
Tony Steidler-Dennison

Mac for Linux Geeks 



Mac for Linux Geeks 

Copyright © 2009 by Tony Steidler-Dennison

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1650-6

ISBN-13 (electronic): 978-1-4302-1651-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence 
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark 
owner, with no intention of infringement of the trademark.

Lead Editors: Frank Pohlmann and Michelle Lowman
Technical Reviewer: Peter O’Gorman
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,  

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,  
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant
Copy Editor: Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Production Editor: Liz Berry
Compositor: Dina Quan
Proofreader: Lisa Hamilton
Indexer: Broccoli Information Management
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or 
visit . 

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, 
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit 

. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special 
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability 
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work. 



v

Contents at a Glance

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER 1 The Backstory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 The Comparison: Linux vs. Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3 Dual-Booting and Virtualization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 4 Building Out the Linux Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

CHAPTER 5 Using the Many Apple and Linux Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . 81

CHAPTER 6 Routine Mac OS X System Administration  . . . . . . . . . . . . . . . . . . . . . . 125

CHAPTER 7 Backup, Security, and Automation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

CHAPTER 8 Mac OS X and Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

CHAPTER 9 Hybridizing Your System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

INDEX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



vii

Contents

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER 1 The Backstory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Of Macros and Manuals: UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

From Assembly to C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Macros and Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

User Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The Fork: BSD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1BSD to 4BSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Licensing Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The Enthusiast and the Marketer: Apple Computer . . . . . . . . . . . . . . . . . . . . 5

Homebrew Days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Apple I to Lisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

And Finally, the Mac  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The Convergence: Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

NeXTStep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Back at Apple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Why BSD in Mac OS X?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Open Source Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

How Is BSD Implemented in Mac OS X? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Why Switch from Linux to Mac? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Hardware Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Common Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Release Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



CONTENTSviii

CHAPTER 2 The Comparison: Linux vs. Mac OS X . . . . . . . . . . . . . . . . . . . . . . 17

Mac OS X and Linux Filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The Apple Filesystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Filesystem Layouts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

The ext2/ext3 Filesystem in Linux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Comparison of HFS+ and ext2/ext3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Permissions in Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

File Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Root and Administrative Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Terminal Access in Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Starting Bash  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Setting Linux System Variables in Mac OS X  . . . . . . . . . . . . . . . . . . . 33

Interfaces in Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Configuring Ethernet Interfaces from the Command Line . . . . . . . . . 34

Using the GUI to Configure Ethernet Interfaces . . . . . . . . . . . . . . . . . . 35

Devices and Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Accessing Devices and Drives Through the GUI . . . . . . . . . . . . . . . . . 38

Accessing Devices and Drives from the Command Line . . . . . . . . . . 39

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

CHAPTER 3 Dual-Booting and Virtualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Dual-Booting Linux and Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Loading Linux with rEFIt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Installing Linux Using Boot Camp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Partitioning from the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Removing a Linux Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Virtual Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Using VMware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Using VirtualBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

CHAPTER 4 Building Out the Linux Environment . . . . . . . . . . . . . . . . . . . . . . . 65

Xcode Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Xcode Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

An Overview of the Xcode Tool Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Online Linux Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

MacPorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Fink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



CONTENTS ix

CHAPTER 5 Using the Many Apple and Linux Tools . . . . . . . . . . . . . . . . . . . . 81

A Brief Overview of Graphics and Multimedia on the Mac . . . . . . . . . . . . . 81

Core Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Core Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Quartz Composer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Built-in Mac OS X Multimedia Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iPhoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iMovie and iDVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

iWeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

GarageBand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Third-Party Multimedia Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

The Adobe Multimedia Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Mac OS X Third-Party Multimedia Summary . . . . . . . . . . . . . . . . . . . 103

Open Source Multimedia Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Graphics Editing with GIMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Audio Editing with Audacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Open Source Multimedia Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Office and Productivity Tools in Mac OS X  . . . . . . . . . . . . . . . . . . . . . . . . . 108

Microsoft Office for Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

The Mac iWork Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Open Source Productivity Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

OpenOffice.org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

NeoOffice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

CHAPTER 6 Routine Mac OS X System Administration. . . . . . . . . . . . . . . . 125

Using the Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Changing the Default Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Using UNIX Administration Tools and Commands  . . . . . . . . . . . . . . 128

System Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Using Activity Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Viewing System Processes with top . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Listing Processes with ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

User Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Managing User Accounts Using System Preferences  . . . . . . . . . . . 135

Managing Users Using the Command Line . . . . . . . . . . . . . . . . . . . . 138



CONTENTSx

Log Review and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Log Location and Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . 140

Reviewing Log Files with the Console Application . . . . . . . . . . . . . . 140

Managing Tasks with launchd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Administering Shared Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Mac OS X and Web Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Printer Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

SMB File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

NFS File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

CHAPTER 7 Backup, Security, and Automation  . . . . . . . . . . . . . . . . . . . . . . . 155

Backup and Recovery Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

The Mac Approach to Backup and Recovery  . . . . . . . . . . . . . . . . . . . . . . . 156

Time Machine Backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Backups with Carbon Copy Cloner . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

SuperDuper for Simple Backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Mozy and Other Off-Site Backup Options  . . . . . . . . . . . . . . . . . . . . . 170

The Linux Approach to Backup and Recovery  . . . . . . . . . . . . . . . . . . . . . . 178

Using dd to Copy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Using rsync to Synchronize Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Configuring Security Through System Preferences . . . . . . . . . . . . . 183

Using ipfw As a Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Using WaterRoof: An ipfw Front End . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

CHAPTER 8 Mac OS X and Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Using Xcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Creating an Application with Xcode  . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Working in the Main Xcode Window . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Debugging with Xcode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Xcode and Other Application Development Tools  . . . . . . . . . . . . . . . . . . . 207

Xcode and Java  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Xcode and Python  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Xcode and Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Xcode and PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



CONTENTS xi

Scripting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Using AppleScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Creating Scripts with the Script Editor . . . . . . . . . . . . . . . . . . . . . . . . 217

Using Other Scripting Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Code Maintenance and Revision Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Introducing Subversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Using Subversion from the Command Line . . . . . . . . . . . . . . . . . . . . 221

Using Subversion GUI Front Ends  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Managing Changes with Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

CHAPTER 9 Hybridizing Your System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

How BSD and Linux Differ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Distribution vs. Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Runlevels and System Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Kernel Customization and Compilation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Setting Up the Build Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Building the Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Porting UNIX Apps to the Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Why Port?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Good Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Installing the Development Environment . . . . . . . . . . . . . . . . . . . . . . 244

Creating Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Installing Linux Desktop Environments on the Mac . . . . . . . . . . . . . . . . . . 249

Installing GNOME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Installing KDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

INDEX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



xiii

About the Author

TONY STEIDLER-DENNISON is a longtime Linux user and a recent convert 
to the Mac. He has coauthored two books on Linux and has written 
 frequently for Linux Journal and LinuxWorld. He is also the host and 
producer of The Roadhouse Podcast, a weekly hour of “the finest blues 
you’ve never heard,” at . 

Tony is a systems engineer with Rockwell Collins, Inc., leveraging 
open source technologies in communication products for commercial 
aviation. He and his family make their home in Iowa City, Iowa.



xv

About the Technical Reviewer

PETER O’GORMAN is a software engineer. He first used a Mac in 1988, 
when he was a student at the University of Limerick, Ireland. Although 
he still uses one today, he also uses Linux, Solaris, AIX, and HP-UX on 
a daily basis.

Peter has contributed to a number of open source projects, 
including Apple’s Darwin, Fink, MacPorts, GNU libtool, GCC, and 
Autoconf. He continues to make contributions to these projects when 
time allows.

Originally from Ireland, Peter has traveled the world, living in the 
United Kingdom, Australia, Hong Kong, and Japan before moving to Winnipeg, Canada, where 
he shivers through winters with his wife and daughter.



xvii

Preface

I didn’t come to the Mac overnight, though it must have seemed that way to my friends and 
family. One day, I was extolling the virtues of Linux and open source; the next, I was talking 
about the Macintosh platform with nearly as much vigor.

My first computer was an Atari 1040ST, a stunning piece of machinery for 1986. It was 
available for less than $1,500 and came equipped with an entire megabyte of RAM. I hadn’t 
been in the fledgling computer club in school during the 70s, and I really couldn’t put my 
finger on why I had any interest at all in computers. In fact, I’m not sure I had even seen one 
before taking a sales job at a Federated electronics store. Computers were for geeks, after all 
(or, as we so mockingly called them in school, nerds). But from the first time I connected to 
CompuServe, computing had its hooks in me deeply. In just a few short weeks, I had made 
friends with a fellow computer enthusiast in our city of Arlington, Texas, and we managed 
to battle it out in mock dogfights online with a crude flight simulator for hours on end. Our 
families quickly tired of the sound of the modem when they called. According to my wife, I 
had clearly developed a substance-abuse problem. I had. The substance was silicon.

My strong affinity for computing continued, but by 1996, I had begun to tire of the install/
reboot/blue screen sequence of the young Windows 95. I acquired a Toshiba Infinia, a reason-
ably stout machine for its time, and often lugged a thick, heavy Compaq laptop to and from 
work. But I felt constrained, limited by the roadblocks that seemed built into Windows. 

One day at work, I commiserated with a friend who happened to work in our company’s 
IT department. He nodded his agreement without saying much, pulled on his ponytail, and 
let me finish. Then, almost casually, he mentioned, “I’ve been playing with this new operating 
system. It’s called Linux. Been out for a few years. It’s not easy to get configured, but it’s pretty 
powerful and interesting.”

Challenging, powerful, and interesting—that description caught my attention. “Where 
can I get it?” I asked.

“Net. It’s free.”
It took just a few all-nighters at home to research this new operating system, find and 

download the install diskettes (the Infinia had no CD burner, and ISO images of the few 
Linux distributions were few and far between), and fail miserably at the first several installa-
tion attempts. With each failed installation, I would give up and reinstall Windows, adding 
yet more hours to the already painful process. But with each attempt, the challenge rose a 
bit higher, until I resolved that no simple computer was going to defeat me. I researched, 
learned, and researched some more. When I discovered a HOWTO on dual-booting Windows 
and Linux, the lights started to come on. Shortly after, I got my first good installation of Red 
Hat 4.0, dual-booting with Windows 95, and was off to the races. I made a commitment when 
that installation was complete that I would use Windows only when absolutely necessary, 
and that it wouldn’t be necessary too often. And I found my powerful, flexible, challenging 
operating system of choice. In short, Linux revived my love of computing, making my wife 
once again a victim of my renewed substance-abuse problem.



PREFACExviii

Within a few short years, I had left a legal-field programming position with a large Iowa 
insurance company to pursue dreams of dot-com dollars. My writing experience and abili-
ties got me in the door of the first startup, a company that was founded by Anton Olsen, my 
Linux friend and mentor from the previous company. The shop was entirely open source, and 
I  reveled in the atmosphere of a small company where, in one minute, I could draft and send 
out press releases, while the next brought yet another learning experience in a room full of 
open source gurus. The company was short-lived, but the experience infused me with even 
more passion for Linux, for programming, and for the unbridled idealism of the open source 
philosophy.

Less than a year later, I began writing a daily Linux e-mail newsletter for Chris Pirillo, 
Lockergnome’s Penguin Shell. For my day job, I took a position building and configuring 
Linux-based computers—not just any computers, but computers to control observatory-grade 
robotic telescopes built by a company in my hometown of Iowa City. I also helped assemble 
those telescopes and flew around the world to install them at dark locations around the planet. 
When that small company failed, I became a partner in another, building and repairing com-
puters, with a special interest and expertise in Linux. Over the next four years, I chased Linux 
through a revival of the telescope company, a presidential campaign, online shopping, online 
real estate, online document scanning, and finally, into the world of commercial aviation, 
where I still work today. It’s not always been the best living; Linux has, nonetheless, been very 
good to me.

During those Linux-chasing years, I was aware of the other computing platforms outside 
the open source realm. In fact, as the necessity of home computers grew, snaring friends with 
a new desire to discover the Web, I often recommended Macintosh machines as their first. 
Although I had barely even seen a Mac, I knew they had a reputation for user-friendliness 
and some serious brand loyalty. In return for the recommendation, those friends planted a 
very small seed in my mind. I watched as they became real computer enthusiasts and hard-
core advocates for the Macintosh platform. I saw in them a dedication that I understood. It 
wasn’t much different from the one I felt for Linux. Although they didn’t have (or require) the 
hard-core skills I had picked up over the years, there was no doubt that they were enjoying 
their computing experiences. That was the feeling that had drawn me into the Linux world. 
I enjoyed seeing it in others, even on the Mac.

The real seed for the move to the Mac came in late 2003, when I joined the presidential 
campaign of General Wesley Clark in Little Rock, Arkansas. I was the second hire in the tech 
staff and gladly worked from my Fedora-installed Dell Inspiron laptop. As we filled the tech 
department to what eventually totaled 18 staff members, more and more of them arrived 
in Little Rock with MacBooks under their arms. And those small computers just worked. I 
watched coworkers switch effortlessly between a stunning GUI and the command line— 
whatever suited their needs for the particular task at hand. All the Linux commands that I used 
so frequently were available, and the hardware and desktop were beautifully designed. Much 
of the technical heavy lifting in that campaign was done on Macs, including all the web design, 
large chunks of the database design, and significant portions of the PHP development. I left 
Little Rock in February 2004, knowing that, at some point in the future, I would own a Mac.

While it took a few years, I did fulfill that promise to myself in December 2006. I purchased 
a Mac mini, one of the 1.83 GHz Intel Core Duo variety, with 2GB of RAM. At the time, I was 
nearly two years into the production of The Roadhouse Podcast, a weekly hour of “the finest 
blues you’ve never heard.” Although I understood that Mac OS X was solidly designed and 
built around the BSD operating system, I had some concerns about moving the production of 



PREFACE xix

the podcast to the Mac. I had landed on a routine with the show that was working well, though 
large periods of time were spent waiting for my old 800 MHz P3 Linux box to churn through 
encoding and conversion tasks. I had landed on a set of open source tools that met all my 
needs for the show, both practical and esoteric, and had no desire or time to learn a new Mac 
tool set. In the first week with the Mac mini on my desktop, I downloaded and installed those 
tools, either from the Web or via the MacPorts utility. And, on that first Saturday, my produc-
tion time was actually reduced by a full two hours. The open source tools worked equally well 
on the Mac, and the solid hardware took less than half the time to accomplish the most CPU-
intensive processes involved in assembling the show. In short, I was hooked.

It was at that point that I began to evangelize with friends and fellow computing profes-
sionals about the power of the Mac OS X system. Those who knew me well understood that 
efficiency was always my primary goal. They knew that for many years, an acceptable level 
of efficiency and stability were possible only with Linux. And, while they may have scratched 
their heads at the suddenness of my conversion, that conversion really wasn’t, as it appeared, 
a transient overnight revelation. It had been a long time coming and was capped by the BSD 
base of Mac OS X.

It was only after purchasing the Mac mini that I realized the two pieces of Macintosh his-
tory that made this easy transition possible. The first was the introduction of Mac OS X. It was 
the first version of the Macintosh operating system to fully utilize BSD at its core. While Apple 
has added much to BSD for its version of Mac OS X, the full functionality of the renowned 
UNIX operating system remains. The classic set of UNIX tools is readily accessible and is also 
fully extensible via the MacPorts and Fink utilities. These utilities are similar to the  tool in 
Debian-based Linux distributions. The MacPorts repositories, in particular, continue to add 
new tools, both for the command line and the GUI desktop. It’s possible to accomplish many 
tasks on the Mac with either “for-pay” tools created specifically for the Mac OS X platform or 
open source tools. And, with a known hardware profile, developers of either application type 
can focus on a single platform, removing most of the obstacles found in Windows develop-
ment and eliminating the instability of unknown hardware and peripherals. (Many Mac users 
have made the case that Windows installations on Intel Macs are, in fact, the best Windows 
installations they have used.) In other words, Mac developers know what hardware will be 
used to run their applications. Unlike the ad hoc nature of Windows hardware, developers can 
make full use of the Mac hardware.

The other enabling event in the history of the Mac was the transition from Motorola to 
Intel processors in 2006. That transition brought to bear the full weight of the existing BSD 
codebase. It also unleashed the full power of BSD on the Macintosh platform. In combination, 
the powerful capabilities of BSD on a known and native hardware platform pushed Mac OS X 
and the Macintosh well into the mainstream for serious developers.

My transition to the Mac has been, for all intents and purposes, seamless. Much like the 
move from Windows to Linux in 1996, the change in platform has breathed new life into both 
my recreational and vocational computer experiences. I’ve come the closest yet to that long-
time goal of complete computing efficiency. I didn’t need to relearn tools I relied upon in my 
Linux work. While I did need small adjustments to the structure of Mac OS X, the core func-
tionality of the tools was virtually the same as I had spent years learning and using in Linux. 
Nestled within the clean and friendly designs of both hardware and software, the common 
UNIX codebase of Mac OS X made it possible to move, overnight, from one platform to the 
other, and to enjoy an even higher level of efficiency.



PREFACExx

If I’ve learned anything about the greater Linux community, it’s that we are, as a group, 
extreme Tux loyalists. There’s a sincere dedication on the part of many to the grandeur 
and idealism of the free and open source software (FOSS) philosophy as presented by Eric 
 Raymond’s seminal The Cathedral and the Bazaar. Longtime Linux users may find it difficult 
to make the mental shift from that idealism to an acceptance of a proprietary operating sys-
tem—even one that relies so heavily on a FOSS core. In my own experience, I’ve been no less 
the loyal idealist.

But for many, there’s a deeper issue at play. An evangelist’s attitude regarding FOSS is 
only as good as the efficiency of the code itself. If FOSS applications are cranky, inefficient, and 
generally difficult to implement, those applications will never make it beyond the horizon of 
hard-core users. Despite a history approaching 15 years, for example, the Linux desktop has 
yet to find its way into the mainstream, where the underlying FOSS principles can reach full 
fruition. Making computing more affordable and accessible is a goal that, essentially, starts 
with the usability of the operating system and the user interface. In other words, the greater 
FOSS goals of spreading the power of computing without regard to economic circumstance 
are entirely reliant on making the entire computing platform—hardware and software— 
efficient and usable for all who choose it. If a computing system is so complex as to be acces-
sible only to geeks, it’s unlikely that those goals will ever be accomplished.

Almost without exception, I’ve found the Mac OS X experience to be rewarding. The tools 
work. The hardware is stable and robust. And, like the proverbial icing on the cake, the GUI is 
pretty, intuitive, and very functional. There’s a reason Macs have gained their reputation in 
the world of multimedia. All those elements are critical in an operating system that will spend 
many, many hours churning out beautiful graphics, editing video, and making music. Not 
coincidentally, those uses tend to put a complete computing system to its full test. Processor-
intensive applications shine on the Mac. That’s a function of known hardware for which 
developers can write code with relative ease. Most certainly, that’s one of many reasons why 
open source code runs so well and so easily on the Mac, too. It’s also a function of a common 
set of development tools, included with every Mac OS X operating system disc. A well- 
executed operating system based on BSD, a known hardware platform, a view toward design 
and ease of use—these are the leading reasons for my personal migration to the Macintosh 
and Mac OS X, and the reasons I’ve chosen to present you with this book.

I’ll say it right up front: Mac OS X just works. It has the power, the tools, and the stability 
to rival any operating system—Linux and UNIX included. If you’re interested enough to have 
picked up this book, you’re about to enter a new and thoroughly satisfying computer experi-
ence.

Mac for Linux Geeks is based on my own personal experience in the transition from Linux 
to the Mac. Those of us who have spent time in the Linux realm tend to view and use comput-
ers a bit differently than the rest of the world (as epitomized by the old joke: “What are the 
two best things to come out of Berkeley? UNIX and LSD.”). Personally, I love the power and 
flexibility of the command line. Mac OS X has that. I love the ability to dash off a quick script 
to solve an immediate problem, and then finding that it works in other situations just as well. 
Mac OS X has that. I like to compile my own software with options to tailor it specifically for 
my use or my machine. Mac OS X has that. I’m almost cranky in my devotion to source con-
trol. Mac OS X has that. I want a nice visual representation of the hour-long audio files I knock 
out each week in The Roadhouse Podcast. Mac OS X has that. I want a filesystem layout that 
makes sense in light of my longtime Linux use. Mac OS X has that, too. I want complete control 
and flexibility in my operating system environment. Mac OS X certainly has that. In the pages 



PREFACE xxi

that follow, we’ll walk through these personal requirements and many others for the millions 
of Linux users around the world. But be aware that if you’ve purchased this book, it’s more 
likely than not that your days with our old pal Linux are numbered.



C H A P T E R  1

The Backstory

The focus of this book is migrating from Linux-based systems to Mac OS X. To lay the foun-
dation for the information to come, a little history is in order. This chapter provides a brief 
history of UNIX, BSD, and Mac OS X. 

Of Macros and Manuals: UNIX
The creation of Mac OS X really starts with the creation of UNIX. That story is well known, 
especially among Linux geeks—a group that owes a great debt of gratitude to the work of 
 Dennis Ritchie, Ken Thompson, and a team of Bell Labs engineers. In the summer and early 
fall of 1969, these engineers cobbled together a rough operating system based on the Multi-
plexed Information and Computing Service (MULTICS) operating system. MULTICS was 
a project taken on jointly in 1966 by Bell, General Electric, and Massachusetts Institute of 
Technology (MIT), but dropped in 1969. Although MULTICS would continue as a commer-
cial venture until 2000, its life in the labs was limited. However, its contribution to the world 
of computing cannot be overestimated. It produced the team of engineers that, during those 
heady days of 1969, would create the UNIX operating system.

Like so many technical projects, work on the UNIX system began with an informal discus-
sion. Ritchie, Thompson, and fellow Bell Labs engineer Rudd Canaday met to talk about the 
project in the summer of 1969. The notes from that brainstorming session were phoned to the 
Bell Labs dictation system, transcribed, and sent to the engineers. These informal notes would 
become the working concept of operations for the initial version of UNIX.

Over four months following that meeting, work on the UNIX system rolled forward. A 
rough filesystem was created on the PDP-7, a system that, at its creation, was state of the art. 
The engineers, primarily Thompson, created the operating system, shell, assembler, and editor 
in just four weeks. They also developed a set of tools that would be accessible to users on the 
system, including tools to copy, print, and delete files. This core tool set was created with the 
General Electric Comprehensive Operating System (GECOS)—a system still in limited use on 
servers and mainframes today. The tools were then transferred to the PDP-7 using paper tape. 
With the assembler—the final piece of the original system—successfully transferred to the 
PDP-7, the fledgling UNIX system was no longer reliant on GECOS. UNIX was completely self-
contained, with the full capabilities to develop and build new tools for the system included as 
part of the system itself.

1



CHAPTER 1   THE BACKSTORY2

From Assembly to C
The year 1970 would prove to be one of high activity for the UNIX team at Bell Labs. Concur-
rent to the development of the early UNIX framework on the PDP-7, Bell Labs had acquired 
an upgrade to the PDP-7 system: the PDP-11. As components of the PDP-11 rolled into Bell 
Labs, the UNIX system was ported to this new platform, taking full advantage of its extended 
capabilities.

Originally written in assembly language, the new system was simultaneously ported to 
the word-based B language. It was quickly adopted by the Bell Labs patent department to 
process the reams of applications and research the office churned through each month. But 
the B language was limited in its use of data structures—code objects containing fields, items, 
members, and/or attributes that describe the operation of the code itself. These structures 
exist as abstractions of actual code operations, and they help to allow developers to work at an 
increasing distance from assembly language. In short, the creation and existence of data struc-
tures can dramatically reduce the time and the number of errors in developing subsequent 
code. 

To further streamline the development process, Ritchie and Bell engineer Brian Kernighan 
developed a set of data structures to overlay on the B language. The resulting powerful lan-
guage, C, bore little resemblance to its predecessor. To this day, C serves as the core of many 
operating systems and applications. It also serves as the basis for such widely used languages 
as C++, Perl, and Java. The scope and philosophy of C have been carried on in countless other 
languages and environments. 

Macros and Pipes
Two more milestones in the development of UNIX were accomplished in the years between 
1970 and 1975. The first was, in essence, another modernization of an older computing idea—
the concept of macros. Like data structures at the code level, macros contained a set of actions 
and operations that could be executed by users and developers with minimal keystrokes. The 
overriding idea was to group these sets of tasks together in a series of operations initiated by 
a single keystroke. Also like data structures, these operations could be created and tested dis-
cretely, assuring error-free operations when combined. 

Macros did not exist in the early iterations of the C language. Due to the growing complex-
ity and power of that language, macros for it were more difficult to create, because that power 
and complexity demanded a similar level of power in macro-like operations. Ritchie and 
 Kernighan approached this problem head on, creating a concept that would truly distinguish 
the UNIX operating system from others of its day and from most that followed.

Rather than creating new code for macros, Ritchie and Kernighan envisioned a concept 
that would allow the output of one existing command or tool to be passed as input to another. 
This concept efficiently leveraged the previous work of creating the individual system tools, 
eliminating duplicate effort. More important, it also created a seemingly infinite number of 
tool combinations. Any tool could perform its discrete operations, and then seamlessly pass 
the result of those operations as input to any other tool for further processing and output—
perhaps to yet another tool, if necessary. In effect, the concept created system “glue” capable 
of tying many tools to many others as required. Ritchie and Kernighan called this glue pipes.

In practice, pipes were revolutionary. Pipes gave users power and flexibility that simply 
could not be achieved with mere macros. They also had an interesting side effect on subse-
quent UNIX development: they narrowed the scope of new tools to single tasks. What would 



CHAPTER 1   THE BACKSTORY 3

become the hallmark philosophy of UNIX systems was born in that reduced scope: “Do one 
thing, and do it well.” The implementation of pipes allowed developers to write programs that 
performed a single task well, and then to tie those applications, as necessary, to others created 
under the same philosophy. At the highest level, the use of pipes encouraged developers to 
create system and user tools that worked well together. Many would later make the case that 
this single concept was the genesis of the legendary flexibility, stability, and reliability of over-
all UNIX system performance.

User Manuals
One more significant internal milestone lay ahead in the steady progression of UNIX from eso-
terica to mainstream use. Engineer Doug McIlroy took on the task of creating a manual that 
would fully expose the operation of the system to those on the other side of the development 
and engineering fence—the users. 

McIlroy appreciated the shortcomings of existing user manuals. For the most part, they 
didn’t go far enough in explaining the operations and options of the systems. And they didn’t 
present that minimal information in a way that was readily accessible to the end users.  McIlroy 
believed Bell Labs could do a much better job with its user manual and would, by that effort, 
fully distinguish its operating system from other burgeoning operating systems. In some sense, 
McIlroy took on the creation and management of the UNIX manual with a unique mix of pride 
of ownership and commercial savvy.

The result opened the eyes of the computing world to an approach that seemed almost 
paradoxical. It was at once revolutionary yet born in pure common sense. For starters, the 
UNIX manual was incorporated into the operating system itself. It was fully accessible within 
the very environment in which questions about the system’s use would arise. The  com-
mand, while strictly adhering to the philosophy of doing “one thing right,” also put the full 
knowledge of the system’s creators at the fingertips of its users. And that full knowledge was 
breathtaking in its scope. Every option for the use of every tool on the system was described. 
Examples were included where they might clarify a complex implementation. Tool descrip-
tions included a brief summary of the relationship of a single tool to other system tools. And, 
in a revelation for system users, the limitations of individual tools were described, as well, 
including existing bugs. 

The scope, accessibility, and practicality of the UNIX manual made it possible for near-
novices to learn the system quickly. True to the business goal, UNIX adoption in business and 
academia sectors began to escalate at a rate unseen in previous UNIX versions or in rival oper-
ating systems.

By 1976, just seven short years removed from the ad hoc meeting that created its concept 
of operations, UNIX had become the operating system of choice for many companies and 
schools around the world. Licensing fees for the system reached an all-time high and contin-
ued to grow. Through constant revision, the system had reached a previously unsurpassed 
level of reliability—a key factor in its adoption by increasingly computing-intensive businesses 
and schools. And it also proved to be highly portable, allowing its adoption on a widening 
range of hardware platforms. 



CHAPTER 1   THE BACKSTORY4

The Fork: BSD
In a sign of the broad acceptance of UNIX, engineer Ken Thompson was invited by University 
of California, Berkeley (UCB), to take a yearlong sabbatical from Bell Labs to teach computing 
at the school. It would serve as a much-needed break from the daily rigors of operating system 
development. Unknown to the principal players, that sabbatical would mark the beginning of 
another critical milestone in the history of UNIX. Indirectly, it would also serve as the first real 
seed for Apple’s Mac OS X operating system. 

1BSD to 4BSD
Thompson focused his teaching at UCB on UNIX. He found the students to be more than 
capable of making system improvements and upgrades. Interest in the system ran so high 
during Thompson’s time at the school that students continued to develop the system after 
Thompson’s departure. One, graduate student Bill Joy, took particular interest in the system. 
Shortly after the end of Thompson’s sabbatical, Joy released the first Berkeley Software Dis-
tribution, or 1BSD. Rather than a complete system, 1BSD was an add-on to UNIX System 6, 
including a Pascal compiler and Joy’s text editor, ex. Further upgrades and releases followed, 
including 2BSD, with the C shell and the vi text editor, in 1978.

In the meantime, UCB purchased and installed a Virtual Address eXtension (VAX) com-
puter on the campus. Built by Digital Electronics Corporation (DEC), the VAX was a significant 
upgrade to the PDP-11 system, including a full step up from 16-bit to 32-bit memory address-
ing. In order to utilize the larger address space of the VAX, students began what would amount 
to a full rewrite of the UNIX code. 

Incorporating rewritten kernel code, the 2BSD utilities, and other operating system tools, 
3BSD was released in 1979. The release was a critical milestone in the development of Berke-
ley’s UNIX-based operating system. It was the first to contain a complete kernel, rather than 
merely providing a set of add-on tools for UNIX. In reality, 3BSD was the first stand-alone BSD 
operating system and the first fork of UNIX.

3BSD also represented an important win for UCB. The Defense Advanced Research Proj-
ects Agency (DARPA) was so impressed with the 3BSD release that it agreed to fund efforts 
at UCB’s Computer Systems Research Group (CSRG) to create a standard UNIX platform for 
future DARPA research projects.

BSD releases into the 1980s continued to refine and add new tools to the system. Major 
releases occurred in 1980 (4BSD) and 1981 (4.1BSD). The 4.2BSD version took two years to 
release in total, including several incremental releases during that period. Of significant 
interest, the 4.1a release included a complete rewrite of the Transmission Control Protocol/
Internet Protocol (TCP/IP) stack originally developed by Cambridge, Massachusetts, acoustic 
analysis firm Bolt, Beranek and Newman (BBN). Again, one of the foundational pieces of BSD’s 
success was the result of the efforts of Bill Joy. Reportedly disappointed by BBN’s TCP/IP 
implementation, Joy completely rewrote the stack. Later, when questioned in a meeting with 
BBN about how he accomplished the mammoth rewrite, Joy reportedly responded that the 
task was simple. “You read the protocol and write the code.”

Licensing Issues
By the time of the 4.2BSD release in 1983, significant portions of the BSD code had been 
completely rewritten or created from scratch. What remained was still licensed by Bell Labs, 



CHAPTER 1   THE BACKSTORY 5

under the control of AT&T. In 1984, AT&T divested itself of Bell Labs, creating AT&T Computer 
 Systems, with the primary goals of UNIX development and licensing. 

Licensing fees for UNIX System V, which included code created at UCB, continued to 
increase. As a result, many began to push for and investigate the possibility of a BSD-like 
release that would be freely distributable, without the encumbrance of AT&T’s licensing fees. 
This lead to the release of Networking Release 1 (Net/1) in 1989, which provided only the 
Berkeley-developed networking tools to those without licenses for the AT&T code.

Work then began in earnest on Net/2, a release that would completely rewrite the UNIX 
tools using non-AT&T-licensed code. That release, in 1991, spawned two new efforts focused 
on porting BSD to the Intel architecture: 386BSD, a free version of the operating system based 
on Net/2, and another version created by Berkeley Software Design (BSDi). 

BSDi quickly became a legal target for AT&T’s newly formed UNIX System Laboratory 
(USL) subsidiary. USL successfully pursued injunctive relief against BSDi, preventing the dis-
tribution of the system while further legal action determined whether BSDi had violated the 
USL-held copyright on UNIX System V and its trademark on UNIX. That action prevented the 
distribution of BSDi’s version for nearly two years. It also prevented the further development 
of BSDi-derived systems, as rights to all BSDi code remained in question.

The USL action was settled in 1994. After two years of litigation, USL signed off on an 
agreement that would require only 3 of the 18,000 BSD files in the Net/2 system to be removed. 
An additional 70 files were targeted for modification to show USL copyright notices. Critically, 
the settlement also stipulated that no further legal action would be taken by USL against BSD 
developers, users, or distributors. With those minimal modifications, 4.4BSD was released in 
June 1994.

BSD had won a hard-fought freedom from the strictures of AT&T licensing, but that 
freedom did not come without a cost. The 1995 release of 4.4BSD-Lite Release 2 would mark 
the end of formal BSD development at UCB. The university closed the CSRG shortly after the 
release. But the freely distributable code created at CSRG remained in the public domain 
under the permissive BSD license. 4.4BSD-Lite Release 2 served as the basis for the BSD proj-
ects we recognize today: FreeBSD, NetBSD, and OpenBSD.

The Enthusiast and the Marketer: Apple Computer
In March 1975, as Dennis Ritchie and Ken Thompson worked toward a stable version of the 
C programming language, a group of electronics enthusiasts met for the first time in Palo 
Alto, California. While providing an opportunity to exchange information, to discuss the latest 
advances in electronics, and to swap electronic parts, the Homebrew Computer Club also had 
an informal mission of making computing affordable to individuals. 

Homebrew Days
Meeting in what would later be referred to as the Silicon Valley, just 40 miles south of Berke-
ley, many of Homebrew’s initial members were well aware of the advances in computing 
taking place on the UCB campus. At the time, the benefits of those advances were targeted 
at business and academia. The idea of personal computing was limited, for the most part, 
to technologists and amateur hobbyists like those who gathered to form the Homebrew 
 Computer Club.



CHAPTER 1   THE BACKSTORY6

At the time of Homebrew’s formation, Stephen “Woz” Wozniak had left the Electrical 
Engineering program at UCB without a degree. A 25-year-old introvert with the dual talents of 
hardware design and software programming, Wozniak found in the Homebrew club a group of 
peers with an enthusiasm for computing he might be able to share.

In 1970, Wozniak became friendly with a summer intern at Wozniak’s employer, Silicon 
Valley stalwart Hewlett-Packard. The friend made an increasingly compelling case that a com-
puter could be built and sold on a single circuit board; that such a computer could, in fact, 
be the basis of a company created specifically to sell computers to individuals, rather than 
to businesses. Though initially skeptical, Wozniak was eventually convinced that his friend, 
Stephen Jobs, might be onto something. After ending a brief college career of his own at Reed 
College in Portland, Oregon, Jobs returned to Palo Alto in 1974, taking a job as a technician 
at Atari. Jobs and Wozniak became regular attendees and contributors at the Homebrew 
 meetings.

During their time in the Homebrew Computer Club, Wozniak and Jobs achieved several 
milestones that reinforced their shared view that computers could be built in a size that would 
fit on desktops. In the first, Jobs enlisted Wozniak’s assistance in collecting a bonus initiated 
by his employer. Atari instituted a program to reduce the number of chips used in its game 
consoles, offering employees $100 per eliminated chip. Jobs turned to Wozniak for the hard-
ware design, offering a 50/50 split of the bonus. Wozniak quickly reduced the number of chips 
in the system by 50. Though Atari later paid out only $600 for the reduction of 50 chips, the 
effort further honed Wozniak’s uncanny ability to design for maximum power with minimal 
hardware resources.

The second was a purely personal milestone for Wozniak. In early 1975, Wozniak read an 
article in Popular Mechanics describing how to build a video computer terminal. At the time, 
video terminals were rare; most computers were paper-based teletypes. Following the con-
cepts of that article, Wozniak designed and built a 24-line, 40-character-width video terminal 
from off-the-shelf parts. The terminal was capable of producing 60 characters per second, 
more than six times the number of printed characters from the existing teletype terminals. 
Later, to foster his growing reputation among his Homebrew peers, Wozniak built a micropro-
cessor into the terminal, creating, in essence, a complete computer.

In 1976, MOS Technology introduced a new central processing unit (CPU). The $20 6502 
chip was a close relative to Motorola’s $170 6800, which was the chip Wozniak preferred in his 
computer designs. Wozniak modified an earlier 6800-based computer design to incorporate 
the 6502 chip, and took the machine to demonstrate to his peers in the Homebrew club.

Based on this design, Jobs convinced a local computer shop to purchase 50 of the 
machines. Jobs also managed to secure the necessary parts on credit, paying on net-30 terms 
when the machines were delivered on time. Eventually, 200 of these machines, dubbed the 
Apple I, would be built. With the considerable profits on that initial sale, Jobs and Wozniak 
formed Apple Computer on April 1, 1976. Wozniak left Hewlett-Packard to focus full-time 
on the Apple II, as Vice President of Research and Development in the new company. Jobs 
focused his attention on marketing, sales, and fund-raising. 

Unlike the histories of UNIX and BSD, which were primarily technical achievements, the 
story of Apple Computer is equal parts technical wizardry and marketing savvy. It’s almost 
impossible to tell the story of one without telling the story of the other.



CHAPTER 1   THE BACKSTORY 7

Apple I to Lisa
During the early years, both the Apple I and Apple II computers utilized a tape-based version 
of Wozniak’s Apple BASIC. A 256-byte, firmware-resident system monitor served as the oper-
ating system, providing users with a command line for running programs. Shortly after the 
introduction of the Apple II in 1977, Wozniak produced yet another striking hardware design 
in the floppy disk drive. This made it possible to move the operating system from read-only 
memory (ROM) to disk, and further spurred the creation and introduction of Apple Disk Oper-
ating System (DOS) to the Apple II in 1978.

In 1980, Apple Computer launched an initial public offering (IPO) of stock. That IPO is 
 legendary in tech business circles, as it created more than 300 millionaires on its first day.

1981 brought a shocking turn of events for the small Apple family. In February, Wozniak 
crashed his airplane in Santa Cruz, California, causing retrograde amnesia. He didn’t remem-
ber the crash and often had trouble with his short-term memory. Though his memory was 
restored by late in the year, Wozniak didn’t return to Apple until 1983. By that time, his 
primary interest in the Apple line of products was in product development. Although he 
continued with the company until 1987, his full-time employment and influence within the 
company were effectively ended by the crash. The enthusiast who had almost single-handedly 
created a computing revolution was hardly more than another employee in a quickly growing 
corporation.

Even without Wozniak, Apple computers would undergo a near constant series of revi-
sions through 1984. The revised machines included the Apple II+, IIe, IIe Enhanced, and III. 
These systems used a variety of operating systems, including Apple Pascal, Apple SOS, and 
Apple ProDOS.

In 1983, Apple introduced the Lisa, and another new operating system. Lisa Office System 
(OS) implemented a set of process-management system calls that bore some resemblance to 
UNIX. Among the calls were , , , and 

. The initial process, , was created by the operating system as the shell process 
when the machine was booted, serving as the parent for all other processes. Additional pro-
cesses could be created only by existing processes.

Additionally, the Lisa OS filesystem bore a striking resemblance to UNIX, albeit with a few 
additional Apple pieces. Like UNIX, the filesystem contained files, folders, disk volumes, and 
printer and serial devices. The system also supported permissions on a per-file basis.

But the most striking feature of the Lisa was a full graphical user interface (GUI), as 
inspired by efforts at Xerox’s PARC laboratory. In 1979, Jobs and a team of Apple engineers 
were granted full access to the PARC facilities in exchange for $1,000 of pre-IPO Apple stock. 
The Xerox PARC system used a method of human-machine interaction referred to as WIMP 
(for window, icon, menu, pointing device). 

The WIMP paradigm provided nontechnical users with an easily understood visual 
metaphor—that of the desktop, the elements of which were most popularly accessed with a 
mouse—another first for personal computing. With menus, WIMP also gave users a means to 
access the full feature set of an application without a requirement to remember each and every 
element. Though the concepts of WIMP had been known in technical circles since the early 
1970s, Lisa OS was the first to implement those concepts in a computing system outside a 
laboratory. Relying primarily on Lisa Pascal, the WIMP concept implemented by Apple would 
prove revolutionary. 



CHAPTER 1   THE BACKSTORY8

And Finally, the Mac
The Apple Lisa was ahead of the curve in personal computing on many levels. Unfortunately 
for Apple, it also required hardware upgrades that pushed the cost of the Lisa to nearly 
$10,000—hardly a price point that would appeal to the masses.

That same year, Jobs began the search for a more seasoned chief executive officer (CEO) 
for Apple. The company had ambitious expansion plans in place for the years ahead and 
needed an executive who could oversee and implement those plans. Jobs landed on John 
 Sculley, then CEO of PepsiCo. While Sculley had never worked in the tech sector, his reputa-
tion and resume with PepsiCo was, in Jobs’s eyes, a perfect fit. 

Sculley had been the youngest Vice President of Marketing in PepsiCo’s history and, sub-
sequently, the company’s youngest president. He had a keen marketing eye and was unafraid 
to spend on advertising. He instituted the company’s first consumer-research studies. He took 
on rival Coca-Cola head-to-head with the Pepsi Challenge, a blind taste test that served as the 
company’s successful national marketing campaign in the mid-1970s. The campaign dramati-
cally increased Pepsi’s market share. And, at 44, Sculley was still a relatively young man—a fact 
of some importance to the executives at the young Apple Computer company.

Among the ambitious plans Sculley was tasked to implement was the introduction of yet 
another computer line, scheduled for early 1984. That computer, the Macintosh, would lever-
age and advance the GUI concepts first made publicly available in the Lisa. The single 400KB 
operating system floppy disk was known as Mac System Software. 

Aside from the low-level operating code, the Macintosh ROM load contained the Toolbox 
and the Finder. The Toolbox was a collection of shared libraries used in the applications and 
made available to developers for use in future Macintosh application development. The Finder 
was a system browser, allowing users to view the contents of the filesystem and to launch 
applications. However, use of the Finder required users to shut down other running applica-
tions, as the Macintosh was a single-tasking computer. The Macintosh also contained a 7.86 
MHz Motorola MC68000 processor; 64KB ROM; 128KB random-access memory (RAM); and an 
8-bit, four-voice sound generator, capable of converting text to speech. An all-in-one unit, the 
Macintosh weighed just over 16 pounds.

To kick off the launch of the Macintosh, Apple hired director Ridley Scott to produce a 
television ad intended to air only once: during the broadcast of Super Bowl XVIII on January 
22, 1984. At a cost of more than a million dollars, the ad portrayed computer users as conform-
ists in dark-gray suits of sackcloth, herded by helmeted police into a large and dark arena 
beneath a huge video monitor. From the screen, Big Brother lauded the age of information 
purity and scorned “contradictory thoughts.” From the back of the arena, a heroine raced 
down the center aisle, flinging a heavy sledgehammer through the video screen, leaving the 
users stunned. The closing caption and voice-over read like this: “On January 24th, Apple 
Computer will introduce the Macintosh. And you’ll see why 1984 won’t be like ‘1984.’”

Two days later, Jobs introduced the Macintosh at the annual Apple shareholders’ meeting. 
He gave a brief prepared speech and a demonstration of the Macintosh’s graphics capabilities, 
and then said, “Now, we’ve done a lot of talking about Macintosh, lately. But, today, for the 
first time ever, I’d like to let Macintosh speak for itself.”

To a thunderous round of applause, the Macintosh began.



CHAPTER 1   THE BACKSTORY 9

Hello, I’m Macintosh. It sure is great to get out of that bag.

Unaccustomed as I am to public speaking, I’d like to share with you a maxim I thought 

of the first time I met an IBM mainframe: never trust a computer you can’t lift.

Obviously, I can talk, but right now I’d like to sit back and listen. So, it is with consider-

able pride that I introduce a man who has been like a father to me . . . Steve Jobs.

The applause in the Cupertino theater continued unabated for more than five minutes.
Although the Macintosh was by all accounts a huge success, Apple had difficulty compet-

ing with an increasing number of IBM-clone personal computers. CEO John Sculley, intent 
on driving the company to profit, instituted tighter engineering procedures and reviews, 
predevelopment marketability studies, and engineering staff reductions. With control of the 
company he had started now all but ceded to Sculley, Jobs found himself in almost constant 
conflict with the CEO. By 1985, both Sculley and the board of directors had had enough. Jobs 
was stripped of his duties as head of Apple’s Macintosh division. Nine years after the com-
pany’s formation, his time and influence had ended.

The Convergence: Mac OS X
Financially buoyed by his time at Apple, Jobs purchased Pixar, a visual effects studio, for 
$10 million in 1986, and then founded a new company, NeXT, Inc. NeXT would produce the 
 NeXTStep operating system, a UNIX-like system, and the hardware on which it would run.

NeXTStep would eventually serve as one basis of the rebirth of Apple and the Macintosh. 
However, the convergence of the Macintosh and UNIX actually began in the early 1990s, with 
a version of AT&T UNIX known as Apple UNIX. Apple UNIX was the operating system used 
on the Apple Macintosh Quadra machines. The Quadra 700 and Quadra 900 were introduced 
in 1991 and were built around the Motorola 68040 CPU. With the known reliability of UNIX 
and powerful 25 MHz CPUs, the Quadras were marketed as high-end professional machines, 
geared to replace the Macintosh II.

NeXTStep
NeXTStep was a direct descendent of 4.3BSD. Its distinction from BSD rested in its use of the 
Mach microkernel, originally designed as a drop-in UNIX kernel replacement. Developed at 
Carnegie Mellon University in 1985, the Mach microkernel provides operating system and 
application services by calls to user-mode servers. This is in contrast to the monolithic kernel 
design of BSD, wherein applications obtain services (such as operating system services) by 
making system calls directly to the service. These services don’t exist in the kernel space of the 
Mach kernel—they exist in user space. The kernel merely routes the interprocess communica-
tion (IPC) call to the appropriate server, which then handles the request to the application. 
The result is that the Mach kernel is a much lighter structure, with a lot of the “heavy-lifting” 
done in user space. In almost all other respects, NeXTStep was a standard BSD operating 
system.



CHAPTER 1   THE BACKSTORY10

Initially, the Mach microkernel was, in fact, slower than the monolithic BSD kernel. When 
the Mach 3 kernel moved the processes of permissioning and security to the applications, it 
performed its tasks in only one-quarter the time required by a system with a monolithic ker-
nel. Mach was also designed from the ground up with multitasking and multiple-processor 
support built in. NeXTStep was quickly accepted by many in the computing community as the 
next-generation operating system.

NeXTStep was also renowned at the time for its use of the Objective-C language. 
 Objective-C is an extension to the C language that adds object-oriented programming. Unlike 
other C extensions (C++, for example), Objective-C uses a small-footprint runtime. As a result, 
Objective-C programs, while powerful, are generally relatively small. Additionally, these pro-
grams can be compiled with the GNU Compiler Collection (GCC) compiler, included in all 
implementations of BSD.

The NeXT computer hardware was equally advanced. The initial machines, released in 
1989, were composed of the 25 MHz Motorola 68030 processor, up to 64MB RAM, a 10-Base 2 
Ethernet port, a 40MB to 660MB hard drive, and an 1120  832, 17-inch grayscale display. The 
“cube” form factor was also unique, carrying a feel of the forward-thinking design principles 
required by Jobs at Apple. The machines were widely accepted among the computing cogno-
scenti. Among their users was Tim Berners-Lee, who used the NeXT computer to create the 
first web browser and web server in 1991.

While the NeXT computer was accepted as an advanced computing workhorse, its high 
hardware manufacturing costs, like those of Apple’s Lisa, would eventually determine its 
fate. By 1993, it was clear that profitability was nowhere on the horizon. NeXT returned to its 
original software-only business plan, changing the name to NeXT Software, Inc., and laying 
off more than half its employees. A partnership with Sun Microsystems, funded by $10 million 
cash from the Santa Clara, California, company, kept the software business moving forward, 
though slowly. The partners created OpenStep, a version of NeXTStep minus the Mach kernel, 
with a commitment to use the software in future Sun SPARC machines. By 1996, still heavily 
loaded with debt, NeXT Software was ripe for an acquisition.

Back at Apple
Following Jobs’s departure from Apple, the company went through a period in which it 
seemed, at once, overambitious and underachieving. The company took on some daunt-
ing development tasks, beginning with a port of the Mac OS to the new PowerPC platform. 
The development came at a huge financial cost and bore little practical result. To great fan-
fare, Apple announced the Copland project, a complete update to the operating system. The 
rewrite was highly anticipated by Mac users, but was never completed. And the product line 
was fragmented into increasingly smaller chunks, creating a growing impression of Macintosh 
computers as simply niche machines.

Interest in UNIX and Linux operating systems did continue during this period. At the 
annual Apple Worldwide Developers Conference in 1996, Apple announced MkLinux, a micro-
kernel-based Linux system intended to bring Linux to the PowerPC platform on the Mac. 

By 1996, Apple faced a severe shortage of cash. CEO Gil Amelio cut the workforce, 
dropped the Copland project, and went looking for a suitable operating system for the Mac. 
When negotiations with Be Inc., headed by former Apple employee Jean-Louis Gassée and the 
creator of BeOS failed, Amelio went to NeXT, a company with a strong product and reputa-
tion, but little cash of its own. In 1997, Apple acquired NeXT for a staggering $429 million. The 
deal also included 1.5 million shares of Apple stock, all of which were awarded to Steve Jobs. 



CHAPTER 1   THE BACKSTORY 11

Jobs returned to the company as a consultant, and by late 1997, had replaced the newly ousted 
Amelio as interim CEO.

Apple had returned to its roots, bringing back its founder to head the company. In 2001, 
Jobs would remove the “interim” from his CEO title. The company had also found the oper-
ating system that would take it into the next century in NeXTStep. Over the next four years, 
NeXTStep would be ported to the PowerPC platform, while maintaining synchronous Intel 
builds. Critical pieces—such as Cocoa, the Dock, the Services menu, and the Finder’s browser 
view—were all ported directly from NeXTStep and utilized in the new operating system. Jobs 
introduced Mac OS X, with its internal BSD and Mach kernel, at the January 2000 Macworld 
conference in San Francisco, California. Apple had created a twenty-first century operating 
system by returning to technologies born in the 1970s. 

Why BSD in Mac OS X?
Following the acquisition of NeXT and the return of Steve Jobs to the company, NeXTStep 
began a deliberate metamorphosis to Darwin, the system that would become the core of Mac 
OS X. While retaining its BSD underpinnings, object-oriented libraries, strong graphics orien-
tation, and development tools, the Darwin kernel was hybridized. The XNU kernel took shape 
with elements of Mach, FreeBSD, and code created in-house by the Apple team. 

The decision to develop NeXTStep around the BSD base and the “plug-in” Mach kernel 
had already proven to be a wise choice for NeXT, Inc. and NeXT Software. For many reasons, 
the decision to port that system to the PowerPC platform with its BSD base intact made great 
sense for Apple, as well. These reasons included BSD’s history, portability, open source base, 
economics, and extensibility.

History
UNIX and its various derivatives had been well known and highly regarded since the late 
1970s. It was the operating system of choice for business, academia, and, since the early 1980s, 
government research programs. The large, active code base made it possible to customize 
a full operating system for almost any need. The huge code archive also made it possible to 
modernize and implement some tools that were too esoteric for the existing user base, but that 
might serve a consumer operating system well. 

BSD also had a large and dedicated user base. Bugs in the system were fixed quickly. The 
code was under constant review and revision by the community. That community, in fact, 
made sure that each new tool added to BSD underwent thorough testing under the UNIX phi-
losophy that it should “work well with other tools.” That established process and history would 
potentially reduce the development time for the Apple team.

Release timing was important to Apple, as well. A large element of its decline in the 
early 1990s was due to the company’s inability to stick to a regular operating system update 
schedule. The historical view of BSD clearly proved that this critical release cycle could be 
established and followed at Apple.

And history had proven the reliability of the BSD system. BSD-installed machines 
amassed months, sometimes years, of uptime without a reboot. This was often accomplished 
despite long periods of intense processing. Apple’s primary operating system competition 
in the consumer computing space, Microsoft Windows, was already scorned in many circles 
for its tendency to crash at critical moments. While stability was certainly important in 



CHAPTER 1   THE BACKSTORY12

 commerce, academia, and governmental use, the engineers and marketing groups at Apple 
saw it as no less important at the consumer level. Stability was a competitive advantage, even 
with low-intensity users. The BSD base of NeXTStep, and later Mac OS X, was known first and 
foremost for its long track record of power and stability.

Portability
Portability was another important piece of the decision to retain the BSD underpinnings of 
NeXTStep in Mac OS X. BSD had proven its portability almost from the beginning, In fact, the 
FreeBSD group members took no small measure of pride in the fact that their Intel version 
was the only Intel UNIX that could run reliably as a server. The inclusion of FreeBSD had also 
helped to make NeXTStep and OpenStep fully operable on a number of platforms, including 
x86, SPARC, and HPPA. 

The NeXTStep engineers, many of whom came to Apple with the acquisition, had begun 
their foray into the hardware world by porting the system to the Motorola 68030-based archi-
tecture. Versions of NeXTStep also existed for the reduced instruction set computing (RISC) 
and Intel architectures, the latter having been maintained in parallel with the Motorola devel-
opment. In fact, given the concurrent PowerPC and Intel builds maintained by Apple, and the 
hiring of a number of FreeBSD core developers from Wind River Systems, it has been specu-
lated that Apple’s 2005 PowerPC-to-Intel transition was long planned. In any event, it was a 
transition made much easier by the BSD foundation of NeXTStep and Darwin.

Open Source Base
The open source basis of Mac OS X was actually misrepresented in Steve Jobs’s hyperbolic 
announcement of the operating system at the 2000 Macworld conference in San Francisco. 
Two pieces of that announcement in particular made more of those origins than was sup-
ported by reality:

is the same as Linux.” While there are similarities, there are also many differences 
between the two operating systems. 

true. While the Darwin code is, in fact, open source, many elements of Mac OS X are 
not. 

While the FreeBSD basis of Mac OS X moved the Macintosh into the modern age, it is not 
the completely free and open source operating system painted by Jobs’s Macworld announce-
ment. But the timing was right, even for an open source–based operating system with many 
proprietary elements. By the time that introduction was made, hard-core computer users and 
developers had already begun a slow but steady migration to open source. 

The concept of free and open source software (FOSS) was increasingly popular, growing 
from its origins in the Free Software Foundation of Richard Stallman in the 1980s. 

In the early 1990s, Linux had become the most well known of an increasing number of 
FOSS applications. Interestingly, Linux creator Linus Torvalds later noted that it was because 
of the legal action surrounding BSD in those years that he wrote another operating system. He 
might have chosen BSD had it been widely available. 



CHAPTER 1   THE BACKSTORY 13

The philosophy of open source was further advanced in 1997 by Eric Raymond’s publi-
cation of “The Cathedral and the Bazaar.” In that work, Raymond quotes Torvalds as saying, 
“Given enough eyeballs, all bugs are shallow.” This was one of the fundamental philosophical 
frameworks around which computer users rallied: the concept that software built, shared, and 
maintained by a large community of users was, by its nature, better. While not unique to open 
source, the concept found its strongest example in FOSS. 

By 2000, open source software had begun to find its way into both server rooms and 
technical publications around the world. The continued use of open source tools in Mac 
OS X allowed Apple to stake a claim to some of that growing buzz. While some greeted the 
announcement with skepticism, many open source developers were surprised by what 
appeared to be a significant philosophical shift for the once secretive company.

The easy availability of the Darwin code from Apple’s web site also ensured that curious 
developers would tinker with and improve on the product. The decision to continue using 
open source tools in Mac OS X created, to paraphrase Torvalds, “enough eyeballs to keep the 
bugs shallow.” It allowed Apple to call upon a large pool of user-created tools. It helped to 
ensure that the in-house developers would always have the latest improvements in critical 
development tools. And it did so at little financial risk for Apple. Given the financial state of the 
company at the time of the NeXT acquisition, it’s plausible to believe that open source both 
saved and renewed Apple.

Economics
As noted, the financial health of Apple at the time of the NeXT acquisition in 1997 was poor, 
and worsening. The first quarter of 1997 would bring 12-year stock price lows and mark the 
largest financial losses in Apple history, totaling some $700 million. Of predecessor Gil Ame-
lio’s business strategy, Jobs famously quipped, “Apple is like a ship with a hole in the bottom, 
and my job is to point the ship in the right direction.” 

Simply put, the financial health of the company allowed no room for immediate bold 
development initiatives. NeXTStep already existed, and it was in a state in which the only ini-
tial cost was that of porting it to the PowerPC platform.

Additionally, the Apple engineering staff had been nearly wiped out under the direction 
of a changing stream of CEOs. Much of the engineering staff after the NeXT acquisition was 
brought from NeXT itself. The engineers and developers were, in effect, already up to speed 
on the state of the operating system. The transition required few resources for retraining, 
research, and development. By basing Mac OS X on NeXTStep, They could hit the ground 
 running, while realizing a significant cost savings.

Extensibility
Based on BSD, NeXTStep was highly extensible. The basis of NeXTStep was BSD’s native C. 
The power of C had already been proven and could be extended easily as the operating system 
grew to meet new demands. With additional Objective-C frameworks, the extensibility of BSD 
and the NeXT tools brought efficiency in both process and economics.



CHAPTER 1   THE BACKSTORY14

How Is BSD Implemented in Mac OS X?
The full set of UNIX user-space tools available in FreeBSD is available in Mac OS X natively. 
While there are some core differences between UNIX and Linux, there are enough similarities 
between BSD and Linux that many common tasks in Mac OS X will seem familiar to Linux 
users. 

If your preference is to use the command line as often as possible, for example, you can 
do so in Mac OS X. With the bash shell in place, it’s possible to port administrative and other 
scripts from a Linux system to Mac OS X. As the minimal UNIX filesystem structure is intact 
in Mac OS X, moving and implementing these scripts can be nearly seamless, though some 
modification may be required to adjust the path of some system binaries called by the script.

As already noted, the core of Mac OS X is based on FreeBSD and is a true UNIX. Mac OS X 
10.5, in fact, has been certified by the Open Group as UNIX 03–compliant. 

In the Mac OS X implementation, FreeBSD is paired with the XNU kernel—a hybrid 
Mach microkernel containing additional Apple modifications. The kernel fully supports the 
following: 

Mac OS X also implements a suite of core services, which include system services such as 
the following:

, a user-level networking API

, a collection of system APIs

, APIs for using web services with SOAP and XML-RPC

, a framework for multilingual searches and indexing

Additionally, Mac OS X implements application services and application environments. 
The application services include graphics and windowing services, printing services, launch 
services, event services, and so on. The application environments include execution environ-
ments, such as those for BSD, Cocoa (the object-oriented application development API), and 
Java.

Why Switch from Linux to Mac?
Finally, we get to a question central to the rest of this book: why bother to switch from a Linux-
based system to Mac OS X? There are three main reasons: hardware control, common code, 
and release stability.



CHAPTER 1   THE BACKSTORY 15

Hardware Control
Apple, unlike its primary competitors, is in the business of both software and hardware. While 
the hardware for Apple’s machines is chosen in part for profitability, it’s also chosen for reli-
ability and stability. 

Hardware components are selected only after rigorous testing using the latest iteration of 
Mac OS X. While that sounds almost intuitive, the result of controlling the hardware running 
Mac OS X is that Apple’s developers have a known hardware platform for which to develop. 
By itself, that practice eliminates a large number of the issues seen in other systems, includ-
ing incompatibility between off-the-shelf components and operating system code. It allows 
Apple’s developers to create device drivers that can be thoroughly tested prior to the release of 
a new Mac OS X version or a new hardware platform. It allows them to compile in hardware-
specific optimization features within the operating system itself. 

It’s hard to overstate the importance and value of this controlled hardware environment. 
We’ve all experienced the frustration of incompatible drivers and other code in competing 
operating systems. Aside from the frustration, the practice of allowing a multitude of hardware 
components to utilize the operating system code means that we can never be sure that the 
code created by hardware vendors will interact optimally with the code created for the operat-
ing system. In the open source community, much of this code is, in fact, reverse-engineered. 
By first controlling the hardware, then developing to that hardware, Apple ensures that its 
operating system and hardware will work together seamlessly.

Common Code
The APIs, development frameworks, and integrated development environments (IDEs) for 
Mac OS X are included on the installation disc. Mac owners literally have access to most of the 
same tools used by the Apple developers to create Mac OS X. That means that applications cre-
ated specifically for the Mac will have a consistent feel and operation. 

A broad range of purely open source development tools is also available to install on the 
Mac with minimal effort. The Mac development tools can be used in tandem with these open 
source development tools. From within the same environment, developers can create cross-
platform open source applications or applications specifically for the Mac.

Release Stability
Because Apple’s operating system and application developers are working with known hard-
ware, using common code for development, Apple’s operating system releases are extremely 
stable. That commonality allows Apple’s quality assurance testers to create test cases that will 
encompass the full range of possible issues in the code. 

Summary
UNIX, BSD, and Mac OS X have clearly followed a long path to the convergence represented 
by the current Macintosh operating system. They’re marked by many similarities and many 
significant differences. UNIX and BSD users will find the underlying Mac OS X environment 
very familiar, while Linux users will find enough commonality with their own operating system 



CHAPTER 1   THE BACKSTORY16

to provide a lot of comfort. Add to that the hardware control, common code, release stability, 
and beautiful look and feel of Mac OS X, and a move from Linux to Mac becomes much more 
attractive.

In the next chapter, we’ll take a deeper look at the differences and similarities between 
Mac OS X and Linux to lay a solid foundation for your personal migration.



C H A P T E R  2

The Comparison: Linux vs. 
Mac OS X

BSD, Linux, and Mac OS X are clearly branches straight from a single tap root: the UNIX 
operating system. As you learned in Chapter 1, UNIX rose to meet many new computing chal-
lenges in the 1970s, and matured at a dizzying pace in the 1980s. BSD was the result of the 
work of computer science students at UCB. Linux was the creation of a Finnish computer sci-
ence student in Sweden. Mac OS X took critical elements of BSD—FreeBSD in particular—and 
rolled them into yet another powerful and groundbreaking operating system. In their own 
way, all three moved computing into new and previously unknown realms. 

Now that you have an understanding of both the philosophical and historical similarities 
between BSD and Mac OS X, let’s look closely at how those similarities, as well as the differ-
ences, take shape in today’s Mac operating system.

Mac OS X and Linux Filesystems
In many ways, the filesystems of Mac OS X and most commonly used Linux distributions are 
very similar. However, there are some specific implementation differences between the file-
systems. To best explore those differences, we’ll cover the following topics:

The Apple Filesystem
In 1985, computers were moving toward a new model for data storage. Hard drive manufac-
turing costs, while still very high by today’s standards, were beginning to fall. Designers and 
manufacturers were packing more data onto smaller drives and gaining quicker access to that 
data from the other computer systems. Hard drive technology promised considerably more 
data storage capacity. These new technologies also provided a much more stable and reliable 
means for storage than the sometimes fragile floppy disks and mini disks of the day. However, 
the increasing size of hard drives brought its own set of problems.

17



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X18

By 1984, Apple had rolled the Macintosh File System (MFS) into its newest computers. 
MFS was designed to overcome some of the inefficiencies inherent in the floppy and mini 
disk storage of the day. To speed access times, all the filesystem metadata—the data about the 
data—was stored in a single file. This helped to speed access times on these external disks, 
but did little to protect that data from corruption. With virtually no redundancy, data stored 
on these disks was at a high risk of loss. If the single metadata file were corrupted, it would be 
nearly impossible to retrieve any data from the disk. 

With those primary issues in mind, the Hierarchical File System (HFS) was introduced by 
Apple in 1985 to replace MFS. HFS serves as the basis of the Mac OS X filesystem today, but 
with many changes and improvements. 

HFS
Compared with MFS, HFS takes a markedly different approach to the metadata that describes 
the files on the system. Apple created a filesystem based on B*-tree structure. The B*-tree 
structure is, as the name implies, a tree-like structure based on data trunks, branches, and 
leaves. This structure stores the system file metadata in a catalog file, which can be searched 
more quickly. The catalog file also provides a higher level of redundancy for these files, moving 
much of the critical data into nearly independent files and away from the flat-file structure of 
MFS. B*-tree data structures have the advantage of faster access on a hard drive than is avail-
able with most filesystems.

Note While the term B-tree is commonly used to describe the trunk-and-leaf structure of the HFS file-
system, the B*-tree structure differs from a true B-tree. In the B*-trees implemented in HFS, branch and leaf 
nodes must be two-thirds full prior to the creation of new nodes, rather than the half required by B-trees. 
This also requires that adjacent nodes share a common key identifier. When the two nodes are full, they’re 
split into three. B*-trees are also distinct from B+ trees, which chain all leaf nodes together in a linked list. 
Despite these important differences, the term B-tree has been used generically to describe all these tree-like 
data structures.

The HFS catalog file contains a record of all files and directories stored on the system, 
tracked by unique identifiers. These identifiers are similar to the node IDs used by UNIX file-
systems. In practice, each file and directory is recorded twice in the catalog file. The first is the 
thread record. In the case of files, the thread record contains the file name and the ID of its 
parent file. Directories follow the same structure, with the catalog file recording the directory 
name and the ID of its parent directory. These thread records are identified by a combination 
of the parent ID and the file or directory name. Metadata for the files and directories is stored 
in the file record or the directory record.

Aside from the structure of the metadata, HFS also uses a system of forks to address data. 
Each file is split into two distinct forks: 



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 19

Data fork: For the most part, the data fork contains the user-created data in the file. 

Resource fork: The resource fork contains a resource header, the actual file resources, 
and a map of those resources. The resources may include icons, windows, controls, 
dialog boxes, machine code, and so on—anything that will be required to present the 
data. The resource forks are identified by a standardized set of keys known as resource 
identifiers.

HFS was first utilized in the Macintosh Plus and was hard-

logical blocks, which were then bundled into allocation 
blocks
0 and 1 are the boot blocks, containing all the data necessary to 

(MDB), containing volume data such as timestamps and a map-

volume bitmap that tracks the use of all allocation blocks. In that 
bitmap, bits represent allocation blocks in a 1:1 ratio—one bit for 
each allocation block. The bit determines the current status of the 
block: in use or not in use.

The 1:1 bit-to-allocation block ratio was a very limiting factor 
in the original HFS filesystem. The system allocated a single file 
to each allocation block, limiting the number of allocation blocks 

-
tion blocks were paired in this 1:1 ratio, the resulting number of 

Furthermore, as disks increased in size, so did the allocation 
block size, while the number of allocation blocks remained the 
same. The result was a terrible inefficiency in the use of larger 
hard drives. Since each file was assigned one allocation block, 
systems with a large number of small files used a disproportion-

-
tion block. In other words, smaller files were allocated the same 
amount of space on a drive as larger files.

Users of early HFS-based Macintosh systems resorted to many schemes to use disk space 
more efficiently. Perhaps the most popular was one that later carried into other consumer 
operating systems: the practice of creating multiple partitions on a single hard drive. With 
smaller partitions, HFS created smaller allocation blocks, thus reducing the sometimes ludi-
crously large storage allocation for smaller files. The practice also allowed for a larger number 
of files on the drive. Each partition was viewed as a volume by the system, containing the same 

The limited number of allocation blocks and files was but one issue with early versions 
of HFS. The filesystem had performance issues, namely that only a single application at a 
time could write to files in this structure. That led to long queue times and applications that 
seemed to overpower the system. As hard drives continued to grow and application demands 
increased, a revision to the original HFS filesystem was in order.

Figure 2-1. Logical block 
structure of the HFS 
 filesystem



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X20

HFS+
 first incorporated into the Mac with the introduction of Mac OS 8.1, in January 1998. 

It contained significant changes from the original scheme of HFS, including the following:

The new Unicode support represented a more significant change to Mac OS than first 
blush might indicate. Until the point of the change, Mac OS assumed that the character set 

 encoding. File names were compared and sorted with that assumption, 
 causing unpredictable behavior with names using another character encoding. 

addresses were 16-bit in the original HFS.
, also extended from 16 bits, gave the system access to 

and, therefore, much more numerous in a drive of equal size with a 16-bit mapping table. 

Several new structural features were added to the HFS filesystem. Where the HFS file-
system was composed of five principal elements (boot block, MDB, volume bitmap, extent 

-
tation.

HFS.

logical block. This provides redundant storage of filesystem critical data. This was also 
part of HFS.

 during the manufacturing process.

HFS+ Evolution
 continue to evolve from the Mac OS 8.1 version of 1998 to the Mac OS X ver-

had officially moved the core operating system to Darwin, the first release version of Mac OS 
based on FreeBSD. Darwin made use of the XNU kernel—an Apple modification of the Mach 

MkLinux, NetBSD, and OpenBSD.



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 21

Significantly, Apple added optional support for journaling

default.

changes to the filesystem were recorded. The scheme in Mac OS X follows a simple rule: either 

changes to the system. Each set of changes is referred to as a transaction
file is written to disk, the transactions are made following the all-or-nothing rule. When all the 

have been committed. 
A special block exists in the root directory of the volume, exclusively for the use of the 

, 

transactions that have yet to be written to media as a circular linked list, which means that 

replayed to complete the transac-
tions, in accordance with the all-or-nothing rule.

for case-sensitivity for file and folder names.
adaptive hot file clustering. Volume metadata items (allocation 

-
ning of the disk. Since these may change with every file action, they’re high-access items. 
Placing them in a static location on the drive shortens the access time to make necessary 
changes. The location of this set of files is known as the metadata zone. 

With adaptive hot file clustering, other small high-access files are defragmented (reduced 
to a single extent) and placed in the metadata zone, as well. Hot files are determined by mea-
suring the number of bytes read from a file during the recording period, divided by the file’s 
size in bytes. Again, this placement in the metadata zone shortens the time necessary to access 
these files and to write changes to the system metadata. 

had previously been reserved for future use. These attributes permitted features such as POSIX 
access control lists and extended metadata. Access control lists allow much finer granularity of 
UNIX file permissions on the system. Extended metadata is intended to further sharpen the 
accuracy of the Mac OS X Finder, a system-wide search tool.

Note Access control lists are an attempt to move from file-based permissions to role-based permissions. 
Users assume a role in the system, with permissions addressing those roles. Each entry in an access control 
list specifies a subject and an operation, such as “tony, write” on the file . This allows for 
much tighter control of file and filesystem operations.



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X22

Mac OS X 10.4 (Tiger) added inline attribute data records to the seven existing structural 
elements of the operating system. Inline attributes are yet another B*-tree structure, which 
contain the following:

Inline attribute data records: Small data attributes that can fit within the file itself. This 

Fork data attribute records
collection of attributes larger than those contained in the inline data attribute records.

Extension attribute records: Extension to a fork data attribute when its eight extents are 
already in use.

which were feature additions and bug fixes for user applications. Leopard also introduced a 
number of new developer technologies, several of which will be covered in Chapter 8. Five 
additional security improvements were rolled in:

Application layer firewall: Mac OS X already ships with the BSD ipfw firewall (a topic 
covered in some depth in Chapter 7). The application layer firewall is exposed to the 
user and operates at the socket level, bound to processes rather than packets.

Secure guest account: This feature allows for the temporary creation of a secure guest 
account. This account is destroyed when the guest user logs out of the system.

Library randomization: This feature is intended to address vulnerabilities that corrupt 
-

tion of libraries can prevent these types of system attacks.

Role-based access control (RBAC)
granted based on operations rather than or in addition to the traditional user- or file-
based permissions.

Read-only support for the ZFS filesystem: ZFS was designed by Sun Microsystems for 
the Solaris operating system. ZFS supports large storage capacities, continuous integ-
rity checking, automatic repair, and snapshots.

Filesystem Layouts
Although there are many similarities between the filesystems of Mac OS X and most UNIX-
based systems, the filesystem layout can be a bit baffling to new Mac OS X users. In short, Mac 
OS X hides much of the filesystem from users, displaying only those filesystem elements that 
can be written to and read from by the currently logged-in user. Here, we’ll take a look at the 
Linux, FreeBSD, and Mac OS X filesystem layouts.

Linux Filesystems
 the standard Linux filesystem hierarchy, as described by the Linux 

 Standard Base (LSB).



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 23

Table 2-1. Linux Filesystem Layout As Defined by the Linux Standard Base

Directory Contents

 Top-level, root directory of the filesystem hierarchy

 Command binaries for all users

 Boot loader files (can be installed on a different partition)

 System devices

 Host system configuration files

 Configuration files for the  directory

 Configuration files for the X11 windowing system

 SGML configuration files

 XML configuration files

 User home directories

 Libraries for  and  binaries

 Mount points for removable media

 Mount point for temporarily mounted filesystems

 Optional software packages

 Virtual filesystem tracking processes and kernel activities

 Home directory for the root user

 System binaries

 Site-specific data served by the system

 Temporary files

 Top-level directory for the user data

 User command binaries

 Include files

 Libraries for binaries in  and 

 User binaries

 Data independent from the system architecture

 Source code

 X Window System

 Host-specific local data

 Variable files: logs, spools, etc.

 System state information

 Lock files

 System log files

Continued



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X24

Table 2-1. Continued

Directory Contents

 User mailboxes

 System information since last boot

 Spoolable tasks awaiting processing

 Deprecated user mailbox location

 Temporary files to be preserved between system boots

FreeBSD Filesystem Layout
The layout of a FreeBSD filesystem is similar to Linux, although you’ll find some small differ-

Table 2-2. FreeBSD Filesystem Layout

Directory Contents

 User utilities fundamental to both single-user and multiuser environments

 Programs and configuration files used during operating system bootstrap

 Default bootstrapping configuration files; see 

 Device nodes; see 

 System configuration files and scripts

 Default system configuration files; see 

 Configuration files for mail transport agents such as 

 Named configuration files; see 

  Scripts that are run daily, weekly, and monthly, via ;  
see 

 PPP configuration files; see 

  Empty directory commonly used by system administrators as a temporary 
mount point

 Process filesystem; see , 

 Statically linked programs for emergency recovery; see 

 Home directory for the root account

  System programs and administration utilities fundamental to both single-
user and multiuser environments

 Temporary filesa

 Common utilities, programming tools, and applications

 Standard C include files



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 25

Directory Contents

 Archive libraries

 Miscellaneous utility data files

 System daemons and system utilities (executed by other programs)

  Local executables, libraries, etc., and also used as the default destination 
for the FreeBSD ports frameworkb

 Architecture-specific target tree produced by building the  tree

 The FreeBSD ports collection (optional)

 .  System daemons and system utilities (executed by users)

 Architecture-independent files

 Multipurpose log, temporary, transient, and spool files c 

 Miscellaneous system log files

 User mailbox files

 Miscellaneous printer and mail system spooling directories

 Temporary files d 

 Network Information Service (NIS) maps

a The contents of  are usually not preserved across a system reboot. A memory-based filesystem is often 
mounted at . This can be automated using the -related variables of  (or with an 
entry ; see ).

b Within , the general layout sketched out by  for  should be used. Exceptions are 
the  directory, which is directly under  rather than under , and the ports 
documentation is in .

c A memory-based filesystem is sometimes mounted at . This can be automated using the - 
related variables of  (or with an entry in ; see ).

d The  files are usually preserved across a system reboot, unless  is a memory-based  filesystem.

Mac OS X Filesystem Layout
Mac OS X approaches the filesystem layout from the perspective of multiple privileged and 
unprivileged users. The system is divided into four filesystem domains: 

User: This is the domain in which a logged-in user has complete control of resources. 
The User domain is determined by the user’s home directory, and can reside either on 
the boot volume (

typical contents of a user home directory in Mac OS X.



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X26

Figure 2-2. The typical contents of a user home directory in Mac OS X

Local: The Local domain contains resources that are available to all local users on the 
system. These are noncritical applications, utilities, startup items, and global application 
settings. Apple-installed applications and utilities are located in the Local domain  

 and  directories. These resources are available 
to the current user on the local system, but are unavailable to users on networked com-
puters.

Network: The Network domain contains resources shared by all system users on a local 
area network (LAN). These items are typically located on a network share and placed 

of the Network domain on a Mac OS X system.

System: The System domain contains Apple-installed system-critical software. This 
domain contains a single directory: , which holds the core services, applications, 
and frameworks that make up Mac OS X. This directory is inaccessible to individual users. 

Table 2-3. Contents of the User Domain on a Mac OS X System

Directory Description

 Denotes the top level of the user’s home directory

 Font storage in the user’s home directory

 Top level of user tony’s home directory

 Applications available only to the current user

 Items displayed by the Finder on the current user’s desktop



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 27

Directory Description

 Current user’s personal documents

  Application settings, preferences, and system resources applicable to the 
 current user

 Digital movies in all formats

 Digital music in all formats

 Image files in all formats

 Items shared by the current user with other system users

 Web pages for the current user’s personal web sitea 

a These web pages are accessible to other users only when Web Sharing has been enabled by the owner/user.

Table 2-4. Contents of the Network Domain on Mac OS X Systems

Directory Description

 Applications accessible to all users on a LAN system

  All resources, including settings, preferences, and system resources 
available to users on a networked system

 Mount points for any NFS shares on the system

 Home directories for all LAN usersa 

a These home directories may also be stored on the users’ local servers or on other LAN-accessible servers.

The commonality of directory names within the domains is by design. These common 
directory names store common file types. The system searches the domains sequentially—
User, Local, Network, and System—until it finds the necessary resource.

Exposing the Filesystem
To get a better look at the components of the filesystem, you can use the commands listed in 

Table 2-5. Commands for Viewing the Filesystem Components

Command Purpose

 List directory contents

 Change directory

 Display disk free space

 Display list of remembered directories

 Partition table manipulator

Continued



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X28

Table 2-5. Continued

Command Purpose

 Display disk usage and limits

The ext2/ext3 Filesystem in Linux

using Fedora, Ubuntu, SuSE, Mandriva, Debian, or any of the other popular Linux distribu-

and time-tested filesystem, with few open issues. 
, was created 

consumer and commercial Linux applications.

have been buffered or left otherwise incomplete during an event such as a kernel panic or 

tools like , including 

errors, they can take quite a long time to run—time that may be best used on other tasks in a 

system back to a known state in a comparatively short time and efficient fashion.
blocks organized in block groups. Metadata for these blocks 

is stored in a superblock, a block group bitmap, and an inode bitmap. These items occupy 
group descrip-

tor table, populated with group descriptors that store the value of the block bitmap, the inode 
bitmap, and the start of the inode table for every block group. The superblock is critical to the 

in every block group of every block on the system. This structure is the reason most often 
cited when noting that Linux systems don’t require routine defragmentation, as is required by 
Windows systems. In effect, each block and superblock is distinct from all others, reducing the 
possibility of external fragmentation when writing new data to a disk.



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 29

Note In both ext2 and ext3 Linux systems, it’s possible to repair a corrupted filesystem using a duplicate 
superblock. To do so, it’s necessary to find the next superblock with the  command, then run  
using the first alternate superblock. This is important because  may not run at all when asked to check 
a corrupted superblock. 

containing more than 10,000 subdirectories may prompt a user warning that operations may 
take an abnormally long time. 

Comparison of HFS+ and ext2/ext3
 a quick overview and comparison of some critical features of 

Table 2-6. HFS+ and ext2/ext3 File Constraints

Feature HFS+ ext2/ext3

Table 2-7. HFS+ and ext2/ext3 Block Features

Feature HFS+ ext2/ext3

Block suballocation Not supported Not supported

Extents Supported Not supported

Variable block size Not supported Not supported

Table 2-8. Primary Features of HFS+ and ext2/ext3

Feature HFS+ ext2/ext3

Hard links Not supported Supported

Sym links Supported Supported

Case sensitivity Supported Supported

Case preservation Supported Supported



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X30

Table 2-9. Metadata Capabilities of HFS+ and ext2/ext3

Feature HFS+ ext2/ext3

File owner Supported Supported

POSIX permissions Supported Supported

Creation timestamp Supported Not supported

Last access timestamp Supported Supported

Last modified timestamp Not supported Supported

Copy create timestamp Not supported Not supported

 full redundancy results in a substantial 
performance hit).

Permissions in Mac OS X
Mac OS X, as you’ve seen, is at its core a BSD system. Accordingly, Mac OS X implements the 
BSD permissions structure. 

File Permissions
The permissions
that the output of  in Mac OS X is the same as the output in Linux. For example, using the 

 command, the  directory on my Mac OS X system returns the following:

As on a purely BSD system, the listing denotes that  is a directory, and that it allows 
read and execute access to the owner, group, and world. Similarly, the  command 
reveals the following:

The  option returns a long directory listing containing all the hidden files. In this case, 
that includes the dot files necessary for moving within directories.



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 31

Figure 2-3. Permissions in the Mac OS X terminal window

Permissions can be changed by the owner of any file using the same methods available 
in BSD. These include the notation method ( ) or the octal method (

). Ownership and group membership can be changed using the BSD methods, as well, 
including with the Directory Service command-line tool .

Root and Administrative Access
UNIX-based systems divide user privileges into user and root access. The permissions based 
on these groups can be subdivided in many ways by the further use of grouping. Both indi-
vidual users and groups can be granted permissions to read, write, and execute files. These 
permissions are created by the root user—the all-seeing, all-powerful user on a UNIX system.

Mac OS X disables the root account by default. Instead, administrative access is granted 
to the user installing the system. This is accomplished by adding the user to the admin group. 
The admin group has limited administrative access to the system. When administrative access 
is required to complete a task, the user is prompted for the local user password. If the request 
is made during the use of a GUI-based application, Mac OS X requests the user password in a 
pop-up window.

Mac OS X also makes use of sudo access when working in the terminal. As the root user is 
unavailable by default, this sudo access follows the permissions structure of the wheel group.

To enable the root user in Mac OS X versions prior to 10.5 (Leopard), the  applica-
tion was required. This application has since been removed from Mac OS X. To enable the 
root user in Leopard and later, double-click the Applications folder in the Dock, double-click 
the Utilities folder in the Applications window, and double-click the Directory Utility applica-
tion . You’ll be 



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X32

prompted to enter a password for the root user. This will allow any user with the root password 
to gain full access to the system.

Note Many modern Linux systems, such as Ubuntu and Fedora, disable root access by default. This is 
intended as a measure of strong security on these systems. The use of the wheel group allows the creation 
of administrative privileges that lie somewhere between user and root access. On both Fedora and Ubuntu, 
root access can be enabled, much like in Mac OS X. In both systems, a persistent root login is created by use 
of the  command. As with the warnings provided by Apple, Ubuntu and Fedora highly discourage full 
root access. All three provide a means to disable the root account when the activity requiring persistent root 
access is completed. 

Terminal Access in Mac OS X
You’ll find a full complement of BSD and Linux tools in the Mac OS X environment. As you 
might expect from a UNIX-based system, Mac OS X includes a Terminal application, allowing 
quick access to the command-line power of BSD. 

Starting Bash
The default
application is available from the  folder.

Since Mac OS X 10.5, the Terminal application offers a tabbed terminal, allowing a user 
to segment task types into different terminal tabs under a unified window, as shown in Fig-

option in the menu.
Mac OS X also includes the full BSD man page system, allowing quick access to applica-

tion or command usage instructions from the terminal window.
As the Mac OS X system is subdivided into domains, opening a terminal window lands the 

user in the home directory. For example, opening the terminal on my system when logged in 
as tony places me in the  directory. The command-line prompt, in that case, dis-
plays the following:

This line indicates that I’m awaiting an action on the machine named Cerebellum, in the 
home directory of user tony.



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 33

Figure 2-4. The terminal window in Mac OS X

Setting Linux System Variables in Mac OS X
As Mac OS X is based on BSD, you’ll find quite a bit of commonality with the shell in Linux. 
Many of the same principles apply. Your shell environment is fully customizable from 

, including aliases, environment variables, and shell variables.

current system variables, use the  command in a terminal window. 

Table 2-10. Common Mac OS X System Variables

Variable Description

 Full path of the user’s home directory

 Login name of current user

 

 Full path of current working directory

 List of directories containing commands

 Full path to user’s shell

As noted, one way to set the system variables is to modify the  file. For 
example, if you need another entry in the  variable, you can add it to the end of the current 
variable, separated by a colon. In Mac OS X 10.5 and later, the system administrator can add to 



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X34

 by adding a file to  describing the path addition, or by adding a new line to  
.

Environment variables can also be set by editing the  file.

This edit adds the  value to the  key, creating a system-wide 
addition to the environment variable.

The  variable can be set temporarily, as well, with a life of only a single terminal ses-
sion. The following command will append the current  variable with :

Again, this reflects the BSD underpinnings of Mac OS X. Modifying system variables in 
Mac OS X is identical to the process in BSD and Linux systems. All system variables can be set 
in Mac OS X using either method.

Interfaces in Mac OS X
Ethernet interfaces follow the BSD naming scheme. Ethernet interfaces in Mac OS X are 
named using the convention , where  is the number of the Ethernet interface. 

The interfaces can be configured through the command line or through an easy-to-access 
GUI tool in the Mac OS X System Preferences pane.

Configuring Ethernet Interfaces from the Command Line
The current interface configuration can be read using the  command from the 
terminal:

You can also configure the interfaces using the same  command:



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 35

This command returns the following  configuration, very similar to that seen in the 
preceding bare  command:

Using the GUI to Configure Ethernet Interfaces
The Ethernet interfaces can also be configured via the GUI, in the Network options of System 

Figure 2-5. Manually configuring the network interfaces with the GUI tool in Mac OS X



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X36

You can set the following options:

Configure: Determines whether the IP address will be set manually or via the Dynamic 
Host Configuration Protocol (DHCP).

IP Address: This field is accessible only if the Configure field is set to Manually. Other-
wise, the IP address is set by DHCP.

Subnet Mask: Defines the subnetwork on which the computer resides.

Router: The address of a router or gateway device.

DNS Server: Comma-delimited list of Domain Name System (DNS) servers used to per-
form DNS lookups.

Search Domains: Allows the user to enter comma-delimited domains that are accessed 
frequently. For example, if you frequently access , that domain can be 
entered in the Search Domains text box. This will allow you to enter only  in 
your browser’s address bar to access . 

802.1x: Selects a default wireless network.

 follows:

As you can see, the  command in Mac OS X is structured exactly as it is in Linux, 
with the exception of the interface name. As with Linux, the DNS lookups are written to 

.

tools to manually configure the IPv4 address, subnet mask, and gateway, and to configure 
IPv6, if needed. Additional tabs in the window establish configuration for DNS, Windows 
Internet Name Service (WINS)
the Ethernet tab.



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 37

Figure 2-6. Advanced network configuration in the GUI tool in Mac OS X

Figure 2-7. Additional Ethernet configuration with the GUI tool in Mac OS X



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X38

Devices and Drives
Consistent with BSD, Mac OS X contains a  directory to abstract devices to files. However, 
the naming conventions for these devices are uniquely Macintosh names. Hard drives, for 
example, may be , or where multiple volumes reside on a single disk, , , 
and so on. There is some common rhyme and reason with BSD systems in the naming conven-
tion.  represents the 
first hard drive.

The devices and drives can be accessed through a GUI tool or through the command line.

Accessing Devices and Drives Through the GUI
Devices and drives can be accessed via the Disk Utility application, available in the 

 folder. Disk Utility provides information about the drives currently attached 
to the system, whether or not they are mounted. It also provides tools to repair filesystems, 
repair permissions, and erase and reformat drives.

, highlighted. Highlighting 
a volume opens the options in Disk Utility in the right pane. These options include First Aid 
(verifying and repairing filesystems and permissions), Erase (to erase and reformat a drive), 

Figure 2-8. Disk Utility in Mac OS X



CHAPTER 2   THE COMPARISON:  L INUX VS.  MAC OS X 39

available in the  folder. This is an informational tool only.

GNOME desktop environment, in Ubuntu.

Figure 2-9. The Network Connections window in Ubuntu

Accessing Devices and Drives from the Command Line
Mac OS X also offers command-line access to the  tool. This allows the user com-
mand-line access to all the options offered in the Disk Utility tool, described in the previous 

repairing disks and permissions, erasing and reformatting disks, and

Summary
This chapter reviewed the similarities and differences between Mac OS X and UNIX, and BSD. 

Linux distributions) are similar, although there are some differences. We then covered Mac 
OS X permissions, terminal access, interface configuration, and device and drive access. In the 
next chapter, we’ll move on to a way to ease the transition from Linux to Mac OS X: via dual-
booting or running virtual Linux.



C H A P T E R  3

Dual-Booting and  
Virtualization

Sometimes it’s easiest to make the transition from Linux to the Mac in a dual-boot configu-
ration. Or maybe you would prefer to start with a virtual machine, running Linux within Mac 
OS X. Either is possible and reasonably easy to configure on the Mac. 

Creating a dual-boot configuration is the job of Boot Camp (although it’s intended for 
dual-booting with Windows), a built-in component of Mac OS X. For virtual Linux installa-
tions, VMware or its free counterpart VirtualBox make short work of creating a virtual machine 
and installing Linux within it. Your preferences will certainly be personal and based on your 
own use of the machine. This chapter details the process for each of these options, leaving the 
choice of which is best up to you.

Dual-Booting Linux and Mac OS X
Dual-booting Linux on the Mac has some distinct advantages, including the following:

the hardware and the software

If you’re not bothered by rebooting the machine to get to your Linux installation, the 
speed and storage made possible by dual-booting make it an attractive option.

Note Interestingly, Apple Mac OS X 10.5 (Leopard) was released in late 2007 with dual-booting in mind. 
Boot Camp, a Mac OS X partitioning tool, was included in the release. Boot Camp had been in beta use since 
2006, and included on nearly all Intel-based Macs since their introduction, allowing new Mac users to also 
install Windows on their new machines. While the Mac is complete with software suitable for substitution 
for nearly any Windows application, it’s still difficult to pull some users away from the tools they understand 
best. Looking at the recent market-share numbers, Boot Camp may have helped achieve the goal of moving 
Windows users to the Mac.

41



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 42

Critical to the process of installing a new partition on the Mac is the concept of nonde-
structive partitioning. In a sense, that’s the most important piece of Boot Camp: the ability 
to resize existing partitions without destroying the existing data. In Windows, this has long 
been possible with Partition Magic. In Linux, GParted has recently risen to prominence for its 
nondestructive partitioning features. These applications are, for the most part, easy to use and 
very robust. That’s what you’ll find with Boot Camp, as well.

In order to load Linux on the Mac, however, you’ll probably want to download and install 
a copy of rEFIt on the Mac, so we’ll look at how to do that first.

Loading Linux with rEFIt 
Macs make use of the Extensible Firmware Interface (EFI). This is a replacement for the older 
and less efficient Basic Input/Output System (BIOS) of Intel-based computers. EFI, developed 
by Intel in the mid-1990s, has some distinct advantages over the older BIOS system:

for use in booting the system. The processor-independent environment is referred to 
as the EFI Byte Code (EBC). Because the EFI contains an interpreter for EBC images 
that reside in the environment, the EFI boot loader is almost completely hardware-
independent. EFI can also make use of its own graphics capabilities prior to loading 
the architecture-specific graphics drivers.

 is an application that’s part and parcel of EFI. This means that 
there’s no longer a need for a dedicated boot-loading mechanism.

 and the GUID 
partition table (GPT) used by the Mac. In fact, this support of both standards is the pri-
mary reason you’ll need to install rEFIt on the Mac in order to dual-boot Linux. rEFIt 

 in Linux. Like Grub, 
the EFI shell can be used to further tailor and customize the EFI boot process.

boot scheme of Linux. 
Note that rEFIt isn’t necessary to boot Linux from the Mac. The Mac volume chooser 

(activated by holding the Option key at bootup) will recognize all “blessed” bootable drives. 
However, if the installation was created with Boot Camp, the Linux option may be listed as 
Windows. rEFIt refines the existing tool and makes the multiple-boot experience more accu-
rate and much better.

Note The Myths and Facts page of the rEFIt site ( ) notes that 
Boot Camp isn’t actually necessary in order to install Windows or Linux. The rEFIt developers make a com-
pelling case, noting changes to OS X in the release of 10.4.6. However, having made the strong case against 
Boot Camp, they conclude that though Boot Camp isn’t necessary, it is helpful. The rEFIt developers make 
much the same case about Linux BIOS compatibility mode: it’s not necessary, as elilo will boot Intel Macs. 
Again, though, they conclude that BIOS compatibility requires less effort.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 43

Downloading and Installing rEFIt
rEFIt is available as a free download at . Two versions of the 
application exist: an automatic installation package and a manual installation version. 

To install the automatic version, follow these steps:

 1. Download and mount the rEFIt image by double-clicking the icon.

 2. Double-click the  file in the mounted rEFIt image.

 3. Follow the instructions to select the Mac OS X volume in which rEFIt will be installed.

 4. 
bootup.

Here’s the procedure for manually installing rEFIt:

 1. Download the Mac disk image version of the application.

 2. Double-click the icon of the downloaded application.

 3. Copy the  directory from the downloaded image to the root level of the Mac.

 4. Open a terminal window and enter the following commands:

 5. 

The rEFIt menu allows you to choose which system you’ll boot into, much like Grub (or 
the even older LILO). It also provides the rEFIt shell and the ability to shut down or restart the 
system from the rEFIt menu.

Should you choose to uninstall rEFIt, that’s also easily done. While booted into the Mac 
system, remove the  directory from . Also be sure to remove 
the  folder from within the  directory.

Configuring and Customizing rEFIt
rEFIt is customizable in many ways. To make machine-specific changes to rEFIt’s operation 
and behavior, you’ll need to edit the  file. This is located in the  directory in the 
boot volume at .

As with many similar configuration files, options for rEFIt’s operation can be turned on 
or off by commenting or uncommenting application directives in the configuration file. The 
following is a representative example from the actual  file.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 44

rEFIt will find any bootable operating system on any drive attached to the system. As 
you would expect, the first drive listed in the menu is the default. For example, I use a 320GB 
FireWire drive attached to the Mac mini for regular backups. One partition contains Time 
Machine backups (covered in more detail in Chapter 7), and another partition on the same 
drive is reserved for cloned and fully bootable backups of the hard drive. The latter partition is 
labeled , OSX (hard 
drive), and Linux as the boot options. No further configuration was necessary to make this 
possible. 

However, if I wanted to have the Linux installation on the Mac as the default boot instal-
lation, I would just need to make a simple change to the  file: remove the comment 
hash from the  directive in the file. As is noted in the file, this command lists the 

method). 
The default option will boot without further interaction at the expiration of the  

number listed in the  file. So, if your preference is to boot immediately into Linux, 
set the timeout to a very small number (setting it to 0 will disable the automatic boot alto-
gether, not prevent a user from choosing another option), and uncomment the  
directive.

Updating rEFIt
Updates to rEFIt are easily supported and installed. If you choose the automatic installer 
option when first installing rEFIt, the installer for subsequent versions will replace the updated 
files seamlessly. If you chose the manual installation option, simply replace the older files with 
the updated files from the newer version of rEFIt.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 45

Creating a Bootable rEFIt CD
You can also create a bootable rEFIt CD using the downloaded  image. To do so, follow 
these steps:

 1.  image in the Finder and select Open With  Disk Utility 
from the context menu.

 2. Select  in the list on the left side of the Disk Utility window.

 3. Click the Burn button in the Disk Utility toolbar.

 4. Insert a blank CD and select Burn.

This disc will provide emergency recovery with rEFIt, or it can be installed to the hard 
drive.

With rEFIt installed, you can now get on to the business of installing Linux on the Mac. 

Installing Linux Using Boot Camp
As noted, Boot Camp is part of the default Mac OS X installation. Using Boot Camp to install 
Linux is clearly a bit different than its intended use. There are some additional steps necessary 
to install Linux using Boot Camp, which we’ll walk through now.

Here are the main tasks you’ll need to perform to install Linux using Boot Camp:

 used by rEFIt to allow either operating system 
to boot.

Partitioning the Boot Drive
First, you’ll need to create some drive space for the installation. There are, of course, at least a 
couple of ways to accomplish this partitioning task. Here, I’ll describe the use of Boot Camp, 
the nondestructive partitioner included in the Mac OS X installation. I’ll explain how to use the 

 utility in the “Partitioning from the Command Line” section later in this chapter.
To launch Boot Camp, click the Applications folder in the Dock, click Utilities, and then 

click Boot Camp Assistant in the Utilities window. You’ll see the window shown in Figure 3-1.
Boot Camp makes a recommendation as to the size of the new partition. You can adjust 

the partition sizes by sliding the partition divider to the right or left.
Click Partition, and Boot Camp will create the partition, nondestructively resizing the 

original partition on the drive. When partitioning is complete, Boot Camp will prompt you to 
insert a blank CD. This will be used for Windows drivers. Because you’re installing Linux, you 
can skip this step.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 46

Figure 3-1. Creating a partition with the Boot Camp Assistant

Installing Linux
Insert the Linux installation disc in the CD drive, and reboot when the Boot Camp installation 
is complete. As the system reboots, hold down the C key on the keyboard. This will boot from 

—your Linux installation disc. 
Start the installation as normal. Figure 3-2 shows the main installation screen in Ubuntu; 

yours will differ based on the Linux distribution you’ve chosen.

Figure 3-2. The main Ubuntu installation screen



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 47

Many current Linux distributions will make some recommendation for partitioning, 
based, in part, on any free space on the drive. Figure 3-3 shows the partitioning recommenda-
tions in Ubuntu.

Figure 3-3. Partitioning and formatting for Linux

When provided the partitioning options during your Linux installation, choose the 
manual partitioning option offered by your chosen distribution. You’ll find an MS-DOS FAT32 
partition in the listed partition table. You’ll need to reformat this partition to a Linux-friendly 

the  point. Figure 3-4 shows the manual partition screen in Ubuntu for the free space 
I created with Boot Camp.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 48

Figure 3-4. Creating the / mount point and formatting the new partition in Ubuntu

In most cases, all of the other default options will be acceptable in the installation. You 
can also customize the installation as necessary for your use. 

Synchronizing the MBR and GPT Tables 
After Linux is installed, reboot the system. You’ll be greeted with a rEFIt menu, complete with 
icons and graphical representations of both the Mac OS X and Linux installations on the drive. 
To complete the installation, choose the Start Partitioning Tool option, by using the arrow 
keys, as shown in Figure 3-5. This will provide you with the option to commit the new Linux 



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 49

Figure 3-5. Altering the MBR with rEFIt

in sync, allowing rEFIt to boot from either system.

Figure 3-6. Synchronizing MBR and GPT tables in rEFIt



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 50

With the boot tables  in rEFIt to reboot the system. This 
time, select the Linux installation from the rEFIt menu, and then press Enter.

Partitioning from the Command Line
Mac OS X includes the Disk Utility application, accessible both from the command line and 
from the Applications folder in the Dock, within Utilities. As any good Linux geek knows, if you 
can do it with a GUI tool, you can generally do it more quickly from the command line. Com-
mand-line  offers more options than the GUI version and is, indeed, quicker to use.

Creating a new partition on the hard drive for your Linux installation is actually surpris-
ingly easy using the command-line version of . Let’s break out the individual pieces, 
then combine all the elements into a single command that will nondestructively repartition 
the existing boot volume and, simultaneously, create a new partition for the Linux installation.

 has many options. Usage is as follows:

In other words, you’re calling the  application to take some defined action on the 
drive, and you can specify options to customize those actions. The following is a representa-
tive set of options available to  (by no means is that a complete list of the options):

Of particular interest to the task at hand is the  verb. This is what you’ll use to 
shrink the current boot volume, freeing space for the new Linux partition.

 clearly already knows the format of the current boot partition. So, if the only 
change you’re making to that partition is its size, you won’t need to tell  how the par-
tition should be formatted. However, you will need to let  know the new size of the 
partition. This is the option to the command.

You also need to know how the system currently sees and labels the boot volume. To see 
this information, use the  verb of the  command. 

This returns the following output:



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 51

This listing displays the partition number on the drive (#), as well as the partition type, 
name, size, and system identifier. In the case of my hard drive, the partition named  is the 
partition I would like to shrink. That’s just the common name. In fact, the system sees the 
drive as . This denotes the second partition on the first hard drive (where 0 is signifi-
cant only in the case of the drive itself, not the partitions created on the drive). 

So, you now have two of the critical pieces needed for resizing the partition on the hard 
drive: the verb ( ) and the name of the partition to be resized ( , in my 
example).

To create a new partition on the same drive, using the same command, you’ll need to use 
several more options. The next piece is the filesystem type of the new partition. According to 
the help pages of the  command, the following are valid:

The next piece of information you’ll need for the new partition is an identifier. In this case, 
let’s just call it .

Finally, you’ll need to make sure the system knows how big this new partition should be. 
 provides a tool you can use to see the available size of a partition:

This will give you a basis from which to resize the drive. In my case, I would like to leave 
60GB on the drive as my Mac installation. With 79.6GB available, I’ll make sure the newly 
resized boot partition is 60GB, while creating a new partition of 19.6GB. The size of a new or 
resized partition can be denoted in the command line with , , or , for bytes, megabytes, and 
gigabytes, respectively.

So, with all those pieces, the following  command will resize the existing parti-
tion, create a new partition of 19.6GB, create an MS-DOS FAT32 filesystem on that partition, 
and give it the name .

When this command completes, you’ll be ready to install Linux on the Mac, as described 
in the previous section. And, with rEFIt installed, the boot-loading functions will all be han-
dled automatically.

Removing a Linux Partition
If you were installing Windows on the Mac, Boot Camp would do yeoman-like work in remov-
ing the Boot Camp partition and resizing the old Mac OS X partition to utilize the full drive. 
However, Boot Camp doesn’t recognize ext3 or other Linux partitions. If you create a Linux 
installation on the Mac, and then attempt to remove it using Boot Camp, you’ll just get an 



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 52

error. So, it’s important to understand the alternative method for deleting these Linux parti-
tions, if necessary.

 is another command-line application in Mac OS X. The command name stands for 
GUID partition table, the standard for Macs and Mac OS X.  will display all the current par-
titions on a system and will also allow you to remove a partition that you can’t remove using 
Boot Camp. 

However, because you’ll be working with  on the system volume—the boot drive—
you’ll need to exit the current Mac OS X session and restart using the installation disc. This will 
allow you to unmount the system volume in order to view or make the changes. 

To begin removing a partition, insert the Mac OS X installation disc in the drive, reboot 
the system, and hold down the C key as it reboots, until you hear the disc spinning up in the 
disc drive.

At the installation prompt, select your language of choice. Then select Utilities and Disk 
Utility from the menu bar. Highlight the boot drive by clicking its icon in the left pane of Disk 
Utility, right-click, and select Unmount. 

Now you’ll be able to use  to remove the Linux partition and  to resize the 
Mac OS X partition. Alternatively, open  from the Utilities menu, and eject the 
volume from the command line:

To remove a partition using , you’ll first want to look at the names of the existing parti-
tions:

This command will display all the partitions on the system. From this list, you’ll cull the 
name of the partition you would like to remove on the boot drive. With this command, unlike 
the  command, the partition number is displayed as the index on the drive, distinct 
from the drive itself.

The important elements of this return listing are the indices. As this is , the specific 
partitions to be modified will be addressed as  and . In particular,  is the 
Linux partition. To remove the partition, use  as follows:



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 53

As you might guess, this instructs  to remove the third partition on —the partition 
created to install Linux in this example.

When  has successfully removed the partition, run the   command once again 
to get a view of the current state of the partition table on the drive.

The  command returns a description of .

 is gone—successfully deleted by .
Now, you need only to use the  verb for  to enlarge the current Mac 

OS X volume ( ) to the maximum capacity of the drive. You’ll use the verb in two differ-
ent ways. First, use it with the  option:

This will display the maximum available space on the drive for an expanded partition:

Then use  to actually resize the volume to its maximum size:

This command will resize the volume to the maximum size available, reclaiming all the 
partition space on the Mac OS X boot drive. You can reboot into the Mac OS X system.

However, this doesn’t take care of rEFIt. If you’re removing the Linux partition perma-
nently, you’ll probably want to remove rEFIt, as well. While booted into the Mac system, 
remove the  directory from , the  folder from 
within the  directory, and the Partition Inspector from 

.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 54

Virtual Linux
Another valid option for making a gradual transition to Mac OS X is to install Linux in a virtual 
machine on the Mac. In this regard, you have several viable options. Virtual Linux on the Mac 

quite well on the Mac.
Virtual machines allow a software layer, called the hypervisor, to access the underlying 

hardware resources while abstracting those resources from the user. This creates the appear-
ance of a separate machine within the machine.

A popular “for pay” option for your virtual version of Linux is VMware. This is the option 
chosen by many Mac users, and the one detailed here. A free alternative is VirtualBox, which 
I’ll cover briefly after the discussion of VMware.

Using VMware
VMware is stable and has a long history. A single user license for VMware Fusion—the VMware 
version written specifically for the Mac—will set you back $79.99 (at the time of publication). A 
fully functional 30-day trial version is also available.

Installing VMware
Most Mac applications install quite easily. You mount the provided image on your system, and 
then simply drag the application file from the mounted image to the Applications folder, either 
within the Finder or on the Dock.

In the case of VMware, an installation package is provided within the downloaded  
image. Double-clicking the installation package will start the installation, and will require the 
user’s administrative (sudo) password.

The VMware installation begins by defining a virtual machine. The Virtual Machine Assis-
tant, shown in Figure 3-7, will help you to create this virtual machine, walking you through the 
steps item by item. The distribution installed in this virtual machine is referred to as the guest 
system.

It’s possible to run any Linux distribution within the virtual machine created by VMware. 
If you choose, you can also install Windows in a separate virtual machine. VMware provides a 
drop-down list with a full range of guest system options, as shown in Figure 3-8. 



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 55

Figure 3-7. The VMware Virtual Machine Assistant

Figure 3-8. Creating the new virtual machine with VMware



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 56

In my case, I’ve chosen Linux as the operating system and Ubuntu as the distribution 
(version). The version will also serve as the default name of the virtual machine. Note that 
VMware also provides an option to customize the name.

Defining the virtual drive size of the new installation is critical. You’ll want to define a size 
that allows for some growth, while leaving plenty of storage on the drive for the Mac OS X sys-
tem. As shown in Figure 3-9, I allocated 10GB for the Linux installation on an 80GB hard drive.

Figure 3-9. Sizing the virtual machine

Finally, the Virtual Machine Assistant will prompt for the installation source, which is an 
actual installation disk or an installation disk file, as shown in Figure 3-10.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 57

Figure 3-10. Selecting the installation source for the virtual Linux installation

After completing the virtual machine installation, VMware displays a library of virtual 
machines, as shown in Figure 3-11, and starts the virtual machine in which your Linux distri-
bution will be installed.

Figure 3-11. The library of installed virtual machines



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 58

The installation of Ubuntu in VMware looks and performs much the same as a stand-
alone installation on any computer, as shown in Figure 3-12. The Live CD will run within the 
virtual machine, just as it would on a system with any other operating system installed. You 
can choose to run Ubuntu from the CD itself, run Ubuntu within VMware, or install Ubuntu 
within the virtual machine. To install it, double-click the Install icon on the desktop.

Figure 3-12. The Ubuntu Live CD running within VMware

The partitioning tool in Ubuntu will see the virtual drive created by VMware as a normal 
drive. It’s acceptable to use the guided Ubuntu partitioning tool, as shown in Figure 3-13, 
creating a large ext3 partition and a small swap partition on the VMware virtual drive.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 59

Figure 3-13. The Ubuntu partitioning tool

After creating a user on the system who will have administrative privileges, the installation 
begins, as shown in Figure 3-14.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 60

Figure 3-14. Beginning the Linux installation within the virtual machine

I also recommend that you install the VMware Tools package on the system when the 
Linux installation completes. As shown in Figure 3-15, the tools will allow you to more effi-
ciently manage memory and to take advantage of improved graphics in the virtual machine. 
In order to install these tools, the guest system must be fully booted and operational.

Figure 3-15. The VMware Tools Package installation prompt



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 61

To install the VMware Tools package, select Virtual Machine from the Mac OS X menu bar, 
and choose Install VMware Tools. This will open the archive manager in Ubuntu, with both 
an  and a  version of the VMware Tools package, as shown in Figure 3-16. Extract 
the  package to the desktop, and then close the archive manager. You’ll find the install 
script, , in the  directory on the desktop.

Figure 3-16. Installing the VMware tools

At the end of the installation process, you’ll choose a screen resolution in which your 
VMware Linux installation will start, as shown in Figure 3-17. After a quick reboot of the sys-
tem, your Linux installation in VMware Fusion will be complete.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 62

Figure 3-17. Choosing a screen resolution for your VMware Linux installation

Configuring Your Virtual Linux Installation
With the virtual desktops in Mac OS X, you can easily open your Linux installation to full-
screen size from the VMware interface and cycle between desktops on the Mac. Configured in 
this way, the Linux installation appears as it does on any computer, with full functionality. 

To return control of the window to Mac OS X, use the Apple+Control key combination. 
This will reduce the Linux installation screen to the size chosen during installation of the 
VMware Tools package. You can also use the Apple+Tab key combination to cycle between 
open applications, choosing VMware. This will move you to the virtual desktop running your 
Linux installation.

By default, the networking tools in VMware will create a virtual network interface, using 
Network Address Translation (NAT) for the actual Ethernet interface on the Mac. You’ll need 
to provide Domain Name System (DNS) information in the network configuration tools of the 
Linux distribution. You may also need to reboot the Linux installation within VMware in order 
to bring up the new network settings.



CHAPTER 3   DUAL-BOOTING AND V IRTUALIZATION 63

All the Linux developer tools are available, as well—this is a full Linux installation, after all. 
And, all the peripheral hardware is available to the virtual machine, too. You can set up printer 
access from Linux on the Mac, just as you would an actual stand-alone Linux machine.

Uninstalling VMware
Uninstalling VMware is easy. The VMware installation image contains an uninstallation pack-

machines intact. 
If you prefer to uninstall the virtual machines as well, you will need to remove the folder 

in which they are stored. By default, the virtual machines are installed in 
. By uninstalling VMware with the uninstallation package, and then dragging the vir-

tual machines folder to the trash, you can completely uninstall the virtual Linux machines.

Using VirtualBox
While VMware is the most widely recognized virtualization tool, it’s not the only one. Of par-
ticular note is VirtualBox, an open source tool that is, in every operational respect, nearly 
identical to VMware. Because of those similarities, I won’t go into any detail here on the instal-
lation or operation of VirtualBox. The primary factor separating the two virtual machine tools 
is, quite simply, the price. 

Although it is released under the GNU Public License (GPL) 2, the licensing of Virtual-
Box isn’t quite as precise as that might indicate. Originally released as a fully open source 
tool,  VirtualBox was purchased by Sun Microsystems in 2008 and forked into two separate 
products, including the GPL-licensed VirtualBox Open Source Edition (OSE). However, Sun 
requests that developers interested in redistributing the OSE version do so only after con-
tacting Sun. So, even the open source version of VirtualBox now contains some use and 
redistribution restrictions.

The choice of a closed source license with known terms in VMware or an open source 
license with changing terms in VirtualBox will be yours to make. 

Summary
This chapter covered your options for smoothing the transition from Linux to the Mac: dual-
booting or running a Linux virtual machine within Mac OS X. 

Creating a dual-boot configuration with Boot Camp, a built-in component of Mac OS X, is 
relatively easy. Using this approach, you can simply choose which operating system you want 
to run at bootup. 

Creating a Linux virtual machine with VMware is not difficult either. Overall, the expe-

responsiveness is good, even in full-screen mode. Moving from the virtual machine to the real 
Mac OS X environment is a simple matter of using the Apple+Control key combination, even 
in full-screen mode. 

Now that you have an idea of how these two approaches work, you can choose the one 
that suits your own preferences.

In the next chapter, we’ll look at building out the Linux environment on Mac OS X with 
development tools and third-party software installation tools.



C H A P T E R  4

Building Out the Linux 
Environment

Up to this point in the book, I’ve spent a fair amount of time laying the foundation: the UNIX 
and BSD origins of Mac OS X; the similarities between Mac OS X, BSD, and Linux; and the best 
ways to install Linux on your Mac without blowing away the Mac OS X installation. But none of 
that really gets to the heart of Mac OS X for Linux geeks. 

The real beauty of Mac OS X is how easily most Linux and UNIX users can make the 
change from their original operating systems to Mac OS X. It’s not a perfect match, but it’s 
close enough to be surprisingly painless overall. In other words, there are more than enough 
similarities between the operating systems to make the differences far less painful than you 
might expect. If you have a good Linux foundation, you’ll find the differences to be pretty easy 
to overcome. In fact, after years of using Linux exclusively, I made the change almost over-
night. I didn’t miss the power of Linux in the least once I committed to the change.

However, that change does require some preparation. Many of the development tools 
for Mac OS X are made available on the installation disc, but they’re not installed by default. 
Those tools provide a full IDE and the foundation for a complete suite of open source tools, 
as  well. 

In this chapter, we’ll start down the path of building out the development and BSD envi-
ronment. We’ll walk through the process of installing Apple’s Xcode tools package, as well as 
your choice of utilities for obtaining open source tools for Mac OS X, similar to the BSD ports 
system. These are the real heart of the development and system administration power of Mac 
OS X. They’re necessary for harnessing the full power of your Mac OS X system.

Xcode Tools
The first piece of the Linux pie in Mac OS X is Xcode, Apple’s suite of free tools for Mac OS X 
developers. Xcode is available on the installation disc, but it’s not installed by default on a new 
system.

The Xcode tools package includes an IDE, a tool for GUI development (Interface Builder), 
the GNU Compiler Collection (GCC), and support for many popular and powerful program-
ming languages (such as C, C++, Objective-C, Java, Python, and Ruby). The package also 
includes make tools for both GNU and BSD, , , and other tools necessary for 
compiling and installing open source applications. Additionally, the Xcode package  contains 

65



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT66

the complete set of reference documentation necessary to learn and use the tools. These 
tools will create the base environment on which the Linux environment will be built within 
Mac OS X.

Note Prior to Xcode, Apple provided the Project Builder IDE with its operating systems. Project Builder 
was another legacy tool of the NeXT operating system that, in many ways, served as the foundation for Mac 
OS X. It contained earlier versions of many of the same tools as Xcode. Xcode is an update to Project Builder 
and has been further extended by third parties to include support for Pascal, Ada, Perl, and other program-
ming languages and environments. 

The open source analog for Xcode is Eclipse. These two tools take very similar approaches 
to providing a rich IDE. Both provide support for many of the same development models and 
languages, and they create similar development work flows.

Xcode Installation
As noted, the Xcode tools are available on the installation disc provided with your Mac. They’re 
also available at the Apple Developer Connection web site. In general, the Xcode packages 
available online will be the most up-to-date versions. We’ll walk through the installation of 
both the provided and online versions of Xcode.

Installing Xcode from the Apple Developer Connection
Downloading and installing Xcode from the Apple Developer Connection site will guaran-
tee that you’re working with the most current version of the Xcode tools. You’ll need a good 
network connection and ample time, though. Xcode version 3.1 (current at the time of this 
writing), weighs in at a hefty 1GB.

To download the latest version of Xcode, visit the Apple Developer Connection site at 
. If you’re not already a member, you’ll be asked to fill out a short 

registration form, followed by a brief survey on your development needs. You’ll then gain 
access to the Apple Developer Connection Member site, where you’ll find the Xcode download 
at Downloads/Developer Tools.

Note In the past few years, Apple’s iPhone has become one of the hottest smart phones on the market. It 
has also become a leading development target, with thousands of iPhone applications available through the 
iTunes Store. That’s due, in part, to the easy availability of the iPhone SDK. If you’re one of those developers 
who intends to develop primarily for the iPhone, the SDK is also available from the Apple Developer Connec-
tion site. As it includes Xcode, downloading and installing the iPhone SDK alone will provide you with all the 
tools you’ll need.



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT 67

To begin the installation, from the Xcode Tools screen, shown in Figure 4-1, double-click 
the  file. You’ll be greeted with a welcome screen, followed by a license agree-
ment screen. Once you’ve accepted the license agreement, you’ll have the option of choosing 
a destination for these files. Finally, you’ll be presented with a list of packages for installation, 
as shown in Figure 4-2. Select the packages you will need, which will most likely include the 
Mac OS X package. You’ll also want to select the WebObjects package if you plan to develop 
web applications. 

Figure 4-1. Starting the Xcode installation from the Apple Developer Connection site

Figure 4-2. Choosing Xcode packages to install



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT68

Installing Xcode from the Mac OS X Installation Disc
To install Xcode from the Mac OS X disc, insert the Mac OS X installation DVD into the Mac 
DVD drive. You’ll see the window shown in Figure 4-3. Double-click the Optional Installs 
folder, and then click the Xcode Tools folder. In the next window, double-click the 

 file to start the installation program.

Figure 4-3. Starting the Xcode installation from the Mac OS X installation DVD

You’ll see the welcome window, as shown in Figure 4-4, followed by a user license agree-
ment and the opportunity to customize the installation. In most cases, the default settings for 
the installation are acceptable. To start the standard installation, just click Install, as shown in 
Figure 4-5.

Note If you intend to later install and use open source tools requiring X11, you’ll need to download and 
install the X11 tools from . While the installation DVD provides the 
option to install X11, the tools on the installation DVD are a bit behind the curve. Downloading and installing 
X11 will guarantee that you’re working with the latest code written and tested by the Apple engineers.



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT 69

Figure 4-4. The Mac OS X installation DVD’s welcome window

Figure 4-5. Performing a standard Xcode installation from the Mac OS X installation DVD

When the installation completes, you’ll find the Xcode tools on the boot drive, in the 
 subdirectories, as follows:

 (audio and multimedia interface creation tools)

 (tools for creating Mac OS X Dashboard widgets)



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT70

 (tools for code profiling)

 (Mac OS X graphics development environment)

 (assorted development tools)

 (the Mac OS X IDE)

Uninstalling the Xcode Tools
In the rare circumstance in which you need to uninstall the Xcode tools, Apple recommends 
doing so using the Terminal application and the included uninstall script. The uninstall script 
recognizes several modes for removing the developer tools, including the following:

: Removes all tools.

: Removes the developer content, but leaves the  directory intact.

: Removes all UNIX development support, leaving the  directory and sup-
porting files intact.

: Removes only the  directory.

Uninstalling these tools is a simple matter of opening the Terminal application  
( ), and executing the  script with 
the appropriate mode. For example, the following command removes all the tools:

You’ll be prompted for your administrative password, and then the Xcode tools will be 
uninstalled.

An Overview of the Xcode Tool Set
Xcode is, in fact, a generic reference to the full set of development tools provided by Apple. 
That set includes a rich IDE for development, code debugging, and optimization on the Mac. 
The IDE is built around a text editor, a build system, and the GCC compiler, modified to com-
pile for both the Intel and PowerPC platforms, both 32- and 64-bit, with one invocation.

Here’s a quick overview of the other main components of the Xcode tool set:

Interface Builder: A powerful Apple tool for designing and testing UIs. Developers can cre-
ate interfaces for both Carbon- and Cocoa-based applications. Most Apple GUI elements 
are available from the Interface Builder tool, so your applications can have a look and feel 
common to other Apple applications.

WebObjects: A development framework for creating scalable, object-oriented web appli-
cations. Based in Java, these applications can be easily deployed on nearly any platform. 
The WebObjects package is installed by default when you install Xcode from the Mac OS X 
installation DVD. You’ll need to explicitly select the WebObjects package when installing 
Xcode from the Apple Developer Connection site.



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT 71

Instruments and DTrace: Instruments is a visual code analysis tool that implements the 
open source analysis engine DTrace. Instruments can record and monitor network activ-
ity, CPU utilization, disk activity, and many other system behaviors. 

Shark: Provides code profiling. Shark supports both 32- and 64-bit applications.

Dashcode: Provides a compact and easy-to-use IDE specifically for developing Mac OS X 
Dashboard widgets. Targeted at nondevelopers, Dashcode is template-based and runs 
within a workspace that offers quick access to a full set of customization tools.

While the tools provided in the Xcode package are powerful and very useful for Mac devel-
opers, the real need for most open source users moving to Mac OS X is the GCC compiler. For 
many, the GCC compiler will be the single biggest reason to install the Xcode tools. You’ll need 
the GCC compiler—if for no other reason than to compile the truly open source tools available 
to Mac users.

Online Linux Tools
Let’s go back one more time to the origins of Mac OS X. It began its life as NeXTStep, which 
was a direct descendant of OpenBSD—UNIX through and through. The real hallmarks of 
FreeBSD are stability, reliability, connectivity, and a robust system for finding, installing, and 
maintaining new applications on the system. The latter is the BSD ports system.

The core implementation of BSD in Mac OS X is Darwin. Many Darwin projects are 
released under the Apple Public Source License, which has been approved as a free software 
license by the Free Software Foundation, but is not recognized as compatible with the GNU 
General Public License (GPL). Some other projects are released under other licenses, such as 

 (Apple’s  replacement), which is under the Apache License. Darwin also includes 
a large variety of projects from the open source community, and these are released under vari-
ous licenses.

Mac OS X is compatible with the Single UNIX Specification Version 3, is certified UNIX 03– 
compliant, and is fully POSIX-compliant. 

Apple makes much of the source code for Darwin available on the Web, from its open 
source site at . With the GCC compiler 
installed with Xcode, many of these tools can be downloaded, compiled, and installed on your 
Mac OS X system. However, you may encounter some issues with dependencies on proprie-
tary elements of the operating system. While most pieces will work, be aware that you may not 
be able to compile every piece of the Darwin system.

Two other projects exist to provide open source tools to Mac OS X users. Both of these 
projects more closely reflect the operation and spirit of the BSD ports system, in that they 
make open source tools for Mac OS X available online. Adding new tools or maintaining exist-
ing tools on your Mac system is a simple command-line operation. Both the MacPorts and 
Fink projects bring that online functionality to the Darwin element of Mac OS X.

MacPorts
On its home page ( ), MacPorts is described as follows by its 
developers:



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT72

The MacPorts Project is an open-source community initiative to design an easy-to-use 

system for compiling, installing, and upgrading either command-line, X11 or Aqua 

based open-source software on the Mac OS X operating system. To that end we pro-

vide the command-line driven MacPorts software package under a BSD License, and 

through it easy access to thousands of ports that greatly simplify the task of compiling 

and installing open-source software on your Mac.

Installing MacPorts
You can download MacPorts from . Installation pack-
ages are available in several forms, including a Mac  disk image, source code in both 

 and  forms, or Subversion (SVN) checkout. A  target also exists for sys-
tems that already have MacPorts installed.

In general, the easiest installation for MacPorts is with the  package. To begin the 
installation, download the package and double-click the  file. This will mount the image 
on the system and open a directory to expose the  installer file, as shown in Figure 4-6. 
Double-click the  file to begin the installation process, as shown in Figure 4-7.

Figure 4-6. Accessing the MacPorts installer package

You’ll be provided with some background information about MacPorts, including bug 
fixes in the current version. You’ll also be prompted to accept the license agreement. When the 
installation begins, you’ll be required to enter your administrative password.

By default, MacPorts installs in the  directory on your system, with the applica-
tions available in .



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT 73

Figure 4-7. Running the MacPorts installer

Using MacPorts
Currently, MacPorts provides nearly 5,000 ports, or software packages, from more than 80 
different software categories. These packages include all the common UNIX tools and utili-
ties. They also include GUI applications for graphics, multimedia, security, and development, 
among other categories. We’ll look at graphics and multimedia applications in Chapter 5, 
security in Chapter 7, and development in Chapter 8.

When using the MacPorts installation script, the postflight process creates a  file 
in your home directory ( ). This file exports the MacPorts path ( ) 
to the shell, adding it to the existing  variable. It’s very similar in function to the , 

, or  file in Linux. If you’ve already created a  file in your 
Mac OS X home directory, you can simply add the contents of the  file to 

:

Note At the time of publication, a known bug existed in the MacPorts binary installer. The 1.6.0 MacPorts 
package required a command-line fix for the installation to work properly. You can find all such reported 
problems and fixes on the MacPorts wiki at .



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT74

If you have not created a  file, you can modify the  file in the same 
way as you would edit the  file. The effect will be the same: a customized shell 
environment.

It’s also useful to add the  variable to the  or  file. For exam-
ple, if you use the vi editor, you can add the following line to the  or  
file:

The loose Linux analogy for MacPorts is the  system, originally found in Debian and 
since implemented in many other Linux distributions. Like the  system (or Red Hat/Fedora’s 
similar ), the command set is fairly simple, while providing the user with plenty of 
installation and uninstallation power. Unlike the  system, which installs binaries, MacPorts 
downloads source code, and then builds and installs the software. Any package in the Mac-
Ports system is available to install with the following command:

Table 4-1 lists the commands available to MacPorts and shows examples of their use.

Table 4-1. MacPorts Commands

Command Description Use

The basic command for the MacPorts system.

The installation command for the ports system.

Uninstalls a port.

Synchronizes the local ports tree with the  
global MacPorts repository. This sync includes 
updates to the MacPorts base system.

Upgrades an installed port and its  
dependencies. Will also uninstall the  
outdated version with the  option.

Lists all installed ports.

Lists all outdated installed ports.

Lists other files that are dependent on the in-
stalled port.

Checks whether a given port has been updated  
at the developer’s download site.

Provides a complete list of all available ports.

Returns a list of all available ports matching a 
partial pattern.

Provides information about a specific port, in-
cluding the port description and maintainer.

Displays files that have been installed by a port.

Synchronizes the local ports tree with the  
global MacPorts repository, without checking  
for upgrades to the MacPorts base system.



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT 75

Command Description Use

“Cleans” all files created by ports during  
installation. Includes the options , ,  

, and .

Lists port dependencies.

Lists all variants for a given port.

As you can see, MacPorts provides a robust system for installing, uninstalling, and main-
taining the Darwin-based open source tools on your Mac system. But it’s not the only tool 
available for these tasks.

Fink
Another option for using open source tools in tandem with Darwin is Fink. Like MacPorts, Fink 
is designed to allow users to install and update software from online code repositories. Unlike 
MacPorts, Fink is based on the Debian model of  and . Because of that, Fink has a 
much more Linux-like feel. Additionally, the Fink project lists more than 9,000 packages avail-
able in 24 categories.

Installing Fink
To install Fink, first, download the package from . You can choose 
either the binary distribution or the source file.

The binary distribution will mount and open an installation image, as shown in Fig-
ure 4-8. Double-click the Fink Installer package to start the installation program, as shown in 
Figure 4-9. Next, you’ll be prompted with an information window, as shown in Figure 4-10, 
followed by a license agreement.

Figure 4-8. Accessing the Fink installer package



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT76

Figure 4-9. Starting the Fink installation

Figure 4-10. Fink installation information

If you intend to use packages from Fink that require a GUI, you’ll need to install the X11 
package as well. An updated version of the Darwin X11 package is available at 

.
Next, it’s recommended that you open a terminal window and make some quick updates 

to Fink, as follows:



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT 77

These steps will completely update your Fink installation.

Using Fink
Fink has several methods for updates and for self updates. You can choose your preference 
from the command line when you perform an update. That choice will become the default. 
For example, should you prefer to self update via HTTP or FTP, use the following command:

If your preference is to update using , use the following command:

In general, the  mirrors are only an hour or so behind the CVS servers.
If you’re behind a firewall that blocks , you may be able to update via CVS, using the 

following command:

This option also assures that you’re using the most recent Fink code.
Fink is easy to configure for package access. From a terminal window, enter the following 

command:

This will allow you to select code repositories for the  system in Fink, and your chosen 
methods of code downloads. This is very similar in look and function to the  configuration 
in Debian-based Linux distributions. In that regard, Fink becomes more like MacPorts, as well.

If you’ve been using a Debian-based Linux distribution, the other Fink tools will look 
familiar. Fink allows you to use , should you choose, as shown in Figure 4-11.

Figure 4-11. Using Fink dselect



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT78

GUI package management is also available with Fink, in a fashion similar to the Synaptic 
Package Manager application of many Debian-based Linux distributions, as shown in Fig-
ure 4-12.

Figure 4-12. Available packages displayed in Fink

The  system in Fink attempts to download and install binary packages for Darwin. 
In fact, that’s possible in many cases. However, if you prefer source installations rather than 
binary installations, Fink provides this capability, as well.

In this case, Fink will find the source, and then compile and install the  package.
Fink has a small but powerful command set. The commands are constructed and used in 

a fashion similar to what you’ve already seen with MacPorts. Table 4-2 lists the commands and 
shows examples of their use. Several of the commands are aliases to similar commands in the 
Debian package management system ( ).



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT 79

Table 4-2. Fink Commands

Command Description Example

Used to install packages. Downloads, configures, 
builds, and installs applications.

Removes packages, using .

Updates all packages to the latest version.

Provides a list of all available packages, including 
installation status and latest version.

Provides a description of a named package.

Downloads a package without installing it.

Downloads all package source files without  
installing them.

Downloads all package source files not currently 
installed on the system.

Builds a package without installing it.

Builds a package, overwriting an existing  file.

Reinstalls a package via , even when that  
package is already installed.

Starts the Fink configuration process.

Initiates the process of upgrading Fink to a new 
release.

Though the  command is the preferred option, users can also use common  com-
mands (all of which are implemented in the Fink system), as listed in Table 4-3.

Table 4-3. apt Commands for Fink

Command Description Example

Installs the specified software package

Updates the list of packages from the repositories 
listed in 

Updates out-of-date software packages

Updates out-of-date software packages and may 
install additional dependent packages

Provides an interface to modify the list of  
repositories

Searches for a specific package

Uninstalls software packages



CHAPTER 4   BUILDING OUT THE L INUX ENVIRONMENT80

Summary
With this chapter, you started the process of building out the development and BSD environ-
ment in Mac OS X. We focused on installing Xcode, Apple’s suite of tools for OS X developers, 
and two tools that parallel the BSD ports system: MacPorts and Fink.

The next chapter covers using graphics, multimedia, and office productivity tools in 
Mac OS X.



C H A P T E R  5

Using the Many Apple and 
Linux Tools

Over the years, Apple has earned a reputation for several core strengths. It’s well known 
for its ability to process graphics, video, and audio. Mac is the standard in several industries, 
including audio editing and production, publishing, and graphic design. Apple computers 
running Mac OS X are finding an increasingly larger role in movie production, as well.

Many of these core strengths can be attributed to software written for the platform. This 
includes suites by Adobe, such as Photoshop, Flash, After Effects, and Illustrator. Apple has a 
history of working closely with software designers within these core competencies.

Apple also provides the software infrastructure to continue to uphold these strengths. 
Remember that Mac OS X started life as NeXTStep, an operating system that was highly 
regarded for its graphics and multimedia capabilities. The underpinnings of Mac OS X are 
strong in these areas, providing a set of graphics and multimedia tools that stands head and 
shoulders above those offered by most other operating systems.

Aside from its strengths in multimedia, Mac also performs well in the area of productiv-
ity and office tasks. Microsoft maintains a Mac OS X build of Office, including Word, Excel, 
and PowerPoint. Additionally, Apple has created iWork, a Mac OS X-native office suite that 
includes Pages (word processing), Numbers (spreadsheet), and Keynote (presentations).

If you’re making the change from Linux to Mac, you’ll want to know about the Mac multi-
media and office productivity tools, and the corresponding open source tools. In this chapter, 
we’ll explore those tools. But first, it’s useful to understand a bit about the underlying graphics 
and multimedia technologies in Mac OS X. 

A Brief Overview of Graphics and Multimedia 
on the Mac
While specific applications will utilize the core Mac OS X graphics and multimedia technolo-
gies in their own ways, the basics are the same. Mac OS X can also take advantage of X11 and 
X.Org, the open source X windowing systems. 

The reputation of the Macintosh as an outstanding graphics platform extends back almost 
to its beginnings. And, while Apple has consistently improved the graphics performance of the 
Macintosh, few improvements were as striking or as strong as those made with the introduc-
tion of Mac OS X. With roots in the NeXT-developed Display PostScript, Mac OS X now makes 

81



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS82

full use of a powerful set of PostScript-style display tools. These include Portable Document 
Format (PDF) primitives to cache window graphics as bitmaps. These primitives are easily 
leveraged by the application frameworks and provide the foundation for the strong graphics 
performance of Mac OS X. 

But graphics in Mac OS X don’t end with PostScript and PDF primitives. The system adds 
an even more complex and powerful set of graphics tools for maximum performance. All rep-
resent the state of the art in graphics creation and manipulation. These tools include OpenGL 
and QuickTime.

OpenGL provides an industry-standard tool set for 3D image creation and manipulation. 
The OpenGL standard also defines required hardware features and support. This guarantees 
consistent performance on all platforms that implement the OpenGL standard.

QuickTime provides a tool set for creating and playing audio, video, and images. Sup-
ported formats include MPEG-4 and H.264 for video, Advanced Audio Coding (AAC) for audio, 
and literally hundreds of graphics formats, including Portable Network Graphics (PNG), Joint 
Photographic Experts Group (JPEG), Graphics Interchange Format (GIF), and Tagged Image 
File Format (TIFF).

Mac OS X contains a set of frameworks that handle all multimedia tasks. At the top level, 
these frameworks consist of Core Audio and Core Graphics. The Core Graphics framework in 
Mac OS X is composed of additional frameworks (or subframeworks, if you will), such as Core 
Image and Core Video. As a suite, Core Graphics provides all the essential graphics manipu-
lation elements for a broad range of tasks, from rendering to compositing. The Core Image 
framework in Mac OS X exposes and leverages a system-wide Mac OS X API for powerful 
graphics creation and manipulation. Core Image also makes it possible to share image-pro-
cessing capabilities between both built-in and third-party graphics applications. Core Audio 
and Core Graphics work together to provide all the necessary elements for image, video, and 
audio processing, and help push Mac OS X to the forefront in multimedia production and 
 editing.

Core Graphics
Also known as Quartz, the Core Graphics framework is an imaging and windowing technology 
that relies heavily on the PDF drawing model. Quartz provides advanced windowing capabili-
ties—including translucency, drop shadowing, and window buffering—and lies at the heart of 
all image functions in Mac OS X. The key components of Quartz include the following:

Quartz 2D is the Mac OS X drawing engine—the core of graphics on the Mac. It’s the basis 
for both the beautiful interface and any applications written for Mac that require graphic cre-
ation and manipulation. As part of the Core Graphics framework, Quartz 2D can interact with 
all other Core pieces in Mac OS X, including Core Image, Core Video, and QuickTime.

While the underpinnings of graphics in Mac OS X are so complex as to fall well outside the 
scope of this chapter, it’s important to have at least a rudimentary understanding of how Mac 
OS X graphics are created. The following are some important Quartz 2D concepts:



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 83

Page: Quartz 2D takes advantage of image layering. An object drawn on the canvas, 
or page, cannot be modified except by the addition of a new layer. Drawing order is 
extremely important in this scheme, as subsequent solid layers (layers that are near or at 
the top of the stack on the page) may completely obscure previous layers. This provides 
the environment for extremely detailed and flexible graphics creation. Apple refers to 
this method of drawing as the painter’s model, based on the analogy of adding paint to a 
 canvas.

Context: The output of these drawing operations can take any number of forms, such as a 
page of paper passed through a printer, a PDF-based virtual page, or a file. This is referred 
to as the context of the drawing. Mac OS X recognizes five contexts: window, PDF, bitmap, 
layer, and printer. Any of these five contexts can serve as the destination for a drawing in 
Mac OS X.

Paths: In Quartz 2D, paths are defined as the shapes created by a graphics application. 
These can be simple lines and curves or more complex shapes incorporating many simple 
shapes.

Color spaces: These provide a reference for the interpretation of color information in Mac 
OS X. Wikipedia describes a color space as “an abstract mathematical model describing 
the way colors can be represented as tuples of numbers, typically as three or four values 
or color components” ( ). Several color spaces 
can be used, including Blue, Green, Red (BGR); Red, Green, Blue (RGB); Cyan, Magenta, 
Yellow, Black (CMYK); and Hue, Saturation, Brightness (HSB). In practice, these color 
schemes create a 3D representation of colors along x, y, and z axes. When a 3D color 
model is created using these schemes, any point in any of the three axes will be assigned 
a unique color value. As the starting points—the color models—vary, a value in the RGB 
model may differ greatly from the same value in the HSB model. In short, it’s important 
to understand and define the color space when creating or manipulating graphics in 
Mac OS X.

Alpha values: Graphics created in the Quartz 2D model also contain an alpha value. 
Quartz uses the alpha value to determine how a new color will be composited to a page. 
The alpha value is, in practice, a measure of a color’s opacity—how transparent will the 
new color be on the page? A color with an alpha value of 0 is completely transparent; an 
alpha value of 1 sets the color as completely opaque. Full opacity will completely cover 
and obscure images in the lower layers.

Transforms: Quartz 2D also provides a full range of image transforms. These transforms 
allow image scaling, translation, and rotation. 

Patterns: Another important tool in the Quartz 2D kit is patterns. According to the 
Quartz 2D Programming Guide, “A pattern is a sequence of drawing operations that is 
repeatedly painted to a graphics context” (

). Mac OS X includes a number of 
built-in patterns and full capabilities for unique pattern creation.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS84

Shadows: These are simply images at least one layer below the top image, offset so as to 
depict the effect of a light source on the top object. The Aqua interface itself—the col-
lection of Mac OS X windows and buttons—is heavily dependent on shadows. Nearly 
all windows in Mac OS X are drawn with shadows of one depth or another. This helps to 
provide Aqua with a 3D look and feel. As shadowing relies on an additional image below 
the primary layer, these images can be blurred or sharp-edged, depending on the desired 
shadowing effect.

Transparency layers: Objects can be stacked on a page and offset with shadowing using 
transparency layers. A transparency layer is the result of combining two or more objects 
into a single composite object. 

Gradients: These are blends of colors, either circular (radial) or straight (axial).

Bitmaps: A bitmap is a sampled image in which each pixel represents a single point in the 
image. Bitmap types include TIFF, PNG, and JPEG.

Aside from graphics creation and manipulation, Quartz 2D also provides the input to the 
PDF engine on which Mac OS X relies to store those graphics, text, and images. Virtually all 
applications on the system turn to Quartz 2D to create these digital paper documents. These 
documents can then be further optimized, based on the context in which they will be viewed. 
These contexts can include web or print. Graphics and PDF files can be viewed in Mac OS X in 
the native Preview application, which also provides some rudimentary manipulation tools.

These critical elements of Quartz 2D provide Mac OS X with industrial-strength graphics 
creation and manipulation capabilities. They also provide the foundation on which the clean 
Mac OS X user interface, Aqua, is built. 

Quartz interacts with the open source graphics tools we’ll discuss later in this chapter. It 
works quite well with the Darwin X server that’s necessary for many of the GUI-based open 
source tools.

Core Video
As mentioned earlier, Core Video is a part of the Core Graphics framework. Graphics and video 
follow a similar rendering path in Mac OS X, as illustrated in Figure 5-1.

Figure 5-1. The video rendering path in Mac OS X

Note In its role as the Mac OS X window manager, Quartz Compositor follows a similar work flow for 
rendering the working environment —windows on the desktop, for example—in Mac OS X. Quartz Composi-
tor receives a bitmap of window contents, mixes new elements into the scene, and then displays the new 
image. Unlike UNIX-based window managers, Quartz Compositor does not allow any other process access to 
the graphics frame buffer. This means that, ultimately, even a running X-based window server will be sub-
servient to the Quartz Compositor, although that will generally be transparent to users.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 85

A critical piece of the multimedia display puzzle is the refresh rate of the display. While 
we see refresh rates as static numbers, those numbers are, in reality, theoretical. They can be 
affected by any number of factors. Core Video synchronizes the media refresh rate with the 
display refresh rate using a display link. Based on display type and latencies, this special timer 
makes intelligent choices about when a frame should be output. This largely solves older video 
synchronization and rendering issues.

Core Video Buffers
Core Video also implements several buffer types. These buffers store video images on the 
system for display or compression. The buffer types provided by Core Video include the 
following:

 buffers that provide a wrapper around a standard OpenGL buffer

These buffers provide quick memory access for an application. Core Video creates a buffer 
pool that allocates the number of usable buffers. Buffers are used as needed, and then released 
back to the pool, rather than allocating and deallocating memory on each request. And these 
pools can exist in either main memory or video memory. 

Core Video Frames
Core Video frames are the single images that compose a video. Video frames in Core Video 
can contain additional information that’s useful for rendering. These additional properties are 
referred to as attachments and include the following:

Clean aperture and preferred clean aperture: To avoid artifacts at the edge of the image 
caused by processing, video frames are generally larger than the target image. The pre-
ferred clean aperture is the suggested cropping size for a single frame. The clean aperture 
is the actual size of the frame after cropping. 

Color space: As with static images created with Core Image and Quartz 2D, Core Video 
frames will reference a color space. Again, this reference ensures that the correct x, y, z 
axes are used in creating the colors within the frame.

Square pixels/rectangular pixels: The choice of square versus rectangular pixels in a frame 
is most relevant to video created for television broadcast, as opposed to streaming or 
stored playback on a computer. Television pixels are rectangular; computer pixels are 
square.

Gamma: This value is used to balance the display output with its input. This produces 
output more closely aligned with what the human eye expects to see.

Timestamps: A timestamp notes when a frame appears in a movie. This takes the form of 
HH:MM:SS:FF, where FF is equal to a fraction, based on the timebase of the move. A time-
base is a fixed period of time against which other events or time periods are gauged. So, 
the fraction in the video frame timestamp is expressed as a fraction of the timebase used 
in the video.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS86

Note The concept of timebases extends back nearly to the beginning of the electronics age. In the case 
of video, timebases were a critical subsystem in the video cassette recorders (VCRs) of the 1980s and 1990s. 
Unlike audio, a video signal is information-dense, including picture, sync, and subcarrier information. The 
signal on video tape is written in a diagonal pattern to maximize use of the full tape width. This tape is pulled 
across a drum for reading. If the speed and alignment of the drum were perfectly in sync with that of the 
record head used to create the video, and if it were possible to keep that perfect speed constant, there would 
be no need for timebases. In VCRs, the timebases served to adjust the servos of the mechanical parts, allow-
ing either perfect sync between the medium and the read head or video signal correction when that sync 
could not be achieved. In digital tools, such as QuickTime, the timebase defines when temporal events will 
occur; a time is reached, a frame rate is reached, and so on.

Quartz Composer
As is typical with Mac OS X, a Quartz development tool exists, and it is included with the instal-
lation medium. Quartz Composer is built on OpenGL, Core Image, and Core Video. It provides 
an easily implemented API and a GUI-based tool for development. 

Applications created with Quartz Composer can be played in QuickTime, embedded in a 
Cocoa application, run as a system screen saver, or run from within the Composer itself.

Built-in Mac OS X Multimedia Tools
Recognizing the niche its hardware holds in the multimedia space, Apple has created a well-
regarded suite of multimedia software tools that are included with new Mac computers. The 
iLife suite includes iPhoto, iMovie, iDVD, iWeb, and GarageBand. These tools provide con-
sumer-level functionality for managing and editing multimedia—whether that’s audio, video, 
or graphics.

iPhoto
iPhoto is a rudimentary photo editor with strong photo-organizing tools. Users can rotate, 
crop, resize, transform, and adjust images. iPhoto’s primary strength is its tagging and man-
agement features. Figure 5-2 shows iPhoto’s main interface, and Figure 5-3 shows an image 
open for editing. 



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 87

Figure 5-2. The main iPhoto interface

Figure 5-3. Viewing and editing images in iPhoto



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS88

The editing interface in iPhoto is easy to use and includes a basic set of editing tools 
within the main interface. iPhoto also provides tools to adjust most elements of a photo, 
including exposure, saturation, and contrast, as shown in Figure 5-4. In addition to the other 
tools, iPhoto includes some preset stock photographic effects, including sepia tones, color 
boosting, color fading, and matte, as shown in Figure 5-5.

Figure 5-4. Image adjustments in iPhoto

Figure 5-5. Image effects in iPhoto



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 89

Note The editing features in iPhoto are perfect examples of Core Image image units, which are graphics 
packages that contain the architecture for accessing effects and image filters. These image units are avail-
able to all Mac OS X developers.

iMovie and iDVD
iMovie, shown in Figure 5-6, is the video-editing application included in the Mac iLife suite. 
Videos can be imported from a camera or a file, and edited nonlinearly. Assets can be included 
from the other Mac OS X tools, including iTunes and iPhoto. Built-in tools include those for 
adding titles and captions. When editing is complete, final videos can be sent directly to iDVD 
for DVD mastering, or exported to a number of formats suitable for a range of purposes, from 
the iPhone to YouTube.

Figure 5-6. Editing video in iMovie



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS90

iDVD is the native Mac OS X DVD creation and mastering tool. Figure 5-7 shows its 
 opening window.

Figure 5-7. Creating a new DVD project in iDVD

iDVD includes several tools for quickly creating and burning DVDs. As shown in Figure 
5-8, Magic iDVD allows a user to drag an existing Apple-format movie into a window, select a 
theme, import any additional graphics from the other iLife tools, and burn a DVD with a single 
mouse click. iDVD also includes OneStep DVD, which is even easier to use than Magic iDVD. 
A user can attach a video camera via FireWire, insert a blank DVD, and burn the movie to disk 
simply by clicking one button in the window.

Note Unlike iMovie, which recognizes USB, iDVD requires a FireWire connection.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 91

Figure 5-8. Editing video in iDVD

iDVD features a strong consumer-grade tool set for DVD editing and mastering. These 
tools include prebuilt interface elements, including themes and buttons, as shown in  
Figure 5-9.

Figure 5-9. Applying a menu theme in iDVD



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS92

As with its counterparts in the iLife suite, iDVD is tightly integrated with the other iLife 
tools. This means that it has a similar look and feel, and allows quick imports of media from 
iTunes, iPhoto, and iMovie. 

iWeb
iWeb is the “what you see is what you get” (WYSIWYG) web site development tool for Mac 
OS X. It’s tightly integrated with Apple’s online offering, MobileMe. Sites created in iWeb 
can be directly uploaded to a MobileMe account, using iWeb’s built-in FTP tool, and current 
MobileMe sites can be added to iWeb, for easy editing.

Note MobileMe is an Apple offering, providing subscribers with online space for web sites, backup, mail, 
and storage. Many of the Mac OS X tools are MobileMe-aware, so they can be easily configured to connect 
to a user’s MobileMe account. In recent years, MobileMe has evolved to include synchronization services 
between Mac OS X-based desktop computers and the iPhone. Finally, it also provides a conduit for Apple’s 
Back to My Mac service, a secure remote desktop application. MobileMe is subscription-based, requiring an 
annual fee.

iWeb includes a full selection of theme templates, as shown in Figure 5-10. With the 
chosen template in place, all elements of the page are editable from the iWeb WYSIWYG 
interface, as shown in Figure 5-11.

Figure 5-10. Choosing a template from iWeb



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 93

Figure 5-11. Using the WYSIWYG iWeb editor

As with the other iLife tools, iWeb has full access to media from iPhoto, iTunes, and 
iMovie. Media from these other tools can be easily imported into iWeb. Figure 5-12 shows an 
example of accessing iPhoto images from iWeb.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS94

Figure 5-12. Selecting photos from iPhoto in iWeb

GarageBand
GarageBand is the audio creation and editing application in the iLife suite. It is, perhaps, 
the most advanced piece of the iLife package, with many features targeted at professional 
musicians.

GarageBand provides the tools to edit existing projects, create new projects (both music 
and podcasts), or, like iDVD, to use built-in audio to create a Magic GarageBand project with 
minimal effort. Figure 5-13 shows GarageBand’s opening window, which offers access to these 
features. Figure 5-14 shows the main GarageBand editing window.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 95

Figure 5-13. Creating a new audio project with GarageBand

Figure 5-14. The main GarageBand editing window



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS96

GarageBand provides access to additional assets, including music from iTunes and graph-
ics from iPhoto. You can add existing audio or record new audio live, as shown in Figure 5-15.

Figure 5-15. Adding a new track to a GarageBand project

GarageBand also provides a rich set of sound effects and sample sounds. The library 
includes loops that can be used to construct songs in GarageBand, as well as radio-type sound 
effects for use in podcasts, as shown in Figure 5-16. These audio effects can be applied to 
instruments, voices, or externally imported tracks.

Figure 5-16. Tracking a waveform in GarageBand

GarageBand uses MIDI to interface with external musical instruments. You can select the 
instrument for which audio is being composed; for instance, if the external MIDI instrument is 
a simple keyboard, the instrument being composed can be a grand piano. Via the MIDI inter-
face, GarageBand can capture and notate music as it’s played on the external instrument, as 
shown in Figure 5-17.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 97

Figure 5-17. Musical notation created by GarageBand

When projects in GarageBand are complete, they can be sent to iTunes, sent to iWeb, sent 
to iDVD, saved to disk, or burned directly to a CD or DVD. Figure 5-18 shows an example of 
exporting a project from GarageBand.

Figure 5-18. Exporting a finished project from GarageBand



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS98

APPLE’S PROFESSIONAL TOOLS

The iLife suite, for all its strengths, is a consumer-grade package. Professional video, audio, and image 
editing present a much more complex set of problems. The software to solve those problems must provide 
granular control and a wide range of options for the final processed product. 

Apple’s Final Cut Studio meets the needs of professional video and audio editing. It’s in wide use in 
television, film, and video production, as well as live sporting event broadcasts. Aperture is Apple’s profes-
sional-grade image management tool. It also provides some light editing functions. Compared with the Adobe 
tools discussed in this chapter, these tools are relatively new to the market. They are, however, gaining a 
strong foothold in a market previously dominated by Adobe.

Third-Party Multimedia Tools
With its strong APIs, Apple has created a platform on which any dedicated company can build 
multimedia capture and editing tools. Many third-party tools are dedicated to specific tasks 
within the multimedia realm. Audio editing, video editing, and graphics creation are all cov-
ered to one degree or another by smaller tools.

The difficulty lies in creating a full suite of multimedia editing tools in which the tools 
are closely integrated, as they are in the Mac iLife suite. Although the individual tools stand 
well on their own, the model created by Apple is that these tools should work closely with one 
another, creating a tool set that’s stronger as a whole than the sum of its individual pieces. This 
approach recognizes that handling media is often more than just a stand-alone task. When 
software makes it easy to move between several related tools, the time required for creation 
and editing is reduced.

Adobe Systems has, in the past few years, recognized the value of integration between 
its set of multimedia tools. Based in San Jose, California, Adobe has a long history with Apple 
and Mac. It’s a relationship that extends back to the mid-1980s with the release of Adobe 
Illustrator. As a partial result of that long relationship, Adobe has nearly captured the market 
for third-party multimedia applications on the Mac. Few companies understand the Mac OS 
X graphics and multimedia APIs as intimately as Adobe. Apple and Adobe continue to closely 
coordinate efforts across product releases, as well. With a single exception at the introduction 
of the Intel-based Mac OS X, Apple version releases have been followed seamlessly by Adobe 
version releases. The Adobe suite of tools remains the premiere multimedia editing suite for 
the Mac and Mac OS X, and those are the tools we’ll look at here.

Note While rumors seem to constantly suggest that Apple is on the verge of buying Adobe, or that Apple 
has its own Adobe-killer applications under in-house development, these rumors have yet to play out as true. 
In general, the relationship between the companies seems nearly as cordial and symbiotic as it has always 
been.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 99

The Adobe Multimedia Tools
The set of Adobe applications for multimedia is stunning in its depth. Every element of these 
tasks is covered in one software application or another. These tools were originally created 
and released as stand-alone applications, with little attention to how each interacted with 
the other. Following the release of Mac OS X and the iLife suite, Adobe took note of the tight 
integration among the iLife tools. The Adobe developers began to pay more attention to how 
closely their own tools worked together, with the result being a tight fit between video, audio, 
and graphics. This includes the ability to export from one application directly to another, 
much as is possible with the iLife suite.

The Adobe library of multimedia tools covers nearly all tasks in the typical work flow. The 
individual software packages developed and sold by Adobe are all top-of-the-class tools, as 
recognized by professionals and amateurs alike. While Adobe’s strategy has moved toward a 
model of bundling these tools in recent years, they are still available as individual packages, 
dedicated to specific tasks. Table 5-1 lists the principal Adobe tools and their uses.

Table 5-1. Adobe Multimedia Tools

Tool Use

Photoshop Graphics editing and manipulation

Illustrator Vector graphics editing and manipulation

InDesign Desktop publishing

Acrobat Professional PDF display and creation

Flash Animation

Dreamweaver WYSIWYG web design

Fireworks Web graphics design and manipulation

After Effects Motion graphics and video effects

Soundbooth Audio editing and production

Premiere Video editing and production

Encore DVD authoring

OnLocation Video production

Contribute WYSIWYG web design

The Flash, Dreamweaver, and Fireworks tools were originally created by Macromedia, a 
strong rival to Adobe. In 2005, Adobe purchased Macromedia and rolled these tools into the 
Creative Suite lines. The addition of these tools brought Adobe to a point of near monopoly, 
particularly in the web space. The addition of Flash to its lineup brought the fastest rising web 
graphics technology into the Adobe tent. Furthermore, the strong reputations of both Dream-
weaver and Fireworks burnished a new focus for Adobe on the Web. The company that was 
founded around the go-to desktop publishing application has made a strong transition to the 
technologies of the Web. That flexibility is another reason Adobe has survived so well over the 
years.

As mentioned, Adobe has recently begun to capitalize on the tight integration approach, 
and is now marketing packages of tools designed for specific types of tasks. At the top level, 
these packages are the Design and Web packages. These are further divided into Premium and 



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS100

Standard packages. At the top of the Adobe food chain are the Production Premium and Mas-
ter Collection bundles. The Production Premium package provides all the necessary pieces 
for high-end video production and postproduction. The Master Collection package contains 
all the Adobe tools in a single bundle. These bundles are clearly targeted at folks who make a 
living in multimedia. Ranging from $999 US to $2,500 US, the pricing of these packages is well 
beyond the means of the average user. Table 5-2 lists the various Creative Suite packages avail-
able from Adobe and the applications included in each.

Table 5-2. Adobe Creative Suite Packages

Bundle Tools Approximate Cost (USD)

Design Premium Photoshop, Illustrator, InDesign,  
Acrobat Professional, Flash, Dreamweaver, 
Fireworks

$1,800

Design Standard Photoshop, Illustrator, InDesign,  
Acrobat Professional

$1,200

Web Premium Photoshop, Illustrator, Acrobat Professional, 
Flash, Dreamweaver, Fireworks

$1,600

Web Standard Flash, Dreamweaver, Contribute, Fireworks $1,000

Production Premium Photoshop, Illustrator, Flash, After Effects,  
Premiere, Soundbooth, Encore

$1,700

Master Collection Photoshop, Illustrator, InDesign, Acrobat,  
Flash, Dreamweaver, Fireworks, Contribute, 
After Effects, Premiere, Soundbooth, Encore

$2,500

Let’s look at some of the critical features of the three primary pieces of the Adobe package: 
graphics manipulation in Photoshop, video editing in Premiere, and audio editing in Sound-
booth.

Adobe Photoshop
The ins and outs of Photoshop have made many a book author a buck or two. Photoshop is 
so dense with features, tweaks, and tricks that even an entire book could hardly hope to cover 
them all. Photoshop is, in short, the standard by which all other graphics creation and manip-
ulation applications are judged. But it comes at a price. At the time of publication of this book, 
a single-user license for Photoshop listed at $649 US. If you’re making a living as a graphic 
 artist, that’s just the price of admission, and probably a tax write-off, as well.

Even though you may not be inclined to drop more than six bills for Photoshop, there are 
some features that are relevant to our discussion, because they are widely considered as criti-
cal to the success of Photoshop. You may want to look for similar features in the open source 
graphics applications available for Mac OS X. These features include the following:

Nondestructive editing: This type of editing leaves the original image data intact, allow-
ing the user to revert to previous edits of an image at any time. Nondestructive editing 
is made possible through adjustment layers, which apply changes without permanently 
changing pixel values.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 101

Painting and drawing tools: The Photoshop tool set is impressive. With a full range of 
brushes, pens, airbrushes, buckets, textures, and many other tools, there’s very little a 
user can’t accomplish. The primary tool set is contained in a single toolbar, located along 
the left side by default. The top-level tools can be expanded to expose further options by 
clicking the arrow in the bottom-right corner of each tool’s box.

Advanced compositing: Photoshop allows for complex stacking and combining of images. 
Photoshop’s compositing tools utilize layering to nearly its full extent, allowing for this 
advanced compositing.

Raw-image processing: The raw image format has come into vogue among professional 
photographers in the past few years. Calling it a “format,” though, may be a bit of a mis-
nomer. A raw image contains minimal processing. It’s nearly identical to what a camera 
sensor sees and captures, without the full data set to create an actual image. In this sense, 
raw images are often referred to as digital negatives—they contain all the image data but 
cannot be viewed by themselves as images.

Image formats: Photoshop supports a very broad range of image formats. In short, if 
you’ve seen an image format, Photoshop or a related plug-in will probably handle and 
process that format.

Adobe Premiere
Premiere is Adobe’s video capture and editing package. Consistent with the bundling 
approach, the Premiere Pro package includes Encore and OnLocation; the Standard package 
includes only OnLocation. Premiere is also tightly integrated with Photoshop, After Effects, 
and Soundbooth. 

The following are some of Premiere’s main features for professional video editing:

Nonlinear digital editing: Premiere advances nonlinear digital editing with a full set of 
tools. In video or audio, nonlinear editing means that an editor has access to any single 
frame without the need to work through other frames. Each frame is as discrete and avail-
able for editing. This is opposed to the old model of editing, in which frames of film or 
video were accessible only by running the video or film to the point of editing. Frames 
couldn’t simply be plucked from the existing pool of frames without drilling down into 
the pool itself. In that sense, nonlinear editing is a much flatter model of editing, designed 
and approached as if all the frames of a video were laying in order on a table. Any frame 
can be removed or rearranged as easily as any other frame.

Video-editing tools: Premiere includes tools for color correction, lighting, slow-motion 
generation, and multiple-camera editing. The editing tools can output video to High Defi-
nition (HD) and support High Definition Video (HDV), a format that uses compression 
to squeeze HD content onto the same storage medium as is used for standard definition 
recording. The editing tools will also output video to the Sony-created Digital Video (DV) 
format. Like HDV, DV uses MPEG-2 compression to fit high-definition video onto smaller 
form-factor media.

Disc output: Premiere will output edited video directly to DVD or Blu-ray discs. This is 
important to many multimedia professionals as, due to the shorter wavelength of its laser, 
Blu-ray is capable of storing up to ten times more video information than standard single-
layer DVD discs. This means that discs can be used not only for finished video products 



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS102

but, in some cases, also as one-off storage of raw media. For finished products, Blu-ray 
also supports the full 1080p video format—the highest quality video format currently 
available. Although television has yet to adopt this standard for broadcast, many movies 
are now in video release on Blu-ray in the 1080p format. All reputable HD television sets 
support the 1080p format, as well. The ability to output a completed video file directly 
from Premiere to disc promises producers and editors significant time savings when 
 mastering their final product.

Output formats: Premiere can export finished video to a wide range of formats. Video 
edited in Premiere can be exported to Flash, and to formats supported by mobile phones 
and other mobile devices. These formats include MPEG-4 (m4v), H.261, H.264, and FLV. 
This flexibility in formats provides authors with a full range of options for distributing 
their work.

Camera setup and calibration: Premiere, using the OnLocation package, provides tools 
for camera calibration, for monitoring the input and output signal levels, and for adjust-
ing those levels where necessary. The monitoring tools include a waveform monitor for 
monitoring the video-voltage level with respect to time, an audio spectrum analyzer used 
to monitor the spectral composition of the audio waveform, and a vectorscope displaying 
the x-y relationship of two video signals. These tools are all available in real time, as video 
is being captured, and allow for quick, on-the-fly adjustments when shooting on location.

Video effects: Premiere includes a full set of video effects that can be implemented either 
in postproduction or in real time while shooting. These effects include brightness and 
contrast adjustments, color balancing, cropping, directional blurring, fast and Gaussian 
blurring, lens flare, replication, posterization, and many more. The flexibility provided by 
the ability to apply these effects either on the fly or in postproduction can shorten produc-
tion time considerably.

Soundbooth
Audio editing often runs hand-in-hand with video editing. In fact, you could make a strong 
case that stand-alone audio editing is now less common than editing audio in conjunction 
with accompanying video. This is especially true in an ever-more interactive multimedia 
world.

Given this marriage of audio and video, it’s important to be able to edit audio as the inte-
gral element of the video it has become. Synchronization, for example, is critical, as are the 
tools to make that task more accurate and efficient. Additionally, the importance of audio defi-
nition and placement has risen in tandem with increases in video definition and advances in 
scaling. With high-definition, widescreen video, the placement of a sound effect in the proper 
temporal location within a video image is critical to telling the story. A broad audio image 
is necessary to support a wide video image. The breadth of that audio image now extends 
beyond the 180-degrees facing the viewer. It reaches a full 360 degrees behind the viewers, 
immersing them in sound that further supports the video storytelling. This requires the ability 
to intelligently and discretely assign audio to specific channels, and to do so at precisely the 
right time. 



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 103

In short, audio editing has moved far down the road from the days of splicing magnetic 
tape or layering a soundtrack on film. Soundbooth offers the following features to support 
 professional audio editing:

Soundbooth Scores: These are customizable, prerecorded soundtracks, similar to those 
provided by the Mac’s Magic GarageBand tool. These scores can be applied to any video 
project, with instruments and parts dropped, added, or emphasized. Using the scores can 
significantly reduce the cost and time of producing video, especially for nonprofessionals 
on a limited budget.

Audio filters: The Soundbooth library of audio filters includes time and pitch stretching, 
distortion, reverb, echo, chorus, and much more. These filters provide the editor with a 
full range of tools for precise sound editing and customization.

Audio recording: Soundbooth isn’t limited to editing existing audio files. New audio can 
be recorded directly into Soundbooth, either in mono or stereo.

Audio cleanup: Some types of audio problems are common from one recording to 
another. Rumbling, hissing, and pops can invade and significantly reduce the quality of an 
audio recording. Soundbooth contains tools to detect and deal with these common prob-
lems automatically.

Animation cues: Soundbooth can create markers in an audio file that will later be rec-
ognized by Flash. By using ActionScript in Flash to read these cues, sound events can 
trigger visual events in Flash animations. Those events can even include actions-based 
 captioning.

Adobe Premiere integration: Audio can be sent directly from Premiere to Soundbooth, via 
an Edit in Soundbooth button. When edits are complete and saved, they’re automatically 
imported back into the Premiere timeline and assets windows.

Mac OS X Third-Party Multimedia Summary
While smaller applications exist for multimedia editing and production in Mac OS X, none 
have the Apple history, the power, or the full capabilities of the Adobe tools. The recent Adobe 
move to more tightly integrate these tools into bundled packages has had mixed results. While 
that bundling has more closely integrated the various tasks of producing and editing sound 
and video, it’s also impacted the pricing of the individual tools. Aside from price, it’s difficult 
to find any multimedia tools for Mac OS X that come close to the power and flexibility of the 
Adobe products.

A strong case could be made that Adobe is slowly moving away from any emphasis at all 
on consumer-level multimedia production. In a sense, that niche is already being filled by the 
Apple iLife tools, included at no additional cost with new Macs and at minimal cost as a stand-
alone package. While not nearly as powerful nor as flexible as the Adobe tools, the iLife suite 
provides all the capabilities required by the average person to edit, save, manage, and distrib-
ute multimedia files. So, while ongoing rumors that Apple is creating several Adobe killers may 
not be perfectly accurate, Apple has already, in an indirect but no less real sense, created simi-
lar tools to fill a niche that Adobe would probably rather be out of anyway.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS104

Open Source Multimedia Tools
With the tight tool integration and the full resources of large software groups behind them, it’s 
tough to make a completely fair comparison of open source multimedia tools to those of either 
Adobe or Apple. It’s a simple statement of fact that no single suite of tools like the Adobe pack-
ages or the iLife set exists in the open source world. Then again, these large tool packages are 
almost antithetical to the open source philosophy of combining small tools that do one thing 
right. Yes, Photoshop is an image editor. It also happens to be so tightly integrated with the 
other Adobe applications as to be almost indistinguishable from them. For sure, Soundbooth 
is a strong audio editor, but its strengths lie in its use in parallel with Premiere. 

All that sets aside the monetary price for each individual tool. These prices range from $99 
US for Acrobat Pro to $999 US for Photoshop CS Extended. Pricing is considerably higher when 
reaching for the real strengths of the software—purchasing tightly integrated task-specific 
bundles, like those for web development, video production, or graphics creation. In short, it’s 
tough for the average user to afford to get onboard the Adobe wagon.

While the open source community has yet to release a package of tools as tightly inte-
grated as those produced by Apple or Adobe, the community does offer some outstanding 
alternatives in the form of individual tools that accomplish their tasks powerfully, cleanly, and 
efficiently. A full range of functionality can be found in software that addresses the tasks of 
audio editing and graphics creation. These tools do, in fact, meet the previously noted open 
source goal of tackling one task and tackling it well.

Additionally, most open source software installed on the Mac, including multimedia soft-
ware, performs at least as well as when installed on other Intel-based machines. I could make 
the case that, for any number of reasons, it actually performs better than on some machines. 
I’ll leave the heft of that discussion for another time. The point here is that Mac hardware is 
a known quantity, unlike any number of other computer brands and models on which folks 
run open source software. Software developed specifically for use in Mac OS X is developed 
for a known hardware set. That eliminates many of the problems encountered when install-
ing and using open source software on less well-defined (or understood) hardware platforms. 
Open source multimedia software ported for use in Mac OS X is no exception. Simply put, 
that known hardware configuration is one of the most compelling reasons for moving from a 
generic open source hardware platform to the Mac platform.

Here, we’ll look at two popular open source multimedia tools: GIMP for image editing and 
Audacity for audio editing.

Graphics Editing with GIMP
At the top of the heap for open source image creation and manipulation is the GNU Image 
Manipulation Program, known as GIMP, as shown in Figure 5-19. In effect, it’s the Photoshop 
of open source image creation and editing. Its full feature set and ease of use make it the pre-
ferred tool for any open source user in need of a complete graphics solution.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 105

Figure 5-19. The GNU Image Manipulation Program: GIMP

GIMP is similar to Photoshop in several ways, including appearance and functionality. 
Also, the full range of supported formats is not unlike Photoshop.

GIMP does, in fact, have some distinct advantages over Photoshop in its strong developer 
base and ongoing open development. There’s also a pretty active community, building plug-
ins and additional scripts for GIMP—something we’ve come to expect and recognize as one of 
the great strengths of the open source world.

Installing GIMP 
GIMP can be installed on the Mac in a number of ways, including as a binary installation, or 
through either of the two open source tools for installing software we covered in the previous 
chapter: Fink or MacPorts.

Note Recent versions of GIMP require either Mac OS X 10.5.2 or XQuartz 2.2 or greater, available from 
. While some small font issues exist, a GIMP installation that relies on 

XQuartz works well.

To perform a binary installation, follow these steps:

 1. Go to  to download the binary image file ( ).

 2. Double-click the image icon to mount the image.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS106

 3. Drag the application icon in the resulting window to the Applications shortcut.

 4. Eject the GIMP image volume from the desktop by right-clicking and selecting Eject 
GIMP.

To use Fink, open a terminal window and enter the following command: 

Alternatively, enter the following command to download and build the GIMP package 
from source:

To use MacPorts, open a terminal window and enter this command:

GIMP Editing Features
In its default configuration, the GIMP Toolbox floats on the left side of the screen. It includes 
many brushes, fills, pens, stamps, fonts, and other graphics editing tools.

By default, the GIMP Layers dialog box floats just to the right of the Toolbox. This dialog 
box provides the tools for creating and manipulating layers, channels, and paths. It also pro-
vides a visual undo history. The composition window in GIMP is layerable, and is created from 
any GIMP window containing the File menu option.

GIMP includes the following advanced graphics editing features:

In short, GIMP provides a rich feature set for users of all skill and needs levels.

Audio Editing with Audacity
Among the open source audio tools for Mac OS X, there’s little doubt which is the strongest. 
Audacity is a near-professional grade audio editor with a full feature set. Audacity is available 
for Mac, Windows, and Linux—all under the GPL at .

While many well-known cross-platform open source applications (including Opera, KDE, 
Google Earth, and Scribus) rely on the Qt framework, Audacity relies instead on wxWidgets for 
its cross-platform GUI, shown in Figure 5-20.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 107

Figure 5-20. Editing audio with Audacity

Installing Audacity
Follow these steps to install Audacity:

1. Download the Audacity image from .

 2. Mount the Audacity image by double-clicking the downloaded image icon.

 3. Drag the contents of the resulting window to the  directory.

 4. Eject the Audacity image by right-clicking the volume on the desktop and selecting 
Eject Audacity.

Note The Audacity image also includes directories for Nyquist, plug-ins, and languages. Access to these 
tools is made a bit easier by creating an  folder in the  directory, and then dragging 
the full contents of the image into the new folder. The same can be done with other applications that provide 
more than just a binary file.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS108

Audacity Editing Features
Audacity creates an easy-to-use and customizable visual editing environment on the Mac, 
with a full range of audio editing features. The key Audacity features include the following:

 Simple Plugin API (LADSPA), Virtual Studio 
Technology (VST), and Nyquist plug-ins

 the spectrogram tool

Open Source Multimedia Summary
The open source tools for editing multimedia files pack a great punch, providing much of the 
same functionality as the commercial alternatives. While they’re not as closely tied to each 
other as their commercial counterparts, they offer some additional features that may not be 
available in other tools. Features such as full scriptability and third-party plug-in support 
extend these tools to fill nearly any editing need.

The tools mentioned here are by no means the only open source multimedia packages for 
Mac OS X. Developers continue to create strong tools for Mac OS X, releasing them under open 
source licenses. Many of these packages have found their way into the Fink and MacPorts sys-
tems (introduced in Chapter 4).

Office and Productivity Tools in Mac OS X
Aside from the widely respected multimedia capabilities of Mac OS X, it also serves as a strong 
platform for office and productivity tools. Several office tools came to Apple Computer early 
in its life. Among them was VisiCalc, the first computer spreadsheet program. VisiCalc was 
released in 1979 for the Apple II computer. It quickly became one of the first staples of office 
software, pulling the Apple II squarely into its first serious use in business. Although the focus 
of Apple computers has changed periodically since the Apple II, and despite being over-
whelmed by the PC in the business community in the early and mid-1990s, business software 
has remained a priority at Apple.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 109

Microsoft Office for Mac
The primary commercial business and productivity software for Mac OS X includes the 
ubiquitous Microsoft Office suite of Word, Excel, and PowerPoint. Entourage provides the 
Outlook-equivalent e-mail and calendaring application for Mac OS X in the Office for Mac 
suite. Microsoft Office for Mac will set you back $150 US for the Home and Student license.

The Office applications work much the same on the Mac as they do in Microsoft Windows, 
with some additional look and feel tweaks for consistency with the Apple Human Interface 
Guidelines. 

When designed based on the Apple Human Interface Guidelines, applications take on a 
much cleaner look than their Windows counterparts. The look includes the rounded corners, 
shadowing, and transparency of other Mac OS X applications.

The main menu bar in all Office applications is pared down considerably, reducing the 
clutter of the Windows version. Many menus have been collapsed into a single menu bar, 
with those menu options running one or more layers deep. Figure 5-21 shows the main Word 
 toolbar.

Figure 5-21. The main Word toolbar

To give you an idea of the Office applications’ interface in Mac OS X, Figure 5-22 shows 
creating a new Word document, and Figure 5-23 shows editing a Word document. 

Figure 5-22. Creating a new document in Word for Mac



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS110

Figure 5-23. An open document in Word for Mac

In general, the changes to the Word, Excel, and PowerPoint applications for the Mac OS 
are primarily cosmetic. The known functionality across the set of tools remains nearly intact, 
although the user path to some of that functionality has been reduced. 

Entourage is the e-mail, contacts, and calendar replacement for Outlook on Mac. The 
Entourage interface is a three-pane view by default, as shown in Figure 5-24. Entourage mail 
supports both POP3 and IMAP. It sports adequate spam filtering, message highlighting, and 
additional security, including image security. Entourage contacts read directly from Address 
Book on the Mac and render within the same interface window as Mail.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 111

Figure 5-24. Viewing e-mail in Entourage

Calendaring in Entourage is far less intuitive than in iCal, Mac OS X’s native calendaring 
application. Entourage is not integrated with iCal, by default. To see Entourage calendar items 
in iCal, it’s necessary to create an Entourage calendar in iCal. Items created in iCal will not be 
seen at all in the Entourage calendar.

While the other Office applications for Mac share most of the same functionality as their 
Windows counterparts, Entourage feels out of place on the Mac. It’s not exactly a replacement 
for Outlook, nor does it play well with the native Mac applications. Although it supports all 
modern e-mail technologies, the shortcomings of the calendar application leave it incomplete.

The Mac iWork Tools
Unless you absolutely must rely on Microsoft, there are some considerably stronger options 
for Mac productivity tools. One of those options is iWork, Apple’s package for word process-
ing, spreadsheets, and presentations. Unlike the iLife tools, iWork is not included with new 
Macs. However, iWork is surprisingly affordable at $79 US.

The iWork tools include the Pages word processor, the Numbers spreadsheet, and the 
Keynote presentation tool. Functions are shared across the iWork suite, simplifying overall 
use.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS112

Pages
The iWork equivalent to Microsoft Word is Pages, the native Mac OS X word processing appli-
cation. Pages opens with options for creating a document based on any of many included 
templates, as shown in Figure 5-25. These types are divided into two main categories:

Word Processing: Documents such as blank pages, letters, forms, resumes, and reports. 

Page Layout: Documents that require more complex layouts, such as brochures, flyers, 
posters, and business cards.

Figure 5-25. Selecting a document template in Pages

Templates in Pages go a step further than those in other word processing applications: 
they fill in the body of the template as visual support for the user. They also draw on details 
included in the iWork setup or information that’s included in your system details. Figure 5-26 
shows an example of a letter template opened in Pages.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 113

Figure 5-26. An open document in Pages

Consistent with the Apple Human Interface Guidelines, the look and feel of Pages is clean, 
if not sparse. Menus are clearly defined, with consistent and logical submenus. Figure 5-27 
shows the main Pages toolbar. 

Figure 5-27. The main Pages toolbar

Pages will export documents to RTF or DOC format. It also supports importing and editing 
in those formats.

However, Pages doesn’t implement some of the higher functions of other word proces-
sors, although some features can be added. For example, macros can be implemented using 
Apple’s native scripting language, AppleScript.

In short, the feature set of Pages makes it a strong and very usable word processor, 
although it may not meet all the demands of hard-core business users.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS114

Numbers
The iWork equivalent to Microsoft Excel is Numbers, the native Mac OS X spreadsheet applica-
tion. Like its word processing counterpart in the iWork package, Numbers opens with a choice 
of spreadsheet templates, as shown in Figure 5-28. The top-level spreadsheet types include 
the categories Blank, Personal, Business, and Education, with several task-specific templates 
nested within those groups. Figure 5-29 shows an example of a spreadsheet created with a 
Numbers template.

Figure 5-28. Selecting a template for Numbers



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 115

Figure 5-29. A completed spreadsheet created with a Numbers template

Numbers takes an interesting approach to multiple data sources within a single spread-
sheet. Those data sources are placed in a sidebar within the main window, and a summary 
page is presented as the top page. (Note the similarity in look and feel to the iTunes applica-
tion. This has been a strategy of Apple with Mac OS X native applications since 2006.)

Like Pages, Numbers is an easy-to-use application, although it’s somewhat more light-
weight in functionality than Excel. Again, while Numbers will meet most of the needs of a 
casual user, it may be lacking in features for a spreadsheet power user.

Keynote
Perhaps the most venerable application in the iWork suite is the masterful presentation pack-
age, Keynote. You may have already seen a Keynote presentation. It was the presentation tool 
used by Al Gore in the Academy Award–winning 2006 film An Inconvenient Truth. It’s also the 
tool used in every presentation by Steve Jobs since its introduction.

Consistent with the other iWork tools, Keynote opens with template options to create a 
new presentation, or the capability to open an existing presentation, as shown in Figure 5-30. 
Figure 5-31 shows an example of editing a slide in Keynote.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS116

Figure 5-30. Selecting a Keynote template

Figure 5-31. Editing a slide in Keynote



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 117

The many strengths of Keynote include the highly stylized templates, the huge range of 
available fonts, and the ease with which outside elements, such as video and other multimedia, 
can be included in a presentation. Keynote also provides Smart Builds, a much cleaner and 
more intuitive way to create transitions between slides and to build action and motion into 
individual slides. Additionally, Mac OS X renders the final presentation in a size that’s consid-
erably smaller than PowerPoint presentations.

Where Pages and Numbers lack a bit for word processing and spreadsheet power users, 
even hard-core PowerPoint users will recognize and appreciate the power and flexibility of 
iWork’s Keynote. And Keynote includes full support for the PowerPoint PPT format.

Open Source Productivity Tools
Several open source or open source–like options exist for productivity tools on Mac. They offer 
a full range of functionality and, to a large extent, serve well as functional replacements for 
the commercial proprietary productivity software of Apple and Microsoft. In this section, we’ll 
look at the two primary packages chosen by Mac users: OpenOffice.org and NeoOffice.

OpenOffice.org
OpenOffice.org is a productivity suite originally created as StarOffice. StarOffice was pur-
chased by Sun Microsystems in 1999, with the first Sun build of StarOffice released in June 
2000. Following that release, StarOffice was forked to a proprietary branch and an open source 
branch, represented by OpenOffice.org. OpenOffice.org is licensed under the Lesser GNU 
Public License (LGPL) and serves as the code base for StarOffice. Sun is the primary code con-
tributor to the OpenOffice.org project.

OpenOffice.org contains the standard tools widely accepted as parts of a productivity soft-
ware whole, as shown in Figure 5-32. These include the following applications:

In June 2008, OpenOffice.org released its first self-contained version for Mac OS X. The 
version 3 beta was the first OpenOffice.org version for the Mac that did not require a separate, 
running X server. Dubbed OpenOffice Aqua, the package was larger in size, but considerably 
quicker in use. OpenOffice Aqua is now the standard build type for OpenOffice.org on Mac.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS118

Figure 5-32. Creating a new document in OpenOffice.org

NeoOffice
NeoOffice is a Mac OS X productivity suite based on OpenOffice.org, but forked as a separate 
project. It’s completely native to Mac OS X and released under the GPL. As NeoOffice is based 
on the OpenOffice code and model, the look, feel, and functionality of the OpenOffice.org and 
NeoOffice applications are nearly identical.

NeoOffice includes the following software packages: 

NeoOffice Write: Write, shown in Figure 5-33, is the NeoOffice word processing applica-
tion. It has a feature set that is nearly the same as Microsoft Word. Though not as clean in 
appearance as the recent versions of Microsoft Office for Mac, NeoOffice Write provides 
all the necessary functionality for both novices and power users. Documents created in 
NeoOffice Write are fully compatible with Microsoft Word. Word documents can also be 
opened and edited in Write, with the resulting documents saved seamlessly to the Micro-
soft DOC format.

NeoOffice Calc: Like Write, Calc is a fully functional spreadsheet application, as shown in 
Figure 5-34. It utilizes many routines that are similar to those in Microsoft Excel, and has 
a similar look and feel to older versions of the Microsoft spreadsheet program. As with 
Write, Calc can easily be considered feature-complete and a suitable replacement for even 
the most advanced Excel user.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 119

Figure 5-33. Creating a new document in NeoOffice Write

Figure 5-34. Creating a new spreadsheet in NeoOffice Calc



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS120

NeoOffice Impress: This application presents the familiar interface of a powerful pre-
sentation program, as shown in Figure 5-35. Though Impress is not as advanced as its 
counterparts in the NeoOffice suite, Microsoft PowerPoint users will find Impress suitable 
for their needs.

Figure 5-35. Creating a new presentation in NeoOffice Impress

NeoOffice Draw: While presented as a drawing application, Draw is more analogous to a 
desktop publishing program, geared toward page layout and design, as shown in Figure 
5-36. As such, it’s acceptable, though Adobe Illustrator users might hardly recognize it for 
its absence of powerful features.

NeoOffice Base: A stand-alone database application, Base is intended as an open source 
replacement for Microsoft Access. It is, however, feature-thin in comparison to Access, or 
to PHPMyAdmin or pure PHP scripting for MySQL. Figure 5-37 shows the New Database 
window in Base.



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 121

Figure 5-36. Creating a new publication in NeoOffice Draw

Figure 5-37. Creating a new database with NeoOffice Base



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS122

In most significant ways, NeoOffice is an outstanding and powerful productivity suite for 
Mac OS X. Its native approach makes it fast. Its various applications can edit and save files 
from other third-party productivity applications. As an application under the GPL, it relies 
strictly on donations for its development, yet NeoOffice is an outstanding alternative to com-
mercial and proprietary productivity suites for Mac OS X.

Summary
Mac OS X has many strengths. It’s a powerful and versatile platform on which to create and 
edit multimedia files, from graphics to video to audio. With the advanced Core Image, Core 
Video, and Core Audio frameworks, Mac OS X has a cutting-edge look and feel. More impor-
tant, these tools make it possible to maximize the power of Mac OS X when creating and 
editing multimedia applications.

Those strengths are the backbone upon which Apple has built its reputation for many 
years. As such, Mac OS X includes a suite of tools to manage and edit personal multimedia 
files: the iLife package of iPhoto, iMovie, iDVD, iWeb, and GarageBand. These are powerful 
tools, especially when considering that they’re included with the operating system.

Also available are a variety of third-party, proprietary, professionally-oriented multimedia 
tools, although this market is a bit dark in the shadow of Adobe Systems. Adobe’s ever-growing 
inventory of Mac-centric multimedia tools has cornered the professional market, although the 
professional tools from Apple are making inroads into Adobe’s dominance. Leveraging a long-
standing relationship with Apple, Adobe continues to push its tools in new directions, as well 
as finding new income inroads through tool bundling. 

And, of course, with its BSD engine, Mac OS X is also a powerful platform for open source 
multimedia tools. In particular, GIMP and Audacity lead the open source community for 
graphics and audio editing, respectively. While not as powerful as their Adobe counterparts, 
Photoshop and Soundbooth, these open source tools are, in fact, viable upgrades to the 
 comparably-tasked iLife tools on the Mac. Both are developed and maintained in rich open 
source environments.

For many, computing means productivity. And for those users, productivity tools neces-
sarily mean Microsoft Office. Some have never discovered the alternatives. Some simply feel 
they cannot use anything else, lest they lose the business edge. For them, Microsoft provides 
an equal to its Windows-based Office package in Microsoft Office for Mac. Feature-complete, 
Office for Mac is, in many ways, a good alternative to the Windows version. By complying 
closely with the Apple Human Interface Guidelines, Microsoft has created a cleaner, more 
accessible version of its hallmark Windows software for Mac. Office users will find the adjust-
ment curve small, with no missing functionality for the power users.

Of course, Apple has created its own smaller set of productivity tools: iWork. Unlike iLife, 
iWork is not included in Mac OS X. Nor is it as feature-dense as the Microsoft Office for Mac 
package. However, like the iLife tools, the tools provided by iWork are efficient, powerful, and 
perfectly suited to the average consumer. And, yes, they have that distinctive Mac look and 
feel.

On the open source side of the productivity world, two packages stand out. In reality, 
they’re very nearly the same. Both are based on OpenOffice.org, which was originally the Ger-
man package StarOffice. The differences between NeoOffice and OpenOffice.org are primarily 
under the hood. The tool functions are the same. The individual tool names are the same. And 
the look and feel of the packages are almost identical. The single biggest difference between 



CHAPTER 5   USING THE MANY APPLE AND L INUX TOOLS 123

the two packages may be that NeoOffice was created natively for the Mac. Licensing separates 
the productivity tools, as well, with NeoOffice released under the GPL and OpenOffice.org 
released under the LGPL. However, OpenOffice.org has begun to move closer to the Mac-
native model, releasing new versions that no longer require a stand-alone X server.

Now that we’ve covered multimedia and productivity tools, in the next chapter, we’ll take 
a look at Mac OS X system administration.



C H A P T E R  6

Routine Mac OS X System 
Administration

If you’ve administered UNIX or Linux systems in the past, or if you’re making a living doing 
that now, you’ll find many similarities between the administrative tools on those computers 
and those included with Mac OS X. The lineup is not a perfect match, but it’s close enough in 
many cases. Apple has made some modifications to Mac OS X tools for its own purposes, but 
many of these changes will be noticeable only to the hard-core Linux and UNIX faithful.

Let’s start this chapter with the similarities.

Using the Shell
The default user shell for Mac OS X is bash, the Bourne-Again SHell. Bash has been ported 
almost entirely intact from BSD. Prior to the introduction of bash in Mac OS X 10.3 (Panther), 
the default shell for Mac OS X was tcsh, the TENEX C SHell. While tcsh is a flexible and popular 
shell, bash has become more widely implemented. With strong similarities to the csh, the C 
SHell, bash offers much more flexibility in programming and scripting than its C predecessors 
or the tcsh shell.

A strong understanding of the shell and its scripting power is a modern prerequisite for 
most UNIX/BSD/Mac OS X administrators. Increasingly, the powerful shell of choice for 
administrators is bash.

Programming in bash isn’t as complete or as powerful as full-blown programming in 
other languages. This programming is generally accomplished via small scripts, although bash 
provides the power to create very large and complex scripts. The scripting features in bash 
include the popular POSIX shell features: redirection, pipes, variables, conditionals, looping 
(including for and while loops), and functions. Bash scripts have become the backbone of 
many administrative tools and tasks in UNIX, BSD, and Mac OS X. Such administrative scripts 
can be created on the fly with any text editor, and tested line by line or command by com-
mand.

Aside from powerful programming capabilities, bash features aliasing, command prompt 
customization, and environment variables. These allow administrators to fully customize their 
daily work environment. Administrators can, in a sense, build an environment that gives them 
the most comfort, familiarity, and flexibility for their own uses.

125



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION126

Changing the Default Shell
If you’re currently a system administrator and hopelessly hooked on another shell environ-
ment, it’s possible to change the default shell in Mac OS X. The default Mac OS X installation 
includes bash, tcsh, ksh, and zsh—a lot of flexibility in shell environments. The binaries for all 
these shells are located in .

To change the default shell, open the Terminal application and select Preferences. Choose 
the Settings tab and the Shell option. In the Startup text box, enter the path to your preferred 
shell. In Figure 6-1, this default shell has been changed to tcsh, located in . Close the 
Preferences window and the current terminal window. When you restart the Terminal applica-
tion, the new shell you selected will be the default.

Figure 6-1. Terminal application shell preferences in Mac OS X

Invoking a different shell environment directly from the command line is easy, as well. 
Simply enter the shell environment command in a terminal window. That will execute the 
new shell environment. Of course, this will be a temporary invocation, replaced by the defined 
default shell the next time the Terminal application is opened.

Another option exists for changing the default shell in Mac OS X, although it’s a bit more 
complicated than setting the Terminal application Preferences. From System Preferences, 
select your user. In the resulting window, click the lock icon in the lower-left corner and enter 
your password when prompted. Control-click your username in the left pane, and select 
Advanced Options to see the settings shown in Figure 6-2. Select the new shell from the Login 
Shell drop-down list. To force the change, you’ll need to log out of your account and log 
back in.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 127

Figure 6-2. Advanced user options in System Preferences

To make the change from the command line, use the  tool in a terminal window:

This command will open a window with output similar to the following:

In this window, change the shell defined in the  line. Then save and close the file. 
The default user shell will be changed to your preference.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION128

The  tool also exists in many Linux distributions, including Ubuntu. However, there 
are significant differences between the Linux implementation and the Mac OS X implementa-
tion. In Linux, for example, the tool is much more targeted to the user shell choice. The other 
editing options are not available. Here’s an example of using the Linux version:

While the Mac OS X version of the  tool allows a broader range of edits to the user 
information, the Linux version eliminates some possible errors by narrowing the editable 
information.

Using UNIX Administration Tools and Commands
Given the UNIX/BSD basis of Mac OS X, it should come as no surprise that many of the most 
powerful administrative commands in those systems are also available in Mac OS X. Of partic-
ular interest to administrators is the ability to parse text, generally in the form of log files. BSD 
is chock-full of these tools, but a subset is especially useful to system administrators. Again, 
the good news is that UNIX and BSD administrators have access to even this subset of tools in 
their native form in Mac OS X. Table 6-1 lists the tools, along with a brief description (based on 
the individual tool man pages), that most consider to be at the heart of system administration 
in UNIX, BSD, and Mac OS X.

Table 6-1. UNIX Command-Line Administration Tools

Command Description

  Searches the named input files or standard input if no files are named, for lines con-
taining a match to the given pattern. By default,  prints the matching lines.

  Performs pattern-directed scanning and language processing.  scans each input 
file for lines that match a set of patterns specified literally in  or in one or more 
files specified as - . With each pattern, there can be an associated action 
that will be performed when a line of a file matches the pattern.

  Reads the specific files, or the standard input file if no files are specified, modifying 
the input as specified by a list of commands. The input is then written to the standard 
output. The  utility is a stream editor.

 Sorts lines of text files. Writes sorted concatenation of all files to standard output.

  Reports or filters out repeated lines in a file. The  utility reads the specified input 
file, comparing adjacent lines, and writes a copy of each unique input line to the 
output file.

  Concatenates and prints files. The  utility reads files sequentially, writing them to 
the standard output. The file operands are processed in command-line order.

  Constructs argument list(s) and executes the command. The  utility reads 
space, tab, newline, and end-of-file delimited strings from the standard input and 
executes the command with the strings as arguments.

  Takes a command as an argument and runs that command within the running shell’s 
process.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 129

Command Description

  Displays the first lines of a file. This filter displays the first count lines or bytes of each 
of the specified files, or of the standard input if no files are specified. If the count is 
omitted, it defaults to 10. 

  Displays the last part of a file. The  utility displays the contents of a file or, by 
default, its standard input, to the standard output.

  Lists directory contents. For each operand that names a file of a type other than 
directory,  displays its name as well as any requested, associated information. 

  Converts and copies a file. The  utility copies the standard input to the standard 
output. Input data is read and written in 512-byte blocks. 

 Compares files line by line.

  Runs the GNU version of the  archiving utility. The man page documents the 
GNU version of , an archiving program designed to store and extract files from an 
archive file known as a tarfile. A tarfile may be made on a tape drive; however, it is 
also common to write a tarfile to a normal file.

  Selects portions of each line of a file. The  utility selects portions of each line (as 
specified by ) from each file and writes them to the standard output. If no file 
arguments are specified, or a file argument is a single dash ( ),  reads from the 
standard input.

These command-line administration tools are available in their native UNIX/BSD forms 
to Mac OS X system administrators. As with most tools in UNIX, these utilities can be executed 
as stand-alone commands with the appropriate options, or called from scripts either indi-
vidually or in combination. And, as noted in many of the descriptions, these tools can accept 
standard output as input. That means they can be strung together with output piped from 
one command to another. This creates a huge number of tool combinations and options for 
administering a Mac OS X system.

System Monitoring
Another important element of system administration is monitoring system resources and 
use. Mac OS X provides a full set of tools, both on the command line and through the GUI, for 
this system monitoring. Here, we’ll look at the Activity Monitor GUI tool, and the  and  
command-line tools.

Note Several other system monitoring tools are available in Mac OS X. These include , which pro-
vides a list of open files, and , a tool to display Mach kernel virtual memory statistics.

Using Activity Monitor
The Mac OS X GUI tool for system monitoring is Activity Monitor, located in 

. As shown in Figure 6-3, Activity Monitor provides a formidable level of data in an 
efficient format, using a combination of drop-down options, search options, and tabs.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION130

Figure 6-3. The Mac OS X Activity Monitor main window

As shown in Figure 6-4, Activity Monitor provides a number of ways to view the data, 
available through a drop-down menu in the main interface. These options include the ability 
to view processes by users, process type, or status.

Figure 6-4. Selecting Activity Monitor view options from the drop-down menu

In addition to using the drop-down menu options to access views, administrators can 
search Activity Monitor for specific processes. As shown in Figure 6-5, the search interface is 
similar in look and feel to the other search tools in Mac OS X, providing full consistency across 
the operating system. Additionally, the text searches can be accomplished with any of the 
drop-down menu selections. This flexibility dramatically expands the possible administrative 
views of the current system.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 131

Figure 6-5. Searching for specific processes in Activity Monitor

The main Activity Monitor window provides a wealth of information about the current 
state of the system, as shown in Figure 6-6. It includes the columns of information listed in 
Table 6-2. You can sort all of the columns in Activity Monitor in ascending or descending order 
by clicking the head of the column of interest.

Table 6-2. Activity Monitor Columns

Column Head Contents

PID The process ID, a unique value assigned to each process on the running system.

Process Name The common name assigned to each process on the running system.

User The owner of the given process.

CPU  Current CPU use as a percentage. Percentages greater that 100 indicate use of 
both processors in a multiprocessor system. For example, 60% utilization of 
each processor in a dual-processor system would show a value of 120.

Thr The number of threads in use by the given process.

RSIZE  The size of the resident memory allocated to the given process. This is the 
amount of RAM currently in actual use by the system.

Virtual Memory The total address space allocated for the given process. 

Kind  The processor type used for the noted process. This will display “Intel” for Intel-
native binaries, and “PowerPC” for binaries running under the Rosetta PowerPC 
emulator.

Figure 6-6. The main Activity Monitor window, displaying pertinent information about the 
 current system state



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION132

Aside from the viewing options of process types and searchable strings, Activity Moni-
tor also slices and dices the current system activity in a number of other ways. As shown in 
Figure 6-7, Activity Monitor provides tabs for viewing the current use of all system resources: 
CPU, System Memory, Disk Activity, Disk Usage, and Network.

Figure 6-7. Additional tabbed options for viewing the current system activity

Finally, Activity Monitor provides a graphical representation of the system use, as shown 
in Figure 6-8. This view includes the percentages of system resources used by both the users 
and the system, the percentage of nice resources (those reprioritized using the  com-
mand), the percentage of processes currently in the idle state, the total number of running 
threads, and the total number of running processes. The graphical display also provides a 
snapshot of processor CPU usage, updated once per second.

Figure 6-8. A graphical representation of current system use in the CPU tab of Activity Monitor

Overall, Activity Monitor provides a comprehensive and flexible view of the current state 
of the Mac OS X system. In reality, though, it’s simply a clean, graphical front end to several 
other UNIX command-line tools. Most prominent among them are  and . Using the 
 Terminal application, system administrators can access these command-line tools to mon- 
itor system performance.

Viewing System Processes with top
The  command in Mac OS X, as in UNIX-based systems, returns a near real-time view of 
current system processes. This output includes a summary of process totals by type or state 
(running, stuck, or sleeping), a summary of the system load, the number of current shared 
libraries in use, memory regions in use, and both physical and virtual memory in use. This 
data is located at the top of the output from the  command, as shown in Figure 6-9. 



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 133

Figure 6-9. Terminal output from the top command

As you can see in Figure 6-9, the output breaks down system usage by individual pro-
cesses. This varies a bit from the typical output of the UNIX  command. Mac OS X’s  
provides columns of information that differ from other  output. These columns include 
those shown in Table 6-3.

Table 6-3. The top Command Output Columns

Column Head Contents

PID Process ID

COMMAND The command executed to initiate the process

TIME The execution time of the process

#TH The number of threads utilized by the process

#PRTS The number of Mach kernel ports utilized by the process

#MREGS The number of memory regions utilized by the process

RPRVT The resident private memory size

RSHRD The resident shared memory size

RSIZE The total resident memory size

VSIZE The total address space allocated to the process, including shared pages

The output shown in Figure 6-9 is the result of the bare  command.  in Mac OS X, 
as in its UNIX counterpart, recognizes a large pool of available options for customizing the 
output. These are listed in the  man page, available from the terminal window with the 
command .



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION134

Listing Processes with ps
Mac OS X also makes full use of the UNIX command that lists running processes:  (process 
status in UNIX-ese). It lists information about all of the current processes that have controlling 
terminals.

Figure 6-10 displays the output from the  command in Mac OS X, with the additional 
 option. This option expands the standard output from  to show processes that do not 

include a controlling terminal ( ) and current processes belonging to other (or all) users ( ). 
The output from  breaks down as shown in Table 6-4.

Figure 6-10. Output from the Mac OS X ps command

Table 6-4. The ps Command Output Columns

Column Head Contents

PID Process ID.

TT  The identification of the controlling terminal. If the noted process does not include 
a controlling terminal, the output of  will include  in this column.

STAT  The current state of the process. These codes can include , for uninterrupt-
ible sleep; , for nice low priority; , for runnable; , for sleeping; , for traced or 
stopped; and , for defunct (or zombie).

TIME The total running CPU time of the process, in MM:SS fractions.

COMMAND The command used to initiate the process.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 135

User Maintenance
One of the most common jobs of system administrators is user maintenance: adding, delet-
ing, and modifying users on the system. Administrators or individual system users may also 
customize the list of applications to start when logging in, or may choose to change their login 
password. 

As with so many of the other elements of Mac OS X, most of these user maintenance tasks 
can be performed using either GUI tools or the command line. Let’s look first at the GUI tools 
and how to use them for creating and deleting users in Mac OS X.

Managing User Accounts Using System Preferences
User accounts in Mac OS X are maintained in System Preferences. Figure 6-11 shows an 
Account window locked from modification, as indicated by the lock icon in the lower-left 
 corner. Users with system administrator privileges can unlock the editing functions by clicking 
the lock, and then entering their login password.

Figure 6-11. The Accounts window of System Preferences

When the administrative login is accepted, the grayed-out areas of the Accounts window 
will become editable, as shown in Figure 6-12. To add a new user to the system, click the plus 
sign at the bottom of the users pane. This opens a form for all the new user information, both 
required and optional, as shown in Figure 6-13.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION136

Figure 6-12. The Accounts window unlocked for user maintenance

Figure 6-13. Adding a new user with the Accounts tool

To delete a user on the system using the Accounts tool, click the minus sign at the bottom 
of the users pane. Figure 6-14 shows the resulting window, which provides options for the user 
data after deletion of the account. These options include creating a disk image for the contents 
of the user’s home folder, leaving the home folder entirely intact, or deleting it altogether. 



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 137

Checking a radio button and clicking OK will delete the account, handling the user’s home 
folder as you specified.

Figure 6-14. Deleting a user with the Accounts tool

In addition to creating or deleting users, the Accounts tool lets users set which applica-
tions on the system will start when each user logs in. To add an application to the list, click the 
plus sign below the applications list, and then select the application from the resulting window. 
Selecting the check box beside an application listed in the Login Items window, as shown in 
Figure 6-15, will hide the chosen application at startup.

Figure 6-15. Setting login items with the Accounts tool



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION138

Finally, users may choose to reset an existing login password using the Accounts tool. 
 Figure 6-16 shows the information required to reset an existing user password.

Figure 6-16. Resetting a user password with the Accounts tool

Managing Users Using the Command Line
Creating a new user from the command line is a bit more complicated than using the Accounts 
window of System Preferences. This approach doesn’t employ the familiar tools from BSD, 
such as , which includes the ability to add a home directory with the use of a single 
option in the command line. The tools for adding a user via the command line in Mac OS X 
are, instead, specific to Mac OS X. 

Here are the steps necessary for creating a new user, creating the user’s home directory, 
adding the user to a group, setting a password, and setting permissions on the user’s home 
directory:

 1. Create the user’s new home directory:

 2. Create a new group for the user:

 3. Create a primary group with a unique group ID:

 4. Create the new user:

 5. Provide the new user with a shell:



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 139

 6. Create a user ID for the new user:

 7. Add the new user to a primary group:

 8. Create a password for the new user:

 9. Create the proper permissions for the user’s home directory:

To test whether these steps properly created the new user, let’s use the GUI tool to check 
all the users on the system. As shown in Figure 6-17, a new user, Test Y. User, has been created 
successfully from the command line in Mac OS X. Note that although this example was per-
formed one line at a time, it’s easy to script this command-line user-creation routine.

Figure 6-17. The new system user, created using the command-line tool dscl



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION140

Log Review and Maintenance
Another fundamental system administration task is review and maintenance of system logs. 
Much of the maintenance is performed automatically by , the -like Mac OS X tool. 
But it’s still the responsibility of the system administrator to regularly review the critical logs 
for security or system performance issues. It’s also important to understand where those logs 
are located, though it you’re currently an administrator on a UNIX, BSD, or Linux system, the 
locations won’t come as much of a surprise.

Log Location and Naming Conventions
At the top of the log hierarchy in Mac OS X is the  file. The system log is created and 
maintained by the Apple System Logger, an Apple replacement for the BSD  tool. The 
system log can be accessed quickly from a terminal window, or, like other Mac OS X tools, can 
be reviewed using a GUI application.

The  file resides in the  directory. The  directory also includes 
logs for installations, security, firewall, mail,  requests, connections, and the window 
server. Other logs exist in both the user and system  directories.

Note The  logs are not actually located in .  is a symbolic link to 
. In other words, the true path to  is , though that fact is completely trans-

parent to a user. And, in fact,  isn’t the only symbolic link in . It also includes , , and 
 (a directory dedicated to storing data from system core dumps).

Library logs, whether system or user, are logs created by applications on the system. 
Library logs also include logs for Crash Reporter, devices, RAID, directory services, Java, and 
sync activities. These library logs are located in  or . 

Mac OS X archives logs automatically, using bzip2 compression.  is archived 
daily by Mac OS X, with seven archived daily logs maintained in the system. The archiving and 
rotation are completed on a schedule monitored and initiated by .

Reviewing Log Files with the Console Application
The Console application, launched from , is a one-step log review tool, 
providing quick access to all Mac OS X logs, including . Although  lives 
within the  directory, it’s given a special entry in Console outside that hierarchy— 
a sign of how common it is to review this useful log. As shown in Figure 6-18, Console lists all 
available logs in a single, collapsible interface.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 141

Figure 6-18. Using the Mac OS X Console application to review the system.log file

Like other Mac OS X applications, Console includes a search box to ease string searching 
while analyzing logs. Figure 6-19 shows Console’s menu bar, including the search box.

Figure 6-19. The menu bar of Mac OS X’s Console application

When reviewing or monitoring logs in real time, you can mark the start time. This is done 
using the Insert Marker button on the menu bar and results in a marked start time like that 
shown in Figure 6-20.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION142

Figure 6-20. Marking where a real-time log review begins, using the Insert Marker button

It’s also possible to hide the sidebar that lists all the logs. Clicking the Hide Log List but-
ton on the menu bar provides a full window of log messages for the current log, as shown in 
 Figure 6-21. When clicked, the Hide Log List button changes to Show Log List, allowing the 
user to redisplay the list of logs at any time.

Figure 6-21. The Mac OS X Console display with the list of logs hidden



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 143

As mentioned, the Console application provides quick access to all Mac OS X logs. These 
include logs in both the user and system  directories, and, of course, . 

Any of the logs can be shown in the Finder by right-clicking the log name in Console and 
selecting Reveal in Finder.

Console also displays any logs that have been archived by the system, including those in  
. Although the archived files are compressed, they’re fully readable in Console.

Of course, all logs can also be viewed using your favorite text editor, such as vi or emacs, 
and UNIX tools, including , , and .

Managing Tasks with launchd
Beginning with Mac OS X 10.4 (Tiger), Mac OS X officially implemented  as a single 
replacement for both  and . As implemented in Mac OS X 10.4,  completely 
replaces the functionality of . 

The  system is actually composed of two primary working pieces:  and 
.  runs at bootup, after the boot ROM and  complete their ini-

tial tasks. It scans through  and , and 
fires up the login window.

In the  and  directories,  
parses through  files. These are XML-based files that provide 
directions for loading applications and scripts, as well as for taking periodic actions. In theory, 
the  files are easier to read and create than the scripts traditionally executed by the ser-
vices  is intended to replace.

Let’s walk through the pieces of a  file to demonstrate how they perform periodic 
tasks.

First, open a text editor and create a file similar to the following:

This script will copy any files with the  extension in the  direc-
tory to a USB thumb drive, mounted as . Place this script in your 

 directory as , changing the permissions to allow execution:

Next, you need to create a user  file to provide instructions to , the other 
element of the  system. In the  directory, create a file similar to 
this:



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION144

This file instructs the  service to execute the script you just created when a file is 
found in the  . As you can see, the file provides keys and action 
strings. These guide the  application.

You can run this new task using the  application:

This will load the  file into . When something in the  
changes, the  directory will contain new  files. All cor-
rectly coded  files in the , , and 

 directories are loaded by  when a user logs in at the console. 
The  files in  and  are loaded at 
system startup.

To stop the  application, use the following command:

The  option will guarantee that the  file isn’t loaded the next time the system boots. 
This also sets a persistent file flag. That means that in order to load the  file again, you’ll 
need to launch it as follows, with the  option:

This will remove the “ignore at boot” flag, which is a key in the : 
.

Note As Darwin is BSD,  still exists in Mac OS X. As in BSD, the  file is edited using the 
 command, and is available on a system or user level. If you’re modifying  at the system 

level, you’ll need to initiate the  command using .

 utilizes the configuration file . All the  elements expose 
appropriate man files for a complete explanation of the functions and use. Those include 

, , and .



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 145

Administering Shared Resources
Another important system administration task is managing shared resources. It’s already com-
mon in the workplace to share resources across a network. With multiple computers in the 
house and the simplicity of wireless home networks, home users are also increasingly sharing 
networked resources, including printers, storage, and multimedia libraries. That wireless shar-
ing can, of course, come at a price for security—a topic we’ll discuss in the next chapter. For 
now, let’s look at the resources typically shared across a network, and how to configure and 
administer those resources on a Mac OS X system.

Mac OS X and Web Servers
Perhaps the best-known shared resource in modern computing is the web server. Few shared 
resources on any platform have had more impact on computing. Mac OS X, like its BSD 
and Linux brethren, is fully capable of providing the resources to serve up web pages and 
web applications. In fact, much of what’s needed to put a Mac OS X machine on the Web is 
included in the initial installation.

A default Mac OS X installation includes the Apache web server, PHP, Perl, and MySQL. 
Those are the fundamental elements of MAMP: Mac, Apache, MySQL, and PHP (or Perl). It’s 
possible to get this default installation up and running fairly quickly on your Mac with mini-
mal configuration.

Configuring the Default Installation
In order to configure, test, and use the Apache server installed on your Mac, you’ll need to 
reconfigure the sharing and security options in Mac OS X System Preferences. To allow access 
to the web server, select Sharing from System Preferences, and check the Web Sharing box. 
This will also set access to the server in the Security section of System Preferences. You can 
confirm the firewall settings by selecting Security from the System Preferences and clicking the 
Firewall tab. Web Sharing will be displayed as an allowed option in the security settings.

The MAMP tools included in Mac OS X look much the same to an administrator as the 
tools in a Linux or BSD system. The biggest difference between a MAMP system and the Linux 
and BSD tools is file location. As you’ve seen with other Mac OS X files, Apple follows a mar-
ginally different file structure. Some critical configuration files are located in different paths on 
the Mac than you’ve come to expect on Linux or BSD machines.

The most important of those critical configuration files is the  file. In Mac OS X 
10.5, this file is located at . As with other systems, this is the primary 
configuration file for the default Apache installation in Mac OS X. Other than the location of 
the file, it’s identical to the one in other Apache installations. If you’ve configured Apache on 
other systems, configuring it in Mac OS X should be painless.

In general, Apache is configured by providing a series of directives for the server operation 
in the configuration file. These include the location of the root server directory, the ports on 
which the server will listen for requests, any task-specific modules that will be implemented in 
the server operation, users, and custom directory structures. The Apache project provides an 
outstanding configuration overview at . 

The range of options available to an Apache administrator—whether on a Linux, BSD, or 
Mac system—is huge and well beyond the scope of this book. With that disclaimer made, there 
are a few configuration options that will interest nearly any administrator. 



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION146

The first thing you’ll want to do for a MAMP system is to enable PHP 5. This is disabled by 
default in the Mac OS X installation. To enable it, open the  file in a 
text editor and uncomment the line containing the following:

Then start or restart the server with the following command: 

It’s also possible to create virtual sites with Apache in Mac OS X. This allows deep custom-
ization by web site, while maintaining a configuration file structure that’s easy to follow and 
maintain. Several virtual sites can run from the same MAMP-installed machine with a simple 
configuration. Here’s how to create a virtual site:

 1. Create a new file named  in the  directory.

 2. Add the following to the  file to enable virtual hosts in your Apache installa-
tion and to create a test site for development:

 3. Add the following to the bottom of the  file:

 4. Start or restart the Apache server with the following command:

This virtual hosts example can serve as a model for other hosts on the system. Those hosts 
will be added to the  file.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 147

Caution When configuring a virtual host that will be live on the Internet, it’s not recommended that 
you set the  in your home directory, as shown in the example here. Instead, it’s a good idea 
to create a directory on the system that will be accessible to the web user account (www by default in 
Mac OS X), and that is, in effect, segregated from the rest of the system.

This is a basic configuration for a development system. A full discussion of the con-
figuration files and directives can be found on the Apache site at 

.
As is the case with many of the software packages for Mac OS X, Apache, PHP, and MySQL 

are available as source packages. These can be downloaded, built, and installed with many 
customizations, according to your specific needs. 

Installing Apache from Source
The Apache source is available from the Apache Project downloads page at 

. These are UNIX source files, provided in the  format. When 
downloaded, the file is extracted using the following command:

This creates an  directory containing the source files. To configure, build, and install 
these files, use the following commands:

 provides the server installation path, if you would prefer installation at a location 
other than the default of . If, for example, you set the prefix to , 
the install script will create the appropriate subdirectories within that path. The  
configuration file, in that case, would be located at .

You can test the new Apache installation with the following command:

This will start the server with a web page accessible at .

Installing PHP from Source
The latest PHP source code is available from the PHP site at 

. The code is available in both  and  formats. To unpack the  format 
files, use the following command:

Unpack the  files with the following command:



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION148

As with Apache, the PHP code is built and installed with the following commands:

Installing MySQL from Source
MySQL source code is available from the MySQL downloads page at 

. Unlike Apache and PHP, MySQL is available for down-
load as both a  image file and as a source file. In either case, you may need to register in 
order to download the files. 

The  file contains an installer file. With the image mounted, double-click the installer 
and follow the directions for installation.

As with the Apache and PHP source, the source files can be unpacked, built, and installed 
with the following commands:

Configuring the Apache, MySQL, and PHP setup on the Mac is, in most other ways, 
identical to the process in Linux. For a more detailed view of building, configuring, and admin-
istering your server, please refer to Beginning PHP and MySQL: From Novice to Professional, 
Third Edition, by W. Jason Gilmore (Apress, 2008).

Using the MAMP Application
Another option exists for building and installing a web server on your Mac OS X machine. 
Developed by Living-e, the MAMP application is a single binary file containing Apache, PHP, 
and MySQL for the Mac. It also contains the PHPMyAdmin application for creating and main-
taining MySQL databases.

The download from Living-e is dual-purpose, providing both the basic MAMP application 
and the MAMP PRO application. According to the Living-e web site, the PRO version is the 
“commercial, professional grade version” of MAMP.

To install MAMP, download the MAMP application from 
, double-click the  file, and drag the MAMP application to your  folder.

Printer Sharing
You can configure network printer sharing in Mac OS X in a number of ways. Sharing with fel-
low Mac users is configured most easily and quickly using the Print & Fax GUI tools in System 
Preferences. Sharing with Windows users on the network is also easiest to set up using the 
GUI, although the sharing tool in the background will be Server Message Block (SMB). Shar-
ing with Linux, UNIX, or other Mac users can be easily accomplished with Common UNIX 
Printing System (CUPS) or Line Printer Daemon/Line Printer Remote (LPD/LPR). Let’s walk 
through the graphical options for sharing the printer.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 149

Sharing a Mac-Connected Printer
Sharing a printer connected to a Mac OS X system using the GUI is very easy. The GUI tool 
will make the printer available on the network and visible to Mac, Windows, and Linux users 
alike. In the System Preferences window, select Print & Fax. If you currently have a printer 
attached to the Mac, you’ll see it listed in the left pane of the Print & Fax window, as shown in 
Figure 6-22.

Figure 6-22. The Print & Fax window in System Preferences. A combination printer/fax machine 
is displayed in the left pane as two separate devices.

If you have not added a printer to the system, the left pane will be empty. You can add a 
printer by clicking the plus sign at the bottom of the printer pane and following the directions 
that appear.

The example in Figure 6-22 shows that I’m using an HP printer/fax combo—an HP Office-
Jet 5610. This particular printer is a printer/fax/scanner combination. The printer and fax 
machine show up as separate items in the pane, to facilitate providing separate configurations 
for these two devices. However, the printer itself is the default, as noted in the caption under 
the printer in the printer pane, reading, “Idle, Default.” Both are currently connected and 
operational, as indicated by the green light to the left of the status message for both the printer 
and the fax.

As you can see from Figure 6-22, sharing a printer with other Mac or Linux computers on 
the network is very easy. Select the Share this printer check box in the main printer window 
to make it available on the network. This will make the printer available to all other Mac and 
Linux computers on the network.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION150

Connecting a Mac Client to a Shared Printer
To use a shared printer on another Mac on the network, you’ll just need to open System Pref-
erences, select Print & Fax, and add the printer (by clicking the plus sign in the printer pane). 
The Mac will connect to the printer. Set it as the default printer by right-clicking the printer 
icon in the printer pane and selecting Set default printer. The client Mac will now use the 
shared network printer as the default.

Figure 6-23 shows an example of adding a shared printer to another computer on the net-
work using LPD. As seen at the top of the window, the configuration screen offers a multitude 
of options for adding a shared printer, including IP address, Bluetooth, AppleTalk, and other 
common protocols.

Figure 6-23. Adding a networked printer to a Mac client machine via the System Preferences/Print 
& Fax tool

Connecting a Windows Client to a Shared Printer
To use a newly shared printer with a Windows machine on the network, you’ll need some 
additional configuration to share the printer attached to the Mac via SMB. Here are the steps:

 1. Open the Mac System Preferences window and select Sharing.

 2. Check the File Sharing and Printer Sharing options in the left pane.

 3. Highlight the Printer Sharing option and select the printer to be shared by checking the 
check box.

 4. Highlight the File Sharing option and click Options.

 5. Select the user who will be allowed to connect to the printer by checking the appropri-
ate check box.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 151

 6. Enter the user’s password in the pop-up window.

 7. Check the “Share files and folders using SMB” option.

 8. Close the Sharing window.

 9. Set up the Windows printing client from the Windows machine.

SMB File Sharing
Setting up SMB file sharing on the Mac is as simple as setting up printer sharing. In fact, if 
you’ve set up printer sharing from a Windows machine, you’ve already accomplished much of 
the process. Here are the steps:

 1. Open the Mac System Preferences window and select Sharing.

 2. Check the File Sharing option in the left pane.

 3. Highlight the File Sharing option and click Options.

 4. Select the “Share files and folders using SMB” option.

 5. Select the user account that will be used to access the shared files and folders, and then 
click Done.

 6. Check the list of shared folders in the small Shared Folders subwindow.

 7. Optionally, remove a folder you would prefer not to share by highlighting the folder 
and clicking the minus button at the bottom of the Shared Folders window.

 8. To add a shared folder, click the plus button, select the folder to which you would like 
to provide shared access, and then click Add.

 9. If you would like to require the administrative password in order to make future 
changes, click the lock icon in the lower-left corner of the Sharing window.

These shared folders can be mapped as drives to a client Windows machine or added to 
shared directories on a Linux machine, without further modification on the Mac. This process 
shares the folders and files via SMB.

NFS File Sharing
Setting up Network File System (NFS) file sharing on the Mac is nearly as simple as setting up 
SMB sharing. It’s best done from the command line, using the following instructions:

 1. Open a terminal window.

 2. Edit the  file, adding the following line, using values specific to your net-
work:

 3. Ensure that the  daemon is enabled with the following command:



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION152

This example will require customization of the directory you would like to share, and 
assumes that your local network is a 192.168.10.x network. Adjust your entries accordingly.

You can test whether the NFS mount is actually enabled with the following command:

If the configuration is successful, the output from the  command will display the 
shared directory and the network on which it’s shared. And, with that simple configuration, 
other machines on the network can now connect to the shared directory on the Mac using 
NFS.

Summary
In this chapter, we’ve covered the fundamentals of system administration on the Mac. In gen-
eral, you’ll find that Mac OS X provides the common UNIX/BSD/Linux command-line tools 
for system administration. Beyond those tools, Mac OS X also offers a robust set of GUI-based 
system administration tools.

Mac OS X provides a full range of shells, including bash, tcsh, csh, ksh, and zsh. Although 
bash is the default shell for Mac OS X, you can easily configure the system to make any of the 
other provided shells the default.

A number of commands are available in Mac OS X that are commonly used for system 
administration. These commands are common to most UNIX/BSD systems, and provide a 
near seamless administrative experience for those most familiar with UNIX, BSD, and Linux. 
These and other system tools can be fully explored using the installed man page system.

As with so many of the other tasks, Mac OS X offers both graphical and command-line 
options to monitor the system. The Mac OS X Activity Monitor tool provides a wealth of 
information about the current state of the system within a single window. This includes infor-
mation about the running processes, processor use, and memory use. As a BSD-based system, 
Mac OS X also provides the common system monitoring tools  and  to monitor the sys-
tem from the command line.

Mac OS X can also function as a “headless” system, bypassing the Aqua interface alto-
gether. In this command-line-only mode, Mac OS X can provide a variety of network server 
functions.

Mac OS X provides several means to add and maintain system users. The GUI Accounts 
tool in System Preferences allows a system administrator to add and remove users with a few 
mouse clicks. Users can also select applications to run at login with this tool. While a bit more 
complex, user maintenance can also be performed from the command line, primarily using 
the  tool.

That BSD base provides other familiar functionality for Linux system administrators. Log 
files are located in the standard location: . An administrator can use BSD tools to 
review the logs, or can choose to use the Mac Console application, a log review tool that brings 
all system logs into a single interface. Console also allows an administrator to monitor logs in 
real time, and to mark the starting point at which the real time review began.

Apple’s  application is currently a drop-in replacement for the  and  ser-
vices of BSD. Using an XML-based system,  reads through both system and user  
files to execute and schedule tasks on the system. The inclusion of  beginning with Mac 
OS X 10.4 (Tiger) is the first step in the consolidation of several BSD tools into a single utility.



CHAPTER 6   ROUTINE MAC OS X SYSTEM ADMINISTRATION 153

Finally, Mac OS X is a complete system for printer and file sharing. SMB and NFS com-
prise the primary means to share printers and files, with Mac OS X again providing both GUI 
and command-line tools for configuration.
In the next chapter, we’ll continue with the important system administration tasks of handling 
backups and security.



C H A P T E R  7

Backup, Security, and 
Automation

Among all the tasks performed by system administrators, few are more important or more 
mundane than those pertaining to backup, security, and automation. Protecting data, both 
from catastrophic crashes and from unfriendly intruders, is more critical than ever. As storage 
capacities have increased, more data is stored on single drives, vulnerable to hardware failure. 
As more computer users maintain full-time network connections, more computers are vulner-
able to attack. Implementing measures to prevent or mitigate the damage from these events is 
the task of every system administrator, whether administering a small home network or a mas-
sive corporate network.

Backup tasks can be created, thoroughly tested, and scheduled, requiring only minimal 
additional human intervention. Security measures can be implemented and monitored with 
little further effort. In other words, the ability to automate both backup and security tasks 
greatly improves the probability that these critical tasks will be successful. 

In this chapter, we’ll take an in-depth look at the range of tools available to accomplish 
backup and security tasks, both in GUI form and from the Darwin-based command line. We’ll 
also explore the options for testing and automating backup tasks, for recovering data, and for 
providing the highest practical level of security on your Mac OS X-based system.

Backup and Recovery Overview
As a computer user of any stripe, it’s an admonition you’ve heard regularly: back up your 
data. If you’ve never lost data on your system, either you’re not a real power user or you’re 
extremely lucky. Most users like us—those who are prone to dig deeply into a system in search 
of the perfect tweak—have lost important, irreplaceable data at some point in our comput-
ing lives. Unfortunately, that critical data loss is usually what it takes to make the case for the 
importance of regular data backups.

So, assuming that you understand and believe in the importance of these regular back-
ups, you’re certainly wondering what tools exist in Mac OS X to achieve those backups with 
minimal muss and fuss. How can you configure regular backups? What are the best options 
for creating and administering those backups? How can these backups be automated and 
scheduled for routine background operation? Which backup type makes the most sense for 
specific data types? In the event of a disaster, what’s the best way to recover these backups? 
What are the best Mac OS X tools? What are the best command-line tools? These are all critical 

155



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION156

 questions and, of course, questions that are best answered before a catastrophic crash rather 
than after.

Fortunately, Mac OS X provides a wide range of backup and recovery options, in both GUI 
form and as UNIX-based command-line Darwin tools. All the various options can be sched-
uled to perform backups regularly without further intervention, using  or . And, 
with straightforward recovery options, you can feel comfortable that your critical data won’t 
be lost on your Mac OS X system.

The Mac Approach to Backup and Recovery
As you might guess, many of the best native Mac OS X backup options are GUI-based. Mac OS 
X itself includes an outstanding and easy-to-use backup tool, and many third-party tools pro-
vide similar or more powerful backup and recovery features. Let’s start with the built-in Mac 
OS X tool for backup and recovery. 

Time Machine Backups
With the launch of Mac OS X 10.5 (Leopard), Apple released a native backup tool that is both 
robust and easy to configure. Time Machine, the Mac OS X native backup tool, was one of the 
most highly anticipated and widely praised elements of the Leopard release. By automati-
cally scheduling hourly backups to an external drive or to another Mac using the Personal File 
 Sharing service, Time Machine made the tedious task of backup creation infinitely easier for 
all users. By doing so, Apple all but guaranteed that users of its operating system would no 
 longer lose critical data, either as a result of human error or a system crash. 

The process of creating Time Machine backups is, in fact, invisible to the user. It requires 
only an easy, one-time setup. Unless an accidental deletion or system crash occurs, Time 
Machine requires no further attention. It creates and maintains incremental backups, 
accounting for the amount of storage remaining on the external drive. These backups can be 
full-drive backups or may exclude specific user-configured files. Furthermore, these backups 
can be stored on an external drive that’s hard-wired to the machine—USB or FireWire—or 
sent to a network storage device, either wired or wireless. In fact, a network of Mac computers 
within a home can back up to the same dedicated network backup device, with backup pro-
files for each individual machine.

Mac OS X provides tools to restore any piece or all of each Time Machine backup. Individ-
ual files can be recovered easily using the Time Machine GUI. Entire systems can be restored 
using the Mac OS X Utilities menu. Overall, Time Machine provides seamless backups and 
easy restoration of lost system files.

Time Machine is accessible either from a menu or from the System Preferences window. 
Figure 7-1 shows the System Preferences window with the Time Machine option.

Figure 7-1. The Time Machine option in the System Preferences window



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 157

Configuring Backups
By design, the Time Machine setup window is clean and simple, as shown in Figure 7-2. As the 
window states, by default, Time Machine creates hourly incremental backups for the past 24 
hours, daily backups for the past month, and weekly backups for anything older than a month.

Figure 7-2. The Time Machine setup window

When clicked, the Change Disk button reveals all the drives the system can use to store 
backups, as shown in Figure 7-3. It also provides an option to set up Time Capsule. Time Cap-
sule is Mac hardware, purchased separately and created specifically for use as a networked 
Time Machine backup drive.

Figure 7-3. Configuring the Time Machine backup drive



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION158

Note Time Capsule is, in reality, Apple’s entry into the Network Accessible Storage (NAS) arena. The Time 
Capsule hardware provides 500GB or 1TB of storage, accessible from any other machines on the network. 
With four Ethernet ports, it also works as an AirPort device, serving as an internal router for your home net-
work. Additionally, it features wireless capabilities, with full 802.11 a/b/g/n support. Prices range from $300 
to $500 US.

The Options button in the Time Machine setup window allows you to customize the back-
ups, excluding complete drives or even single files from the backup, as shown in Figure 7-4. 
Clicking the plus button in the Options window opens a filesystem view, from which the file or 
drive exclusions can be selected, as shown in Figure 7-5.

Figure 7-4. Time Machine backup options

Figure 7-5. Selecting files or drives to exclude from Time Machine backups



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 159

Time Machine can be turned on from the main window when the backups are config-
ured properly. Or, if desired, the backups can be turned off from the same window. Figure 7-6 
shows the Time Machine On/Off control.

Figure 7-6. Turning on the Time Machine backups

Note As with any other backups, the Time Machine backups will become quite large over time. However, 
these backups are intelligent, in that Time Machine is aware of the remaining space on the Time Machine 
drive. When backups threaten to fill the disk, Time Machine will warn the user that older backups will be 
deleted in order to create new ones. In any event, an external drive of less than 300GB is probably impracti-
cal if your intent is to create regular full-system backups.

Recovering Time Machine Backups
Recovering files from a Time Machine backup is as easy as the setup. The recovery interface 
can be launched from the  directory.

Shown in Figure 7-7, the Time Machine recovery window takes its own metaphor to the 
fullest possible extent. The cascade of windows in the center of the recovery window represent 
all the backups created by Time Machine back in time. These backups are also accessible by 
date, simply by rolling the mouse over the vertical timeline on the right edge of the recovery 
window. You can scroll through the windows using the arrows to the lower right of the cas-
caded windows, and select a specific window by clicking with the mouse, or you can click a 
specific backup along the vertical timeline. When the preferred backup is available, a file or 
files can be restored from that backup by selecting the file and clicking Restore in the recovery 
window.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION160

Figure 7-7. The Time Machine recovery window

Full, bootable system backups cannot be restored from the recovery window. In the event 
of a catastrophic system failure, you will need to restart the system with the installation DVD. 
Insert the installation DVD in the drive, and then restart the Mac. As the system starts, hold 
down the C button. This will start the system from the DVD, presenting the main screen. With 
the system booted from the installation DVD, select Utilities, and then choose Restore from 
Time Machine. When prompted, select a system backup to restore. These backups will be 
listed by the date on which they were created, and will be listed under the name of the system 
boot volume. Depending on the size of the system, this restoration may take well more than an 
hour. When the restoration is complete, you’ll reboot into your restored Mac OS X system.

How Does Time Machine Do That?
As noted, Time Machine creates incremental backups, but these aren’t your typical backups, 
as you’ll see if you take a look inside the backup directories. A complete backup of the system 
appears to live within each instance of a backup, as shown in Figure 7-8. It doesn’t seem pos-
sible that a full backup could be completed every hour, without filling up the available space 
on a backup drive within a matter of days. But, as noted, Time Machine isn’t really doing full 
backups—it’s doing incremental backups. And, it’s doing them in a way that makes full use of 
UNIX file structure and permissions.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 161

Figure 7-8. A look inside the Time Machine backup directories

Time Machine uses hard links in its backups. Hard links and symbolic links are integral in 
UNIX filesystems.

A symbolic link, or symlink, is a pointer to another file. A symlink returned in a command-
line  command is shown with an  in the file type slot of the file description, which is the 
first position. Symlinks don’t contain the file data. They only point to the location of the data. 
At their simplest, symlinks can be thought of as shortcuts. They’re files that point to the loca-
tion of other files. Symlinks can be moved within a filesystem structure and will still work as 
shortcuts to the original file. For example, I can create a  
file that echoes a string on execution. I can then symlink that file to , 
using this command:

The  in the command denotes a symbolic link. The latter—the pointer file—will inherit 
the permissions of the former and, when executed, will actually execute the original file. If the 

 file is moved elsewhere on the system, it will still execute the original 
file. However, if the original file is removed, the symlink is broken, and the symlinked file will 
no longer work. So, in practice, you have one real file and one that’s just a pointer to the other. 
The pointer will not work if the actual file is gone, although the actual file will still work with or 
without the pointer.

A hard link, as utilized in Time Machine, represents a second name for the same data. In 
other words, by creating a second name, the system sees two distinct files for the same data. 
The data in a single location on a disk can be accessed using either name. In other words, 
unlike symlinks that link to other files, hard links link to actual data. These hard links are cre-
ated by issuing the  command without any further options:

The return of the  command on the  file really tells the 
tale. Unlike the symlink created earlier, the  command returns a file, not a link. Provided 
executable permissions have been set, both files can be executed with the same result. Either 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION162

file can go away, leaving the other completely executable. They are, in fact, separate files that 
execute the same data stored in the same location on the disk.

That’s how Time Machine manages to create what appear to be full backups. The system 
creates hard links for files that haven’t changed since the previous backup. Those hard links 
have the same names as the original file but are, in fact, new files pointing to existing data. 
These files require no more space on the drive than the originals, as they access the same data 
at the same location. Only those files that have been modified since the previous backup are 
actually included in the Time Machine backups. Every file on the system is accounted for, 
although it may not occupy additional space in the backup.

Note The concept of hard links is much more familiar to you than you might realize. A normal file in the 
filesystem is actually a hard link. If you create a file on the system, it’s actually a link to a data location on 
the drive. It’s also possible, using the  command, to see how many files actually link to that data. 

 returns a number in the field between the permissions strings and the file owner. This number indicates 
how many files link to that data on the drive.

For Time Machine backups, Apple uses a slight modification to the UNIX standard for 
hard links. In a normal UNIX system, hard links can be created only on files. Mac OS X extends 
this to include folders as well. That’s the final piece that makes Time Machine backups pos-
sible.

In short, Time Machine is a robust and transparent way to create and restore regular sys-
tem backups. Those backups can include everything on the system, from single individual files 
to a full, bootable operating system restoration. And by using hard links, those backups make 
the most use of drive space.

Many Mac OS X users, myself included, prefer to create full, bootable system backups 
independent of Time Machine. I tend to lean on Time Machine to restore those occasional 
file “gotchas,” leaving the larger system backups to other stand-alone tools. Several tools from 
third-party developers utilize many of the best elements of the UNIX system. They’re easily 
configurable to meet specific backup needs. Almost all incorporate the ability to schedule 
backups and to define those schedules from an easy-to-use interface. And, fortunately, many 
of these tools are free.

Backups with Carbon Copy Cloner
With the UNIX underpinnings of Mac OS X, many of the Mac OS X backup applications ulti-
mately rely on the same tools that Linux administrators have been using for years, but do so 
from clean and fully functional GUI interfaces. Some administrators, in fact, find that the GUI 
tools actually help improve the efficiency of their administration tasks.

One such tool is Carbon Copy Cloner (CCC) from Bombich Software (
). As the name implies, CCC is intended as a tool to copy 

drives, or clone them. Its main interface is shown in Figure 7-9. 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 163

Figure 7-9. The main interface of Bombich’s Carbon Copy Cloner

CCC is analogous to the UNIX tool , copying everything from a designated source to a 
destination, bit by bit. The end result is an exact copy—a clone—residing on the destination. 
These backups can be blessed by the system to be bootable. They can also be scripted within 

 or  to perform on a regular schedule without further intervention. You 
can configure the backups as either incremental or full, although the hard-linking capabilities 
of Time Machine are not present.

As with any other backup tool, it’s necessary to select the source files and the target 
(the volume to which the backup will be written), as shown in Figure 7-10. In CCC, these are 
selected from drop-down menus in the main window. The Cloning options menu in this win-
dow provides options to create a full backup or an incremental backup of selected files. CCC 
also provides a look ahead at how the selected actions will direct the work flow once they are 
kicked off by the user, as shown in Figure 7-11.

Figure 7-10. Selecting source and target volumes in Carbon Copy Cloner



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION164

Figure 7-11. A bit of user hand-holding in the Carbon Copy Cloner main interface

As with other Mac OS X applications, the settings for CCC can be locked down with the 
padlock icon in the lower-left corner of the main window, requiring the administrative pass-
word for future changes.

As noted earlier, CCC can also execute external scripts to further tailor the operation of the 
application. The window for configuring these external scripts is shown in Figure 7-12. CCC 
can execute the external scripts both prior to and after executing its own main operations. 

Figure 7-12. The Carbon Copy Cloner advanced options window

Let’s look at an example of running both preexecution and postexecution scripts with 
CCC. I’ve partitioned an external FireWire drive on my system specifically for backups, naming 
it (oddly enough) Backups. However, I prefer that this drive not be mounted and visible on my 
desktop when it’s not actually in use. In other words, I want the Backups drive visible on the 
desktop only when it’s being used as the target for a CCC backup.

To accomplish that, I’ve created two scripts and an entry in  to ensure that 
the drive doesn’t mount at boot time. The scripts, as you might have guessed, mount and 
unmount the drive just prior to and just after the execution of the CCC backup.

Let’s start with the  entry:

This line contains four critical elements. The first is the drive identifier, listed in the 
 by universally unique ID (UUID). The other three elements of the  file are the 

user necessary to mount the drive, the filesystem, and the permissions and automount status 
of the volume.

You can find the UUID of a drive by using the  tool:



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 165

This lists all the available volumes on the system. On my system, Backups is listed among 
the other drives as —partition 3 on the second disk (bearing in mind that zero is signif-
icant in volume names). Using  again, I can get further information about that specific 
partition, including the UUID necessary to modify the  file:

The volume UUID, in this case, is listed as . This is 
used in the first field of the  file.

With these elements in place in the  file, the Backups drive on my system will 
not automatically mount when the system is booted.

Two other scripts are necessary to complete the process with CCC. The first mounts the 
drive:

The script simply uses  to mount (as in Linux) —the Backups disk that 
I’m prevented from mounting at bootup with the modification of . This script has 
executable permissions and is written to .



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION166

Finally, a second script will unmount the drive when CCC has completed its cloning 
operations.

Again, I’m simply using  to unmount the volume to which I’ve just written the 
backup. With executable permissions, this file is written to 

.
Finally, I add these scripts to the advanced options window of CCC, as shown in  

Figure 7-13. With these pieces in place, CCC will mount the Backups drive, execute the 
backup, and unmount the Backups drive when the backup is complete. If further logging is 
required, the logging script code can be added to the  script.

Figure 7-13. Adding the scripts to the Carbon Copy Cloner advanced options window

Overall, CCC is a strong backup tool with a focused mission. It’s easy to configure and use 
for most home users.

SuperDuper for Simple Backups
Another simplified backup tool of great use to home users is SuperDuper from Shirt Pocket 
Software ( ). The folks 
at Shirt Pocket have worked to simplify the SuperDuper interface down to only the tools that 
are essential for creating robust backups. There’s a lot to be said for the elegance of Super-
Duper, even if, to some, the application may appear too simple.

SuperDuper presents most of its options in a main window. These include the selection of 
source and destination drives, as well as the choice of one of a number of scripted options, as 
shown in Figure 7-14.

SuperDuper takes a unique approach in two of its backup options, in particular. These 
options, known as sandboxes, allow you to create subsets of a normal full backup. The idea is 
to facilitate “system recovery without downtime” (according to a MacZealots review by Justin 
Williams, at ).



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 167

Figure 7-14. The main SuperDuper interface

Creation of a sandbox backup utilizes one of two scripts. One script allows both ver-
sions of the system (the sandbox and the current version) to share the current  and 

 files. The other shares only the  directory. In other words, you can create 
a full backup in a sandbox, or a backup that doesn’t contain the  directory. That 
can make for a much smaller backup that allows for quicker recovery.

Note While creation of the sandbox backups relies initially on one of two provided scripts, SuperDuper 
does provide options that allow you to copy and edit all backup scripts. So, while the sandbox scripts provide 
the initial basis for backups, SuperDuper scripts are, in fact, fully customizable.

The backup options provided in the “using” drop-down menu of the main window 
include the following:

 files)

The options menu in SuperDuper provides additional backup customization, in two 
tabs: General and Advanced. Using the General tab, shown in Figure 7-15, you can repair 
permissions on the source drive prior to backing up. A completely clean backup can be cre-
ated, erasing the original backup on the destination drive and starting from scratch. You can 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION168

also create one of two incremental backup types: one in which only the newer files are copied 
from the source to the destination, or one in which only files that have changed since the last 
backup are copied from the source to the new backup. 

Figure 7-15. Additional backup options in SuperDuper

The General tab also provides several options for additional activity after completion of 
the backup:

The Advanced tab offers some powerful options. As with CCC, you can execute custom 
shell scripts prior to starting the actual backup. Access control lists (ACLs) can be added to the 
backup. A disk image of the backup can be created and written to a preferred drive or location. 
A new package can be installed on the backup. And, of course, a shell script can be executed 
on completion of the backup. In practice, you could use the same method noted in the CCC 
section to mount and unmount drives before and after the SuperDuper backup.

SuperDuper also includes a tool to schedule backups. Weeks of the month and days of the 
week are selected by clicking the appropriate button in the interface, as shown in Figure 7-16. 
Unless a week of the month or a day of the week is selected, the default is to perform the 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 169

backup every day (all days of all weeks of the month). The backup time can be entered manu-
ally or scrolled using the arrow buttons on the right edge of the time field. The caret in the time 
field indicates the element of the field currently being modified. When the SuperDuper backup 
schedule is completed, you’ll see a window that displays all the scheduled backup operations 
in table form, as shown in Figure 7-17.

Figure 7-16. The SuperDuper backup scheduling tool

Figure 7-17. The upcoming scheduled SuperDuper backup operations

SuperDuper provides a simple backup tool set, while still managing to focus on the most 
useful options for home Mac OS X users. These options provide real flexibility in how backups 
are created, run, and stored. They also provide additional power in prebackup and postbackup 
operations, including custom scripting, backup image creation, and storage of created back-
ups. And SuperDuper provides the tools to create sandbox backups that will considerably 
shorten the time necessary to recover from many system crashes. 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION170

While the tool set is much simpler than that of CCC, SuperDuper still manages to provide 
considerable power for the user. However, only the most basic of these features are available in 
the free version. In an approach that’s fairly common for Mac OS X software, many of the more 
advanced features of SuperDuper—including sandbox creation, scheduling, and scripting—
require the user to purchase a copy of the software from the Shirt Pocket site. Fortunately, as 
in most cases, the software pricing is reasonable for the features delivered.

Mozy and Other Off-Site Backup Options
SuperDuper and CCC provide stable, easy-to-use backup solutions for Mac OS X. They cre-
ate backups that will be stored on an external drive and can, if so desired, be written to CD or 
DVD. In other words, they’re great for local backups.

It’s pretty widely accepted that any complete backup strategy will also include off-site 
backups. These are backups that will be stored somewhere other than in the same location as 
the machine from which they were created. In the event of a real catastrophe—such as fire, 
earthquake, or tornado—the closest you’ll come to a guarantee that your data will be recover-
able and intact is the restoration of an off-site backup.

Off-site backups used to mean writing everything to magnetic tape, and then shipping the 
tapes off to storage. Even though it was necessary and saved the critical data of more than one 
company, it was a tedious process that was hated by most system administrators.

However, as the number of broadband connections and the speed of broadband itself 
have increased, sending off-site backups over the network has become an increasingly popu-
lar method of guaranteeing the safety of your critical data. Over the past several years, many 
companies have sprung up to provide just such services. And, because broadband has moved 
so quickly into the home environment, many of these companies focus on home users, using 
easy interfaces and built-in automation. Services such as IBackup ( ), 
Mac Backup ( ), and CrashPlan ( ) make the 
off-site backup process quick and easy.

Another recent entry to the off-site backup pool of sites is Mozy ( ), which 
provides 2GB of online storage for free; unlimited backups are $4.95 per month. Users can sign 
up for a monthly plan, an annual plan, or a two-year plan, with additional pricing incentives 
available for the longer plans.

For critical data and documents, the free Mozy account can be very useful. The backups 
are transmitted using 128-bit Secure Sockets Layer (SSL) encryption and stored with 448-
bit Blowfish encryption. These backups are block-level incremental backups, pushing only 
changed or new files to the server.

The Mac Mozy software is well designed and very easy to use. Backups are configured 
using the main configuration window, as shown in Figure 7-18. Mozy creates backup sets, 
which are groups of files and folders from your drives that will be backed up as a single unit. 
This is a convenient and efficient way to group together your most critical files, and to orga-
nize your backup structure.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 171

Figure 7-18. The main Mozy configuration window

Mozy provides some common backup directories in the initial backup set, including the 
Address Book, calendars, iTunes library, keychains, pictures folder, Apple mail, and others. 
These provide a useful starting point for critical backups. To add more backup sets to the 
main set, simply click the plus sign in the lower left of the main Mozy configuration window. 
The new group can be named in a way that makes sense to you. Add files to the set by clicking 
the Browse button under the search box. In Figure 7-19, I’m adding a new backup set named 
Radioshift Recordings, to include a directory from Radioshift (an automatic streaming audio 
recorder on my Mac). Figure 7-20 shows the completed new set selected for backup. 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION172

Figure 7-19. Adding new backup types to a Mozy backup set

Figure 7-20. Creating a new backup set in Mozy

Mozy backups can be completely customized. It’s not necessary to stick to the canned 
backup sets, or even to rely on backup sets at all. As shown in Figure 7-21, the Files and Folders 
tab in the main Mozy interface allows you to select specific folders and, within those folders, 
specific files. This sets up the potential for a very granular backup system.

Any file on the system that’s accessible to the user creating the backup will be available 
for a Mozy backup. When you have reached the desired subdirectory or file level within a sub-
directory, as shown in Figure 7-22, just check the Back up check box to add the selected file or 
files. 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 173

Figure 7-21. Further customizing the Mozy backups

Figure 7-22. Drilling down into the user files to add to the current Mozy backups



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION174

Mozy also offers a view of the backup history, as shown in Figure 7-23. Full details of 
selected backups are provided in the lower pane of the history window, including completion 
status as success or failure, and reasons why a backup may have failed. These history entries 
also provide full details on all the files backed up at that time. 

Figure 7-23. Viewing the Mozy backup history

If a quick summary of the backup history via the history window isn’t thorough enough 
for you, the Mozy logs can also be viewed via the Console application (introduced in Chapter 
6). Clicking the Mozy menu bar icon and selecting View Log Files will bring up the log in Con-
sole, as shown in Figure 7-24. The log file provides a complete view of all Mozy backup activity.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 175

Figure 7-24. Viewing the Mozy log in the system Console

Restoring files from Mozy backups begins with loading all the restore information created 
in Mozy, as shown in Figure 7-25. When the restore options are loaded, a new window will dis-
play all the files available for restoration by Mozy. As shown in Figure 7-26. these are displayed 
by directory, rather than by the backup sets created earlier. Selecting a file from the window, 
and then clicking Restore will grab that file from your account on the Mozy servers and restore 
it to its original location on your local drive.

Figure 7-25. Restoring files from a Mozy backup



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION176

Figure 7-26. The restore options in Mozy

Mozy also provides a Preferences window to further customize its configuration. With the 
main configuration window open, select Preferences from the Mozy item in the menu bar. The 
resulting window provides three options: 

General: As shown in Figure 7-27, the general configuration options include automatic 
update installation, whether to show a backup status icon in the status bar, and the option 
to display hidden files in the main configuration window.

Figure 7-27. Setting further customization options in Mozy

Scheduling: By default, Mozy will perform a single backup each day at the time noted in 
the schedule window. However, that’s not the real utility of Mozy. A far more useful choice 
for backup scheduling is to back up when the computer is idle. This is shown as the Auto-
matic option in Figure 7-28. This option will provide backups with much more currency 
than the once-a-day approach. Mozy provides configuration options that account for the 
computer load and whether the user is actively using the system. Both load and idle time 
are adjustable to best meet the individual user’s needs. Additionally, Mozy will alert users 
if backups have failed or, for any other reason, not occurred during a configurable time 
period. By default, this period is one week.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 177

Figure 7-28. Configuring Mozy to create scheduled backups

Bandwidth: In effect, you’re setting the bandwidth throttling options. Mozy will never 
use the full bandwidth of your connection, but you can determine how much it will use. 
Mozy also provides scheduling options to further customize the bandwidth throttling by 
the time of day. As shown in Figure 7-29, Mozy will use no more than 1 Mbps. If less is 
selected using the slider, the scheduling options will appear, allowing you to specify times 
of the day during which you’ll throttle the Mozy backups more than the standard. 

Figure 7-29. Setting bandwidth use in Mozy

If you’ve left the default scheduling times unmodified—that is, you’re backing up only 
once per day—you probably won’t need to further modify the throttling by time. Or, if a single 
daily Mozy backup is scheduled during a time you’re normally using the computer, that 
time can be adjusted in the scheduling options. The ability to throttle bandwidth by time is 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION178

 particularly useful when using the automatic backups option. If a backup is started when the 
computer is idle, and the user returns to the computer during the backup, that backup will 
continue to completion in the background. It’s possible that the bandwidth use required for 
that backup will interfere with the user’s work. In that case, the bandwidth throttling schedule 
can minimize the bandwidth impact on the user.

Note In order to make changes to the Mozy configuration from the Preferences window, you’ll need to 
let the main configuration window finish its work. Changes to the preferences can be saved successfully 
only when the main backup window has stopped searching through backup sets. At that point, clicking Save 
Configuration will save both the main configuration and preferences. Saving before the main configuration 
window is complete will not save any preferences options that have been changed.

Overall, Mozy provides a pretty elegant tool for off-site backups. All the right small details 
are covered in ways that are easily configurable. The size, time, and bandwidth usage of your 
backups are completely flexible. If your backup needs aren’t substantial, the free 2GB Mozy 
accounts will more than accommodate your requirements. Even for those users who need 
more space, the pricing of the paid accounts is reasonable, given that one price covers unlim-
ited backup storage and bandwidth. In the event of a catastrophe, backups are easily restored 
from an interface that doesn’t overwhelm. And there’s quite a lot to be said for the peace of 
mind that comes with knowing your computer could be destroyed in a disaster, but your criti-
cal data would survive to find its way onto the replacement.

The Linux Approach to Backup and Recovery
Old Linux hands might look at the GUI backup tools available for Mac OS X with some dis-
dain. They’re pretty, yes, but who needs all that overhead when the terminal will do quite well 
for configuring backups? Being an old Linux hand myself, I understand that view, whether 
or not I find it practical. In some ways and in some cases, it’s absolutely right. In others, the 
ease with which the GUI tools allow configuration really makes more sense. I don’t tend to fall 
completely into one camp or the other. I like to keep my options open for the highest level of 
convenience and efficiency. In other words, I’ll use whichever approach makes the most sense 
for the current need. That means I need to be at least conversant in both the GUI tools and the 
command-line alternatives.

There’s no doubt that Linux provides a rich set of tools for system backup and recovery. 
It is, after all, a need that has been well recognized since the early days of computing, and, 
accordingly, seems to be right in a good system administrator’s wheelhouse. This is stuff that 
every admin should understand, including the tools provided with the operating system itself. 
In many ways, it’s true that any necessary backup and recovery task can be accomplished with 
a few scripts and the built-in tools. 

Let’s take a look at a couple of those tools—tools that are also available in Mac OS X 
through its BSD ancestry—and some options to accomplish those backup and recovery tasks 
in Mac OS X. We’ll start with one of the oldest tools in the UNIX toolbox: .



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 179

Using dd to Copy Data
The  utility performs bit-by-bit copies of raw devices. In other words,  sees a device as a 
device, rather than as the same abstraction that users see. While the  man page states that 
“The  utility copies the standard input to the standard output . . .,”  is most often used for 
copying data from one location to another, grabbing data, and writing it to a file, rather than to 
standard output. For example, in Linux, using  to copy data from  to  will 
copy the entire device from the source, , to the destination, . Or using  to 
copy data from  to  will copy the entire partition at  to the 

 partition.  works in essentially the same fashion in Mac OS X.
The  convention is pretty straightforward, requiring, at minimum, an input file ( ) and 

an output file ( ).
 can also be used to make a disk image in Mac OS X. For example, to write a disk image 

of your main boot drive to an external drive, the following simple command will work well:

Note that we’re using the raw device designation in the input file element of the com-
mand. This command will copy the entire contents of the  drive ( ) to 
a new file on an external FireWire drive named  ( ).  will 
write this file in 512-byte blocks ( ). This file will be mountable on any block device, as 
would any other image file. Of course, the success of this command depends on the availabil-
ity of storage on the destination drive. This image can be restored to the main drive as follows:

 1. Insert the Mac OS X installation DVD in the DVD drive.

 2. Reboot the system, holding down the C key to boot from the DVD.

 3. Open the Utilities menu from the DVD.

 4. Open a terminal window.

 5. Use  to copy the new image to the old drive:

This command copies the new image to the boot partition on the main drive, and includes 
some options to account for possible errors, either on the originating or destination drive. The 

 option will do two things:

These two options will ensure that the new image on the original drive will work to bring 
up your system.

While  is an outstanding and time-tried tool for copying data from raw devices, it’s really 
not a good tool for copying from one directory tree to another. As  sees devices rather than 
the abstractions of mount points, it also doesn’t see the additional abstractions of directories. 

 is perfectly capable of copying one partition to another, but not of copying one directory 
tree to another. So, while  has some very strong backup functionality, it’s really more analo-
gous to a hammer where your specific backup needs require a screwdriver.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION180

Using rsync to Synchronize Files
For all the utility of , , and , my favorite backup tool is still . As the name 
indicates,  synchronizes files between directories. Ultimately, that’s exactly what you’re 
looking for in a backup: to leave the files that haven’t changed and add the ones that have.

 is a powerful tool that will exclude files from a backup by reading an exclude list, 
and copy links, devices, owners, groups, and permissions.  can be executed remotely, 
creating backups across a network, and can also run in regular user mode. Furthermore,  
can be used in tandem with  to create a secure connection for remote backups. And, of 
course,  operations can be scripted and executed automatically via  or .

A typical  command might look like this:

This command will execute  as follows:

 creates a recursive copy with all attributes preserved)

)

), and preserving extended attri-
butes and ACLs

) on the destination that have been deleted on the source

) in  from the backup

These options will be applied to the process of backing up the  directory to the 
 directory.

The preceding command can be included in a quick bash script to execute the backup 
with a shorter command, or to include in  or .

To restore the backup created in this example, all that’s necessary is to reverse the source 
and destination:

Note The  option can generally be omitted from the restore command, as the files to be 
excluded were not included in the original backup.

If  is used to create a full system backup, the  option is extremely use-
ful. Apple recommends that several files and directories, including swap files and temporary 
directories, be excluded from full system backups. This list of files can be rolled into a single 
file and, with the   option, will be left out of backups.

With that information in hand, let’s create a simple backup script that will perform incre-
mental backups of a full system and make that backup bootable. Here’s the backup script, 
saved to :



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 181

Make sure that the preceding script is executable with this terminal command:

Next, create a simple text file at , with the following 
contents:

The backup script can be manually executed or scheduled in  or . To add to 
, create a new file contaning the following (adjusted, of course, for your system):



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION182

When created, this file can be saved in 
. When included in the  directory, this file will launch the  

 every day at 2:25 a.m.
If you’re more familiar and comfortable with , the following entry can be added to 

 with the  command:

Again, the script will run at 2:25 a.m. each day, creating an incremental backup of the sys-
tem and, using the  command, making it bootable.

Security
As you can imagine, it’s tough to condense the topic of security to a single section in a single 
chapter of a single book. The topic has filled entire libraries and served as the focus of com-
plete careers. The increase in the number of always-on connections around the world has 
ramped up the necessity of talking about security, but the topic is so large that anything less 
than a detailed, comprehensive discussion of security will be seen as a shortcoming by some. 
And, of course, that detailed comprehensive discussion would take many, many volumes. Any 
discussion of security, in reality, creates a paradox.

Rather than allowing the sheer scale of the topic to pull us off our mission of moving you 
gracefully from Linux to Mac OS X, I’ll cover only the basic Mac OS X-ready tools for security. 
As with other Mac tools, some are GUI-based, some are best implemented using the command 
line, some are native, and some are BSD-based. 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 183

Here, I won’t discuss the deeper issues of security, or provide a plan for more esoteric 
security implementations. I will, instead, look at the tools, their place in the operating system, 
and at how they fit into the high-level security net. I’ll also suggest some basic configura-
tions and commands to point you down that long path of complete security for your system. 
I won’t take you to the destination, but I will get you started down the road. You can find a 
comprehensive discussion in another recent book, Foundations of Mac OS X Leopard Security, 
by Charles Edge, Jr., William Barker, and Zack Smith (Apress, 2008). As a book devoted to the 
topic of security, it clearly takes the discussion I start here to another level.

By now, you’re certainly familiar with the approach of the built-in Mac OS X tools, regard-
less of their focus: provide the high-level functionality in a clean and intuitive interface, 
aggregate the most important elements into a minimal number of configuration panes, and 
make all the options point-and-click. The native Mac OS X tools for configuring security follow 
that approach perfectly. By now, you’re also familiar with the general layout of the Mac OS X 
System Preferences, where we’ll begin our discussion of security.

Configuring Security Through System Preferences
As with many of the other tools we’ve discussed, you’ll find a set of security configuration tools 
available from the System Preferences main window. The built-in Mac OS X security configu-
ration is located in the Personal section of System Preferences, as shown in Figure 7-30.

Figure 7-30. Configuring security from the System Preferences window

As shown in Figure 7-31, the General options of the Mac OS X security configuration con-
tain some basic but very commonsense security items. Consider the General security tab to be 
the highest level security options, addressing passwords, logins and logouts, and the security 
of remote controls. Interestingly, the window also allows you to use secure virtual memory, 
an option not seen or mentioned in other operating systems. This option can be important for 
the security of passwords or other sensitive items that may be swapped in and out of virtual 
memory. By securing the virtual memory, it’s also possible to secure those sensitive items that 
have been swapped into virtual memory.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION184

Figure 7-31. The General options window of the Mac OS X security configuration

Mac OS X also provides a security tool known as FileVault, configured through the 
window shown in Figure 7-32. FileVault encrypts the user home directories, mounting and 
unmounting them as users log in to the system. The directories are decrypted when mounted 
in the system.

Figure 7-32. FileVault security preferences in System Preferences

From the FileVault tab, you can set a master password. As noted in the window, this is 
a “safety net” password. If the password for individual FileVault accounts is lost, the master 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 185

password can be utilized to access the files locked by FileVault, and to reset the user-level 
password. A master password is required when choosing FileVault protection.

When it comes to setting the built-in Mac OS X firewall, basically, you can choose from 
three options for security levels: none, medium, or high. While that doesn’t completely 
describe the approach, it’s a good place to start your thinking. These three levels of security 
are represented by radio button options in the security configuration window, as shown in 
Figure 7-33. They work as follows:

Allow all incoming connections: This option does exactly as it notes—it doesn’t lock down 
or otherwise prevent traffic on any system port. In reality, the system is wide open when 
this option is selected. This allows your system to accept requests for applications and ser-
vices from other computers on the network.

Allow only essential services: This option blocks connections from other computers, as 
well as all requests for shared services and applications. Apple notes that in this mode, the 
system blocks “all connections except a limited list of services essential to the operation 
of your computer.” Incoming connections will still be allowed for DHCP services provided 
by , mDNSResponder, and the dependent Bonjour services, as well as Internet 
Protocol Security (IPsec) services provided by . So, this setting blocks the requests 
of other computers for all other services on your machine, while allowing your computer 
to find those critical services on other computers on the network. This is a fairly conserva-
tive mode that will likely work well for your home-connected system.

Set access for specific services and applications: The final option for Mac OS X firewall con-
figuration is the most flexible and probably the most useful for more experienced Mac OS 
X users. This option allows you to choose whether to accept or deny connections on an 
application-by-application basis. 

Figure 7-33. Setting the Mac OS X application-level firewall



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION186

When you choose the third firewall option, you can add applications by clicking the famil-
iar plus button in the lower-left corner of the configuration window. Then you can choose to 
allow or block incoming connections to that application via a menu on the right side of the 
application pane. You can also Control-click the application name to display the location of 
the application in the Finder. 

Applications added to this list are also digitally signed for posterity. If the application is 
modified at some point in the future, Mac OS X will prompt you with a choice to either accept 
or deny incoming connections from that application. This provides an additional level of 
security. The default in this mode is the same as the option to allow only essential services: 
only those essential services are allowed, unless and until you make the choice to allow a spe-
cific application to accept connection requests. When applications that haven’t been granted 
explicit permissions attempt to access the network, you’ll be prompted to either accept or 
deny the connection. That response will become the default for the application going forward. 
Finally, any application or script on the system can be added to this list, including command-
line applications.

In general, Apple has provided an easy-to-use security configuration tool in System 
Preferences. This tool provides enough flexibility to meet the needs of most home users in 
securing their system. While it’s not a complete security system—it doesn’t cover all the eso-
teric security corner cases—it does provide strong security for the most common scenarios.

Of course, as a BSD-based system, Mac OS X does not just offer the GUI tools for security 
configuration. If you’re willing to dig a bit deeper, you can completely customize your system 
security using other familiar command-line tools, such as .

Using ipfw As a Firewall
Mac OS X includes ipfw, a BSD firewall and traffic-shaping tool. ipfw implements rulesets, 
which are collections of rules that determine the action to be taken on packets traveling across 
the network interface. These rules first determine whether those packets will be allowed or 
denied, and then identify any further action to be taken.

The system kernel configuration determines the default rule: whether the system will 
allow or deny all packets. In all, ipfw will allow up to 65,535 unique rules and, therefore, 
unique actions on packets. The only rule that is not configurable is the rule numbered 65535. 
That’s the default rule upon which all others must be based. Given the large number of pos-
sible rules, ipfw is an extremely flexible tool for packet filtering and traffic shaping.

ipfw utilizes a rich command set that’s laid out in great detail in the man page ( ). 
Your best guide for ipfw use is to study and become familiar with the man page. However, 
some examples are useful to demonstrate the capabilities and power of ipfw.

ipfw looks at a packet, and then compares that packet to the ruleset, searching for condi-
tional matches. If one is found, ipfw acts on the packet based on the instructions provided by 
the individual matching rule. It’s much like the subprocess of driving known as “stopping at 
a stop sign.” As long as there are no stop signs in sight, you continue driving. As soon as you 
reach a stop sign, a rule of the road says to step on the brake, stop even with the stop sign, wait 
for traffic with the right-of-way (processing a completely different subset of rules), and when 
it’s your turn to go, accelerate smoothly away from the sign. So, your actions are determined 
by the stop sign conditions or rules. ipfw works in this same way. When a packet that meets 
predefined conditions or characteristics hits the system, it’s processed according to any rules 
matched by those conditions or characteristics.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 187

Let’s go over a blunt-force example—one that has no practical application in the real 
world, but serves to illustrate the potential of ipfw. My iPhone contains the Air Share applica-
tion, which will connect with machines on the local network via Wi-Fi and share files across 
the network. The iPhone gets its IP address dynamically from my router, and, for whatever 
reasons, is usually assigned 192.168.1.119. I can use ipfw to deny access from the iPhone to the 
desktop machine with the following:

This command starts ipfw with only the default rule which, on my machine, is to allow all 
traffic.

This return shows me that rule 00100 has been created to 
. In other words, the local machine (as ) will deny any request to or 

from the IP address 192.168.1.119. Sure enough, when I open Air Share on the iPhone and use 
Go/Connect to Server from the Finder on the desktop machine, it’s unable to connect to the 
iPhone. The attempt to connect eventually times out with an error. ipfw is denying all packets 
associated with the 192.168.1.119 IP address, whether they’re from the iPhone or from the 
desktop.

Note An interesting side effect of the sample rule is that if the connection with the iPhone is made and 
the phone is mounted as a network drive before the rule is established, it’s impossible to unmount it, even 
though its contents can no longer be accessed from the desktop.

To drop the “no iPhones” rule—rule 00100—I can execute the following command:

As no return is issued from the system, I want to check to be sure the rule has been 
deleted, by asking ipfw to list all its current rules:

Again, the only rule on the system is to allow all connections with all other machines—the 
default rule controlled by the kernel and numbered 65535. 

To shut down the ipfw firewall altogether, issue the following command:

Note ipfw commands that establish or delete rules require sudo access. The Mac OS X default configura-
tion does not allow socket operations by normal users; these are accessible by only the root user.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION188

The primary ipfw commands include those listed in Table 7-1. These commands are fur-
ther modified by the use of many options to ipfw.

Table 7-1. Common ipfw Commands

Command Description

 Inserts a new rule into the ipfw ruleset

 (or ) Displays all the current ipfw rules

 Removes all the user-configurable rules from the current ipfw ruleset

 Removes a single rule from the current ipfw ruleset

Activates ipfw’s firewall protections, or one of several other general options

 Deactivates ipfw’s firewall protections, or one of several other general options

 Disables or enables existing rule numbers; move, swap, or show existing rules

ipfw also provides stateful behavior; in other words, dynamic rules that match the current 
state of a packet can be created by existing rules. These dynamic rules exist for only as long as 
the state of the packet matches the original rule. 

An extension to our earlier stop sign analogy can demonstrate statefulness. A new rule 
defines that “Any car to your right that has arrived at the intersection at the same time you’ve 
arrived will have the right-of-way and, as such, will be allowed to pull away from their stop 
sign first.” That’s a dynamic rule that applies only when another car to your right stops at a 
stop sign at the same time you stop. It’s stateful in that its life is limited; it will apply only until 
the car to the right pulls away from the stop sign. Once those conditions no longer exist, the 
rule is no longer applicable. In IP traffic control, statefulness may, for example, temporarily 
open the firewall to specific traffic types. But, ipfw will do this for only as long as the matching 
state exists. Statefulness is a powerful tool in ipfw.

As I noted earlier, you should review the ipfw man page on your system for a full descrip-
tion of these commands and options. It’s a powerful tool that can be used from the command 
line to lock down your system with nearly any degree of security you prefer.

Using WaterRoof: An ipfw Front End
Clearly, not everyone agrees that the command line is the most efficient way to administer the 
finer points of your system—security included. The System Preferences security options in 
Mac OS X are pretty powerful but, quite frankly, don’t even approach the flexibility of a BSD 
tool like ipfw. And, of course, with security, flexibility is actually everything. The more granu-
larly you can create your security rules, the more likely you are to defeat potential security 
compromises while allowing normal system operations by most users. To get there, some pre-
fer the command line, and others prefer a GUI tool. 

WaterRoof provides a clean and very detailed GUI interface to the ipfw tools. It’s free and 
available for download from . It clearly answers the needs 
of those who prefer GUI configuration tools to the command line.



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 189

WaterRoof provides a clean interface to create and configure the ipfw rules. As shown in 
Figure 7-34, the options in the main interface include the following:

Static Rules: Allows the user to create unchanging ipfw rules.

Dynamic Rules: Allows the user to create dynamic ipfw rules. As noted earlier in the 
ipfw section, dynamic rules are used to create stateful firewalls. These rules may 
change depending on the state of the incoming packets.

Bandwidth Manager: Allows the user to shape incoming and outgo-
ing IPv4 traffic.

NAT Setup: Allows the user to configure NAT, a process of mapping 
IP addresses to a different interface.

Net Connections: Allows the user to block connections, switch 
between IPv4 and IPv6 addressing, and limit bandwidth.

Net Processes: Displays current network connections, both IPv4 and 
IPv6.

Firewall Logs: Enables, disables, and displays firewall logs.

Logs Statistics: Displays a log reader, providing filtering and graphic 
options.

Ready Rule Sets: Offers preconfigured sets of rules that can be 
applied for your system.

Configuration Wizard: Starts a GUI to create the ipfw rules used by 
WaterRoof.

IP Reverse and Whois: Provides a convenient way to check IP addresses.

Network Interfaces: Displays a list of all network interfaces on the machine.

Unless you already have ipfw rules configured on your system, you’ll use the firewall con-
figuration wizard to create new rules for WaterRoof.

The WaterRoof Wizard provides some initial background on use of the wizard in the main 
screen, as shown in Figure 7-35. The first actual configuration screen in the WaterRoof Wizard 
provides a drop-down menu of destination types, including all the common server types, as 
shown in Figure 7-36. Select the service on your computer to which you’ll allow others to con-
nect. Also choose the source address type, as shown in Figure 7-37.

Figure 7-34.  
The WaterRoof  
main interface



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION190

Figure 7-35. The WaterRoof Wizard main screen

Figure 7-36. Step 1 to configure new ipfw rules using the WaterRoof Wizard



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 191

Figure 7-37. Server options in WaterRoof

Using the WaterRoof Wizard, you can configure rules to allow connections from any one 
of several network address types, as shown in Figure 7-38. If you choose “a computer on my 
network” or “my network except one host,” you’ll need to enter the address of that machine in 
a text box that appears when you make that selection.

Figure 7-38. Address options in the WaterRoof Wizard

Step 2 in the WaterRoof Wizard allows you to define disallowed connections from your 
machine, as shown in Figure 7-39. As shown in Figure 7-40, several options are available for 
restricting the connection types available to your computer.

Figure 7-39. Configuring outgoing connection rules



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION192

Figure 7-40. Connection types to be disallowed from your computer

The WaterRoof Wizard also provides tools to limit bandwidth use on your machine, as 
shown in Figure 7-41. It allows you limit bandwidth by connection type (web sites, mail, or 
P2P) and to set the allowed bandwidth for those connections.

Figure 7-41. Traffic control in the WaterRoof Wizard

After you’ve created the rules using the WaterRoof Wizard, you’ll be prompted for your 
administrative password to add the rules to ipfw.

In short, WaterRoof provides a comprehensive set of GUI tools to establish your own 
security and bandwidth control rules for ipfw.

Summary
This chapter covered the tools for handling Mac OS X backups and security. We started with 
some GUI backup and recovery tools, including Mac OS X’s Time Machine, CCC, SuperDuper, 
and Mozy. Then we looked at two common command-line tools that are handy for backups: 

 and . 



CHAPTER 7   BACKUP,  SECURITY,  AND AUTOMATION 193

In the security discussion, we kept it simple and stuck to the built-in Apple firewall tools. 
You learned about the options available through Mac OS X preferences, the ipfw firewall, and 
WaterRoof, a front end for ipfw.

In the next chapter, we’ll turn our attention to coding in Mac OS X.



C H A P T E R  8

Mac OS X and Code

Up to this point, we’ve spent quite a bit of time buried in the weeds with user tools. To a 
large extent, we’ve ignored the fact that, aside from providing beautiful and functional user 
applications, Mac OS X is also a powerful development platform. Not only is Mac OS X loaded 
with the native Apple developer tools, including Xcode, but it’s also very extensible using open 
source tools, such as Python, Perl, and PHP. A developer can create Cocoa applications native 
to Mac OS X, or use the Apple IDE to create tools that leverage the open source underpinnings 
of Mac OS X. It’s also possible to add frameworks to the system that further extend the connec-
tions between these open source technologies and the native Apple development tools.

Mac OS X includes all the scripting tools you would expect in a Linux distribution. With 
Python, PHP, Perl, and Ruby, Mac OS X provides a powerful scripting platform, perfect for 
when full-blown object-oriented development is overkill. It’s easy to create scripts that “do 
one thing and do it well.” Apple also addresses this need in Mac OS X with AppleScript, a clean 
and easy-to-learn native scripting language. 

Finally, as a developer, you understand the importance of source code and revision 
control. Mac OS X provides these tools as well. If you’re a lone developer, it’s important to 
understand the code control options that are available for your local machine or local network. 
If you work in a development house with several developers, you’ll be interested in how Mac 
OS X can provide centralized code and revision control options, accessible on the network to 
all your developers. Again, the options for code control include native Mac OS X applications 
as well as tried-and-true open source alternatives, GUI options, and command-line tools. The 
flexibility you’ve seen in the user tools applies equally well to the developer tools in Mac OS X.

In this chapter, we’ll cover development with Xcode, scripting, and code maintenance and 
revision control. We’ll begin with a look at the Xcode IDE.

Using Xcode
As discussed in Chapter 4, Xcode is the Apple development environment provided on the Mac 
OS X installation DVD. Xcode has everything necessary to develop and debug applications for 
the Mac. Xcode is a complete IDE, including a text editor, build system, debugger, and com-
piler. It’s the central point for development of nearly all the applications on the Mac, and the 
very same IDE used by developers within Apple. 

Instructions for installing Xcode from the Mac OS X installation DVD are provided in 
Chapter 4. Once installed, the Xcode tools can be found, by default, on the  volume. These 
tools are installed in the  subdirectory of the  folder on that volume.

195



CHAPTER 8   MAC OS X AND CODE196

As shown in Figure 8-1, the main Xcode window offers all the Xcode options. You can 
jump right into the IDE by selecting “Create your first Cocoa application.” Alternatively, you 
can choose the other options to work with the Interface Builder, build a new database for your 
application data with Core Data, or use Instruments to optimize your application.

Figure 8-1. Launching the Xcode IDE in Mac OS X

At the top of the main Xcode window, you’ll also find links to internal documentation on 
a range of topics. These include the iPhone Dev Center, the Mac Dev Center, the latest news 
on Xcode, informational mailing lists on development and Xcode-related topics, and tips for 
using the Xcode tools. These links point to documentation libraries built into the Xcode tool. 
In order to preserve storage space, many of these libraries are initially populated with minimal 
information locally, with the complete documentation set being available online. Additionally, 
some documentation sets (notably those about Java) are not available at all locally. The com-
plete documentation libraries can be downloaded and installed locally, if needed, by clicking 
the Subscribe button in the left pane of the window for the documentation set you would like 
to install. Additionally, the documentation tool contains bookmarks, also listed in the left 
pane, as shown in Figure 8-2. These open the documentation in the lower pane of the main 
screen in the documentation library.



CHAPTER 8   MAC OS X AND CODE 197

Figure 8-2. The online documentation libraries for the Xcode tools

Creating an Application with Xcode
When starting a new project, Xcode provides a number of templates. As shown in Figure 8-3, 
these are grouped into several project types, including applications, Automator actions, kernel 
extensions, and several others. These templates provide the basic files for your projects. Select 
a template category, and then select a specific template for your project. Xcode prompts you 
for the location where all project files will be stored, as shown in Figure 8-4. 



CHAPTER 8   MAC OS X AND CODE198

Figure 8-3. Choosing a template for a new Xcode project

Figure 8-4. Saving a new Xcode project

As shown in Figure 8-5, the Xcode tool creates a basic library of files for the new applica-
tion. These include header files, app files, necessary frameworks, and  files, as well as 
several others. These are organized in the project within folders in the left pane of the Xcode 
window. The folders include classes, other sources, resources, frameworks, and products. 
Double-clicking a file name in the Xcode tool will open the file in the built-in text editor.

Xcode creates files with basic information in the header, including the code author and 
copyright information. This is based on information in the user’s entry in the Address Book 
application. The files also contain the basic code necessary to create the specific file for the 
application, again, based on the chosen application type.

The Xcode text editor utilizes full syntax highlighting, in addition to inserting comments 
for the developer, specific to the project type. In the example shown in Figure 8-6, the com-
ments provide the developer with information about the creation of a function for setting the 
value of input ports. This type of commenting is provided throughout all new project files.



CHAPTER 8   MAC OS X AND CODE 199

Figure 8-5. The file library created by Xcode for a new project

Figure 8-6. The AppController.m file open for editing in the built-in text editor



CHAPTER 8   MAC OS X AND CODE200

Applications in Mac OS X require a property list, or  file. These simple XML files 
describe the application and user settings required for the operation of the application. The 

 files are one of the many direct descendants of the NeXTStep operating system upon 
which Mac OS X is built.

As each Mac OS X application requires a  file, it’s only appropriate that the Xcode 
tool would provide the means by which to create these files. As a recent addition to Xcode, the 

 editor is included in Xcode 3.1 and later. To launch it, double-click the  object 
in the project’s  folder. A default  file is shown in Figure 8-7.

Note Though Xcode includes a  editor, it’s not actually necessary in order to create or modify 
 files. As XML files, the  files can be created and edited with any text editor.

Figure 8-7. Creating a plist file for the new application

Working in the Main Xcode Window
Rather than launching a single file in the built-in Xcode editor by double-clicking it, you can 
configure the tool to provide access to all files in a single window. You can also configure 
external editors in the Xcode preferences. Figure 8-8 shows this configuration, opened for 
the  file. In this configuration, the editor opens in the lower pane of the main 
window.



CHAPTER 8   MAC OS X AND CODE 201

Figure 8-8. An expanded view of the Xcode interface

At the top left of the Xcode IDE window are options for configuring both the target envi-
ronment and the window view, as shown in Figure 8-9. Your choices for window view, selected 
by clicking one of the two icons at the far left, are the main window or the debugging window 
(the bug spray icon). To designate the target environment for the application, select it from the 
drop-down menu in the main interface. In the example, the options for target are Mac OS X 
10.4 or Mac OS X 10.5 (Target Setting).

Figure 8-9. The Xcode IDE settings



CHAPTER 8   MAC OS X AND CODE202

Note Xcode settings include Project settings and Target settings. Without the parenthetical indication of 
which settings you’re modifying, such as “(Target Setting),” it’s possible to confuse the settings type. Chang-
ing these settings may, in fact, give unexpected results. In other words, it’s important to pay close attention 
to the settings type when modifying the Xcode settings.

In addition to selecting the window view and the target environ-
ment for the application, Xcode also provides several actions that are 
easily accessible within the main interface. Click the Action drop-
down arrow to see the list shown in Figure 8-10. You can select from 
the following types of actions:

current file in the Finder, or opening the current file as a new 
file

information (as provided, in part, by the existing  file), 
renaming, touching, untouching, and deleting the file

for the file

All in all, the most common file actions are provided from within 
the main Xcode window.

As shown in Figure 8-11, Xcode provides other developer 
options within the main window, including the ability to build an 
executable binary with a single button click. When the Xcode IDE 
is actively building a binary or is engaged in some other task that temporarily excludes user 
interaction, the Tasks indicator in the main window bar will become active, painting the stop 
sign a bright red. 

Figure 8-11. Additional file options available within the Xcode main window

In addition to the ability to build and compile from the main window, Xcode also provides 
a tool to view and edit all the available information about the current file within the main 
interface. The Info button at the top of the main Xcode window reveals another window with 
this information, as shown in Figure 8-12. This window includes several tabs of information, 
including general information, targets, additional compiler flags for the chosen application 
target, and file-specific comments.

Figure 8-10.  
Actions available in 
the Xcode interface



CHAPTER 8   MAC OS X AND CODE 203

Figure 8-12. Information about the current file available from the main Xcode interface window

Finally, the main Xcode window includes a search interface. This provides developers 
with the ability to perform string searches within the selected file. 

Debugging with Xcode
An essential part of creating applications is, of course, the ability to debug those programs 
you’ve created. Stepping through code execution one line at a time makes it possible to find 
coding errors. 

In addition to the project coding and creation tools provided by Xcode, you’ll also find a 
robust debugger. You can step through your own code line by line, or you can attach to and 
debug a running process that you did not initiate. And, with your own applications, you can 
set the debugger to attach to any process launched from Xcode only when it crashes.

Consistent with Apple’s philosophy of creating tools that are flexible for developers, Xcode 
provides a number of ways to debug your applications. The method you choose is entirely up 
to you, and will undoubtedly depend on your preferred work style and environment.

Running the Debugger in the Text Editor
The Xcode debugger provides the ability to debug your code directly in the text editor. This can 
be a big time-saver if you’re creating and debugging code on the fly. To access the debugger in 
the text editor, double-click the file to be debugged to open it in the text editor. Then, with the 
text editor in the foreground, select Run  Go (Debug) from the Xcode menu.



CHAPTER 8   MAC OS X AND CODE204

Two pieces of the debugger in the text editor are important to you, as noted in Figure 8-13: 
the debugger strip and the gutter. The debugger strip, shown in Figure 8-14, includes the items 
listed in Table 8-1. The gutter allows you to set or edit breakpoints.

Figure 8-13. Debugging code in the Xcode text editor

Figure 8-14. The Xcode debugger strip



CHAPTER 8   MAC OS X AND CODE 205

Table 8-1. Xcode Debugger Strip Items

Item Description

Thread list Shows the thread currently under control of the debugger

Breakpoints button Sets and deactivates the debugging breakpoints

Continue button Continues the execution of the debugger

Step Over button Instructs the debugger to skip, or “step over,” the current line of code

Step In button Instructs the debugger to step into a function or a specific line of code

Step Out button Instructs the debugger to step out of a function or specific line of code

Debugger button Opens the GDB (GNU Project Debugger) window

Call list Shows the call stack (list of called routines)

Additionally, the debugger provides code data tips. By hovering the cursor over the code 
in debugging mode, you’ll have access to a progressive disclosure mechanism that allows you 
to view and change your application’s variables.

Using the Mini Debugger
The full debugging interface, while powerful, can sometimes be a bit of overkill. It’s not always 
necessary to open a full window, nor is it desirable when what you really need is just a quick 
assessment of how your program is operating. For those purposes, Xcode provides a mini 
debugger. This small debugging interface floats above a running application, providing many 
of the same tools that are available in the full version.

The mini debugger, shown in Figure 8-15, includes functions to (from 
left to right) stop and pause the code, select the project, and activate/ 
deactivate breakpoints within the code. 

Figure 8-16 shows an example of the mini debugger in operation. In 
this figure, the process under control of the debugger, known as the infe-
rior, is stopped. 

Figure 8-16. The mini debugger in operation

Figure 8-15.  
The Xcode mini 
debugger



CHAPTER 8   MAC OS X AND CODE206

The mini debugger offers many of the same tools as the text editor debugger, including 
the debugger strip and the gutter. However, unlike the text editor, the mini debugger doesn’t 
allow changes to the source files. 

Using the Debugger Window
Xcode provides another interface for debugging to accompany the text editor and the mini 
debugger. The debugger window, shown in Figure 8-17, is the full debugging interface in 
Xcode. 

Figure 8-17. The Xcode debugger window

The debugger window includes the full set of debugging tools available in Xcode, as listed 
in Table 8-2 and shown in Figure 8-18.

Table 8-2. Xcode Debugger Window Toolbar Options

Button Description

Build and Go Builds and runs the application

Tasks (Stop) Terminates the inferior

Activate/Deactivate Toggles breakpoints

Fix Builds a single file fix

Restart Runs the application in the same state as the previous run

Pause/Continue Pauses/continues application execution

Step Over Steps over the current line of code

Step Into Steps into the call to the current line

Step Out Steps out of the current function or method



CHAPTER 8   MAC OS X AND CODE 207

Button Description

Breakpoints + Adds a breakpoint

Breakpoints Opens the breakpoint window

Console Opens the Console window

Figure 8-18. The debugger window toolbar

With multiple panes, the debugger window provides a wealth of other execution and 
debugging information. The upper-left pane contains the thread list, with the call stack of 
the current thread. The upper-right pane contains the variables list, displaying the variables 
defined in the current scope and any associated values. The lower pane contains the text edi-
tor. The status bar resides at the bottom of the window itself, just beneath the text editor. The 
debugger window also provides some display flexibility, with configuration options for both 
horizontal (as shown in Figure 8-17) and vertical display.

In short, Xcode provides a powerful set of tools for debugging your application, and maxi-
mum flexibility in how those tools are configured and used.

Xcode and Other Application Development Tools
Even though Xcode is the chosen tool for most developers creating applications specifically 
for Mac OS X, it’s not limited to Objective-C, C++, or Java. It is, in fact, a thoroughly modern 
tool with the flexibility to make full use of other current programming and scripting languages. 
Whether you’re a coder developing object-oriented applications in Python, a web guru creat-
ing database-driven sites with Ruby, or a developer who has chosen PHP as your preferred 
programming language, Xcode will be useful.

The benefits of using Xcode as your development tool might not be obvious until you’ve 
used Mac OS X itself for awhile. Xcode provides the native Mac OS X environment, including 
proper keyboard shortcuts and controls. It also “understands” Subversion, providing both 
development and source control within a single tool.

The following sections introduce Java, Python, Ruby, and PHP development with Xcode.

Note Xcode provides a strong set of tools for object-oriented programming and scripted solutions. Xcode 
Unleashed by Fritz Anderson (Sams, 2008) and Beginning Xcode by James Bucanek (Wrox, 2006) provide 
full, book-length views of Xcode.



CHAPTER 8   MAC OS X AND CODE208

Xcode and Java
Java is another development language included in Mac OS X. Java 2 Standard Edition 5 (J2SE 
5) is included in the standard Mac OS X installation, with J2SE 6 available as a software update. 
Both 32- and 64-bit versions of Java are included in the J2SE 5 installation, while the J2SE 6 
version is 64-bit and Intel only.

It’s easy to create a new Java project in Xcode, as shown in Figure 8-19. As Java is a native 
development language in Mac OS X, no further modification is required for Xcode to see and 
make Java available within its tool set.

Figure 8-19. Creating a Java application in Xcode

Some additional tools are installed in Mac OS X specifically for use with Java. Apache Ant 
is the tool used by Mac OS X to compile and run Java applications. This, too, is included in the 
standard Mac OS X installation. The Jar Bundler allows developers to build and deploy Java 
JAR files as applications that can be launched in the same way as any other Mac OS X appli-
cation. These JAR files won’t require the use of the terminal for operation. Additionally, the 
Mac OS X installation includes Applet Launcher, which simplifies applet testing in Mac OS X 
by providing a GUI to Sun’s Java plug-in. Applets can be launched from an HTML page, with 
applet performance and behavior settings configurable via the Java Preferences application.

Mac OS X contains some additional Java-specific development and deployment tools, 
including the following:

Java Web Start: A tool to launch and modify settings for Java Web Start applications.

Java Preferences: A tool that allows developers to specify settings for Java applications, 
plug-ins, and applets. 

Input Method HotKey: A tool that lets developers set a keyboard combination for invok-
ing the input method dialog box in applications with multiple input methods.

JUnit: A Java unit testing interface.

Apache Maven: A development consolidation tool, including dependency and release 
management.

Apache Ant: A tool to automate Java builds. 



CHAPTER 8   MAC OS X AND CODE 209

Xcode and Python
Python, the programming language creation of Guido von Rossum in 1990, has become 
increasingly popular in the past several years. Renowned for its clean syntax, reasonable learn-
ing curve, extensibility, and full object-orientation, Python has garnered a growing following 
of developers. It’s often used as a scripting language to meet quick, one-off needs. Its use has 
also broadened to include 3D animation and rendering packages such as Maya, graphics cre-
ation and manipulation applications such as GIMP and Inkscape, and even games, including 
Civilization IV.

Released under a GPL-compatible license, Python has also garnered a large and robust 
user community. It’s now a standard element in most Linux distributions. It’s also included in 
Mac OS X, with the Python packages listed in Table 8-3 installed by default.

Table 8-3. Python Packages Included with Mac OS X Installation

Package Description

altgraph Python graph (network) package

bdist_mpkg Tool for building Mac OS X installer packages from 

macholib Mach-O header analysis and editing

modulegraph Python module dependency analysis tool

NumPy Array processing for numbers, strings, records, and objects

py2app Tool for creating stand-alone Mac OS X applications with Python

setuptools Utility to download, build, install, upgrade, and uninstall Python packages

xattr Python wrapper for Darwin’s extended filesystem attributes

Twisted Event-driven networking engine

wxPython Python bindings for the wxWidgets tool kit

Zope Open source application server

When the  or source-built installation is complete, Xcode will recognize PyObjC, 
allowing you to create a new Python project from the menu. As shown in Figure 8-20, Xcode 
provides the option to create new Python Cocoa projects directly from the New Project 
 window.



CHAPTER 8   MAC OS X AND CODE210

Figure 8-20. Creating a new Python project in Xcode

As part of the new Python Cocoa project, the Xcode tool creates the  file, as shown 
in Figure 8-21. The tool writes appropriate includes to the file, such as  and Mac OS X 
classes, including  and . Notice that syntax highlighting is fully functional 
with the PyObjC bindings in Xcode.

While all the Xcode project management tools are available for Python projects, the Xcode 
debugging tools do not work for Python applications. Python does, however, include the built-
in  debugging module. This is a robust debugging tool, executed from the command line, as 
follows:

A useful overview of the  functions is available on the Python site at 
.



CHAPTER 8   MAC OS X AND CODE 211

Figure 8-21. The main.py file in the Xcode text editor

Xcode and Ruby
Development with Ruby in Xcode is similar to Python development. Like Python, Ruby is 
included in the base installation of Mac OS X. This also includes Rails, the chosen framework 
for most current Ruby application development. A number of other Ruby utilities—Ruby 
gems—are included in the base installation, as well. Overall, Ruby developers will find the Mac 
OS X Ruby implementation to be extremely friendly and well devised. If you’re already familiar 
with the general user interface layout of the Mac operating system, moving your Ruby devel-
opment to this platform should be a painless process.

Like Python, Mac OS X provides a robust Ruby installation, including the packages listed 
in Table 8-4.



CHAPTER 8   MAC OS X AND CODE212

Table 8-4. Ruby Packages Included with Mac OS X Installation

Package Description

RubyGems Ruby package manager

rake Make-like utility for Ruby scripts

Rails Framework for database-backed web applications

Mongrel HTTP library and server, used primarily to build and test Ruby applications

Capistrano  Framework and utility for executing commands in parallel on multiple remote 
machines, via SSH

Ferret Search engine

OpenID Service that provides OpenID identification to Ruby programs

sqlite3-ruby Module that enables Ruby scripts to interact with a SQLite 3 database

libxml-ruby Module to read and write XML documents using Ruby

dnssd Ruby interface for DNS service discovery, implemented as Bonjour in Mac OS X

net Pure Ruby implementations of the SSH and SFTP client protocols

Additional Ruby libraries and modules can be downloaded from . 
These are available in  source code packages or as  files, available to RubyGems.

Using the RubyGems tool, a developer can add libraries and packages developed by other 
Ruby users. This follows the model created by Perl developers and the CPAN system. In short, 
these libraries represent a true implementation of modular design. With a good understanding 
and frequent use of the modules found on the RubyForge site, you’ll clearly save development 
time, effort, and debugging by utilizing prewritten code.

As with PyObjC, the installation of RubyCocoa will make Ruby visible to the Xcode tool. 
As shown in Figure 8-22, it’s possible to create a new Ruby Cocoa project directly from Xcode 
with the RubyCocoa framework installed.

Note The RubyCocoa site ( ) provides ample 
resources to get you started with Ruby development in Mac OS X., including articles on “the Ruby way,” 
Ruby extensions, and detailed tutorials on Cocoa programming with Ruby. An even more detailed list of 
RubyCocoa resources can be found at the Ruby Inside site (

).

It’s clear that the UNIX underpinnings of Mac OS X provide much the same flexibility for 
Python and Ruby development as that found in most Linux distributions. While a few extra 
steps may be required to configure a Mac OS X system for Cocoa development with Python or 
Ruby, the basic functionality of both exists in the standard installation. 



CHAPTER 8   MAC OS X AND CODE 213

Figure 8-22. Creating a new RubyCocoa application project with Xcode

Xcode and PHP
Given the inclusion of Java, Python, and Ruby in the standard Mac OS X installation, it should 
come as no surprise that PHP is also included in Mac OS X. Mac OS X 10.5 (Leopard) installs 
PHP 5 by default, with built-in support for the SQLite database. The inclusion of PHP and 
SQLite, in combination with the default Apache installation, makes Mac OS X a strong web 
application development environment, requiring little additional configuration.

PHP configuration in Mac OS X starts with the setup of the built-in Apache server. To turn 
on the server, select Sharing from System Preferences, and check the Web Sharing check box, 
as shown in Figure 8-23. This enables the Apache server on your Mac OS X machine, using 
both a system home page and a user-specific home page, as noted in the links within the con-
figuration window. You can check the status of the server by clicking the home page links in 
this window. As shown in Figure 8-24, a default home page is displayed in Mac OS X when the 
Apache server is properly configured. The index file is located in .



CHAPTER 8   MAC OS X AND CODE214

Figure 8-23. Configuring the Apache server from System Preferences

Figure 8-24. The default user home page in Mac OS X



CHAPTER 8   MAC OS X AND CODE 215

While the Apache server is configured out of the box, configuring PHP requires a few addi-
tional steps. To load the PHP module in Apache at startup, uncomment the following line in  

:

Then restart the Apache server with the following command:

This will restart the server, loading the PHP 5 module.
You can check the PHP installation by creating a file in the server directory. Simply create 

a file named  in the document root containing the following:

By loading this page in your browser, as shown in Figure 8-25, you’ll test the PHP configu-
ration, as well as display all the pertinent configuration information.

Figure 8-25. The phpinfo.php page displayed in Safari



CHAPTER 8   MAC OS X AND CODE216

Note PHP development can be greatly enhanced by the use of PEAR modules, available at 
. Like CPAN and RubyGems, PEAR modules are prebuilt code chunks, written to accomplish 

a specific task. These can be easily rolled into your PHP development. Full documentation to acquire and use 
PEAR modules is available on the PEAR site at .

The inclusion of PHP in the base Mac OS X installation rounds out the remarkably com-
plete set of development tools built into the Mac operating system. You’ve seen that the Mac 
OS X platform includes the most current programming and scripting languages, all of which 
are available (some with minor additional configuration) from within the Xcode interface.

Scripting
Aside from the built-in programming languages, Mac OS X supplies a great environment for 
scripting and scripting solutions. The UNIX basis of the operating system provides all the 
tools necessary for shell scripting. As with a Linux system, you can create scripts on the fly to 
accomplish any number of administrative tasks. Scripts can also provide some functionality in 
other application development.

Bash, Python, Perl, and Ruby provide strong scripting functionality, and all are available 
in the Mac OS X installation. In practice, scripting in Mac OS X using these languages will be 
virtually indistinguishable from scripting on a Linux or UNIX system. But for many, scripting 
in Mac OS X starts with the native scripting tool: AppleScript.

Using AppleScript
AppleScript is a scripting language that can respond to a number of events in Mac OS X by per-
forming a set of defined operations or by providing data. An event in Mac OS X is an internal 
message containing commands or arbitrary data. The Open Scripting Architecture (OSA) is 
the API at the heart of AppleScript. OSA makes it possible to communicate with other scripting 
languages and with other applications on the system.

Lexically, AppleScript is simple, utilizing 103 reserved keywords. As with Python, the 
syntax is also simple, making AppleScript an easy language to learn. However, the simplicity 
of the language itself is deceptive. AppleScript is a rich, object-oriented scripting language, 
perfectly suited to creating scriptable applications, performing repetitive operations, and 
providing access to applications or other scripting languages in the system. Apple provides a 
comprehensive guide to using AppleScript at 

.
The AppleScript Utility, located in the  directory, is used to 

configure the use of the AppleScript tools on your system. As shown in Figure 8-26, the con-
figuration options include a choice between scripting editor versions, the ability to utilize GUI 
scripting and provide universal access (including voice control), and the ability to set up folder 
actions for AppleScripts. (Folder actions are repetitive actions taken on the contents of a folder, 
such as periodically checking whether the folder contents have changed, and moving any new 
contents to another folder.)



CHAPTER 8   MAC OS X AND CODE 217

Figure 8-26. The AppleScript Utility

Creating Scripts with the Script Editor
Mac OS X provides the Script Editor, located in the  directory. This is 
a rich editor used primarily for creating, testing and, where necessary, compiling AppleScript 
scripts. However, it also understands the other scripting languages on the system, including 
bash, Python, Perl, and Ruby.

As shown in Figure 8-27, the Script Editor utilizes a multipane window and syntax 
highlighting. The sample script shown in Figure 8-27 is a pure AppleScript script, with the 
appropriate syntax highlighting. Scripts written in other scripting languages in the Script Edi-
tor will be highlighted accordingly.

Figure 8-27. The Script Editor



CHAPTER 8   MAC OS X AND CODE218

Figure 8-28 shows the Script Editor toolbar. The buttons on this toolbar allow you to 
record macros, run and stop a script, and to compile that script into a stand-alone application 
for Mac OS X.

Figure 8-28. The Script Editor toolbar

The Script Editor provides a wide range of additional features, including the ability to view 
the data dictionaries of scriptable applications. 

Tip Also worth noting is Automator, an Apple script-creation tool included in Mac OS X. Automator makes 
it possible to create scripts without actually writing any code. It’s a graphical tool that provides a library of 
common actions in the form of graphical objects. The interface allows you to create relationships between 
these actions by dragging and dropping them into the proper sequence. The output is in the form of work-
flows, which carry out the actions specified by the user. Ben Waldie’s book Automator for Mac OS X 10.5 
Leopard: Visual QuickStart Guide (Peachpit Press, 2008) provides a detailed discussion of Automator.

Using Other Scripting Languages
As noted, it’s possible to use other programming languages in Mac OS X, just as you would on 
any other UNIX system. Bash, Perl, Python, and Ruby are all installed with Mac OS X, and are 
available without further configuration. Scripts in these languages can be created with any text 
editor or with the Script Editor. The Script Editor also provides GUI-based testing for these 
scripts. In practice, scripting in Mac OS X using these languages will be virtually indistinguish-
able from scripting on a Linux or UNIX system.

Code Maintenance and Revision Control
Mac OS X is packed with modern useful development tools: programming languages, a robust 
debugger, and a project organization and management tool. Combined, they provide a devel-
opment environment that’s very much the equivalent of most Linux systems. Everything 
necessary to create applications and scripts for all computing platforms is available at no addi-
tional cost and only minimal additional effort.

But even a good development environment is incomplete if it doesn’t provide a tool for 
source and revision control. Any developer who has lost a significant chunk of irreplace-
able code will vouch for the value of source control. Even lone developers have come to rely 
increasingly on revision control. The abilities to assess and summarize differences between 
files, to roll back to previous versions, and to take complete control of all source code are criti-
cal to successful software development.



CHAPTER 8   MAC OS X AND CODE 219

From what you’ve seen of the built-in tools in Mac OS X, it should come as no surprise 
that it includes the latest and greatest source control system: Subversion. As you would find in 
most Linux distributions, Subversion is available both from the command line and with sev-
eral well-developed front-end tools. Additionally, you can use Git with Mac OS X. Let’s look at 
each of these revision control options, beginning with an overview of Subversion.

Introducing Subversion
Subversion has become a popular tool for version control. Developed by CollabNet in 2000 as 
a replacement for the Concurrent Versions System (CVS), Subversion has become the primary 
version control system on open source projects, including Apache, Python, Mono, GNOME, 
Ruby, and others. It’s also moving toward prominence in the commercial world, where tools 
saddled with annual and per-seat licensing fees have long held sway. Both open source devel-
opers and corporate software developers have begun to appreciate the power of Subversion.

Subversion vs. CVS
Subversion offers several important improvements over the older CVS. These improvements 
provide users with more control over the tool, more flexibility in how versioning is accom-
plished, and a full set of APIs that make it extremely customizable for unique uses. These 
improvements are accomplished by the following:

Directory versioning: Subversion utilizes a “virtual” versioned filesystem that allows track-
ing of both files and directory trees. This is a significant improvement over CVS, which 
tracked versions only on individual files.

Versioned metadata: The metadata of all files and directories—the data describing the 
properties of the files and directories—can be created and modified by the user. This data 
is versioned with the data contained in the files themselves. 

Atomic commits: Atomic commits guarantee that if an entire collection of changes cannot 
be committed to the repository, none are committed. This is important to the work flow 
of developers, as it allows them to structure their changes in a more logical fashion. It also 
guarantees that no problems will arise with committed code for which only a partial set of 
changes have been committed.

Network flexibility: Subversion can be plugged into Apache as a module. It can be used 
over the network as a stand-alone tool. Subversion can also be implemented within a 
secure Shell (SSH) tunnel across a wide network.

Binary/text parity: Both binary and text files can be committed and tracked using Sub-
version. The algorithm implemented to recognize and express the differences between 
versions is identical in both text and binary files. This results in a much more seamless 
work flow, in which all files are handled in the same way.

Branching and tagging: Subversion creates branches in a manner similar to hard-linking. 
(See the “How Does Time Machine Do That?” section of Chapter 7 for a description of 
hard-linking.) Both branches and tags are created and maintained using this mechanism.



CHAPTER 8   MAC OS X AND CODE220

True versioning: One significant drawback of CVS was its inability to distinguish files with 
the same name. If, for example, a file in a CVS repository was replaced with a new file of 
the same name, the versioning history of the predecessor file attached to the new file. 
Though that old versioning history may have literally no relevance to the new file, it was 
attached. Subversion creates a new version history with each file added to the repository, 
regardless of a similarity in names. Furthermore, file copies and renames are fully sup-
ported in Subversion, unlike CVS.

Open API: Subversion is implemented as a collection of shared C libraries. The APIs for 
these libraries are well known and well defined. As a result, Subversion can be custom-
ized, modified, and extended to more closely suit the users’ needs.

Clearly, Subversion is a strong evolution from its predecessor CVS. It provides users with 
much more power and flexibility than its predecessors, and does so in a much more intelligent 
way. And, of course, it’s included and ready to use in Mac OS X.

Subversion’s Copy-Modify-Merge Model
Subversion implements a copy-modify-merge model of version control. Most older version 
control systems, including CVS, utilize a lock-modify-unlock model for version control. These 
models are critical for capturing all changes to a file, even when those files are under concur-
rent modification by different developers. The problem lies in how those changes are tracked. 
If the files are simply shared, without either type of version control model in place, changes 
made by one developer will surely be overwritten by another. That is, in the end, one of the 
most important reasons to use a version control system, especially in an environment where 
many developers will have access to a set of files. 

In the lock-modify-unlock version control model utilized by CVS and other older version 
control systems, a file can be modified by only one user at a time. The first user to access the 
file in the repository “locks” the file, preventing write access by other users. Clearly, this is an 
inefficient model. One developer must wait for another to finish making changes to a file. Even 
if the second developer intends to make changes that will not conflict with changes made by 
the first, she will need to wait until the first user unlocks the file.

The copy-modify-merge model allows individual Subversion users to copy a file from 
the repository and make changes to the file locally. When complete, those changes will be 
merged with all other changes made to the file after the time it was checked out. At the time of 
the commit, Subversion notifies the “last-in” user that additional changes have been made to 
the file. The developer will then use the  command to modify the local working copy of 
the file with changes to the file on the repository. If no conflict exists, the “last-in” file is com-
mitted seamlessly to the repository. If a conflict does exist between the changes, the user is 
notified of the conflicts and presented a view of both sets. One set will be selected manually 
and, once those changes are incorporated, the file can be committed back to the repository.

In short, the copy-modify-merge model is a much more efficient model for tracking modi-
fications to a file. It allows multiple users to truly work on files simultaneously and handles 
conflicting changes to files in an intelligent fashion.



CHAPTER 8   MAC OS X AND CODE 221

Using Subversion from the Command Line
Subversion is easy to use from the command line. The syntax is as follows:

Table 8-5 lists some of the commonly used subcommands. The Subversion help 
( ) lists the full set of subcommands. 

Table 8-5. Common Subversion (svn) Subcommands

Subcommand Shortcut Description

  Adds a new file or directory to an existing Subversion repository

  Gets a local copy of a file or directory from a Subversion repository

  Adds a changed local file back into an existing repository

  Provides a list of differences between two file versions

   Incorporates changes made after the file was checked out into the 
current version, or displays conflicts

  Checks out the most current version of a file or directory

Options for the Subversion commands are a bit more esoteric. Subversion options are 
global, in that each option has the same effect, regardless of the subcommand used. Some of 
these option/argument pairs include those listed in Table 8-6.

Table 8-6. Common Subversion (svn) Options

Option Description

 Uses an external tool ( ) for diffs

 Uses an external tool ( ) for editing

 Uses the contents of  to execute subcommands

 Forces the subcommand to run

 Displays the  help information

 Provides an authentication password on the command line

 Prints only essential information when completing an operation

  Manually provides a revision number for the operation; can include a 
number, keywords, or dates

  Instructs the client to print as much information as possible while 
 running the subcommand

Subversion also includes the  administrative tool. Like the  command, 
  utilizes several subcommands, including those listed in Table 8-7.



CHAPTER 8   MAC OS X AND CODE222

Table 8-7. Common Subversion Administration (svnadmin) Subcommands

Subcommand Description

 Creates a new Subversion repository

  Dumps all changes from within a repository (most often used to move a reposi-
tory from one location to another)

  Makes a safe copy of a repository, regardless of whether other processes are using 
the repository

  Loads a set of revisions into a repository, generally from a file created with the 
 command

  Verifies the contents of a repository, including checksum comparisons of the 
data stored in the repository

Using Subversion GUI Front Ends
While command-line Subversion is easily the fastest possible way to utilize it, learning the 
subcommands and the options may not be your cup of tea. As with many great Linux com-
mand-line applications, you’ll find a full range of GUI front ends for Subversion on the Mac. 
These tools are free or very reasonably priced, are easy to learn, and, for the most part, are very 
much an asset to your use of Subversion. If you’re disinclined to use the command line, these 
tools will still maximize your efficiency and your time in using Subversion for your projects. 
Here, we’ll look at two Subversion GUI front ends: Versions for the Mac and RapidSVN.

Versions for the Mac
Aside from providing a front end for Subversion, Versions for the Mac provides some other 
interesting features that you won’t find in other Subversion clients.

Versions is available at . It is provided as a zip file containing a 
stand-alone application. It doesn’t require any installation other than unzipping the file and 
dragging the binary into the  directory. Double-clicking will open Versions.

Figure 8-29 shows the main Versions window. On the first use, Versions provides several 
options for setting up a new repository or connecting to an existing one. 



CHAPTER 8   MAC OS X AND CODE 223

Figure 8-29. The main Versions window

The connections to these repositories are created in the form of bookmarks. Figure 8-30 
shows an example of creating a bookmark to an existing Subversion repository (the writing 
repository named LinuxToMac on my system). 

Figure 8-30. Creating a bookmark to an existing repository in Versions



CHAPTER 8   MAC OS X AND CODE224

Figure 8-31 displays the contents of the repository accessed by the bookmark created in 
Figure 8-30. This is the view in the Browse tab of Versions, which shows all the files and direc-
tories in the repository.

Figure 8-31. The contents of the repository, accessed by clicking the bookmark in Versions

By highlighting a file in the Browse tab, you can select from any of the tools in the toolbar 
in the main window. Figure 8-32 shows the result of selecting the History tool when highlight-
ing the  file. As you can see, the default view is the HEAD view, which 
reads the commit metadata, including revision, date, author, and messages. Using drop-down 
menus in the window, you can further refine your view by broadening or narrowing the num-
ber of viewable entries. You can also view the revisions by date or other Subversion command.



CHAPTER 8   MAC OS X AND CODE 225

Figure 8-32. Checking the history of a file from the Browse tab in Versions

Figure 8-33 shows the use of the Compare Diff tool to compare two different versions of 
a single file. As you can see, the Versions interface puts all commits of a file side by side in the 
window.



CHAPTER 8   MAC OS X AND CODE226

Figure 8-33. The Compare Diff function in Versions

Figure 8-34 shows the clean diff presentation provided by Versions. Inserts and deletions 
are clearly delineated in the Compare Diff window, as is a count of the number of differences. 
In short, Versions makes it very easy to quickly scan through changes in multiple document 
versions.



CHAPTER 8   MAC OS X AND CODE 227

Figure 8-34. Viewing differences between file commits in Versions

One of the features of Versions that clearly distinguishes it from other front-end Subver-
sion tools is clear the first time you open the client. The main interface, as shown in Figure 
8-35, provides the option to create a free online repository via Beanstalk. 



CHAPTER 8   MAC OS X AND CODE228

Figure 8-35. Setting up a free online repository with Versions

Setting up an online repository is a pretty painless process, requiring only that you estab-
lish an online account with Beanstalk, and follow the simple instructions provided once the 
account is created. Taking advantage of the Beanstalk account provides an additional measure 
of code security, since the files are stored off-site. Committing, checking out, and viewing 
files in a Beanstalk repository with Versions is no different from taking those same actions on 
locally stored files. The drawbacks to the free Beanstalk accounts are the limits of 20MB stor-
age and three developers.

Versions provides access to the full set of Subversion subcommands and options. With the 
additional bonus of an online Beanstalk repository, it’s a tool you’ll certainly want to consider 
when looking at GUI front ends for your Subversion installation.

RapidSVN
Another GUI Subversion tool for Mac OS X is RapidSVN. It’s available in  image form at 

. 
Like Versions, RapidSVN uses bookmarks to create a new repository or to connect to an 

existing repository. As shown in Figure 8-36, creating a bookmark to a repository in RapidSVN 
requires only that you configure the URL for the repository. This can be an online repository or 
a local version.



CHAPTER 8   MAC OS X AND CODE 229

Figure 8-36. Creating a repository bookmark in RapidSVN

As with other GUI Subversion tools, the repository is browsable in a single RapidSVN 
window, as shown in Figure 8-37.

Figure 8-37. Browsing the repository in RapidSVN

The RapidSVN Preferences window allows you to configure the various tools used to take 
actions on the files controlled by Subversion. As shown in Figure 8-38, these include the Diff 
tool, the Merge tool, and the editor. The Preferences window also provides general configura-
tion options and options for authentication.



CHAPTER 8   MAC OS X AND CODE230

Note As is the case in Linux, you can check whether a specific tool is in the path on your Mac OS X sys-
tem. To do so, simply open a Console window and enter the command . If the tool is in the 
path, its location will be returned in the command line. To find the Diff and Merge tools for RapidSVN, for 
example, I executed the  command, which showed that both tools were located in .

Figure 8-38. Configuring the RapidSVN preferences

Like Versions, RapidSVN provides the full set of Subversion tools for version control. How-
ever, one of the primary differences between the Versions and RapidSVN applications is the 
location of these tools. Versions places the most commonly used tools on the toolbar in the 
main window. RapidSVN places those tools in a context menu launched by right-clicking a file.

Managing Changes with Git
Subversion has the current buzz, but it’s not the only version control system for Mac OS X. Git 
is a scalable, distributed version control system for Linux that installs easily in Mac OS X.

While Git is a powerful version control tool, its real power is in a distributed environment 
serving many developers. Within the open source community, Git is used in projects as diverse 
as Linux kernel development, Wine, and X.Org. Like Subversion, Git uses the copy-modify-
merge versioning model, allowing users to create local copies of files, and then managing 
concurrent changes at the time of check-in to the repository. Other Git features include the 
following:

Git protocol: This is an efficient network protocol created specifically for Git. Users can 
also optionally use the HTTP protocol to check out and commit files.

Scalability: Git is designed with large projects in mind. It scales quickly and easily to 
accommodate ever-growing project demands.

UNIX tool approach: Git makes full use of the UNIX philosophy of many small tools that 
do one thing right. As a collection of these tools written in C, Git provides nearly unlimited 
flexibility for developers.



CHAPTER 8   MAC OS X AND CODE 231

Cryptographic history authentication: Git histories are stored in a way that prevents those 
histories from being changed. This ensures the integrity of the file version histories.

The source code for Git is available at . A Mac OS X  image is 
available at , as is the 

 front-end zip file. 
To build and install Git from the source code package, execute the following commands:

To install from the  image, double-click the image file to mount the image, double-
click the installer package, and follow the prompts.

Like Subversion, the command set for Git is deep. The command syntax is as follows:

The most common Git commands are listed in Table 8-8.

Table 8-8. Common Git Commands

Command Description

 Adds file contents to the index

 Finds the change that introduced a bug by binary search

 Lists, creates, or deletes branches

 Checks out a branch or paths to the working tree

 Clones a repository into a new directory

 Records changes to the repository

 Shows changes between commits, commit and working tree, and so on

 Downloads objects and references from another repository

 Prints lines matching a pattern

 Creates an empty Git repository or reinitializes an existing one

 Shows commit logs

 Joins two or more development histories together

 Moves or renames a file, a directory, or a symlink

 Fetches from and merges with another repository or a local branch

 Updates remote references along with associated objects

 Forward-ports local commits to the updated upstream head

 Resets the current HEAD to the specified state

Continued



CHAPTER 8   MAC OS X AND CODE232

Table 8-8. Continued

Command Description

 Removes files from the working tree and from the index

 Shows various types of objects

 Shows the working tree status

 Creates, lists, deletes, or verifies a tag object signed with GnuPG

Summary
Right out of the box, Mac OS X provides a complete environment for developers. It starts with 
the inclusion of several programming languages, focused both on object-oriented program-
ming and on scripting. From C to Objective-C to Perl, Python, and Java—developers will find 
those language choices to be nearly complete.

Mac OS X also provides a rich development and debugging environment in Xcode. It’s 
powerful and flexible, with all the features developers have come to expect in a modern IDE. 
And, as the tool used in the development of Mac OS X itself, Xcode is put to the test every day 
by Apple.

Finally, Mac OS X provides several great options for source control. While Mac OS X 
developers may install nearly any open source revision control tool, the system includes Sub-
version, currently one of the most popular code control tools. And if you’re looking to make 
full use of Subversion without the learning curve required for the command-line tool, several 
GUI options are available. Versions and RapidSVN are two of those options for GUI-based 
source and code control with Subversion.

In short, if you’ve cut your programming teeth in the open source world, you’ll find a lot 
of familiar ground in Mac OS X, and most of the tools provided require no further modification 
of your system.



C H A P T E R  9

Hybridizing Your System

We’ve spent quite a bit of time trying to raise the comfort factor in making a transition from 
Linux to Mac OS X. It’s clear that much of what can be done on one system can be done on 
another, although the path to similar tasks may vary. The systems share a common ancestor, 
after all, in UNIX. BSD is UNIX. Mac OS X is based on BSD, although it also contains quite a bit 
of proprietary code. And Linux is really a close cousin. BSD can run Linux applications, pro-
vided the optional Linux emulation layer is selected as an install component. Linux, however, 
can’t run BSD applications. Add to that basic differences in binary formats, and it’s not always 
clear how a specific tool or process will translate from one platform to the other.

As a result, it’s not always evident how these robust platforms can be unified to bring the 
best of all worlds into a single system. For example, how can we tie the multimedia capabili-
ties of Mac OS X to the strong network infrastructure of BSD and the complete configurability 
and flexibility of Linux? That would be the ideal, certainly. It’s tough to get to that point with-
out some details on the similarities and differences between the systems—the strengths and 
weaknesses, really. Once you have that knowledge, it becomes much clearer how to best fit the 
pieces together to meet your needs. With that understanding, it’s much easier to adjust your 
system to meet your work flow.

In this chapter, we’ll start by focusing on those similarities and differences, comparing 
BSD and Linux. From there, you’ll be able to bridge any gap in your knowledge, as a Linux 
geek, regarding BSD, the basis of Mac OS X. Then we’ll move on to the details to sharpen the 
resolution of your mental picture of Mac OS X as it relates to both other operating systems. In 
other words, we’ll start the final chapter of this book with a definitive picture of all three sys-
tems and how they can coexist to best meet your needs.

Beyond that initial detailed comparison, we’ll dig into some of the serious nuts and bolts 
of Mac OS X, spending some time on the task that a true Linux geek loves: kernel customiza-
tion and compilation. It is possible to do. Darwin is BSD, as you know, and kernel building is 
as cherished a rite of passage for most hard-core BSD users as it is for Linux geeks. Personally, I 
would make the case that BSD users are doing kernel customization at a higher rate than Linux 
users these days, or that maybe neither are doing as much as used to be necessary. Most popu-
lar Linux distributions have become popular because of their ease of use—most stuff works 
most of the time. And many of the kernel tools are more deeply submerged in the systems than 
they’ve ever been. Short of the thrill of the chase, there’s little incentive to expend the sweat 
when the effort might not measurably improve the system. The kernel-building skills that used 
to be necessary with Linux have been pushed aside by increasingly slick distributions. But 
maybe that’s just my roots showing. If you’re looking to optimize and hybridize the system for 
your needs, kernel configuration could be an important task.

233



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM234

In order to make the most of your Mac OS X system in the same way you’ve made the 
most of your Linux system, you will probably also need to add some Linux and BSD tools. That 
may present a challenge or two, but it’s a challenge you can meet. We’ll spend a bit of time in 
this chapter walking through the process of porting Linux and BSD applications to Mac OS X. 
With some effort, that should fill some of the cross-operating system potholes you may run 
over in the transition from Linux to Mac OS X. Remember that Mac OS X, like Linux, has a full 
complement of development tools, which will aid in porting and compiling Linux apps.

Finally, we’ll look at how to run those desktop environments in Mac OS X that you’ve 
come to know and love in Linux. We’ll walk through the process of installing and configuring 
both GNOME and KDE in Mac OS X.

How BSD and Linux Differ
In order to hybridize your Mac OS X system, it’s important to understand the differences 
between BSD and Linux. One of the primary differences is in how each type of system starts 
up. In this regard, Mac OS X is similar to BSD, while Linux employs a method that relies 
on runlevels. Another difference is in the licensing for BSD and Linux. But before we get to 
those issues, we need to look at the basic distinction between a distribution and an operating 
system.

In order to simplify the following discussions a bit, we’ll look at the various BSD ver-
sions (FreeBSD, OpenBSD, and NetBSD) as a single entity. We’ll also view the various Linux 
distributions as one system. Some would argue that it’s not entirely accurate to make such 
a statement, as they have some differences. But the similarities between BSD versions and 
between Linux versions make an argument that focuses on the differences a bit pedantic for 
our purposes.

Distribution vs. Operating System
The Linux model has become very familiar in the computing world. A Linux kernel is coded 
and tested by the communtiy, and then approved for release by Linus Torvalds. The testing 
and development of the individual tools used in the system occur outside the kernel testing. 
Linux distribution creators then package the kernel with a full set of tools, both for the system 
and for users. There are literally dozens of these packages—Linux distributions—to serve any 
number of user needs. Some provide commercial support for a fee. Most rely on community 
support for noncommercial use. In other words, Linux is a kernel included in collections of 
applications called distributions.

BSD is a full operating system that includes both the kernel and the userland tools. All 
elements of the system are under the control of the primary BSD developers, whether the par-
ticular flavor of BSD is NetBSD, OpenBSD, or FreeBSD. (As mentioned, Mac OS X is based on 
the latter: FreeBSD.) Because BSD is a true operating system, the BSD engineers can view the 
system as a whole, decreasing the possibility of incompatibilities among parts of the system.

Runlevels and System Startup
Think back to Chapter 1’s initial discussion of the origins of UNIX and its place in the roots of 
BSD and Mac OS X. You’ll recall that BSD is a direct fork of UNIX, created by students at UCB. 
That fork took shape beginning in the late 1970s, with BSD development proceeding in a path 



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 235

parallel to that of UNIX. As BSD development continued through version 4.2, UNIX develop-
ment moved into System V (SysV). 

Later, in the early 1990s, Linux would take on the SysV model in many ways. One of those 
ways was its implementation of runlevels, an important feature of both SysV and BSD. Briefly, 
the general concept of runlevels goes something like this: a runlevel determines the processes 
that are started. In most SysV systems, runlevel 0 shuts down the system; that is, it devolves 
to a state where no processes are running. On the other hand, runlevel 5 (depending on the 
Linux distribution) is full multiuser mode, with an X-based login and a graphical environment. 
Clearly, runlevel 5 requires many more processes than runlevel 0 or runlevel 1, which is single-
user mode.

In a SysV system, the runlevel-related instructions for —the mother of all processes—
are provided in . This file defines the processes to be initiated in each of the 
runlevels, as well as the starting runlevel of the system itself. The  and  commands 
move the system from one runlevel to another. 

Runlevel-related services in SysV systems are generally located in , 
although this varies a bit by distribution. These files may be either actual executable files or 
symlinks to files in another path on the system. In either case, they’ll be kicked off at system 
start by  (the run command), which is launched by . Table 9-1 lists the runlevels in vari-
ous Linux distributions.

Table 9-1. Runlevels in Various Linux Distributions

Runlevel Features Distributions

0 Halt Fedora, SUSE, Slackware, Gentoo, Debian

1 Single user Fedora, SUSE, Slackware, Gentoo, Debian

2 Full multiuser, no networking Fedora, SUSE, Slackware, Gentoo

 Full multiuser with display manager Debian

3 Full multiuser, console only Fedora, SUSE, Slackware

 Full multiuser with display manager Gentoo, Debian

4 Unused, user-defined Fedora, SUSE

 Full multiuser with display manager Slackware, Debian

 Aliased to runlevel 3 Gentoo

5 Full multiuser with display manager Fedora, SUSE, Debian

 Unused, user-defined Slackware, Gentoo

6 Reboot Fedora, SUSE, Slackware, Gentoo, Debian

Note Despite its basis in Debian, Ubuntu doesn’t follow the typical Debian runlevel structure. Ubuntu uti-
lizes Upstart, a replacement for the  daemon. Upstart starts and stops services based on events. 
Services can be respawned if they die unexpectedly or separate from their parent processes. Upstart was 
designed by Canonical specifically for use in Ubuntu.



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM236

In short, SysV systems, including Linux, define and launch groups of processes and ser-
vices known as runlevels, as defined in the  file. This is not the case with BSD 
systems.

BSD doesn’t use the  file to determine runlevels. Instead, BSD systems use  
 to boot the system into multiuser command-line mode or multiuser graphical 

mode. The  file generally establishes nine virtual terminals, with the GUI residing on 
, accessible by pressing Alt+F8. 
Rather than using  to move the system to runlevel 6 (reboot), as is the case in SysV 

systems, BSD systems simply use the  or  command. Entering  and 
pressing Enter when prompted will move the system into single-user mode. Typing  in 
single-user mode will return the system to multiuser mode. While these commands are indica-
tive of a BSD system, they do work on Linux systems, as well. However, unlike BSD, they work 
with  to move the system between runlevels.

Linux system startup varies from startup in BSD systems, as well. In Linux systems, the 
various runlevels are supported by an associated subdirectory on the system.  con-
tains a full complement of startup scripts to start various services and applications. Most Linux 
systems also have an  directory, which contains symlinks to actual scripts in the  

 directory. In the  directory, the symlink names start either with  (for 
a startup script) or  (for a kill script), followed by a number. When the system starts, it finds 
all the  scripts in , and then works through them in numerical order to execute the 
appropriate  scripts. This process is also applied when shutting down the system, 
using the  scripts. 

In BSD systems, all system startup scripts reside in , and scripts for third-party 
applications reside in . Startup and shutdown scripts are controlled by 
another set of scripts in . The names of these scripts begin with . Bootup services are 
defined and configured in .

To summarize, Linux uses  to move between runlevels, as defined by 
. BSD uses  to open , and the  or  command to start or 

stop the system. Linux uses startup scripts in  via order-named symlinks in 
 to start and stop services at bootup and shutdown. BSD defines its startup ser-

vices in , using -named scripts in  to start these services at bootup.

Licensing
Linux, as you know, is released under the GPL. This license aims to prevent closed source soft-
ware. Any application developed and released under the GPL—original or derivative—must 
be accompanied by the source code for that application, as well as a notice of the terms of the 
license. The BSD license, on the other hand, is far less restrictive. 

All-binary BSD releases are allowed. No source code is required for these releases, 
whether they are original or derivative. Many systems developers, especially those building 
commercial applications, find the BSD license to be a much better fit. It’s a particularly good 
fit for small, single-purpose embedded systems.

The differences betwen Linux and BSD in runlevels, startup, and licensing are fundamen-
tal. Also, recall that Ethernet interfaces in BSD use a different naming convention than those of 
Linux, such as  in BSD versus  in Linux. 



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 237

Kernel Customization and Compilation
Nearly every true Linux geek has customized and compiled a kernel. It’s possible to do that 
with Mac OS X as well, although it’s not nearly as useful as in Linux.

You can build a standard XNU kernel in Mac OS X, or build one of a few alternate kernel 
types. As mentioned in Chapter 2, XNU is the kernel at the heart of Mac OS X, and it was also 
the basis of the NeXTStep system. 

The standard XNU kernel will function in exactly the same way as the kernel originally 
installed on your system. This is considered a  kernel type. It’s possible to explicitly 
specify a  kernel when building, although when no additional options are provided 
during the build process,  is the default build type. The following kernel configurations 
are also possible:

 and  provide debug and trace symbols. 

 provides the trace function. 

Note  is also available as a kernel configuration. However, it’s currently reserved for future use 
and mapped to the  build type.

The XNU kernel build itself in Mac OS X is pretty straightforward. It doesn’t require much 
time or configuration of the kernel code itself. In fact, the kernel build is the easiest and short-
est part of the process. The element of the process that’s time- and resource-consuming is 
initially setting up your system with all the tools necessary for a kernel build. You will need to 
download, install, and configure several packages before you’ll be able to build an XNU kernel 
of your own for your Mac OS X system.

Setting Up the Build Environment
All the tools necessary for building a Mac OS X kernel are available from 

. Many of the tools listed will require your acceptance 
of the user license agreement. You’ll also need to be registered and signed in to the Apple 
Developer Connection. Once those steps are completed, download the following individual 
packages from the list. These tools will be named with the current version number, but for our 
purposes, you can disregard the version numbers for now. 



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM238

These are  files. Put these tools in a known directory—perhaps one you created in 
an easily accessed location specifically for this purpose—and untar the files:

Note If you’re downloading the kernel-building files with Safari, it may automatically uncompress the files 
for you, leaving only the  files. In that case, your  command will not require the  option.

Next, you’ll need to ensure that  is in your  variable. In Mac OS X 10.5, 
 is defined by  and . You can make sure that  is 

listed in one of these files with the following command:

If  isn’t listed, add it as a single new line in .
When the file is modified, you can close the terminal window, or use the  command 

to load the new version:

Next, change into the  directory:

This directory contains a tool you’ll need to build from source, using , in order to build 
the kernel.

The  binary will be located in your current directory. Copy it to the build path 
noted in the  file:

Now, install :

Note When building the  tools, you may get an error message related to the man pages. This 
won’t affect the tools themselves.



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 239

Next, change into the directory containing  in the kernel build tools directory you 
created. Once there, you’ll need to copy a specific header file into a system library directory, as 
follows:

You’ll also need to modify the makefile in the top level of the  directory. 
Edit the line containing , including any wrapped elements, to read as follows:

Now, you can build the tools with the following command:

Then copy the tool you just built to the appropriate system directory:

You’ll also need to build another tool from the  package and move some additional 
libraries on the system:

Next, we’ll move on to the  and . First, create a new directory on your 
system:

Then change into the new directory.

Create a symlink for the  directory in the current directory:

Now, copy the header files from your uncompressed and untarred  directory 
into the  directory.

Next, build the  from source and copy it into the .

That completes the prebuild configuration for your system. Now, we can move on to the 
full kernel build.



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM240

Note The kernel-building files may require rebuilding and reconfiguration as versions of the individual 
tools are updated. However, that will be the only time rebuilding and reconfiguration are required. The gen-
eral build environment you set up should need to be created only once.

Building the Kernel
After the multiple steps required to set up the build environment, building the kernel itself 
seems like a breeze.

Uncompress and untar the  kernel source:

Note If you’re using csh, the source command should be  instead.

When the build process is complete, you’ll find a freshly built XNU Mach kernel in the 
 directory at .

As I noted earlier, it’s possible to build alternative kernels for Mac OS X. This is accom-
plished at the final make stage, using one of the several options:

or

or

or

As mentioned, building without the  option builds a  kernel, as 
does building with the  option (currently).

As you’ve seen, just as with Linux, it is possible to build a new XNU kernel for Mac OS X 
from source.



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 241

Porting UNIX Apps to the Mac
While we’re in the realm of the hard-core Linux user, let’s take a few minutes to talk about the 
process of porting applications from other UNIX and UNIX-like platforms to Mac OS X. Bring-
ing new applications from UNIX to Mac OS X may be of interest to in-house app developers, 
open source developers, commercial UNIX developers, and others. These developers may 
want to take advantage of the Cocoa look and feel of Mac OS X applications, moving them 
away from a reliance on X11 or X.Org. 

Why Port?
First, it’s important to remember the roots of Mac OS X. BSD, the Mach kernel, and NeXTStep 
each played an important role in the history and development of Mac OS X. These are BSD or 
BSD-based systems.

In large part, Mac OS X is based on 4.4BSD Lite, with most of the utilities and libraries 
ported from FreeBSD. It also includes some code derived from NetBSD. Aside from the Apple 
documentation, the BSD documentation is likely to be your best source of information and 
troubleshooting tips as you begin to port UNIX applications to Mac OS X.

Mac OS X also relies heavily on the general design philosophy used to create the Mach 
microkernel and the original design efforts of Carnegie Mellon Unversity. While Apple has 
moved the Mach kernel a considerable distance from its roots, Carnegie Mellon’s underly-
ing theories regarding microkernels and their implementation still hold true. This is good 
background information to have when moving applications from another UNIX platform to 
Mac OS X.

The look and feel of Mac OS X is, in no small measure, indebted to NeXTStep. Mac OS X 
has grown considerably since the acquisition of NeXT by Apple in 1997, but the core technolo-
gies that came with the purchase still drive its development. In particular, the Cocoa APIs, 
some significant advances in how Apple views the kernel space, and filesystem advances are 
directly attributable to the work done at NeXT.

Those ancestral roots of Mac OS X, aside from providing interesting insight into the oper-
ating system, also supply the starting point for the evolution of many of the hallmark Mac OS X 
functions and features. 

It’s also important to bear in mind that Mac OS X is not an open source operating system. 
While it relies on Darwin, an open source project, much of the code that interacts with Darwin 
is the sole property of Apple. Much of the operating system’s functionality is controlled by the 
fact that it’s embedded into Mac OS X. That has two critical implications for developers port-
ing applications to the Mac:

particular, the interaction of Mac OS X with Darwin. 

open source developer to this point), you’ll need to make some decisions about the 
licensing for the code you’re porting to Mac OS X if you hold the copyright on the code. 

That said, market share for Apple products has continued on an upward swing for the past 
several years. Some would attribute that to the “halo effect” of the iPod—the belief that it’s the 
iPod that continues to bring new users to the Apple family of products. 



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM242

Some would also attribute the positive market share movement to the general Apple 
philosophy that both its hardware and software should “just work.” To a large extent, that’s 
true. That philosophy has made it possible to bring many to computing who might otherwise 
be intimidated by the technology. Both the very young and the very old, for example, seem to 
feel a higher level of confidence when using the Mac. This has helped to lock Apple into a core 
group of users who will never even consider moving to another computing platform. 

Some might also believe that the increasing market share is the result of crafty and intelli-
gent marketing. Apple’s “1984,” “Think Different,” and “I’m a Mac” campaigns are universally 
recognized for their power in branding the Mac platform and the resulting ability to draw new 
users into the Apple fold.

Still others take a more pragmatic view of Apple’s success, crediting the overall stability 
of the platform to Apple’s complete control over both hardware and its core software. Apple 
developers have a known hardware platform to which they develop. There are no surprises “in 
the field,” where other companies creating operating systems find the bulk of their problems. 
There are no third-party graphics cards or the necessary drivers, for example, to stir into the 
development mix. I/O operations of all types are determined by a known hardware base, an 
approach that makes the Macintosh platform extremely reliable and predictable.

All these things may be true. All certainly have something to do with the increasing market 
share of the Apple platform. But what, in the end, does that increase have to do with porting 
applications from a UNIX platform to the Mac? If you’re a commercial developer, it means a 
new and growing avenue for income. 

In general, creating applications for Mac OS X will open even more opportunities as the 
market share of the platform continues to grow. Whether those applications are targeted to 
business or consumers, Mac users are accustomed to paying for the efforts of developers. 
That’s a bit different environment than that in which many Linux developers have found 
themselves. Some Linux developers subsist on salaries or hourly wages, paid for in-house 
Linux- and UNIX-related work, rather than relying directly on payment for software develop-
ment. The licensing of many Linux and UNIX applications sets up just such a scenario. 

While direct compensation for UNIX work is more common than such payments for Linux 
work, the slice of the market pie controlled by UNIX is likely to decrease in coming years, as 
Linux development continues apace. It’s much easier for new companies to leverage an open 
source platform than to pay considerable licensing fees for either UNIX or Windows. So, two 
of the three market slices from which developers can reasonably expect to draw an income for 
their efforts—Windows and UNIX—are shrinking, while the Apple slice continues to grow each 
year across a wide range of environments. While neither of those other two slices is likely to go 
away completely in the forseeable future, the income opportunities do continue to decrease.

Note With the introduction of Apple’s App Store, an entirely new income avenue opened up for develop-
ers. To the tune of more than 10,000 applications, software created by individual developers, by small and 
medium development houses, and by large companies has found a strong niche on Apple’s iPhone. Many 
small development houses, in particular, have come into a windfall since the App Store opening. In some 
cases, more revenue was generated in a single year (often at 99 cents per download) than in the entire 
combined history of the company prior to that event—more income derived from a single application than all 
combined income prior. That makes a pretty compelling case to consider moving your existing applications 
(especially those that might find a useful home on a mobile device) to the general Macintosh platform.



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 243

Income expectations aside, most developers take a real pride in the widespread use of 
software they’ve created. You don’t create these applications in a vacuum or completely for 
your own purposes. Like the efforts of a carpenter, an automobile worker, or any other profes-
sion in which skilled people leverage tools to create a tangible product, there’s a real sense of 
satisfaction in standing back and watching that product put to use in solving problems in the 
real world. While it’s fundamental economics that everyone makes something, sells some-
thing, or services something, it’s a fundamental fact of human nature that solving problems 
for a large pool of users is a very gratifying activity. That pool of users continues to grow on the 
Macintosh platform, as do the opportunities for the personal and professional satisfaction of a 
growing number of developers.

So, where to start in porting applications from UNIX to Mac OS X? That depends, in part, 
on the type of application you’re moving from one platform to the other. Here, I’ll provide the 
basics and a starting point for porting applications from UNIX and UNIX-like platforms. the 
Apple Developer Connection’s documentation ( ) provides all the 
fine details you’ll need to port your applications.

Good Practice
Darwin, as a BSD-derivative, is a prime potential platform for command-line applications. Not 
only do most command-line applications function well in Darwin, but the users in the envi-
ronment in which those applications will be used are pretty fluent in their use. Mac OS X users 
who rely on the command line are, for the most part, converted or parallel UNIX users. They 
understand the ins and outs, and they’re generally pretty proficient in using single tools in 
combination to maximize their power and efficiency. In other words, users for whom Mac OS 
X command-line tools will have some appeal understand the UNIX idea of tools doing a single 
job well.

Note Apple’s design philosophy clearly states that users should never need to resort to the command 
line in order to perform any task for which a GUI is provided (see the Apple Human Interface Guidelines at 

). However, the very structure of that statement makes it 
clear that not all tools for the Mac will be based in a GUI.

On the other hand, applications that utilize a GUI will, of course, provide a bit more of 
a challenge to port from UNIX to Mac OS X. Differences in libraries will clearly stand as the 
largest issue in porting from UNIX to Mac OS X. (That alone makes another good case for 
understanding the lineage of Mac OS X.) Depending on the basis of the original application, 
moving its basic functionality into the graphical framework of Mac OS X may be a challenge, 
although not an insurmountable one. 

With the preceding in mind, here are two general good practice guidelines for porting 
UNIX apps:



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM244

Command line, then GUI: As a general rule, Apple recommends that users porting appli-
cations from UNIX to Mac OS X port first to the command line, then to the GUI. In other 
words, understanding and separating the underlying functionality from the user-facing 
tools will provide the shortest path to a successful port.

Don’t reinvent the wheel: As always, it’s important to avoid “reinventing the wheel.” Before 
you start down the path to port an application, make sure a similar application hasn’t 
already been ported for Mac OS X. Investigating the Fink, MacPorts, and Darwin software 
libraries can save developers from the potentially expensive and exhausting process of 
duplicating an existing port.

Installing the Development Environment
In order to port your application to Mac OS X, you’ll need first to ensure that the development 
system you’ll be working on contains the BSD subsystem. This is an easy matter of checking 
the  directory for a  file. This has been installed by default since 
Mac OS X 10.4, so it’s imperative to check only on systems with prior versions of Mac OS X.

You’ll also need to become familiar with the Mac OS X Terminal application, which 
shouldn’t be too difficult for anyone comfortable with the terminal in UNIX or Linux. 

 is located in . As shown in Figure 9-1,  is 
a tabbed and themeable terminal. To customize the Terminal application, open it and select 
Termninal  Preferences from the menu bar. Several color and font schemes are available in 
the Settings tab. You can also create window groups, which are single window interfaces con-
taining tabs with predefined contents. All in all, the transition to  from a standard 
UNIX terminal application should be pretty seamless.

Figure 9-1. Mac OS X Terminal application



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 245

In order to port your application from UNIX to Mac OS X, you’ll also need to install the 
Mac OS X developer tools on the system, if you haven’t already done so. Instructions for 
installing these tools are provided in Chapter 4. Among those tools are Xcode, the Apple IDE; 
Interface Builder, the Apple tool for creating the GUI for your application (see Figure 9-2); 
FileMerge to compare and merge files and directories (see Figure 9-3); and PackageMaker for 
building Mac OS X packages (see Figure 9-4). These tools are provided on the Mac OS X instal-
lation DVD. You’ll find them on your system at  (Xcode 
and Interface Builder) or  (FileMerge and 
PackageMaker).

Figure 9-2. Xcode Interface Builder

Figure 9-3. Xcode FileMerge



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM246

Figure 9-4. Xcode PackageMaker

Creating Makefiles
If you’re a Linux or UNIX developer, you’re familiar with the makefile build process. It’s the 
time-honored path of all good UNIX and Linux developers. In order to ease the process of 
porting applications to Mac OS X, and to avoid an increased learning curve, you’ll probably 
want to continue that tradition with your own applications. Fortunately, Xcode plays well with 
makefiles. Here’s the procedure for creating makefiles:

1. Launch Xcode and choose File  New Project.

 2. Select the targeted project type. For example, if your end project is an application, you 
might select Cocoa Application. If you’re building a command-line utility, select Stan-
dard Tool.

 3. Follow the prompts to name and save your project.

 4. Open the disclosure triangle beside the Targets folder and delete any default targets 
that may exist.

 5. Select Project  New Target to open the window shown in Figure 9-5.

 6. Select External Target from the list, and then follow the prompts to name that target. 
When completed, a target icon with the name you just gave it appears in the Targets 
pane of the open Xcode window.

 7. Double-click the new target. You’ll see a new window with the build information for 
this target similar to Figure 9-6.



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 247

Figure 9-5. Creating a new target

Figure 9-6. Source code in the Xcode tool



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM248

 8. In the Custom Build Command section of the target inspector, change the Directory 
field to point to the directory containing your makefile, also changing any other set-
tings as needed.

 9. Change the active target to your new target by choosing Project  Set Active Target.

 10. Add the source files to the project by opening the disclosure triangle beside the Source 
folder in the left side of the project window and dragging the folder containing the 
sources from the Finder into that Source folder in Xcode. Xcode should now copy the 
files. Xcode will recursively find all of the files in that folder. Delete any files that should 
not be included. 

 11. When you are ready to build the project, click the Build and Go button in the toolbar, 
select Build  Build, or press Command+B.

 12. Once the project has been built, point Xcode to the executable by choosing Project  
New Custom Executable. Choose the path where the executable is located, and then 
add the name of the executable.

 13. Run the resulting program by pressing Command+R.

This should get you started in bringing your application into the native build environment 
of Mac OS X.

Beginning with Mac OS X 10.5 (Leopard), the default compiler is GCC 4. Most Linux and 
UNIX users will be familiar with GCC 4.

Your makefile can contain the flags shown in Table 9-2. Unlike most other compiler flags, 
which are added to , these should be added to .

Table 9-2. Makefile Flags (Added to LDFLAGS)

Flag Description

  Produces a Mach-O bundle format file, used for creating load-
able plug-ins

 Specifies which executable will load a plug-in

 Produces a Mach-O dynamic shared library

  Creates a single-level namespace, contrary to the normal Mac 
convention of two-level namespaces (not recommended)

 Links the executable being built against the listed framework

-  Specifies the targeted Mac operating system version

Note Mac OS X uses linked libraries like any other UNIX-based operating system. 



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 249

Installing Linux Desktop Environments on the Mac
If you’ve been a Linux user for a while, you’ve probably landed on a preferred desktop envi-
ronment. The desktop wars in Linux can be almost as vociferous as those between vi and 
emacs users. It’s a good thing, really, that users feel strongly about their own preferences. Both 
major desktop environments, GNOME and KDE, have some real advantages, depending on 
your style of work.

And though the native look and feel of Mac OS X is one of the primary reasons many come 
to the platform, it’s possible that you’ll still want to use some of your favorite Linux applica-
tions, and do so within your chosen desktop environment. 

Remember that Mac OS X is a BSD-like UNIX system, so many of those tools you’ve come 
to rely on in Linux will be available in Mac OS X as well, generally via MacPorts or Fink. You’ll 
find that both KDE and GNOME are available for Mac OS X, although some functionality may 
be a bit limited. Here, we’ll look at how to install these two popular Linux desktop environ-
ments on your Mac OS X system.

Note The full experience with Linux desktop environments will also require , available 
as a release candidate from . This version reintroduced full-screen 
support. A version for Mac OS X 10.6 (Snow Leopard) will also include full-screen support.

Installing GNOME
As the default desktop environment of several of the most popular Linux distributions 
(Ubuntu and Fedora, in particular), GNOME has been the desktop on which many users 
have cut their Linux teeth. But GNOME is more than just a desktop. It’s also a development 
platform and a large project to coordinate the efforts of developers working on GNOME com-
ponents. For Mac OS X, GNOME is available via the usual port systems, including MacPorts 
and Fink.

Installing GNOME using MacPorts is much the same as you’ve seen with the other 
MacPorts installations. In the case of GNOME, the following command will install the 
  package:

In this case,  is an alias (or metaport) for the  package. This package 
provides the core libraries and icons for the GNOME desktop. This command will install all the 
base files necessary to run GNOME on a Mac OS X system. 

Additionally, some system variables will need to be set in order for the desktop to operate 
properly:



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM250

These variables will be set in the  files, as in the following example, which 
enables GNOME using any X11 and uses GNOME’s built-in window manager, Metacity:

For users who have chosen Fink as their port system on Mac OS X, the following com-
mand will install GNOME:

After GNOME is installed, run it within Mac OS X by executing this command:

You can also make some modifications to  in order to run the GNOME desktop 
at login. Adding the following line will start the GNOME desktop at login:

Adding this line directs GNOME to use the D-Bus interprocess communication system:



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 251

Note Originally developed by Red Hat, Desktop Bus, or D-Bus, is a daemon designed to facilitate com-
munication between running processes. Applications taking advantage of D-Bus register with the service and 
are provided with a facility to look up the other services registered with the daemon. Users can run several 
D-Bus instances, or channels. These channels will always include a system channel, intended to commu-
nicate between inquiring processes and the Hardware Abstraction Layer (HAL), and a private channel for 
each user logged in to the system. D-Bus works with a low-latency, low-overhead protocol. It’s also easy for 
developers to implement and is easily wrapped by other systems. For those reasons, D-Bus is quickly being 
adopted across the computing world.

Installing KDE
K Desktop Environment (KDE) is an increasingly popular environment for Linux users.  Several 
Linux distributions install KDE as the default desktop environment. Based on the Qt toolkit, 
KDE is also an umbrella project for other applications intended to fit easily within the KDE 
environment. These projects include KOffice, K3b, Amarok, and others. These tools are so 
closely tied to the KDE libraries that they would be nonfunctional without them. In other 
words, in order to use many of the KDE-guided GUI-based tools, it’s necessary to have KDE 
installed on the system. They don’t function well—or in some cases, at all—as stand-alone 
tools.

KDE’s original license limited its use to free operating systems, effectively ruling out using 
it on Mac OS X. Recent versions are released under a revised licensing agreement that allows 
the use of KDE in all environments. That change made it possible for developers to begin port-
ing KDE for use in Mac OS X. KDE is now available as a stand-alone  installer from 

, and as a port in both MacPorts and Fink.

Installing from mac.kde.org
The  site makes both full and individual packages available in a variety of down-
load formats. The individual  files are available for direct download, as are BitTorrent 
versions of both, an “everything” package, and the individual components of the KDE system.

The everything package for KDE is a 3GB file—a substantial download even on a fast con-
nection. Fortunately, the BitTorrent versions are well seeded, and the network is active. The 
BitTorrent download on my machine took just over two hours. Figure 9-7 shows the first KDE 
installer screen.



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM252

Figure 9-7. Beginning KDE installation from mac.kde.org

When the download is complete, open the  folder and double-click the  
file, as shown in Figure 9-8. Though the directory contains a full list of  files, they will be 
installed in the proper order by the  file. Table 9-3 lists the software tools included in 
the package.

Figure 9-8. Contents of the kde-mac folder



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 253

Table 9-3. Software Included with the KDE Desktop Installation

Software Description

Amarok A KDE-based music management system

KDE Education  A package of several educational applications, which are designed with the 
 special interface needs of young children in mind

KDE Games A full range of games, including arcade, card, dice, logic, and strategy games

KDE PIM A KDE-based personal information management application

KDE Toys A package of amusement applications 

KDevelop  A KDE-based IDE, supporting plug-ins and project management; directly 
 supports C++, Ruby, and PHP development and version control with CVS, 
 Subversion, Perforce, and Clearcase

KDE WebDev  A full kit of tools for web development, including Quanta, KImageMapEditor, 
KXSL Debug, and Kallery

KOffice  An integrated office suite for KDE that includes word processing, spreadsheet, 
presentation, and other office applications

KTorrent A KDE BitTorrent application

As the underlying toolkit for KDE is Qt, that package is installed first, as shown in Figure 
9-9, even before the base KDE packages. The individual package installations follow, including 
the base package and the included applications.

Figure 9-9. Installing the underlying Qt libraries for KDE



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM254

At the time of this writing, two issues existed with this package installation:

not work without this piece.

command-line instruction. Change into the directory to which the KDE packages have 
been downloaded and unzipped, and then enter the following command from the 
command line:

It’s not readily apparent when KDE is running, short of opening an application. A quick 
check from the command line will show something like the following:

As shown in Figure 9-10, the KDE applications installed by the  packages take 
on part of the look and feel of the Mac OS X desktop. The window controls are Mac, while the 
contents of the window are drawn by KDE.

KDE applications are installed in  by the KDE installer packages. The appli-
cations can be launched using the Finder. You can also create shortcuts to the  
directory by pressing Option+Cmd while grabbing the application from  and drag-
ging it to the  folder.

Overall, the installation of KDE using the  packages is easy. If you want to 
install KDE with minimal effort, these install packages are a good way to go.

Note To uninstall the  KDE installation, remove the , 
, and  directories. If you’ve started a KDE application, you’ll also need to kill the indi-

vidual KDE processes or restart the system. You can find those processes using the  
command. Then execute  from the command line.



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 255

Figure 9-10. Running Akregator, the KDE RSS aggregator in Mac OS X

Installing KDE Using MacPorts
KDE can also be installed in Mac OS X using the MacPorts system. In a terminal window, issue 
this command:

The default port package is . As with the  package installation,  will 
install first, followed by , , , and the other pieces of the desktop envi-
ronment. This is a large build, so don’t panic if it takes quite a while.

When the build is complete, the KDE applications will be installed in the  
directory. Among those applications are Konqueror, the KDE browser (see Figure 9-11), and 
Kate, the KDE text editor (see Figure 9-12). 



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM256

Figure 9-11. Konqueror, the KDE browser and file manager, in Mac OS X

Figure 9-12. Kate, the KDE text editor, in Mac OS X



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM 257

The other basic applications include KWrite from the KOffice suite; Konsole, the KDE con-
sole application; and many others. Additional packages can be installed using the port system. 
These include the full KOffice package, among others. Figure 9-13 shows KSpread, the KOffice 
spreadsheet application, running in Mac OS X. A list of KDE application ports is available on 
the MacPorts site at .

Figure 9-13. KSpread, the KOffice spreadsheet application, in Mac OS X

Summary
In this chapter, we looked at some of the ways to utilize the best of the Linux, BSD and Mac OS 
X worlds, combining them into a hybridized system that takes full advantage of the strengths 
of each system. They’re all robust systems with great strengths and some weaknesses. By better 
understanding those strengths and weaknesses, it’s possible to customize and use Mac OS X in 
a way that best suits your particular computing tasks and style.

To make the mental adjustment from Linux to the BSD-based Mac OS X, we first looked 
at the differences between Linux and BSD. Some real differences exist in the implementa-
tion of runlevels between the two systems. In fact, longtime users of either system might not 
recognize the concept of runlevels that exists on the other system. Linux uses  scripts, , 
and  to establish runlevels 0 through 6. These runlevels are sets of services, if you will, 



CHAPTER 9   HYBRIDIZ ING YOUR SYSTEM258

that determine the functionality of the system. Unlike Linux, BSD simply uses the  and 
  commands to change the running state of the system. 

Significant differences also exist in the licensing of Linux and BSD. Linux, licensed under 
the GPL, focuses sharply on source code, requiring the inclusion of source code with any sys-
tem or application released under the GPL. This is a model that can be difficult for business, 
especially those businesses in highly competitive spaces. Many corporate legal departments 
find GPL-licensed code and the source code requirements to be too great a risk for their com-
panies. The companies may have thousands of hours invested in a product—effort that may 
provide a competitive edge and could be seen as “at risk” if licensing requires that the source 
code is released with the final product. The BSD license, on the other hand, focuses much 
more clearly on the use of a product rather than the source code. The inclusion of source code 
with an application is not required by the BSD license. In effect, the BSD license allows both 
author and user to implement code in whatever fashion they find necessary. This is a model 
that’s much easier for many businesses to accept. The BSD code in Mac OS X is released under 
the BSD license.

In this chapter, we also looked at the process of rebuilding Mac OS X’s XNU kernel. This 
is the kernel code that came with NeXTStep when it was acquired by Apple in the mid-1990s. 
Based on the Mach kernel originally developed at Carnegie Mellon University, the XNU kernel 
has moved away from its monolithic roots. The process of building the kernel for Mac OS X 
requires that developers download some additional code tools. In fact, you saw that the first-
time setup for building XNU kernels for Mac OS X is likely to be the longest part of the process. 
It’s required only once, as the environment then exists for subsequent builds. 

You also saw that it’s possible to port applications created for BSD and Linux to Mac OS X. 
Apple provides a set of guidelines in its developer area online ( ) 
to ease this process. As part of the porting process, you found that the default compiler for 
Mac OS X is the GCC 4 compiler, complete with a full set of compilation options.

Finally, we took a look at the process for installing the most popular Linux desktop envi-
ronments: GNOME and KDE. Both are available via the MacPorts and Fink systems. While it 
may take a considerable amount of time to download and install all the necessary packages, 
installing your choice of Linux desktop environment will allow you to use many of the Linux 
tools you’ve become familiar with in their native environment. You might easily consider that 
the ultimate system hybridization.



259

Special Characters
#MREGS column, 133
#PRTS column, 133
#TH column, 133
$PATH variable, 238

A
AAC (Advanced Audio Coding), 82
Access control lists (ACLs), 21, 168
Accounts tool, 136–137
ACLs (Access control lists), 21, 168
Acrobat Professional, Adobe, 99
Action drop-down arrow, 202
activate_process command, 7
Activate/Deactivate button, 206
Activity Monitor, 129–132
adaptive hot file clustering, 21
add command, 188, 231
Address Book application, 198
administrative access, Mac OS X, 31–32
Adobe Acrobat Professional, 99
Adobe Creative Suite packages, 100
Adobe Illustrator, 98, 99
Adobe Photoshop, 99, 100–101, 104–105
Adobe Premiere, 99, 101–102, 103
Adobe Systems, 98
Advanced Audio Coding (AAC), 82
Advanced compositing, 101
Advanced Options, 126
After Effects, Adobe, 99
Air Share application, 187
all mode, 70
allocation blocks, 19
alpha value, 83
altgraph package, 209
Amarok, 253
Amelio, Gil, 10, 13
Animation cues, 103

Apache, 147, 208, 213
API, 220
App Store, 242
AppController.m file, 200
AppKit class, 210
Apple Computer, 5–9

Apple I, 7
Homebrew Computer Club, 5–6
Lisa, 7
Mac, 8–9
Mac OS X, 10–11
NeXTStep, 9–10
overview, 5

Apple Developer Connection, 66–67, 237
Apple filesystems, 17–22

HFS+, 20–22, 29–30
Hierarchical File System (HFS), 18–19
overview, 17–18

Apple Human Interface Guidelines, 109, 113
Apple Public Source License, 71
Apple script-creation tool, 218
Apple Worldwide Developers Conference, 10
AppleScript, 113, 216
Applet Launcher, 208
application development tools, Xcode, 

207–216
Java, 208
overview, 207
PHP, 213–216
Python, 209–210
Ruby, 211–212

Application layer firewall, 22
applications, creating with Xcode, 197–200
Applications directory, 26, 107, 159, 222, 254
Applications file, 167
apt system, 74, 77–78
Atomic commits, 219
attachments, 85

Index



INDEX260

Audacity, 106–108
editing features, 108
installing, 107
overview, 106

Audio cleanup, 103
Audio filters, 103
Audio recording, 103
Audio subdirectory, 69
autoconf command, 65
automake command, 65
Automator tool, 218
awk command, 128

B
B language, 2
B-tree, 18
B*-tree structure, 18
backup and recovery

Linux approach to, 178–182
dd utility, 179
overview, 178
rsync utility, 180–182

Mac approach to, 156, 178
Carbon Copy Cloner (CCC), 162–166
off-site options, 170–178
overview, 156
SuperDuper, 166–170
Time Machine, 156–162

overview, 155–156
Bandwidth Manager, 189
Bandwidth option, 177
bash (Bourne-Again SHell), 14, 32, 125
.bash_profile file, 73–74, 238
.bashrc file, 73
Basic Input/Output System (BIOS), 42
BBN (Bolt, Beranek and Newman), 4
bdist_mpkg tool, 209
Beanstalk, 227
Bell Labs, 1–2
Berkeley Fast File System (BFFS), 28
Berkeley Software Design (BSDi), 5
BFFS (Berkeley Fast File System), 28
BGR (Blue, Green, Red), 83
BIOS (Basic Input/Output System), 42
bisect command, 231
bitmaps, 84

bless command, 182
Block Features, 29
block group bitmap, 28
block groups, 28
blocks, 28
Blue, Green, Red (BGR), 83
Bolt, Beranek and Newman (BBN), 4
Bombich Software, 162
Boot Camp, 41, 45–50

installing Linux, 46–48
overview, 45
partitioning boot drive, 45
synchronizing MBR and GPT tables, 

48–50
boot drives, partitioning, 45
boot tables, 50
boot volume, 195
bootable system backups, 160
Bourne-Again SHell (bash), 14, 32, 125
branch command, 231
branching, 18, 219
Breakpoints + button, 207
Breakpoints button, 205, 207
BSD

2BSD, 4
3BSD, 4
4BSD, 4
implementation in Mac OS X, 14
licensing issues, 4–5
vs. Linux, 234–236

distribution vs. operating system, 234
licensing, 236
overview, 234
runlevels and system startup, 234–236

overview, 4
reasons for developing NeXTStep 

around, 11–13
BSD ports system, 71
BSDi (Berkeley Software Design), 5
BSD.pkg file, 244
buffers, Core Video, 85
Build and Go button, 206
build command, 79
bundle flag, 248
bundle_loader executable flag, 248



INDEX 261

C
C language, 2
Call list, 205
Camera setup and calibration, 102
Canaday, Rudd, 1
Capistrano, 212
Carbon Copy Cloner (CCC), 162–166
cat command, 128
catalog file, 18
CCC (Carbon Copy Cloner), 162–166
cctools package, 239
cctools-[version] directory, 239
cd command, 27
CD ROM drive, 46
CFNetwork, 14
Change Disk button, 157
checkout command, 221, 231
chsh tool, 127
Civilization IV, 209
Clean aperture, 85
clean command, 75
clone command, 231
Cloning options menu, 163
CMYK (Cyan, Magenta, Yellow, Black), 83
codedir mode, 70
CollabNet, 219
color spaces, 83, 85
COMMAND column, 133–134
commit command, 221, 231
Common UNIX Printing System (CUPS), 

148
Compare Diff tool, 225
Compare Diff window, 226
Computer Systems Research Group 

(CSRG), 4
Concurrent Versions System (CVS), 219–220
Configuration Wizard, 189
configure command, 79
Console application, 174

log review and maintenance, 140–143
Console button, 207
contents command, 74
context, 83
Continue button, 205
Contribute tool, 99
conv=sync,noerror option, 179
Copland project, 10

copying data, with dd utility, 179
copy-modify-merge model, Subversion, 220
Core Audio, 82
Core Data, 196
Core Graphics framework, 82–84
Core Image, 82
Core Video, 82, 84–86

buffers, 85
frames, 85–86
overview, 84–85

cortex directory, 30
CPU column, 131
CrashPlan, 170
create subcommand, 222
Creative Suite, Adobe packages, 99, 100
cron command, 140, 143, 156
crontab -e command, 144, 182
crontab file, 144
Cryptographic history authentication, 231
CSRG (Computer Systems Research 

Group), 4
CUPS (Common UNIX Printing System), 

148
cut command, 129
CVS (Concurrent Versions System), 219–220
Cyan, Magenta, Yellow, Black (CMYK), 83

D
DARPA (Defense Advanced Research 

 Projects Agency), 4
Darwin, 11, 71
Darwin X server, 84
Dashcode, 71
Data fork, 19
dd command, 129, 163
DEBUG kernel configuration, 237
DEBUG_TRACE kernel configuration, 237
Debugger button, 205
debugging, with Xcode, 203–207

debugger window, 206–207
mini debugger, 205–206
overview, 203
text editor, 203–205

DEC (Digital Electronics Corporation), 4
Defense Advanced Research Projects 

Agency (DARPA), 4
delete command, 188



INDEX262

dependents command, 74
deps command, 75
describe command, 79
Design Premium package, Adobe Creative 

Suite, 100
Design Standard package, Adobe Creative 

Suite, 100
devices, 38–39

accessing from command line, 39
accessing through GUI, 38–39
overview, 38

df command, 27
DHCP (Dynamic Host Configuration 

 Protocol), 36
diff command, 129, 221, 231
Diff tool, 229
diff-cmd CMD option, 221
Digital Electronics Corporation (DEC), 4
digital negatives, 101
Digital Video (DV) format, 101
directives, 145
directory record, 18
Directory Service command-line tool 

dscl, 31
Directory Utility application, 31
Directory versioning, 219
dirs command, 27
disable command, 188
Disc output, 101
Disk Utility, 38
disk0 command, 52
disk0s2 command, 52
disk0s3 command, 52
diskutil tool, 39, 45, 50–52, 164
distributions, 234
dist-upgrade command, 79
.dmg files, 148, 251
DNS (Domain Name System), 36, 62
DNS Server, 36
dnssd package, 212
DocumentRoot directory, 147
Documents directory, 27
Domain Name System (DNS), 36, 62
domains, 25
downloading rEFTIt, 43
Dreamweaver, 99

drives, 38–39
accessing from command line, 39
accessing through GUI, 38–39
overview, 38

dselect command, 77
DTrace, 71
dual-booting

Boot Camp, 45–50
overview, 41–42
partitioning from command line, 50–51
rEFTIt, 42–45
removing Linux partitions, 51–53

dump subcommand, 222
DV (Digital Video) format, 101
Dynamic Host Configuration Protocol 

(DHCP), 36
Dynamic Rules, 189
dynamiclib flag, 248

E
e2fsprogs tool, 28
EBC (EFI Byte Code), 42
edit command, 144
editing features, 89
editing interface, 88
EDITOR variable, 74
editor-cmd CMD option, 221
EFI (Extensible Firmware Interface), 42
EFI boot loader, 42
EFI Byte Code (EBC), 42
efi directory, 43, 53
enable command, 188
Enable Root User, 31
Encore, 99
Entourage, 110
env command, 33
EnvironmentVariable key, 34
enx command, 34
Ethernet interfaces

configuring from command line, 34–35
using GUI to configure, 35–36

exclude-from option, 180
exclude-from rsync option, 180
exec command, 128
exit command, 236
exposing filesystem layouts, 27



INDEX 263

ext2/ext3 filesystem
vs. HFS+, 29–30
in Linux, 28–29

Extended metadata, 21
Extensible Firmware Interface (EFI), 42
Extension attribute records, 22

F
-F (file) FILENAME option, 221
fdisk command, 27
Features, 29
Fedora, 32
Ferret, 212
fetch command, 79, 231
fetch-all command, 79
fetch-missing command, 79
file (-F) FILENAME option, 221
file permissions, Mac OS X, 30–31
file record, 18
filesystems

Apple, 17–22
ext2/ext3 in Linux, 28–29
HFS+ vs. ext2/ext3, 29–30
layouts, 22–28
overview, 17

FileVault, 184
Final Cut Studio, 98
Fink, 75–79, 105–106

installing, 75–77
overview, 75
using, 77–79

Firewall Logs, 189
firewalls, ipfw as, 186–188
Fireworks, Adobe, 99
Fix button, 206
Flash, Adobe, 99
flat_namespace flag, 248
flush command, 188
force option, 221
Fork data attribute records, 22
FOSS (free and open source software), 12
Foundation class, 210
Foundations of Mac OS X Leopard Security, 

Edge, Barker, and Smith, 183
frames, Core Video, 85–86
free and open source software (FOSS), 12

Free Software Foundation, 71
FreeBSD, 12, 14, 17, 24–25, 71
fs_usage command, 28
fsaclctl command, 27
fsck tool, 28–29

G
Gamma, 85
GarageBand, 86, 94–98
GCC (GNU Compiler Collection), 65
GECOS (General Electric Comprehensive 

Operating System), 1
.gem files, 212
General Electric Comprehensive Operating 

System (GECOS), 1
General option, 176
General security tab, 183
GetFileInfo command, 28
GIF (Graphics Interchange Format), 82
GIMP (GNU Image Manipulation Program), 

104–106, 209
editing features, 106
installing, 105–106
overview, 104–105

Git, managing changes with, 230–231
glue pipes, 2
GNOME, installing, 249–251
GNU Compiler Collection (GCC), 65
GNU General Public License (GPL), 63, 71
GNU Image Manipulation Program. See 

GIMP
GPL (GNU General Public License), 63, 71
GPT (GUID partition table), 42
gpt command, 52
gpt show command, 53
GPT tables, 48–50
Gradients, 84
graphical user interface (GUI), 7, 178, 188
Graphics Interchange Format (GIF), 82
Graphics Tools subdirectory, 70
grep command, 128, 231
group descriptors, 28
Grub boot loader, 42
GUI (graphical user interface), 7, 178, 188
GUID partition table (GPT), 42



INDEX264

H
HAL (Hardware Abstraction Layer), 251
hard link, 161
Hardware Abstraction Layer (HAL), 251
HD (High Definition), 101
HDV (High Definition Video), 101
head command, 129
help option, 221
HFS (Hierarchical File System), 18–19, 20
HFS+

evolution of, 20–22
vs. ext2/ext3, 29–30
overview, 20

Hide Log List, 142
Hierarchical File System (HFS), 18–19, 20. 

See also HFS+
High Definition (HD), 101
High Definition Video (HDV), 101
History tool, 224
HOME variable, 33
Homebrew Computer Club, 5–6
hotcopy subcommand, 222
HP printer/fax combo, 149
HSB (Hue, Saturation, Brightness), 83
httpd.conf file, 145, 147
Hue, Saturation, Brightness (HSB), 83
hybridizing

BSD vs. Linux, 234–236
distribution vs. operating system, 234
licensing, 236
overview, 234
runlevels and system startup, 234–236

installing Linux Desktop Environments 
on Mac, 249–257

GNOME, 249–251
KDE, 251–257
overview, 249

kernel customization, 237–240
building, 240
overview, 237
setting up build environment, 237–240

overview, 233–234
porting UNIX apps to Mac, 241–248

good practice, 243–244
installing development environment, 

244–245
makefiles, 246–248

overview, 241
reasons for, 241–243

hypervisor, 54

I
IBackup, 170
iCal, 111
IDEs (integrated development environ-

ments), 15
iDVD, 86, 89–92
ifconfig command, 34, 36
iLife, 86, 98, 104
Illustrator, Adobe, 98, 99
Image formats, 101
image units, 89
iMovie, 86, 89–92
InDesign, Adobe, 99
info command, 74
Info.plist object, 200
init command, 231, 235
initial public offering (IPO), 7
Inkscape, 209
inline attribute data records, 22
inode bitmap, 28
input file, 179
Input Method HotKey, 208
install command, 74, 79
installed command, 74
installing

Apache from source, 147
Audacity, 107
development environment, 244–245
Fink, 75–77
GIMP, 105–106
Linux, 46–48
Linux Desktop Environments on Mac, 

249–257
GNOME, 249–251
K Desktop Environment (KDE), 

251–257
overview, 249

MacPorts, 72
MySQL from source, 148
PHP from source, 147–148
rEFTIt, 43
VMware, 54–61
Xcode tools, 66–70



INDEX 265

integrated development environments 
(IDEs), 15

Interface Builder, 70
interfaces, Mac OS X, 34–36
interprocess communication (IPC), 9
IOKitUser directory, 239
IP Address, 36
IP Reverse and Whois, 189
IPC (interprocess communication), 9
ipfw, as firewall, 186–188
iPhone, 66
iPhone Dev Center, 196
iPhoto, 86–88
iWeb, 86, 92–93
iWork, 111–117

Keynote, 115–117
Numbers, 114–115
overview, 111
Pages, 112–113

J
J2SE 5 (Java 2 Standard Edition 5), 208
Java Plug-in, 208
Java Preferences, 208
Java Web Start, 208
Java, Xcode and, 208
journal file, 21
journal_info_block block, 21
journaling, 21
JPEG (Joint Photographic Experts Group), 

82
JUnit, 208

K
KDE (K Desktop Environment), installing, 

251–257
from mac.kde.org, 251–254
overview, 251
using MacPorts, 255–257

KDE Education, 253
KDE Games, 253
KDE PIM, 253
KDE Toys, 253
KDE WebDev, 253
kde-mac folder, 252
kde.mpkg file, 252
kde.pkg file, 252

KDevelop, 253
kernel

customization, 237–240
building, 240
overview, 237
setting up build environment, 237–240

extensions, 197
KERNEL_CONFIGS option, 240
kextsymboltool tool, 239
Keynote application, 115–117
Keynote presentation tool, 111
kill_process command, 7
Kind column, 131
KOffice, 253
KTorrent, 253

L
-la option, 30
LADSPA (Linux Audio Developers Simple 

Plugin API), 108
LAN (local area network), 26
LaunchAgents directory, 182
launchctl application, 144
launchd command, 140, 143–144, 156, 163, 

181
leaves, 18
legacyfirst directive, 44
Leopard, 31, 41
Lesser GNU Public License (LGPL), 117
Library directories, 140
Library randomization, 22
Libstreams tool, 238
libxml-ruby package, 212
licensing, 4–5, 236
limits option, 53
Line Printer Daemon/Line Printer Remote 

(LPD/LPR), 148
linked list, 18
Linux

backup and recovery, 178–182
dd utility, 179
overview, 178
rsync utility, 180–182

vs. BSD, 234–236
distribution vs. operating system, 234
licensing, 236



INDEX266

off-site options, 170–178
overview, 156
SuperDuper, 166–170
Time Machine, 156–162

development tools, 15
using Subversion GUI front ends, 222–228

Mac Backup, 170
Mac Dev Center, 196
Mac DVD drive, 68
Mac Mozy software, 170
Mac OS X, 9–16

BSD implementation in, 14
installation disc, installing Xcode tools 

from, 68–70
interfaces, 34–36
NeXTStep, 9–10
overview, 9
permissions, 30–32
reasons for developing NeXTStep around 

BSD base, 11–13
reasons to switch from Linux to, 14–15
System Preferences, 145, 183
Terminal access, 32–34

Mach kernel, 9, 10
macholib package, 209
Macintosh. See Mac
Macintosh File System (MFS), 17–18
mac.kde.org, 251–254, 255
MacPorts, 71–75, 105–106

installing, 72
installing KDE using, 255–257
overview, 71–72
using, 73–75

MacRoman, 20
Macromedia, 99
macros, 2–3
Magic GarageBand project, 94
main.py file, 210
maintenance and revision control, Xcode, 

218, 232
managing changes with Git, 230–231
overview, 218–219
Subversion, 219–220
using Subversion from command line, 

221
using Subversion GUI front ends, 

222–230

overview, 234
runlevels and system startup, 234–236

ext2/ext3 filesystem, 28–29
filesystem layout, 22–24
vs. Mac OS X, 17, 30–39
reasons to switch to Mac OS X, 14–15
virtualization, 41, 54–63

Linux Audio Developers Simple Plugin API 
(LADSPA), 108

Linux Desktop Environments on Mac, in-
stalling, 249–257

GNOME, 249–251
K Desktop Environment (KDE), 251–257
overview, 249

Linux, GParted, 42
Linux Standard Base (LSB), 22
Linux system variables, setting in Mac OS X, 

33–34
Lisa, 7
list command, 74, 79, 188
list verb, 50
livecheck command, 74
load subcommand, 222
local area network (LAN), 26
Local domain, 26
lock-modify-unlock model, 220
log command, 231
log review and maintenance, 140–144

Console application, 140–143
launchd command, 143–144
location and naming conventions, 140
overview, 140

logical blocks, 19
Login Shell drop-down list, 126
LOGNAME variable, 33
Logs Statistics, 189
LPD/LPR (Line Printer Daemon/Line 

Printer Remote), 148
ls command, 27, 129, 161
ls -l command, 30, 161–162
LSB (Linux Standard Base), 22
lsof command, 129

M
Mac, 8–9. See also Mac OS X

backup and recovery, 156, 178
Carbon Copy Cloner (CCC), 162–166



INDEX 267

make_process command, 7
makefiles, 246–248
MAMP application, 148
MAMP tools, 145
man command, 3
man top command, 133
mapping table, 20
master boot record (MBR), 42
Master Collection, Adobe Creative Suite, 

100
Master Directory Block (MDB), 19
Maya, 209
MBR (master boot record), 42
MBR table, 48–50
MDB (Master Directory Block), 19
merge command, 220, 231
merge subcommand, 221
Merge tool, 229
metadata zone, 21
MFS (Macintosh File System), 17–18
Microsoft Office for Mac, 109–111
mini debugger, Xcode, 205–206
mmacosx-version-min version flag, 248
MobileMe, 92
modes, 70
modulegraph package, 209
Mongrel, 212
monitoring system, 129–134

Activity Monitor, 129–132
overview, 129
ps (process status) command, 134
top command, 132–133

Movies directory, 27
Mozy, 170–178
MULTICS (Multiplexed Information and 

Computing Service), 1
multimedia tools

built-in, 86–98
GarageBand, 94–98
iMovie, 89–92
iPhoto, 86–88
iWeb, 92–93
overview, 86

frameworks, 81–86
Core Graphics, 82–84
Core Video, 84–86

overview, 81–82
Quartz Composer, 86

open source, 104–108
Audacity, 106–108
GIMP, 104–106
overview, 104

third-party, 98–103
Adobe Photoshop, 100–101
Adobe Premiere, 101–102
overview, 98–100
Soundbooth, 102–103

Multiplexed Information and Computing 
Service (MULTICS), 1

Music directory, 27
mv command, 231
MySQL, 145, 148

N
naming convention, 236
NAS (Network Accessible Storage) arena, 

158
NAT (Network Address Translation), 62
NAT Setup, 189
NeoOffice, 118–122
Net Connections, 189
net package, 212
Net Processes, 189
Net/1 (Networking Release 1), 5
netinfo application, 31
Network Accessible Storage (NAS) arena, 

158
Network Address Translation (NAT), 62
Network domain, 26
Network File System (NFS) file sharing, 

151–152
Network flexibility, 219
Network Interfaces, 189
Networking Release 1 (Net/1), 5
New Project window, creating a Python 

project, 209
newfs command, 29
NeXTStep, 9–13, 71, 241
NFS (Network File System) file sharing, 

151–152
nfsd daemon, 151
nice command, 132



INDEX268

P
page layout, 112
Pages application, 112–113
painter's model, 83
Painting and drawing tools, 101
Partition Magic, 42
partitioning

boot drives, 45
from command line, 50–51
removing Linux partitions, 51–53

password PASS option, 221
PATH variable, 33–34, 73
paths, 83
patterns, 83
Pause/Continue button, 206
pdb debugging module, 210
pdb functions, 210
PDF (Portable Document Format), 82
Performance Tools subdirectory, 70
Perl, 145
permissions, Mac OS X, 30–32
Personal File Sharing service, 156
Photoshop, Adobe, 99, 100–101, 104–105
PHP, 145

installing, 147–148
Xcode and, 213–216

phpinfo.php file, 215
PHPMyAdmin application, 148
Pictures directory, 27
PID column, 131, 133–134
pipes, 2–3
.pkg files, 72, 252
plist files, 143–144, 198, 200
PNG (Portable Network Graphics), 82
port command, 74
Portable Document Format (PDF), 82
Portable Network Graphics (PNG), 82
porting UNIX apps to Mac, 241–248

good practice, 243–244
installing development environment, 

244–245
makefiles, 246–248
overview, 241
reasons for, 241–243

POSIX shell features, 125
PostScript, 82
PowerPoint, Microsoft, 117

nondestructive editing, 100
nonlinear editing, 101
normalize package, 78
notation method, 31
Numbers application, 114–115
Numbers spreadsheet, 111
NumPy package, 209
Nyquist, 108

O
octal method, 31
Office for Mac, Microsoft, 109–111
off-site backup and recovery, 170–178
online Linux tools, 71–79

Fink, 75–79
MacPorts, 71–75
OpenOffice Aqua, 117
overview, 71

OnLocation, 99, 102
On/Off control, 159
Open Scripting Architecture (OSA), 216
Open Source Edition (OSE), 63
open source tools

multimedia, 104–108
Audacity, 106–108
GIMP, 104–106
overview, 104

productivity, 117–122
NeoOffice, 118–122
OpenOffice.org, 117
overview, 117

OpenBSD, 71
OpenGL, 82, 85
OpenID, 212
OpenInGitGUI command, 231
OpenOffice.org, 117
OpenStep, 12
OSA (Open Scripting Architecture), 216
OSE (Open Source Edition), 63
OSServices, 14
OSX partition, 51
OSXLG_Chap_5_DRAFT.txt file, 224
outdated command, 74
output file, 179
Output formats, 102



INDEX 269

Preferences window, 178
preferred clean aperture, 85
Premiere, Adobe, 99, 101–102, 103
Preview application, 84
printers, shared, 148–151

connecting Mac client to, 150
connecting Windows client to, 150–151
Mac-connected, 149
overview, 148

Process Name column, 131
process status (ps) command, 129, 132, 134
Production Premium package, Adobe 

 Creative Suite, 100
productivity tools, 108, 123

iWork, 111–117
Keynote, 115–117
Numbers, 114–115
overview, 111
Pages, 112–113

Microsoft Office for Mac, 109–111
open source, 117–122

NeoOffice, 118–122
OpenOffice.org, 117
overview, 117

overview, 81, 108
profile file, 73
PROFILE option, 240
Project Builder IDE, 66
Project settings, 202
ps (process status) command, 129, 132, 134
Public directory, 27
pull command, 231
push command, 231
PWD variable, 33
py2app package, 209
PyObjC, 210, 212
Python, 207, 209–210, 216
Python Cocoa, 209

Q
Qt framework, 106
Quartz, 82
Quartz 2D Programming Guide, 83
Quartz Composer, 86
QuickTime, 82
quiet option, 221
quota command, 28

R
-r (revision) REV option, 221
Radioshift, 171
RAID, 38
Rails package, 212
rake package, 212
RAM (random-access memory), 8
RapidSVN, 228–230
Raw-image processing, 101
RBAC (Role-based access control), 22
rc command, 235
read-only memory (ROM), 7
Ready Rule Sets, 189
rebase command, 231
reboot command, 236
rebuild command, 79
recovery. See backup and recovery
Red, Green, Blue (RGB), 83
reduced instruction set computing 

(RISC), 12
rEFIt, 42
rEFIt-0.11.dmg image, 45
rEFItBlesser folder, 43, 53
refit.conf file, 43–44
rEFIt.mpkg file, 43
rEFTIt, 42–45

bootable CDs, 45
configuring, 43–44
customizing, 43–44
downloading, 43
installing, 43
overview, 42
updating, 44

regit.conf file, 43
reinstall command, 79
RELEASE kernel, 237, 240
RELEASE_TRACE kernel configuration, 237
relpath binary, 238
remove command, 79
/rescue/ directory, 24
reset command, 231
resizeVolume verb, 50, 53
Resource fork, 19
resource identifiers, 19
Resources folder, 200
Restart button, 206
Restart option, 50



INDEX270

sed command, 128
selfupdate command, 74, 79
selfupdate target, 72
Server Message Block (SMB), 148
set command, 188
setpriority_process command, 7
setup command, 79
setuptools package, 209
Shadows, 84
shared resources, 145–152

Network File System (NFS) file sharing, 
151–152

overview, 145
printers, 148–151

connecting Mac client to, 150
connecting Windows client to, 150–151
Mac-connected, 149
overview, 148

SMB file sharing, 151
web servers, 145–148

Apache, 147
default installation, 145–147
MAMP application, 148
MySQL, 148
overview, 145
PHP, 147–148

Sharing, System Preferences, 145
Shark, 71
shell, 125–129

changing default, 126–128
overview, 125
UNIX administration tools and com-

mands, 128–129
Shell line, 127
SHELL variable, 33
Shirt Pocket site, 170
show command, 232
Show Log List, 142
showmount command, 152
shutdown command, 236
Sites directory, 27
_sites.conf file, 146
SMB (Server Message Block), 148
SMB file sharing, 151
sort command, 128
Soundbooth, Adobe, 99, 102–103, 104
Soundbooth Scores, 103

revision (-r) REV option, 221
RGB (Red, Green, Blue), 83
RISC (reduced instruction set computing), 

12
Ritchie, Dennis, 1–2
rm command, 232
Role-based access control (RBAC), 22
Rollbacks, 44
ROM (read-only memory), 7
root access, Mac OS X, 31–32
Router, 36
.rpm version, 61
RPRVT column, 133
RSHRD column, 133
RSIZE column, 131, 133
rsync command, 77
Ruby, Xcode and, 211–212
RubyCocoa, 212
RubyGems, 212
rulesets, 186
runlevels, 234–236

S
s command, 161
S scripts, 236
sandbox backups, 167
sandboxes, 166
scalability, 230
Scheduling option, 176
Script Editor, 217–218
scripting, 216–218

AppleScript, 216
overview, 216
with Script Editor, 217–218
scripting languages, 218

search command, 74, 79
Search Domains, 36
SearchKit, 14
Secure guest account, 22
Secure Sockets Layer (SSL) encryption, 170
security, 182, 192–193

configuring through System Preferences, 
183–186

ipfw, 186–188
overview, 182–183
WaterRoof, 188–192

Security, System Preferences, 145



INDEX 271

sqlite3-ruby package, 212
Square pixels/rectangular pixels, 85
SSL (Secure Sockets Layer) encryption, 170
STAT column, 134
stateful behavior, 188
static rules, 189
status bar, 207
status command, 232
Step In button, 205
Step Into button, 206
Step Out button, 205–206
Step Over button, 205–206
Subnet Mask, 36
Subversion (SVN), 219–220

copy-modify-merge model, 220
vs. CVS, 219–220
overview, 219
using from command line, 221
using GUI front ends, 222–230

overview, 222
RapidSVN, 228–230
versions for Mac, 222–228

sudo -i command, 32
superblock, 28
SuperDuper, 166–170
SVN. See Subversion
svnadmin administrative tool, 221
symbolic link, 161
Synaptic Package Manager, 78
sync command, 74
synchronization, 102, 180–182
syslogd tool, 140
system administration

log review and maintenance, 140–144
Console application, 140–143
launchd command, 143–144
location and naming conventions, 140
overview, 140

monitoring, 129–134
Activity Monitor, 129–132
overview, 129
ps (process status) command, 134
top command, 132–133

overview, 125
shared resources, 145–152

Network File System (NFS) file sharing, 
151–152

overview, 145
printers, 148–151
SMB file sharing, 151
web servers, 145–148

shell, 125–129
changing default, 126–128
overview, 125
UNIX administration tools and com-

mands, 128–129
user maintenance, 135–139

from command line, 138–139
overview, 135
from System Preferences, 135–138

System domain, 26
system kernel configuration, 186
System Preferences, 126, 156

configuring security through, 183–186
user maintenance from, 135–138

System V (SysV), 235
system.log file, 140
systemsupport mode, 70
SysV (System V), 235

T
tag command, 232
Tagged Image File Format (TIFF), 82
tagging, 219
tail command, 129
.tar bz2 format, 147
tar command, 129, 238
Target settings, 202
.tar.gz files, 61, 147, 238
Tasks button, 206
TCP/IP (Transmission Control Protocol/

Internet Protocol), 4
tcsh shell, 125
telinit command, 235–236
templates, 112, 197
TENEX C SHell, 125
Terminal access, Mac OS X, 32–34
Terminal application, 126
Terminal.app file, 52, 244
testfile.txt file, 21
text editor, debugging with Xcode, 203–205
theme templates, 92
third-party multimedia tools, 98–103

Adobe Photoshop, 100–101



INDEX272

pipes, 2–3
user manuals, 3

UNIX apps, porting to Mac, 241–248
good practice, 243–244
installing development environment, 

244–245
makefiles, 246–248
overview, 241
reasons for, 241–243

UNIX System Laboratory (USL), 5
unixdev mode, 70
update command, 79
update subcommand, 221
update-all command, 79
updating rEFTIt, 44
upgrade command, 74, 79
User column, 131
user maintenance, 135–139

from command line, 138–139
overview, 135
from System Preferences, 135–138

user manuals, 3
USER variable, 33
USL (UNIX System Laboratory), 5

V
-v (verbose) option, 221
variants command, 75
VAX (Virtual Address eXtension), 4
VCRs (video cassette recorders), 86
verbose (-v) option, 221
verify subcommand, 222
Versioned metadata, 219
video cassette recorders (VCRs), 86
Video effects, 102
Video-editing tools, 101
Virtual Address eXtension (VAX), 4
Virtual Machine Assistant, 54, 56
Virtual Memory column, 131
Virtual Studio Technology (VST), 108
VirtualBox, 41, 63
virtualization, 54–63

overview, 41, 54
VirtualBox, 63
VMware, 54, 61–63

VisiCalc, 108
vm_stat tool, 129

Adobe Premiere, 101–102
overview, 98–100
Soundbooth, 102–103

Thompson, Ken, 1–2
Thr column, 131
Thread list, 205
TIFF (Tagged Image File Format), 82
TIME column, 133–134
Time Machine, 156–162

configuring backups, 157–159
function of, 160–162
overview, 156
recovering backups, 159–160

timebase, 85
timeout number, 44
timestamp, 85
Toolbox, 106
top command, 129, 132–133
Torvalds, Linus, 12
transforms, 83
Transmission Control Protocol/Internet 

Protocol (TCP/IP), 4
transparency layer, 84
True versioning, 220
trunks, 18
TT column, 134
Twisted package, 209
.txt extension, 143

U
Ubuntu, 32, 56, 58, 128
UCB (University of California, Berkeley), 4
umount script, 166
Unicode, 20
uninstall command, 74
uninstalling

VMware, 63
Xcode tools, 70

uniq command, 128
University of California, Berkeley (UCB), 4
UNIX, 1–3, 10

administration tools and commands, 
128–129

C language, 2
file structure, 160
macros, 2–3
overview, 1



INDEX 273

VMware, 41, 54–63
configuring Linux installation, 62–63
installing, 54–61
overview, 54
uninstalling, 63

vmware-install.pl script, 61
vmware-tools-distrib directory, 61
VSIZE column, 133
VST (Virtual Studio Technology), 108

W 
WaterRoof, 188–192
Web Premium package, Adobe Creative 

Suite, 100
web servers, 145–148

installing
Apache from source, 147
default, 145–147
MySQL from source, 148
PHP from source, 147–148

MAMP application, 148
overview, 145

Web Sharing check box, 213
Web Standard package, Adobe Creative 

Suite, 100
WebObjects, 70
WebServicesCore, 14
which command, 230
Wi-Fi, 187
WIMP paradigm, 7
Wind River Systems, 12
WINS (Windows Internet Name Service), 36
Word Processing, 112
workflows, 218
wxPython package, 209
wxWidgets, 106

X
xa option, 134
xargs command, 128
xattr package, 209
Xcode

application development tools, 207–216
Java, 208
overview, 207

PHP, 213–216
Python, 209–210
Ruby, 211–212

creating application with, 197–200
debugging with, 203–207

debugger window, 206–207
mini debugger, 205–206
overview, 203
text editor, 203–205

maintenance and revision control, 218, 
232

managing changes with Git, 230–231
overview, 218–219
Subversion, 219–220
using Subversion from command line, 

221
using Subversion GUI front ends, 

222–230
overview, 195–196
scripting, 216–218

AppleScript, 216
overview, 216
with Script Editor, 217–218
scripting languages, 218

tools, 65–71, 196
installing, 66–70
overview, 65–71
uninstalling, 70

working in main Xcode window, 200–203
Xcode Unleashed, 207
XcodeTools.mpkg file, 67–68
Xerox PARC system, 7
xinetd command, 143
xnu kernel, 240
xnu-[version] directory, 240

Z
ZFS filesystem, 22
Zope package, 209




