
THE EXPERT’S VOICE® IN LINUX

Pro
Bash
Programming
Scripting the GNU/Linux Shell

Chris F.A. Johnson

Programming bash from one-liners
to professional programs

Covering

Bash 4.0

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

US $34.99

Shelve in
Linux

User level:
Beginner–Intermediate
Intermediate–Advanced
Advanced

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

ISBN 978-1-4302-1997-2

9 781430 219972

53499

Pro Bash Programming:
Scripting the GNU/Linux Shell
Dear Reader,

The shell is a programming language! A shell script is as much a program as
anything written in C, Python, or any other programming language. Just
because shell scripts are easier to write doesn’t mean they should take a back-
seat to compiled programs or other scripting languages.

I wrote Pro Bash Programming to present a tutorial that introduces the shell,
and bash specifically, as a programming language. If you need a program to
accomplish a task on GNU/Linux or any other Unix-type system, I want you
to consider the shell before any other language. If you write a prototype for a
program using the shell, I want you to realize that you don’t need to translate it
to another language.

This book will give you a grounding in programming techniques used in
writing shell programs no matter what your past programming experience. If
you’ve never written a computer program before, Pro Bash Programming will
get you started and help you become a proficient shell programmer. If you
have written a few shell programs, this book will take you to the next level and
beyond. It will enable you to do things with the shell you never thought it could
do. If you are already an expert shell programmer, this book will provide insight
into the advanced shell programming, helping you write more, and more effi-
cient, scripts.

Bash is the shell of the Free Software Foundation’s GNU project and is the
standard shell on almost all Linux distributions. It is the shell you probably
use at the command line. It offers programmers many enhancements over the
standard Unix shell. You will find bash on many versions of Unix. It may not be
the default shell, but it is usually available for interpreting your scripts.

I hope this book will help you become a more productive programmer and
that your programs will be written using the Bash shell.

Chris F.A. Johnson

Author of

Shell Scripting Recipes:
 A Problem-Solution
Approach

THE APRESS ROADMAP

Beginning the
Linux Command Line

Linux System
Administration Recipes

Beginning Portable Shell Scripting

Expert Shell
Scripting

Pro Bash
Programming

Beginning Perl 2nd Edition

Beginning Ubuntu LTS Server
Administration 2nd Edition

■ CONTENTS

i

Pro Bash Programming
Scripting the GNU/Linux Shell

■ ■ ■

Chris F.A. Johnson

■ CONENTS

ii

Pro Bash Programming: Scripting the GNU/Linux Shell

Copyright © 2009 by Chris F.A. Johnson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1997-2

ISBN-13 (electronic): 978-1-4302-1998-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Frank Pohlmann

Technical Reviewer: Ed Schaefer

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,

Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,

Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editor: Kim Wimpsett

Compositor: ContentWorks, Inc.

Indexer: Julie Grady

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 233 Spring Street, New York, NY 10013.
E-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

■ CONTENTS

iii

Contents at a Glance

■About the Author... xvi

■About the Technical Reviewer ... xvii

■Introduction .. xix

■Chapter 1: Hello, World! Your First Shell Program ..1

■Chapter 2: Input, Output, and Throughput ...7

■Chapter 3: Looping and Branching ..19

■Chapter 4: Command-Line Parsing and Expansion...29

■Chapter 5: Parameters and Variables..43

■Chapter 6: Shell Functions...59

■Chapter 7: String Manipulation..67

■Chapter 8: File Operations and Commands ...79

■Chapter 9: Reserved Words and Builtin Commands ...97

■Chapter 10: Writing Bug-Free Scripts and Debugging the Rest..........................113

■Chapter 11: Programming for the Command Line ..125

■Chapter 12: Runtime Configuration ...141

■Chapter 13: Data Processing ...157

■Chapter 14: Scripting the Screen...179

■Chapter 15: Entry-Level Programming ..191

■Appendix: Shell Variables..205

■Index..221

■ CONTENTS

v

Contents

■About the Author... xvi

■About the Technical Reviewer ... xvii

■Introduction .. xix

■Chapter 1: Hello, World! Your First Shell Program ..1

The Code..1
The File ..2

The Naming of Scripts ...2
Selecting a Directory for the Script ...2
Creating the File and Running the Script...3

Choosing and Using a Text Editor ..3
Building a Better “Hello, World!” ...5
Summary ...5

Commands...5
Concepts..6
Variables..6

Exercises ...6

■Chapter 2: Input, Output, and Throughput ...7

Parameter and Variables ...7
Positional Parameters ...7
Special *@#0$?_!- Parameters...8
Variables..8

Arguments and Options ...8
echo, and Why You Should Avoid It ...9
printf: Formatting and Printing Data ..9

Escape Sequences ..10
Format Specifiers ..10

■ CONENTS

vi

Width Specification..11
Printing to a Variable ...13

Line Continuation...13
Standard Input/Output Streams and Redirection...13

Redirection: >, >>, and < ...13
Reading Input...15
Pipelines ..15
Command Substitution ..16
Summary ...16

Commands...16
Concepts..16

Exercises ...17

■Chapter 3: Looping and Branching ..19

Exit Status..19
Testing an Expression..19

test, aka [...] ..20
[[...]]: Evaluate an Expression..21
((...)): Evaluate an Arithmetic Expression...22

Lists ...22
Conditional execution ..22

if ..22
Conditional Operators, && and || ...23
case ...24

Looping ..25
while ..25
until ...26
for ..26
break ...26
continue...27

Summary ...27
Commands...27
Concepts..28

Exercises ...28

■ CONTENTS

vii

■Chapter 4: Command-Line Parsing and Expansion...29

Quoting ..30
Brace Expansion ..31
Tilde Expansion..32
Parameter and Variable Expansion..33
Arithmetic Expansion...33
Command Substitution ..35
Word Splitting ..36
Pathname Expansion ...37
Process Substitution..37
Parsing Options..38
Summary ...41

Commands...41
Exercises ...41

■Chapter 5: Parameters and Variables..43

The Scope of a Variable: Can You See It from Here? ...43
Shell Variables ...44
The Naming of Variables..46
Parameter Expansion...46

Bourne Shell ..46
POSIX Shell ..49
Bash...51
Bash-4.0 ..52

Positional Parameters..53
Arrays ..54

Integer-Indexed Arrays ..54
Associative Arrays ...56

Summary ...56
Commands...56
Concepts..57

Exercises ...57

■Chapter 6: Shell Functions...59

Definition Syntax..59

■ CONENTS

viii

Compound Commands...61
Getting Results...62

Set Different Exit Codes...62
Print the Result ..63
Place Results in One or More Variables...63

Function Libraries ..64
Using Functions from Libraries..64

Sample Script ..64
Summary ...66

Commands...66
Exercises ...66

■Chapter 7: String Manipulation..67

Concatenation..67
Repeat Character to a Given Length..68

Processing Character by Character ...69
Reversal...70

Case Conversion ..70
Comparing Contents Without Regard to Case..72
Check for Valid Variable Name ..73
Insert One String into Another ...74

Examples ...74

Overlay...74
Examples ...75

Trim Unwanted Characters ..75
Examples ...76

Index ..77
Summary ...78

Commands...78
Functions...78

Exercises ...78

■ CONTENTS

ix

■Chapter 8: File Operations and Commands ...79

Reading a File ..79
External Commands...81

cat..81
head...82
touch..83
ls..83
cut ...84
wc..85

Regular Expressions ..85
grep ...86
sed...87
awk..88

File Name Expansion Options ..89
nullglob..90
failglob...91
dotglob...91
extglob...91
nocaseglob ..93
globstar ...93

Summary ...94
Shell Options ...94
External Commands...94

Exercises ...95

■Chapter 9: Reserved Words and Builtin Commands ...97

help, Display Information About Builtin Commands ..97
time, Print Time Taken for Execution of a Command ..98
read, Read a Line from an Input Stream..99

-r, Read Backslashes Literally...99
-e, Get Input with the readline Library...100
-a, Read Words into an Array ..100
-d DELIM, Read Until DELIM Instead of a Newline...101
-n NUM, Read a Maximum of NUM Characters ...101
-s, Do Not Echo Input Coming from a Terminal ...101

■ CONENTS

x

-p PROMPT:, Output PROMPT Without a Trailing Newline ...101
-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Input...................................102
-u FD: Read from File Descriptor FD Instead of the Standard Input102
-i TEXT, Use TEXT as the Initial Text for readline...103
eval, Expand Arguments and Execute Resulting Command103
Poor Man’s Arrays ...104
Setting Multiple Variables from One Command...106

type, Display Information About Commands..106
builtin, Execute a Builtin Command...108
command, Execute a Command or Display Information About Commands...................108
pwd, Print the Current Working Directory..108

unalias, Remove One or More Aliases ...109
Deprecated Builtins ...109
Dynamically Loadable Builtins...109
Summary ...110

Commands and Reserved Words...110
Deprecated Commands ...111

Exercises ...111

■Chapter 10: Writing Bug-Free Scripts and Debugging the Rest..........................113

Prevention Is Better Than Cure ..113
Structure Your Programs...113
Document Your Code ...116
Format Your Code Consistently ...117
The K.I.S.S. Principle ...117
Test As You Go...118

Debugging a Script ..120
Summary ...123
Exercises ...123

■Chapter 11: Programming for the Command Line ..125

Manipulating the Directory Stack ..125
cd...125
pd...126
cdm..127
menu ...128

■ CONTENTS

xi

Filesystem Functions ...129
l..129
lsr ..130
cp, mv..131
md ...131

Miscellaneous Functions ...132
pr1 ...132
calc ..133

Managing Man Pages ..133
sman..133
sus ...134
k...134

Games..134
The Fifteen Puzzle ...136

Summary ...140
Exercises ...140

■Chapter 12: Runtime Configuration ...141

Defining Variables..141
Command-Line Options and Arguments..141
Menus ..142
Q&A Dialogue...143
Configuration Files...143
Scripts with Several Names...144
Environment Variables...146
All Together Now ...146

Script Information...147
Default Configuration..147
Screen Variables...148
Function Definitions..148
Parse Command-Line Options ..154
Bits and Pieces ...155

Summary ...156
Exercises ...156

■ CONENTS

xii

■Chapter 13: Data Processing ...157

Arrays ..157
Holes in an Indexed Array..157
Using an Array for Sorting ...158
Two-Dimensional Grids ...163

Data File Formats...171
Line-Based Records ..172
Block File Formats...175

Summary ...176
Exercises ...177

■Chapter 14: Scripting the Screen...179

Teletypewriter vs. Canvas..179
Stretching the Canvas..180

CSI: Command Sequence Introducer...180
Priming the Canvas..181
Moving the Cursor..181
Changing Rendition Modes and Colors ..182
Placing a Block of Text on the Screen ...183
Scrolling Text ...186
Rolling Dice..187
Summary ...189
Exercises ...189

■Chapter 15: Entry-Level Programming ..191

Single-Key Entry ..191
Function Library, key-funcs...191

History in Scripts ...197
Sanity Checking ...198
Form Entry ...199
Reading the Mouse ..200
Summary ...204
Exercises ...204

■ CONTENTS

xiii

■Appendix: Shell Variables..205

BASH..205
BASHPID...205
BASH_ALIASES ..205
BASH_ARGC ...205
BASH_ARGV ...205
BASH_CMDS ..206
BASH_COMMAND ..206
BASH_EXECUTION_STRING..206
BASH_LINENO..206
BASH_REMATCH..206
BASH_SOURCE...206
BASH_SUBSHELL ...206
BASH_VERSINFO..207
BASH_VERSION..207
COMP_CWORD...207
COMP_KEY...207
COMP_LINE..207
COMP_POINT ...207
COMP_TYPE ...208
COMP_WORDBREAKS ..208
COMP_WORDS...208
DIRSTACK...208
EUID ...208
FUNCNAME ..208
GROUPS ...209
HISTCMD..209
HOSTNAME ..209
HOSTTYPE ..209
LINENO...209
MACHTYPE ...209
OLDPWD...209
OPTARG..209
OPTIND...210
OSTYPE ..210
PIPESTATUS ...210

■ CONENTS

xiv

PPID ...210
PWD ...210
RANDOM ..210
REPLY...210
SECONDS ...210
SHELLOPTS ..211
SHLVL...211
UID ...211
BASH_ENV ...211
CDPATH..211
COLUMNS...211
COMPREPLY ...211
EMACS ...212
FCEDIT ...212
FIGNORE...212
GLOBIGNORE ..212
HISTCONTROL ..212
HISTFILE...212
HISTFILESIZE..213
HISTIGNORE ...213
HISTSIZE ..213
HISTTIMEFORMAT ..213
HOME ...213
HOSTFILE ...213
IFS..214
IGNOREEOF ..214
INPUTRC...214
LANG ..214
LC_ALL...214
LC_COLLATE ..214
LC_CTYPE ..214
LC_MESSAGES...214
LC_NUMERIC..215
LINES ...215
MAIL...215
MAILCHECK ..215
MAILPATH ..215

■ CONTENTS

xv

OPTERR..215
PATH ..215
POSIXLY_CORRECT ..216
PROMPT_COMMAND..216
PROMPT_DIRTRIM ...216
PS1...216
PS2...216
PS3...216
PS4...216
SHELL...217
TIMEFORMAT ...217
TMOUT ...217
TMPDIR ..217
auto_resume..217
histchars ..218

■Index..221

■ CONENTS

xvi

About the Author

■After almost 20 years in magazine and newspaper publishing, variously as writer,
editor, graphic designer, and production manager, Chris F.A. Johnson now earns
his living composing cryptic crossword puzzles, teaching chess, designing and
coding web sites, and programming...and writing books about shell scripting. His
first book, Shell Scripting Recipes: A Problem-Solution Approach, was published by
Apress in 2005.

Introduced to Unix in 1990, Chris learned shell scripting because there was no
C compiler on the system. His first major project was a menu-driven, user-
extensible database system with a report generator. Constantly writing scripts for
any and all purposes, his recent shell projects have included utilities for
manipulating crossword puzzles and preparing chess resources for his students.

■ CONTENTS

xvii

About the Technical Reviewer

■Ed Schaefer is an ex-paratrooper, an ex-military intelligence officer, an ex-oil
field service engineer, and a past contributing editor and columnist for Sys Admin.
He’s not a total has-been. He earned a BSEE from South Dakota School of Mines
and an MBA from USD.

Currently, he fixes microstrategy and teradata problems–with an occasional
foray into Linux–for a Fortune 50 company.

■ INTRODUCTION

xix

Introduction

 Although most users think of the shell as an interactive command interpreter, it is really a
programming language in which each statement runs a command. Because it must satisfy
both the interactive and programming aspects of command execution, it is a strange
language, shaped as much by history as by design.

Brian Kernighan and Rob Pike, The UNIX Programming Environment, Prentice-Hall, 1984

The shell is a programming language. Don’t let anyone tell you otherwise. The shell is not just glue that
sticks bits together. The shell is a lot more than a tool that runs other tools. The shell is a complete
programming language!

When a Linux user asked me about membership databases, I asked him what he really needed. He
wanted to store names and addresses for a couple of hundred members and print mailing labels for each
of them. I recommended using a text editor to store the information in a text file, and I provided a shell
script to create the labels in PostScript. (The script, ps-labels, appeared in my first book, Shell Scripting
Recipes: A Problem-Solution Approach.)

When the SWEN worm was dumping hundreds of megabytes of junk into my mailbox every few
minutes, I wrote a shell script to filter them out on the mail server and download the remaining mail to
my home computer. That script has been doing its job for several years.

I used to tell people that I did most of my programming in the shell but switched to C for anything
that needed the extra speed. It has been several years since I have needed to use C, so I no longer
mention it. I do everything in the shell.

A shell script is as much a program as anything written in C, Python, or any other language. Just
because shell scripts are easier to write doesn’t mean they should take a backseat to compiled programs
or other scripting languages. I use the terms script and program interchangeably when referring to tasks
written in the shell.

Why the Shell?
Some Linux users do all of their work in a GUI environment and never see a command line. Most,
however, use the shell at least occasionally and know something about Unix commands. It’s not a big
step from there to saving oft-repeated commands in a script file. When they need to extend the
capabilities of their system, the shell is the natural way to go.

The shell also has important advantages over other programming languages:

• It interfaces simply and seamlessly with the hundreds of Unix utilities.
• It automatically expands wildcards into a list of file names.
• Lists contained in a variable are automatically split into their constituent parts.

■ INTRODUCTION

xx

Just the Shell, Ma’am, Just the Shell
While most shell programs do call external utilities, a lot of programming can be done entirely in the
shell. Many scripts call just one or two utilities for information that is used later in the script. Some
scripts are little more than wrappers for other commands such as awk, grep, or sed.

This book is about programming in the shell itself. There’s a sprinkling of the second type, where
the script gets information (such as the current date and time) and then processes it. The third type gets
barely more than a cursory nod.

A Brief History of sh
The Bourne shell was the first Unix shell in general use. It was much more limited than today’s shells, so
it was primarily a tool to run other tools. It had variables, loops, and conditional execution, but the real
work was done almost entirely by external utilities.

The C shell, csh, added command history, arithmetic, and other features that made it popular as a
command-line interpreter, but it was not suitable for more than trivial scripts.

The KornShell, developed by David Korn at AT&T Bell Labs, combined the Bourne shell syntax with
features of the C shell. It was compatible with the Bourne shell, bringing important functionality into the
shell itself and making script execution much faster. Until the year 2000, when it was opened up, ksh was
proprietary, closed-source software.

The GNU Project, needing a free, open-source shell, introduced bash. Like all modern shells, bash is
a POSIX shell. It also has many added enhancements.

Which Version of Bash?
This book is aimed at users of bash-3 and later, but much of the book will work with bash-2.05. Features
introduced in bash-4.0, are covered, but it is noted that they are newer additions. Wherever possible
without loss of efficiency, the scripts in this book are written to run in any POSIX shell. It is often noted
when a statement in a script is nonstandard or uses bash syntax. That means that it is not POSIX
compliant. Most functions, however, will not run in a POSIX shell because they almost always use the
local builtin command.

Some Linux distributions modify their versions of bash: Debian removes network socket
capabilities. Mandriva removes the builtin time command. For this reason, I recommend compiling your
own copy of bash. The source code is available from
http://tiswww.case.edu/php/chet/bash/bashtop.html, and it compiles without trouble almost
anywhere.

Who Will Benefit from This Book?
If you’re an experienced shell programmer, this book will provide insight into the arcana of shell
scripting, helping you write more, and more efficient, scripts.

If you have dabbled in shell scripting, I hope this book will encourage you to experiment further.
If you are new to shell scripting, this book will get you started and help you quickly become a

proficient shell programmer.
No matter what your level of experience, this book will enable you to program tasks that aren’t

already dealt with on your system.

■ INTRODUCTION

xxi

What’s in the Book?
From writing your first program to using the mouse in your scripts, this book runs the gamut from
simple to complex and from the obvious to the obscure. It covers every technique you will need to write
efficient shell programs.

Chapter 1, Hello, World! Your First Shell Program, presents the traditional first program in any
language. It prints “Hello, World!” The chapter discusses how to write the script, what to name it,
and where to put it.

Chapter 2, Input, Output, and Throughput, demonstrates output using the echo and printf
commands and introduces the read command for input. It also examines redirecting both input
and output and connecting commands with pipelines.

Chapter 3, Looping and Branching, explains the looping statements, for, while, and until; the
branching statement if; and the conditional operators && and ||.

Chapter 4, Command-Line Parsing and Expansion, describes how the shell parses a command
line, from word splitting to parameter expansion.

Chapter 5, Variables and Parameters, covers all the possibilities of parameters and variables,
from scalar variables to associative arrays and from default substitution to search and replace.

Chapter 6, Shell Functions, delves into the syntax of function definitions and defines a number
of useful routines.

Chapter 7, String Manipulation, contains a number of functions for dicing and splicing strings.

Chapter 8, File Operations and Commands, uses more external commands than the rest of the
book put together. That’s because looping through a large file with the shell is painfully slow, and
the Unix utilities are very efficient. This chapter also tells you when not to use those utilities.

Chapter 9, Reserved Words and Builtin Commands, looks at a number of commands that are
built into the shell itself.

Chapter 10, Writing Bug-Free Scripts and Debugging the Rest, takes a buggy script and takes
you step-by-step through fixing it, as well as showing you how to prevent bugs in the first place.

Chapter 11, Programming for the Command Line, is for those people who spend a lot of time at
the command prompt. These programs and functions reduce the typing to a minimum.

Chapter 12, Runtime configuration, describes seven methods of altering a program’s runtime
behavior.

Chapter 13, Data Processing, deals with manipulating different types of data in the shell.

Chapter 14, Scripting the Screen, shows you how to write to the screen as if it were a canvas
rather than a teletypewriter.

Chapter 15, Entry-Level Programming, presents techniques for getting input from a user, both
using single keypresses and entering and editing a line of text. It concludes with routines for
using the mouse in shell scripts.

The appendix lists all the variables used by bash with a description of each.

■ INTRODUCTION

xxii

Downloading the Code
The source code for this book is available to readers as a gzipped tarball file at www.apress.com in the
Downloads section of this book’s home page. Please feel free to visit the Apress web site and download
all the code there. You can also check for errata and find related titles from Apress.

Contacting the Author
The author maintains a web site at http://cfajohnson.com/ and can be reached via e-mail at
shell@cfajohnson.com.

C H A P T E R 1

1

Hello, World!
Your First Shell Program

A shell script is a file containing one or more commands that you would type on the command line. This
chapter describes how to create such a file and make it executable. It also covers some other issues
surrounding shell scripts, including what to name the files, where to put them, and how to run them.

I will begin with the first program traditionally demonstrated in every computer language: a
program that prints “Hello, World!” in your terminal. It’s a simple program, but it is enough to
demonstrate a number of important concepts. The code itself is the simplest part of this chapter.
Naming the file and deciding where to put it are not complicated tasks, but they are important.

For most of this chapter, you will be working in a terminal. it could be a virtual terminal, a terminal
window, or even a dumb terminal. In your terminal, the shell will immediately execute any commands
you type (after you press Enter, of course).

You should be in your home directory, which you can find in the variable $HOME:

echo $HOME

You can find the current directory with either the pwd command or the PWD variable:

pwd
echo "$PWD"

If you are not in your home directory, you can get there by typing cd and pressing Enter at the shell
prompt.

The Code
The code is nothing more than this:

echo Hello, World!

There are three words on this command line: the command itself and two arguments. The
command, echo, prints its arguments separated by a single space and terminated with a newline.

CHAPTER 1 HELLO, WORLD! YOUR FIRST SHELL PROGRAM

2

The File
Before you turn that code into a script, you need to make two decisions: what you will call the file and
where you will put it. The name should be unique (that is, it should not conflict with any other
commands), and you should put it where the shell can find it.

The Naming of Scripts
Beginners often make the mistake of calling a trial script test. To see why that is bad, enter the following
at the command prompt:

type test

The type command tells you what the shell will execute (and where it can be found if it is an
external file) for any given command. In bash, type -a test will display all the commands that match
the name test:

$ type test
test is a shell builtin
$ type -a test
test is a shell builtin
test is /usr/bin/test

As you can see, a command called test already exists; it is used to test file types and to compare
values. If you call your script test, it will not be run when you type test at the shell prompt; the first
command identified by type will be run instead. (I’ll talk more about both type and test in later
chapters.)

Typically, Unix command names are as short as possible. They are often the first two consonants of
a descriptive word (for example, mv for mmovve or ls for llisst) or the first letters of a descriptive phrase (for
example , ps for pprocess sstatus or sed for sstream eeditor).

For this exercise, call the script hw. Many shell programmers add a suffix, such as .sh, to indicate that
the program is a shell script. The script doesn’t need it, and I use one only for programs that are being
developed. My suffix is -sh, and when the program is finished, I remove it. A shell script becomes
another command and doesn’t need to be distinguished from any other type of command.

Selecting a Directory for the Script
When the shell is given the name of a command to execute, it looks for that name in the directories listed
in the PATH variable. This variable contains a colon-separated list of directories that contain executable
commands. This is a typical value for $PATH:

/bin:/usr/bin:/usr/local/bin:/usr/games

If your program is not in one of the PATH directories, you must give a pathname, either absolute or
relative, for bash to find it. An absolute pathname gives the location from the root of the filesystem, such
as /home/chris/bin/hw; a relative pathname is given in relation to the current working directory (which
should currently be your home directory), as in bin/hw.

CHAPTER 1 HELLO, WORLD! YOUR FIRST SHELL PROGRAM

3

Commands are usually stored in directories named bin, and a user’s personal programs are stored
in a bin subdirectory in the $HOME directory. To create that directory, use this command:

mkdir bin

Now that it exists, it must be added to the PATH variable:

PATH=$PATH:$HOME/bin

For this change to be applied to every shell you open, add it to a file that the shell will source when it
is invoked. This will be .bash_profile, .bashrc, or .profile depending on how bash is invoked. These
files are sourced only for interactive shells, not for scripts.

Creating the File and Running the Script
Usually you would use a text editor to create your program, but for a simple script like this, it’s not
necessary to call up an editor. You can create the file from the command line using redirection:

echo echo Hello, World! > bin/hw

The greater-than sign (>) tells the shell to send the output of a command to the specified file, rather
than to the terminal. You’ll learn more about redirection in Chapter 2.

The program can now be run by calling it as an argument to the shell command:

bash bin/hw

That works, but it’s not entirely satisfactory. You want to be able to type hw, without having to
precede it with bash, and have the command executed. To do that, give the file execute permissions:

chmod +x bin/hw

Now the command can be run using just its name:

$ hw
Hello, World!

Choosing and Using a Text Editor
For many people, one of the most important pieces of computer software is a word processor. Although I
am using one to write this book (OpenOffice.org Writer), it’s not something I use often. The last time I
used a word processor was four years ago when I wrote my previous book. A text editor, on the other
hand, is an indispensable tool. I use one for writing e-mail, Usenet articles, shell scripts, PostScript
programs, web pages, and more.

A text editor operates on plain-text files. It stores only the characters you type; it doesn’t add any
hidden formatting codes. If I type A and press Enter in a text editor and save it, the file will contain
exactly two characters: A and a newline. A word-processor file containing the same text would be
thousands of times larger. (With abiword, the file contains 2,526 bytes; the OpenOffice.org file contains
8,192 bytes.)

CHAPTER 1 HELLO, WORLD! YOUR FIRST SHELL PROGRAM

4

You can write scripts in any text editor, from the basic e3 or nano to the full-featured emacs or nedit.
The better text editors allow you to have more than one file open at a time. They make editing code
easier with, for example, syntax highlighting, automatic indentation, autocompletion, spell checking,
macros, search and replace, and undo. Ultimately, which editor you choose is a matter of personal
preference. I use GNU emacs (see Figure 1-1).

Note In Windows text files, lines end with two characters: a carriage return (CR) and a linefeed (LF). On Unix
systems, such as Linux, lines end with a single linefeed. If you write your programs in a Windows text editor, you
must either save your files with Unix line endings or remove the carriage returns afterward.

Figure 1-1. Shell code in the GNU emacs text editor

CHAPTER 1 HELLO, WORLD! YOUR FIRST SHELL PROGRAM

5

Building a Better “Hello, World!”
Earlier in the chapter you created a script using redirection. That script was, to say the least, minimalist.
All programs, even a one-liner, require documentation. Information should include at least the author,
the date, and a description of the command. Open the file bin/hw in your text editor, and add the
information in Listing 1-1 using comments.

Listing 1-1. hw

#!/bin/bash
#: Title : hw
#: Date : 2008-11-26
#: Author : "Chris F.A. Johnson" <shell@cfajohnson.com>
#: Version : 1.0
#: Description : print Hello, World!
#: Options : None

printf "%s\n" "Hello, World!"

Comments begin with an octothorpe, or hash (#), at the beginning of a word and continue until the
end of the line. The shell ignores them. I often add a character after the hash to indicate the type of
comment. I can then search the file for the type I want, ignoring other comments.

The first line is a special type of comment called a shebang or hash-bang. It tells the system which
interpreter to use to execute the file. The characters #! must appear at the very beginning of the first line;
in other words, they must be the first two bytes of the file for it to be recognized.

Summary
The following are the commands, concepts, and variables you learned in this chapter.

Commands
pwd: Prints the name of the current working directory

cd: Changes the shell’s working directory

echo: Prints arguments separated by a space and terminated by a newline

type: Displays information about a command

mkdir: Creates a new directory

chmod: Modifies the permissions of a file

source: a.k.a. . (dot): executes a script in the current shell environment

printf: Prints the arguments as specified by a format string

CHAPTER 1 HELLO, WORLD! YOUR FIRST SHELL PROGRAM

6

Concepts
Script: This is a file containing commands to be executed by the shell.

Word: A word is a sequence of characters considered to be a single unit by
the shell.

Output redirection: You can send the output of a command to a file rather than the
terminal using > FILENAME.

Variables: These are entities that store values.

Comments: These consist of an unquoted word beginning with #. All remaining
characters on that line constitute a comment and will be ignored.

Shebang or hash-bang: This is a hash and an exclamation mark (#!) followed by
the path to the interpreter that should execute the file.

Interpreter: This is a program that reads a file and executes the statements it
contains. It may be a shell or another language interpreter such as awk or python.

Variables
PWD contains the pathname of the shell’s current working directory.

HOME stores the pathname of the user’s home directory.

PATH is a colon-separated list of directories in which command files are stored. The
shell searches these directories for commands it is asked to execute.

Exercises
1. Write a script that creates a directory called bpl inside $HOME. Populate this

directory with two subdirectories, bin and scripts.

2. Write a script to create the “Hello, World!” script, hw, in $HOME/bpl/bin/; make it
executable; and then execute it.

C H A P T E R 2

7

Input, Output, and Throughput

Two of the commands we used in Chapter 1 are workhorses of the shell scripter’s stable: echo and
printf. Both are bash builtin commands. Both print information to the standard output stream, but
printf is much more powerful, and echo has its problems.

In this chapter, I’ll cover echo and its problems, the capabilities of printf, the read command, and
the standard input and output streams. I’ll start, however, with an overview of parameters and variables.

Parameter and Variables
To quote the bash manual (type man bash at the command prompt to read it), “A parameter is an entity
that stores values.” There are three types of parameters: positional parameters, special parameters, and
variables. Positional parameters are arguments present on the command line, and they are referenced by
number. Special parameters are set by the shell to store information about aspects of its current state,
such as the number of arguments and the exit code of the last command. Their names are
nonalphanumeric characters (for example, *, #, and _). Variables are identified by a name. What’s in a
name? I’ll explain that in the “Variables” section.

The value of a parameter is accessed by preceding its name, number, or character with a dollar sign,
as in $3, $#, or $HOME. The name may be surrounded by braces, as in ${10}, ${PWD}, or ${USER}.

Positional Parameters
The arguments on the command line are available to a shell program as numbered parameters. The first
argument is $1, the second is $2, and so on.

You can make the hw script from Chapter 1 more flexible by using a positional parameter. Listing 2-1
calls it hello.

Listing 2-1. hello

#: Description: print Hello and the first command-line argument
printf "Hello, %s!\n" "$1"

Now you can call the script with an argument to change its output:

$ hello John
Hello, John!
$ hello Susan
Hello, Susan!

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

8

The Bourne shell could only address up to nine positional parameters. If a script used $10, it would
be interpreted as $1 followed by a zero. To be able to run old scripts, bash maintains that behavior. To
access positional parameters greater than 9, the number must be enclosed in braces: ${15}.

Special *@#0$?_!- Parameters
The first two special parameters, $* and $@, expand to the value of all the positional parameters
combined. $# expands to the number of positional parameters. $0 contains the path to the currently
running script or to the shell itself if no script is being executed.

$$ contains the process identification number (PID) of the current process, $? is set to the exit code
of the last-executed command, and $_ is set to the last argument to that command. $! contains the PID
of the last command executed in the background, and $- is set to the option flags currently in effect.

I’ll discuss these parameters in more detail as they come up in the course of writing scripts.

Variables
A variable is a parameter denoted by a name; a name is a word containing only letters, numbers, or
underscores and beginning with a letter or an underscore.

Values can be assigned to variables in the following form:

name=VALUE

Many variables are set by the shell itself, including three you have already seen: HOME, PWD, and PATH.
With only two minor exceptions, auto_resume and histchars, all the variables set by the shell are all
uppercase letters.

Arguments and Options
The words entered after the command are its arguments. These are words separated by whitespace (one
or more spaces or tabs). If the whitespace is escaped or quoted, it no longer separates words but
becomes part of the word.

The following command lines all have four arguments:

echo 1 '2 3' 4 5
echo -n Now\ is the time
printf "%s %s\n" one two three

In the first line, the spaces between 2 and 3 are quoted because they are surrounded by single
quotation marks. In the second, the space after now is escaped by a backslash, which is the shell’s escape
character.

In the final line, a space is quoted with double quotes.
In the second command, the first argument is an option. Traditionally, options to Unix commands

are a single letter preceded by a hyphen, sometimes followed by an argument. The GNU commands
found in Linux distributions often accept long options as well. These are words preceded by a double
hyphen. For example, most GNU utilities have an option called --version that prints the version:

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

9

$ bash --version
GNU bash, version 4.0.10(1)-release (i686-pc-linux-gnuoldld)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software; you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

echo, and Why You Should Avoid It
When I started writing shell scripts, I soon learned about the two main branches of Unix: AT&T’s System
V and BSD. One of their differences was the behavior of echo. Built into all modern shells, echo prints its
arguments with a single space between them to the standard output stream, followed by a newline:

$ echo The quick brown fox
The quick brown fox

The default newline can be suppressed in one of two ways, depending on the shell:

$ echo -n No newline
No newline$$ echo "No newline\c"
No newline$$

The BSD variety of echo accepted the option -n, which suppressed the newline. AT&T’s version used
an escape sequence, \c, to do the same thing. Or was it the other way round? I have a hard time
remembering which was which because, although I was using an AT&T system (hardware and operating
system), its echo command accepted both AT&T and BSD syntax.

That, of course, is history. In this book, we’re dealing with bash, so why does it matter? bash has the
-e option to activate escape sequences such as \c but by default uses -n to prevent a newline from being
printed. (The escape sequences recognized by echo -e are the same as those described in the next
section, with the addition of \c.)

The trouble is that bash has an xpg_echo option (XPG stands for X/Open Portability Guide, a
specification for Unix systems) that makes echo behave like that other version. This can be turned on or
off while in the shell (using shopt -s xpg_echo either at the command line or in a script), or it can be
turned on when the shell is compiled. In other words, even in bash, you cannot be absolutely sure which
behavior you are going to get.

If you limit the use of echo to situations where there cannot be a conflict, that is, where you are sure
the arguments do not begin with -n and do not contain escape sequences, you will be fairly safe. For
everything else (or if you’re not sure), use printf.

printf: Formatting and Printing Data
Derived from the C programming language function of the same name, the shell command printf is
similar in purpose but differs in some of the details. Like the C function, it uses a format string to
indicate how to present the rest of its arguments:

printf FORMAT ARG …

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

10

The FORMAT string can contain ordinary characters, escape sequences, and format specifiers.
Ordinary characters are printed unchanged to the standard output. Escape sequences are converted to
the characters they represent. Format specifiers are replaced with arguments from the command line.

Escape Sequences
Escape sequences are single letters preceded by a backslash:

\a: : Alert (bell)

\b: Backspace

\e: Escape character

\f: Form feed

\n: Newline

\r: Carriage return

\t: Horizontal tab

\v: Vertical tab

\\: Backslash

\nnn: A character specified by one to three octal digits

\xHH: A character specified by one or two hexadecimal digits

The backslashes must be protected from the shell by quotes or another backslash:

$ printf "Q\t\141\n\x42\n"
Q a
B

Format Specifiers
The format specifiers are letters preceded by a percent sign. Optional modifiers may be placed between
the two characters. The specifiers are replaced by the corresponding argument. When there are more
arguments than specifiers, the format string is reused until all the arguments have been consumed. The
most commonly used specifiers are %s, %d, %f, and %x.

The %s specifier prints the literal characters in the argument:

$ printf "%s\n" Print arguments on "separate lines"
Print
arguments
on
separate lines

%b is like %s except that escape sequences in the arguments are translated:

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

11

$ printf "%b\n" "Hello\nworld" "12\tword"
Hello
world
12 word

Integers are printed with %d. The integer may be specified as a decimal, octal (using a leading 0), or
hexadecimal (preceding the hex number with 0x) number. If the number is not a valid integer, printf
prints an error message:

$ printf "%d\n" 23 45 56.78 0xff 011
23
45
bash: printf: 56.78: invalid number
0
255
9

For decimal fractions or floating-point numbers, use %f. By default they will be printed with six
decimal places:

$ printf "%f\n" 12.34 23 56.789 1.2345678
12.340000
23.000000
56.789000
1.234568

Floating-point numbers can be presented in exponential (also known as scientific) notation
using %e:

$ printf "%e\n" 12.34 23 56.789 123.45678
1.234000e+01
2.300000e+01
5.678900e+01
1.234568e+02

Integers can be printed in hexadecimal using %x for lowercase letters or %X for uppercase letters.
For example, when specifying colors for a web page, they are specified in hex notation. I know from the
rgb.txt file included with the X Window system that the red-green-blue values for royal blue are 65, 105,
and 225. To convert them to a style rule for a web page, use this:

$ printf "color: #%02x%02x%02;x;\n" 65 105 225
color: #4169e1;

Width Specification
You can modify the formats by following the percent sign with a width specification. The argument will
be printed flush right in a field of that width or will be flush left if the number is negative. Here we have
the first field with a width of eight characters; the words will be printed flush right. Then there is a field
15 characters wide, which will be printed flush left:

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

12

$ printf "%8s %-15s:\n" first second third fourth fifth sixth
 first second :
 third fourth :
 fifth sixth :

If the width specification is preceded by a 0, the numbers are padded with leading zeroes to fill
the width:

$ printf "%04d\n" 12 23 56 123 255
0012
0023
0056
0123
0255

A width specifier with a decimal fraction specifies the precision of a floating-point number or the
maximum width of a string:

$ printf "%12.4s %9.2f\n" John 2 Jackson 4.579 Walter 2.9
 John 2.00
 Jack 4.58
 Walt 2.90

The script shown in Listing 2-2 uses printf to output a simple sales report.

Listing 2-2. Report

#!/bin/bash
#: Description : print formatted sales report

Build a long string of equals signs
divider=====================================
divider=$divider$divider

Format strings for printf
header="\n %-10s %11s %8s %10s\n"
format=" %-10s %11.2f %8d %10.2f\n"

Width of divider
totalwidth=44

Print categories
printf "$header" ITEM "PER UNIT" NUM TOTAL

Print divider to match width of report
printf "%$totalwidth.${totalwidth}s\n" "$divider"

Print lines of report
printf "$format" \
 Chair 79.95 4 319.8 \
 Table 209.99 1 209.99 \
 Armchair 315.49 2 630.98

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

13

The resulting report looks like this:

 ITEM PER UNIT NUM TOTAL
==
 Chair 79.95 4 319.80
 Table 209.99 1 209.99
 Armchair 315.49 2 630.98

Note the use of braces around the second totalwidth variable name: ${totalwidth}. In the first
instance, the name is followed by a period, which cannot be part of a variable name. In the second, it is
followed by the letter s, which could be, so the totalwidth name must be separated from it by using
braces.

Printing to a Variable
With version 3.1, bash added a -v option to store the output in a variable instead of printing it to the
standard output:

$ printf -v num4 "%04d" 4
$ printf "%s\n" "$num4"
0004

Line Continuation
At the end of the report script, the last four lines are read as a single line, using line continuation. A
backslash at the end of a line tells the shell to ignore the newline character, effectively joining the next
line to the current one.

Standard Input/Output Streams and Redirection
In Unix (of which Linux is a variety), everything is a stream of bytes. The streams are accessible as files,
but there are three streams that are rarely accessed by a filename. These are the input/output (I/O)
streams attached to every command: standard input, standard output, and standard error. By default,
these streams are connected to your terminal.

When a command reads a character or a line, it reads from the standard input stream, which is the
keyboard. When it prints information, it is sent to the standard output, your monitor. The third stream,
standard error, is also connected to your monitor; as the name implies, it is used for error messages.
These streams are referred to by numbers, called file descriptors (FDs). These are 0, 1, and 2, respectively.
The stream names are also often contracted to stdin, stdout, and stderr.

I/O streams can be redirected to (or from) a file or into a pipeline.

Redirection: >, >>, and <
In Chapter 1, you redirected standard output to a file using the > redirection operator.

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

14

When redirecting using >, the file is created if it doesn’t exist. If it does exist, the file is truncated to
zero length before anything is sent to it. You can create an empty file by redirecting an empty string (that
is, nothing) to the file:

printf "" > FILENAME

or by simply using this:

> FILENAME

Redirection is performed before any command on the line is executed. If you redirect to the same
file you are reading from, that file will be truncated, and the command will have nothing to read.

The >> operator doesn’t truncate the destination file; it appends to it. You could add a line to the hw
command from the first chapter by doing the following:

echo exit 0 >> bin/hw

Redirecting standard output does not redirect standard error. Error messages will still be displayed
on your monitor. To send the error messages to a file, in other words, to redirect FD2, the redirection
operator is preceded by the FD.

Both standard output and standard error can be redirected on the same line. The next command
sends standard output to FILE and standard error to ERRORFILE:

$ printf '%s\n%v\n' OK? Oops! > FILE 2> ERRORFILE
$ cat ERRORFILE
bash4: printf: `v': invalid format character

In this case, the error message is going to a special file, /dev/null. Sometimes called the bit bucket,
anything written to it is discarded.

printf '%s\n%v\n' OK? Oops! 2>/dev/null

Instead of sending output to a file, it can be redirected to another I/O stream by using >&N where N is
the number of the file descriptor. This command sends both standard output and standard error to FILE:

printf '%s\n%v\n' OK? Oops! > FILE 2>&1

Here, the order is important. The standard output is sent to FILE, and then standard error is redirected
to where standard output is going. If the order is reversed, the effect is different. The redirection sends
standard error to wherever standard output is currently going and then changes where standard output
goes. Standard error still goes to where standard output was originally directed:

printf '%s\n%v\n' OK? Oops! 2>&1 > FILE

bash has also a nonstandard syntax for redirecting both standard output and standard error to the
same place:

&> FILE

To append both standard output and standard error to FILE, use this:

&>> FILE

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

15

A command that reads from standard input can have its input redirected from a file:

tr ,H wY < bin/hw

You can use the exec command to redirect the I/O streams for the rest of the script or until it’s
changed again.

All standard output will now go to the file tempfile, input will be read from datafile, and error
messages will go to errorfile without having to specify it for every command.

Reading Input
The read command is a built-in shell that reads from the standard input. By default, it reads until a
newline is received. The input is stored in one or more variables given as arguments:

read var

If more than one variable is given, the first word (the input up to the first space or tab) is assigned to
the first variable, the second word is assigned to the second variable, and so on, with any leftover words
assigned to the last one:

$ read a b c d
January February March April May June July August
$ echo $a
January
$ echo $b
February
$ echo $c
March
$ echo $d
April May June July August

The bash version of read has several options. Only the -r option is recognized by the POSIX
standard. It tells the shell to interpret escape sequences literally.

By default, read strips backslashes from the input, and the following character is taken literally. The
major effect of this default behavior is to allow the continuation of lines. With the -r option, a backslash
followed by a newline is read as a literal backslash and the end of input.

I’ll discuss the other options in Chapter 15.
Like any other command that reads standard input, read can get its input from a file through

redirection. For example, to read the first line from FILENAME, use this:

read var < FILENAME

Pipelines
Pipelines connect the standard output of one command directly to the standard input of another. The
pipe symbol (|) is used between the commands:

$ printf "%s\n" "$RANDOM" "$RANDOM" "$RANDOM" "$RANDOM" | tee FILENAME
618
11267

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

16

5890
8930

The tee command reads from the standard input and passes it to one or more files as well as to the
standard output. $RANDOM is a bash variable that returns a different integer between 0 and 32,767 each
time it is referenced.

$ cat FILENAME
618
11267
5890
8930

Command Substitution
The output of a command can be stored in a variable using command substitution. There are two forms
for doing this. The first, which originated in the Bourne shell, uses backticks:

date=`date`

The newer (and recommended) syntax is as follows:

date=$(date)

Command substitution should generally be reserved for external commands. When used with a
built-in command, it is very slow. That is why the -v option was added to printf.

Summary
The following are the commands and concepts you learned in this chapter.

Commands
cat: Prints the contents of one or more files to the standard output

tee: Copies the standard input to the standard output and one or more files

read: A built-in shell command that reads a line from the standard input

date: Prints the current date and time

Concepts
Standard I/O streams: These are streams of bytes from which commands read and
to which output is sent.

Arguments: These are words that follow a command; arguments may include
options as well as other information such as filenames.

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

17

Parameters: These are entities that store values; the three types are positional
parameters, special parameters, and variables.

Pipelines: A pipeline is a sequence of one or more commands separated by |; the
standard output of the command preceding the pipe symbol is fed to the standard
input of the command following it.

Line continuation: This is a backslash at the end of a line that removes the newline
and combines that line with the next.

Command substitution: This means storing the output of a command in a variable
or on the command line.

Exercises
1. What is wrong with this command?

tr A Z < $HOME/temp > $HOME/temp

2. Write a script, using $RANDOM, to write the following output both to a file and to a
variable. The following numbers are only to show the format; your script should
produce different numbers:

 1988.2365
 13798.14178
 10081.134
 3816.15098

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

18

C H A P T E R 3

19

Looping and Branching

At the heart of any programming language are iteration and conditional execution. Iteration is the
repetition of a section of code until a condition changes. Conditional execution is making a choice
between two or more actions (one of which may be to do nothing) based on a condition.

In the shell, there are three types of loop (while, until, and for) and three types of conditional
execution (if, case, and the conditional operators && and ||, which mean AND and OR, respectively). With
the exception of for and case, the exit status of a command controls the behavior.

Exit Status
You can test the success of a command directly using the shell keywords while, until, and if or with the
control operators && and ||. The exit code is stored in the special parameter $?.

If the command executed successfully (or true), the value of $? is zero. If the command failed for
some reason, $? will contain a positive integer between 1 and 255 inclusive. A failed command usually
returns 1. Zero and nonzero exit codes are also known as true and false, respectively.

A command may fail because of a syntax error:

$ printf "%v\n"
bash: printf: `v': invalid format character
$ echo $?
1

Alternatively, failure may be the result of the command not being able to accomplish its task:

$ mkdir /qwerty
bash: mkdir: cannot create directory `/qwerty': Permission denied
$ echo $?
1

Testing an Expression
Expressions are deemed to be true or false by the test command or one of two nonstandard shell
reserved words, [[and ((. The test command compares strings, integers, and various file attributes;
((tests arithmetic expressions, and [[...]] does the same as test with the additional feature of
comparing regular expressions.

CHAPTER 3 LOOPING AND BRANCHING

20

test, aka [...]
The test command evaluates many kinds of expressions, from file properties to integers to strings. It
is a built-in command, and therefore its arguments are expanded just as for any other command. (See
Chapter 5 for more information.) The alternative version ([) requires a closing bracket at the end.

File Tests
Several operators test the state of a file. A file’s existence can be tested with -e (or the nonstandard -a).
The type of file can be checked with -f for a regular file, -d for a directory, and -h or -L for a symbolic
link. Other operators test for special types of files and for which permission bits are set.

Here are some examples:

test -f /etc/fstab ## true if a regular file
test -h /etc/rc.local ## true if a symbolic link
[-x $HOME/bin/hw] ## true if you can execute the file

Integer Tests
Comparisons between integers use the -eq, -ne, -gt, -lt, -ge, and -le operators.

The equality of integers is tested with -eq:

$ test 1 -eq 1
$ echo $?
0
$ [2 -eq 1]
$ echo $?
1

Inequality is tested with -ne:

$ [2 -ne 1]
$ echo $?
0

The remaining operators test greater than, less than, greater than or equal to, and less than or
equal to.

String Tests
Strings are concatenations of zero or more characters and can include any character except NUL (ASCII 0).
They can be tested for equality or inequality, for nonempty string or null string, and in bash for alphabetical
ordering. The = operator tests for equality, in other words, whether they are identical; != tests for inequality.
bash also accepts == for equality, but there is no reason to use this nonstandard operator.

Here are some examples:

test "$a" = "$b"
["$q" != "$b"]

CHAPTER 3 LOOPING AND BRANCHING

21

The -z and -n operators return successfully if their arguments are empty or nonempty:

$ [-z ""]
$ echo $?
0
$ test -n ""
$ echo $?
1

The greater-than and less-than symbols are used in bash to compare the lexical positions of strings
and must be escaped to prevent them from being interpreted as redirection operators:

$ str1=abc
$ str2=def
$ test "$str1" \< "$str2"
$ echo $?
0
$ test "$str1" \> "$str2"
$ echo $?
1

The previous tests can be combined in a single call to test with the -a (logical AND) and -o (logical
OR) operators:

test -f /path/to/file -a $test -eq 1
test -x bin/file -o $test -gt 1

test is usually used in combination with if or the conditional operators && and ||.

[[...]]: Evaluate an Expression
Like test, [[...]] evaluates an expression. Unlike test, it is not a built-in command. It is part of the
shell grammar and not subject to the same parsing as a built-in command. Parameters are expanded,
but word splitting and file name expansion are not performed on words between [[and]].

It supports all the same operators as test, with some enhancements and additions. It is, however,
nonstandard, so it is better not to use it when test could perform the same function.

Enhancements over Test
When the argument to the right of = or != is unquoted, it is treated as a pattern and duplicates the
functionality of the case command.

The feature of [[...]] that is not duplicated elsewhere in the shell is the ability to match an
extended regular expression using the =~ operator:

$ string=whatever
$ [[$string =~ h[aeiou]]]
$ echo $?
0

CHAPTER 3 LOOPING AND BRANCHING

22

$ [[$string =~ h[sdfghjkl]]]
$ echo $?
1

Regular expressions are explained in Chapter 8.

((...)): Evaluate an Arithmetic Expression
A nonstandard feature, ((arithmetic expression)) returns false if the arithmetic expression
evaluates to zero and returns true otherwise. The portable equivalent uses test and the POSIX syntax for
shell arithmetic:

test $(($a - 2)) -ne 0

Lists
A list is a sequence of one or more commands separated by semicolons, ampersands, control operators,
or newlines. A list may be used as the condition in a while or until loop or as the body of any loop. The
exit code of a list is the exit code of the last command in the list.

Conditional execution
Conditional constructs enable a script to decide whether to execute a block of code or to select which of
two or more blocks to execute.

if
The basic if command evaluates a list of one or more commands and executes a list if the execution of
<condition list> is successful:

if <condition list>
then
 <list>
fi

Usually, the <condition list> is a single command, very often test or its synonym, [. In Listing 3-1,
the -z operand to test checks whether a name was entered.

Listing 3-1. Read and Check Input

read name
if [-z "$name"]
then
 echo "No name entered" >&2
 exit 1 ## Set a failed return code
fi

CHAPTER 3 LOOPING AND BRANCHING

23

Using the else keyword, a different set of commands can be executed if the <condition list> fails,
as shown in Listing 3-2.

Listing 3-2. Prompt for a Number and Check That It Is No Greater Than Ten

printf "Enter a number no greater than 10: "
read number
if ["$number" -gt 10]
then
 printf "%d is too big\n" "$number" >&2
 exit 1
else
 printf "You entered %d\n" "$number"
fi

More than one condition can be given, using the elif keyword, so that if the first test fails, the
second is tried, as shown in Listing 3-3.

Listing 3-3. Prompt for a Number and Check That It Is Within a Given Range

printf "Enter a number between 10 and 20 inclusive: "
read number
if ["$number" -lt 10]
then
 printf "%d is too low\n" "$number" >&2
 exit 1
elif ["$number" -gt 20]
then
 printf "%d is too high\n" "$number" >&2
 exit 1
else
 printf "You entered %d\n" "$number"
fi

Note In real use, a number entered in the previous examples would be checked for invalid characters before its
value is compared. Code to do that is given in the “case” section.

Often more than one test is given in the <condition list> using && and ||.

Conditional Operators, && and ||
Lists containing the AND and OR conditional operators are evaluated from left to right. A command
following the AND operator (&&) is executed if the previous command is successful. The part following the
OR operator (||) is executed if the previous command fails.

CHAPTER 3 LOOPING AND BRANCHING

24

For example, to check for a directory and cd into it if it exists, use this:

test -d "$directory" && cd "$directory"

To change directory and exit with an error if cd fails, use this:

cd "$HOME/bin" || exit 1

The next command tries to create a directory and cd to it. If either mkdir or cd fails, it exits with an
error:

mkdir "$HOME/bin" && cd "$HOME/bin" || exit 1

Conditional operators are often used with if. In this example, the echo command is executed if both
tests are successful:

if [-d "$dir"] && cd "$dir"
then
 echo "$PWD"
fi

case
A case statement compares a word (usually a variable) against one or more patterns and executes the
commands associated with that pattern. The patterns are pathname expansion patterns using wildcards
(* and ?) and character lists and ranges ([…]). The syntax is as follows:

case WORD in
 PATTERN) COMMANDS ;;
 PATTERN) COMMANDS ;; ## optional
esac

A common use of case is to determine whether one string is contained in another. It is much faster
than using grep, which creates a new process. This short script would normally be implemented as a
shell function (see Chapter 6) so that it will be executed without creating a new process, as shown in
Listing 3-4.

Listing 3-4. Does One String Contain Another?

case $1 in
 "$2") true ;;
 *) false ;;
esac

The commands, true and false, do nothing but succeed or fail, respectively.
Another common task is to check whether a string is a valid number. Again, Listing 3-5 would

usually be implemented as a function.

CHAPTER 3 LOOPING AND BRANCHING

25

Listing 3-5. Is This a Valid Integer?

case $1 in
 [!0-9]) false;;
 *) true ;;
esac

Many scripts require one or more arguments on the command line. To check whether there are the
correct number, case is often used:

case $# in
 3) ;; ## We need 3 args, so do nothing
 *) printf "%s\n" "Please provide three names" >&2
 exit 1
 ;;
esac

Looping
When a command or series of commands needs to be repeated, it is put inside a loop. The shell provides
three types of loop: while, until, and for. The first two execute until a condition is either true or false;
the third loops through a list of words.

while
The condition for a while loop is a list of one or more commands, and the commands to be executed
while the condition remains true are placed between the keywords do and done:

while <list>
do
 <list>
done

By incrementing a variable each time the loop is executed, the commands can be run a specific
number of times:

n=1
while [$n -le 10]
do
 echo "$n"
 n=$(($n + 1))
done

The true command can be used to create an infinite loop:

while true ## : can be used in place of true
do
 read x
done

CHAPTER 3 LOOPING AND BRANCHING

26

A while loop can be used to read line by line from a file:

while IFS= read -r line
do
 : do something with "$line"
done < FILENAMEy?

until
Rarely used, until loops as long as the condition fails. It is the opposite of while:

n=1
until [$n -gt 10]
do
 echo "$n"
 n=$(($n + 1))
done

for
At the top of a for loop, a variable is given a value from a list of words. On each iteration, the next word
in the list is assigned:

for var in Canada USA Mexico
do
 printf "%s\n" "$var"
done

bash also has a nonstandard form that is similar to that found in the C programming language. The
first expression is evaluated when first encountered. The second is a test. The third is evaluated after
each iteration:

for ((n=1; n<=10; ++n))
do
 echo "$n"
done

Since this offers no advantage over standard looping methods, it is not used in this book.

break
A loop can be exited at any point with the break command:

while :
do
 read x
 [-z "$x"] && break
done

CHAPTER 3 LOOPING AND BRANCHING

27

With a numeric argument, break can exit multiple nested loops:

for n in a b c d e
do
 while true
 do
 if [$RANDOM -gt 20000]
 then
 printf .
 break 2 ## break out of both while and for loops
 elif [$RANDOM -lt 10000]
 then
 printf '"'
 break ## break out of the while loop
 fi
 done
done
echo

continue
Inside a loop, the continue command immediately starts a new iteration of the loop, bypassing any
remaining commands:

for n in {1..9} ## See Brace expansion in Chapter 4
do
 x=$RANDOM
 [$x -le 20000] && continue
 echo "n=$n x=$x"
done

Summary
Looping and branching are major building blocks of a computer program. In this chapter, you learned
the commands and operators used for these tasks.

Commands
test: Evaluates an expression and returns success or failure

if: Executes a set of command if a list of commands is successful and optionally
executes a different set if it is not

case: Matches a word with one or more patterns and executes the commands
associated with the first matching pattern

while: Repeatedly executes a set of commands while a list of commands executes
successfully

CHAPTER 3 LOOPING AND BRANCHING

28

until: Repeatedly executes a set of commands until a list of commands executes
successfully

for: Repeatedly executes a set of commands for each word in a list

break: Exits from a loop

continue: Starts the next iteration of a loop immediately

Concepts
Exit status: The success or failure of a command, stored as 0 or a positive integer in
the special parameter $?

List: A sequence of one or more commands separated by ;, &, &&, ||, or a newline

Exercises
1. Write a script that asks the user to enter a number between 20 and 30. If the user

enters an invalid number or a non-number, ask again. Repeat until a satisfactory
number is entered.

2. Write a script that prompts the user to enter the name of a file. Repeat until the
user enters a file that exists.

C H A P T E R 4

29

Command-Line Parsing
and Expansion

One of the strengths of the shell as a programming language is its parsing of command-line arguments
and the various expansions it performs on words in the line. When a command is called with arguments,
the shell does several things before it invokes the command.

To help visualize what happens, the short script shown in Listing 4-1, called sa, will display what the
shell has passed to it after processing all the arguments. Each of its arguments is printed on a separate
line, preceded by the value of $pre and followed by the value of $post.

Listing 4-1. sa; Displaying Command-Line Arguments

pre=:
post=:
printf "$pre%s$post\n" "$@"

The special parameter $@ expands to a list of all the command-line arguments, but the results differ
depending on whether it is quoted. When quoted, it expands to the positional parameters "$1", "$2",
"$3", "$4", and so on, and the arguments containing whitespace will be preserved. If $@ is unquoted,
splitting will occur wherever there is whitespace.

When a line is executed, whether at the command prompt or in a script, the shell splits the line into
words wherever there is unquoted whitespace. Then bash examines the resulting words, performing up
to eight types of expansion on them as appropriate. The results of the expansions are passed to the
command as its arguments. This chapter examines the entire process, from the initial parsing into words
based on unquoted whitespace to each of the expansions in the order in which they are performed:

1. Brace expansion

2. Tilde expansion

3. Parameter and variable expansion

4. Arithmetic expansion

5. Command substitution

6. Word splitting

7. Pathname expansion

8. Process substitution

The chapter ends with a shell program that demonstrates how to parse options (arguments
beginning with a hyphen) on the command line, using the getopts built-in command.

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

30

Quoting
The shell’s initial parsing of the command line uses unquoted whitespace, that is, spaces, tabs, and
newlines, to separate the words. Spaces between single or double quotes or spaces preceded by the
escape character (\) are considered part of the surrounding word if any. The delimiting quotation marks
are stripped from the arguments.

The following code has five arguments. The first is the word this preceded by a space (the backslash
removes its special meaning). The second argument is is a; the entire argument is enclosed in double
quotes, again removing the special meaning from the space. The phrase, demonstration of, is enclosed
in single quotes. Next is a single, escaped space. Finally, the string quotes and escapes is held together
by the escaped spaces.

$ sa \ this "is a" 'demonstration of' \ quotes\ and\ escapes
: this:
:is a:
:demonstration of:
: :
:quotes and escapes:

Quotes can be embedded in a word. Inside double quotes, a single quote is not special, but a double
quote must be escaped. Inside single quotes, a double quote is not special.

$ sa "a double-quoted single quote, '" "a double-quoted double quote, \""
:a double-quoted single quote, ':
:a double-quoted double quote, ":
$ sa 'a single-quoted double quotation mark, "'
:a single-quoted double quotation mark, ":

All characters inside a single-quoted word are taken literally. A single-quoted word cannot contain a
single quote even if it is escaped; the quotation mark will be regarded as closing the preceding one, and
another single quote opens a new quoted section. Consecutive quoted words without any intervening
whitespace are considered as a single argument:

$ sa "First argument "'still the first argument'
:First argument still the first argument:

In bash, single quotes can be included in words of the form $'string' if they are escaped. In
addition, the escape sequences listed in Chapter 2’s description of printf are replaced by the characters
they represent:

$ echo $'\'line1\'\n\'line2\''
'line1'
'line2'

Quoted arguments can contain literal newlines:

$ sa "Argument containing
> a newline"
:Argument containing
a newline:

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

31

Brace Expansion
The first expansion performed, brace expansion, is nonstandard (that is, it is not included in the POSIX
specification). It operates on unquoted braces containing either a comma-separated list or a sequence.
Each element becomes a separate argument.

$ sa {one,two,three}
:one:
:two:
:three:
$ sa {1..3} ## added in bash3.0
:1:
:2:
:3:
$ sa {a..c}
:a:
:b:
:c:

A string before or after the brace expression will be included in each expanded argument:

$ sa pre{d,l}ate
:predate:
:prelate:

Braces may be nested:

$ sa {{1..3},{a..c}}
:1:
:2:
:3:
:a:
:b:
:c:

Multiple braces within the same word are expanded recursively. The first brace expression is
expanded, and then each of the resulting words is processed for the next brace expression. With the
word {1..3}{a..c}, the first term is expanded, giving the following:

1{a..c} 2{a..c} 3{a..c}

Each of these words is then expanded for this final result:

$ sa {1..3}{a..c}
:1a:
:1b:
:1c:
:2a:
:2b:
:2c:
:3a:
:3b:
:3c:

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

32

In version 4 of bash, further capabilities have been added to brace expansion. Numerical sequences

can be padded with zeros, and the increment in a sequence can be specified:

$ sa {01..13..3}
:01:
:04:
:07:
:10:
:13:

Increments can also be used with alphabetic sequences:

$ sa {a..h..3}
:a:
:d:
:g:

Tilde Expansion
An unquoted tilde expands to the user’s home directory:

$ sa ~
:/home/chris:

Followed by a login name, it expands to that user’s home directory:

$ sa ~root ~chris
:/root:
:/home/chris:

When quoted, either on the command line or in a variable assignment, the tilde is not expanded:

$ sa "~" "~root"
:~:
:~root:
$ dir=~chris
$ dir2="~chris"
$ sa "$dir" "$dir2"
:/home/chris:
:~chris:

If the name following the tilde is not a valid login name, no expansion is performed:

$ sa ~qwerty
:~qwerty:

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

33

Parameter and Variable Expansion
Parameter expansion replaces a variable with its contents; it is introduced by a dollar sign ($). It is
followed by the symbol or name to be expanded:

$ var=whatever
$ sa "$var"
:whatever:

The parameter may be enclosed in braces:

$ var=qwerty
$ sa "${var}"
:qwerty:

In most cases, the braces are optional. They are required when referring to a positional parameter
greater than nine or when a variable name is followed immediately by a character that could be part of a
name:

$ first=Jane
$ last=Johnson
$ sa "$first_$last" "${first}_$last"
:Johnson:
:Jane_Johnson:

Because first_ is a valid variable name, the shell tries to expand it rather than first; adding the
braces removes the ambiguity.

Braces are also used in expansions that do more than simply return the value of a parameter. These
often-cryptic expansions (${var##*/} and ${var//x/y}, for example) add a great deal of power to the
shell and are examined in detail in the next chapter.

Parameter expansions that are not enclosed in double quotes are subject to word splitting and
pathname expansion.

Arithmetic Expansion
When the shell encounters $((expression)), it evaluates expression and places the result on the
command line; expression is an arithmetic expression. Besides the four basic arithmetic operations of
addition, subtraction, multiplication, and division, its most used operator is % (modulo, the remainder
after division).

$ sa "$((1 + 12))" "$((12 * 13))" "$((16 / 4))" "$((6 - 9))"
:13:
:156:
:4:
:-3:

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

34

The arithmetic operators (see Tables 4-1 and 4-2) take the same precedence that you learned in
school (basically, that multiplication and division are performed before addition and subtraction), and
they can be grouped with parentheses to change the order of evaluation:

$ sa "$((3 + 4 * 5))" "$(((3 + 4) * 5))"
:23:
:35:

The modulo operator, %, returns the remainder after division:

$ sa "$((13 % 5))"
:3:

Converting seconds (which is how Unix systems store times) to days, hours, minutes, and seconds
involves division and the modulo operator, as shown in Listing 4-2.

Listing 4-2. secs2dhms, Convert Seconds (in Argument $1) to Days, Hours, Minutes, and Seconds

secs_in_day=86400
secs_in_hour=3600
mins_in_hour=60
secs_in_min=60

days=$(($1 / $secs_in_day))
secs=$(($1 % $secs_in_day))
printf "%d:%02d:%02d:%02d\n" "$days" "$(($secs / $secs_in_hour))" \
 "$((($secs / $mins_in_hour) %$mins_in_hour))" "$(($secs % $secs_in_min))"

If not enclosed in double quotes, the results of arithmetic expansion are subject to word splitting.

Table 4-1. Arithmetic Operators

Operator Description

- + Unary minus and plus

! ~ Logical and bitwise negation

* / % Multiplication, division, remainder

+ - Addition, subtraction

<< >> Left and right bitwise shifts

<= >= < > Comparison

== != Equality and inequality

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

35

Operator Description

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

= *= /= %= += -= <<= >>= &= ^= |= Assignment

Table 4-2. bash Extensions

Operator Description

** Exponentiation

id++ id-- Variable post-increment and post-decrement

++id –-id Variable pre-increment and pre-decrement

expr ? expr1 : expr2 Conditional operator

expr1 , expr2 Comma

Command Substitution
Command substitution replaces a command with its output. The command must be placed either
between backticks (` command `) or between parentheses preceded by a dollar sign ($(command)). For
example, to count the lines in a file whose name includes today’s date, this command uses the output of
the date command:

$ wc -l $(date +%Y-%m-%d).log
61 2009-03-31.log

The old format for command substitution uses backticks. This command is the same as the
previous one:

$ wc -l `date +%Y-%m-%d`.log
2 2009-04-01.log

Well, it’s not exactly the same, because I ran the first command shortly before midnight and the
second shortly after. As a result, wc processed two different files.

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

36

If the command substitution is not quoted, word splitting and pathanme expansion are performed
on the results.

Word Splitting
The results of parameter and arithmetic expansions, as well as command substitution, are subjected to
word splitting if they were not quoted:

$ var="this is a multiword value"
$ sa $var "$var"
:this:
:is:
:a:
:multi-word:
:value:
:this is a multi-word value:

Word splitting is based on the value of the iinternal ffield sseparator variable, IFS. The default value of
IFS contains the whitespace characters of space, tab, and newline (IFS=$' \t\n'). When IFS has its
default value or is unset, any sequence of default IFS characters is read as a single delimiter.

$ var=' spaced
 out '
$ sa $var
:spaced:
:out:

If IFS contains another character (or characters) as well as whitespace, then any sequence of
whitespace characters plus that character will delimit a field, but every instance of a nonwhitespace
character delimits a field:

S IFS=' :'
$ var="qwerty : uiop : :: er " ## : :: delimits 2 empty fields
$ sa $var
:qwerty:
:uiop:
::
::
:er:

If IFS contains only nonwhitespace characters, then every occurrence of every character in IFS
delimits a field, and whitespace is preserved:

$ IFS=:
$ var="qwerty : uiop : :: er "
$ sa $var
:qwerty :
: uiop :
: :
::
: er :

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

37

Pathname Expansion
Unquoted words on the command line containing the characters *, ?, and [are treated as file globbing
patterns and are replaced by an alphabetical list of files that match the pattern. If no files match the
pattern, the word is left unchanged.

The asterisk matches any string. h* matches all files in the current directory that begin with h, and
*k matches all files that end with k. The shell replaces the wildcard pattern with the list of matching files
in alphabetical order. If there are no matching files, the wildcard pattern is left unchanged.

$ cd "$HOME/bin"
$ sa h*
:hello:
:hw:
$ sa *k
:incheck:
:numcheck:
:rangecheck:

A question mark matches any single character; the following pattern matches all files whose second
letter is a:

$ sa ?a*
:rangecheck:
:sa:
:valint:
:valnum:

Square brackets match any one of the enclosed characters, which may be a list, a range, or a class of
characters: [aceg] matches any one of a, c, e, or g; [h-o] matches any character from h to o inclusive; and
[[:lower:]] matches all lowercase letters.

You can disable file name expansion with the set -f command. bash has a number of options that
affect file name expansion. I’ll cover them in detail in Chapter 8.

Process Substitution
Process substitution creates a temporary filename for a command or list of commands. You can use it
anywhere a file name is expected. The form <(command) makes the output of command available as a file
name; >(command) is a file name that can be written to.

$ sa <(ls -l) >(pr -Tn)
:/dev/fd/63:
:/dev/fd/62:

Note The pr command converts text files for printing by inserting page headers. The headers can be turned off
with the -T option, and the -n option numbers the lines.

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

38

When the file name on the command line is read, it produces the output of the command. Process
substitution can be used in place of a pipeline, allowing variables defined within a loop to be visible to
the rest of the script. In this snippet, totalsize is not available to the script outside the loop:

$ ls -l |
> while read perms links owner group size month day time file
> do
> totalsize=$((${totalsize:=0} + ${size:-0}))
> done
$ echo ${totalsize-unset} ## print "unset" if variable is not set
unset

By using process substitution instead, it becomes available:

$ while read perms links owner group size month day time file
> do
> printf "%10d %s\n" "$size" "$file"
> totalsize=$((${totalsize:=0} + ${size:-0}))
> done < <(ls -l *)
$ echo ${totalsize-unset}
12879

Parsing Options
The options to a shell script, single characters preceded by a hyphen, can be parsed with the built-in
command getopts. There may be arguments to some options, and options must precede nonoption
arguments.

Multiple options may be concatenated with a single hyphen, but any that take an argument must be
the final option in the string. Its argument follows, with or without intervening whitespace.

On the following command line, there are two options, -a and -f. The latter takes a file name
argument. John is the first nonoption argument, and -x is not an option because it comes after a
nonoption argument.

myscript -a -f filename John -x Jane

The syntax for getopts is as follows:

getopts OPTSTRING var

The OPTSTRING contains all the option’s characters; those that take arguments are followed by a
colon. For the script in Listing 4-3, the string is f:v. Each option is placed in the variable $var, and the
option’s argument, if any, is placed in $OPTARG.

Usually used as the condition to a while loop, getopts returns successfully until it has parsed all the
options on the command line or until it encounters the word --. All remaining words on the command
line are arguments passed to the main part of the script.

A frequently used option is -v to turn on verbose mode, which displays more than the default
information about the running of the script. Other options—for example, -f—require a file name
argument.

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

39

This sample script processes both the -v and -f options and, when in verbose mode, displays some
information.

Listing 4-3. parseopts, Parse Command-Line Options

progname=${0##*/} ## Get the name of the script without its path

Default values
verbose=0
filename=

List of options the program will accept;
those options that take arguments are followed by a colon
optstring=f:v

The loop calls getopts until there are no more options on the command line
Each option is stored in $opt, any option arguments are stored in OPTARG
while getopts $optstring opt
do
 case $opt in
 f) filename=$OPTARG ;; ## $OPTARG contains the argument to the option
 v) verbose=$(($verbose + 1)) ;;
 *) exit 1 ;;
 esac
done

Remove options from the command line
$OPTIND points to the next, unparsed argument
shift "$(($OPTIND - 1))"

Check whether a filename was entered
if [-n "$filename"]
then
 if [$verbose -gt 0]
 then
 printf "Filename is %s\n" "$filename"
 fi
else
 if [$verbose -gt 0]
 then
 printf "No filename entered\n" >&2
 fi
 exit 1
fi

Check whether file exists
if [-f "$filename"]
then
 if [$verbose -gt 0]
 then
 printf "Filename %s found\n" "$filename"
 fi

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

40

else
 if [$verbose -gt 0]
 then
 printf "File, %s, does not exist\n" "$filename" >&2
 fi
 exit 2
fi

If the verbose option is selected,
print the number of arguments remaining on the command line
if [$verbose -gt 0]
then
 printf "Number of arguments is %d\n" "$#"
fi

Running the script without any arguments does nothing except generate a failing return code:

$ parseopts
$ echo $?
1

With the verbose option, it prints an error message as well:

$ parseopts -v
No filename entered
$ echo $?
1

With an illegal option (that is, one that is not in $optstring), the shell prints an error message:

$ parseopts -x
/home/chris/bin/parseopts: illegal option – x

If a file name is entered and the file doesn’t exist, it produces this:

$ parseopts -vf qwerty; echo $?
Filename is qwerty
File, qwerty, does not exist
2

To allow a nonoption argument to begin with a hyphen, the options can be explicitly ended with --:

$ parseopts -vf ~/.bashrc -– -x
Filename is /home/chris/.bashrc
Filename /home/chris/.bashrc found
Number of arguments is 1

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

41

Summary
The shell’s preprocessing of the command line before passing it to a command saves the programmer a
great deal of work.

Commands
head: Extracts the first N lines from a file; N defaults to 10

cut: Extracts columns from a file

Exercises
1. How many arguments are there on this command line?

sa $# $(date "+%Y %m %d") John\ Doe

2. What potential problem exists with the following snippet?

year=$(date +%Y)
month=$(date +%m)
day=$(date +%d)
hour=$(date +%H)
minute=$(date +%M)
second=$(date +%S)

CHAPTER 4 COMMAND LINE PARSING AND EXPANSION

42

C H A P T E R 5

43

Parameters and Variables

Variables have been part of the Unix shell since its inception more than 30 years ago, but their features
have grown over the years. The standard Unix shell now has parameter expansions that perform
sophisticated manipulations on their contents. Bash adds even more expansion capabilities as well as
indexed and associative arrays.

This chapter covers what you can do with variables and parameters, including their scope. In other
words, after a variable has been defined, where can its value be accessed? This chapter gives a glimpse of
the more than 80 variables used by the shell that are available to the programmer. It discusses how to
name your variables and how to pick them apart with parameter expansion.

Positional parameters are the arguments passed to a script. They can be manipulated with the shift
command and used individually by number or in a loop.

Arrays assign more than one value to a name. Bash has both numerically indexed arrays and,
beginning with bash-4.0, associative arrays that are assigned and referenced by a string instead of a
number.

The Scope of a Variable: Can You See It from Here?
By default, a variable’s definition is known only to the shell in which it is defined (and to subshells of that
shell). The script that called the current script will not know about it, and a script called by the current
script will not know about the variable unless it is exported to the environment.

The environment is an array of strings of the form name=value. Whenever an external command is
executed (creating a child process), whether it is a compiled, binary command or an interpreted script,
this array is passed to it behind the scenes. In a shell script, these strings are available as variables.

Variables assigned in a script may be exported to the environment using the shell builtin command
export:

var=whatever
export var

There is no need to export a variable unless you want to make it available to scripts (or other
programs) called from the current script (and their children and their children’s children and...).
Exporting a variable doesn’t make it visible anywhere except child processes.

Listing 5-1 tells you whether the variable $x is in the environment and what it contains, if anything.

Listing 5-1. showvar, Print Value of Variable x

if ["${x+X}" = X] ## If $x is set
then
 if [-n "$x"] ## if $x is not empty

CHAPTER 5 PARAMETERS AND VARIABLES

44

 then
 printf " \$x = %s\n" "$x"
 else
 printf " \$x is set but empty\n"
 fi
else
 printf " %s is not set\n" "\$x"
fi

Once a variable is exported, it remains in the environment until it is unset:

$ unset x
$ showvar
 $x is not set
$ x=3
$ showvar
 $x is not set
$ export x
$ showvar
 $x = 3
$ x= ## in bash, reassignment doesn't remove a variable from the environment
$ showvar
 $x is set but empty

Variables set in a subshell are not visible to the script that called it. Subshells include command
substitution, as in $(command); all elements of a pipeline; and code enclosed in parentheses, as in (command).

Probably the most frequently asked question about shell programming is, “Where did my variables
go? I know I set them, so why are they empty?” More often than not, this is caused by piping the output
of one command into a loop that assigns variables:

printf "%s\n" ${RANDOM}{,,,,,} |
 while read num
 do
 [$num -gt ${biggest:=0}] && biggest=$num
 done
printf "The largest number is: %d\n" "$biggest"

When biggest is found to be empty, complaints of variables set in while loops not being available
outside them are heard in all the shell forums. But the problem is not the loop; it is that the loop is part
of a pipeline and therefore is being executed in a subshell.

Shell Variables
The shell either sets or uses more than 80 variables. Many of these are used by bash internally and are of
little use to shell programmers. Others are used in debugging, and some are in common use in shell
programs. About half are set by the shell itself, and the rest are set by the operating system, the user, the
terminal, or a script.

Of those set by the shell, you have already looked at RANDOM, which returns a random integer
between 0 and 32,767, and PWD, which contains the path to the current working directory. You saw OPTIND
and OPTARG used in parsing command-line options (Chapter 4). Sometimes, BASH_VERSION (or

CHAPTER 5 PARAMETERS AND VARIABLES

45

BASH_VERSINFO) is used to determine whether the running shell is capable of running a script. Some of
the scripts in this book require at least bash-3.0 and might use one of those variables to determine
whether the current shell is recent enough to run the script:

case $BASH_VERSION in
 [12].*) echo "You need at least bash3.0 to run this script" >&2; exit 2;;
esac

The prompt string variables, PS1 and PS2, are used in interactive shells at the command line; PS3 is
used with the select builtin command, and PS4 is printed before each line in execution trace mode
(more on that in Chapter 10).

SHELL VARIABLES

The following variables are set by the shell:

BASH COMP_KEY OLDPWD
BASHPID COMP_LINE OPTARG
BASH_ALIASES COMP_POINT OPTIND
BASH_ARGC COMP_TYPE OSTYPE
BASH_ARGV COMP_WORDBREAKS PIPESTATUS
BASH_CMDS COMP_WORDS PPID
BASH_COMMAND DIRSTACK PWD
BASH_EXECUTION_STRING EUID RANDOM
BASH_LINENO FUNCNAME REPLY
BASH_REMATCH GROUPS SECONDS
BASH_SOURCE HISTCMD SHELLOPTS
BASH_SUBSHELL HOSTNAME SHLVL
BASH_VERSINFO HOSTTYPE UID
BASH_VERSION LINENO
COMP_CWORD MACHTYPE

The following variables are used by the shell, which may set a default value for some of them (for example, IFS):

BASH_ENV HISTIGNORE LC_CTYPE PROMPT_DIRTRIM
CDPATH HISTSIZE LC_MESSAGES PS1
COLUMNS HISTTIMEFORMAT LC_NUMERIC PS2
COMPREPLY HOME LINES PS3
EMACS HOSTFILE MAIL PS4
FCEDIT IFS MAILCHECK SHELL
FIGNORE IGNOREEOF MAILPATH TIMEFORMAT
GLOBIGNORE INPUTRC OPTERR TMOUT
HISTCONTROL LANG PATH TMPDIR
HISTFILE LC_ALL POSIXLY_CORRECT auto_resume
HISTFILESIZE LC_COLLATE PROMPT_COMMAND histchars

See the appendix for a description of all the shell variables.

CHAPTER 5 PARAMETERS AND VARIABLES

46

The Naming of Variables
Variable names can contain only letters, numbers, and underscores, and they must start with a letter or
an underscore. Apart from those restrictions, you are free to build your names as you see fit. It is,
however, a good idea to use a consistent scheme for naming variables, and choosing meaningful names
can go a long way toward making your code self-documenting.

Perhaps the most frequently cited (though less often implemented) convention is that environment
variables should be in capital letters, while local variables should be in lowercase. Given that bash itself
uses more than 80 uppercase variables internally, this is a dangerous practice, and conflicts are not
uncommon. I have seen variables such as PATH, HOME, LINES, SECONDS, and UID misused with potentially
disastrous consequences. None of bash’s variables begin with an underscore, so in my first book, Shell
Scripting Recipes: A Problem-Solution Approach (Apress, 2005), I used uppercase names preceded by an
underscore for values set by shell functions.

Single-letter names should be used rarely. They are appropriate as the index in a loop, where its sole
function is as a counter. The letter traditionally used for this purpose is i, but I prefer n. (When teaching
programming in a classroom, the letter I on the blackboard was too easily confused with the number 1,
so I started using n for “number,” and I still use it 20 years later.)

The only other place I use single-letter variable names is when reading throwaway material from a
file. If I need only one or two fields from a file, for example, I use this:

while IFS=: read login a b c name e
do
 printf "%-12s %s\n" "$login" "$name"
done < /etc/passwd

I recommend two naming schemes. The first is used by Heiner Steven on his Shelldorado web site at
http://www.shelldorado.com/. He capitalizes the first letter of all variables and also the first letters of
further words in the name: ConfigFile, LastDir, FastMath. In some cases, his usage is closer to mine.

I use all lowercase letters: configfile, lastdir, fastmath. When the run-together words are
ambiguous or hard to read, I separate them with an underscore: line_width, bg_underline, day_of_week.

Whatever system you choose, the important thing is that the names give a real indication of what
the variable contains. But don't get carried away and use something like this:

long_variable_name_which_may_tell_you_something_about_its_purpose=1

Parameter Expansion
Much of the power of the modern Unix shell comes from its parameter expansions. In the Bourne shell,
these mostly involved testing whether a parameter is set or empty and replacing with a default or
alternate value. KornShell additions, which were incorporated into the POSIX standard, added string
manipulation. KornShell 93 added more expansions that have not been incorporated into the standard
but that bash has adopted. Bash-4.0 has added two new expansions of its own.

Bourne Shell
The Bourne shell and its successors have expansions to replace an empty or unset variable with a
default, to assign a default value to a variable if it is empty or unset, and to halt execution and print an
error message if a variable is empty or unset.

CHAPTER 5 PARAMETERS AND VARIABLES

47

${var:-default} and ${var-default}: Use Default Values
The most commonly used expansion, ${var:-default}, checks to see whether a variable is unset or
empty and expands to a default string if it is:

$ var=
$ sa "${var:-default}" ## The sa script was introduced in Chapter 4
:default:

If the colon is omitted, the expansion checks only whether the variable is unset:

$ var=
$ sa "${var-default}" ## var is set, so expands to nothing
::
$ unset var
$ sa "${var-default}" ## var is unset, so expands to "default"
:default:

This snippet assigns a default value to $filename if it is not supplied by an option or inherited in the
environment:

defaultfile=$HOME/.bashrc
parse options here
filename=${filename:-"$defaultfile"}

${var:+alternate}, ${var+alternate}: Use Alternate Values

The complement to the previous expansion substitutes an alternate value if the parameter is not empty
or, without a colon, if it is set. The first expansion will use alternate only if $var is set and is not empty:

$ var=
$ sa "${var:+alternate}" ## $var is set but empty
::
$ var=value
$ sa "${var:+alternate}" ## $var is not empty
:alernate:

Without the colon, alternate is used if the variable is set, even if it is empty:

$ var=
$ sa "${var+alternate}" ## var is set
:altername:
$ unset var
$ sa "${var+alternate}" ## $var is not set
::
$ var=value
$ sa "${var:+alternate}" ## $var is set and not empty
:alternate:

CHAPTER 5 PARAMETERS AND VARIABLES

48

This expansion is often used when adding strings to a variable. If the variable is empty, you don’t
want to add a separator:

$ var=
$ for n in a b c d e f g
> do
> var="$var $n"
> done
$ sa "$var"
: a b c d e f g:

To prevent the leading space, you can use parameter expansion:

$ var=
$ for n in a b c d e f g
> do
> var="${var:+"$var "}$n"
> done
$ sa "$var"
:a b c d e f g:

That is a shorthand method of doing the following for each value of n:

if [-n "$var"]
then
 var="$var $n"
else
 var=$n
fi

or:

[-n "$var"] && var="$var $n" || var=$n

${var:=default}, ${var=default}: Assign Default Values

The ${var:=default} expansion behaves in the same way as ${var:-default} except that it also assigns
the default value to the variable:

$ unset n
$ while :
> do
> echo :$n:
> [${n:=0} -gt 3] && break ## set $n to 0 if unset or empty
> n=$(($n + 1))
> done
::
:1:
:2:
:3:
:4:

CHAPTER 5 PARAMETERS AND VARIABLES

49

${var:?message}, ${var?message}: Display Error Message If Empty or Unset

If var is empty or not set, message will be printed to the standard error, and the script will exit with a
status of 1. If message is empty, parameter null or not set will be printed. Listing 5-2 expects two non-
null command-line arguments and uses this expansion to display error messages when they are missing
or null.

Listing 5-2. checkarg, Exit If Parameters Are Unset or Empty

Check for unset arguments
: ${1?An argument is required} \
 ${2?Two arguments are required}

Check for empty arguments
: ${1:?A non-empty argument is required} \
 ${2:?Two non-empty arguments are required}

echo "Thank you."

The message will be printed by the first expansion that fails, and the script will exit at that point:

$ checkarg
/home/chris/bin/checkarg: line 10: 1: An argument is required
$ checkarg x
/home/chris/bin/checkarg: line 10: 2: Two arguments are required
$ checkarg '' ''
/home/chris/bin/checkarg: line 13: 1: A non-empty argument is required
$ checkarg x ''
/home/chris/bin/checkarg: line 13: 2: Two non-empty arguments are required
$ checkarg x x
Thank you.

POSIX Shell
Besides the expansions from the Bourne shell, the POSIX shell includes a number of expansions from the
KornShell. These include returning the length and removing a pattern from the beginning or end of a
variable’s contents.

${#var}: Length of Variable’s Contents
This expansion returns the length of the expanded value of the variable:

read passwd
if [${#passwd} -lt 8]
then
 printf "Password is too short: %d characters\n" "$#" >&2
 exit 1
fi

CHAPTER 5 PARAMETERS AND VARIABLES

50

${var%PATTERN}: Remove the Shortest Match from the End
The variable is expanded, and the shortest string that matches PATTERN is removed from the end of the
expanded value. The PATTERN here and in other parameter expansions is a filename expansion (aka file
globbing) pattern.

Given the string Toronto and the pattern o*, the shortest matching pattern is the final o:

$ var=Toronto
$ var=${var%o*}
$ printf "%s\n" "$var"
Toront

Because the truncated string has been assigned to var, the shortest string that now matches the
pattern is ont:

$ printf "%s\n" "${var%o*}"
Tor

This expansion can be used to replace the external command, dirname, which strips the filename
portion of a path, leaving the path to the directory (Listing 5-3). If there is no slash in the string, the current
directory is printed if it is the name of an existing file in the current directory; otherwise, a dot is printed.

Listing 5-3. dname, Print the Directory Portion of a File Path

case $1 in
 /) printf "%s\n" "${1%/*}" ;;
 *) [-e "$1"] && printf "%s\n" "$PWD" || echo '.' ;;
esac

Note I have called this script dname rather than dirname because it doesn’t follow the POSIX specification for
the dirname command. In the next chapter, there is a shell function called dirname that does implement the
POSIX command.

$ dname /etc/passwd
/etc
$ dname bin
/home/chris

${var%%PATTERN}: Remove the Longest Match from the End
The variable is expanded, and the longest string that matches PATTERN from the end of the expanded
value is removed:

$ var=Toronto
$ sa "${var%%o*}"
:t:

CHAPTER 5 PARAMETERS AND VARIABLES

51

${var#PATTERN}: Remove the Shortest Match from the Beginning
The variable is expanded, and the shortest string that matches PATTERN is removed from the beginning of
the expanded value:

$ var=Toronto
$ sa "${var#*o}"
:ronto:

${var##PATTERN}: Remove the Longest Match from the Beginning
The variable is expanded, and the longest string that matches PATTERN is removed from the beginning of
the expanded value. This is often used to extract the name of a script from the $0 parameter, which
contains the full path to the script:

scriptname=${0##*/} ## /home/chris/bin/script => script

Bash
Two expansions from KornShell 93 were introduced in bash2: search and replace and substring
extraction.

${var//PATTERN/STRING}: Replace All Instances of PATTERN with STRING
Because the question mark matches any single character, this example hides a password:

$ passwd=zxQ1.=+-a
$ printf "%s\n" "${passwd//?/*}"

With a single slash, only the first matching character is replaced.

$ printf "%s\n" "${passwd/[[:punct:]]/*}"
zxQ1*=+-a

${var:OFFSET:LENGTH}: Return a Substring of $var
A substring of $var starting at OFFSET is returned. If LENGTH is specified, that number of characters is
substituted; otherwise, the rest of the string is returned. The first character is at offset 0:

$ var=Toronto
$ sa "${var:3:2}"
:on:
$ sa "${var:3}"
:onto:

CHAPTER 5 PARAMETERS AND VARIABLES

52

A negative OFFSET is counted from the end of the string. If a literal minus sign is used (as opposed to
one contained in a variable), it must be preceded by a space to prevent it from being interpreted as a
default expansion:

$ sa "${var: -3}"
:nto:

${!var}: Indirect Reference

If you have one variable containing the name of another, for example x=yes and a=x, bash can use an
indirect reference:

$ x=yes
$ a=x
$ sa "${!a}"
:yes:

The same effect can be had using the eval builtin command, which expands its arguments and
executes the resulting string as a command:

$ eval "sa \$$a"
:yes:

See Chapter 9 for a more detailed explanation of eval.

Bash-4.0
In version 4.0, bash introduced two new parameter expansions, one for converting to uppercase and one
for lowercase. Both have single-character and global versions.

${var^PATTERN}: Convert to Uppercase

The first character of var is converted to uppercase if it matches PATTERN; with a double caret (^^), it
converts all characters matching PATTERN. If PATTERN is omitted, all characters are matched:

$ var=toronto
$ sa "${var^}"
:Toronto:
$ sa "${var^[n-z]}"
:Toronto:
$ sa "${var^^[a-m]}" ## matches all characters from a to m inclusive
:toronto:
$ sa "${var^^[n-q]}"
:tOrONtO:
$ sa "${var^^}"
:TORONTO:

CHAPTER 5 PARAMETERS AND VARIABLES

53

${var,PATTERN}: Convert to Lowercase

This expansion works in the same way as the previous one, except that it converts uppercase to
lowercase:

$ var=TORONTO
$ sa "${var,,}"
:toronto:
$ sa "${var,,[N-Q]}"
:ToRonTo:

Positional Parameters
The positional parameters can be referenced individually by number ($1 … $9 ${10} …) or all at once
with "$@" or "$*". As has already been noted, parameters greater than 9 must be enclosed in braces:
${10}, ${11}.

The shift command without an argument removes the first positional parameter and shifts the
remaining arguments forward so that $2 becomes $1, $3 becomes $2, and so on. With an argument, it can
remove more. To remove the first three parameters, supply an argument with the number of parameters
to remove:

$ shift 3

To remove all the parameters, use the special parameter $#, which contains the number of
positional parameters:

$ shift "$#"

To remove all but the last two positional parameters, use this:

$ shift $(($# - 2))

To use each parameter in turn, there are two common methods. The first way is to loop through the
values of the parameters by expanding "$@":

for param in "$@" ## or just: for param
do
 : do something with $param
done

And this is the second:

while [$# -gt 0] ## or: while [-n "$*"]
do
 : do something with $1
 shift
done

CHAPTER 5 PARAMETERS AND VARIABLES

54

Arrays
All the variables used so far have been scalar variables; that is, they contain only a single value. In
contrast, array variables can contain many values. The POSIX shell does not support arrays, but bash
(since version 2) does. Its arrays are one dimensional and indexed by integers, or, since bash-4.0, with
strings.

Integer-Indexed Arrays
The individual members of an array variable are assigned and accessed with a subscript of the form [N].
The first element has an index of 0. In bash, arrays are sparse; they needn’t be assigned with consecutive
indices. An array can have an element with an index of 0, another with an index of 42, and no intervening
elements.

Displaying Arrays

Array elements are referenced by the name and a subscript in braces. This example will use the shell
variable BASH_VERSINFO. It is an array that contains version information for the running shell. The first
element is the major version number, the second the minor:

$ printf "%s\n" "${BASH_VERSINFO[0]}"
4
$ printf "%s\n" "${BASH_VERSINFO[1]}"
0

All the elements of an array can be printed with a single statement. The subscripts @ and * are
analogous to their use with the positional parameters: * expands to a single parameter if quoted; if
unquoted, word splitting and file name expansion is performed on the result. Using @ as the subscript
and quoting the expansion, each element expands to a separate argument, and no further expansion is
performed on them.

$ printf "%s\n" "${BASH_VERSINFO[*]}"
4 0 10 1 release i686-pc-linux-gnuoldld
$ printf "%s\n" "${BASH_VERSINFO[@]}"
4
0
10
1
release
i686-pc-linux-gnuoldld

Various parameter expansions work on arrays; for example, to get the second and third elements
from an array, use this:

$ printf "%s\n" "${BASH_VERSINFO[@]:1:2}" ## minor version number and patch level
0
10

CHAPTER 5 PARAMETERS AND VARIABLES

55

The length expansion returns the number of elements in the array when the subscript is * or @, and
it returns the length of an individual element if a numeric index is given:

$ printf "%s\n" "${#BASH_VERSINFO[*]}"
6
$ printf "%s\n" "${#BASH_VERSINFO[2]}" "${#BASH_VERSINFO[5]}"
2
22

Assigning Array Elements

Elements can be assigned using an index; the following commands create a sparse array:

name[0]=Aaron
name[42]=Adams

Indexed arrays are more useful when elements are assigned consecutively (or packed), because it
makes operations on them simpler. Assignments can be made directly to the next unassigned element:

$ unset a
$ a[${#a[@]}]="1 $RANDOM" ## ${#a[@]} is 0
$ a[${#a[@]}]="2 $RANDOM" ## ${#a[@]} is 1
$ a[${#a[@]}]="3 $RANDOM" ## ${#a[@]} is 2
$ a[${#a[@]}]="4 $RANDOM" ## ${#a[@]} is 3
$ printf "%s\n" "${a[@]}"
1 6007
2 3784
3 32330
4 25914

An entire array can be populated with a single command:

$ province=(Quebec Ontario Manitoba)
$ printf "%s\n" "${province[@]}"
Quebec
Ontario
Manitoba

Starting with bash-3.1, the += operator can be used to append values to the end of an indexed array.
This results in a neater form of assignment to the next unassigned element:

$ province+=(Saskatchewan)
$ province+=(Alberta "British Columbia" "Nova Scotia")
$ printf "%-25s %-25s %s\n" "${province[@]}"
Quebec Ontario Manitoba
Saskatchewan Alberta British Columbia
Nova Scotia

CHAPTER 5 PARAMETERS AND VARIABLES

56

Associative Arrays
Associative arrays, introduced in bash in version 4.0, use strings as subscripts and must be declared
before being used:

$ declare -A array
$ for subscript in a b c d e
> do
> array[$subscript]="$subscript $RANDOM"
> done
$ printf ":%s:\n" "${array["c"]}" ## print one element
:c 1574:
$ printf ":%s:\n" "${array[@]}" ## print the entire array
:a 13856:
:b 6235:
:c 1574:
:d 14020:
:e 9165:

Summary
By far the largest subject in this chapter is parameter expansion, and by far the largest section of
parameter expansion is devoted to those expansions that were introduced by the KornShell and
incorporated into the standard Unix shell. These are tools that give the POSIX shell much of its power.
The examples given in this chapter are relatively simple; the full potential of parameter expansion will be
shown as you develop serious programs later in the book.

Next in importance are arrays. Though not part of the POSIX standard, they add a great deal of
functionality to the shell by making it possible to collect data in logical units.

Understanding the scope of variables can save a lot of head scratching, and well-named variables
make a program more understandable and maintainable.

Manipulating the positional parameters is a minor but important aspect of shell programming, and
the examples given in this chapter will be revisited and expanded upon later in the book.

Commands
declare: Declares variables and sets their attributes

eval: Expands arguments and executes the resulting command

export: Places variables into the environment so that they are available to child
processes

shift: Deletes and renumbers positional parameters

shopt: Sets shell options

unset: Removes a variable entirely

CHAPTER 5 PARAMETERS AND VARIABLES

57

Concepts
Environment: A collection of variables inherited from the calling program and
passed to child processes

Array variables: Variables that contain more than one value and accessed using a
subscript

Scalar variables: Variables that contain a single value

Associative arrays: Array variables whose subscript is a string rather than an
integer

Exercises
1. By default, where can a variable assigned in a script be accessed? Select all that

apply:

In the current script

In functions defined in the current script

In the script that called the current script

In scripts called by the current script

In subshells of the current script

2. I advise against using single-letter variables names but give a couple of places
where they are reasonable. Can you think of any other legitimate uses for them?

3. Given var=192.168.0.123, write a script that uses parameter expansion to extract
the second number, 168.

CHAPTER 5 PARAMETERS AND VARIABLES

58

4.

C H A P T E R 6

■ ■ ■

59

Shell Functions

A shell function is a compound command that has been given a name. It stores a series of commands for
later execution. The name becomes a command in its own right and can be used in the same way as any
other command. Its arguments are available in the positional parameters, just as in any other script. Like
other commands, it sets a return code.

A function is executed in the same process as the script that calls it. This makes it fast, because no
new process has to be created. All the variables of the script are available to it without having to be
exported, and when a function changes those variables, the changes will be seen by the calling script.
That said, you can make variables local to the function so that they do not affect the calling script; the
choice is yours.

Not only do functions encapsulate code for reuse in a single script, but they can make it available to
other scripts. They make top-down design easy and improve legibility. They break scripts into manageable
chunks that can be tested and debugged separately.

At the command line, functions can do things that an external script cannot, such as change
directories. They are much more flexible and powerful than aliases, which simply replace the command
you type with a different command. Chapter 11 presents a number of functions that make working at the
prompt more productive.

Definition Syntax
When shell functions were introduced in the KornShell, the definition syntax was as follows:

function name <compound command>

When the Bourne shell added functions in 1984, the syntax (which was later included in ksh and
adopted by the POSIX standard) was as follows:

name() <compound command>

Bash allows either syntax as well as the hybrid:

function name() <compound command>

The following is a function that I wrote several years ago and that, I recently discovered, is included
as an example in the bash source code package. It checks whether a dotted-quad Internet Protocol (IP)
address is valid. In this book, we always use the POSIX syntax for function definition:

isvalidip()

CHAPTER 6 ■ SHELL FUNCTIONS

60

Then the body of the function is enclosed in braces ({ … }) followed by optional redirection (see the
uinfo function later in this chapter for an example).

The first set of tests is contained in a case statement:

case $1 in
 "" | *[!0-9.]* | *[!0-9]) return 1 ;;
esac

It checks for an empty string, invalid characters, or an address that doesn’t end with a digit. If any of
these items is found, the shell builtin command return is invoked with an exit status of 1. This exits the
function and returns control to the calling script. An argument sets the function’s return code; if there is
no argument, the exit code of the function defaults to that of the last command executed.

The next command, local, is a shell builtin that restricts a variable’s scope to the function (and its
children), but the variable will not change in the parent process. Setting IFS to a period causes word
splitting at periods, rather than whitepace, when a parameter is expanded. Beginning with bash-4.0,
local and declare have an option, -A, to declare an associative array.

local IFS=.

The set builtin replaces the positional parameters with its arguments. Since $IFS is a period, each
element of the IP address is assigned to a different parameter.

set -- $1

The final two lines check each positional parameter in turn. If it’s greater than 255, it is not valid in a
dotted-quad IP address. If a parameter is empty, it is replaced with the invalid value of 666. If all tests are
successful, the function exits successfully; if not, the return code is 1, or failure.

[${1:-666} -le 255] && [${2:-666} -le 255] &&
[${3:-666} -le 255] && [${4:-666} -le 255]

Listing 6-1 shows the complete function with comments.

Listing 6-1. isvalidip, Check Argument for Valid Dotted-Quad IP Address

isvalidip() #@ USAGE: isvalidip DOTTED-QUAD
{
 case $1 in
 ## reject the following:
 ## empty string
 ## anything other than digits and dots
 ## anything not ending in a digit
 "" | *[!0-9.]* | *[!0-9]) return 1 ;;
 esac

 ## Change IFS to a dot, but only in this function
 local IFS=.

CHAPTER 6 ■ SHELL FUNCTIONS

61

 ## Place the IP address into the positional parameters;
 ## after word splitting each element becomes a parameter
 set -- $1

 [$# -eq 4] && ## must be four parameters
 ## each must be less than 256
 ## A default of 666 (which is invalid) is used if a parameter is empty
 ## All four parameters must pass the test
 [${1:-666} -le 255] && [${2:-666} -le 255] &&
 [${3:-666} -le 255] && [${4:-666} -le 255]
}

■ Note Formats other than dotted quads can be valid IP addresses, as in 127.1, 216.239.10085, and
3639551845.

The function returns successfully (that is, a return code of 0) if the argument supplied on the
command line is a valid dotted-quad IP address. You can test the function at the command line by
sourcing the file containing the function:

$. isvalidip-func

The function is now available at the shell prompt. Let’s test it with a few IP addresses:

$ for ip in 127.0.0.1 168.260.0.234 1.2.3.4 123.1OO.34.21 204.225.122.150
> do
> if isvalidip "$ip"
> then
> printf "%15s: valid\n" "$ip"
> else
> printf "%15s: invalid\n" "$ip"
> fi
> done
 127.0.0.1: valid
 168.260.0.234: invalid
 1.2.3.4: valid
 123.1OO.34.21: invalid
204.225.122.150: valid

Compound Commands
A compound command is a list of commands enclosed in (…) or { … }, expressions enclosed in ((…))
or [[…]], or one of the block-level shell keywords (that is, case, for, select, while, and until).

The valint program from Chapter 3 is a good candidate for converting to a function. It is likely to be
called more than once, so the time saved could be significant. The program is a single compound
command, so braces are not necessary (see Listing 6-2).

CHAPTER 6 ■ SHELL FUNCTIONS

62

Listing 6-2. valint, Check for Valid Integer

valint() #@ USAGE: valint INTEGER
 case ${1#-} in ## Leading hyphen removed to accept negative numbers
 [!0-9]) false;; ## the string contains a non-digit character
 *) true ;; ## the whole number, and nothing but the number
 esac

If a function’s body is wrapped in parentheses, then it is executed in a subshell, and changes made
during its execution do not remain in effect after it exits:

$ funky() (name=nobody; echo "name = $name")
$ name=Rumpelstiltskin
$ funky
name = nobody
$ echo "name = $name"
name = Rumpelstiltskin

Getting Results
The two previous functions are both called for their exit status; the calling program needs to know only
whether the function succeeds or fails. Functions can also return information from a range of return
codes, by setting one or more variables or by printing its results.

Set Different Exit Codes
You can convert the rangecheck script from Chapter 3 to a function with a couple of improvements; it
returns 0 on success as before but differentiates between a number that is too high and one that is too
low. It returns 1 if the number is too low, or it returns 2 if it is too high. It also accepts the range to be
checked as arguments on the command line, defaulting to 10 and 20 if no range is given (Listing 6-3).

Listing 6-3. rangecheck, Check Whether an Integer Is Within a Specified Range

rangecheck() #@ USAGE: rangecheck int [low [high]]
 if ["$1" -lt ${2:-10}]
 then
 return 1
 elif ["$1" -gt ${3:-20}]
 then
 return 2
 else
 return 0
 fi

Return codes are a single, unsigned byte; therefore, their range is 0 to 255. If you need numbers
larger than 255 or less than 0, use one of the other methods of returning a value.

CHAPTER 6 ■ SHELL FUNCTIONS

63

Print the Result
A function’s purpose may be to print information, either to the terminal or to a file (Listing 6-4).

Listing 6-4. uinfo, Print Information About the Environment

uinfo() #@ USAGE: uinfo [file]
{
 printf "%12s: %s\n" \
 USER "${USER:-No value assigned}" \
 PWD "${PWD:-No value assigned}" \
 COLUMNS "${COLUMNS:-No value assigned}" \
 LINES "${LINES:-No value assigned}" \
 SHELL "${SHELL:-No value assigned}" \
 HOME "${HOME:-No value assigned}" \
 TERM "${TERM:-No value assigned}"
} > ${1:-/dev/fd/1}

The redirection is evaluated at runtime. In this example, it expands to the function’s first argument
or to /dev/fd/1 (standard output) if no argument is given:

$ uinfo
 USER: chris
 PWD: /home/chris/work/BashProgramming
 COLUMNS: 100
 LINES: 43
 SHELL: /bin/bash
 HOME: /home/chris
 TERM: rxvt
$ cd; uinfo $HOME/tmp/info
$ cat $HOME/tmp/info
 USER: chris
 PWD: /home/chris
 COLUMNS: 100
 LINES: 43
 SHELL: /bin/bash
 HOME: /home/chris
 TERM: rxvt

When the output is printed to the standard output, it may be captured using command substitution:

info=$(uinfo)

But command substitution creates a new process and is therefore slow; save it for use with external
commands. When a script needs output from a function, put it into variables.

Place Results in One or More Variables
I was writing a script that needed to sort three integers from lowest to highest. I didn’t want to call an
external command for a maximum of three comparisons, so I wrote the function shown in Listing 6-5. It
stores the results in three variables: _MIN3, _MID3, and _MAX3.

CHAPTER 6 ■ SHELL FUNCTIONS

64

Listing 6-5. _max3, Sort Three Integers

_max3() { #@ Sort 3 integers and store in $_MAX3, $_MID3 and $_MIN3
 [$# -ne 3] && return 5
 [$1 -gt $2] && { set -- $2 $1 $3; }
 [$2 -gt $3] && { set -- $1 $3 $2; }
 [$1 -gt $2] && { set -- $2 $1 $3; }
 _MAX3=$3
 _MID3=$2
 _MIN3=$1
}

I use the convention of beginning function names with an underscore when they set a variable
rather than print the result. The variable is the name of the function converted to uppercase. In this
instance, I needed two other variables as well.

Function Libraries
In my scripts directory, I have about 100 files of nothing but functions. A few contain only a single
function, but most are collections of functions with a common theme. Sourcing one of these files defines
a number of related functions that can be used in the current script.

I have a library of functions for manipulating dates and another for dissecting strings. I have one for
creating PostScript files of chess diagrams and one for playing with crossword puzzles. There’s a library
for reading function keys and cursor keys and a different one for mouse buttons.

Using Functions from Libraries
Most of the time, I source the library to include all its functions in my script:

. date-funcs ## get date-funcs from:
 ## http://cfaj.freeshell.org/shell/ssr/08-The-Dating-Game.shtml

Occasionally, I need only one function from a library, so I cut and paste it into the new script.

Sample Script
The following script defines four functions: die, usage, version, and readline. The readline function will
differ according to which shell you are using. The script creates a basic web page, complete with title and
primary headline (<H1>). The readline function uses options to the builtin command read that will be
examined in detail in Chapter 9.

Set defaults

prompt=" ==> "
template='<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

CHAPTER 6 ■ SHELL FUNCTIONS

65

<html lang="en">
 <head>
 <title>%s</title>
 <link href="%s" rel="stylesheet" type="text/css">
 </head>
 <body>
 <h1>%s</h1>
 <div id="main">

 </div>
 </body>
</html>
'

Define shell functions

die() ## DESCRIPTION: Print error message and exit with ERRNO code
{ ## USAGE: die ERRNO MESSAGE ...
 error=$1
 shift
 [-n "$*"] && printf "%s\n" "$*" >&2
 exit "$error"
}

usage()
{
 printf "USAGE: %s HTMLFILE\n" "$progname"
}

version()
{
 printf "%s version %s" "$progname" "${version:-1}"
}

#@ USAGE: readline var prompt default
#@ DESCRIPTION: Prompt user for string and offer default

#@ Define correct version for your version of bash or other shell
bashversion=${BASH_VERSION%%.*}
if [${bashversion:-0} -ge 4]
then
 ## bash4.0 has an -i option for editing a supplied value
 readline()
 {
 read -ep "${2:-"$prompt"}" -i "$3" "$1"
 }
elif [${BASHVERSION:-0} -ge 2]
then
 readline()
 {
 history -s "$3"

CHAPTER 6 ■ SHELL FUNCTIONS

66

 printf "Press up arrow to edit default value: '%s'\n" "${3:-none}"
 read -ep "${2:-"$prompt"}" "$1"
 }
else
 readline()
 {
 printf "Press enter for default of '%s'\n" "$3"
 printf "%s " "${2:-"$prompt"}"
 read
 eval "$1=\${REPLY:-"$3"}"
 }
fi

if [$# -ne 1]
then
 usage
 exit 1
fi

filename=$1

readline title "Page title: "
readline h1 "Main headline: " "$title"
readline css "Style sheet file: " "${filename%.*}.css"

printf "$template" "$title" "$css" "$h1" > "$filename"

Summary
Shell functions enable you to create large, fast, sophisticated programs. Without them, the shell could
hardly be called a real programming language. Functions will be part of almost everything from here to
the end of the book.

Commands
local: Restricts a variable’s scope to the current function and its children

return: Exits a function (with an optional return code)

set: With --, replaces the positional parameters with the remaining arguments (after --)

Exercises
1. Rewrite function isvalidip using parameter expansion instead of changing IFS.

2. Add a check to _max3 to verify that all three arguments are integers.

C H A P T E R 7

■ ■ ■

67

String Manipulation

In the Bourne shell, very little string manipulation was possible without resorting to external commands.
Strings could be concatenated by juxtaposition, they could be split by changing the value of IFS, and
they could be searched with case, but anything else required an external command.

Even things that could be done entirely in the shell were often relegated to external commands, and
that practice has continued to this day. In some current Linux distributions, you can find the following
snippet in /etc/profile. It checks whether a directory is included in the PATH variable:

if ! echo ${PATH} |grep -q /usr/games
then
 PATH=$PATH:/usr/games
fi

Even in a Bourne shell, you can do this without an external command:

case :$PATH: in
 :/usr/games:);;
 *) PATH=$PATH:/usr/games ;;
esac

The POSIX shell includes a number of parameter expansions that slice and dice strings, and bash
adds even more. These were outlined in Chapter 5, and their use is expanded upon in this chapter along
with other string techniques.

Concatenation
Concatenation is the joining together of two or more items to form one larger item. In this case, the
items are strings. They are joined by placing one after the other. A common example, which I used in
Chapter 1, adds a directory to the PATH variable. It concatenates a variable with a single-character string
(:), another variable, and a literal string:

PATH=$PATH:$HOME/bin

If the right side of the assignment contains a literal space or other character special to the shell, then
it must be quoted with double quotes (variables inside single quotes are not expanded):

var=$HOME/bin # this comment is not part of the assignment
var="$HOME/bin # but this is"

CHAPTER 7 ■ STRING MANIPULATION

68

In bash-3.1, a string append operator (+=) was added:

$ var=abc
$ var+=xyz
$ echo "$var"
abcxyz

Because this offers very little advantage over the standard method (var=${var}xyz), there is no good
reason to use it. (It does make sense to use += for appending to an array, as demonstrated in Chapter 5.)

Repeat Character to a Given Length
Concatenation is used in this function that builds a string of N characters; it loops, adding one instance
of $1 each time, until the string ($_REPEAT) reaches the desired length (contained in $2).

_repeat()
{
 #@ USAGE: _repeat string number
 _REPEAT=
 while [${#_REPEAT} -lt $2]
 do
 _REPEAT=$_REPEAT$1
 done
}

The result is stored in the variable _REPEAT:

$ _repeat % 40
$ printf "%s\n" "$_REPEAT"
%%

You can speed that function up by concatenating more than one instance in each loop so that the
length increases geometrically. The problem with this version is that the resulting string will usually be
longer than required. To fix that, parameter expansion is used to trim the string to the desired length
(Listing 7-1).

Listing 7-1. repeat, Repeat a String N Times

_repeat()
{
 #@ USAGE: _repeat string number
 _REPEAT=$1
 while [${#_REPEAT} -lt $2] ## Loop until string exceeds desired length
 do
 _REPEAT=$_REPEAT$_REPEAT$_REPEAT ## 3 seems to be the optimum number
 done
 _REPEAT=${_REPEAT:0:$2} ## Trim to desired length
}

repeat()
{

CHAPTER 7 ■ STRING MANIPULATION

69

 _repeat "$@"
 printf "%s\n" "$_REPEAT"
}

The _repeat function is called by the alert function (Listing 7-2).

Listing 7-2. alert, Print a Warning Message with a Border and a Beep

alert() #@ USAGE: alert message border
{
 _repeat "${2:-#}" $((${#1} + 8))
 printf '\a%s\n' "$_REPEAT" ## \a = BEL
 printf '%2.2s %s %2.2s\n' "$_REPEAT" "$1" "$_REPEAT"
 printf '%s\n' "$_REPEAT"
}

The function prints the message surrounded by a border generated with _repeat:

$ alert "Do you really want to delete all your files?"

Do you really want to delete all your files? ##

The border character can be changed with a command-line argument:

$ alert "Danger, Will Robinson" $
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$ Danger, Will Robinson $$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Processing Character by Character
There are no direct parameter expansions to give either the first or last character of a string, but by using
the wildcard (?), a string can be expanded to everything except its first or last character:

$ var=strip
$ allbutfirst=${var#?}
$ allbutlast=${var%?}
$ sa "$allbutfirst" "$allbutlast"
:trip:
:stri:

The values of allbutfirst and allbutlast can then be removed from the original variable to give the
first or last character:

$ first=${var%"$allbutfirst"}
$ last=${var#"$allbutlast"}
$ sa "$first" "$last"
:s:
:p:

CHAPTER 7 ■ STRING MANIPULATION

70

The first character of a string can also be obtained with printf:

printf -v first "%c" "$var"

To operate on each character of a string one at a time, use a while loop and a temporary variable
that stores the value of var minus its first character. The temp variable is then used as the pattern in a
${var%PATTERN} expansion. Finally, $temp is assigned to var, and the loop continues until there are no
characters left in var:

while [-n "$var"]
do
 temp=${var#?} ## everything but the first character
 char=${var%"$temp"} ## remove everything but the first character
 : do something with "$char"
 var=$temp ## assign truncated value to var
done

Reversal
You can use the same method to reverse the order of characters in a string. Each letter is tacked on to the
end of a new variable (Listing 7-3).

Listing 7-3. revstr, Reverse the Order of a String; Store Result in _REVSTR

_revstr() #@ USAGE: revstr STRING
{
 var=$1
 _REVSTR=
 while [-n "$var"]
 do
 temp=${var#?}
 _REVSTR=$temp${var%"$temp"}
 var=$temp
 done
}

Case Conversion
In the Bourne shell, case conversion was done with external commands such as tr, which translates
characters in its first argument to the corresponding character in its second argument:

$ echo abcdefgh | tr ceh CEH # c => C, e => E, h => H
abCdEfgH
$ echo abcdefgh | tr ceh HEC # c => H, e => E, h => C
abHdEfgC

Ranges specified with a hyphen are expanded to include all intervening characters:

$ echo touchdown | tr 'a-z' 'A-Z'
TOUCHDOWN

CHAPTER 7 ■ STRING MANIPULATION

71

In the POSIX shell, short strings can be converted efficiently using parameter expansion and a

function containing a case statement as a lookup table. The function looks up the first character of its
first argument and stores the uppercase equivalent in _UPR. If the first character is not a lowercase letter,
it is unchanged (Listing 7-4).

Listing 7-4. to_upper, Convert First Character of $1 to Uppercase

to_upper()
 case $1 in
 a*) _UPR=A ;; b*) _UPR=B ;; c*) _UPR=C ;; d*) _UPR=D ;;
 e*) _UPR=E ;; f*) _UPR=F ;; g*) _UPR=G ;; h*) _UPR=H ;;
 i*) _UPR=I ;; j*) _UPR=J ;; k*) _UPR=K ;; l*) _UPR=L ;;
 m*) _UPR=M ;; n*) _UPR=N ;; o*) _UPR=O ;; p*) _UPR=P ;;
 q*) _UPR=Q ;; r*) _UPR=R ;; s*) _UPR=S ;; t*) _UPR=T ;;
 u*) _UPR=U ;; v*) _UPR=V ;; w*) _UPR=W ;; x*) _UPR=X ;;
 y*) _UPR=Y ;; z*) _UPR=Z ;; *) _UPR=${1%${1#?}} ;;
 esac

To capitalize a word (that is, just the first letter), call to_upper with the word as an argument, and
append the rest of the word to $_UPR:

$ word=function
$ to_upper "$word"
$ printf "%c%s\n" "$_UPR" "${word#?}"
Function

To convert the entire word to uppercase, you can use the upword function shown in Listing 7-5.

Listing 7-5. upword, Convert Word to Uppercase

_upword() #@ USAGE: upword STRING
{
 local word=$1
 while [-n "$word"] ## loop until nothing is left in $word
 do
 to_upper "$word"
 _UPWORD=$_UPWORD$_UPR
 word=${word#?} ## remove the first character from $word
 done
}

upword()
{
 _upword "$@"
 printf "%s\n" "$_UPWORD"
}

You can use the same technique to convert uppercase to lowercase, but I’ll leave the coding of that
as an exercise for you.

The basics of case conversion using the parameter expansions introduced in bash-4.0 were covered
in Chapter 5. Some uses for them are shown in the following sections.

CHAPTER 7 ■ STRING MANIPULATION

72

Comparing Contents Without Regard to Case
When getting user input, a programmer often wants to accept it in either uppercase or lowercase or even
a mixture of the two. When the input is a single letter, as in asking for Y or N, the code is simple. There is a
choice of using the or symbol (|):

read ok
case $ok in
 y|Y) echo "Great!" ;;
 n|N) echo Good-bye
 exit 1
 ;;
 *) echo Invalid entry ;;
esac

or a bracketed character list:

read ok
case $ok in
 [yY]) echo "Great!" ;;
 [nN]) echo Good-bye
 exit 1
 ;;
 *) echo Invalid entry ;;
esac

When the input is longer, the first method requires all possible combinations to be listed, for
example:

jan | jaN | jAn | jAN | Jan | JaN | JAn | JAN) echo "Great!" ;;

The second method works but is ugly and hard to read, and the longer the string is, the harder and
uglier it gets:

read monthname
case $monthname in ## convert $monthname to number
 [Jj][Aa][Nn]*) month=1 ;;
 [Ff][Ee][Bb]*) month=2 ;;
 ## ...put the rest of the year here
 [Dd][Ee][Cc]*) month=12 ;;
 [1-9]|1[0-2]) month=$monthname ;; ## accept number if entered
 *) echo "Invalid month: $monthname" >&2 ;;
esac

A better solution is to convert the input to uppercase first and then compare it:

_upword "$monthname"
case $_UPWORD in ## convert $monthname to number
 JAN*) month=1 ;;
 FEB*) month=2 ;;
 ## ...put the rest of the year here

CHAPTER 7 ■ STRING MANIPULATION

73

 DEC*) month=12 ;;
 [1-9]|1[0-2]) month=$monthname ;; ## accept number if entered
 *) echo "Invalid month: $monthname" >&2 ;;
esac

■ Note See Listing 7-11 at the end of this chapter for another method of converting a month name to a number.

In bash-4.0, you can replace the _upword function with case ${monthname^^} in, although I might
keep it in a function to ease transition between versions of bash:

_upword()
{
 _UPWORD=${1^^}
}

Check for Valid Variable Name
You and I know what constitutes a valid variable name, but do your users? If you ask a user to enter a
variable name, as you might in a script that creates other scripts, you should check that what is entered
is a valid name. The function to do that is a simple check for violation of the rules: a name must contain
only letters, numbers, and underscores and must begin with a letter or an underscore (Listing 7-6).

Listing 7-6. validname, Check $1 for a Valid Variable or Function Name

validname() #@ USAGE: validname varname
 case $1 in
 ## doesn't begin with letter or underscore, or
 ## contains something not letter, number, or underscore
 [!a-zA-Z_]* | *[!a-zA-z0-9_]*) return 1;;
 esac

The function is successful if the first argument is a valid variable name; otherwise, it fails.

$ for name in name1 2var first.name first_name last-name
> do
> validname "$name" && echo " valid: $name" || echo "invalid: $name"
> done
 valid: name1
invalid: 2var
invalid: first.name
 valid: first_name
invalid: last-name

CHAPTER 7 ■ STRING MANIPULATION

74

Insert One String into Another
To insert a string into another string, it is necessary to split the string into two parts—the part that will be
to the left of the inserted string and the part to the right. Then the insertion string is sandwiched
between them.

This function takes three arguments: the main string, the string to be inserted, and the position at
which to insert it. If the position is omitted, it defaults to inserting after the first character. The work is
done by the first function, which stores the result in _insert_string. This function can be called to save
the cost of using command substitution. The insert_string function takes the same arguments, which it
passes to _insert_string and then prints the result (Listing 7-7).

Listing 7-7. insert_string, Insert One String into Another at a Specified Location

_insert_string() #@ USAGE: _insert_string STRING INSERTION [POSITION]
{
 local insert_string_dflt=2 ## default insert location
 local string=$1 ## container string
 local i_string=$2 ## string to be inserted
 local i_pos=${3:-${insert_string_dflt:-2}} ## insert location
 local left right ## before and after strings
 left=${string:0:$(($i_pos - 1))} ## string to left of insert
 right=${string:$(($i_pos – 1))} ## string to right of insert
 _insert_string=$left$i_string$right ## build new string
}

insert_string()
{
 _insert_string "$@" && printf "%s\n" "$_insert_string"
}

Examples
$ insert_string poplar u 4
popular
$ insert_string show ad 3
shadow
$ insert_string tail ops ## use default position
topsail

Overlay
To overlay a string on top of another string, the technique is similar to inserting a string, the difference
being that the right side of the string begins not immediately after the left side but at the length of the
overlay further along (Listing 7-8).

CHAPTER 7 ■ STRING MANIPULATION

75

Listing 7-8. overlay, Place One String Over the Top of Another

_overlay() #@ USAGE: _overlay STRING SUBSTRING START
{ #@ RESULT: in $_OVERLAY
 local string=$1
 local sub=$2
 local start=$3
 local left right
 left=${string:0:start-1} ## See note below
 right=${string:start+${#sub}-1}
 _OVERLAY=$left$sub$right
}

overlay() #@ USAGE: overlay STRING SUBSTRING START
{
 _overlay "$@" && printf "%s\n" "$_OVERLAY"
}

■ Note The arithmetic within the substring expansion doesn’t need the full POSIX arithmetic syntax; bash will
evaluate an expression if it finds one in the place of an integer.

Examples
$ {
> overlay pony b 1
> overlay pony u 2
> overlay pony s 3
> overlay pony d 4
> }
bony
puny
posy
pond

Trim Unwanted Characters
Variables often arrive with unwanted padding, usually spaces or leading zeroes. These can easily be
removed with a loop and a case statement:

var=" John "
while : ## infinite loop
do
 case $var in
 ' '*) var=${var#?} ;; ## if $var begins with a space remove it
 *' ') var=${var%?} ;; ## if $var ends with a space remove it

CHAPTER 7 ■ STRING MANIPULATION

76

 *) break ;; ## no more leading or trailing spaces, so exit the loop
 esac
done

A faster method finds the longest string that doesn’t begin or end with the character to be trimmed
and then removes everything but that from the original string. This is similar to getting the first or last
character from a string, where we used allbutfirst and allbutlast variables.

If the string is “ John ”, the longest string that ends in a character that is not to be trimmed
is “ John”. That is removed, and the spaces at the end are stored in rightspaces with this:

rightspaces=${var##*[!]} ## remove everything up to the last non-space

Then you remove $rightspaces from $var:

var=${var%"$rightspaces"} ## $var now contains " John"

Next, you find all the spaces on the left with this:

leftspaces=${var%%[!]*} ## remove from the first non-space to the end

Remove $leftspaces from $var:

var=${var#"$leftspaces"} ## $var now contains "John"

This technique is refined a little for the trim function (Listing 7-9). Its first argument is the string to
be trimmed. If there is a second argument, that is the character that will be trimmed from the string. If
no character is supplied, it defaults to a space.

Listing 7-9. trim, Trim Unwanted Characters

_trim() #@ Trim spaces (or character in $2) from $1
{
 local trim_string
 _TRIM=$1
 trim_string=${_TRIM##*[!${2:- }]}
 _TRIM=${_TRIM%"$trim_string"}
 trim_string=${_TRIM%%[!${2:- }]*}
 _TRIM=${_TRIM#"$trim_string"}
}

trim() #@ Trim spaces (or character in $2) from $1 and print the result
{
 _trim "$@" && printf "%s\n" "$_TRIM"
}

Examples
$ trim " S p a c e d o u t "
S p a c e d o u t
$ trim "0002367.45000" 0
2367.45

CHAPTER 7 ■ STRING MANIPULATION

77

Index
I wrote the index function to convert a month name into its ordinal number; it returns the position of
one string inside another (Listing 7-10). It uses parameter expansion to extract the string that precedes
the substring. The index of the substring is one more than the length of the extracted string.

Listing 7-10. index, Return Position of One String Inside Another

_index() #@ Store position of $2 in $1 in $_INDEX
{
 local idx
 case $1 in
 "") _INDEX=0; return 1 ;;
 "$2") ## extract up to beginning of the matching portion
 idx=${1%%"$2"*}
 ## the starting position is one more than the length
 _INDEX=$((${#idx} + 1)) ;;
 *) _INDEX=0; return 1 ;;
 esac
}

index()
{
 _index "$@"
 printf "%d\n" "$_INDEX"
}

Listing 7-11 shows the function to convert a month name to a number. It converts the first three
letters of the month name to uppercase and finds its position in the months string. It divides that position
by 4 and adds 1 to get the month number.

Listing 7-11. month2num, Convert a Month Name to Its Ordinal Number

_month2num()
{
 local months=JAN.FEB.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOV.DEC
 _upword "${1:0:3}" ## take first three letters of $1 and convert to uppercase
 _index "$months" "$_UPWORD" || return 1
 _MONTH2NUM=$(($_INDEX / 4 + 1))
}

month2num()
{
 _month2num "$@" &&
 printf "%s\n" "$_MONTH2NUM"
}

CHAPTER 7 ■ STRING MANIPULATION

78

Summary
You learned the following commands and functions in this chapter.

Commands
tr: Translates characters

Functions
repeat: Repeats a string until it has length N

alert: Prints a warning message with a border and a beep

revstr: Reverses the order of a string; stores result in _REVSTR

to_upper: Converts the first character of $1 to uppercase

upword: Converts a word to uppercase

validname: Checks $1 for a valid variable or function name

insert_string: Inserts one string into another at a specified location

overlay: Places one string over the top of another

trim: Trims unwanted characters

index: Returns the position of one string inside another

month2num: Converts a month name to its ordinal number

Exercises
1. What is wrong with this code (besides the inefficiency noted at the beginning of the

chapter)?

if ! echo ${PATH} |grep -q /usr/games
 PATH=$PATH:/usr/games
fi

2. Write a function called to_lower that does the opposite of the to_upper function in
Listing 7-4.

3. Write a function, palindrome, that checks whether its command-line argument is a
palindrome (that is, a word or phrase that is spelled the same backward and forward). Note
that spaces and punctuation are ignored in the test. Exit successfully if it is a palindrome.
Include an option to print a message as well as set the return code.

4. Write two functions, ltrim and rtrim, that trim characters in the same manner as trim but
from only one side of the string, left and right, respectively.

C H A P T E R 8

■ ■ ■

79

File Operations and Commands

Because the shell is an interpreted language, it is comparatively slow. Many operations on files are best
done with external commands that implicitly loop over the lines of a file. At other times, the shell itself is
more efficient. This chapter looks at how the shell works with files—both shell options that modify and
extend file name expansion and shell options that read and modify the contents of files. Several external
commands that work on files are explained, often accompanied by examples of when not to use them.

Some of the scripts in this chapter use an especially prepared file containing the King James version
of the Bible. The file can be downloaded from http://cfaj.freeshell.org/kjv/kjv.txt. Download it to
your home directory with wget:

wget http://cfaj.freeshell.org/kjv/kjv.txt

In this file, each verse of the bible is on a single line preceded by the name of the book and the
chapter and verse numbers, all delimited with colons:

Genesis:001:001:In the beginning God created the heaven and the earth.
Exodus:020:013:Thou shalt not kill.
Exodus:022:018:Thou shalt not suffer a witch to live.
John:011:035:Jesus wept.

The path to the file will be kept in the variable kjv, which will be used whenever the file is needed.

export kjv=$HOME/kjv.txt

Reading a File
The most basic method of reading the contents of a file is a while loop with its input redirected:

while read ## no name supplied so the variable REPLY is used
do
 : do something with "$REPLY" here
done < "$kjv"

The file will be stored, one line at a time, in the variable REPLY. More commonly, one or more
variable names will be supplied as arguments to read:

while read name phone
do
 printf "Name: %-10s\tPhone: %s\n" "$name" "$phone"
done < "$file"

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

80

The lines are split using the characters in IFS as word delimiters. If the file contained in $file
contains these two lines:

John 555-1234
Jane 555-7531

the output of the previous snippet will be as follows:

Name: John Phone: 555-1234
Name: Jane Phone: 555-7531

By changing the value of IFS before the read command, other characters can be used for word
splitting. The same script, using only a hyphen in IFS instead of the default space, tab, and newline,
would produce this:

$ while IFS=- read name phone
> do
> printf "Name: %-10s\tPhone: %s\n" "$name" "$phone"
> done < "$file"
Name: John 555 Phone: 1234
Name: Jane 555 Phone: 7531

Placing an assignment in front of a command causes it to be local to that command and does not
change its value elsewhere in the script.

To read the King James version of the Bible (henceforth referred to as KJV), the field separator IFS
should be set to a colon so that lines can be split into book, chapter, verse, and text, each being assigned
to a separate variable (Listing 8-1).

Listing 8-1. kjvfirsts, Print Book, Chapter, Verse, and First Words from KJV

while IFS=: read book chapter verse text
do
 firstword=${text%% *}
 printf "%s %s:%s %s\n" "$book" "$chapter" "$verse" "$firstword"
done < "$kjv"

The output (with more than 31,000 lines replaced by a single ellipsis) looks like this:

Genesis 001:001 In
Genesis 001:002 And
Genesis 001:003 And
...
Revelation 022:019 And
Revelation 022:020 He
Revelation 022:021 The

On my computer, a 1.6GHz Pentium 4 with many applications running, this script takes more than
half a minute to run. The same task written in awk takes about a quarter of the time. See the section on
awk later in this chapter for the script.

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

81

The awk programming language is often used in shell scripts when the shell itself is too slow (as in
this case) or when features not present in the shell are required (for example, arithmetic using decimal
fractions). The language is explained in somewhat more detail in the following section.

External Commands
You can accomplish many tasks using the shell without calling any external commands. Some use one or
more commands to provide data for a script to process. Other scripts are best written with nothing but
external commands.

Often, the functionality of an external command can be duplicated within the shell, and sometimes
it cannot. Sometimes using the shell is the most efficient method; sometimes it is the slowest. Here I’ll
cover a number of external commands that process files and show how they are used (and often
misused). These are not detailed explanations of the commands; usually they are an overview with, in
most cases, a look at how they are used—or misused—in shell scripts.

cat
One of the most misused commands, cat reads all the files on its command line and prints their
contents to the standard output. If no file names are supplied, cat reads the standard input. It is an
appropriate command when more than one file needs to be read or when a file needs to be included
with the output of other commands:

cat *.txt | tr aeiou AEIOU > upvowel.txt

{
 date ## Print the date and time
 cat report.txt ## Print the contents of the file
 printf "Signed: " ## Print "Signed: " without a newline
 whoami ## Print the user's login name
} | mail -s "Here is the report" paradigm@example.com

It is not necessary when the file or files could have been placed on the command line:

cat thisfile.txt | head -n 25 > thatfile.txt ## WRONG
head -n 25 thisfile.txt > thatfile.txt ## CORRECT

It is useful when more than one file (or none) needs to be supplied to a command that cannot take a
file name as an argument or can take only a single file, as in redirection. It is useful when one or more file
names may or may not be on the command line. If no files are given, the standard input is used:

cat "$@" | while read x; do whatever; done

The same thing can be done using process substitution, the advantage being that variables modified
within the while loop will be visible to the rest of the script. The disadvantage is that it makes the script
less portable.

while read x; do : whatever; done < <(cat "$@")

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

82

Another frequent misuse of cat is to use the output as a list with for:

for line in $(cat "$kjv"); do n=$((${n:-0} + 1)); done

That script does not put lines into the line variable; it reads each word into it. The value of n will be
795989, which is the number of words in the file. There are 31,102 lines in the file. (And if you really
wanted that information, you would use the wc command.)

head
By default, head prints the first ten lines of each file on the command line, or from the standard input if
no file name is given. The -n option changes that default:

$ head -n 1 "$kjv"
Genesis:001:001:In the beginning God created the heaven and the earth.

The output of head, like that of any command, can be stored in a variable:

filetop=$(head -n 1 "$kjv")

In that instance, head is unnecessary; this shell one-liner does the same thing without any external
command:

read filetop < "$kjv"

Using head to read one line is especially inefficient when the variable then has to be split into its
constituent parts:

book=${filetop%%:*}
text=${filetop##*:}

That can be accomplished much more rapidly with read:

$ IFS=: read book chapter verse text < "$kjv"
$ sa "$book" "$chapter" "$verse" "${text%% *}"
:Genesis:
:001:
:001:
:In:

Even reading multiple lines into variables can be faster using the shell instead of head:

{
 read line1
 read line2
 read line3
 read line4
} < "$kjv"

or, you can put the lines into an array:

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

83

for n in {1..4}
do
 read lines[${#lines[@]}]
done < "$kjv"

In bash-4.0, the new builtin command mapfile can also be used to populate an array:

mapfile -tn 4 lines < "$kjv"

The mapfile command is explained in more detail in Chapter 13.

touch
The default action of touch is to update the timestamp of a file to the current time, creating an empty file
if it doesn’t exist. An argument to the -d option changes the timestamp to that time rather than the
present. It is not necessary to use touch to create a file. The shell can do it with redirection:

> filename

Even to create multiple files, the shell is faster:

for file in {a..z}$RANDOM
do
 > "$file"
done

ls
Unless used with one or more options, the ls command offers little functional advantage over shell file
name expansion. Both list files in alphabetical order. If you want the files displayed in neat columns
across the screen, ls is useful. If you want to do anything with those file names, it can be done better,
and often more safely, in the shell.

With options, however, it’s a different matter. The -l option prints more information about the file,
including its permissions, owner, size, and date of modification. The -t option sorts the files by last
modification time, most recent first. The order (whether by name or by time) is reversed with the -r
option.

I often see ls misused in a manner that can break a script. File names containing spaces are an
abomination, but they are so common nowadays that scripts must take their possibility (or should I say
inevitability?) into account. In the following construction (that I see all too often), not only is ls
unnecessary, but its use will break the script if any file names contain spaces:

for file in $(ls); do

The result of command substitution is subject to word splitting, so file will be assigned to each
word in a file name if it contains spaces:

$ touch {zzz,xxx,yyy}\ a ## create 3 files with a space in their names
$ for file in $(ls *\ *); do echo "$file"; done
xxx

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

84

a
yyy
a
zzz
a

On the other hand, using file name expansion gives the desired (that is, correct) results:

$ for file in *\ *; do echo "$file"; done
xxx a
yyy a
zzz a

cut
The cut command extracts portions of a line, specified either by character or by field. Cut reads from
files listed on the command line or from the standard input if no files are specified. The selection to be
printed is done by using one of three options, -b, -c, and -f, which stand for bytes, characters, and fields.
Bytes and characters differ only when used in locales with multibyte characters. Fields are delimited by a
single tab (consecutive tabs delimit empty fields), but that can be changed with the -d option.

The -c option is followed by one or more character positions. Multiple columns (or fields when the
-f option is used) can be expressed by a comma-separated list or by a range:

$ cut -c 22 "$kjv" | head -n3
e
h
o
$ cut -c 22,24,26 "$kjv" | head -n3
ebg
h a
o a
$ cut -c 22-26 "$kjv" | head -n3
e beg
he ea
od sa

A frequent misuse of cut is to extract a portion of a string. Such manipulations can be done with
shell parameter expansion. Even if it takes two or three steps, it will be much faster than calling an
external command.

$ boys="Brian,Carl,Dennis,Mike,Al"
$ printf "%s\n" "$boys" | cut -d, -f3 ## WRONG
Dennis
$ IFS=, ## Better, no external command used
$ boyarray=($boys)
$ printf "%s\n" "${boyarray[2]}"
Dennis
$ temp=${boys#*,*,} ## Better still, and more portable
$ printf "%s\n" "${temp%%,*}"
Dennis

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

85

wc
To count the number of lines, words, or bytes in a file, use wc. By default, it prints all three pieces of
information in that order followed by the name of the file. If multiple file names are given on the
command line, it prints a line of information for each one and then the total:

$ wc "$kjv" /etc/passwd
 31102 795989 4639798 /home/chris/kjv.txt
 50 124 2409 /etc/passwd
 31152 796113 4642207 total

If there are no files on the command line, cut reads from the standard input:

$ wc < "$kjv"
 31102 795989 4639798

The output can be limited to one or two pieces of information by using the -c, -w, or -l option. If any
options are used, wc prints only the information requested:

$ wc -l "$kjv"
31102 /home/chris/kjv.txt

Newer versions of wc have another option, -m, which prints the number of characters, which will be
less than the number of bytes if the file contains multibyte characters. The default output remains the
same, however.

As with so many commands, wc is often misused to get information about a string rather than a file.
To get the length of a string held in a variable, use parameter expansion: ${#var}. To get the number of
words, use set and the special parameter $#:

set -f
set -- $var
echo $#

To get the number of lines, use this:

IFS=$'\n'
set -f
set -- $var
echo $#

Regular Expressions
Regular expressions (often called regexes or regexps) are a more powerful form of pattern matching
than file name globbing and can express a much wider range of patterns more precisely. They range
from very simple (a letter or number is a regex that matches itself) to the mind-bogglingly complex.
Long expressions are built with a concatenation of shorter expressions and, when broken down, are
not hard to understand.

There are similarities between regexes and file-globbing patterns: a list of characters within square
brackets matches any of the characters in the list. An asterisk matches zero or more—not any character

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

86

as in file expansion—of the preceding character. A dot matches any character, so .* matches any string
of any length, much as an asterisk does in a globbing pattern.

Three important commands use regular expressions: grep, sed, and awk. The first is used for
searching files, the second for editing files, and the third for almost anything because it is a complete
programming language in its own right.

grep
grep searches files on the command line, or the standard input if no files are given, and prints lines
matching a string or regular expression.

$ grep ':0[57]0:001:' "$kjv" | cut -c -78
Genesis:050:001:And Joseph fell upon his father's face, and wept upon him, and
Psalms:050:001:The mighty God, even the LORD, hath spoken, and called the eart
Psalms:070:001:MAKE HASTE, O GOD, TO DELIVER ME; MAKE HASTE TO HELP ME, O LORD
Isaiah:050:001:Thus saith the LORD, Where is the bill of your mother's divorce
Jeremiah:050:001:The word that the LORD spake against Babylon and against the

The shell itself could have done the job:

while read line
do
 case $line in
 0[57]0:001:) printf "%s\n" "${line:0:78}" ;;
 esac
done < "$kjv"

but it takes many times longer.
Often grep and other external commands are used to select a small number of lines from a file and

pipe the results to a shell script for further processing:

$ grep 'Psalms:023' "$kjv" |
> {
> total=0
> while IFS=: read book chapter verse text
> do
> set -- $text ## put the verse into the positional parameters
> total=$(($total + $#)) ## add the number of parameters
> done
> echo $total
}
118

grep should not be used to check whether one string is contained in another. For that, there is case

or bash’s expression evaluator, [[...]].

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

87

sed
For replacing a string or pattern with another string, nothing beats the sstream eeditor sed. It is also good
for pulling a particular line or range of lines from a file. To get the first three lines of the book of Leviticus
and convert the name of the book to uppercase, you’d use this:

$ sed -n '/Lev.*:001:001/,/Lev.*:001:003/ s/Leviticus/LEVITICUS/p' "$kjv" |
> cut -c -78
LEVITICUS:001:001:And the LORD called unto Moses, and spake unto him out of th
LEVITICUS:001:002:Speak unto the children of Israel, and say unto them, If any
LEVITICUS:001:003:If his offering be a burnt sacrifice of the herd, let him of

The -n option tells sed not to print anything unless specifically told to do so; the default is to print all
lines whether modified or not. The two regexes, enclosed in slashes and separated by a comma, define a
range from the line that matches the first one to the line that matches the second; s is a command to
search and replace and is probably the most often used.

When modifying a file, the standard Unix practice is to save the output to a new file and then move
it to the place of the old one if the command is successful:

sed 's/this/that/g' "$file" > tempfile && mv tempfile "$file"

Some recent versions of sed have an -i option that will change the file in situ. If used, the option
should be given a suffix to make a backup copy in case the script mangles the original irretrievably:

sed -i.bak 's/this/that/g' "$file"

More complicated scripts are possible with sed, but they quickly become very hard to read. This
example is far from the worst I’ve seen, but it takes much more than a glance to figure out what it is
doing. (It searches for Jesus wept and prints lines containing it along with the lines before and after; you
can find a commented version at http://www.grymoire.com/Unix/Sed.html.)

sed -n '
/Jesus wept/ !{
 h
}
/Jesus wept/ {
 N
 x
 G
 p
 a\

 s/.*\n.*\n\(.*\)$/\1/
 h
}' "$kjv"

As you’ll see shortly, the same program in awk is comparatively easy to understand.
There will be more examples of sed in later chapters, so we’ll move on with the usual admonishment

that external commands should be used on files, not strings. ‘Nuff sed!

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

88

awk
awk is a pattern scanning and processing language. An awk script is composed of one or more condition-
action pairs. The condition is applied to each line in the file or files passed on the command line or to
the standard input if no files are given. When the condition resolves successfully, the corresponding
action is performed.

The condition may be a regular expression, a test of a variable, an arithmetic expression, or anything
that produces a nonzero or nonempty result. It may represent a range by giving two condition separated
by a comma; once a line matches the first condition, the action is performed until a line matches the
second condition. For example, this condition matches input lines 10 to 20 inclusive (NR is a variable that
contains the current line number):

NR == 10, NR == 20

There are two special conditions, BEGIN and END. The action associated with BEGIN is performed
before any lines are read. The END action is performed after all the lines have been read or another action
executes an exit statement.

The action can be any computation task. It can modify the input line, it can save it in a variable, it
can perform a calculation on it, it can print some or all of the line, and it can do anything else you can
think of.

Either the condition or the action may be missing. If there is no condition, the action is applied to all
lines. If there is no action, matching lines are printed.

Each line is split into fields based on the contents of the variable FS. By default, it is any whitespace.
The fields are numbered: $1, $2, and so on. $0 contains the entire line. The variable NF contains the
number of fields in the line.

In the awk version of the kjvfirsts script, the field separator is changed to a colon using the -F
command-line option (Listing 8-2). There is no condition, so the action is performed for every line. It
splits the fourth field, the verse itself, into words, and then it prints the first three fields and the first word
of the verse.

Listing 8-2. kjvfirsts-awk, Print Book, Chapter, Verse, and First Words from the KJV

awk -F: ' ## -F: sets the field delimiter to a colon
{
 ## split the fourth field into an array of words
 split($4,words," ")
 ## printf the first three fields and the first word of the fourth
 printf "%s %s:%s %s\n", $1, $2, $3, words[1]
}' "$kjv"

To find the shortest verse in the KJV, the next script checks the length of the fourth field. If it is less
than the value of the shortest field seen so far, its length (minus the length of the name of the book),
measured with the length() function, is stored in min, and the line is stored in verse. At the end, the line
stored in verse is printed.

$ awk -F: 'BEGIN { min = 999 } ## set min larger than any verse length
length($0) - length($1) < min {
 min = length($0) – length($1)
 verse = $0
 }

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

89

END { print verse }' "$kjv"
John:011:035:Jesus wept.

As promised, here is an awk script that searches for a string (in this case, Jesus wept) and prints it
along with the previous and next lines:

awk '/Jesus wept/ {
 print previousline
 print $0
 n = 1
 next
 }
n == 1 {
 print $0
 print "---"
 n = 2
 }
 {
 previousline = $0
 }' "$kjv"

To total a column of numbers:

$ printf "%s\n" {12..34} | awk '{ total += $1 }
> END { print total }'
529

This has been a very rudimentary look at awk. There will be a few more awk scripts later in the book,
but for a full understanding, there are various books on awk

The AWK Programming Language by the language’s inventors (Alfred V. AAho, Peter J.
Weinberger, and Brian W. KKernighan)

sed & awk by Dale Dougherty and Arnold Robbins

Effective awk Programming by Arnold Robbins

Or start with the man page.

File Name Expansion Options
To show you the effects of the various file name expansion options, I’ll use the sa command defined in
Chapter 4 as well as pr4, a function that prints its arguments in four columns across the screen. I have sa
implemented as a function that, along with pr4, I put in my .bashrc file:

sa()
{
 pre=: post=:
 printf "$pre%s$post\n" "$@"
}

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

90

The pr4 function prints its argument in four equal columns, truncating any string that is too long for
its allotted space:

pr4()
{
 ## calculate column width
 local width=$(((${COLUMNS:-80} - 2) / 4))

 ## Note that braces are necessary on the second $width to separate it from 's'
 local s=%-$width.${width}s
 printf "$s $s $s $s\n" "$@"
}

There are six shell options that affect the way in which file names are expanded. They are enabled
and disabled with the shopt command using options -s and -u, respectively:

shopt -s extglob ## enable the extglob option
shopt -u nocaseglob ## disable the nocaseglob option

To demonstrate the various globbing options, we’ll create a directory, cd to it, and put some empty
files in it:

$ mkdir "$HOME/globfest" && cd "$HOME/globfest" || echo Failed >&2
$ touch {a..f}{0..9}{t..z}$RANDOM .{a..f}{0..9}$RANDOM

This has created 420 files beginning with a letter and 60 beginning with a dot. There are, for
example, seven files beginning with a1:

$ sa a1*
:a1t18345:
:a1u18557:
:a1v12490:
:a1w22008:
:a1x6088:
:a1y28651:
:a1z18318:

nullglob
Normally, when a wildcard pattern doesn’t match any files, the pattern remains the same:

$ sa *xy
:*xy:

If the nullglob option is set and there is no match, an empty string is returned:

$ shopt -s nullglob
$ sa *xy
::
$ shopt -u nullglob ## restore the default behavior

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

91

failglob
If the failglob option is set and no files match a wildcard pattern, an error message is printed:

$ shopt -s failglob
$ sa *xy
bash: no match: *xy
$ shopt -u failglob ## restore the default behavior

dotglob
A wildcard at the beginning of a file name expansion pattern does not match file names that begin with a
dot. These are intended to be “hidden” files and are not matched by standard file name expansion:

$ sa * | wc -l ## not dot files
420

To match “dot” files, the leading dot must be given explicitly:

$ sa .* | wc -l ## dot files; includes . and ..
62

The touch command at the beginning of this section created 60 dot files. The .* expansion shows 62
because it includes the hard-linked entries . and .. that are created in all subdirectories.

The dotglob option causes dot files to be matched just like any other files:

$ shopt -s dotglob
$ printf "%s\n" * | wc -l
480

Expansions of *, with dotglob enabled, do not include the hard links . and ...

extglob
When extended globbing is turned on with shopt -s extglob, five new file name expansion operators
are added. In each case, the pattern-list is a list of pipe-separated globbing patterns. It is enclosed in
parentheses, which are preceded by ?, *, +, @, or !, for example, +(a[0-2]|34|2u),
?(john|paul|george|ringo).

To demonstrate extended globbing, remove the existing files in $HOME/globfest, and create a new
set:

$ cd $HOME/globfest
$ rm *
$ touch {john,paul,george,ringo}{john,paul,george,ringo}{1,2}$RANDOM\
> {john,paul,george,ringo}{1,2}$RANDOM{,,} {1,2}$RANDOM{,,,}

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

92

?(pattern-list)
This pattern-list matches zero or one occurrence of the given patterns. For example, the pattern
?(john|paul)2 matches john2, paul2, and 2:

$ pr4 ?(john|paul)2*
222844 228151 231909 232112
john214726 john216085 john26 paul218047
paul220720 paul231051

*(pattern-list)
This is like the previous form, but it matches zero or more occurrences of the given patterns;
*(john|paul)2 will match all files matched in the previous example, as well as those that have either
pattern more than once in succession:

pr4 *(john|paul)2*
222844 228151 231909 232112
john214726 john216085 john26 johnjohn23185
johnpaul25000 paul218047 paul220720 paul231051
pauljohn221365 paulpaul220101

@(pattern-list)
The pattern @(john|paul)2 matches files that have a single instance of either pattern followed by a 2:

$ pr4 @(john|paul)2*
john214726 john216085 john26 paul218047
paul220720 paul231051

+(pattern-list)
The pattern +(john|paul)2 matches files that begin with one or more instances of a pattern in the list
followed by a 2:

$ pr4 +(john|paul)2*
john214726 john216085 john26 johnjohn23185
johnpaul25000 paul218047 paul220720 paul231051
pauljohn221365 paulpaul220101

!(pattern-list)
The last extended globbing pattern matches anything except one of the given patterns. It differs from the
rest in that each pattern must match the entire file name. The pattern !(r|p|j)* will not exclude files
beginning with r, p, or j (or any others), but the following pattern will (and will also exclude files
beginning with a number):

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

93

$ pr4 !([jpr0-9]*)
george115425 george132443 george1706 george212389
george223300 george27803 georgegeorge16122 georgegeorge28573
georgejohn118699 georgejohn29502 georgepaul12721 georgepaul222618
georgeringo115095 georgeringo227768

■ Note The explanation given here for the last of these patterns is simplified but should be enough to cover
its use in the vast majority of cases. For a more complete explanation, see Chapter 9 in From Bash to Z Shell
(Apress, 2005).

nocaseglob
When the nocaseglob option is set, lowercase letters match uppercase letters, and vice versa:

$ cd $HOME/globfest
$ rm -rf *
$ touch {{a..d},{A..D}}$RANDOM
$ pr4 *
A31783 B31846 C17836 D14046
a31882 b31603 c29437 d26729

The default behavior is for a letter to match only those of the same case:

$ pr4 [ab]*
a31882 b31603

The nocaseglob option causes a letter to match both cases:

$ shopt -s nocaseglob
$ pr4 [ab]*
A31783 B31846 a31882 b31603

globstar
Introduced in bash-4.0, the globstar option allows the use of ** to descend recursively into directories
and subdirectories looking for matching files. As an example, create a hierarchy of directories:

$ cd $HOME/globfest
$ rm -rf *
$ mkdir -p {ab,ac}$RANDOM/${RANDOM}{q1,q2}/{z,x}$(($RANDOM % 10))

The double asterisk wildcard expands to all the directories:

$ shopt -s globstar
$ pr4 **

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

94

ab11278 ab11278/22190q1 ab11278/22190q1/z7 ab1394
ab1394/10985q2 ab1394/10985q2/x5 ab4351 ab4351/23041q1
ab4351/23041q1/x1 ab4424 ab4424/8752q2 ab4424/8752q2/z9
ac11393 ac11393/20940q1 ac11393/20940q1/z4 ac17926
ac17926/19435q2 ac17926/19435q2/x0 ac23443 ac23443/5703q2
ac23443/5703q2/z4 ac5662 ac5662/17958q1 ac5662/17958q1/x4

Summary
Many external commands deal with files. In this chapter, I have covered the most important ones and
those that are most often misused. They have not been covered in detail, and some emphasis has been
placed on how to avoid calling them when the shell can do the same job more efficiently. Basically, it
boils down to this: use external commands to process files, not strings.

Shell Options
nullglob: Returns null string if no files match pattern

failglob: Prints error message if no files match

dotglob: Includes dot files in pattern matching

extglob: Enables extended file name expansion patterns

nocaseglob: Matches files ignoring case differences

globstar: Searches file hierarchy for matching files

External Commands
awk: Is a pattern scanning and processing language

cat: Concatenates files and print on the standard output

cut: Removes sections from each line of one or more files

grep: Prints lines matching a pattern

head: Outputs the first part of one or more files

ls: Lists directory contents

sed: Is a stream editor for filtering and transforming text

touch: Changes file timestamps

wc: Counts lines, words, and characters in one or more files

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

95

Exercises
1. Modify the kjvfirsts script accept a command-line argument that specifies how many

chapters are to be printed.

2. Why are the chapter and verse numbers in kjvfirsts formatted with %s instead of %d?

3. Write an awk script to find the longest verse in KJV.

CHAPTER 8 ■ FILE OPERATIONS AND COMMANDS

96

C H A P T E R 9

97

Reserved Words and
Builtin Commands

There are almost 60 builtin commands and more than 20 reserved words in bash. Some of them are
indispensable, and some are rarely used in scripts. Some are used primarily at the command line, and
some are seldom seen anywhere. Some have been discussed already, and others will be used extensively
in future chapters.

The reserved words (also called keywords) are !, case, coproc, do, done, elif, else, esac, fi, for,
function, if, in, select, then, until, while, {, }, time, [[, and]]. All except coproc, select, and time have
been covered earlier in the book.

In addition to the standard commands, new builtin commands can be dynamically loaded into the
shell at runtime. The bash source code package has more than 20 such commands ready to be compiled.

Because keywords and builtin commands are part of the shell itself, they execute much faster than
external commands. They do not have to start a new process, and they have access to, and can change,
the shell’s environment.

This chapter looks at some of the more useful reserved words and builtin commands, examining
some in detail and some with a summary; a few are deprecated. Many more are described elsewhere in
the book. For the rest, there is the builtins man page and the help builtin.

help, Display Information About Builtin Commands
The help command prints brief information about the usage of builtin commands and reserved words.
With the -s option, it prints a usage synopsis.

Two new options are available with bash-4.0: -d and -m. The first prints a short, one-line description
of the command; the latter formats the output in the style of a man page:

$ help -m help
NAME
 help - Display information about builtin commands.

SYNOPSIS
 help [-dms] [pattern ...]

DESCRIPTION
 Display information about builtin commands.

 Displays brief summaries of builtin commands. If PATTERN is
 specified, gives detailed help on all commands matching PATTERN,
 otherwise the list of help topics is printed.

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

98

 Options:
 -d output short description for each topic
 -m display usage in pseudo-manpage format
 -s output only a short usage synopsis for each topic matching
 PATTERN

 Arguments:
 PATTERN Pattern specifying a help topic

 Exit Status:
 Returns success unless PATTERN is not found or an invalid option is given.

SEE ALSO
 bash(1)

IMPLEMENTATION
 GNU bash, version 4.0.24(1)-release (i686-pc-linux-gnuoldld)
 Copyright (C) 2009 Free Software Foundation, Inc.
 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

The pattern is a globbing pattern, in which * matches any number of any characters and [...]
matches any single character in the enclosed list. Without any wildcard, a trailing * is assumed:

$ help -d '*le' tr ## show commands ending in le and beginning with tr
Shell commands matching keyword `*le, tr'

enable - Enable and disable shell builtins.
mapfile - Read lines from the standard input into an array variable.
while - Execute commands as long as a test succeeds.
trap - Trap signals and other events.
true - Return a successful result.

time, Print Time Taken for Execution of a Command
The reserved word, time, prints the time it takes for a command to execute. The command can be a
simple or compound command or a pipeline. The default output appears on three lines, showing the
real time, user CPU time, and system CPU time that was taken by the command:

$ time echo {1..30000} >/dev/null 2>&1

real 0m0.175s
user 0m0.152s
sys 0m0.017s

You can modify this output by changing the TIMEFORMAT variable:
$ TIMEFORMAT='%R seconds %P%% CPU usage'
$ time echo {1..30000} >/dev/null
0.153 seconds 97.96% CPU usage

The appendix contains a full description of the TIMEFORMAT variable.

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

99

A frequently asked question about the time command is, “Why can’t I redirect the output of time?”
The answer demonstrates a difference between a reserved word and a builtin command. When the shell
executes a command, the process is strictly defined (see Chapter 4). A shell keyword doesn’t have to
follow that procedure. In the case of time, the entire command line (with the exception of the keyword
itself but including the redirection) is passed to the shell to execute. When the command has completed,
the timing information is printed.

To redirect the output of time, enclose it in braces:

$ { time echo {1..30000} >/dev/null 2>&1 ; } 2> numlisttime
$ cat numlisttime
0.193 seconds 90.95% CPU usage

read, Read a Line from an Input Stream
If read has no arguments, bash reads a line from its standard input stream and stores it in the variable
REPLY. If the input contains a backslash at the end of a line, it and the following newline are removed,
and the next line is read, joining the two lines:

$ printf "%s\n" ' First line \' ' Second line ' | {
> read
> sa "$REPLY"
> }
: First line Second line :

Note The braces ({ }) in this and the following snippets create a common subshell for both the read and sa
commands. Without them, read would be in a subshell by itself, and sa would not see the new value of REPLY (or
of any other variable set in the subshell).

Only one option, -r, is part of the POSIX standard. The many bash options (-a, -d, -e, -n, -p, -s, -n,
-t, -u, and, new to bash-4.0, -i) are part of what makes this shell work so well for interactive scripts.

-r, Read Backslashes Literally
With the -r option, backslashes are treated literally:

$ printf "%s\n" ' First line\' " Second line " | {
> read -r
> read line2
> sa "$REPLY" "$line2"
> }
: First line\:
:Second line:

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

100

The second read in that snippet supplies a variable to store the input rather than using REPLY. As a
result, it applies word splitting to the input, and leading and trailing spaces are removed. If IFS had been
set to an empty string, then spaces would not be used for word splitting:

$ printf "%s\n" ' First line\' " Second line " | {
> read -r
> IFS= read line2
> sa "$REPLY" "$line2"
> }
: First line\:
: Second line :

If more than one variable is given on the command line, the first field is stored in the first variable,
and subsequent fields are stored in the following variables. If there are more fields than variables, the
last one stores the remainder of the line:

$ printf "%s\n" "first second third fourth fifth sixth" | {
> read a b c d
> sa "$a" "$b" "$c" "$d"
> }
:first:
:second:
:third:
:fourth fifth sixth:

-e, Get Input with the readline Library
When at the command line or when using read with the -e option to get input from the keyboard, the
readline library is used. It allows full line editing. The default editing style, found in most shells, only
allows editing by erasing the character to the left of the cursor with a backspace.

With -e, a backspace still works, of course, but the cursor can be moved over the entire line
character by character with the arrow keys or with Ctrl-B and Ctrl-N for backward and forward,
respectively. Ctrl-A moves to the beginning of the line, and Ctrl-E moves to the end.

In addition, other readline commands can be bound to whatever key combinations you like. I have
Ctrl-left arrow bound to backward-word and Ctrl-right arrow to forward-word. Such bindings can be
placed in $HOME/.inputrc. Mine has entries for two terminals, rxvt and xterm:

"\eOd": backward-word ## rxvt
"\eOc": forward-word ## rxvt
"\e[1;5D": backward-word ## xterm
"\e[1;5C": forward-word ## xterm

To check the code to use in your terminal emulation, press ^V (Ctrl-v) and then the key combination
you want. For example, in xterm, I see ^[[1;5D when I press Ctrl-left arrow.

-a, Read Words into an Array
The -a option assigns the words read to an array, starting at index zero:

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

101

$ printf "%s\n" "first second third fourth fifth sixth" | {
> read -a array
> sa "${array[0]}"
> sa "${array[5]}"
> }
:first:
:sixth:

-d DELIM, Read Until DELIM Instead of a Newline
The -d option takes an argument that changes read’s delimiter from a newline to the first character of
that argument:

$ printf "%s\n" "first second third fourth fifth sixth" | {
> read -d ' nrh' a
> read -d 'nrh' b
> read -d 'rh' c
> read -d 'h' d
> sa "$a" "$b" "$c" "$d"
> }
:first: ## -d ' '
:seco: ## -d n
:d thi: ## -d r
:d fourt: ## -d h

-n NUM, Read a Maximum of NUM Characters
Most frequently used when a single character (for example, y or n) is required, read returns after reading
NUM characters rather than waiting for a newline. It is often used in conjunction with -s.

-s, Do Not Echo Input Coming from a Terminal
Useful for entering passwords and single-letter responses, the -s option suppresses the display of the
keystrokes entered.

-p PROMPT:, Output PROMPT Without a Trailing Newline
The following snippet is a typical use of these three options:

read -sn1 -p "Continue (y/n)? " var
case ${var^} in ## bash 4.0, convert $var to uppercase
 Y) ;;
 N) printf "\n%s\n" "Good bye."
 exit
 ;;
esac

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

102

When run, it looks like this when n or N is entered:

Continue (y/n)?
Good bye.

-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Input
The -t option was introduced in bash-2.04 and accepts integers greater than 0 as an argument. If
TIMEOUT seconds pass before a complete line has been entered, read exits with failure; any characters
already entered are left in the input stream for the next command that reads the standard input.

In bash-4.0, the -t option accepts a value of 0 and returns successfully if there is input waiting to be
read. It also accepts fractional arguments in decimal format:

read -t .1 var ## timeout after one-tenth of a second
read -t 2 var ## timeout after 2 seconds

Setting the variable TMOUT to an integer greater than zero has the same effect as the -t option. In
bash-4.0, a decimal fraction can also be used.

$ TMOUT=2.5
$ TIMEFORMAT='%R seconds %P%% CPU usage'
$ time read
2.500 seconds 0.00% CPU usage

-u FD: Read from File Descriptor FD Instead of the Standard Input
The -u option tells bash to read from a file descriptor. Given this file:

First line
Second line
Third line
Fourth line

this script reads from it, alternating between redirection and the -u option, and prints all four lines:

exec 3<$HOME/txt
read var <&3
echo "$var"
read -u3 var
echo "$var"
read var <&3
echo "$var"
read -u3 var
echo "$var"

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

103

-i TEXT, Use TEXT as the Initial Text for readline
New to bash-4.0, the -i option, used in conjunction with the -e option, places text on the command line
for editing.

The bash-4.0 script shown in Listing 9-1 loops, showing a spinning busy indicator, until the user
presses a key. It uses four read options: -s, -n, -p, and -t.

Listing 9-1. spinner, Show Busy Indicator While Waiting for User to Press a Key

spinner="\|/-" ## spinner
chars=1 ## number of characters to display
delay=.15 ## time in seconds between characters
prompt="press any key..." ## user prompt
clearline="\e[K" ## clear to end of line (ANSI terminal)
CR="\r" ## carriage return

loop until user presses a key
until read -sn1 -t$delay -p "$prompt" var
do
 printf " %.${chars}s$CR" "$spinner"
 temp=${spinner#?} ## remove first character from $spinner
 spinner=$temp${spinner%"$temp"} ## and add it to the end
done
printf "CRclearline"

If delay is changed to an integer, the script will work in all versions of bash, but the spinner will be
very slow.

eval, Expand Arguments and Execute Resulting Command
In Chapter 5, the eval builtin was used to get the value of a variable whose name was in another variable.
It accomplished the same task as bash’s variable expansion, ${!var}. What actually happened was that
eval expanded the variable inside quotation marks; the backslashes removed the special meanings of
the quotes and the dollar sign so that they remained the literal characters. The resulting string was then
executed:

$ x=yes
$ a=x
$ eval "sa \"\$$a\"" ## executes: sa "$x"
yes

Other uses of eval include assigning values to a variable whose name is contained in another
variable and obtaining more than one value from a single command.

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

104

Poor Man’s Arrays
Before bash had associative arrays (that is, before version 4.0), they could be simulated with eval. These
two functions set and retrieve such values and take them for a test run (Listing 9-2).

Listing 9-2. varfuncs, Emulate Associative Arrays

validname() ## Borrowed from Chapter 7
 case $1 in
 [!a-zA-Z_]* | *[!a-zA-Z0-9_]*) return 1;;
 esac

setvar() #@ DESCRIPTION: assign value to supplied name
{ #@ USAGE: setvar varname value
 validname "$1" || return 1
 eval "$1=\$2"
}

getvar() #@ DESCRIPTION: print value assigned to varname
{ #@ USAGE: getvar varname
 validname "$1" || return 1
 eval "printf '%s\n' \"\${$1}\""
}

echo "Assigning some values"
for n in {1..3}
do
 setvar "var_$n" "$n - $RANDOM"
done
echo "Variables assigned; printing values:"
for n in {1..3}
do
 getvar "var_$n"
done

Here’s a sample run:

Assigning some values
Variables assigned; printing values:
1 - 28538
2 - 22523
3 - 19362

Note the assignment in setvar. Compare it with this:

setvar() { eval "$1=\"$2\""; }

If you substitute this function for the one in varfuncs and run the script, the results look very much
the same. What’s the difference? Let’s try it with a different value, using stripped-down versions of the
functions at the command line:

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

105

$ {
> setvar() { eval "$1=\$2"; }
> getvar() { eval "printf '%s\n' \"\${$1}\""; }
> n=1
> setvar "qwerty_$n" 'xxx " echo Hello"'
> getvar "qwerty_$n"
> }
xxx " echo hello"
$ {
> setvar2() { eval "$1=\"$2\""; }
> setvar2 "qwerty_$n" 'xxx " echo Hello"'
> }
Hello

Hello? Where did that come from? With set -x, you can see exactly what is happening:

$ set -x ## shell will now print commands and arguments as they are executed
$ setvar "qwerty_$n" 'xxx " echo Hello"'
+ setvar qwerty_1 'xxx " echo Hello"'
+ eval 'qwerty_1=$2'

The last line is the important one. There the variable qwerty_1 is set to whatever is in $2. $2 is not
expanded or interpreted in any way; its value is simply assigned to qwerty_1.

$ setvar2 "qwerty_$n" 'xxx " echo Hello"'
+ setvar2 qwerty_1 'xxx " echo Hello"'
+ eval 'qwerty_1="xxx " echo Hello""'
++ qwerty_1='xxx '
++ echo HelloHello

In this version, $2 is expanded before the assignment and is therefore subject to word splitting;
eval sees an assignment followed by a command. The assignment is made, and then the command is
executed. In this case, the command was harmless, but if the value had been entered by a user, it
could have been something dangerous.

To use eval safely, ensure that the unexpanded variable is presented for assignment using eval
"$var=\$value". If necessary, combine multiple elements into one variable before using eval:

string1=something
string2='rm -rf *' ## we do NOT want this to be executed
eval "$var=\"Example=$string1\" $string2" ## WRONG!! Files gone!
combo="Example=$string1 $string2"
eval "$var=\$combo" ## RIGHT!

The value of the variable whose name is in var is now the same as the contents of combo, if var was
set to xx:

$ printf "%s\n" "$xx"
Example=something rm -rf *

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

106

Setting Multiple Variables from One Command
I have seen many scripts in which several variables are set to components of the date and time using this
(or something similar):

year=$(date +%Y)
month=$(date +%m)
day=$(date +%d)
hour=$(date +%H)
minute=$(date +%M)
second=$(date +%S)

This is inefficient because it calls the date command six times. It could also give the wrong results.
What happens if the script is called a fraction of a second before midnight and the date changes between
setting the month and day? The script was called at 2009-05-31T23:59:59 (this is the ISO standard format
for date and time), but the values assigned could amount to 2009-05-01T00:00:00. The date that was
wanted was 31 May 2009 23:59:59 or 01 June 2009 00:00:00; what the script got was 1 May 2009
00:00:00. That’s a whole month off!

A better method is to get a single string from date and split it into its parts:

date=$(date +%Y-%m-%dT%H:%M:%S)
time=${date#*T}
date=${date%T*}
year=${date%%-*}
daymonth=${date#*-}
month=${daymonth%-*}
day=${daymonth#*-}
hour=${time%%:*}
minsec=${time#*-}
minute=${minsec%-*}
second=${minsec#*-}

Better still, use eval:

$ eval "$(date "+year=%Y month=%m day=%d hour=%H minute=%M second=%S")"

The output of the date command is executed by eval:

year=2009 month=05 day=31 hour=23 minute=59 second=59

The last two methods use only one call to date, so the variables are all populated using the same
timestamp. They both take about the same amount of time, which is a fraction of the time of multiple
calls to date. The clincher is that the eval method is about one third as long as the string-splitting
method.

type, Display Information About Commands
Many people use which to find out the actual command that will be used when one is executed. There
are two problems with that.

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

107

First is that there are at least two versions of which, one of which is a csh script that doesn’t work well
in a Bourne-type shell (thankfully, this version is becoming very rare). The second problem is that which
is an external command, and it cannot know exactly what the shell will do with any given command. All
it does is search the directories in the PATH variable for an executable with the same name.

$ which echo printf
/bin/echo
/usr/bin/printf

You know that both echo and printf are builtin commands, but which doesn’t know that. Instead of
which, use the shell builtin type:

$ type echo printf sa
echo is a shell builtin
printf is a shell builtin
sa is a function
sa ()
{
 pre=: post=:;
 printf "$pre%s$post\n" "$@"
}

When there’s more than one possible command that would be executed for a given name, they can
all be shown by using the -a option:

$ type -a echo printf
echo is a shell builtin
echo is /bin/echo
printf is a shell builtin
printf is /usr/bin/printf

The -p option limits the search to files and does not give any information about builtins, functions,
or aliases. If the shell executes the command internally, nothing will be printed unless the -a option is
also given:

$ type -p echo printf sa time ## no outpus as no files would be executed
$ type -ap echo printf sa time
/bin/echo
/usr/bin/printf
/usr/chris/bin/sa
/usr/bin/time

Or you can use -P:

$ type -P echo printf sa time
/bin/echo
/usr/bin/printf
/usr/chris/bin/sa
/usr/bin/time

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

108

The -t option gives a single word for each command, either alias, keyword, function, builtin, file,
or an empty string:

$ type -t echo printf sa time ls
builtin
builtin
function
keyword
file

The type command fails if any of its arguments are not found.

builtin, Execute a Builtin Command
The argument to builtin is a shell builtin command that will be called rather than a function with the
same name. It prevents the function from calling itself and calling itself ad nauseam.

cd() #@ DESCRIPTION: change directory and display 10 most recent files
{ #@ USAGE: cd DIR
 builtin cd "$@" || return 1 ## don't call function recursively
 ls -t | head
}

command, Execute a Command or Display Information About
Commands
With -v or -V, display information about a command. Without options, call the command from an
external file rather than a function.

pwd, Print the Current Working Directory
pwd prints the absolute pathname of the current directory. With the -P option, it prints the physical
location with no symbolic links.

$ ls -ld $HOME/Chess ## Directory is a symbolic link
lrwxrwxrwx 1 chris chris 10 Feb 15 2008 /home/chris/Chess -> work/Chess
$ cd $HOME/Chess
$ pwd ## Include symbolic links
/home/chris/Chess
$ pwd -P ## Print physical location with no links
/home/chris/work/Chess

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

109

unalias, Remove One or More Aliases
In my ~/.bashrc file, I have unalias -a to remove all aliases. Some GNU/Linux distributions make the
dangerous mistake of defining aliases that replace standard commands.

One of the worst examples is the redefinition of rm (rremmove files or directories) to rm -i. If a person,
used to being prompted before a file is removed, puts rm * (for example) in a script, all the files will be
gone without any prompting. Aliases are not exported and, by default, not run in shell scripts even if
defined.

Deprecated Builtins
I don’t recommend using the following deprecated builtin commands:

alias: Defines an alias. As the bash man page says, “For almost every purpose,
aliases are superseded by shell functions.”

let: Evaluates arithmetic expressions. Use the POSIX syntax $((expression))
instead.

select: Is an inflexible menuing command. Much better menus can be written
easily with the shell.

typeset: Declares a variable’s attributes and, in a function, restricts a variable’s
scope to that function and its children. Use local to restrict a variable’s scope to a
function, and use declare to set any other attributes (if necessary).

Dynamically Loadable Builtins
Bash can load new builtin commands at runtime if and when needed. The bash source package
has a directory full of examples ready to be compiled. To do that, download the source from
ftp://ftp.cwru.edu/pub/bash/. Unpack the tarball, cd into the top level directory, and run the
configure script:

version=4.0 ## or use your bash version (but I recommend 4.0)
wget ftp://ftp.cwru.edu/pub/bash/bash-$version.tar.gz
gunzip bash-$version.tar.gz
tar xf bash-$version.tar
cd bash-$version
./configure

The configure script creates makefiles throughout the source tree, including one in
examples/loadables. In that directory are the source files for builtin versions of a number of standard
commands, as the README file says, “whose execution time is dominated by process startup time.” You
can cd into that directory and run make:

cd examples/loadables
make

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

110

You’ll now have a number of commands ready to load into your shell. These include the following:

logname tee head mkdir rmdir uname
ln cat id whoami

There are also some useful new commands:

print ## Compatible with the ksh print command
finfo ## Print file information
strftime ## Format date and time

These builtins can be loaded into a running shell with the following:

enable -f filename built-in-name

The files include documentation, and the help command can be used with them, just as with other
builtin commands:

$ enable -f ./strftime strftime
$ help strftime
strftime: strftime format [seconds]
 Converts date and time format to a string and displays it on the
 standard output. If the optional second argument is supplied, it
 is used as the number of seconds since the epoch to use in the
 conversion, otherwise the current time is used.

For information on writing dynamically loadable builtin commands, see my article at
http://cfaj.freeshell.org/shell/articles/dynamically-loadable/.

Summary
You learned about the following commands in this chapter.

Commands and Reserved Words
builtin: Executes a builtin command

command: Executes an external command or print information about a command

eval: Executes arguments as a shell command.

help: Displays information about builtin commands.

pwd: Prints the current working directory

read: Reads a line from the standard input and splits it into fields

time: Reports time consumed by pipeline’s execution

type: Displays information about command type

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

111

Deprecated Commands
alias: Defines or display aliases

let: Evaluates arithmetic expressions

select: Selects words from a list and execute commands

typeset: Sets variable values and attributes

Exercises
1. Write a script that stores the time it takes a command (your choice of command)

to run in three variables, real, user, and system, corresponding to the three
default times that time prints.

CHAPTER 9 RESERVED WORDS AND BUILTIN COMMANDS

112

C H A P T E R 1 0

113

Writing Bug-Free Scripts
and Debugging the Rest

The programmer who has never written a buggy program is a figment of someone’s imagination. Bugs
are the bane of a programmer’s existence. They range from simple typing errors to bad coding to faulty
logic. Some are easily fixed; others can take hours of hunting.

At one end of the spectrum are the syntax errors that prevent a script from completing or running
at all. These may involve a missing character: a space, a bracket or brace, a quotation mark. It may be a
mistyped command or variable name. It may be a missing keyword, such as then after elif.

At the other end of the spectrum are the errors in logic. It may be counting from 1 when you should
have started at 0, or it may be using -gt (greater than) when it should have been -ge (greater than or
equal to). It may be a faulty formula (isn’t Fahrenheit to Celsius (F – 32) * 1.8?) or using the wrong
field in a data record (I thought the shell was field 5 in /etc/passwd!).

In between the extremes, common errors include trying to operate on the wrong type of data (either
the program itself supplied the wrong data or an external source did) and failing to check that a command
succeeds before proceeding to the next step.

This chapter looks at various techniques to get a program doing what it is supposed to, including the
various shell options for checking and following a script’s progress, strategically placing debugging
instructions, and, most important, preventing bugs in the first place.

Prevention Is Better Than Cure
It is far better to avoid introducing bugs than to remove them. There’s no way to guarantee bug-free
scripts, but a number of precautions can reduce the frequency considerably. Making your code easy to
read helps. So does documenting it, so that you know what it’s for, what it expects, what results it
produces, and so on.

Structure Your Programs
The term structured programming is applied to various programming paradigms, but they all involve
modular programming—breaking the problem down into manageable parts. In developing a large
application with the shell, this means either functions, separate scripts, or a combination of both.

Even a short program can benefit from some structure; it should contain discrete sections:

Comments

Initialization of variables

Function definitions

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

114

Runtime configuration (parse options, read configuration file, and so on)

Sanity check (are all values reasonable?)

Process information (calculate, slice and dice lines, I/O, and so on)

Using this outline, all the components of a short but complete script are presented in the following
sections. There are errors in the script; these will be found and corrected using various debugging techniques.

Comments
The comments should include metadata about the script, including a description, a synopsis of how to
call the command or function, author, date of creation, date of last revision, version number, options,
and any other information that is needed in order to run the command successfully.

#: Title: wfe - List words ending with PATTERN
#: Synopsis: wfe [-c|-h|-v] REGEX
#: Date: 2009-04-13
#: Version: 1.0
#: Author: Chris F.A. Johnson
#: Options: -c - Include compound words
#: -h - Print usage information
#: -v - Print version number

I have used #: to introduce these comments so that grep '^#:' wfe will extract all the metadata.

Initialization of Variables
First define some variables containing metadata. There will be some duplication with the previous
comments, but these variables may be needed later:

Script metadata
scriptname=${0##*/}
description="List words ending with REGEX"
usage="$scriptname [-c|-h|-v] REGEX"
date_of_creation=2009-04-13
version=1.0
author="Chris F.A. Johnson"

Then define the default values, file locations, and other information needed by this script:

File locations
dict=$HOME
wordfile=$dict/singlewords
conpoundfile=$dict/Compounds

Default is not to show compound words
compounds=

Regular expression supplied on the command line
pattern=$1

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

115

Function Definitions
There are three functions that I include in my scripts (apart from quick-and-dirty one-offs). They are die,
usage, and version; they may be included in the script itself or in a function library sourced by the script.
I haven’t usually included them in the scripts in this book; that would be unnecessarily repetitive.

Function definitions
die() #@ DESCRIPTION: print error message and exit with supplied return code
{ #@ USAGE: die STATUS [MESSAGE]
 error=$1
 shift
 [-n "$*"] printf "%s\n" "$*" >&2
 exit "$error"
}

usage() #@ DESCRIPTION: print usage information
{ #@ USAGE: usage
 #@ REQUIRES: variable defined: $scriptname
 printf "%s - %s\n" "$scriptname" "$description"
 printf "USAGE: %s\n" "$usage"
}

version() #@ DESCRIPTION: print version information
{ #@ USAGE: version
 #@ REQUIRES: variables defined: $scriptname, $author and $version
 printf "%s version %s\n" "$scriptname" "$version"
 printf "by %s, %d\n" "$author" "${date_of_creation%%-*"
}

Any other functions will follow right after these generic functions.

Runtime Configuration and Options
In Chapter 12, there is an in-depth look at runtime configuration and the different methods that can be
used. Much of the time, all you need to do is parse the command-line options:

parse command-line options, -c, -h, and -v
while getopts chv var
do
 case $var in
 c) compounds=$compoundfile ;;
 h) usage; exit ;;
 v) version; exit ;;
 esac
done
shift $(($OPTIND - 1))

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

116

Process Information
As is often the case in a short script, the actual work of the script is relatively short; setting up parameters
and checking the validity of data take up the greater part of the program.

Search $wordfile and $compounds if it is defined
{
 cat "$wordfile"
 if [-n "$compounds"]
 then
 cut -f1 "$compounds"
 fi
} | grep -i ".$regex$" |
 sort -fu ## Case-insensitive sort; remove duplicates

Here, cat is necessary because the second file, whose location is stored in the compounds variable,
cannot be given as an argument to grep because it is more than a list of words. The file has three tab-
separated fields: the phrase with spaces and other nonalpha characters removed and the following letter
capitalized, the original phrase, and the lengths as they would appear in a cryptic crossword puzzle:

corkScrew cork-screw (4-5)
groundCrew ground crew (6,4)
haveAScrewLoose have a screw loose (4,1,5,5)

If it were a simple word list, like singlewords, the pipeline could have been replaced by a simple
command:

grep -i ".$regex$" "$wordfile" ${compounds:+"$compounds"}

The grep command searches the files given on the command line for lines that match a regular
expression. The -i option tells grep to consider uppercase and lowercase letters as equivalent.

Document Your Code
Until fairly recently, my own documentation habits left a lot to be desired. In my scripts directory, I have
more than 900 programs written over the last 15 years or thereabouts. There are more than 90 function
libraries. About 20 scripts are called by cron, and a dozen more are called by those scripts. There are
probably about 100 scripts that I use regularly, with “regularly” being anything from several times a day
to once or twice a year.

The rest are scripts under development, abandoned scripts, scripts that didn’t work out, and scripts
that I have no idea what they are for. I don’t know what they are for because I didn’t include any
documentation, not even a one-line description. I don’t know whether they work, whether I decided I
didn’t really need that script, or anything about them.

Many of them, I can tell what they do from the name. In others, the code is straightforward, and the
purpose is obvious. But there are still many scripts whose purpose I don’t know. Some of them I will
probably end up duplicating when I need that task again. When I do, they’ll have at least minimal
documentation.

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

117

Format Your Code Consistently
There are various models for pretty printing code, and some people are quite vociferous in their defense
of a particular style. I have my own preference (which you’ll have noticed from the scripts in this book),
but consistency is more important than the indentations being two, four, or six spaces per level. That
there is indentation is more important than the amount of it. I would say that two spaces (which is what
I use) is the minimum and that eight is the outside limit, if not too much.

Similarly, it doesn’t matter whether you have then on the same line as if or not. Either of these is fine:

if ["$var" = "yes"]; then
 echo "Proceeding"
fi

if ["$var" = "yes"]
then
 echo "Proceeding"
fi

The same goes for other loops and function definitions. I prefer this:

funcname()
{
 : body here
}

Others like this:

funcname() {
 : body here
}

So long as the formatting is consistent and makes the structure clear, it doesn’t matter which format
you use.

The K.I.S.S. Principle
Simplicity aids in understanding the intent of your program, but it’s not just keeping code as short as
possible. When someone posted this question, my first thought was, “That will be a complicated regex.”
My second was that I wouldn’t use a regular expression.

I need a regular expression to express financial quantities in American notation. They
have a leading dollar sign and an optional string of asterisks, a string of decimal
digits, and a fractional part consisting of a decimal point (.) and two decimal digits.
The string to the left of the decimal point could be a single zero. Otherwise, it must not
start with a zero. If there are more than three digits to the left of the decimal point,
groups of three must be separated by commas. Example: $**2,345.67.

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

118

I’d break the task down into discrete steps and code each one separately. For example, the first
check I’d do would be this:

amount='$**2,345.67'
case $amount in
 \$[*0-9]*) ;; ## OK (dollar sign followed by asterisks or digits), do nothing
 *) exit 1 ;;
esac

By the time the tests are finished, there will be a lot more code than there would be in a regular
expression, but it will be easier to understand and to change if the requirements change.

Grouping Commands
Rather than redirect each of several lines, group them with braces and use a single redirection. I saw this
in a forum recently:

echo "user odad odd" > ftp.txt
echo "prompt" >> ftp.txt
echo "cd $i" >> ftp.txt
echo "ls -ltr" >> ftp.txt
echo "bye" >> ftp.txt

I recommended this instead:

{
 echo "user odad odd"
 echo "prompt"
 echo "cd $i"
 echo "ls -ltr"
 echo "bye"
} > ftp.txt

Test As You Go
Rather than save all the debugging until the end, it should be an integral part of the process of
developing a program. Each section should be tested as it is written. As an example, we’ll look at a
function I wrote as part of a chess program. No, it’s not a chess-playing program (though it could be
when it’s completed); that would be excruciatingly slow in the shell. It’s a set of functions for preparing
instructional material.

It needs to be able to convert one form of chess notation to another and to list all possible moves
for any piece on the board. It needs to be able to tell whether a move is legal and to create a new board
position after a move has been made. At its most basic level, it has to be able to convert a square in
standard algebraic notation (SAN) to its numeric rank and file. That’s what this function does.

The SAN format for naming a square is a lowercase letter representing the file and a number
representing the rank. Files are rows of squares from white’s side of the board to black’s. Ranks are rows
of squares from left to right. The square in white’s left-hand corner is a1; that in black’s is h8. To calculate
possible moves, these need to be converted to the rank and file: a1 is converted to rank=1 and file=1; h8
becomes rank=8 and file=8.

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

119

It’s a simple function, but it demonstrates how to test a function. The function receives the name of
a square as an argument and stores the rank and file in those variables. If the square is not valid, it sets
both rank and file to 0 and returns an error.

split_square() #@ DESCRIPTION: convert SAN square to numeric rank and file
{ #@ USAGE: split_square SAN-SQUARE
 local square=$1
 rank=${square#?}
 case $square in
 a[1-8]) file=1;; ## Conversion of file to number
 b[1-8]) file=2;; ## and checking that the rank is
 c[1-8]) file=3;; ## a valid number are done in a
 d[1-8]) file=4;; ## single look-up
 e[1-8]) file=5;;
 f[1-8]) file=6;; ## If the rank is not valid,
 g[1-8]) file=7;; ## it falls through to the default
 h[1-8]) file=8;;
 *) file=0
 rank=0
 return 1 ## Not a valid square
 ;;
 esac
 return 0
}

To test this function, it is passed all possible legitimate squares as well as some that are not. It prints
the name of the square and the file and rank numbers.

test_split_square()
{
 local f r
 for f in {a..i}
 do
 for r in {1..9}
 do
 split_square "fr"
 printf "fr %d-%d " "$file" "$rank"
 done
 echo
 done
}

When the test is run, the output is as follows:

a1 1-1 a2 1-2 a3 1-3 a4 1-4 a5 1-5 a6 1-6 a7 1-7 a8 1-8 a9 0-0
b1 2-1 b2 2-2 b3 2-3 b4 2-4 b5 2-5 b6 2-6 b7 2-7 b8 2-8 b9 0-0
c1 3-1 c2 3-2 c3 3-3 c4 3-4 c5 3-5 c6 3-6 c7 3-7 c8 3-8 c9 0-0
d1 4-1 d2 4-2 d3 4-3 d4 4-4 d5 4-5 d6 4-6 d7 4-7 d8 4-8 d9 0-0
e1 5-1 e2 5-2 e3 5-3 e4 5-4 e5 5-5 e6 5-6 e7 5-7 e8 5-8 e9 0-0
f1 6-1 f2 6-2 f3 6-3 f4 6-4 f5 6-5 f6 6-6 f7 6-7 f8 6-8 f9 0-0
g1 7-1 g2 7-2 g3 7-3 g4 7-4 g5 7-5 g6 7-6 g7 7-7 g8 7-8 g9 0-0
h1 8-1 h2 8-2 h3 8-3 h4 8-4 h5 8-5 h6 8-6 h7 8-7 h8 8-8 h9 0-0
i1 0-0 i2 0-0 i3 0-0 i4 0-0 i5 0-0 i6 0-0 i7 0-0 i8 0-0 i9 0-0

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

120

All squares with the rank and file 0-0 are invalid.

Debugging a Script
In the wfe script, which was presented section by section earlier, there are a few bugs. Let’s run that
script and see what happens. The script is in $HOME/bin, which is in your PATH, and it can therefore be
called by its name alone. Before that, however, a good first step is to check the script with the -n option.
This tests for any syntax errors without actually executing the code:

$ bash -n wfe
/home/chris/bin/wfe-sh: wfe: line 70: unexpected EOF while looking for matching `"'
/home/chris/bin/wfe-sh: wfe: line 72: syntax error: unexpected end of file

The error message says that there’s a missing quotation mark ("). It has reached the end of the file
without finding it. That means it could be missing anywhere in the file. After a quick (or not-so-quick)
glance through the file, it’s not apparent where it should be.

When that happens, I start removing sections from the bottom of the file until the error disappears.
I remove the last section; it’s still there. I remove the option parsing, and the error hasn’t disappeared. I
remove the last function definition, version(), and the error has gone. The error must be in that
function; where is it?

version() #@ DESCRIPTION: print script's version information
{ #@ USAGE: version
 #@ REQUIRES: variables defined: $scriptname, $author and $version
 printf "%s version %s\n" "$scriptname" "$version"
 printf "by %s, %d\n" "$author" "${date_of_creation%%-*"
}

There are no mismatched quotations marks, so some other closing character must be missing and
causing the problem. After a quick look, I see that the last variable expansion is missing a closing brace.
Fixed, it becomes "${date_of_creation%%-*}". Another check with -n, and it gets a clean bill of health.
Now it’s time to run it:

$ wfe
bash: /home/chris/bin/wfe: Permission denied

Oops! We forgot to make the script executable. This doesn’t usually happen with a main script; it
happens more often with scripts that are called by another script. Change the permissions and try again:

$ chmod +x /home/chris/bin/wfe
$ wfe
cat: /home/chris/singlewords: No such file or directory

Have you downloaded the two files, singlewords and Compounds? If so, where did you put them? In
the script, they are declared to be in $dict, which is defined as $HOME. If you put them somewhere else,
such as in a subdirectory named words, change that line in the script. Let’s make a directory, words, and
put them in there:

mkdir $HOME/words &&
cd $HOME/words &&
wget http://cfaj.freeshell.org/wordfinder/singlewords &&
wget http://cfaj.freeshell.org/wordfinder/Compounds

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

121

In the script, change the assignment of dict to reflect the actual location of these files:

dict=$HOME/words

Let’s try again:

$ wfe
a
aa
Aachen
aalii
aardvark
.... 183,758 words skipped
zymotic
zymotically
zymurgy
Zyrian
zythum

We forgot to tell the program what we are searching for. The script ought to have checked that an
argument was supplied, but we forgot to include a sanity check section. Add that before the search is
done (after the line shift $(($OPTIND - 1))).

Check that user entered a search term
if [-z "$pattern"]
then
 {
 echo "Search term missing"
 usage
 } >&2
 exit 1
fi

Now, try again:

$ wfe
Search term missing
wfe - List words ending with REGEX
USAGE: wfe [-c|-h|-v] REGEX

That’s better. Now let’s really look for some words:

$ wfe drow
a
aa
Aachen
aalii
aardvark
.... 183,758 words skipped
zymotic
zymotically

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

122

zymurgy
Zyrian
zythum

There’s still something wrong.
One of the most useful debugging tools is set -x, which prints each command with its expanded

arguments as it is executed. Each line is preceded by the value of the PS4 variable. The default value of
PS4 is “+ ”; we’ll change it to include the number of the line being executed. Put these two lines before
the final section of the script:

export PS4='+ $LINENO: ' ## single quotes prevent $LINENO being expanded immediately
set -x

and try again:

$ wfe drow
++ 77: cat /home/chris/singlewords
++ 82: grep -i '.$'
++ 83: sort -fu
++ 78: '[' -n '' ']' ## Ctrl-C pressed to stop entire word list being printed

On line 82, you see that the pattern entered on the command line is missing. How did that happen?
It should be grep -i '.drow$'. Line 82 in the script is as follows:

} | grep -i ".$regex$" |

What happened to the value of regex? Comment out set -x, and add the set -u option at the top of
the script. This option treats unset variables as an error when they are expanded. Run the script again to
check whether regex is set.

$ wfe drow
/home/chris/bin/wfe: line 84: regex: unbound variable

Why is regex unset? Take a look earlier in the script and see what variable was used to hold the
command-line argument. Oh! It was pattern, not regex. You have to be consistent, and regex is a better
description of its contents, so let’s use that. Change all instances of pattern to regex. You should do it in
the comments at the top, as well. Now try it.

$ wfe drow
windrow

Success! Now add compound words and phrases to the mix with the -c option:

$ wfe -c drow
/home/chris/bin/wfe: line 58: compoundfile: unbound variable

Here we go again! Surely we assigned the Compounds file in the file locations section. Take a look; yes,
it’s there on line 23 or thereabouts. Wait a minute, there’s a typo: conpoundfile=$dict/Compounds.
Change con to com. Keep your fingers crossed.

$ wfe -c drow
$

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

123

What? Nothing? Not even windrow? It’s time to set -x and see what’s going on. Uncomment that
line, and play it again.

$ wfe -c drow
++ 79: cat /home/chris/singlewords
++ 84: grep -i '.-c$'
++ 85: sort -fu
++ 80: '[' -n /home/chris/Compounds ']'
++ 82: cut -f1 /home/chris/Compounds

At least that’s easy to figure out. We assigned regex before processing the options, and it snarfed the
first argument, the -c option. Move the assignment down to after the getopts section, specifically, to
after the shift command. (And you’ll probably want to comment out set -x.)

shift $(($OPTIND - 1))

Regular expression supplied on the command line
regex=$1

Are there any more issues?

$ wfe -c drow
skidRow
windrow

That looks good. It might seem like a lot of work for a small script, but it seems longer in the
telling than in the doing, especially once you get used to doing it—or, better still, getting it right in the
first place.

Summary
Bugs are inevitable, but with care, most can be prevented. When they do materialize, there are shell
options to help trace the problem.

Exercises
1. What is wrong with if [$var=x]? What should it be? Why does it give the result

it does?

2. Write a function, valid_square(), that returns successfully if its sole argument is a
valid SAN chessboard square or fails if it is not. Write a function to test that it works.

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

124

C H A P T E R 1 1

125

Programming for
the Command Line

This book is about programming with the shell, not about using it at the command line. You will not
find information about editing the command line, creating a command prompt (the PS1 variable), or
retrieving commands from your interactive history. This chapter is about scripts that will mostly be
useful at the command line rather than in other scripts.

Many of the scripts in this chapter are shell functions. Some of them have to be that way because
they change the environment. Others are functions because they are often used and are quicker that
way. Others are both functions and stand-alone scripts.

Manipulating the Directory Stack
The cd command remembers the previous working directory, and cd - will return to it. There is another
command that will change the directory and will remember an unlimited number of directories: pushd.
The directories are stored in an array, DIRSTACK. To return to a previous directory, popd pulls the top entry
off DIRSTACK and makes that the current directory. I use two functions that make handling DIRSTACK
easier, and I’ve added a third one here just for the sake of completeness.

cd
The cd function replaces the builtin command of the same name. The function uses the builtin command
pushd to change the directory and store the new directory on DIRSTACK. If no directory is given, pushd uses
$HOME. If changing the directory fails, cd prints an error message, and the function returns with a failing exit
code (see Listing 11-1).

Listing 11-1. cd, Change Directory, Saving Location on the Directory Stack

cd() #@ Change directory, storing new directory on DIRSTACK
{
 local dir error ## variables for directory and return code

 while : ## ignore all options
 do
 case $1 in
 --) break ;;
 -*) shift ;;

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

126

 *) break ;;
 esac
 done

 dir=$1

 if [-n "$dir"] ## if a $dir is not empty
 then
 pushd "$dir" ## change directory
 else
 pushd "$HOME" ## go HOME if nothing on the command line
 fi 2>/dev/null ## error message should come from cd, not pushd

 error=$? ## store pushd's exit code

 if [$error -ne 0] ## failed, print error message
 then
 builtin cd "$dir" ## let the builtin cd provide the error message
 fi
 return "$error" ## leave with pushd's exit code
} > /dev/null

The standard output is redirected to the bit bucket because pushd prints the contents of DIRSTACK,
and the only other output is sent to standard error (>&2).

Note A replacement for a standard command such as cd should accept anything that the original accepts.
In the case of cd, the options -L and -P are accepted, even though they are ignored. That said, I do sometimes
ignore options without even making provisions for them, especially if they are ones I never use.

pd
This function is here for the sake of completeness (see Listing 11-2). It is a lazy man’s way of calling popd;
I don’t use it.

Listing 11-2. pd, Return to Previous Directory with popd

pd ()
{
 popd
} >/dev/null ### for the same reason as cd

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

127

cdm
The reason I don’t use pd is not that I’m not lazy. Far from it, but I prefer to leave DIRSTACK intact so that I
can move back and forth between directories. For that, I use a menu that presents all the directories in
DIRSTACK.

The cdm function sets the Input Field Separator (IFS) to a single newline (NL or LF) to ensure that the
output of the dirs builtin command keeps file names together after word splitting (Listing 11-3). File
names containing a newline would still cause problems; names with spaces are an annoyance, but
names with newlines are an abomination.

The function loops through the names in DIRSTACK (for dir in $(dirs -l -p)) adding each one to
an array, item, unless it is already there. This array is then used as the arguments to the menu function
(discussed in a moment), which must be sourced before cdm can be used.

DIRS BUILTIN COMMAND

The dirs builtin command lists the directories in the DIRSTACK array. By default, it lists them on a single line
with the value of HOME represented by a tilde. The -l option expands ~ to $HOME, and -p prints the directories
one per line.

Listing 11-3. cdm, Select New Directory from a Menu of Those Already Visited

cdm() #@ select new directory from a menu of those already visited
{
 local dir IFS=$'\n' item
 for dir in $(dirs -l -p) ## loop through diretories in DIRSTACK[@]
 do
 ["$dir" = "$PWD"] && continue ## skip current directory
 case ${item[*]} in
 "$dir:") ;; ## $dir already in array; do nothing
 *) item+=("$dir:cd '$dir'") ;; ## add $dir to array
 esac
 done
 menu "${item[@]}" Quit: ## pass array to menu function
}

When run, the menu looks like this:

$ cdm

 1. /public/music/magnatune.com
 2. /public/video
 3. /home/chris
 4. /home/chris/tmp/qwe rty uio p
 5. /home/chris/tmp
 6. Quit

 (1 to 6) ==>

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

128

menu
The calling syntax for this menu function comes from 9menu, which was part of the Plan 9 operating
system. Each argument contains two colon-separated fields: the item to be displayed and the command
to be executed. If there is no colon in an argument, it is used both as the display and as the command:

$ menu who date "df:df ."

 1. who
 2. date
 3. df

 (1 to 3) ==> 3
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda5 48070472 43616892 2011704 96% /home
$ menu who date "df: df ."

 1. who
 2. date
 3. df

 (1 to 3) ==> 1
chris tty8 Jun 18 14:00 (:1)
chris tty2 Jun 21 18:10

A for loop numbers and prints the menu; read gets the response; and a case statement checks for
the exit characters q, Q, or 0 in the response. Finally, indirect expansion retrieves the selected item,
further expansion extracts the command, and eval executes it: eval "${!num#*:}" (Listing 11-4).

Listing 11-4. menu, Print Menu and Execute Associated Command

menu()
{
 local IFS=$' \t\n' ## Use default setting of IFS
 local num n=1 opt item cmd
 echo

 ## Loop though the command-line arguments
 for item
 do
 printf " %3d. %s\n" "$n" "${item%%:*}"
 n=$(($n + 1))
 done
 echo

 ## If there are fewer than 10 items, set option to accept key without ENTER
 if [$# -lt 10]
 then
 opt=-sn1
 else
 opt=

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

129

 fi
 read -p " (1 to $#) ==> " $opt num ## Get response from user

 ## Check that user entry is valid
 case $num in
 [qQ0] | "") return ;; ## q, Q or 0 or "" exits
 [!0-9] | 0*) ## invalid entry
 printf "\aInvalid response: %s\n" "$num" >&2
 return 1
 ;;
 esac
 echo

 if ["$num" -le "$#"] ## Check that number is <= to the number of menu items
 then
 eval "${!num#*:}" ## Execute it using indirect expansion
 else
 printf "\aInvalid response: %s\n" "$num" >&2
 return 1
 fi
}

Filesystem Functions
These functions vary from laziness (giving a short name to a longer command) to adding functionality to
standard commands (cp and mv). They list, copy, or move files or create directories.

l
There is no single-letter command required by the POSIX specification, and there is only one that is
found on most Unixes: w, which shows who is logged on and what they are doing. I have defined a
number of single-letter functions:

a: Lists the currently playing music track

c: Clears the screen (sometimes quicker or easier than ^L)

d: date "+%A, %-d %B %Y %-I:%M:%S %P (%H:%M:%S)"

k: Is equivalent to man -k, or apropos

t: For the Amiga and MS-DOS command type, invokes less

v and V: Lowers and raises the sound volume, respectively

x: logout

And there’s the one I use most that pipes a long file listing through less, shown in Listing 11-5.

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

130

Listing 11-5. l, List Files in Long Format, Piped Through less

l()
{
 ls -lA "$@" | less ## the -A option is specific to GNU and *BSD versions
}

lsr
The commands I use most frequently are l, cd, xx.sh, cdm, and lsr. xx.sh is a file for throwaway scripts. I
keep adding new ones to the top; lsr displays the most recent files (or with the -o option, the oldest
files). The default setting is for ten files to be shown, but that can be changed with the -n option.

The script in Listing 11-6 uses the -t (or -tr) option to ls and pipes the result to head.

Listing 11-6. lsr, List Most Recently Modified Files

num=10 ## number of files to print
short=0 ## set to 1 for short listing
timestyle='--time-style="+ %d-%b-%Y %H:%M:%S "' ## GNU-specific time format

opts=Aadn:os

while getopts $opts opt
do
 case $opt in
 a|A|d) ls_opts="$ls_opts -$opt" ;; ## options passed to ls
 n) num=$OPTARG ;; ## number of files to display
 o) ls_opts="$ls_opts -r" ;; ## show oldest files, not newest
 s) short=$(($short + 1)) ;;
 esac
done
shift $(($OPTIND - 1))

case $short in
 0) ls_opts="$ls_opts -l -t" ;; ## long listing, use -l
 *) ls_opts="$ls_opts -t" ;; ## short listing, do not use -l
esac

ls $ls_opts $timestyle "$@" | {
 read ## In bash, the same as: IFS= read -r REPLY
 case $line in
 total*) ;; ## do not display the 'total' line
 *) printf "%s\n" "$REPLY" ;;
 esac
 cat
} | head -n$num

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

131

cp, mv
Before switching my desktop to GNU/Linux, I used an Amiga. Its copy command would copy a file to the
current directory if no destination was given. This function gives the same ability as cp (Listing 11-7). The
-b option is GNU specific, so remove it if you are using a different version of cp.

Listing 11-7. cp, Copy, Using the Current Directory If No Destination Is Given

cp()
{
 local final
 if [$# -eq 1] ## Only one arg,
 then
 command cp -b "$1" . ## so copy it to the current directory
 else
 final=${!#}
 if [-d "$final"] ## if last arg is a directory
 then
 command cp -b "$@" ## copy all the files into it
 else
 command cp -b "$@" . ## otherwise, copy to the current directory
 fi
 fi
}

The mv function is identical except that it has mv wherever cp appears in that function.

md
Laziness is the order of the day with the md function (Listing 11-8). It calls mkdir with the -p option to
create intermediate directories if they don’t exist. With the -c option, md creates the directory (if it
doesn’t already exist) and then cds into it. Because of the -p option, no error is generated if the directory
exists.

Listing 11-8. md, Create a New Directory and Intermediate Directories and Optionally cd into It

md() { #@ create new directory, including intermediate directories if necessary
 case $1 in
 -c) mkdir -p "$2" && cd "$2" ;;
 *) mkdir -p "$@" ;;
 esac
}

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

132

Miscellaneous Functions
I use the next two functions a great deal, but they don’t fit into any category.

pr1
I have the pr1 function as both a function and a stand-alone script (Listing 11-9). It prints each of its
argument on a separate line. By default, it limits the length to the number of columns in the terminal,
truncating lines as necessary.

There are two options, -w and -W. The former removes the truncation, so lines will always print in
full, wrapping to the next line when necessary. The latter specifies a width at which to truncate lines.

Listing 11-9. pr1, Function to Print Its Argument One to a Line

pr1() #@ Print arguments one to a line
{
 case $1 in
 -w) pr_w= ## width specification modifier
 shift
 ;;
 -W) pr_w=${2}
 shift 2
 ;;
 -W*) pr_w=${1#??}
 shift
 ;;
 *) pr_w=-.${COLUMNS:-80} ## default to number of columns in window
 ;;
 esac
 printf "%${pr_w}s\n" "$@"
 }

The script version uses getopts; I didn’t use them in the function because I wanted it to be POSIX
compliant (Listing 11-10).

Listing 11-10. pr1, Script to Print Its Arguments One to a Line

while getopts wW: opt
do
 case $opt in
 w) w=
 shift
 ;;

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

133

 W) w=$OPTARG ;;
 *) w=-.${COLUMNS:-80} ;;
 esac
done
shift $(($OPTIND - 1))

printf "%${w}s\n" "$@"

calc
Bash lacks the capacity for arithmetic with decimal fractions, so I wrote this function (Listing 11-11) to
use awk to do the dirty work. Note that characters special to the shell must be escaped or quoted on the
command line. This applies particularly to the multiplication symbol, *.

Listing 11-11. calc, Print Result of Arithmetic Expression

calc() #@ Perform arithmetic, including decimal fractions
{
 local result=$(awk 'BEGIN { OFMT="%f"; print '"$*"'; exit}')
 case $result in
 *.*0) result=${result%"${result##*[!0]}"} ;;
 esac
 printf "%s\n" "$result"
}

The case statement removes trailing zeroes after a decimal point.

Managing Man Pages
I use three functions related to man pages. The first searches a man page for a pattern or string, the
second looks up a POSIX man page, and the third is equivalent to man -k.

sman
This function calls up a man page and searches for a given string. It assumes that less is the default
pager (Listing 11-12).

Listing 11-12. sman, Call Up a Man Page and Search for a Pattern

sman() #@ USAGE: sman command search_pattern
{
 LESS="$LESS${2:+ +/$2}" man "$1"
}

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

134

sus
When I want to check the portability of a given command or, more usually, to check which options are
specified by POSIX, I use sus. It stores a copy of the POSIX man page locally so that it doesn’t need to be
fetched on subsequent queries (Listing 11-13).

Listing 11-13. sus, Look Up a Man Page in the POSIX Spec

sus()
{
 local html_file=/usr/share/sus/$1.html ## adjust to taste
 local dir=9699919799
 local sus_dir=http://www.opengroup.org/onlinepubs/$dir/utilities/
 [-f "$html_file"] ||
 lynx -source sus_dir{1##*/}.html > $html_file ##>/dev/null 2>&1
 lynx -dump -nolist $html_file | ${PAGER:-less}
}

lynx is a text-mode web browser. Though normally used interactively to access the Web, the -source
and -dump directives can be used in scripts.

k
This function saves all the typing of apropos or man -k. It actually does a little more. It filters the result so
that only user commands (from the first section of the man pages) show. System and kernel functions
and file specifications, and so on, do not get shown (Listing 11-14).

Listing 11-14. k, List Commands Whose Short Descriptions Include a Search String

k() #@ USAGE: k string
{
 man -k "$@" | grep '(1'
}

Games
What’s a command line without games? Boring, that’s what! I have written a number of games using the
shell. They include yahtzee (Figure 11-1), a game that uses five dice; maxit (Figure 11-2), based on an
arithmetic game for the Commodore 64; and, of course, tic-tac-toe (Figure 11-3). All these games are
too large to include in this book, but sections of them (such as the yahtzee dice) will be demonstrated in
later chapters. The one game that I can include here is the fifteen puzzle.

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

135

Figure 11-1. The game of yahtzee, in which the player attempts to get runs, a full house,

or three/four/five of a kind

Figure 11-2. The game of maxit, in which one player selects from a row, and the other from a column

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

136

Figure 11-3. The ubiquitous game of tic-tac-toe

The Fifteen Puzzle
The fifteen puzzle consists of 15 numbered, sliding tiles in a frame; the object is to arrange them in
ascending order like this:

 +----+----+----+----+
 | | | | |
 | 1 | 2 | 3 | 4 |
 | | | | |
 +----+----+----+----+
 | | | | |
 | 5 | 6 | 7 | 8 |
 | | | | |
 +----+----+----+----+
 | | | | |
 | 9 | 10 | 11 | 12 |
 | | | | |
 +----+----+----+----+
 | | | | |
 | 13 | 14 | 15 | |
 | | | | |
 +----+----+----+----+

In this script (Listing 11-15), the tiles are moved with the cursor keys.

Listing 11-15. fifteen, Place Tiles in Ascending Order

Meta data

scriptname=${0##*/}
description="The Fifteen Puzzle"
author="Chris F.A. Johnson"
created=2009-06-20

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

137

Variables

board=({1..15} "") ## The basic board array
target=("${board[@]}") ## A copy for comparison (the target)
empty=15 ## The empty square
last=0 ## The last move made
A=0 B=1 C=2 D=3 ## Indices into array of possible moves
topleft='\e[0;0H' ## Move cursor to top left corner of window
nocursor='\e[?25l' ## Make cursor invisible
normal=\e[0m\e[?12l\e[?25h ## Resume normal operation

Board layout is a printf format string
At its most basic, it could be a simple:

fmt="$nocursor$topleft

 %2s %2s %2s %2s

 %2s %2s %2s %2s

 %2s %2s %2s %2s

 %2s %2s %2s %2s

"

I prefer this ASCII board
fmt="\e[?25l\e[0;0H\n
\t+----+----+----+----+
\t| | | | |
\t| %2s | %2s | %2s | %2s |
\t| | | | |
\t+----+----+----+----+
\t| | | | |
\t| %2s | %2s | %2s | %2s |
\t| | | | |
\t+----+----+----+----+
\t| | | | |
\t| %2s | %2s | %2s | %2s |
\t| | | | |
\t+----+----+----+----+
\t| | | | |
\t| %2s | %2s | %2s | %2s |
\t| | | | |
\t+----+----+----+----+\n\n"

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

138

Functions

print_board() #@ What the name says
{
 printf "$fmt" "${board[@]}"
}

borders() #@ List squares bordering on the empty square
{
 ## Calculate x/y co-ordinates of the empty square
 local x=$((${empty:=0} % 4)) y=$(($empty / 4))

 ## The array, bordering, has 4 elements, corresponding to the 4 directions
 ## If a move in any direction would be off the board, that element is empty
 ##
 unset bordering ## clear array before setting it
 [$y -lt 3] && bordering[$A]=$(($empty + 4))
 [$y -gt 0] && bordering[$B]=$(($empty - 4))
 [$x -gt 0] && bordering[$C]=$(($empty - 1))
 [$x -lt 3] && bordering[$D]=$(($empty + 1))
}

check() #@ Check whether puzzle has been solved
{
 ## Compare current board with target
 if ["${board[*]}" = "${target[*]}"]
 then
 ## Puzzle is completed, print message and exit
 print_board
 printf "\a\tCompleted in %d moves\n\n" "$moves"
 exit
 fi
}

move() #@ Move the square in $1
{
 movelist="$empty $movelist" ## add current empty square to the move list
 moves=$(($moves + 1)) ## increment move counter
 board[$empty]=${board[$1]} ## put $1 into the current empty square
 board[$1]="" ## remove number from new empty square
 last=$empty ## and put it in old empty square
 empty=$1 ## set new value for empty-square pointer
}

random_move() #@ Move one of the squares in the arguments
{
 ## The arguments to random_move are the squares that can be moved
 ## (as generated by the borders function)
 local sq
 while :

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

139

 do
 sq=$(($RANDOM % $# + 1))
 sq=${!sq}
 [$sq -ne ${last:-666}] && ## do not undo last move
 break
 done
 move "$sq"
}

shuffle() #@ Mix up the board using legitimate moves (to ensure solvable puzzle)
{
 local n=0 max=$(($RANDOM % 100 + 150)) ## number of moves to make
 while [$((n += 1)) -lt $max]
 do
 borders ## generate list of possible moves
 random_move "${bordering[@]}" ## move to one of them at random
 done
}

End of functions

trap 'printf "$normal"' EXIT ## return terminal to normal state on exit

Instructions and initialization

clear
print_board
echo
printf "\t%s\n" "$description" "by $author, ${created%%-*}" ""
printf "
 Use the cursor keys to move the tiles around.

 The game is finished when you return to the
 position shown above.

 Try to complete the puzzle in as few moves
 as possible.

 Press \e[1mENTER\e[0m to continue
"
shuffle ## randomize board
moves=0 ## reset move counter
read -s ## wait for user
clear ## clear the screen

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

140

Main loop

while :
do
 borders
 print_board
 printf "\t %d move" "$moves"
 [$moves -ne 1] && printf "s"
 check

 ## read a single character without waiting for <ENTER>
 read -sn1 -p $' \e[K' key

 ## The cursor keys generate three characters: ESC, [and A, B, C, or D;
 ## this loop will run three times for each press of a cursor key
 ## but will not do anything until it receives a letter
 ## from the cursor key (or entered directly with A etc.), or a 'q' to exit
 case $key in
 A) [-n "${bordering[$A]}"] && move "${bordering[$A]}" ;;
 B) [-n "${bordering[$B]}"] && move "${bordering[$B]}" ;;
 C) [-n "${bordering[$C]}"] && move "${bordering[$C]}" ;;
 D) [-n "${bordering[$D]}"] && move "${bordering[$D]}" ;;
 q) echo; break ;;
 esac
done

Summary
These 15 scripts provided a smattering of the possibilities for using scripts at the command line. Where
the environment needs to be changed (as in cd and cdm), the scripts must be shell functions. These are
usually kept in $HOME/.bashrc or in a file sourced by .bashrc.

Even games can be programmed without needing a GUI interface.

Exercises
1. Modify the menu function to accept its parameters from a file.

2. Rewrite the pr1 function as prx that will behave in the manner of pr4 from
Chapter 8 but will take an option for any number of columns.

3. Add a getopts section to the fifteen game that allows the user to select between
three different board formats. Write a third format.

C H A P T E R 1 2

141

Runtime Configuration

When I download my mail from three or four different POP3 servers, I don’t use a different script for
each one. When I open a terminal to ssh to a remote computer (half a dozen of them) with a different
background color for each, I use the same script for every connection. To upload files to my web sites
(I look after six sites), I use the same script for all of them.

You can configure a script’s behavior in several ways when you run it. This chapter looks at
seven methods: initialized variables, command-line options and arguments, menus, Q&A dialogue,
configuration files, multiple names for one script, and environment variables. These methods are not
mutually exclusive; in fact, they are often combined. A command-line option could tell the script to
use a different configuration file or present the user with a menu.

Defining Variables
If the runtime requirements for a script rarely change, hard-coded variables may be all the configuration
you need (Listing 12-1). You can set them when the script is installed. When a change is needed, the
parameters can quickly be changed with a text editor.

Listing 12-1. Example of Initialized Default Variables

File locations
dict=/usr/share/dict
wordfile=$dict/singlewords
compoundfile=$dict/Compounds

Default is not to show compound words
compounds=no

If the variables need changing often, one or more of the other methods can be added.

Command-Line Options and Arguments
The most common method for changing runtime behavior uses command-line options. As shown in
Listing 12-2, all the values defined earlier can be modified at the command line.

CHAPTER 12 RUNTIME CONFIGURATION

142

Listing 12-2. Parse Command-Line Options

while getopts d:w:f:c var
do
 case "$var" in
 c) compounds=1 ;;
 d) dict=$OPTARG ;;
 w) wordfile=$OPTARG ;;
 f) compoundfile=$OPTARG ;;
 esac
done

Menus
For a user unfamiliar with a piece of software, a menu is a good way to allow runtime changes. In the
menu example shown in Listing 12-3, the selections are numbered from 1 to 4, and q exits the menu.

Listing 12-3. Set Parameters via Menu

while : ## loop until user presses 'q'
do
 ## print menu
 printf "\n\n%s\n" "$bar"
 printf " Dictionary parameters\n"
 printf "%s\n\n" "$bar"
 printf " 1. Directory containing dictionary: %s\n" "$dict"
 printf " 2. File containing word list: %s\n" "$wordfile"
 printf " 3. File containing compound words and phrases: %s\n" "$compoundfile"
 printf " 4. Include compound words and phrases in results? %s\n" "$compounds"
 printf " q. %s\n" "Exit menu"
 printf "\n%s\n\n" "$bar"

 ## get user response
 read -sn1 -p "Select (1,2,3,4,q): " input
 echo

 ## interpret user response
 case $input in
 1) read -ep "Enter dictionary directory: " dict ;;
 2) read -ep "Enter word-list file: " wordfile ;;
 3) read -ep "Enter compound-word file: " compoundfile ;;
 4) ["$compounds" = y] && compounds=n || compounds=y ;;
 q) break ;;
 *) printf "\n\aInvalid selection: %c\n" "$input" >&2
 sleep 2
 ;;
 esac
done

CHAPTER 12 RUNTIME CONFIGURATION

143

Q&A Dialogue
A question-and-answer function cycles through all the parameters, prompting the user to enter a value
for each one (Listing 12-4). This can get tedious for the user, and it is probably best used when there are
no defaults, when there are very few parameters to enter, or when values need to be entered for a new
configuration file.

Listing 12-4. Set Variables by Question and Answer

read -ep "Directory containing dictionary: " dict
read -ep "File containing word list: " wordfile
read -ep "File containing compound words and phrases: " compoundfile
read -sn1 -p "Include compound words and phrases in results (y/n)? " compounds
echo
read -ep "Save parameters (y/n)? " save
case $save in
 y|Y) read -ep "Enter path to configuration file: " configfile
 {
 printf '%-30s ## %s"\n' \
 "dict=$dict" "Directory containing dictionary" \
 "wordfile=$wordfile" "File containing word list" \
 "compoundfile=$compoundfile" "File containing compound words and phrases" \
 "Compounds" "$Compounds" "Include compound words and phrases in results?"
 } > "${configfile:-/dev/tty}"
esac

Configuration Files
Configuration files can use any format, but it’s easiest to make them shell scripts that can be sourced.
The example file shown in Listing 12-5 can be sourced, but it can also provide more information.

Listing 12-5. Configuration File, words.cfg

dict=/usr/share/dict ## directory containing dictionary files
wordfile=singlewords ## file containing word list
compoundfile=Compounds ## file containing compound words and phrases
compounds=no ## include compound words and phrases in results?

The words.cfg file can be sourced with either of these two commands:

. words.cfg
source words.cfg

Rather than sourcing the file, it can be parsed in various ways (Listing 12-6). In bash-4.0, you can
read the file into an array and extract the variables and comments using parameter expansion, the
expansion being applied to each element of the array.

CHAPTER 12 RUNTIME CONFIGURATION

144

Listing 12-6. Parsing Configuration File

IFS=$'\n'
file=words.cfg
settings=($(< "$file")) ## store file in array, 1 line per element
eval "${settings[@]%%#*}" ## extract and execute the assignments
comments=("${settings[@]#*## }") ## store comments in array

The comments array contains just the comments, and the assignments can be extracted from
settings with "${settings[@]%%#*}":

$ printf "%s\n" "${comments[@]}"
directory containing dictionary files
file containing word list
file containing compound words and phrases
include compound words and phrases in results?

You can also read the file in a loop to set the variables and provide information about the variables it
contains by displaying the comments (Listing 12-7).

Listing 12-7. Parsing Configuration File with Comments

while read assignment x comment
do
 if [-n "$assignment"]
 then
 printf "%20s: %s\n" "${assignment#*=}" "$comment"
 eval "$assignment"
 fi
done < "$file"

The following is the result:

 /usr/share/dict: directory containing dictionary files
 singlewords: file containing word list
 Compounds: file containing compound words and phrases
 n: include compound words and phrases in results?

Configuration files can be made as complex as you like, but parsing them then falls more properly
under the category of data processing, which is the subject of the next chapter.

Scripts with Several Names
By storing the same file under different names, you can avoid command-line options and menus. The
script in Listing 12-8 opens a terminal and connects to different remote computers using a secure shell.
The terminal’s colors, the machine to log on to, and the name of the remote user are all determined by
the name of the script.

CHAPTER 12 RUNTIME CONFIGURATION

145

Listing 12-8. bashful, Connect to Remote Computer via ssh

scriptname=${0##*/}

default colours
bg=#ffffcc ## default background: pale yellow
fg=#000000 ## default foreground: black

user=bashful ## default user name
term=xterm ## default terminal emulator (I prefer rxvt)

case $scriptname in
 sleepy)
 bg=#ffffff
 user=sleepy
 host=sleepy.example.com
 ;;
 sneezy)
 fg=#aa0000
 bg=#ffeeee
 host=sneezy.example.org
 ;;
 grumpy)
 fg=#006600
 bg=#eeffee
 term=rxvt
 host=cfajohnson.example.com
 ;;
 dopey)
 host=127.0.0.1
 ;;
 *) echo "$scriptname: Unknown name" >&2
 exit 1
 ;;
esac

"$term" -fg "$fg" -bg "$bg" -e ssh -l "$user" "$host"

To create the multiple names for the same file, create links with ln (Listing 12-9).

Listing 12-9. Make Multiple Links to bashful Script

cd "$HOME/bin" &&
for name in sleepy sneezy grumpy dopey
do
 ln -s bashful "$name" ## you can leave out the -s option if you like
done

CHAPTER 12 RUNTIME CONFIGURATION

146

Environment Variables
You can also pass settings to a program using variables. These can be either exported or defined on the
same line as the command. In the latter case, the variable is defined for that command only.

You alter the behavior of the program by checking for the value of a variable or even just for its
existence. I use this technique most often to adjust the output of a script using verbose. This would be a
typical line in a script:

[${verbose:-0} -gt 0] && printf "%s\n" "Finished parsing options"

The script would be called with the following:

verbose=1 myscriptname

You can see an example in the following script.

All Together Now
The following is the program I use to update all my web sites. It finds new or modified files in a directory
hierarchy, stores them in a tarball, and uploads them to a web site on a (usually) remote computer. I
have shell access on all the sites I use, so I can use a secure shell, ssh, to transfer the files and unpack
them with tar on the site:

ssh -p "$port" -l "$user" "$host" \
 "cd \"$dest\" || exit;tar -xpzf -" < "$tarfile" &&
 touch "$syncfile"

All of my sites use authentication keys (created with ssh-keygen) so that no password is required and
so the script can be run as a cron job.

This program uses all the techniques mentioned earlier except for multiple names. It’s more than
you would usually use in a single program, but it’s a good illustration.

The user can select whether to use command-line options, a menu, a Q&A dialogue, or a configuration
file to adjust the settings, or the user can even use the defaults. Command-line options are available for all
settings:

-c configfile: Reads settings from configfile

-h host: Specifies the URL or IP address of remote computer

-p port: Specifies the SSH port to use

-d dest: Specifies the destination directory on the remote host

-u user: Specifies the user’s login name on remote computer

-a archivedir: Specifies the local directory to store archive files

-f syncfile: Specifies the file whose timestamp is the cut-off point
And there are three further options that control the script itself:

-t: Tests only, displays final settings, does not archive or upload

CHAPTER 12 RUNTIME CONFIGURATION

147

-m: Presents user with the menu

-q: Uses Q&A dialogue

The script is examined in the following sections in detail, section by section.

Script Information
Note that parameter expansion is used to pull the script name from $0, not the external command,
basename (Listing 12-10).

Listing 12-10. upload, Archive and Upload Files to Remote Computer

scriptname=${0##*/}
description="Archive new or modified files and upload to web site"
author="Chris F.A. Johnson"
version=1.0

Default Configuration
Besides setting the variables, an array containing the names of the variables and their descriptions is
created (Listing 12-10a). This is used by the menu and qa (question and answer) functions for labels and
prompts.

Listing 12-10a. Default Values and settings Array

archive and upload settings
host=127.0.0.1 ## Remote host (URL or IP address)
port=22 ## SSH port
dest=work/upload ## Destination directory
user=chris ## Login name on remote system
source=$HOME/public_html/example.com ## Local directory to upload
archivedir=$HOME/work/webarchives ## Directory to store archive files
syncfile=.sync ## File to touch with time of last upload

array containing variables and their descriptions
varinfo=("" ## Empty element to emulate 1-based array
 "host:Remote host (URL or IP address)"
 "port:SSH port"
 "dest:Destination directory"
 "user:Login name on remote system"
 "source:Local directory to upload"
 "archivedir:Directory to store archive files"
 "syncfile:File to touch with time of last upload"
)

CHAPTER 12 RUNTIME CONFIGURATION

148

These may be changed by command-line options
menu=0 ## do not print a menu
qa=0 ## do not use question and answer
test=0 ## 0 = upload for real; 1 = don't archive/upload, show settings
configfile= ## if defined, the file will be sourced
configdir=$HOME/.config ## default location for configuration files
sleepytime=2 ## delay in seconds after printing messages

Bar to print across top and bottom of menu (and possibly elsewhere)
bar===
bar=barbarbarbar ## make long enough for any terminal window
menuwidth=${COLUMNS:-80}

Screen Variables
These variables use the ISO-6429 standard, which is now all but universal in terminals and terminal
emulators (Listing 12-10b). This is discussed in detail in Chapter 14. When printed to the terminal, these
escape sequences perform the actions indicated in the comments.

Listing 12-10b. Define Screen Manipulation Variables

topleft='\e[0;0H' ## Move cursor to top left corner of screen
clearEOS='\e[J' ## Clear from cursor position to end of screen
clearEOL='\e[K' ## Clear from cursor position to end of line

Function Definitions
There are five functions, two of which, menu and qa, allow the user to change the settings. With readline
to accept the user’s input, the -i option to read is used if the shell version is bash-4.0 or greater. If the
test option is used, the print_config function outputs the settings in a format that is suitable for a
configuration file, complete with comments.

Function: die
The program exits via the die function when a command fails (Listing 12-10c).

Listing 12-10c. Define die Function

die() #@ Print error message and exit with error code
{ #@ USAGE: die [errno [message]]

 error=${1:-1} ## exits with 1 if error number not given
 shift
 [-n "$*"] &&
 printf "%s%s: %s\n" "$scriptname" ${version:+" ($version)"} "$*" >&2
 exit "$error"
}

CHAPTER 12 RUNTIME CONFIGURATION

149

Function: menu
The menu function uses its command-line arguments to populate the menu (Listing 12-10d). Each
argument contains a variable name and a description of the variable separated by a colon.

THE UPLOAD SETTINGS MENU

==
 UPLOAD SETTINGS
==

 1: Remote host (URL or IP address) (127.0.0.1)
 2: ssh port (22)
 3: Destination directory (work/upload)
 4: Login name on remote system (chris)
 5: Local directory to upload (/home/chris/public_html/example.com)
 6: Directory to store archive files (/home/chris/work/webarchives)
 7: File to touch with time of last upload (.sync)
 q: Quit menu, start uploading
 0: Exit upload

==

 Select 1..7 or 'q/0'

The function enters an infinite loop, from which the user exits by selecting q or 0. Within the loop,
menu clears the screen and then cycles through each argument, storing it in item. It extracts the variable
name and description using parameter expansion:

var=${item%%:*}
description=${item#*:}

The value of each var is obtained through indirect expansion, ${!var}, and is included in the menu
labels.

The field width for the menu number is ${#max}, that is, the length of the highest item number.

Listing 12-10d. Define menu Function

menu() #@ Print menu, and change settings according to user input
{
 local max=$#
 local menutitle="UPLOAD SETTINGS"
 local readopt

 if [$max -lt 10]
 then ## if fewer than ten items,

CHAPTER 12 RUNTIME CONFIGURATION

150

 readopt=-sn1 ## allow single key entry
 else
 readopt=
 fi

 printf "$topleft$clearEOS" ## Move to top left and clear screen

 while : ## infinite loop
 do

 ###
 ## display menu
 ##
 printf "$topleft" ## Move cursor to top left corner of screen

 ## print menu title between horizontal bars the width of the screen
 printf "\n%s\n" "${bar:0:$menuwidth}"
 printf " %s\n" "$menutitle"
 printf "%s\n\n" "${bar:0:$menuwidth}"

 menunum=1

 ## loop through the positional parameters
 for item
 do
 var=${item%%:*} ## variable name
 description=${item#*:} ## variable description

 ## print item number, description and value
 printf " %${#max}d: %s (%s)$clearEOL\n" \
 "$menunum" "$description" "${!var}"

 menunum=$(($menunum + 1))
 done

 ## ... and menu adds its own items
 printf " %${##}s\n" "q: Quit menu, start uploading" \
 "0: Exit $scriptname"

 printf "\n${bar:0:$menuwidth}\n" ## closing bar

 printf "$clearEOS\n" ## Clear to end of screen
 ##
 ###

 ###
 ## User selection and parameter input
 ##

 read -p " Select 1..$max or 'q' " $readopt x
 echo

CHAPTER 12 RUNTIME CONFIGURATION

151

 ["$x" = q] && break ## User selected Quit
 ["$x" = 0] && exit ## User selected Exit

 case $x in
 [!0-9] | "")
 ## contains non digit or is empty
 printf "\a %s - Invalid entry\n" "$x" >&2
 sleep "$sleepytime"
 ;;
 *) if [$x -gt $max]
 then
 printf "\a %s - Invalid entry\n" "$x" >&2
 sleep "$sleepytime"
 continue
 fi

 var=${!x%%:*}
 description=${!x#*:}

 ## prompt user for new value
 printf " %s$clearEOL\n" "$description"
 readline value " >> " "${!var}"

 ## if user did not enter anything, keep old value
 if [-n "$value"]
 then
 eval "$var=\$value"
 else
 printf "\a Not changed\n" >&2
 sleep "$sleepytime"
 fi
 ;;
 esac
 ##
 ###

 done
}

Function: qa
The qa function takes the same arguments as menu, but instead of putting them into a menu, it prompts
the user for a new value for each variable (Listing 12-10e). When it has run through all the command-line
arguments, which it splits up in the same manner as menu, it calls the menu function for verification and
editing of the values. Also like menu, it uses readline to get the input and keeps the old value if nothing is
entered.

CHAPTER 12 RUNTIME CONFIGURATION

152

Listing 12-10e. Define qa Function

qa() #@ Question and answer dialog for variable entry
{
 local item var description

 printf "\n %s - %s\n" "$scriptname" "$description"
 printf " by %s, copyright %d\n" "$author" "$copyright"
 echo
 if [${BASH_VERSINFO[0]} -ge 4]
 then
 printf " %s\n" "You may edit existing value using the arrow keys."
 else
 printf " %s\n" "Press the up arrow to bring existing value" \
 "to the cursor for editing with the arrow keys"
 fi
 echo

 for item
 do
 ## split $item into variable name and description
 var=${item%%:*}
 description=${item#*:}
 printf "\n %s\n" "$description"
 readline value " >> " "${!var}"
 [-n "$value"] && eval "$var=\$value"
 done

 menu "$@"
}

The dialogue looks like this:

$ upload -qt

 upload - Archive new or modified files and upload to web site
 by Chris F.A. Johnson, copyright 2009

 You may edit existing value using the arrow keys.

 Remote host (URL or IP address)
 >> cfajohnson.com

 SSH port
 >> 99

 Destination directory
 >> public_html

CHAPTER 12 RUNTIME CONFIGURATION

153

 Login name on remote system
 >> chris

 Local directory to upload
 >> /home/chris/public_html/cfajonson.com

 Directory to store archive files
 >> /home/chris/work/webarchives

 File to touch with time of last upload
 >> .sync

Function: print_config
The print_config function prints all the variables listed in the varinfo array to the standard output in a
format suitable for a configuration file, as described earlier in this chapter. Although probably not
necessary in this program, it encloses the assignment value in double quotes and escapes double quotes
in the value using bash’s search-and-replace parameter expansion:

$ var=location
$ val='some"where'
$ printf "%s\n" "$var=\"${val//\"/\\\"}\""
location="some\"where"

See the options-parsing section in Listing 12-10f for an example of the output of print_config.

Listing 12-10f. Define print_config Function

print_config() #@ Print values in a format suitable for a configuration file
{
 local item var description

 [-t 1] && echo ## print blank line if output is to a terminal

 for item in "${varinfo[@]}"
 do
 var=${item%%:*}
 description=${item#*:}
 printf "%-35s ## %s\n" "$var=\"\${!var//\"/\\\"}\"" "$description"
 done

 [-t 1] && echo ## print blank line if output is to a terminal
}

Function: readline
If you are using bash-4.0 or later, the readline function will place a value before the cursor for you to
edit (Listing 12-10g). With an earlier version of bash, it puts the value into the history so that you can
bring it up with the up arrow (or Ctrl+P) and then edit it.

CHAPTER 12 RUNTIME CONFIGURATION

154

Listing 12-10g. Define readline Function

readline() #@ get line from user with editing of current value
{ #@ USAGE var [prompt] [default]
 local var=${1?} prompt=${2:- >>> } default=$3

 if [${BASH_VERSINFO[0]} -ge 4]
 then
 read -ep "$prompt" ${default:+-i "$default"} "$var"
 else
 history -s "$default"
 read -ep "$prompt" "$var"
 fi
}

Parse Command-Line Options
You can set the seven configuration variables with the a, d, f, h, p, s, and u options. In addition, you can
specify a configuration file with the c option. A test run, which prints the configuration information but
doesn’t attempt to create a tarball or upload any files, can be triggered with the t option. The m and q
options offer the user a menu and a question-and-answer dialogue, respectively.

If a host is given as an option, a config file name is built using a standard formula. If the file exists, it
is assigned to the configfile variable so that the parameters will be loaded from it. This is all usually I
need to put on the command line (Listing 12-10h).

Listing 12-10h. Parse Command-Line Options

while getopts c:h:p:d:u:a:s:f:mqt var
do
 case "$var" in
 c) configfile=$OPTARG ;;
 h) host=$OPTARG
 hostconfig=$configdir/$scriptname.$host.cfg
 [-f "$hostconfig"] &&
 configfile=$hostconfig
 ;;
 p) port=$OPTARG ;;
 s) source=$OPTARG ;;
 d) dest=$OPTARG ;;
 u) user=$OPTARG ;;
 a) archivedir=$OPTARG ;;
 f) syncfile=$OPTARG ;;

 t) test=1 ;; ## show configuration, but do not archive or upload

 m) menu=1 ;;
 q) qa=1 ;;
 esac
done
shift $(($OPTIND - 1))

CHAPTER 12 RUNTIME CONFIGURATION

155

Using options and redirection, this program can create new configuration files. Here, parameters
are given on the command line, and defaults are used for those not given.

$ upload -t -h www.example.com -p 666 -u paradigm -d public_html \
 -s $HOME/public_html/www.example.com > www.example.com.cfg
$ cat www.example.com.cfg
host="www.example.com" ## Remote host (URL or IP address)
port="666" ## SSH port
dest="public_html" ## Destination directory
user="paradigm" ## Login name on remote system
source="/home/chris/public_html/www.example.com" ## Local directory to upload
archivedir="/home/chris/work/webarchives" ## Directory to store archive files
syncfile=".sync" ## File to touch with time of last upload

Bits and Pieces
Listing 12-10i shows the rest of the script.

Listing 12-10i. The Rest of the Script

If a configuration file is defined, try to load it
if [-n "$configfile"]
then
 if [-f "$configfile"]
 then
 ## exit if problem with config file
 . "$configfile" || die 1 Configuration error
 else
 ## Exit if configuration file is not found.
 die 2 "Configuration file, $configfile, not found"
 fi
fi

Execute menu or qa if defined
if [$menu -eq 1]
then
 menu "${varinfo[@]}"
elif [$qa -eq 1]
then
 qa "${varinfo[@]}"
fi

Create datestamped filename for tarball
tarfile=$archivedir/$host.$(date +%Y-%m-%dT%H:%M:%S.tgz)

if [$test -eq 0]
then
 cd "$source" || die 4
fi

CHAPTER 12 RUNTIME CONFIGURATION

156

verbose must be set (or not) in the environment or on the command line
if [${verbose:-0} -gt 0]
then
 printf "\nArchiving and uploading new files in directory: %s\n\n" "$PWD"
 opt=v
else
 opt=
fi

IFS=$'\n' # uncomment this line if you have spaces in filenames (shame on you!)

if [${test:-0} -eq 0]
then
 remote_command="cd \"$dest\" || exit;tar -xpzf -"

 ## Archive files newer than $syncfile
 tar cz${opt}f "$tarfile" $(find . -type f -newer "$syncfile") &&

 ## Execute tar on remote computer with input from $tarfile
 ssh -p "$port" -l "$user" "$host" "$remote_command" < "$tarfile" &&

 ## if ssh is successful
 touch "$syncfile"

else ## test mode
 print_config
fi

Summary
This chapter demonstrated seven methods of altering the runtime behavior of a script. If changes will be
rare, variables defined in the script may be adequate. When that isn’t enough, command-line options
(parsed with getopts) are often enough.

You can use a menu or question-and-answer dialogue both for runtime configuration and for
creating configuration files that can be sourced on demand. Using differently named files for the same
script can save typing. In some cases, setting a variable in the shell’s environment is enough.

Exercises
1. Add code to the upload script that checks that all variables have been set to

legitimate values (for example, that port is an integer).

2. Write a usage or help function, and add it to the upload script.

3. Add an option to the upload script to save the configuration if it has been saved.

4. Write a script that creates a configuration file in the same form as words.cfg,
prompting the user for the information to put in it.

C H A P T E R 1 3

157

Data Processing

Data manipulation includes a wide range of actions, far more than can be adequately covered in a
single chapter. However, most actions are just the application of techniques already covered in earlier
chapters. Arrays are a basic data structure, and although the syntax was covered in Chapter 5 and they
were used in fifteen in Chapter 11, I haven’t examined their uses. Parameter expansion has been used
in a number of chapters, but its application to parsing data structures has not been discussed.

In this chapter, I’ll cover different ways of using strings and arrays, how to parse character-
delimited records into its individual fields, and how to read a data file. There are two function libraries
for manipulating two-dimensional grids, and there are functions for sorting and searching arrays.

A number of the scripts in this chapter require bash-3.1 or later.

Arrays
Arrays are not included in the POSIX shell, but bash has had indexed arrays since version 2.0, and in
version 4.0, associative arrays were added. Indexed arrays are assigned and referenced using integer
subscripts; associative arrays use strings. There is no preset limit to the number of elements an array can
contain; they are limited only by available memory.

Holes in an Indexed Array
If some elements of an indexed array are unset, the array is left with holes; it becomes a sparse array. It
will then be impossible to traverse the array merely by incrementing an index. There are various ways of
dealing with such an array. To demonstrate, I’ll create an array and poke some holes in it:

array=(a b c d e f g h i j)
unset array[2] array[4] array[6] array[8]

The array now contains six elements instead of the original ten:

$ sa "${array[@]}"
:a:
:b:
:d:
:f:
:h:
:j:

CHAPTER 13 DATA PROCESSING

158

One way to iterate through all the remaining elements is to expand them as arguments to for. In this
method, there is no way of knowing what the subscript for each element is:

for i in "${array[@]}"
do
 : do something with each element, $i, here
done

With a packed array (one with no holes), the index can start at 0 and be incremented to get the next
element. With a sparse (or any) array, the ${!array[@]} expansion lists the subscripts:

$ echo "${!array[@]}"
0 1 3 5 7 9

This expansion can be used as the argument to for:

for i in "${!array[@]}"
do
 : do something with ${array[$i]} here
done

That solution gives you no method of referring to the next element. You can save the previous
element but not get the value of the next one. To do that, you could put the list of subscripts into an
array and use its elements to reference the original array. It’s much simpler to pack the array, removing
the holes:

$ array=("${array[@]}")
$ echo "${!array[@]}"
0 1 2 3 4 5

Note that this will convert an associative array to an indexed array.

Using an Array for Sorting
Ordering data alphabetically (or numerically) is not usually a task for the shell. The sort command is a
very flexible and efficient tool that can handle most sorting needs. There are, however, a couple of cases
where sorting can best be done by the shell.

The most obvious is file name expansion, in which the result of expanding wildcards is always
sorted alphabetically. This is useful, for example, when working with date-stamped files. If the
datestamp uses the standard ISO format, YYYY-MM-DD, or a compressed version, YYYYMMDD, the files will
automatically be sorted in date order. If you have files in the format log.YYYYMMDD, this loops through
them in chronological order:

for file in log.* ## loop through files in chronological order
do
 : do whatever
done

There is no need to use ls; the shell sorts the wildcard expansion.

CHAPTER 13 DATA PROCESSING

159

With bash-4.0, another expansion is sorted alphabetically: associative arrays with single-character
subscripts:

$ declare -A q
$ q[c]=1 q[d]=2 q[a]=4
$ sa "${q[@]}"
:4:
:1:
:2:

This led me to write a function that sorts the letters of a word; see Listing 13-1.

Listing 13-1. lettersort, Sort Letters in a Word Alphabetically

lettersort() #@ Sort letters in $1, store in $2
{
 local letter string
 declare -A letters
 string=${1:?}
 while [-n "$string"]
 do
 letter=${string:0:1}
 letters["$letter"]=${letters["$letter"]}$letter
 string=${string#?}
 done
 printf -v "${2:-_LETTERSORT}" "%s" "${letters[@]}"
}

What’s the point, you ask? Take a look at these examples:

$ lettersort triangle; printf "%s\n" "$_LETTERSORT"
aegilnrt
$ lettersort integral; printf "%s\n" "$_LETTERSORT"
aegilnrt

When the letters are sorted, you can see that the two words contain the same letters. Therefore, they
are anagrams of each other. Try it with altering, alerting, and relating.

Insertion Sort Function
If you really want to do your sorting in the shell, you can. The function in Listing 13-2 is slower than
the external sort command when there are more than 15 to 20 elements (the exact numbers will vary
depending on your computer, its load, and so on). It inserts each element into the correct position in an
array and then prints the resulting array.

CHAPTER 13 DATA PROCESSING

160

Listing 13-2. isort, Sort Command-Line Arguments

isort()
{
 local -a a
 a=("$1") ## put first argument in array for initial comparison
 shift ## remove first argument
 for e ## for each of the remaining arguments...
 do
 if ["$e" \< "${a[0]}"] ## does it precede the first element?
 then
 a=("$e" "${a[@]}") ## if yes, put it first
 elif ["$e" \> "${a[${#a[@]}-1]}"] ## if no, does it go at the end?
 then
 a=("${a[@]}" "$e") ## if yes, put it at the end
 else ## otherwise,
 n=0
 while ["${a[$n]}" \< "$e"] ## find where it goes
 do
 n=$(($n + 1))
 done
 a=("${a[@]:0:n}" "$e" "${a[@]:n}") ## and put it there
 fi
 done
 printf "%s\n" "${a[@]}"
}

To put Canada’s ten provincial capitals in alphabetical order, you’d use this:

$ isort "St. John's" Halifax Fredericton Charlottetown "Quebec City" \
 Toronto Winnipeg Regina Edmonton Victoria
Charlottetown
Edmonton
Fredericton
Halifax
Quebec City
Regina
St. John's
Toronto
Victoria
Winnipeg

Searching an Array
As with the isort function, this function is designed for use with relatively small arrays. If the array
contains more than a certain number of elements (50? 60? 70?), it is faster to pipe it through grep. The
function in Listing 13-3 takes the name of an array and a search string as arguments and stores elements
containing the search string in a new array, _asearch_elements.

CHAPTER 13 DATA PROCESSING

161

Listing 13-3. asearch, Search Elements of an Array for a String

asearch() #@ Search for substring in array; results in array _asearch_elements
{ #@ USAGE: asearch arrayname string
 local arrayname=$1 substring=$2 array

 eval "array=(\"\${$arrayname[@]}\")"

 case ${array[*]} in
 "$substring") ;; ## it's there; drop through
 *) return 1 ;; ## not there; return error
 esac

 unset _asearch_elements
 for subscript in "${!array[@]}"
 do
 case ${array[$subscript]} in
 "$substring")
 _asearch_elements+=("${array[$subscript]}")
 ;;
 esac
 done
}

To see the function in action, put the provincial capitals from the previous section into an array, and
call asearch:

$ capitals=("St. John's" Halifax Fredericton Charlottetown "Quebec City"
 Toronto Winnipeg Regina Edmonton Victoria)
$ asearch captials Hal && printf "%s\n" "${_asearch_elements[@]}"
Halifax
$ asearch captials ict && printf "%s\n" "${_asearch_elements[@]}"
Fredericton
Victoria

Reading an Array into Memory
There are various ways of reading a file into an array with bash. The most obvious is also the slowest: a
while read loop:

unset array
while read line
do
 array+=("$line")
done < "$kjv" ## kjv is defined in Chapter 8

A faster method that is still portable uses the external command, cat:

IFS=$'\n' ## split on newlines, so each line is a separate element
array=($(cat "$kjv"))

CHAPTER 13 DATA PROCESSING

162

In bash, cat is unnecessary:

array=(< "$kjv") ## IFS is still set to a newline

With bash-4.0, a new builtin command, mapfile, is even faster:

mapfile -t array < "$kjv"

The options to mapfile allow you to select the line at which to start reading (actually, it’s the
number of lines to skip before starting to read), the number of lines to read, and the index at which to
start populating the array. If no array name is given, the variable MAPFILE is used.

The following are the seven options to mapfile:

-n num: Reads no more than num lines

-O index: Begins populating the array at element index

-s num: Discards the first num lines

-t: Removes the trailing newline from each line

-u fd: Reads from input stream fd instead of the standard input

-C callback: Evaluates the shell command callback every N lines, where N is set by
the following

-c N: Specifies the number of lines between each evaluation of callback; the
default is 5000

With older versions of bash, I used sed to extract ranges of lines from a file; with bash-4.0, I use
mapfile. Listing 13-4 installs a function that uses mapfile if the version of bash is 4 or greater but sed uses
if not:

Listing 13-4. getlines, Store a Range of Lines from a File in an Array

if ["${BASH_VERSINFO[0]}" -ge 4]
then
 getlines() #@ USAGE: getlines file start num arrayname
 {
 mapfile -t -s$(($2 - 1)) -n ${3:?} "$4" < "$1"
 }
else
 getlines() #@ USAGE: getlines file start num arrayname
 {
 local IFS=$'\n' getlinearray arrayname=${4:?}
 getlinearray=($(sed -n "$2,$(($2 - 1 + $3)) p" "$1"))
 eval "$arrayname=(\"\${getlinearray[@]}\")"
 }
fi

Process substitution and external utilities can be used with mapfile to extract portions of a file using
different criteria:

CHAPTER 13 DATA PROCESSING

163

mapfile -t exodus < <(grep ^Exodus: "$kjv") ## store the book of Exodus
mapfile -t books < <(cut -d: -f1 "$kjv" | uniq) ## store names of all books in KJV

Two-Dimensional Grids
I often find myself dealing with two-dimensional grids. As a constructor of crossword puzzles, I need
to convert a grid from a puzzle file to a format that my client publications can import into desktop
publishing software. As a chess tutor, I need to convert chess positions into a format that I can use in
worksheets for my students. In games such as tic-tac-toe, maxit, and fifteen (from Chapter 11), the
game board is a grid.

The obvious structure to use is a two-dimensional array. Since bash has only one-dimensional
arrays, a workaround is needed to simulate two dimensions. This can be done as an array, a string,
an array of strings, or a “poor-man’s” array (see Chapter 9).

For a chess diagram, an associative array could be used, with the squares identified using the
standard algebraic notation (SAN) for squares, a1, b1 to g8, h8:

declare -A chessboard
chessboard["a1"]=R
chessboard["a2"]=P
: ... 60 squares skipped
chessboard["g8"]=r
chessboard["h8"]=b

A structure I’ve used on a few occasions is an array in which each element is a string representing
a rank:

chessboard=(
 RNBQKBRN
 PPPPPPPP
 " "
 " "
 " "
 " "
 pppppppp
 rnbqkbnr
)

My preference, when using bash, is a simple indexed array:

chessboardarray=(
R N B Q K B R N
P P P P P P P P
"" "" "" "" "" "" "" ""
"" "" "" "" "" "" "" ""
"" "" "" "" "" "" "" ""
"" "" "" "" "" "" "" ""
p p p p p p p p
r n b q k b n r
)

CHAPTER 13 DATA PROCESSING

164

Or, in a POSIX shell, it could be a single string:

chessboard="RNBQKBRNPPPPPPPP pppppppprnbqkbnr"

Here are two function libraries, one for dealing with grids in a single string, the other for grids stored
in arrays.

Working with Single-String Grids
I have a function library, stringgrid-funcs, for dealing with two-dimensional grids stored in a single
string. There is a function to initialize all elements of a grid to a given character and one to calculate the
index in the string of a character based on the x and y coordinates. There’s one to fetch the character in
the string using x/y and one to place a character into the grid at x/y. Finally, there are functions to print a
grid, starting either with the first row or with the last row. These functions only work with square grids.

Function: initgrid

Given the name of the grid (that is, the variable name), the size, and optionally the character with which
to fill it, initgrid (Listing 13-5a) creates a grid with the parameters supplied. If no character is supplied,
a space is used.

The length of the string is the square of the grid size. A string of that length is created using a width
specification in printf, with the -v option to save it to a variable supplied as an argument. Pattern
substitution then replaces the spaces with the requested string.

This and the other functions in this library use the ${var:?} expansion, which displays an error and
exits the script if there is no value for the parameter. This is appropriate because it is a programming
error, not a user error if a parameter is missing. Even if it’s missing because the user failed to supply it, it
is still a programming error; the script should have checked that a value had been entered.

Listing 13-5a. initgrid, Create a Grid and Fill It

initgrid() #@ Fill N x N grid with a character
{ #@ USAGE: initgrid gridname size [character]
 ## If a parameter is missing, it's a programming error, so exit
 local grid gridname=${1:?} char=${3:- } size
 export gridsize=${2:?} ## set gridsize globally

 size=$(($gridsize ** 2)) ## total number of characters in grid
 printf -v grid "%$size.${size}s" " " ## print string of spaces to variable
 eval "$gridname=\${grid// /"$char"}" ## replace spaces with desired character
}

A tic-tac-toe grid is a string of nine spaces. For something this simple, the initgrid function is
hardly necessary, but it is a useful abstraction:

$. stringgrid-funcs
$ initgrid ttt 3
$ sa "$ttt" ## The sa script/function has been used in previous chapters
: :

CHAPTER 13 DATA PROCESSING

165

Function: gridindex

To convert x and y coordinates into the corresponding position in the grid string, subtract 1 from the row
number, multiply it by the gridsize, and add the columns. Listing 13-5b, gridindex, is a simple formula
that could be used inline when needed, but again the abstraction makes using string grids easier and
localizes the formula so that if there is a change, it only needs fixing in one place.

Listing 13-5b. gridindex, Calculate Index from Row and Column

gridindex() #@ Store row/column's index into string in var or $_gridindex
{ #@ USAGE: gridindex row column [gridsize] [var]]
 local row=${1:?} col=${2:?}

 ## If gridsize argument is not given, take it from definition in calling script
 local gridsize=${3:-$gridsize}
 printf -v "${4:-_GRIDINDEX}" "%d" "$((($row - 1) * $gridsize + $col - 1))"
}

What’s the index of row 2, column 3 in the tic-tac-toe grid string?

$ gridindex 2 3 ## gridsize=3
$ echo "$_GRIDINDEX"
5

Function: putgrid

To change a character in the grid string, putgrid (Listing 13-5c) takes four arguments: the name of the
variable containing the string, the row and column coordinates, and the new character. It splits the string
into the part before the character and the part after it using bash’s substring parameter expansion. It
then sandwiches the new character between the two parts and assigns the composite string to the
gridname variable. (Compare this with the _overlay function in Chapter 7.)

Listing 13-5c. putgrid, Insert Character in Grid at Specified Row and Column

putgrid() #@ Insert character int grid at row and column
{ #@ USAGE: putgrid gridname row column char
 local gridname=$1 ## grid variable name
 local left right ## string to left and right of character to be changed
 local index ## result from gridindex function
 local char=${4:?} ## character to place in grid
 local grid=${!gridname} ## get grid string though indirection

 gridindex ${2:?} ${3:?} "$gridsize" index

 left=${grid:0:index}
 right=${grid:index+1}
 grid=$left$4$right
 eval "$gridname=\$grid"
}

CHAPTER 13 DATA PROCESSING

166

Here’s the first move in a tic-tac-toe game:

$ putgrid ttt 1 2 X
$ sa "$ttt"
: X :

Function: getgrid

The opposite of putgrid is getgrid (Listing 13-5d). It returns the character in a given position. Its
arguments are the grid name (I could have used the string itself, because nothing is being assigned to it,
but the grid name is used for consistency), the coordinates, and the name of the variable in which to
store the character. If no variable name is supplied, it is stored in _GRIDINDEX.

Listing 13-5d. getgrid, Get Character at Row and Column Location in Grid

getgrid() #@ Get character from grid in row Y, column X
{ #@ USAGE: getgrid gridname row column var
 : ${1:?} ${2:?} ${3:?} ${4:?}
 local grid=${!1}
 gridindex "$2" "$3"
 eval "$4=\${grid:_GRIDINDEX:1}"
}

This snippet returns the piece in the square e1. A chess utility would convert the square to
coordinates and then call the getgrid function. Here it is used directly.

$ gridsize=8
$ chessboard="RNBQKBRNPPPPPPPP pppppppprnbqkbnr"
$ getgrid chessboard 1 5 e1
$ sa "$e1"
:K:

Function: showgrid

This function (Listing 13-5e) extracts rows from a string grid using substring expansion and the gridsize
variable and prints them to the standard output.

Listing 13-5e. showgrid, Print a Grid from a String

showgrid() #@ print grid in rows to stdout
{ #@ USAGE: showgrid gridname [gridsize]
 local grid=${!1:?} gridsize=${2:-$gridsize}
 local row ## the row to be printed, then removed from local copy of grid

 while [-n "$grid"] ## loop until there's nothing left
 do
 row=${grid:0:"$gridsize"} ## get first $gridsize characters from grid
 printf "\t:%s:\n" "$row" ## print the row
 grid=${grid#"$row"} ## remove $row from front of grid
 done
}

CHAPTER 13 DATA PROCESSING

167

Here we add another move to the tic-tac-toe board and display it:

$ gridsize=3 ## reset gridsize after changing it for the chessboard
$ putgrid ttt 2 2 O ## add O's move in the center square
$ showgrid ttt ## print it
 : X :
 : O :
 : :

Function: rshowgrid

For most grids, counting begins in the top-left corner. For others, such as a chessboard, it starts in the
lower-left corner. To display a chessboard, the rgridshow function extracts and displays rows starting
from the end of the string rather than from the beginning.

In Listing 13-5f, substring expansion is used with a negative.

Listing 13-5f. rshowgrid, Print a Grid in Reverse Order

rshowgrid() #@ print grid to stdout in reverse order
{ #@ USAGE: rshowgrid grid [gridsize]
 local grid gridsize=${2:-$gridsize} row
 grid=${!1:?}
 while [-n "$grid"]
 do
 ## Note space before minus sign
 ## to distinguish it from default value substitution
 row=${grid: -$gridsize} ## get last row from grid
 printf "\t:%s:\n" "$row" ## print it
 grid=${grid%"$row"} ## remove it
 done
}

Here, rshowgrid is used to display the first move of a chess game. (For those who are interested, the
opening is called Bird’s Opening. It’s not often played, but I have been using it successfully for 45 years.)

$ gridsize=8
$ chessboard="RNBQKBRNPPPPPPPP pppppppprnbqkbnr"
$ putgrid chessboard 2 6 ' '
$ putgrid chessboard 4 6 P
$ rshowgrid chessboard
 :rnbqkbnr:
 :pppppppp:
 : :
 : :
 : P :
 : :
 :PPPPP PP:
 :RNBQKBRN:

CHAPTER 13 DATA PROCESSING

168

These output functions can be augmented by piping the output through a utility such as sed or awk
or even replaced with a custom function for specific uses. I find that the chessboard looks better when
piped through sed to add some spacing:

$ rshowgrid chessboard | sed 's/./& /g' ## add a space after every character
 : r n b q k b n r :
 : p p p p p p p p :
 : :
 : :
 : P :
 : :
 : P P P P P P P :
 : R N B Q K B R N :

Two-Dimensional Grids Using Arrays
For many grids, a single string is more than adequate (and is portable to other shells), but an array-based
grid offers more flexibility. In the fifteen puzzle in Chapter 11, the board is stored in an array. It is
printed with printf using a format string that can easily be changed to give it a different look. The tic-
tac-toe grid in an array could be as follows:

$ ttt=("" X "" "" O "" "" X "")

And this is the format string:

$ fmt="
 | |
 %1s | %1s | %1s
 ----+---+----
 %1s | %1s | %1s
 ----+---+----
 %1s | %1s | %1s
 | |

 "

And the result, when printed, looks like this:

$ printf "$fmt" "${ttt[@]}"

 | |
 | X |
 ----+---+----
 | O |
 ----+---+----
 | X |
 | |

(This is an unusual position in that O will win no matter where he places his next O.)

CHAPTER 13 DATA PROCESSING

169

If the format string is changed to this:

fmt="

 _/ _/
 %1s _/ %1s _/ %1s
 _/ _/
 //_/_/_/_/_/_/_/_/
 _/ _/
 %1s _/ %1s _/ %1s
 _/ _/
 //_/_/_/_/_/_/_/_/
 _/ _/
 %1s _/ %1s _/ %1s
 _/ _/

"

the output will look like this:

 _/ _/
 _/ X _/
 _/ _/
 //_/_/_/_/_/_/_/_/
 _/ _/
 _/ O _/
 _/ _/
 //_/_/_/_/_/_/_/_/
 _/ _/
 _/ X _/
 _/ _/

The same output could be achieved with a single-string grid, but it would require looping over every
character in the string. An array is a group of elements that can be addressed individually or all at once,
depending on the need.

The functions in arraygrid-funcs mirror those in stringgrid-funcs. In fact, the gridindex function
is identical to the one in stringgrid-funcs, so it’s not repeated here. As with the sdtring grid functions,
some of them expect the size of the grid to be available in a variable, agridsize.

Function: initagrid

Most of the functions for array grids are simpler than their single-string counterparts. A notable
exception is initagrid (Listing 13-6a), which is longer and slower, due to the necessity of a loop instead
of a simple assignment. The entire array may be specified as arguments, and any unused array elements
will be initialized to an empty string.

Listing 13-6a. initagrid, Initialize a Grid Array

initagrid() #@ Fill N x N grid with supplied data (or placeholders if none)
{ #@ USAGE: initgrid gridname size [character ...]
 ## If a required parameter is missing, it's a programming error, so exit

CHAPTER 13 DATA PROCESSING

170

 local grid gridname=${1:?} char=${3:- } size
 export agridsize=${2:?} ## set agridsize globally

 size=$(($agridsize * $agridsize)) ## total number of elements in grid

 shift 2 ## Remove first two arguments, gridname and agridsize
 grid=("$@") ## What's left goes into the array

 while [${#grid[@]} -lt $size]
 do
 grid+=("")
 done

 eval "$gridname=(\"\${grid[@]}\")"
}

Function: putagrid

Changing a value in an array is a straightforward assignment. Unlike changing a character in a string,
there is no need to tear it apart and put it back together. All that’s needed is the index calculated from
the coordinates. This function (Listing 13-6b) requires agridsize to be defined.

Listing 13-6b. putagrid, Replace a Grid Element

putagrid() #@ Replace character in grid at row and column
{ #@ USAGE: putagrid gridname row column char
 local left right pos grid gridname=$1
 local value=${4:?} index
 gridindex ${2:?} ${3:?} "$agridsize" index ## calculate the index
 eval "$gridname[index]=\$value" ## assign the value
}

Function: getagrid

Given the x and y coordinates, getagrid fetches the value at that position and stores it in a supplied
variable (Listing 13-6c).

Listing 13-6c. getagrid, Extract an Entry from a Grid

getagrid() #@ Get entry from grid in row Y, column X
{ #@ USAGE: getagrid gridname row column var
 : ${1:?} ${2:?} ${3:?} ${4:?}
 local grid

 eval "grid=(\"\${$1[@]}\")"
 gridindex "$2" "$3"
 eval "$4=\${grid[$_GRIDINDEX]}"
}

CHAPTER 13 DATA PROCESSING

171

Function: showagrid

showagrid (Listing 13-6d) prints each row of an array grid on a separate line.

Listing 13-6d. showagrid, Description

showagrid() #@ print grid to stdout
{ #@ USAGE: showagrid gridname format [agridsize]
 local gridname=${1:?} grid
 local format=${2:?}
 local agridsize=${3:-${agridsize:?}} row

 eval "grid=(\"\${$1[@]}\")"
 printf "$format" "${grid[@]}"
}

Function: rshowagrid

rshowagrid (Listing 13-6e) prints each row of an array grid on a separate line in reverse order.

Listing 13-6e. rshowagrid, Description

rshowagrid() #@ print grid to stdout in reverse order
{ #@ USAGE: rshowagrid gridname format [agridsize]
 local format=${2:?} temp grid
 local agridsize=${3:-$agridsize} row
 eval "grid=(\"\${$1[@]}\")"
 while ["${#grid[@]}" -gt 0]
 do
 ## Note space before minus sign
 ## to distinguish it from default value substitution
 printf "$format" "${grid[@]: -$agridsize}"
 grid=("${grid[@]:0:${#grid[@]}-$agridsize}")
 done
}

Data File Formats
Data files are used for many purposes and come in many different flavors. These flavors are divided into
two main types: line oriented and block oriented. In line-oriented files, each line is a complete record,
usually with fields separated by a certain character. In block-oriented files, each record can span many
lines, and there may be more than one block in a file. In some formats, a record is more than one block
(a chess game in PGN format, for example, is two blocks separated by a blank line).

The shell is not the best language for working with large files of data; it is better working with
individual records. However, there are utilities such as sed and awk that can work efficiently with large
files and extract records to pass to the shell. This section deals with processing single records.

CHAPTER 13 DATA PROCESSING

172

Line-Based Records
Line-based records are those where each line in the file is a complete record. It will usually be divided into
fields by a delimiting character, but sometimes the fields are defined by length: the first 20 characters are
the names, the next 20 are the first line of the address, and so on.

When the files are large, the processing is usually done by an external utility such as sed or awk.
Sometimes an external utility will be used to select a few records for the shell to process. This snippet
searches the password file for users whose shell is bash and feeds the results to the shell to perform some
(unspecified) checks:

grep 'bash$' /etc/passwd |
while read line
do
 : perform some checking here
done

DSV: Delimiter-Separated Values
Most single-line records will have fields delimited by a certain character. In /etc/passwd, the delimiter is
a colon. In other files, the delimiter may be a tab, tilde, or, very commonly, a comma. For these records
to be useful, they must be split into their separate fields.

When records are received on an input stream, the easiest way to split them is to change IFS and
read each field into its own variable:

grep 'bash$' /etc/passwd |
while IFS=: read user passwd uid gid name homedir shell
do
 printf "%16s: %s\n" \
 User "$user" \
 Password "$passwd" \
 "User ID" "$uid" \
 "Group ID" "$gid" \
 Name "$name" \
"Home directory" "$homedir" \
 Shell "$shell"

 read < /dev/tty
done

Sometimes it is not possible to split a record as it is read, such as if the record will be needed in its entirety
as well as split into its constituent fields. In such cases, the entire line can be read into a single variable and
then split later using any of several techniques. For all of these, we’ll use the root entry from /etc/passwd:

record=root:x:0:0:root:/root:/bin/bash

The fields can be extracted one at a time using parameter expansion:

for var in user passwd uid gid name homedir shell
do
 eval "$var=\${record%%:*}" ## extract the first field
 record=${record#*:} ## and take it off the record
done

CHAPTER 13 DATA PROCESSING

173

As long as the delimiting character is not found within any field, records can be split by setting IFS to
the delimiter. When doing this, file name expansion should be turned off (with set -f) to avoid expanding
any wildcard characters. The fields can be stored in an array and variables set to reference them:

IFS=:
set -f
data=($record)
user=0
passwd=1
uid=2
gid=3
name=4
homedir=5
shell=6

The variable names are the names of the fields that can then be used to retrieve values from the data
array:

$ echo;printf "%16s: %s\n" \
 User "${data[$user]}" \
 Password "${data[$passwd]}" \
 "User ID" "${data[$uid]}" \
 "Group ID" "${data[$gid]}" \
 Name "${data[$name]}" \
"Home directory" "${data[$homedir]}" \
 Shell "${data[$shell]}"

 User: root
 Password: x
 User ID: 0
 Group ID: 0
 Name: root
 Home directory: /root
 Shell: /bin/bash

It is more usual to assign each field to a scalar variable. This function (Listing 13-7a) takes a passwd
record and splits it on colons and assigns fields to the variables.

Listing 13-7a. split_passwd, Split a Record from /etc/passwd into Fields and Assign to Variables

split_passwd() #@ USAGE: split_passwd RECORD
{
 local opts=$- ## store current shell options
 local IFS=:
 local record=${1:?} array

 set -f ## Turn off filename expansion
 array=($record) ## Split record into array
 case $opts in *f*);; *) set +f;; esac ## Turn on expansion if previously set

CHAPTER 13 DATA PROCESSING

174

 user=${array[0]}
 passwd=${array[1]}
 uid=${array[2]}
 gid=${array[3]}
 name=${array[4]}
 homedir=${array[5]}
 shell=${array[6]}
}

The same thing can be accomplished using a here document (Listing 13-7b).

Listing 13-7b. split_passwd, Split a Record from /etc/passwd into Fields and Assign to Variables

split_passwd()
{
 IFS=: read user passwd uid gid name homedir shell <<.
$1
.
}

More generally, any character-delimited record can be split into variables for each field with this
function (Listing 13-8).

Listing 13-8. split_record, Split a Record by Reading Variables

split_record() #@ USAGE parse_record record delimiter var ...
{
 local record=${1:?} IFS=${2:?} ## record and delimiter must be provided
 : ${3:?} ## at least one variable is required
 shift 2 ## remove record and delimiter, leaving variables

 ## Read record into a list of variables using a 'here document'
 read "$@" <<.
$record
.
}

Using the record defined earlier, here’s the output:

$ split_record "$record" : user passwd uid gid name homedir shell
$ sa "$user" "$passwd" "$uid" "$gid" "$name" "$homedir" "$shell"
:root:
:x:
:0:
:0:

CHAPTER 13 DATA PROCESSING

175

:root:
:/root:
:/bin/bash:

Fixed-Length Fields
Less common than delimited fields are fixed-length fields. I don’t use them often, but when I do, I loop
through name=width strings to parse them:

line="John 123 Fourth Street Toronto Canada "
for nw in name=15 address=20 city=12 country=22
do
 var=${nw%%=*} ## variable name precedes the equals sign
 width=${nw#*=} ## field width follows it
 eval "$var=\${line:0:width}" ## extract field
 line=${line:width} ## remove field from the record
done

Block File Formats
Among the many types of block data files I work with is the portable game notation (PGN) chess file. It
stores one or more chess games in a format that is both human readable and machine readable. All
chess programs can read and write this format.

Each game begins with a seven-tag roster that identifies where and when the game was played, who
played it, and the result. This is followed by a blank line and then the moves of the game.

Here’s a PGN chess game file, http://cfaj.freeshell.org/Fidel.pgn:

[Event "ICS rated blitz match"]
[Site "69.36.243.188"]
[Date "2009.06.07"]
[Round "-"]
[White "torchess"]
[Black "FidelCastro"]
[Result "1-0"]

1. f4 c5 2. e3 Nc6 3. Bb5 Qc7 4. Nf3 d6 5. b3 a6 6. Bxc6+ Qxc6 7. Bb2 Nf6
8. O-O e6 9. Qe1 Be7 10. d3 O-O 11. Nbd2 b5 12. Qg3 Kh8 13. Ne4 Nxe4 14.
Qxg7#
{FidelCastro checkmated} 1-0

I use a while loop to read the tags and then mapfile to get the moves of the game. The gettag
function extracts the value from each tag and assigns it to the tag name (Listing 13-9).

Listing 13-9. readpgn, Parse a PGN Game and Print Game in a Column

pgnfile="${1:?}"
header=0
game=0

CHAPTER 13 DATA PROCESSING

176

gettag() #@ create a variable with the same name and value as the tag
{
 local tagline=$1
 tag=${tagline%% *} ## get line before the first space
 tag=${tag#?} ## remove the open bracket
 IFS='"' read a val b <<. ## get the 2nd field, using " as delimiter
 $tagline
.

 eval "$tag=\$val"
}

{
 while IFS= read -r line
 do
 case $line in
 \[*) gettag "$line" ;;
 "") [-n "$Event"] && break;; ## skip blank lines at beginning of file
 esac
 done
 mapfile -t game ## read remainder of the file
} < "$pgnfile"

remove blank lines from end of array
while [-z "${game[${#game[@]}-1]}"]
do
 unset game[${#game[@]}-1]
done

print the game with header
echo "Event: $Event"
echo "Date: $Date"
echo
set -f
printf "%4s %-10s %-10s\n" "" White Black "" ========== ========== \
 "" "$White" "$Black" ${game[@]:0:${#game[@]}-1}
printf "%s\n" "${game[${#game[@]}-1]}"

Summary
This chapter only scratched the surface of the possibilities for data manipulation, but I hope it will
provide techniques to solve some of your needs and provide hints for others. Much of the chapter
involved using that most basic of programming structures, arrays. Techniques were shown for working
with single-line, character-delimited records, and basic techniques for working with blocks of data in
files concluded the chapter.

CHAPTER 13 DATA PROCESSING

177

Exercises
1. Modify the isort and asearch functions to use sort and grep, respectively, if the

array exceeds a certain size.

2. Write a function that transposes rows and columns in a grid (either a single-string
grid or an array). For example, transform this:

123
456
789

 into this:

147
256
369

3. Convert some of the grid functions, either string or array versions, to work with
grids that are not square, for example, 6 3.

4. Convert the code that parses fixed-width records into a function that accepts the
line of data as the first argument, followed by the varname=width list.

CHAPTER 13 DATA PROCESSING

178

5.

C H A P T E R 1 4

 ■ ■ ■

179

Scripting the Screen

Unix purists will shake their heads over this chapter. Traditionally, screen manipulation is done through
the termcap or terminfo database that supplies the information necessary to manipulate any of dozens
or even hundreds of types of terminals. The shell interface to the database is an external command, tput.

On some systems, tput uses the termcap database; on others (mostly newer systems), it uses the
terminfo database. The commands for the two databases are not the same, so a tput command written
for one system may not work on another.

On one system, the command to place the cursor at the 20th column on the 10th row is as follows:

tput cup 9 19

On another system, this is the command:

tput cm 19 9

These commands will produce the correct output for whatever type of terminal is specified in the
TERM variable. (Note: tput starts counting at 0.)

However, the plethora of terminal types has, for all intents and purposes, been reduced to a single,
standard type. This standard, ISO 6429 (also known as ECMA-48 and formerly known as ANSI X3.64 or
VT100), is ubiquitous, and terminals that do not support it are few and far between. As a result, it is now
feasible to code for a single terminal type. One advantage of this homogeneity is that the necessary
coding can be done entirely within the shell. There’s no need for an external command.

Teletypewriter vs. Canvas
There are two methods of sending the output of a script to a terminal screen. The first and more
traditional method uses the terminal as if it were a printer or teletypewriter (which is the origin of the
abbreviation tty for the screen or terminal). In this mode, as each line is printed, the paper (or screen
image) is scrolled up. Old lines fall to the floor (or disappear off the top of the screen). It’s simple, and it
is more than adequate for many applications.

The second method treats the screen as a blackboard or canvas and prints to specific points on its
surface. It erases and overprints previously written sections. It may print text in columns or at specific
locations on the screen. The terminal becomes a random-access, rather than serial, device.

This chapter is about the screen as canvas or blackboard. It defines a number of variables and
functions for screen manipulation, as well as presenting some demonstration programs that use them.

CHAPTER 14 ■ SCRIPTING THE SCREEN

180

Stretching the Canvas
To use the screen as a canvas, the most important capability is to be able to position the cursor at any
given location on the screen. The sequence for that is ESC[<ROW>;<COL>H. When converted to a printf
format string, it can be used directly or in a function.

cu_row_col=$'\e[%d;%dH'
printf "$cu_row_col" 5 10 ## Row 5, column 10
echo "Here I am!"

All the functions in this chapter are part of the screen-funcs library (Listing 14-1, sections a to f),
which sources the screen-vars file (Listing 14-2, sections a to d).

Listing 14-1a. screen-funcs, Library of Screen Manipulation Functions

. screen-vars

The printat function (Listing 14-1b) places the cursor at the requested location and, if there are any
further arguments, prints them. If the row and column are not specified, printat moves the cursor to the
top-left corner of the screen.

Listing 14-1b. printat, Place the Cursor at a Specified Location and Print Optional String

printat() #@ USAGE: printat [row [column [string]]]
{
 printf "${cu_row_col?}" ${1:-1} ${2:-1}
 if [$# -gt 2]
 then
 shift 2
 printf "%s" "$*"
 fi
}

CSI: Command Sequence Introducer
Like all the escape sequences, cu_row_col begins with ESC[. This is the command sequence introducer.
I have it defined in my screen-vars file (Listing 14-2a).

Listing 14-2a. screen-vars, Screen Variable Definitions

ESC=$'\e'
CSI=$ESC[

CHAPTER 14 ■ SCRIPTING THE SCREEN

181

Priming the Canvas
Before drawing on the screen, it must usually be cleared, and from time to time various parts of the
screen will need to be cleared. These variables contain the fundamental sequences for clearing the
screen or lines (Listing 14-2b).

Listing 14-2b. screen-vars, Variable Definitions for Erasing All or Part of the Screen

topleft=${CSI}H ## move cursor to top left corner of screen
cls=${CSI}J ## clear the screen
clear=$topleft$cls ## clear the screen and move to top left corner
clearEOL=${CSI}K ## clear from cursor to end of line
clearBOL=${CSI}1K ## clear from cursor to beginning of line
clearEOS=${CSI}0J ## clear from cursor to end of screen
clearBOS=${CSI}1J ## clear from cursor to beginning of screen

Later in the chapter there are functions for clearing rectangular areas of the screen.

Moving the Cursor
Besides being moved to an absolute location, the cursor can be moved relative to its current position.
The first four sequences are the same as those generated by the cursor keys, and they take arguments for
moving more than one line or column. The next two turn the cursor on and off. The following two
variables save the cursor position and move it back to the saved position, respectively.

The last two move to the next or previous line at the same column as the beginning of previously
printed line. The printf specifier, %s, is removed because it would consume arguments that are to
be printed (Listing 14-2c).

Listing 14-2c. screen-vars, Variable Definitions for Moving the Cursor

cursor movement strings
 cu_up=${CSI}%sA
 cu_down=${CSI}%sB
 cu_right=${CSI}%sC
 cu_left=${CSI}%sD

turn the cursor off and on
 cu_hide=${CSI}?25l
 cu_show=${CSI}?12l${CSI}?25h

save the cursor position
 cu_save=${CSI}s ## or ${ESC}7
move cursor to saved position
cu_restore=${CSI}u ## or ${ESC}8

move cursor to next/previous line in block
 cu_NL=$cu_restore${cu_down/\%s/}$cu_save
 cu_PL=$cu_restore${cu_up/\%s/}$cu_save

CHAPTER 14 ■ SCRIPTING THE SCREEN

182

The format strings for cursor movement use the %s specifier rather than %d, even though any
argument will be a number. This is because printf replaces %d with a zero when there is no argument to
fill it. If that happened, the cursor would not move at all. With %s, they move one column or row when
there is no argument because %s is replaced by a null string.

The script in Listing 14-3 puts these variables and the printat function to work.

Listing 14-3. screen-demo1

. screen-funcs ## source the screen-funcs library
printf "$clear$cu_hide" ## Clear the screen and hide the cursor
printat 10 10 "${cu_save}XX" ## move, save position, and print XX
sleep 1 ## ZZZZZZZZ
printat 20 20 "20/20" ## move and print
sleep 1 ## ZZZZZZZZ
printf "$cu_restore$cu_down${cu_save}YY" ## restore pos., move, print, save pos.
sleep 1 ## ZZZZZZZZ
printf "$cu_restore$cu_down${cu_save}ZZ" 4 ## restore pos., move, print, save pos.
sleep 1 ## ZZZZZZZZ
printat 1 1 "$cu_show" ## move to top left and show cursor

For a variation, try changing the coordinates of the first printat command to other values, say, 5
and 40.

Changing Rendition Modes and Colors
Characters can be printed in bold, underline, or reverse modes as well as in various colors for those
terminals that support them (are there any left that don’t?). These attributes are all modified with a
sequence in the form ESC[ATTRm, where ATTR is the number of an attribute or color (Listing 14-2d).
Multiple attributes can be specified by separating them with semicolons.

Colors are specified with integers 0 to 7 and 9 to reset to the default. These are prefixed by 3 for
foreground color and 4 for background color. Attributes are also specified by 0 to 7 but without a prefix.
Though eight attributes are defined, only three are widely supported: 1 (bold), 4 (underline), and 7
(reverse). These attributes can be turned off individually with the values 22, 24, and 27, respectively.
A value of 0 resets all attributes and colors to their defaults.

Listing 14-2d. screen-vars, Variable Definitions for Colors and Attributes

colours
 black=0
 red=1
 green=2
 yellow=3
 blue=4
magenta=5
 cyan=6
 white=7

 fg=3 ## foreground prefix
 bg=4 ## background prefix

CHAPTER 14 ■ SCRIPTING THE SCREEN

183

attributes
 bold=1
underline=4
 reverse=7

set colors
 set_bg="${CSI}4%dm" ## set background color
 set_fg="${CSI}3%dm" ## set foreground color
 set_fgbg="${CSI}3%d;4%dm" ## set foreground and background colors

As the next demonstration script shows, the colors and attributes can be used in “tty” mode as well
as “canvas” mode (Listing 14-4).

Listing 14-4. screen-demo2

. screen-funcs
echo
for attr in "$underline" 0 "$reverse" "$bold" "$bold;$reverse"
do
 printf "$set_attr" "$attr"
 printf "$set_fg %s " "$red" RED
 printf "$set_fg %s " "$green" GREEN
 printf "$set_fg %s " "$blue" BLUE
 printf "$set_fg %s " "$black" BLACK
 printf "\e[m\n"
done
echo

Placing a Block of Text on the Screen
The put_block function prints its arguments one beneath the other at the current cursor position;
put_block_at moves the cursor to the specified location, shifts the arguments to remove the row and
column, and then calls put_block with the remaining arguments (Listing 14-1c).

The cu_NL variable moves the cursor to the saved position and then moves down a line and saves
that position.

Listing 14-1c. put_block and put_block_at, Print a Block of Text Anywhere on the Screen

put_block() #@ Print arguments in a block beginning at the current position
{
 printf "$cu_save" ## save cursor location
 printf "%s$cu_NL" "$@" ## restore cursor location, move line down, save cursor
}

put_block_at() #@ Print arguments in a block at the position in $1 and $2
{
 printat "$1" "$2"
 shift 2
 put_block "$@"
}

CHAPTER 14 ■ SCRIPTING THE SCREEN

184

Listing 14-5 shows screen-demo3.

Listing 14-5. screen-demo3

. screenfuncs

printf "$cls"
put_block_at 3 12 First Second Third Fourth Fifth
put_block_at 2 50 January February March April May June July

The output of screen-demo3 is as follows:

 January
 First February
 Second March
 Third April
 Fourth May
 Fifth June
 July

The put_block and put_block_at functions work well when the screen is empty. If there’s a lot of text
already on the screen, the output may be obscured. For those cases, there are the print_block_at and
print_block functions that clear a rectangular area around the block.

To determine the width that needs to be cleared, put_block passes its arguments to the _max_length
function, which loops through the arguments to find the longest (Listing 14-1d).

Listing 14-1d. _max_length, Store Length of Longest Argument in _MAX_LENGTH

_max_length() #@ store length of longest argument in _MAX_LENGTH
{
 local var
 _MAX_LENGTH=${#1} ## initialize with length of first parameter
 shift ## ...and remove first parameter
 for var ## loop through remaining parameters
 do
 ["${#var}" -gt "$_MAX_LENGTH"] && _MAX_LENGTH=${#var}
 done
}

The print_block function uses the result from _max_length as a width specification to printf
(Listing 14-1e). Blank lines are printed before and after the text, and a space is printed before and after
each line. The only difference between print_block_at and put_block_at is that one calls print_block
and the other calls put_block.

Listing 14-1e. print_block, Clear Area and Print Block

print_block() #@ Print arguments in a block with space around them
{
 local _MAX_LENGTH

CHAPTER 14 ■ SCRIPTING THE SCREEN

185

 _max_length "$@"
 printf "$cu_save"
 printf " %-${_MAX_LENGTH}s $cu_NL" " " "$@" " "
}

print_block_at() #@ Move to position, remove 2 parameters and call print_block
{
 printat $1 $2
 shift 2
 print_block "$@"
}

The text to be printed with either print_block or print_block is more likely to be a single string than
separate arguments. To split up the string into words or phrases short enough to fit a given space, I use
the wrap function (Listing 14-1f). This function splits a string into lines with a maximum width that is
specified on the command line.

Listing 14-1f. wrap, Split String into Array with Elements Not Exceeding Maximum Length

wrap() #@ USAGE: wrap string length
{ #@ requires bash-3.1 or later
 local words=$1 textwidth=$2 line= opts=$-
 local len=0 templen=0
 set -f

 unset -v wrap
 for word in $words
 do
 templen=$(($len + 1 + ${#word})) ## Test adding a word
 if ["$templen" -gt "$textwidth"] ## Does adding a word exceed length?
 then
 wrap+=("$line") ## Yes, store line in array
 printf -v line "%s" "$word" ## begin new line
 len=${#word}
 else
 len=$templen ## No, add word to line
 printf -v line "%s" "${line:+"$line "}" "$word"
 fi
 done
 wrap+=("$line")

 case $opts in
 f) ;;
 *) set +f ;;
 esac
}

The sample shown in Listing 14-6 uses wrap and print_block_at.

CHAPTER 14 ■ SCRIPTING THE SCREEN

186

Listing 14-6. screen-demo4 Demonstrates the wrap and print_block Functions

clear
wrap "The quick brown fox jumps over the lazy dog" 15
x=xx
printat 1 1
printf "%s\n" $x{,,,,,,,,,,} ## print 11 lines of 'x's
print_block_at 3 33 "${wrap[@]}"
printat 12 1

The output is as follows:

xx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx The quick xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx brown fox jumps xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx over the lazy xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx dog xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xx
xx

Scrolling Text
By combining an array with substring expansion, text can be scrolled in any area of the screen. Because
the entire area can be printed with a single printf command, scrolling is fast, though it gets slower as the
array size increases. The following demonstration (Listing 14-7) stores the file names in /usr/bin/ in the
array, list; scrolls the list up; waits for a second; and then scrolls it down.

Each loop, up and down, contains a commented-out read -t "$delay" line. When uncommented, it
will slow down the scrolling. It uses the bash-4.0 fractional delay. If you are using an earlier version, use
sleep instead. Most implementations (certainly GNU and *BSD) accept a fractional argument.

Listing 14-7. scroll-demo Scrolls a Block of Text Up and Then Down

list=(/usr/bin/*) ## try it with other directories or lists
rows=9 ## number of rows in scrolling area
delay=.01 ## delay between scroll advance
width=-33.33 ## width spec: (no more than) 33 chars, flush left
x=XXXXXXXXXXXXXXXXXXXXXXXXXX ## bar of 'X's
x=xxxx ## longer bar

clear ## clear the screen
printf "%50.50s\n" $x{,,,,,,,,,,,,,} ## print 14 lines of 'X's

n=0 ## start display with first element

CHAPTER 14 ■ SCRIPTING THE SCREEN

187

scroll upwards until reaching the bottom
while [$((n += 1)) -lt $((${#list[@]} - $rows))]
do
 printf "\e[3;1H"
 printf "\e[7C %${width}s\n" "${list[@]:n:rows}"
read -sn1 -t "$delay" && break
done
sleep 1

scroll downwards until reaching the top
while [$((n -= 1)) -ge 0]
do
 printf "\e[3;1H"
 printf "\e[7C %${width}s\n" "${list[@]:n:rows}"
read -sn1 -t "$delay" && break
done

printf "\e[15;1H" ## finish with cursor well below scrolling area

Rolling Dice
Dice are used in many games and are simple to program if you are satisfied with printing just the
number:

printf "%s\n" "$(($RANDOM % 6 + 1))"

However, a respectable graphical rendition can be programmed surprisingly easily with the shell. To
print a die, position the cursor at the desired location on the screen, set the foreground and background
colors, and print the element from the array (Figure 14-1).

Figure 14-1. Listing 14-8 contains the code for these dice.

An array of six dice can be programmed in about 25 lines of code. Each die is a concatenation of
18 variables. Some of these have the same contents as those in the screen-funcs library, but their names
are shortened here to keep the lines shorter. Here is a description of the die with the number 5:

$b ## set bold attribute (optional)
$cs ## save cursor position
$p0 ## print blank row
$cr ## restore cursor to left side of die
$dn ## move down one line

CHAPTER 14 ■ SCRIPTING THE SCREEN

188

$cs ## save cursor position
$p4 ## print row with two pips
$cr ## restore cursor to left side of die
$dn ## move down one line
$cs ## save cursor position
$p2 ## print row with one pip
$cr ## restore cursor to left side of die
$dn ## move down one line
$cs ## save cursor position
$p4 ## print row with two pips
$cr ## restore cursor to left side of die
$dn ## move down one line
$p0 ## print blank row

After defining the dice, the script in Listing 14-8 clears the screen and prints two random dice near
the top of the screen.

Listing 14-8. dice Defines an Array of Six Dice and Places Two on the Screen

pip=o ## character to use for the pips
p0=" " ## blank line
p1=" $pip " ## one pip at the left
p2=" $pip " ## one pipe in the middle of the line
p3=" $pip " ## one pip at the right
p4=" $pip $pip " ## two pips
p5=" $pip $pip $pip " ## three pips

cs=$'\e7' ## save cursor position
cr=$'\e8' ## restore cursor position
dn=$'\e[B' ## move down 1 line
b=$'\e[1m' ## set bold attribute
cu_put='\e[%d;%dH' ## format string to position cursor
fgbg='\e[3%d;4%dm' ## format string to set colors

dice=(
 ## dice with values 1 to 6 (array elements 0 to 5)
 "bcs$p0$crdncs$p0$crdncs$p2$crdncs$p0$crdnp0"
 "bcs$p0$crdncs$p1$crdncs$p0$crdncs$p3$crdnp0"
 "bcs$p0$crdncs$p1$crdncs$p2$crdncs$p3$crdnp0"
 "bcs$p0$crdncs$p4$crdncs$p0$crdncs$p4$crdnp0"
 "bcs$p0$crdncs$p4$crdncs$p2$crdncs$p4$crdnp0"
 "bcs$p0$crdncs$p5$crdncs$p0$crdncs$p5$crdnp0"
)

clear
printf "$cu_put" 2 5 ## position cursor
printf "$fgbg" 7 0 ## white on black
printf "%s\n" "${dice[RANDOM%6]}" ## print random die

printf "$cu_put" 2 20 ## position cursor
printf "$fgbg" 0 3 ## black on yellow
printf "%s\n" "${dice[RANDOM%6]}" ## print random die

CHAPTER 14 ■ SCRIPTING THE SCREEN

189

Summary
Without touching on traditional ASCII art, there are many ways to draw things on a terminal screen. This
chapter has presented a number of them, giving the basics that can be used to create many more.

Exercises
1. Write a function, hbar, that accepts two integer arguments, a width and a color, and prints a bar

of that color and width. Write a second function, hbar_at, that accepts four arguments, row,
column, width and color; moves the cursor to the row and column; and passes the remaining
arguments to hbar.

2. White a function, clear_area, that accepts two integer arguments, rows and columns, and
clears a rectangular area of that many rows and columns.

C H A P T E R 1 5

■ ■ ■

191

Entry-Level Programming

My preference for bash over any other POSIX shell stems to a great extent from its extensions that
enhance interactive programming. The extended options to the read builtin command (which were
described in Chapter 9), combined with the history and readline libraries, add functionality that no
other shell can match.

Despite its richness, there is still no easy way for the shell to deal with keys such as function keys
that generate multiple characters. For that, I present the key-funcs library of functions. The second
major section of this chapter describes how to use the mouse in shell scripts and provides a
demonstration program.

Between those sections, I deal with checking user input for validity and the history library. Most
people use bash’s history library only at the command line. I use it in scripts, and in this chapter I show
how that is done. I demonstrate the history command in a rudimentary script for editing a multifield
record.

Single-Key Entry
When writing an interactive script, I often want a single key to be pressed without requiring the user to
press Enter. The portable way to do that is to use stty and dd:

stty -echo -icanon min 1
_KEY=$(dd count=1 bs=1 2>/dev/null)
stty echo icanon

I don’t like using three external commands every time I need a keypress. When I need to use a
portable method, I usually do the first call to stty at the beginning of the script and the other at the end,
often in an EXIT trap:

trap 'stty echo icanon' EXIT

Bash, on the other hand, doesn’t need to call any external commands. It may still be a good idea to

use stty to turn off echoing at the beginning and back on before exiting. This will prevent characters
showing up on the screen when the script is not waiting for input.

Function Library, key-funcs
The functions in this section comprise the key-funcs library. It begins with two variable definitions,
shown here in Listing 15-1.

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

192

Listing 15-1. key-funcs, Read a Single Keypress

ESC=$'\e'
CSI=$'\e['

To get a single keystroke with bash, I can use the function in Listing 15-1a.

Listing 15-1a. _key, Functions for Reading a Single Keypress

_key()
{
 IFS= read -r -s -n1 -d '' "${1:-_KEY}"
}

First, the field separator is set to an empty string so that read doesn’t ignore a leading space (it’s a
valid keystroke, so you want it); the -r option disables backslash escaping, -s turns off echoing of
keystrokes, and -n1 tells bash to read a single character only.

The -d '' option tells read not to regard a newline (or any other character) as the end of input; this
allows a newline to be stored in a variable. I have told read to stop after the first key is received (-n1) so it
doesn’t read forever.

The last argument uses ${@:-_KEY} to add options and/or a variable name to the list of arguments.
You can see its use in the _keys function in Listing 15-2. (Note that if you use an option without also
including a variable name, the input will be stored in $REPLY.)

The _key function can be used in a simple menu, as shown in Listing 15-2.

Listing 15-2. simplemenu, a Menu That Responds to a Single Keypress

the _key function should be defined here if it is not already
while :
do
 printf "\n\n\t$bar\n"
 printf "\t %d. %s\n" 1 "Do something" \
 2 "Do something else" \
 3 "Quit"
 printf "\t%s\n" "$bar"
 _key
 case $_KEY in
 1) printf "\n%s\n\n" Something ;;
 2) printf "\n%s\n\n" "Something else" ;;
 3) break ;;
 *) printf "\a\n%s\n\n" "Invalid choice; try again"
 continue
 ;;
 esac
 printf ">>> %s " "Press any key to continue"
 _key
done

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

193

Although _key is a useful function by itself, it has its limitations (Listing 15-1b). It can store a space, a
newline, a control code, or any other single character, but what it doesn’t do is handle keys that return
more than one character: function keys, cursor keys, and a few others.

These special keys return ESC (0x1B, which I keep in a variable $ESC) followed by one or more
characters. The number of characters varies according to the key (and the terminal emulation), so
you cannot ask for a specific number of keys. Instead, you have to loop until one of the terminating
characters is read. This is where it helps to use bash’s built-in read command rather than the external dd.

Listing 15-1b. _keys, Read a Sequence of Characters from a Function or Cursor Key

_keys() #@ Store all waiting keypresses in $_KEYS
{
 _KEYS=
 __KX=

 ## ESC_END is a list of characters that can end a key sequence
 ## Some terminal emulations may have others; adjust to taste
 ESC_END=[a-zA-NP-Z~^\$@$ESC]

 while :
 do
 IFS= read -rsn1 -d '' -t1 __KX
 _KEYS=$_KEYS$__KX
 case $__KX in
 "" | $ESC_END) break ;;
 esac
 done
}

The while : loop calls _key with the argument -t1, which tells read to time out after one second,
and the name of the variable in which to store the keystroke. The loop continues until a key in $ESC_END
is pressed or read times out, leaving $__KX empty.

The timeout is a partially satisfactory method of detecting the escape key by itself. This is a case
where dd works better than read, because it can be set to time out in increments of one tenth of a second.

To test the functions, I use _key to get a single character; if that character is ESC, I call _keys to read
the rest of the sequence, if any. The following snippet assumes that _key and _keys are already defined
and pipes each keystroke through hexdump -C to show its contents:

while :
do
 _key
 case $_KEY in
 $ESC) _keys
 _KEY=ESC_KEYS
 ;;
 esac
 printf "%s" "$_KEY" | hexdump -C | {
 read a b
 printf " %s\n" "$b"
 }
 case "$_KEY" in q) break ;; esac
done

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

194

Unlike the output sequences, which work everywhere, there is no homogeneity among key
sequences produced by various terminal emulators. Here is a sample run, in an rxvt terminal window,
of pressing F1, F12, up arrow, Home, and q to quit:

 1b 5b 31 31 7e |.[11~|
 1b 5b 32 34 7e |.[24~|
 1b 5b 41 |.[A|
 1b 5b 35 7e |.[5~|
 71 |q|

Here are the same keystrokes in an xterm window:

 1b 4f 50 |.OP|
 1b 5b 32 34 7e |.[24~|
 1b 5b 41 |.[A|
 1b 5b 48 |.[H|
 71 |q|

Finally, here they are as produced by a Linux virtual console:

 1b 5b 5b 41 |.[[A|
 1b 5b 32 34 7e |.[24~|
 1b 5b 41 |.[A|
 1b 5b 31 7e |.[1~|
 71 |q|

All the terminals I’ve tested fit into one of these three groups, at least for unmodified keys.
The codes stored in $_KEY can be either interpreted directly or in a separate function. I like to keep

the interpretation in a function that can be replaced for use with different terminal types. For example, if
I am using a Wyse60 terminal, I could source wy60-keys for a replacement function.

Listing 15-1c shows a function, _esc2key, that works for the various terminals on my Linux box, as
well as in putty in Windows. It converts the character sequence into a string describing the key, for
example, UP, DOWN, F1 and so on:

Listing 15-1c. _esc2key, Translate a String to a Key Name

_esc2key()
{
 case $1 in
 ## Cursor keys
 "$CSI"A | ${CSI}OA) _ESC2KEY=UP ;;
 "$CSI"B | ${CSI}0B) _ESC2KEY=DOWN ;;
 "$CSI"C | ${CSI}OC) _ESC2KEY=RIGHT ;;
 "$CSI"D | ${CSI}OD) _ESC2KEY=LEFT ;;

 ## Function keys (unshifted)
 "$CSI"11~ | "$CSI["A | ${ESC}OP) _ESC2KEY=F1 ;;
 "$CSI"12~ | "$CSI["B | ${ESC}OQ) _ESC2KEY=F2 ;;
 "$CSI"13~ | "$CSI["C | ${ESC}OR) _ESC2KEY=F3 ;;
 "$CSI"14~ | "$CSI["D | ${ESC}OS) _ESC2KEY=F4 ;;

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

195

 "$CSI"15~ | "$CSI["E) _ESC2KEY=F5 ;;
 "$CSI"17~ | "$CSI["F) _ESC2KEY=F6 ;;
 "$CSI"18~) _ESC2KEY=F7 ;;
 "$CSI"19~) _ESC2KEY=F8 ;;
 "$CSI"20~) _ESC2KEY=F9 ;;
 "$CSI"21~) _ESC2KEY=F10 ;;
 "$CSI"23~) _ESC2KEY=F11 ;;
 "$CSI"24~) _ESC2KEY=F12 ;;

 ## Insert, Delete, Home, End, Page Up, Page Down
 "$CSI"2~) _ESC2KEY=INS ;;
 "$CSI"3~) _ESC2KEY=DEL ;;
 "$CSI"[17]~ | "$CSI"H) _ESC2KEY=HOME ;;
 "$CSI"[28]~ | "$CSI"F) _ESC2KEY=END ;;
 "$CSI"5~) _ESC2KEY=PGUP ;;
 "$CSI"6~) _ESC2KEY=PGDN ;;

 ## Everything else; add other keys before this line
 *) _ESC2KEY=UNKNOWN ;;
 esac
 [-n "$2"] && eval "$2=\$_ESC2KEY"
}

I wrap the _key and _esc2key functions in another function, called get_key (Listing 15-1d), which
returns either the single character pressed or, in the case of multicharacter keys, the name of the key:

Listing 15-1d. get_key, Gets a Key and, If Necessary, Translates It to a Key Name

get_key()
{
 _key
 case $_KEY in
 "$ESC") _keys
 _esc2key "ESC_KEYS" _KEY
 ;;
 esac
}

In bash-4.0, I use a simpler function to read keystrokes. The get_key function in Listing 15-1e takes
advantage of the capability of read’s -t option to accept fractional times. It reads the first character then
waits for one ten-thousandth of a second for another character. If a multicharacter key was pressed,
there will be one to read within that time. If not, it will fall through the remaining read statements before
another key can be pressed.

Listing 15-1e. get_key, Reads a Key and, If It Is More Than a Single Character, Translates It to a Key Name

get_key() #@ USAGE: get_key var
{
 local _v_ _w_ _x_ _y_ _z_ delay=${delay:-.0001}
 IFS= read -d '' -rsn1 _v_

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

196

 read -sn1 -t "$delay" _w_
 read -sn1 -t "$delay" _x_
 read -sn1 -t "$delay" _y_
 read -sn1 -t "$delay" _z_
 case $_v_ in
 $'\e') _esc2key "$_v_$_w_$_x_$_y_$_z_"
 printf -v ${1:?} $_ESC2KEY
 ;;
 *) printf -v ${1:?} "%s" "$_v_$_w_$_x_$_y_$_z_" ;;
 esac
}

Whenever I want to use cursor or function keys in a script, or for any single-key entry, I source key-funcs
and call get_key to capture keypresses. Listing 15-3 is a simple demonstration of using the library.

Listing 15-3. keycapture, Read and Display Keystrokes Until Q Is Pressed

. key-funcs ## source the library
while : ## infinite loop
do
 get_key key
 sa "$key" ## the sa command is from previous chapters
 case $key in q|Q) break;; esac
done

The script in Listing 15-4 prints a block of text on the screen. It can be moved around the screen
with the cursor keys, and the colors can be changed with the function keys. The odd-numbered function
keys change the foreground color; the even-numbered keys change the background.

Listing 15-4. key-demo, Capture Function and Cursor Keys to Change Colors and Move a Block of Text

Around the Screen

trap '' 2
trap 'stty sane; printf "${CSI}?12l${CSI}?25h\e[0m\n\n"' EXIT

stty -echo ## Turn off echoing of user keystrokes
. key-funcs ## Source key functions

clear ## Clear the screen
bar=====================================

Initial position for text block
row=$(((${LINES:-24} - 10) / 2))
col=$(((${COLUMNS:-80} - ${#bar}) / 2))

Initial colours
fg="${CSI}33m"
bg="${CSI}44m"

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

197

Turn off cursor
printf "%s" "${CSI}?25l"

Loop until user presses "q"
while :
do
 printf "\e[1m\e[%d;%dH" "$row" "$col"
 printf "\e7 %-${#bar}.${#bar}s ${CSI}0m \e8\e[1B" "${CSI}0m"
 printf "\e7 fgbg%-${#bar}.${#bar}s${CSI}0m \e8\e[1B" "$bar" \
 "" " Move text with cursor keys" \
 "" " Change colors with function keys" \
 "" " Press 'q' to quit" \
 "" "$bar"
 printf "\e7%-${#bar}.${#bar}s " "${CSI}0m"
 get_key k
 case $k in
 UP) row=$(($row - 1)) ;;
 DOWN) row=$(($row + 1)) ;;
 LEFT) col=$(($col - 1)) ;;
 RIGHT) col=$(($col + 1)) ;;
 F1) fg="${CSI}30m" ;;
 F2) bg="${CSI}47m" ;;
 F3) fg="${CSI}31m" ;;
 F4) bg="${CSI}46m" ;;
 F5) fg="${CSI}32m" ;;
 F6) bg="${CSI}45m" ;;
 F7) fg="${CSI}33m" ;;
 F8) bg="${CSI}44m" ;;
 F9) fg="${CSI}35m" ;;
 F10) bg="${CSI}43m" ;;
 F11) fg="${CSI}34m" ;;
 F12) bg="${CSI}42m" ;;
 q|Q) break ;;
 esac
 colmax=$((${COLUMNS:-80} - ${#bar} - 4))
 rowmax=$((${LINES:-24} - 10))
 [$col -lt 1] && col=1
 [$col -gt $colmax] && col=$colmax
 [$row -lt 1] && row=1
 [$row -gt $rowmax] && row=$rowmax
done

History in Scripts
In the readline functions in Chapters 6 and 12, history -s was used to place a default value into the
history list. In those examples, only one value was stored, but it is possible to store more than one value
in history or even to use an entire file. Before adding to the history, you should (in most cases) clear it:

history -c

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

198

By using more than one history -s command, you can store multiple values:

history -s Genesis
history -s Exodus

With the -r option, you can read an entire file into history. This snippet puts the names of the first
five books of the Bible into a file and reads that into the history:

cut -d: -f1 "$kjv" | uniq | head -5 > pentateuch
history -r pentateuch

The readline functions in Chapters 6 and 12 use history if the bash version is less than 4, but read’s
-i option with version 4 (or greater). There are times when it might be more appropriate to use history
rather than -i even when the latter is available. A case in point is when the new input is likely to be very
different from the default but there is a chance that it might not be.

For history to be available, you must use the -e option with read. This also gives you access to other
key bindings defined in your .inputrc file.

Sanity Checking
Sanity checking is testing input for the correct type and a reasonable value. If a user inputs Jane for her
age, it’s obviously wrong: the data is of the wrong type. If she enters 666, it’s the correct type but almost
certainly an incorrect value. The incorrect type can easily be detected with the valint script (Chapter 3)
or function (Chapter 6). You can use the rangecheck function from Chapter 6 to check for a reasonable
value.

Sometimes, the error is more problematic, or even malicious. Suppose a script asks for a variable
name and then uses eval to assign a value to it:

read -ep "Enter variable name: " var
read -ep "Enter value: " val
eval "$var=\$val"

Now, suppose the entry goes like this:

Enter variable name: rm -rf *;name
Enter value: whatever

The command that eval will execute is as follows:

rm -rf *;name=whatever

Poof! All your files and subdirectories are gone from the current directory. It could have been
prevented by checking the value of var with the validname function from Chapter 7:

validname "$var" && eval "$var=\$val" || echo Bad variable name >&2

When editing a database, checking that there are no invalid characters is an important step. For
example, in editing /etc/passwd (or a table from which it is created), you must make sure that there are
no colons in any of the fields.

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

199

Cartoon courtesy of Randall Munroe at http://xkcd.com.

Form Entry
The script in Listing 15-5 is a demonstration of handling user input with a menu and history. It uses
the key-funcs library to get the user’s selection and to edit password fields. It has a hard-coded record
and doesn’t read the /etc/passwd file. It checks for a colon in an entry and prints an error message if
one is found.

The record is read into an array from a here document. A single printf statement prints the menu,
using a format string with seven blanks and the entire array as its arguments.

Listing 15-5. password, a Simple Record-Editing Script

record=root:x:0:0:root:/root:/bin/bash ## record to edit
fieldnames=(User Password UID
 GID Name Home Shell)

. key-funcs ## load the key functions

IFS=: read -a user <<EOF ## read record into array
$record

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

200

EOF

z=0
clear
while : ## loop until user presses 0 or q
do
 printf "\e[H\n
 0. Quit
 1. User: %s\e[K
 2. Password: %s\e[K
 3. UID: %s\e[K
 4. GID: %s\e[K
 5. Name: %s\e[K
 6. Home: %s\e[K
 7. Shell: %s\e[K

 Select field (1-7): \e[0J" "${user[@]}" ## print menu and prompt

 get_key field ## get user input

 printf "\n\n" ## print a blank line
 case $field in
 0|q|Q) break ;; ## quit
 [1-7]) ;; ## menu item selected; fall through
 *) continue;;
 esac
 history -c ## clear history
 history -s "${user[field-1]}" ## insert current value in history
 printf ' Press UP to edit "%s"\n' "${user[field-1]}" ## tell user what's there
 read -ep " ${fieldnames[field-1]}: " val ## get user entry
 case $val in
 :) echo " Field may not contain a colon (press ENTER)" >&2 ## ERROR
 get_key; continue
 ;;
 "") continue ;;
 *) user[field-1]=$val ;;
 esac
done

Reading the Mouse
While reading the Linux console_codes man page, I came across a section labeled “mouse tracking.”
Interesting! I read on: “The mouse tracking facility is intended to return xterm-compatible mouse status
reports.” Does that mean, I wondered, that I can use the mouse in shell scripts?

According to that man page, mouse tracking is available in two modes: X10 compatibility mode,
which sends an escape sequence on button press, and normal tracking mode, which sends an escape
sequence on both button press and release. Both modes also send modifier-key information.

To test this, I went to a terminal window and entered printf "\e[?9h". I pressed the mouse button,
and the computer beeped at me and printed “ FB” on the screen. Repeating the mouse click at various
points on the screen netted me more beeps and “ &% -(5. =2 H7 T=]C fG rJ }M.”

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

201

A mouse click sends six characters: ESC, [, M, b, x, y. The first three characters are common to all
mouse events, the second three contain the button pressed, and the finals ones are the x and y locations
of the mouse. To confirm this, I saved the input in a variable and piped it to hexdump:

$ printf "\e[?9h"
$ read x
^[[M!MO ## press mouse button and enter
$ printf "$x" | hexdump -C
00000000 1b 5b 4d 21 4d 4f |.[M!MO|
00000006

The first three appear as expected, but what are the final three? According to the man page, the
lower two bits of the button character tell which button has been pressed; the upper bits identify the
active modifiers. The x and y coordinates are the ASCII values to which 32 has been added to take them
out of the range of control characters. ! is 1, " is 2, and so on.

That gives us a 1 for the mouse button (which means button 2, since 0 to 2 are buttons 1, 2, and 3,
respectively, and 4 is release. The x and y coordinates are 45 (Ox4d=77; 77 32=45) and 47.

Surprisingly, since I read about mouse tracking in a Linux console_codes man page, these escape
codes do not work in any Linux console that I have tried. They work in xterm, rxvt, and gnome-terminal
on Linux and FreeBSD. I’ve used them on FreeBSD and NetBSD, via ssh from a Linux rxvt terminal
window. They do not work in a KDE konsole window.

You now know that mouse reporting works (in most xterm windows), and you can get information
from a mouse click on the standard input. That leaves two questions: how do you read the information
into a variable (without having to press Return), and how can the button and x, y information be
decoded in a shell script?

With bash, use the read command’s -n option with an argument to specify the number of characters.
To read the mouse, six characters are needed:

read -n6 x

Neither of these is adequate for a real script (not all input will be mouse clicks, and you will want to
get single keystrokes), but they suffice to demonstrate the concept.

The next step is to decode the input. For the purpose of this demonstration, you can assume that the
six characters do indeed represent a mouse click and that the first three characters are ESC, [, and M. I’m
only interested in the last three, so I extract them into three separate variables using POSIX parameter
expansion:

m1=${x#???} ## Remove the first 3 characters
m2=${x#????} ## Remove the first 4 characters
m3=${x#?????} ## Remove the first 5 characters

Then I convert the first character of each variable to its ASCII value. This uses a POSIX printf
extension, “If the leading character is a single-quote or double-quote, the value shall be the numeric
value in the underlying codeset of the character following the single-quote or double-quote.”1

printf -v mb "%d" "'$m1"
printf -v mx "%d" "'$m2"
printf -v my "%d" "'$m3"

1 http://www.opengroup.org/onlinepubs/9699919799/utilities/printf.html

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

202

Finally, I interpret the ASCII values. For the mouse button, I do a bitwise AND 3. For the x and y
coordinates, I subtract 32:

Values > 127 are signed, so fix if less than 0
[$mx -lt 0] && mx=$((255 + $mx))
[$my -lt 0] && my=$((255 + $my))

BUTTON=$((($mb & 3) + 1))
MOUSEX=$(($mx - 32))
MOUSEY=$(($my - 32))

Putting it all together, the script in Listing 15-6 prints the mouse’s coordinates whenever you press a
mouse button.

There are two sensitive areas on the top row. Clicking the left one toggles the mouse reporting
mode between reporting only a button press and reporting the release as well. Clicking the right one
exits the script.

Listing 15-6. mouse-demo, an Example of Reading Mouse Clicks

ESC=$'\e'
but_row=1

mv=9 ## mv=1000 for press and release reporting; mv=9 for press only

_STTY=$(stty -g) ## Save current terminal setup
stty -echo -icanon ## Turn off line buffering
printf "${ESC}[?${mv}h " ## Turn on mouse reporting
printf "${ESC}[?25l" ## Turn off cursor

printat() #@ USAGE: printat ROW COLUMN
{
 printf "${ESC}[${1};${2}H"
}

print_buttons()
{
 num_but=$#
 gutter=2
 gutters=$(($num_but + 1))
 but_width=$((($COLUMNS - $gutters) / $num_but))
 n=0
 for but_str
 do
 col=$(($gutter + $n * ($but_width + $gutter)))
 printat $but_row $col
 printf "${ESC}[7m%${but_width}s" " "
 printat $but_row $(($col + ($but_width - ${#but_str}) / 2))
 printf "%.${but_width}s${ESC}[0m" "$but_str"
 n=$(($n + 1))
 done
}

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

203

clear
while :
do
 [$mv -eq 9] && mv_str="Click to Show Press & Release" ||
 mv_str="Click to Show Press Only"
 print_buttons "$mv_str" "Exit"

 read -n6 x

 m1=${x#???} ## Remove the first 3 characters
 m2=${x#????} ## Remove the first 4 characters
 m3=${x#?????} ## Remove the first 5 characters

 ## Convert to characters to decimal values
 printf -v mb "%d" "'$m1"
 printf -v mx "%d" "'$m2"
 printf -v my "%d" "'$m3"
 ## Values > 127 are signed
 [$mx -lt 0] && MOUSEX=$((223 + $mx)) || MOUSEX=$(($mx - 32))
 [$my -lt 0] && MOUSEY=$((223 + $my)) || MOUSEY=$(($my - 32))

 ## Button pressed is in first 2 bytes; use bitwise AND
 BUTTON=$((($mb & 3) + 1))

 case $MOUSEY in
 $but_row) ## Calculate which on-screen button has been pressed
 button=$((($MOUSEX - $gutter) / $but_width + 1))
 case $button in
 1) printf "${ESC}[?${mv}l"
 [$mv -eq 9] && mv=1000 || mv=9
 printf "${ESC}[?${mv}h"
 [$mv -eq 1000] && x=$(dd bs=1 count=6 2>/dev/null)
 ;;
 2) break ;;
 esac
 ;;
 *) printat $MOUSEY $MOUSEX
 printf "X=%d Y=%d [%d] " $MOUSEX $MOUSEY $BUTTON
 ;;
 esac

done

printf "${ESC}[?${mv}l" ## Turn off mouse reporting
stty "$_STTY" ## Restore terminal settings
printf "${ESC}[?12l${ESC}[?25h" ## Turn cursor back on
printf "\n${ESC}[0J\n" ## Clear from cursor to bottom of screen

CHAPTER 15 ■ ENTRY-LEVEL PROGRAMMING

204

Summary
Bash has a rich set of options for interactive programming. In this chapter, you learned how to leverage
that to read any keystroke, including function keys and others that return more than a single character.

Exercises
1. Using the key-funcs library, write a menu script that uses the function keys for selection.

2. Rewrite the key-funcs library to include mouse handling, and incorporate the function into the
mouse-demo script.

3. The password script does minimal checking for invalid entries. What checking would you add?
How would you code it?

A P P E N D I X

■ ■ ■

205

Shell Variables

This list is excerpted from the bash man page and edited to make a stand-alone document. The following

variables are set by bash.

BASH
Expands to the full file name used to invoke this instance of bash.

BASHPID
Expands to the process ID of the current bash process. This differs from $$ under certain circumstances,

such as subshells that do not require bash to be reinitialized.

BASH_ALIASES
An associative array variable whose members correspond to the internal list of aliases as maintained by

the alias builtin. Elements added to this array appear in the alias list; unsetting array elements causes

aliases to be removed from the alias list.

BASH_ARGC
An array variable whose values are the number of parameters in each frame of the current bash

execution call stack. The number of parameters to the current subroutine (shell function or script

executed with . or source) is at the top of the stack. When a subroutine is executed, the number of

parameters passed is pushed onto BASH_ARGC. The shell sets BASH_ARGC only when in extended debugging

mode (see the description of the extdebug option to the shopt builtin in the bash man page).

APPENDIX ■ SHELL VARIABLES

206

BASH_ARGV
An array variable containing all the parameters in the current bash execution call stack. The final

parameter of the last subroutine call is at the top of the stack; the first parameter of the initial call is at

the bottom. When a subroutine is executed, the parameters supplied are pushed onto BASH_ARGV. The

shell sets BASH_ARGV only when in extended debugging mode (see the description of the extdebug option

to the shopt builtin in the bash man page).

BASH_CMDS
An associative array variable whose members correspond to the internal hash table of commands as

maintained by the hash builtin. Elements added to this array appear in the hash table; unsetting array

elements causes commands to be removed from the hash table.

BASH_COMMAND
The command currently being executed or about to be executed, unless the shell is executing a

command as the result of a trap, in which case it is the command executing at the time of the trap.

BASH_EXECUTION_STRING
The command argument to the -c invocation option.

BASH_LINENO
An array variable whose members are the line numbers in source files corresponding to each member of

FUNCNAME. ${BASH_LINENO[$i]} is the line number in the source file where ${FUNCNAME[$i]} was called (or

${BASH_LINENO[$i-1]} if referenced within another shell function). The corresponding source file name

is ${BASH_SOURCE[$i]}. Use LINENO to obtain the current line number.

BASH_REMATCH
An array variable whose members are assigned by the =~ binary operator to the [[conditional

command. The element with index 0 is the portion of the string matching the entire regular expression.

The element with index n is the portion of the string matching the nth parenthesized subexpression. This

variable is read-only.

APPENDIX ■ SHELL VARIABLES

207

BASH_SOURCE
An array variable whose members are the source file names corresponding to the elements in the

FUNCNAME array variable.

BASH_SUBSHELL
Incremented by one each time a subshell or subshell environment is spawned. The initial value is 0.

BASH_VERSINFO
A read-only array variable whose members hold version information for this instance of bash. The values

assigned to the array members are as follows:

BASH_VERSINFO[0]: The major version number (the release)

BASH_VERSINFO[1]: The minor version number (the version)

BASH_VERSINFO[2]: The patch level

BASH_VERSINFO[3]: The build version

BASH_VERSINFO[4]: The release status (e.g., beta1)

BASH_VERSINFO[5]: The value of MACHTYPE

BASH_VERSION
Expands to a string describing the version of this instance of bash.

COMP_CWORD
An index into ${COMP_WORDS} of the word containing the current cursor position. This variable is available

only in shell functions invoked by the programmable completion facilities (see “Programmable

Completion” in the bash man page).

COMP_KEY
The key (or final key of a key sequence) used to invoke the current completion function.

APPENDIX ■ SHELL VARIABLES

208

COMP_LINE
The current command line. This variable is available only in shell functions and external commands

invoked by the programmable completion facilities (see “Programmable Completion” in the bash man

page).

COMP_POINT
The index of the current cursor position relative to the beginning of the current command. If the current

cursor position is at the end of the current command, the value of this variable is equal to ${#COMP_LINE}.

This variable is available only in shell functions and external commands invoked by the programmable

completion facilities (see “Programmable Completion” in the bash man page).

COMP_TYPE
Set to an integer value corresponding to the type of completion attempted that caused a completion

function to be called: TAB for normal completion, ? for listing completions after successive tabs, ! for

listing alternatives on partial word completion, @ to list completions if the word is not unmodified, or %

for menu completion. This variable is available only in shell functions and external commands invoked

by the programmable completion facilities (see “Programmable Completion” in the bash man page).

COMP_WORDBREAKS
The set of characters that the readline library treats as word separators when performing word

completion. If COMP_WORDBREAKS is unset, it loses its special properties, even if it is subsequently reset.

COMP_WORDS
An array variable (see “Arrays” in the bash man page) consisting of the individual words in the current

command line. The line is split into words as readline would split it, using COMP_WORDBREAKS as described

previously. This variable is available only in shell functions invoked by the programmable completion

facilities (see “Programmable Completion” in the bash man page).

DIRSTACK
An array variable (see “Arrays” in the bash man page) containing the current contents of the directory

stack. Directories appear in the stack in the order they are displayed by the dirs builtin. Assigning to

APPENDIX ■ SHELL VARIABLES

209

members of this array variable may be used to modify directories already in the stack, but the pushd and

popd builtins must be used to add and remove directories. Assignment to this variable will not change

the current directory. If DIRSTACK is unset, it loses its special properties, even if it is subsequently reset.

EUID
Expands to the effective user ID of the current user, initialized at shell startup. This variable is read-only.

FUNCNAME
An array variable containing the names of all shell functions currently in the execution call stack. The

element with index 0 is the name of any currently executing shell function. The bottom-most element is

main. This variable exists only when a shell function is executing. Assignments to FUNCNAME have no effect

and return an error status. If FUNCNAME is unset, it loses its special properties, even if it is subsequently

reset.

GROUPS
An array variable containing the list of groups of which the current user is a member. Assignments to

GROUPS have no effect and return an error status. If GROUPS is unset, it loses its special properties, even if it

is subsequently reset.

HISTCMD
The history number, or index in the history list, of the current command. If HISTCMD is unset, it loses its

special properties, even if it is subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine on which bash is executing. The

default is system-dependent.

APPENDIX ■ SHELL VARIABLES

210

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the current

sequential line number (starting with 1) within a script or function. When not in a script or function, the

value substituted is not guaranteed to be meaningful. If LINENO is unset, it loses its special properties,

even if it is subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on which bash is executing, in the

standard GNU cpu-company-system format. The default is system-dependent.

OLDPWD
The previous working directory as set by the cd command.

OPTARG
The value of the last option argument processed by the getopts builtin command (see “Shell Builtin

Commands” in the bash man page).

OPTIND
The index of the next argument to be processed by the getopts builtin command (see “Shell Builtin

Commands” in the bash man page).

OSTYPE
Automatically set to a string that describes the operating system on which bash is executing. The default

is system-dependent.

PIPESTATUS
An array variable (see “Arrays” in the bash man page) containing a list of exit status values from the

processes in the most recently executed foreground pipeline (which may contain only a single

command).

APPENDIX ■ SHELL VARIABLES

211

PPID
The process ID of the shell’s parent. This variable is read-only.

PWD
The current working directory as set by the cd command.

RANDOM
Each time this parameter is referenced, a random integer between 0 and 32767 is generated. The

sequence of random numbers may be initialized by assigning a value to RANDOM. If RANDOM is unset, it loses

its special properties, even if it is subsequently reset.

REPLY
Set to the line of input read by the read builtin command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation is returned. If a

value is assigned to SECONDS, the value returned upon subsequent references is the number of seconds

since the assignment plus the value assigned. If SECONDS is unset, it loses its special properties, even if it is

subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid argument for the -o option

to the set builtin command (see “Shell Builtin Commands” in the bash man page). The options

appearing in SHELLOPTS are those reported as on by set -o. If this variable is in the environment when

bash starts up, each shell option in the list will be enabled before reading any startup files. This variable

is read-only.

SHLVL
Incremented by one each time an instance of bash is started.

APPENDIX ■ SHELL VARIABLES

212

UID
Expands to the user ID of the current user, initialized at shell startup. This variable is read-only.

The following variables are used by the shell. In some cases, bash assigns a default value to a

variable; these cases are noted in the following sections.

BASH_ENV
If this parameter is set when bash is executing a shell script, its value is interpreted as a file name

containing commands to initialize the shell, as in ~/.bashrc. The value of BASH_ENV is subjected to

parameter expansion, command substitution, and arithmetic expansion before being interpreted as a

file name. PATH is not used to search for the resultant file name.

CDPATH
The search path for the cd command. This is a colon-separated list of directories in which the shell looks

for destination directories specified by the cd command. A sample value is .:~:/usr.

COLUMNS
Used by the select builtin command to determine the terminal width when printing selection lists. This

is automatically set upon receipt of a SIGWINCH.

COMPREPLY
An array variable from which bash reads the possible completions generated by a shell function invoked

by the programmable completion facility (see “Programmable Completion” in the bash man page).

EMACS
If bash finds this variable in the environment when the shell starts with value t, it assumes that the shell

is running in an emacs shell buffer and disables line editing.

FCEDIT
The default editor for the fc builtin command.

APPENDIX ■ SHELL VARIABLES

213

FIGNORE
A colon-separated list of suffixes to ignore when performing file name completion (see READLINE in the

bash man page). A file name whose suffix matches one of the entries in FIGNORE is excluded from the list

of matched file names. A sample value is .o:~.

GLOBIGNORE
A colon-separated list of patterns defining the set of file names to be ignored by pathname expansion. If

a file name matched by a pathname expansion pattern also matches one of the patterns in GLOBIGNORE, it

is removed from the list of matches.

HISTCONTROL
A colon-separated list of values controlling how commands are saved on the history list. If the list of

values includes ignorespace, lines that begin with a space character are not saved in the history list. A

value of ignoredups causes lines matching the previous history entry to not be saved. A value of

ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups causes all previous lines

matching the current line to be removed from the history list before that line is saved. Any value not in

the previous list is ignored. If HISTCONTROL is unset or does not include a valid value, all lines read by the

shell parser are saved on the history list, subject to the value of HISTIGNORE. The second and subsequent

lines of a multiline compound command are not tested and are added to the history regardless of the

value of HISTCONTROL.

HISTFILE
The name of the file in which command history is saved (see HISTORY in the bash man page). The default

value is ~/.bash_history. If unset, the command history is not saved when an interactive shell exits.

HISTFILESIZE
The maximum number of lines contained in the history file. When this variable is assigned a value, the

history file is truncated, if necessary, by removing the oldest entries to contain no more than that

number of lines. The default value is 500. The history file is also truncated to this size after writing it

when an interactive shell exits.

APPENDIX ■ SHELL VARIABLES

214

HISTIGNORE
A colon-separated list of patterns used to decide which command lines should be saved on the history

list. Each pattern is anchored at the beginning of the line and must match the complete line (no implicit

* is appended). Each pattern is tested against the line after the checks specified by HISTCONTROL are

applied. In addition to the normal shell pattern matching characters, & matches the previous history line.

& may be escaped using a backslash; the backslash is removed before attempting a match. The second

and subsequent lines of a multiline compound command are not tested and are added to the history

regardless of the value of HISTIGNORE.

HISTSIZE
The number of commands to remember in the command history (see HISTORY in the bash man page).

The default value is 500.

HISTTIMEFORMAT
If this variable is set and not null, its value is used as a format string for strftime(3) to print the time

stamp associated with each history entry displayed by the history builtin. If this variable is set, time

stamps are written to the history file so they may be preserved across shell sessions. This uses the history

comment character to distinguish timestamps from other history lines.

HOME
The home directory of the current user; the default argument for the cd builtin command. The value of

this variable is also used when performing tilde expansion.

HOSTFILE
Contains the name of a file in the same format as /etc/hosts that should be read when the shell needs to

complete a hostname. The list of possible hostname completions may be changed while the shell is

running; the next time hostname completion is attempted after the value is changed, bash adds the

contents of the new file to the existing list. If HOSTFILE is set but has no value, bash attempts to read

/etc/hosts to obtain the list of possible hostname completions. When HOSTFILE is unset, the hostname

list is cleared.

APPENDIX ■ SHELL VARIABLES

215

IFS
The Internal Field Separator that is used for word splitting after expansion and to split lines into words

with the read builtin command. The default value is ''''.

IGNOREEOF
Controls the action of an interactive shell on receipt of an EOF character as the sole input. If set, the value

is the number of consecutive EOF characters that must be typed as the first characters on an input line

before bash exits. If the variable exists but does not have a numeric value or does not have a value, the

default value is 10. If it does not exist, EOF signifies the end of input to the shell.

INPUTRC
The file name for the readline startup file, overriding the default of ~/.inputrc (see READLINE in the bash

man page).

LANG
Used to determine the locale category for any category not specifically selected with a variable starting

with LC_.

LC_ALL
This variable overrides the value of LANG and any other LC_ variable specifying a locale category.

LC_COLLATE
This variable determines the collation order used when sorting the results of pathname expansion and

determines the behavior of range expressions, equivalence classes, and collating sequences within

pathname expansion and pattern matching.

LC_CTYPE
This variable determines the interpretation of characters and the behavior of character classes within

pathname expansion and pattern matching.

APPENDIX ■ SHELL VARIABLES

216

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings preceded by a $.

LC_NUMERIC
This variable determines the locale category used for number formatting.

LINES
Used by the select builtin command to determine the column length for printing selection lists. This is

automatically set upon receipt of a SIGWINCH.

MAIL
If this parameter is set to a file name and the MAILPATH variable is not set, bash informs the user of the

arrival of mail in the specified file.

MAILCHECK
Specifies how often (in seconds) bash checks for mail. The default is 60 seconds. When it is time to check

for mail, the shell does so before displaying the primary prompt. If this variable is unset or set to a value

that is not a number greater than or equal to zero, the shell disables mail checking.

MAILPATH
A colon-separated list of file names to be checked for mail. The message to be printed when mail arrives

in a particular file may be specified by separating the file name from the message with a ?. When used in

the text of the message, $_ expands to the name of the current mail file. Here’s an example:

MAILPATH='/var/mail/bfox?"You have mail":~/shell-mail?"$_ has mail!"'

Bash supplies a default value for this variable, but the location of the user mail files that it uses is

system dependent (for example, /var/mail/$USER).

APPENDIX ■ SHELL VARIABLES

217

OPTERR
If set to the value 1, bash displays error messages generated by the getopts builtin command (see “Shell

Builtin Commands” in the bash man page). OPTERR is initialized to 1 each time the shell is invoked or a

shell script is executed.

PATH
The search path for commands. It is a colon-separated list of directories in which the shell looks for

commands (see “Command Execution” in the bash man page). A zero-length (null) directory name in

the value of PATH indicates the current directory. A null directory name may appear as two adjacent

colons or as an initial or trailing colon. The default path is system-dependent and is set by the

administrator who installs bash. A common value is

/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin.

POSIXLY_CORRECT
If this variable is in the environment when bash starts, the shell enters POSIX mode before reading the

startup files, as if the --posix invocation option had been supplied. If it is set while the shell is running,

bash enables POSIX mode, as if the command set -o posix had been executed.

PROMPT_COMMAND
If set, the value is executed as a command prior to issuing each primary prompt.

PROMPT_DIRTRIM
If set to a number greater than zero, the value is used as the number of trailing directory components to

retain when expanding the \w and \W prompt string escapes (see “Prompting” in the bash man page).

Characters removed are replaced with an ellipsis.

PS1
The value of this parameter is expanded (see “Prompting” in the bash man page) and used as the

primary prompt string. The default value is "\s-\v\$ ".

APPENDIX ■ SHELL VARIABLES

218

PS2
The value of this parameter is expanded as with PS1 and used as the secondary prompt string. The

default is "> ".

PS3
The value of this parameter is used as the prompt for the select command (see “SHELL GRAMMAR”

earlier).

PS4
The value of this parameter is expanded as with PS1, and the value is printed before each command bash

displays during an execution trace. The first character of PS4 is replicated multiple times, as necessary, to

indicate multiple levels of indirection. The default is "+ ".

SHELL
The full pathname to the shell is kept in this environment variable. If it is not set when the shell starts,

bash assigns to it the full pathname of the current user’s login shell.

TIMEFORMAT
The value of this parameter is used as a format string specifying how the timing information for

pipelines prefixed with the time reserved word should be displayed. The % character introduces an

escape sequence that is expanded to a time value or other information. The escape sequences and their

meanings are as follows; the braces denote optional portions.

%%: A literal %.

%[p][l]R: The elapsed time in seconds.

%[p][l]U: The number of CPU seconds spent in user mode.

%[p][l]S: The number of CPU seconds spent in system mode.

%P: The CPU percentage, computed as (%U + %S) / %R. The optional p is a digit specifying the
precision, the number of fractional digits after a decimal point. A value of 0 causes no decimal
point or fraction to be output. At most three places after the decimal point may be specified;
values of p greater than 3 are changed to 3. If p is not specified, the value 3 is used. The optional l
specifies a longer format, including minutes, of the form MMmSS.FFs. The value of p determines
whether the fraction is included. If this variable is not set, bash acts as if it had the value

APPENDIX ■ SHELL VARIABLES

219

$'\nreal\t%3lR\nuser\t%3lU\nsys%3lS'. If the value is null, no timing information is displayed. A
trailing newline is added when the format string is displayed.

TMOUT
If set to a value greater than zero, TMOUT is treated as the default timeout for the read builtin. The select

command terminates if input does not arrive after TMOUT seconds when input is coming from a terminal.

In an interactive shell, the value is interpreted as the number of seconds to wait for input after issuing

the primary prompt. Bash terminates after waiting for that number of seconds if input does not arrive.

TMPDIR
If set, bash uses its value as the name of a directory in which bash creates temporary files for the shell’s

use.

auto_resume
This variable controls how the shell interacts with the user and job control. If this variable is set, single

word simple commands without redirections are treated as candidates for resumption of an existing

stopped job. There is no ambiguity allowed; if there is more than one job beginning with the string

typed, the job most recently accessed is selected. The name of a stopped job, in this context, is the

command line used to start it. If set to the value exact, the string supplied must match the name of a

stopped job exactly; if set to substring, the string supplied needs to match a substring of the name of a

stopped job. The substring value provides functionality analogous to the %? job identifier (see “Job

Control” in the bash man page). If set to any other value, the supplied string must be a prefix of a stopped

job’s name; this provides functionality analogous to the %string job identifier.

histchars
The two or three characters that control history expansion and tokenization (see “History Expansion” in

the bash man page). The first character is the history expansion character, the character that signals the

start of a history expansion, normally !. The second character is the quick substitution character, which

is used as shorthand for rerunning the previous command entered, substituting one string for another in

the command. The default is ^. The optional third character is the character that indicates that the

remainder of the line is a comment when found as the first character of a word, normally #. The history

comment character causes history substitution to be skipped for the remaining words on the line. It

does not necessarily cause the shell parser to treat the rest of the line as a comment.

■ ■ ■

221

Index

■Special Characters
!(pattern-list), 92
!= operator, 20
(hash), 5
#! (shebang), 5
$ (dollar sign), 33
$- parameter, 8
$! parameter, 8
$# parameter, 8, 53
$$ parameter, 8
$* parameter, 8
$? parameter, 8, 19
$@ parameter, 8, 29
$_ parameter, 8
$_KEY variable, 194
${!var} expansion, 52
${#var} expansion, 49
${var#PATTERN} expansion, 51
${var##PATTERN} expansion, 51
${var%PATTERN} expansion, 50, 70
${var%%PATTERN} expansion, 50
${var,PATTERN} expansion, 53
${var//PATTERN/STRING} expansion, 51
${var?message} expansion, 49
${var^PATTERN} expansion, 52
${var+alternate} expansion, 47—48
${var=default} expansion, 48
${var:?} expansion, 164
${var:?message} expansion, 49
${var:+alternate} expansion, 47—48
${var:=default} expansion, 48
${var\:-default} expansion, 47
${var:OFFSET:LENGTH} expansion, 51
${var-default} expansion, 47
$0 parameter, 8
% modulo operator, 33
%b specifier, 10

%d specifier, 11
%e specifier, 11
%f specifier, 11
%s specifier, 10, 181—182
%x specifier, 11
%X specifier, 11
&& operator, 19, 21, 23
((...)), 22
((reserved word, 19
* (asterisk), 37
* subscript, 54
*(pattern-list), 92
? (wildcard), 69
?(pattern-list), 92
\ (backslash), 8, 10, 13, 99
` (backtick), 16, 35
@ subscript, 54
@(pattern-list), 92
[[...]], 21
[[reserved word, 19
|| operator, 19, 21
+(pattern-list), 92
<(command), 37
= operator, 20
=~ operator, 21
== operator, 20
> redirection operator, 13
>(command), 37
>> operator, 14

■A
a function, 129
-a option, 21, 38, 100, 107
absolute pathnames, 2
agridsize variable, 169
alert function, 69, 78
alias command, 109

■ INDEX

222

aliases, removing, 109
alternate values, 47—48
AND operator (&&), 19, 21, 23
ANSI X3.64, 179
arguments, 8

displaying, 29
expansion of, 29, 31—32, 103—105
parsing, 29—30
printing, 132
quoted, 29

arithmetic expansion, 33—35
arithmetic expressions

evaluating, 22
printing results of, 133

arithmetic operators, 34—35
arraygrid-funcs library, 169
arrays, 43—56, 157—171

assigning elements, 55
associative, 43, 56, 104—105, 157—159
data, 173
displaying, 54—55
indexed, 157—158
integer-indexed, 54—55
packed, 158
parameter expansions and, 54
read words into, 100
reading into memory, 161—162
searching, 160—161
sorting with, 158—160
splitting strings into, 185
two-dimensional, 163—164
two-dimensional grids using, 168—171

asearch() function, 160—161
associative arrays, 43, 56, 104—105, 157—159

converting to indexed arrays, 158
expansions of, 159

asterisk (*), 37
authentication keys, 146
auto_resume variable, 217—218
awk command, 94
awk programming language, 81, 88, 89

■B
backslash (\), 8, 10, 13, 99
backtick (`), 16, 35
bash shell. See also shell scripts

builtin commands, 97—111
extensions, 191
history library, 191
parameter expansion, 51—53

reserved words, 97
shell functions, 59—66
single-key entry, 191
string manipulation, 67—78

BASH variable, 205
BASH_ALIASES variable, 205
BASH_ARGC variable, 205
BASH_ARGC variable, 205
BASH_CMDS variable, 206
BASH_COMMAND variable, 206
BASH_ENV variable, 211
BASH_EXECUTION_STRING variable, 206
BASH_LINENO variable, 206
BASH_REMATCH variable, 206
BASH_SOURCE variable, 206
BASH_SUBSHELL variable, 206
BASH_VERSINFO variable, 54, 207
BASH_VERSION variable, 44, 207
bash-4.0, 43, 46, 52, 73, 97
BEGIN condition, 88
bin directory, 3
bit buckets, 14
block file formats, 175—176
block-oriented files, 171
Bourne shell, 8

definition syntax, 59
parameter expansion, 46—49
string manipulation, 67

brace expansion, 31—32
braces ({ }), 99
break command, 26—28
bugs

preventing, 113—120
types of, 113

builtin commands, 7, 97—111
deprecated, 109
displaying information about, 108
dynamically loadable, 109—110
eval, 103—106
executing, 108
help, 97—98
information about, 97—98
read, 99—103
time, 98—99
type, 106—108

bytes, streams of, 13

■C
c function, 129
calc function, 133

■ INDEX

223

canvas, screen as, 179
carriage return (CR), 4
case command, 21
case conversion, 70—71
case statement, 24—27
cat command, 16, 81—82, 94, 161
cd function, 1, 5, 125—126
cdm function, 127—128
CDPATH variable
characters

case conversion, 70—71
repeating, 68—69
trimming unwanted, 75—77

chmod command, 5
code

bug-free, 113—120
comments, 114
debugging, 120—123
documenting, 116
formatting, 117
grouping commands in, 118
K.I.S.S. principle for, 117—118
structured programming and, 113—116
testing, 118—120

colors, changing screen, 182—183
COLUMNS variable, 211
command names, 2
command sequence introducer, 180
command substitution, 16, 35, 63, 83
command-line arguments, 141

displaying, 29
expansion of, 103—105
parsing, 29, 31—32, 154—155

command-line parsing, 29—40
arithmetic expansion, 33—35
brace expansion, 31—32
options, 38—40
parameter expansion, 33
pathname expansion, 37
quoting, 30
tilde expansion, 32
variable expansion, 33

command-line programming, 125—140
commands. See also specific commands

builtin, 7, 97—111
compound, 61
displaying information about, 106—108
dynamically loadable builtin, 109—110
exit status, 19
external, 81—85

failed, 19
grouping, 118
looping, 25—27
options, 8
printing time for execution of, 98

comments, 5, 6, 114, 144
COMP_CWORD variable, 207
COMP_KEY variable, 207
COMP_LINE variable, 207
compound commands, 61
COMP_POINT variable, 207
COMP_TYPE variable, 208
COMPREPLY variable, 211
COMP_WORDBREAKS variable, 208
COMP_WORDS variable, 208
concatenation, 67—69
conditional execution, 19, 22—23
conditional operators, 23
<conditionlist> command, 22—23
configuration. See runtime configuration
configuration files, 143—144
configuration variables, 154
configure script, 109
console_codes man page, 200
content comparisons, of strings, 72—73
continue command, 27—28
cp function, 131
cu_NL variable, 183
cursor

moving, 181—182
positioning on screen, 180

cut command, 84, 94

■D
d function, 129
-d option

help command, 97
read command, 101

data
formatting, 9—13
manipulation of, 157
printing, 9—13

data array, 173
data file formats, 171—176

block file, 175—176
line-based records, 172—175

data processing
arrays, 157—171
records, 172—176

datafile, 15

■ INDEX

224

date command, 16, 106
dd command, 191
debugging, 120—123
decimal fractions, 11
declare command, 56
default configuration, 147—148
default values, 47—48
default variables, 141
definition syntax, 59—61
delimiter, of read command, 101
delimiter-separated values (DSV), 172—174
dice, 187—189
die function, 115, 148
directories

changing, 125—126
creating, 131
current, 1
home, 1, 3
listing, 127
return to previous, 126
selecting new, 127—128
for shell scripts, 2—3

directory stack, manipulating, 125—129
dirs command, 127
DIRSTACK array, 125—129, 208
documentation, 5, 116
dollar sign ($), 33
dotglob option, 91
double quotes, 8, 30

■E
-e option, 9, 100
echo command, 1, 5, 7, 9
ECMA-48, 179
elif keyword, 23
else keyword, 23
EMACS variable, 212
END condition, 88
entry-level programming, 191—204
environment, 43
environment variables, 146
-eq operator, 20
error messages, 49
errorfile, 15
errors, 13. see also bugs, debugging
_esc2key() function, 194—195
escape sequences, 9—10
EUID variable, 208
eval command, 52, 56, 103—106
exec command, 15

exit codes, setting different, 62
exit status, 19
expansion

argument, 29, 31—32, 103—105
arithmetic, 33—35
brace, 31—32
file name, 83—84, 89—94, 158, 173
parameter, 33, 43, 46—54, 147, 172
pathname, 33, 37
tilde, 32
variable, 33

exponential notation, 11
export command, 56
expressions

regular, 85—89
testing, 131

external commands, 81—85
extglob option, 91

■F
-f option, 38
failed commands, 19
failglob option, 91
false command, 24
FCEDIT variable, 212
fields, fixed-length, 175
fifteen puzzle, 136—140
FIGNORE variable, 212
file commands

cut command, 84
ls command, 83—84
touch command, 83
wc command, 85

file descriptors (FDs), 13, 102
file globbing options, 90—93
file globbing patterns, 37, 85
file name expansions, 83—84, 173

options, 89—94
sorting, 158

file names, 83
file operations, 79
file tests, 20
files

cat command, 81—82
configuration, 143—144
copying, 131
counting words or lines in, 85
extracting portions of, 84
head command, 82—83
list recently modified, 130

■ INDEX

225

listing, 83—84, 129
modifying, 87
naming, 2
printing, 82—83
reading, 79—81
timestamp, 83
with several names, 144—145

filestystem functions, 129—131
fixed-length fields, 175
floating-point numbers, 11
for keyword, 28
for loops, 19, 26
form entry, 199—200
format specifiers, 10—11
FORMAT string, 10
formatting

code, 117
data, 9,—13

FUNCNAME variable, 208
function definitions, 115
function keys, 191
function libraries, 64
functions. See also specific functions

execution of, 59
exiting, 60
filesystem, 129—131
names, 64
testing, 118—120

■G
games, command line, 134—140
-ge operator, 20
get_key() function, 195—196
getagrid() function, 170
getgrid() function, 166
getlines() function, 162
getopts command, 38
gettag function, 175
GLOBIGNORE variable, 212
globstar option, 93
greater-than sign (>), 3, 21
grep command, 24, 86, 94
grid arrays

extracting elements from, 170
initializing, 169
printing, 171
reverse order printing, 171
replacing elements in, 170

gridindex() function, 165, 169
grids

calculating index, 165
creating and filling, 164
getting characters from, 166
inserting characters in, 165—166
printing, from strings, 166—167
printing, in reverse order, 167—168
single-string, 164—168
two-dimensional, 163—164

GROUPS variable, 209
-gt operator, 20

■H
hash (#), 5
hash-bang (#!), 5, 6
head command, 82—83, 94
Hello World! program, 1—5
help command, 97—98
here documents, 174
hexadecimals, 11
histchars variable, 218
HISTCMD variable, 209
HISTCONTROL variable, 212
HISTFILE variale, 212
HISTFILESIZE variable, 213
HISTIGNORE variable, 213
history, in scripts, 197—198
history command, 191, 197—198
history library, 191
history -s command, 198
HISTSIZE variable, 213
HISTIMEFORMAT variable 213
home directory, 1
$HOME directory, 3
HOME variable, 1, 6, 213
HOSTFILE variable, 213
HOSTNAME variable, 209
HOSTTYPE variable, 209

■I
-i option, read command, 103
if keyword, 19, 21, 27
IFS (Input Field Separator), 36, 127, 172—174, 214
IGNOREEOF, 214
index function, 77—78
indexed arrays, 157

converting to associative arrays, 158
holes in, 157—158

indirect references, 52
information processing, 116

■ INDEX

226

initagrid() function, 169
initgrid() function, 164
initialization, of variables, 114
input

reading, 15
suppressing echo of, 101
testing, for correctness, 198

input/output (I/O) streams
arguments and options and, 8—9
parameter variables and, 7—8
pipelines and, 15
reading line from, 99—103
redirection, 13—15
standard, 7, 13, 15—16

INPUTRC variable, 214
insert_string function, 78
integer tests, 20
integer-indexed arrays, 54—55
integers, 11
interpreter, 6
invalid characters, checking for, 198
ISO 6429, 179
isort() function, 159—160
iteration, defined, 19

■K
k function, 129, 134
K.I.S.S. principle, 117—118
_key() function, 192—195
_keys() function, 193
key-funcs library, 191—197
KornShell, 59

■L
l function, 129
LANG variable, 214
LC_ALL variable, 214
LC_COLLATE variable, 214
LC_CTYPE variable, 214
LC_MESSAGES variable, 214
LC_NUMERIC variable, 214
less-than symbol (<), 21
let command, 109
libraries, function, 64
line continuation, 13—15
line-based records, 172—175
linefeed (LF), 4
LINENO variable, 209
line-oriented files, 171

LINES variable, 215
Linux virtual console, 194
lists, 22—25
local command, 60, 66
logic errors, 113
long options, 8
loops/looping, 21—27

break command and, 26—27
conditional execution and, 21—25
continue command, 27
for, 26
until, 26
while, 25—26

ls command, 83—84, 94
lsr function, 130
-lt operator, 20

■M
-m option, help command, 97
MACHTYPE variable, 209
MAIL variable, 215
MAILCHECK variable, 215
MAILPATH variable, 215
man pages, managing, 133—134
mapfile command, 83, 162, 175
MAPFILE variable, 162
maxit game, 134—135
_max_length function, 184
md function, 131
menu function, 127—129, 149—151
menus, runtime configuration via, 142—143
mkdir command, 5
month2num function, 78
mouse tracking, 200—204
multiple variables, setting, 106
mv function, 131

■N
-n option, 9, 21, 101
name=width strings, 175
names

checking for valid, 73
command, 2
file, 83
function, 64
variable, 8, 46, 73

-ne operator, 20
nocaseglob option, 93
nullglob option, 90

■ INDEX

227

NUM characters, reading, 101
numerically indexed arrays, 43

■O
-o operator, 21
OLDPWD variable, 209
OPTARG variable, 44, 209
OPTERR variable, 215
OPTIND variable, 44, 210
options

about, 8—9
parsing, 38—40

OPTSTRING, 38
OR operator (||), 23
or symbol (|), 72
OSTYPE variable, 210
output

formatting, 9—13
printing, 9—13, 63
storing in variable, 16

output redirection, 6
_overlay function, 74—75, 78

■P
-p option

read command, 101
type command, 107

packed arrays, 158
parameter expansion, 33, 43, 46—54, 147, 172

arrays and, 54
bash shell, 51—53
Bourne shell, 46—49
for case conversions, 71
POSIX shell, 49—51, 67

parameters
introduction to, 7
positional, 7—8, 43, 53
special, 7—8
types of, 7

parsing
command-line, 29—40
options, 38—40

password script, 199
PATH variable, 2, 6, 215—216
pathname, 2
pathname expansion, 33, 37
pattern matching, with regular expressions, 85
pd function, 126
percent sign (%), 10

PIPESTATUS variable, 210
pipe symbol (|), 15
pipelines, 13—15
portable game notation (PGN) files, 175—176
positional parameters, 7—8, 43, 53
POSIX shell

function definition syntax, 59
parameter expansion, 49—51, 67
string manipulation, 67—78

POXILY_CORRECT variable, 216
PPID variable, 210
pr command, 37
pr1 function, 132
pr4 function, 90
print_block function, 184—185
print_block_at function, 184—186
print_config function, 153
printat function, 180—182
printf command, 5—13, 16, 70, 186
printf specifier, 181
printing, 63

data, 9—13
head command, 82—83
to a variable, 13

process substitution, 37—38, 81
programming

entry-level, 191—204
structured, 113—116

PROMPT, 101
PROMPT_COMMAND variable, 216
PROMPT_DIRTRIM variable, 216
PS1 variable, 45, 216
PS2 variable, 45, 216
PS3 variable, 45, 216
PS4 variable, 45, 122, 216
pushd command, 125—126
put_block function, 183—185
put_block_at function, 183—184
putagrid() function, 170
putgrid() function, 165—166
pwd command, 1, 5, 108
PWD variable, 1, 6, 210

■Q
Q&A dialogue, for runtime configuration, 143
qa function, 151—153
question mark (?), 37
quotes/quoting, 30

■ INDEX

228

■R
-r option, read command, 15, 99
$RANDOM variable, 16, 44, 210
rangecheck script, 62
read command, 15—16, 79—82, 99—103

-a option, 100—101
-d option, 101
-e option, 100
extended options, 191
-i option, 103
-n option, 101
-p option, 101
-r option, 15, 99
-s option, 101
-t option, 102
-u option, 102

readline function, 64, 153, 197—198
readline library, 100, 191
record-editing script, 199
records

line-based, 172—175
splitting, 172—174

redirection, 3, 13—15
regular expressions, 85—89

awk and, 88—89
grep command, 86
sed command, 87

relative pathnames, 2
rendition modes, 182—183
_repeat function, 69, 78
REPLY variable, 210
reserved words, 97—99, 106—107
return codes, 62
return command, 60, 66
reversal, of strings, 70
revstr function, 78
rm command, 109
rshowagrid() function, 171
rshowgrid() function, 167—168
runtime configuration, 115, 141—156

command-line options and arguments, 141
configuration files, 143—144
default configuration, 147— 148
defining variables, 141
environment variables, 146
menus, 142—143
parsing command-line options, 154—155
Q&A dialogue for, 143
sample program, 146—156
scripts with several names, 144—145

runtime options, 115
rxvt terminals, 194

■S
-s option

help command, 97
read command, 101

sa command, 89—94
sanity checking, 198
scalar variables, 54, 173
scientific notation, 11
scope, of variables, 43—44, 60
screen manipulation, 179—189

changing rendition modes, 182— 183
clearing the screen, 181
colors, 182—183
dice, 187—189
functions, 180
moving cursor, 181—182
placing block of text on screen, 183—185
positioning cursor, 180
scrolling text, 186—187
sending output to screen, 179—182

screen variables, 148
screen-funcs library, 180
screen-vars file, 180
scripts. See shell scripts
SECONDS variable, 210
sed command, 87, 94, 162
select command, 109
set command, 66
set -x, 122—123
shebang (#!), 5, 6
shell functions, 59—66

compound commands, 61
defined, 59
definition syntax, 59—61
libraries, 64
printing results, 63
sample script, 64—66
setting different exit codes, 62
sorting variables, 63—64

shell scripts
awk, 88—89
creating, 3
debugging, 120—123
defined, 1, 6
directory for, 2—3
history, 197—198
naming, 2

■ INDEX

229

parsing options, 38—40
running, 3
runtime configuration, 141—156
with several names, 144—145
writing bug-free, 113—120

SHELL variable, 217
shell variables, 44—45, 204—217
SHELLOPTS variable, 211
shift command, 53, 56
SHLVL variable, 211
shopt command, 56, 90
showagrid() function, 171
showgrid() function, 166—167
single quotation marks, 8, 30
single-key entry, 191—197
single-string grids, 164—168
sman function, 133
sort command, 158
source command, 5
special parameters, 7—8
split_passwd() function, 173—174
square brackets [], 37
standard algebraic notation (SAN), 118
standard error, 13—15
standard input, 13

pipelines and, 15—16
reading, 15

standard output, 7, 13
pipelines and, 15—16
redirection of, 14—15

string manipulation, 67—78
bash shell, 67—78
Bourne shell, 67
case conversion, 70—71
character by character processing, 69—70
checking for valid variable names, 73
concatenation, 67—69
content comparisons, 72—73
index function, 77—78
overlay, 74—75
POSIX shell, 67
string insertions, 74
trimming unwanted characters, 75—77

string tests, 20—21
stringgrid-funcs library, 164—168
strings

case conversions, 71
character by character processing, 69—70
concatenation of, 67—69
first character of, 70

replacing with another string, 87
reversing order of characters in, 70
splitting into arrays, 185
translating to key names, 194—195

structured programming, 113—116
stty command, 191
subshells, variables in, 44
sus function, 134
syntax errors, 19, 113

■T
t function, 129
-t option

read command, 102
type command, 108

tee command, 16
teletypewriter, 179
tempfile, 15
temporary variables, 70
TERM variable, 179
termcap database, 179
terminal screen, sending output to, 179—182
terminal types, 179
terminfo database, 179
test command, 2, 19—22, 27
tests

code, 118—120
file, 20
integer, 20
string, 20—21

text, scrolling, 186—187
text blocks, placing on screen, 183—185
text editors, 3—4
tic-tac-toe, 134—136
tilde expansion, 32
time reserved word, 98
TIMEFORMAT variable, 98, 217
TIMEOUT, 102
timestamp, 83
TMOUT variable, 217
TMPDIR variable, 217
to_upper function, 78
touch command, 83, 94
tput command, 179
tr command, 70, 78
trim function, 76—78
true command, 24—25
two-dimensional grids, 163—164, 168—171
type command, 2, 5, 106—108
typeset command, 109

■ INDEX

230

■U
-u option, read command, 102
UID variable, 211
unalias command, 109
underscore, 64
Unix shell, 43
unset command, 56
until keyword, 19
until loops, 19, 26—28
upload settings menu, 149
upword function, 73, 78
usage function, 115
user input, handling, 199—200

■V
v function, 129
V function, 129
-v option, 16, 38, 108
-V option, 108
validname function, 78, 198
variable expansion, 33
variable names, checking for valid, 73
variables, 6—7, 43. See also specific variables

alternate values, 47—48
array, 54—56
assigning, 8
configuration, 154
converting to lowercase, 53
converting to uppercase, 52
default, 47—48, 141
defining, 141
environment, 146
error messages, 49
exporting, 43—44
functions and, 59—60
indirect references, 52
initialization of, 114
introduction to, 8
length of expanded value, 49
naming, 46
printing to, 13
removing longest match from beginning of,

51
removing longest match from end of, 50
removing shortest match from beginning of,

51
removing shortest match from end of, 50
replace all instances of PATTERN with string,

51

return substring of $var, 51
scalar, 54, 173
scope of, 43—44, 60
screen, 148
setting, 143
setting multiple, 106
shell, 44—45, 204—217
sorting, 63—64
temporary, 70
trimming unwanted characters, 75—77

version function, 115
--version option, 8
VT100, 179

■W
wc command, 85, 94
which command, 106—107
while keyword, 19
while loops, 19, 25—27, 79—80
while read loops, 161
whitespace, 8, 29—30
width specification, 11—13
wildcard (?), 69
wildcard pattern, 37
word processor, 3
word splitting, 33—36
words, 6
working directory, printing current, 108
wrap function, 185—186

■XYZ
x function, 129
xpg_echo option, 9
xterm terminals, 194
yahtzee game, 134—135
-z operator, 21—22

Offer valid through 4/10.

233 Spring Street, New York, NY 10013

	Apress - Pro Bash Programming Scripting the GNULinux Shell (10-2009) (ATTiCA)
	Books for Professionals
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Hello, World ! Your first Shell Program
	The Code
	The File
	Choosing and Using a Text Editor
	Building a Better "Hello, World"
	Summary

	Input, Output, and Throughput
	Parameters and Variables
	Arguments and Options
	printf: Formatting and Printing Data
	Line Continuation
	Standard Input/Output Streams and Redirection
	Reading Input
	Command Substitution
	Summary

	Looping and Branching
	Exit Status
	Testing an Expression
	Conditional execution
	Lists
	Looping
	Summary

	Command-Line Parsing and Expansion
	Quoting
	Brace Expansion
	Tilde Expansion
	Arithmetic Expansion
	Parameter and Variable Expansion
	Command Substitution
	Word Splitting
	Pathname Expansion
	Process Substitution
	Parsing Options
	Summary

	Parameters and Variables
	The Scope of a Variable: Can You See It from Here?
	Shell Variables
	The Naming of Variables
	Parameter Expansion
	Positional Parameters
	Arrays
	Summary

	Shell Functions
	Definition Syntax
	Compound Commands
	Getting Results
	Sample Script
	Summary

	String Manipulation
	Concatenation
	Processing Character by Character
	Case Conversion
	Comparing Contents Without Regard to Case
	Check for Valid Variable Name
	Overlay
	Trim Unwanted Characters
	Summary

	File Operations and Commands
	Reading a File
	External Commands
	Regular Expressions
	File Name Expansion Options
	Summary

	Reserved Words and Builtin Commands
	help, Display Information About Builtin Commands
	time, Print Time Taken for Execution of a Command
	read, Read a Line from an Input Stream
	type, Display Information About Commands
	builtin, Execute a Builtin Command
	Summary

	Writing Buf-Free Scripts and Debugging the Rest
	Prevention Is Better Than Cure
	Debugging a Script
	Summary

	Programming for the Command Line
	Manipulating the Directory Stack
	Filesystem Functions
	Miscellaneous Functions
	Managing Man Pages
	Games

	Runtime Configuration
	Defining Variables
	Menus
	Configuration Files
	Scripts with Several Names
	All Together Now
	Summary

	Data Processing
	Arrays
	Data File Formats
	Summary

	Scripting the Screen
	Teletypewriter vs. Canvas
	Moving the Cursor
	Changing Rendition Modes and Colors
	Placing a Block of Text on the Screen
	Scrolling Text
	Rolling Dice

	Entry-Level Programming
	Single-Key Entry
	History in Scripts
	Sanity Checking
	Form Entry
	Reading the Mouse

	Shell Variables
	Index

