate character type; a character is simply a string of size one. Extra,
in python substrings can be specified with the slice notation: two indices separated by a
colon.

»>word='Hello'
»> word[4]
'0'

»> word[O:2]
'He'
»> word[2:4]
'II'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted
second index defaults to the size of the string being sliced.

»> word[:2] # The first two characters
'He'
> > > word[2:] # Everything except the first two characters
'110'

478 introduction to Llnux : Installation and Programming

Unlike a C string, Python strings cannot be changed, i.e. tiny attempt to change value at
any indexed position in the string results in an error.

Here's a useful invariant of slice operations: s[:i] + sri:] equals s.

»> word[:2] + word[2:]

'Hello'

Degenerate slice indices are handled gracefully: an index that is too large is replaced by
the string size, an upper bound smaller than the lower bound returns an empty string.

»> word[l:lOO]

'ello'

»> word[lO:]

Indices may be negative numbers, to start counting from the right. For example:

»> word[-l] # The last character

'0'

»> word[-2] # The last-but-one character

'I'

word[-2:] # The last two characters

'10'

> > > word[: -2] # Everything except the last two characters

'Hel'

But note that -0 is really the same as 0, so it does not count from the right!

»> word[-O] # (since -0 equals 0)

'H'

23.2.2 Lists
Python supports another versatile unit called as lists. For a variable, we can assign a set of
values as a comma separated list enclosed between [, and]. On this structure also, we can
apply slicing, indexing. The elements of a list need not be of same type. We can join to lists
and create another list. We can also apply lenO, appendO, function with it. More over, unlike
strings, we can assign a value to an element of a list.

A Brief Tour of Phython

For example execute the following at python prompt.

»> x=[l,2]
»> y=[3,4]
»> x
[1, 2]
»> len(x)
2
»> x[O]

1

»> y[l]
4

»> z=[x,y]
»> z
[[1,2], [3, 4]]
»> z=[x[l:],y[l:]]
»> z
[[2], [4]]
»>z[l]
[4]
»> z[1]=10
»> z[l]
10
»>

23.2.3 A Simple Program

479

In the following program (ex1.py), height and width of the triangle is read and area is
printed.

H=float(raw_input("Enter Hieght of Right Angled Triangle\n"»;
B=float(raw_input("Enter Breadth of Right Angled Triangle\n"»;

area=B*H/2

print "Area=", area

The above program can be execl:lted by typin9 the following command.

python ex1.py

The above program can also executed by replacing inputO function instead of raw_inputO.

480 Introduction to Linux : Installation and Programming

23.2.4 if condition
Python supports if condition in the same fashion as that of C language. It supports nested if
also and the else part is optional like C language.

For example, consider the following program (ex2.py) which reads a student marks in a
test and prints his class. The program has to be executed at the command prompt by typing
"python ex2.py".

x = int(raw_input("Enter a student mark\n"»
if x>=60:

print "First Class"

elif x>=50:
print "Second Class"

elif x>=35:
print "Third Class"

else:
print "Failed"

23.2.5 for loop
The for loop in Python differs in some respects from C. However, it resembles a lot with for
loop of shell. It takes a list as an argument and traverses the same element by element.

For example the following program (ex3.py) prints all the items in the list one by one.

a = ['cat', 'rat', 'mat']
for x in a:
print x

Where as the following program (ex4.py) prints only last two elements.

a = ['cat', 'rat', 'mat']
for x in a[l:]:
print x

The following program (ex4a.py) also prints elements of the lists along with the lists.

a = ['cat', 'mat', 'rat']
for x in range(len(a»:

print x, a[x]

To iterate over a sequence of numbers, the built-in function rangeO comes handy. It
generates lists containing arithmetic progressions.

»> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

A Brief Tour of Phython 481

The given end point is never part of the generated list; range(10) generates a list of 10
values, exactly the legal indices for items of a sequence of length 10. It is possible to let the
range start at another number, or to specify a different increment (even negative; sometimes
this is called the' step'):

»> range(s, 10)

[5,6, 7, 8, 9]

»> range(O, 10,3)

[0, 3, 6, 9]

»> range(-10, -100, -30)

[-10, -40, -70]

The following program (exs.py) calculates the average of given n students.

sum=O

n=input("Enter Number of Students\n");

for x in range(n):

y=input("Enter A Student Marks\n");

sum=sum+y

avg=sum/n

print "Average=", avg

The following program (ex6.py) prints the characters of the given string 'Rama' character
by character.

Y='Rama'

for x in range(len(Y)):

print Y[x]

If we want any string to be input, we can use raw_inputO function.

while loop

Python also supports while loop and behaves similar to while loop of C language.

Moreover, both with for loop and while loop we can use break and continue statement
which behaves similar to C language.

482 Introduction to Linux : Installation and Programming

For example the following program (ex8.py) can be used to print the average of n students.

sum=O
n=input("Enter Number of Students\n");
i=O
while i<n:

y=input("Enter A Student Marks\n"};
sum=sum+y
i=i+1

avg=sum/n
print "Average=", avg

The following program (ex9.py) is used to print whether a given string is palindrome or not.

Y=raw_input("Enter a String\n")
i=O
j=len(Y)-1
while i<j:

if Y[i]!=Y[j]:
break

i=i+1
j=j-1

if i>=j:
print "Palindrome"

else:
print "Not a Palindrome"

Python loop statements may have an else clause; it is executed when the loop terminates
through exhaustion of the list (with for) or when the condition becomes false (with while),
but not when the loop is terminated by a break statement. This feature is not seen with any
other languages such as C, C++, Javil.

This is exemplified by the following example (ex9a.py), which searches for prime
numbers:

for n in range(2, 10):
for x in range(2, n):

if n % x == 0:
print n, 'equals', x, '*', nix
break

else:
print n, 'is a prime number'

A Brief Tour of Phython 483

The followmg program (ex10.py) reads a set of numbers and stores in a list and then
add's one element another and the calculates the average.

a=[]
n=input("Enter No of Students\n");

i=O
while i<n:

x=input("Enter a number\n")
a.insert(i,x)

i=i+1

sum=O
i=O
while i<n:

sum=sum+a[i]

i=i+1

avg=sum/n

print "Average=", avg

Python supports the pass statement which does nothing and is similar to simple semicolon
(;) statement in C. It can be used when a statement is required syntactically but the
program requires no action.

23.2.6 Functions
Python supports functions also. The keyword def introduces a function definition. It must be
followed by the function name and the parenthesized list of formal parameters. The
statements that form the body of the function start at the next Ime, and must be indented.
The first statement of the function body can optionally be a string literal; this string literal is
the function's documentation string, or docstring.

There are tools which use docstrings to automatically produce online or printed
documentation, or to let the user interactively browse through code; it's good practice to
include docstrings in code that you write.

The execution of a function introduces a new symbol table used for the local variables of
the function. More precisely, all variable assignments in a function store the value in the local
symbol table; whereas variable references first look in the local symbol table, then in the
global symbol table, and then in the table of built-in names. Thus, global variables cannot be
directly assigned a value within a function (unless named in a global statement), although
they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol
table of the called function when it is called; thus, arguments are passed using call by value
(where the value is always an object reference, not the value of the object). When a function
calls another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of
the function name has a type that is recognized by the interpreter as a user-defined function.
This value can be assigned to another name which can then also be used as a function.

484 Introduction to Linux : Installation and Programming

For example consider the following program (ex11.py) which defines the function primeO
and uses the same.

def prime(n):

i=l

c=O
while i<=n:

if n%i==O:

c=c+1

i=i+1

if c==2:

return 1

else:
return 0

N=input("Enter a Integer\n")

if prime(N)==l:

print "Prime Number"

else:

print "Not a Prime Number"

The following program (ex12.py) defines a function which takes a list and return the
average of the elements in it.

def avg(a):

i=l
n=len(a)

5=0

while i<n:

s=s+a[i]

i=i+1

avg=float(s/n)

return avg

5=[12,22,33,33]

print "Average=", avg(s)

A Brief Tour of Phython 485

The following program (ex13.py) also defines a function which returns more than one
value from the function. Here, we have appended whatever we wanted to return from the
function to a list and that list is returned.

def stat(a):

1=1

n=len(a)

s=O

max=O

min=100

while i<n:

s=s+a[i]

if a[i]>max:

max=a[i]

if a[i]<min:

min=a[i]

i=i+1

avg=float(s/n)

result=[]

result.append(avg)

result.append(max)

result. a ppend(min)

return result

s=[12,22,33,33]

print states)

Default Arguments

Like C++, Java and other languages, Python takes default arguments also. That is, we can
assign a default value for the arguments and when function is called, fi we do not send
actual arguments their default values will be taken.

Consider the following example (ex14.py) which calculates simple interest. You can
observe the last but one function call in the following program. That is in Python, Functions
can also be called using keyword arguments of the form "keyword = value". Is it possible in
C++?

486 Introduction to Llnux : Installation and Programming

Also, an argument list may have any positional arguments followed by any keyword
arguments, where the keywords must be chosen from the formal parameter names. It's not
important whether a formal parameter has a default value or not. No argument may receive
a value more than once.

def interest(amount=lOO,rate=O.17, time=1.0):

x=amount*rate*time

return x

print interestO

print interest(lOOO)

print interest(lOOO,O.18)

print interest(lOOO,O.18,2)

print interest(time=2, amount=lOOO,rate=O.18)

print interest(lOOO,time=2, rate=O.18)

The lists supported in Python can be used as both stack and queue. The popO function is
called it removes the last element from the list, where as pop(O) removes the first element
from the list. Thus, by using appendO and popO functions we can realize stack and with the
help of appendO and pop(O), we can implement queue.

Consider the following example eX15.py for explanation sake. This shows how to call
reverseO and sortO functions also. In addition, by calling del command, we can delete item
or items from a list.

a=[lO,32,21,22,33,44,66]

print a

a.reverseO

print a

a.popO

print a

a.append(20)

print a

a.sortO

print a

a.pop(O)

print a

del a[O]

print a

del a[2:3]

print a

A Brief Tour of Phython 487

23.2.7 Sets

Python also indudes a data type for sets. A set is an unordered collection with no duplicate
elements. Basic uses indude membership testing and eliminating duplicate entries. Set objects also
support mathematical operations like union, intersection, difference, and symmetric difference.

23.2.S Dictionaries

Another useful data type built into Python Is the dictionary, which is can be called as
, 'associative memories" or "associative arrays". Unlike sequences, which are indexed by a
range of numbers, dictionaries are indexed by keys, which can be any immutable type; strings
and numbers can always be keys. Tuple's can be used as keys if they contain only strings,
numbers, or tuple's; if a tuple contains any mutable object either directly or indirectly, it cannot
be used as a key. You can't use lists as keys, since lists can be modified in place using their
appendO and extendO methods, as well as slice and indexed assignments.

It is best to think of a dictionary as an unordered set of key: value pairs, with the
requirement that the keys are unique (within one dictionary). A pair of braces creates an
empty dictionary: G. Placing a comma-separated list of key:value pairs within the braces
adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on
output.

The main operations on a dictionary are storing a value with some key and extracting the
value given the key. It is also possible to delete a key:value pair with del. If you store using
a key that is already in use, the old value associated with that key is forgotten. It is an error
to extract a value using a non-existent key.

The keysO method of a dictionary object returns a list of all the keys used in the
dictionary, in arbitrary order (if you want it sorted, just apply the sortO method to the list of
keys). To check whether a single key is in the dictionary, use the has_keyO method of the
dictionary.

When looping through dictionaries, the key and corresponding value can be retrieved at
the same time using the iteritemsO method.

TNO={}

TNO['Rao'] = 200

TNO['Abhi']=300

print

print TNO. keysO

TNO['Ram']=1212

print TNO

TNO.has_key('Raju')

for name, numb in TNO.ltentemsO:

print name, numb

488 Introduction to Llnux : Installation and Programming

Also, When looping through a sequence, the position index and corresponding value can
be retrieved at the same time using the enumerateO function.

For example, the following program ex17.py prints item number and item.

for i, v in enumerate(['tic', 'tac', 'toe']):
print i, v

Sequence objects may be compared to other objects with the same sequence type. The
comparison uses lexicographical ordering: first the first two items are compared, and if they
differ this determines the outcome of the comparison; if they are equal, the next two items are
compared, and so on, until either sequence is exhausted. If two items to be compared are
themselves sequences of the same type, the lexicographical comparison is carried out
recursively. If all items of two sequences compare equal, the sequences are considered equal.
If one sequence is an initial sub-sequence of the other, the shorter sequence is the smaller
(lesser) one. Lexicographical ordering for strings uses the ASCII ordering for individual
characters. Some examples of comparisons between sequences with the same types:

For example the following gives true.

(1, 2, 3) < (1, 2, 4)

23.2.9 Modules
A module is a file containing Python definitions and statements. The file name is the module
name with the suffix .py appended. Within a module, the module's name (as a string) Is
available as the value of the global variable _name_. Definitions from a module can be
imported into other modules or into the main module.

As our program gets longer, we may want to split it into several files for easier
maintenance. We may also want to use a handy function that we have written In several
programs without copying its definition into each program.

Python has a way to put definitions in a file and use them in a script and is called a
module; definitions from a module can be imported into other modules or into the main
module.

Each module has its own private symbol table, which is used as the global symbol table
by all functions defined in the module. Thus, the author of a module can use global variables
in the module without worrying about accidental clashes with a user's global variables. On
the other hand, if you know what you are doing you can touch a global variables
with the same notation used to refer to its functions, modname.itemname.

Modules can import other modules. normally, all import statements are kept at the
beginning of a module though we can use them any where. The imported module names are
placed in the importing module's global symbol table.

For instance, fibo.py is module having a function which prints n fibnocci numbers.

def fib(n): # write Fibonacci series up to n

a, b = 0, 1
while b < n:

print b,

a, b = b, a+b

A Brief Tour of Phython 489

Let us consider another program eX19.py which imports fibo.py and calls the function
fibO. We will get fibnocci numbers 1,1,2,3,5,8.

import fibo
fibo.fib(10)

Also, we can load a function from a module using from statement and call the same in our
program. For example, ex19a.py also gives the same results.

from fibo Import fib
fib(10)

Normally, whenever we import a module python interpreter searches in the current
directory. This behavior can be changed by setting environment variable PYTHONPATH.

The built-in function dirO is used to find out which names a module defines. It returns a
sorted list of strings i.e., names of the functions defined in the module. Test by executing
dir(fibo) in the above program.

Like Java, python also supports packages. Packages are a way of structuring Python's
module namespace by using "dotted module names". For example, the module name A.B
designates a sub module named "B" in a package named "A". Just like the use of modules
saves the authors of different modules from having to worry about each other's global
variable names, the use of dotted module names saves the authors of multi-module
packages like NumPy or the Python Imaging Library from having to worry about each other's
module names.

Python also supports functions to open files and reading and writing into the file. For
example, the following program ex20.py prints its content. The openO function returns, file
object. With this we can use function such as readO, readlineO, readlinesO can be used.

f=open('ex20.py', 'r')
f.readlinesO

Guess, what is going to happen if you replace 'r' with 'w' in the above program. You may
loose the content of the file ex20.pyl!!!!!!.

We can also use functions such as readO, writeO, seekO, tellO, closeO with opened files.
Also, in addition there is a special module known as pickle with which we can read and

write at object level similar to ObjectlnputReaderO and ObjectOutputWriterO in Java. For
example, the following program explains how the same can be used.

import pickle
x=30
y=1.222
f=open('ex21.dat', 'a+')
pickle.dump(x,f);
pickle.dump(y,f);
p= pickle.load(f)
print p

490 Introduction to Llnux : Installation and Programming

Classes
Like object oriented languages, python also supports classes. In fact, all the data members
are consider as classes in python.

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

<statement-N>

We can define data members and member functions with def statement. Attribute
references use the standard syntax used for all attribute references in Python: obj.name.
Valid attribute names are all the names that were in the class's namespace when the class
object was created.

The instantiation operation (" calling" a class object) creates an empty object. Many
classes like to create objects in a known initial state. Therefore a class may define a special
method named _init_O, like the one in the following example. Also, we can create an
object of the class and assign to a variable as shown below.

class Complex:
def _init_(self, realpart, imagpart):

self.r = realpart
self.! = imagpart

def retrea I(self):
return self.r

def retimag(self):
return self.i

x = Complex(3.0, -4.5)
print x.r, x.1
print x.retrealO, x.retimagO

Python supports inheritance and limited way multiple inheritance also.
Python also supports operating system related functions (system calls) such as getcwdO,

getpidO, getppidO, etc. The command dir(os) displays all the function names, symbolic
constants related to as. Run the following program.

import os
import sys
print os.getcwdO
print os.getpidO
print os.getppidO
print dir(os)
help(os)

A Brief Tour of Phython 491

Python has extensive support for internet related services, compression, text utilities,
video management utilities, data base utilities, system administration utilities. It can be used
with XML, PHP, etc.

23.3 Conclusions
This chapter discusses about the Python scripting language. It explains the programming
features available with Python with simple and lucid examples. However, as this book is
aimed at giving initial boost or momentum to new Linux enthusiasts, we did expose only few
features of the Python language.

Useful Websites
www.python.org

www.python.org/doc

www.python.org/tut/tut.html

www.byteofpython.info
www.diveintopython.org

www.pythonology.com/success

24 Introduction to Perl

24.1 Introduction
Perl is a language which was designed to retain the of shell languages, but at
the same time capture some of the flexibility of C. Perl is a good alternative to the shell
which has much of the power of C and is therefore ideal for simple and more complex system
programming tasks. If you intend to be a system administrator for UNIX systems, you could
do much worse than to read the Perl book and learn Perl inside out.

Perl is an acronym for Practical extraction and report language. In this chapter, we shall
not aim to teach Perl from scratch -- the best way to learn it is to use it! Rather we shall
concentrate on demonstrating some principles.

One of the reasons for using Peri is that it is extremely good at textfile handling--one of
the most important things for UNIX users, and particularly useful in connection with CGI
script processing on the World Wide Web. It has simple built-in constructs for searching and
replacing text, storing information in arrays and retrieving them in sorted form. We did do
all of the these things previously using the UNIX shell commands such as Sed, awk, cut,
paste etc.,. Perl unifies all of these operations and more. It also makes them much simpler.

24.1.1 Program structure
Perl's strength is not as a general programming language but as a specialized language for
textfile handling. The syntax of Perl is in many ways like the C programming language, but
there are important differences. Recent versions of perl supports object oriented features in
addition to normal loops, arrays, etc.,.

• Variables do not have types. They are interpreted in a context sensitive way. The
operators which acts upon variables determine whether a variable is to be considered
a string or as an integer etc.

• Although there are no types, Perl defines arrays of different kinds. There are three
different kinds of array, labeled by the symbols' $', '@' and' %'.

• Perl keeps a number of standard variables with special names e.g. '$_ @ARGV' and
, %ENV'. Special attention should be paid to these. They are very important!

• The shell reverse apostrophe notation 'command' can be used to execute UNIX
programs and get the result into a Perl variable.

Example 1
Here is a simple perl program which reads a number and prints the same.

#!/usr/bin/perl -w

print 'Enter a number';
$N=<STDIN>;
print $N;

Like shell programs, here also we may specify that the program has to be interpreted
through interpreter in /usr/bin directory. The -w option is used to specify that the perl can
enable all the useful warnings while running the perl script. Here, we are asking to take a
number from standard input and then the same to be printed.

Introduction to Perl 493

Let the above program is enter'd in a file say a.pl. To execute the same, we have to run
the following commands at shell prompt.

Example 2

chmod u+x a.pl

,fa.pl

or

a.pl

Here is another example which demonstrates the use of length function which takes a string
and returns its length: Also it demonstrates the use of shell commands in perl script. Like
shell, any command enclosed in between back quotes is executed. This, we can
observe in this program. The chop function removes the last character, i.e. new line.

#!/usr/bin/perl -w
print("length: " ,Iength("hello world"));

print "\n";

print . date' ;

$date= . date' ;

chop($date);

print $date;

24.1.2 Perl variables
Perl supports variety of variables namingly scalar, array and associated array.

Scalar variables

In Perl, variables need not be declared before they are used. Whenever you use a new
symbol, Perl automatically adds the symbol to its symbol table and initializes the variable to
the empty string. It is important to understand that there is no practical difference between
zero and the empty string in perl -- except in the way that you, the user, choose to use it.
Perl makes no distinction between strings and integers or any other types of data -- except
when it wants to interpret them. For instance, to compare two variables as strings is not the
same as comparing them as integers, even if the string contains a textual representation of
an integer. Perl assume any string prepended with . $' symbol as scalar variable.

The default scalar variable.
The special variable . $_' is used for many purposes in Perl. It is used as a buffer to contain
the result of the last operation, the last line read in from a file etc. It is so general that many
functions which act on scalar variables work by default on • $_' if no other argument is
specified. For example,

print;

is the same as

print L;

494 Introduction to Linux : Installation and Programming

Array (vector) variables

An array, in Perl is identified by the' @' symbol and, like scalar variables, space is allocated
and initialized dynamically. •

@array[O] = "This little piggy went to market";
@array[2] = "This little piggy stayed at home";

print "@array[O] @array[1] @array[2]";

The index of an array is always understood to be a number, not a string, so if you use a
non-numerical string to refer to an array element, you will always get the zero'th element,
since a non-numerical string has an integer value of zero.

An important array which every program defines is @ARGV. This is the argument vector
array, and contains the command line arguments similar to the shell's positional variables
$0, $1, $2, etc.,.

Given an array, we can find the last element by using the' $#' operator. For example,
$Iast_element = $ARGV[$#ARGV];

Notice that each element in an array is a scalar variable. The '$#' cannot be interpreted
directly as the number of elements in the array, as it can in the C-shell'

Special array commands

The 'shift' command acts on arrays and returns and removes the first element of the array.
Afterwards, all of the elements are shifted down one place. So one way to read the elements
of an array in order is to repeatedly call 'shift'.

$next_element=shift(@myarray);

Note that, if the array argument is omitted, then 'shift' works on '@ARGV' by default.
Another useful function is 'split', which takes a string and turns it into an array of strings.
'split' works by choosing a character (usually a space) to delimit the array elements, so a
string containing a sentence separated by spaces would be turned into an array of words.

The synt!3x is

@array = split;

@array = split(pattern,string);

($v1,$v2 ...) = split(pattern,string);

works with spaces on $_

Breaks on pattern

Name array elements with scalars

In the first of these cases, it is assumed that the variable' $_' is to be split on whitespace
characters. In the second case, we decide on what character the split is to take place and on
what string the function is to act. For instance

@new_array = split(":","name:passwd:uid:gid:gcos:home:shell");

The result is a seven element array called '@new_array', where '$new_array[O]' is
'name' etc.

Introduction to Perl 495

In the final example, the left hand side shows that we wish to capture elements of the
array in a named set of scalar variables. If the number of variables on the left-hand side is
fewer than the number of strings which are generated on the right hand side, they are
discarded. If the number on the left hand side is greater, then the remainder variables are
empty.

Associated arrays
One of the very nice features of Perl is the ability to use one string as an index to another
string in an array and this type of arrays are called associative arrays. For example, we can
make a short encyclopedia of zoo animals by constructing an associative atray in which the
keys (or indices) of the array are the names of animals, and the contents of the array are
the information about them.

$animals{"Penguin"} = "Lives in Antarctica.";

$animals{"dog"} = "senses smells";

if ($index eq "fish")
{

$animals{$index} = "Often comes in square boxes. Very cold.";
}

An entire associated array is written' %array', while the elements are' $array{$key}'.
Perl provides a special associative array for every program called '%ENV'. This contains the
environment variables defined in the parent shell which is running the Perl program.

For example
print "Username = $ENV{"USER"}\n";

$Id = "LD_LlBRARY_PATH";

print "The link editor path is $ENV{$ld}\n";

To get the current path into an ordinary array, one could write,

@path_array= split(": ",$ENV{"PATH"});

24.1.3 Loops and conditionals
Here are some of the most commonly used decision-making constructions and loops in Perl.
if (expression)

{

block;
}

else

{

block;

496

}

command if (expression);

unless (expression)
{

block;
}

else
{

block;
}

while (expression)
{

block;
}

do
{

block;
}

while (expression);

Introduction to Linux : Installation and Programming

for (initializer; expression; statement)
{

block;
}

foreach varlable(array)
{

block;
}

The for loop
The for loop is exactly' like that in C or C++ and is used to iterate over a numerical index,
like this:

\

for ($i = 0; $i < 10; $i++)
{

print $i, "\n";
}

Introduction to Perl 497

The foreach loop
The foreach loop is like its counterpart in the C shell. It is used for reading elements one by
one from a regular array. For example,

foreach $i (@array)
{
print $i, "\n";
}

In all cases, the' else' clauses may be omitted.
Be careful to distinguish between the comparison operator for integers '==' and the

corresponding operator for strings 'eq'. These do not work in each other's places so if you
get the wrong comparison operator your program might not work and it is quite difficult to
find the error.

Strangely, perl does not have a 'switch' statement, but the Perl book describes how to
make one using the features provided.

Example 3
The following program prints either good morning, good evening, good after noon or good
night depending on the current time which is calculated by running 'date' command of Unix.

!/usr/bin/perl -w

$date= ' date' ;
@par=split(" ", $date);

@hours=split(":", $par[3]);

$hr=$hours[O];
if ($hr <11)
{

print("Good Morning\n");
}

elsif ($hr < 16)
{

print("Good After Noon\n");
}
elsif ($hr < 20)
{

print("Good Evening\n");
}

else
{
print("Good Night\n");

}

498 Introduction to Llnux : Installation and Programming

Example 4
This perl program takes a name along the command line and prints the message "Hello"
with the entered name. If no command line argument is given it displays "Hello World".

Example 5

#!/usr/bin/perl -w
if ($#ARGV >= 0) { $who = join(' " @ARGV); }
else { $who = 'World'; }

print "Hello, $who!\n";

This program takes a student marks in a test and prints his class.

Example 6

!/usr/bln/perl -w

print("Enter a student Marks\t");

$INP=<STDIN>;
if ($INP > =60)
{

print("First Class\n");
}

elsif ($INP >=50)
{

print("Second Class\n");

}

elsif ($INP >=35)
{

print("Third Class\n");

}

else

{

print("Failed\n");

}

This program takes a date and then prints whether it is valid or not.

#!/usr/bin/perl -w
print "Enter numeric: day month year\n";

L = <STDIN>;
print;
($day ,$month,$year) = split(" ",L);

Introduction to Perl

Example 7

if ($month > 12 II $month < 1)
{
print "Invalid Month",$month;

exit;
}

@days={31,28,31,30,31,30,31,31,30,31,31,31};
if($days[$month] != $day)
{
print "Invalid Date\n";
exit;
}

This example is to explain how variables can be used in perl.

!/usr/bin/perl -w
$ABC="3";
$AB=3;
print "$ABC + $AB ";
$A=$ABC <=> $AB;
print "\n$A";
$Q =<STDIN>;
chomp $Q;
print "$Q";
$XX=<STDlN>;
$YV=<STDIN>;
chomp $XX, $YV;
print "$XX $YY";
for($x=O; $x<3; $x++)
{
if ($XX > $YV)
{
print "YES";
chomp $YV;
}
else
{
print "NO";
chomp $YV;
}
}

499

500 Introduction to Llnux : Installation and Programming

Iterating over elements in arrays
One of the main uses for' for' type loops is to iterate ever successive values in an array. This
can be done in two ways which show the essential difference between for and foreach.

If we want to fetch each value in an array in turn, without caring about numerical indices,
the it is simplest to use the foreach loop.

@array = split(" ","a b c d e f g");

foreach $var (@array)
{
print $var, "\n";
}

This example prints each letter on a separate line. If, on the other hand, we are
interested in the index, for the purposes of some calculation, then the for loop is preferable.

@array = split(" ","a b cd e f g");

for ($i = 0; $i <= $#array; $i++)
{

print $array[$i], "\n";
}

Notice that, unlike the for-loop idiom in C/C++, the limit is '$i <= $#array', i.e. 'less
than or equal to' rather than 'less than'. This is because the '$#' operator does not return
the number of elements in the array but rather the last element.

Associated arrays are slightly different, since they do not use numerical keys. Instead
they use a set of strings, like in a database, so that you can use one string to look up
another. In order to iterate over the values in the array we need to get a list of these strings.
The keys command is used for this.

$assoc{"mark"} = "cool";
$assoc{"GNU"} = "brave";
$assoc{"zebra"} = "stripy";

foreach $var (keys %assoc)
{
print "$var , $assoc{$var} \n";
}

The order of the keys is not defined in the above example, but you can choose to sort
them alphabetically by writing

foreach $var (sort keys %assoc)
Instead.

Introduction to Perl 501

Example 8
This program prints numbers from 1 to 10. Here, the statement last is used to come out
from the loop.

Example 9

#!/usr/bin/perl -w

$number = 0;
while(l) {

$number++;

print $number, "\n";
if ($number >= 10) {

last;
}

}

This program prints digits from 1 to 10 in words.

#!/usr/bin/perl -w

@9igt=("zero", "one", "two", "Three", "Four", "Five", "Six", "seven", "Eight",
"Nine");

$number = 0;
while(l) {

print $digt[$number], "\n";

$number++;

if ($number >= 10) {

last;
}

}

Example 10

This program prints digits from 1 to 10 in words. Here, foreach loop is used.

!/usr/bin/perl -w
foreach $digt("zero", "one", "two", "Three", "Four", "Five", "Six", "seven",
"Eight", "Nine"){

print $digt, "\n";
}

502 Introduction to Llnux : Installation and Programming

Example 11
This program takes lines and prints them till we enter "d.

!/usr/bin/perl -w

while(<STOIN»
{

printO;
}

Example 12
This is another example to explain the use of for loop in perl.

!/usr/bin/perl -w

@arr=(1..5);

for($i=O; $i<$#arr;$i++)
{
print $arr[$i],"\n";
}

for($i=$#arr;$i>=O ;$i--)
{
print $arr[$i]'''\n'';
}

Example 13
This program prints the output of date command in word by word. First date command Is
executed and each word of its output is stored as element in the array.

#!/usr/bin/perl -w

@arr=split(" ", . date');

for($i=O; $i<$#arr;$i++)
{

print $arr[$i],"\n";
}

for($i=$#arr;$i>=O;$i--)
{
print $arr[$i],"\n";
}

Introduction to Perl

Example 14
This program alsu takes strings and prints them till we enter Ad.

!/usr/bin/perl -w
print STDOUT "Enter a string: ";

$input = <STDIN>;
while ($input ne ") {
print $input, "\n";

chop $input;
}

Example 15

503

This example is used to demonstrate the use of command line argument with perl script. In
addition, how they can be usell with for loop, foreach loop is also emphasized.

!/usr/bin/perl -w
print "$#ARGV is the subscript of the ",

"last command argument. \n";

Iterate on numeric subscript 0 to $#ARGV:

for ($i=O; $i <= $#ARGV; $i++) {
print "Argument $i is $ARGV[$i].\n";

}

#print "A variation on the preceding loop\n";
foreach $item (@ARGV) {

print "The word is: $item.\n";
}

print" A similar variation, using the Default Scalar Variable\L \n" ;

foreach (@ARGV) {
print "Say: $_.\n";

}

Example 16
This program also takes input from the key board and prints the same till we enter Ad.

#!/usr/bin/perl -w

while($INP=<STDIN>)
{
print($INP);
}

504 Introduction to Llnux : Installation and Programming

Example 17
This program reads number of students and their marks and prints their average.

!/usr/bin/perl -w

print("No of Students\t");

$N=<STDlN> ;

$sum=O;

$1=0;

while($1 < $N)
{

print("Enter a student Marks\t");
$1NP=<STDlN>;

$sum = $sum + $1NP;

$I++;
}

$avg=$sum/$N;

print("Average=\t", $avg, "\n");

Example 18

This example is used explain the use of associative arrays.

!/usr/bin/perl -w
%states=(,AP','Hyderabad','UP','Lucknow','MP','Bhopal','HP','XYZ','TN','Chennai')

print keys %states;

print "\n";
print values %states;

print "\n";

foreach (keys %states) {
print "The key L contains $states{$_}\n";

}

printf "\n\n";
foreach (sort keys %states) {

print "The key $ contains $states{L}\n";

}

Introduction to Perl

printf "\n\n";
foreach (reverse sort keys %states) {

print "The key $_ contains $states{$_}\n";
}

Example 19
This program sorts the elements of the array using bubble sorting principle.

#!/usr/bin/perl -w

@a=(2,2,3,12,12,12,12,12,33,31);

for my $i (O .. $#a-1) {

for (O .. $#a-1-$i) {

}

}

($a[L],$a[L +1]) = ($a[L +l]'$a[L])
if ($a[L +1] < $a[L]);

for($I=O; $i<$#a; $i++)
{

print $a[$i], "\n";
}

Example 20

505

Here is an example which prints out a list of files in a specified directory, in order of their
UNIX protection bits. The least protected file files come first. For each file and directory given
along the command line first mode bits are calculated using statO system call. By using this
mode or permissions as key the file/directory is stored in an associative array and then all
the files are 'printed.

!/usr/bin/perl

print "You typed in ",$#ARGV+1," arguments to command\n";

if ($#ARGV < 1)
{

print "That's not enough to do anything with!\n";
}

506 Introduction to Llnux : Installation and Programming

while ($next_arg = shift(@ARGV»
{
if (! (-f $next_arg II -d $next_arg»

{
print "No such file: $nexcarg\n";
next;
}

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size) = stat($next_arg);
$octalmode = sprintf("%o",$mode & 0777);

$assoc_array{$octalmode} .= $next_arg.
" : size (".$size."), mode (".$octalmode.")\n";

}

print "In order: LEAST secure first!\n\n";

foreach $i (reverse sort keys(%assoc_array»
{
print $assoc_array{$i};
}

Example
This program takes a set integers along the command line and prints their average.

!/usr/bin/perl -w

$s=O

for($i=O; $i<=$#ARGV;$i++)

{
$s =$s + $ARGV[$i];
}

print "Average=", $s/$#ARGV, "\n";

Example 22
This program takes a set names along the command line and prints whether they are regular
files or special files ..

#!/usr/bin/perl -w

foreach(@ARGV)
{

next unless -f;

Introduction to Perl

printO;
print("\t") ;

print ((-f)? "Regular\n";"Special\n");

}

Example 23
This program takes a set names along the command line and prints their sizes.

#!/usr/bin/perl -w

foreach(
{

next unless -f;

$SZ= -s L;
print ("L \t $SZ \n");

}

Example 24

507

Perl has another facility known as with which we can insert elements into an array. Also, we
can remove elements from an array using pop. This example is given to explain about push
and pop and how they can be used.

#!/usr/bin/perl -w

@arr=O;

push (@arr, "Hello");

push (@arr, "How");

push(@arr, "are");
push(@arr, "you");
for ($x=O; $x<=$#arr; $x++)
{

print" $arr[$x] ";
}

print "\n";

while ($#arr >= 0)
{

$X=pop(@arr);

print "$X";

}

508 Introduction to Llnux : Installation and Programming

Example 25
This example is to explain how arrays can be used and joined.

#!/usr/bin/perl -w

@arr = (JUNK, Tue, Wed);

@arr2 = (JUNK, Tue, Wed);

@arr3 = (@arr, @arr2);
print @arr;

print "\n";
$N=@arr;

print "SIZE= $N \n";

print @arr2;

print "\n";
$N=@arr2;

print "SIZE= $N \n";

print @arr3;

print "\n";

$N=@arr3;

print "SIZE= $N \n";

@arrl=@arr[2, 3];

print @arrl;

print "\n";

$aa=$arr[l];
print $aa;

print "\n";

($al, $a2)=@arr[O,2];

print $al ;
print $a2;

@abb=("Ram", "June", "Ravi", "May");

$abb{"Sita"} = "Dec";

print $abb{"Ram"};

Introduction to Perl 509

Iterating over lines in a file
Perl file handling is very interesting unlike C and C++; perl reads files line by line. The
angle brackets are used for this. Assuming that we have some file handle '<file>', for
instance' <STDIN>', we can read the file line by line with a while-loop like this.

while ($Iine = <file»

{

print $line;
}

Note that $Iine includes the end of line character on the end of each line. If you want to
remove it, you should add a 'chop' command:

while ($line = <file»
{

chop $line;

print "line = ($line)\n";
}

24. 1.5 Files in perl
Opening files is straightforward in Perl. Files must be opened and closed using -- wait for it --
the commands' open' and 'close'. You should be careful to close files after you have finished
with them -- especially if you are writing to a file. Files are buffered and often large parts of
a file are not actually written until the' close' command is received.

Three files are, of course, always open for every program, namely' STDIN', 'STDOUT'and
'STDERR'.

formally, to open a file, we must obtain a file descriptor or file handle. This is done using
'open';

open (file_descrip,"Filename");

The angular brackets' < .. >' are used to read from the file. For example,

$line = <file_descrip>;
reads one line from the file associated with' file_descrip'.

Example 26
In this example, a file is opened and read line by line and from each line second word is
printed; thus cut command of Unix can be emulated.

!/usr/bin/perl
to cut the second column

open (filel,"@ARGV[O]") II die "Can't open @ARGV[O]\n"i

510

while «file 1 >)
{
@cut_array = split;

print "@cut_array[l]\n";
}

Introduction to Llnux : Installation and Programming

Example 27

This program is to explaifl how perl can be used to simulate 'paste' command of Unix. Here,
first two files whose names are given along the command line are opened and from both the
files one line is read till both the files are not having any more lines. Both the lines are
printed at once.

!/usr/bin/perl

open (filel,"@ARGV[O]") II die "Can't open @ARGV[O]\n";
open (file2,"@ARGV[l]") II die "Can't open @ARGV[l]\n";

while «$linel = <filel» II ($line2 = <file2>))
{
chop $linel;
chop $line2;

print "$Iinel:
}

$line2\n"; # tab character between

Here we see more formally how to read from two separate files at the same time. Notice
that, by putting the read commands into the test-expression for the 'while' loop, we are
using the fact that' < .. >' returns a non-zero (true) value unless we have reached the end of
the file.

To write and append to files, we use the shell redirection symbols inside the 'open'
command.

open(fd,"> filename"); # open file for writing
open(fd,"» filename"); # open file for appending

We can also open a pipe from an arbitrary UNIX command and receive the output of that
command as our input:

open (fd,"/bin/ps aux I ");

Introduction to Perl 511

Example 28

A simple perl program
Let us now write the simplest perl program which illustrates the way in which perl can save
time. We shall write it in three different ways to show what the short cuts mean. Let us
implement the 'cat' command, which copies files to the standard output. The simplest way
to write this is perl is the following: -

!/Iocal/bin/perl

while «»
{

print;
}

Here we have made heavy use of the many default assumptions which perl makes. The
program is simple, but difficult to understand for novices. First of all we use the default file
handle <> which means, take one line of input from a default file. This object returns true as
long as it has not reached the end of the file, so this loop continues to read lines until it
reaches the end of file. The default file is standard input, unless this script is invoked with a
command line argument, in which case the argument is treated as a filename and perl
attempts to open the argument-filename for reading. The print statement has no argument
telling it what to print, but perl takes this to mean: print the default variable' $_'.

We can therefore write this more explicitly as follows:

!/usr/bin/perl

open (HANDLE,"$ARGV[l]");

while «HANDLE»
{

Example 29

print L;
}

Here we have simply filled in the assumptions explicitly. The command '<HANDLE>' now
reads a single line from the named file-handle into the default variable '$_'. To make this
program more general, we can eliminate the defaults entirely.

!/usr/bin/perl

open (HANDLE,"$ARGV[l]");

while ($line=<HANDLE»
{
print $line;

}

512 Introduction to Llnux : Installation and Programming

Example 30
This program reads students data and prints whether they are passed or failed. The data file
is assumed to be as shown below.

!/usr/bin/perl -w

$stufile= 'stud';

if file opens successfully, this evaluates as "true", and Perl

does not evaluate rest of the "or" "II" like C language

open Ct:JAMES,"<$stufile")
II die "Can't open $stufile $!";

while «NAMES» {

($stuid,$name,$math,$phy,$chem,$engl,$tel) = split(,\1 ',L);
if($math >=35 && $phy >=35 && $chem >=35 && $engl >=35 &&

$tel>=35)
{

print $stuid, $name, "Passed\n";
}

else
{

print $stuid, $name, "Failed\n";
}

}

close NAMES;

The date file "stud" contains the data like the following.

lllIP.N.RaoI70177136146189

121IP.K.RaoI80147186144139
1221K.Reddy100137156194179

Example 31
This program opens file "aaa" and copies its content to the file "sss".

#!/usr/bin/perl -w

$INP="aaa";

Introduction to Perl

$OUT="sss";
open(INPUT,"<$INP");
open(OUTPUT,">$OUT");

@arr=<INPUT>;
foreach(@arr)
{

print OUTPUT;

}

close OUTPUT;

close(INPUT);

Example 32
This program is same as above except that it writes on the screen.

#!/usr/bin/perl -w

$INP="aaa";

open(lNP);

@arr=<INP> ;
close(lNP);
foreach(@arr)
{

print 0;
}

Example 33

513

This program opens a file and reads its lines then print them after converting into lower case.
Here, Ie function is used for this purpose.

#!/usr/bin/perl -w

if ($#ARGV !=1) {

die "Usage: $0 inputfile outputfile\n";
}

C$infile,$outfile) == @ARGV;
if (! -r $infile) {

die "Can't read input $infile\n";
}

if (! -f $infile) {

die "Input $infile is not a plain file\n";

514 Introduction to Linux : Installation and Programming

}

open(INPUT,"<$infile") II
die "Can't input $infile $!";

if (-e {
print-STDERR "Output file $outfile exists!\n";

,J until ($ans eq 'r' II $ans eq 'a' II $ans eq 'e') {
print STDERR "replace, append, or exit? ";

$ans = getc(STDIN);

}

if ($ans eq 'e') {exit}

}

if ($ans eq 'a') {$mode='»'}

else {$mode='>'}

open(OUTPUT, "$mode$outfile") II
die "Can't output $outfile $!";

while «INPUT» {

chop L;

L = Ie L;
print OUTPUT L,"\n";

}

close INPUT,OUTPUT;

exit;

Example 34

This program opens a file (standard input) and reads and prints. This example is used to
explain that perl can allow us to use Unix system calls readO, openO etc.,.

#!/usr/bin/perl -w

$buffer="" ;

open(INP,"xx");

read(INP,$buffer,20,O);

close(INP) ;

foreach (split(//,$buffer))

{

printf ("%02x", ord($_));

print "\n", If $_ eq "\n";

}

516

Example 37

print "$locaLa, $locaLb\n";
}

Introduction to Linux : Installation and Programming

This program reads a number from key board and prints its factorial value by calling the
function.

!/usr/bin/perl -w

print "Enter a number:";

$N=<STDIN>;

$ff=fact($N);
print "Factorial Value of=\t", $ff,"\n";

sub fact{

$i=l;

$f=l;

$M=L[O];
print $N;

while($i<=$M)

{

$f =$f*$i;

$i++;
}

return $f;
}

Example 38
This example is to explain how to write functions in perl.

#!/usr/bin/perl -w

sub cube { return L[O] ** 3; }

print "5 cube is ", &cube(5);

$i=l;

while ($i <= 10)
{

Introduction to Perl 515

24.1.6 Perl subroutines
Here is another simple 'structured hello world' program in Perl. Notice that subroutines are
called using the '&' symbol. There is no special way of marking the main program -- it is
simply that part of the program which starts at line 1.

Example 35

!/usr/bin/perl

&HelloO;
&World;

end of main

sub Hello
{

print "Hello";

}

sub World

{

print "World\n";

}

The parentheses on subroutines are optional, if there are no parameters passed. Notice
that each line must end in a semi-colon.

When parameters are passed to a Perl subroutine, they are handed over as an array
called '@_'. Which is analogous to the' $_' variable. Here is a simple example:

Example 36

!/usr/bin/perl

$a = "silver";

$b="gold";

&PrintArgs($a,$b) ;

end of main

sub PrintArgs

/' {

Introduction to Perl

print "Cube of\t", $i, "\tis\t", &cube($i),"\n";

$i++;
}

Example 39

517

This is also another example to explain about the use of perl functions. We can see that the
function is called with out parenthesis.

#!/usr/bin/perl -w
$num= 10; # sets $num to 10
&print_results; # prints variable $num

$num++;

&print_results;

$num*=3;
&print_results;

$num/=3;

&prinCresults;

sub print_results {

print "\$num is $num\n";
}

Example 40
This example is to explain recursive functions in perl. The famous towers of honoi is
simulated with this program.

#!/usr/bin/perl -w

use warnings;
use strict;

my $numdisks = 0;

print "Number of disks? ";

chomp($numdisks = <STDIN>);

518 Introduction to Llnux : Installation and Programming

print "The moves are:\n\n";
movedisks($numdisks, 'A', '8', 'C');

sub movedisks {

my($num, $from, $to, $aux) = @_;

if($num == 1) {
print "Move disk $num from $from to $to\n";

}

else {

}
}

movedisks($num-l, $from, $aux, $to);
print "Move disk $num from $from to $to\n";
movedisks($num-l, $aux, $to, $from);

24.1.7 die - exit on error
When a program has to quit and give a message, the 'die' command is normally used. If
called without an argument, Perl generates its own message including a line number at which
the error occurred. To include your own message, you write

die "My message ";

If the string is terminated with a '\n' new line character, the line number of the error is
not printed, otherwise Perl appends the line number to your string.

When opening files, it is common to see the syntax:
open (filehandle,"Filename") II die "Can't open ... ";

The logical 'OR' symbol is used, because 'open' returns true if all goes well, in which
case the right hand side is never evaluated. If 'open' is false, then die is executed. You can
decide for yourself whether or not you think this is good programming style -- we mention it
here because it is common practice.

The statO idiom

The UNIX library function statO is used to find out information about a given file. This
function is available both in C and in Perl. In perl, it returns an array of values. Usually we
are interested in knowing the access permiSSions of a file. statO is called using the syntax

@array = stat ("filename");

or alternatively, using a named array
($device,$inode,$mode) = stat("filename");

Introduction to Perl 519

The value returned in the mode variable is a bit-pattern, See section Protection bits. The
most useful way of treating these bit patterns is to use octal numbers to interpret their
meaning.

To find out whether a file is readable or writable to a group of users, we use a
programming idiom which is very common for dealing with bit patterns: first we define a
mask which zeroes out all of the bits in the mode string except those which we are
specifically interested in. This is done by defining a mask value in which the bits we want are
set to 1 and all others are set to zero. Then we AND the mask with the mode string. If the
result is different from zero then we know that all of the bits were also set in the mode
string. As in C, the bitwise AND operator in perl is called' &'.

For example, to test whether a file is writable to other users in the same group as the file,
we would write the following.

$mask = 020; # Leadilig 0 means octal number

($device,$inode,$mode) = stat("fi/e");

if ($mode & $mask)
{
print "File is writable by the group\n";
}

Here the 2 in the second octal number means "write", the fact that it is the second octal
number from the right means that it refers to "group". Thus the result of the if-test is only
true if that particular bit is true. We shall see this idiom in action below.

Example 41
Here is a simple implementation of the UNIX 'passwd' program in Perl.

!/usr/bin/perl

A perl version of the passwd program.

Note - the real passwd program needs t:' be much more
secure than this one. This is just to demonstrate the
use of the cryptO function.

###########

print "Changing pas5wd for $ENV{'USER'} on $ENV{'HOST'}\n";

system 'stty', '-echo';
print "Old passwd: ";

$oldpwd = <STDIN>;
chop $oldpwd;

520 Introduction to Linux : Installation and Programming

($name,$coded-pwd ,$uid ,$gid ,$x,$y, $z,$gcos,$home, $shell)
= getpwnam($ENV{"USER"});

if (crypt($oldpwd,$coded_pwd) ne $coded_pwd)
{

print "\nPasswd incorrect\n";
exit (1);
}

$oldpwd = "";

print "\nNew passwd: ";

$newpwd = <STDIN>;

print "\nRepeat new passwd: ";

$rnewpwd = <STDIN>;

chop $newpwd;
chop $rnewpwd;

if ($newpwd ne $rnewpwd)
{

Destroy the evidence!

print "\n Incorrectly typed. Password unchanged.\n";
exit (1);
}

$salt = randO;
$new_coded_pwd = crypt($newpwd,$salt);

print "\n\n$name: $new_coded_pwd: $uid: $gid: $gcos: $home: $shell\n";

Example 41

This example is used to explain how Unix system calls such as opendirO, readdirO,
closedirO, etc., can be used in perl.

!/usr/bin/perl -w

use Env;

use strict;

my(@files);

Introduction to Perl

opendir(DIR, $main: :TMP);
@files=readdir(DIR);
closedir(DIR);

print "$main: :TMP\n";

foreach (@files)
{

print("\tL \r") if /\.c/i;
}

Example 42

Example with 'forkO'

521

The following example uses the fork' function to start a daemon which goes into the
background and watches the system to which process is using the greatest amount of CPU
time each minute. A pipe is opened from the BSD 'ps' command. ,

!/usr/bin/perl

A forkO demo. This program will sit in the background and

make a list of the process which uses the maximum CPU average

at 1 minute intervals. On a quiet BSD like system this will

normally be the swapper (long term scheduler).

$true = 1;

$Iogfile="perl.cpu.logfile" ;

print "Max CPU logfile, forking daemon ... \n";

if (fork())

{

exit(O);

}

while ($true)
{

open (Iogfile,"» $Iogfile") II die "Can't open $Iogfile\n";

open (ps,"/bin/ps aux I") II die "Couldn't open a pipe from ps !!\n";

522

$max_process = <ps>;
c1ose(ps);

print logfile $max_process;
c1ose(logfile) ;

sleep 60;

Introduction to Llnux : Installation and Programming

($a,$b,$c,$d,$e,$f,$g,$size) = stat($logfile);

if ($size > 500)
{

}

print STDERR "Log file getting big, better quit!\n"i,/
exit(O);

}

Example 43

Example reading databases

Here is an example program with several of the above features demonstrated
simultaneously. This following program lists all users who have home directories on the
current host. If the home area has sub-directories, corresponding to groups, then this is
specified on the command line. The word • home' causes the program to print out the home
directories of the users.

!/usr/bin/perl

################

allusers - list all users on named host, i.e. all
users who can log into this machine.

Syntax; allusers group
allusers mygroup home
allusers myhost group home

NOTE : This comman.d returns only users who are registered on
the current host. It will not find users which cannot
be validated in the passwd file, or in the named groups
in NIS. It assumes that the users belonging to
different groups are saved in subdirectories of
/home/hostname.

Introduction to Perl 523

################

&argumentsO;

die "\n" if (! -d "/home/$server");

$disks = '/bin/Is -d /home/$server/$group' ;

foreach $home (split(/\s/,$disks))
{
open (LS,"cd $home; /bin/Is $home I") II die "allusers: Pipe didn't open";

while «LS»
{
$exists = "";
($user) = split;
($exists,$pw,$uid,$gid,$qu,$cm,$gcos,$dir)=getpwnam($user);

if ($exists)
{
if ($printhomes)

{

print "$dir\n";
}

else
{

}

print "$user\n";
}

}

close(LS);
}

sub arguments
{
$printhomes = 0;
$group = "*";
$server = '/bin/hostname'
chop $server;

foreach $arg I (@ARGV)

524

{
if (substr($arg,O, 1) eq "u")

{

$group = $argi

nexti
}

if ($arg eq "home")
{
$printhomes = 1 i
nexti
}

Introduction to Linux : Installation and Programming

$server= $argi #default is to interpret as a server.
}

}

Example 44
This example is to explain how to connect to a MySQI database table.

#!/usr/bin/perl -w -T
use DBIi
{

my $dbhi
my $sthi
my $cmdi

my $restypei
my $ret_vali

my $datai
my @rawResultsi

$dbh=DBI->connect('dbi:mysql:STUD', 'root', 'ritchvenkat')i

if(!defined($dbh» { print "cannot connect\n"i exit 1i }
else
{

print "Success\n"i
}

exit Oi
}

Introduction to Perl 525

Example 45

This example explains how to connect to a MySQL table, preparing a statement, executing
the statement and displaying the results.

!/usr/bin/perl -w -T

use OBI;
{

my $dbh;
my $sth;

my $cmd;

my $restype;

my $ret_val;

my $data;

my @rawResults;

$dbh=DBI->connect('dbi:mysql:STUD', 'rao', 'ritchvenkat');

if(Idefined($dbh)) { print "cannot connect\n"; exit 1; }

else

{

print "Success\n";

}

$sth=$dbh->prepare(,SELECT NAME FROM STUDENT);

if(!defined($sth))

{

print "Prepartion fialed\n";

$dbh->disconnectO;

exit 0;

}

else

{

print "Statment Preparation Success";
}

$ret_val=$sth->execute;

if(!defined($reCval))

526

{

print "Execution fiailed\n";

$dbh->disconnectO;

exit 0;
}

print"\nQuery Results are\n";

$sth- > dump_resultsO;

$dbh->disconnectO;

exit 0;

}

Introduction to Llnux : Installation and Programming

Example 46

This example explains how to connect to a MySQL table and inserts .into the table.

!/usr/bin/perl -w -T

use DBI;

{

my $dbh;

my $sth;

my $cmd;

my $restype;

my $recval;

my $data;

my @rawResults;

$dbh=DBI->connect('dbi:mysql:STUD', 'rao', 'ritchvenkat');

if(!defined($dbh)) { print "cannot connect\n"; exit 1; }

else

{

print "Success\n";

}

$ret_val=$dbh->do("INSERT INTO STUDENT CSNO, NAME) VALUES('121',
'Rao')");

if(!defined($reCval))

{

Introduction to Perl

print "Execution fiailed\n";

$dbh->disconnectO;
exit 0;
}

else
{

print "\nQuery success\n";
}

$d bh- > disconnectO;
exit 0;
}

Example 47

527

This example explains how to connect to a MySQL table, preparing a statement, executing
the statement and displaying the results.

!/usr/bin/perl -w -T
use DBI;
{

my $dbh;

my $sth;

my $cmd;

my $restype;

my $ret_val;

my $data;
my @rawResults;

$dbh=DBI->connect('dbi:mysql:STUD', 'rao', 'ritchvenkat');

if(!defined($dbh)) { print "cannot connect\n"; exit 1; }
else

{

print "Success\n";

}

$sth=$dbh->prepare(,SELECT NAME FROM STUDENT');

if(!defined($sth))

528

{

print "Prepartion fialed\n";
$dbh->disconnectO;
exit 0;
}

else
{

Introduction to Linux : Installation and Programming

print "Statment Preparation Success";
}

$ret_val=$sth->execute;

if(!defined($ret_val))

{

print "Execution fiailed\n";

$dbh->disconnectO;
exit 0;

}

print"\nQuery Results are\n";

my $data;
while($data=$sth->fetchrow_arrayrefO)

{

print "@$data\n";

}

$dbh- > disconnectO;
exit 0;
}

Example 48
This example explains how to connect to a MySQL table, preparing a statement, executing
the statement and displaying the results.

!/usr/bin/perl -w -T

use DBI;
{

my' $dbh;

my $sth;

my $cmd;

my $restype;

Introduction to Perl

my $recval;

my @rawResults;

$dbh=DBI->connect('dbi: mysql: STUD', 'rao', 'ritchvenkat');

if(!defined($dbh)) { print "cannot connect\n"; exit 1; }

else

{

print "Success\n";

}

$sth=$dbh->prepare('SELECT NAME FROM STUDENT WHERE NAME '= ?');

if(!defined($sth»

{

print "Prepartlon fialed\n";

$dbh- >disconnect();

exit 0;

}

else

{

print "Statment Preparation Success";

}

$NN;

$sth-> bmd_param(1,$NN);

print "Enter search Name";

$NN=<STDIN>;

chomp ($NN);

$ret_val=$sth->execute;

if(! defined($ret_val»

{

print "Execution fiailed\n";

$dbh->disconnectO;

exit 0;

}

print"\nQuery Results are\n";

my $data;

529

530 Introduction to Linux : Installation and Programming

while($data=$sth->fetchrow_arrayref())

{

print "@$data\n";

}

$dbh- >disconnectO;

exit 0;

}

Example 49

This example explains how to connect to a MySQL database and display the details of the
tables.

!/usr/bin/perl -w -T

use DBI;

{

my $dbh;

my $sth;

my $cmd;

my $restype;

my $ret_val;

my @rawResults;

$dbh=DBI->connectCdbi:mysql:STUD', 'rao', 'ritchvenkat');

if(!defined($dbh)) { print "cannot connect\n"; exit 1; }

else

{

print "Success\n";

}

@tables=$dbh->tables();

print "\n Tables Available Are\n";

foreach (@tables)

{

Introduction to Perl

}

$sth =$dbh- >table_infoO;
$sth->dump_results();

$dbh- >disconnectO;

exit 0;
}

24.1.8 Pattern matching and extraction
Perl has regular expression operators for identifying patterns. The operator

/regu/ar expression/

531

returns true of false depending on whether the regular expression matches the
contents of $_. For example

if (/perlf)
{

print "String contains perl as a substring";
}

if (/(Satl Sun)dayf)
{

print "Weekend day ";

}

The effect is rather like the grep command. To use this operator on other
variables you would write:

$variable =--- /regexp/

Regular expression can contain parenthetic sub-expressions, e.g.

if (/{SatISun)day { ..)th (.*)f)

{

$first = $1;

$second = $2;
$third = $3;

}

in which case perl places the objects matched by such sub-expressions in the variables
$1, $2 etc.

532 Introduction to Linux : Installation and Programming

Searching and replacing text
The sed'-like function for replacing all occurrences of a string is easily implemented in Perl
using

while «input»
{

s/$search/$replace/g;
print output;
}

This example replaces the string inside the default variable. To replace in a general
variable we use the operator' =rv', with syntax:

$variable =rv s/search/replace/

Example 50

Here is an example of some of this operator in use. The following is a program which
searches and replaces a string in several files. This is useful program indeed for making a
change globally in a group of files! The program is called- 'file-replace'.

!/usr/bin/perl

############

look through files for find string and change to new string
in all files.

############

Define a temporary file and check it doesn't exist

$outputflle = "tmpmarkfind";
unlink $outputfile;

Check command line for list of files

if ($#ARGV < 0)
{
die "Syntax: file-replace [file list]\n";
}

Introduction to Perl

print "Enter the string you want to find (Don't use quotes):\n\n:";
$findstring=<STDIN> ;
chop $findstring;

print "Enter the string you want to replace with (Don't use quotes):\n\n:";
$replacestring= <STDIN>;
chop $replacestring;

print "\nFind: $findstring\n";
print "Replace: $replacestring\n";
print "\nConfirm (YIn) ";
$y = <STDIN>;
chop $y;

if ($y ne "y")
{

die "Aborted -- nothing done.\n";
}

else

{

print "Use CTRL-C to interrupt ... \n";
}

Now shift default array @ARGV to get arguments 1 by 1

while ($file = shift)
{
if ($file eq "file-replace")

{

print "Findmark will not operate on itself!";
next;
}

Save existing mode of file for later

($dev ,$ino,$mode) =stat($file);

533

534 Introduction to Linux : Installation and Programming

open (INPUT,$file) II warn "Couldn't open $file\n";
open (OUTPUT,"> $outputfile") II warn "Can't open tmp";

$notify = 1;

while «INPUT»
{
If (/$flndstring/ && $notify)

{
print "Fixing $file ... \n";
$notify = 0;
}

s/$findstring/$replacestring/g;
print OUTPUT;
}

close (OUTPUT);

If nothing went wrong (if outfile not empty)
move temp file to original and reset the
file mode saved above

if (! -z $outputfile)
{
rename ($outputfile,$file);
chmod ($mode,$file);
}

else

}

{
print "Warning: file empty!\n.";
}

Example 51
Similarly we can search for lines containing a string. Here is the grep program written in perl

!/usr/bin/perl

while «»
{
print if (/$ARGV[1]/);
}

Introduction to Perl 535

The operator '/search-string/' returns true if the search string is a substring of the
default variable $_. To search an arbitrary string, we write

.... if (teststring ='" /search-string/);

Here teststring is searched for occurrences of search-string and the result is true if one is
found.

In perl you can use regular expressions to search for text Note however that,
like all regular expression dialects, perl has its own conventions. For example the dollar sign
does not mean "match the end of line" in perl, instead one uses the '\n' symbol. Here is an
example program which illustrates the use of regular expressions in perl:

!/usr/bin/perl

Test regular expressions in perl

NB - careful with \ $ * symbols etc. Use" quotes since
the shell interprets these!

open (FILE,"regex_test");

$regex = $ARGV[$#ARGV];

print "Looking for $ARGV[$#ARGV] in file ... \n";

while «FILE»

{

if (f$regex/)
{

print;

}

}

Test like this:

regex '.*'
reg ex '.'

- prints every line (matches everything)

- all lines except those containing only blanks

(. doesn't match ws/white-space)
regex '[a-z]' - matches any line containing lowercase
regex '["a-z], - matches any line contain something which is

536 Introduction to Linux : Installation and Programming

not lowercase a-z

regex I[A-Za-z]' - matches any line containing letters of any kind

regex 1[0-9]' - match any line containing numbers

regex 1 #. *1 - line containing a hash symbol followed by anything

regex 1/\#.*1 - line starting with hash symbol (first char)

regex I;\nl - match line ending in a semi-colon

Try running this program with the test data on the following file which is called
. regex_testl in the example program.

A line beginning with a hash symbol

JUST UPPERCASE LETTERS

just lowercase letters

Letters and numbers 123456

123456

A line ending with a semi-colon;

Line with a comment # COMMENT ...

Example 52
Here is an example program which you could use to automatically turn a mail message of the
form

From

To

Subject

Newswire

Mail2html

Nothing happened

On the 13th February at kl. 09:30 nothing happened. No footprints

were found leading to the scene of a terrible murder, no evidence

of a struggle etc etc

into an html-file for the world wide web. The program works by extracting the message
body and subject from the mail and writing html-commands around these to make a web
page. The subject field of the mail becomes the title. The other headers get skipped, since
the script searches for lines containing the sequence "colon-space" or ': I. A regular
expression is used for this.

!/usr/bin/perl

Make HTML from mail

&BeginWebPageO;

&ReadNewMaiIO;

&EndWebPageO;

Introduction to Perl 537

########

sub BeginWebPage

{

}

print "<HTML>\n";
print "<BODY>\n";

########

sub EndWebPage

{

}

print "</BODY>\n";
print "</HTML>\n";

########

sub ReadNewMail

{

while «»
{

}

if (/Subject:/) # Search for subject line
{

Extract subject text ...

chop;
($Ieft,$right) = split(":",L);
print "<H1> $right </H1>\n";
next;
}

elsif (/. *: . * /) # Search for - anything: anything
{

next; # skip other headers
}

print;
}

538 Introduction to Linux : Installation and Programming

Example 53

Generate WWW pages automatically

The following program scans through the password database and build a standardized html-
page for each user it finds there. It fills in the name of the user in each case. Note the use of
the' < <' operator for extended input, already used in the context of the shell, See section
Pipes and redirection in csh. This allows us to format a whole passage of text, inserting
variables at strategic places, and avoid having to the print over many lines.

!/usr/bin/perl

Build a default home page for each user in /etc/passwd

##################

Level 0 (main)

##################

$true = 1;

$false = 0;

First build an associated array of users and full names

setpwent();

while ($true)
{

($name,$passwd,$uid,$gid,$quota,$comment,$fullname) = getpwent;
$FuIiName{$name} = $fullname;

print "$name - $FuIiName{$name}\n";
last if ($name eq "");

}

print "\n";

Now make a unique filename for each page and open a file

foreach $user (sort keys(%FuIiName»
{

next if ($user eq "");

Introduction to Perl

print "Making page for $user\n";
$outputfile = "$user.html";

open (OUT,"> $outputfile") II die "Can't open $outputfile\n";

&MakePage;

close (OUT);
}

539

##################

Levell

##################

sub MakePage

{

print OUT «ENDMARKER;

<HTML>
<BODY>
< HEAD> <TITLE>$FuIiName{$user}'s Home Page</TITLE> </HEAD>
<Hl>$FuIiName{$user}'s Home Page</Hl>

Hi welcome to my home page. In case you hadn't
got it yet my name is: $FuIiName{$user} ...

I study at venkat.

</BODY>
</HTML>

ENDMARKER
}

Example 54
This example is to explain about how perl can be used for grep style of operations on the
file(s).

!/usr/bin/perl -w
$original= "gopher";
$replacement="World Wide Web";
$nchanges=O;

540 Introduction to Linux : Installation and Programming

undef $/;
foreach $file (@ARGV) {

if (! open(INPUT,"<$file")) {

}

print STDERR "Can't open input file $bakfile\n";
next;

Read input file as one long record.
;

close INPUT;

if ($data ='" s/$original!$replacement/gi) {
$bakfile = "$file.bak";

Abort if can't backup original or output.
if (! rename($file,$bakfile)) {

}

}

die "Can't rename $file $!";
}

if (! open(OUTPUT,">$file")) {
die "Can't open output file $file\n";

}
print OUTPUT $data;
close OUTPUT;
print STDERR "$file changed\n";
$nchanges++ ;

else { print STDERR "$file not changed\n"; }

print STDERR "$nchanges files changed.\n";
exit(O);

Other supported functions
Perl has very many functions which come directly from the C library such as sockets which
for network socket communication.

Example 55
This program is to explain how perl can be used for network related applications such as
creating sockets, connectingO, accepting connection requests etc.,.

#!/usr/bin/perl -w
use Socket;
use strict;

my($remoteserver) = 'Iocalhost';

Introduction to Perl

my($secsln70years)= 220899900;

my($buffer)=";

my($socketStructure);

my($serverTime);

my($proto)=getprotobyname(,tcp') 116;

my($port) =getservbyname('time','tcp') 1137;

my($packFormat)='S n a4 x8';

541

connect(SOCKET,pack($packFormat, AF _INETO, $port, $remoteserver)) or
die("connect: $1");

read(SOCKET,$buffer,4);
close(SOCKET);

$serverTime=unpack(ION", $buffer);

$serverTime -=$secsln70years;

print (l$serverTime\n");

24.2 Conclusions
The Practical Extraction and Report Language is a powerful tool which goes beyond the shell
programming, but which retains much of the immediateness of shell programming in a more
formal programming environment. The success of Perl has led many programmers to use it
exclusively. This chapter dealt with perl programming with lucid examples which are of
practical in nature. Examples related to Web Page handling, database operations using perl
are included.

25 A peep into Ruby

25.1 Introduction
In the recent years Ruby is becoming popular. Ruby is also "an interpreted scripting
language for quick and easy object-oriented programming".
It is interpreted scripting language and thus:

• ability to make operating system calls directly
• powerful string operations and regular expressions
• immediate feedback during development
quick and easy:
• variable declarations are unnecessary
• variables are not typed
• syntax is simple and consistent
• memory management is automatic
object oriented programming:
• everything is an object
• classes, inheritance, methods, etc.
• singleton methods
• mixin by module
• iterators and closures
also:
• multiple preCision integers
• exception processing model
• dynamic loading
• threads

Ruby can be used to execute instructions from the command line itself. For example,

ruby -e 'print "Hello Dear User. You will enjoy me'"

Command at the dollar prompt gives you the message between double quotes.
Also, we can enter ruby program in a file (say ex.rb) and then its name can be given as

command line argument to ruby command like

ruby ex.rb

In addition, if we simply type ruby command at the shell prompt ruby interpreter will be
started and we will see the prompt ruby>. At this prompt also we can execute ruby
commands or programs. We can have interactive ruby running by executing irb command or
irb -simple-prompt at the shell prompt.

At the Ruby prompt we can do calculations interactively like calculator. Interestingly, we
can work with large numbers also.

25.1.1 Variables
Ruby supports variety of variables such as int, float, strings, arrays, associative arrays etc.
Normal variables including strings can be simply used without declaring them. In fact there is

A Peep Into Ruby 543

no type associated with variables. However, variables whose names starts with uppercase
character is considered as constant. Other conventions are given below. With the help of
gets, puts functions we can do I/O operations. For example the following program (a.rb)
takes a string and prints the same.

p'uts "Enter Name"
name =gets
puts name

Ruby supports almost all the operators which are available in C. In addition it supports
exponentiation operator (**) in the lines of FORTRAN. The following example is used to
explain the same. We can observe that ruby handling the big number unlike other languages.

a=10**100
b=a**a
print a,"\n", b

In Ruby, the first character of an identifier categorizes it at a glance:

$ global variable
@ instance variable
[a-z] or local variable
[A-Z] constant

The only exceptions to the above are ruby's pseudo-variables: self, which always refers to
the currently executing object, and nil, which is the meaningless value assigned to
uninitialized variables. Both are named as if they are local variables, but self is a global
variable maintained by the interpreter, and nil is really a constant. As these are the only two
exceptions, they don't confuse things too much

There is a collection of special variables whose names consist of a dollar sign ($) followed
by a single character which you can recollect similar to shell's positional variables.

$! latest error message
$@ location of error

$ string last read by gets

$. line number last read by interpreter

$& string last matched by regexp

$'" the last regexp match, as an array of sub expressions

$n the nth sub expression in the last match (same as $"'[n])

$= case-insensitivity flag

$/ input record separator

$\ output record separator

$0 the name of the ruby script file

$* the command line arguments

$$ interpreter's process ID

$? exit status of last executed child process

In the above, $_ and $'" have local scope.

544 Introduction to linux : Installation and Programming

25.1.2 Strings
Ruby has excellent means for management of strings. Similar to Java, it gives freedom to
add two strings with +, a string and number, etc.,. If we multiply a string with an integer
(say n) then the result is a string which contains the string n times. In the following
example, various operations on the springs are emphasized. Readers has to remember that
all the variables in Ruby are assumed as objects. Thus, the functions are invoked with
delimiter.

Example 1

puts "Enter a string"

name= gets

puts "You have entered", name

name=name.swapcase

puts "After swapping upper cases to lower case and vice versa", name

name=name.downcasei

puts "After Converting into lower case", name

name=name.upcasei
puts "After Converting into Upper case", name

name=name.capitalizei
puts "After Converting into Upper case", name

name=name.nexti

puts "Next string in the alphabetical sequence", name

name=name.reversei

puts "After reversing", name

25.1.3 if condition
The syntax of the if condition in Ruby can be as follows.

if condition

statements

end

if condition

statements

else

statements

end

if condition

statements

elsif condition

A Peep into Ruby

statements

elsif condition

statements

else

statements

end

Always a if condition should terminate with end statement.

Example 2

The following example takes two strings and prints them in accordance with their length.

Example 3

puts "Enter two strings"

str1 =gets

str2 =gets

l=str1.length

k=str2.length

if (I > k)

print str1, str2

else

print str2, str1

end

545

The following program reads a students marks and prints their class. The chomp is used to
remove last character, i.e., .new line. The functions or methods such as to_i, to_f etc., (see
Table 25. 1) are used to convert the string into integer, float respectively.

puts "Enter Marks"

mark = gets.chomp.to_i

if (mark >=60)

puts "First Class"

elsif (mark> =50)

puts "Second Class"

elsif (mark >=35)

puts "Third Class"

else

puts "Failed"

end

546 Introduction to Linux : Installation and Programming

Table 25.1 Functions to convert one type to another type.

I

jMethod
Converts

I From To

String#to_i string integer

String#to_f string float

Float#to_i float integer

Float#to_s float string

Integer#to_f integer float

Integer#to_s integer string

Like C language, Ruby also supports implicit assignment statements. That is, a statement
such as var = var + identifier can be written as var += identifier. This is meaningful for
other operators such as -,*,/,%, and ** also. However, note that unary
increment/decrement operators can not be applicable here.

Example 4

You can make lines "wrap around" by putting a backslash - \ - at the very end of
the line.

This is another example to explain how to read numeric data and manipulate. Here, principal
amount, rate and time is read and the interest is printed.

puts "Enter Principal Amount"

p=gets.chomp.to_f

puts "Enter Rate"

r=gets.chomp.to_f

puts "Enter Time"

t=gets.chomp.to_f

s_interest=p*r*t/100

print" Simple Interest=", s_interest, "\n"

c_interest=p*(l + r/100)**t-p

print" Compound Interest=", c_interest, "\n"

25.1.4 case construct
Ruby also supports case construct like C and Java. However, it gives freedom to have variety
of situations to be represented. Unlike C, where integer or character constants are used as
cases, here we can use strin9s, regular expressions (like shell) and range expressions.

A Peep Into Ruby 547

Example 5

The following example takes a student marks and prints his class. We can see how a range
expression can be used in case.

puts "Enter Marks"

mark = gets.chomp.to_i

case mark

when 1 .. 34

puts "Failed"

when 35 .. 49

puts "Third Class"

when 50 .. 59

puts ':Second Class"

when 60 .. 100

puts "First Class"

end

25.1.5 Arrays
The class Array is used to represent a collection of items. Unlike other languages, Ruby
supports arrays with different type of elements. For example:

Arr= [12,34,33, 12]

Arr1=["ram", "rao", "abhi"]

We can use functions such as reverse, sort, length, to_s etc,. in addition to
operations such as +, - etc,.

Ruby also supports a special arrays like perl known as associative arrays or hash's.
Hashes are a generalization of arrays. Instead of only permitting integer indices, as in
array[3J, hashes allow any object to be used as an "index". So, you can write hash["name"]

Example 6

For example, the following program displays all states and capitols. Also, all the state names
and capitals names.

5tates["AP"]="Hyderabad"

5tates["UP"]="Lucknow"

5tates["MP"]!,"Bhopal"

States.each do Ikey,valuel

puts key + value

end

548

States.each_key do I key I

puts key

end

States.each_value do Ivaluel

puts value

end

25.1.6 while loop

Introduction to Llnux : Installation and Programming

Ruby supports while loop also whose behavior is same as while of C language. There are four
ways to interrupt the progress of a loop from inside. First, break means, as in C, to escape
from the ioop entirely. Second, next skips to the beginning of the next iteration of the loop
(corresponding to C's continue). Third, ruby has redo, which restarts the. current iteration.
The fourth way to get out of a loop from the inside is return. An evaluation of return causes
escape not only from a loop but from the method that contains the loop. If an argument is
given, it will be returned from the method call, otherwise nil is returned

Example 7
The following example is used to explain the use of while loop. Here, a string is read from
the key board then it is palindrome or not is tested. Two approaches are used a) comparing
first and last character, second and last but one character et.,. b) calculating reverse of the
given string and comparing it with the original one.

puts "Enter a String"

strl=gets.chomp

1= strl.iength;

i=O

j=l-l

while i<j

if (strl[i] != strl[j])

break;

end

i=i+l
j=j-l

end

if (i > =j)

puts "Palindrome"

else

puts "Not a Palindrome"

end

A Peep into Ruby

if (str1 == str1.reverse)
puts "Palindrome"
else
puts "Not a Palindrome"
end

Example 8,
This program reads a set of students marks and then calculates their average.

Example 9

puts "Enter Number of Students"
N=gets.chomp.to_i;
i=O
s=O
while i < N
puts "Enter a marks"
s=s+gets.chomp.to_i
i=i+1
end

average=s/N
print average

This program reads a number and calculates the factorial value of it and prints the same.

puts "Enter a number"
N=gets.chomp.to_i;
i=l
s=l
while i <= N
s=s*i
i=i+1
end

print "Factorial=", s

Example 10
This example takes a integer and prints whether it is prime number or not.

puts "Enter a number"
N=gets.chomp.to_i;

i=l

c=O
while i <= N

549

550

if N%i == 0

c+=1
end
i=i+1
end

if(c==2)
print "Prime\n"
else
print "Not a Prime\n"
end

Example 11

Introduction to Linux : Installation and Programming

This is simple program to explain how rand function can be used to develop computer aided
testing program to test multiplication abilities of small kids. Here, we are generating two
random numbers whose values of are less than 10 and then asking the user (kid) to enter
the product of them. He will be given ten chances and if he guesses correctly within that he
will be praised else he will be informed 'next time better luck'. The first two while loops are
two generate random numbers other than zero.

while (x=rand(10» ==0
end

while (y=rand(10» == 0
end

print "Enter the Product of\n", x, "\tand\t", y, "\n"

i=O
while i<10
ans =gets.chomp.to_i

if(ans == x*y)
print "You won\n"
break

else
print "Try Again\n"
end
i=i+1
end

if (i==10)
print "Next Time better luck"

end

A Peep into Ruby 551

Example 12
This another example to explain the use of random numbers. A set of state's names and
their capitols are remembered in arrays, then randomly some state name is displayed and
the user required to enter its capitol. Depending on his response the answer IS verified.

states =["AP", "HP", "UP", "TN", "MP", "WB"]
capitols =["Hyderabad", "Itanagar", "Lucknow", "Chennai", "Bhopal", "Calcutta"]

points=O
j=O
while j<10
i=rand(6)
puts "Enter Capitol of", states[i]
x=gets.chomp

if x.downcase == capitols[i].downcase
points +=1
end

j =j+l

end

puts "Your Score is=", pOints, "\n"

Example 13
The following program is explain how regular expressions can be used in Ruby. This program
reads standard input till we enter "d and counts in how many lines string Ruby is found.
Here also, like perl $_ refers to the current line which is now read from key board.

n=O
while gets

if /Ruby/
print

n=n+1
end

end
print n

Example 14

assigns line to $_
matches against $_
prints L

The following example prints "Hello" message 5 times.

S.times do
print "Hello\n"
end

552 Introduction to Linux : Installation and Programming

25.1.7 for loop
Ruby's for is a little more interesting than C's for loop. For example, the loop below runs
once for each element in the collection (Hope you remember for loop of shell).
for var in collection

end

Example 15

The collection can be a range of values (this is what most people mean when they talk about
a for loop). The following program prints numbers from 2 to 5.

for x in (2 .. 5)

print x, "\n"

end

Example 16

The collection can be an array. For example the following program prints Hello and "How are
you" messages in one line.

for x in ["Hello", "How are you"J

#single quotes also works in the same fashion

print x, "\n"

end

Example 17

The following program also uses an array is collection in the for loop. Note that ruby can
support arrays with different type of elements. .

for x in ["Hello", 14, 13.44J

print x, "\n"

end

Like perl, output of a shell command can be used in ruby. For example, output of date
command is used and each word of it is printed.

for i in . date'

print i, "\n"

end

A Peep Into Ruby 553

25.1.8 Iterators
Iterators can often be substituted for conventional loops, and once you get used to them,
they are generally easier to deal with. For example, in the following program string length is
calculated with each iterator.

Example 18

str=gets
1=0

str.chop.each_byte { i=I+1 }

j=O

k=i-1

while j<k

if (str[j] ! = str [k])

print" Not Palindrome\n"

break

end

j=j+1

k=k-1

end

print "Palindrome"

Example 19

The following program uses iterator to find out the length of a string.

str=gets
i=O

str.chop.each_byte { i=i+1 }

print "Length of the string=", i, "\n"

Example 20

The following example is used explain the iterators. With the help of each iterator each
element is printed. Array is sorted with sort function and then it will be printed.

arr=[1,81,21,22,22, 12, 13,31]

print "Before Sorting the elements :\t"

arr.each {Ii I print i, "\t" }

print "\n"

554 Introduction to Linux : Installation and Programming

arr.sort

print "AfterSorting the elements :\t"

arr.each {Iii print i, "\t" }

print "\n"

Iterators are not an original concept with ruby. They are in common use In object-
oriented languages. They are also used in Lisp, though there they are not called iterators.
However the concept of iterator is an unfamiliar one for many so it should be explained in
more detail.

The verb iterate means to do the same thing many times, you know, so an iterator is
something that does the same thing many times.

Ruby's String type has some useful iterators:

"rama".each_byte{ I cl printf "%c", c}; print "\n"

each_byte is an iterator for each character in the string. Each character is substituted into
the local variable c.

Another iterator of String is each_line.

25.1.8 Functions/subroutines
Ruby also supports functions like C and other languages. For example the following example
prints whether a given number is prime or not.

Example 21

$c=O

def DIV(n,i)

if n%1 ==0

$c=$c+l

end

end

n=gets.chop.to_i

2.upto(n-l) {Iii DIV(n,i)}

if ($c ==0)

print "Prime\n"

else

print "Not Prime\n"

end

A Peep into Ruby

Example 22

The following program defines a function to calculate factorial value and is used.

def fact(n)

if n == 0

1

else

n * fact(n-l)

end

end

p.rint fact(ARGV[O), to_i), "\n"

25.1.9 Modules

555

Ruby has excellent set of loadable modules such as mathematical related, windows related
etc.,. The module can be loaded with the help of include statement.

Modules in ruby are similar to classes, except:

• A module can have no instances.

• A module can have no subclasses.
• A module is defined by module ... end.

There are two typical uses of modules. One is to collect related methods and constants in
a central location. The Math module in ruby's standard library plays such a role

Example 23

For example, in the following example math mod1.Jle is loaded and the constant PI is used.
Note the scope result Ion operator while dOing so.

include Math

print "Enter Radius\n"

r=gets.chop.to_f

area=Math:: PI*r*r

print "Area=", area, "\n"

Remember that modules cannot be instantiated or subclassed; but if we include a module
In a class definition, its methods are effectively appended, or "mixed in", to the class. Ruby
purposely does not implement true multiple inheritance, but the mixin technique is used for

556 Introduction to Linux : Installation and Programming

whatever particular properties we want to have. For example, if a class has a working each

method, mixrng rn the standard library's Enumerable module gives us sort and find methods
for free.

This use of modules gives us the basic functionality of multiple inheritance but allows us

to represent class relationships with a simple tree structure, and so simplifies the language

Implementation considerably (a similar choice was made by the designers of Java).

Example 24

This example show how 'tk' library can be used from ruby.

require 'tk:'

root = TkRoot.new { title "Ex1" }

TkLabel.new(root) {

text 'Hello, World!'

pack {padx 15 ; pady 15; side 'left' }

}

Tk.mainloop

25.1.10 Files

Example 25

The following program opens a file and reads the data from it and prints on the screen. If the

specified file is not available it reads from key board.

begin

file = open("AAA")

rescue

file = STDIN

end

while data=file.gets

print data

end

25.1.11 Exceptions
Ruby allow us to handle exceptions for blocks of code in a compartmentalized way. The
block of code marked with begin executes until there is an exception (like try block in C++,
Java), which causes control to be transferred to a block of error handling code, which is

A Peep into Ruby 557

marked with rescue. If no exception occurs, the rescue code IS not used. See the above
program the method returns the first line of a text file, or nil if there IS an exception:

25.2 Object oriented Programming through Ruby
Ruby is fully object oriented language. Like any 00 languages, we can define classes and use
them.

Example 26

class Simham

def speak

print "Gow Gow"

end

end

sarada = Simham. new

sarada.speak

Example 27

The following program defines complex class.

class Complex

@real

@imag

def ReadO

@real=gets.chop.to_f

@imag=gets.chop.to_f

end

def PrintO

print @real, "\t", @imag, "\n"

end

end

sarada=Complex.new

sarada.Read

sarada.Print

558 Introduction to Linux : Installation and Programming

Example 28

This example is used to explain the functions initialize (such as constructor), dump, load.

class Klass

def initialize(str)

@str = str

end

def sayHelio

@str

end

end

o = Klass.new("hello\n")

data = Marshal.dump(o)

print data

obj = Marshal.load(data)

obj.sayHelio

25.3 Profiling
By loading profile module, we an profile a ruby program. For example, we can run the
sorting problem as discussed above. We have asked to load 'profile' module to profile this
program.

Example 29

require 'profile'

arr= [1,81,21,22,22,12,13,31]

print "Before Sorting the elements :\t"

arr.each {Iii print i, "\t" }

print "\n"

arr.sort

print "AfterSorting the elements :\t"

arr.each {I i I print i, "\t" }

print "\n"

25.4 Calling Unix System Calls
Ruby gives freedom to call Unix system calls directly. For example, the following program
calls forkO system call which creates new process which behaves sim»ar to this process.
Statement after forkO are executed in both the process. Thus, we will see Hello message two
times.

A Peep Into Ruby 559

Example 30

forkO

print "Hello\n"

25.5 Conclusions
This chapter explains a new object oriented language namingly RUBY. It explores about
Ruby's object oriented behavior and how it makes programming easy. Also, how system calls
can be called from Ruby program is emphasized. In addition, how GUI programming can be
done is explained with simple examples.

26 X Window System Architecture and
GUI Programming

26.1 Introduction
Nowadays, any operating system in hopes of being competitive needs to have an excellent
GUI subsystem. GUls are supposed to be easier to use. Microsoft became so popular in home
market because of its user friendly GUI. X windows is the GUI used widely in Unix.

X was developed by the Athena project at MIT, and released in 1984. In 1988 an entity
called the "X Consortium" took over X, and to this day handles its development and
distribution . The X specification is freely available, this was a smart move as it has made X
almost ubiquitous. This is how XFree86 came to be . XFree86 is the implementation of X we
use on our Linux computers. XFree86 also works on other operating systems, like the BSD
lineage, OS/2 and maybe others. Also, despite its name, XFree86 is also available for other
CPU architectures .

Main advantages of X windows

w Separation of computing and Graphics
• Different systems under X
• Only Mechanism, No policy
• Network Transparency
• Room for future Extensions
• Load Sharing
• Resource Sharing

The X Window System Architecture: overview

X was designed with a client-server architecture . The applications themselves are the clients;
they communicate with the server and issue requests, also receives information from the
server (see Figure 26 .1).

Architecture

Figure 26.1 X Widows Architecture.

X Window System Architecture and GUI Programming 561

The X server maintains exclusive control of the dIsplay and services requests from the
client5. At this pOint, the advantages of uSing thIs model are pretty clear. Applications
(clients) only need to know how to communicate wIth the server, and need not be concerned
with the detaIls of talking to the actual graphics display device. At the most basic level, a
client tells the server stuff like "draw a line from here to here", or "render this string of text,
using this font, at thIs position on-screen".

This would be no different from just using a graphics library to write our application.
However the X model goes a step further. It doesn't constrain the client being in the same
computer as the server. The protocol used to communicate between clients and server can
work over a network, or actually, any "inter-process communication mechanism that
prOVIdes a reliable octet stream". Of course, the preferred way to do this is by using the
TCP/IP protocols. As we can see, the X model (X protocol) is really powerful; the classical
example of this IS running a processor-intensive application on a Cray computer, a database
monitor on a Solaris server, an e-mail application on a small BSD mail server, and a
visualization program on an SGI server, and then displaying all those on my Linux
workstation's screen.

Some facts about the X protocol are:
• Introduced around mid 1980
• Network transparent GUI
• Distribute (Client & Server)
• Machine Code of X
• Asynchrnous/Synchrnous
• Same Look and Feel
• Highly Portable (OS/Language/Hardware)
• Better Performance

We have seen that the X server is the one handling the actual graphics display. Also,
since it's the X server which runs on the physical, actual computer the user is working 00, it's
the X server's responsibility to perform all actual interactions with the user. This includes
reading the mouse and keyboard. All this information is relayed to the client, which of course
WIll have to react to it.

X provides a library, aptly called Xlib, which handles all low-level client-server
communication tasks. It sounds obvious that, then, the client has to invoke functions
contained within Xlib to get work done.

Some facts about Xlib are:
• Uses ASM language of X
• Contains Set of C Library functions
• Functions are used to create the X Protocol
• Basic text and graphics handlings capabilities
• Very tedious
• Huge

In a nutshell, we have a server in charge of visual output and data input, client
applications, and a way for them to communicate between each other. In picturing a
hypothetical interaction between a client and a server, the client could ask the server to
assign a rectangular area on the screen. Client is not concerned with where ii IS being
displayed on the screen. Client just tell the server "give me an area X by Y pixels in size",
and then call functions to perform actions like "draw a line from here to there", "tell me
whether the user is moving the mouse in my screen area" and so orl.

Window Managers

However, we never mentioned how the X server handlE', nc.nipulation of the clients' on-
screen display areas (called windows). It's obvious, to anyone who's ever used a GUl, that
you need to have control over the "client windows" TYP;_il:ly you can move and arrange
them; change size, maximize or minimize windows How, then, does the X server handle
these tasks? The answer is: it doesn't.

562 Introduction to Linux : Installation and Programming

One of X's fundamental tenets is "we provide mechanism, but not policy". So, while the X
server provides a way (mechanism) for window manipulation, it doesn't actually say how this
manipulation behaves (policy).

All that mechanism/policy weird stuff basically boils down to this: it's another program's
responsibility to manage the on-screen space. This program decides where to place windows,
gives mechanisms for users to control the Windows' appearance, position and size, and
usually provides "decorations" like window titles, frames and buttons, that give us control
over the windows themselves. This program, which manages windows, IS called (guess!) a
"window manager".

"The window manager in X is just another client -- it is not part of the X Window system,
although it enjoys special privileges -- and so there is no single window manager; instead,
there are many, which support different ways for the user to interact with windows and
different styles of window layout, decoration, and keyboard and color map focus."

The X architecture provides ways for a Window manager to perform all those actions on
the windows; but it doesn't actually provide a window manager.

There are, of course, a lot of window managers, because since the window manager is an
external component, it's (relatively) easy to write one according to your preferences, how
you want windows to look, how you want them to behave, where do you want them to be,
and so on. Some window managers are simplistic and ugly (twm); some are flashy and
include everything but the kitchen sink (enlightenment); and everything in between; fvwm,
amiwm, icewm, windowmaker, afterstep, sawfish, kwm, and countless others. There's a
window manager for every taste.

A window manager is a "meta-client", whose most basic mission is to manage other
clients. Most window managers provide a few additional facilities (and some provide a lot of
them). However one piece of functionality that seems to be present in most window
managers is a way to launch applications. Some of them provide a command box where you
can type stltndard commands (which can then be used to launch client applications). Others
have a nice application launching menu of some sort. ThiS is not standardized, however;
again, as X dictates no policy on how a client 'appllcation should be launched, this
functionality is to be implemented in client programs. While, typically, a window manager
takes on this task (and each one does it differently), it's conceivable to have client
applications whose sole mission is to launch other client applications; think a program
launching pad. And of course, people have wntten large amounts of "program launching"
applications.

Client Applications

Let's focus on the client programs for a moment. Imagine we want to write a client program
from scratch, using only the facilities provided by X. We would quickly find that Xlib is pretty
spartan, and that doing things like putting buttons on screen, text, or nice controls
(scrollbars, radio boxes) for the users, is terribly complicated.

Luckily, someone else went to the trouble of programming these controls and giving them
to us in a usable form; a library. These controls are usually known as "widgets" and of
course, the library is a "Widget library". Then we just have to call a function from this library
with some parameters and have a button on-screen. Examples of widgets include menus,
buttons, radio buttons, scrollbars, and canvases.

A "canvas" is an interesting kind of widget, because it's basically a sub-area within the
client where i can draw stuff. Understandably, since we shouldn't use Xlib directly, because
that would interfere with the widget library, the library itself gives a way to draw arbitrary
graphics within the canvas widget.

X Window System Architecture and GUI Programming 563

Since the widget library is the one actually drawing the elements on-screen, as well as
interpreting user's actions into input, the library used is largely responsible for each client's
aspect and behavior. From a developer's point of view, a widget library also has a

certain API (set of functions), and that might define which widget library we want to use.

Widget Libraries or toolkits

The original widget library, developed for the Athena Project, is of course the Athena widget
library, also known as Athena Widgets. It's very basic, very ugly, and the usage is not
intuitive by today's standards (for instance, to move a scrollbar or slider control, we don't
drag It; Instead, we click the right button to scroll up and the left button to scroll down). As
such, it's pretty much not used a lot these days.

Just as it happens with window managers, there are a lot of toolkits, with different design
goals in mind. One of the earliest toolkits is the well-known Motif, which was part of the
Open Software Foundation's Motif graphical environment, consisting of a window manager
and a matching toolkit is identified to be superior to Athena. In the recent times, Gtk, Qt,
LessTif are in predominant use.

The widely known and used Gtk, was specifically created to replace Motif in the GIMP
project (one possible meaning of Gtk is "GIMP ToolKit, although, with its widespread use, it
could be interpreted as the GNU ToolKit). Gtk is now very popular because it's relatively
lightweight, feature-rich, extensible and totally free.

Another very popular toolkit these days is Qt. It was not too well-known until the advent
of the KDE project, which utilizes Qt for all its GUI elements.

Finally, another alternative worth mentioning is LessTif. The name is a pun on Motif, and
LessTif aims to be a free, API-compatible replacement for Motif.

We may have several possible window managers, which manage our screen real estate;
we also have our client applications, which are where we actually get our work done,
clients can be programmed using several possible different toolkits.

Desktop environments

The concept of a desktop environment is something new to people coming for the first time
to Linux because it's something that other operating systems (like Windows and the Mac OS)
intrinsically have. Main objective of desktop environment is to provide consistent look-and-
feel during the computing session. The operating system provides a default file manager (the
finder), a system wide control panel, and single toolkit that all applications have to use (so
they all look the same), a window manager to manage all application windows and a set of
gUidelines that tell developers how their applications should behave, recommend control
looks and placement, and suggest behaviors according to those of other applications on the
system.

For example, KDE includes a single window manager (kwm), which manages and controls
the behavior of our windows. It recommends using a certain graphic toolkit (Qt), so that all
KDE applications look the same, as far as their on-screen controls go. KDE further extends
Qt by providing a set of environment-specific libraries (kdelibs) for performing common tasks
like creating menus, "about" boxes, program toolbars, communicating between programs,
printing, selecting files, and other things. These make the programmer's work easier and
standardize the way these special features behave. KDE also provides a set of design and
behavior guidelines to programmers, with the idea that, if everybody follows them, programs
running under KDE will both look and behave very Similarly. Finally, KDE provides, as part of
the environment, a launcher panel (kpanel), a standard file manager (which is, at the time
being, Konqueror), and a configuration utility (control panel) from which we can control
many aspects of our computing environment, from settings like the desktop's background
and the Windows' title bar color to hardware configurations.

564 Introduction to Llnux : Installation and Programming

The KDE panel is an equivalent to the MS Windows taskbar. It provides a central point
from which to launch applications, and it also provides for small applications, called
"applets", to be displayed within it. This gives functionality like the small, live clock most
users can't live without. .

GNOME is another popular desktop environment. The most obvious difference is that
GNOME doesn't mandate a particular window manager (the way KDE has kwm). Originally
GNOME favored the Enlightenment window manager, and currently their preferred window
manager is Sawfish, but the GNOME control panel has always had a window manager
selector box.

Other than this, GNOME uses the Gtk toolkit, and provides a set of higher-level functions
and facilities through the gnome-libs set of libraries. GNOME has its own set of programming
guidelines in order to guarantee a consistent behavior between compliant applications; it
provides a panel (called just "panel"), a file manager (gmc, altough it's probably going to be
superseded by Nautilus), and a control panel (the gnome control center).

A quick internet search will reveal about half a dozen desktop environments: GNUStep,
ROX, GTK+XFce, UDE, to name a few. They all provide the basic facilities we mentioned
earlier. GNOME and KDE have had the most support, both from the community and the
industry, so they're the most advanced ones, providing a large amount of services to users
and applications.

After that, I go back to my spreadsheet, now that I'm finished I want to print my
document. Gnumeric is a GNOME application, so it can use the facilities provided by the
GNOME environment. When I print, Gnumeric calls the gnome-print library, which actually
communicates with the printer and produces the hard copy I need.

Example 1

The following example discusses about how we can create a simple window with the help of
Xlib.

/*
* simple-window.c - demonstrate creation of a simple window.

*/

#include <Xll/Xlib.h>

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>

int

/* getenvO, etc. */

/* sleepO, etc. */

main(int argc, char* argv[])·

{

Display* display; /* pOinter to X Display structure. */
int screen_num; /* number of screen to place the window on. */
Window win; /* pointer to the newly created window. */

unsigned int display_width,
display_height;

X Window System Architecture and GUI Programming

1* height and width of the X display.

unsigned int width, height;
*1

1* height and width for the new window. * 1
unsigned int win_x, win_y;

1* location of the window's top-left corner. *1
unsigned int win_border_width;

1* width of window's border. *1
char *display-name = getenv("DISPLAY");

1* address of the X display. * 1

display = XOpenDisplay(display-name);

if (display == NULL) {

}

fprintf(stderr, "%s: cannot connect to X server '%s'\n",
argv[O], display-name);

exit(l);

1* get the geometry of the default screen for our display. *1
screen_num = DefaultScreen(display);
display-width = DisplayWidth(display, screen_num);

display-height = DisplayHeight(display, screen_num);

1* make the new window occupy 1/9 of the screen's size. */

width = (display-width / 3);
height = (display-height 1 3);

1* the window should be placed at the top-left corner of the screen. *1

win_x = 0;

win_y = 0;

1* the window's border shall be 2 pixels wide. *1

1* create a simple window, as a direct child of the screen's */

1* root window. Use the screen's white color as the background */
1* color of the window. Place the new window's top-left corner *1
/* at the given 'x,y' coordinates. */

565

566 Introduction to Linux : Installation and Programming

win = XCreateSimpleWindow(display, RootWindow(display, screen_num),

win_x, Wln_y, width, height, w\n __ border_width,

BlackPixel(display, screen_num),

WhitePixel(display, screen_num»;

/* make the window actually appear on the screen. */

XMapWindow(display, win);

/* flush all pending requests to the X server, and wait until * /
/* they are processed by the X server. */

XSync(display, False);

/* make a delay for a short period. */

sleep(4);

/* close the connection to the X server. * /
XCloseDisplay(display);

exit(l);

}

To compile (assuming program name is sample-window. c)

gcc simple-window.c -0 simple-window -L/usr/XIIR6/lib -IXll

To run

'/sample-window

26.2 GTK Programming
GTK (GIMP Toolkit) is a library for creating graphical user interfaces and is called the GIMP
toolkit because it was originally written for developing the GNU Image Manipulation Program
(GIMP), but GTK has now been used in a large number of software projects, including the
GNU Network Object Model Environment (GNOME) project. GTK is built on top of GDK (GIMP
Drawing Kit) which is baSically a wrapper around the low-level functions for accessing the
underlying windowing functions (Xlib in the case of the X windows system), and gdk-pixbuf,
a library for client-side image manipulation.

GTK is essentially an object oriented application programmers interface (API) although
written completely in C and implemented using the idea of classes and callback functions
(pointers to functions).

In addition, Glib is used with GTK which contains a few replacements for some standard
calls to increase portability; additional functions for handling linked lists, etc.

X Window System Architecture and GUI Programming 567

Also, GTK uses the Pango library for internationalized text output.

All GTK programs has to include gtk/gtk.h which declares the variables, functions,
structures, etc. that will be used in your GTK applicatIOn.

While writing GTK programs, we use gmt, gchar, etc., types of variable which are
typedefs to int and char, respectively, that are part of the Glib system. This is done to get
around that nasty dependency on the size of simple data types when doing calculations. A
good example IS "gint32" which will be typedef'd to a 32 bit integer for any given platform,
whether it be the 64 bit alpha, or the 32 bit i386. The typedefs are very straightforward and
intuitive. They are all defined in glib/glib.h (which gets included from gtk.h).

All GTK programs has to first call the following function.

gtk_init (&argc, &argv);

ThiS further calls function gtk_init(gint *argc, gchar ***argv) which will be called in all
GTK applications; This function initializes such as the default visual and color map and then
calls gdk_init(gint *argc, gchar ***argv)which initializes the library for use, sets up default
Signal handlers, and checks the arguments passed to your application on the command line.
This creates a set of standard arguments accepted by all GTK applications.

Then, we have to write code to create and display a window. For this, the following
function calls are used.

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_widget_show (window);

The GTK_WINDOW_TOPLEVEL argument specifies that we want the window to undergo
Window manager decoration and placement.

The gtk_widget_showO function lets GTK know that we are done setting the attributes of
this widget, and that it can display it.

After this, we have to call GTK main processing loop,

This, gtk_mainO call seen in every GTK application. When control reaches this paint,
GTK will sleep waiting for X events (such as button or key presses), timeouts, or file 10
notifications to occur.

GTK is an event driven toolkit and an event occurs then the control is passed to the
appropriate function. This passing of control is done using the idea of "signals". (Note that
these signals are not the same as the Unix system Signals, and are not implemented using
them, although the terminology is almost identical.) When an event occurs, such as the
press of a mouse button, the appropriate signal will be "emitted" by the widget that was
pressed. This is how GTK does most of its useful work. There are signals that all widgets
inherit, such as "destroy", and there are signals that are widget specific, such as "toggled"
on a toggle button.

568 Introduction to Llnux : Im:'.cailation and Programming --
To make a button perform an action, we set up a signal handler to catch these signals

and call the appropriate function. This is done by using a function such as:

gulong g_signal_connect(gpointer

const gchar
GCaliback
gpointer

*object,

*name,
func,
funcdata);

where the first argument is the widget which will be emitting the signal, and the second
the name of the signal you wish to catch. The third is the function you wish to be called
when it is caught, and the fourth, the data you wish to have passed to this function.

The function specified in the third argument is called a "callback function", and should
generally be of the form

void callback_func(GtkWidget *widget,

gpointer callback_data);

where the first argument will be a pOinter to the widget that emitted the signal, and the
second a pointer to the data given as the last argument to the g_signal_connectO function
as shown above.

Note that the above form for a signal callback function declaration is only a general guide,
as some widget specific signals generate different calling parameters.

Another call which can be used to connect function to signal is:

gulong g_signal_connect_swapped(gpointer

const gchar

GCaliback
gpointer

* object,

*name,
func,
*slot_object);

g_signal_connecCswappedO is the same as g_signal_connectO except· that the callback
function only uses one argument, a pOinter to a GTK object. So when using this function to
connect signals, the callback should be of t.he form

void callback_func(GtkObject *object);

where the object is usually a widget. We usually don't setup callbacks for
g_signal_connect_swappedO however. They are usually used to call a GTK function that
accepts a single widget or object as an argument.

The purpose of having two functions to connect signals is simply to allow the callbacks to
have a different number of arguments. Many functions in the GTK library accept only a single
GtkWidget pointer as an argument, so you want to use the g_signal_connect_swappedO for
these, whereas for your functions, you may need to have additional data supplied to the
callbacks.

X Window System Architecture and GUI Programming 569

To begin our introduction to GTK, we'll start with the simplest program possible. This
program will create a 200x200 pixel window and has no way of exiting except to be killed by
.using the shell.

Example 2
This.program (first.c)just creates a widget and calls showO function to show the widget.

#include <gtk/gtk.h>

int maine int argc,
char *argv[])

{

}

GtkWidget *window;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_show (window);

return 0;

We can compile the above program with gcc using:

gcc first.c -0 first' pkg-config --cflags --libs gtk+-2.0'

pkg-config --cflags --libs gtk+-2.0 will output a list of include directories for the compiler
to look in, and list of libraries for the compiler to link with and the directories to find them
in.

If we want to know what directories and libraries are used by gcc, we can run gcc
command with -v option such as the following.

gcc -v -0 first frist.c 'pkg-config --cflags --libs gtk+-2.0'

Example 3
Little more practical program which contains a button and when we press the same it
displays "Hello World"

#include <gtk/gtk.h>

/* This is a callback function.

570 Introduction to Linux : Installation and Programming

*/

void hello(GtkWidget *widget,

gpointer data)

{

g_print ("Hello World\n");

}

gint delete_event(GtkWidget *widget,

GdkEvent *event,

gpointer data)
{

}

/* If you return FALSE in the 4delete_event" signal handler,

* GTK will emit the "destI:OY" signal. Returning TRUE means

* you don't want the window to be destroyed.

* This is useful for popping up 'are you sure you want to quit?'

* type dialogs.
*/

g_print ("delete event occurred\n");

return TRUE;

/* Another callback which will be called when we press close */

void destroy(GtkWidget *widget,

gpointer data)
{

}

int maine int argc,

char *argv[])
{

GtkWidget *window;

GtkWidget *button;

gtk_init (&argc, &argv);

X Window System Architecture and GUI Programming

/* create a new window */

/* When the window is given the "delete_event" signal (this is given
* by the window manager, usually by the "close" option, or on the
* titlebar), we ask it to call the delete_event 0 function
* as defined above. The data passed to the callback
* function is NULL and is ignored in the callback function. */

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (delete_event), NULL);

/* Here we connect the "destroy" event to a signal handler.
* This event occurs when we call gtk_widgeCdestroyO on the window,
* or if we return FALSE in the "delete_event" callback. */

Lsignal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (destroy), NULL);

/* Sets the border width of the window. */

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Creates a new button with the label "Hello World". */

/* When the button receives the "clicked" signal, it will call the
* function helioO passing it NULL as its argument. The helioO
* function is defined above. */

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (hello), NULL);

/* This will cause the window to be destroyed by calling

* gtk_widgeCdestroy(window) when "clicked". Again, the destroy
* signal could come from here, or the window manager. */

g_signaLconnect_swapped (G_OBJECT (button), "clicked",
G_ CALLBACK (gtk_ widget_destroy),

G_OBJECT (window));

/* This packs the button into the window (a gtk container). */

571

572 Introduction to Llnux : Installation and Programming

gtk_container_add (GTK_CONTAINER (window), button);

/* The final step is to display this newly created widget. */

gtk_widgeCshow (button);

/* show the window */

/* as mentioned earlier all GTK applications must have a gtk_mainO */

return 0;
}

GTK also supports many means such as boxes, tables to place visual elements such as
Labels, buttons, text boxes, sliders, etc.

Example 4

The following program adds three text fields and a button to a window. When a user enters
integers in first two text fields and enters enter key the values are stored in global variable
x,y. When user presses close button or simply enters enter key in third text area then the
product of x and y is displayed in third text field.

#include <stdio.h>
#include <stdlib.h>

#include <gtk/gtk.h>

GtkWidget *entry2;

int x,y,prod;

void enter _callback(GtkWidget *widget,

GtkWidget *entry)
{

const gchar *entry_text;

entry-text = gtk_entry-geCtext (GTK_ENTRY (entry));

x=atoi(entry_text);
}

void enter_callbackl(*widget,

GtkWidget *entry)

X Window System Architecture and GUt Programming

{

const gchar *entry_text;

entry_text = gtk3ntry_geCtext (GTK_ENTRY (entry»;

y=atoi(entry_text);

}

void enter_callback2(GtkWidget *widget,

GtkWidget *entry)

{

prod=x*y;

char *str = g_ o;trdup_printf ("%d", prod);

gtk_ entry _seCtext(GTK_E NTRY (entry 2) ,str) ;

g_free(str);

}

int main(int argc,

char *argv[])

{

GtkWidget *window;

GtkWidget *vbox;

GtkWidget *entry, *entryl;

GtkWidget *button;

GtkWidget *check;

gint tmp_pos;

gtk_init (&argc, &argv);

/* create a new window */

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_widget_set_size_request (GTK_WIDGET (window), 200, 100);

gtk_window_seCtitle (GTK_WINDOW (window), "GTK Entry");

(G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);

g_signa'-connect_swapped (G_OBJECT (window), "delete_event",

G_ CALLBACK (gtk_ widgeCdestroy),

G_OBJECT (window»;

vbox = gtk3box_new (FALSE, 0);

573

574

}

Introduction to Llnux : Installation and Programming

gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

entry = gtk_entry_new 0;
entryl = gtk_entry-new 0;
entry2 = gtk_entry_new 0;

gtk_entry-set_max_length (GTK_ENTRY (entry), 50);

gtk_entry_seCmax_length (GTK_ENTRY (entryl), 50);

gtk_entry_seCmax_length (GTK_ENTRY (entry2), 50);

g_signal_connect (G_OBJECT (entry), "activate",

G_CALLBACK (enter_callback),

(gpointer) entry);

g_signal_connect (G_OBJECT (entryl), "activate",
G_CALLBACK (enter_callbackl),

(gpointer) entryl);
g_signa,-connect (G_OBJECT (entry2), "activate",

G_CALLBACK (enter _callback2),

(gpointer) entry2);

gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE, 0);

gtk_box_pack_start (GTK_BOX (vbox), entryl, TRUE, TRUE, 0);

gtk_box_pack_start (GTK_BOX (vbox), entry2, TRUE, TRUE, 0);

gtk_widget_show (entry);

gtk_widget_show (entryl);

gtk_widget_show (entry2);

button = gtk_button_new_from_stock (GT_K_STOCK_CLOSE);

g_signal_connect_swapped (G_OBJECT (button), "clicked",
G_CALLBACK (enter _callback2),

G_OBJECT (window));

gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
GTK_WIDGET_SETJLAGS (button, GTK_CAN_DEFAULT);

gtk_widget_grab_default (button);

gtk_widgeCshow (button);

return 0;

X Window System Architecture and GUI Programming 575

Example 5
The following example demonstrates what color will be displayed for a given values of R,G
and B. R,G, and B values can be adjusted through scroll bars or directly entering them.

#include <glib.h>

#include <gdk/gdk.h>

#include <gtk/gtk.h>

GtkWidget *colorseldlg = NULL;
GtkWidget *drawingarea = NULL;

GdkColor color;

/* Color changed handler */

void color _changed_cb(GtkWidget *widget,

GtkColorSelection *colorsel)

{

GdkColor ncolor;

. gtk_color_selection_geCcurrenCcolor (colorsel, &ncolor);
gtk_widget_modify_bg (drawingarea, GTK_STATE_NORMAL, &ncolor);

}

/* Drawingarea event handler */

gint area_event(GtkWidget *widget,

GdkEvent *event,

gpointer client_data)

{

gint handled = FALSE;

gint response;
GtkColorSelection *colorsel;

/* Check if we've received a button pressed event */

if (event->type == GDK_BUTTON_PRESS)

{

handled = TRUE;

/* Create color selection dialog * /

if (colorseldlg == NULL)

576 Introduction to Linux : Installation and Programming

coiorseldlg = gtk_color _selection_dialog_new ("Select background color");

/* Get the ColorSelection widget */
colorsel GTK_COLOR_SELECTION (GTK_COLOR_SELECTION_DIALOG

(colorseldlg)- > colorsel);

}

gtk_colocselection_set_current_color (colorsel, &color);

/* Connect to the "color_changed" signal, set the client-data

* to the colorsel widget * /

g_signal_connect (G_OBJECT (colorsel), "color_changed",
G_CALLBACK (color_changed_cb), (gpointer) colorsel);

/* Show the dialog */
response = gtk_dialog_run (GTK_DIALOG (colorseldlg»;

if (response == GTK_RESPONSE_OK)
gtk_color _selection_get_current_color (colorsel, &color);

else
gtk_widget_modify-bg (drawingarea, GTK_STATE_NORMAL, &color);

gtk_widget_hide (colorseldlg);
}

return handled;

/* Close down and exit handler */

gint destroy-window(GtkWidget *widget,

GdkEvent *event,

gpointer client_data)
{

}

gtk_main_quit 0;
return TRUEj

X Window System Architecture and GUI Programming

/* Main */

gint maine gint argc,
gchar *argv[])

{

GtkWidget *window;

/* Initialize the toolkit, remove gtk-related command line stuff */

gtk_init (&argc, &argv);

/* Create top-level window, set title and policies * /

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Color selection test");
gtk_window_set_policy (GTK_WINDOW (window), TRUE, TRUE, TRUE);

/* Attach to the "delete" and "destroy" events so we can exit */

g_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNALJUNC (destroy-window), (gpointer) window);

/* Create drawingarea, set size and catch button events */

color.red = 0;
color. blue = 65535;
color.green = 0;
gtk_widgeCmodify_bg (prawingarea, GTK_STATE_NORMAL, &color); .

gtk_widget_seCsize_request (GTK_WIDGET (drawingarea), 200, 200);

g_signal_connect (GTK_OBJECT (drawingarea), "event",
GTK_SIGNAL_FUNC (area_event), (gpointer) drawingarea);

/* Add drawingarea to window, then show them both */

gtk_container_add (GTK_CONTAINER (window), drawingarea);
gtk_widget_show (drawingarea);
gtk_widget_show (window);

577

578 Introduction to Llnux : Installation and Programming

1* Enter the gtk main loop (thiS never returns) *1

1* Satisfy grumpy compilers *1

return 0;
}

26.3 Qt Programming
Qt is a multiplatform C++ GUI application framework. It provides application developers with
all the functionality needed to build applications with state-of-the-art graphical user
interfaces. Qt is fully object-oriented, easily extensible, and allows true component
programming.

Since its commercial introduction in early 1996, Qt has formed . the basis of many
thousands of successful applications worldwide. Qt is also the basis of the popular KDE Unux
desktop environment, a standard component of all major Unux distributions.

For a tutorial on Qt programming, refer to:
http ://doc.trolltech.com/3.3/tutorial.html

26.4 Glade: A ... Designer Tool for GTK, GNOME
Glade enables the developer to quickly and efficiently design an application visually and then
move on to concentrate on actual program implementation instead of being bogged down
with user interface issues.

1. Start up glade. Usually, we may find in programs option in our start toolbar. We will
see the following three windows (see Figure 26.2)

//'

Figure 26.2 A sample Glade window.

X Window System Architecture and GUI Programming 579

2. Opt for New Project. We can specify either GTK or GNOME. Now you may find Palette
window becomes active.

3. Now click "Window" icon palette window. We will see a popup window with name
windowl. At the same time we will see in properties window to become active. Now,
we can change the properties of the window from the properties window.

4. Now, if we wanted to use more than one visual element (such as buttons, labels etc.,)
and want some organization of them on the screen, we can do so with the help of
vertical and horizontal boxes from palette window. Simply, we can click any item on
the palette window and then click on the new window (the user's window or canvas) .

5. With the help of properties window we can change the look, feel of buttons. Also, we
can connect the events on them to some functions. For example, click on a button in
our window and then go to properties window and select Signals option (see Figure
26. 3). Then, we can select which events to be added to this button.

widget ' Packing I Common Signals I II_s_'gO-n_al_s ________ --'1 L",J

I GtkButton signals ' I,j
enter
leave
pressed
re leased

I

GtkContainer
add

______ N_o ____

Add I Update ! . Dele!;J Clear

Figure 26.3 Handling Signals.

6. Once we are satisfied with our main widget's layout we can select Build option to
generate the code.
If we now look in our Project directory (remember we saved it in /home/[your
usernamellProject5/hello) we will see all the files Glade has created. The actual source
code resides in the "src" subdirectory. Some files such as README, ChangeLog and
such you'll probably modify yourself when you actually develop an application. For now
though we can let them be.

7. Build Makefiles by executing ./autogen.sh from this directory in your favorite
terminal. A bunch of messages will scroll by as it checks your particular environment
and creates appropriate Makefiles.

8. Now go to src directory and edit callbacks.c according to our requirement. That is, we
can write the code in the callback functions whose skeletons are generated by Glade.

580 Introduction to Llnux : Installation and Programming

For example if we want some message to be displayed when button2 is clicked, we
can add a line g_printf("Hello\n")to on_button2_clickedO function.

void on_button2_clicked (GtkButton*button, gpointer user_data)

{

g_printf("Hello\n") ;

}

9. We can actually build our application by simply executing make.
10. The final binary will be available in src directory.

26.5 Conclusions
This chapter explores GUI programming under Linux. It explains about X windows
architecture, Xlib, GTK and Qt toolkit programming. Also, it explains how Glade can be used
for designing GUI using either GTK or GNOME.

References

1. Matt Welsh, Matthias Kalle Dalheimer, Terry Dawson, and Lar Kaufman, Running
Linux, Fourth Edition, O'Reilly Publishers, December 2002, ISBN: 0-596-00272-6.

2. Carla Schroder, Linux Cookbook, First Edition, O'Reilly Cookbooks Series, November
2004, ISBN: 0-596-00640-3.

3. Venkateshwarltl N.B, Advanced Unix Programming, BS Publishers, Hyderabad,
2005.

4. Venkateshwarlu N.B, Unix and Windows NT, BS Publishers, Hyderabad, 2005.

S. Gary Nutt, Operating Systems: A Modern Perspective, First Edition, Addison-
Wesley, Reading, MA, 1997.

6. B.W. Kernigham and R. Pike, The Unix Programming Environment, Prentice Hall
India, New Delhi, 1994.

7. S. Prata, Advanced Unix-A programmer's Guide, SAMS, New Delhi, 1986.

8. G.Nutt, Operating Systems Projects Using Windows NT, Pergamon, 1999.

9. Aho, Sethi and Ullman, Compilers: Principles, Techniques and Tools, Addison-
Wesley Pub. Co., Nov, 1985

10. Chris Drake and K. Brown, Panic! Unix System Crash Dump Analysis handbook,
PH,2003.

11. Richard L. Petersen, UNUX fifth edition, The Complete Reference, TMH .

12. Shelley Powers, Jerry Peek, Timo Reilly, Mike loukides, UNIX power tools. BP
Publishers, New Delhi, Hyderabad, 2002.

13. Michael K. Johnson, Erik W. Troan, Linux Application DevelopmentAddison-Wesley,
2nd edition, Published November 2004, 702 patles, ISBN 0321219147.

14. Phillip G. Ezolt, Optimizing Linux Performance: A Hands-on Guide to Linux(R)
Performance, Prentice Hall, March 2005.

15. Davide Evans and David Larochelle, Improoving Security Using Extensible
lightweight static analysis, IEEE Software, Jan/Feb, 2002.

16. Robert Mecklenburg, Managing Projects with GNU Make, 3E; Addison-Wesley, 2003.

17. Robert Love, Linux Kernel Development, Addison Wesley, 2005.

18. Chris Drake, Kimberley Brown, PANIC! UNIX System Crash Dump Analysis
Handbook, www.amazon.com.

19. Ronald F. GUilmette, Compiling and Linking Under the Hood, February 2002, Linux
Magazine.

20. Jeffrey Stedfast, Alleyoop:A GUI front end for Valgrind, <fejj@ximian.com>.

21. Patrick Aiken, ald:a The Assembly Language Debugger, http://ald.sourceforge.net

22. Richard Stevens, Advanced Unix Programming, Addison Wesley, Singapore,2002,

582 Introduction to Linux : Installation and Programming

On-line material
1. Open Sources: Voices from the Open Source Revolution, First Edition, January

1999, ISBN: 1-56592-582-3. URL:
http://www.oreilly.com/cataIOg/opensources/book/toc.htmI

2. Michael Stutz, The Linux Cookbook: Tips and Techniques for Everyday Use, First
Edition, 2001. URL: http://dsl.org/cookbook/cookbook_toc.html

3. Lars Wirzenius, Joanna Oja, Stephen Stafford, and Alex Weeks, The Linux System
Administrators' Guide, December 2003. URL: http://www.tldp.org/guides.html

4. Richard Stallman et aI., Using GCC, URL: http://www.gnu.org/doc/using.html

5. Brian Gough, An Introduction to GCC, URL:

http://www .network-theory .co.uk/docs/gccintro/

6. Gary V. Vaughan, Ben Elliston, Tom Tromey and Ian Lance Taylor, GNU Autoconf,
Automake and Libtool, URL: http://sources.redhat.com/autobook/

7. Karl Fogel and Moshe Bar, Open Source Development with CVS, Third Edition, URL:
http://cvsbook.red-bean.com/

8. Mendel Cooper, Advanced Bash Scripting Guide, June 2005. URL:
http://www.tldp.org/guides.html

9. Havoc Pennington, GTK+/GNOME Application Development, URL:
http://developer.gnome.org/doc/GGAD/

10. Guido van Rossum, Fred L. Drake, Jr., Editor, Python Tutorial, URL:
http://www.python.org/doc/cur-rent/tut/tut.html

11. Mike Heffner, BFBtester: Brute Force Binary Tester,
mheffner@vt.edu http://bfbtester.sourceforge.net

12. Data Display Debugger http://www.gnu.org/software/ddd/

13. The GNU Debugger http://sources.redhat.com/gdb/

14. Electric Fence ftp://ftp.perens.com/pub/ElectricFence/

15. Steve Best, Mastering Linux debugging techniques, IBM devloperWorks Journal,
Aug, 2002.

16. FiHp Rooms, Some Advanced Debuuging techniques in C Under Linux,
filip_rooms@hotmail.com.

17. Steve Best, Debugging Memory Problems May 2003, Linux Magazine. Benjamin
Chelf, Dynamic MemoryAllocation -- Part II July 2001, Linux Magazine.

18. Benjamin Chelf, Dynamic MemoryAllocation -- Part I June 2001, Linux Magazine.

19. Fillding memory Leaks and invalid memory use using Valgrind, Cprogramming.com.

Index

/bin.14
/dev, 15
/etc,15
/etc/fstab, 234
/etc/group. 210. 211
/etc/inetd.conf .282
/etc/inittab. 77. 78. 80. 82. 243. 244. 245. 246.

247.248
/etc/passwd. 210
/etc/profile.208
/etc/rc.d/init.d.249
/etc/services. 280
/etc/shadow, 210
/etc/skel, 208
/etc/sudoers. 217
/etc/syslog.conf.255
/proc, 15
/root, II
/sbin.14
/sbin/init, 77. 79. 80
/usr, II
/usr/bin, 15
/usr/include, 12
/usr/lib,12
/usr/local. 12
/usr/local/bin, 15
/usr/local/sbin, 15
/usr/sbin. 15
/usr/src, 12
/var, II
/var/log, 12
/var/log/messages, 254
/var/log/wtmp. 256
/var/spool. ,12
/var/spool/mall, 12

'" / :bash_history, 208
"'/.bash_logout, 208
"'/.cshrc.208
"'/.exrc, 208
"'/.forward,208
"'/.login.208
"'/.Iogout 208
"'/.profile.208

<

<.21. 22, 23, 24, 46, 56, 67, 68, 92, 114, 135,
157,160,163, 165, 186,223,242,263,296,
300,318,321,327,328,329,333,341,345,
348,349,358,361,362,363,394.419421
423,424,425,426,427,433,445,447: 448:,
449,450,477.488,496,497.499,500,503,
504,505.509,510.511. 512. 513, 514. 516.
532.534,537,538,539.540.549

>

»,21. 23, 114.397,398,406,408,410,474,
475,476,477.478.479.480.481.510,514.
521

ac.257
accton, 257

A

adduser, 14,213,217,218
Apache. 153. 157, 158, 161, 162, 163, 164,

165,166.186
apropos. 16
apt-get. 125. 130. 166. 168, 171, 177. 179. 197
Arrays, 115. 547
Assembler, 289. 299
at, 3. 4, 5, 7. 9.10,12.15,17.19.23,24,31,

54,60.64,65,68,72,77,79,81,83.84,85.
86,87.88,89.90,91,92,93,94,99,100,
111,115,117,118,119,120,121,122,123,
124. 125, 126, 127, 128, 129, 13L 133, 134,
135, "137. 139, 144, 145. 149, 153, 154, 155,
157,158.161. 163, 166, 167, 171, 174. 175,
178.180.181. 182. 184, 185, 186, 188.189,
190.192.193.197.199,200.202.204,205.
206,209.214,215.219.220.224,228,231.
234,235,236.238.239.241.242,244,245.
247,248,250,251,252.253,255,261,262,
263.264.265,266,267.268,269,272,273,
274,275,277,279.280.281,282,284,285,
287,289.300,301.302,303.305,306.307.
309,312.321,322,323,324.326,331,333,
335,339.341,347.348.349,351.355,358,
359,360.361,362.363.364,365.366.367.
368,369.370.371.372.373

Authorization, 161
awk, 56. 63. 64. 65. 66. 67. 68. 69, 70, 71, 75.

92.99,492

584

B

backup. 72. 73. 75.107.217,218.219,272.
540

Book mark. 21
booting, 76,131,138,144,146,148,235,239,

241,252
bootloader, 76, 78, 81. 238
bootstrap. 240
bunzip.74
bZip2,74

c
C Preprocessor, 290
ccl. 289. 308, 316
cdrecord, 139
CGI, 154. 158. 159. 161. 163. 164. 165, 166.

381. 492
chgrp. 14.55
chmod, 14.50.51. 52. 53.92,107,290.493.

534
chown, 14,55
ci. 396,401,403.404.406, 407, 408,409,410,

411. 412
Client. 143. 561, 562
cmp, 60, 61
cO,20,396.403.405.407,408,409,410.411.

412,413.414,582
comm,61
compiler warnings, 296
Configuring X, 139, 143, 150
cpio, 14,72,73,75
Creating device files. 222
CUPS, 180, 181. 182, 183. 184, 185, 186, 187
cut. 14,42.43,62,75. 113,492.509.510

D

Daemons, 246
Debian. 7.117,118,123,125,130,139,143,

166,168,171. 173, 177, 179, 183, 197, 198,
236·

Dependencies, 386
Devices, 219
df, 14,47
Dictionaries, 487·
diff, 56, 61, 75, 98, 108,405
discover, 55, 139, 251
dmesg command, 131

Introduction to Llnux : Installation and Programming

DNS. 121. 122. 149. 159. 160, 161. 166, 172.
176. 197. 198.272,283

Dot files. 207
dpkg, 130, 139, 183
du.14,47
Dynamic Content, 161

E

egrep.42
environment variables, 88, 94. 95, 100, 103,

128.165,182,324,325,495
etc/rc.d. 15.77,80,91. 244, 246, 247, 248,

249,277
Exceptions, 149,557

fastboot. 250
fasthalt. 250

F

fdisk, 14.225.226.234
fgrep,42
File types, 28

8,28,36,140,166,178,186,203,246,
253,300,303,396,509,556

find, 5, 7, 16.30,31. 32, 33, 34, 47. 54, 57, 64,
68,73,83,85.88.89,90.94,97,120,125,
128,139.151,166,168,175,185.209,211.
213,216,224,229,232,234.237,238,239,
240.242.246,247,250,255,262,263,264,
267,290,293.309,326,335,337,347,373,
375,381,388,396.3197,432,471,472,489,
494,497,518,519,522.532.533.553,556,
562.569,578,579
;,33
{},33

actions, 32
tests, 31

finger, 285
Firewalls,188
for loop. 105. 116,293,294,350,480,481,

496,500.502,503,552
free, 251
fsck.14,234,235,236,247.249,250
ftp, 6,14,44,45, 120,130, 147, 154, 181, 198,

202,279,280,281,283,286,287,439,445,
582

Fl,mctions
Ruby, 230,306,317,341,350,360,483,

485,546,554,561

Index

G
Gateway, 163,271,278 I
gee, 22, 83, 85, 94, 102, 105, 131. 24#288,

289,291,292,293,294,298,299,300,301,
302,303.304,308,309,312,313,314.316.
319.320,326.330,331,332,334.354.357.
358.363.368.370.375.378.379,382.386.
387.388.389.390,392.393,415,423.424,
426,428.429.430,431,432,433.434.437,
455.456,457,459,460.462,464,467,470,
472,566,569

GOB, 351, 352, 353, 354, 364, 365, 367, 368,
369. 373. 374

!Letty 247
Glaae, 578, 579. 580
grep,24,33.41.42,62,64,75, 101. 103, 110.

111.114.151.531,534,539
GRUB, 76
GTK,564,566,567,568, 569, 570,571,572,

573.574.575.576.577,578,579,580.582

H
halt, 250
hardware addresses, 264, 266
head, 14.25,26.92, 115. 153,224,225.235,

253,399.400,401.403,404
history, 1 L 18, 153
Home directories. 207
hostname. 246

I
id,38.55,77,156,207,210,215,244,246,

352, 3tU, 396
if condition, 96. 480, 544, 545
HConfig. 14. 129.273,274,276
Indent, 314
lOetd.282
init, 14. 15,77.78.79,80.81. 82,91,132, ISS,

166.168,172.173,179,236,241,243,244,
245,246,247,248,249,250,251,256,277,
321,322,323,360,490,567,569,570,573,
577

init.d,248
Internet, 4, 7,117,120,121,122,125,150,

166.174.175.177, 180, 186. 188, 197, 198.
199.201,203.248.249.263,264.265,266,
267.268,269.270.272.273,276,278,279,
281,283

Interpreter, 3. 132
ipchains, 189
iptables. 188, 189. 190, 1·9-\, 192. 193, 194,

195,196,204
Iterators, 553, 554

585

J

join, 17, 19,43,45,46,61. 68. 72, 478. 498

K

kernel
micro kernel, 2

Kernel, 1,2,55, 119.131,133.236,239,241,
264,278,286,325,326,581

kill, 14,79,83,84,88,90,99,100,156,248,
250

last, 256
lastcomm. 257
Idd command, 312

L

Lex,415,422,423, 448,449, 451, 452,455,
456,457,458,459,460,461,462,464,467,
470,471,472

Lex speCification file, 451
Libraries, 302, 563
lilo,14
L1LO,240
Linking, 288, 302, 320, 581
Linux, 4.5,6,7,8,9, 10, 11, 12, 13, 14, 16,37,

39,53,74,76,77,87,90,91,93,94,117,
118,119,121,122, 125, 126, 127, 128, 129,
130,131,133,134,138,143,145,147,148.
153, ISS, 156, 157, 166, 167, 168, 170, 171.
173, ,17',176,179, tlO, 113,11., I., ItO.
197,
224,226,229,231,233,234.235,236.237,
238,239,240,241,243,244,247,241,251,
252,253,256,258,261,262,263,264,265,
267,268,271,273,275,277,286,290,300,
309,314,320,324,350,351,354,368,375,
385,395,404,414,491,560,561,563,578,
580,581,582

lists, 92, lOS, 106, 1 10, 118, 188, 190. 199,
209,212.245,254,270,280,283,370,476.
478,480.486,487.522.567

logger, 255
Login name, 205
Login shell, 207
loops, 81.96, 100. 199,300.349,492,495.

500,550,553
Ismod, 14, 129, 138
Ispci,137
Ispci command. 137

586

M

Mail aliases, 209
Major device number, 222
MAKEDEV.219
MBR.76, 117, 122
mii-tool, 139
minor device number, 222
mkdir, 14,26,166.173
mkfs. 14,231,232
modprobe, 14, 129. 149
Modules. 119. 157, 163, 306,488, 555
more. 3, 5.6,7, 11, 12, 14, 17,24,25.28.32,

33,41,42,53,56,70,72,79,81,82,84,91,
92,93, 110, 117. 118, 119, 120, 125, 126,
150,151. 152, 153, 156, 159, 166, 172, 175,
178,184,188,189,190,197,199,201,205,
210,218,225,227,232,236,237.246,247,
251,255,257,262,263,264,265.271,272.
275.285,289,290,296,298,300,301,302.
303.306,319.324.335,336,337,341,342.
343,348,350.351,352,356.364,369,393,
412,413.416.417,418.420,421,447,473,
474,485.486,492,510,511,519.541,552.
554.569,579

Mount, 232
Mtools,38

N

Name resolution, 267, 271
netconfig, 14
netstat,14,275,277,278,280,281
Network clients, 283
Network servers, 279, 282
NFS, 4, 76, 77, 166, 167, 171, 172, 173, 174.

178,207,226
nice. 252
nl, 25. 470
nohup.86

p

partition, 4, 8, 47, 74, 76,117,118,119,144,
145,148.220,224,225.226,231.232,233.
234,235,236,238,239,240

Passwords. 206
paste, 43, 44, 45, 75.492,510
Patterns, 417

Introduction to Llnux : Installation and Progl'llmmlng

perl,92, 164, 165, 166,492,493.497,498,
499.501,502,503,504,505,506,507.508,
509,510,511,512,513,514,515,516,517,
518,519,520,521,522,524,525,526,527,
528,530,531,532,534,535,536,538,539,
540,547,551,552

Perl variables, 493
pg,25
PHP, 161, 163, 164, 166,491
ping, 14, 121, 128, 129, 195, 196,266
piping, 42, 62, 82, 86
positional variables, 494, 543
ppp, 17, 123, 193,262,267
process

foreground process, 84, 85
Process, 1,87,243,248,257,260,289,381
Profiling, 558
Proxy, 197,203
pS,251
pseudo variables, 464
pwd, 14,26,520

. Python,92,473,474,475,476,478,480,481,
482,483,485,486,487,488,489,490,491,
582

Qt 563, 578, 580

RAMDISK, 134
rarp,14
rc,248
rc.local,248
rc.serial,248
rc.sysinit, 248

Q

R

reboot, 14,77,81,125,144,147,150,166,
172,235,236,243,245,250,251,256,268

Red Hat, 4,7, 131, 133, 183,286,300,354,
474

redirection operators, 21, 39
rlogin,286
rmdir, 14,26
rmmod, 14, 139
Routing, 132, 199,267,273,275,278
Ruby,542,543,544, 546, 547, 548,551,552,

554,555,556,557,558,559
Run levels, 243

Index

s
sa, 257
scalar variables, 493. 494. 495
sed, 56, 57,58,59.60, 75,92.532
sets, I. 76,77. 95,125,126,127,155,157,

158, 161. 199,233.246,247.324,325,366.
400.404.487,517,567

setuid.54
shell, 3,18.23,32.33,37,50,56,62,78,81,

82.83,84.86,88.90,91.92.93,94.95.96.
98.99,100.101. 102. 103, 104, 106, 107,
108.109. 110. III. 112. 115. 116, 125, 126.
127.128.166,176,205.207,208.210,212.
215.216.244.247.248.255.277.290.324.
326.351.369.385.396,475,476.480,492.
493.494.495.497,510.520.535.538,541.
542.543.546.552.569

Shell dot files. 208
shutdown. 14.43,44.78,80.81,231.236.

243.245.250.251
SIGINT. 84,246. 383
Skeleton directories. 208
SLIP, 7. 262, 267
Software patching, 75
splint, 314, 315
Squid. 197. 198. 199.200,201,202,203
S.SI. 154, 158.159.161,165,166
Sticky bit, 53
Strings

Ruby, 297,476,477, 544

stty. 14,88,89,90. 103,519
su,215
sudo.217
syslog,254
syslogd, 255

T

tail, 14.25.62.82.374,375
tar. 14.72.75.153.166,168,197
TCP/IP. 7. 76,166,175,176,189,241,261,

262,266,267,269,270,282,283,287,561
tee, 62. 82

telinit, 244. 246
Terminal Handling, 88

587

time, 3, 4, 5, 6,10,13,15,18,27,31,48,49,
50,68,72,75,76,77,79,81,84,86,87,90,
91,92,93,94.99,102, 105, 112, 117, 119,
123,127,128,131,138,149,150,152,154,
159. 165, 166, 178, 196,200,201,203,204,
207.208,224.225,226,227,234,235.239,
240,243.246.248.250.251,253,256,257,
266,267.272.279,290,298,301,302,303,
308,309,317,318,320,322,324,325,333,
351,360.370,373,381,385,388,392,393,
396,405,410,413,414,416,422,440,473,
486,487,488,492,497,510,511,521,541,
546,550,563,579

top, 251
tr,46,47,114.447,448.449.450
ttyS,28.219,221

UIO,207
ulimit, 49, 369
umask, 54, 55
uname,251
uniq,40
UNIX account. 205
unlink, 49, 532
unzip, 73, 74
uptime, 251
userdel,216
usermod, 216

u

users, 4, 5, 7, II, 13, 14, i5, 18, 19,26,43,47,
48,50,55,62,64.81,83,87,88,91,92,94,
107,126,128.155,166,170,171, 172, 177,
178,199,202,203,205,206,207,208,209,
211,215,216,217,218,221,224,225,250,
251,252,253,255,257,260,264,278,280,
285,395,396,405,433,476,492,519,522.
538.562,564

v
vanilla, 117, 121
Variables, 93, 311, 341, 344,492, 542
vi editor, 19,56,85, 102, 105, 128, 129, 151

w
w, 19,21,35,48,52,58,59,60,65,82,88,97,

127,135,221,242,290,353,391,392,412,
414,434,489,492,493;497,498,499,501,
502,503,504,505,506,507,508,512,513,
514,516,517,520,524,525,526,527,528,
530,539,540

VVeb server, 166.248,249,280,281
while loop, 100, 101,481,548
who, 5,47,48,61,79,81,87, 101, 103, 107,

110,122,152,160,161,163,166,170,171,
175,178,205,206,216,217,243,253,257,
260,276,283,284,285,287,290,322,341,
395,396,399,414,498,522,561

x
X Windows, 3, 7,10,13,15,130,142,143,180
xhost +,143

y

Yacc,45I,452,453, 455, 456, 457;458, 459,
460,462,464,465,467,471,472

yacc spedfication file, 453

z
zip, 73, 74, 463

Introduction to Linux : Installation and Programming

	Contents
	Introduction to Linux Operating System
	Basic Unix Commands
	File Filters
	Processes in Linux

	Shell Programming

	Debian Linux Installation Guidelines
	Redhat Fedora Core 4 Installation Guidelines

	Installing Apache: The Web Server
	Samba Installation and Configuration
	Installing SMTP Mail Server
	Installing Common Unix Printing System(CUPS)

	Installing Squid Proxy and Firewalls

	Users and Account Management
	A brief Introduction to Unix Devices and File system

	Linux System Startup and Shutdown

	System Logging
	Networks: A Brief Introduction
	Compiling C and C++ Programs Under Linux
	GNU Debugger
	Make
	Revision Control System
	Lex and Yacc
	A Brief Tour of Phython
	Introduction to Perl
	A peep into Ruby
	X Window System Architecture and GUI Programming

	References
	Index

