
Hardening
Linux

JAMES TURNBULL

4444_FM_final.qxd 1/5/05 12:39 AM Page i

Hardening Linux

Copyright © 2005 by James Turnbull

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-444-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jim Sumser

Technical Reviewer: Judith Myerson

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason
Gilmore, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Production Manager: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Linda Weidemann

Proofreader: Lori Bring

Indexer: Kevin Broccoli

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liabil-
ity to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

4444_FM_final.qxd 1/5/05 12:39 AM Page ii

Contents at a Glance

About the Author . xv

About the Technical Reviewer. xvii

Acknowledgments . xix

Introduction. xxi

CHAPTER 1 Hardening the Basics . 1

CHAPTER 2 Firewalling Your Hosts . 79

CHAPTER 3 Securing Connections and Remote Administration 137

CHAPTER 4 Securing Files and File Systems . 187

CHAPTER 5 Understanding Logging and Log Monitoring 233

CHAPTER 6 Using Tools for Security Testing . 281

CHAPTER 7 Securing Your Mail Server . 321

CHAPTER 8 Authenticating and Securing Your Mail . 373

CHAPTER 9 Hardening Remote Access to E-mail. 403

CHAPTER 10 Securing an FTP Server . 443

CHAPTER 11 Hardening DNS and BIND . 463

APPENDIX A The Bastion Host Firewall Script . 511

APPENDIX B BIND Configuration Files . 517

APPENDIX C Checkpoints . 525

INDEX . 533

v

4444_FM_final.qxd 1/5/05 12:39 AM Page v

Contents

About the Author . xv

About the Technical Reviewer. xvii

Acknowledgments . xix

Introduction. xxi

■CHAPTER 1 Hardening the Basics . 1

Installing Your Distribution Securely. 2

Some Answers to Common Installation Questions. 2

Install Only What You Need. 2

Secure Booting, Boot Loaders, and Boot-Time Services 4

Securing Your Boat Loader . 5

Init, Starting Services, and Boot Sequencing . 8

Consoles, Virtual Terminals, and Login Screens. 15

Securing the Console . 16

The Red Hat Console . 16

Securing Virtual Terminals . 17

Securing Login Screens . 18

Users and Groups . 19

Shadow Passwording . 22

Groups . 23

Adding Users. 24

Adding Groups . 26

Deleting Unnecessary Users and Groups. 28

Passwords. 31

Password Aging . 35

sudo . 37

User Accounting . 42

Process Accounting. 44

Pluggable Authentication Modules (PAM) . 46

PAM Module Stacking . 48

The PAM “Other” Service . 49

Restricting su Using PAM . 50

vii

4444_FM_final.qxd 1/5/05 12:39 AM Page vii

Setting Limits with PAM . 51

Restricting Users to Specific Login Times with PAM 53

Package Management, File Integrity, and Updating 56

Ensuring File Integrity . 57

Downloading Updates and Patches . 61

Compilers and Development Tools . 64

Removing the Compilers and Development Tools 64

Restricting the Compilers and Development Tools. 65

Hardening and Securing Your Kernel . 66

Getting Your Kernel Source. 66

The Openwall Project . 68

Other Kernel-Hardening Options . 74

Keeping Informed About Security . 75

Security Sites and Mailing Lists . 75

Vendor and Distribution Security Sites . 76

Resources . 76

Mailing Lists . 76

Sites . 77

■CHAPTER 2 Firewalling Your Hosts . 79

So, How Does a Linux Firewall Work? . 80

Tables. 82

Chains . 82

Policies. 82

Adding Your First Rules. 83

Choosing Filtering Criteria . 86

The iptables Command . 87

Creating a Basic Firewall . 91

Creating a Firewall for a Bastion Host . 97

Securing the Bastion Services. 98

Firewall Logging. 101

Handling ICMP Traffic . 105

Spoofing, Hijacking, and Denial of Service Attacks 108

iptables and TCP Flags . 111

Some Final Bastion Host Rules . 116

Kernel Modules and Parameters. 117

Patch-o-Matic. 117

Kernel Parameters . 124

Managing iptables and Your Rules . 129

iptables-save and iptables-restore . 130

■CONTENTSviii

4444_FM_final.qxd 1/5/05 12:39 AM Page viii

iptables init Scripts . 131

Testing and Troubleshooting . 132

Resources . 136

Mailing Lists . 136

Sites . 136

Books . 136

■CHAPTER 3 Securing Connections and Remote Administration. 137

Public-Key Encryption. 137

SSL, TLS, and OpenSSL . 140

Stunnel. 152

IPSec, VPNs, and Openswan . 159

inetd and xinetd-Based Connections . 167

Remote Administration . 169

ssh . 171

scp and sftp . 175

ssh-agent and Agent Forwarding . 177

The sshd Daemon . 179

Configuring ssh and sshd . 180

Port Forwarding with OpenSSH . 183

Forwarding X with OpenSSH . 184

Resources . 185

Mailing Lists . 185

Sites . 185

■CHAPTER 4 Securing Files and File Systems . 187

Basic File Permissions and File Attributes. 188

Access Permissions. 188

Ownership . 198

Immutable Files . 198

Capabilities and lcap. 200

Encrypting Files . 202

Securely Mounting File Systems. 204

Securing Removable Devices . 207

Creating an Encrypted File System . 208

Installing the Userland Tools . 209

Enabling the Functionality . 209

Encrypting a Loop File System . 210

Unmounting Your Encrypted File System . 214

Remounting. 215

■CONTENTS ix

4444_FM_final.qxd 1/5/05 12:39 AM Page ix

Maintaining File Integrity with Tripwire . 215

Configuring Tripwire . 216

Explaining Tripwire Policy . 218

Network File System (NFS) . 229

Resources . 231

Mailing Lists . 231

Sites . 231

Sites About ACLs . 231

■CHAPTER 5 Understanding Logging and Log Monitoring 233

Syslog . 233

Configuring Syslog. 235

Starting syslogd and Its Options . 239

syslog-NG . 241

Installing and Configuring syslog-NG . 241

The contrib Directory. 242

Running and Configuring syslog-NG. 242

Sample syslog-ng.conf File . 254

Logging to a Database with syslog-NG . 256

Secure Logging with syslog-NG . 259

Testing Logging with logger . 263

Log Analysis and Correlation . 264

Installing and Running SEC . 267

Inputting Messages to SEC . 269

Building Your SEC Rules . 270

Log Management and Rotation. 277

Resources . 280

Mailing Lists . 280

Sites . 280

Books . 280

■CHAPTER 6 Using Tools for Security Testing . 281

Inner Layer . 282

Scanning for Exploits and Root Kits . 282

Testing Your Password Security. 287

Automated Security Hardening with Bastille Linux 290

Outer Layer. 295

NMAP . 296

Nessus . 302

■CONTENTSx

4444_FM_final.qxd 1/5/05 12:39 AM Page x

Other Methods of Detecting a Penetration . 313

Recovering from a Penetration . 315

Additional Security Tools . 318

dsniff . 318

Ethereal . 318

Ettercap . 318

LIDS . 318

Netcat. 319

SARA . 319

Snort. 319

tcpdump . 319

Titan . 319

Resources . 319

Sites . 320

■CHAPTER 7 Securing Your Mail Server . 321

Which Mail Server to Choose? . 321

How Is Your Mail Server at Risk? . 323

Protecting Your Mail Server . 323

Chrooting a Sendmail SMTP Gateway or Relay 324

Chrooting Postfix . 330

Securing Your SMTP Server . 333

Obfuscating the MTA Banner and Version . 333

Disabling Dangerous and Legacy SMTP Commands. 336

Some Additional Sendmail Privacy Flags . 339

Sendmail and smrsh . 339

Writing to Files Safely . 340

Limiting the Risk of (Distributed) DoS Attacks 341

Relaying, Spam, and Viruses . 346

Relaying. 346

Antispam . 351

Antivirus Scanning Your E-mail Server. 364

Resources . 372

Mailing Lists . 372

Sites . 372

■CHAPTER 8 Authenticating and Securing Your Mail 373

TLS. 373

Creating Certificates for TLS . 374

■CONTENTS xi

4444_FM_final.qxd 1/5/05 12:39 AM Page xi

■CONTENTSxii

TLS with Sendmail. 377

TLS with Postfix . 381

SMTP AUTH Using Cyrus SASL . 387

Compiling Cyrus SASL. 388

Configuring SASL saslauthd. 389

SMTP AUTH Using Cyrus SASL for Sendmail . 389

Compiling Cyrus SASL into Sendmail . 390

Configuring Cyrus SASL for Sendmail . 391

Using SMTP Server Authentication with Sendmail. 392

Using SMTP Client Authentication with Sendmail 394

SMTP AUTH Using Cyrus SASL for Postfix. 395

Compiling Cyrus SASL into Postfix . 395

Configuring Cyrus SASL for Postfix . 396

Using SMTP Server Authentication with Postfix 398

Using SMTP Client Authentication with Postfix 400

Testing SMTP AUTH with Outlook Express . 400

Resources . 402

Mailing Lists . 402

Sites . 402

■CHAPTER 9 Hardening Remote Access to E-mail . 403

IMAP . 404

POP . 404

Choosing IMAP or POP Servers . 405

How Is Your IMAP or POP Server at Risk? . 406

Cyrus IMAP . 407

Installing and Compiling Cyrus IMAP . 409

Installing Cyrus IMAP into a chroot Jail . 411

Configuring Cyrus IMAP . 417

Cyrus IMAP Authentication with SASL . 422

Cyrus IMAP Access Control and Authorization 425

Testing Cyrus IMAP with imtest/pop3test . 428

Fetchmail . 430

Installing Fetchmail . 431

Configuring and Running Fetchmail . 434

Resources . 441

Mailing Lists . 441

Sites . 441

4444_FM_final.qxd 1/5/05 12:39 AM Page xii

■CHAPTER 10 Securing an FTP Server. 443

How Does FTP Work? . 444

Firewalling Your FTP Server . 446

What FTP Server to Use? . 448

Installing vsftpd . 448

Configuring vsftpd for Anonymous FTP . 450

General Configuration . 451

Mode and Access Rights. 452

General Security. 454

Preventing Denial of Service Attacks . 455

Configuring vsftpd with Local Users. 456

Adding SSL/TLS Support . 459

Starting and Stopping vsftpd. 461

Resources . 461

Sites . 461

■CHAPTER 11 Hardening DNS and BIND . 463

Your DNS Server at Risk. 464

Man-in-the-Middle Attacks . 464

Cache Poisoning. 465

Denial of Service Attacks . 465

Data Corruption and Alteration . 466

Other Risks . 466

What DNS Server Should You Choose? . 466

Secure BIND Design . 467

Installing BIND . 470

Chrooting BIND . 472

Permissions in the chroot Jail . 473

Starting and Running named. 474

Configuring BIND . 476

Access Control Lists . 479

Logging . 480

Options. 484

Views and Zones . 493

Zones . 497

TSIG . 500

■CONTENTS xiii

4444_FM_final.qxd 1/5/05 12:39 AM Page xiii

The rndc Command . 504

rndc.conf . 505

Adding rndc Support to named.conf. 507

Using rndc . 508

Resources . 510

Mailing Lists . 510

Sites . 510

Information About Zone Files . 510

Books . 510

■APPENDIX A The Bastion Host Firewall Script . 511

■APPENDIX B BIND Configuration Files . 517

A Caching Server. 517

An Authoritative Master Name Server . 519

A Split DNS Name Server. 520

A Sample Named init Script. 523

■APPENDIX C Checkpoints . 525

Chapter 1 . 525

Chapter 2 . 526

Chapter 3 . 527

Chapter 4 . 527

Chapter 5 . 528

Chapter 6 . 529

Chapter 7 . 529

Chapter 8 . 530

Chapter 9 . 530

Chapter 10 . 531

Chapter 11 . 531

■INDEX . 533

■CONTENTSxiv

4444_FM_final.qxd 1/5/05 12:39 AM Page xiv

About the Author

■JAMES TURNBULL is an IT&T security consultant at the Commonwealth Bank of Australia.
He is an experienced infrastructure architect with a background in Linux/Unix, AS/400,
Windows, and storage systems. He has been involved in security consulting, infrastructure
security design, SLA and support services design, and business application support.

xv

4444_FM_final.qxd 1/5/05 12:39 AM Page xv

About the Technical Reviewer

■JUDITH MYERSON is a systems architect and engineer. Areas of interest include middleware
technologies, enterprise-wide systems, database technologies, application development,
server/network management, security, firewall technologies, and project management.

xvii

4444_FM_final.qxd 1/5/05 12:39 AM Page xvii

Acknowledgments

Mark Chandler, for his friendship and technical assistance during the writing of this book.
Nate Campi, for providing syslog-NG, SEC, and logging information.

xix

4444_FM_final.qxd 1/5/05 12:39 AM Page xix

Introduction

This book is a technical guide to hardening and securing Linux hosts and some of the com-
mon applications used on Linux hosts. It provides information on how to harden the base
Linux operating system, including firewalling and securing connections to your hosts. It also
looks at hardening and securing some of the applications commonly run on Linux hosts, such
as e-mail, IMAP/POP, FTP, and DNS.

No single book on security, even a book on the security of a single operating system, will
ever answer all the security questions or address all the possible threats. This book is about
providing risk mitigation and minimization. I have set out to identify risks associated with
running Linux and some of the applications that run on Linux hosts. I have then provided
technical solutions—backed by frequent examples, code, and commands—that minimize,
mitigate, or in some circumstances negate those risks. The configurations and examples I
provide are designed to ensure your Linux hosts are hardened against attack while not limit-
ing the functionality available to your users.

So why should you care about security? The answer to this is simple—because a significant
portion of businesses today rely heavily on the security of their IT assets. To use a metaphor:
running a computer host is like owning a house. When Unix-flavored operating systems and
TCP/IP networking were in their infancy, it was like owning a house in a small country town.
The emphasis was on making it easy for people to cooperate and communicate. People left their
doors open and did not mind other people exploring their houses or borrowing a cup of sugar.
You probably did not really keep anything too valuable in your house, and if you did, people
respected it. Your neighborhood was friendly, everyone knew everyone else, and you trusted
your neighbors. Your local neighborhood “hacker” was someone who showed expertise with
programming, systems, or telecommunications. Security was a secondary consideration, if
it was considered at all.

Times have changed. Now the little country town has a big interstate running right
through it. You need to lock up your house, install a burglar alarm, and put up a big fence.
Your neighbors have become considerably unfriendlier, and instead of borrowing a cup of
sugar, they are more interested in stealing your DVD player or burning your house down.
Additionally, the items you store in your house now have considerably more value to you,
in terms of both their financial cost and their importance to you. Worse, your local neighbor-
hood “hacker” has morphed into a variety of bad guys with skills ranging from the base to
the brilliant.

■Note I do not like the term hacker to describe the people who attack your hosts. The term still has ambi-
guities associated with it, and its usage to describe attackers is not 100 percent accurate. Throughout this
book I use the term attacker to describe the people who threaten your hosts and applications.

xxi

4444_FM_final.qxd 1/5/05 12:39 AM Page xxi

■INTRODUCTIONxxii

Many people scoff at IT security. They claim IT security professionals are paranoid and
are overstating the threat. Are we paranoid? Yes, probably we are. Is this paranoia justified? We
believe so; in fact, a common refrain in the IT security industry is “Are we being paranoid
enough?” IT assets have become absolutely critical to the functioning of most businesses,
both large and small. They have also become the repositories of highly valuable commercial,
research, customer, and financial information. The guys in the white hats are not the only
ones who have noticed the increase in importance of IT assets and the increase in value of the
information they contain. The guys in the black hats know exactly how important IT assets
are. They know how much damage they can do and how much they can gain from attacking,
penetrating, and compromising those assets.

The IT security skeptics claim that the threat of these attackers is overstated. They state
that the vast majority of attackers are unskilled, use collections of prepackaged tools that
exploit known vulnerabilities, and are no threat to most of your assets. That these make up
a significant portion of attacks is indeed true. Take a look at your Internet-facing firewall or
IDS logs, and you will see a considerable volume of attacks on your hosts with the patterns or
signatures of automated attack tools. Does this lessen the threat to your hosts? Yes, some-
times. It can be easier to defend against the less-skilled attacker using a prepackaged tool. The
vulnerabilities exploited by these tools and how to fix them are usually well-documented or
can be easily patched. But if you do not know about the vulnerability or have not applied the
patch, then an attacker using an automated or prepackaged attack tool becomes the same
level of threat as a brilliant attacker with a hand-coded attack tool.

The danger posed by these unskilled attackers has also increased. New vulnerabilities are
discovered daily. Exploits are frequently built on these vulnerabilities within hours of them
being discovered. Some vulnerabilities are not even discovered until someone uses them to
exploit a host. This means pre-packaged attack tools are often available to exploit a vulnera-
bility before the application developer or vendor has even released a patch. The combination
of the speed with which new methods of attack spread and the diminishing gap between the
discovery of a vulnerability and the development of an exploit means the risk that one of these
attacks gets through is significantly increased if you are not being vigilant. You must take seri-
ous, consistent, and systematic precautions to secure your hosts.

In addition to the vast majority of unskilled attackers, a smaller group of skilled attackers
exists. These are either intelligent and cunning outsiders or internal staff with in-house knowl-
edge. These attackers also pose a serious threat to your hosts, and you need to ensure that
your hosts are protected from them, too. This requires that your hosts be hardened and locked
down to ensure that only activities that you have authorized using functionality you have
approved and installed are conducted.

To return to the metaphor of an IT asset as a house, securing your host is a bit like having
home insurance. You hope you do not need it, but you would be foolish not to have it. Do not
underestimate the potential damage an attacker can cause or envisage these threats as being
somehow hypothetical. For example, imagine the response if you asked the staff of your
organization to go without e-mail for a week? This happened to many organizations during
the Netsky, Sobig, and Mimail virus attacks. Or imagine if your customers were denied access
to your e-commerce site as happened to Amazon, eBay, and Yahoo as the result of Distributed
Denial of Service (DDoS) attacks in 1999, 2000, and 2001. Or imagine if an attacker penetrated

4444_FM_final.qxd 1/5/05 12:39 AM Page xxii

■INTRODUCTION xxiii

your hosts and stole your organization’s bank account detail, the numbers of its corporate
credit cards, or, worse, the credit card numbers of your customers.

You can see that the potential cost of attacks on IT assets is high. There is a potential
monetary cost to your organization from theft, loss of revenue, or productivity. There is also
a potential public relations cost through loss of customer or industry confidence. You need
to understand how to simply, consistently, and practically secure your IT environment. For
your Linux hosts and applications, this book provides this practical understanding.

■Note In a later section of this introduction, “Basic Security Tenets,” I talk broadly about some basic secu-
rity tenets and theory. This should provide a basic understanding of IT security theory. I recommend you read
more widely in this area.

Who Should Read This Book?
This book is aimed at people who are new to security but who are not entirely new to Linux.
This includes system administrators and engineers, security administrators, and IT managers.
This is not a book for absolute beginners. I provide real-world examples of configurations,
commands, and scenarios that will help you harden and secure your Linux hosts. While doing
this, I try to explain in as much detail as possible to accommodate systems administrators of
varying skills. But I do expect that readers are at least familiar with basic to intermediate Linux
operations and systems administration.

I recommend you understand the following:

• Basic file manipulation (editors, grep, and so on)

• Basic file permissions and ownership

• Basic user administration

• Package management including some knowledge of compiling source packages

• Basic understanding of init and init scripts

• Basic networking including IP addressing, subnets, and administering network
resources using the command line

• Basic storage management: partitions, mounting and unmounting, and devices

The book is also designed to be used by those setting up new hosts in addition to people
seeking to harden and existing hosts. Thus, it covers addressing security vulnerabilities from
scratch, but you can also take the instructions and examples provided in this book and apply
them selectively to harden portions of your existing hosts and applications.

4444_FM_final.qxd 1/5/05 12:39 AM Page xxiii

■INTRODUCTIONxxiv

■Note One of the topics I do not cover in this book is Web serving, specifically Apache. For this I recom-
mend another book in this series, Hardening Apache (Apress, 2004) by Tony Mobily, for the complete picture
on installing, configuring, and running secure Apache servers.1 In the limited space available in this book,
I could not do this complicated and extensive topic justice.

How This Book Is Structured
This book covers the following topics:

Chapter 1, “Hardening the Basics,” covers the basics of hardening your Linux hosts. It
introduces the core security features of the Linux operating system and kernel and pro-
vides information and examples on how to harden them. It also covers patching and
updating your hosts and how to keep up-to-date with the latest security-related infor-
mation for Linux.

Chapter 2, “Firewalling Your Hosts,” addresses securing your Linux hosts with the
iptables firewall. It covers setting up a basic firewall and configuring and managing
iptables and then moves onto advanced topics such as firewall logging, protecting from
Denial of Service (DoS) attacks and other network-based attacks. (Appendix A contains
firewall scripts for securing a bastion host based on the contents of this chapter.)

Chapter 3, “Securing Connections and Remote Administration,” examines securing con-
nections on your hosts. This includes providing secure connections for the administra-
tion of your systems using tools such as OpenSSH. I address using OpenSSL and Stunnel
to encapsulate connections, and I show how to set up VPN connections.

Chapter 4, “Securing Files and File Systems,” looks at securing your files and file sys-
tems. I cover file permissions, file attributes, and symmetric file encryption. I also
explain securely mounting your disks and removable file systems, encrypting entire
file systems, and using the Tripwire tool to monitor the integrity and status of your
files and directories.

Chapter 5, “Understanding Logging and Log Monitoring,” covers logging and monitoring
and filtering your logs. I cover the syslog and syslog-ng tools for gathering your log mes-
sages. I also show you how to use the SEC tool to correlate log messages and demonstrate
how to manage and rotate your log files.

Chapter 6, “Using Tools for Security Testing,” provides information on the tools available
to you for testing the security of your hosts. I address testing the security of your pass-
words and scanning for root kits. I cover scanning your hosts for vulnerabilities and open
ports with tools such as nmap and Nessus. I also demonstrate how to use the Bastille hard-
ening script to harden your host.

1. http://www.apress.com/book/bookDisplay.html?bID=320

4444_FM_final.qxd 1/5/05 12:39 AM Page xxiv

■INTRODUCTION xxv

Chapter 7, “Securing Your Mail Server,” looks at securing and hardening two of the most
commonly used e-mail servers, Sendmail and Postfix. I examine running these e-mail
servers in a chroot jail as well as other methods of limiting their exposure to attack. I also
explain how to protect your users from spam and viruses.

Chapter 8, “Authenticating and Securing Your Mail,” addresses securing the transmission
of your e-mail and the authentication of your clients to your e-mail servers. I examine
using Cyrus SASL and SMTP AUTH to ensure only authenticated clients can use your
e-mail servers and demonstrate how to use TLS to provide encryption of the transmis-
sion of your e-mail.

Chapter 9, “Hardening Remote Access to E-mail,” addresses securing your user’s remote
access to their e-mail via IMAP and POP and using tools such as Fetchmail. I cover pro-
viding secure IMAP and POP using SSL and how to build a “black box” secure IMAP
server using Cyrus IMAP.

Chapter 10, “Securing an FTP Server,” covers the FTP server and file transfers. I demon-
strate how to run secure local and anonymous FTP servers, including how to integrate it
with SSL/TLS and authenticate your users with PAM.

Chapter 11, “Hardening DNS and BIND,” looks at running DNS services. I cover DNS-
related threats and attacks, how to choose your DNS server, and the basics of secure DNS
design. I also cover installing and hardening a BIND DNS server and take you through the
security-related configurations options of BIND. Finally, I cover some BIND security fea-
tures such as TSIG. (Appendix B contains a number of secure BIND configuration files
based on the contents of this chapter.)

Basic Security Tenets
The practical examples I demonstrate in this book are built on some underlying tenets that
are crucial to maintaining your security.

• Be minimalist and minimize the risk.

• Defense in depth

• Vigilance

An understanding of these tenets, in combination with the examples and a little common
sense, can help you mitigate the risk of an attack on your hosts. In the following sections
I briefly articulate the IT security tenets on which I have based this book.

Be Minimalist, and Minimize the Risk
The first principle, that of minimalism, can also be expressed with the acronym KISS, or Keep
It Simple Stupid. The safest way to reduce the risks to your hosts is to not introduce risks in
the first place. For example, many distributions install services, tools, applications, and func-
tionality that could pose risks to your host. In some cases, they even start services. They also
create users for these services and applications that are often not needed or could be used by

4444_FM_final.qxd 1/5/05 12:39 AM Page xxv

■INTRODUCTIONxxvi

an attacker to compromise your host. The first step in minimizing the risk to your hosts is to
remove this excess and unnecessary material. The second step is ensuring that you tightly
control what is installed on your hosts. Do not install more than you need to, do not run serv-
ices or functionality you do not need, and do not have users you do not need.

This is something you need to do from scratch with the installation of a new hardened
host or if hardening an existing host. Obviously, minimizing the functionality of an existing
host is harder. You need to make sure you are fully aware of all the functions that host per-
forms and ensure you do not switch off or remove something that is required for that host
to provide the required functionality. Hardening a production host requires extensive test-
ing, and I recommend you proceed only if you have the ability to back out any changes and
revert to your original configuration in the event a security change has an adverse effect.

■Tip I recommend you use a change control system to ensure all changes are managed and planned
rather than simply implemented. At the least you should keep a journal of the activities you conduct on
a particular host. Every time you make a configuration change, you should detail the old and new settings
and the change performed in a logbook.

Defense in Depth
The second tenet of good security is defense in depth. At its most basic, defense in depth
means taking a layered approach to defending your hosts. The defense in depth concept pro-
poses using layers of technology, policies, and processes to protect your systems. This means
that, wherever possible in your environment, you do not rely on a single layer for defense of
your hosts.

As an example you can look at your connectivity to the Internet. Just installing a firewall
between your internal network and the Internet is not enough. In addition to a firewall between
your network and the Internet, you should firewall your individual internal hosts, install an IDS
system of some kind, and conduct regular penetration testing and vulnerability scanning of your
hosts. You should apply this principle to all the components of your host security.

Vigilance
One of the biggest threats to your security is simply doing nothing. No matter how secure your
hosts are at this point in time, they will, at varying rates, become less secure as time goes by.
This is a consequence of simple entropy, as changes to your applications, environment, and
requirements alter the configuration and potentially purpose of your systems. It is also a con-
sequence of the changing nature of the threats against you. What you have protected yourself
against now may not be what you need to protect yourself against in the future. This is most
obviously manifested as new vulnerabilities and exploits of those vulnerabilities are discov-
ered in the operating systems, applications, and tools you have running.

You need to ensure you include security administration and monitoring as part of your
regular system administration activities. Check your logs, audit your users and groups, and
monitor your files and objects for suspicious activity. Know the routines and configuration of

4444_FM_final.qxd 1/5/05 12:39 AM Page xxvi

■INTRODUCTION xxvii

your hosts; the more you understand about the normal rhythms of your hosts, the easier it is
to spot anomalies that could indicate you are under attack or have been penetrated.

You also need to ensure you keep up-to-date with vulnerabilities, threats, and exploits. In
Chapter 1 I talk about some of the sources of information you can utilize to do this. You should
subscribe to or review the security-related information your vendors distribute as well as those
available from third-party sources such as SANS or CIS.

Finally, the truly vigilant test. And test again. Perform regular security assessments of your
hosts and environment. Scan for vulnerabilities using tools such as Nessus or commercial tools
such as ISS Security Scanner. Consider using independent third parties to perform penetration
testing of your environment and hosts. Ongoing security assurance is vital to make sure you
stay protected and hardened from attack.

Downloading the Code and Examples
Some of the lengthier configurations and examples from this book are also available in a zip file
from the Downloads section of the Apress Web site (http://www.apress.com). These include the
iptables firewall script from Chapter 2, the BIND named.conf configuration files from Chapter 11,
and a variety of other configuration files and scripts.

Contacting the Author
You can reach James Turnbull at james@hardening-linux.com.

4444_FM_final.qxd 1/5/05 12:39 AM Page xxvii

Hardening the Basics

At the heart of your Linux system is the Linux kernel and operating system. Combined, these
form the base level of your system on which all your applications run. Comparatively speak-
ing, the Linux operating system and kernel are actually reasonably secure. A large number of
security features are built in the kernel, and a variety of security-related tools and features come
with most distributions or are available in open-source form. Additionally, Linux offers excep-
tional control over whom, how, and what resources and applications users can access. So,
where are the risks?

Well, as the old saying goes, “The devil is in the details.” The security of your system
depends on a wide variety of configuration elements both at the operating system level and
the application level. Additionally, the Linux operating system and kernel are complex and
not always easy to configure. In fact, Linux systems are nearly infinitely configurable, and
subtle configuration changes can have significant security implications. Thus, some security
exposures and vulnerabilities are not always immediately obvious, and a lack of understand-
ing about the global impact of changing configuration elements can lead to inadvertent
exposures.

Furthermore, security on Linux systems never stays static. Once secured, your system does
not perpetually stay secure. Indeed, the longer you use your system, the less secure it becomes.
This can happen through operational or functional changes exposing you to threats or through
new exploits being discovered in packages and applications. Securing your system is an ongo-
ing and living process. Many of the steps and concepts in this chapter you will apply more
than once (for example, after you make an operational change to reaffirm the required level
of security), or you will apply on a regular basis to keep your security level consistent.

Finally, many distributions come prepackaged or preconfigured for you with a recom-
mended default set of packages, applications, and settings. Usually this configuration is based
on the author or vendor understanding what their end user requires of the distribution. Gen-
erally speaking, a lot of this preconfiguration is useful and enhances the potential security of
your system; for example, Red Hat comes preconfigured to use Pluggable Authentication Mod-
ules (or PAM) for a variety of authentication processes. But sometimes this preconfiguration
opens security holes or is poorly designed from a security perspective. For example, as a result
of the vendor’s desire to make it easy for you to set your system up, they may install, configure,
and start applications or services for you. Red Hat automatically configures and starts Send-
mail when you take the default installation options, for example.

To be able to address these issues, you need to have a solid understanding of the underly-
ing basic security requirements of your system—those of your operating system and kernel.
This chapter is entitled “Hardening the Basics” because it is aimed at exploring and explaining

1

C H A P T E R 1

■ ■ ■

4444c01_final.qxd 1/5/05 12:42 AM Page 1

CHAPTER 1 ■ HARDENING THE BASICS2

the key areas of security and security configuration at that operating system and kernel level.
Additionally, I try to address some of the key weaknesses of a freshly installed Linux distribu-
tion or an existing unhardened Linux system and provide quick and practical fixes to them.
I will start with some guidelines for installing a Linux distribution and then address boot
security, user and password security, PAM, updates and package upgrades, and your kernel,
and I will finish up with some information that should help you keep up-to-date with the
latest vulnerabilities and security exposures.

Installing Your Distribution Securely
This book does not specifically cover a single distribution but rather tries to offer practical
examples that you can use on the majority of Linux distributions (though I most keenly focus
on Red Hat and Debian when offering examples of commands and application configuration).
As a result, I am not going to take you through the process of installing a particular distribution
but rather offer some recommendations about how you should install your Linux distribution.
As I articulated in the chapter’s introduction, one of the key tenets of information technology
(IT) security is minimizing your risks. The default installation process for most Linux distribu-
tions does the opposite. Extraneous and inappropriate applications are installed, unnecessary
users are created, and some potentially highly insecure configuration decisions are made.

Let’s look at some ways to reduce the risks and the issues created during your distribu-
tion’s installation process.

Some Answers to Common Installation Questions
Almost all Linux distributions installations ask you a series of questions about your system’s pro-
posed configuration during the installation process. They are usually some important security-
related questions that you should take care answering. Obviously, whilst I cannot run through
what every distribution is going to ask, some questions remain similar across many distributions.

If prompted, enable MD5 and shadow passwording. This will make your passwords sig-
nificantly more secure.

When prompted to input a root password, always chose a secure password. I will briefly
talk about choosing suitable passwords in the “Users and Groups” section of this chapter.

Create a user other than root if prompted, ensuring you choose a suitable password for
this user also, so you have a user other than root to log onto the system.

If prompted during installation, enable any proposed firewall. If options to control the
configuration of the firewall are offered, select the bare minimum of allowed connections.
Only explicitly enable connections when you absolutely require them. Remember any
firewall you configure during installation will generally not be suitable for production
purposes, and you should see Chapter 2 for further information on firewalls.

Install Only What You Need
As I have stated, minimalism is important. If your distribution offers a Minimal or Custom
option when selecting packages that will allow you install a minimal numbers of packages or
allow you to deselect packages for installation, then you should use that option. In fact, on

4444c01_final.qxd 1/5/05 12:42 AM Page 2

CHAPTER 1 ■ HARDENING THE BASICS 3

a Red Hat system I recommend you deselect every possible package option and then install
the base system.

I cannot provide you with a definitive list of packages not to install. But a lot of this is com-
mon sense. Do you really need NetHack on your production Apache server? I can identify some
of the types of packages that are installed by default that you should be able to remove. This also
applies to hardening existing systems. You should review all installed packages and remove
those not required or those that present significant risks.

Some of the areas I recommend you remove packages from are as follows:

• Games

• Network servers

• Daemons and services

• Databases

• Web tools

• Editors

• Media-related (CD and MP3 players, CD burners)

• Development tools and compilers

• Printing and printing tools

• Office-style applications and tools

• Document management and manipulation

• X-Windows (including Gnome and KDE)

One of my most important recommendations when choosing not to install packages
involves X-Windows. Most, if not all, production Linux systems do not need X-Windows to per-
form their functions. An e-mail server, for example, should have no requirement for X-Windows.
So do not install it. X-Windows is a huge package with numerous components and a history of
numerous security vulnerabilities that make it a potentially dangerous package to install. Addi-
tionally, on a Linux system, unlike Windows systems, nothing requires the use of a graphical user
interface (GUI) to configure that you cannot configure from the command line.

■Caution Do not install your distribution whilst connected to the Internet or to a network that is connected
to the Internet.

It may seem like a good idea to be connected to the Internet when you install your distribu-
tion to get patches and updates or register your system. But is it? Often the media used to install
a distribution could be quite old. A number of vulnerabilities could and probably will have been
discovered since the media was constructed. This means your system could be vulnerable to any
number of potential attacks. Until you have downloaded the updates that fix these vulnerabilities,

4444c01_final.qxd 1/5/05 12:42 AM Page 3

CHAPTER 1 ■ HARDENING THE BASICS4

then your system is vulnerable. While you are busy waiting to download the required patches,
then an attacker has the potential to identify your unprotected system and penetrate it using
an as yet unfixed vulnerability.

To mitigate the risks of connecting an unpatched system to the Internet, I recommend you
stay offline until you have updated your system with all the required patches. To do this, I rec-
ommend you download all the updates and patches required for your system onto another sys-
tem first and check the MD5 checksums of the updates against those published by the vendor
and their GNU Privacy Guard (GPG) public key. For Red Hat updates the checksums and public
key are published on the Red Hat Network site, and for Debian they are contained in the .dsc
file, which describes each dpkg package. I go into more detail about how to do this in the “Pack-
age Management, File Integrity, and Updating” section later in this chapter.

I recommend setting up a central “updates and patches” machine and download and ver-
ify all updates and patches on that system. You can also use this system to perform testing of
new releases or updates before migrating them to your production systems. For a new instal-
lation you can package and burn the updates onto a CD and load them from the media directly
onto the system to be patched.

Secure Booting, Boot Loaders,
and Boot-Time Services
An attacker who has physical access to your system can easily bypass a great deal of your sys-
tem’s inherent security (especially controls such as users and passwords) and can reboot it or
change the configuration of your boot loader or your init process—including what services
are run at boot and what sequence they are run in. You need to secure the boot process and
ensure you fully understand what happens during your boot process so that your system is
secure from this sort of attack.

Attackers who are able to reboot your system can create two major problems. The first is
that Linux systems allow a great deal of access to someone who can control how they boot
into your system. The second is that taking your system offline is an excellent Denial of Ser-
vice attack. Thus, control over who is allowed to reboot your system, how they interact with
your boot loader, and what kernel they boot into is something you need to tightly restrict.

Additionally, what services you start and the order you start them in can expose your sys-
tem to further risks. Indeed, after a default installation or on an unhardened system, many
services that are started at boot are not required. Some of the running services even expose
you to vulnerabilities because of their particular functionality. In the next section, I will cover
some good rules you should follow for securing and organizing your boot process and
sequence, including what you allow to start up when your system boots.

■Note I have described the items that start at boot time as services, but of course not all of them are.
Some are daemons, one-off commands, or configuration tools. I will use the generic term services for
simplicity’s sake.

4444c01_final.qxd 1/5/05 12:42 AM Page 4

CHAPTER 1 ■ HARDENING THE BASICS 5

Securing Your Boat Loader
Most Linux systems use one of two boot loaders, the Linux Loader (LILO) or Grub. These boot
loaders control your boot images and determine what kernel is booted when the system is started
or rebooted. They are loaded after your Basic Input/Output System (BIOS) has initialized your
system and generally wait a set period of time (generally between 10 and 30 seconds, but you can
override this) for you to select a kernel to boot into; if you have not intervened, then they default
to a specified kernel and boot into that.

I recommend you do not have too many kernel versions available to boot into, especially
older versions of kernels. Many people leave older kernels on their systems and in their boot
loader menus. The risk exists that you, or an attacker, could boot into an older kernel with
a security vulnerability that could allow an attacker to compromise your system. Clean up
when you perform kernel upgrades. I recommend leaving the current and previous versions
of the kernel on the system (unless, of course, you have upgraded from the previous kernel
to correct a security vulnerability).

Both boot loaders, LILO and Grub, are inherently insecure if your attacker has physical
access to your system. For example, by default both LILO and Grub will allow you to boot into
single-user mode. In single-user mode you have root privileges without having to enter the root
password. Additionally, you can enter a variety of other parameters on both the boot loader’s
command lines that can provide an attacker with opportunities to compromise your system.

But both LILO and Grub have the option of being secured with passwords to prevent this,
and I will show how to address this for both boat loaders.

■Tip You should do this in addition to securing your BIOS. Set a BIOS password for your system, and dis-
able booting from a floppy drive or CD/DVD drive.

Securing LILO with a Password
To prevent LILO from allowing unrestricted booting, you can specify a password in the
lilo.conf file that must be entered if you want to pick a nondefault boot item, add options
to the boot items, or boot into single-user mode. Listing 1-1 shows a sample lilo.conf file.

Listing 1-1. Sample lilo.conf File

prompt

timeout=50

default=linux

boot=/dev/hda

map=/boot/map

install=/boot/boot.b

message=/boot/message

linear

password=secretpassword

restricted

4444c01_final.qxd 1/5/05 12:42 AM Page 5

CHAPTER 1 ■ HARDENING THE BASICS6

1. See the “Passwords” section for a definition of a suitably secure password.

image=/boot/vmlinuz-2.4.18-14

label=linux

initrd=/boot/initrd-2.4.18-14.img

read-only

append="root=LABEL=/"

The two important lines to note are the restricted and password options. These do not
appear in your lilo.conf file by default; I have added them to Listing 1-1.

The password option allows you to specify a password that must be entered before you are
allowed to boot when the system is first started. In Listing 1-1 you would replace the phrase
secretpassword with a suitably secure password.1 Unfortunately, this password is added into
the lilo.conf file in clear text, which means anyone with access to this file (though it should
be those only with root privileges) can see the password.

The restricted option changes the behavior of the password option. With restricted spec-
ified, LILO will prompt for a password only if you specify parameters on the boot loader com-
mand line. For example, it would prompt you for a password if you tried to enter the parameter
single (to enter single-user mode) on the boot loader command line.

You can also specify the password and restricted options with a particular kernel image
statement. This way you can protect a particular kernel image or provide separate passwords
for each kernel image. In the following example I have omitted the restricted option, which
means a password will always be prompted for when trying to boot this kernel image:

image=/boot/vmlinuz-2.4.18-14

password=secretpassword

label=linux

initrd=/boot/initrd-2.4.18-14.img

read-only

append="root=LABEL=/"

Anytime you change your lilo.conf file, you need to run the lilo command to update
your LILO configuration.

puppy# /sbin/lilo

Finally, you need to ensure the lilo.conf file has the correct ownerships and permissions
to ensure only those authorized can see the password in the file.

puppy# chown root:root /etc/lilo.conf

puppy# chmod 0600 /etc/lilo.conf

Securing Grub with a Password
Like LILO, Grub suffers from security issues and allows anybody with access at boot time to
boot into single-user mode or change the boot parameters. The available Grub password secu-
rity to address these issues is somewhat more advanced than LILO’s and relies on generating
an MD5-encrypted password to secure the boot menu and boot entries. This MD5-encrypted

4444c01_final.qxd 1/5/05 12:42 AM Page 6

CHAPTER 1 ■ HARDENING THE BASICS 7

password means that the password cannot be extracted by simply reading the Grub
configuration file, /etc/grub.conf.

Let’s first generate a Grub password. Listing 1-2 shows how to do this.

Listing 1-2. Generating a Grub Password

puppy# grub

grub> md5crypt

Password: ********

Encrypted: $1$2FXKzQ0$I6k7iy22wB27CrkzdVPe70

grub> quit

You enter the Grub shell, execute the md5crpyt option, and are prompted for a pass-
word. The password is then encrypted and output on the screen in the form of an MD5
hash. Copy the MD5-encrypted password. Now you need to add the password to your
grub.conf configuration file.

■Tip Red Hat has an unusual location for its grub.conf file. The grub.conf file in /etc is symlinked
to /boot/grub/grub.conf, which in turn is symlinked to /boot/grub/menu.lst. I recommend for
simplicity’s sake you edit /etc/grub.conf.

Listing 1-3 shows a sample grub.conf file.

Listing 1-3. Sample grub.conf File

default=1

timeout=10

splashimage=(hd0,0)/grub/splash.xpm.gz

password --md5 $1$2FXKzQ0$I6k7iy22wB27CrkzdVPe70

title Red Hat Linux (2.6.7)

root (hd0,0)

kernel /vmlinuz-2.6.7 ro root=LABEL=/

initrd /initrd-2.6.7.img

I have added the option password --md5 to the file and specified the generated MD5 pass-
word. Now when you reboot you will not be allowed to interact with the Grub boot menu
unless you type p and enter the required password.

■Tip You could also specify a plain-text password by excluding the --md5 from the password option, but
I recommend for security that you stick with the MD5 password.

4444c01_final.qxd 1/5/05 12:42 AM Page 7

CHAPTER 1 ■ HARDENING THE BASICS8

You can also add another parameter to the password option to launch a particular menu file
when you have entered the password. To do this, change your password option to the following:

password --md5 $1$2FXKzQ0$I6k7iy22wB27CrkzdVPe70 /boot/grub/administrator-menu.lst

When you enter the correct password, Grub will launch the specified menu file. This allows
you, for example, to create an additional menu of other kernels or boot options available only
to those users who provide the required password.

Like LILO, Grub allows you to protect a specific boot entry. It offers two ways of protecting
a particular entry. If you specify the option lock directly after the title entry, then you will not
be able to run that boot entry without entering a password previously specified by the password
option. I have modified Listing 1-3 to add the lock option to the following configuration file:

default=1

timeout=10

splashimage=(hd0,0)/grub/splash.xpm.gz

password --md5 $1$2FXKzQ0$I6k7iy22wB27CrkzdVPe70

title Red Hat Linux (2.6.7)

lock

root (hd0,0)

kernel /vmlinuz-2.6.7 ro root=LABEL=/

initrd /initrd-2.6.7.img

Now unless you specified the password defined by the password option, you would not be
able to boot the Red Hat Linux (2.6.7) kernel image.

You can also use the password option within a boot entry to allow you to specify a particu-
lar password for each boot entry; Listing 1-4 shows you how to do it.

Listing 1-4. Protecting a Boot Entry with Grub

title Red Hat Linux (2.6.7)

password --md5 $1$2Q0$I6k7iy22wB27CrkzdVPe70

root (hd0,0)

kernel /vmlinuz-2.6.7 ro root=LABEL=/

initrd /initrd-2.6.7.img

Here I have placed the password option directly after the title option. Now before you
can boot this entry you will need to specify the correct password.

Finally, you need to ensure the grub.conf file has suitable ownership and permissions to
ensure only those authorized can work with the file. Enter the following:

puppy# chown root:root /etc/grub.conf

puppy# chmod 0600 /etc/grub.conf

Init, Starting Services, and Boot Sequencing
Most systems come with a large number of services that start at boot. Obviously, some of
these are actually important to the functioning of your system, and others are designed to
start applications such as Sendmail or Apache that run on your system. But many of the
others are not necessary or start services that potentially pose security risks to your system.

4444c01_final.qxd 1/5/05 12:42 AM Page 8

CHAPTER 1 ■ HARDENING THE BASICS 9

Table 1-1 shows some of the typical services that are generally started on both Red Hat and
Debian systems, describes what they do, and tells whether I recommend removing them from
your startup.

■Note I am referring to the releases Red Hat 9, Red Hat Fedora Core, Red Hat Enterprise Linux 3, and
Debian Woody 3 here, but generally speaking most distributions start similar services.

Table 1-1. Starting Services for Red Hat and Debian

Service Description Remove?

anacron A variation on the cron tool Yes

apmd Advanced Power Management Yes

atd Daemon to the at scheduling tool Yes

autofs Automount Yes

crond The cron daemon No

cups Printing functions Yes

functions Shell-script functions for init scripts No

gpm Mouse support for text applications Yes

irda IrDA support Yes (unless you have IrDA devices)

isdn ISDN support Yes (unless you use ISDN)

keytable Keyboard mapping No

kudzu Hardware probing Yes

lpd Printing daemon Yes

netfs Mounts network file systems Yes

nfs NFS services Yes

nfslock NFS locking services Yes

ntpd Network Time Protocol daemon No

pcmcia PCMCIA support Yes

portmap RPC connection support Yes

random Snapshots the random state No

rawdevices Assigns raw devices to block devices Yes

rhnsd Red Hat Network daemon Yes

snmpd Simple Network Management Protocol Yes
(SNMP) support

snmtptrap SNMP Trap daemon Yes

sshd Secure Shell (SSH) daemon No

winbind Samba support Yes

xfs X Font Server Yes

ypbind NIS/YP client support Yes

4444c01_final.qxd 1/5/05 12:42 AM Page 9

CHAPTER 1 ■ HARDENING THE BASICS10

■Tip I will talk about inetd and xinetd in Chapter 3.

A lot of the services listed in Table 1-1 you can apply common sense when deciding whether
to start them. The pcmcia script, for example, is required only if you have PCMCIA devices or the
winbind service if you are using Samba. If you are not doing any printing, then do not start the
lpd and cups daemons. My recommendations to disable particular services listed in Table 1-1
are based on my experience that these services are not required on a secured production server.
For example, you would rarely find the apmd daemon running on a production server, but it is
commonly used on laptops to provide the appropriate power management functionality.

■Tip The other area of security vulnerability during startup is the potential for your daemons to create files
that are too permissive. You set this using the umask function; I will cover umask in Chapter 4.

You can stop these services from starting via a number of methods depending on your
distribution. I will focus on the Red Hat and Debian distributions’ methods for handling init
scripts. After stopping services, I recommend also removing the related package to stop some-
one restarting it.

■Tip If you use SuSE, then the yast central configuration tool will provide much the same functionality
as chkconfig or update-rc.d.

Working with Red Hat init Scripts
To help handle your init scripts, Red Hat comes with the command chkconfig. The chkconfig
command works by reading two commented lines near the top of each of your init scripts. (Your
init scripts should be located in the /etc/rc.d/init.d directory.) Listing 1-5 shows the top two
lines of a typical Red Hat network init script.

Listing 1-5. Sample chkconfig Line in an init Script

chkconfig: 2345 10 90

description: Activates/Deactivates all network interfaces configured to \

start at boot time.

You can see the first line in the script starts with chkconfig:, followed by three components.
The first component comprises the run levels at which a service should start. The second com-
ponent consists of the starting sequence number of the service, and the third component con-
tains the stopping sequence number of the service. This means at run levels 2, 3, 4, and 5, the
network begins the service at sequence number 10, and, in turn, each higher sequence number

4444c01_final.qxd 1/5/05 12:42 AM Page 10

CHAPTER 1 ■ HARDENING THE BASICS 11

(in ascending order) until it stops when the sequence number reaches 90. The description line
details the purpose of the service.

You need to add both these lines into any init script you want to manipulate using the
chkconfig command.

To use this embedded information, you have to use some command-line options. The
first --list shows the current status of all init scripts and what run levels they will start.
Listing 1-6 shows this functionality.

Listing 1-6. Listing init Scripts Using the chkconfig Command

puppy# chkconfig --list

kdcrotate 0:off 1:off 2:off 3:off 4:off 5:off 6:off

ntpd 0:off 1:off 2:off 3:on 4:off 5:on 6:off

courier-imap 0:off 1:off 2:on 3:on 4:on 5:on 6:off

You can see from Listing 1-6 that each init script is listed together with the available run
levels. An on after the run level indicates the service will be started at that run level, and an off
indicates that it will not be started.

To stop a service from starting, you can use the --del option.

puppy# chkconfig --del name

In this syntax, you should replace the name variable with the name of a script to remove.
That script must exist and must contain the two commented chkconfig lines in the top of the
script. To add the service back to the boot sequence, you can use the --add option.

puppy# chkconfig --add name

Again, you should replace the name variable with the name of the appropriate init script
to be added. If you do not intend to add the script to the init sequence again, then I recom-
mend you delete the script from the /etc/rc.d/init.d/ directory.

Red Hat also comes with the useful ntsysv command-line graphical interface that can be
used to configure what services will start in the current or specified run level. See the ntsysv
man page for further details.

After removing scripts from your /etc/rc.d/init.d directory, I recommend you further
secure the contents of this directory.

puppy# chown root:root /etc/rc.d/init.d/*

puppy# chmod -R 700 /etc/rc.d/init.d/*

Working with Debian init Scripts
Debian stores its init scripts in a slightly different location than Red Hat does. The base init
scripts are located in /etc/init.d. Debian also uses different commands for managing init
scripts. The update.rc-d command is the Debian equivalent of the chkconfig command and
works in a similar manner. To add or change an init script, first you must have a copy of the
script stored in /etc/init.d. Without the script being installed in this directory, update-rc.d
has nothing to use. Listing 1-7 shows how you can add a new init script with update-rc.d.

4444c01_final.qxd 1/5/05 12:42 AM Page 11

CHAPTER 1 ■ HARDENING THE BASICS12

Listing 1-7. Adding a Debian init Script

kitten# update-rc.d network defaults

The defaults option is useful for adding a typical init script. The defaults tells Debian to
start the service at run levels 2, 3, 4, and 5 and to stop the service at run levels 0, 1, and 6 with
a default sequence number of 20. You can also specify the sequence numbers with the default
option by adding the required sequence numbers after the defaults option as a suffix.

kitten# update-rc.d network defaults 20 80

The first number indicates the starting sequence number, and the second number indi-
cates the stopping sequence number for the service. You can also more explicitly control when
an init script is started and stopped. Listing 1-8 shows how you can specify this control.

Listing 1-8. Explicitly Controlling a Debian init Script

kitten# update-rc.d network start 20 2 3 4 5 . stop 20 0 1 6 .

The command in Listing 1-8 provides the same configuration as the defaults option but
using the full command-line options. You should be able to customize any start and stop com-
binations required by modifying the command in Listing 1-8.

If you want to remove an init script, update-rc.d also provides an option to do this. In
the opposite manner of adding an init script, you must first delete the required init script
from the /etc/init.d directory before removing the associated start and stop scripts from
the various run levels. Listing 1-9 shows how to do this.

Listing 1-9. Removing a Debian init Script

kitten# rm -f /etc/init.d/network

kitten# update-rc.d network remove

The update-rc.d command also comes with two command-line flags you can use. The first
option, -n, makes no actual change to the system and merely shows the proposed changes.

kitten# update-rc.d -n network defaults

Adding system startup for /etc/init.d/network ...

/etc/rc0.d/K20network -> ../init.d/network

/etc/rc1-d/K20network -> ../init.d/network

/etc/rc6.d/K20network -> ../init.d/network

/etc/rc2.d/S20network -> ../init.d/network

/etc/rc3.d/S20network -> ../init.d/network

/etc/rc4.d/S20network -> ../init.d/network

/etc/rc5.d/S20network -> ../init.d/network

The other command-line option, -f, is used in conjunction with the remove option to
specify that the update-rc.d command should remove all links even if the original init script
still exists in the /etc/init.d directory.

4444c01_final.qxd 1/5/05 12:42 AM Page 12

CHAPTER 1 ■ HARDENING THE BASICS 13

After removing scripts from your /etc/init.d directory, I recommend you further secure
the contents of this directory. Enter the following:

kitten# chown root:root /etc/init.d/*

kitten# chmod -R 700 /etc/init.d/*

■Tip If you want, you can also download and install chkconfig on a Debian system. You can find a source
version that will compile on Debian at http://www.fastcoder.net/~thumper/software/sysadmin/
chkconfig/.

The inittab File
Your init scripts are not the only place where services are started. You should also review the
contents of the inittab file in the /etc directory. Though its use to start services is rarer these
days, some items still end up in this file. Red Hat systems, for example, place several services
in this file, including a trap for the Control+Alt+Delete key combination. Additionally, tty ter-
minals are often started in this file. Listing 1-10 shows some service lines in the inittab file.

Listing 1-10. inittab Service

sysacc:235:acct:/usr/sbin/acct -q -d

~~:S:wait:/sbin/sulogin

ca::ctrlaltdel:/sbin/shutdown -t3 -r now

The first line shows starting a service called sysacc. The line is broken down into the name
of the service being started, the run levels the service will start at, a label for the service, and the
command and any options to run separated by colons.

servicename:runlevels:label:command -option -option

You should review all commands being started in this file and determine if they are all
needed. If you want to remove a service, simply comment out or delete that line.

■Tip For consistency I recommend not starting services in inittab but using init scripts.

The second line in Listing 1-10 shows a trap I have added specifically for Red Hat systems.
Red Hat allows booting into single-user mode by typing linux single on the LILO command line
or the Grub boot-editing menus. This line forces the execution of the command /sbin/sulogin if
single-user mode is started (run level S). The /sbin/sulogin requires the root password be to be
entered before single-user mode will be started. See the sulogin man page for more information.

The third line in Listing 1-10 shows a trap for the Control+Alt+Delete key combination
commonly used to reboot systems.

4444c01_final.qxd 1/5/05 12:42 AM Page 13

CHAPTER 1 ■ HARDENING THE BASICS14

■Tip Linux pays attention only to the Control+Alt+Delete key combination when used from the console
or virtual consoles. For users who are logged into the system via other means—for example, a terminal
session—pressing these keys will do nothing.

By default most Linux kernels trap this key combination when pressed and pass it to the init
system for processing. This allows you to specify the action taken when the Control+Alt+Delete
key combination is pressed. The default action is usually to run the shutdown command. I recom-
mend securing this a bit further by adding the -a option to the trap in Listing 1-10.

ca::ctrlaltdel:/sbin/shutdown -a -t3 -r now

The -a option enables the use of the shutdown.allowed file. Create a file called
shutdown.allowed in the /etc directory. Add the users you want to be authorized to use the
shutdown command to the file, one username per line. You can also have comments and
empty lines in this file. Listing 1-11 shows what is inside the sample shutdown.allowed file.

Listing 1-11. Sample shutdown.allowed File

root

bob

sarah

If someone other than these users tries to issue a Control+Alt+Delete from the console,
they will get an error message.

shutdown: no authorized users logged in

On some systems you may not want anybody to be able to use Control+Alt+Delete. To do
this, change the trap line to the following:

ca::ctrlaltdel:

Your /etc/inittab file also contains the definitions for the virtual terminals available to
you on the console using the Alt+number key combination. You can define them using the
following lines in inittab:

1:2345:respawn:/sbin/mingetty tty1

2:2345:respawn:/sbin/mingetty tty2

Generally most distributions define six or so virtual terminals. You can reduce the num-
ber of virtual terminals started by commenting out some of the ttys in the /etc/inittab file.

After making any changes to the inittab file, you need to tell the init process to review
the file. Use the following command:

puppy# telinit q

Then you need to ensure the inittab file has the correct ownerships and permissions to
ensure only those authorized can work with the file.

puppy# chown root:root /etc/inittab

4444c01_final.qxd 1/5/05 12:42 AM Page 14

CHAPTER 1 ■ HARDENING THE BASICS 15

Boot Sequencing
The order in which you start and stop services on your system is also important. This is mainly
for controlling when your firewall and logging services start and stop. Ensure you start your
firewall, (iptables, for example) and your syslog daemon before you bring up your network.
This ensures your system will not be connected to any external systems or networks without
the protection of your firewall or without any logging of your system occurring. Then during
the shutdown of your system, ensure you stop your networking services before you stop your
firewall and syslog services.

On most systems init scripts are started and stopped according to the sequence number
given to them; sequence 20 will start before 30, and so on. I briefly covered sequence numbers in
the previous “Working with Debian init Scripts” and “Working with Red Hat init Scripts” sec-
tions. You should ensure the start sequence numbers for your firewall and your syslog daemons
are lower than the sequence number for your system’s networking service, in other words, the
daemons start before your network. Your networking services are usually started by an init
script called network on a Red Hat system and a script called networking on a Debian system.
Then confirm that your system’s networking service stops before your firewall and logging.

■Tip I will talk further about booting and some additional security features related to securing file systems
in Chapter 4.

Consoles, Virtual Terminals, and Login Screens
The next area I will cover is the security of your console, your terminals, and the login screens
presented to your users when they log into the system. The console of your system is usually
physically attached to your system. (It is usually from the console you will have installed your
distribution.) In the Linux world, logging onto the console often allows you to perform activities,
commands, or functions that you would not be able to do from other locations, such as via a
secure shell (SSH) login. You need to understand what the capabilities of a user logged into the
console are and how to secure them further. Additionally, your console also has a number of vir-
tual terminals defined that you can access. I talked about defining these virtual terminals in the
earlier “The inittab File” section. These also need to be secured, and I will cover in the “Securing
Virtual Terminals” section a method of locking these virtual terminals from unauthorized use.

Lastly, when users connect to your systems, they are presented with a login screen. The
information presented on most default login screens can offer attackers information about
your system you do not want to share. Additionally, these login screens are a good method of
communicating warnings and notices to the user logging into your system.

■Tip In addition to securing your console and terminals, do not neglect your physical security. Ensure your
systems are stored somewhere that makes access to the console difficult to all those bar authorized people.
Ensure the access is logged of any authorized people who can enter the area in which the console and sys-
tem are stored. Additionally, if you have a case lock or similar physical security devices on your system, then
use it to secure access to the interior of your system.

4444c01_final.qxd 1/5/05 12:42 AM Page 15

CHAPTER 1 ■ HARDENING THE BASICS16

2. Red Hat 8, Red Hat 9, and Red Hat Enterprise Linux 3

Securing the Console
I will first talk about where root can log on. In Chapter 3 I will talk about restricting root logons
over SSH to your system. You can further limit where root can log on by restricting it to a specific
set of terminals. To do this, edit the contents of the /etc/securetty file. The login program refers
to this file to determine whether the root user can log into a particular device. Listing 1-12 shows
a sample of a typical securetty file.

Listing 1-12. A Sample securetty File

tty1

#tty2

#tty3

#tty4

All devices you want to allow root to log in from should be listed in the file (without the
/dev/ prefix). I recommend allowing root login only on one terminal and forcing all other logins
to be a non-root user and if required use su to gain root privileges. In Listing 1-12 you can see
that only device tty1 allows a root login. All other devices have been commented out of the file,
disabling root login on those devices. You also need to secure the securetty file to ensure it is
modifiable only by root. Enter the following:

puppy# chown root:root /etc/securetty

puppy# chmod 0600 /etc/securetty

■Tip You can also achieve similar results using the PAM module, pam_access.so. See its configuration
file in /etc/security/access.conf.

The Red Hat Console
On Red Hat systems2 when non-root users log into the console, they are granted access to
some additional programs that they would otherwise not be able to run. Additionally, they are
given permissions to certain files they would not have as normal users solely because they are
logged onto the console. To achieve this, Red Hat uses a PAM module called pam_console.so,
which is defined in the PAM login service. See the “Pluggable Authentication Modules (PAM)”
section.

■Tip If more than one non-root user is logged onto console, the first user to log in gets the right to run
these programs and the additional permissions.

4444c01_final.qxd 1/5/05 12:42 AM Page 16

CHAPTER 1 ■ HARDENING THE BASICS 17

The configuration files contained in the /etc/security/console.apps/ directory define
the additional programs that users logged onto the console can run. This directory contains
a collection of files, and each file corresponds to a command that users, after logging onto
the console, can run as if they were root.

puppy# ls -l /etc/security/console.apps/

-rw-r--r-- 1 root root 10 Aug 22 2003 authconfig

-rw-r--r-- 1 root root 87 Aug 22 2003 authconfig-gtk

-rw-r--r-- 1 root root 83 Sep 20 2003 dateconfig

-rw-r--r-- 1 root root 64 May 29 01:31 ethereal

-rw-r--r-- 1 root root 66 Apr 15 00:33 gdmsetup

-rw-r--r-- 1 root root 14 Sep 26 2003 halt

Whilst perhaps this model of granting extra privileges to console users makes administra-
tion for your system easier, I do not think this is a good idea from a security perspective. Most,
if not all of these programs, should be run only by root, and the risk posed by this access being
granted to a non-root user just because the user is able to login to the console is not accept-
able on a production system. So, I recommend you disable this functionality. You can do this
by removing the contents of the /etc/security/console.apps directory. Enter the following:

puppy# rm -f /etc/security/console.apps/*

The file /etc/security/console.perms contains the additional permissions provided.
I also recommend you go through the permissions granted to users in the console.perms file
and confirm you are comfortable granting all of them to non-root users who are logged into
the console.

■Tip You will also find sample configuration files for other PAM modules in the /etc/security directory.
I will talk about some of them in the Pluggable Authentication Modules (PAM)” section later in this chapter.

Securing Virtual Terminals
Your virtual terminals are useful to allow you to log into multiple sessions on your console.
But they can be dangerous if you leave sessions logged on unattended. I will show you a way
to lock them against unauthorized use with a password. This is especially useful when you
need to leave a process running interactively on the console. You start your process, change to
another virtual terminal, and lock all the other virtual terminals. Then, unless someone has
the root password, they cannot unlock the terminals and interfere with your running process.

You will learn how to do this using a tool called Vlock. The Vlock tool comes with some
Linux distributions but may need to be installed on others. Checking for the presence of the
vlock binary on your system will tell you if you have it installed. Otherwise you can install pack-
ages for Red Hat, Mandrake, Debian, and other distributions at http://linux.maruhn.com/sec/
vlock.html. If not already installed, then add Vlock to your system, such as a Red Hat system.

puppy# rpm -Uvh vlock-1-3-13.i386.rpm

4444c01_final.qxd 1/5/05 12:42 AM Page 17

CHAPTER 1 ■ HARDENING THE BASICS18

With Vlock you can lock a single virtual terminal and allow people to change to another
virtual terminal or lock all virtual terminals and disable changing between virtual terminals.
You can lock your current virtual terminal with the command in Listing 1-13.

Listing 1-13. Locking Your Current Virtual Terminal

puppy# vlock -c

This TTY is now locked.

Please enter the password to unlock.

root's Password:

To now unlock this virtual terminal, you need to enter the root password.
To disable all virtual terminals and prevent switching between virtual terminals, use the

-a option.

puppy# vlock -a

The entire console display is now locked.

You will not be able to switch to another virtual console.

Please enter the password to unlock:

root's Password:

Again, to now unlock the virtual terminals, you need to enter the root password. If you are
not able to enter the root password, the only way to disable the lock is to hard reset the system.

Securing Login Screens
Your login screen is the first thing users (and attackers) see when they connect to your system.
As a result, it is a good idea if it abides by some guidelines.

• It should warn against unauthorized use.

• It should never reveal the operating system and version of the system you are signing
onto or indeed any more information than absolutely required. I call this defense through
obscurity; the less information attackers have, the harder it is for them to penetrate your
system.

• It should ensure the screen is clear from previous sessions.

To do this, you need to edit the contents of the /etc/issue and /etc/issue.net files. The
issue file is displayed when you log in via a terminal session and the issue.net file when you
login via a telnet session. Most distributions use these files for this purpose, including both
Red Hat and Debian. These files can contain a combination of plain text and escape charac-
ters. I usually start my files by forcing it to clear the screen; I achieve this by redirecting the
output of the clear command to the /etc/issue and issue.net files. Enter the following:

puppy# clear > /etc/issue

puppy# clear > /etc/issue.net

This will clear the screen of anything that was on it prior to displaying the login prompt to
ensure when a user signs off no information will be left on the screen that could be used by an
attacker to gain some advantage.

4444c01_final.qxd 1/5/05 12:42 AM Page 18

CHAPTER 1 ■ HARDENING THE BASICS 19

You should also include a warning message stating that unauthorized access to the system
is prohibited and will be prosecuted. You can also use one of a series of escape characters in the
files to populate the login screen with data from your system. I usually use a login screen such
as the screen in Listing 1-14.

Listing 1-14. Sample Login Screen

^[c

\d at \t

Access to this system is for authorized persons only.

Unauthorized use or access is regarded as a criminal act

and is subject to civil and criminal prosecution. User

activities on this system may be monitored without prior notice.

The \d and \t escape characters would display the current date and time on the system,
respectively. Other escape characters are available to you if you check the issue, issue.net,
and getty man pages.

■Tip If you find your changes in the /etc/issue and /etc/issue.net files are being overwritten every
time you reboot, you may find that your distribution resets the content of these files automatically as part of
your boot process to content such as the output of the uname -a command. If this is happening, it is usually
handled by an entry in the rc.local file in the last stage of the boot process. You need to comment out or
remove this entry to ensure your issue and issue.net files keep the content you require.

Also, the /etc/motd file’s contents display directly after login, and you may want to
adjust them to include an Acceptable Use Policy or similar information.

You need to secure all these files to stop other people from editing them. Enter the
following:

puppy# chown root:root /etc/issue /etc/issue.net /etc/motd

puppy# chmod 0600 /etc/issue /etc/issue.net /etc/motd

Users and Groups
One of the key facets of your system security is user and password security. Ensure that only
legitimate users can log in and that attackers will not be able to penetrate your system via
a weak or easily determined login. Additionally, once logged on it is important to understand
how users gain access to resources and to protect your system from improper and unautho-
rized use of those resources by controlling them by managing user accounts and groups.

What is a user account? User accounts provide the ability for a system to verify the identity of
a particular user, to control the access of that user to the system, and to determine what resources
that user is able to access. Groups are used for collecting like types of common users for the pur-
pose of providing them access to resources. This could both include groups of users from a partic-
ular department who all need access to particular shared files or a group of users who all need

4444c01_final.qxd 1/5/05 12:42 AM Page 19

CHAPTER 1 ■ HARDENING THE BASICS20

access to a particular resource such as a connection, piece of hardware such as a scanner or
printer, or an application.

Linux stores details of users, groups, and other information in three files: /etc/passwd,
/etc/shadow, and /etc/group. The first file, /etc/passwd, contains a list of all users and their
details. Listing 1-15 shows an example of some passwd entries.

Listing 1-15. Some Sample passwd Entries

root:x:0:0:root:/root:/bin/bash

daemon:x:2:2:daemon:/sbin:/sbin/nologin

The entries can be broken into their component pieces, each separated by a colon.

username:password:UID:GID:GECOS:Home Directory:Shell

The username is up to eight characters long and is case sensitive (though usually all in
lowercase). As you can see in Listing 1-15, the x in the next field is a marker for the password.
The actual password is stored in the /etc/shadow file, which I will discuss in the “Shadow
Passwording” section.

■Tip Systems often have usernames that are constructed from a combination of a user’s first and last
names. Introducing random usernames instead is often a good idea. Random usernames do not link users
to personal information. Even if a user has a password that is related to personal information, an attacker
will be less likely to be able to make the connection to a random username.

Next is the User ID (or UID) and the Group ID (GID). On a Linux system each user account
and group is assigned a numeric ID. Users are assigned a UID and groups a GID. Depending on
the distribution, lower-numbered UIDs and GIDs indicate system accounts and groups such as
root or daemon. On Red Hat systems UIDs and GIDs are those IDs lower than 500, and on Debian
those IDs are lower than 100.

■Note The root user has a UID and GID of 0. This should be the only user on the system with a UID and
GID of 0.

In many cases the UID and GID for a user will be identical.

■Tip You can specify the range of the UIDs and GIDs for users in the /etc/login.defs file using the
UID_MIN and UID_MAX range for UIDs and the GID_MIN and GID_MAX range for GIDs.

4444c01_final.qxd 1/5/05 12:42 AM Page 20

CHAPTER 1 ■ HARDENING THE BASICS 21

3. From the General Electric Comprehensive Operating System and also called the comment field

4. This contains a list of all the shells you can use on this system; see man shells.

5. http://www.fish.com/titan/

The next item is the GECOS3 information that has been previously used to store finger
daemon information and can contain data such as the name of the user, office locations, and
phone numbers. If you have more than one item of data in the GECOS field, then a comma
separates each data item.

The next item is the user’s home directory. This is usually located for most users in the
/home partition.

The last item is the user’s default shell. If the default shell points to a nonexistent file, then
the user will be unable to log in. The second line in Listing 1-15 uses the shell /sbin/nologin,
which not only stops the user from logging it but logs the login attempt to syslog. This is com-
monly used on Red Hat systems to indicate that this user cannot log on. On Debian systems
the shell /bin/false is used. On more recent versions of distributions these login shells have
been binaries with the sole function of logging error messages to syslog and exiting without
allowing a login to the system.

On older Linux systems, these shells, /sbin/nologin and /bin/false, are in fact shell scripts.
This is dangerous, because there have been instances where a shell script used here has been
subverted. You should replace these shell scripts with binaries or replace them entirely with an
alternative shell.

Unfortunately, whilst a user may not be able to log in with these shells defined, this is not
always a guarantee that this user cannot be utilized for other purposes. Some versions of Samba
and File Transfer Protocol (FTP) assume that if a shell is listed in the /etc/shells file,4 then it is
acceptable to use this user for Samba and FTP purposes. This is a big risk, and I recommend set-
ting the shell of those users you do not want to log in to /dev/null or using the noshell binary
that comes with the Titan hardening application.5 This will prevent the login and use of this
account for any other purposes.

Using /dev/null as a shell has a weakness, however. If a login attempt is made, then no
syslog entry is generated that records a disabled user tried to log in. The noshell binary from
the Titan hardening application is useful for this purpose. You can download the source code
and compile it on your system. Listing 1-16 shows you the commands to download and verify
the source code.

Listing 1-16. Downloading noshell.c

puppy# wget http://www.fish.com/titan/src1/noshell.c

puppy# md5sum noshell.c

d4909448e968e60091e0b28c149dc712 noshell.c

The current MD5 checksum for the noshell.c file is d4909448e968e60091e0b28c149dc712.
Now you need to compile noshell. You should compile the noshell command using static

libraries, and you can use the Makefile in Listing 1-17 to do this on both Red Hat and Debian
systems.

4444c01_final.qxd 1/5/05 12:42 AM Page 21

CHAPTER 1 ■ HARDENING THE BASICS22

Listing 1-17. Makefile for noshell

CC = gcc

CPPFLAGS =

CFLAGS = -static

LDFLAGS = -dn

LIBS = -static /usr/lib/libc.a -static /usr/lib/libnsl.a

noshell: noshell.o

$(CC) $(CFLAGS) -o noshell $(LIBS) $(LDFLAGS) noshell.o

Create the Makefile from Listing 1-17 and you can now compile noshell. Enter the
following:

puppy# make noshell

Then copy the resulting noshell binary to /sbin and delete the downloaded source code,
the output, and the newly compiled binary.

puppy# cp noshell /sbin

puppy# rm -f noshell.c noshell.o noshell

Now you can use /sbin/noshell as the shell for those users for which you do not want
a shell login.

daemon:x:2:2:daemon:/sbin:/sbin/noshell

When a user with their shell set to noshell attempts a log into the system, the following
log entry will be generated to the auth facility with a log level of warning, and you can monitor
for this.

Jul 25 14:51:47 puppy -noshell[20081]: Titan warning: user bob login from a ➥

disabled shell

■Caution Just remember to ensure the noshell binary is not added to your /etc/shells file.

Shadow Passwording
You may have noted that no password appears in /etc/passwd but rather the letter x. This is
because most (if not all) modern distributions use shadow passwording now to handle pass-
word management. Previously passwords were stored as one-way hashes in /etc/passwd,
which provided limited security and exposed your usernames and passwords to brute-force
cracking methods (especially as the passwd file needs to be world readable). This was espe-
cially dangerous when a copy of your passwd file could be stolen from your system and brute
force cracked offline. Given the weak security of this type of password when stored in the
passwd file, it can take only a matter of minutes on a modern computer to crack simple pass-
words or only days to crack harder passwords.

4444c01_final.qxd 1/5/05 12:42 AM Page 22

CHAPTER 1 ■ HARDENING THE BASICS 23

■Tip If prompted when installing your distribution, you should always install shadow and MD5 passwords
to ensure maximum potential security.

Shadow passwording helps reduce this risk by separating the users and passwords and stor-
ing the passwords as MD5 hashes in the /etc/shadow file. The /etc/shadow file is owned by the
root user, and root is the only user that has access to the file. Additionally, implementing shadow
passwording includes the ability to add password-aging features to your user accounts and pro-
vides the login.defs file that allows you to enforce a system-wide security policy related to your
users and passwords. Listing 1-18 shows a sample of the /etc/shadow file.

Listing 1-18. Some Sample Shadow Entries

root:$1$5SszKz9V$vDvPkkazUPIZdCheEG0uX/:12541:0:99999:7:::

daemon:!*:12109:0:99999:7:::

You can also break down the shadow file into components, and like the passwd file, these
components are separated by colons. The components of the shadow file are as follows:

• Username

• Password

• Date password last changed

• Minimum days between password changes

• Password expiry time in days

• Password expiry warning period in days

• Number of days after password expiry account is disabled

• Date since account has been disabled

The username matches the username in the passwd file. The password itself is encrypted,
and two types of special characters can tell you about the status of the user account with which
the password field can be prefixed. If the password field is prefixed with ! or *, then the account
is locked and the user will be allowed to log in. If the password field is prefixed with !!, then
a password has never been set and the user cannot log into the system. The remaining entries
refer to password aging, and I will cover those in the “Password Aging” section.

Groups
On Linux systems, groups are stored in the /etc/groups file. Listing 1-19 shows a sample of
this file.

Listing 1-19. Sample of the /etc/groups File

root:x:0:root

mail:x:12:mail,amavis

4444c01_final.qxd 1/5/05 12:42 AM Page 23

CHAPTER 1 ■ HARDENING THE BASICS24

The group file is structured much like the passwd file with the data entries separated by
a colon. The file is broken into a group name, a password, the GID number, and a comma-
separated list of the members of that group.

groupname:password:GID:member,member

The password in the group file allows a user to log into that group using the newgrp com-
mand. If shadow passwording is enabled, then like the passwd file the passwords in the group
file are replaced with an x and the real passwords stored in the /etc/gshadow file. I will talk
about passwords for groups in the “Adding Groups” section.

■Note I will cover permissions and file security and how they interact with users and groups in Chapter 4.

Adding Users
To add a user to the system, you use the useradd command. Listing 1-20 shows a basic user
being created.

Listing 1-20. Creating a User

puppy# useradd bob

This will create the user bob (and on Red Hat systems a corresponding private group called
bob) with a home directory of /home/bob and a shell of whatever the system’s default shell is, often
/bin/bash. You can see the results of this in the passwd, shadow, and group files.

bob:x:506:506::/home/bob:/bin/bash

bob:!!:12608:0:99999:7:::

bob:x:506:

All the home directory and shell information in the previous lines are the default settings
for the useradd command. So where does the useradd command get these defaults from? Your
distribution should contain the /etc/default/useradd file. Listing 1-21 shows a sample of
a typical Red Hat file.

Listing 1-21. The /etc/default/useradd File

puppy# cat /etc/default/useradd

useradd defaults file

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

4444c01_final.qxd 1/5/05 12:42 AM Page 24

CHAPTER 1 ■ HARDENING THE BASICS 25

This file is sometimes populated by default at system installation, but you can also create
the file yourself and use your own settings. Table 1-2 shows the possible options you can
include in the useradd file.

Table 1-2. The /etc/default/useradd File

Option Description

SHELL The full path to the default shell

HOME The full path to the user’s home directory

SKEL The directory to use to provide the default contents of a user’s new home directory

GROUP The default GID

INACTIVE Maximum number of days after password expiry that a password can be changed

EXPIRE Default expiration date of user accounts

Additionally, you can change most of the options running the useradd command with the
-D option. Listing 1-22 shows you how to change the default shell for your new users, and
Table 1-3 shows the additional options available for use with the -D option.

Listing 1-22. Changing useradd Defaults with the -D Option

puppy# useradd -D -s /bin/bash

■Tip You can also change your default shell with the chsh command. Use chsh -l to see a list of all the
available shells (which are specified in the /etc/shells file).

Table 1-3. The useradd -D Defaults

Option Description

-b path/to/default/home Specifies the initial path prefix of a new user’s home directory

-e date Specifies the default expiry date

-f days Specifies the number of days after a password has expired before
the account will be disabled

-g group Specifies the default group

-s shell Specifies the default shell

As I have shown in Table 1-2 another option in the /etc/defaults/useradd file, the SKEL
option, specifies a location under which you can create the required default directory and file
structure for all of your users. For example, I use Maildir-format mailboxes so I usually create
a Maildir mailbox under /etc/skel that will get copied into the new home directory of any
new user.

As you can see in Table 1-4 all these defaults can also be overridden on the useradd
command.

4444c01_final.qxd 1/5/05 12:42 AM Page 25

CHAPTER 1 ■ HARDENING THE BASICS26

Table 1-4. Some useradd Command-Line Options

Option Description

-c comment The new user’s password file comment field.

-d homedir The user’s home directory.

-g initial group The group name or number of the user’s initial login group.

-G group1,group2 A list of additional groups of which the user is to be a member.

-m Create the user’s home directory if it does not exist.

-M Do not create the user’s home directory.

-n Red Hat creates a group with the same name as the user automatically
when the user is created. This option disables that behavior.

-r You can create a system account (with a UID in the range of system
accounts).

-p password Specifies the user’s password.

-s shell Specifies the shell the user will use.

Listing 1-23 shows a user addition command using some of these command-line options.

Listing 1-23. Creating a User with useradd

puppy# useradd -s /sbin/noshell -G mail,clam -d /var/spool/amavis amavis

In Listing 1-23 I am creating a user called amavis who cannot login (the shell is set to
/sbin/noshell), belongs to the additional groups mail and clam, and whose home directory
is /var/spool/amavis.

Adding Groups
To add a group to your system, you need to use the groupadd command. Listing 1-24 shows
you how to use this command.

Listing 1-24. The groupadd Command

puppy# groupadd sales

This will create the resulting group in the /etc/group file.

sales:x:508:

As shown in Table 1-5 command-line options are available with the groupadd command.

Table 1-5. The groupadd Command-Line Options

Option Description

-g GID Set the GID for the group. This must be a unique number.

-r Creates a system group (with a GID inside the system GID range).

-f Exits if the group already exists.

4444c01_final.qxd 1/5/05 12:42 AM Page 26

CHAPTER 1 ■ HARDENING THE BASICS 27

Once you have created groups, you need to assign users to these groups. You can do this
one of two ways. First, you can edit the /etc/groups file itself and add the specific user to a
group; second, you can use the gpasswd command. The gpasswd command provides a way to
add users to groups via the command line and can also assign passwords to a particular group
(storing these in the /etc/gshadow file).

To add users to a group, you would use the gpasswd command with the -a option.

puppy$ gpasswd -a bob sales

In the previous command the user bob is added to the group sales. To remove a user from
a group, you would use the -d option.

puppy$ gpasswd -d jane sales

In the previous command the user jane is removed from the group sales using the -d option.
You can also define one or more users as administrators of a particular group and allow

them to use the -a and the -d options to add and remove users to that particular group. To add
a group administrator to a group, use the following command:

puppy# gpasswd -A bob sales

This adds the user bob as an administrator of the group sales. Now bob can use the gpasswd
command to add users (jane, chris, and david) to the sales group. Or you can add both an
administrator and users at the same time to a group using this command:

puppy# gpasswd -A bob -M jane chris david sales

The -A option adds the group administer, bob, and the -M option specifies a list of users.
You can also add a password to a group. The password will be stored in the /etc/gshadow

file.

puppy# gpasswd sales

Changing the password for group sales

New Password:

Re-enter new password:

This password will allow users to use the newgrp command to temporarily add themselves
to the sales group if they know the required password.

puppy# newgrp sales

Password:

This gives them the access rights of the users of this group. The group access is removed
when the user logs off. You can use gpasswd -r to remove the password from a particular group.

Another option you can use with the gpasswd command is the -R option, which stops from
anyone adding themselves to the group using the newgrp command.

puppy# gpasswd -R sales

■Tip You can use another command, grpck, to check the integrity of your /etc/group and
/etc/gshadow files. See its man page for further information.

4444c01_final.qxd 1/5/05 12:42 AM Page 27

CHAPTER 1 ■ HARDENING THE BASICS28

Other tools are available for manipulating users and groups. First, if you want to delete a
user, then you can use the userdel command; for groups, you can use the groupdel command.
Second, you can modify existing users and groups with the usermod and groupmod commands,
respectively. You will look at deleting some users and groups next.

Deleting Unnecessary Users and Groups
Most distributions create a variety of default user accounts and groups. Many of these are not
required, and to enhance the security of your system you should remove them. Like with remov-
ing packages or services from your system, I recommend using common sense when removing
users and groups. For example, if you do not use Network File System (NFS), then you have no
requirement for the nfsnobody user; if you have not installed X Windows, then the gdm and xfs
users will not be required. Table 1-6 lists users, describes their purposes, and includes my rec-
ommendations regarding removing them. I have also provided a list of groups that can generally
be removed. Again, consider carefully the packages your system contains and the functions your
system will perform before removing any groups.

■Tip I recommend making copies of your passwd and group files before performing multiple edits of them
to ensure you can recover if you delete a user or group that is fundamental to your system or an application.

Table 1-6. Default Users

User Purpose Remove?

adm Owns diagnostic and accounting tools Yes

backup Used by packing for backing up critical files No

bin Owns executables for user commands No

daemon Owns and runs system processes No

desktop KDE user Yes

ftp Default FTP user Yes

games Games user Yes

gdm GDM user Yes

gnats GNATS (bug tracking) user Yes

gopher Gopher user Yes

halt /sbin/halt user No

identd User for identd daemon Yes

irc Internet relay chat (IRC) user Yes

list Mailman user Yes (if not using mailman)

lp Printing user Yes (if no printing)

lpd Printing user Yes (if no printing)

mail Default user for Mail Transfer Agent (MTA) Maybe

mailnull Sendmail user Yes (if no Sendmail)

4444c01_final.qxd 1/5/05 12:42 AM Page 28

CHAPTER 1 ■ HARDENING THE BASICS 29

Table 1-6.

User Purpose Remove?

man Man-db user No

news Default news user Yes

nfsnobody NFS User Yes

nobody Default user for Apache or NFS Maybe

nscd Name Service Cache Daemon user Yes (if not using nscd)

ntp Network Time Protocol user No

operator Ops user Yes

postgres Postgres default user Yes (if no Postgres)

proxy Default proxy user Yes

root Root user No

rpc RPC user Yes

rpcuser Default RPC user Yes

rpm RPM user No

shutdown Shutdown user No

sshd Privilege split sshd user No

sync Sync user Yes

sys Default mounting user No

telnetd Telnetd default user Yes

uucp Default uucp user Yes

vcsa Virtual console memory No

www-data Owns www data Yes (if not Web server)

xfs X Font Server Yes

Table 1-6 contains a combined list of the typical users created when a fresh Red Hat or
Debian system is installed; thus, not all users in the table may be present on your system, as
some are specific to one distribution or the other. This is also dependent on the packages you
have installed on your system, so others may be present on your installation.

I labeled two users as Maybe, meaning that they are optionally removable from your
system. These were the mail and nobody users. Several packages utilize these users to run
processes after the package has dropped privileges. For example, some e-mail servers, such
as Sendmail, use the mail user for this purpose, and it is common for Apache to use the
nobody user. You should check to see if any processes or packages are utilizing these users
before you delete them. You can do this by using the ps command.

puppy# ps -U mail -u mail

PID TTY TIME CMD

809 ? 00:00:03 fetchmail

Replace mail with the username of each user you want to check.

4444c01_final.qxd 1/5/05 12:42 AM Page 29

CHAPTER 1 ■ HARDENING THE BASICS30

To remove a user from your system, you can use the userdel command. If you use the
userdel command in conjunction with the -r option, you will also remove users’ home direc-
tories, any files in their home directories, and their mail spools. Be sure to check you are
removing material that should be deleted. Additional files or directories belonging to that user
outside their home directory will not be removed, and you will need to optionally find these
files and directories and remove them if required.

These are the groups that can generally be removed:

• lp

• news

• uucp

• proxy

• postgres

• www-data

• backup

• operator

• list

• irc

• src

• gnats

• staff

• games

• users

• gdm

• telnetd

• gopher

• ftp

• nscd

• rpc

• rpcuser

• nfsnobody

• xfs

• desktop

To remove a group from the system, you can use the groupdel command. This command
has no options.

puppy# groupdel sales

4444c01_final.qxd 1/5/05 12:42 AM Page 30

CHAPTER 1 ■ HARDENING THE BASICS 31

Passwords
As part of the user and group creation process, you need to ensure your users choose suitable
and secure passwords for their accounts and that those passwords are managed and changed on
a regular basis. I mentioned earlier in this chapter shadow passwords and using the /etc/shadow
file. Additionally, most distributions also come with support for MD5 passwords. Without MD5
your passwords are encrypted via DES (the Data Encryption Standard), which is significantly
more vulnerable to cracking attempts than MD5 passwords. You should enable both shadow
passwording and MD5 passwords as part of your install process.

Your users’ ability to choose their own passwords is one of the most frustrating and dan-
gerous parts of user administration. Almost all your users have one objective when choosing
a password: choosing one that is easy for them to remember. Security is simply not a consid-
eration. Changing their password on a regular basis for them is an inconvenience and a
chore. But it is an essential activity for the ongoing security of your system. A lot of people in
the security world believe this sort of attitude is able to be changed with education about the
risks of poor password security. I believe this is only partially true. To an extent no matter
how often most of your users are told to treat their password like the personal identification
number (PIN) to their cash card, they simply do not attach the same importance to it as they
would something valuable to them personally. This is not to say you should not attempt to
educate them, but do not count on it changing their attitudes. I recommend taking a consul-
tative but ultimately dictatorial approach to determining the characteristics of your pass-
word variables and regime. Explain the security requirements of your environment to your
end users, but do not compromise that security by making exceptions to your overall pass-
word rules.

I recommend you set your password rules, taking into consideration the following points:

• Do not allow passwords with dictionary words, such as dog, cat, or elephant. The same
applies for non-English-language words.

• Do not allow passwords with only letters or numbers, such as 12345678 or abcdefghi.

• Ensure users do not use personal information such as dates of birth, pet names, names
of family members, phone numbers, or post and zip codes.

• Set a minimum password length of ten. Longer is better.

• Force users to mix case; in other words, use both uppercase and lowercase letters in the
password.

• Force users to mix letters, numbers, and punctuation in the password.

• Ensure your users change their passwords regularly; and if the password expires without
being changed, then set a time limit after which that user account should be disabled.

• Ensure the new password is not the same as a number of previous passwords.

You can control the characteristics of your users’ passwords in Linux via PAM. I talk about
PAM in more detail in the “Pluggable Authentication Modules (PAM)” section later in this chap-
ter, but I will cover the PAM modules specifically designed to handle the passwd application here.

The PAM modules are defined in individual files located in the /etc/pam.d directory. The
file you want to look at in this directory is passwd and contains all the relevant PAM modules

4444c01_final.qxd 1/5/05 12:42 AM Page 31

CHAPTER 1 ■ HARDENING THE BASICS32

used by the passwd command. Listing 1-25 shows the contents of the default Debian
/etc/pam.d/passwd file.

Listing 1-25. Debian default File

password required pam_unix.so nullok obscure min=4 max=8 md5

The entry in the line, password, indicates the module interface type of this line. In this case,
it includes password-related functions for manipulating authentication tokens. The next entry,
required, is the control flag that determines what PAM will do if the authentication succeeds or
fails. The required entry indicates the authentication module must succeed for the password to
be set or changed. The next entry, pam_unix.so, is the PAM module to be used. By default this is
located in the /lib/security directory. The pam_unix.so module is designed to handle Unix
password authentication using the /etc/passwd and /etc/shadow files.

The last entries are arguments to be passed to the pam_unix.so module, and these argu-
ments also allow you to control the characteristics of your passwords and tell your system
whether a password is suitable for use. The first argument, nullok, allows you to change an
empty password. Without this option if the current password is blank or empty, then the
account is considered locked, and you will not be able to change the password. The next
option, obscure, performs some basic checks on the password.

■Note The obscure option is the same as the OBSCURE_CHECKS_ENAB option that used to be defined
in the login.defs file.

The min=4 argument sets the minimum password length to four characters, and the max=8
argument sets the maximum password length to four characters. The last argument tells PAM
to use MD5 password encryption.

So, for the Debian distribution, the default PAM setup for passwords essentially addresses
only one of the proposed password rules, that of password length. I do not recommend this as
an acceptable password policy. But by adding additional PAM modules to the mix, you can
control additional passwords characteristics. Both Debian and Red Hat have an additional
PAM module, pam_cracklib.so, that you can use to address some of your other requirements.
You can also use the existing pam_unix.so module in another module; type account to check
that the user password has not expired or whether the account has been disabled. You first
comment out the line in Listing 1-25 in the /etc/pam.d/passwd file and instead use the lines in
Listing 1-26.

■Note You may need to install the pam_cracklib.so module on your system. On Debian this is a pack-
age called libpam-cracklib. On Red Hat the pam_cracklib.so module comes with the pam RPM.

4444c01_final.qxd 1/5/05 12:42 AM Page 32

CHAPTER 1 ■ HARDENING THE BASICS 33

Listing 1-26. Using Additional PAM Modules in /etc/pam.d/passwd

account required pam_unix.so

password required pam_cracklib.so retry=3 minlen=10 dcredit=-1 ucredit=-1 ➥

ocredit=-1 lcredit=0 difok=3

password required pam_unix.so use_authtok remember=5 nullok md5

The construction of the PAM module declaration line in Listing 1-26 is essentially the
same as that of Listing 1-25 except you are now using what is called module stacking. With
module stacking you can combine modules together, so the results of their checks become
cumulative. The account interface of pam_unix.so is checked, and then the password inter-
faces of the pam_cracklib.so and pam_unix.so modules are checked. As I have used the con-
trol flag required for all modules, all these checks need to be successful for the password to
successfully set.

The first line shows how to use the pam_unix.so module, but I have specified an interface
type of account that checks the age, expiry, and lock status of the user account before allowing
a user to change a password. On the next line I have specified the pam_cracklib.so module
with some new arguments. The first of these arguments is retry, which specifies the number
of tries the passwd program will give the user to choose a suitable password. I have specified
three attempts here. If the user has not provided a password by this point, then the password
change will fail. The next option, minlen, specifies the proposed minimum length of the new
password, which I have set to ten characters.

The next options control what sort of characters need to be present in the password. They
work on a system of credits toward the minimum length of the password. For example, speci-
fying dcredit=1 means each digit in your password will count as one character for the purposes
of determining the minimum password length. If you specify dcredit=2, then each digit you
use in your password counts as two characters for the purposes of meeting the minimum pass-
word length. This is generally relevant only for longer passwords. With a minimum password
length of ten, you can make better use of “negative” credits. To do this, you would specify
dcredit=-1. This tells PAM that the new password must have a minimum of one digit charac-
ter in it to be a successful password. You can specify dcredit=-2, and so on, to insist on more
characters of a particular type. The four credit options available to you are dcredit for digits,
ucredit for uppercase characters, lcredit for lowercase characters, and ocredit for other
characters, such as punctuation. So in Listing 1-26 you see a password with a minimum of
ten characters that must have one digit, one uppercase character, one other character, and
one lowercase character.

The final option in Listing 1-26 is difok. This controls how many characters have to be dif-
ferent in the new password from the old password. As I have specified difok=3 in Listing 1-26,
then if at least three characters in the old password do not appear in the new password, the
new password is acceptable. Be careful using this option. If you specify that a large number of
characters in the old password cannot appear in the new password, you can make it hard for
a user to choose a new password.

You should be able to use a combination of these settings to implement a password policy
that suits your environment. In addition to these checks, the pam_cracklib.so module performs
some other checks that do not require arguments.

4444c01_final.qxd 1/5/05 12:42 AM Page 33

CHAPTER 1 ■ HARDENING THE BASICS34

6. A word or phrase that reads the same backward as forward

• It checks whether the password is a palindrome6 of the previous password.

• It checks the password against a list of dictionary words contained in /usr/lib/
cracklib_dict.pwd on Red Hat systems and /var/cache/cracklib_dict.pwd on Debian.

• It checks whether the password is only a case change from the previous password
(in other words, from uppercase to lowercase, and vice versa).

After processing the pam_cracklib.so module, PAM moves onto the pam_unix.so module.
I used some new arguments for this module when I used it in Listing 1-26. In this case I am spec-
ifying the pam_unix.so module with a special argument, use_authtok. This tells the pam_unix.so
module not to prompt the user for a password but rather use the password that has already been
checked by the pam_cracklib.so module as the password to be processed. I have also specified
the remember option on this line. This enables a password history function. I have specified that
PAM should check that the new password is different from the last five passwords, but you can
specify a number suitable for your environment. To enable password history, you must first cre-
ate a file to hold your old passwords.

puppy# touch /etc/security/opasswd

puppy# chown root:root /etc/security/opasswd

puppy# chmod 0644 /etc/security/opasswd

Now the last five passwords for all users will be held in the file /etc/security/opasswd in
MD5-encrypted format, and the user will not be able to use them as a new password.

■Tip Other PAM modules are available for password authentication. One of the best is pam_passwdqc,
available from http://www.openwall.com/passwdqc/. It contains some additional characteristics you
can configure, including support for randomly generated passwords.

On Red Hat systems the PAM authentication works the same way but is configured differ-
ently. Listing 1-27 shows the content of the default /etc/pam.d/passwd file.

Listing 1-27. Default Red Hat File

auth required pam_stack.so service=system-auth

account required pam_stack.so service=system-auth

password required pam_stack.so service=system-auth

The /etc/pam.d/passwd file here calls the special module pam_stack.so that tells passwd
to check another file, system-auth in the /etc/pam.d directory for the required PAM modules
and authentication rules required for a password change. Listing 1-28 shows the contents of
the default system-auth file.

4444c01_final.qxd 1/5/05 12:42 AM Page 34

CHAPTER 1 ■ HARDENING THE BASICS 35

Listing 1-28. The Red Hat system-auth File

#%PAM-1.0

This file is autogenerated.

User changes will be destroyed the next time authconfig is run.

auth required /lib/security/pam_env.so

auth sufficient /lib/security/pam_unix.so likeauth nullok

auth required /lib/security/pam_deny.so

account required /lib/security/pam_unix.so

password required /lib/security/pam_cracklib.so retry=3 type=

password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow

password required /lib/security/pam_deny.so

session required /lib/security/pam_limits.so

session required /lib/security/pam_unix.so

The important lines you need to change to add your password policy here are as follows:

password required /lib/security/pam_cracklib.so retry=3 type=

password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow

You should change these lines to match the requirements of your password policy.

■Tip The message in the second two comment lines in Listing 1-28 indicates that this file is auto-
generated by running the authconfig tool and your changes will be lost. I recommend not running this
tool if you are going to manually change this file.

Password Aging
Password aging allows you to specify a time period for which a password is valid. After the
time period has expired, so will the password forcing the user to enter a new password. This
has the benefit of ensuring passwords are changed regularly and that a password that is stolen,
cracked, or known by a former employee will have a time-limited value. Unfortunately for many
users, the need to regularly change their passwords increases their desire to write down the
passwords. You need to mitigate this risk with user education about the dangers of writing
down passwords. I often use the metaphor of a cash card PIN. Writing down your password
at your desk is the same as putting your cash card PIN on a sticky note attached to your card.
You need to regularly enforce this sort of education with users; I recommend any acceptable
use policies within your organization also cite the users’ responsibilities for ensuring they do
not reveal their passwords to anyone else either through carelessness or deliberately.

■Tip I recommend you use a password age between 30–60 days for most passwords depending on the
nature of the system.

4444c01_final.qxd 1/5/05 12:42 AM Page 35

CHAPTER 1 ■ HARDENING THE BASICS36

Two ways exist to handle password aging. The first uses the command-line tool chage to
set or change the password expiry of a user account individually. Listing 1-29 shows this com-
mand working.

Listing 1-29. The chage Command

puppy# chage -M 30 bob

Listing 1-29 uses the -M option to set the password expiry period for the user bob to 30 days.
Table 1-7 shows several other variables you can set.

Table 1-7. Command-Line Options for the chage Command

Option Description

-m days Sets the minimum number of days between password changes. Zero allows the user
to change it at any time.

-M Sets the maximum number of days for which a password stays valid.

-E Sets a date on which the user account will expire and automatically be deactivated.

-W days Sets the number of days before the password expires that the user will be warned to
change it.

-d days Sets the number of days since Jan. 1, 1970, that the password was last changed.

-I days Sets the number of days after password expiry that the account is locked.

First, the -m option allows you to specify the minimum amount of time between pass-
word changes. A setting of 0 allows the user to change the password at any time. Second, the
next option, -W, specifies the number of days before a user’s password expires that they will
get a warning that their password is about to expire. The -d option is principally useful to
immediately expire a password. By setting the -d option to 0, the user’s last password change
date becomes Jan. 1, 1970, and if the -M option is greater than 0, then the user must change
their password at the next login. The last option, -I, provides a time frame in days after
which user accounts with expired and unchanged passwords are locked and thus unable to
be used to log in. If you run chage without any options and specify only the user, then it will
launch an interactive series of prompts to set the required values. Listing 1-30 shows this.
The values between the [] brackets indicate the current values to which this user’s password
aging is set.

Listing 1-30. Running chageWithout Options

puppy# chage bob

Changing the aging information for bob

Enter the new value, or press return for the default

Minimum Password Age [0]:

Maximum Password Age [30]:

Last Password Change (YYYY-MM-DD) [2004-06-27]:

Password Expiration Warning [7]:

Password Inactive [-1]:

Account Expiration Date (YYYY-MM-DD) [2004-07-28]:

4444c01_final.qxd 1/5/05 12:42 AM Page 36

CHAPTER 1 ■ HARDENING THE BASICS 37

Users can also utilize the chage command with the -l option to show when a password is
due to expire.

puppy# chage -l bob

The other method to handle password aging is to set defaults for all users in the
/etc/login.defs file.

■Tip The /etc/login.defs file is used to also control password lengths. On both Debian and Red Hat
(and other distributions), PAM has taken over this function.

Listing 1-31 shows the controls available for password aging in /etc/login.defs.

Listing 1-31. The login.defs Password-Aging Controls

PASS_MAX_DAYS 60

PASS_MIN_DAYS 0

PASS_WARN_AGE 7

As you can see, you can set the core password-aging controls here, and I have set the maxi-
mum password age to 60 days, allowing users to change their passwords at any time and pro-
viding a warning to users that their passwords will expire seven days before password expiry.

sudo
One of the first things most system administrators are told is not to use the root user to per-
form activities that do not require it. This is inconvenient for administration purposes but
greatly enhances the security of the system. This enhancement reduces the risk of the root
user being compromised or used by unauthorized people and the risk of accidental misuse
of the root user privileges.

One of the ways you can reduce the inconvenience this causes whilst not increasing the
security exposure is to use the sudo function, which is a variation on the su function. I will
cover securing this in the “Pluggable Authentication Modules (PAM)” section. The sudo func-
tion allows selected non-root users to execute particular commands as if they were root. The
sudo command is a setuid binary that is owned by root to which all users have execute per-
missions. If you are authorized to do so, you can run sudo and effectively become the root
user. sudo is a complicated package, and I will take you through the basics of configuring it.

■Note Most distributions come with sudo installed, but you may need to install it. On both Debian and
Red Hat, the package is called sudo.

4444c01_final.qxd 1/5/05 12:42 AM Page 37

CHAPTER 1 ■ HARDENING THE BASICS38

The sudo command checks the /etc/sudoers file for the authorization to run commands.
You can configure the sudoers file to restrict access to particular users, to certain commands,
and on particular hosts.

Let’s look at Listing 1-32 to see how to use sudo. I am logged onto the system as the user bob.

Listing 1-32. Using sudo

puppy$ cat /var/log/secure

cat: /var/log/secure: Permission denied

puppy$ sudo cat /var/log/secure

Password:

In the first command in Listing 1-32, I try to cat the /var/log/secure, which would normally
be accessible only by root. As you can see, I get a permission-denied error, which is the result
I expect. Then I try again, prefixing the command with the sudo command. You will be prompted
for your password (not the root password). If you have been authorized to use sudo and author-
ized to use the cat command as root on this system, then you would be able to view the file.

■Note You can also run sudo using a time limit. You can specify that for a defined time period after execut-
ing the sudo command the user can act as root. I do not recommend configuring sudo this way because it
creates similar issues to simply using the root user for administration. But if you want to configure it like this,
you can see how to do it in the sudo man page.

Let’s look at what you need to add to the /etc/sudoers file to get Listing 1-32 to work. You
need to use the command visudo to edit the /etc/sudoers file. The visudo command is the
safest way to edit the sudoers file. The command locks the file against multiple simultaneous
edits, provides basic sanity checks, and checks for any parse errors. If the file is currently being
edited, you will receive a message to try again later. I have added the content of Listing 1-33 to
the sudoers file.

Listing 1-33. Sample sudoers Line

bob ALL=/bin/cat

We can break this line down into its component parts.

username host = command

Listing 1-33 shows the user bob is allowed to, on all hosts (using the variable ALL), use the
command /bin/cat as if he were root. Any command you specify in the command option must
be defined with its full path. You can also specify more than one command, each separated by
commas, to be authorized for use, as you can see on the next line:

bob ALL=/bin/cat,/sbin/shutdown,/sbin/poweroff

4444c01_final.qxd 1/5/05 12:42 AM Page 38

CHAPTER 1 ■ HARDENING THE BASICS 39

In the previous line bob is now authorized to use the cat, shutdown, and poweroff com-
mands as if he were the root user. All configuration lines in the sudoers file must be on one
line only, and you can use the \ to indicate the configuration continues on the next line.

A single sudoers file is designed to be used on multiple systems. Thus, it allows host
specific access controls. You would change your sudoers file on a central system and distrib-
ute the updated file to all your systems. With host access controls you can define different
authorizations for different systems, as you can see in Listing 1-34.

Listing 1-34. Different sudo Authorization on Multiple Systems

bob puppy=/bin/cat,/sbin/shutdown

bob kitten=ALL

In Listing 1-34 the user bob is allowed to use only the cat and shutdown commands on the
system puppy, but on the system kitten he is allowed to use ALL possible commands. You should
be careful when using the ALL variable to define access to all commands on a system. The ALL
variable allows no granularity of authorization configuration. You can be somewhat more
selective with your authorization by granting access to the commands in a particular direc-
tory, as you can see on the next line:

bob puppy=/bin/*

This applies only to the directory defined and not to any subdirectories. For example, if
you authorized to the /bin/* directory, then you will not be able to run any commands in the
/bin/extra/ directory unless you explicitly define access to that directory like the configura-
tion on the next line:

bob puppy=/bin/*,/bin/extra/*

Sometimes you want to grant access to a particular command to a user, but you want that
command to be run as another user. For example, you need to start and stop some daemons
as specific users, such as the MySQL or named daemon. You can specify the user you want the
command to be started as by placing it in parentheses in front of the command, like so:

bob puppy=(mysql) /usr/local/bin/mysqld,(named) /usr/local/sbin/named

As you can imagine, lists of authorized commands, users, and hosts can become quite
long. The sudo command also comes with the option of defining aliases. Aliases are collections
of like users, commands, and hosts. Generally you define aliases at the start of the sudoers file.

Let’s look at some aliases. The first type of alias is User_Alias. A User_Alias groups like users.

User_Alias OPERATORS = bob,jane,paul,mary

You start an alias with the name of the alias type you are using, in this case User_Alias, and
then the name of the particular alias you are defining, here OPERATORS. Then you specify a list of
the users who belong to this alias. You can then refer to this alias in a configuration line.

OPERATORS ALL=/bin/mount,/sbin/raidstop,/sbin/raidstart, \

(named) /usr/local/sbin/named

4444c01_final.qxd 1/5/05 12:42 AM Page 39

CHAPTER 1 ■ HARDENING THE BASICS40

In the previous line I have specified that the users in User_Alias OPERATORS (bob, jane,
paul, and mary) are able to use the mount, raidstart, and raidstop commands and the named
command.

The next type of alias you can define is a command alias, Cmnd_Alias, which groups
collections of commands.

Cmnd_Alias DNS_COMMANDS = /usr/local/sbin/rndc,(named) /usr/local/sbin/named

You can use this alias in conjunction with the previous alias.

OPERATORS ALL=/bin/mount,DNS_COMMANDS

Now all users defined in the alias OPERATORS can use the commands /bin/mount and all
those commands defined in the command alias DNS_COMMANDS on ALL hosts.

You can also specify an alias that groups a collection of hosts. The Host_Alias alias can
specify lists of host names, IP addresses, and networks.

Host_Alias DNS_SERVERS = elephant,tiger,bear

You can combine this alias with the preceding ones you have defined.

OPERATORS DNS_SERVERS=DNS_COMMANDS

Now all users specified in the OPERATORS alias can run the commands specified in
DNS_COMMANDS on the hosts defined in the DNS_SERVERS alias group.

You can also negate aliases by placing an exclamation (!) mark in front of them. Let’s look
at an example of this. First you define a command alias with some commands you do not want
users to use, and then you can use that alias in conjunction with a sudo configuration line.

Cmnd_Alias DENIED_COMMANDS = /bin/su,/bin/mount,/bin/umount

bob puppy=/bin/*,!DENIED_COMMANDS

Here the user bob can use all the commands in the /bin directory on the puppy host except
those defined in the DENIED_COMMANDS command alias.

■Caution This looks like a great method of securing commands via sudo, but unfortunately it is relatively
easy to get around negating commands simply by copying or moving the denied command from the direc-
tory you have denied it in to another location. You should be aware of this risk when using negated aliases.

Let’s look at one of the other ways you can authorize users to sudo. Inside the sudoers file
you can define another type of alias based on the group information in your system by prefix-
ing the group name with %.

%groupname ALL=(ALL) ALL

Replace groupname with the name of a group defined on your system. This means all mem-
bers of the defined group are able to execute whatever commands you authorize for them, in
this case ALL commands on ALL hosts. On Red Hat a group called wheel already exists for this

4444c01_final.qxd 1/5/05 12:42 AM Page 40

CHAPTER 1 ■ HARDENING THE BASICS 41

purpose, and if you uncomment the following line on your Red Hat system, then any users
added to the wheel group will have root privileges on your system.

%wheel ALL=(ALL) ALL

Additionally, the sudoers file itself also has a number of options and defaults you can
define to change the behavior of the sudo command. For example, you can configure sudo to
send e-mail when the sudo command is used. To define who to send that e-mail to, you can
use the option on the following line:

mailto "admin@puppy.yourdomain.com"

You can then modify when sudo sends that e-mail using further options.

mail_always on

To give you an idea of the sort of defaults and options available to you, Table 1-8 defines
a list of the e-mail–related options.

Table 1-8. Send E-mail When sudo Runs

Option Description Default

mail_always Sends e-mail every time a user runs sudo. This flag is set off by default.

mail_badpass Sends e-mail if the user running sudo does not enter the correct password. This
flag is set to off by default.

mail_no_user Sends e-mail if the user running sudo does not exist in the sudoers file. This flag
is set to on by default.

mail_no_host Sends e-mail if the user running sudo exists in the sudoers file but is not
authorized to run commands on this host. This flag is set to off by default.

mail_no_perms Sends e-mail if the user running sudo exists in the sudoers file but they do not
have authority to the command they have tried to run. This flag is set to off by
default.

There are a number of other options and defaults you can see in the sudoers man page.
The sudo command itself can also have some command-line options you can issue with

it. Table 1-9 shows some of the most useful options.

Table 1-9. sudo Command-Line Options

Option Description

-l Prints a list out the allowed (and forbidden) commands for the current user on the
current host

-L Lists any default options set in the sudoers file

-b Runs the given command in the background

-u user Runs the specified command as a user other than root

The -l option is particularly useful to allow you to determine what commands the cur-
rent user on the current host is authorized and forbidden to run.

4444c01_final.qxd 1/5/05 12:42 AM Page 41

CHAPTER 1 ■ HARDENING THE BASICS42

puppy# sudo -l

Password:

User bob may run the following commands on this host:

(root) ALL

The sudo command is complicated and if improperly implemented can open your system
to security exposures. I recommend you carefully test any sudo configuration before you imple-
ment it and you thoroughly explore the contents of the sudo and sudoers man pages.

User Accounting
Keeping track of what your users are doing is an important part of user management. In Chapter 5
I will talk about logging onto your system, and indeed one of the first resources you will use to
keep track of the actions of your users is the content of your syslog log files. But also other
commands and sources are useful for keeping track of your users and their activities.

■Caution The data used to populate the output of these commands is often one of the first targets of
an attacker. You should secure the integrity of this data by ensuring only root can read the log files.

The first command I will cover is the who command. This command displays all those users
logged onto the system currently, together with the terminal they are logged on to and if they
have connected remotely then the IP address or hostname from which they have connected.
Listing 1-35 shows the default output of the who command.

Listing 1-35. The Output of the who Command

puppy# who

root tty1 Jul 3 12:32

bob pts/0 Jul 8 11:39 (host002.yourdomain.com)

You can also modify the output of the who command. Table 1-10 shows the command-line
options available to modify its output.

Table 1-10. The who Command-Line Options

Option Description

-a Displays all options in verbose mode

-b Displays the time of the last system boot

-d Displays any dead processes

-H Prints a line of column headings

--login Prints the system login processes

-p Prints all active processes spawned by init

-q Generates a count of all login names and number of users logged on

-r Prints the current run level

-t Prints the last system clock change

4444c01_final.qxd 1/5/05 12:42 AM Page 42

CHAPTER 1 ■ HARDENING THE BASICS 43

These options are mostly self-explanatory, but you should note the -a option that com-
bines a variety of the command-line options to provide a detailed overview of who is logged
into your system, the login processes, and the system reboot and run level details.

The next commands you will learn about are the last and lastb commands, which dis-
play a record of when users last logged into the system and a record of bad user logins, respec-
tively. To start collecting the data required to populate the output of these commands, you
need to create a couple of files to hold the data. Some distributions automatically create these
files, but others require them to be created manually. Once they are created, you do not need
to do anything else. The system will automatically detect the created files and begin logging
the required information. The two files you will require are /var/log/wtmp and /var/log/btmp.
If these files exist in the /var/log/ directory, then you can proceed to using the commands. If
not, then you need to create them and secure them from non-root users.

puppy# touch /var/log/wtmp /var/log/btmp

puppy# chown root:root /var/log/wtmp /var/log/btmp

puppy# chmod 0644 /var/log/wtmp /var/log/btmp

The /var/log/wtmp file contains the data for the last command, and the /var/log/btmp
file contains the data for the lastb command.

If you execute the last command without any options, it will print a report of the last
logins to the system. Listing 1-36 shows the results of this command.

Listing 1-36. Running the Last Command

puppy# last

root tty1 Sat Jul 3 12:32 still logged in

bob pts/0 192.168.0.23 Sat Jul 3 14:25 - 14:26 (00:01)

reboot system boot 2.4.20-28.8 Sat Jul 3 12:31 (4+05:40)

As you can see, the last command tells you that root is logged into tty1 and is still logged
in. The list also shows the user bob, who logged in from the IP address 192.168.0.23 and stayed
logged on for one second. The last entry shows a reboot entry. Every time the system is rebooted,
an entry is logged to the wtmp file, giving the time of the reboot and the version of the kernel into
which the system was booted.

The lastb produces the same style of report but lists only those logins that were “bad.”
In other words, it lists those logins in which an incorrect password was entered, or some other
error resulted in a failure to log in.

Both the last and lastb commands have some additional command-line options you
can use. Table 1-11 shows these additional options.

Table 1-11. Additional last and lastb Command-Line Options

Option Description

-n num Lists num of lines in the output

-t YYYYMMDDHHMMSS Displays the login status at the time specified

-x Displays the shutdown and run level changes

-f file Specifies another file to read for the last information

4444c01_final.qxd 1/5/05 12:42 AM Page 43

CHAPTER 1 ■ HARDENING THE BASICS44

Related to the last and lastb commands is the lastlog command. The lastlog command
displays a report that is based on information in the /var/log/lastlog file that shows the login
status of all users on your system including those users who have never logged in. Like the wtmp
and btmp files, you may need to create the lastlog file.

puppy# touch /var/log/lastlog

puppy# chown root:root /var/log/lastlog

puppy# chmod 0644 /var/log/lastlog

This displays a list of all users and their last login date and time. Or it displays a message
indicating **Never Logged In** if that user has never logged in. You can also specify only the
lastlog record for a particular user by using the -u command-line option. Or you can use the
-t days option to specify only those logins more recent than days be displayed. Using the -t
flag overrides the use of the -u flag.

puppy# lastlog -u bob

puppy# lastlog -t 30

■Tip Many systems also come with the ac command that provides statistics about the amount of time users
have been connected to your system, which can often provide useful information. The ac command uses the
contents of the /var/log/wtmp file to produce these reports; you can see its options in the sa man page.

Process Accounting
Another useful tool in tracking the activities on your system is process accounting. Process
accounting is a method of tracking every command issued on your system, the process or
user initiating that command, and the amount of processing time used, amongst other infor-
mation. All modern distributions have process accounting enabled in their kernels, and you
simply need to add some utilities for turning on and manipulating that data on your system.

If you have Red Hat, you can install the package psacct, which contains the required tools.
For Debian systems you can use the acct package. If you cannot find a suitable process account-
ing package for your distribution, then you can also download and compile the Acct utilities from
http://www.ibiblio.org/pub/linux/system/admin/accounts/acct-1-3.73.tar.gz. This is an old
release of the tools and, although stable, does not have the full functionality of the utilities avail-
able in the Red Hat and Debian packages, so some of the functions I will describe may not work.

If you installed a package, then skip down until you reach the section on the discussion of
starting process accounting. If you downloaded the utilities, then unpack the archive and change
into the resulting directory. This directory contains some kernel patches (which you will not all
need, as all modern kernels include process accounting code) and two directories, utils and
scripts. Change into the utils directory, and compile the programs in this directory. Enter the
following:

puppy# make

Then copy the compiled binaries to a program directory in your path; the recommended
default path is /usr/local/sbin.

4444c01_final.qxd 1/5/05 12:42 AM Page 44

CHAPTER 1 ■ HARDENING THE BASICS 45

puppy# cp acctentries accton accttrim dumpact lastcomm /usr/local/sbin

You can also refer to the man pages for each of these commands in this directory you can
install.

To get process accounting running, first create a file in /var/log to hold your process
accounting information. I usually create a file called pacct.

puppy# touch /var/log/pacct

As this file is going to contain some sensitive data, you need to secure it, and you must
ensure only root has privileges to it.

puppy# chown root:root /var/log/pacct

puppy# chmod 0644 /var/log/pacct

Now to turn on process accounting, you need to run the accton command and provide it
with the name of the file you have nominated to hold your process accounting information.

puppy# /usr/local/sbin/accton /var/log/pacct

If you want run process accounting all the time, you need to add this into the startup process
of your system also to ensure process accounting is started every time you reboot. You also need
to tell process accounting to stop when the system is shut down. If you execute the accton com-
mand without any options, this will turn off process accounting.

puppy# /usr/local/sbin/accton

Now you have process accounting collecting information. You can query this information
and find out who has been running what on your system. The easiest and fastest way to do
this is to use the lastcomm command, which summarizes the last commands used on the sys-
tem in reverse order. To run lastcomm and display all the commands run on the system in the
current process accounting file, you simply need to specify the file to be read.

puppy# lastcomm -f /var/log/pacct

ls root stdout 0.01 secs Wed Jul 7 17:49

accton S root stdout 0.01 secs Wed Jul 7 17:49

This shows the root user has started the accton command and also has performed the ls
command. Each entry contains the command name of the process that has been run, some
flags (for example, in the previous accton entry the flag S indicates that the command was exe-
cuted by a superuser, and other flags are documented in the lastcomm man page), the name of
the user who ran the process, where the output of the process was directed, and the time the
process ended. You can also filter the information by telling lastcomm to specify only some
commands executed or only those commands executed by a specific user or from a specific
device.

puppy# lastcomm -f /var/log/pacct --user bob

The previous line tells lastcomm to display only those commands issued by the user bob.
You can also specify the option --command commandname to list all occurrences of that specific
command or the --tty ttyname option to specify only those commands issued on the speci-
fied TTY. You can also specify a combination of these options to further narrow your search.

4444c01_final.qxd 1/5/05 12:42 AM Page 45

CHAPTER 1 ■ HARDENING THE BASICS46

The Red Hat and Debian packages also include the sa tool. The sa tool is capable of pro-
ducing detailed reports and summaries of your process accounting information. This includes
generating output reports of all processes and commands sorted by user or by command. You
can get more information about sa from its man page.

Process accounting can accumulate a lot of data quickly, especially on big systems with
a large number of users. To keep this manageable, you should trim down the size of your pro-
cess accounting file. In the Acct utilities, which are available to download, the scripts direc-
tory contains a script called handleacct.sh, which is an automated shell script for trimming
the size of your pacct file. You could easily modify this and run it regularly through cron to do
this trimming of files.

Pluggable Authentication Modules (PAM)
Sun Microsystems designed PAM to provide a plug-in authentication framework. It is heavily
used and developed in the Linux world, and a large number of PAM modules exist to perform
a variety of authentication functions. PAM is designed to integrate authentication into serv-
ices without changing those services. It means developers merely need to make applications
PAM aware without having to develop a custom authentication module or scheme for that
application. A suitable PAM module can be integrated and used to provide the authentication.

On most Linux distributions you have two possible locations to look for PAM configura-
tion. The legacy file /etc/pam.conf used to hold PAM configuration information on Linux dis-
tributions but now is generally deprecated and has been replaced by the /etc/pam.d directory.
This directory holds a collection of configuration file for PAM-aware services. The service
shares the same name as the application it is designed to authenticate; for example, the PAM
configuration for the passwd command is contained in a file called /etc/pam.d/passwd. I call
these files service configuration files.

The service configuration files themselves have four major directives, and Listing 1-37
shows a sample of a PAM service configuration file from the system-auth service on a Red Hat
system.

■Note The system-auth service provides a default authentication process for a variety of system func-
tions such as logins or changing passwords. I talk about it further in the “PAM Module Stacking” section.

Listing 1-37. Sample Red Hat system-auth Line

auth required pam_unix.so nullok

The first of the four directives is the interface type. In Listing 1-37 you can see the inter-
face type is auth. There are four major interface types available in PAM.

• auth: These modules perform user authentication using permissions, for example, and
can also set credentials such as group assignments or Kerberos tickets.

• account: These modules confirm access is available by checking the user’s account, for
example, confirming that the user account is unlocked or if only a root user can perform
an action.

4444c01_final.qxd 1/5/05 12:42 AM Page 46

CHAPTER 1 ■ HARDENING THE BASICS 47

• password: These modules verify and test passwords and can update authentication
tokens such as passwords.

• session: These modules check, manage, and configure user sessions.

You can use some modules for more than one interface type. For example, you can use
the pam_unix.so module to authenticate password, auth, account, and session interface types.

auth sufficient /lib/security/pam_unix.so likeauth nullok

account required /lib/security/pam_unix.so

password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow

session required /lib/security/pam_unix.so

It is also possible to stack modules of the same interface type together to allow more than
one form of authentication for that interface type. For example, on the next line I have stacked
together the pam_cracklib.so and pam_unix.so modules to perform password interface type
authentication.

password required /lib/security/pam_cracklib.so retry=3 type=

password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow

This is described as a stack, and I talk about module stacking in the “PAM Module Stack-
ing” section.

The next directive, required in Listing 1-37, is a control flag that tells PAM what to do with
the module’s results. Processing a PAM module ends in either a success or a failure result. The
controls flags tell PAM what to do with the success or failure results and how that result impacts
the overall authentication process. The required flag means the module result must be a suc-
cess in order for the authentication process to succeed. If the result of this module is a failure,
then the overall authentication is also a failure. If more than one module is stacked together, the
other modules in the stack will also be processed but the overall authentication will still fail.

Three other possible control flags exist. The requisite flag indicates that the module result
must be successful for authentication to be successful. Additionally, unlike the required flag,
the success or failure of this module will be immediately notified to the service requesting
authentication, and the authentication process will complete. This means that if any modules
are stacked together and a module with a requisite control flag fails, then the modules remain-
ing to be processed will not be executed. But with the required control flag, the remaining
modules in the stack would continue to be processed.

The next control flag is sufficient. The sufficient flag means that the success of this
module is sufficient for the authentication process to be successful or if modules are stacked
for the stack to succeed. This is dependent on no other required modules, processed prior to
this module, failing. If a sufficient module fails, then the overall stack does not fail.

The last control flag is optional. An optional module is not critical to the overall success
and failure of the authentication process or the module stack. Its success or failure will not
determine the success or failure of the overall authentication process.

The next directive from Listing 1-37, pam_unix.so, indicates what PAM module will be used
and its location. If you specify a PAM module without a path such as shown in Listing 1-37, then
the module is assumed to be located in the /lib/security directory. You can also specify a mod-
ule from another location here by providing the path to it, as you can see in the following line:

auth required /usr/local/pamlib/pam_local.so id=-1 root=1

4444c01_final.qxd 1/5/05 12:42 AM Page 47

CHAPTER 1 ■ HARDENING THE BASICS48

The last directive from Listing 1-37, nullok, is an argument to be passed to the PAM mod-
ule. In the previous line, for example, you can see two arguments, id=-1 and root=1, being
passed to the module pam_local.so. Most modules will ignore invalid or incorrect arguments
passed to them, and the module will continue to be processed though some modules do gen-
erate an error message or fail.

■Tip You can find documentation on your Red Hat system for PAM and all the PAM modules supplied with
the pam RPM at /usr/share/doc/pam-version/txts, replacing version with the version number of your
pam RPM, or at http://www.kernel.org/pub/linux/libs/pam/.

PAM Module Stacking
As I mentioned earlier, you can stack modules for processing, with multiple modules being
used to authenticate each interface type of a particular service. If modules are stacked, then
they are processed in the order they appear in the PAM service configuration file. As you can
specify a variety of control flags when stacking modules, it is important to carefully consider
how to stack your modules and what dependencies to configure. In Listing 1-38, you will see
the Debian login PAM configuration file.

Listing 1-38. The Debian Login /etc/pam.d Configuration File

password required pam_cracklib.so retry=3 minlen=6 difok=3

password required pam_unix.so use_authtok nullok md5

Here I am first running the pam_cracklib.so module to check the strength of a new or
changed password and then the pam_unix.so module. Both are using a control flag of required,
which means both modules need to succeed for the password to be successfully changed and
both modules would be tested. If you changed the pam_cracklib.so control flag to requisite
and the pam_cracklib.so module failed, then the password change process would immediately
fail and the pam_unix.so module would not be checked at all.

Additionally, if you specified a module as sufficient that was not adequately secure, then if
this module check is successful the entire module stack is considered successful and you have
authenticated something without adequate authentication. For example:

auth sufficient pam_notsosecure.so

auth required pam_secure.so

In this case, if the check of pamnotsosecure.so was successful, then the authentication
process would be halted and authentication would be successful. If this module does not in
reality provide a sufficient security check for authentication, then this is a serious security
risk. Thus, it is important to ensure you order your modules and control flags in your PAM
configuration files.

Additionally on Red Hat systems, you can use a special module called pam_stack.so. This
module allows you to include another list of modules contained in an external file into a serv-
ice configuration file. For example, Red Hat systems use a special service called system-auth to

4444c01_final.qxd 1/5/05 12:42 AM Page 48

CHAPTER 1 ■ HARDENING THE BASICS 49

perform the default authentication for most services. In Listing 1-39 you will see the Red Hat
service configuration file for the passwd function.

Listing 1-39. The Red Hat passwd Function Service Configuration File

auth required /lib/security/pam_stack.so service=system-auth

account required /lib/security/pam_stack.so service=system-auth

password required /lib/security/pam_warn.so

password required /lib/security/pam_stack.so service=system-auth

Instead of defining the particular PAM modules to be used for authentication, the service
configuration file defines the pam_stack.so module with an option of service=system-auth.
This tells PAM to use the service configuration file called system-auth and the modules defined
in it for the authentication process. This is especially useful for maintaining a single, central-
ized authentication method that you refer to in a number of services. If you want to change the
authentication process, you have to change it in only one place—not in all the service configu-
ration files.

Finally, you should check the contents of all your PAM module stacks and configuration
to ensure you fully understand the sequence in which authentication occurs. Additionally, you
should check for the presence of the pam_rhosts_auth.so module. This module is designed to
allow access using .rhosts files, which are used by the so-called r-tools, rlogin, rsh, and so on.
These tools and this authentication model are not secure, and I strongly recommend you remove
all references to this module from your PAM configuration. I will talk about the r-tools and
their security weaknesses further in Chapter 3.

The PAM “Other” Service
One of the advantages of implementing PAM on your system is that it comes with a catchall
authentication service that handles the authentication for any PAM-aware service that does
not have a specific service configuration file. The PAM configuration for this is located in the
/etc/pam.d/other file, and in Listing 1-40 you can see the default Red Hat other file.

Listing 1-40. Default Red Hat /etc/pam.d/other File

#%PAM-1-0

auth required /lib/security/pam_deny.so

account required /lib/security/pam_deny.so

password required /lib/security/pam_deny.so

session required /lib/security/pam_deny.so

Listing 1-40 shows a very strong other file. Each of the possible interface types is repre-
sented here with a control flag of required, which means each authentication request must
succeed for the service to authenticate and that all interface types will be checked. The speci-
fied module, pam_deny.so, does exactly what the name suggests and denies any request made
to it. So this is a good configuration for security purposes because the authentication in List-
ing 1-40 will never succeed, thus stopping any PAM-aware service from being inadvertently
authenticated.

This configuration does pose a risk, though, if you or someone else accidentally deletes
one of the service configuration files from the /etc/pam.d directory, for example, the login file.

4444c01_final.qxd 1/5/05 12:42 AM Page 49

CHAPTER 1 ■ HARDENING THE BASICS50

Then the login command will default to using the other configuration and deny all logins to
the system. The other risk is that when the pam_unix.so module denies a request, it does not
log any record of that denial. This can sometimes make it hard to both spot any intrusion
attempts or to determine for diagnostic purposes where an authentication attempt is failing.
Listing 1-41 shows a way around this by using the additional PAM module, pam_warn.so.

Listing 1-41. Updated Red Hat /etc/pam.d/other File

#%PAM-1-0

auth required /lib/security/pam_warn.so

auth required /lib/security/pam_deny.so

account required /lib/security/pam_warn.so

account required /lib/security/pam_deny.so

password required /lib/security/pam_warn.so

password required /lib/security/pam_deny.so

session required /lib/security/pam_warn.so

session required /lib/security/pam_deny.so

The pam_warn.so module will log a warning message to syslog every time an authentica-
tion request is made using the syslog facility of auth and a log level of warning.

■Tip On Red Hat system this usually logs to the /var/log/secure file with a program ID of PAM-warn
if you want to use your log filtering tools to highlight these messages as I will describe in Chapter 5.

I recommend reviewing the current contents of your /etc/pam.d/other file to see if it meets
your security requirements. I strongly recommend that the default PAM authentication response
be to deny any request from a service that is not explicitly configured with its own PAM service
configuration file.

Restricting su Using PAM
The su command allows you to log into a new shell as another user.

puppy$ su jane

Password:

This would log into a new shell as the user jane with the privileges of that user (if you
entered that user’s correct password). If you use the su command without specifying a user,
then the system will attempt to log in as the root user. For example, you can also use the su
command to log in as the root user if you know the root password.

puppy$ su

Password:

■Tip You can find more about su using man su.

4444c01_final.qxd 1/5/05 12:42 AM Page 50

CHAPTER 1 ■ HARDENING THE BASICS 51

As you can imagine, this is a powerful tool but also a dangerous one to which you should
restrict access. PAM offers a way to easily secure access to this tool to only those users you want.
To configure for access restriction, review the contents of the su PAM service configuration
files inside your /etc/pam.d directory. On both Debian and Red Hat systems, you should find
the following line:

auth required /lib/security/pam_wheel.so use_uid

Uncomment this line, so PAM will allow su to be used only by members of the wheel group.

■Note The wheel group may exist on your system already, or you may need to create it and add the
required members to it.

The use_uid option tells PAM to check the UID of the current user trying to use su to log in.
You can also specify the group= option to indicate that a group other than wheel is allowed to
use su to log in. See the following line:

auth required /lib/security/pam_wheel.so use_uid group=allowsu

Now only those users belonging to the allowsu group will be able to use the su command.

■Tip Some other useful configuration models for su are documented in the /etc/pam.d/su service and
are worth examining. These may also give you ideas for some other uses of PAM.

Setting Limits with PAM
The PAM module pam_limits.so is designed to prevent internal- and some external-style Denial
of Service attacks. An internal Denial of Service attack can occur when internal users either delib-
erately or inadvertently cause a system or application outage by consuming too many resources
such as memory, disk space, or CPU. External Denial of Service attacks occur in the same manner
but originate from outside the host.

To enable limits on functionality, you need to add or enable the pam_limits.so module in
the services for which you require limiting to operate. On a Debian system, for example, an entry
exists for the pam_limits.so functionality in the login service configuration file in /etc/pam.d.

session required pam_limits.so

By default on Debian, this entry is commented out. Uncomment it to enable limits. As
you can see, the pam_limits.so module is used for the session interface type.

■Note On the Red Hat system the default system-auth service contains an entry for the pam_limits.so
module.

4444c01_final.qxd 1/5/05 12:42 AM Page 51

CHAPTER 1 ■ HARDENING THE BASICS52

You can also add it to other services, for example, adding it to the imap service to provide
limits to users accessing IMAP resources.

The pam_limits.so module is controlled by a configuration file called limits.conf that is
located in /etc/security. Listing 1-42 shows an example of this file.

Listing 1-42. Sample limits.conf File

domain type item value

* soft core 0

* hard core 0

Here the limits.conf file is controlling the size of any core dumps generated. This is one
of the most common uses of the pam_limits.so module. Let’s examine the structure of the file.
It is broken into four elements: domain, type, item, and value.

The domain is the scope of the limit and who it effects, for example, a particular user, group
of users, or a wildcard entry (*), which indicates all users. The type is either soft or hard. A soft

limit is a warning point and can be exceeded but will trigger a warning syslog entry. A hard limit
is the maximum possible limit. A resource cannot exceed this hard limit. Thus, you should set
your soft limits as a smaller size or number than your hard limits.

The type of limit describes what is being limited, and the value is the size of that limit.
Table 1-12 lists all the possible types of resources you can limit with the pam_limits.so module.

Table 1-12. Limits You Can Impose

Limit Description Value

core Limits the core file size Kilobytes

data Limits the maximum data size Kilobytes

fsize Limits the maximum file size Kilobytes

memlock Defines the maximum locked-in-memory address space Kilobytes

nofile Limits the number of open files Number

rss Limits the maximum resident set size Kilobytes

stack Limits the maximum stack size Kilobytes

cpu Limits the maximum CPU time Minutes

nproc Limits the maximum number of processes Number

as Specifies the address space limit Number

maxlogins Limits the maximum number of logins for a user Number

priority Limits the priority with which to run a user’s process Number

I also show the type of value you can use for a resource limit. For example, the maxlogins
limit type is expressed as number that indicates the maximum number of times a user or users
can simultaneously log in. cpu is expressed as the maximum number of minutes of CPU time
that a user can consume.

Where the value is set to 0, this indicates the specified user or users (or all users) are unable
to use any of that resource. For example, setting the core limit to 0 will result in no core dump
files being created.

4444c01_final.qxd 1/5/05 12:42 AM Page 52

CHAPTER 1 ■ HARDENING THE BASICS 53

bob soft core 0

bob hard core 0

So, in the previous two lines, the user bob is prevented from creating any core dump files.

■Tip Even if you do not use any other type of limit, you should set the core dump size limit to 0 to prevent the
creation of core dump files. Core dump files often contain valuable or dangerous information, and unless you
have a requirement for them (for example developers need them), then I recommend you limit their creation.

You can also restrict this to a particular group by prefixing the group name with an at (@)
character

@sales soft core 0

@sales hard core 0

or to everyone on the system using the * wildcard, as you saw in Listing 1-42.

■Note You can also control the limits being set with the ulimit command.

Restricting Users to Specific Login Times with PAM
Most distributions come with the pam_time.so module. This allows you to control when and
where from users can log onto the system. It is defined as an account interface type. You can
add it to the login service in the so file like this:

account required /lib/security/pam_time.so

If you have more than one module stacked, then you should add the pam_time.so module
before all the other account interface type modules. In the previous line, I added it as a required

module, which means the check must be successful for authentication to succeed.
The pam_time.so module is configured using the file time.conf, which is stored in the

/etc/security directory. Listing 1-43 shows a line from this file.

Listing 1-43. The time.conf File

login;*;bob|jane;!Al2100-0600

I will break this rather confusing piece of configuration down and explain its component
elements. Each element is separated by a semicolon. Each of these elements is a logic list, and
you can use logical operators and tokens to control it further.

service;terminal;users;times

So the first element is service. In Listing 1-43 you can see that login is the service. If you
specify a line in this file that refers to a service, you must also define the pam_time.so module

4444c01_final.qxd 1/5/05 12:42 AM Page 53

CHAPTER 1 ■ HARDENING THE BASICS54

in that service’s configuration file in /etc/pam.d. You can add the pam_time.so module to
almost any one of the services defined in the /etc/pam.d directory.

The next element is the terminal to which this time restriction applies. Here I have speci-
fied the wildcard operator * for all terminals. You can use a wildcard in any element except
service but only once per element. You could also specify a list of terminals separated by a
|, tty1|tty2|tty3, or a type of terminal suffixed with a * wildcard such as ttyp*.

In the next element I specify which users this time restriction applies to, and I have used
a logical operator here. The first user is bob. I have then used the logical or separator, |, to spec-
ify a second user, jane. In this example this means the time restrictions apply to either bob or
jane. You could also use the logical operator & here to represent and. For example, time restric-
tions apply to both bob and jane as in bob&jane.

The last element is the time restriction itself. The time here is prefixed with !. This means
“anything but.” The next two letters Al is short for “all,” which indicates all days of the week.
The next eight digits are start and finish times in 24-hour time format separated by a hyphen
(-). In Listing 1-43, you saw that the start and finish times are 21:00 (or 9 p.m.) and 06:00 (or
6 a.m.), respectively. If the finish time is lower than the start time (as is the case in Listing 1-43),
then the finish time is deemed to be during the next day. So, putting this all together means
that bob and jane can log onto any terminal at any time except between 9 p.m. and 6 a.m.

Let’s look at another example.

login;ttyp*;!root;!Wd0000-2400

Here I block logins from all pseudo-terminals on the weekends for all users except root.
In the time element I have used the Wd entry, which indicates weekends. You can also use Wk,
which stands for weekdays, or the entries for the individual days of the week, which are Mo, Tu,
We, Th, Fr, Sa, Su.

Logging an Alert on User Login with PAM
The next PAM module is called pam_login_alert.so and alerts via e-mail or syslog when
a particular user (or users) logs onto the system. You can download the module at http://
www.kernel.org/pub/linux/libs/pam/pre/modules/pam_login_alert-0.10.tar.gz.

■Tip A variety of other PAM modules are also available at this site that you may find useful.

Create a temporary directory, and unpack the tar file into it. The package contains a num-
ber of files, including the source for the module. To create the module, you need to make and
install it.

puppy$ make

puppy# make install

This will results in a file called pam_login_alert.so, which is installed by default to the
/lib/security directory. Also, two configuration files are created and copied to /etc. They are
login_alert.conf and login.alert.users.

4444c01_final.qxd 1/5/05 12:42 AM Page 54

CHAPTER 1 ■ HARDENING THE BASICS 55

Let’s have a look at these configuration files first. Listing 1-44 shows the login_alert.conf
file.

Listing 1-44. The login_alert.conf File

PAM_login_alert configuration file

Specify e-mail support

mail on

Specify the user to e-mail the alert

email admin@puppy.yourdomain.com

Specify syslog support

syslog off

Specify the syslog facility

syslog_facility LOG_AUTHPRIV

Specify the syslog priority

syslog_priority LOG_INFO

Specify the user list

user_list /etc/login_alert.users

Its contents are fairly self-explanatory. You can send an alert either by e-mail or by syslog
(with e-mail being the default). The e-mail is sent by default to root. You specify the list of users
to alert on in the /etc/login_alert.users file. Let’s add some users to this file.

puppy# echo 'bob' >> /etc/login_alert.users

puppy# echo 'jane' >> /etc/login_alert.users

I have added the users bob and jane to the file. Now I need to define the new module to
the PAM configuration. As I am sending an alert on the login of a user, I need to add the mod-
ule to the login service in the /etc/pam.d directory. Currently on my Red Hat system, the login
service looks like this:

auth required pam_securetty.so

auth required pam_stack.so service=system-auth

auth required pam_nologin.so

account required pam_stack.so service=system-auth

password required pam_stack.so service=system-auth

session required pam_stack.so service=system-auth

session optional pam_console.so

The pam_login_alert.so module is available with the account and session interface types.
I will add it as a session interface with a control flag of optional. I will also add the module at
the end of the stack of modules using the session interface type. I use the end of the session
modules because I am interested in when the user logs on, the time of which can take place
only after the auth and account modules were successfully processed. I use optional because
I am considering logging not critical to the authentication process. My login service would
now look like this:

auth required pam_securetty.so

auth required pam_stack.so service=system-auth

auth required pam_nologin.so

4444c01_final.qxd 1/5/05 12:42 AM Page 55

CHAPTER 1 ■ HARDENING THE BASICS56

account required pam_stack.so service=system-auth

password required pam_stack.so service=system-auth

session required pam_stack.so service=system-auth

session optional pam_console.so

session optional pam_login_alert.so

Now when bob or jane logs in, an e-mail will be generated and a message will be sent to
root notifying of the new login. You could also enable the syslog function to send a log entry
when either of these users log in.

Some Other Pam Modules
I recommend you investigate some other PAM modules and potentially configure them to aid
in securing your system.

pam_access.so: The pam_access.so module controls login access and is configured using
the /etc/security/access.conf file. For example, it controls who can log in and where
they can log in from. It can include restrictions based on group membership as well.

pam_group.so: The pam_group.so module works with group membership and PAM. This is
a slightly more dangerous module, as it is able to grant temporary group membership to
users; you should use it with caution. See the /etc/security/group.conf file for configu-
ration details.

pam_env.so: This module allows you to set your environment variables using PAM. See the
/etc/security/pam_env.conf file for configuration details.

Package Management, File Integrity, and Updating
One of the great advantages attackers have when attempting to penetrate systems is some sys-
tem administrators’ inertia about updating software packages and applications. A large num-
ber of systems have software installed that is one or more versions behind the current release.
Or the software is the original version installed when the system was installed. These older
versions of software frequently have exploits and vulnerabilities that expose your system to
attack. It is critical you update your software on a regular basis to ensure your system has the
most recent and secure version of packages and applications.

■Note I talk about how to find out when a security vulnerability is discovered in the “Keeping Informed
About Security” section.

The package management and update tools on the various distributions are powerful and
perform a variety of functions that do not have any security implications. I will focus on those
aspects of updating and package management on your system that do have security implica-
tions, such as verifying the integrity of a package or securely downloading an update.

4444c01_final.qxd 1/5/05 12:42 AM Page 56

CHAPTER 1 ■ HARDENING THE BASICS 57

7. http://www.gnupg.org/

8. http://www.md5crk.com/

Ensuring File Integrity
When you download packages and files from the Internet or install from CD/DVDs, a risk
exists that you are getting more than you bargained for. You have no guarantee that the file
you have downloaded contains the contents it claims to hold. The file or some of its contents
could have been replaced, altered, or intercepted and modified during transmission. You can
mitigate the risk of this by using integrity checking to validate the contents and the file. You
will learn about three methods of determining the integrity of packages you have downloaded
from the Internet. The first and second methods use the md5sum and sha1sum commands to
validate a checksum to confirm the integrity of a package. The third uses the gpg application,
part of the GPG package, to verify a digital signature file that you would also download with
the package you want to verify.7

MD5 and SHA1 Checksums
Let’s look at MD5 hash checksums first. The MD5 checksum is a digital “fingerprint” of a file
that is frequently used by open-source software vendors and authors to prove the integrity of
files, ISO images, and the like that are available for download. MD5 is a message digest algo-
rithm. It takes a data string (in the case of a checksum, the data string is the file), and it pro-
duces a hash of that data string. The hash is unique for each data string. Listing 1-45 shows
what an MD5 hash checksum looks like.

Listing 1-45. A Sample MD5 Checksum

0a5f5f226e41ce408a895bec995e8c05

So how do you use this checksum? Let’s assume you have downloaded a file from a Web
site, iptables-1-2.11-tar.bz2. On the Web site next to the download link to this file is the fol-
lowing MD5 checksum 0a5f5f226e41ce408a895bec995e8c05. You use the md5sum command to
check the file to confirm this is the checksum of the file.

puppy# md5sum iptables-1-2.11-tar.bz2

0a5f5f226e41ce408a895bec995e8c05 iptables-1-2.11-tar.bz2

If the checksum matches the one displayed on the site, then the integrity of the file has
been confirmed to the extent possible using this sort of method. I say extent possible because
file checksums predispose that the site you are downloading the file from is secure and that
the file you have downloaded has not been replaced with another file entirely and the check-
sum generated from this replacement file.

Additionally, recent developments have suggested that there is a possibility that MD5
checksums are not always unique.8 With this potential insecurity in mind, you will also learn
about the similar checksum SHA1, or Secure Hash Algorithm. SHA1 is also a message digest
algorithm. It was designed by the National Security Agency (NSA) and uses a more secure
digest based on 160-bit digests. The SHA1 algorithm works on similar principles to MD5.
When downloading a file, you make a note of the SHA1 checksum. Then using the sha1sum
command, check the file against the SHA1 checksum.

4444c01_final.qxd 1/5/05 12:42 AM Page 57

CHAPTER 1 ■ HARDENING THE BASICS58

puppy# sha1sum image.iso

1929b791088db2338c535e4850d49f491b3c7b53 image.iso

So where you have the option of using a SHA1 checksum, I recommend using these over
MD5 checksums.

The SHA1 checksums of course still does not address the issue of a total replacement of
the file and substitution of a new checksum based on the substituted file. The only way to
address this is via using a digital signature.

Digital Signatures and GNU Privacy Guard
Digital signatures rely on the principles of public-key encryption, which I will discuss in more
detail in Chapter 3. Public-key encryption depends on two keys: a public key and a private key.
You publish your public key to anyone who wants to exchange encrypted information with you
and keep your private key secret. You encrypt the information with the recipient’s public key,
and the recipient of that information uses their private key to decrypt the information. You can
also do this encryption in reverse and encrypt the information with your private key and have
your public key able to decrypt it. It is this second model that digital signatures use to ensure
file integrity.

Digital signatures are created by combining hashes and public-key encryption. A hash is
generated of the information (in this case, a package or file) that an author wants to confirm
as valid. Like the checksum hashes I have just discussed, this hash is unique to the file; if the
contents of the file change, then so does the hash. This hash is then encrypted, or signed, with
the package author’s private key. This creates the digital signature.

Now the author of the package distributes the file with its digital signature and also makes
available their public key. When you download the package, you also download the signature
and the author’s public key. You import this public key into your keyring. Your keyring is a col-
lection of the public keys that your system knows about, which is managed by whatever tool
you are using for public-key encryption, in this case gpg. You can then verify the file with the
digital signature by using the author’s public key to decrypt the checksum hash and then ver-
ify that the hash matches the hash of the downloaded file. You now know the file is valid because
you know the author must have used their private key to encrypt the digital signature; other-
wise you would not have been able to use their public key to decrypt it.

Let’s look at an example of this at work. Download the GPG package, its digital signature,
and the public key of the author and use them to verify the integrity of the package. First, down-
load the package and its signature.

puppy# wget ftp://ftp.gnupg.org/gcrypt/gnupg/gnupg-1.2.4.tar.bz2

puppy# wget ftp://ftp.gnupg.org/gcrypt/gnupg/gnupg-1.2.4.tar.bz2.sig

Second, download and import the GPG group’s public key into your public keyring.

puppy# wget ftp://ftp.gnupg.org/gcrypt/gnupg/gnupg.asc

puppy# gpg --import gnupg.asc

gpg: key 57548DCD: public key imported

gpg: Total number processed: 1

gpg: imported: 1

To do the import, you use the gpg --import option.

4444c01_final.qxd 1/5/05 12:42 AM Page 58

CHAPTER 1 ■ HARDENING THE BASICS 59

Now that you have imported the public key, you can use the same gpg command to vali-
date the file you have downloaded. To do this, you use the gpg option --verify and provide the
name of the signature you have downloaded; it is gnupg-1-2.4.tar.bz2.sig, as you can see in
Listing 1-46.

Listing 1-46. Verifying a File Using gpg

puppy# gpg --verify gnupg-1.2.4.tar.bz2.sig

gpg: Signature made Wed 24 Dec 2003 07:24:58 EST using DSA key ID 57548DCD

gpg: Good signature from "Werner Koch (gnupg sig) <dd9jn@gnu.org>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Fingerprint: 6BD9 050F D8FC 941B 4341 2DCC 68B7 AB89 5754 8DCD

The gpg command will take the contents of this digital signature and look for the contents of
a file of the same name with the suffix of .sig removed from the filename. Thus, in this example,
the gpg command will be looking for a file called gnupg-1.2.4.tar.bz2. If the filename is different
from the signature file; you can specify the file you want to verify after the signature file on the
command line.

puppy# gpg --verify gnupg-1.2.4.tar.bz2.sig gnupg.tar.gz

As you can see from Listing 1-46, the file was signed with the author’s private key and the
signature is valid. The warning message that appears tells you that this validation is not 100
percent complete, though, because the trust ends with the key used to sign the signature. This
means the gpg has no way of confirming that the author is the actual owner of the key used to
sign the signature. I will talk about this concept of trusted relationship further in Chapter 3. For
the purposes of verifying the integrity of the package you have downloaded, I suggest this level
of validation is suitable for most instances.

■Tip Though I do not show the process every time you download a file or package during the chapters of
this book, I strongly urge you to verify all files you download using whatever means are available to you. Be
extremely wary of files that offer no means of verifying their integrity.

RPM and Digital Signatures
Most recent releases of the RPM package (including those with recent versions of Red Hat and
Mandrake) handle digital signature checking internally and transparently to you with some ini-
tial setup. The RPM file itself holds the digital signature and a variety of checksums. You then
verify those checksums and digital signatures using the rpm command. To do this, you need to
import the RPM provider or vendor’s public key into your RPM public keyring.

Your RPM public keyring is different from your GPG public keyring. If you have imported
a public key into your GPG keyring, this does not mean you can use that public key with RPM.
For example, Red Hat provides its public key in a variety of locations for you to add to your

4444c01_final.qxd 1/5/05 12:42 AM Page 59

CHAPTER 1 ■ HARDENING THE BASICS60

9. This is the current Red Hat key ID, but you can check for a new or updated key ID at
http://www.redhat.com/security/team/key.html.

RPM public keyring. You can find it at the Red Hat site at http://www.redhat.com/security/
db42a60e.txt. It is also located on your system when your distribution is installed at /usr/share/
rhn/RPM-GPG-KEY.

To add a public key the RPM keyring, you use the rpm --import command. So, to add the
Red Hat public key, enter the following:

puppy# rpm --import /usr/share/rhn/RPM-GPG-KEY

You can also download the public key from a keyserver using the gpg command and then
place it in the RPM keyring. To do this, you first need to use the gpg command to get the key,
specifying a keyserver and a key ID. The default keyserver for the Red Hat public key is
pgp.mit.edu, and the key ID is DB42A60E.9 Listing 1-47 retrieves the Red Hat public key from
a keyserver using the gpg command.

Listing 1-47. Using the gpg Command to Download a Key from a Keyserver

puppy# gpg --keyserver pgp.mit.edu --recv-keys DB42A60E

gpg: requesting key DB42A60E from HKP keyserver pgp.mit.edu

gpg: key DB42A60E: public key imported

gpg: Total number processed: 1

gpg: imported: 1

As you can see from Listing 1-47, you have successfully downloaded the Red Hat public
key from the key server and imported it into the GPG keyring. Now you need to add it to the
RPM keyring. You can enter the following:

puppy# gpg -a --export DB42A60E > redhat.asc; rpm --import redhat.asc; \

rm -f redhat.asc

In the previous line you have exported the key you just downloaded into the GPG keyring
by selecting it via its key ID and using the -a option to create ASCII armored output. You then
imported the resulting file into the RPM keyring and finally deleted the file you just used for
the import.

You can see all the public keys stored in your RPM public keyring using the following
command:

puppy# rpm -qa gpg-pubkey* --qf "%{version}-%{release} %{summary}\n"

db42a60e-37ea5438 gpg(Red Hat, Inc <security@redhat.com>)

As you can see, the only key you have is the Red Hat security key.

■Tip You can find the Mandrake GPG key at http://www.mandrakesoft.com/security/RPM-GPG-KEYS,
on the Mandrake CD/DVD or via the pgp.mit.edu using key ID 22458A98. Debian public keys are available
on the Debian release media or via the Debian FTP sites and mirrors.

4444c01_final.qxd 1/5/05 12:42 AM Page 60

CHAPTER 1 ■ HARDENING THE BASICS 61

With the rpm command and the public key, you can now validate the digital signature.
Now if you download an RPM produced by Red Hat, you are now able to verify it. To do this,
you use the rpm command with the --checksig option (or the -K option, which performs the
same function).

puppy# rpm --checksig kernel-2.4.21-15.0.2.EL.src.rpm

kernel-2.4.21-15.0.2.EL.src.rpm: (sha1) dsa sha1 md5 gpg OK

You can see the results of the --checksig option on the previous line. First the name of the
RPM being checked is displayed, and then the successful checks are displayed. The line before
the results shows that the RPM has valid dsa, sha1, and md5 checksums and is signed with a
valid gpg signature. The final OK confirms the validity of the RPM file. If you want to display
more detail of the validation, you can add the -v option to the rpm command.

puppy# rpm --checksig -v kernel-2.4.21-15.0.2.EL.src.rpm

kernel-2.4.21-15.0.2.EL.src.rpm:

Header V3 DSA signature: OK, key ID db42a60e

Header SHA1 digest: OK (a0c3ab5a36016f398e0882a54164796f2ae9044f)

MD5 digest: OK (ef590ee95255210aca8e2631ebaaa019)

V3 DSA signature: OK, key ID db42a60e

You can display even more information by using the -vv option.
If the RPM fails to validate, then the rpm --checksig command will return different results.

Any checks that have failed will be displayed in uppercase, and the results will end with NOT OK.

puppy# rpm --checksig kernel-2.4.21-15.0.2.EL.src.rpm

kernel-2.4.21-15.0.2.EL.src.rpm: size gpg MD5 NOT OK

You can see in the previous line that the size check has validated, but the MD5 checksum
has failed and the results display NOT OK. If the GPG digital signature fails to validate, then you
will see output similar to the following line. In this instance the GPG key is missing.

puppy# rpm --checksig kernel-2.4.21-15.0.2.EL.src.rpm

kernel-2.4.21-15.0.2.EL.src.rpm: (SHA1) DSA sha1 md5 (GPG) NOT OK ➥

(MISSING KEYS: GPG#db42a60e)

You should verify all RPMs using the --checksig option before installing them, and do not
install an RPM package if any of these checks fail.

Downloading Updates and Patches
You can use a variety of automated tools for updating your system via the Internet. I will
briefly cover three of them: up2date, apt-get, and yum. Of the three, the only one that offers
real security is the up2date command, which uses SSL certificates to confirm you are down-
loading from a valid and verifiable update source in addition to verifying the file integrity of
the files downloaded. Unfortunately, up2date is a Red Hat–only solution. The remaining tools,
apt-get and yum, are capable only of verifying the file integrity of downloads using MD5,
SHA1, and GPG checks.

4444c01_final.qxd 1/5/05 12:42 AM Page 61

CHAPTER 1 ■ HARDENING THE BASICS62

10. http://freshrpms.net/apt/

up2date
The up2date tool comes with Red Hat systems and allows you to retrieve updates from the Red Hat
Network. As mentioned, it uses SSL to verify it is connecting to a valid update source. The up2date
command does this SSL authentication transparently for you. For any Red Hat releases with a pur-
chase price (for example, Red Hat Enterprise Linux), you need to pay for an entitlement to down-
load updated patches. For the Fedora Core releases, you can download the updates for free. The
up2date client is a propriety Red Hat tool and does not work with any other distributions.

■Tip An open-source variation of up2date, called NRH-up2date, is available at
http://www.nrh-up2date.org/. This tool also allows you to run a centralized Red Hat update server.

The up2date tool downloads RPMs from the Red Hat network and then passes them to the
rpm command to be processed and installed transparently to the user. As part of this transfer
to the rpm command, the standard rpm --checksig processing is performed on the RPM(s) to
be installed. This means the size, MD5, and SHA1 checksums as well as the GPG key are all
checked before installing the RPM(s). If any of these fail to validate, then the respective RPM
will not be installed.

You would usually configure up2date and the Red Hat Network when you first install your
Red Hat distribution. But you can reregister your system to the Red Hat Network using the fol-
lowing command:

puppy# rhn_register

If your system is registered, you can use the up2date command to retrieve RPMs from Red
Hat. To list all the available packages, enter the following:

puppy# up2date -l

Fetching package list for channel: rhel-i386-as-3...

And if you want to fetch and download the available updates, you can enter the following:

puppy# up2date -u

Finally, the up2date man page contains further information on how to use the up2date
command.

apt-get
The APT package-handling application is a front-end interface for the Debian dpkg command.
A version also exists that can act as a front-end to RPM.10 It fetches deb or RPM files from remote
repositories and uses either dpkg or rpm to install them. It is extremely easy to use. Each command
consists of the apt-get command followed by the required function to be performed and poten-
tially a package name.

puppy# apt-get update

4444c01_final.qxd 1/5/05 12:42 AM Page 62

CHAPTER 1 ■ HARDENING THE BASICS 63

For example, the command on the previous line updates the list of packages that are
available for download. The configuration for the apt-get command is held in the /etc/apt
directory. For Debian, review the contents of the apt.conf.d directory in /etc/apt; for the Red
Hat variation, review the apt.conf file to see how apt-get is configured to function. Both ver-
sions use a file called sources.list in the /etc/apt directory to store the list of repositories.
The repositories are generally HTTP or FTP sites that store the available updates.

To install a particular package using apt-get, use the install option, as follows, replacing
the packagename variable with the name of the particular package to be installed:

puppy# apt-get install packagename

To install all available updates, use the upgrade option. Enter the following:

puppy# apt-get upgrade

■Caution Some older versions of apt-get continue to install packages even if the checksums or keys
have failed. I recommend upgrading to the latest version of apt-get.

Yum
Yum (Yellow dog Updater, Modified) is another update and patch tool that works with RPM pack-
ages. It functions much like the apt-get and up2date tools. Like these tools, Yum fetches RPMs
from remote repositories and uses the rpm command to check checksums and to perform the
installation. You can download Yum from http://linux.duke.edu/projects/yum/download.ptml.
It comes in different versions depending on the version of RPM you have installed. Check your
RPM version before you choose a version of Yum to install. Enter the following:

puppy# rpm --version

RPM version 4.2.2

Yum performs much the same functions as the other tools you have seen in this chapter.
For example, to view a list of all the packages available to download, you would use the list
option, as follows:

puppy# yum list

You can configure Yum using the file yum.conf located in the /etc directory. In Listing 1-48
you can see a sample of this file.

Listing 1-48. Sample yum.conf File

[main]

cachedir=/var/cache/yum

logfile=/var/log/yum.log

distroverpkg=redhat-release

4444c01_final.qxd 1/5/05 12:42 AM Page 63

CHAPTER 1 ■ HARDENING THE BASICS64

[base]

name=Red Hat Linux $releasever - $basearch - Base

baseurl=

http://mirror.dulug.duke.edu/pub/yum-repository/redhat/$releasever/$basearch/

gpgcheck=1

The [main] configuration block shown in Listing 1-48 contains the global variables used
by Yum. You can read about those in the yum.conf man page. The [base] configuration defines
a repository to check for updated packages. I have added the option gpgcheck=1 to this reposi-
tory to make Yum check for valid GPG signatures. You need to add this option to the definitions
of all repositories defined to Yum if you want them to use GPG signature checking.

To install a package with Yum, use the install option, as follows, replacing the package-
name variable with the name of the particular package to be installed:

puppy# yum install packagename

To upgrade all available packages with Yum, use the upgrade option.

puppy# yum upgrade

You can see the additional options available with Yum in its man page.

Compilers and Development Tools
Compilers and associated development tools are incredibly useful to have on your system—that
is, they are handy for you and any potential attackers. If an attacker has access to development
tools, it makes the process of penetrating your system easier. An attacker can write their own
penetration programs on your system and then use your compilers and development tools to
compile them. Additionally, some root kits require the attacker compile them on your system.
Removing the compilers and development tools makes it that much harder for an attacker.

I recommend that on your production systems you remove the compiler packages and
associated development tools or at least restrict access to them to selected users or groups.
The easiest way to restrict access to them is to create a new group and restrict execute access
on all the compiler and development tool binaries to this group.

Removing the Compilers and Development Tools
Let’s now take you through an example of removing the compilers and development tools on
a Red Hat system. Listing 1-49 shows you how you can identify the packages you should
remove or restrict on Red Hat system using the rpm command.

Listing 1-49. Identifying the Compilers and Development Tools

puppy# rpm -qg Development/Languages Development/Tools

cpp-3.2-7

dev86-0.16.3-4

gcc-3.2-7

gcc-g77-3.2-7

...

4444c01_final.qxd 1/5/05 12:42 AM Page 64

CHAPTER 1 ■ HARDENING THE BASICS 65

■Tip On SuSE you can use the yast tool to do this or on Debian the dselect tool.

Using rpm with the -qg will query on a group of packages. In Listing 1-49 this will list all
the packages that are in the package groups Development/Languages and
Development/Tools. These groups contain the compilers and associated tools. On a Debian
system this package group is called devel. If you want to remove the individual packages, you
can do this using rpm. Enter the following:

puppy# rpm -e gcc

You may run into troubles with dependencies, as many of the compilers and develop-
ment tools are dependencies for other packages installed of their type. The easiest way to do
this is to remove the packages with the --nodeps option.

puppy# rpm -e --nodeps gcc

■Caution One of the packages in the Development/Languages group is Perl. A lot of applications use Perl,
and you would probably be safer not removing this and looking at options for restricting access to the Perl
interpreter.

Restricting the Compilers and Development Tools
If you do not want to remove the packages and want to restrict access to them via permis-
sions, you can also do this. First you need to query individual packages to see what binaries
are contained in them. Then you need to restrict the permissions of these binaries.

puppy# rpm -q --filesbypkg gcc | grep 'bin'

gcc /usr/bin/c89

gcc /usr/bin/c99

gcc /usr/bin/cc

gcc /usr/bin/gcc

gcc /usr/bin/gcov

...

Here I have used rpm to show you the files provided by the gcc package. I have also used
grep to only select those files that are contained in binaries directories, /bin, /usr/bin,
/usr/sbin, and so on.

Now you need to create a group that will have access to the compiler binaries.

puppy# groupadd compiler

Then change the ownership of the binary you want to restrict. I have changed the binaries
group to compiler. Enter the following:

puppy# chown root:compiler /usr/bin/gcc

4444c01_final.qxd 1/5/05 12:42 AM Page 65

CHAPTER 1 ■ HARDENING THE BASICS66

And finally you change its permissions to be executable only by the root user and mem-
bers of the compiler group. Enter the following:

puppy# chmod 0750 /usr/bin/gcc

Now unless the user running the gcc command belongs to the group compiler, they will
get a permission-denied message when they try to run the gcc compiler.

puppy$ gcc

bash: /usr/bin/gcc: Permission denied

Hardening and Securing Your Kernel
The Linux kernel is the core of your operating system. It provides the coordinating engine
for the rest of the operating system and organizes and manages the processes of your sys-
tem. It is unfortunately also subject to some weaknesses through which attackers can gain
control of system resources or your system itself. These weaknesses can allow attackers to
run attack tools such as root kits.

■Note See Chapter 6 for more details on root kits and detecting them.

To combat these weaknesses and prevent their exploitation, you need to harden the ker-
nel. You do this by applying one or more of a series of available patches that address some of
these weaknesses. These patches are not perfect, though, but they will significantly reduce the
risk to your system from these exploits. I will cover one of the major kernel hardening patches:
Openwall. I will show you how you can apply this patch to your system, and I will explain the
various benefits, risks, and limitations created by using the patch. I will discuss the particular
features and fixes the Openwall patch offers in the section “The Openwall Project.”

Securing your kernel and hardening using available patches is not an easy process. Fun-
damentally perhaps one of the hardest Linux operating system activities that a system admin-
istrator can undertake is patching and rebuilding a kernel. This is not a reason not to do this!
I will take you through the steps you need to follow and the outputs you should expect to see
when doing this. At the end of this, you should be comfortable with doing this whenever you
need.

Getting Your Kernel Source
If you patch and harden your kernel for security purposes, then you need to work from a fresh
copy of the kernel, not the kernel that came with your distribution. You can download the lat-
est version of the Linux kernel from http://www.kernel.org. Most distributions currently
come with a version 2.4 kernel; for example, the currently supported kernel for Red Hat 3AS is
2.4.26. Run the uname -a command to find out what kernel is running on your system.

puppy# uname -a

Linux puppy.yourdomain.com 2.4.26-EL #2 Mon Jul 19 18:00:36 EST 2004 i686 i686 ➥

i386 GNU/Linux

4444c01_final.qxd 1/5/05 12:42 AM Page 66

CHAPTER 1 ■ HARDENING THE BASICS 67

You can see in the previous line the current kernel is version 2.4.26-EL. (The EL indicates
a Red Hat–specific designation meaning Enterprise Linux.)

At the time of writing, the most recently released version of the kernel was 2.6.7. But at
this stage most distributions are supporting 2.4 release kernels, so I will base my explanation
of how to install them on this release of the kernel. Nothing, though, should fundamentally
differ between the installation process for version 2.4.x kernels and version 2.6.x kernels.

Download kernel version 2.4.26. You should download the most up-to-date version at the
time you are reading this. Replace the 2.4.26 version in the next few examples with the ver-
sion of the kernel you are downloading. So Listing 1-50 shows how to download the kernel.

Listing 1-50. Downloading the Kernel Source

puppy$ cd /usr/src

puppy$ wget ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.26.tar.gz

puppy$ wget ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.26.tar.gz.sign

puppy$ gpg --keyserver wwwkeys.pgp.net --recv-keys 0x517D0F0E

gpg: key 517D0F0E: public key "Linux Kernel Archives Verification Key ➥

<ftpadmin@kernel.org>" imported

gpg: Total number processed: 1

gpg: imported: 1

Let’s look at Listing 1-50. The Linux kernel sources are generally stored in the /usr/src
directory on your system. You have downloaded the most recent version of kernel source and
the signature file for this release of the kernel source to this directory. You have also down-
loaded from the pgp.net key server the gpg public key for http://www.kernel.org and
imported it into your gpg keyring.

■Note You should check for the current key at http://www.kernel.org/signature.html.

Listing 1-51 shows how to use this public key and the signature file to verify the integrity
of the kernel source.

Listing 1-51. Verifying the Kernel Source

puppy$ gpg --verify linux-2.4.26.tar.gz.sign linux-2.4.26.tar.gz

gpg: Signature made Wed 14 Apr 2004 23:23:32 EST using DSA key ID 517D0F0E

gpg: Good signature from "Linux Kernel Archives Verification Key ➥

<ftpadmin@kernel.org>"

gpg: aka "Linux Kernel Archives Verification Key ➥

<ftpadmin@kernel.org>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: C75D C40A 11D7 AF88 9981 ED5B C86B A06A 517D 0F0E

4444c01_final.qxd 1/5/05 12:42 AM Page 67

CHAPTER 1 ■ HARDENING THE BASICS68

You have used the gpg command to verify the signature of the file and the downloaded file
together with the PGP public key downloaded in Listing 1-50. The response in Listing 1-51
shows this is a good signature. Do not worry about the last lines claiming the key is not certi-
fied with a trusted signature. This merely means you do not have the full trust chain for this
signature.

Now that you have verified the integrity of the file, you can unpack it. A lot of patches and
other related items look for the source in the directory /usr/src/linux, so you will create a sym-
bolic link to this directory using the unpacked source directory as the source of the link. You can
see this Listing 1-52.

Listing 1-52. Unpacking and Creating the Linux Symbolic Link

puppy$ tar -zxf linux-2.4.26.tar.gz

puppy$ ln -s linux-2.4.26.tar.gz linux

You now have a fresh copy of kernel source available to work with and on which to apply
the hardening patches.

The Openwall Project
The Openwall Project is a collection of security features, patches, and fixes designed to harden
and secure your kernel. You can configure the individual security features during the kernel
complication process after patching your kernel source; I will take you through doing that in
the following sections. So, what security features does Openwall introduce?

Provides a nonexecutable user stack area: The nonexecutable user stack area is
designed to reduce the risk of buffer overflows. Most buffer overflows are based on over-
writing a function’s return address on the stack to point to some malicious code. This
code is put on the stack and executed. By making the stack nonexecutable, the code is
prevented from functioning and your system is protected. This is not a perfect solution
to the threat of buffer overflows, but it does reduce the risk that a major group of exploits
that function in this way can take advantage of the weaknesses in your system.

Restrict links in /tmp: The /tmp directory (or other +t directories) are popular spots for
exploits to be executed in and from because of the openness of the directory. Several of
these types of exploit methods involve using hard links. For example, one form of hard
link attack is based on hard linking setuid or setgid binaries to a directory such as /tmp.
An exploit is discovered in one of these binaries. You update or patch the binary, but a
hard linked version still exists in another directory that the attacker can use to compro-
mise your system. Other forms of hard link attack include using hard links to cause Denial
of Service attacks by overwriting critical files or by overflowing disk space or quotas using
hard links of temporary files.

The Openwall patch stops hard links being created by users to files they do not own
unless they have read or write permissions to the file (usually permissions provided
through group membership). This may potentially impact some poorly designed applica-
tions and stop them from functioning. I recommend you test this option after implemen-
tation with any applications that utilize hard links in temporary directories.

4444c01_final.qxd 1/5/05 12:42 AM Page 68

CHAPTER 1 ■ HARDENING THE BASICS 69

Restrict FIFOs in /tmp: This restricts writes to first in/first out (FIFO) named pipes in +t
directories such as /tmp. This disallows writing to named pipes that are not owned by the
user unless the owner of the pipe is the same as the owner of the directory. This prevents
the use of untrusted named pipes to conduct attacks or for other malicious purposes.
Like the previous feature, this can also cause issues with applications. I recommend you
test this with any applications that create named pipes in temporary directories.

Restrict /proc: This function restricts the permission on the /proc directory so that users
can see only those processes they have initiated or that belong to their session. This adds
a layer of privacy and security to your system that stops potential attackers from seeing
other processes that could provide exploitable insights into your system.

Destroy shared memory segments not in use: This stops shared memory existing with-
out belonging to a process and destroys any shared memory segments after a process ter-
minates. Unfortunately, this breaks a lot of applications, including many databases (for
example, Oracle). I recommend not implementing this feature unless you understand
the implications of it.

Enforce RLIMIT_NPROC on execve(2): This allows you to control how many processes
the user can have with the RLIMIT_NPROC setting when executing programs using the
execve(2) function.

Installing Openwall
You first need to download the Openwall patch and a signature to verify the contents of the
patch. Each version of the patch is designed to match a kernel release version. You need to get
the Openwall patch that matches the kernel version you propose hardening and compiling.
Listing 1-53 shows you how to download the Openwall patch for kernel 2.4.26. Let’s download
the files to the /usr/src directory.

Listing 1-53. Getting the Openwall Patch

puppy$ cd /usr/src

puppy$ wget http://www.openwall.com/linux/linux-2.4.26-ow2.tar.gz

puppy$ wget http://www.openwall.com/linux/linux-2.4.26-ow2.tar.gz.sign

Once you have the Openwall patch, you need to verify the patch is authentic and the
integrity of the patch is maintained. This is similar to the process used with the kernel
source itself; you start by downloading and importing the Openwall gpg public key. Then
you use the signature you downloaded in Listing 1-53 to verify the patch file you down-
loaded. See Listing 1-54 for the commands you need to achieve this.

Listing 1-54. Verifying the Openwall Signature

puppy$ wget http://www.openwall.com/signatures/openwall-signatures.asc

puppy$ gpg --import openwall-signatures.asc

puppy$ gpg --verify linux-2.4.26-ow2.tar.gz.sign linux-2.4.26-ow2.tar.gz

4444c01_final.qxd 1/5/05 12:42 AM Page 69

CHAPTER 1 ■ HARDENING THE BASICS70

gpg: Signature made Sun 06 Jul 2003 13:54:56 EST using RSA key ID 295029F1

gpg: Good signature from "Openwall Project <signatures@openwall.com>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 0C 29 43 AE 1E CD 24 EA 6E 0C B6 EE F5 84 25 69

If your patch has a good signature (and again ignore the last four lines about trusted sig-
natures as you did when downloading the kernel source), then you can unpack it and patch
your kernel source with it. Listing 1-55 takes you through the process of doing this.

Listing 1-55. Patching the Kernel Source

puppy$ cd /usr/src

puppy$ tar -zxf linux-2.4.26-ow2.tar.gz

puppy$ cp linux-2.4.26-ow2/linux-2.4.26-ow2.diff .

puppy$ patch -p0 < linux-2.4.26-ow2.diff

patching file linux/Documentation/Configure.help

patching file linux/Makefile

patching file linux/arch/alpha/config.in

patching file linux/arch/alpha/defconfig

patching file linux/arch/alpha/kernel/osf_sys.c

...

First, you change to the /usr/src directory. It is easiest to place your patch here for conti-
nuity’s sake for your kernel source. Then unpack the patch to create a directory linux-version-
owpatchnumber, in this case linux-2.4.26-ow2, where version is the version of the kernel to be
patched and patchnumber is the version of the Openwall patch for this kernel release.

Next copy the .diff file (which contains the instructions telling the patch command which
source files and lines to change in order to implement the patch) to the /usr/src directory. Now
from the /usr/src directory run the patch command, inputting the contents of the .diff file
with the < operator. This patches your kernel source using the .diff file to tell the patch which
source files and lines need to be changed.

You should see similar output to the patching lines in Listing 1-55, and if the patch is suc-
cessful, then you should be returned to the command line without any reports of FAIL’ed patch
lines or prompts. If the patch does fail, then check you have the right version of the patch for
your kernel and that you copied the .diff file into the right location, /usr/src.

Now you have patched your kernel source, and you can start by compiling your new hard-
ened kernel. You need to make sure you are starting from a clean compile. Change to the
/usr/src/linux directory, and run the following command to confirm your kernel source
compile is going to be from a clean start.

puppy$ make mrproper

The make mrproper function clears out any leftover files from previous compilations and
old configuration files. When the process completes, then you can continue onto configuring
your kernel.

4444c01_final.qxd 1/5/05 12:42 AM Page 70

CHAPTER 1 ■ HARDENING THE BASICS 71

Next you would normally be using the make config command (or its menu-based variation
make menuconfig) to configure the features of your new kernel. Kernel configuration involves
choosing the features, modules, and drivers your kernel will support. It can be a tricky and painful
process to conduct from scratch, with multiple recompilations potentially required to ensure all
your requirements are addressed.

But you have a simpler way to configure your kernel. You already have a kernel that was
been compiled as part of the installation process of your distribution. This is the kernel you
use every day to run your system, so you know it works. When this kernel was created, a con-
figuration file was produced that contains all the information about the kernel and the hard-
ware, drivers, modules, and features enabled. This configuration file is usually stored on Red
Hat and Debian systems in the /boot directory and called by config-version, where version is
the version of the kernel currently running. You can short-circuit the configuration process by
copying this config to /usr/src/linux as the file .config. The .config file would normally be
created by running the make config or make menuconfig commands. See Listing 1-56 for the
process of copying this file.

Listing 1-56. Copying the Old Kernel Configuration

puppy$ cp /boot/config-2.4.26-EL /usr/src/linux/.config

You can then use a different command, make oldconfig, to pick up your old configuration
from the .config file rather than going through and selecting an entirely new configuration.

Now you can run the command in Listing 1-57 to configure your kernel.

Listing 1-57. Configuring the Kernel

puppy$ cd /usr/src/linux

puppy$ make oldconfig

You will find that instead of being prompted for the majority of kernel configuration
options, you will be prompted only for a few. These few will consist of any new features added
to your kernel (if upgrading to a more recent kernel version) and the Openwall configuration
options. If you are prompted for new features and options, they will appear similar to the
option on the next line.

Atmel at76c502/at76c504 PCMCIA cards (CONFIG_PCMCIA_ATMEL) [N/y/m/?] (NEW)

This example prompts you to compile support for some new hardware. You could also be
prompted to install new modules or software features. I recommend that unless you require
any of these features or functions for which you have been prompted, select N for No. This is
usually the default. If you require more information on the new item, then you can use the ?
option to get more information about the item.

■Note If you really insist on totally reconfiguring your kernel (and I recommend against it unless you know
what you are doing), then you would run the make config command (for command-line-based configura-
tion of your kernel) or the make menuconfig (for a menu-based version of the kernel configuration) instead
of the make oldconfig command. I recommend the make menuconfig variation.

4444c01_final.qxd 1/5/05 12:42 AM Page 71

CHAPTER 1 ■ HARDENING THE BASICS72

Let’s now look at the Openwall configuration options. Listing 1-58 shows the prompts you
will be asked to answer as part of the Openwall configuration. The Openwall configuration
options should appear at the end of the make oldconfig (or whatever variation of the kernel
configuration process you have chosen to use) process. In Listing 1-58 I have configured these
in line with the recommendations I made when discussing the various features of Openwall
previously. For these options by answering y, you enable a feature. Use N to disable a feature.

Listing 1-58. Openwall Configuration Prompts

*

* Security options

*

Non-executable user stack area (CONFIG_HARDEN_STACK) [N/y/?] (NEW) y

Autodetect and emulate GCC trampolines (CONFIG_HARDEN_STACK_SMART) [N/y/?] (NEW) N

Restricted links in /tmp (CONFIG_HARDEN_LINK) [N/y/?] (NEW) y

Restricted FIFOs in /tmp (CONFIG_HARDEN_FIFO) [N/y/?] (NEW) y

Restricted /proc (CONFIG_HARDEN_PROC) [N/y/?] (NEW) y

Enforce RLIMIT_NPROC on execve(2) (CONFIG_HARDEN_RLIMIT_NPROC) [N/y/?] (NEW) y

Destroy shared memory segments not in use (CONFIG_HARDEN_SHM) [N/y/?] (NEW) N

The only option from Listing 1-58 I have not discussed is the Autodetect and emulate GCC
trampolines option, which is an extension of the nonexecutable user stack area feature. This
allows the use of a nonexecutable user stack area with the glibc version 2.0 nested function
extensions and predominantly with version 2.0 kernels. To check your version of glibc, enter
the command in Listing 1-59.

Listing 1-59. Checking the glibc Command

puppy# /lib/libc.so.6

\GNU C Library stable release version 2.3.2, by Roland McGrath et al.

On most recent distributions it should be at least version 2.3. If it is more recent than
version 2.0, then enter n to not install this option.

Now that you have configured your Openwall patch, you need to compile your kernel.
The commands in Listing 1-60 will do this for you.

Listing 1-60. Compiling the Kernel

puppy# cd /usr/src/linux

puppy# make dep bzImage modules modules_install

puppy# make install

The first make line combines a number of compilation steps. First it makes all the required
dependencies using the dep option. Then it makes a new boot image using the bzImage option.
Then it compiles any modules required using the modules option. Finally it installs any modules
using the modules_install option. At the end of this first make line you should have a fully com-
piled kernel and new boot image. The next line, make install installs that new boot image in
your boot loader ready for you to reboot and use that new kernel.

4444c01_final.qxd 1/5/05 12:42 AM Page 72

CHAPTER 1 ■ HARDENING THE BASICS 73

Let’s just confirm the boot loader configuration has been suitably updated. Listing 1-61
shows what your lilo.conf entry for the new kernel should look like after being updated by
the make install action. You have added the password option to the lilo.conf file to secure
your new kernel, too. Remember to run the lilo command after adding the password to update
your boot loader configuration.

Listing 1-61. Confirming Your lilo.conf Configuration

image=/boot/vmlinuz-2.4.26-ow2

password=secretpassword

label=linux 2.4.26 (Owl)

initrd=/boot/initrd-2.4.26-ow2.img

read-only

append="root=LABEL=/"

If you use Grub, you can see the updated entry for the grub.conf configuration file in
Listing 1-62. I have also added a password here, too.

Listing 1-62. Confirming your grub.conf Configuration

title Red Hat Enterprise Linux AS (2.4.26-ow2)

password --md5 $1$2Q0$I6k7iy22wB27CrkzdVPe70

root (hd0,0)

kernel /vmlinuz-2.4.26-ow2 ro root=LABEL=/

initrd /initrd-2.4.26-ow2.img

After rebooting your system, selecting the new kernel, and booting it, you should be run-
ning with your new kernel. To confirm this, run the uname -a command after you have rebooted.

puppy# uname -a

Linux puppy.yourdomain.com 2.4.26-ow2 #2 Mon Jul 19 18:00:36 EST 2004 i686 i686 ➥

i386 GNU/Linux

You can now see that the puppy system is running a new kernel, 2.4.26-ow2, which is the
Openwall patched kernel.

Testing Openwall
So you installed your Openwall patch and now you want to know if it does anything? Well, the
patch does come with some code you can use to test some functions. Inside the directory you
unpacked you will find the Openwall, which is a C program called stacktest.c. You will com-
pile this program and run some tests. Listing 1-63 shows how to compile the program.

Listing 1-63. Compiling the stacktest.c Program

puppy$ cd /usr/src/linux-.2.4.26-ow2/optional

puppy$ gcc -o stacktest stacktest.c

4444c01_final.qxd 1/5/05 12:42 AM Page 73

CHAPTER 1 ■ HARDENING THE BASICS74

This compile uses gcc to produce a binary called stacktest in the /usr/src/linux-2.4.26-ow2
directory. You can run stacktest to simulate a buffer overflow by running the following
command:

puppy# ./stacktest -e

Attempting to simulate a buffer overflow exploit...

Segmentation fault

If the command execution ends in a Segmentation fault, then the buffer overflow attempt
has failed and the patch is functioning as intended.

If you have enabled the /tmp restrictions, you should also be able to test these by trying to
create hard links in /tmp to files that you do not own or trying to write to named pipes you do
not own. Do these tests as a normal user, not as the root user. Doing the tests as the root user
proves nothing.

Other Kernel-Hardening Options
Other “hardened” kernels and kernel-hardening patches are available, and I will briefly cover
some other available options. Many of the patches offer similar functionality, and I recommend
you carefully read the documentation that accompanies them to find the one that suits you best.

grsecurity
The grsecurity package available at http://www.grsecurity.net/ provides a collection of
detection, prevention, and containment modifications to the kernel. These include a role-
based access control system that allows you to add a finer granularity of access controls to
users, applications, and processes based on defining roles. Amongst other features it also adds
security to the chroot application, increases protection against buffer overflows, and provides
a security infrastructure to the kernel. This package takes a considerable effort to configure
and implement, and you need to design the role-based controls to suit your environment.

LIDS
The Linux Intrusion Defense System (LIDS) is another patch that offers access controls such
as SELinux and grsecurity. It also comes with a port scanner detector built into the kernel and
provides some further file system–hardening and network-hardening modifications that are
related to security. LIDS is available from http://www.lids.org/, currently supports version 2.6
kernels, and is regularly updated.

RSBAC
The Rule Set Based Access Controls (RSBAC) project is one of the more fully featured kernel
security packages. It offers a number of different access control models that you can use sepa-
rately or together. It also offers process jails (a kernel-based version of the chroot command),
resource controls, and support for the PaX project11 (designed to reduce the risk of buffer
overflow and similar style of attacks). It is available at http://www.rsbac.org/, and it supports
version 2.4 and 2.6 kernels.

11. http://pax.grsecurity.net/

4444c01_final.qxd 1/5/05 12:42 AM Page 74

CHAPTER 1 ■ HARDENING THE BASICS 75

SELinux
The SELinux package is an initiative of the NSA and is available at http://www.nsa.gov/selinux/.
Similar in style to the grsecurity package, it provides role-based access control lists (ACLs) that
control what resources applications and processes are able to use. These ACLs are governed by
a central security policy. The package comes with a kernel patch, some patches to system tools,
and some administration tools. Like grsecurity this package also takes a considerable effort to
configure and implement. You also need to design the role-based controls to suit your environ-
ment though the SELinux package does come with a sample security policy that you can modify
for your purposes. SELinux also supports 2.6 kernels, and in the case of Red Hat Enterprise Linux
it is integrated into version 3 of this distribution.

Keeping Informed About Security
In the “Package Management, File Integrity, and Updating” section I talked about older releases
of packages and applications having exploits and vulnerabilities and the need to keep them up-
to-date. In the following sections I will cover some of the ways to find out about these exploits
and vulnerabilities and how to keep up-to-date with security issues in general. This allows you to
ensure you know what to update and upgrade your packages in a timely manner when exploits
are discovered. Doing so denies any potential attackers the opportunity to use those exploits on
your system.

Security Sites and Mailing Lists
The following are sites that contain information relevant to Linux security and security in
general:

CERT: CERT (http://www.cert.org/) is a coordination center and clearinghouse for
reporting incidents and vulnerabilities. It also runs the CERT advisory mailing list, which
consists of announcements of major vulnerabilities across a variety of operating systems
and applications as well as notifications of major virus attacks or notable security inci-
dents. You can subscribe at http://www.cert.org/contact_cert/certmaillist.html.

LinuxSecurity.com: The Linuxsecurity.com site (http://www.linuxsecurity.com/) con-
tains a variety of documents and resources that focus on Linux Security–related issues
including HOWTOs, FAQs, articles, and interviews. It also has a variety of mailing lists
you can subscribe to at http://www.linuxsecurity.com/general/mailinglists.html.

SANS: The SANS Institute (http://www.sans.org/) largely runs information security
training and oversees a variety of security certification programs. The site also con-
tains a large collection of documents regarding all aspects of information security. It
has a number of newsletters you can subscribe to at http://www.sans.org/sansnews.
It also runs its own early warning site called the Internet Storm Center, which you can
access at http://isc.sans.org/.

4444c01_final.qxd 1/5/05 12:42 AM Page 75

CHAPTER 1 ■ HARDENING THE BASICS76

Security Focus: The Security Focus site12 (http://www.securityfocus.com) is a vendor-
neutral site containing a collection of security resources. These include the BugTraq mail-
ing list, which is probably the most comprehensive mailing list of security vulnerabilities.
You can subscribe to the mailing list at http://www.securityfocus.com/archive. The site
also contains the Security Focus Vulnerability Database. The database should be one of
your first ports of call when checking for vulnerabilities in an application, distribution, or
tool. You can find it at http://www.securityfocus.com/bid.

Vendor and Distribution Security Sites
These are sites maintained by the authors and vendors of a variety of Linux distributions that
focus on security and security-related announcements specific to that distribution. Many of
them also contain links to distribution specific mailing lists, such as Red Hat’s Watch-List
Advisories, which provide notifications of security-related material.

• Debian: http://www.debian.org/security/

• Gentoo: http://www.gentoo.org/security/en/glsa/

• Mandrake: http://www.mandrakesoft.com/security/

• Red Hat: http://www.redhat.com/support/errata/

• SuSE: http://www.suse.com/us/support/security/index.html

• Yellow Dog: http://www.yellowdoglinux.com/resources/updates.shtml

Resources
The following are some resources for you to use.

Mailing Lists

• PAM mailing list: https://listman.redhat.com/mailman/listinfo/pam-list

• Kernel traffic mailing list: http://zork.net/mailman/listinfo/ktdistrib

• grsecurity mailing list: http://grsecurity.net/cgi-bin/mailman/listinfo/grsecurity

• LIDS mailing list: http://www.lids.org/maillist.html

• RSBAC mailing list: http://www.rsbac.org/mailman/listinfo/rsbac/

• SELinux mailing list: http://www.nsa.gov/selinux/info/subscribe.cfm

• GNU Privacy Guard mailing list: http://lists.gnupg.org/pipermail/gnupg-users/

12. Symantec acquired the Security Focus site in 2002, but part of the sale agreement states the site must
remain vendor neutral.

4444c01_final.qxd 1/5/05 12:42 AM Page 76

CHAPTER 1 ■ HARDENING THE BASICS 77

Sites

• Chkconfig: http://www.fastcoder.net/~thumper/software/sysadmin/chkconfig/

• Vlock: http://linux.maruhn.com/sec/vlock.html or
http://freshmeat.net/projects/vlock/

• Titan hardening script: http://www.fish.com/titan/

• PAM_passwdqc: http://www.openwall.com/passwdqc/

• Acct tools: http://www.ibiblio.org/pub/linux/system/admin/accounts/
acct-1.3.73.tar.gz

• General PAM: http://www.kernel.org/pub/linux/libs/pam/

• PAM modules: http://www.kernel.org/pub/linux/libs/pam/pre/modules/

• Openwall: http://www.openwall.com/linux/

• Grsecurity: http://www.grsecurity.net/

• LIDS: http://www.lids.org/

• RSBAC: http://www.rsbac.org/

• SELinux: http://www.nsa.gov/selinux/

• PaX: http://pax.grsecurity.net/

• MD5 Crack: http://www.md5crk.com/

• GPG: http://www.gnupg.org/

• NRH-up2date: http://www.nrh-up2date.org/

• APT for RPM: http://freshrpms.net/apt/

• Yum: http://linux.duke.edu/projects/yum/

4444c01_final.qxd 1/5/05 12:42 AM Page 77

Firewalling Your Hosts

Perhaps the most important element of your host’s defenses against attack is the firewall. In
many cases, the firewall is the first line of defense against attacks on your hosts. A firewall can
help you defend your hosts in three principal ways: dealing with unwanted incoming traffic,
dealing with unwanted outgoing traffic, and handling the logging of suspicious traffic or traf-
fic known to be of malicious intent. A firewall functions as both a defensive measure and an
early warning system.

So what is this firewall thing I am talking about? Well, a variety of firewalls are designed
to be deployed in different locations on your network. For example, most networks have a fire-
wall installed at the perimeter of the network to protect your entire network. These are often
hardware-based firewalls such as Cisco PIX devices, software-based firewalls such as Check
Point Firewall-1,1 or Linux-based solutions such as SmoothWall.2 Other firewalls, such as
iptables or Zone Alarm, are designed to protect individual hosts.

In this chapter, I focus on protecting individual hosts with Netfilter through its user space
interface iptables. I thus will not cover Netfilter’s capabilities as a dedicated firewall-router,
which includes functions such as packet forwarding and Network Address Translation (NAT).
The emphasis in this chapter is on building secure firewalls for stand-alone and bastion hosts
while not limiting the capabilities of your applications and services. This means I will not cover
every single feature of iptables and Netfilter; instead, I recommend some books and sites in
the “Resources” section that offer further information on the areas I have not covered in this
chapter.

The doctrine for setting up the securest possible host-based firewall reflects some of the
concepts I discussed in the book’s introduction: minimalism and vigilance. Your firewall should
be minimalist in design and managed by exception. The simplest, securest, and most minimally
configured possible firewall is one that denies everything: from everywhere and to everywhere.
I recommend this should be your default firewall design. Any access to your host should be the
exception, not the rule—you create a wall and then carefully remove only those bricks that are
required for access.

This applies to network traffic in two ways: when you assess what a single host is expected
to receive and transmit on your local network and when you decide what traffic you want to
enter your bastion host from foreign networks. In the second case, I am deliberately not say-
ing the “Internet,” because the principle applies to all internetworking. You should be think-
ing about protecting and monitoring all your network borders whether they are shared with

79

C H A P T E R 2

■ ■ ■

1. http://www.checkpoint.com/products/firewall-1/

2. http://www.smoothwall.org/

4444c02_final.qxd 1/5/05 12:50 AM Page 79

CHAPTER 2 ■ FIREWALLING YOUR HOSTS80

subsidiaries, clients, service providers, and so on. This makes sense because you may not be
able to control the security policies of those connected networks, and therefore you may not
be able to trust them.

Vigilance also comes into your firewall design and management as it is going to be a key
aspect of firewall construction. They allow you to both see where you are going wrong and when
your rules are being effective in addition to providing information on what traffic is being gener-
ated on a host and who is generating it. I recommend getting a laptop and small hub that you can
use to connect to any host on your network to see what traffic it creates and consumes. Using this
combination, you can quickly see over which ports and to what networks a host communicates
and then adjust your firewall rules accordingly. Tools such as Ethereal and tcpdump are great for
snooping on network conversations (and I will show you how to use tcpdump in the “Testing and
Troubleshooting” section). Do not forget the ethical implications this has. You may need sign-off
from your organization’s management before you can legitimately monitor traffic on some or all
of your network.

I will show you how iptables-based firewalls work on a Linux host, how to construct
a firewalls for stand-alone and bastion hosts, and cover additional Netfilter modules and
kernel-tuning parameters, testing and troubleshooting your firewalling, and some tools you
can use with your firewalls and firewalling. In Appendix A, I provide you with a script for
a bastion host–based on the information in this chapter; you can edit and configure it to
provide a suitable firewall for your own hosts.

I will not explain basic networking to you. To understand this chapter, you should have
an understanding of IP addressing, subnetting, and the basic operation of TCP/IP traffic. You
should also be able to control the networking configuration of your host using the basic con-
figuration tools available such as ifconfig. Also, I will not cover network design in any great
detail because this book is aimed at host-level security, not network security in a broader con-
text. I will not examine NAT and routing using iptables. Books are available that better cover
those issues aimed at using Linux and iptables for firewalling and routing, and I list some of
them in the “Resources” section at the end of this chapter.

■Note This chapter focuses on IPv4 networking. At this point, industry-spread acceptance of IPv6 net-
working is not sufficient to merit its coverage.

So, How Does a Linux Firewall Work?
The tools I will be using to provide firewall functions are built on the Netfilter framework
that exists in the Linux kernel. Netfilter was written by Rusty Russell3 and has been in Linux
since version 1.0 although at that stage it was a rewrite of pf from NetBSD. It allows the
operating system to perform packet filtering and shaping at a kernel level, and this allows
it to be under fewer restrictions than user space programs. This is especially useful for dedi-
cated firewall and router hosts.

3. http://ozlabs.org/~rusty/

4444c02_final.qxd 1/5/05 12:50 AM Page 80

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 81

Netfilter is a stateful packet-filtering firewall. Two types of packet-filtering firewalls exist:
stateful and stateless. A stateless packet-filtering firewall examines only the header of a packet
for filtering information. It sees each packet in isolation and thus has no way to determine if
a packet is part of an existing connection or an isolated malicious packet. A stateful firewall
maintains information about the status of the connections passing through it. This allows the
firewall to filter on the state of the connection, which offers considerably finer-grained control
over your traffic.

Netfilter is controlled and configured in user space by the iptables command. In previ-
ous versions of the Linux kernel, other commands provided this functionality. In kernel ver-
sion 2.2 it was ipchains, and in version 2.0 it was ipfwadm. I cover the iptables command in
this chapter, and I will frequently use this name to refer to the firewall technology in general.
Most Linux-based distributions will have an iptables package, but they may also have their
own tool for configuring the rules. Some of these may be worth looking into, but they may not
be easy to use for more complicated configurations or may make dangerous configuration
assumptions.

■Note This chapter was written using iptables version 1.2.11, which was the most recent at the time of
writing. You can use the command, iptables -V, to find the version of the iptables command on your host.

Netfilter works by referring to a set of tables. These tables contain chains, which in turn
contain individual rules. Chains hold groups of like rules; for example, a group of rules govern-
ing incoming traffic could be held in a chain. Rules are the basic Netfilter configuration items
that contain criteria to match particular traffic and perform an action on the matched traffic.

Traffic that is currently being processed by the host is compared against these rules, and if
the current packet being processed satisfies the selection criteria of a rule, then the action speci-
fied by that rule is carried out. These actions, amongst others, can be to ignore the packet, accept
the packet, reject the packet, or pass the packet onto other rules for more refined processing. Let’s
look at an example; say the Ethernet interface on your Web server has just received a packet from
the Internet. This packet is checked against your rules and compared to their selection criteria.
The selection criteria include such items as the destination IP address and the destination port.
For example, you want incoming Web traffic on the HTTP port 80 to go to the IP address of your
Web server. If your incoming traffic matches these criteria, then you specify and action to let it
through. This is a simple example that shows how an iptables rule could work.

Each iptables rule relies on specifying a set of network parameters as selection criteria
to select the packets and traffic for each rule. You can use a number of network parameters to
build each iptables rule. For example, a network connection between two hosts is referred
to as a socket. This is the combination of a source IP address, source port, destination IP address,
and destination port. All four of these parameters must exist for the connection to be estab-
lished, and iptables can use these values to filter traffic coming in and out of hosts. Addition-
ally, if you look at how communication is performed on a TCP/IP-based network, you will see
that three protocols are used frequently: Internet Control Message Protocol (ICMP), Transmis-
sion Control Protocol (TCP), and User Datagram Protocol (UDP). The iptables firewall can
easily distinguish between these different types of protocols and others.

4444c02_final.qxd 1/5/05 12:50 AM Page 81

CHAPTER 2 ■ FIREWALLING YOUR HOSTS82

With just these five parameters (the source and destination IP addresses, the source and
destination ports and the protocol type), you can now start building some useful filtering
rules. But before you start building these rules, you need to understand how iptables rules
are structured and interact. And to gain this understanding, you need to understand further
some initial iptables concepts such as tables, chains, and policies.

Tables
I talked about Netfilter having tables of rules that traffic can be compared against and some
action taken. Netfilter has three built-in tables that can hold rules for processing traffic. The
first is the filter table, which is the default table used for all rules related to the filtering of
your traffic. The second is nat, which handles NAT rules, and the last is the mangle table, which
covers a variety of packet alteration functions. When constructing the iptables rules in this
chapter, I will focus on the filter table.

Chains
The iptables rules are broken down within the tables I have described into groupings called
chains. Each table contains default chains that are built into the table. You can also create chains
of your own in each table to hold additional rules. Let’s focus on the built-in chains in the filter
table. These are FORWARD, INPUT, and OUTPUT. Each chain correlates to the basic paths that packets
can take through a host. When the Netfilter logic encounters a packet, the first evaluation it
makes is to which chain the packet is destined. If a packet is coming into the host through a net-
work interface, it needs to be evaluated by the rules in the INPUT chain. If the packet is generated
by this host and going out onto the network via a network interface, then it needs to be evalu-
ated by the rules in the OUTPUT chain. The FORWARD chain is used for packets that have entered the
host but are destined for some other host (for example, on hosts that act as routers or software-
based firewalls at the perimeter of your network or between your network and the Internet).

Policies
Each chain defined in the filter table also can have a policy. A policy is the default action a chain
takes on a packet to determine if a packet makes it all the way through the rules in a chain with-
out matching any of them. The policies you can use for packets are DROP, REJECT, and ACCEPT.
When the iptables commands is first run, it sets some default policies for built-in chains. The
INPUT and OUTPUT chains will have a policy of ACCEPT, and the FORWARD chain will have a policy
of DROP.

The DROP policy discards a packet without notifying the sender. The REJECT policy also dis-
cards the packet, but it sends an ICMP packet to the sender to tell it the rejection has occurred.
The REJECT policy means that a device will know that its packets are not getting to their destina-
tion and will report the error quickly instead of waiting to be timed out, as is the case with the
DROP policy. The DROP policy is contrary to TCP RFCs and can be a little harsh on network devices;
specifically, they can sit waiting for a response from their dropped packet(s) for a long time. But
for security purposes it is generally considered better to use the DROP policy rather than the
REJECT policy, as it provides less information to the outside world.

The ACCEPT policy accepts the traffic and allows it to pass through the firewall. Naturally
from a security perspective this renders your firewall ineffective if it is used as the default policy.
By default iptables configures all chains with a policy of ACCEPT, but changing this to a policy of

4444c02_final.qxd 1/5/05 12:50 AM Page 82

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 83

DROP for all chains is recommended. This falls in line with the basic doctrine of a default stance
of denial for the firewall. You should deny all traffic by default and open the host to only the traf-
fic to which you have explicitly granted access. This denial can be problematic, because setting
a default policy of DROP for the INPUT and OUTPUT chains means incoming and outgoing traffic are
not allowed unless you explicitly add rules to allow traffic to come into and out of the host. This
will cause all services and tools that connect from your host that are not explicitly allowed to
enter or leave that host to fail.

Adding Your First Rules
The majority of our work will be on the INPUT and OUTPUT chains of the filter table, as I will be
defending hosts from the outside world by attempting to narrow down the incoming traffic to
only the bare minimum required for the host to perform its designated function. So I will cre-
ate some rules for the INPUT and the OUTPUT chains to demonstrate how iptables works. To create
a new rule, you can simply add one to a chain with the iptables command. Let’s add the rule
to deal with HTTP traffic on port 80 that I described earlier.

puppy# iptables -A INPUT -i eth0 -p tcp --dport 80 -d 192.168.0.1 -j ACCEPT

■Note The iptables function is interactive. The rule will take effect immediately upon being added.
All rules exist in memory and will be lost when the system is rebooted. I will cover methods of saving rule
sets and starting and stopping iptables in the “Managing iptables and Your Rules” section.

So what does this command do? Well, in the next few paragraphs let’s break it down into
its component pieces. The first flag, -A, tells iptables that this is an addition and specifies to
which chain the new rule should be added.

■Note By default, unless overridden, all new rules are added to the filter table, so you do not need
to define to which table you are adding it.

The -i flag specifies which device the traffic will use to enter the host. I have indicated
eth0, which would be the first Ethernet device on your host. If you do not specify a device
then iptables assumes the rule applies to all incoming network traffic from all devices.

The next flag, -p, specifies the protocol of the packets you are filtering, in this case tcp.
As HTTP is a TCP protocol, I have told iptables to select only TCP packets. If you were selecting
a protocol that used UDP or ICMP traffic, you would specify udp here for UDP traffic or icmp for
ICMP traffic, respectively. You could also select a particular protocol by number; for example,
you could use -p 50, which is the Authentication Header that is used for IPSec connections.4

4. You can see a list of all the protocol numbers at http://www.iana.org/assignments/protocol-numbers.

4444c02_final.qxd 1/5/05 12:50 AM Page 83

CHAPTER 2 ■ FIREWALLING YOUR HOSTS84

The following flags are related to the destination of the packets that iptables is filtering. The
--dport flag tells iptables to select only packets destined for port 80, the standard port for HTTP
traffic. The -d selects only those packets destined for the specified IP address, 192.168.0.1. If you
do not specify a destination IP address, then iptables would apply this rule to all incoming HTTP
traffic on eth0.

The last flag in the rule, -j, specifies the ultimate action or target of the rule. In this case
I am using the ACCEPT target, which accepts the packets. The ACCEPT target also indicates that
if the packet being filtered matches this rule, then no other rule matches are performed and
the packet can pass through the firewall. Several other targets exist. For example, you could
change the proposed target to DROP, as shown in the next line:

puppy# iptables -A INPUT -i eth0 -p tcp --dport 80 -d 192.168.0.1 -j DROP

Then if the incoming packet matched this rule, it would be dropped and no other rules
would be checked. Targets offer similar functionality to the policies I have described. Indeed,
ACCEPT, DROP, and REJECT targets perform the same function as their policy namesakes. But
there are also more targets available to you than their policy counterparts, and I will describe
some of these targets in the coming sections.

Let’s say this is the first rule for a Web server. The example Web server also runs a secure
site using HTTPS, so you decide to add a rule to handle this traffic, too.

puppy# iptables -A INPUT -i eth0 -p tcp --dport 443 -d 192.168.0.1 -j ACCEPT

Here I have created an almost identical rule to the previous one except I have specified
that the rule will filter on the destination HTTPS port 443.

So now both HTTP and HTTPS traffic are allowed into the host and will be passed to the
Web server. But what happens if you want HTTP and HTTPS traffic to get back out of the host,
which would be required to allow the Web server to correctly function? All outgoing traffic is
handled by rules defined in the OUTPUT chain. So you need to add rules to handle the outgoing
traffic from the Web server to the OUTPUT chain.

puppy# iptables -A OUTPUT -o eth0 -p tcp --sport http -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp --sport https -j ACCEPT

While these new rules are similar to the rules you have already defined, they have some
important differences. The first is that the -A flag is now adding these rules to the OUTPUT chain
rather than the INPUT chain. I have also specified the device eth0 again, but I have specified it
using the -o flag. The -o flag indicates traffic outgoing on the specified device as opposed to
the -i flag, which indicates incoming traffic on the specified device.

Like the previous rules, you are still specifying the TCP protocol using the -p flag but
instead of the destination port as indicated by the --dport flag, you are now using the --sport
flag, which defines the source port from which the HTTP or HTTPS traffic comes. You can also
specify both the --sport and --dport options in a rule to allow you dictate the ports at both
end of the connection, as you can see in the next line. Enter the following:

puppy# iptables -A INPUT -i eth0 -p tcp --sport imap --dport imaps -j ACCEPT

In the rule on the previous line all incoming TCP traffic from the imap port is allowed to go
through to the imaps port.5

5. Ports 143 and 993, respectively

4444c02_final.qxd 1/5/05 12:50 AM Page 84

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 85

In the last three rules you have also replaced the references to the numeric port numbers
with the name of the services being filtered, http and https and imap and imaps. These services
are defined in the file /etc/services. Listing 2-1 shows the service definitions for these proto-
cols from this file.

Listing 2-1. Service Definitions in the /etc/services File

http 80/tcp www www-http # WorldWideWeb HTTP

imap 143/tcp imap # IMAP

https 443/tcp # MCom

imaps 993/tcp imaps # IMAPS

I recommend using the service name rather than the port for your source and destination
ports, as it makes your rules easier to read and understand.

Finally, you have again used the target of ACCEPT as defined by the -j flag to indicate that
this traffic is allowed to leave the host.

In combination, the four rules you have defined allow a Web server to receive and send
HTTP and HTTPS traffic from a host. While not an ideal (or complete) configuration, this rep-
resents a limited-functioning iptables firewall. From this you will build more complicated
firewall configurations, but first you will examine how to identify what to filter on and look
at the iptables command and some of its options.

THE /etc/services FILE

It is important to secure the /etc/services file. It contains a list of network services and matching ports.
Listing 2-2 shows a sample of this file.

Listing 2-2. Sample /etc/services File

ftp 21/tcp

ftp 21/udp fsp fspd

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

telnet 23/udp

Although actually disabling services you do not use in this file can inconvenience attackers, it will not actively
stop them using the service you have disabled. But I recommend not allowing anyone to edit this file and
potentially add any services to your host. Use the following commands to secure the file:

puppy# chown root:root /etc/services

puppy# chmod 0644 /etc/services

puppy# chattr +i /etc/services

The chattr +i command makes the /etc/services immutable: it cannot be deleted, it cannot be
renamed, and no link can be created to this file.

4444c02_final.qxd 1/5/05 12:50 AM Page 85

CHAPTER 2 ■ FIREWALLING YOUR HOSTS86

Choosing Filtering Criteria
Determining what an iptables rule is going to filter on is an important part of the configura-
tion process, and you need to understand the basic structure of a TCP/IP transaction. As I have
discussed, you can filter on source and destination IP addresses, source and destination ports,
protocols, and a variety of other options. The best method of choosing how to filter your traffic
is to make a map of your incoming and outgoing traffic. Table 2-1 provides an example of how
you do this.

Table 2-1. HTTP Traffic Flow Incoming

Interface Source Address Source Port Protocol Destination Address Destination Port

eth0 Any 32768 to 61000 TCP 192.168.0.1 80

For the example in Table 2-1. I have used incoming HTTP traffic and laid out all the infor-
mation I know about the incoming traffic. First I have highlighted the incoming interface, eth0,
that will be handling the traffic. Then I have identified the potential source addresses that will
be the clients querying the Web server. The first question is now whether you can determine
who the client is. Most Web servers will be open to traffic from all source addresses, but in some
cases—for example, for an Intranet Web server used only in a local network—you may be able
to use the local network source address as a filtering criteria. In the example in Table 2-1. I will
be allowing traffic from any source address.

The next item is the source port of the incoming traffic. The source and destination ports
of a TCP connection are determined in one of two ways: the server end of a connection is gen-
erally assigned a predetermined port number for that particular service; for example, by default
DNS servers use port 53 and SMTP server use port 25. The Internet Assigned Numbers Author-
ity (IANA) assigns these numbers, and you can see the definitive list at http://www.iana.org/
assignments/port-numbers. At the client end, incoming requests from remote clients can come
in from a range of random source ports called ephemeral ports. The remote client assigns each
outgoing connection a port from this range. The exact range varies from operating system to
operating system. On Linux systems to see what the range of your ephemeral ports is, you can
review the contents of the file /proc/sys/net/ipv4/ip_local_port_range. For Red Hat Linux
systems this range is generally 32768 to 61000. For Debian systems the range is 1024 to 4099.
Unless you know the range of ephemeral ports being used by all your client systems I recom-
mend not using this as a filter for rules.

Next I have identified the protocol the traffic will be using, tcp, which is a filtering criteria
you should be able use in most rules to filter traffic. Finally, I have identified the destination
address and destination port; in this case for the incoming HTTP, traffic is the IP address of the
local Web server and the HTTP port 80. Again, for incoming traffic, these are going to be com-
monly used to filter your traffic.

You can list all your proposed incoming traffic this way (see Table 2-2).

4444c02_final.qxd 1/5/05 12:50 AM Page 86

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 87

Table 2-2. Incoming Traffic Flow

Interface Source Address Source Port Protocol Destination Address Destination Port

eth0 Any 32768 to 61000 TCP 192.168.0.1 80

eth0 Any Any TCP 192.168.0.1 25

eth0 Any Any TCP 192.168.0.1 22

eth1 192.168.0.0/24 Any TCP 192.168.0.1 53

Of course, you can also conduct this same exercise for the outgoing traffic (see Table 2-3).

Table 2-3. Outgoing Traffic Flow

Interface Source Address Source Port Protocol Destination Address Destination Port

eth0 192.168.0.1 80 TCP Any 32768 to 61000

eth0 192.168.0.1 25 TCP Any Any

eth0 192.168.0.1 22 TCP Any Any

eth1 192.168.0.1 25 TCP 192.168.0.0/24 Any

You can model all the connections on your host this way to allow you to apply suitable
iptables rules to your incoming and outgoing connections. You can then combine these lists
of traffic into an overall test plan for your firewall rules. Then using a tool such as tcpdump, you
can identify whether your rules cover all the incoming and outgoing traffic on your host.

The iptables Command
The iptables command principally controls adding and removing rules to your chains. You
have already seen the -A flag, which adds rules to your firewall. When you use the -A flag to add
a rule, it is appended to the end of the current rules in a chain. You can also add rules using the
-I flag, which adds rules to the top of the chain of current rules. So why do you need the differ-
ent types of flags to add rules to your firewall? Well, the sequence of your rules is important. The
rules in a chain are checked in sequence, in the order they are added, with the first rule added
to the chain being checked first and the last rule added to the chain being checked last.

With the -I flag you can also add a rule into a chain using a line number, which you can
specify to place that rule exactly where you require in the chain. Let’s look at the line numbers
of rules. Line numbers are important because, as I have described, your rules are checked in
a sequence in each chain. If you have a rule specifying all traffic is accepted into your host at
line number 1 of the rules in a chain, then all traffic will be accepted by this rule and any fol-
lowing rules that may restrict traffic will be ignored. For example, let’s look at the following
two rules:

puppy# iptables -I INPUT 1 -i eth0 -p tcp -j ACCEPT

puppy# iptables -I INPUT 2 -i eth0 -p tcp --dport 143 -j DROP

The first rule ACCEPTs all TCP traffic that enters the host from device eth0, and the number
1 after the chain indicates it is the first rule in the INPUT chain. The second rule DROPs all traffic
that enters the host from device eth0 bound for port 143, or IMAP, and the number 2 after the

4444c02_final.qxd 1/5/05 12:50 AM Page 87

CHAPTER 2 ■ FIREWALLING YOUR HOSTS88

chain indicates it is the second rule in the INPUT chain. As the rules are checked in sequence,
the second rule would be totally ignored because the first rule indicates all TCP traffic is to be
accepted. So you should ensure your rules make logical sense and do not contradict each other.

Each of your rules is assigned a line number in the chain to which they are assigned. You
can see this line number and the details of the rules in a chain by using the -L flag to list your
rules (see Listing 2-3).

Listing 2-3. Listing Your Rules

puppy# iptables -L INPUT -n --line-numbers

Chain INPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:80

2 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:443

In Listing 2-3 I have listed all the rules in the INPUT chain. I have used two flags; the first -n
tells iptables not to look up any IP addresses via DNS or port numbers via the /etc/services
file but rather display the raw numerics. This makes the listing faster as it stops iptables wait-
ing for DNS resolution and service lookups before displaying the rules. I have also specified
the --line-numbers flag, which will show the rules with their line numbers.

If I had omitted the chain name from the -L flag, it would have displayed all the rules
from all chains.

puppy# iptables -L -n --line-numbers

Chain INPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:80

2 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:443

Chain FORWARD (policy DROP)

target prot opt source destination

Chain OUTPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:80

2 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:443

So now you want to add a rule in the INPUT chain at line 3. To do this you must use the -I
flag with which you can specify the line number. The -A flag does not allow you to specify a
line number.

puppy# iptables -I INPUT 3 -i eth0 -p tcp --dport 22 -d 192.168.0.1 -j ACCEPT

You can see, you have specified the required line number after the name of the chain in
the -I flag. Now if you list the rules in the INPUT chain, you will see the new rule at line num-
ber 3 in Listing 2-4.

4444c02_final.qxd 1/5/05 12:50 AM Page 88

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 89

Listing 2-4. Listing After Inserting the New Rule

puppy# iptables -L INPUT -n --line-numbers

Chain INPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:80

2 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:443

3 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:22

If you add a rule to the chain using a line number that already exists in the sequence, the
rule is inserted ahead of the existing line. So if you added another rule using the line number 3
into the INPUT chain, it would be inserted into the chain ahead of the existing line number 3 in
Listing 2-4.

If you have added a rule that you no longer want, you can delete rules from your chains
using the -D flag. You can see the -D flag in Listing 2-5.

Listing 2-5. Removing a Rule

puppy# iptables -D INPUT -i eth0 -p tcp --dport https -d 192.168.0.1 -j ACCEPT

The command in Listing 2-5 would delete the HTTPS rule you specified earlier. The -D flag
deletes rules by matching the filtering specifications of that rule. You must match the exact spec-
ifications of the rule to be deleted. If you do not specify the rule adequately, then the deletion
will fail.

puppy# iptables -D INPUT -p tcp --dport https -d 192.168.0.1 -j ACCEPT

iptables: Bad rule (does a matching rule exist in that chain?)

In the previous line you have tried to delete the HTTPS rule in the INPUT chain with the
command in Listing 2-5. This time, though, you have omitted the -i eth0 from the iptables
command. Hence, iptables has failed to match it with the existing rule; thus, the deletion
has failed.

You can also delete rules via their line number. In Listing 2-6 you can see the deletion of
the third rule in the INPUT chain.

Listing 2-6. Removing Rules Using Sequence Numbers

puppy# iptables -D INPUT 3

You can also delete all the rules in a chain or all chains by using the -F flag. This is often
described as flushing.

puppy# iptables -F INPUT

If you omit the name of the chain, then all the rules in all chains will be flushed, as you
can see in the next line. Enter iptables -F to flush the rules and then iptables -L to list the
resultant empty chains.

4444c02_final.qxd 1/5/05 12:50 AM Page 89

CHAPTER 2 ■ FIREWALLING YOUR HOSTS90

puppy# iptables -F

puppy# iptables -L

Chain INPUT (policy DROP)

target prot opt source destination

Chain FORWARD (policy DROP)

target prot opt source destination

Chain OUTPUT (policy DROP)

target prot opt source destination

You can see that after flushing all the rules in all chains that the listing of the chains reveals
they are all empty.

You can use some additional command-line flags with the iptables command. The most
obvious you have yet to look at is the -t flag, which when specified at the start of the command
indicates which table you are using. Listing 2-7 shows the rules contained in the nat table.

Listing 2-7. Specifying a Particular Table

puppy# iptables -t nat -L

Chain PREROUTING (policy DROP)

target prot opt source destination

Chain POSTROUTING (policy DROP)

target prot opt source destination

Chain OUTPUT (policy DROP)

target prot opt source destination

You can use the -t in front of all the possible command-line flags for iptables. As I men-
tioned earlier, by default if you do not specify a table, then the iptables command defaults to
the filter table.

You can see the renaming command-line flags for iptables in Table 2-4.

Table 2-4. Additional iptables Command-Line Flags

Flag Description

-P policy Sets the default policy for a chain.

-R chain seq# rule Replaces an existing rule based on the sequence number.

-Z chain Zeros the byte and packet counts on a chains or chains.

-N chain Creates a new chain. The chain name must be unique.

-E oldchain newchain Renames a user-created chain. Built-in chains cannot be renamed.

-X chain Deletes a user-created chain. The chain must be empty (in other words,
have no rules) before it can be deleted. You cannot delete built-in chains.

The first flag ,-P, sets the default policy for built-in chains. I have described policies ear-
lier in the chapter. The -R flag allows you to replace a rule in your chain based on its line num-
ber. The -Z flag relates to the handling of the iptables byte and packet counter. Each rule has
an associated counter that tracks how many bytes and packets have been processed by that
rule. You can see these counters and a total for each chain when you list all your rules by
adding the -v flag to the -L flag (see Listing 2-8).

4444c02_final.qxd 1/5/05 12:50 AM Page 90

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 91

Listing 2-8. Displaying Rules and Their Counters

puppy# iptables -L -v

Chain INPUT (policy ACCEPT 25897 packets, 2300K bytes)

pkts bytes target prot opt in out source destination

The -Z flag sets all counters back to zero.
The last flags from Table 2-4 relate to the creation of user chains. You can utilize user-

created chains to better structure your rules. For example, creating a new chain to hold all the
rules related to incoming ICMP traffic. You can then direct traffic to your user-created chains
by using them as a target with the -j flag (see Listing 2-9).

Listing 2-9. Redirecting Packets to a User-Created Chain

puppy# iptables -A INPUT -p icmp -j NEW_CHAIN

In Listing 2-9 all incoming ICMP traffic is redirected to the user-created chain NEW_CHAIN.
You can create this new chain using the -N flag (see Listing 2-10).

Listing 2-10. Creating a User Chain

puppy# iptables -N NEW_CHAIN

You can also rename your user-created chain using the -E flag.

puppy# iptables -E NEW_CHAIN OLD_CHAIN

And finally, you can delete a user-created chain (if it contains no rules and is not refer-
enced as a target by any other rules) using the -X flag.

puppy# iptables -X OLD_CHAIN

If you do not specify a particular chain to be deleted, then the -X flag will delete all user-
created chains. You cannot delete the built-in chains such as INPUT or OUTPUT.

Creating a Basic Firewall
One of the best ways to learn how to use iptables is to construct a basic firewall. I will do that for
a stand-alone host, puppy. This is a host that is not directly connected to the Internet and lives in
a local network. Then I will expand on this basic configuration to include securing a bastion host,
which is frequently located in DMZs6 and is directly connected to the Internet, to explain some of
the more advanced features and functions of iptables. I will start by describing the stand-alone
host I intend to firewall.

6. A demilitarized zone (DMZ) is an isolated segment of your network designed to hold hosts and serv-
ices that are at greater risk than others, for example, bastion hosts. The DMZ is generally more secure
than the other segments of your network.

4444c02_final.qxd 1/5/05 12:50 AM Page 91

CHAPTER 2 ■ FIREWALLING YOUR HOSTS92

• The host has one IP address: 192.168.0.1 that is bound to interface eth0. The host is in
the 192.168.0.0/24 subnet.

• I want to allow HTTP traffic in and out because the host runs a Web server.

• I want to allow DNS traffic in and out to allow the host to query remote DNS servers.

• I want to allow outgoing SMTP traffic to allow the host to send e-mail.

• The host is administered using SSH, so I need to allow incoming SSH traffic.

I will start by flushing all the rules from the existing chains to get a fresh start.

puppy# iptables -F

Now I want to set the default policies of DROP I discussed earlier for each of the chains in
the filter table. You use the iptables command with the -P flag for this, and you can see how
to do it in Listing 2-11.

Listing 2-11. Setting Default Policies for Chains

puppy# iptables -P INPUT DROP

puppy# iptables -P OUTPUT DROP

puppy# iptables -P FORWARD DROP

■Caution If you are remotely connected to the host you are setting your rules on, and you set a policy of
DROP for your INPUT chain while there are no other rules in your firewall, you will be disconnected from the
host because the default policy is now to drop all traffic. I have assumed you are signed onto the console of
your host to set your rules.

Do not worry too much about the FORWARD chain in the basic firewall, because for the most
part you will not be forwarding any packets, as this is more the job of a router. You really should
be interested only in conversations with the host itself. The forwarding policy will take care of
any packets that are trying to be forwarded through the host by dropping them immediately.

Now you want to address traffic using the loopback host, lo. This is the internal 127.0.0.1
address of the host, and in order for the host to correctly function, you need to allow all traffic
in and out on this interface. You can see the rules for this in Listing 2-12.

Listing 2-12. Enabling Loopback Traffic

puppy# iptables -A INPUT -i lo -j ACCEPT

puppy# iptables -A OUTPUT -o lo -j ACCEPT

Now add the rules to allow in and out HTTP traffic.
This will allow you to run a Web server on port 80 of the host. But I have also added a new flag

-m to the rules in Listing 2-13. The -m option enables the match function. This allows you to load
modules that can match a variety of additional packet characteristics and allows you to filter on

4444c02_final.qxd 1/5/05 12:50 AM Page 92

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 93

them. In Listing 2-13 I have enabled the state module using the flag -m state. This allows you to
perform state inspection and matching on the incoming packets, which is one of the key features
of a stateful packet-filtering firewall such as iptables.

Listing 2-13. Adding the HTTP Rules

puppy# ipables -A INPUT -i eth0 -p tcp --dport http -d 192.168.0.1 -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp --sport http -m state ➥

--state ESTABLISHED -j ACCEPT

■Note The state module is provided by the ipt_conntrack Netfilter kernel module, which should be
loaded by default with most recent iptables releases. If it is not, you can load it with the insmod command,
insmod ipt_conntack.

By enabling the state module, you can check if a packet is part of a connection that is in
one of four possible states: NEW, ESTABLISHED, RELATED or INVALID.

The NEW connection state indicates a freshly initiated connection where data has not
passed back and forth. You must allow the NEW connection state either incoming or out-
going if you want to allow new connections to a service. For example, if you do not
specify that the NEW connection state is accepted for incoming SMTP traffic on a mail
server, then remote clients will not be able use the mail server to send e-mail.

An ESTABLISHED connection state indicates an existing connection that is in the process
of transferring data. You need to allow ESTABLISHED connections if you want a service to
be able maintain a connection with a remote client or server. For example, if you want
to allow ssh connections to your host, you must allow NEW and ESTABLISHED incoming
traffic and ESTABLISHED outgoing traffic to ensure the connection is possible.

The RELATED state refers to a connection that is used to facilitate another connection.
A common example is an FTP session where control data is passed to one connection
and actual file data flows through another one.

The INVALID state is branded on a connection that has been seen to have problems in
processing packets: they may have exceeded the processing ability of the firewall or be
packets that are irrelevant to any current connection.

By specifying in your rules that traffic has to fit a certain state, you can eliminate poten-
tially harmful packets getting to the services that you do need to keep open by only allowing
traffic of a particular connection state. If you do not need to be able to make new connections
using a service, you can simply specify that only established or related connections can use
that service and preclude new connections from being made. By adding the connection state
you further enhance the principle of allowing only the bare minimum of access to our host.
The more closely you filter the traffic entering and leaving your host (by identifying it by as
many possible characteristics as you can, including the protocol, port, interface, source or

4444c02_final.qxd 1/5/05 12:50 AM Page 93

CHAPTER 2 ■ FIREWALLING YOUR HOSTS94

destination address, and now state), the more you reduce the risk that the incoming traffic is
malicious and not intended for your host.

You can also add the connection state to the maps of the host’s traffic flow I discussed in
the “Choosing Filtering Criteria” section (see Table 2-5).

Table 2-5. Traffic Flow Incoming Including Connection State

Source Destination Destination
Interface Address Source Port Protocol Address Port States

eth0 Any 32768 to 61000 TCP 192.168.0.1 80 NEW,ESTABLISHED

Another beneficial side effect is that the connection-tracking mechanism used for state
inspection also defragments packets. One form of attack seen in the past is the practice of
deliberately fragmenting communications so that a firewall may mistakenly allow it, but when
it comes to being assembled on the target host, the resulting packets are malevolent in nature.
I will further cover this sort of attack a little later in this chapter.

In Listing 2-13 you can see that I select the required states with the --state flag. I am
allowing traffic that is in the NEW and ESTABLISHED connection state into the host. This means
incoming new and already established HTTP connections are allowed to be made to the host,
and I am allowing only traffic that is in the ESTABLISHED connection state out of the host. This
means new outgoing HTTP connections are not allowed to be made. If you tried to connect
to a remote Web site from this host, you would not be able to do so.

Now I will add in some rules to handle DNS traffic. The internal network has two DNS
servers, 192.168.0.10 and 192.168.0.11. You want only the host to connect to these DNS servers
and no others, and you can see the required INPUT rules to achieve this in Listing 2-14.

Listing 2-14. Adding the DNS INPUT Rules

puppy# iptables -A INPUT -i eth0 -p udp -s 192.168.0.10 --sport domain ➥

-m state --state ESTABLISHED -j ACCEPT

puppy# iptables -A INPUT -i eth0 -p udp -s 192.168.0.11 --sport domain ➥

-m state --state ESTABLISHED -j ACCEPT

To restrict which DNS servers the host can query I have specified them by IP addresses
with the -s flag. The -s flag allows you to specify the source IP address of the incoming traffic.
This flag is the opposite of the -d flag, which allows you to specify the destination IP address.
Using the -s flag increases the security of your host by allowing only the traffic from the spe-
cific IP addresses of the DNS servers. You could also specify an entire subnet using CIDR
notation with the -s flag.

puppy# iptables -A INPUT -i eth0 -p udp -s 192.168.0/24 --sport domain ➥

-m state --state ESTABLISHED -j ACCEPT

This would allow querying of any DNS server in the 192.168.0/24 subnet.
I have also enabled state inspection for these rules, and in Listing 2-14 I am allowing only

traffic that is in the ESTABLISHED connection state. This is because no incoming traffic from the
DNS servers should require establishing a new connection, and therefore you do not have to

4444c02_final.qxd 1/5/05 12:50 AM Page 94

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 95

allow traffic in the NEW connection state. The only incoming traffic should be in response to
a query from the host where traffic will be in the ESTABLISHED connection state. This prevents
a potential attack initiated by sending malicious DNS packets to the host because incoming
packets have to be part of an existing and established connection. Any traffic in a NEW connec-
tion state would be dropped.

■Note The DNS traffic is UDP based, and UDP is a stateless protocol. So how does iptables track the con-
nection state? The iptables function records a connection pseudo-state for each connection that allows you
to use state inspection on UDP traffic. This pseudo-state is recorded in the state table. You can see the state
table at /proc/net/ip_conntrack.

Listing 2-15 shows the OUTPUT rules you need to add to allow the host to query the DNS
servers.

Listing 2-15. Adding the DNS OUTPUT Rules

puppy# iptables -A OUTPUT -o eth0 -p udp -d 192.168.0.10 --dport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p udp -d 192.168.0.11 --dport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

Because I know the IP addresses of the DNS servers the host will be connecting to, I have
specified them with the -d flag. This limits the possible destinations of the DNS traffic, further
tightening outgoing access from the host. Additionally, I have allowed traffic in both NEW and
ESTABLISHED states to connect because the host will be querying the remote DNS servers, which
requires a new connection.

The rules in Listing 2-16 allow incoming and outgoing SMTP connections from the
host much like you have allowed DNS traffic. An SMTP server in the local network is called
192.168.0.20. I am allowing traffic in the NEW and ESTABLISHED connection state to connect
from the host to the SMTP server. This means you can initiate new and maintain existing
SMTP connections to the SMTP server from this host. The host will only accept incoming
traffic in the ESTABLISHED connection state. This is because there is no requirement for new
SMTP connections to be created by the host.

Listing 2-16. Adding the SMTP Rules

puppy# iptables -A INPUT -i eth0 -p tcp -s 192.168.0.20 --sport smtp ➥

-m state --state ESTABLISHED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp -d 192.168.0.20 --dport smtp ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

Finally, you want to allow access via SSH to perform secure administration to the host.
For this you add some rules allowing incoming SSH access only from the local network.
Listing 2-17 shows these rules.

4444c02_final.qxd 1/5/05 12:50 AM Page 95

CHAPTER 2 ■ FIREWALLING YOUR HOSTS96

Listing 2-17. Adding SSH Rules

puppy# iptables -A INPUT -i eth0 -p tcp -s 192.168.0.0/24 --dport ssh ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp -d 192.168.0.0/24 --sport ssh ➥

-m state --state ESTABLISHED -j ACCEPT

Here you have also enabled state inspection, and the SSH-related INPUT rule allows both
NEW and ESTABLISHED connections because you want to be able to connect remotely to the host
via SSH. This requires traffic in the NEW connection state to pass through the firewall. But you
have restricted the outgoing SSH traffic in the OUTPUT rule to ESTABLISHED connections only. This
means outgoing SSH connections from the host are not allowed.

Let’s now look at the full set of rules for the basic firewall. Listing 2-18 shows the listing of
the final firewall configuration.

Listing 2-18. The Basic Firewall

puppy# iptables -L --line-numbers

Chain INPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- anywhere 192.168.0.1 ➥

tcp dpt:http state NEW,ESTABLISHED

2 ACCEPT udp -- 192.168.0.10 anywhere ➥

udp spt:domain state ESTABLISHED

3 ACCEPT udp -- 192.168.0.11 anywhere ➥

udp spt:domain state ESTABLISHED

4 ACCEPT tcp -- 192.168.0.20 anywhere ➥

tcp spt:smtp state ESTABLISHED

5 ACCEPT tcp -- 192.168.0.0/24 anywhere ➥

tcp spt:ssh state NEW,ESTABLISHED

Chain FORWARD (policy DROP)

num target prot opt source destination

Chain OUTPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- anywhere anywhere ➥

tcp spt:http state ESTABLISHED

2 ACCEPT udp -- anywhere 192.168.0.10 ➥

udp dpt:domain state NEW,ESTABLISHED

3 ACCEPT udp -- anywhere 192.168.0.11 ➥

udp dpt:domain state NEW,ESTABLISHED

4 ACCEPT tcp -- anywhere 192.168.0.20 ➥

tcp dpt:smtp state NEW,ESTABLISHED

5 ACCEPT tcp -- anywhere 192.168.0.0/24 ➥

tcp dpt:ssh state ESTABLISHED

This is a highly secure firewall from the point of view of securing your services and only
allowing access, both incoming and outgoing, to those services you require. But it is also

4444c02_final.qxd 1/5/05 12:50 AM Page 96

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 97

somewhat unwieldy from an operational perspective because of the default policies of the
chains. This is because your input and output chains by default deny all incoming and outgoing
traffic, which means processes and users on your local host cannot initiate any new connections
that you have not allowed them to initiate. If you think this is going to be a problem on your
host, you could, but I do not recommend doing this, use state inspection to do the following:

• Allow all traffic in the ESTABLISHED and RELATED connection states incoming access to
your host.

• Allow all traffic in the NEW, ESTABLISHED, and RELATED connection states outgoing access
from your host.

This means any connection incoming to your host that iptables think (using state inspec-
tion) is the result of a connection initiated on your host is allowed. Additionally, processes and
users are allowed to initiate new connections out of your host. Listing 2-19 shows the rules you
would need to add to achieve this.

Listing 2-19. Relaxing Your Firewall Rules Using State Inspection

puppy# iptables -A INPUT -i eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

puppy# iptables -A OUTPUT -i eth0 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

This greatly reduces the overall security of your host, so I recommend you carefully con-
sider this before making this change.

Creating a Firewall for a Bastion Host
Bastion hosts are usually the most at-risk hosts on your network. They can be a firewall-type
host; for example, a Cisco PIX firewall operating between your network and an untrusted net-
work such as the Internet is considered a bastion host. It can also be a Web, DNS, mail, or FTP
server with an Internet-facing role. Much of the application-related configuration in this book
is aimed at securing hosts such as these to be suitable as bastion hosts and the level of threat
this entails. Thus, the focus in this section is on bastion hosts that perform an Internet-facing
server role such as a mail, DNS, or Web server. In the course of explaining how to secure bas-
tion hosts, I will also address some more advanced iptables functions such as logging. You
will also look at ways to address some of the direct threats to your hosts such as Denial of
Service, spoofing, and flood attacks in the course of securing the bastion host.

When you compare the design of the final firewall I have generated for the bastion host
and the firewall I generated previously for the stand-alone host, you will see that the differences
between them are not significant. Obviously, the bastion host firewall configuration has more
security, and I have introduced some more advanced concepts, but essentially the basic prem-
ises of denial by default and accepting traffic by exception are maintained. Although the threat
level is higher for bastion hosts, you should consider a firewall for your hosts inside your inter-
nal networks as being a critical component of your overall security. This is for two reasons. The
first is that not all threats are external. Some of threats against your hosts will come from inter-
nal sources, and the securest Internet-facing firewall or packet-filtering regime will do nothing
to safeguard your hosts from an internal attack. The second is that strong host-level security on
the hosts in your internal network stops the bastion hosts or firewalls between the internal net-

e.

4444c02_final.qxd 1/5/05 12:50 AM Page 97

CHAPTER 2 ■ FIREWALLING YOUR HOSTS98

I am now going to create an iptables configuration for a bastion host, kitten. I will start
by describing the bastion host I intend to firewall.

• The host has two IP addresses: 220.240.52.228, which is bound to eth0 and is the link
to the Internet, and 192.168.0.100, which is bound to interface eth1 and is a link to the
internal network.

• I want to allow SMTP traffic in and out because the bastion host is a mail server, includ-
ing relaying e-mail to the internal network SMTP server.

• I want to allow DNS traffic in and out because the bastion host is also a DNS server,
including sending zone transfers to the internal DNS servers.

• I want to allow NTP traffic in and out, both over the Internet and into the internal net-
work, as the bastion host will be the local NTP server and provide a time source for
internal hosts.

• The host is administered using SSH, so I need to allow incoming SSH traffic from the
internal network only.

First let’s get a start by flushing the existing rules and setting the default policies. First
flush the existing rules.

kitten# iptables -F

Then add the default policies. I will set all the chains to DROP all traffic by default.

kitten# iptables -P INPUT DROP

kitten# iptables -P OUTPUT DROP

kitten# iptables -P FORWARD DROP

Then you want to allow access to traffic on the loopback host, lo. This is the internal
127.0.0.1 address of the host, and in order for the host to correctly function, you need to allow
all traffic in and out on this interface. You can see the rules for this in Listing 2-20.

Listing 2-20. Enabling Loopback Traffic

kitten# iptables -A INPUT -i lo -j ACCEPT

kitten# iptables -A OUTPUT -o lo -j ACCEPT

Securing the Bastion Services
I will first handle the traffic to the services running on the bastion host. Start with the SMTP
traffic. You want incoming and outgoing new and established SMTP traffic to be allowed on
the bastion host on the Internet interface, eth0. This allows remote SMTP servers to connect
to the local SMTP server and allows the local server to connect to remote servers. You achieve
this using the rules in Listing 2-21.

4444c02_final.qxd 1/5/05 12:50 AM Page 98

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 99

Listing 2-21. The External SMTP Rules

kitten# iptables -A INPUT -i eth0 -p tcp --dport smtp -m state ➥

--state NEW,ESTABLISHED - j ACCEPT

kitten# iptables -A OUTPUT -o eth0 -p tcp --sport smtp -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

But you also want the internal SMTP server at 192.168.0.20 to be able to send mail to the
bastion host and receive e-mail from it. So set up some SMTP rules for the internal 192.168.0.100
IP address, which is bound to interface eth1 to handle this incoming and outgoing SMTP traffic.
These rules are in Listing 2-22.

Listing 2-22. The Internal SMTP Rules

kitten# iptables -A INPUT -i eth1 -p tcp -s 192.168.0.20 --sport smtp ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth1 -p tcp -d 192.168.0.20 --dport smtp ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

Next you want to handle DNS traffic. You have two types of traffic, external traffic to and
from the Internet and internal traffic including zone transfers to and from the internal DNS
servers at 192.168.0.10 and 192.168.0.11. I have allowed new DNS queries into and out of the
Internet-facing interface in Listing 2-23.

Listing 2-23. The External DNS Rules

kitten# iptables -A INPUT -i eth0 -p udp --dport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A INPUT -i eth0 -p tcp --dport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth0 -p udp --sport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth0 -p tcp --sport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

The first two rules in Listing 2-23 allow NEW and ESTABLISHED incoming DNS traffic on
the eth0 interface. The second two rules allow NEW and ESTABLISHED outgoing DNS traffic
on the eth0 interface. This allows the bastion host to query remote DNS servers and receive
queries from remote DNS servers.

For the internal traffic you need to allow more than just queries of the DNS servers. You
also want to allow zone transfers, which use TCP traffic, but you want to restrict these zone
transfers and the TCP traffic to only the internal DNS servers. Listing 2-24 shows the required
INPUT chain rules.

4444c02_final.qxd 1/5/05 12:50 AM Page 99

CHAPTER 2 ■ FIREWALLING YOUR HOSTS100

Listing 2-24. The internal INPUT DNS Rules

kitten# iptables -A INPUT -i eth1 -p udp -s 192.168.0.10 --dport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A INPUT -i eth1 -p udp -s 192.168.0.11 --dport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A INPUT -i eth1 -p tcp -s 192.168.0.10 --dport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A INPUT -i eth1 -p tcp -s 192.168.0.11 --dport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

The rules in Listing 2-24 allow incoming DNS queries and zone transfers between the bas-
tion host and the two internal DNS servers. I have shown the outgoing DNS rules in Listing 2-25.

Listing 2-25. The internal OUTPUT DNS Rules

kitten# iptables -A OUTPUT -o eth1 -p udp -d 192.168.0.10 --sport domain ~CC

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth1 -p udp -d 192.168.0.11 --sport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth1 -p tcp -d 192.168.0.10 --sport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth1 -p tcp -d 192.168.0.11 --sport domain ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

The rules in Listing 2-25 allow outgoing DNS queries and zone transfers between the
bastion host and the two internal DNS servers.

Now you want to add access for the Network Time Protocol (NTP), as the bastion host is
going to be the local network’s NTP server. NTP traffic uses UDP on port 123. First let’s allow
access to the Internet and to some selected remote NTP servers, clock3.redhat.com and
ntp.public.otago.ac.nz. Listing 2-26 shows these rules.

■Note I randomly selected these NTP servers, but you can find a list of public NTP servers at
http://www.eecis.udel.edu/~mills/ntp/servers.html.

Listing 2-26. The External NTP Rules

kitten# iptables -A INPUT -i eth0 -p udp -s clock3.redhat.com --dport ntp ➥

-m state --state ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth0 -p udp -d clock3.redhat.com --sport ntp ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A INPUT -i eth0 -p udp -s ntp.public.otago.ac.nz ➥

--dport ntp -m state --state ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth0 -p udp -d ntp.public.otago.ac.nz ➥

--sport ntp -m state --state NEW,ESTABLISHED -j ACCEPT

4444c02_final.qxd 1/5/05 12:50 AM Page 100

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 101

You have allowed only ESTABLISHED incoming connections from the two specified NTP
servers’ IP addresses with a destination of the NTP port 123. You have allowed outgoing traffic
of NEW and ESTABLISHED connections to allow you to query remote NTP servers, but again I have
limited the outgoing connections to the hostname of the selected NTP servers. Next you need
to add some rules to handle the internal NTP traffic (see Listing 2-27).

Listing 2-27. The Internal NTP Rules

kitten# iptables -A INPUT -i eth1 -p udp -s 192.168.0.0/24 --dport ntp ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth1 -p udp -d 192.168.0.0/24 --sport ntp ➥

-m state --state ESTABLISHED -j ACCEPT

The rules in Listing 2-27 allow only hosts in the 192.168.0.0/24 subnet to connect to the
NTP server and requests time updates. All outgoing traffic on this port on the eth1 interface is
also limited to a destination of this subnet and to ESTABLISHED traffic only, as the bastion host
has no requirement to initiate a connection to any system in the internal network.

Finally, you want to be able to administer the bastion host using ssh. You want to provide
only ssh access to the bastion host from the internal network and not allow the bastion host to
initiate ssh connections back to the internal network to help protect the internal systems in the
event the bastion host is compromised. Listing 2-28 show the rules required to structure ssh
access as required.

Listing 2-28. The SSH Rules

kitten# iptables -A INPUT -i eth1 -p tcp -s 192.168.0.0/24 --dport ssh ➥

-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o eth1 -p tcp -d 192.168.0.0/24 --sport ssh ➥

-m state --state ESTABLISHED -j ACCEPT

Firewall Logging
With iptables you can log the traffic processed by the firewall to syslog. This is extremely use-
ful both for determining if your firewall is functioning and also to keep track of anomalous or
malicious traffic. Logging with iptables requires directing the traffic you want logged to a new
target I will introduce, the LOG target. You can see this target in Listing 2-29.

Listing 2-29. Logging iptables Traffic

kitten# iptables -A INPUT -p tcp --dport smtp -j LOG --log-prefix "IPT_INPUT "

In Listing 2-29 I am logging all incoming TCP traffic on port 25 to the LOG target, as indi-
cated by the -j flag. The --log-prefix flag specifies a prefix you can place in front of the log
message to help you identify the iptables traffic in your logs. This prefix can be up to 29 let-
ters long.

4444c02_final.qxd 1/5/05 12:50 AM Page 101

CHAPTER 2 ■ FIREWALLING YOUR HOSTS102

■Caution Because of a bug in the Netfilter code, you should add a trailing space (as you can see in
Listing 2-29) to stop the prefix field running into the next log field. This will make it easier to manipulate
your iptables log traffic.

You can add other flags after the LOG target (see Table 2-6).

Table 2-6. LOG Target Flags

Option Description

--log-level level Log level (in other words, info).

--log-tcp-sequence Logs the TCP sequence numbers. You should not log these unless you
are sure your log files are secure.

--log-tcp-options Logs TCP options from the IP packet header.

--log-ip-options Logs IP options from the IP packet header.

The --log-level flag allows you to specify with which logging level your iptables logs will
be generated. This defaults to info. The facility used by iptables logging is kernel. You can see
Chapter 5 for more details of syslog logging and log levels.

The --log-tcp-sequence logs the sequence numbers of the packets being logged to
syslog with the rest of the logging information. This can be dangerous if your logs are read-
able by non-root users (which they should not be!), as it may assist someone in a spoofing
or hijacking attack to guess possible sequence numbers and insert malicious traffic. Unless
you have a real use for this information, I recommend not logging it.

The --log-tcp-options and --log-ip-options flags add the contents of the OPTIONS sec-
tion of the TCP and IP headers, respectively, to your logging output.

The LOG target is a nonterminating target, and any traffic passed to the LOG target will
simply continue to the next rule after being logged. This means you need to specify any
logging rules before any rules that may reject or drop traffic. In Listing 2-30 you can see
iptables logging UDP DNS traffic from a host, 192.168.0.100, in the first rule and then
dropping this traffic after it has been logged. If these rules were reversed, then no log
entries would be generated by this traffic.

Listing 2-30. Logging and Dropping Traffic with the LOG Target

kitten# iptables -A INPUT -p udp -s 192.168.0.111 --dport domain -j LOG ➥

--log-prefix "IPT_BAD_DNS"

kitten# iptables -A INPUT -p udp -s 192.168.0.111 --dport domain -j DROP

This is another instance where the sequence of your rules is important to ensure you
actually log the required traffic before it is accepted, dropped, or rejected.

So what do you see in your log entries? Well, Listing 2-31 shows a typical log entry from
the LOG rule in Listing 2-30.

4444c02_final.qxd 1/5/05 12:50 AM Page 102

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 103

Listing 2-31. A Typical iptables Log Entry

Aug 8 21:32:56 kitten kernel: IPT_INPUT IN=eth0 OUT=

MAC=00:01:02:89:ad:de:00:06:5b:cb:d8:b3:08:00 ➥

SRC=192.168.0.111 DST=192.168.0.1 LEN=92 TOS=0x00 ➥

PREC=0x00 TTL=128 ID=7301 DF PROTO=TCP SPT=3610 ➥

DPT=53 WINDOW=65535 RES=0x00 ACK PSH URGP=0

I have dissected each portion of the sample line from Listing 2-31 in Table 2-7.

Table 2-7. Listing 2-31 iptables Log Entry

Field Description

IPT_INPUT The prefix specified by the --log-prefix flag.

IN=interface The incoming interface on which the packet was received. Blank if the entry
is for outgoing traffic.

OUT=interface The outgoing interface the packet was received on. Blank if the entry is for
incoming traffic.

MAC=MAC address The MAC address of the interface the packet used.

SRC=IP address The source IP address of the packet.

DST=IP address The destination IP address of the packet.

LEN=length The length of the packet in bytes.

TOS=type The Type of Service Type field (deprecated usually).

PREC=precedence The Type of Service Precedence field (deprecated usually).

TTL=hops The Time to Live in hops.

ID=id The unique ID number of this packet.

DF The “Don’t fragment” flag that tells the stack not to fragment the packet.

PROTO=protocol The protocol of the packet.

SPT=port The source port of the packet.

DPT=port The destination port of the packet.

WINDOW=size The TCP Receive Window size.

RES=bits The reserved bits.

ACK The ACK (or Acknowledgment) flag is set.

PSH The PSH (or Push) flag is set.

URGP=0 The Urgent Pointer (rarely used).

Most of the items are self-explanatory and should be clear to you from the packet and
filtering rules that have generated the log entry. Perhaps the most useful pieces of informa-
tion provided by the logging process that would normally not be readily apparent about the
packet being logged are the TCP flags, such as ACK or PSH, set for the packet. You can use
this information, for example, to help determine the structure of attacks based on inappro-
priate or malicious combinations of TCP flags being set. You will examine attacks based on
TCP flag combinations in the “iptables and TCP Flags” section.

4444c02_final.qxd 1/5/05 12:50 AM Page 103

CHAPTER 2 ■ FIREWALLING YOUR HOSTS104

The log entries generated by using the LOG target can be separated from your other log
entries by controlling your syslog or syslog-ng configuration. Listing 2-32 shows two sample
logging rules that would log all incoming and outgoing traffic.

Listing 2-32. Sample Logging Rules

kitten# iptables -A INPUT -i eth0 -j LOG --log-prefix "IPT_INPUT " ➥

--log-level warning

kitten# iptables -A OUTPUT -o eth0 -j LOG --log-prefix "IPT_OUTPUT " ➥

--log-level warning

Listing 2-33 shows the syslog.conf entry to trap these log entries into a separate file. This
is not precise and you may end up with entries not related to your iptables traffic, as the basic
syslog daemon does not have the full functionality to allow you to sort the iptables entries from
other kernel facility messages.

Listing 2-33. syslog.conf Entries for the Listing 2-32 Logging Entries

kern.warn /var/log/ipt_log

In Listing 2-34 I have provided the same configuration but for the syslog-NG daemon,
which allows considerably greater flexibility in selecting only those log entries from your
firewall logging.

Listing 2-34. Syslog-NG Configuration for Logging iptables Traffic

destination d_ipti { file("/var/log/ipt_input"); };

destination d_ipto { file("/var/log/ipt_output"); };

filter f_filter_in { facility(kernel) and level(warning) ➥

and match(IPT_INPUT); };

filter f_filter_out { facility(kernel) and level(warning) ➥

and match(IPT_OUTPUT); };

log { source(s_sys); filter(f_filter_in); destination(d_ipti); };

log { source(s_sys); filter(f_filter_out); destination(d_ipto); };

In Listing 2-34 I have separated the incoming log entries from the outgoing log entries
and written them to two different files.

■Tip You can find further information on logging and using other tools such as SEC to process your firewall
log files in Chapter 5.

I have not explicitly added any new rules to the bastion host firewall as a result of the
information described in this section but I will incorporate rules with the LOG target into the
overall bastion host firewall in the next few sections.

4444c02_final.qxd 1/5/05 12:50 AM Page 104

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 105

■Caution You should be aware that firewall logging on a busy system can generate a lot of data, and
you should ensure you have sufficient disk space and a suitable log rotation regime to accommodate your
required level of logging.

Handling ICMP Traffic
Together with TCP and UDP, one of the most commonly used protocols is ICMP.7 ICMP
provides error, control, and informational messages such as the messages used by the ping
command. In the past, ICMP messages have formed an important component of network
troubleshooting and diagnostics. Unfortunately in recent years, the widespread use and
access granted to ICMP traffic has meant a variety of vulnerabilities and exploits, including
some serious Denial of Service attacks related to ICMP traffic, have emerged. Bastion hosts
are particular targets of these types of attacks. In the last five years more than 40 ICMP-
related vulnerabilities and potential attacks have been discovered.8 These have included
attacks such as the following:

• ICMP flood attacks where a storm of pings overwhelm a system and consume available
bandwidth resulting in a Denial of Service.

• ICMP “smurf” attacks where an attacker sends forged ICMP echo packets to network
broadcast addresses allegedly from a particular targeted host. The broadcast addresses
reply with ICMP echo reply packets, which are sent to the targeted host, consuming all
available bandwidth and killing the host with a Denial of Service attack.

• The “ping of death” in which an attacker sends an ICMP echo packet larger than the
maximum IP packet size. The packet is fragmented and because of bugs in the IP stack
attempts to reassemble the packets crash the system.

• ICMP “nuke” attack in which the ICMP packet contains information that the receiving
system cannot handle, which results in a system crash.

You can prevent all these attacks or mitigate the risk of attack using iptables by tightly
controlling how your hosts handle ICMP traffic. But this traffic is also used by some important
network diagnostic tools such as ping.

If you look at ICMP, you can see it consists of a whole series of message types with related
message codes. For example, the ping command generates an echo-request or an ICMP Type 8
message. The response to a ping is an echo reply or an ICMP Type 0 message. Table 2-8 pres-
ents all the ICMP message types.

7. The RFC for ICMP is RFC 792; you can review it at http://www.ietf.org/rfc/rfc0792.txt?number=792.

8. http://icat.nist.gov/icat.cfm

4444c02_final.qxd 1/5/05 12:50 AM Page 105

CHAPTER 2 ■ FIREWALLING YOUR HOSTS106

Table 2-8. ICMP Message Types

Type Description

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect

8 Echo Request

11 Time Exceeded

12 Parameter Problem

13 Timestamp

14 Timestamp Reply

15 Information Request

16 Information Reply

The most frequently used and seen ICMP message types are Type 0 and 8 for ping, Type 3
(which is frequently used to indicate hosts that are down or that decline to respond to queries),
and Type 11 (Time Exceeded). For example, in addition to UDP packets, the traceroute com-
mand relies on ICMP Type 11 messages to map the route between the host and a remote host
and relies on Type 3 messages to indicate if the host at the end of the route is unreachable.

So how should you handle ICMP traffic? Well, there are two schools of thought on this.
The first suggests that ICMP traffic is acceptable if the source and destination of this traffic is
controlled—for example, if you allow only traffic to and from authorized hosts. I think this
is dangerous, because it assumes you can rely on the security of these authorized hosts. The
second school of thought believes that all incoming ICMP traffic should be barred except
responses to outgoing connections. For example, all incoming ping (echo-request) packets
are dropped, but incoming ping reply (echo reply) packets that are in reply to pings gener-
ated on the local host are accepted. I believe this model of barring all but clearly excepted
ICMP traffic is the most secure and suitable; I will show you how to configure this variation.
I will now articulate a policy for ICMP traffic that fits this model.

• Allow outbound echo messages and inbound echo reply messages. This allows the use
of ping from the host.

• Allow time exceeded and destination unreachable messages inbound, which allows
the use of tools such as traceroute.

To implement this policy, you want to create some chains to hold the ICMP-related rules.
I will create two chains. The first I have called ICMP_IN to handle incoming ICMP traffic. The
second I have called ICMP_OUT to handle outgoing ICMP traffic. User-created chains allow you
to better structure your rules and allow you to group related rules that handle specific traffic
types, protocols, or responses to particular threats or vulnerabilities. When traffic is redirected
to a user chain by a rule, it will be processed against all the rules in the new chain and then
return to the chain that redirected it to be processed by the next rule in sequence. You use the
iptables command-line option -N to create new chains. By default new chains are added to
the filter table.

4444c02_final.qxd 1/5/05 12:50 AM Page 106

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 107

kitten# iptables -N ICMP_IN

kitten# iptables -N ICMP_OUT

Now let’s create some rules in the INPUT and OUTPUT chains to refer the ICMP traffic to the
newly created ICMP_IN and ICMP_OUT chains. You send traffic to the user-created chains by refer-
ring to them as a rule target using the -j flag. Listing 2-35 shows the two rules directing ICMP
traffic to the user-created chains.

Listing 2-35. Directing ICMP Traffic to the User-Created Chains

kitten# iptables -A INPUT -p icmp -j ICMP_IN

kitten# iptables -A OUTPUT -p icmp -j ICMP_OUT

Now when ICMP traffic is received by the INPUT chain, it is directed to be filtered by
the user-created chain ICMP_IN; and when it is received by the OUTPUT chain, it is handled
by the ICMP_OUT chain.

The iptables rules can target individual ICMP messages types by selecting only ICMP
traffic with the -p icmp flag in combination with the --icmp-type flag to select the particular
ICMP message type. The next line shows this selection in the rule:

kitten# iptables -A ICMP_IN -p icmp --icmp-type echo-request -j DROP

I have added this rule to the ICMP_IN chain, which I have specified will handle incoming
ICMP traffic. I have selected only ICMP traffic using the -p flag. Then I selected the type
of ICMP traffic using the --icmp-type flag. Within the ICMP traffic I have selected the mes-
sage type of echo-request, which indicates an incoming ping request, and I have opted to
drop this traffic. You could have also indicated the echo-request traffic with the type num-
ber of the ICMP message type.

kitten# iptables -A ICMP_IN -p icmp --icmp-type 8 -j DROP

You can now create the rules you need to address the required policy. Allow inbound echo
reply, time exceeded, and destination unreachable messages to the host (see Listing 2-36).

Listing 2-36. Incoming ICMP Traffic

kitten# iptables -A ICMP_IN -i eth0 -p icmp --icmp-type 0 -m state ➥

--state ESTABLISHED,RELATED -j ACCEPT

kitten# iptables -A ICMP_IN -i eth0 -p icmp --icmp-type 3 -m state ➥

--state ESTABLISHED,RELATED -j ACCEPT

kitten# iptables -A ICMP_IN -i eth0 -p icmp --icmp-type 11 -m state ➥

--state ESTABLISHED,RELATED -j ACCEPT

kitten# iptables -A ICMP_IN -i eth0 -p icmp -j LOG_DROP

I have added these rules to the ICMP_IN incoming ICMP traffic chain and selected ICMP
Types 0, 3, and 11 that are in an ESTABLISHED or RELATED state, which indicates that this traffic
is in reply to a request generated on the bastion host. It does not allow NEW connections using
ICMP to be made. This means attempts to ping this host will result in an error.

Finally, I have added a last rule to ensure any other incoming ICMP traffic is logged and
dropped. I have done this by specifying the target of the last rule as a user-created chain called

4444c02_final.qxd 1/5/05 12:50 AM Page 107

CHAPTER 2 ■ FIREWALLING YOUR HOSTS108

LOG_DROP. This chain is going to direct the ICMP traffic to a set of iptables rules that will log
the packets to be dropped and then drop the packets. First, create the LOG_DROP chain.

kitten# iptables -N LOG_DROP

Second, create a rule to log the incoming ICMP traffic. You will log the ICMP traffic to
syslog adding a prefix of IPT_ICMP_IN (with a trailing space) to the log entries to allow you
to identify them.

kitten# iptables -A LOG_DROP -i eth0 -p icmp -j LOG --log-prefix "IPT_ICMP_IN "

kitten# iptables -A LOG_DROP -i eth0 -p icmp -j DROP

The last rule drops the traffic after it has been logged. This takes care of all the incoming
ICMP traffic.

■Caution Be careful about logging your ICMP traffic. Large amounts of logging traffic can be generated
by ICMP traffic. You should ensure you have sufficient disk space and a suitable log rotation regime.

Now you add the rules to take care of the outbound ICMP traffic. You can see these rules
on the following lines:

kitten# iptables -A ICMP_OUT -o eth0 -p icmp --icmp-type 8 -m state ➥

--state NEW -j ACCEPT

kitten# iptables -A ICMP_OUT -o eth0 -p icmp -j LOG_DROP

I have allowed outgoing echo messages so that I can ping remote hosts; then you added
a rule to log and drop all other outgoing ICMP traffic.

I will also add two more rules to the user-created chain LOG_DROP to handle logging and
dropping the outgoing ICMP traffic.

kitten# iptables -A LOG_DROP -o eth0 -p icmp -j LOG --log-prefix "IPT_ICMP_OUT "

kitten# iptables -A LOG_DROP -o eth0 -p icmp -j DROP

From this information and these rules, you should now be able to design and implement
some rules to handle incoming and outgoing ICMP traffic in your environment.

■Note Some kernel parameters relate to ICMP traffic; I will cover them in the “Kernel Modules and
Parameters” section.

Spoofing, Hijacking, and Denial of Service Attacks
Attacks based on incoming traffic are not limited to ICMP-based traffic. Some of the other
common forms of attack on hosts are spoofing, hijacking, and Denial of Service attacks. In
this section I will provide some rules for defending against these types of attacks.

4444c02_final.qxd 1/5/05 12:50 AM Page 108

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 109

These sorts of attacks can take three major forms (though all these forms can be com-
bined and used in conjunction with each other). In the first form, an attacker tries to subvert
the traffic between two hosts from a third host by trying to fool one of the hosts into believing
it is actually the other host in the conversation. The attacker can then connect to the targeted
host or insert some malicious information into packets sent to the targeted system to compro-
mise or penetrate it. This form of attack includes so-called man-in-the-middle attacks and
blind spoofing attacks.

In the second form, an attacker redirects routing information by using methods such
as ICMP redirect or by manipulating the host’s ARP table. The routing changes redirect
traffic from the original host to the attacker’s host. This allows the attacker to receive all
the traffic from the original host and potentially use this information to exploit the original
host or another host with which the original host communicates.

■Caution Attacks based on manipulating or poisoning ARP tables are hard to defend against and hard
to detect. I recommend looking at a tool such as ARPWatch to monitor incoming ARP traffic. You can find
ARPWatch at ftp://ftp.ee.lbl.gov/arpwatch.tar.gz.

The third form of attack is similar in nature to the ICMP flood attack. An attacker spoofs
the target’s address and utilizes mechanisms such as network broadcasts to flood the target
with incoming connections and consume all available connection resources. This results in
a Denial of Service on the targeted host. This last form is often called smurfing or fraggling.

It can be hard to both detect and stop some of these sorts of attacks, but it is not impossi-
ble. One of the best ways to prevent these types of attacks is to explicitly deny traffic from hosts,
networks, and sources you know traffic should not or cannot be coming from. This includes
sources such as the following:

• Incoming traffic that has a source address of an IP address assigned to a local interface;
for example, if eth0 is bound to 192.168.0.1, then incoming traffic cannot have a source
address of 192.168.0.1, as the IP address should be unique in the subnet.

• Outgoing traffic that does not have a source address of an interface on your local host; for
example, this includes a process trying to send traffic with a source address of 10.0.0.1
when you do not have this address bound to a local interface.

• Traffic coming from the Internet on RFC 1918’s private IP address ranges. These are pri-
vate address ranges and should not be routable on the Internet.

• The Zeroconf IP address range, 169.254.0.0/16.

• The TEST-NET address range of 192.0.2.0/24.

• The reserved IP address Class D and E (Broadcast) addresses 224.0.0.0/4 and
240.0.0.0/5 and the unallocated address range 248.0.0.0/5.

• Loopback addresses in the range 127.0.0.0/8 should also be nonroutable on the Inter-
net and finally broadcast address range 255.255.255.255/32 and the older broadcast
address range, 0.0.0.0/8.

4444c02_final.qxd 1/5/05 12:50 AM Page 109

CHAPTER 2 ■ FIREWALLING YOUR HOSTS110

So, I will show how to set some rules to reduce the risk that incoming traffic to your host is
malicious, and then later in the “Kernel Parameters section” I will introduce some kernel param-
eters that will also help further reduce the risk of these sorts of attacks.

The first set of rules you will add handle traffic that allegedly comes from your own
host. Incoming traffic with the source addresses of your system is going to be spoofed traffic
because you know it cannot be generated by the host or it would be outgoing rather than
incoming. You add a rule to handle packets allegedly from the internal LAN IP address and
then a rule to handle packets allegedly to the external IP address.

kitten# iptables -A INPUT -i eth1 -s 192.168.0.100 -j DROP

kitten# iptables -A INPUT -i eth0 -s 220.240.52.228 -j DROP

You can also add a rule saying that any outgoing traffic that is not from your source IP
address is incorrect. This is both useful to stop your host sending bad packets and also polite
as your host should not be generating packets that do not come from your IP address.

kitten# iptables -A OUTPUT -o eth1 -s ! 192.168.0.100 -j DROP

kitten# iptables -A OUTPUT -o eth0 -s ! 220.240.52.228 -j DROP

These rule uses the negate symbol (!) together with the source address to indicate all out-
going traffic not from the specified IP address. For example, in the first rule, all traffic that is
not from IP address192.168.0.100 is dropped. This is because only traffic from the IP address
192.168.0.100 should be outgoing from this interface.

You can also use the negate symbol on most other iptables flags; for example, to select all
traffic except ICMP, you could use the following rule:

kitten# iptables -A INPUT -p ! imcp -J ACCEPT

As you were using iptables on a bastion host between your network and the Internet,
you will block the RFC 1918 private address space ranges.9 These address ranges, 10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16, are reserved for private IP networks and should be used
only as internal IP addresses ranges. These addresses are not routable on the Internet. You
should block these address ranges on any Internet-facing interfaces.

kitten# iptables -A INPUT -i eth0 -s 10.0.0.0/8 -j DROP

kitten# iptables -A INPUT -i eth0 -s 172.16.0.0/12 -j DROP

kitten# iptables -A INPUT -i eth0 -s 192.168.0.0/16 -j DROP

You do not need to block this traffic on the internal network because these address ranges are
frequently used, including by the internal network you have specified, as internal address ranges.

Next you want to block incoming traffic from the Internet that is from the Zeroconf address
range.10 The Zeroconf address range is used primarily by hosts that use DHCP to acquire their
IP address. An address from this range is assigned when these hosts are unable to find a DHCP
server to provide them with an address. It is also being proposed to use this address range to
provide addressing when connecting two devices together with a crossover cable. Add a rule
to prevent any traffic on the Internet and the internal LAN interfaces.

kitten# iptables -A INPUT -s 168.254.0.0/16 -j DROP

9. http://www.faqs.org/rfcs/rfc1918.html

10. http://www.zeroconf.org/

4444c02_final.qxd 1/5/05 12:50 AM Page 110

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 111

Now you will restrict the TEST-NET 192.0.2.0/24 address range, which is used for test pur-
poses and, like the private address ranges of RFC 1918, should not be routable on the Internet.

kitten# iptables -A INPUT -i eth0 -s 192.0.2.0/24 -j DROP

Next you want to restrict any incoming traffic coming from the reserved Class D and E IP
address ranges and the unallocated address range, 248.0.0.0/5. These are designed for broad-
cast and experimental purposes only and should not be routed on the Internet.

kitten# iptables -A INPUT -i eth0 -s 224.0.0.0/4 -j DROP

kitten# iptables -A INPUT -i eth0 -s 240.0.0.0/5 -j DROP

kitten# iptables -A INPUT -i eth0 -s 248.0.0.0/5 -j DROP

Additionally, restrict the loopback and zero addresses, which also should not be routable
on the Internet.

kitten# iptables -A INPUT -i eth0 -s 127.0.0.0/8 -j DROP

kitten# iptables -A INPUT -i eth0 -s 255.255.255.255/32 -j DROP

kitten# iptables -A INPUT -i eth0 -s 0.0.0.0/8 -j DROP

Adding these rules to the overall iptables configuration should help keep the bastion
host somewhat secure from spoofing, hijacking, and a variety of Denial of Service attacks.

iptables and TCP Flags
Another series of attacks on your hosts that you will add iptables rules to address use either
malicious combinations of TCP flags or inappropriate volumes of packets with particular TCP
flags. Each TCP header has a TCP flag or flag set. These flags tell the receiving host what sort of
packets it is receiving. For example, when a new TCP is created, a process that is commonly
referred to as the three-way handshake occurs. Figure 2-1 shows Host A sending a packet to
Host B. If this is the initiation of the connection, then the first TCP package has the SYN flag set.
This is the first step of the three-way handshake. Host B responds with a packet of its own with
the SYN and ACK flags set. This is the second step. Lastly Host B should respond with a packet
with the ACK flag set as the third step of the handshake and completes the handshake.

■Note All of these packets are assigned sequence numbers so that the hosts know which order they
should be processed in and to provide some security that this is the same connection.

Figure 2-1. An example of a TCP connection

4444c02_final.qxd 1/5/05 12:50 AM Page 111

CHAPTER 2 ■ FIREWALLING YOUR HOSTS112

Table 2-9 describes all the TCP flags.

Table 2-9. TCP Flags

Flag Description

ACK This flag informs the receiving host that the field ACK number has a valid ACK number.
This helps the host trust the packet.

RST This flag asks the receiving host to recover (reset) the connection. Packets with RST
flags are generally sent when a problem occurs with a connection.

SYN This flag instructs the receiving host to synchronize sequence numbers. This flag
indicates the start of a new connection.

FIN This flag lets the receiving host know that the sender is finished sending data. The
receiving host should respond with a FIN flagged packet to complete and close the
connection.

URG This flag lets the receiving host know that the field of the Urgent Pointer points to
urgent data.

PSH This flag calls a PUSH. If this flag is set to on, then data in a packet is sent directly to
the target application. Normally incoming data would be stored in a buffer and then
passed to the target application. This flag is used for interactive services such as SSH
or Telnet to see responses without lag.

The SYN to SYN/ACK to ACK flag combination in your packets is something you will com-
monly see in your firewall logs, but many other TCP flag are not only illegal and invalid but
have the potential to compromise your system or assist a remote attacker in determining
information about your system. For example, tools such as nmap often use unusual TCP flag
combinations to aid in the process of scanning and operating system fingerprinting.

You can use iptables to select packets with particular TCP flags using the --tcp-flags flag.
The --tcp-flags flag has two parts to its selection of TCP flags. The first part selects which TCP
flags are to be examined in the packet, and the second part selects the flags that need to be set
on the packet for the rule to match. You can see this in Listing 2-37.

Listing 2-37. Selecting Packets with Particular TCP Flags

kitten# iptables -A INPUT -p tcp --tcp-flags ALL SYN -j DROP

In Listing 2-37 you are using the --tcp-flags flag with the first selector of ALL. The ALL setting
tells iptables to examine all possible flags (this is the same as saying SYN,ACK,FIN,RST,URG,PSH),
and the second selector is SYN flag, which indicates the SYN flag must be set for this rule to match
a packet. So Listing 2-37 would match packets containing ANY flag but with only the SYN flag
set and DROP them. You can also specify only a particular subset of flags, as you can see in the
following line:

kitten# iptables -A INPUT -p tcp --tcp-flags SYN,RST SYN,RST -j DROP

The rule in the previous line checks packets with the SYN and RST flags, and both these
flags have to be set in the packet for the packet to be matched by the rule and dropped. You
separate multiple flags in each option with commas, and you should not leave any spaces
between the specified flags. You can also use the special option NONE in your rules.

kitten# iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP

4444c02_final.qxd 1/5/05 12:50 AM Page 112

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 113

The rule in the previous line tests packets with any of the TCP flags and selects those
packets with no flags set at all and DROPs them.

Blocking Bad Flag Combinations
Now you will look at some combinations of flags that you want to block with your iptables
rules. Most of these are not actually attacks but rather more likely to be attempts by attackers
to determine more information about the host with tools such as nmap.

■Tip You can see a fairly complete list of nmap scan forms at http://security.rbaumann.net/
scans.php?sel=1. Most other scanners use variations on this, and these rules should address most
of these scan forms.

For example, probably the best-known combination of illegal flags is SYN/FIN, which is used
by a variety of network scanners to perform operating system detection. The SYN flag opens a con-
nection, and the FIN flag closes a connection. In combination these flags make no sense in a sin-
gle packet. Thus, any occurrence of this combination of flags will be malicious traffic, and you will
start the TCP flag rules by blocking this traffic. But first I will start by adding a chain to hold the
bad TCP flag rules.

kitten# iptables -N BAD_FLAGS

Then you place a rule toward the start of the bastion host rules to redirect all TCP traffic to
the bad TCP flags rules to be processed. The traffic that does not match these rules and is not
dropped will then proceed to be processed by the other rules.

kitten# iptables -A INPUT -p tcp -j BAD_FLAGS

Here you are putting all incoming TCP traffic through the BAD_FLAGS chain. As explained
earlier, when traffic is redirected to a user chain by a rule, it will be processed against all the rules
in the new chain and then return to the chain that redirected it to be processed by the next rule
in sequence. Thus, all the TCP traffic will pass through the rules in the BAD_FLAGS user chain and
then return to the INPUT chain.

You can now add the first rules to handle bad flags. I have added a rule that logs and
drops the SYN/FIN TCP flag combination, which you can see in Listing 2-38.

Listing 2-38. Blocking SYN/FIN packets

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j LOG ➥

--log-prefix "IPT: Bad SF Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

You start with a logging statement, which logs all packets with this combination of TCP flags
to your log file. Unlike the ICMP traffic where you specified a single logging rule for the traffic, in
this instance you will log each type of TCP flag combination with its own log prefix. This will aid
you in determining from where particular types of attacks have originated. To further aid in this,

4444c02_final.qxd 1/5/05 12:50 AM Page 113

CHAPTER 2 ■ FIREWALLING YOUR HOSTS114

you have added a log prefix that specifies exactly what sort of illegal packet you are seeing, with
SF indicating SYN/FIN. Then after logging the packets, you have dropped them.

Other variations on the SYN/FIN flag combination are used for similar purposes: SYN/RST,
SYN/FIN/PSH, SYN/FIN/RST, and SYN/FIN/RST/PSH. Let’s add some additional rules in Listing 2-39
to handle these variants.

Listing 2-39. Rules for SYN/FINVariations

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j LOG ➥

--log-prefix "IPT: Bad SR Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j DROP

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,PSH SYN,FIN,PSH ➥

-j LOG --log-prefix "IPT: Bad SFP Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,PSH SYN,FIN,PSH -j DROP

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST SYN,FIN,RST ➥

-j LOG --log-prefix "IPT: Bad SFR Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST SYN,FIN,RST -j DROP

kitten# iptables -A BAD_FLAGS -p tcp ➥

--tcp-flags SYN,FIN,RST,PSH SYN,FIN,RST,PSH -j LOG --log-prefix "IPT: Bad SFRP Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST,PSH SYN,FIN,RST,PSH ➥

-j DROP

Next in Listing 2-40 you add a rule to address single FIN flag packets. You will never find a
packet that has only a FIN flag in normal TCP/IP connections; thus, any you do find are generally
being used for port scans and network probing.

Listing 2-40. Rules for FIN-Only Flag Packets

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags FIN FIN -j LOG ➥

--log-prefix "IPT: Bad F Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags FIN FIN -j DROP

These rules in Listing 2-40 select only those packets with a FIN flag, and only those pack-
ets with a FIN flag set then log and drop them.

Lastly you want to block so-called null packets, which have all flags present and set, and
any other related Xmas-style scanning packets. These are generally used for other forms of
network probing used by scanning tools such as nmap. Listing 2-41 shows how you can block
these using the ALL and NONE special flag selectors.

Listing 2-41. Rules for Null and Xmas Flag Packets

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL NONE -j LOG ➥

--log-prefix "IPT: Null Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL NONE -j DROP

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL ALL -j LOG ➥

--log-prefix "IPT: All Flags "

4444c02_final.qxd 1/5/05 12:50 AM Page 114

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 115

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL ALL -j DROP

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL FIN,URG,PSH

-j LOG --log-prefix "IPT: Nmap:Xmas Flags "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL FIN,URG,PSH

-j DROP

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG ➥

-j LOG --log-prefix "IPT: Merry Xmas Flags "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP

SYN Flooding
Another use of malicious TCP flags is the SYN flood attack. This Denial of Service attack is usually
aimed at e-mail or Web servers and relies on subverting the three-way handshake connection
process discussed earlier in this chapter. The attacker sends a packet with the SYN flag set to the
receiving host. The source address of this packet is a nonexistent or uncontactable machine.
The receiving host replies with a packet with the SYN/ACK flags set. As the source address of the
packet cannot be replied to, the send fails and no ACK packet is received to fully open the con-
nection. Eventually the connection timeout is reached, and the connection closes. This seems
harmless enough, but on the receiving host each new connection adds connection information
to a data structure in system memory. This data structure has a finite size. Normally failed con-
nections would time out, and the data structure would be purged of the connection information.
But in the SYN flood attack, the attacker continues to send connection requests from nonexistent
hosts until the data structure in memory overflows and no new connections are possible. Gener-
ally, until the incoming SYN flood ceases, no new connections to the host are possible. In some
cases, the system may even halt entirely.

You can reduce the risk of this sort of attack using another iptables match module. I dis-
cussed the state module earlier in this chapter, and now you will look at the limit module. The
limit module limits the rate and volume at which packets are matched to rules. It is commonly
used to limit traffic such as ICMP and to limit logging. For example, you can limit the rate at
which packets are logged (see Listing 2-42).

Listing 2-42. Limiting Logging with the limit Module

kitten# iptables -A INPUT -p tcp -m limit --limit 10/second -j LOG

Listing 2-42 shows all incoming TCP packets being logged, but the addition of the limit
module limits the logging to ten entries per second. All other packets are discarded until the aver-
age rate decreases to below the limit. You can also limit packets being processed to minute, hour,
and day intervals in addition to second intervals. The limit module also has a burst function.

kitten# iptables -A INPUT -p tcp -m limit --limit-burst 100 ➥

--limit 10/minute -j LOG

The --limit-burst option in the preceding line tells iptables to log 100 matching pack-
ets; then if this number of packets is exceeded, apply the rate limit of ten packets per minute.
The burst limit is enforced until the number of packets being received has decreased below
the rate limit. The burst limit then recharges one packet for each time period specified in the

4444c02_final.qxd 1/5/05 12:50 AM Page 115

CHAPTER 2 ■ FIREWALLING YOUR HOSTS116

limit option where the packet rate is maintained below the limit. So, in the preceding example,
the burst limit is recharged one packet for every minute where the rate of received packets is
less than ten per minute.

Let’s look at restricting SYN flooding now. You can use the rule in Listing 2-43 to limit the
number of incoming SYN packets on your Internet-facing port.

Listing 2-43. Limiting Incoming SYN Packets

kitten# iptables -A INPUT -i eth0 -p tcp --syn -m limit --limit 5/second -j ACCEPT

In Listing 2-43 you have used the special TCP option --syn, which matches all packets with
the ACK and RST bits cleared and SYN flag set. It is the equivalent of setting the TCP flags option to
--tcp-flags SYN,RST,ACK SYN. You have limited the number of incoming SYN packets to five per
second. This would limit the number of incoming connections to five per second and should
(you hope) prevent an attacker from using a SYN flood attack on the bastion host. I recommend
you test a suitable connection rate for your system taking into consideration the volume of
incoming connections to your host and its size and performance when setting the limit.

Limiting the number of SYN packets connections to your host is not, however, an ideal
solution to SYN flood attacks because it does limit the number of potential incoming connec-
tions and does not do any checking of the connections it is dropping to ensure they are actu-
ally malicious connections. On a busy system this can cause bottlenecking and the dropping
of legitimate connections. A possible solution to this is the introduction of SYN cookies; I will
cover them in the “Kernel Parameters” section.

Some Final Bastion Host Rules
Now you will look at some final rules to catch some remaining potentially bad packets. The
first rule goes back to the state module introduced earlier. You will remember that one of the
potential states that is tracked by Netfilter is the INVALID state. Packets in the INVALID state are
not associated with any known connection. This means any incoming packets in the INVALID
state are not from connections on the host and should be dropped. On the bastion host you
will log and discard all incoming packets in this state (see Listing 2-44).

Listing 2-44. Logging and Discarding Packets in the INVALID State

kitten# iptables -A INPUT -m state --state INVALID -j LOG ➥

--log-prefix "IPT INV_STATE "

kitten# iptables -A INPUT -m state --state INVALID -j DROP

Like you did with the BAD_FLAGS chain, you specify this rule to cover all incoming packets
on all interfaces and log and drop them.

Lastly, you have added a rule to deal with packet fragments. Packet fragments occur when
a packet is too large to be sent in one piece. The packet is broken up into fragments that are
then reassembled on the receiving host. Fragments have some issues, though. Only the first
fragment contains the full header fields of the packet. The subsequent packets have only a sub-
set of the packet headers and contain only the IP information without any protocol informa-
tion. This means most packet filtering based on this information fails. Not only this, but packet
fragments have not only been responsible for a number of bugs in network servers and services
but can also be used in attacks designed to crash servers and services.

4444c02_final.qxd 1/5/05 12:50 AM Page 116

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 117

This is mitigated if you are using connection tracking (using -m state), or NAT, as the
packets are reassembled before being received by the filtering rules. Most modern Netfilter
implementations should have connection tracking enabled by default, so fragments should
not appear. But you should add rules that log and block fragments in Listing 2-45 both as
a precaution and for completeness sake.

Listing 2-45. Fragmented Packets

kitten# iptables -A INPUT -f -j LOG --log-prefix "IPT Frag "

kitten# iptables -A INPUT -f -j DROP

The -f flag in Listing 2-45 tells iptables to select all fragments, and you have then logged
and dropped them.

With these rules you have completed the iptables rules section of the bastion hosts fire-
wall. You can see all these rules together with additional features such as kernel parameters
in a script in Appendix A that you can modify for your own purposes.

Kernel Modules and Parameters
Netfilter is constructed of two components: the Netfilter kernel code and the userland tools, of
which iptables is the principal tool. In addition to providing the standard packet-filtering rules,
Netfilter also has a series of patches you can apply to the kernel code, as well as additional mod-
ules that you can load to provide additional functionality. Furthermore, you can set a variety of
kernel parameters that allow you to tune and further configure iptables.

Patch-o-Matic
In the more recent releases of Netfilter, all the available patches and modules for Netfilter
have been bundled into a tool called Patch-o-Matic (Next Gen), or POM. POM is designed to
simplify the occasionally complicated process of applying patches to your kernel. The POM
tool is available to download from the Netfilter site; Listing 2-46 goes through the download
and verification process.

Listing 2-46. Downloading and Verifying the POM Archive

kitten# wget http://www.netfilter.org/files/patch-o-matic-ng-20040621.tar.bz2

kitten# wget http://www.netfilter.org/files/coreteam-gpg-key.txt

kitten# gpg --import coreteam-gpg-key.txt

gpg: key CA9A8D5B: public key "Netfilter Core Team <coreteam@netfilter.org>"

imported

gpg: Total number processed: 1

gpg: imported: 1

kitten# wget http://www.netfilter.org/files/patch-o-matic-ng-20040621.tar.bz2.sig

kitten# gpg --verify patch-o-matic-ng-20040621.tar.bz2.sig

gpg: Signature made Tue 22 Jun 2004 08:06:15 EST using DSA key ID CA9A8D5B

gpg: Good signature from "Netfilter Core Team <coreteam@netfilter.org>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

4444c02_final.qxd 1/5/05 12:50 AM Page 117

CHAPTER 2 ■ FIREWALLING YOUR HOSTS118

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 02AC E2A4 74DD 09D7 FD45 2E2E 35FA 89CC CA9A 8D5B

In Listing 2-46 I have downloaded the POM source, the GPG key of the Netfilter team, and
the signature of the POM source. I downloaded the version of POM (20040621) at the time of
writing, but you should check the Netfilter site for the most recent version. I then imported the
Netfilter GPG key and verified the source archive against it with the signature I downloaded.

You will also need a copy of your current kernel source and the source of the iptables
tool. See Chapter 1 for instructions on how to get the source of your current kernel. I will
assume you have followed the instructions in Chapter 1 and stored your kernel source in
/usr/src/linux. To get the source of iptables, you can download it from Netfilter. To check
the current version of iptables on your system, use the following command:

kitten# iptables -V

iptables v1.2.11

If you have not got the latest version of the iptables userland tools, I recommend upgrad-
ing to the latest version. Download the source for your version of iptables or the latest version
if you have chosen to upgrade. You can see this process in Listing 2-47.

Listing 2-47. Downloading and Verifying the POM Archive

kitten# wget http://www.netfilter.org/files/iptables-1.2.11.tar.bz2

kitten# wget http://www.netfilter.org/files/iptables-1.2.11.tar.bz2.sig

kitten# gpg --verify iptables-1.2.11.tar.bz2.sig gpg: ➥

Signature made Tue 22 Jun 2004 07:48:54 EST using DSA key ID CA9A8D5B

gpg: Good signature from "Netfilter Core Team <coreteam@netfilter.org>"

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 02AC E2A4 74DD 09D7 FD45 2E2E 35FA 89CC CA9A 8D5B

In Listing 2-47 I have downloaded the iptables userland source archive and verified it with
its signature. As I have already downloaded the Netfilter GPG key, I do not need to download it
again and import it. Unpack the iptables source archive, and make a note of the location, as
you will need it later when you use the POM tool.

■Tip I recommend installing your iptables source in the /usr/src directory.

Now that you have the POM, the kernel source, and the iptables source code, the prerequi-
sites for POM are complete. Unpack the POM archive, and change into the resulting directory.

The POM tool contains two types of patches are. The first are patches fixing or adjusting
iptables functionality. The second are patches and modules adding functionality to iptables.
In both cases, you will generally need to recompile your kernel and the userland tools. With

4444c02_final.qxd 1/5/05 12:50 AM Page 118

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 119

both types of patch or functionality, you are required to choose from a list of possible patches
and modules to install. This is much like the process of kernel configuration. The POM tool
has some built-in checking and does not let you install patches or modules that are already
compiled into your kernel.

■Caution The patches and modules contained within the Patch-o-Matic tool are new features that could
potentially seriously impact how Netfilter and iptables function. The Netfilter team considers many of the
patches and modules not stable enough to be included in the core Netfilter release. Install them with caution,
and test the functionality carefully.

If you want to just see the first type of patches for Netfilter, you can run POM using the
commands in Listing 2-48.

Listing 2-48. Applying the Latest patches for Netfilter with POM

kitten# cd patch-o-matic-ng-20040621

kitten# export KERNEL_DIR=/path/to/kernel/source

kitten# export IPTABLES_DIR=/path/to/iptables/source

kitten# ./runme

In Listing 2-48 replace the KERNEL_DIR path with the path to your kernel source and the
IPTABLES_DIR path with the path to your iptables source. The runme script calls the POM
configuration script in the patching mode.

In you want to see the second type of patches and additional functionality for Netfilter,
you can access them by adding the extra variable to the runme script (see Listing 2-49).

Listing 2-49. Applying the Extra Functionality for Netfilter with POM

kitten# cd patch-o-matic-ng-20040621

kitten# export KERNEL_DIR=/path/to/kernel/source

kitten# export IPTABLES_DIR=/path/to/iptables/source

kitten# ./runme extra

Again in Listing 2-49, replace the KERNEL_DIR path with the path to your kernel source and
the IPTABLES_DIR path with the path to your iptables source.

When you run the runme script, it displays a list of the available patches and/or modules
for Netfilter. Figure 2-2 shows the POM patching script.

As you can see in Figure 2-2, the patch script screen has four sections. The first at the top of
the screen displays your kernel and iptables versions and the location of your source files. The
second section displays all the patches and modules that have either been already installed in
the kernel or are not appropriate to your kernel version.

In the third section, the proposed patch or module to apply to your kernel appears with
a description, and in the last section you can select a series of actions to perform on the patch
that is being displayed. Table 2-10 describes the most useful actions available to you.

4444c02_final.qxd 1/5/05 12:50 AM Page 119

CHAPTER 2 ■ FIREWALLING YOUR HOSTS120

Figure 2-2. The POM patching script

Table 2-10. POM Patching Options

Option Description

t Tests that the patch will apply cleanly

t Applies the patch

N Skips a patch

f Applies patch even if the T option fails

q Quits

? Displays help

Let’s apply a patch now. The patch in Figure 2-2 has the following description:

This patch fixes an oops while listing /proc/net/ip_conntrack.

It also contains some further information on the patch. Read this carefully to determine
the potential impact of the patch.

If you decide to apply the patch, you first want to test that you can apply the patch cleanly
to the kernel source. You use the t option to do this, as you can see in the following line:

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?] t

Patch 04_linux-2.4.26-helper_reassign.patch applies cleanly

Then you want to set the patch to be applied using the y option:

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?] y

This marks the patch to be added to your kernel source and proceeds to display the next
available patch. If you do not want to apply the displayed patch, you can continue to the next
patch using the n option.

4444c02_final.qxd 1/5/05 12:50 AM Page 120

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 121

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?] N

The POM tool will proceed to the next patch to be applied and display its description.
When you have selected all patches and modules you want, you can quit the POM tool using
the q option.

After you have quit from the POM tool, you should see lines similar to Listing 2-50.

Listing 2-50. Patching the Kernel with POM

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?] q

Excellent! Source trees are ready for compilation.

Recompile the kernel image.

Recompile the netfilter kernel modules.

Recompile the iptables binaries.

The list in Listing 2-50 may be different pending on the compilation requirements of the
patches or modules you have selected. You may not need to recompile all the items listed in
Listing 2-50 in all circumstances.

Now you need to recompile the kernel and the Netfilter kernel modules. The commands in
Listing 2-51 will do this for you. I have assumed you have followed the instructions in Chapter 1
and stored your kernel source in /usr/src/linux. I have also assumed you have copied and used
your old .config file to run the make oldconfig process also as described in Chapter 1.

Listing 2-51. Compiling the Kernel

puppy# cd /usr/src/linux

puppy# make dep bzImage modules modules_install

puppy# make install

The first make line combines a number of compilation steps. First, it makes all the
required dependencies, dep. Second, it makes a new boot image, bzImage. Then it compiles
any modules required, modules, and finally it installs those modules, modules_install. The
modules and modules_install commands will recompile all your Netfilter modules. At the end
of this first make line you should have a fully compiled kernel and a new boot image. The next
line, make install, installs that new boot image in your boot loader ready for you to reboot
and use that new kernel together with the new patches or modules.

Next make the iptables binaries; to do this, use the commands in Listing 2-52.

Listing 2-52. Recompiling the iptables Binaries

kitten# cd /usr/src/iptables-1.2.11

kitten# make KERNEL_DIR=/path/to/kernel/source

kitten# make install KERNEL_DIR=/path/to/kernel/source

Replace the /path/to/kernel/source part with the location of your kernel source.
When you have recompiled your kernel and the iptables userland tools, you need to

reboot your system into the new kernel.
Now let’s look at some of the additional modules available in the POM tool. You will look

at three modules: the iprange module, the mport module, and the comment module.

4444c02_final.qxd 1/5/05 12:50 AM Page 121

CHAPTER 2 ■ FIREWALLING YOUR HOSTS122

The iprange Module
The iprange module allows you to specify inclusive source and destination IP address ranges.
This means instead of only being able to specify a particular host or subnet as a source or des-
tination address, you can now specify a range of hosts inside a subnet or a range of subnets.

Before you can use the module, you need to load it using the insmod command exactly as
you would load any other kernel module. The names of Netfilter modules are usually prefixed
with ipt_ so that iprange becomes ipt_range. To load the module, enter the following:

kitten# insmod ipt_iprange

Using /lib/modules/2.4.26/kernel/net/ipv4/netfilter/ipt_iprange.o

Now that you have loaded the module, you can add the module to rules using the -m flag.
Let’s start with a rule that allows you to use a range of hosts like the rule in Listing 2-53.

Listing 2-53. Using a Range of Source Hosts with the iprange Module

kitten# iptables -A INPUT -p tcp -m iprange ➥

--src-range 192.168.0.1-192.168.0.20 -j ACCEPT

The rule in Listing 2-53 accepts all incoming TCP traffic from the source IP address range
192.168.0.1 to 192.168.0.20. You can also specify a destination range of IP addresses or subnets
as I have done in Listing 2-54.

Listing 2-54. Using a Range of Destination Subnets with the iprange Module

kitten# iptables -A FORWARD -p tcp -m iprange ➥

--dst-range 192.168.0.0-192.168.255.255 -j ACCEPT

■Tip You can also negate the --dst-range or --src-range flag using the ! option.

You can see the help text for the iprange module using the command in Listing 2-55.

Listing 2-55. iptables Module Help

kitten# iptables -m iprange -h

irange match v1.2.11 options:

[!] --src-range ip-ip Match source IP in the specified range

[!] --dst-range ip-ip Match destination IP in the specified range

You can also substitute the iprange module in Listing 2-55 for the name of any other
modules for which you want to see help text or syntax.

4444c02_final.qxd 1/5/05 12:50 AM Page 122

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 123

The mport Module
The mport module provides an enhancement of the multiport module, which allows you to
specify multiple ports using the --sport and --dport flags. The multiport module allows only
comma-separated lists of individual ports and no ranges. The rule on the next line, for exam-
ple, shows the use of the multiport module:

kitten# iptables -A INPUT -i eth0 -p tcp -m multiport --dport 80,443 -j ACCEPT

The rule in the previous line selects all incoming TCP traffic on both port 80 and port 443.
This is pretty much the extent of the module’s functionality. The mport module takes this fur-
ther by allowing byte ranges as well as lists of single ports. To use the module, you first need
to load it using the insmod command, as shown on the next line:

kitten# insmod ipt_mport

Using /lib/modules/2.4.26/kernel/net/ipv4/netfilter/ipt_mport.o

Once you have the module loaded, you can add it to rules. You can see an example rule on
the next line that uses the module:

kitten# iptables -A INPUT -p tcp -m mport --dport 80:85,8080 -j ACCEPT

This rule allows incoming TCP traffic and invokes the mport module using the -m flag to allow
traffic into the destination port range 80 to 85 and the individual port 8080. You can specify up to
15 ports or port ranges. A port range takes up two port slots.

The comment Module
POM also has a comment module that provides the ability to add comments to individual rules
explaining their purpose. You can add comments of up to 256 characters in length to a rule. Like
the other modules, first you need to confirm it is loaded; you use the insmod command again to
do this (see Listing 2-56).

Listing 2-56. Loading the comment Module

kitten# insmod ipt_comment

Using /lib/modules/2.4.26/kernel/net/ipv4/netfilter/ipt_comment.o

insmod: a module named ipt_comment already exists

In Listing 2-56 I have shown the result that would occur if the comment module were
already loaded.

Now you want to add comments to your rules. Listing 2-57 shows a comment added to
one of the bastion host rules.

Listing 2-57. Using the comment Module

kitten# iptables -A INPUT -i eth1 -p udp -s 192.168.0.10 --dport domain ➥

-m state --state NEW,ESTABLISHED -m comment --comment "Allows incoming DNS ➥

traffic" -j ACCEPT

4444c02_final.qxd 1/5/05 12:50 AM Page 123

CHAPTER 2 ■ FIREWALLING YOUR HOSTS124

Using the -m flag you add the comment module to the rule; then using the only argument
for the comment module, --comment, you provide a comment for the rule. Let’s take a look at
how the comment appears in the rule when you display your rules. Enter the following:

kitten# iptables -L INPUT

Chain INPUT (policy DROP)

target prot opt source destination

ACCEPT udp -- 192.168.0.10 anywhere ➥

udp dpt:domain state NEW,ESTABLISHED /* Allows incoming DNS traffic */

Kernel Parameters
Netfilter comes with a variety of kernel parameters that can be used to change its behavior, per-
formance, and other features. You will examine some of these parameters to further enhance
the security of your iptables firewall.

■Note All changes you make to your kernel parameters are lost when you reboot your system. To miti-
gate this, most distributions have a file located in /etc, called sysctl.conf, in which you can set those
kernel parameters that you want automatically set at the bootup of the system. I recommend setting any
iptables-related kernel parameters in this file to ensure they are set at system startup.

The parameters you will be manipulating are stored in the /proc directory structure. The
/proc directory is a virtual file system that exists in memory and is created when the system
boots (and is why the settings are reset when you reboot). It contains a variety of data struc-
tures and files that contain information gathered from the kernel and other sources. Generally
each parameter correlates to a file in the /proc directory structure. These data structures and
files can be changed and manipulated like any other file on your system. I will focus on the
parameters contained in /proc/sys/net, which contains all the Netfilter-related settings.

■Tip The /proc/net directory contains a variety of files that include information about your iptables
environment, including information such as the current connections and connection states being tracked.

You will use the sysctl command to manipulate these kernel parameters. The sysctl
command comes with all distributions. Let’s use it to view all your kernel parameters.
Listing 2-58 shows an abbreviated listing of all the available kernel parameters.

4444c02_final.qxd 1/5/05 12:50 AM Page 124

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 125

Listing 2-58. Display All Parameters

kitten# sysctl -a

abi/fake_utsname = 0

abi/trace = 0

abi/defhandler_libcso = 68157441

abi/defhandler_lcall7 = 68157441

...

You can also selectively list the setting of a particular parameter by specifying that param-
eter on the sysctl command line, as in Listing 2-59.

Listing 2-59. Display an Individual Parameter

kitten# sysctl net/ipv4/ip_forward

As mentioned, each parameter correlates to a file in the /proc directory structure. This
net.ipv4.ip_forward parameter correlates to a file called /proc/sys/net/ipv4/ip_forward.
The sysctl command automatically prefixes /proc/sys/ to the parameter location, so you
need to specify only its location from the net directory onward.

You can see all the sysctl command-line options in Table 2-11.

Table 2-11. The sysctl Command-Line Options

Option Description

-a Displays all kernel parameters.

-p file Loads the parameters from a file. If no file is specified, it defaults to
/etc/sysctl.conf.

-n Disables printing the parameter name when displaying the parameter
value.

-w parameter=value Sets a parameter to the specified value.

If you want to change a kernel parameter using sysctl, you can do it using the -w option.
Most kernel parameters are either numeric or Boolean values: with 0 indicating off and 1 indi-
cating on. Let’s change the ip_forward option you looked at in Listing 2-59 to demonstrate this
parameter change. Listing 2-60 demonstrates this change.

■Note You need to be root or equivalent to change these parameters.

Listing 2-60. Changing a Kernel Parameters Using -w

kitten# sysctl -w net/ipv4/ip_forward="1"

4444c02_final.qxd 1/5/05 12:50 AM Page 125

CHAPTER 2 ■ FIREWALLING YOUR HOSTS126

By default the ip_forward option is set off, or 0. In Listing 2-60 I have set it to on, or 1. You
can also change parameters by echoing values to them. For example, to change the ip_forward
value back to off, you would use the following command:

kitten# /bin/echo "0" > /proc/sys/net/ipv4/ip_forward

Let’s now look at some of the relevant kernel parameters for iptables that can enhance
the security of your host.

■Caution Be sure you totally understand what each parameter does before you change it. Changing
a parameter without a full understanding of its purpose can have unexpected results.

/proc/sys/net/ipv4/conf/all/accept_redirects
The accept_redirects parameter determines whether your system accepts ICMP redirects.
ICMP redirects are used to tell routers or hosts that there is a faster or less congested way to
send the packets to specific hosts or networks. Generally your hosts will not require this,
especially stand-alone and bastion hosts. Even firewalls using iptables should only rarely
have a use for redirects. Accepting redirects is also a security risk, because ICMP redirects
can be easily forged and can potentially redirect your traffic somewhere malicious. I recom-
mend you turn accept_redirects off, as in Listing 2-61.

Listing 2-61. Turning Off the accept_redirects Parameter

kitten# sysctl -w net/ipv4/conf/all/accept_redirects="0"

/proc/sys/net/ipv4/conf/all/accept_source_route
This parameter tells Netfilter if it should allow source-routed packets. Source-routed packets
have their paths between two hosts exactly defined, including through which interfaces those
packets are routed. In some instances this source routing can be subverted, which can allow
attackers to route packets through an untrusted or insecure interface. I recommend you turn
this parameter off, as in Listing 2-62.

Listing 2-62. Turning Off the accept_source_route Parameter

kitten# sysctl -w net/ipv4/conf/all/accept_source_route="0"

/proc/sys/net/ipv4/conf/all/log_martians
The log_martians parameter logs all packets from “impossible” addresses to the kernel. This
includes bad IP addresses (similar to what I described when I discussed IP spoofing attacks),
bad source routing, and the like. Many of these types of packets could indicate an IP address
spoofing attack on your host. With this enabled, you will have entries appear in your logs simi-
lar to Listing 2-63.

4444c02_final.qxd 1/5/05 12:50 AM Page 126

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 127

Listing 2-63. log_martians syslog Entry

Aug 3 00:11:41 kitten kernel: martian source 255.255.255.255 from ➥

192.168.0.150, on dev eth0

I recommend you turn this on to keep track of these packets, which could potentially
indicate an attack on your host. You can see the log_martians parameter turned on in
Listing 2-64.

Listing 2-64. Turning On the log_martians Parameter

kitten# sysctl -w net/ipv4/conf/all/log_martians="1"

/proc/sys/net/ipv4/conf/all/rp_filter
This parameter controls reverse path filtering, which tries to ensure packets use legitimate
source addresses. When it is turned on, then incoming packets whose routing table entry for
their source address does not match the interface they are coming in on are rejected. This can
prevent some IP spoofing attacks. If you have some unusual routing arrangements, such as
asymmetric routing where packets take a different route from your host to another host than
they take from that host to you, or if you have interfaces bound to more than one IP addresses,
then you should test this parameter carefully to ensure you are not going to reject legitimate
traffic.

You can set this parameter for each interface on your host individually. Each of your inter-
faces has a file called rp_filter that controls this parameter in the /proc/sys/net/ipv4/conf/
directory, as you can see in Listing 2-65.

Listing 2-65. Listing of the /proc/sys/net/ipv4/conf Directory

kitten# ls -l

total 0

dr-xr-xr-x 2 root root 0 Aug 23 01:39 all

dr-xr-xr-x 2 root root 0 Aug 23 01:39 default

dr-xr-xr-x 2 root root 0 Aug 23 01:39 eth0

dr-xr-xr-x 2 root root 0 Aug 23 01:39 eth1

dr-xr-xr-x 2 root root 0 Aug 23 01:39 lo

An rp_filter file exists in each of the directories in Listing 2-65, and you can change each
of them to enable this function for individual interfaces. Or you could change all of them with
a simple script like Listing 2-66.

Listing 2-66. Enabling rp_filter for All Interfaces

kitten# for interface in /proc/sys/net/ipv4/conf/*/rp_filter; do

/bin/echo "1" > ${interface}

done

4444c02_final.qxd 1/5/05 12:50 AM Page 127

CHAPTER 2 ■ FIREWALLING YOUR HOSTS128

11. You can find requirements for Internet Hosts—Communication Layers at
http://www.faqs.org/rfcs/rfc1122.html.

You can also set this parameter for all interfaces by changing the setting of the rp_filter
file in the /proc/sys/net/ipv4/conf/all directory. This file controls this setting for all your
interfaces.

■Tip This is true of all the parameters that are interface specific. Changing the file located in the
/proc/sys/net/ipv4/conf/all directory will change that setting for all interfaces.

/proc/sys/net/ipv4/icmp_echo_ignore_all
If this parameter is turned on, then Netfilter will ignore all ICMP echo requests. This will
ignore all rules set to handle ICMP echo traffic. This is another method of handling ICMP
echo traffic. I personally prefer to have a finer granularity of control over the handling of
ICMP echo traffic and set up particular rules to address a variety of potential situations, for
example, denying ICMP echo traffic incoming on an Internet-facing interface whilst allowing
it on an internal network interface. You should consider what option best suits your environ-
ment. In Listing 2-67 I turn the parameter off.

Listing 2-67. Setting icmp_echo_ignore_all Off

kitten# sysctl -w net/ipv4/icmp_echo_ignore_all="0"

/proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
This parameter works in the same manner as the icmp_echo_ignore_all parameter except that
it ignores only ICMP messages sent to broadcast or multicast addresses. This significantly
reduces the risk of a host being targeted by a smurf attack; I recommend you set it on, as in
Listing 2-68.

Listing 2-68. Setting icmp_echo_ignore_broadcasts On

kitten# sysctl -w net/ipv4/icmp_echo_ignore_broadcasts ="1"

/proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
Some routers, switches, and firewalls do not behave in accordance with the standards set out
in RFC 112211 and send out incorrect responses to broadcasts. These incorrect responses are
logged via the kern logging facility. If you do not want to see these log entries, you can set this
parameter on. I recommend leaving this option on (as in Listing 2-69), because what may
appear to be a bogus error response may in fact be a sign of an attack or probe of your system.

Listing 2-69. Setting icmp_ignore_bogus_error_responses Off

kitten# sysctl -w net/ipv4/icmp_ignore_bogus_error_responses="0"

4444c02_final.qxd 1/5/05 12:50 AM Page 128

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 129

12. http://firestarter.sourceforge.net/

13. http://monmotha.mplug.org/firewall/index.php

14. http://www.simonzone.com/software/guarddog/

/proc/sys/net/ipv4/ip_forward
The ip_forward parameter turns IP forwarding on or off. With this off (which it generally is by
default), then packets will not be forwarded between interfaces. The ip_forward parameter is
generally needed only if iptables is being used for routing, for NAT, as a network firewall, or
for masquerading. For a bastion or stand-alone host, this should be set off, as you can see in
Listing 2-70.

Listing 2-70. Setting ip_forward Off

kitten# sysctl -w net/ipv4/ip_forward="0"

/proc/sys/net/ipv4/tcp_syncookies
In response to the SYN flooding attacks described earlier, a kernel method was developed to
mitigate the risk. When a host has SYN cookies enabled, it sends back encoded SYN/ACK pack-
ets. These encoded SYN/ACK packets have information about the connection state encoded
into the sequence number of the reply to the initial SYN packet. If a reply is received to one of
these packets, then its acknowledgement number will be one more than the sequence num-
ber sent. Netfilter then subtracts one from this number and decodes it to return and verify the
original connection information. Any nonencoded or packets without do not verify are dis-
carded. This process is conducted without consuming memory or connection resources. The
kernel is now insulated from a Denial of Service attack using a SYN flood. I recommend turning
it on, as I have in Listing 2-71.

Listing 2-71. Setting tcp_syncookies On

kitten# sysctl -w net/ipv4/tcp_syncookies="1"

Managing iptables and Your Rules
Many distributions come with tools to help you create your firewall. Gnome Lokkit on Red Hat
or Debian and third-party tools such as Firestarter,12 MonMotha,13 and GuardDog14 are all
examples of these. These tools allow you to input configuration settings and variables, and
they output iptables rules. I will not cover any of these tools because they are dangerous and
encourage poor security. Gnome Lokkit is a good example of this. Its default policy is to ACCEPT
traffic by default and not by exception. This violates what I think is good firewall design and
leaves your system exposed whilst giving you the impression it is secure because you have
used Red Hat’s recommended tool.

Additionally, these tools often set extra configuration and firewall settings without con-
sulting you. This assumption that this default configuration will suit your host and environ-
ment is a dangerous risk. It is a much better approach to configure your own rules and have
a full understanding of how the various rules interact than to assume that a third-party tool

4444c02_final.qxd 1/5/05 12:50 AM Page 129

CHAPTER 2 ■ FIREWALLING YOUR HOSTS130

will provide a suitable configuration. This chapter should have shown you that the configura-
tion of host firewalls with iptables is easy to master and that you do not require a third-party
tool to achieve secure and hardened firewalls.

iptables-save and iptables-restore
Even if I do not recommend using a tool to construct iptables firewalls, a large number of
rules and settings are still involved in the average iptables firewall. These can become cum-
bersome to manage and maintain and can be time consuming to reenter if you accidentally
flush your rules or if you need to duplicate firewall settings on multiple hosts. The iptables
package comes with some tools to assist in the process of managing your rules. These are
iptables-save and iptables-restore. The iptables-save command saves the iptables rules
currently in memory to STDOUT or to a file. The iptables-restore command allows you to
restore rules from a file or STDIN.

Start by saving some of your rules using iptables-save. The iptables-save command
without options outputs all current rules to STDOUT. You can see a sample of the output from
the command in Listing 2-72.

Listing 2-72. Sample iptables-save Output

kitten# iptables-save

*filter

:INPUT ACCEPT [2:184]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [9:904]

:BAD_FLAGS - [0:0]

...

...

-A INPUT -i lo -j ACCEPT

-A ICMP_OUT -o eth0 -p icmp -j LOG --log-prefix "IPT: ICMP_OUT "

-A ICMP_OUT -o eth0 -p icmp -j DROP

COMMIT

The format of the file is not critical, as I recommend you do not change your rules and
configuration in the outputted file but rather use iptables to edit your rules as it was designed
to do. But to give you some brief information on the structure of the file, you can see that the
start of each table described in the iptables-save output is prefixed by the asterisk symbol (*)
and the end of the iptables-save output is indicated by the line COMMIT.

The iptables-save command had two flags; the first flag -t allows you to specify only
those rules from a particular table. To save only the filter table rules, enter the following:

kitten# iptables-save -t filter

If you omit the -t flag, the table selection defaults to the filter table.
The second flag, -c, saves your rules together with the values of the packet and byte coun-

ters for each chain and rule.
The best approach to storing your iptables configuration is to redirect the output of the

iptables-save command to a file, as shown in Listing 2-73.

4444c02_final.qxd 1/5/05 12:50 AM Page 130

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 131

Listing 2-73. Redirecting the iptables-save Output

kitten# iptables-save > kitten-iptables-rules-20040803

Once you have your saved rules and configuration, you can restore them using the
iptables-restore command. Listing 2-74 shows the restoration of the rules you saved in
Listing 2-74.

Listing 2-74. Restoring iptables Rules

kitten# iptables-restore < kitten-iptables-rules-20040803

In Listing 2-74 your existing rules will be flushed from the system and replaced with
the rules contained in the kitten-iptables-rules-20040803 file.

The iptables-restore has two flags; the first -c restores the values of your byte and
packet counters (if they were saved with your rules using the iptables-save -c command).
The second flag, -n, restores your rules without flushing the existing rules from your system.
This adds any restored rules to your current rules.

iptables init Scripts
The iptables firewall is not a daemon. Rules changes happen interactively. When you add a rule
to a chain, that rule is immediately active and no service or daemon needs to be restarted or
refreshed. When iptables is started and stopped using an init script, your script generally relies
on the iptables-save and iptables-restore commands to set up and take down your firewall.
You should examine the contents of your iptables init script, /etc/rc.d/init.d/iptables on
Red Hat and /etc/init.d/iptables on Debian, to see how this is done.

On Red Hat to start and stop your iptables, enter the following:

puppy# /etc/rc.d/init.d/iptables stop

puppy# /etc/rc.d/init.d/iptables start

Or you can use iptables restart to restart the firewall. You can use the same options on
Debian with the iptables init script in /etc/init.d.

On Red Hat and Debian systems the iptables init script also acts as an interface to the
iptables-save and iptables-restore commands, allowing you to save and restore your rules.
On Red Hat systems to save your rules, enter the following:

puppy# /etc/rc.d/init.d/iptables save

The rules are saved to the file /etc/sysconfig/iptables. The Red Hat init script reloads
these rules from this file when you restart the system.

On Debian systems you can use the init script to both load and save your rules. To save
your rules, enter the following:

kitten# /etc/init.d/iptables save ruleset

Replace ruleset with the name of a file to hold the saved rules. To load the saved rules,
enter the following:

kitten# /etc/init.d/iptables load ruleset

4444c02_final.qxd 1/5/05 12:50 AM Page 131

CHAPTER 2 ■ FIREWALLING YOUR HOSTS132

Replace ruleset with the name of a rule set you previously saved that you now want to load.
The Red Hat init script also has another option, panic, which stops your firewall by flush-

ing all your rules and setting your default policies to DROP. This is useful in an emergency to
terminate access to your host, for example, if your host was under attack. To do this, enter the
following:

puppy# /etc/rc.d/init.d/iptables panic

Like Red Hat, Debian also has an emergency halt function, which you can use by entering
the following:

kitten# /etc/init.d/iptables halt

■Note As mentioned in Chapter 1, you should start your iptables firewall before you activate the inter-
faces and networking, and you should stop the firewall after you deactivate your interfaces and networking.

Testing and Troubleshooting
One of the greatest difficulties with managing iptables firewalls is testing that your firewall is
allowing and blocking the traffic you want. In Chapter 6 I will talk about using nmap to scan
your system, and this is one way to ensure the correct ports are open and closed on your host.
But this does not tell you enough information about the specifics of your rules and their inter-
actions, for example, whether the controls are working correctly on which hosts or networks
may connect to and from your host. To do this, you need to monitor the traffic coming in and
out of your host, including the most detail possible about individual packets. You can do this
using the tcpdump command.

The tcpdump command prints the headers of packets being transmitted on your network
interfaces. It can display these headers on the screen in a terminal session or save them to
a file for later review or analysis using a variety of tools. You can also load and replay these
saved capture files. Most important, you can use tcpdump to select only those headers you
want to see using selection criteria, including selecting only traffic from particular hosts or
traffic on particular ports.

MAKING REMOTE iptables CHANGES

If you are changing configurations over a network, you may want to test them using a series of commands
such as the following:

kitten# iptables restart; sleep 10; iptables stop &

This will allow your changes to take effect for a short while and then completely turn off. Your session should
be able to recover in that time, and if it does not, you will still be able to login again. A better approach may
be to save the current configuration using iptables-save, load the new configuration, wait, and then load
the saved configuration. This way, you can still have a protected host as you test new configurations. Ideally,
though, you can do your testing in a nonproduction environment and will not have to resort to these types of
measures.

4444c02_final.qxd 1/5/05 12:50 AM Page 132

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 133

■Note The tcpdump command in the process of gathering these packet headers will place the interface
it is capturing packets from into promiscuous mode unless you specifically specify otherwise.

Most distributions come with the tcpdump package installed; if not, it is usually available
on your distribution’s installation media, or you can download and install it from the tcpdump
home page at http://www.tcpdump.org/.

If you run tcpdump on the command line without any options, as you can see in Listing 2-75,
it will print all packet headers from all interfaces on your host to the screen until stopped with
a SIGINT signal such as Control+C.

Listing 2-75. Basic tcpdump

kitten# tcpdump

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

00:18:39.980445 IP puppy.yourdomain.com.ssh > kitten.yourdomain.com.3717: ➥

P 900077725:900077841(116) ack 260615777 win 9648

1 packets captured

1 packets received by filter

0 packets dropped by kernel

You can also display more information on the packet using the -v and -vv flags, which
increase the verbosity of the capture. You can also limit the number of packet headers captured
using the -c flag and specifying the number of packet headers you would like to capture. You
can see both these flags in operation in Listing 2-76.

Listing 2-76. Verbose tcpdump with Packet Count

kitten# tcpdump -v -c 1

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

00:28:09.202191 IP (tos 0x10, ttl 64, id 41395, offset 0, flags [DF], proto 6,

length: 92) puppy.yourdomain.com.ssh > kitten.yourdomain.com.3717: ➥

P 900095437:900095489(52) ack 260624565 win 9648

1 packets captured

1 packets received by filter

0 packets dropped by kernel

In Listing 2-76 I have captured another packet showing a ssh connection from host puppy
to host kitten but with the verbose flag enabled and additional information contained in the
capture, including the TOS, TTL, and the packet’s flags.

Other flags are available to you on the tcpdump command line, and Table 2-12 describes
some of the more useful flags.

4444c02_final.qxd 1/5/05 12:50 AM Page 133

CHAPTER 2 ■ FIREWALLING YOUR HOSTS134

Table 2-12. tcpdump Command-Line Flags

Option Description

-i interface Listen on a particular interface. Use any to listen on all interfaces.

-N Do not print domain information (puppy instead of puppy.yourdomain.com).

-p Do not put the interface in promiscuous mode.

-q Quiet mode that prints less protocol information.

-r file Read in packets from a file.

-t Do not print a time stamp.

-vv | -vvv More verbose and even more verbose. Prints increasing amounts of
information.

-w file Write the packets to a file; use - for writing to standard out.

With testing iptables using tcpdump, the objective is to monitor the incoming and outgoing
traffic on your host to ensure traffic is correctly being allowed and denied using your rules. Obvi-
ously, most interfaces generate a huge volume of traffic, so tcpdump offers the capability to filter
that traffic and display only those packets you want to monitor. The tcpdump command offers
three key filtering selection criteria: types, directions, and protocols. For example, Table 2-13 shows
the list of possible type-filtering criteria.

Table 2-13. tcpdump Type Selectors

Selector Description

host Selects only traffic from a particular host

net Selects only traffic from a particular network

port Selects only traffic on a particular port

I discuss some of the other filtering criteria shortly, or you can refer to the tcpdump man page
for more information.

Listing 2-77 shows tcpdump selection at its most basic—selecting only traffic from a partic-
ular host using the Type selector, host.

Listing 2-77. Basic tcpdump Selection

kitten# tcpdump -v -c 1 host puppy

In Listing 2-77 the tcpdump command selects only packets that contain a reference to the
host puppy. This will include both packets to and from the host puppy. In addition to single hosts,
you can also capture only that traffic from a particular network using the net selector. Enter the
following to capture traffic only from the 192.168.0.0/24 network:

kitten# tcpdump net 192.168.0.0 mask 255.255.255.0

The tcpdump command also allows Boolean operators to be used with its selectors. In
Listing 2-78 I am selecting all traffic between the host puppy and either the host kitten or the
host duckling using the and / or Boolean operators.

4444c02_final.qxd 1/5/05 12:50 AM Page 134

CHAPTER 2 ■ FIREWALLING YOUR HOSTS 135

Listing 2-78. Boolean Selectors

kitten# tcpdump host puppy and kitten or duckling

Notice that I have not prefixed the kitten or duckling hosts with the host selector. If you
omit the selector, the tcpdump command will assume you meant to use the last selector utilized.
This means Listing 2-78 is equivalent to the filter on the next line:

kitten# tcpdump host puppy and host kitten or host duckling

In addition to and/or Boolean operators, you can also use the not operator. Enter the
following, which captures traffic from any host except puppy:

kitten# tcpdump not host puppy

With the tcpdump filtering selectors, you can also restrict the filtering to specific ports.
To select all ssh traffic from host puppy, enter the following:

kitten# tcpdump host puppy and port ssh

You can also further restrict Listing 2-78 to a traffic direction using the src and dst
direction selectors, as you can see in Listing 2-79.

Listing 2-79. Specifying Traffic Direction

kitten# tcpdump src host puppy and dst host kitten or duckling

In Listing 2-79 you are now selecting only traffic outgoing from the host puppy with a
destination of the hosts kitten or duckling.

In Listing 2-80 you can use the protocol selectors to select only that traffic from a
particular protocol type.

Listing 2-80. Selecting Traffic via Protocol

kitten# tcpdump tcp host puppy and port domain

In Listing 2-80 tcpdump selects only TCP traffic to and from the host puppy on port 53. You
can also use the ip selector to capture IP traffic, udp to select UDP traffic, and icmp to capture
ICMP traffic.

This was a brief introduction to tcpdump; you can do a lot more with the command. I rec-
ommend you read the tcpdump man page, which contains detailed and useful documentation
for the command.

■Tip You should also look at some of the tools discussed at the end of Chapter 6, which should also prove
useful in troubleshooting, testing, and dissecting your network traffic.

4444c02_final.qxd 1/5/05 12:50 AM Page 135

CHAPTER 2 ■ FIREWALLING YOUR HOSTS136

Resources
The following are some resources for you to use.

Mailing Lists
• Netfilter mailing lists: http://lists.netfilter.org/mailman/listinfo

• tcpdump mailing list: http://www.tcpdump.org/#lists

Sites
• Netfilter: http://www.netfilter.org/

• Netfilter Packet Filtering HOWTO:
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

• Netfilter NAT HOWTO: http://www.netfilter.org/documentation/HOWTO//
NAT-HOWTO.html

• Shorewall: http://www.shorewall.net/

• Firestarter: http://firestarter.sourceforge.net/

• MonMotha: http://monmotha.mplug.org/firewall/index.php

• GuardDog: http://www.simonzone.com/software/guarddog/

• tcpdump: http://www.tcpdump.org

Books
• McCarty, Bill. Red Hat Linux Firewalls. Indianapolis, IN: Red Hat, 2002.

• Zeigler, Robert. Linux Firewalls, Second Edition. Indianapolis, IN: Sams, 2001.

4444c02_final.qxd 1/5/05 12:50 AM Page 136

Securing Connections and
Remote Administration

In Chapter 2 I talked about using firewalls, specifically iptables, to secure your system from
network threats. This principally allows you to block all connections to the system except those
you explicitly want to allow through your firewall. But what about those allowed connections?
Can you be sure they are going to be secure? They need to be secure from the perspective of
preventing penetrations of your system using those connections, and they also need to be secure
from the traffic itself running over those connections from attackers using tools such as sniffers
that try to obtain information from your systems, including passwords and other potentially
valuable data.

Additionally, many of the nonapplication connections to your system are going to be
administration related. It is unfortunate that securing your system from intrusion often makes
the job of administering your system more difficult. While it is not only harder for an attacker
to penetrate your system, it is also harder for you or another systems administrator to access
the system for legitimate purposes—especially if those administrative purposes require a higher
level of access (for example, root access) to the system than a normal user.

In this chapter, I will cover some methods of securing the incoming and outgoing connec-
tions to and from your systems, including both the connection and the traffic running across
that connection. I will also cover the basics of virtual private networks (VPNs) using IPSec and
provide you with a practical example of joining two subnets via a VPN tunnel over the Internet.
In addition, I will cover some methods of securely administering your system. My aim is to show
some practical examples of using particular applications securely and effectively while ensur-
ing they do not put your system at risk of attack. Some of the tools and applications I will cover
in this chapter you will put to further practical use elsewhere in this book. As a result of the
practical focus on this chapter, I will not delve into a great deal of the theory behind some of the
tools covered, with the exception of a brief discussion on public-key encryption that is impor-
tant for everyone to understand because of its widespread use in the Unix and networking
security arena.

Public-Key Encryption
Any connections using TCP/IP you have open from your system are at risk from a variety of
attacks. Often, your connections pass through many different networking devices and systems
before reaching their final destination, which further increases the risk that someone may be

137

C H A P T E R 3

■ ■ ■

4444c03_final.qxd 1/5/05 12:44 AM Page 137

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION138

1. The entire components of a public-key encryption system (including CAs, policies, procedures, and
protocols) are often referred to as public-key infrastructure (PKI).

2. http://developer.netscape.com/docs/manuals/security/pkin/index.html

able to use the connection to gain access to or disrupt your systems or use the information
flowing over that connection for nefarious purposes, such as acquiring credit card details from
an e-commerce site or banking details from an e-mail. The risks associated with running these
types of connections are as follows:

• Eavesdropping: Your information is monitored or intercepted.

• Tampering: Your information is changed or replaced.

• Spoofing or impersonation: Someone pretends to be the recipient of your information
or sends false or substituted information back to you.

However, a well-established methodology exists for securing connections against the risks
I have articulated; it is called public-key cryptography.1 Public-key cryptography (in conjunction
with the use of digital signatures) provides a variety of functions, including the encryption and
decryption of information being transmitted, authentication of the information’s sender, detec-
tion of tampering, and an audit trail that allows both parties to see the information has been
sent. In combination, these can mitigate the risks I detailed previously. What follows is a
highly simplified description of public-key cryptography. I aim to give you a clear understanding
of the concepts involved without covering a great deal of theoretical information. For example,
I will not discuss widely the various ciphers you could use but instead focus on the well-known
and default RSA cipher, which should provide more than adequate security for most purposes.
My focus is on getting you running secured connections quickly. If you want more information,
I recommend Netscape’s “Introduction to Public-Key Cryptography.”2

In public-key cryptography you have two keys: a public key and a private key. The public
key is published (often in conjunction with a certificate), and the private key is kept secret. The
public key can be as widely distributed as you like without comprising security, but your pri-
vate key must be kept secure. The sender will encrypt the information they want to send with
the recipient’s public key. They then send the information. The recipient receives the informa-
tion and uses their private key to decrypt the information. This ensures your information is
protected from monitoring or eavesdropping.

Added to the public-key encryption is a digital signature that addresses the issues of tam-
pering and spoofing. The signature itself is called a one-way hash or message digest. A one-way
hash is a mathematical function that creates a number that is a unique representation of the
information to be sent. If the information is changed in any way, then the hash is no longer a
valid representation of the new information. When sent with the information, this allows the
signing mechanism at the receiving end to ensure the information has not been changed dur-
ing its transmission from the sender to the recipient. The one-way indicates that it is not pos-
sible to extrapolate the information being sent from the hash, thus preventing someone from
using the hash to determine the information.

To generate a digital signature, the encryption approach is reversed from the original
public-key encryption process. The signing mechanism generates the one-way hash, and
you use your private key to encrypt it. The encrypted hash together with some additional

4444c03_final.qxd 1/5/05 12:44 AM Page 138

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 139

3. http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.509-200003-I

4. You’ll find links to these products in the “Resources” section.

5. Arguably, some risks are associated with PKI overall. An excellent document that details some of these
risks is available at http://www.schneier.com/paper-pki.html.

information, most notably the hashing algorithm, is sent with the information to the recipient
as the digital signature. The signing mechanism at the recipient end then uses your public key
to decrypt the hash and uses it to verify the integrity of the information sent.

The final layer in the public-key encryption infrastructure I will cover is a certificate. A cer-
tificate is just like a passport. It binds certain identifying information, such as your name and
location or the name of a server or Web site to a particular public key. It also usually has an
expiry period and is valid only for that period. Most public certificates are valid for one year.
Most of the certificates you will deal with follow the X.509 standard, which is an ITU recom-
mendation3 adopted by a variety of developers.

Certificates are generally issued by a certificate authority (CA). A CA is usually a privately
run organization that guarantees to its customers and users it has verified the identity of the
owner or purchaser of a certificate. Some organizations run their own internal CAs using
products, such as Netscape Certificate Management System and Microsoft Certificate Server,
or using open-source products such as EJBCA.4

So how does this work? Well, let’s say you wanted to use public-key encryption using certifi-
cates to secure a Web site. You first create a signing request and a private key. A signing request is
a type of certificate. The signing request is then sent to a CA to be signed and therefore become
a fully fledged certificate. Your private key remains with you. The CA sends you a public certifi-
cate (which, as discussed previously, combines a public key and some associated identifying
information, in this case probably the hostname of the Web site to be secured) and a copy of its
public certificate, called a CA certificate. The CA certificate it has sent to you is like a receipt from
the CA. Every time the authenticity and validity of your public certificate is checked, the signing
mechanism checks your CA certificate to ensure your public certificate was signed by someone
valid and trusted. Sometimes you may have a chain of CA certificates. For example, it could be
that the CA certificate that signed your public certificate was in turn signed by another CA cer-
tificate. Each of these associated CA certificates would need to be verified in sequence to ensure
your public certificate is valid. You then install your new public certificate into your Web site and
server, and when users connect to your site, they will do so over an authenticated and encrypted
connection.5

■Tip Of course, one of the great benefits of the open-source world is that you do not need to use com-
mercial CAs to sign all your certificates. This can considerably save on costs because commercial CAs can
sometimes charge steep fees for certificate signing. In the previous example, you are securing a Web site.
So you would almost certainly need a commercial CA involved to sign your certificate to ensure third parties
were comfortable and trusted your site. But for other sorts of connections (for example, a secure connection
between two syslog systems), you could use a CA you have created locally. You will look at this in the “SSL,
TLS, and OpenSSL” section.

4444c03_final.qxd 1/5/05 12:44 AM Page 139

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION140

6. http://www.ietf.org/rfc/rfc2246.txt

7. md5 is the Message Digest algorithm developed by Prof. Ronald Rivest, and gpg is the GNU Privacy
Guard utility that you can see at http:// www.gnupg.org.

SSL, TLS, and OpenSSL
One of the most well-known examples of the use of public-key encryption and digital signa-
tures for securing connections are the Secure Sockets Layer (SSL) protocol and the Transport
Layer Security (TLS) protocol. In the example in the previous section, in which I talked about
securing a Web site using public-key encryption and certificates, the protocol securing your
Web site would be SSL, and you would have connected to the site by using the https prefix
instead of the standard http prefix.

Developed by Netscape, SSL is a protocol for handling the security of message transmis-
sion over networks and most specifically the Internet. SSL operates between the TCP/IP net-
work layer and the application layer. When you connect to a device or service running SSL,
a handshake takes places in which the device or service presents its public certificate to the
connecting party to authenticate its identity. This is called server authentication. If the server
and the connecting party authenticate, then all transmissions between the parties are now
authenticated and encrypted using whatever encryption method you have selected, for exam-
ple, RSA or DSA encryption. You can also configure SSL so that the connecting party must also
prove their bona fides to the device or service; this is called client authentication.

Similar in operation to SSL is TLS. TLS was also developed by Netscape and was based on
SSL version 3.0. It is detailed in RFC 2246.6 It offers significant advantages over SSL version 2.0,
and it is slightly more secure than SSL version 3.0. Thus, I recommend using it over either ver-
sion of SSL if your application or service supports using TLS. In Chapters 8 and 9, when I dis-
cuss using SSL/TLS to secure SMTP and IMAP/POP, I focus on TLS. Unfortunately, few Web
browsers support TLS; most of them still use SSL rather than TLS.

To use SSL/TLS (hereafter just referred to as TLS) on your Linux system, I will show how
to implement the OpenSSL package. OpenSSL is an attempt to develop a secure and robust
open-source implementation of SSL (versions 2.0 and 3.0) and TLS (version 1.0). You can find
OpenSSL at http://www.openssl.org/. The implementation is well maintained and updated
frequently, and I recommend you look at it before considering an investment in a commercial
package that offers similar capabilities.

You can download OpenSSL from http://www.openssl.org/source/, and I will show you
how to install it.

■Tip You should check the authenticity of the download using md5 or gpg7 to ensure you have an authentic
package. See Chapters 1 and 4 for details of how to do this.

Before you install OpenSSL, you should check whether you already have it installed and
what version it is. More so than other applications, you need to keep applications such as
OpenSSL up-to-date. It is a vital component of a large number of security-related solutions on
Linux systems. Vulnerabilities in OpenSSL could have spillover effects on multiple other appli-
cations and create a series of vulnerabilities and exploitable weaknesses in those applications

4444c03_final.qxd 1/5/05 12:44 AM Page 140

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 141

that rely on the functionality of OpenSSL to secure them. To check what version of OpenSSL
you have, run the following:

puppy$ openssl version

You will get these results:

OpenSSL 0.9.7a Feb 19 2003

Then check the OpenSSL site to confirm the current version. If the version you have has
been superseded, I strongly recommend you download and install the latest version either
from the source package or via your package management tool if your vendor has a more up-
to-date package.

If you have downloaded OpenSSL in the form of a source package, then unpack it and
change into the resulting directory. OpenSSL relies on the config script to configure the basic
settings for OpenSSL. The major option of the config script is the specification of the location
in which to install OpenSSL. By default when installed from the source package, OpenSSL is
installed with a prefix of /usr/local and an OpenSSL directory of /usr/local/ssl. If you are
replacing an existing OpenSSL installation, you need to confirm where your current version is
installed and make sure you specify that location to the config script. Listing 3-1 shows how to
replace the existing OpenSSL installation on a Red Hat system.

Listing 3-1. Replacing OpenSSL on a Red Hat System

puppy$./config --prefix=/usr --openssldir=/usr/share/ssl shared

■Tip The last option shared tells OpenSSL to create shared libraries as well as the static libraries. This is
not strictly necessary, and the shared libraries function is considered experimental until the version 1 release
of OpenSSL. However, on most Linux systems it is stable enough and may offer some performance enhance-
ments and better use of memory.

Then you need to make, make test to ensure all of OpenSSL’s cryptographical functions are
working, and then finally make install to install OpenSSL onto your system.

puppy$ make && make test

puppy# make install

You saw the openssl command previously when you used it to check the version of your
OpenSSL installation. It also has a number of other functions that are useful to you such as
creating keys and certificates, testing SSL connections, and encrypting and decrypting items.
Table 3-1 details the features and functions you are most likely to use. These functions are
specified directly after the openssl command, as you can see in Listing 3-2 in which I generate
a new RSA private key.

4444c03_final.qxd 1/5/05 12:44 AM Page 141

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION142

Listing 3-2. Generating a New RSA Private Key Using openssl

puppy# openssl genrsa -out puppy_key.pem -des3 1024

Generating RSA private key, 1024 bit long modulus

..++++++

...................++++++

e is 65537 (0x10001)

Enter pass phrase for puppy_key.pem:

Verifying - Enter pass phrase for puppy_key.pem:

This command uses the genrsa option to specify a new private key identified by the -out
option as puppy_key.pem. You also specify the -des3 option to encrypt the key and prompt for
a passphrase to secure it. The last option on the line, 1024, is the number of bits in length of the
key to generated. I recommend a minimum of 1024 for most keys and 2048 for your CA keys.

Table 3-1. The openssl Command-Line Functions

ca Performs CA functions.

gendsa All creation of DSA-based certificates. Same options as the genrsa option.

req Performs X.509 certificate-signing request (CSR) functions.

rsa Process RSA keys and allows conversion of them to different formats.

rsautl An RSA utility for signing, verification, encryption, and decryption.

s_client Tests SSL/TLS client connections to remote servers.

s_server Tests SSL/TLS server connections from remote clients and servers.

smime S/MIME utility that can encrypt, decrypt, sign, and verify S/MIME messages

verify Performs X.509 certificate verification functions.

x509 Performs X.509 certificate data management functions.

■Tip All of the openssl options have their own man pages. You can access them via man and the name
of the option. For example, for the openssl req options, use the command man req.

Creating a Certificate Authority and Signing Certificates
For the purposes of this explanation, I will cover only one type of certificate model. In this model
you are running your own CA and signing certificates with that CA. The reason I have chosen to
cover this model is because it is financially cost free and does not require you to purchase certifi-
cates. But there are some risks with having your own CA and signing your own certificates, and
you need to weigh those risks before proceeding and consult with any partners with which you
intend to authenticate.

The major risk for running your own CA is that you have to secure it. If you issue a large
volume of certificates, you need to ensure there is absolutely no possibility that your CA can
be compromised. If your CA is compromised, your entire certificate and key infrastructure is

4444c03_final.qxd 1/5/05 12:44 AM Page 142

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 143

8. If you are interested in the mathematics involved, see the RSA Laboratories site at
http://www.rsasecurity.com/rsalabs/node.asp?id=2214.

9. http://www.rsasecurity.com/rsalabs/node.asp?id=2099

10. http://www.rsasecurity.com/rsalabs/node.asp?id=2096

CIPHERS, KEYS, AND KEY LENGTH

As I mentioned, I will not cover a lot of detail on cipher systems, as I recommend you use the default RSA
cryptosystem. To use RSA, though, it is important to have at least a limited understanding of the mechanics
of the cryptosystem. RSA is a public-key encryption system that provides encryption, decryption, and digital
signature functionality for authentication purposes. Ronald Rivest, Adi Shamir, and Leonard Adleman devel-
oped it in 1977, and the RSA acronym was taken from the first letters of the last names of its developers. The
RSA algorithm relies on prime-number factoring to provide security. Two large primes are taken, and their
product computed to produce a third number, the modulus. Two more numbers are chosen that are less than
the modulus and relatively prime to the original large primes. The combination of the modulus and one of the
relative primes make up the private and public keys, respectively.8 The two biggest threats to the RSA crypto-
system and to your PKI environment are if someone discovers a way to shortcut factoring or, far more likely, if
your PKI environment is not secure and an attacker manages to acquire your private key.
Your public-key encryption system is only as secure as your private keys. You must ensure that your private
keys are protected at all costs. Some basic rules should help with this.

• Ensure you set suitable ownership and set your permissions on the keys as tightly as possible.

• Use only secure mediums to transmit your private keys, especially any CA keys.

• I recommend you consider expiring your keys after a suitable period of use. This gives you the oppor-
tunity to also review your key length, as I talk about shortly.

Five years ago RSA Laboratories issued a challenge to crack a 140-bit RSA encryption key. It took one month
for someone to crack the key.9 More recently in December 2003, a team in Germany successfully cracked
a 576-bit RSA encryption key in three months.10 Admittedly, the team used a significant amount of process-
ing power (more than 100 workstations), but this emphasizes that any keys you create need to be of a suit-
able length. Additionally, as hardware performance increases, the time needed to crack short key lengths will
obviously decrease. So at this stage I recommend you use keys 1024 bits in length or longer as a minimum.
The RSA Laboratories claim these keys will be secure up until at least 2010. As you can see in Listing 3-2,
I have specified a minimum key length using the openssl command of 1024-bits, and you can also specify
a default in your openssl.cnf file.

But having longer key lengths has issues also. The major issue with having longer keys is the risk that
performance will suffer and that the time taken to encrypt and decrypt information will make encryption
detrimental to productive operations. Of course, the risk that increased hardware performance will allow keys
to be cracked faster also means improved performance for your cryptosystem, which means longer key
lengths are more feasible and will have less impact on the speed of operations. You will need to assess and
test the performance of your applications using the required key sizes.

4444c03_final.qxd 1/5/05 12:44 AM Page 143

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION144

11. See information on TEMPEST at http://searchwebservices.techtarget.com/sDefinition/
0,,sid26_gci522583,00.html.

at risk. If you are serious about becoming your own CA on a large scale, I recommend setting
up an isolated system that is not connected to your network and is physically secured. Also,
I recommend Tempest-shielding technology to prevent electronic monitoring.11 Obviously,
the associated cost of this probably will mean that a commercial CA is a cheaper option. Fur-
ther details on how to secure your CA are outside the scope of this book.

Lastly, using your own CA is generally not trusted by third parties and applications. Users
may not accept your certificates, and applications may generate error messages. For example, if
a Web browser or mail program encounters a certificate that is signed by a CA that it believes it is
not a recognized CA (many browsers and e-mail clients come with a collection of “trusted” com-
mercial CA root certificates), then it will prompt the user with an error message or series of error
messages. However, if you were doing mail server authentication—for example, as opposed
to a Web page—I usually assume that you have a limited number of partners you are going to
authenticate with certificates (almost certainly all clients and systems you administer), which
means it is more likely those partners will accept a private CA rather than a commercial CA.

■Caution By detailing this model I am not recommending it as the preferred option. If you operate
production systems, especially e-commerce–related systems that use SSL, I recommend you use a
commercial CA.

I will now quickly walk you through creating a new CA for your system. This walk-through
assumes you are going to create the CA on the local system on which you will use the certifi-
cates. You do not have to do it this way, but for the purposes of this explanation it is the easiest
approach. First, choose somewhere to store your certificates. I often use /etc/ssl/certs as the
location. For the purposes of the following examples, I will use /etc/ssl/certs.

Next, initialize your CA. The OpenSSL distribution comes with a script called CA, which
has a number of options, including creating a new CA. Listing 3-3 shows the commands and
process for creating a new CA.

Listing 3-3. Creating a New CA

puppy$ cd /etc/ssl/certs

puppy# /usr/share/ssl/misc/CA -newca

CA certificate filename (or enter to create)

Making CA certificate ...

Generating a 1024 bit RSA private key

....++++++

.........................++++++

writing new private key to './demoCA/private/./cakey.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

4444c03_final.qxd 1/5/05 12:44 AM Page 144

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 145

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:AU

State or Province Name (full name) [Berkshire]:New South Wales

Locality Name (eg, city) [Newbury]:Sydney

Organization Name (eg, company) [My Company Ltd]:yourdomain.com

Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:puppy

E-mail Address []:admin@puppy.yourdomain.com

In Listing 3-3 I have changed into the directory where I want to put the CA, /etc/ssl/
certs, and then run the CA script with the option -newca. This creates a new CA. Press Enter
to create a new CA and then fill in the required details for your new CA, including a pass-
phrase and details of your location, organization, and the system on which the CA is running.
Replace the information in Listing 3-3 with the information for your environment, for exam-
ple, replacing yourdomain.com and puppy with the domain name and hostname of the system
on which you are creating the CA.

■Tip You should treat any CA or certificate passphrases with the same respect as you treat your other sys-
tem passwords—carefully and securely.

The CA script creates a directory called demoCA. Change this directory to something more
explanatory. I often use hostnameCA, replacing hostname with the name of the host on which
you are creating the CA.

puppy# mv demoCA puppyCA

Now you need to create a SSL .cnf file for your new CA. Copy the example, which is usu-
ally in /usr/share/ssl/openssl.cnf to a new file. Enter the following:

puppy# cp /usr/share/ssl/openssl.cnf /etc/ssl/certs/puppyCA/openssl.cnf

Then change the following line:

dir = ./demoCA # Where everything is kept

to the name and location of your new CA. In this case, enter the following:

dir = /etc/ssl/certs/puppyCA # Where everything is kept

Inside your new openssl.cnf you may want to adjust the defaults for your location. You may
also want to change the default_bits option in this file from 1028 to 2048 to increase the level of
encryption of your certificates, keeping in mind what I discussed earlier about key lengths.

4444c03_final.qxd 1/5/05 12:44 AM Page 145

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION146

Also inside your new puppyCA directory will be the CA’s certificate file, in this case called
cacert.pem. This is a particularly important file, and you need to do a couple of things to it.
Copy the CA’s certificate file to /etc/ssl/certs (or wherever you have placed your certificates).
You will need to define the CA’s certificate file to most of the applications you intend to enable
TLS for, so this is a good place to put it. You will also need to create a hash of the CA’s certifi-
cate file in your certs directory. A hash is used by OpenSSL to form an index of certificates in
a directory and allows it to look up certificates. Use the command in Listing 3-4, replacing the
cacert.pem filename with the name of your CA cert file.

Listing 3-4. Hashing Your CA Cert

puppy# ln -s cacert.pem `openssl x509 -noout -hash < cacert.pem`.0

■Tip If you have more than one CA certificate (for example, a self-created CA and one from a commercial
CA), you need to have hashes of each certificate.

After creating your new CA, you can start to create and sign your own certificates.
To create your first certificate, you need to create a certificate request that will then be

signed by the new CA. You will not create a certificate that is unencrypted and valid for one
year and a private key.

The certificate you create consists of several items, but the most important for the pur-
poses of using TLS is the distinguished name. This consists of a series of pieces of information
you provide during the certificate creation process, including your geographical location, the
hostname of the system, and an e-mail address. This information, in conjunction with the
validity of the certificate, identifies a valid certificate.

One of the most important pieces of information you need to provide for the certificate’s
distinguished name is the common name, which for the purposes of TLS is generally the host-
name of your system or, for example, the hostname of a Web site to secured with the certificate.
If you want this to work with your Mail Transfer Agent (MTA), for example, then this needs to be
the fully qualified domain name of the system for which the certificate is being created. In List-
ing 3-5, the common name will be puppy.yourdomain.com. So to create your first certificate, go
to your certs directory and run the command in Listing 3-5.

Listing 3-5. Creating a Certificate Request

puppy# openssl req -config /etc/ssl/certs/puppyCA/openssl.cnf -new ➥

-keyout puppy.yourdomain.com.key.pem -out puppy.yourdomain.com.csr

Generating a 1024 bit RSA private key

...........++++++

.........++++++

writing new private key to 'puppy.yourdomain.com.key.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

4444c03_final.qxd 1/5/05 12:44 AM Page 146

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 147

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [New South Wales]:

Locality Name (eg, city) [Sydney]:

Organization Name (eg, company) [puppy.yourdomain.com]:

Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:puppy.yourdomain.com

Email Address []:admin@puppy.yourdomain.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

The last two prompts are for extra information. The first is the provision of a challenge
password. The challenge password is optionally used to authenticate the process of certificate
revocation. Certificate revocation allows you to revoke the validity of a particular certificate,
and I will cover that briefly shortly. In most cases you can simply leave this blank by hitting
Enter. You can also leave the second optional company name blank.

In Listing 3-5 you could also have used the -nodes option to create the certificate and pri-
vate key. This tells OpenSSL not to secure the certificate with a passphrase. This allows you to
use the certificate for authenticating services such as the Simple Mail Transfer Protocol (SMTP),
which have no scope to enter a passphrase, and a connection would simply hang waiting for
the passphrase to be entered.

Listing 3-5 will create two files, puppy.yourdomain.com.key.pem and
puppy.yourdomain.com.csr. These files consist of a key file for your system and a certificate
request for your system. With these files, now the final stage of your certificate creation is to
sign the certificate request using your new CA. In the event you used a commercial CA, this is
the point at which you would submit the puppy.yourdomain.com.csr certificate request to the
commercial CA for signing. Since you are using your own CA, you continue onto the signing
stage on your local system. You can see this stage in Listing 3-6.

Listing 3-6. Signing Your Certificate Request

puppy# openssl ca -config /etc/ssl/certs/puppyCA/openssl.cnf ➥

-policy policy_anything -out puppy.yourdomain.com.cert.pem -infiles ➥

puppy.yourdomain.com.csr

Using configuration from /etc/ssl/certs/puppyCA/openssl.cnf

Enter pass phrase for /etc/ssl/certs/puppyCA/private/cakey.pem:

Check that the request matches the signature

Signature ok

4444c03_final.qxd 1/5/05 12:44 AM Page 147

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION148

Certificate Details:

Serial Number: 1 (0x1)

Validity

Not Before: Jun 19 02:35:17 2004 GMT

Not After : Jun 19 02:35:17 2005 GMT

Subject:

countryName = AU

stateOrProvinceName = New South Wales

localityName = Sydney

organizationName = puppy.yourdomain.com

commonName = puppy.yourdomain.com

emailAddress = admin@puppy.yourdomain.com

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

Netscape Comment:

OpenSSL Generated Certificate

X509v3 Subject Key Identifier:

7A:D2:26:2C:D2:19:79:F9:5E:51:53:2C:9E:89:1E:94:48:F5:DA:A2

X509v3 Authority Key Identifier:

keyid:50:27:56:92:74:26:FC:F1:3D:18:75:8D:49:D2:85:06:EA:15:C2:4E

DirName:/C=AU/ST=New South Wales/L=Sydney/O=ABC Enterprises Pty

Ltd/CN=James Turnbull/emailAddress=root@puppy.yourdomain.com

serial:00

Certificate is to be certified until Jun 19 02:35:17 2005 GMT (365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

This will output a final file called puppy.yourdomain.com.cert.pem, which is your certifi-
cate file. You can now delete the certificate request file, puppy.yourdomain.com.csr.

■Note You can use whatever naming convention you like for your certificates, keys, and requests. I just
use the previous convention because it represents a simple way to identify all of your SSL components and
to what system they belong.

Finally, change the permissions of the puppyCA directory and of the files in the directory to
ensure they are more secure.

puppy# cd /etc/ssl

puppy# chmod 0755 certs

puppy# cd certs

puppy# chmod -R 0400 *

Now you have your first set of keys and certificates and can use them to secure your TLS
connections.

4444c03_final.qxd 1/5/05 12:44 AM Page 148

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 149

Revoking a Certificate
In the event a certificate is compromised, you need to be able to stop people using it for encryp-
tion and authentication. Or you may want to schedule a particular certificate to expire on a par-
ticular date. In either case, one of the ways of doing that is to revoke the certificate. You can tell
your internal CA about certificate revocation by adding the revoked certificates to a special file
called a certificate revocation list (CRL). Listing 3-7 shows how to generate an empty CRL using
the openssl command. You will store your CRL file in the CA itself (in this case in the directory
/etc/ssl/certs/puppyCA). The openssl.cnf file specifies the default CRL as crl.pem in the direc-
tory containing the CA. When prompted, enter the passphrase for the CA’s key.

Listing 3-7. Creating a CRL

puppy# cd /etc/ssl/certs/puppyCA/

puppy# openssl ca -gencrl -out crl.pem -config /etc/ssl/certs/puppyCA/openssl.cnf

Using configuration from /etc/ssl/puppyCA/openssl.cnf

Enter pass phrase for /etc/ssl/puppyCA/private/cakey.pem:

CRLs are generally valid for one month only. If you want to create one for a longer period,
use the option -crldays to specify the number of days for which you want the CRL to be valid.

Once you have your CRL file, you can revoke a certificate using the command in Listing 3-8.

Listing 3-8. Revoking a Certificate

puppy# openssl ca -revoke puppy.yourdomain.com.cert.pem \

-config /etc/ssl/puppyCA/openssl.cnf

Using configuration from /etc/ssl/puppyCA/openssl.cnf

Enter pass phrase for /etc/ssl/puppyCA/private/cakey.pem:

Revoking Certificate 01.

Data Base Updated

If you have specified a challenge password in your certificate when you created it, you will
be prompted for that password before you are allowed to revoke the certificate. If you do not
have the password, you cannot revoke the certificate.

After you have revoked a certificate, you should re-create the CRL from Listing 3-7. Now
if you attempt to use the certificate you have just revoked, the connection will fail and you will
get an error message indicating the certificate is revoked.

■Caution If you have something (an e-mail, for example) encrypted with that certificate and you revoke
the certificate, you will not be unable to decrypt that information.

You also need to let your users and applications know that a certificate has been revoked.
In the openssl.cnf file, it references the location of your CRL files and the default directory for
them. By default this is the crl directory underneath the root directory of your CA and the file
crl.pem. Place your CRL in this directory. All users should have read permissions to this area,
but no users should have write permissions. You also need to create hashes of your CRLs as
you have with your CA certificates. You can use the command in Listing 3-9 to do this replac-
ing yourcrl.pem with the name of your CRL file.

4444c03_final.qxd 1/5/05 12:44 AM Page 149

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION150

Listing 3-9. Creating a Hash of Your CRL File

puppy# ln -s yourcrl.pem `openssl crl -hash -noout -in yourcrl.pem`.r0

Store your CRL hash in the crl directory also.

Testing Connections Using the openssl Command
The openssl command also allows you to test both client- and server-style connections using
the s_client and s_server functions. The s_client function allows you to test connecting to
a remote SSL-enabled service or daemon. This is useful for testing connections and diagnos-
ing problems. Listing 3-10 shows an example of testing an MTA running SSL.

Listing 3-10. Testing an MTA Using openssl s_client

puppy$ openssl s_client -connect puppy.yourdomain.com:25 -starttls smtp

The openssl s_client command in Listing 3-10 will connect to port 25 and try to start
TLS using the -starttls option. The smtp parameter tells OpenSSL that the target system
being connected to is a SMTP server. At this stage the only other option available to use with
the -starttls command is pop3, which you can use to connect to a POP3 server and do simi-
lar tests. The command will return the details of the connection, any certificates being used
and attempt to ensure all certificates and CA root certificates are verified.

You can also connect to a non-MTA client such as an IMAP server. Enter the following:

puppy$ openssl s_client -connect puppy.yourdomain.com:993

You can provide some other options to the openssl s_client function. Table 3-2 shows
the most useful of these options.

Table 3-2. openssl s_client Options

Option Description

-cert certname If you need to provide a certificate to the server, you can define it here.
By default one is not provided.

-key keyfile Provides a private key to use.

-verify depth Specifies the verify depth to use that indicates the depth to which
OpenSSL will check the certificate chain.

-reconnect Performs five reconnects using the same session ID to ensure session
caching is working.

-showcerts Displays the entire certificate chain not just the server certificate.

-state Prints the SSL session states.

-debug Provides extra debugging information including a hex dump of all the SSL
traffic.

-msg Shows all the protocol messages if you are performing the debug hex
dump.

-ssl2, -ssl3, -tls1, Enables and disables the available SSL and TLS protocols.
-no_ssl2, -no_ssl3,
-no_tls1

4444c03_final.qxd 1/5/05 12:44 AM Page 150

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 151

The last option is extremely useful when diagnosing issues. Some older versions of SSL
implemented with applications will not function when connected to with newer versions of
the SSL/TLS protocols. For example, some servers require TLS to be disabled. Alternatively,
others servers require that you connect to a remote server that allows only one type of SSL
protocol.

The openssl s_server function allows you to set up a functioning SSL server that you can
connect to and test certificates and keys. Listing 3-11 shows how to start a test SSL server.

Listing 3-11. Starting a Test SSL Server Using the openssl s_server Function

puppy$ openssl s_server -key puppy.yourdomain.com.key.pem \

-cert puppy.yourdomain.com.cert.pem

Using default temp DH parameters

Enter PEM pass phrase:

ACCEPT

The command in Listing 3-11 will start a server and bind it onto port 4433 and await
input from a remote application. The choice of port 4433 is the default, and you can override
that by specifying the -accept option and telling s_server to bind to another port. As you can
see from Listing 3-11, I have specified a key and certificate for the function to use. If you spec-
ify a certificate or key that has a passphrase, you will be prompted to enter the required pass-
word. You can also define the location of the CA certificate file and a path to the CA files using
the -CAfile option and the -CApath option, respectively.

You can also emulate a typical SSL Web server. To emulate a simple Web server, specify
the -WWW option on the command line. Any HTML files requested will be sourced relative to the
directory from which the openssl s_client function was started; in other words, a request for
index.html will assume the file is located at ./index.html. You can also add the -www option to
the command line to have the openssl command send back detailed status and response
information in the form of a HTML document to the requesting Web server.

While in the session, if it was not been initiated with the -www or -WWW option, you can
send commands to the client from within the server session. Table 3-3 details the commands
available to you.

Table 3-3. SSL Commands Within an openssl s_server Session

Command Description

P Sends some plain text to the client. This should disconnect the client by causing a
protocol violation.

q Ends the current SSL connection but still accepts new connections.

Q Ends the current SSL connection and ends the server.

r Renegotiates the current SSL session.

R Renegotiates the current SSL session and requests a client certificate from the client.

S Prints the session cache status information.

4444c03_final.qxd 1/5/05 12:44 AM Page 151

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION152

■Tip A useful tool called SSLdump is available from http://www.rtfm.com/ssldump/ and is designed
to function like tcpdump except it focuses on SSL/TLS traffic. This is a good tool for diagnosing connection
with SSL/TLS. If provided with keys and passwords, it can also decrypt the monitored traffic.

Stunnel
Stunnel provides an excellent example of how you can use OpenSSL to secure connections.
Many daemons that rely on connections for their functionality, such as a sendmail daemon or
the Apache Web server, either have built-in access controls and have encryption mechanisms
such as OpenSSL or have the ability to be integrated with an access control or encryption mech-
anism. Using Sendmail as an example, I will show in Chapter 8 how to incorporate OpenSSL and
Cyrus SASL to provide authenticated and encrypted message transfer using TLS and a variety of
potential authentication mechanisms. These types of connections generally do not require any
special additional security other than what is incorporated or integrated with them. The connec-
tions from applications and daemons do not offer any or not enough access controls or encryp-
tion that you need to consider securing them further. These types of connections (for example,
a network-enabled syslog daemon like in Chapter 5) require some kind of wrapper to provide
that access control and encryption. The ideal wrapper for those connections is provided with
the combination of OpenSSL and Stunnel.

■Note Stunnel tunnels only TCP packets, not UDP packets. It also works only on connections that use single
connections. A service such as FTP requires two connections (a control channel and a data connection) and
therefore cannot be tunneled with Stunnel. If you do need to secure FTP, I will talk about that in Chapter 10.
Otherwise, if you want to transfer files, you can use secure tools such as sftp or scp, which I talk about in
the “scp and sftp” section later in this chapter.

Obviously, Stunnel relies on OpenSSL, and it needs to be installed before you install
Stunnel. You may also have an existing installation of Stunnel of your system. Run the Stunnel
command to check for its presence and version.

puppy# stunnel -version

stunnel 4.04 on i386-redhat-linux-gnu PTHREAD+LIBWRAP with ➥

OpenSSL 0.9.7a Feb 19 2003

If installed by your distribution, the Stunnel binary is usually located in /usr/sbin with its
configuration located in the /etc/stunnel directory. Like OpenSSL, Stunnel is a package you
should ensure is kept as up-to-date as possible either through your distribution’s package
management system or via upgrading a source package.

■Tip If you install Stunnel on Debian using apt-get, you should check the README.Debian file in the
directory /usr/share/doc/stunnel/ for further instructions on configuring Stunnel on Debian.

4444c03_final.qxd 1/5/05 12:44 AM Page 152

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 153

You can download Stunnel from http://www.stunnel.org/download/stunnel/src/. Unpack
the source package, and change into the resulting directory. You need to configure Stunnel.
Listing 3-12 shows a basic configure.

Listing 3-12. Using the configure Script for Stunnel

puppy$./configure --with-tcp-wrappers --prefix=/usr \

--sysconfdir=/etc --localstatedir=/

This configure script specifies Stunnel should enable support for TCP Wrappers and use
an installation prefix of /usr, which would generally overwrite an existing installation of Stun-
nel if it has been installed as part of your base distribution. I have also specified the locations
of the Stunnel configuration files as /etc/ using the --sysconfdir option (with the install pro-
cess creating a subdirectory called stunnel) and the state files to be located in /var using the
--localstatedir option. Some other configuration options are available. Probably the most
commonly used is the --with-ssl option, which allows you to specify the exact location of
your SSL libraries if they are installed in a nonstandard location.

puppy$./configure --with-tcp-wrappers --prefix=/usr \

--sysconfdir=/etc --localstatedir=/ --with-ssl=/usr/local/ssl

You can see any additional options available by running the configure script with the
--help option.

Once you have configured Stunnel, you need to make and make install it. When you make
Stunnel, you will be prompted to create a server certificate for the system on which you are
installing it. Stunnel uses the standard OpenSSL openssl command to do this, and you should
be able to easily follow the prompts to create the certificate.

The stunnel binary is designed to start Stunnel and by default looks for a file called
stunnel.conf in /etc/stunnel to find its configuration information. Enter the following:

puppy# stunnel

You can override this by specifying a different filename on the command line. This can
allow you to launch a number of individual Stunnel sessions using different configuration files
(for example, if you want to use different certificates and keys for different connections), or
you can place all your connections in one configuration file using the same certificate and key
for all of them. Enter the following:

puppy# stunnel /etc/stunnel/another_config.conf

You can also use a couple of other options; -sockets prints the socket option defaults and
-help prints the Stunnel help screen. By default running the stunnel binary will start Stunnel
in daemon mode. Generally I recommend starting Stunnel via an init script. Stunnel includes
a sample init script in the tools subdirectory in the source package. You can modify and copy
it to use it for your system. I recommend at least adjusting the location of the default process
identifier (PID) file in the top of the script, which generally points to an unsuitable location.

■Tip Stunnel used to have command-line options available to it. This was changed in version 4 of Stunnel,
and now all configuration is handled via the configuration file. Command-line options will no longer work!

4444c03_final.qxd 1/5/05 12:44 AM Page 153

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION154

The stunnel.conf file controls Stunnel. The source package comes with a sample configura-
tion file called stunnel-sample.conf, which provides examples of a few options. It is installed into
the directory you have specified as the configuration directory using the --sysconfdir option.
The configuration file is divided into two types of options: global options and service options. The
global options specify settings and parameters that affect how Stunnel runs. The service options
allow you to define particular services, tunnels, and connections to Stunnel, which are the core
functionality of the application. Listing 3-13 shows a simple stunnel.conf file.

Listing 3-13. Sample stunnel.conf File

cert = /etc/stunnel/stunnel.pem

pid = /var/run/stunnel/stunnel.pid

setuid = stunnel

setgid = stunnel

[imaps]

accept = 993

connect = 143

The first two options specify the location of the default server certificate to use and the
PID file for the Stunnel process. By default Stunnel starts in server mode and requires you
specify a certificate to be used. You have already specified the certificate that was created by
default when you installed Stunnel (as shown in Listing 3-13). The next two options specify
the user and group that Stunnel will run as.

I recommend creating a user and group specifically for Stunnel. Enter the following:

puppy# groupadd stunnel

puppy# useradd -g stunnel -s /sbin/nologin -d /dev/null stunnel

You should also create the directory for the PID file and change its ownership and per-
missions to accommodate the new user and group. Enter the following:

puppy# mkdir /var/run/stunnel

puppy# chown stunnel:stunnel /var/run/stunnel

puppy# chmod 0755 /var/run/stunnel

In Listing 3-13 the third line shows a service option defined to Stunnel. This is a simple
wrapper for IMAPS. First, you see the name of the service defined in brackets, [], in this case
imaps. This is useful because Stunnel logs to syslog each service by this name, so you should
define it here. Also, if you are using TCP Wrappers, this identifies the service for it.

Second, the next two lines specify what Stunnel is listening for and where it is going to
send that connection. In this case, it is listening on port 993 (the accept statement) for an
SSL-enabled client to try to connect to the IMAP server. It then diverts all traffic from that port
to port 143 (the connect statement). As you have not included a hostname, Stunnel assumes
you are listening on the local host and connecting to the local host. This is the simplest form
of tunnel you can create, and now all traffic between port 993 and port 143 will be encrypted
using SSL/TLS.

4444c03_final.qxd 1/5/05 12:44 AM Page 154

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 155

■Note A small note about firewalls and Stunnel. In Listing 3-13 I show Stunnel listening for connections
on port 993 and redirecting all those connections to port 143 all on the local host. It is not necessary to have
both ports open to the network in the iptables configuration. I would configure iptables so that it would
allow connections to port 993 from whatever local and/or remote sources I required and restrict port 143 to
connections only from local host or the local network depending on your requirements.

Let’s look at some other types of service connections. Stunnel is also capable of listening on
a local port and forwarding that port to another port on a remote system. Enter the following:

[rsmtp]

accept = 1025

connect = kitten.yourdomain.com:25

In the service defined previously, rsmtp, Stunnel is listening on port 1025 on the local host
and forwarding all traffic on that port with SSL/TLS enabled to port 25 on the remote system
kitten.yourdomain.com. You can also do the reverse and listen to a port on a remote system
and forward that encrypted to a port on the local host. Enter the following:

[rsmtp2]

accept = kitten.yourdomain.com:25

connect = 1025

This listens to any traffic emerging from port 25 on the remote system kitten and for-
wards it to the local port of 1025.

You can define some other global options to Stunnel (see Table 3-4).

Table 3-4. Stunnel Configuration Global Options

Option Description

key = file Specifies the certificate private key.

CApath = path Defines the CA certificate directory.

CAfile = file Defines the CA certificate file.

CRLpath = path Defines the directory for CRLs.

CRLfile = file Defines the CRL file.

verify = level Specifies the level of certificate verification.

debug = facility.level Specifies the logging facility and level. The level 7 or debug will
produce the most logging output.

foreground = yes | no Stays in the foreground and does not daemonize.

output = file Specifies output logging to a file instead of syslog.

chroot = directory Specifies the directory to which to chroot the stunnel process.

client = yes | no Specifies enabling client mode.

4444c03_final.qxd 1/5/05 12:44 AM Page 155

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION156

The first five options allow you to specify the location of a variety of SSL infrastructure
items, including a private key you can use (the default key created during the Stunnel installa-
tion contains the private key and public certificate concatenated in the stunnel.pem file) and
the location of your CA and CRL paths and files.

■Tip Remember for Stunnel to properly use your CA and CRL files, they need to be hashed, and the hashes
are located in the paths defined in the CApath and CRLpath options.

The verify option has three levels of peer certificate verification: Level 1, Level 2, and
Level 3. Peer certificate verification indicates Stunnel will attempt to verify any certificates
presented by remote connections to the local Stunnel daemon. Level 1 tells Stunnel to con-
nect if no certificate is present; but if a certificate is presented, then verify it, and if a verified
certificate does not exist, drop the connection. Level 2 requires a certificate be presented and
verifies that certificate. The connection is again dropped if the verification fails. Level 3 also
requires a certificate to be presented and verified, but additionally the presented certificate is
verified against a store of local certificates to confirm the remote system is authorized to con-
nect. By default Stunnel does not perform certificate verification.

By specifying the chroot option, you can run Stunnel inside a chroot jail. Listing 3-14
shows a portion of a stunnel.conf file with chroot enabled.

Listing 3-14. Stunnel with chroot Enabled

cert = /etc/stunnel/stunnel.pem

setuid = stunnel

setgid = stunnel

chroot = /var/run/stunnel

pid = /stunnel.pid

You leave the cert option alone because Stunnel loads any certificates or keys before
starting the chroot jail. So, the location of any of your SSL infrastructure would remain relative
to the normal root of the system. Stunnel will also start running as the defined user and group
before “chrooting” itself. The chroot option itself specifies the new root of the chroot jail, in
this case /var/run/stunnel. The next option, the location of the PID file, is specified relative
to the chroot jail. So in Listing 3-13 previously, the PID is located in /var/run/stunnel.

The last option of Table 3-4. client, allows Stunnel to function as a client of a server. You
can see how this works in Chapter 5 where I show how to use this function to secure a syslog-ng

logging connections to allow using a central log server.
Finally for Stunnel configuration, the service functions can have some additional options

defined (see Table 3-5).

4444c03_final.qxd 1/5/05 12:44 AM Page 156

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 157

Table 3-5. Service-Level Options

Option Description

delay = yes | no Delays the DNS lookup for connects.

local = IP Address IP address to be used as source for remote connections.

protocol = protocol A protocol to negotiate before SSL initialization, which includes cifs,
nntp, pop3, and smtp.

TIMEOUTbusy = seconds Number of seconds to wait for expected data.

TIMEOUTclose = seconds Number of seconds to wait for close_notify.

TIMEOUTidle = seconds Number of seconds to keep idle connection open.

The delay option tells Stunnel to delay any DNS lookups until a connection is made if it is
set to yes. The protocol option allows Stunnel to negotiate a particular protocol before the SSL
session is initialized. This is particularly useful with SMTP services where they are expecting
some negotiation before initializing SSL. To provide negotiation for an SMTP service, set the
protocol option to smtp like this:

protocol = smtp

The last options offer timeout values to help manage your connections. The TIMEOUTbusy
option provides a timeout for a response from a remote connection, the TIMEOUTclose waits
for a busy connection close notification, and the TIMEOUTidle provides a length in seconds for
Stunnel to keep alive an idle connection. You will need to experiment with these values to
determine what best suits the type and purpose of your connections.

Let’s look at an example of how to use Stunnel. I will encapsulate a virtual network comput-
ing (VNC) session in a secure tunnel. VNC is remote-access software incorporating remote con-
trol, a screen viewer, and a Java-based viewer that can allow remote control from within a browser
window. It is a popular tool for systems administrators and remote user access. Unfortunately, it
is not very secure. Most of the information transmitted via VNC can be sniffed from the network,
including usernames and passwords. It is especially dangerous to use VNC across an Internet
connection. You will now look at securing VNC using Stunnel.

VNC comes in two portions: a client and a server. The server portion runs on the machine
you want to connect to and the client portion on your local machine. For the purposes of this
explanation, I will assume your server system is a Linux system and you are connecting to it
using a desktop system running Linux. So, set up the server end of Stunnel and VNC.
Listing 3-15 shows the server-side stunnel.conf file.

Listing 3-15. Server-Side stunnel.conf Configuration for the VNC Tunnel

cert = /etc/stunnel/stunnel.pem

chroot = /var/run/stunnel

pid = /stunnel.pid

setuid = stunnel

setgid = stunnel

[vnc]

accept = puppy.yourdomain.net:5999

connect = 5901

4444c03_final.qxd 1/5/05 12:44 AM Page 157

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION158

I have already explained the first five options in Listing 3-15 in the previous section, but
note that I have enabled the chroot function so that any connections to the system will be to
the chroot jail. This may not be ideal if you are using the VNC connection for remote adminis-
tration. The service function defines a service called vnc, which accepts connections on host
puppy.yourdomain.com on port 5999 and then forwards those connections to the port 5901 on
the local host. Now start Stunnel to continue. Enter the following:

puppy# stunnel

The port 5901 is where the VNC is going to be listening for connections. Let’s start it now.
Enter the following:

puppy# vncserver :1

If this is the first time you have started the VNC server, you will be prompted for a pass-
word that will be required by any clients to be able to connect to your system. The :1 part
indicates the VNC server should start allocating displays to incoming clients from Display #1.
Display #1 equates to port 5901, Display #2 equates to port 5902, and so on.

On the client the configuration is similar, as you can see from Listing 3-16.

Listing 3-16. Client-Side stunnel.conf Configuration for the VNC Tunnel

cert = /etc/stunnel/stunnel.pem

chroot = /var/run/stunnel

pid = /stunnel.pid

setuid = stunnel

setgid = stunnel

[vnc]

accept = 5901

connect = puppy:yourdomain.com:5999

In this case, the defined service vnc is listening on the local host port 5901 for any connec-
tions and is configured to forward those connections onto the host puppy.yourdomain.com on
port 5999. You also need to start Stunnel on your client system.

With Stunnel and VNC running on the server system, and Stunnel running on the client
system, you can now try to connect to the server system securely using VNC over Stunnel.
Enter the following:

kitten# vncviewer localhost:1

On the sample client system, kitten, you launch the vncviewer binary and request a connec-
tion to localhost:1, which means Display #1 on the local system. This display equates to the port
5901, which Stunnel is listening on and forwarding to port 5999 on the puppy.yourdomain.com sys-
tem. From there the Stunnel daemon forwards the connection to port 5901 on puppy where the
VNC server is waiting for connections. You will be prompted for a password, and then, if authenti-
cated, you will then be connected to the puppy system via VNC.

You could also update this configuration as I will do with the syslog-ng secure connection
demonstrated in Chapter 5. This allows connections from specific systems and from systems
with valid certificates when you use the verify option in your stunnel.conf configuration file.

4444c03_final.qxd 1/5/05 12:44 AM Page 158

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 159

12. http://www.faqs.org/rfcs/rfc2401.html

13. Pronounced “swan”

14. You can also use shared secrets and X.509 certificate authentication with Openswan.

15. http://wiki.openswan.org/

IPSec,VPNs, and Openswan
IPSec is short for IP security and represents a collection of extension standards and protocols
for the original Internet protocol related to the secure exchange of IP packets. It was first
developed for IPv6 and then made backward compatible for IPv4. At the core of this collection
of standards is RFC2401.12 A variety of products and tools use IPSec to secure connections
between systems. IPSec works at a lower level than the SSL/TLS protocols. Whereas SSL oper-
ates between the network and application layers, IPSec encrypts traffic at the IP level and is
capable of encapsulating the entire IP datagram (tunnel mode) or just the data portion of the
IP datagram (transport mode). The tunnel mode allows the encapsulation of the entire origi-
nal IP datagram with a new encrypted datagram. While the transport mode encrypts only the
payload of the IP datagram, leaving the IP header unencrypted. With IPSec you could even
layer a protocol like SSL/TLS over the top of a connection, further enhancing your security.

You will now look at the S/WAN13 implementation of IPSec. S/WAN can be best described
as a virtual private network (VPN) solution. S/WAN stands for secure wide area network and
was an initiative by RSA Security both to develop a standard for the use of IPSec to build VPNs
and to promote the deployment of Internet-based VPNs using IPSec. While S/WAN is no
longer being actively developed, a number of open-source packages have developed out of
the S/WAN project. One example of this is Openswan. Openswan is an open-source S/WAN
IPSec implementation principally for Linux and other *nix operating systems (though it also
supports Windows to some degree). It is available at http://www.openswan.org/. I will show
you how to install Openswan and create a VPN tunnel between two subnets over the Internet
using RSA encryption.14 You can perform other tasks with Openswan, including a variety of
functions aimed at providing remote VPN connectivity for roving users. See the Openswan
wiki for further details.15

■Tip Additionally, you do not have to only connect two systems. You could also connect a system to a
firewall or router. For example, instructions are available at http://www.johnleach.co.uk/documents/
freeswan-pix/freeswan-pix.html that should provide a starting point for connections between a
system and a Cisco PIX firewall using Openswan.

Openswan has a couple of prerequisites for installation. These are the GMP (GNU Multi-
Precision) libraries from http://swox.com/gmp/. These should probably be installed by default
on your distribution, but an up-to-date version is the safest. Openswan itself is available in
two branches of code, which you can download from http://www.openswan.org/code/. The
first, version 2, supports all current kernels up to version 2.6 and is the current path of devel-
opment of the Openswan package. The second, version 1, supports only kernel versions 2.0,
2.2, and 2.4. It contains a fixed feature set that is somewhat limited compared to the version 2

4444c03_final.qxd 1/5/05 12:44 AM Page 159

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION160

branch. Openswan version 1 is well tested and stable, but given the lack of support for 2.6 ker-
nels it may have a limited life span as more people upgrade to more recent kernel versions.
I recommend going with the version 2 branch for this reason to avoid a potentially compli-
cated upgrade path as more distributions default to a version 2.6 kernel. For the purposes of
this explanation, I will assume you are going to download the version 2 branch of Openswan.

■Caution Openswan works best with 2.4.x and 2.6.x kernels, and I recommend that all your systems run
at least version 2.4. Indeed, not only is support unpredictable for older versions of 2.0 and 2.2 kernels (2.0
earlier than release 2.0.39 and 2.2 earlier than release 2.2.20), but these versions of the kernel also suffer
from a variety of security issues.

Installing Openswan on kernel version 2.4 is not an easy task for a beginner because it
involves working with your kernel. If this worries you or you are not comfortable with activi-
ties such as working with your kernel or recompiling your kernel, I recommend you avoid
Openswan.

■Tip Red Hat Enterprise Linux 3-0 (AS, WS, and ES) and Red Hat Fedora Core 2 do not require a kernel
recompilation; although they have version 2.4 kernels, they also have the IPSec modules from the version
2.6 kernel that is backward compatible.

Download Openswan from the Web site. If you are running Red Hat Enterprise 3 or Fedora
Core 2–based systems, you are able to install Openswan via RPM. If you have downloaded the
RPM, then install it using the following command and move onto the section talking about
Openswan configuration. Enter the following:

puppy# rpm -Uvh openswan-version.as3.i386.rpm

If you have downloaded the source package, then unpack the package and change to the
resulting directory.

For kernel version 2.4 systems, you need a clean copy of your kernel source either from
your distribution or downloaded via http://www.kernel.org. The best method to ensure your
installation goes smoothly is to compile your kernel from source prior to installing Openswan.
Once you have done this, make a note of the location of your kernel source package and you
can begin to install Openswan. If you require Network Address Translation Traversal (NAT-T)
support, you need to patch the kernel source. NAT-T allows IPSec traffic to work with NAT
devices such as routers and firewalls. From inside the Openswan source directory, run the fol-
lowing command replacing the /path/to/kernel/source with the location of your kernel source,
as follows. The last command make bzImage will make a new boot image for your system. You
will need to install this new boot image; I recommend you reboot after this to test the new
boot image.

puppy$ make nattpatch | (cd /path/to/kernel/source && patch -p1 && make bzImage)

4444c03_final.qxd 1/5/05 12:44 AM Page 160

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 161

Now you need to build the userland tools and the ipsec.o module. Listing 3-17 shows the
required command.

Listing 3-17. Building the Openswan Userland and the IPSec module for Kernel Version 2.4

puppy$ make KERNELSRC=/path/to/kernel/source programs module

Again, replace /path/to/kernel/source with the location of your kernel source. Once this
is compiled, the last step is to install the tools and your new IPSec module. Use the command
in Listing 3-18 for this.

Listing 3-18. Building the Userland Tools and IPSec Module

puppy# make KERNELSRC=/path/to/kernel/source install minstall

Remember to replace /path/to/kernel/source with the location of your kernel source.
With version 2.6 kernels, Openswan relies on the built-in IPSec support and does not

need to compile a module.

■Note This implies you have enabled the IPSec support in your 2.6 kernel. You also should be using at
least version 2.6.4 of the kernel because earlier versions have IPSec bugs that can result in system crashes.

From inside the Openswan source directory, use the commands in Listing 3-19 to compile
and install Openswan for version 2.6 kernels.

Listing 3-19. Compiling and Installing Openswan for Version 2.6 kernels

puppy$ make programs

puppy# make install

Once you have installed Openswan, you need to start it. Openswan comes with an init
script called ipsec that is installed with your other init scripts when you run the make install
process. I will start this script first (see Listing 3-20).

Listing 3-20. Starting the ipsec Script

puppy$ /etc/rc.d/init.d/ipsec start

ipsec_setup: Starting Openswan IPSec 2.1.3...

Next you should verify that all the required components for Openswan are available
using the verify function, which is run using the ipsec command. The ipsec command
provides an interface to Openswan and allows you to control it. Listing 3-21 shows the ipsec
verify function.

4444c03_final.qxd 1/5/05 12:44 AM Page 161

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION162

Listing 3-21. The ipsec verify Command

puppy$ ipsec verify

Checking your system to see if IPSec got installed and started correctly:

Version check and ipsec on-path [OK]

Linux Openswan U2.1.3/K2.4.21-4.EL (native) (native)

Checking for IPSec support in kernel [OK]

Checking for RSA private key (/etc/ipsec.secrets) [OK]

Checking that pluto is running [OK]

Checking for 'ip' command [OK]

Checking for 'iptables' command [OK]

Checking for 'setkey' command for native IPSec stack support [OK]

Opportunistic Encryption DNS checks:

Looking for TXT in forward dns zone: puppy.yourdomain.net [MISSING]

Does the machine have at least one non-private address? [FAILED]

The results of the command in Listing 3-21 show that all Openswan and IPSec options
are installed and started correctly. The last two options relate to using the Opportunistic
Encryption (OE) DNS checks that rely on DNS TXT records to authenticate VPN connec-
tions. I will not cover this, but if you are interested in looking at OE, then see this quick start
guide at http://www.freeswan.org/freeswan_snaps/CURRENT-SNAP/doc/quickstart.html.
The guide is for Openswan’s predecessor, FreeSWAN, but because Openswan is drawn from
the FreeSWAN code base, configuration is nearly identical.

The ipsec.conf File
Openswan connections are controlled via the ipsec.conf file. You will need to have a copy of
this file on both systems you want to connect with Openswan. Listing 3-22 shows an example
of an ipsec.conf file.

Listing 3-22. A Sample ipsec.conf File

version 2.0

config setup

interfaces="ipsec0=eth0"

klipsdebug=none

plutodebug=all

conn puppy_to_kitten

auth=rsasig

left=203.28.11.1

leftsubnet=192.168.0.0/24

leftid=@puppy.yourdomain.net

leftrsasigkey=key

leftnexthop=%defaultroute

4444c03_final.qxd 1/5/05 12:44 AM Page 162

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 163

right=203.28.12.1

rightsubnet=192.168.1.0/24

rightid=@kitten.anotherdomain.com

rightrsasigkey=key

rightnexthop=%defaultroute

#Disable Opportunistic Encryption

include /etc/ipsec.d/examples/no_oe.conf

■Tip The ipsec.conf file is occasionally highly temperamental when parsed. If you have issues with the
ipsec init script failing to start or connections failing to start because of parse errors in your configuration
file, then make sure you have the file properly indented, no extra spaces or special characters are present,
and all your sections starts in the first column. If all else fails, try to remove all comments and empty lines in
your ipsec.conf file.

Let’s go through the file line by line. The first option specifies the use of version 2.0 of
Openswan. The rest of the ipsec.conf file is divided into sections. The sections currently avail-
able for Openswan are the config and conn sections. The config section handles the general
configuration of Openswan, and the conn sections describe connections. You need to indent
the parameters under each section with a tab; otherwise the configuration file will not be
parsed correctly.

The section config setup refers to configuration options related to the startup of Openswan.
I have used three options on this section. The first specifies a matched pair of virtual and physical
interfaces to be used by Openswan for IPSec connections, in this case the virtual interface ipsec0
matched with the physical interface eth0. You can specify more than one interface here. You can
also use the variable %defaultroute, which finds the default route and uses the interface associ-
ated with that. Enter the following:

interfaces=%defaultroute

You will need at least two interfaces in both your systems for most VPN configurations.
This is because you need one interface for each end of the VPN tunnel in addition to an inter-
face or interfaces on each system for non-VPN tunnel traffic to use. For example, the simple
system-to-system tunnel you are creating here requires two interfaces on each system: one to
connect to the local internal network and the other to provide the interface for the VPN tunnel.

The last two options are both related to the output of debugging data. The klipsdebug
option handles the debugging output from the IPSec module of the kernel, which can be out-
putted to syslog as part of Openswan’s operation. I have set it to none, which will produce no
debug output. The plutodebug option handles the output from the Pluto IKE daemon, which
is started when you run the ipsec init script. The Pluto IKE (or IPSec Key Exchange) daemon
handles the low-level key negotiation daemon. You can read more about Pluto (and its related
control interface whack) via man ipsec pluto. Table 3-6 describes some other useful options.

4444c03_final.qxd 1/5/05 12:44 AM Page 163

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION164

Table 3-6. Useful Configuration Options for ipsec.conf

Option Description

syslog=facility.priority Specifies the facility and priority of syslog output.

dumpdir=dir A directory for core dumps. Specifies an empty value to disallow
core dumps.

plutoload=conn Specifies connections to load into Pluto’s internal database at
startup. You can specify the %search variable that loads all
connections with auto=route or route=add.

plutostart=conn Specifies connections to be started by Pluto at startup. You can
specify the %search variable that starts all connections with
auto=route, route=add, and auto=start.

nat_traversal=yes | no Allows or disallows NAT traversal.

The next section in Listing 3-22 is the conn section. Your VPN connections are defined in
this section. I show a simple subnet-to-subnet connection that is the most basic form of VPN
that Openswan is capable of generating. Specify the name of the connection puppy_to_kitten.
The first option, auth, specifies how the connection will be authenticated. I have specified
authentication using RSA encryption. The VPN connection you are creating has two sides, the
left and right sides, with each side representing a system you want to connect. You will define
the left side first. The first thing you define is the public IP address of the left system you are
connecting from using the left parameter, in this case 203.28.11.1. You then specify the sub-
net of the left-side network using the leftsubnet parameter. This is the internal private subnet
of the left-side network you are connecting to, which is 192.168.0.0/24. Next you define how
the left-side connection is identified for authentication by specifying @puppy.yourdomain.com.
This should generally be set to @domain.name.

Next you need to define your RSA signatures. You can do this using the ipsec newhostkey
command. On each system you want to connect run the following command:

puppy# ipsec newhostkey --bits 2192 --hostname puppy.yourdomain.com

kittten# ipsec newhostkey --bits 2192 --hostname kitten.anotherdomain.com

This will create a file /etc/ipsec.secrets on each system, which contains a public and
private host key for each system. I have specified a bit size of 2192 and the hostname of the
system for which you are generating the key.

Once you have the keys, you need to add the public portion of the keys to the leftrsasigkey
and rightrsasigkey parameters on your ipsec.conf file. You can display the public portion of
the host key using the command in Listing 3-23.

Listing 3-23. Display the Public-Key Portion using the IPSec showhostkey Command

puppy# ipsec --showhostkey --left

RSA 2192 bits puppy.yourdomain.com Thu Jun 24 23:53:33 2004

leftrsasigkey=0sAQNkjDGFsIH6Kx1EhOE79BFxXwJtZiSJFOohvZvhiPtNaWobvSbSmhqKAd+fYCInEbrp

zk0s+qop7vtQB/JpwxHF52UwdUQL92OEaM0PbM4dJAqaf/KkXxMaWmrwWforIx3WcppBwX7nuHfCx6f5FKdn

2FcD92yF9XarlbET726WHJnZ1RidwNq8WtA7Wu84YSmH59OL4v+bMWg01R5nM4C0tN4SU/NcRIrB5OaWEPsc

nbSjNuchogYNwTvj7jGmQSnnb/DC7Ay4rpaZY8/HCeaiHKCTa+ZGsXEem6/7TSZmpkkx2sE4DxeshaPWHTDr

VHh3mMkGqLnAXev5JgJpkyanKifvPHa73jZ3rHauCpgm/Eh

4444c03_final.qxd 1/5/05 12:44 AM Page 164

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 165

Lastly you need to specify a next hop for the VPN connection. This can be the IP address
of the next hop of that system, or you can use the variable %defaultroute to specify the next
hop using the default route of the system.

You then need to setup the right-side connection. Repeat the process of configuring the
right side using the appropriate IP addresses, subnets, next hop, and the correct public key
(obtained on the remote system with the ipsec showhostkey --right command).

Some other options are available in your conn sections, which can be useful (see Table 3-7).

Table 3-7. Additional ipsec.conf conn Options

Option Description

type=type The type of connection to be made, which defaults to tunnel but can also
include transport, passthrough, drop, and reject. See the man page for more
details.

auto=option This option governs behavior of the connection at startup. For example, use
add to add the connection to the Pluto database at startup and start to add
and start the connection

authby=auth_mech The authentication method that can include secret for shared secrets and
rsasig for RSA.

The last line of the ipsec.conf file in Listing 3-22 shows an include statement that allows
additional files to be included into the ipsec.conf file. In this case I have included an addi-
tional file no_oe.conf that disables using OE. But you can also include other files containing
any other Openswan configuration items or connections.

Now I have configured the ipsec.conf file I need to ensure it is present on both systems.
I recommend using the scp command to copy the configuration files. Listing 3-24 shows how
to do this.

Listing 3-24. Copying the ipsec.conf File to Another System

puppy# scp ipsec.conf root@kitten.anotherdomain.com:/etc/ipsec.conf

Firewalling for Openswan and IPSec
After configuring IPSec with Openswan, you need to ensure the firewall configuration
allows connections to pass through. To do this, you need to enable TCP protocol 50, the
Encapsulating Security Payload (which authenticates and encrypts VPN traffic), to and from
the systems you want to connect in your firewall configuration. You need to do this on both
of the systems you are connecting, as well as on any network devices such as firewalls or
routers between the two systems. The emphasis on the word protocol is important. You are
not enabling a port here. You are enabling the ESP encryption and authentication protocol
that is not bound to a particular port (using the iptables option -p).16 You also need to enable
UDP port 500 between the systems and other devices for the Internet Key Exchange (IKE),
which handles connection and key negotiation. Listing 3-25 shows some simple iptables
rules for this.

16. For more information, see Chapter 2.

4444c03_final.qxd 1/5/05 12:44 AM Page 165

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION166

Listing 3-25. iptables Rules for Openswan and IPSec

iptables -A INPUT -p 50 -j ACCEPT

iptables -A OUTPUT -p 50 -j ACCEPT

iptables -A INPUT -p udp --sport 500 --dport 500 -j ACCEPT

iptables -A OUTPUT -p udp --sport 500 --dport 500 -j ACCEPT

I recommend you further adjust these rules to allow only protocol 50 and UDP port
500 traffic from specific gateways (in other words, only from those systems to which you
want to connect). This is the basic configuration required for almost all Openswan configu-
rations. Some additional configurations also require the Authentication Header (AH) pro-
tocol, which handles packet authentication. If you do need the AH protocol, then you will
need to also enable protocol 51. The Openswan and IPSec documentation clearly indicates
in what circumstances this protocol is also required. Enter the following:

iptables -A INPUT -p 51 -j ACCEPT

iptables -A OUTPUT -p 51 -j ACCEPT

The ipsec Command
With copies of the ipsec.conf file on both systems, you want to connect, and with the fire-
walls rules right, you can now attempt to start the VPN tunnel. You use the ipsec auto com-
mand to start a VPN tunnel. Enter the following:

puppy# ipsec auto --up puppy_to_kitten

102 "puppy_to_kitten" #1: STATE_MAIN_I1: initiate

104 "puppy_to_kitten" #1: STATE_MAIN_I2: from STATE_MAIN_I1; sent MI2, expecting MR2

106 "puppy_to_kitten" #1: STATE_MAIN_I3: from STATE_MAIN_I2; sent MI3, expecting MR3

004 "puppy_to_kitten" #1: STATE_MAIN_I4: ISAKMP SA established

110 "puppy_to_kitten" #2: STATE_QUICK_I1: initiate

004 "puppy_to_kitten" #2: STATE_QUICK_I2: sent QI2, IPSec SA established

You only need to start the connection from one system. Once you have run this com-
mand, your IPSec tunnel should be up and connected. You can also use the ipsec auto com-
mand to shut down the connection. Enter the following:

puppy# ipsec auto --down puppy_to_kitten

The ipsec command comes with a variety of other useful functions. One of which is barf,
which outputs a considerable quantity of debugging and logging data that is often useful for
assisting in resolving issues and problems with Openswan. Listing 3-26 shows how to run
barf.

Listing 3-26. Debugging Openswan

puppy# ipsec barf > barf.log

Here I have directed the barf output to a file. Another useful command if you have
changed your IPSec configuration is the ipsec setup command, which you can use to stop
and restart IPSec. Enter the following:

4444c03_final.qxd 1/5/05 12:44 AM Page 166

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 167

17. http://www.xinetd.org/

puppy# ipsec setup --stop

puppy# ipsec setup --start

You can see details of the other ipsec commands by entering the following:

puppy$ ipsec --help

inetd and xinetd-Based Connections
In the previous section you looked at securing persistent connections in the form of always
active applications such as a mail server or a network-enabled syslog daemon. But other
types of connections exist also, most notably on-demand connections such as those initiated
and controlled by the inetd or xinetd daemons (sometimes called master daemons). As a
result of the number of systems that use inetd and xinetd, it is worth taking a brief look at
these daemons and decide whether you need to run them. These daemons monitor the ports
defined to them, and if they receive a connection on that port, then the daemons start the
required application. The inetd/xinetd daemons can also provide access control (including
using TCP Wrappers) and additional logging while they manage the applications and connec-
tions. In contrast, most persistent connections are started using init scripts and consist of
running a program and placing it in the background or in daemon mode. The daemon han-
dles binding itself to required ports and generally handles its own access controls and log-
ging. The Sendmail daemon, for example, binds itself to port 25, has the ability to control
who connects to it, and logs to the maillog log file.

The original daemon used on a lot of Linux systems was called inetd. These days many
Linux distributions—Red Hat, for example—use a more secure and advanced version called
xinetd17 that added better access controls, some protection from Denial of Service attacks,
and considerable further sophistication of potential configuration. Debian, though, still uses
inetd. The origin of inetd/xinetd-style functionality comes from a requirement to have a cen-
tral server to manage and control a variety of independent networked services. Some of the
services that inetd/xinetd traditionally handle are functions such as echo, chargen, and finger.
Debian also uses inetd by default to start telnet, smtp, and ftp. I recommend you disable
whichever of these your system uses and instead rely on individual init scripts to start those
services, daemons, and applications you require.

I recommend you do this for two reasons. The first is that most of the services that
inetd/xinetd controls are often unnecessary for many systems and can even pose a security
risk to your system. Review all the services started by inetd/xinetd carefully, but I suggest that
most of them are either not required or could be started equally securely using an init script.
One of the elements of good security is operating with the principle of minimalism in mind.
So stop and disable any service or application that is not 100 percent required for the function
of your secured system.

The second reason I recommend you disable inetd/xinetd is because both of these
daemons pose a security risk to your system in their own rights. This risk is both in the many
security vulnerabilities discovered in both daemons but also because it adds another potential
point of security failure. Indeed, many attackers can often use your inetd/xinetd daemon to
install or prime a backdoor on your system by penetrating the daemon. Any potential security

4444c03_final.qxd 1/5/05 12:44 AM Page 167

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION168

value-add or enhancement offered by either inetd or xinetd is outweighed by the additional
exposure created by using these daemons on your system.

To remove initd or xinetd, you need to first check whether init or xinetd is running on
your system and, if so, which of the daemons you are using. Listing 3-27 shows an easy way of
doing this.

Listing 3-27. Finding Out if Either inetd or xinetd Are Running

puppy$ ps -A | grep 'xinetd\|inetd'

2106 ? 00:00:00 xinetd

The inetd/xinetd daemon is usually started by an init script when your system starts.
The inetd daemon is controlled by the inetd.conf file and xinetd by the xinetd.conf file, both
located in /etc. With the inetd daemon, all the services and the programs initiated by it are
defined solely in the inetd.conf file, and the xinetd.conf file references a further directory,
xinetd.d, which contains a collection of files, each of which contains configuration control-
ling a particular service or application.

■Tip Make sure you have added a means of starting any applications that inetd or xinetd currently han-
dle that you continue to want to run on your system before proceeding.

Once you know which daemon is running, then stop that daemon. To stop either inetd or
xinetd, the easiest way is to run the init script that starts the daemon and instruct it to stop
the daemon instead. You could also simply kill the process. Remember that this will generally
also kill any services that the daemons are running. Enter the following:

puppy$ /etc/rc.d/init.d/xinetd stop

On a Debian system you can use the invoke-rc.d command. Enter the following:

kitten$ invoke-rc.d inetd stop

Now you need to stop inetd/xinetd from starting when your system runs. On a Red Hat
system, simply use the chkconfig command.

puppy$ chkconfig --del xinetd

And on a Debian system, use the update-rc.d command. Enter the following:

kitten$ update-rc.d -f inetd remove

With the service stopped, you should neaten your system by deleting the associated
inetd/xinetd files. Listing 3-28 shows the files you need to remove for inetd, assuming a
Debian-style system.

Listing 3-28. Removing the inetd Files

kitten# rm -f /etc/init.d/inetd

kitten# rm -f /etc/inetd.conf

4444c03_final.qxd 1/5/05 12:44 AM Page 168

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 169

And for xinetd, Listing 3-29 shows the files you need to remove assuming a Red Hat–style
or Mandrake-style system.

Listing 3-29. Removing the xinetd Files

puppy# rm -f /etc/rc.d/init.d/xinetd

puppy# rm -f /etc/xinetd/conf

puppy# rm -fr /etc/xinetd.d

It is probably a good idea at this point to restart your system and test what connections
are open using the ps -A and netstat -a commands to confirm all the services have been
stopped.

You can also remove the inetd and xinetd packages from your system using your chosen
package management tool. This will guarantee the daemons cannot be used to penetrate or
compromise your system.

■Note As I have recommended removing inet.d and xinet.d from your system, this chapter will not
cover the use of TCP Wrappers.

Remote Administration
Most system administrators manage systems to which they need to remotely connect. Some-
times these connections are made over the Internet to a remote location. In the past, the only
tools available to administer your systems were telnet, ftp and the so-called r-tools, rcp, rlogin,
and rsh. These tools are highly insecure. If you are still using any of these tools to administer
your systems—STOP NOW. These tools transmit all their information, including any passwords
you input, in clear text with no encryption. Anybody sniffing on your network or monitoring
devices your traffic passes through on the Internet can grab this information and use it to
penetrate your systems. The r-tools would appear to offer marginal improvement on straight
telnet by using the rhosts file to check that the user and source machine for the connection is
valid and able to sign on. In reality this provides little or no comfort these days because it is
incredibly simple to “spoof” a system to believe a connection is coming from a valid system.

I will cover SSH, as implemented in the OpenSSH package, to replace these clear-text tools
and additionally secure some of the other tools you can use for remote administration such as
remote X-Windows, Webmin, and VNC. SSH stands for Secure Shell and is a command interface
and protocol for establishing secure connections between systems. I will cover the free imple-
mentation called OpenSSH.

■Tip If you want to purchase a solution or feel more comfortable with a commercial product, I recommend
SSH Tectia from http://www.ssh.com/.

4444c03_final.qxd 1/5/05 12:44 AM Page 169

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION170

OpenSSH is not a single tool but rather a suite of tools including ssh, which replaces
telnet and rlogin; scp, which replaces rcp; and sftp, a secure replacement for ftp. It also
contains sshd, which is a SSH server, and ssh-agent, ssh-keygen, and ssh-add, which handle
key generation and management for OpenSSH. It is also capable of performing a variety of
secure tunneling functions, has a number of different forms of encryption, and uses a number
of authentication methods.

You can find OpenSSH at http://www.openssh.com/, and you can download it from a number
of FTP and HTTP mirrors listed at http://www.openssh.com/portable.html. Most Linux distribu-
tions come with OpenSSH installed already, though, often an older version is present; you should
consider upgrading to the most recent version to ensure you are protected against any vulnerabil-
ities that have been discovered in OpenSSH. You can check if your system has OpenSSH installed
on Red Hat or Mandrake by running the following command:

puppy# rpm -q openssh

openssh-3-6.1p2-18

On Debian, run the following:

kitten$ dpkg --list openssh*

You can check the version of OpenSSH installed by entering the following command:

puppy$ ssh -V

This will show you the version, as follows:

OpenSSH_3-6.1p2, SSH protocols 1.5/2.0, OpenSSL 0x0090701f

I recommend downloading the latest version of OpenSSH and compiling it from source.
You will need a couple of prerequisites before installing OpenSSH. You will need Zlib at least
version 1.1.4 and OpenSSL version 0.9.6 or greater. Unpack the source package of OpenSSH,
and change into the resulting directory. You need to configure the package first; I list some of
the possible configure options in Table 3-8.

Table 3-8. OpenSSH configure Options

Option Description

--prefix=prefix Sets the prefix for the OpenSSH binaries and files

--with-pam Enables PAM

--with-ssl-dir=path Sets the location of the OpenSSL files

--with-kerberos5=path Enables Kerberos 5 support

--with-md5-passwords Enables MD5 passwords

The options in Table 3-8 are mostly self-explanatory. Listing 3-30 shows my configure
statement that uses the prefix of /usr, which will override your existing OpenSSH installation.
This way you do not need to remove any RPMs or packages and worry about any complex
dependency chains if OpenSSH is already installed. I have also enabled PAM.

4444c03_final.qxd 1/5/05 12:44 AM Page 170

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 171

Listing 3-30. OpenSSH configure Statement

puppy$./configure --prefix=/usr --with-pam

You now need to make and install the OpenSSH package. Enter the following:

puppy# make && make install

ssh
Now that you have installed OpenSSH, you will learn about the functionality of the ssh com-
mand, which is the core of the OpenSSH suite. At its base level, the ssh command acts as a
replacement for telnet and rlogin, but it is capable of much more than just that. The first and
probably most useful task you can perform with ssh is connect to another system. Listing 3-31
shows the ssh command at work.

■Note The remote system needs to have sshd running and have TCP port 22 open.

Listing 3-31. Connecting to Another System Using ssh

puppy$ ssh -l bob kitten

bob@kitten's password:

The command in Listing 3-31 shows the simplest use of ssh by connecting the user bob
(as indicated by the use of the -l option to specify a particular user, or you can use the struc-
ture user@remote.host) to the remote server kitten via the default SSH port of 22. If you do
not specify a user, then it will try to use the same username you are currently signed onto as
on the local system. Once connected, ssh then prompts the connecting user for the shell pass-
word of the user bob on the server kitten. If the correct password is inputted, then you will
have an active shell session on that remote system. Mostly important, the password you have
sent to the remote system will be encrypted and therefore considerably harder for an attacker
to sniff off your network and use to aid an attack.

You can use some additional command-line parameters with ssh (see Table 3-9).

Table 3-9. Additional ssh Command-Line Options

Option Description

-a Disables forwarding of the authentication agent connection.

-A Enables forwarding of the authentication agent connection.

-i identity Selects a file with a particular private key.

-F configfile Specifies an alternative configuration file.

-o option Gives options in the format used in the configuration file.

-p port Port to connect to on the remote host.

-C Requests compression of all data.

(Continues)

4444c03_final.qxd 1/5/05 12:44 AM Page 171

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION172

Table 3-9. Continued

Option Description

-L port:host:hostport Specifies that the given port on the local (client) host is to be
forwarded to the given host and port on the remote side.

-R port:host:hostport Specifies that the given port on the remote (server) host is to be
forwarded to the given host and port on the local side.

-2 Forces ssh to try protocol version 2 only.

-4 Forces ssh to use IPv4 addresses only.

-6 Forces ssh to use IPv6 addresses only.

-x Disables X11 Forwarding.

-X Enables X11 Forwarding.

-q Quiet mode.

-v Verbose mode.

The -a and -A options control the use of Agent Forwarding, which I will talk about shortly
when I discuss ssh-agent. The -i option allows you specify a particular private key to use with
this connection, and the -F option allows you to specify an alternative configuration file from
the default .ssh/ssh_config. The -o option allows you to specify options that do not have a
command-line equivalent from the configuration file on the command line (for example,
-o 'ForwardAgent no'). You can override the port you want to connect to on the remote sys-
tem (defaults to port 22) with the -p option. The -C option enables ssh compression, which
can greatly enhance performance on your connection.

The -L and -R options allow you to perform port forwarding or tunneling over SSH. I talk
about port forwarding in the “Port Forwarding with OpenSSH” section.

The -2 option forces ssh to use only version 2 of the SSH protocol. The -4 and -6 options
force ssh to use either IP version 4 or IP version 6. The -x and -X option either disables or
enables X11 Forwarding. I talk about X11 Forwarding in the “Forwarding X with OpenSSH”
section. The last two options control the verbosity of the ssh program.

Listing 3-31 showed a simple connection to a remote system, but there is more to this
process that is immediately apparent here. First, the connection to the remote system can rely
on more than just authentication via password. ssh is capable of three types of authentication.
The first will be familiar to most people who have used the r-tools and is a form of host-based
authentication. This is disabled by default because it suffers from the same security issues
I discussed with the use of telnet and the like. Second, you have public-key authentication,
which utilizes RSA or DSA encryption to verify authenticity. The last form of authentication is
what you saw previously, an encrypted password sent to the remote system. The authentica-
tion methods are tried in this sequence, and ssh makes the connection with the first authenti-
cation method that is successful. You can also require more than one form of authentication
(in other words, public-key authentication and password authentication).

4444c03_final.qxd 1/5/05 12:44 AM Page 172

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 173

■Note OpenSSH has two versions of the SSH protocol it can use, 1 and 2. I will focus on using version 2 of
the SSH protocol because it is considerably more secure and reliable than version 1. In the “Configuring ssh
and sshd” section, I will show you how to disable version 1 entirely. In the last paragraph where I discussed
different authentication methods, these were the methods that work with version 2 only.

Let’s look at each form of authentication. You will ignore the first simple host-based
authentication as insecure (and thus disabled), and I have pretty much covered the details
of the encrypted password-based authentication. The authentication based on public-key
encryption requires some more explanation, though. The authentication can be based on
RSA or DSA encryption. When you first install OpenSSH, it will create a set of public and pri-
vate keys for each of the available sets of encryption types: RSA1, RSA, and DSA. These keys
are usually stored in /etc/ssh. These are called host keys and do not have a passphrase.

But let’s look at creating your own public-private key combination. OpenSSH comes with
a command to assist in doing this called ssh-keygen. Listing 3-32 shows this command.

Listing 3-32. Running ssh-keygen

puppy# ssh-keygen -t rsa

Generating public/private dsa key pair.

Enter file in which to save the key (/root/.ssh/id_dsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_dsa.

Your public key has been saved in /root/.ssh/id_dsa.pub.

The key fingerprint is:

be:0f:b9:41:37:ad:19:24:e9:6a:cc:61:ca:36:86:23 root@puppy

Listing 3-32 shows the creation of a RSA public and private key. The public key is stored in
/root/.ssh/id_dsa.pub, and the private key is stored in /root/.ssh/id_dsa. The keys are nor-
mally stored in a directory called .ssh underneath the home directory of the user creating the
keys; but for this example, you created these keys as the root user, so they have been created
underneath the root directory. You indicated to ssh-keygen what type of key you would like to
generate using the -t option. You should add a good passphrase to the key utilizing the same
standards you would use to set your system passwords. You can also create a public-key pair
without a password by hitting Enter on the passphrase prompt. This is obviously less secure
than having a passphrase, but it allows you to use OpenSSH commands in cron jobs and
scripts without needing interactive intervention.

A few other useful options are available to the ssh-keygen command (see Table 3-10).

4444c03_final.qxd 1/5/05 12:44 AM Page 173

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION174

18. http://www.openssh.org/txt/draft-ietf-secsh-publickeyfile-02.txt

19. If you are interested in the debate, see http://www.rsasecurity.com/rsalabs/node.asp?id=2240.

Table 3-10. Additional ssh-keygen Command-Line Options

Option Description

-b bits Number of bits in the key that defaults to 1024.

-f keyfile Specifies a particular key file.

-e Exports a specified keyfile (using the -f option) in SECSH format to stdout.

-i Imports a SECSH or SSH2 key file and outputs an OpenSSH-compatible file to
stdout.

-l Shows the fingerprint of a specified keyfile.

-t type Specifies the type of key generated, which can include rsa1, rsa, and dsa.

-y Reads in a specified private key file and outputs an OpenSSH public-key file to std-
out.

The -b option allows you specify the number of bits. It defaults to 1024, and I recommend
not using a size smaller than that. The -f option is designed to be used in conjunction with
other options such as -y, -e, or -i to specify a particular key file. The -e and -i options allow
the export and import of keys into OpenSSH, respectively. The imported keys need to be in
SSH2 or SECSH format.18 The -l option displays the fingerprint of a particular key specified
by the -f option. You can use the -t option to specify what type of encryption to use to create
the key. By default ssh-keygen uses RSA encryption, but you can specify DSA encryption using
the option dsa. I recommend you use RSA. Using the last option, -y, you can input an OpenSSH
private key and output the equivalent public key. You can use other options, which you can
find in the ssh-keygen man page.

■Note In the last paragraph I recommend using RSA encryption over DSA encryption. This is a somewhat
subjective judgment; considerably debate takes place in cryptography circles about which is more secure.19

That debate falls out of the scope of this book, but at this point until more information is available I recom-
mend going with the better-documented and better-researched cipher system, RSA. But as previously men-
tioned, you should be using SSH version 2 only.

So, you have keys on your local system, either created when you installed OpenSSH or
created using the ssh-keygen tool. Next you need to add your public key to the remote systems
lists of suitable keys. OpenSSH maintains a register of the public keys it will accept connec-
tions from in two places. The first is on a per-user basis in the file homedirectory/.ssh/
authorized_keys. The second is a centralized register in the file /etc/ssh/authorized_keys.
In either of these files, each key should be on a single line in the file. When a user logs into the
server, the remote ssh command tells the local sshd server what key pair it will use; this key is
checked against the central authorized_keys file and then the user’s authorized_keys file to
see if the key is permitted. It then sends the user a challenge, encrypted with the specified

4444c03_final.qxd 1/5/05 12:44 AM Page 174

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 175

public key, which can be decrypted only by the proper private key. If the ssh command is able
to decrypt it, then the decrypted challenge is sent back to the remote sshd server and the con-
nection is authenticated. This happens all without the private key being disclosed across the
network or to the remote server.

Once you have authenticated to a remote system, you have both the option of signing
onto a shell session on the remote system, but you can also replicate the functionality of the
rsh, or remote shell command shell, which allows you to remotely execute commands on
another system. Listing 3-33 shows a remote command execution using ssh.

Listing 3-33. Remote Command Execution Using ssh

puppy$ ssh bob@kittten.yourdomain.com "ls -l /etc/ssh"

bob@kitten's password:

total 124

-rw------- 1 root root 88039 Sep 18 2003 moduli

-rw-r--r-- 1 root root 1163 Jun 6 02:56 ssh_config

scp and sftp
As mentioned earlier, OpenSSH is also capable of replicating the functionality of rcp and ftp.
The rcp command allows you to copy a file to a remote system from the command line. The
OpenSSH equivalent of rcp is called scp, and Listing 3-34 shows scp working.

Listing 3-34. Using scp for Remote Copy

puppy$ scp /root/example.txt bob@kitten:/root

root@kitten's password:

example.txt 100% |*****************************| 4711 00:00

Listing 3-34 shows sending via scp the file example.txt from the directory /root on the
local host to the /root directory on the remote system kitten. To do this, I signed on as the
user bob at kitten. You can send one file to multiple hosts as well by adding additional
user@remote.host:/path/to/destination statements to the scp command. You can use a few
additional options with the scp command (see Table 3-11).

Table 3-11. scp Command-Line Options

Option Description

-p Preserves modification times, access times, and modes from the original file

-r Recursively copies entire directories

-v Enables verbose mode

-B Enables batch mod

-i Specifies a particular private key

-q Disables the progress meter

-C Enables ssh compression

4444c03_final.qxd 1/5/05 12:44 AM Page 175

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION176

The first option, -p, tells scp to preserve the details including the modification time and
permissions of the original file and give those details to the copied file. If you specify the -r
option with a directory when using the scp command, then scp will recursively copy the entire
directory. The -v option enables verbose logging.

The -B option allows you to send files in batch mode, which is designed to allow you send
files without scp needing to prompt for passwords. You achieve this by using public-key encryp-
tion with public keys that do not have a passphrase, as discussed in the “ssh-agent and Agent
Forwarding” section. So you need to ensure the public key of the sending system is added to the
authorized_keys file on the target system. Then when you use scp in batch mode (for example,
in a cron job), you are not prompted for a password and the cron job requires no interactive
input. Listing 3-35 shows this at work in a cron entry.

Listing 3-35. Using scp in Batch Mode in a crontab Entry

15 * * * * /usr/bin/scp -q -i /root/.ssh/nopasskitten_id ➥

-B /home/bob/example.txt bob@kitten:/home/bob/recvfile.txt

Listing 3-35 shows a crontab entry sending a file every hour to a remote server in batch
mode. I have also used the -i option to specify a particular private key to use. This allows you
to have a separate set of keys for your batch transactions without a passphrase and another
key for purposes such as shell access.

Of the last two options, -q disables the progress meter that you can see in Listing 3-34,
and -C enables ssh compression.

The sftp command provides a secure version of the ftp command. It works in nearly
identical format to a standard FTP session. You enable the sftp server in the sshd_config file,
and it is started as a subsystem of the sshd daemon. You will see the configuration for this in
the “Configuring ssh and sshd” section a little later. Listing 3-36 shows starting an sftp con-
nection to a remote system.

Listing 3-36. Initiating an sftp Connection and an sftp Session

puppy$ sftp -C bob@kitten

Connecting to kitten...

bob@kitten's password:

sftp> cd /root

sftp> put example.txt

Uploading example.txt to /root/example.txt

sftp> exit

As you can see from Listing 3-36 you can also use the -C option to enable ssh compres-
sion. You can also see that you can use the standard FTP commands to perform functions
within the sftp connection. Additionally, you can use the -b option to specify a file containing
a series of commands that you can input in batch mode and the -v option to increase the log-
ging level.

4444c03_final.qxd 1/5/05 12:44 AM Page 176

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 177

ssh-agent and Agent Forwarding
OpenSSH also comes with a set of tools for managing and caching keys. The primary tool
I will use in this example is called ssh-agent. It runs as a daemon and allows you to cache
keys in RAM so that you can use the keys for a variety of purposes, such as in a script or in an
automated process, and have to enter only the passphrase for the key once. You first need to
start the ssh-agent daemon and then add keys to it using an additional tool called ssh-add.

This may seem insecure to you. What is to stop the user bob from using a key the root
user has added to the ssh-agent daemon? Well, the ssh-agent daemon runs on a per-user
basis. Thus, if the root user started an ssh-agent and added keys to it, and then user bob
started another ssh-agent and added keys to it, these would be separate processes and the
keys in one process are not accessible in the other. Additionally, the ssh-agent is accessible
only locally—through a local socket. It is not directly connected to your network (though you
can read about authentication agent forwarding next). Listing 3-37 shows you how to start
ssh-agent.

Listing 3-37. Starting the ssh-agent Process

puppy$ ssh-agent

SSH_AUTH_SOCK=/tmp/ssh-UITsiD7123/agent.7123; export SSH_AUTH_SOCK;

SSH_AGENT_PID=7124; export SSH_AGENT_PID;

echo Agent pid 7124;

This starts the ssh-agent daemon and forks it into the background. You will note it sends
an output of some commands to stdout. These are environment variables that need to be set in
order for you to use ssh-agent. The first, SSH_AUTH_SOCK, indicates the location of the local socket
ssh-agent uses. The second is SSH_AGENT_PID, which indicates the process ID of ssh-agent that is
being started. The process of the commands being written out to stdout does not mean the envi-
ronment variables are being set. You need to cut and paste the commands into the shell, or you
can run the ssh-agent encapsulated in the eval function, which will set all of the environment
variables. Enter the following:

puppy$ eval `ssh-agent`

Agent pid 7183

puppy$ env | grep 'SSH'

SSH_AGENT_PID=7183

SSH_AUTH_SOCK=/tmp/ssh-SKxNXX7249/agent.7183

The ssh-agent binary also has a few additional command-line options (see Table 3-12).

Table 3-12. ssh-agent Command-Line Options

Option Description

-c Generates C-shell commands on stdout.

-s Generates Bourne shell commands on stdout.

-k Kills the current agent (which needs the SSH_AGENT_PID environment variable set).

-t life Sets a default value for the maximum lifetime of keys added to the agent in seconds.
Defaults to forever.

-d Debug mode.

4444c03_final.qxd 1/5/05 12:44 AM Page 177

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION178

The first two options, -c and -s, will output the commands for setting the environmental
variables in the form of csh and Bourne shell commands. The next option, -k, will kill the run-
ning ssh-agent daemon based on the process ID contained in the SSH_AGENT_PID environmen-
tal variable. Enter the following:

puppy$ ssh-agent -k

The -t option allows you to set a lifetime for the keys you add to ssh-agent in seconds.
After that period the key will expire and be removed from RAM. You can override this using the
ssh-add command. The last option, -d, is debug mode that will start the ssh-agent but not fork
it to the background.

Now that you have ssh-agent running, you need to add keys to it. You do this using the
ssh-add command. Listing 3-38 shows the ssh-add command.

Listing 3-38. Adding Keys to ssh-agent Using the ssh-add Command

puppy$ ssh-add

If you run ssh-add without specifying a particular key file to load, the command will load
id_rsa, id_dsa, and identity from the .ssh directory of the current user. If these keys require
a passphrase, then you will be prompted to enter that phrase to successfully add that key to
the cache. You can use additional command-line options with ssh-add (see Table 3-13).

Table 3-13. ssh-add Command-Line Options

Option Description

-l Lists fingerprints of all keys currently stored by the agent.

-L Lists public-key parameters of all keys stored by the agent.

-d Instead of adding the key, removes the key from the agent.

-D Deletes all keys from the agent.

-x Locks the agent with a password.

-X Unlocks the agent.

-t life Sets a default value for the maximum lifetime of keys added to the agent in seconds.
This defaults to forever.

The first options, -l and -L, list the fingerprints and the public-key parameters of the keys
stored in the agent, respectively. The -d option allows you to remove a key you previously
added to the ssh-agent. Enter the following:

puppy$ ssh-add -d /root/.ssh/id_rsa

You can also remove all keys from the agent by using the -D option. The next two options
allow you to lock and unlock the agent with a password to prevent anybody from making any
changes without the password. The -x option locks the agent, and the -X option unlocks the
agent. You will be prompted for a password for both options. The last option, -t, is the same as
the -t option for the ssh-agent command, which sets the life span of the keys in the agent in
seconds.

4444c03_final.qxd 1/5/05 12:44 AM Page 178

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 179

The ssh-agent also allows authentication-agent forwarding. Authentication-agent for-
warding means that remote systems can use a local trusted ssh-agent daemon to perform
authentication. To do this, you need to ensure either the -A command line option is issued or
the ForwardAgent option in the ssh_config configuration file is set to yes. Let’s see an example.

1. You have a trusted secure system running ssh-agent on it called puppy.

2. You have two other systems, kitten and duckling. Both kitten and duckling have your
public key in their authorized_keys file.

3. You have a terminal session on puppy, and you ssh to kitten. The ssh-agent takes care
of the authentication, and you sign on. You do what you need to on the kitten system.

4. Now you want to do something on duckling, so you need to ssh over there. But your
private key is stored on the ssh-agent on puppy, and the kitten system does not have
a copy of your private key.

5. But you have AgentForward enabled on the kitten and duckling systems. Your
ssh session has recognized this, and when you connect to duckling it connects to the
ssh-agent on puppy and passes your private key through to the duckling system. Thus,
you are able to be authenticated to the duckling system.

■Caution This has risks, though. Never enable agent forwarding on a system where you do not control
root or do not trust the system. This is because your private key and passphrase are now in memory of the
systems you have agent forwarded to, and the root user can pluck them from the memory of the system.

The sshd Daemon
The last area of OpenSSH you will look at in this section is the sshd daemon itself. To allow
remote connections via ssh to your system, you need to have the sshd daemon running and by
default the TCP port 22 open (you can override this port in the sshd_config file, which I will
discuss shortly). The sshd daemon is usually started when your system is started through an
init script.

■Tip You can find examples of init scripts for Red Hat (which will work for Mandrake, Yellow Dog, and
similar) and SuSE in the contrib directory of the OpenSSH source package.

You can also start it from the command line; Listing 3-39 shows this.

Listing 3-39. Starting the sshd Daemon

puppy$ sshd -p 22

4444c03_final.qxd 1/5/05 12:44 AM Page 179

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION180

Listing 3-39 starts the sshd daemon, and the -p option tells the daemon to bind itself on
TCP port 22. You can also specify multiple ports after the -p option to have sshd listen on more
than one port. Table 3-14 describes some of the other command-line options available for
sshd.

Table 3-14. sshd Command-Line Options

Option Description

-d Debug mode. Can be used more than once to increase verbosity.

-D Do not detach and become a daemon.

-t Test mode.

-e When this option is specified, sshd will send the output to the standard
error instead of the system log.

-f configuration_file Specifies the name of the configuration file. The default is
/etc/ssh/sshd_config.

-g grace time Gives the grace time for clients to authenticate themselves. Defaults to
120 seconds.

-h key file Specifies a file from which a host key is read.

-o option Can be used to give options in the format used in the configuration file.
This is useful for specifying options for which there is no separate
command-line flag.

-q Quiet mode.

The first four options are useful for testing. The first -d enables debug output. You can
specify it up to three times in the command line to get more verbosity. The second -D tells sshd
not to detach and become a daemon, and the last, -t, tells sshd to test its configuration and
return any errors without starting. The -e option redirects output from sshd to standard error
and not to the syslog.

You can specify the location of a configuration file using the -f option; if this option is not
specified, then sshd defaults to using /etc/ssh/sshd_config. You can also specify the grace time
allowed for clients to authenticate themselves using the -g option. A setting of 0 means sshd will
wait forever. You can also specify a particular host key for the sshd daemon using the -h option.
The next option allows you to specify any of the configuration file options from the sshd_config
file that do not have a command-line equivalent. Enter the following:

puppy# sshd -p 22 -o 'PasswordAuthentication no'

The last option, -q, suppresses all sshd output and runs the daemon in quiet mode.

Configuring ssh and sshd
You can customize all the commands you have seen so far by configuring the OpenSSH envi-
ronment. The majority of this client-side configuration is controlled by the ssh_config file,
and the server-side configuration of the daemon is controlled by the sshd_config file. You will
look at the ssh_config file first. Usually two versions of this file exist: a local version that is
located in the .ssh directories of local users and a global version that is overridden by the con-
tents of the local ssh_config. The local ssh_config file is in turn overridden by any command-
line option with which you start ssh. Listing 3-40 shows a sample ssh_config file.

4444c03_final.qxd 1/5/05 12:44 AM Page 180

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 181

Listing 3-40. A Sample ssh_config File

Host *

BatchMode no

Compression yes

CheckHostIP yes

StrictHostKeyChecking ask

ForwardAgent no

ForwardX11 no

The configuration file is easy to understand. The first entry, Host, defines the scope of the
configuration items beneath it. In Listing 3-40 the Host statement is followed by an asterisk
(*), which indicates all hosts. If you define a particular hostname with the Host statement, the
configuration items following it will apply to connecting to that host only. You can have multi-
ple Host statements defined in the file.

■Tip The hostname after the Host statement refers to the argument entered on the command line—
not a resolved or canonical hostname. If you use a complete hostname on the command line,
puppy.yourdomain.com, and have Host puppy in your ssh_config file, then it will not recognize
that you are referring to the same system.

The next option, Batchmode, enables or disables the use of ssh in batch mode (equivalent to
using the -b option on the command line). The Compression option enables OpenSSH compres-
sion if set to yes. The CheckHostIP option tells ssh to check the IP address of the target system for
DNS spoofing. I recommend you always have this on. If set to yes, the StrictHostKeyChecking
never prompts you to add the host key of a new system to the known_hosts file when you first
connect. It also will not allow connections to systems if their host key has changed from the key
contained in the known_hosts file.

I have discussed the ForwardAgent option previously. Unless you are totally sure of what
systems you intend to allow agent forwarding on, and are aware of the risk involved, then keep
this off by setting it to no. The ForwardX11 option allows you to use ssh to forward X-Windows
sessions over SSH. I will cover this in the “Forwarding X with OpenSSH” section, but if you do
not intend to use SSH to forward X11 connections, I recommend setting this to no as it can
pose a security risk. The next two options control which port to connect to on the remote sys-
tem and the protocol you intend to use to connect. Port 22 is the default, and as I have previ-
ously discussed I recommend using version only 2 of the SSH protocol. Quite a few other
options are available to you in the ssh_config file; you can see them in the ssh_config man file.
Enter the following:

puppy$ man ssh_config

Listing 3-41 shows a sample of the sshd daemon configuration file, sshd_config, which is nor-
mally stored in /etc/ssh. Many of the options from ssh_config are identical in the sshd_config file;
where I have previously defined them, I have not redefined them in this section.

4444c03_final.qxd 1/5/05 12:44 AM Page 181

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION182

Listing 3-41. A sample sshd_config File

Port 22

Protocol 2

SyslogFacility AUTH

LogLevel INFO

PermitRootLogin no

StrictModes yes

UsePrivilegeSeparation yes

PasswordAuthentication yes

RSAAuthentication yes

Compression yes

X11Forwarding no

Subsystem sftp /usr/libexec/openssh/sftp-server

Unlike the ssh_config file, no Host entry exists. The settings here apply to the sshd server
overall, not to a specific client connection. The first entries Port and Protocol explicitly spec-
ify the port sshd will bind to and the version of the SSH protocol to use. In this case, I am bind-
ing to the default TCP port of 22 and using only the SSH Version 2 protocol. The next two options
control how sshd logs to the syslog daemon; the SyslogFacility option allowing you to spec-
ify the facility you want to log to, and LogLevel controls the verbosity of the output of the sshd
daemon.

The next options deal with the security of sshd. The first option, PermitRootLogin, is par-
ticularly important and something I recommend you always set to no. This prevents the root
user from logging into the system via ssh. With this set to no, you prevent an attacker from
even attempting connections to root using ssh. The next option, StrictModes, checks if the
files and directories in a user’s home directory are world-writable. If this option is set to yes
and any of the files or directories in a user’s home directory are world-writable, then the user
will not be allowed to log on. The final of these three options is UsePriviledgeSeparation. If
set to yes, the sshd process is divided into two processes, one of them a child process that is
unprivileged and that handles all incoming network traffic. Only when the incoming user has
been authenticated does the child process pass the user to a process with the authority of a
privileged user. This helps reduce the risk of a compromise of the sshd daemon allowing root
access to the system. The PasswordAuthentication and RSAAuthentication options, if set to
yes, tell sshd to allow these authentications mechanisms.

The last option enables the use of the sftp-server, which allows a remote user to connect to
the system using the sftp. The subsystem option spawns the additional command sftp-server
when sshd detects an incoming sftp request. You can also run other subsystems if you want.

You can add some additional options to the sshd_config file (see Table 3-15).

4444c03_final.qxd 1/5/05 12:44 AM Page 182

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 183

Table 3-15. sshd_config Options

Option Description

AllowGroups Allows only those groups listed to connect to the system.

AllowUsers Allows only those users listed to connect to the system.

DenyGroups Denies connections from the listed groups to the system.

DenyUsers Denies connections from the listed users to the system.

LoginGraceTime The server disconnects after this time if the user has not successfully
logged in.

VerifyReverseMapping Specifies whether sshd should try to verify the remote hostname.

The first four options simply control who can sign into the system. This allows you to be
selective about what users and groups have permission to connect via ssh. The LoginGraceTime
option allows you to specify a time limit for users to log in. The default is 120 seconds after which
the session is disconnected. The VerifyReverseMapping option tells sshd to confirm that the
resolved remote hostname for the remote IP address maps back to the IP address from which
the connection has been initiated. The default is no.

Port Forwarding with OpenSSH
The OpenSSH package also has the capability to forward ports much like Stunnel does. You can
forward any TCP traffic such as POP3, SMTP, or HTTP traffic through the SSH tunnel. However,
any ports below 1024 are considered privileged; if you want to forward one of these, the user cre-
ating the tunnel must have root privileges. You will also need to have sshd running on the remote
system to make the initial connection and create the tunnel. You will also need to ensure you are
able to authenticate to the system you are creating the tunnel to and that you have sufficient priv-
ileges for the tunnel to be created.

OpenSSH is capable of two types of forwarding—local and remote. Local-port forward-
ing forwards any traffic coming into a specific local port to a specific remote port. Remote-
forwarding monitors a specific remote port and forwards the traffic from that port to
a specific local port. Listing 3-42 shows OpenSSH local-port forwarding of traffic from
port 25 on the local system to port 1025 on the remote system, 192.168.0.1.

Listing 3-42. Local Port Forwarding Using ssh

puppy# ssh -fN -L 25:192.168.0.1:1025 bob@192.168.0.1

bob@192.168.0.1's password:

The -L option is structured as localport:remotehost:remoteport, or in this example
25:192.1658.0.1:1025. I have also added the -fN options to the command to tell ssh to go into
the background after establishing the port forwarding. The connection will then exist as an
ssh process and forward the ports until the process is killed or the system restarted. Remote-
port forwarding works in a similar way. Listing 3-43 shows a remote-port forward.

4444c03_final.qxd 1/5/05 12:44 AM Page 183

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION184

Listing 3-43. Remote Port Forwarding Using ssh

puppy# ssh -fN -R 995:localhost:110 jim@kitten.yourdomain.com

jim@localhost's password:

The -R option is structured as remoteport:localhost:localport, so in Listing 3-43 you are lis-
tening to remote port 995 on kitten.yourdomain.com and forwarding it to port 110 on localhost.
You have also added the -fN options again to have the ssh command go into the background.

With the port forwarding I have demonstrated here, the user is prompted for a password
based on the user specified on the command line. You could also use a system that has been
authenticated via RSA key exchange or generate a key specifically for this connection. You can
specify the use of a particular private key using the -i option. The matching public key obvi-
ously needs to be in the authorized_keys file on the remote system. Enter the following:

puppy# ssh -fN -i /home/jim/.ssh/kitten_key -R 995:localhost:110

jim@kitten.yourdomain.com

This could potentially also allow you to incorporate the command into a script because it
does not require prompting for a password.

Another option you can add to the ssh port-forwarding command is the -g option. By default
OpenSSH does not allow remote hosts to connect to local forwarded ports. When you add the -g
option, remote hosts are able to connect to those local forwarded ports.

Forwarding X with OpenSSH
The last use of OpenSSH you will look at is the forwarding of X11 traffic over SSH. This allows
you to execute X applications on a remote system via a secure SSH tunnel. Normal X traffic is
unencrypted and easily sniffed across a network. But there are still risks with doing this, and
you should never enable X11 Forwarding on systems where you do not explicitly trust the
remote system. Also, X offers too many potential threats, even with an SSH tunnel, to forward
X11 traffic over the Internet. In fact, as I have mentioned elsewhere in this book, I recommend
not running X on a system that provides a server function because of the risks that X poses.

But if you do want to use remote X sessions, I will show you how to tunnel those X ses-
sions through an SSH tunnel. First, you need sshd running on the remote machine on which
you want to run X applications. Your sshd_config file on that remote machine needs to have
the option on the next line enabled:

X11Forwarding yes

Second, change your ssh_config file to add the option on the following line:

ForwardX11 yes

You could also enable X11 Forwarding on your ssh command by using the -X command-
line option.

4444c03_final.qxd 1/5/05 12:44 AM Page 184

CHAPTER 3 ■ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 185

■Caution From OpenSSH version 3.8 onward, ssh will use untrusted X11 Forwarding by default. This more
secure untrusted forwarding will limit what you can change and control using a remote X11 connection. This
will be the default behavior when using the X11Forward, ForwardX11, and-X options with OpenSSH. If you
want to revert to the previous X11 Forwarding behavior, you can set the option ForwardX11Trusted to yes
in your ssh_config file or use the command-line option -Y.

Once you have configured this, then you can connect to the remote system and run an X
application; in this case, I have chosen to run xterm. Enter the following:

puppy# ssh -X bob@kitten

bob@kitten's password:

kitten# xterm

The X11 Forwarding option of OpenSSH will automatically define and assign a $DISPLAY

variable to your forwarded X connection.

Resources
The following are some resources for you to use.

Mailing Lists

• Openswan mailing lists: http://lists.openswan.org/mailman/listinfo/

• OpenSSH mailing lists: http://www.openssh.org/list.html

• Stunnel mailing lists: http://www.stunnel.org/support/

Sites

• Certificate Service Provider: http://devel.it.su.se/projects/CSP/

• EJBCA: http://ejbca.sourceforge.net/

• IPSec HOWTO for Linux: http://www.ipsec-howto.org/

• Netscape Certificate Management System: http://wp.netscape.com/cms/v4.0/index.html

• Openswan: http://www.openswan.org/

• Openswan wiki: http://wiki.openswan.org/

• OpenSSH: http://www.openssh.org/

• RSA Laboratories: http://www.rsasecurity.com/

• Stunnel: http://www.stunnel.org/

• VNC: http://www.realvnc.com/

4444c03_final.qxd 1/5/05 12:44 AM Page 185

Securing Files and
File Systems

In the past few chapters I have covered basic operating system security, firewalls, and the secu-
rity of your connections. In this chapter I will cover the security of your data itself—the files and
file systems that hold both user data and the files and objects used by the kernel, your operating
systems, and your applications. Your file systems and the files and objects stored on them are
your system’s assets. The data contained on these assets is often the ultimate target of attackers
who have the intention of stealing, tampering with, or destroying them.

Attacks on your files and file systems come in a number of forms. They can take the form
of vulnerabilities and exploits of applications, tools, or the kernel. These vulnerabilities and
exploits take advantage of security weaknesses or idiosyncrasies in Linux’s implementation of
files and file systems. Or they can take advantage of the functionality of your file attributes, for
example, through the malicious exploitation of setuid or setgid binaries. They can also occur
because attackers are able to circumvent your system security through inappropriately set
permissions or poorly managed or administered files and file systems.

I will take you through a series of explanations of various facets of file and file system
security. First, I will run through some basic permission and file attributes concepts. This will
include looking at some file attributes such as object ownership, setuid, and world-writable
permissions that could potentially offer attackers opportunities or leverage on your system.
Second, I will cover setting a secure umask for your system. Additionally, I will cover some ways
of protecting the files on your system, including making them immutable and encrypting them.
I take the same approach to addressing file systems by covering individual security-related
items such as securely mounting file systems, encrypting file systems, and using tools such
as Tripwire.

This chapter is not a detailed examination of how Linux and other Unix dialects files and
file systems work but rather covers security-related features, highlights areas of potential secu-
rity risk that result from certain types of file attributes, and covers some file and file-specific
security enhancements, tools, and functions that can assist you in securing your files.

187

C H A P T E R 4

■ ■ ■

4444c04_final.qxd 1/5/05 12:46 AM Page 187

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS188

■Note One significant area I have not covered is access control lists (ACLs). ACLs allow more advanced
file permissions to be applied to your files and objects. ACL access frameworks provide more granular per-
missions to objects, for example, granting multiple users and groups varying permission to a particular
object. I have not discussed ACLs because at this stage of their development, there are too many varying
approaches for different types of file systems and for different distributions to provide a simple and accurate
explanation of ACLs. I have included some URLs in the “Resources” section that will provide more informa-
tion on ACLs.

Basic File Permissions and File Attributes
Each file or object on a Linux system has a number of attributes including the type of object,
its ownership, the permissions users and groups have been granted to it, its size, and so on.
If you list the contents of a directory using the ls command, you can see all of these attributes.
In Listing 4-1 I have used the ls command with the options l and a to display in a long listing
format all file attributes.

Listing 4-1. Listing a File

puppy$ ls -la *

-rwxr-xr-x 2 bob sales 4096 Apr 2 01:14 test.sh

I will briefly touch on each of the attributes of objects on Linux systems. As you can see
in Listing 4-1, the attributes are divided into seven columns. Listing 4-2 shows these seven
columns.

Listing 4-2. File Attributes

1 2 3 4 5 6 7

permissions file entries owner group size date/time object name

The first column indicates the permissions of the file or object. These are probably the most
important attributes of a file or object. The second column indicates the number of file entries.
This applies to directories and indicates how many files are contained in a directory. If the file is
an ordinary file, then the file entry will be 1. The third and fourth columns indicate the owner
and group to which the file or object is assigned. Of these remaining file attributes, you will most
closely be examining the first column of permissions and the third and fourth columns on own-
ership. The fifth, sixth, and seventh columns, respectively, indicate the size of the object in bytes,
the date and time of the last modification of the object, and the name of the object. These attrib-
utes are self-explanatory, so I will not cover them in any detail.

Access Permissions
Let’s look at the permissions column. This column has ten flags. It starts with a single flag indi-
cating the object type. In Listing 4-1 this is a hyphen, -, which indicates this is an ordinary file.
Table 4-1 lists all the possible flags in this first flag. These represent all the types of files and
objects available on a Linux system.

4444c04_final.qxd 1/5/05 12:46 AM Page 188

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 189

1. Also known as world or other permissions. I will use the term world permissions throughout this
chapter.

Table 4-1. File and Object Types

Flag Description

- Regular file

d Directory

l Link

c Special file

s Socket

p Named pipe

The next nine flags indicate what the permissions of the object are. They are divided into
three groups, or triplets, of three flags each. Each triplet of flags is the permission settings for
a particular class of user. These classes of users are the owner of the object, the group assigned
to the object, and everyone.1 The individual flags within each triplet represent the three basic
permissions used on Linux systems: read, write and execute. Let’s look at what access each
permission grants.

• Read: Allows you to read, view, and print a file

• Write: Allows you to write, edit, and delete a file

• Execute: Allows you to execute a file, such as a binary or script, and search a directory

So, if you look back at Listing 4-1, you can see the first triplet of flags is rwx. This indi-
cates that the owner of the object has the read, write, and execute permissions to the test.sh
object. The next group of flags indicates the permissions that the group the object is assigned
to have been granted to the object. In this case, it is r-x or read and execute. The - indicates
that write permissions have not been granted to the group of the object. The last group of
flags indicates the permissions that everyone on the system has to this object, in this case r-x
or read and execute. Again, the - indicates that the write permission is not granted to the
world.

These groups of permissions can also be indicated numerically, and I have used this form
of notation throughout this book. Listing 4-3 shows an example of this notation in conjunction
with the chmod command.

Listing 4-3. Numerical Permissions Notation

puppy# chmod 0755 test.sh

The notation 0755 is a number in octal mode. This number is the same as setting the nine
permission flags to rwxr-x-r-x. Or explained further, the owner has all three permissions to
this object, and both the members of the group that this object belongs to and everyone on
the system have been granted read and execute permissions for this same object. So where do
these octal-mode numbers come from?

4444c04_final.qxd 1/5/05 12:46 AM Page 189

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS190

Well, the first digit, 0, in the mode number is used with setuid, setgid, or sticky bit per-
missions. I will talk more about it in the “Sticky Bits” and “setuid and setgid Permissions” sec-
tions later in this chapter. For the remaining three digits, each of the digits in 755 corresponds
to one of the triplets of permission flags: the owner, group, and world permissions, respectively.
The digits themselves are created by assigning a value to the possible permission types: 4 for r,
2 for w, and 1 for x. These values are then added to create the permissions triplet. So the triplet
rwx is equal to a value of 7, or 4 + 2 + 1. To represent the triplet r-x, you add 4 for r and 1 for x to
get 5. If you want to represent ---, or no permissions to an object, you use the numeric nota-
tion of 0. Table 4-2 describes the possible mode numbers.

Table 4-2. Mode Numbers

Mode Number Description

0400 Allows the owner to read

0200 Allows the owner to writ

0100 Allows the owner to execute files and search in the directory

0040 Allows group members to read

0020 Allows group members to write

0010 Allows group members to execute files and search in the directory

0004 Allows everyone or the world to read

0002 Allows everyone or the world to writ

0001 Allows everyone or the world to execute files and search in the directory

1000 Sets the sticky bit

2000 Sets the setgid bit

4000 Sets the setuid bit

You can add these mode numbers together to provide the correct permissions for your
file. For example, 0600, commonly used for system files, allows the owner of the file write and
read permissions (4 + 2 = 6) and no permissions to the group or world (the 00 portion of the
mode number).

The chmod command can also use symbolic notation, and it can add permissions using a +

sign and remove them using a - sign. Listing 4-4 shows how to grant the write permission to
the owner of the object.

Listing 4-4. Using chmod Symbolic Notation

puppy# chmod u+w test.sh

The u flag indicates the owner of the object, and the w flag indicates the write permission.
You can also do multiple operations using this form of notation. The next line grants the write
permission to the owner of the object and the execute permission to the object’s group.

puppy# chmod u+w,g+x test.sh

4444c04_final.qxd 1/5/05 12:46 AM Page 190

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 191

To grant world read permissions to the test.sh file, you would use the following:

puppy# chmod o+r test.sh

where o indicates world or everyone permissions and r indicates read.
You can get more information on this style of notation in the chmod man page.

umask
By default on Linux systems, each file or object is created with default file permissions. You
need to ensure these default permissions are not overly generous and users and applica-
tions are granted an appropriate level of permissions to files and objects. To achieve this
Linux comes with the umask command. This command adjusts how the file and object per-
missions will be set when a file or object is created and is intended to ensure any new files
created by users, applications, or the system itself are not inadvertently granted excessive
permissions. Listing 4-5 shows a typical umask setting.

Listing 4-5. umask Settings

puppy# umask 022

The umask command works by applying a umask value to a series of default permissions for
different types of objects on your system. For example, the default file permissions for a new
directory or binary executable file are 777, and for an ordinary file they are 666. In Listing 4-5
the umask is set to 022. If you create a new binary file, you take the default file permissions of
777 and subtract the 022 from them (777 – 022) to get the permissions of the new file, 755. If
you were to create an ordinary file and umask was set to 022, you would subtract the 022 from
666 to get the new default permissions of 644.

You can set the umask on the command line, as demonstrated in Listing 4-5. The umask com-
mand also has a couple of command-line options. You can see the -S option on the next line:

puppy# umask -S

u=rwx,g=rx,o=rx

The -S option prints the current umask in symbolic notation. On the previous line you can
see the symbolic notation for the octal-mode number, 755. The second option, -p, prints the
current umask in a form that can be reused as an input in a script or the like. Entering the com-
mand umask without any options will print the umask of the current user.

The umask command can be set by default at a few different points on your system. The
first, and most commonly utilized, is via the boot process in init scripts. For example, on Red
Hat systems the umask is set in the /etc/rc.d/init.d/functions init script, which is referenced
in most Red Hat init scripts. On Debian systems it is set in the /etc/rcS init script. Addition-
ally, each user on your system generally has the umask command set for them in their profile.
For example, if you use the bash shell, it is set in the .bash_profile file in the user’s home direc-
tory or globally for all user profiles in the /etc/bashrc file. On some other distributions the umask
is set in the /etc/profile file.

Typical umask settings include 022, 027, and the most restrictive setting 077. I recommend
a default umask of at least 022, but you should look at increasing this to a setting such as 077 on
systems that will not have users creating large numbers of files (such as a bastion host) and

4444c04_final.qxd 1/5/05 12:46 AM Page 191

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS192

where the applications creating files are easily quantifiable. Like most permissions settings,
this will require some testing with your applications, and you should note that some users
(especially those that run processes to create files or objects) will require more lenient umask
settings than other users.

■Note If you are using Red Hat, then the default umask for all users with a UID greater than 99 (in other
words, nonsystem users) is 002 rather than 022. The default umask of 022 would normally prevent other
users and members of the primary group to which a user belongs from modifying any files they create. But
because most users on a Red Hat system are created together with a group of the same name that is their
primary group (a convention generally called user private groups; see Chapter 1), they do not need this pro-
tection and a umask of 002 is adequate to protect their newly created files.

World-Readable, World-Writable, and World-Executable Files
As I have mentioned, the last triplet of access permissions is the access granted to everyone,
or world access. World access includes all users on your system. This means that if an attacker
were to compromise an ordinary user account on your system, they would have whatever
world access is granted to all your files and objects. This poses three significant risks.

• The first is what world-readable files and directories are on your system, and how could
their content benefit an attacker?

• The second is what world-executable files and directories exist on your system, and
what could running them gain an attacker?

• The last and arguably most significant risk is what world-writable files and directories
exist on your system, and how could changing, editing, or deleting them benefit or
assist an attacker in penetrating your system?

I recommend you carefully audit the files and objects on your system for those with
world-readable, world-executable, and world-writable permissions. Find all those files and
directories on your system, and determine whether they require the world permissions; if
not, remove those permissions. Some files on your system will require world access permis-
sions such as some devices in the /dev and /proc directories or some files required for partic-
ular applications. I recommend you carefully conduct tests before you make changes to your
permissions in a production environment. In Listing 4-6, you can see a command to find all
files and objects with world access on your system.

Listing 4-6. Finding World Permissions

puppy# find / -perm -o=w ! -type l -ls

The find command is using the -perm option to search for files and objects with particular
permissions set. The -o=w flag for the -perm option selects files with at least world-writable access
(which includes lesser access such as readable and executable permissions). The ! -type l part

4444c04_final.qxd 1/5/05 12:46 AM Page 192

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 193

selects all file and object types except links, and the last option, -ls, outputs the list of files in the
same format as used when you execute the ls command with the -dla options specified.

■Tip The find command is a powerful tool for searching for particular files and objects on your system;
you can find further information on how to use it in the find man page.

Sticky Bits
Linux security permissions can be highly inflexible. If a user has the write permissions, or a group
they belong to has write permissions to a directory, the user will be able to delete the files in that
directory even if they do not own those files. This has some serious implications for directories to
which more than one user or application share write permissions. In Listing 4-7 user bob belong-
ing to the group sales can create a file in the directory /usr/sharedfiles.

Listing 4-7. Sticky Bits

puppy$ su bob

puppy$ cd /usr/

puppy$ ls -l sharedfiles

drwxrwxr-x 2 root sales 4096 Sep 8 19:13 sharedfiles

puppy$ cd sharedfiles

puppy$ vi bobsfile

puppy$ ls -l bobsfile

-rw-rw-r-- 1 bob bob 5 Sep 8 19:25 bobsfile

User jane also belongs to the group sales. As the group sales has write permission to the
/usr/sharefiles directory, she can delete user bob’s file.

puppy$ su jane

puppy$ cd /usr/sharedfiles

puppy$ rm bobsfile

rm: remove write-protected regular file `bobsfile'? y

Obviously, bob may not be so happy about jane deleting his file. Sticky bits help solve this
issue. When the directory sticky bit is set, users will still be able to create and modify files within
the directory, but they will be able to delete only files that they themselves have created. The
sticky bit is set for a directory if a t or T is present in place of the x in the world permissions
triplet, like this:

drwxrwxrwt

A lowercase t indicates that the world permission of execute is set together with the sticky
bit. An uppercase T indicates that only the sticky bit is set and the world execute bit is not set.
You can set the sticky bit using the chmod command.

puppy# chmod 1775 sharedfiles

puppy# ls -la sharedfiles

drwxrwxr-t 2 root sales 4096 Sep 8 19:29 sharedfiles

4444c04_final.qxd 1/5/05 12:46 AM Page 193

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS194

■Note Only the root user can set the sticky bit.

Now with the sticky bit set for this directory, the user jane would not be able to delete the
user bob’s file. To set the sticky bit without giving the world execute permission to the directory,
you would use the chmod command on the next line. Enter the following:

puppy# chmod 1774 sharedfiles

puppy# ls -la sharedfiles

drwxrwxr-T 2 root sales 4096 Sep 8 19:29 sharedfiles

Notice that the mode number is now 1774 rather than 1775, which indicates that the world
execute permission has not been granted.

I recommend you examine the option of setting the sticky bit for all world-writable direc-
tories. This prevents users from either accidentally or maliciously deleting or overwriting each
other’s files and limits the use of world-writable directories by attackers who are trying to pen-
etrate your system. Of course, like any permissions-related setting, you should carefully test
permission changes with all your applications.

■Note Setting the sticky bit on files and symbolic links does not have a security impact but rather is
related to local paging and transition links.

setuid and setgid Permissions
You can set the setuid and setgid permissions on a binary to allow it to run with the privileges of
the owner or group of the binary rather than the user actually running the binary. You will look at
how this works and then see why this is a risk and how to mitigate this risk. Probably the best
example of setuid permissions is the passwd binary. Normally the access to the passwd file is lim-
ited to the root user and no other user. But all users on your system can use the passwd binary to
change their passwords. The setuid permission makes this possible. The passwd binary is owned
by the root user with setuid permissions set. When executed by a normal, unprivileged user on
your system, the passwd binary does not run as this user, as a normal binary would, but rather
adopts the privileges of its owner, the root user. In Listing 4-8 you can see the permissions of the
passwd binary.

Listing 4-8. setuid Permissions

-r-s--x--x 1 root root 16336 Feb 14 2003 passwd

The s specified in the execute flag of the owner permissions triplet indicates that this
binary has setuid set. Like the sticky bit, the lowercase s indicates that the owner of the file
also has execute permissions. If binary had an uppercase S instead of a lowercase s, then the
owner of the binary would not have the execute permission to the file. You can set the setuid
permission with the chmod command by prefixing the mode number with the digit 4.

4444c04_final.qxd 1/5/05 12:46 AM Page 194

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 195

puppy# chmod 4755 test.sh

puppy# ls -l test.sh

-rwsr-xr-x 1 root root 992 Aug 4 15:49 test.sh

Thus, the digit 4 in the 4755 sets the lowercase s in the execute flag of the owner permis-
sion triplet. To set the S setuid permission, you enter the following:

puppy# chmod 4655 test.sh

puppy# ls -l test.sh

-rwSr-xr-x 1 root root 992 Aug 4 15:50 test.sh

The setgid permission operates in a similar way to the setuid permission. But instead of
allowing the binary to run with the permissions of the owner, it allows the binary to run with
the permissions of the owning group. You can tell if the setgid permission is set if an s or S is
set in the execute flag of the group permissions triplet. Like the setuid permissions, you set
the setgid permissions with the chmod command. Instead of prefixing the mode number with
a 4, you prefix it with a 2. In Listing 4-9 you can see how setgid is set.

Listing 4-9. setgid Permissions

puppy# chmod 2755 test.sh

puppy# ls -l test.sh

-rwxr-sr-x 1 root root 992 Aug 4 15:50 test.sh

So why are setuid and setgid binaries a potential security risk on your system? Well, they
have two problems. The first problem is that a user can use an existing setuid binary’s greater
privileges to perform actions that could be malicious on your system. Of course, some setuid
and setgid files on your system actually require this functionality to operate, with the previ-
ously cited passwd command being one of these. The sendmail binary is another example.

The second problem is that setuid or setgid commands or binaries owned by privileged
users such as the root user can be easily created on your system by an attacker. This binary
can be used to run an attack or compromise your system. Indeed, many root kits (see
Chapter 6) use setuid or setgid binaries to compromise systems. So, the two aspects of
setuid and setgid permissions you need to monitor and manage are as follows:

• Limit the number of setuid and setgid binaries on your system to only those binaries
that require it.

• Regular checks for new and existing binaries that may have had setuid and/or setgid
permissions set without your approval or knowledge.

To do this, the first thing you need to do is identify all the setuid and setgid binaries on
your system. Listing 4-10 provides a find command designed to locate setuid binaries.

Listing 4-10. Finding setuid Files

puppy# find / -perm -4000 -ls

And Listing 4-11 provides a variation of this command for locating setgid binaries.

4444c04_final.qxd 1/5/05 12:46 AM Page 195

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS196

Listing 4-11. Finding setgid Files

puppy# find / -perm -2000 -ls

■Tip You can also use a tool such as sXid (available from http://linux.cudeso.be/linuxdoc/
sxid.php) to automatically find setuid/setgid binaries. You could also look at the Debian command
checksecurity.

After using the commands in Listings 4-10 and 4-11 you need to review all the files found
and determine whether they all require setuid or setgid. If they can have the permissions
removed, then use the chmod command to remove them.

■Note For a scanning tool that can scan for a variety of different file types, see the “Scanning for Files with
Adeos” sidebar.

SCANNING FOR FILES WITH ADEOS

The Adeos2 tool is designed to automatically scan your system for files and objects in a variety of potential
states, such as world-writable or setuid files, and output a report that you can review. You can download
Adeos from http://linux.wku.edu/~lamonml/software/adeos/. The tool has not been updated for
some time, but its basic functionality remains suitable to use. Download the archive file containing the Adeos
scanner, and unpack it.

puppy$ wget http://linux.wku.edu/~lamonml/software/adeos/adeos-1.0.tar.gz

puppy$ tar -zxf adeos-1.0.tar.gz

Change into the adeos-1.0 directory created when you unpack the archive. The configuration and installa-
tion process for Adeos is a simple configure and make process.

puppy$./configure && make

The compilation process will create a binary called adeos. You can copy the binary to a location of your
choice or run it from the adeos-1.0 directory. The binary can be run from the command line or via a cron
job. Table 4-3 lists the options it can use.

(Continues)

2. Adeos is the Roman goddess of modesty.

4444c04_final.qxd 1/5/05 12:46 AM Page 196

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 197

SCANNING FOR FILES WITH ADEOS (Continued)

Table 4-3. Adeos Command-Line Options

Option Description
-d Includes dynamic directories such as /tmp or /proc in the scan

-h Outputs the scan as a HTML file called results.html in the current working directory

-r Formats the output as a collated report

--help Displays the Adeos help and usage information

Adeos supports three scan modes: normal, verbose, and paranoid. The normal mode scans for setuid
and setgid files, world-writable files, and directories. This is the default mode that Adeos will run in if you
do not provide a mode on the command line. The next mode is verbose mode, which looks for all the file
types in the normal scan mode plus files with the sticky bit set, unreadable directories, and inaccessible files.
The last mode, paranoid, is the most detailed and scans for all the types in the normal and verbose modes
and adds world-readable and world-executable objects.

Let’s first run Adeos in the normal mode. Enter the following:

puppy$./adeos

World-writeable file: /var/lib/mysql/mysql.sock

World-writeable directory: /var/tmp

World-writeable directory: /var/spool/vbox

World-writeable directory: /var/spool/samba

World-writeable directory: /tmp

SUID file: /usr/X11R6/bin/XFree86

SUID file: /usr/sbin/usernetctl

...

The adeos command will output a list of files will be outputted. This list may be quite long, and I recommend
you redirect the output of the command to a file. This will allow you to better use the results. You can also run
Adeos with the -r option to output the results in a report format suitable for printing. Listing 4-12 runs Adeos
in verbose mode with the report option enabled.

Listing 4-12. Adeos in verbose Report Mode

puppy$./adeos -r verbose

You can also output the results of the Adeos scan as a HTML document using the -h option. Listing 4-13 runs
Adeos in paranoid mode with the HTML output option.

Listing 4-13. Adeos in paranoid Mode

puppy$./adeos -h paranoid

The -h option will create a HTML file called results.html in the current working directory.

■Caution Occasionally when running in paranoid mode with the -r option set, Adeos can consume
large quantities of memory and significantly slow your system. You should be careful when running
Adeos in this mode with this option.

4444c04_final.qxd 1/5/05 12:46 AM Page 197

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS198

Ownership
Now I will go back to Listing 4-2 and the seven columns of attributes for the objects. The third
and fourth columns are the owner of the object and the group of the object, respectively. In
Listing 4-1 the test.sh object is owned by the user bob and belongs to the group sales. The
user bob, as the owner, is entitled to the first triplet of access permissions, rwx, as I have described
in the previous section, and the group sales is entitled to the second triplet of permissions,
r-x. As I stated earlier, everyone on the system has been granted the world permissions, r-x,
to the test.sh object.

One of the important characteristics of ownership is that all files and objects on your sys-
tem should have an owner. Unowned objects can often indicate that an attacker has penetrated
your system. Listing 4-14 provides a find command that will return all files that do not have an
owner or a group.

Listing 4-14. Find Unowned Files and Objects

puppy# find / -nouser -o -nogroup -ls

You should review any files and objects that are unowned by a user or do not belong to
a group and either remove them or assign them to the appropriate owner or group.

Immutable Files
Immutable files are one of the most powerful security and system administration features
available on Linux systems. Immutable files cannot be written to by any user, even by the root
user, regardless of their file permissions. They cannot be deleted or renamed, and no hard link
can be created from them. They are ideal for securing configuration files or other files to
which you want to prevent changes and which you know will not or should not be changed.

■Note Immutable file functionality is available for ext2 and ext3 type file systems in kernel versions 2.4
and onward on most distributions. The chattr commands and associated functionality is provided by the
e2fsprogs package, which is usually installed by default on most Linux systems.

You can add or remove the immutable attribute using the chattr command. Only the
root user can use the chattr command to make files immutable. Listing 4-15 makes the
/etc/passwd file immutable. This would prevent any new users being created on the system,
because new users could not be written to the /etc/passwd file.

Listing 4-15. Setting the Immutable Attribute

puppy# chattr -V +i /etc/passwd

chattr 1.34 (25-Jul-2003)

Flags of /etc/passwd set as ----i--------

The chattr command is similar in function to the chmod command. Like the chmod com-
mand, you specify either a plus (+) sign or minus (-) sign and the required attribute. The plus

4444c04_final.qxd 1/5/05 12:46 AM Page 198

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 199

sign adds the specified attribute, and the minus sign removes it. So, to make a file immutable,
you use the option +i. To remove the immutable attribute, you use the -i option. Listing 4-15
also specifies the -V option to run the chattr command in the verbose mode and displays
more information about the attribute change. If you run the chattr command without the -V
option, it will complete without output, unless an error occurs.

■Tip The chattr command has another attribute you can potentially use: a. If this attribute is set, then
a file can be opened only for append or update operations and cannot be deleted. This is useful for log files
or for files you want to be able to write to but not to delete. Like the i attribute, it can be set or removed by
the root user only.

Now the /etc/passwd file is immutable, you will not be able to delete or change it.
Listing 4-16 tries to delete the file.

Listing 4-16. Deleting an Immutable File

puppy# rm /etc/passwd

rm: remove write-protected regular file `/etc/passwd'? y

rm: cannot remove `/etc/passwd': Operation not permitted

As you can see from the error message in Listing 4-16, the file cannot be deleted without
removing the immutable attribute. In Listing 4-17 you can also see that you are unable to cre-
ate a hard link to the file.

Listing 4-17. Linking Immutable Files

puppy# ln /etc/passwd /root/test

ln: creating hard link `/root/test' to `/etc/passwd': Operation not permitted

■Tip You can still create symbolic links to immutable files.

Immutable files are also useful for securing more than just individual configuration files.
On many hardened systems, a number of binaries that are not likely to change can be made
immutable. For example, the contents of the /sbin, /bin, /usr/sbin, and /usr/lib directories
can be made immutable to prevent an attacker from replacing a critical binary or library file
with an altered malicious version.

■Caution Obviously, upgrading applications and tools is not possible while the binaries or libraries you
need to update are marked immutable. You need to remove the immutable attribute to perform updates or
upgrades, such as installing a new version of Sendmail.

4444c04_final.qxd 1/5/05 12:46 AM Page 199

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS200

3. The source package is available from http://packetstormsecurity.org/linux/admin/lcap-0.0.3.tar.bz2,
.

Capabilities and lcap
As I previously mentioned, only the root user can add and remove the immutable (or append-
only) attribute to and from a file. This provides a certain degree of security to any files marked
with these attributes. But under some circumstances you may want to prevent even the root
user from removing these attributes. I will show you a way, using Linux kernel capabilities, of
doing this. Kernel capabilities were introduced in version 2.1 of the Linux kernel to provide
some granular control to the capabilities of the root user. Previously the authority granted to
the root user was universal, and it could not be allocated into smaller portions of authority or
capability, unlike the administrative accounts of other operating systems. The introduction
of capabilities provides the ability to allow or disallow particular pieces of the root user’s avail-
able authority and functionality.

■Note This includes more than just the ability to add or remove the immutable attribute.

To control these capabilities, you need to utilize a userland tool called lcap. You can down-
load lcap in the form of an RPM, a source package, or a Debian package file. You can use the
RPM file to install lcap. You can download the RPM from http://dag.wieers.com/packages/
lcap/ and install it using the rpm command.3

puppy# wget http://dag.wieers.com/packages/lcap/lcap-0.0.6-6.1.el3.dag.i386.rpm

puppy# rpm -Uvh lcap-0.0.6-6.1.el3.dag.i386.rpm

When you have installed the RPM, you can use the lcap command to disable capabilities.
Running the lcap command without options will list the capabilities that you can control and
their current status.

puppy# lcap

Current capabilities: 0xFFFFFEFF

0) *CAP_CHOWN 1) *CAP_DAC_OVERRIDE

2) *CAP_DAC_READ_SEARCH 3) *CAP_FOWNER

4) *CAP_FSETID 5) *CAP_KILL

6) *CAP_SETGID 7) *CAP_SETUID

8) CAP_SETPCAP 9) *CAP_LINUX_IMMUTABLE

10) *CAP_NET_BIND_SERVICE 11) *CAP_NET_BROADCAST

12) *CAP_NET_ADMIN 13) *CAP_NET_RAW

14) *CAP_IPC_LOCK 15) *CAP_IPC_OWNER

16) *CAP_SYS_MODULE 17) *CAP_SYS_RAWIO

18) *CAP_SYS_CHROOT 19) *CAP_SYS_PTRACE

20) *CAP_SYS_PACCT 21) *CAP_SYS_ADMIN

22) *CAP_SYS_BOOT 23) *CAP_SYS_NICE

24) *CAP_SYS_RESOURCE 25) *CAP_SYS_TIME

26) *CAP_SYS_TTY_CONFIG 27) *CAP_MKNOD

28) *CAP_LEASE

* = Capabilities currently allowed

4444c04_final.qxd 1/5/05 12:46 AM Page 200

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 201

Capabilities marked with an asterisk (*) are currently allowed, and those without this
asterisk sign are disallowed. Disallowing a capability requires specifying it by name on the
lcap command line. The following line disallows the root user’s capability to add or remove
the immutable attribute:

puppy# lcap CAP_LINUX_IMMUTABLE

■Note To remove a capability, you must be the root user.

Now not even the root user can add or remove the immutable attribute.

■Caution This means you or any user on your system will not be able to edit or delete any files marked
immutable. And you will not be able to remove the immutable attribute until the capability is restored through
a reboot of the system.

You can also use some other command-line options with lcap. The first is the -v option,
which enables verbose mode and provides more information about what lcap is doing. If you
rerun the previous command with the -v option, you can see a lot more detail about disallow-
ing the capability.

puppy# lcap CAP_LINUX_IMMUTABLE

Current capabilities: 0xFFFFFEFF

Removing capabilities:

9) CAP_LINUX_IMMUTABLE immutable and append file attributes

If you want to disallow all capabilities, run lcap with the -z option.

puppy# lcap -z

Be careful when you do this, as disallowing capabilities can cause your system to become
unstable. The lcap command also comes with some built-in help, which you can access with
the -h option.

Once you have disallowed a capability, it cannot be allowed again without rebooting your
system. Only the init process resets the capabilities of your system. If you inadvertently disal-
lowed a particular capability, you will have to reboot your system to allow it again. Addition-
ally, if you want to ensure a capability is disallowed when you start your system, you should
include the lcap command, disallowing that capability in your rc.local file for Red Hat and
your rcS file for Debian.

■Tip To find out more about the other capabilities that can be controlled with the lcap command, see the
contents of the /usr/include/capabilities.h file.

4444c04_final.qxd 1/5/05 12:46 AM Page 201

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS202

4. Symmetric encryption is defined as encryption where the data is encrypted and decrypted with the
same key. It is sometimes called private-key encryption.

Encrypting Files
Elsewhere in this book I have discussed using public-key encryption to manage a variety of
encryption tasks, such as encrypting your e-mail using TLS. But sometimes you may simply
want to encrypt a single file. To do this you use a cryptographic algorithm secured with a pass-
phrase. This is called symmetrical encryption and is not as strong or as flexible as asymmetri-
cal (public-key encryption) encryption.4 It is not as strong, as it solely relies on the strength of
a single key used to encrypt the required data. It is not as flexible, as it makes the process of
key management more difficult. With symmetrical encryption, the single private key must be
totally protected. This limits the means by which the key can be communicated to any parties
who need to decrypt the required data. But sometimes you may need to quickly and simply
encrypt data on your systems where private-key encryption is the easiest choice or where key
management and distribution is not a priority (for example, if you do not need to distribute
the private key to many people).

To do this conventional symmetric encryption, you can use the gpg command discussed
in Chapter 1. In the model I am describing, the private key will be a passphase you will specify
when you encrypt the data. This private key will also be required when you decrypt the data.
To encrypt a file, you run the gpg command with the -c option to enable symmetric encryp-
tion. Listing 4-18 shows the encryption of a simple text file.

Listing 4-18. Symmetric Encryption with gpg

puppy# cat test.txt

This is a test document - please encrypt me.

puppy# gpg -c test.txt

Enter passphrase:

Repeat passphrase:

When you enter the gpg -c command, you will be prompted to enter a passphrase, which
will be the private key to protect your data. You will be prompted to enter it twice to ensure the
passphrase recorded is correct. You should carefully select a passphrase using similar rules to
how you would choose a suitable and secure password (see Chapter 1). In the case of private
key passphrases, you should choose a longer than normal passphrase than your other pass-
words. This will reduce the risk of subjecting your encrypted files to a brute-force attack. Do
not reveal this pass phase to anyone who does not need to know it.

At the completion of the gpg -c command, an encrypted version of the test.txt file will
be created called test.txt.gpg. If you no longer need or want the unencrypted version of your
file, you should delete it to prevent it from becoming a very fast shortcut for an attacker to
read your encrypted data.

In Table 4-4 you can see some options you can provide to gpg that you can use for sym-
metrical encryption.

4444c04_final.qxd 1/5/05 12:46 AM Page 202

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 203

Table 4-4. gpg Symmetric Encryption Options

Option Description

-a Creates ASCII armored output.

--cipher-algo name Uses a particular cipher algorithm.

--version Displays the list of available cipher algorithms.

-o file Writes the output to the specified file.

-v Enables the verbose mode. Uses twice to increase the verbosity.

The first option, -a, provides gpg with ASCII armored output. The current test.txt.gpg file
is not very screen friendly and contains a number of characters that cannot be displayed on the
screen. If you wanted to send this file via e-mail to someone else, you would need to send it in
the form of a file attachment, as it could not be placed inline in the message body of an e-mail.
If you had specified the -a option, then gpg would have produced a file called test.txt.asc,
which would be the same encrypted data but in ASCII armored format. Listing 4-19 shows
what this file looks like.

Listing 4-19. test.txt.asc

-----BEGIN PGP MESSAGE-----

Version: GnuPG v1.2.3 (GNU/Linux)

jA0EAwMCzuPpG+gDJnJgyUdnUU8TxWy4oA0S4dPErY+4jPt6YasKHUxkw0AoXNdH

G/yXyQOrqitmGXc3ojfbSLGGaUN0A6NPh/GOTXcJiIR5/v8WG+Bj9A===/keh

-----END PGP MESSAGE-----

This message can be pasted into the body of an e-mail and then cut out of it by the recipi-
ent and decrypted (or automatically decrypted if you had a GnuPG or PGP plug-in for your
mail client). This is a much friendlier way of outputting encrypted data, and I recommend you
use this.

The next option, --cipher-algo, allows you to specify the cryptographic algorithm to use
for encrypting your data. Symmetrical encryption using gpg can be done with a variety of dif-
ferent cryptographic algorithms depending on which you have installed on your distribution.
You can display all the available algorithms by running gpg with the --version option.

puppy# gpg --version

gpg (GnuPG) 1.2.3

Copyright (C) 2003 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the file COPYING for details.

Home: ~/.gnupg

Supported algorithms:

Pubkey: RSA, RSA-E, RSA-S, ELG-E, DSA, ELG

Cipher: 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH

Hash: MD5, SHA1, RIPEMD160, SHA256

Compression: Uncompressed, ZIP, ZLIB

4444c04_final.qxd 1/5/05 12:46 AM Page 203

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS204

By default gpg installations will use 3DES as the cipher algorithm, but you can override this
using the --cipher-algo option, like this:

puppy# gpg -c -a --cipher-algo BLOWFISH test.txt

The previous line encrypted the test.txt file with the Blowfish cipher. The file outputted
by the command would remain test.txt.asc (.asc because you used the -a option).

The -o option allows you to specify the name of the file that will be outputted when the
gpg -c command is run. For example:

puppy# gpg -c -a -o test2.encrypted test.txt

The previous line would output a file called test2.encrypted that contains the encrypted
contents of the test.txt file.

The last option, -v, enables verbose output from the encryption process. You can enable it
twice, -vv, to provide even more detail.

Securely Mounting File Systems
When your system starts, each of your file systems is mounted to allow you to access the data
stored on your system. Your file systems can be mounted using different options: ranging from
the ability to write to a file system to specifying what sort of files can be run on that file system.
These options allow you to lock down the capabilities and functionality of each of your file
systems. These options are controlled by the /etc/fstab file. This section is not going to be a
definitive breakdown of every setting in the fstab file (the man page will give details of the set-
tings I don’t cover), but it will cover several settings you can use to ensure your file systems are
mounted more securely.

In Listing 4-20 you can see a sample of the /etc/fstab file. The /etc/fstab file is generally
similar across most distributions.

Listing 4-20. /etc/fstab File

LABEL=/ / ext3 defaults 1 1

LABEL=/boot /boot ext3 defaults 1 2

none /dev/pts devpts gid=5,mode=620 0 0

none /dev/shm tmpfs defaults 0 0

none /proc proc defaults 0 0

none /sys sysfs defaults 0 0

/dev/hda3 swap swap defaults 0 0

/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro 0 0

Each line in the /etc/fstab file is an entry defining a file system that can be mounted.
Each line consists of columns that define various facets of the file system. Let’s quickly look
at each column and what it does.

The first column is the name or label of the file system to be mounted. This is generally
a device name, such as /dev/cdrom, or a volume label, such as / for the root volume or /boot
for the boot volume. The second column is the mount point for the file system. This is the
directory or location on your system where you want to mount the file system. The third col-
umn is the type of file system that you are mounting (for example, ext3 or swap).

4444c04_final.qxd 1/5/05 12:46 AM Page 204

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 205

The fourth column allows you to specify options that define how your file systems are
mounted. This fourth column contains the major options you will be using to secure your file
systems. These options include how the file system is mounted (for example, being mounted
read-only) and exactly how users can interact with the file system (for example, what types of
files they can run or whether they can run files at all).

The fifth and sixth columns handle options for the dump and fsck commands, respectively.
You can read about these in the fstab man page.

Table 4-5 describes some of the security-related mount options that can be placed in the
fourth column of the /etc/fstab file.

Table 4-5. fstab Mount Options

Option Description

auto File system will be mounted automatically at boot time.

noauto File system will not be mounted automatically at boot time.

dev Allows interpretation of block or character special devices on this file system.

nodev Does not interpret block or character special devices on this file system.

exec Execution of binaries is allowed on this file system.

noexec Execution of binaries is NOT allowed on this file system.

suid setuid bits are allowed to take effect on this file system.

nosuid setuid bits are not allowed to take effect on this file system.

user Normal users can mount this device.

nouser Only root users can mount this device.

owner Allows the owner of the device to mount the file system.

ro File system will be mounted read-only.

rw File system will be mounted read-write.

defaults Sets this file system’s options as rw, suid, dev, exec, auto, nouser, and async.

■Note Other options not explained here are described in the fstab man page.

As you can see from Table 4-5 you can specify a variety of different ways to control how
file systems are mounted. The first options in Table 4-5 are the auto and noauto options, which
tell your system whether to load to load a particular file system at boot time. This can allow
you to specify file systems that you want to mount in the event they are required, thus prevent-
ing casual discovery of them. The next two options, dev and nodev, control the functioning of
character and block devices on your file systems. When the nodev option is specified, these
devices will not be interpreted and thus will not function. You need to ensure that only file
systems where you know you do not need these types of devices are mounted in this way—
so check your file systems for the presence of device files first. You can do this using the find
command on the next line:

puppy# find / -type b -or -type c

4444c04_final.qxd 1/5/05 12:46 AM Page 205

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS206

The exec and noexec options allow you to control whether binary execution is allowed on
a particular file system. If you specify noexec on a file system, then no binaries or executable
files will be allowed to run. Be careful setting this option on some file systems, especially oper-
ating system–focused file systems such as /boot or /, as the potential exists to prevent your
system from operating because your operating system cannot execute a required binary.

I discussed setuid files earlier in this chapter and emphasized how important it is to limit
their numbers and track their purposes. The suid and nosuid options control the functioning
of binaries with the setuid or setgid bits set on your file systems. When binaries are executed
on a file system with the nosuid option, their setuid and setgid bits will be ignored. With this
setting being ignored, most setuid binaries will fail because they do not have the required
level of permissions to function.

The user, nouser, and owner options are all interrelated and provide control over who is
allowed to mount your file systems. By default only root users can mount file systems. If you
have file systems with the user option specified, then any user can mount (or unmount) these
file systems. If the owner option is specified, then the owner of the device can mount the device
as well as the root user. I recommend you never allow non-root users to mount your file sys-
tems and that all your file system devices are owned by the root user.

The next mount options in Table 4-5 are ro and rw, read-only and read-write, respectively.
These allow you to control whether your users and applications can write to a particular file
system. When you specify the ro option, a file system’s contents cannot be changed by any
user, including the root user. This is useful for mounting file systems with static contents. Any
applications requiring write access to objects on that read-only file system will not function.

The last option in Table 4-5 is defaults. You can see in Listing 4-20 that most of the file sys-
tems contain the option, defaults. The defaults option specifies that the rw, suid, dev, exec,
auto, nouser, and async options should be applied to the file system being mounted. You will
need to remove this and replace it with the mount options you require; otherwise, your selec-
tion of mount options will be overridden by the defaults option.

Let’s look at some examples of how you could use these mount options. For example,
many systems have a /home file system that contains the users’ home directories. You know
what you want to allow your users to be able to do in their home directories, so you can
enforce some controls when you mount the file system using the mount options. You deter-
mine that you do not want your users to execute any binaries, that any device files should not
be interpreted, and that any setuid files should have their bits ignored, thus preventing the
binaries from executing with those permissions. In Listing 4-21 you can see a /etc/fstab line
where I have added the mount options to achieve all this.

Listing 4-21. Example of Mounting /home Securely

/dev/hda8 /home ext2 noexec,nodev,nosuid 0 2

You can now see in the fourth column that I have added the noexec, nodev, and nosuid
options. Each option is listed in this column and separated by a comma. Now when this file
system is next mounted, your policy for the /home file system will be enforced.

Another common method of securing your file systems is to mount all those file systems that
do not require write access as read-only. This is commonly also used with network-mounted file
systems to export read-only shares. To do this, you add the ro option to the mount options for the
file systems you want to mount read-only.

4444c04_final.qxd 1/5/05 12:46 AM Page 206

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 207

In Listing 4-22 I have specified that the /usr file system will be mounted with ro, the read-
only option, and nodev, the option to stop block or character devices being interpreted.

Listing 4-22. Mounting a Read-Only File System

/dev/hda7 /usr ext2 ro,nodev 0 2

These are merely two examples of how you could combine the available options to manage
your file system mounting and control how and what users can do in your file systems. I recom-
mend you determine if you can restrict how your file systems are mounted using these options
and ensure only the activities you want can be performed. Where you do not need particular
functionality and can apply restrictions such as nodev and nosuid, you should apply these. But,
like immutable files, the mount options should also be used with caution, as they can cause
issues on your system if improperly used; for example, marking your /boot file system as noexec
will result in your system being unable to boot.

Securing Removable Devices
One of the ways your system can be penetrated is through viruses or the introduction of com-
promised files onto your system through removable media such as floppy or CD drives. More
recently, various other removable devices, such as memory cards and sticks or removable USB
devices, have created alternative methods for attackers to introduce malicious files onto your
system. I will show you two ways of reducing the risk of introducing malicious files through
your removable devices.

The first way is to restrict who can mount removable devices. For most purposes on your
systems there should be no reason for any users other than the root user to mount floppy disks
or CDs. On most distributions this is the default setting and is achieved through the nouser
option in the /etc/fstab file, as discussed in the previous section. You should confirm that all
your removable devices in the /etc/fstab file have the nouser option set.

Additionally on Red Hat systems, non-root users can mount devices if they are signed onto
the console. This is managed by the file console.perms located in the /etc/security directory
(see Chapter 1). This file allows non-root users logged into the console to mount CDs or floppy
disks (and a variety of other removable devices such as Jaz or Zip drives). Listing 4-23 shows
a sample of the contents of the console.perms file that you can use to control the mounting of
removable devices.

Listing 4-23. console.perms Mounting Options

<console> 0660 <floppy> 0660 root.floppy

<console> 0600 <cdrom> 0660 root.disk

<console> 0600 <jaz> 0660 root.disk

<console> 0600 <zip> 0660 root.disk

<console> 0600 <memstick> 0600 root

<console> 0600 <diskonkey> 0660 root.disk

<console> 0600 <rem_ide> 0660 root.disk

<console> 0600 <fb> 0600 root

4444c04_final.qxd 1/5/05 12:46 AM Page 207

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS208

You can restrict removable devices that non-root users can mount from the console by
commenting out the lines in Listing 4-23 that refer to particular devices. Listing 4-24 disables
the mounting of CD and floppy drives by non-root users. I recommend you disable the mount-
ing of all removable devices by these users.

Listing 4-24. Disabling Non-root Mounting

#<console> 0660 <floppy> 0660 root.floppy

#<console> 0600 <cdrom> 0660 root.disk

The second way of reducing the risk of having your removable devices introduce malicious
files is to limit what files you can utilize on removable devices using the nosuid and nodev options
and potentially the noexec option in the /etc/fstab file. Listing 4-25 shows a CD drive with these
mount options specified.

Listing 4-25. Mounting Removable Devices

/dev/cdrom /mnt/cdrom udf,iso9660 noauto,ro,nodev,nosuid,noexec 0 0

In Listing 4-25 the CD-ROM is mounted read-only, will not allow any binaries to run
(including setuid binaries), and will not interpret block or character device files. This will pre-
vent most potential infiltrations of malicious files from this removable device. Of course, it will
also make it difficult for you to install software from a CD, and you would need to adjust the
mounting options to do this.

Creating an Encrypted File System
I demonstrated earlier the capability to encrypt files on your system but, I can extend this
principle to include the encryption of entire file systems. This allows you to encrypt and pro-
tect entire volumes of data (for example, backups), logging data, or private files. Encryption
also means that even if an attacker has penetrated your system, the attacker is not able to read
any file systems that you have encrypted. Many roving users with critical data on devices such
as laptops also use file system encryption to further secure data that is physically insecure (for
example, when the user is traveling).

File system encryption was not a feature that was available out of the box with most Linux
distributions but rather was provided by a number of different third-party solutions such as
CFS5 or loop encryption file systems such as Loop-AES.6 These third-party solutions required
patching the kernel to support them. More recently with the version 2.6 kernel release, some
progress has been made toward incorporating this functionality directly into the kernel, first
with Cryptoloop and then with dm-crypt.7 I will cover using dm-crypt to encrypt a file system.
The dm-crypt functionality was incorporated into release 2.6.4 of the kernel, so you need at
least this version of the 2.6 kernel. This minimum level of kernel release is provided by a num-
ber of current distributions: Red Hat Fedora Core 2, SUSE Linux 9.1, Mandrake 10, and Debian

5. http://www.crypto.com/software/

6. http://loop-aes.sourceforge.net/

7. http://www.saout.de/misc/dm-crypt/

4444c04_final.qxd 1/5/05 12:46 AM Page 208

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 209

Sarge. Most other distributions are also moving toward providing this level of kernel release.
Or if you need this functionality, you can upgrade your kernel to the required version yourself.
To do this, you can start with the instructions provided in Chapter 1.

I will cover using dm_crypt to create a loop encryption file system. A loop encryption file sys-
tem allows you to create an encrypted file system from an image file. This allows you to store pri-
vate files in a single encrypted file system rather than encrypting all the individual files. This is
the simplest use of dm_crypt, and you can extend the principles demonstrated next to encrypt
entire partitions or disks.

Installing the Userland Tools
First, though, you need to ensure you have all the tools required to perform the encryption.
If you have confirmed you have the required kernel version, you need to install the userland
tools that allow you to manipulate the dm_crypt functionality. These are provided by a package
called cryptsetup, which is available for Red Hat and Debian via those distribution’s update
tools. In Listing 4-26 you use yum to install it.

Listing 4-26. Installing cryptsetup

puppy# yum install cryptsetup

This will also prompt you to install the additional required packages: libgcrypt and
libgpg-error. Install all three packages.

■Tip These packages should also be on the distribution media for your distribution, but it is a good idea to
ensure you have the latest versions.

Enabling the Functionality
Most distributions have provided the dm_crypt functionality in the form of loadable kernel
modules. You will need to load these modules before being able to use dm_crypt. You can use
the modprobe command to load the required modules like this:

puppy# modprobe aes dm_crypt dm_mod

The first module, aes, enables support for AES encryption, which is the default cipher
used by dm_crypt.8 I will show you how to use dm_crypt with this cipher, but you can also
enable alternative ciphers, such as Blowfish, by ensuring they have been compiled into your
kernel and then load them via modules.

You can check the contents of your kernel configuration file in /boot for which ciphers are
available by using the following command:

puppy# cat /boot/config-version | grep 'CRYPT'

8. Read about AES at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

4444c04_final.qxd 1/5/05 12:46 AM Page 209

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS210

Replace version with the version of the kernel you are running. In Listing 4-27 you can
see a partial list of the kernel options produced by the previous command. Those options pre-
fixed by CONFIG_CRYPTO are the ciphers compiled into your kernel.

Listing 4-27. Ciphers Available in Your Kernel

CONFIG_CRYPTO_BLOWFISH=m

CONFIG_CRYPTO_TWOFISH=m

CONFIG_CRYPTO_SERPENT=m

CONFIG_CRYPTO_AES_586=m

CONFIG_CRYPTO_CAST5=m

CONFIG_CRYPTO_CAST6=m

CONFIG_CRYPTO_TEA=m

The =m suffix indicates that this kernel functionality is provided via a loadable module.
As you did with the AES cipher, you can load these ciphers with the modprobe command.

puppy# modprobe blowfish

You can see what other ciphers are currently loaded and available on your system by
looking at the contents of the /proc/crypto file. In Listing 4-28 you cat this file.

Listing 4-28. Viewing Available Ciphers

puppy# cat /proc/crypto

name : md5

module : kernel

type : digest

blocksize : 64

digestsize : 16

name : aes

module : aes

type : cipher

blocksize : 16

min keysize : 16

max keysize : 32

Finally, the additional modules, dm_crypt and dm_mod, provide the file system encryption
functionality itself.

If you want to automatically enable this functionality, you can add these modules (includ-
ing any additional ciphers you would like to enable) to your /etc/modules.conf file. This will
load these modules when your system is started.

Encrypting a Loop File System
Now that you have enabled all the required modules and have installed the userland tools, you
can create your encrypted file system. You need to create an image file to hold your encrypted
file system. Listing 4-29 uses the dd command to create an empty file of a suitable size.

4444c04_final.qxd 1/5/05 12:46 AM Page 210

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 211

9. You can read further about loop devices at http://people.debian.org/~psg/ddg/node159.html.

Listing 4-29. Creating an Empty Image File

puppy# dd if=/dev/urandom of=/home/bob/safe.img bs=1k count=10024

The dd command converts and copies files, but here I am using it to populate an empty
image file. The if option specifies the input file, dev/urandom. This device is a randomness
source and allows you to populate the imagine file with random data. The of option specifies
the output file; I have created a file called safe.img in the /home/bob directory. The next options
control the size of the file to be created. The bs option indicates that the size of the file will be
measured in kilobytes, 1k, and the count option tells dd how many kilobytes to add to the file.
In this case I have created a 10 megabyte (MB) file to hold the encrypted file system.

Now that you have your image file, you need to create a loop device from it. Loop devices
allow images files to be mounted as block devices as if they were a normal hard disk drive or
floppy disk.9 Listing 4-30 shows how you use the command to create the loop device.

Listing 4-30. Creating a Loop Device

puppy# losetup /dev/loop0 /home/bob/safe.img

The losetup command creates the loop device /dev/loop0 from the file safe.img.
Now you need to create the encrypted device on your loop device. Installing the cryptsetup

package will have provided a command called cryptsetup that you will use to create that
encrypted device. Listing 4-31 uses the cryptsetup command to create an encrypted device
in your loop device.

Listing 4-31. Creating Encrypted File System

puppy# cryptsetup -y create safe /dev/loop0

Enter passphrase:

Verify passphrase:

Listing 4-31 maps the /dev/loop0 device to a special kind of encrypted block device,
which I have called safe. This device is created in the /dev/mapper directory. You can now for-
mat a file system on this device and then mount it. If you list the contents of the /dev/mapper
directory, you will see this newly created device.

puppy# ls -l /dev/mapper

total 0

crw------- 1 root root 10, 63 Sep 2 18:18 control

brw-r----- 1 root root 253, 0 Sep 19 13:17 safe

The cryptsetup command also prompts you to enter the passphrase that will secure your
file system. Like when choosing other passphrases discussed in the “Encrypting Files” section
earlier in this chapter (and in Chapter 1 when I discussed passwords), you should choose a
secure and suitable passphrase. You will need to remember this passphrase. If you forget it,
you will not be able to access your encrypted file system. The -y option in Listing 4-31 tells

4444c04_final.qxd 1/5/05 12:46 AM Page 211

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS212

10. I will talk about hashing in Chapter 3.

cryptsetup to prompt for the passphrase twice; the second time is to add some validity check-
ing and ensure you enter the correct passphrase. After you have inputted the password,
cryptsetup will hash the passphrase and use it as the key for the encrypted file system.10

By default your passphrase will be hashed with the ripemdl160 hashing algorithm.
Let’s break the cryptsetup command down a bit further; I will show some details of each

of the functions it can perform. The command is structured like this:

cryptsetup options action name device

I will now cover the combinations of options and actions you can perform with cryptsetup.
Table 4-6 describes some of the more useful options of the cryptsetup command.

Table 4-6. cryptsetup Options

Option Description

-c cipher Cipher used to encrypt the disk. Defaults to aes.

-h hash Hash used to create the encryption key from the passphrase. Defaults to
ripemd160.

-s keysize Specifies the key size in bits. Defaults to 256 bits.

-y Verifies the passphrase by asking for it twice.

-v Verbose mode.

-? Shows the help and usage information.

■Note Currently cryptsetup does not have a man page.

The -c and -h options control how your file system is encrypted. The -c option specifies
the cipher that will be used to encrypt the file system. As mentioned earlier, the default cipher
for dm_crypt is AES, but you can specify any suitable cipher available on your system; for exam-
ple, you earlier enabled Blowfish.

puppy# cryptsetup -c blowfish create safe /dev/loop0

The choice of cipher really depends on the required performance and cipher standards by
which you want to abide. For some information about some of the available ciphers that can
be used with dm_crypt, including their relative performance, see http://www.saout.de/
tikiwiki/tiki-index.php?page=UserPageChonhulio.

■Caution I recommend you avoid using DES encryption, as it is not secure.

4444c04_final.qxd 1/5/05 12:46 AM Page 212

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 213

The -h option specifies what form of hashing is used to create an encryption key from
your passphase. By default dm_crypt uses the ripemdl160 hash, but you can use any digest
hash available on your system (for example, sha1).

puppy# cryptsetup -c blowfish -h sha1 create safe /dev/loop0

The -s option allows you to specify the size of the encryption key to be used. The size is
expressed in bits. The default key size is 256 bits. The larger the key size you use, then gener-
ally the more secure your encrypted file system will be, but the larger key sizes can also have
negative performance impacts on your system. I recommend that for most purposes 256 bits
is suitable, but depending on the speed of your disk, memory, and CPU you may want to
experiment with larger key sizes.

You can enable the -v option to provide more information when the cryptsetup com-
mand runs. Lastly, the -? option provides help, usage, and information.

Next are the actions that the cryptsetup command can perform. You have already seen
the create option, which you have used to create an encrypted file system. Table 4-7 shows
some of the other possible actions.

Table 4-7. cryptsetup Actions

Action Description

create Creates a device

remove Removes a device

reload Modifies an active device

resize Resizes an active device

status Shows the device status

The remove option you will look at when you examine unmounting an encrypted file sys-
tem; it reverses the process of mapping the encrypted block device that the create option pro-
duces. The reload option allows you to reload the device mapping, and the resize option allows
you to resize the device. The last option, status, provides you with useful status information on
your mapped devices.

puppy# cryptsetup status safe

/dev/mapper/safe is active:

cipher: aes-plain

keysize: 256 bits

device: /dev/loop0

offset: 0 sectors

size: 20048 sectors

After selecting options and associated actions, you need to specify the name of the
encrypted file system for an action to be performed on. In the previous command you specified
the name safe. This will be the name of the mapped device created in the /dev/mapper directory.

Then lastly on the cryptsetup command line you need to specify the actual device that
will be used to create the file system. In this explanation I have used a loop device, /dev/loop0,
but you could also use a normal block device such as a disk or another type of device such as
memory stick or USB drive.

4444c04_final.qxd 1/5/05 12:46 AM Page 213

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS214

I have now created an image file, mounted that image file as a loop device, and created
an encryption device using the cryptsetup command. Now you need to create a file system on
that device to allow you to mount and write files to it. I have decided to create an ext3 type file
system on the device I have created, /dev/mapper/safe, using the mkfs.ext3 command.

puppy# mkfs.ext3 -j /dev/mapper/safe

This now gives you a disk space of 10MB for the ext3 file system on which to place the
files you want to encrypt.

Now let’s create a mount point (a directory) to mount your new file system. I have created
the image file, safe.img, in /home/bob, so I will create a mount point off that directory for con-
sistency. You could create the mount point anywhere.

puppy# mkdir /home/bob/safe

Finally, you mount the new file system using the mount command.

puppy# mount -t ext3 /dev/mapper/safe /home/bob/safe

I have mounted the file system, specifying its type, ext3, and the device to mount,
/dev/mapper/safe, to the mount point I have just created, /home/bob/safe.

You can now add whatever files you want to this file system. But is this it? Not quite.
You also need a process for unmounting and remounting your new encrypted file system.

Unmounting Your Encrypted File System
When you shut down your system or no longer require access to the encrypted file system,
you need to unmount it. This process basically consists of a reversal of some of the steps you
used to create the file system.

First you need to unmount your file system using the umount command.

puppy# umount /home/bob/safe

Then you need to unmap the device you created with the cryptsetup command.

puppy# cryptsetup remove safe

The command’s remove action is used to unmap the /dev/loop0 device. Do not panic,
though; this has not deleted any of your data. It merely removes the mapping of the device.
All your data is intact in the loop device and the associated image file. But to protect your data
you must run the cryptsetup remove action; otherwise, anybody can remount your device
without providing the passphrase.

Lastly you need to stop your loop device. You again use the losetup command but with
the -d option that indicates you want to detach the /dev/loop0 device.

puppy# losetup -d /dev/loop0

The encrypted data is now contained in the safe.img file you created at the start of the
previous section.

4444c04_final.qxd 1/5/05 12:46 AM Page 214

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 215

Remounting
To remount, you follow an abbreviated version of the process you used to create the encrypted
file system. You again need to create a loop device from your image file. You use the same image
file, safe.img, and the same loop device, /dev/loop0.

puppy# losetup /dev/loop0 safe.img

Next you need to reestablish your encrypted file device map using the cryptsetup com-
mand. For this you will need the passphrase you used to create the original file system device
mapping. If you do not have this passphrase, you will not be able to mount your encrypted file
system. Listing 4-32 maps the device with the same name, safe, and from the same device,
/dev/loop0, that you did previously.

Listing 4-32. Remapping the Encrypted Device

puppy# cryptsetup -y create safe /dev/loop0

Enter passphrase:

Verify passphrase:

Disconcertingly, if you put into the wrong passphrase when entering the cryptsetup com-
mand, then the command will not fail but rather will complete without error. You will not,
however, be able to mount the encrypted file system, as I will demonstrate next.

Now that you have re-established the device mapping, you can mount your device. You
again mount it to the /home/bob/safe mount point.

puppy# mount -t ext3 /dev/mapper/safe /home/bob/safe

If you had entered the incorrect pass in Listing 4-32, then your mount attempt would fail
with the following error:

mount: wrong fs type, bad option, bad superblock on /dev/mapper/safe, ➥

or too many mounted file systems

Unfortunately, this error message is generic and can result from a number of error condi-
tions. I recommend you carefully enter your passphrase. Use the cryptsetup -y option to be
prompted for your passphrase twice to reduce the risk of entering the wrong passphrase.

■Tip As you can see, the creating, unmounting, and remounting process is quite complicated. I recom-
mend you automate the process with a script. You can find some examples of this at the dm_crypt wiki at
http://www.saout.de/tikiwiki/tiki-index.php.

Maintaining File Integrity with Tripwire
Once you have hardened and secured your files and file systems, you need to ensure they stay
that way. One of the biggest threats to security hardening is entropy—over time changes are
introduced to the environment that could expose you to risk of attack. The security and integrity

4444c04_final.qxd 1/5/05 12:46 AM Page 215

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS216

11. Via http://download.fedora.us/

of your files is no different. As things change on your systems, so can the permissions and con-
tent of your files and objects. Additionally, one of the key indicators of an attack or penetration
of your system is unexpected changes in permissions, attributes, and the contents of files and
objects.

To mitigate the risk of these sorts of changes and to detect any malicious changes to your
files and objects, several checksum and integrity scanners exist. These scanners take a base-
line of your system and then run regular, usually scheduled, scans of your system and com-
pare the results against the baseline. I will cover the most well-known scanner, Tripwire.

Tripwire works on a policy-compliance model. You need to configure a policy covering all
the objects you want to monitor and the changes to these objects in which you are interested.
Taking this policy, Tripwire then initializes and generates a baseline database of all the file and
objects covered by this policy. You next schedule a regular scan of the system, and if Tripwire
detects a variation from the baseline, then it will be reported.

Tripwire is available in a number of different forms and variations. Many distributions have
created their own branches of Tripwire. This is in addition to the open-source version available
at http://sourceforge.net/projects/tripwire/ and the commercial version available at the
Tripwire site, http://www.tripwire.com. These branched versions of Tripwire tend to have subtle
differences. Usually these differences are aimed at addressing the idiosyncrasies of a particular
distribution; for example, the Tripwire version available for Red Hat moves and renames some
commands to bring Tripwire in line with Red Hat’s conventions. I recommend you look at the
package available for your distribution first. This package is likely to be easier to configure for
your system than other versions.

Tripwire is available via Apt for Debian, as an RPM for Red Hat Enterprise Linux and
Mandrake on those distributions’ media, and for Red Hat Fedora Core.11 It is also available
from SourceForge as a source tarball. The source tarball is often difficult to compile. I recom-
mend installing Tripwire via an RPM; the following line installs the Fedora RPM.

puppy# rpm -Uvh tripwire-2.3.1-20.fdr.1.2.i386.rpm

■Tip So, when do you install and initialize Tripwire? Well, I recommend you install and initialize Tripwire
after you have installed your operating system and applications and have applied any updates or patches
but before you have connected your system to a production network. This ensures Tripwire can be config-
ured with all the required files and binaries being monitored and reduces the risk that an attacker could
penetrate your system before you enable Tripwire.

Configuring Tripwire
In this section, you will see the base Tripwire configuration, and then I will show you how to ini-
tialize and run Tripwire. As you are going to configure Tripwire using the Red Hat Fedora RPM,
some of the configuration options, especially their naming conventions, may differ from other
versions of Tripwire. This is especially true of the source tarball version where many configura-
tion options differ. I will try to address this where I can.

4444c04_final.qxd 1/5/05 12:46 AM Page 216

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 217

After installing Tripwire, the configuration for the tool will be installed into the
/etc/tripwire directory in the form of two files: twcfg.txt and twpol.txt. The twcfg.txt file
contains the default configuration for Tripwire, including the location of the Tripwire binaries
and policies. The twpol.txt file contains the Tripwire policy that tells Tripwire what to moni-
tor. I will talk about it in the “Explaining Tripwire Policy” section.

Listing 4-33 shows a sample of the twcfg.txt file.

Listing 4-33. Tripwire twcfg.txt

ROOT =/usr/sbin

POLFILE =/etc/tripwire/tw.pol

DBFILE =/var/lib/tripwire/$(HOSTNAME).twd

REPORTFILE =/var/lib/tripwire/report/$(HOSTNAME)-$(DATE).twr

SITEKEYFILE =/etc/tripwire/site.key

The file consists of directives and answers (for example, ROOT=/usr/sbin), which indicates
where the Tripwire binaries are located. Most of the directives in twcfg.txt are self-explanatory.
Table 4-8 describes some of the other directives and their functions.

Table 4-8. Tripwire twcfg.txt Directives

Directive Description

LATEPROMPTING=true | false Limits the time the Tripwire password is in memory by
delaying prompting for it. Defaults to false.

LOOSEDIRECTORYCHECKING=true | false If true, then report if files in a watched directory change
but do not report on the directory itself. Defaults to
false.

SYSLOGREPORTING=true | false Specifies whether Tripwire logs to syslog.

EMAILREPORTLEVEL=number Specifies the verbosity of Tripwire e-mail reports.
Defaults to 3.

REPORTLEVEL=number Specifies the verbosity of Tripwire printed reports.
Defaults to 3.

MAILMETHOD=SENDMAIL | SMTP Specifies how Tripwire sends e-mail. Defaults to
SENDMAIL.

MAILPROGRAM=program Specifies the Sendmail binary for Tripwire. Defaults to
/usr/lib/sendmail -oi -t. Valid only if the mail method
is SENDMAIL.

SMTPHOST=SMTP Host Specifies the SMTP host to use. Valid only if the mail
method is SMTP.

SMTPPORT=port Specifies the SMTP port to use. Valid only if the mail
method is SMTP.

MAILNOVIOLATIONS=true | false Sends a notification when a Tripwire report is run even if
no violations were found.

■Note Most of these variables are present in all versions of Tripwire, but in some versions, most notably the
source tarball, these options are prefixed with the letters TW. So, MAILPRORAM becomes TWMAILPROGRAM.

4444c04_final.qxd 1/5/05 12:46 AM Page 217

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS218

The defaults in twcfg.txt should be suitable for most Tripwire installations, but some of
the options in Table 4-8 may be useful to tweak. If the first option, LATEPROMPTING, is set to true,
then Tripwire delays the prompting of the user for passwords as long as possible to limit the
time the password spends in memory. If the second option, LOOSEDIRECTORYCHECKING, is set to
true, then it reports on changed files and objects in a watched directory but does not report the
directory change itself. This stops Tripwire from reporting two changes, one for file and one for
the directory, which reduces redundant reporting. It defaults to false.

If you want Tripwire to log violations to syslog, then set the SYSLOGREPORTING directive to
true. You can control the verbosity of Tripwire’s reporting with the two report-level options,
REPORTLEVEL and EMAILREPORTLEVEL. The verbosity ranges from 0 to 4, with 0 as minimal detail
and 4 as the most verbose.

The last five options relate to how Tripwire notifies you via e-mail if it detects a violation.
The first is the MAILMETHOD, which determines how Tripwire will send e-mails. Tripwire can
send e-mail directly via the Sendmail binary or can connect to an SMTP host. Specify SENDMAIL
to send via the binary and SMTP to send to an SMTP host. If you specified SENDMAIL as the mail
method, then the location and options of the Sendmail binary are set with the MAILPROGRAM
directive. If you specified SMTP, then you can designate the SMTP host and port you want to
send e-mails to using the SMTPHOST and SMTPPORT directives, respectively.

If the last of these options, MAILNOVIOLATIONS, is set to true, then Tripwire generates an
e-mail report when it is run, even if no violations are found. If you do not want to receive
a report when Tripwire is run and does not find any violations, then set this option to false.
The default is true.

Additionally, some variables are available to you in the twcfg.txt file, such as $(HOSTNAME)
for hostname and $(DATE) for the current date.

Explaining Tripwire Policy
The twpol.txt file is the input file for the Tripwire policy for your host. This file will be used to
create a proprietary file called a policy file. The policy determines what files and objects Trip-
wire will monitor for changes. It also specifies exactly what changes to those files and objects
it will monitor. The RPM you have installed comes with a default policy. This policy is designed
to monitor Red Hat Fedora systems. If you are running Tripwire on a different distribution, it
may have come with a sample policy of its own. Either way you will need to change the policy
to reflect exactly what objects you want to monitor on your system. I recommend you at least
monitor important operating system files and directories, logging files, and the configuration
files and binaries of your applications.

Let’s look at the twpol.txt file. The file contains two types of items. It contains the direc-
tives and the rules that identify the individual files, and it contains the objects Tripwire is
monitoring. I will break the sample twpol.txt file into these items to demonstrate its content
and then show how to structure your Tripwire policy file.

Tripwire Policy Global Variables
The global Tripwire variables define the location of Tripwire-specific objects and directories
and the hostname of the system on which Tripwire is running. These variables are contained
in a special section of the policy file called a directive. This directive is entitled @@section
GLOBAL and is located toward the start of the policy file. Listing 4-34 shows a sample of the
global variables section of the default twpol.txt file created when I installed Tripwire.

4444c04_final.qxd 1/5/05 12:46 AM Page 218

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 219

Listing 4-34. Tripwire Global Variables

@@section GLOBAL

TWROOT=/usr/sbin;

TWBIN=/usr/sbin;

TWPOL="/etc/tripwire";

TWDB="/var/lib/tripwire";

TWSKEY="/etc/tripwire";

TWLKEY="/etc/tripwire";

TWREPORT="/var/lib/tripwire/report";

HOSTNAME=puppy.yourdomain.com;

Each variable is terminated by a semicolon. If the semicolon is missing, then the policy
file will not parse correctly, so loading the policy into Tripwire (as I will demonstrate in the
“Initializing and Running Tripwire” section) will fail. Most of the variables in Listing 4-34 are
self-explanatory and specify the directories that Tripwire will use. The last variable is HOSTNAME.
You need to set HOSTNAME to your system’s fully qualified domain name (FQDN) to ensure Trip-
wire functions correctly. In this case, this is puppy.yourdomain.com.

■Note In the sample twpol.txt file installed by the RPM, you also have the FS directive section, which
contains some predefined property summaries and other variables used by the example policy. I discuss
these property summaries and variables briefly in the “Tripwire Rules” section.

Tripwire Rules
A Tripwire rule is defined as a file or directory name and a property mask separated by the
symbols ->. Additionally, it can have some optional rule attributes. In Listing 4-35 you can
see the structure of a Tripwire rule.

Listing 4-35. Tripwire Rule Structure

filename -> property mask (rule attribute = value);

Let’s look at each part of the Tripwire rule. The first portion of the rule is the file or object
you want to monitor. This could be a single file or an entire directory. If you specify a directory,
then Tripwire will monitor the properties of that directory and the entire contents of that direc-
tory. You can have only one rule per object or file. If an object has more than one rule, Tripwire
will fail with an error message and not conduct any scanning.

The file or object is then separated from the property mask by a space or tab and the ->
symbols, followed by another space or tab. The property mask tells Tripwire exactly what change
about the file or object you want to monitor. For example, you could monitor for a change to the
user who owns the file, the size of the file, or the file’s permissions. Each property is indicated by
a letter prefixed with either a plus (+) sign or a minus (-) sign. For example, the following line
monitors the ownership of the /etc/passwd file:

/etc/passwd -> +u;

4444c04_final.qxd 1/5/05 12:46 AM Page 219

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS220

The u is the Tripwire property for object ownership, and the plus (+) sign indicates you want
to monitor this property. You can add further properties to be monitored by adding property let-
ters to your Tripwire rule. On the next line you add the property, s, which indicates file size:

/etc/passwd -> +su;

Now Tripwire will monitor for any changes to the /etc/passwd file’s ownership and its size.

■Note You must terminate all rules with a semicolon (;).

Table 4-9 lists all the properties you can monitor for in Tripwire.

Table 4-9. Tripwire Property Masks

Property Description

a Access time stamp.

b Number of blocks.

c Inode time stamp.

d ID of the device on which the inode resides.

g Owning group.

i Inode number.

l File increases in size.

m Modification time stamp.

n Number of links to the object.

p Permissions.

r ID of the device pointed to by inode. Valid only for device type objects.

s File size.

t File type.

u Object owner.

C CRC-32 hash value.

H Haval hash value.

M MD5 hash value.

S SHA hash value.

These properties are generally fairly self-explanatory file system attributes. The only prop-
erty that needs further explanation is l. The l property is designed for files that will only grow.
Tripwire thus monitors to see if the file shrinks in size but ignores the file if it grows in size.

The minus (-) sign prefixing a property indicates that you do not want to monitor for that
property. In the next line I am monitoring the /etc/passwd file for its ownership and size, but
I have explicitly told Tripwire that I do not care about its last modification time stamp.

/etc/passwd -> +su-m;

4444c04_final.qxd 1/5/05 12:46 AM Page 220

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 221

In addition to the individual properties you can monitor for, you can also use property
summaries. These property summaries are variables that represent particular combinations of
properties. For example, Tripwire has a built-in property summary called $(Device), which
contains the recommended properties for devices (or other types of files that Tripwire should
not try to open). On the next line you can see the $(Device) property summary in a rule:

/dev/mapper/safe -> $(Device);

As I have described, each property summary represents different combinations of prop-
erties. The $(Device) property summary is equivalent to setting the properties in the follow-
ing rule:

/dev/mapper/safe -> +pugsdr-intlbamcCMSH;

The previous line indicates that any rule that uses the $(Device) property summary will
monitor files and objects for changes to their permissions, ownership, group owner, size and
device, and inode ID monitored, but all other changes will be ignored. Table 4-10 lists all the
default property summaries, the property mask value they are equivalent to, and what they
are designed to monitor.

Table 4-10. Property Summaries

Summary Mask Value Description

$(Device) +pugsdr-intlbamcCMSH Devices or other files that Tripwire should not
attempt to open

$(Dynamic) +pinugtd-srlbamcCMSH User directories and files that tend to be dynamic

$(Growing) +pinugtdl-srbamcCMSH Files that should only get larger

$(IgnoreAll) -pinugtsdrlbamcCMSH Checks for the file presence or absence but does not
check any properties

$(IgnoreNone) +pinugtsdrbamcCMSH-l Turns on all properties

$(ReadOnly) +pinugsmtdbCM Files that are read-only

Two of the most useful of these property summaries are $(IgnoreAll) and $(IgnoreNone).
The $(IgnoreAll) summary allows you to simply check if a file is present and report on that.
The $(IgnoreNone) summary is a good starting point for custom property masks. By default it
turns on all properties to be monitored. Using the - syntax you then deduct those properties
you do not want to monitor.

/etc/hosts.conf -> $(IgnoreNone) - CHn;

This is a much neater syntax that using the full property mask +piugtsdrbamcMS-CHnl.

■Note The $(IgnoreNone) summary does not set the l property.

4444c04_final.qxd 1/5/05 12:46 AM Page 221

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS222

Because property summaries are simply preset variables, you can also declare your own.
You can declare a variable using the following syntax:

variable = value;

Thus, you can declare a variable to create a property summary for objects whose owner-
ship and permissions should never change.

STATIC_PO = +pug;

The STATIC_PO variable could then be used in a rule, like so:

/home/bob/safe -> $(STATIC_PO);

In the example twpol.txt file, some of these variables have already been declared.
In Listing 4-36 you can see several of these predefined variables.

Listing 4-36. Property Summary Variables in twpol.txt

SEC_CRIT = $(IgnoreNone)-SHa; # Critical files that cannot change

SEC_SUID = $(IgnoreNone)-SHa; # Binaries with the SUID or SGID flags set

SEC_INVARIANT = +tpug; # Directories that should never change ➥

permission or ownership

You can use variables for a variety of other purposes, too. You can substitute any text in
the variable declaration. For example, you can declare an object name as a variable at the start
of your policy file.

BOB_DIR = /home/bob;

Then you can refer to it using a variable when defining rules.

$(BOB_DIR); -> +p;

The last parts of Tripwire rules are rule attributes. These attributes work with your rules to
modify their behaviors or provide additional information. One of the most commonly used
attributes is emailto. The emailto attribute allows you to specify an e-mail address (or addresses)
to be notified if a rule is triggered.

/etc/host.conf -> +p (emailto=tripwire@yourdomain.com);

In the previous line, if the permissions of the /etc/host.conf file changed, then an
e-mail would be sent (using the mail method you specified in the twcfg.txt file) to the
tripwire@yourdomain.com e-mail address. Listing 4-37 specifies multiple e-mail addresses
by enclosing them in quotes.

Listing 4-37. Multiple E-mail Addresses

/etc/hosts.conf -> +p (emailto="tripwire@yourdomain.com admin@anotherdomain.com");

4444c04_final.qxd 1/5/05 12:46 AM Page 222

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 223

■Tip You can test your e-mail settings using the command /usr/sbin/tripwire --test --email
email@yourdomain.com, replacing the email@yourdomain.com with the e-mail address to which you
want the test message sent.

The other attributes available to Tripwire are recurse, severity, and rulename. The recurse
attribute is specified for directories and specifies whether Tripwire should recursively scan a
directory and its contents.

/etc -> +p (recurse=false);

Using the rule in the previous line Tripwire normally would scan the /etc directory and
all its contents. With the recurse attribute set to false, Tripwire will now scan only the /etc
directory itself for changes. You can also use the recurse setting to specify the depth to which
Tripwire will recurse. A setting of recurse=0 will scan only the contents of the directory and
not recurse to any lower directories. On the other hand, a setting of recurse=1 will scan the
contents of the specified directory and recurse one directory level lower, and so on.

The severity and rulename attributes allow you to group files in the Tripwire report
according to classification. The severity attribute allows you to define a severity to the file
being monitored.

/etc/host.conf -> +p (severity=99);

In your Tripwire report, all the results from rules, which have been specified as severity 99
using this attribute, will be grouped, which allows you to better sort your results. The rulename
attribute provides similar functionality by allowing you to describe a particular rule.

/etc/host.conf -> +p (rulename="Network Files");

You can also assign multiple attributes to a rule. Listing 4-38 adds both severity and
rulename attributes to a rule.

Listing 4-38. Multiple Attributes

/etc/host.conf -> +p (severity=99, rulename="Network Files");

You can also specify rule attributes for a group of rules. Listing 4-39 demonstrates this.

Listing 4-39. Attributes for Groups of Rules

(rulename="Network files", severity=99, emailto=tripwire@yourdomain.com)

{

/etc/host.conf -> +p;

/etc/hosts -> +p;

/etc/nsswitch.conf -> +p;

/etc/resolv.conf -> +p;

}

4444c04_final.qxd 1/5/05 12:46 AM Page 223

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS224

You specify your attributes first. You enclose them in brackets, and then place your rules
below them and enclose them in brackets, { }. This allows you to group similar rules for ease
of update and reporting.

Finally, you can specify a special type of rule called a stop rule. This allows you to specify
files within a directory that you want to exclude, which will stop Tripwire from scanning those
files. Listing 4-40 specifies that you want to monitor the /etc directory for permissions changes
but you specifically want to exclude the /etc/fstab and /etc/mstab files from being monitored.

Listing 4-40. Stop Rules

/etc/hosts -> +p;

! /etc/hosts;

! /etc/hosts;

The ! prefix indicates that the file should be excluded. Each stop rule must be terminated
with a semicolon (;).

■Tip You can also add comments to your Tripwire policy file by prefixing lines with a pound sign (#).

Initializing and Running Tripwire
After you have configured Tripwire and created a suitable policy for your system, you need to
set up and initialize Tripwire. Tripwire comes with a command, tripwire-setup-keyfiles, that
you can use to perform this initial setup. The command is usually located in the directory
/usr/sbin.

■Tip Running this command performs the same actions as running the script twinstall.sh that came
with earlier releases of Tripwire.

This command will create two keyfiles: the site key that signs your configuration and pol-
icy and the local key that protects your database and reports. You will be prompted to enter
passphrases for both. Listing 4-41 shows the results of this command.

Listing 4-41. The tripwire-setup-keyfiles Command

puppy# /usr/sbin/tripwire-setup-keyfiles

--

The Tripwire site and local passphrases are used to sign a variety of

files, such as the configuration, policy, and database files.

Passphrases should be at least 8 characters in length and contain both

letters and numbers.

See the Tripwire manual for more information.

--

4444c04_final.qxd 1/5/05 12:46 AM Page 224

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 225

Creating key files...

(When selecting a passphrase, keep in mind that good passphrases typically

have upper and lower case letters, digits and punctuation marks, and are

at least 8 characters in length.)

Enter the site keyfile passphrase:

Verify the site keyfile passphrase:

■Caution You need to take good care of these passphrases, as you will be forced to reinstall Tripwire if
you lose one or both of them.

The tripwire-setup-keyfiles command will also create encrypted versions of your
twcfg.txt and twpol.txt files, called tw.cfg and tw.pol, respectively. These files will be signed
with your new site key and are located in the /etc/tripwire directory. Listing 4-42 shows the
contents of the /etc/tripwire directory after you run the tripwire-setup-keyfiles command.

Listing 4-42. The /etc/tripwire Directory

puppy# ls -l

-rw-r----- 1 root root 931 Sep 26 17:03 puppy.yourdomain.com-local.key

-rw-r----- 1 root root 931 Sep 26 17:02 site.key

-rw-r----- 1 root root 4586 Sep 26 17:03 tw.cfg

-rw-r--r-- 1 root root 603 Jun 16 11:31 twcfg.txt

-rw-r----- 1 root root 12415 Sep 26 17:03 tw.pol

-rw-r--r-- 1 root root 46551 Sep 21 15:44 twpol.txt

You now need to either encrypt or delete the twcfg.txt and twpol.txt files to prevent an
attacker from using them for information or using them to compromise Tripwire. Either use
gpg to encrypt them and store them on removable media or delete them altogether. You can
re-create your Tripwire policy and configuration using the twadmin command, as I will demon-
strate in a moment.

Now that you have created your signed configuration and policy files, you need to create
the baseline Tripwire will use to compare against. Listing 4-43 initializes the Tripwire database
with the tripwire command.

Listing 4-43. Initializing the Tripwire Database

puppy# /usr/sbin/tripwire --init

Please enter your local passphrase:

Parsing policy file: /etc/tripwire/tw.pol

Generating the database...

*** Processing Unix File System ***

Wrote database file: /var/lib/tripwire/puppy.yourdomain.com.twd

The database was successfully generated.

4444c04_final.qxd 1/5/05 12:46 AM Page 225

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS226

The --init option initializes your Tripwire database, and you will be prompted to
enter your local key passphrase to continue. The tripwire binary then parses the /etc/
tripwire/tw.pol file and creates a baseline state for all the objects on your system you
want to monitor. In Listing 4-43 this baseline is stored in the database file /var/lib/
tripwire/puppy.yourdomain.com.twd. You can set the location of your Tripwire database
in the Tripwire global variables, as shown in Listing 4-44.

Now that you have your database, you can run your first check using the tripwire binary.

Listing 4-44. Tripwire Integrity Check

puppy# /usr/sbin/tripwire --check

Parsing policy file: /etc/tripwire/tw.pol

*** Processing Unix File System ***

Performing integrity check...

...

Wrote report file: /var/lib/tripwire/report/puppy.yourdomain.com-20040926-172711.twr

The Tripwire integrity check will display the results of the check to the screen and save it
as a Tripwire report file. In Listing 4-44 the report was saved as /var/lib/tripwire/report/
puppy.yourdomain.com-20040926-172711.twr. Each report filename contains the date and time
it was run. Like the Tripwire database location, you can override this location in the twcfg.txt
file.

■Tip You should schedule Tripwire to run regularly using a cron job. If you have installed Tripwire from
a Red Hat RPM, then it will also have installed a cron job to run a daily Tripwire check.

You can view the results of each Tripwire report using the twprint command. Listing 4-45
prints the report you generated.

Listing 4-45. Printing Reports with twprint

puppy# twprint --print-report --twrfile

/var/lib/tripwire/report/puppy.yourdomain.com20040926-172711.twr

Note: Report is not encrypted.

Tripwire(R) 2.3.0 Integrity Check Report

Report Summary:

Host name: puppy.yourdomain.com

Host IP address: 127.0.0.1

Host ID: None

Policy file used: /etc/tripwire/tw.pol

Configuration file used: /etc/tripwire/tw.cfg

Database file used: /var/lib/tripwire/puppy.yourdomain.com.twd

Command line used: /usr/sbin/tripwire --check

...

4444c04_final.qxd 1/5/05 12:46 AM Page 226

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 227

Total objects scanned: 45606

Total violations found: 1

...

Rule Name: Tripwire Data Files (/var/lib/tripwire)

Severity Level: 100

...

Modified Objects: 1

Modified object name: /var/lib/tripwire/puppy.yourdomain.com.twd

Property: Expected Observed

* Mode -rw-r--r-- -rwxr-xr-x

■Tip You may want to run the twprint command through the more or less commands to display it more
effectively.

The --print-report option prints the report specified by the --twrfile option. In
Listing 4-45 you can also see an abbreviated extract of the Tripwire report. I have removed
some of the output of the Tripwire report but have kept the key sections: the summary of the
parameters used, the total objects scanned, and the violations recorded. Only one violation
is recorded, a modification of the puppy.yourdomain.com.twd file located in the /var/lib/
tripwire directory. You can see that the permissions of this file have been modified from
-rw-r--r-- to -rwxr-xr-x. The report displays the rule name, Tripwire Data Files, for the
rule covering the /var/lib/tripwire directory and the severity level of 100.

You can also use the twprint command to display a Tripwire database entry for a file or
object on your system. Listing 4-46 demonstrates this.

Listing 4-46. Printing Tripwire Database Entry

puppy# twprint --print-dbfile /etc/passwd

Object name: /etc/passwd

Property: Value:

------------- -----------

Object Type Regular File

Device Number 770

Inode Number 607017

Mode -rw-r--r--

Num Links 1

UID root (0)

GID root (0)

I have displayed the database entry for the file /etc/passwd using the --print-dbfile
option. If you use twprint --print-dbfile without an individual file specified, it will output
the entire contents of the Tripwire database.

If you find violations in your report, you should first check if these are normal occur-
rences. During normal operations some files may change, be added to, or be removed from

4444c04_final.qxd 1/5/05 12:46 AM Page 227

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS228

your system. You can adjust your Tripwire policy to reflect these normal changes using the
tripwire command with the -update option. This option allows you to read in a report file,
indicate which violations are in fact normal operational changes, and update the Tripwire
policy to prevent it being triggered by these again. Listing 4-47 demonstrates this.

■Note Of course, some changes may not be normal operational changes; you should always investigate
any and all violations in your Tripwire reports.

Listing 4-47. Updating Tripwire Policy

puppy# /usr/sbin/tripwire --update \

--twrfile /var/lib/tripwire/report/puppy.yourdomain.com20040926-172711.twr

Listing 4-47 will launch a special editor window that contains the Tripwire report file
specified by the --twrfile option. Inside the editor window you can use the standard vi com-
mands to move around and edit. For each violation detailed in the report, you have the option
to either update the database with the new change or not update it. If you update the change
in the Tripwire database, then it will no longer register as a violation when you run integrity
checks. Listing 4-48 demonstrates this.

Listing 4-48. Tripwire Database Updates

Rule Name: Tripwire Data Files (/var/lib/tripwire)

Severity Level: 100

Remove the "x" from the adjacent box to prevent updating the database

with the new values for this object.

Modified:

[x] "/var/lib/tripwire/puppy.yourdomain.com.twd"

To update the Tripwire database with the new change, leave the x next to each violation.
If you do not want to update the database with the new change, delete the x from the brackets,
[]. As Tripwire will update the database by default with all the new changes, you should go
through each violation to make sure you actually want Tripwire to update the database with
the change. When you have updated the file with all the changes you want to make, use the vi
command, :wq, to exit the editor window. You will be prompted to enter the local site password.

Please enter your local passphrase:

Wrote database file: /var/lib/tripwire/puppy.yourdomain.com.twd

After entering the password, your database will be updated with the new changes.
You can also make changes to the policy file and update the Tripwire database with the new

policy. For this you need a copy of the current policy. You can output a copy of the current policy
file using the twadmin command.

puppy# twadmin --print-polfile > /etc/tripwire/twpol.txt

4444c04_final.qxd 1/5/05 12:46 AM Page 228

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 229

■Tip The twadmin command also has other options that can help you administer Tripwire. See the
twadmin man file.

You can then edit your policy file to add or remove rules. Once you have finished your
editing, you need to use the tripwire command with the --update-policy option to update
your policy file.

puppy# /usr/sbin/tripwire --update-policy /etc/tripwire/twpol.txt

Please enter your local passphrase:

Please enter your site passphrase:

======== Policy Update: Processing section Unix File System.

======== Step 1: Gathering information for the new policy.

======== Step 2: Updating the database with new objects.

======== Step 3: Pruning unneeded objects from the database.

Wrote policy file: /etc/tripwire/tw.pol

Wrote database file: /var/lib/tripwire/puppy.yourdomain.com.twd

You will be prompted for your local and site passphrases; when the process is completed,
your Tripwire database will be updated with your new policy. You then need to either encrypt
or delete your plain-text twpol.txt file to protect it.

Network File System (NFS)
Sun designed the Network File System (NFS) protocol in the mid-1980s to provide remote net-
work share functionality to Unix systems. Much like Microsoft Windows’ file system sharing, it
uses a client-server model, with a system hosting the shared data and “sharing” it with a series
of clients who can connect to the shared file system. NFS describes this process as “exporting”
a file system, and the remote clients connecting to the exported file system are “importing.”
The NFS protocol runs over either TCP or UDP and uses Sun’s Remote Procedure Call (RPC)
protocol to communicate with and authenticate clients.

NFS is vulnerable to three major forms of attack: eavesdropping, penetration, and substitu-
tion. The eavesdropping vulnerability appears because NFS broadcasts its information across the
network, potentially allowing an attacker to listen in or sniff that data as it crosses the network.
The penetration vulnerability appears because of the potential for an attacker to compromise and
penetrate the NFS file system and thus gain unauthorized access to the data. A substitution attack
occurs when an attacker intervenes in the NFS data transmission process to change or delete
information traveling across the network.

My recommendation with NFS is simply to not use it. In the past, NFS has proven vulner-
able to a variety of types of attack, its vulnerabilities are common, it is technically and opera-
tionally complicated to secure (or encrypt) NFS data, and the authentication of remote users
to NFS file systems lacks the resiliency required to share files in a production environment.

4444c04_final.qxd 1/5/05 12:46 AM Page 229

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS230

■Note A new version of NFS has been proposed. NFS 4 proposes considerably stronger security, including
strong authentication and encryption. You can read about it at http://www.nfsv4.org/. At this stage,
though, it is still in RFC form and not ready for deployment.

If you decide to use NFS (and I really think you should not!), I recommend you mitigate
the risk as much as possible by following these guidelines:

• Keep your version of NFS and its associated applications such as portmap or rpcbind
up-to-date and ensure you install any NFS-related security patches.

• Export file systems only to those hosts you need. Restrict your file systems to only
those hosts and users who need them. Do not publicly export file systems.

• Install NFS file systems on different hard disks or partitions other than your other file
systems.

• If possible, export your file systems as read-only to help reduce the risk attackers
could manipulate or delete your data.

• Disable setuid files on your NFS file systems using the nosuid option in the
/etc/fstab file.

• If possible, use SSH to tunnel NFS traffic.

• Block the NFS TCP and UDP ports 2049 and 111 from any of your Internet-facing
hosts or any hosts or networks that you do not trust or are unsure whether they are
secure.

■Tip A couple of tools are available to you that can help monitor and secure NFS. The first is nfsbug,12

which checks NFS installations for bugs and security holes. It is a little dated these days but still offers
some insights. Also available is the nfswatch13 command, which can be used to monitor NFS traffic on
your network.

12. Available from http://ftp.nluug.nl/security/coast/sysutils/nfsbug/

13. Available from http://ftp.rge.com/pub/networking/nfswatch/

4444c04_final.qxd 1/5/05 12:46 AM Page 230

CHAPTER 4 ■ SECURING FILES AND FILE SYSTEMS 231

Resources
The following are some resources for you to use.

Mailing Lists
• dm_crypt: Send empty e-mail to: dm-crypt-subscribe@saout.de

• Tripwire: http://sourceforge.net/mail/?group_id=3130

Sites
• Adeos: http://linux.wku.edu/~lamonml/software/adeos/

• dm_crypt: http://www.saout.de/misc/dm-crypt/

• dm_crypt wiki: http://www.saout.de/tikiwiki/tiki-index.php

• NFS: http://nfs.sourceforge.net/

• NFS 4: http://www.nfsv4.org/

• sXid: http://linux.cudeso.be/linuxdoc/sxid.php

• Tripwire: http://www.tripwire.org/

Sites About ACLs
• Red Hat Enterprise Linux and ACLs: http://www.redhat.com/docs/manuals/

enterprise/RHEL-3-Manual/sysadmin-guide/ch-acls.html

• Linux ACLs: http://www.vanemery.com/Linux/ACL/linux-acl.html

• Debian ACLs: http://acl.bestbits.at/

4444c04_final.qxd 1/5/05 12:46 AM Page 231

233

C H A P T E R 5

■ ■ ■

Understanding Logging and
Log Monitoring

One of the key facets of maintaining a secure and hardened environment is knowing what
is going on in that environment. You can achieve this through your careful and systematic use
of logs. Most systems and most applications, such as Apache or Postfix, come with default log-
ging options. This is usually enough for you to diagnose problems or determine the ongoing
operational status of your system and applications. When it comes to security, you need to
delve a bit deeper into the logging world to gain a fuller and clearer understanding of what is
going on with your systems and applications and thus identify potential threats and attacks.

Logs are also key targets for someone who wants to penetrate your system—for two rea-
sons. The first reason is that your logs often contain vital clues about your systems and their
security. Attackers often target your logs in an attempt to discover more about your systems.
As a result, you need to ensure your log files and /var/log directory are secure from intruders
and that log files are available only to authorized users. Additionally, if you transmit your logs
over your network to a centralized log server, you need to ensure no one can intercept or divert
your logs.

The second reason is that if attackers do penetrate your systems, the last thing they want
to happen is that you detect them and shut them out of your system. One of the easiest ways
to prevent you from seeing their activities is to whitewash your logs so that you see only what
you expect to see. Early detection of intrusion using log monitoring and analysis allows you to
spot them before they blind you.

I will cover a few topics in this chapter, including the basic syslog daemon and one of its
successors, the considerably more powerful and more secure syslog-NG. I will also cover the
Simple Event Correlation (SEC) tool, which can assist you in highlighting events in your logs.
I will also discuss logging to databases and secure ways to deliver your logs to a centralized
location for review and analysis.

Syslog
Syslog is the ubiquitous Unix tool for logging. It is present on all flavors of Linux and indeed
on almost all flavors of Unix. You can add it using third-party tools to Windows systems, and
most network devices such as firewalls, routers, and switches are capable of generating Syslog
messages. This results in the Syslog format being the closest thing to a universal logging stan-
dard that exists.

4444c05_final.qxd 1/5/05 12:52 AM Page 233

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING234

Figure 5-1. Remote syslogd logging

■Tip RFC 3164 documents the core Syslog functionality.1

I will cover the Syslog tool because not only is it present on all distributions of Linux, but
it also lays down the groundwork for understanding how logging works on Linux systems. The
syslog utility is designed to generate, process, and store meaningful event notification messages
that provide the information required for administrators to manage their systems. Syslog is both
a series of programs and libraries, including syslogd, the syslog daemon, and a communica-
tions protocol.

The most frequently used component of syslog is the syslogd daemon. This daemon runs
on your system from startup and listens for messages from your operating system and applica-
tions. It is important to note that the syslogd daemon is a passive tool. It merely waits for input
from devices or programs. It does not go out and actively gather messages.

■Note Syslog also uses another daemon, klogd. The Kernel Log Daemon specifically collects messages
from the kernel. This daemon is present on all Linux systems and starts by default when your system starts.
I will talk about that in some more detail in the “syslog-NG” section.

The next major portion of the syslog tools is the syslog communications protocol. With
this protocol it is possible to send your log data across a network to a remote system where
another syslog daemon can collect and centralize your logs. As presented in Figure 5-1, you
can see how this is done.

1. See http://www.faqs.org/rfcs/rfc3164.html. Also, some interesting work is happening on a new RFC
for Syslog; you can find it at http://www.syslog.cc/ietf/protocol.html.

But my recommendation, though, is that if you have more than one system and either
have or want to introduce a centralized logging regime, then do not use syslog. I make this

4444c05_final.qxd 1/5/05 12:52 AM Page 234

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 235

recommendation as a result of syslog’s reliance on the User Datagram Protocol (UDP) to
transmit information. UDP has three major limitations.

• On a congested network, packets are frequently lost.

• The protocol is not fully secure.

• You are open to replay and Denial of Service (DoS) attacks.

If you are serious about secure logging, I recommend the syslog-NG package, which I will
discuss later in the “syslog-NG” section.

The syslog communications protocol allows you to send syslog messages across your
network via UDP to a centralized log server running syslogd. The syslogd daemon usually
starts by default when your system boots. It is configured to collect a great deal of information
about the ongoing activities of your system “out of the box.”

■Tip Syslog traffic is usually transmitted via UDP on port 514.

Configuring Syslog
The syslog daemon is controlled by a configuration file located in /etc called syslog.conf.
This file contains the information about what devices and programs syslogd is listening for
(filtered by facility and priority), where that information is to be stored, or what actions are
to be taken when that information is received. You can see in Listing 5-1 that each line is
structured into two fields, a selector field and an action field, which are separated by spaces
or a tab.

Listing 5-1. syslog.conf Syntax

mail.info /var/log/maillog

This example shows a facility and priority selector, mail.info, together with the action
/var/log/maillog. The facility represented here is mail, and the priority is info. Overall the
line in Listing 5-1 indicates that all messages generated by the mail facility with a priority of
info or higher will be logged to the file /var/log/maillog. Let’s examine now what facilities,
priorities, and actions are available to you on a Linux system.

Facilities
The facility identifies the source of the syslog message. Some operating-system functions and
daemons and other common application daemons have standard facilities attached to them.
The mail and kern facilities are two good examples. The first example is the facility for all mail-
related event notification messages. The second example is the facility for all kernel-related
messages. Other processes and daemons that do not have a prespecified facility are able to log
to the local facilities, ranging from local0 to local7. For example, I use local4 as the facility
for all messages on my Cisco devices. Table 5-1 lists all Syslog facilities.

4444c05_final.qxd 1/5/05 12:52 AM Page 235

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING236

Table 5-1. Syslog Facilities on Linux

Facility Purpose

auth Security-related messages

auth-priv Access control messages

cron cron-related messages

daemon System daemons and process messages

kern Kernel messages

local0–local7 Reserved for locally defined messages

lpr Spooling subsystem messages

mail Mail-related messages

mark Time-stamped messages generated by syslogd

news Network News–related messages (for example, Usenet)

syslog Syslog-related messages

user The default facility when no facility is specified

uucp UUCP-related messages

■Tip On Mandrake and Red Hat systems local7 points at /var/log/boot.log, which contains all the
messages generated during the boot of your system.

The mark facility is a special case. It is used by the time-stamped messages that syslogd gen-
erates when you use the -m (minutes) flag. You can find more on this in the “Starting syslogd and
Its Options” section.

You have two special facilities: *, which indicates all facilities, and none, which negates
a facility selection. As shown in the following example, you can use these two facilities as
wildcard selectors. See Listing 5-2.

Listing 5-2. syslog.conf *Wildcard Selector

*.emerg /dev/console

This will send all messages of the emerg priority, regardless of facility, to the console. You
can also use the none wildcard selector to not select messages from a particular facility.

kern.none /var/log/messages

This will tell syslog to not log any kernel messages to the file /var/log/messages.

Priorities
Priorities are organized in an escalating scale of importance. They are debug, info, notice,
warning, err, crit, alert, and emerg. Each priority selector applies to the priority stated and all
higher priorities, so uucp.err indicates all uucp facility messages of err, crit, alert, and emerg
priorities.

4444c05_final.qxd 1/5/05 12:52 AM Page 236

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 237

As with facilities, you can use the wildcard selectors * and none. Additionally, you can use
two other modifiers: = and !. The = modifier indicates that only one priority is selected; for
example, cron.=crit indicates that only cron facility messages of crit priority are to be selected.
The ! modifier has a negative effect; for example, cron.!crit selects all cron facility messages
except those of crit or higher priority. You can also combine the two modifiers to create the
opposite effect of the = modifier so that cron.!=crit selects all cron facility messages except
those of crit priority. Only one priority and one priority wildcard can be listed per selector.

Actions
Actions tell the syslogd what to do with the event notification messages it receives. Listing 5-3
lists the four actions syslogd can take, including logging to a file, device file, named pipes (fifos)
and the console or a user’s screen. In Listing 5-2 you saw device logging at work with all the
emerg messages on the system being sent to the console.

Listing 5-3. File, Device, and Named Pipe Actions

cron.err /var/log/cron

auth.!=emerg /dev/lpr3

auth-priv root,bob

news.=notice |/var/log/newspipe

In the first line all cron messages of err priority and higher are logged to the file
/var/log/cron. The second line has all auth messages except those of emerg priority being
sent to a local printer lpr3. The third line sends all auth-priv messages to the users root
and bob if they are logged in. The fourth sends all news messages of notice or greater prior-
ity to a named pipe called /var/log/newspipe (you would need to create this pipe yourself
with the mkfifo command).

■Caution When logging to files, syslogd allows you to add a hyphen (-) to the front of the filename like
this: -/var/log/auth. This tells syslog to not sync the file after writing to it. This is designed to speed up
the process of writing to the log. But it can also mean that if your system crashes between write attempts,
you will lose data. Unless your logging system is suffering from performance issues, I recommend you do
not use this option.

You can also log to a remote system (see Listing 5-4).

Listing 5-4. Logging to a Remote System

mail @puppy.yourdomain.com

In this example all mail messages are sent to the host puppy.yourdomain.com on UDP port
514. This requires that the syslogd daemon on puppy is started with the -r option; otherwise,
the syslogd port will not be open.

4444c05_final.qxd 1/5/05 12:52 AM Page 237

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING238

■Caution Opening syslogd to your network is a dangerous thing. The syslogd daemon is not selective
about where it receives messages from. There are no access controls, and any system on your network can
log to the syslogd port. This opens your machine to the risk of a DoS attack or of a rogue program flooding
your system with messages and using all the space in your log partition. I will briefly discuss some methods
by which you can reduce the risk to your system, but if you are serious about remote logging I recommend
you look at the “syslog-NG” section. I will also discuss secure logging using the syslog-NG tool in conjunc-
tion with Stunnel in the “Secure Logging with syslog-NG” section.

Combining Multiple Selectors
You can also combine multiple selectors in your syslog.conf file, allowing for more sophisti-
cated selections and filtering. For example, you can list multiple facilities separated by com-
mas in a selector. See Listing 5-5.

Listing 5-5. Multiple Facilities

auth,auth-priv.crit /var/log/auth

This sends all auth messages and all auth-priv messages with a priority of crit or higher
to the file /var/log/auth.

You cannot do this with priorities, though. If want to list multiple priorities, you need to
list multiple selectors separated by semicolons, as shown in Listing 5-6.

Listing 5-6. Multiple Priorities

auth;auth-priv.debug;auth-priv.!=emerg /var/log/auth

This example shows you how to send all auth messages and all auth-priv messages with a pri-
ority of debug or higher, excluding auth-priv messages of emerg priority to the file /var/log/auth.

■Tip Just remember with multiple selectors that filtering works from left to right; syslogd will process
the line starting from the selectors on the left and moving to the right of each succeeding selector. With this
in mind, place the broader filters at the left, and narrow the filtering criteria as you move to the right.

You can also use multiple lines to send messages to more than one location, as shown in
Listing 5-7.

Listing 5-7. Logging to Multiple Places

auth /var/log/auth

auth.crit bob

auth.emerg /dev/console

4444c05_final.qxd 1/5/05 12:52 AM Page 238

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 239

Here all auth messages are logged to /var/log/auth as previously, but auth messages of
crit or higher priority are also sent to user bob, if he is logged in. Those of emerg priority are
also sent to the console.

Starting syslogd and Its Options
The syslogd daemon and its sister process, the klogd daemon, are both started when your sys-
tem boots up. This is usually in the form of an init script; for example, on Red Hat the syslog
script in /etc/rc.d/init.d/ starts syslogd and klogd. You can pass a number of options to the
syslogd program when it starts.

■Tip On most Red Hat and Mandrake systems the syslog file in /etc/sysconfig/ is referenced by the
syslog init script and contains the options to be passed to syslogd and klogd when it starts.

The first option you will look at is the debug option (see Listing 5-8).

Listing 5-8. Running syslogd with Debug

puppy# syslogd -d

This will start syslogd and prevent it from forking to the background. It will display a large
amount of debugging information to the current screen (you will probably want to pipe it into
more to make it easier to read). A lot of the information the debug option displays is not useful
to the everyday user, but it will tell you if your syslog.conf file has any syntax errors, which is
something that becomes useful if your file grows considerably.

The next option you will look at tells syslogd where to find the syslog.conf file. By default
syslogd will look for /etc/syslog.conf, but you can override this (see Listing 5-9).

Listing 5-9. Starting syslogd with a Different Config File

puppy# syslogd -f /etc/puppylog.conf

In this example syslogd would look for /etc/puppylog.conf. If this file does not exist, then
syslogd will terminate. This is useful for testing a new syslog.conf file without overwriting the
old one.

I discussed earlier mark facility messages. These are time stamps that are generated at
specified intervals in your logs that look something like this:

Feb 24 21:46:05 puppy -- MARK -

They are useful, amongst other reasons, for acting as markers for programs parsing your
log files. These time stamps are generated using the -m mins option when you start syslogd. To
generate a mark message every ten minutes, you would start syslogd as shown in Listing 5-10.

Listing 5-10. Generating mark Messages

puppy# syslogd -m 10

4444c05_final.qxd 1/5/05 12:52 AM Page 239

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING240

Remember that mark is a facility in its own right, and you can direct its output to a partic-
ular file or destination (see Listing 5-11).

Listing 5-11. Using the mark Facility

mark /var/log/messages

In Listing 5-11 all mark facility messages will be directed to /var/log/messages. By default
most syslogd daemons start with the -m option set to 0.

Often when you set up a chroot environment, the application in the jail is unable to log to
syslog because of the restrictive nature of the chroot jail. In this instance, you can create an addi-
tional log socket inside the chroot jail and use the -a option when you start syslogd to allow sys-
log to listen to it. You will see how this works in more detail in Chapter 11 when I show how to set
up a BIND daemon in a chroot jail. See Listing 5-12.

Listing 5-12. Listening to Additional Sockets

puppy# syslogd -a /chroot/named/dev/log -a /chroot/apache/dev/log

Here the syslogd daemon is listening to two additional sockets: one in /chroot/named/
dev/log and the other in /chroot/apache/dev/log.

Lastly you will look at the -r option, which allows syslogd to receive messages from
external sources on UDP port 514. See Listing 5-13.

Listing 5-13. Enabling Remote Logging

puppy# syslogd -r

By default most syslogd daemons start without -r enabled, and you will have to specifi-
cally enable this option to get syslogd to listen.

■Tip If you enable the -r option, you will need to punch a hole in your firewall to allow remote syslogd
daemons to connect to your system.

If you are going to use syslogd for remote logging, then you have a couple of ways to make
your installation more secure. The most obvious threat to syslogd daemons are DoS attacks in
which your system is flooded with messages that could completely fill your disks. If your logs are
located in the root partition, your system can potentially crash. To reduce the risk of this poten-
tial crash, I recommend you store your logs on a nonroot partition. This means that even if all
the space on your disk is consumed, the system will not crash. The second way to secure your
syslogd for remote logging is to ensure your firewall rules allow connections only from those
systems that will be sending their logging data to you. Do not open your syslog daemon to all
incoming traffic!

4444c05_final.qxd 1/5/05 12:52 AM Page 240

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 241

syslog-NG
Syslog and syslogd are useful tools; however, not only are they dated, but they also have limi-
tations in the areas of reliability and security that do not make them the ideal tools to use in
a hardened environment. A worthy successor to syslog is syslog-NG. Developed to overcome
the limitations of syslog, it represents a “new-generation” look at logging with an emphasis on
availability and flexibility and considerably more regard for security.

Additionally, syslog-NG allows for more sophisticated message filtering, manipulation,
and interaction. syslog-NG is freeware developed by Balazs Scheidler and is available from
http://www.balabit.com/products/syslog_ng/.

■Note syslog-NG goes through a lot of active development, and new features are added all the time. With
the active development cycle of the product, sometimes the documentation becomes out-of-date. If you want
to keep up with all the activity and need help for something that is not explained in the documentation, then
I recommend you subscribe to the syslog-NG mailing list at https://lists.balabit.hu/mailman/
listinfo/syslog-ng. syslog-NG’s author, Balazs Scheidler, is a regular and helpful participant on the list.
As a result of this busy development cycle, I also recommend you use the most recent stable release of
libol and syslog-NG to get the most out of the package.

The following sections cover installing and compiling syslog-NG and then configuring it
as a replacement for syslog. I will also cover configuring syslog-NG to allow you to store and
query log messages in a database. Finally, I will cover secure syslog-NG logging in a distrib-
uted environment.

Installing and Configuring syslog-NG
Download syslog-NG and libol (an additional library required for installing syslog-NG) from
http://www.balabit.com/products/syslog_ng/upgrades.bbq. You will need to build libol first.
So unpack the tar file, and compile the libol package.

puppy# ./configure && make && make install

■Tip If you do not want to install libol, you can omit the make install command, and when you configure
syslog-NG, you need to tell it where to find libol using ./configure --with-libol=/path/to/libol.

Now unpack syslog-NG, enter the syslog-NG directory, and configure the package.

puppy# ./configure

4444c05_final.qxd 1/5/05 12:52 AM Page 241

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING242

2. I tested it on Mandrake 9.2, SuSE 9, and Debian 3, in addition to Red Hat Enterprise 3, Red Hat 8.0,
Red Hat 9.0, and Fedora Core 1, and it logged without issues.

By default syslog-NG is installed to /usr/local/sbin, but you can override this by entering
the following:

puppy# ./configure --prefix=/new/directory/here

Also by default syslog-NG looks for its conf file in /usr/local/etc/syslog-ng.conf. You
can override this also. I recommend using /etc/syslog-ng.

puppy# ./configure --sysconfdir=/etc/syslog-ng

Then make and install syslog-NG.

puppy# make && make install

This will create a binary called syslog-ng and install it either to the /usr/local/sbin/
directory or to whatever directory you have specified if you have overridden it with the prefix
option.

The contrib Directory
Within the syslog-NG package comes a few other useful items. In the contrib directory is
a collection of init scripts for a variety of systems including Red Hat and SuSE. These can be
easily adapted to suit your particular distribution. Also in the contrib directory is an awk script
called syslog2ng, which converts syslog.conf files to syslog-ng.conf files. See Listing 5-14.

Listing 5-14. Using the syslog2ng Script

puppy# ./syslog2ng < /etc/syslog.conf > syslog-ng.conf

This will convert the contents of your syslog.conf file into the file called syslog-ng.conf.
This is especially useful if you have done a lot of work customizing your syslog.conf file.

Lastly, in the contrib directory are several sample syslog-ng.conf files, including syslog-
ng.conf.RedHat, which provides a syslog-NG configuration that replicates the default syslog.conf
file on a Red Hat system. (Note that it assumes you have disabled the klogd daemon and are using
syslog-ng for kernel logging as well.) This file should also work on most Linux distributions.2

Also, among the sample syslog-ng.conf files is syslog-ng.conf.doc, which is an annotated
configuration file with the manual entries for each option and function embedded next to
that option or function.

Running and Configuring syslog-NG
As mentioned previously, syslog-NG comes with a number of sample init scripts that you
should be able to adapt for your system. Use one of these scripts, and set syslog-NG to start
when you boot up. As shown in Table 5-2. the syslog-ng daemon has some command-line
options.

4444c05_final.qxd 1/5/05 12:52 AM Page 242

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 243

Table 5-2. syslog-ng Command-Line Options

Flag Purpose

-d Enables debug.

-v Verbose mode (syslog-ng will not daemonize).

-s Do not start; just parse the conf file for incorrect syntax.

-f /path/to/conf/file Tells syslog-ng where the configuration file is located.

The first two flags, -d and -v, are useful to debug the syslog-ng daemon. In the case of
the -v flag, syslog-ng will start and output its logging messages to the screen and will not
fork into the background. The -d flag adds some debugging messages. The next flag, -s, does
not start syslog-NG but merely parses through the syslog-ng.conf file and checks for errors.
If it finds any errors, it will dump those to the screen and exit. If it exits without an error, then
your syslog-ng.conf has perfect syntax!

But do not start up syslog-NG yet. You need to create or modify a configuration file first. The
syslog-ng.conf contains considerably more options than the syslog.conf file, which is represen-
tative of the increased functionality and flexibility characteristic of the syslog-NG product. As such,
setting up the configuration file can be a little bit daunting initially. I recommend you use the sys-
log-ng.conf sample file. When it starts, syslog-NG looks for /usr/local/etc/syslog-ng.conf as the
default conf file unless you overrode that as part of the ./configure process. I recommend you cre-
ate your configuration file in /etc/syslog-ng.

Every time you change your syslog-ng.conf file, you need to restart the syslog-ng dae-
mon. Use the provided init script to do this, and use the reload option. For example, on
a Red Hat system, enter the following:

puppy# /etc/rc.d/init.d/syslog-ng reload

Let’s start configuring syslog-NG by looking at a simple configuration file. Listing 5-15
shows a sample syslog-ng.conf file that collects messages from the device /dev/log, selects
all the messages from the mail facility, and writes them to the console device.

Listing 5-15. A Sample syslog-ng.conf File

options { sync (0); };

source s_sys { unix-dgram ("/dev/log"); };

destination d_console { file("/dev/console"); };

filter f_mail { facility(mail); };

log { source(s_sys); filter(f_mail); destination(d_console); };

Listing 5-15 is a functioning (if limited) syslog-NG configuration. It may look intimidating
at first, but it is actually a simple configuration model when you break it down. The key line in
this example is the last one, the log{} line. The log{} line combines three other types of state-
ments: a source statement to tell syslog-NG where to get the messages from; a filter statement
to allow you to select messages from within that source according to criteria, such as their

4444c05_final.qxd 1/5/05 12:52 AM Page 243

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING244

facility or priority; and finally a destination statement to tell syslog-NG where to write the
messages to, such as a file or a device. The options{} statement allows you to configure some
global options for syslog-NG.

Let’s take you through the basics of configuring syslog-NG by running through each of the
statement blocks available to you. The syslog-ng.conf file uses five key statement blocks (see
Table 5-3).

Table 5-3. syslog-ng.conf Statement Blocks

Directive Purpose

options{} Global options to be set

source{} Statements defining where messages are coming from

destination{} Statements defining where messages are sent or stored

filter{} Filtering statements

log{} Statements combining source, destination, and filter statements that do the
actual logging

Each statement block contains additional settings separated by semicolons. You can see
that I have used all these statements in Listing 5-15.

options{}
These are global options that tell syslog-NG what to do on an overall basis. The options them-
selves consist of their name and then their value enclosed in parentheses and terminated with
a semicolon. As shown in Listing 5-16, these options control functions such as the creation of
directories and the use of DNS to resolve hostnames, and they provide control over the
process of writing data to the disk.

Listing 5-16. A Sample syslog-ng options{} Statement

options {

sync(0);

time_reopen(10);

use_dns(yes);

use_fqdn(no);

create_dirs(no);

keep_hostname(yes);

chain_hostnames(no);

};

Quite a number of options are available to you. In this section I will cover the key options.
Probably the most confusing options to new users of syslog-NG are those associated with
hostnames. I recommend two key options in this area that every user should put in the
syslog-ng.conf file. They are keep_hostname(yes | no) and chain_hostnames(yes | no).

4444c05_final.qxd 1/5/05 12:52 AM Page 244

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 245

■Tip The syslog-NG documentation also refers to long_hostnames(). This is an alias for
chain_hostnames() and is identical in function.

When syslog-NG receives messages, it does not automatically trust that the hostname pro-
vided to it by a message is actually the hostname of the system on which the message originated.
As a result, syslog-NG tries to resolve the hostname of the system that generated the messages.
If the resolved hostname is different, it attempts to rewrite the hostname in the message to the
hostname it has resolved. This behavior occurs because by default the keep_hostname() option is
set to no. If keep_hostname(yes) is set (as it is in Listing 5-16), then this prevents syslog-NG from
rewriting the hostname in the message.

So where does the chain_hostnames() option come into all this? Well, it works in conjunction
with keep_hostname(). If keep_hostname() is set to no, then it checks whether chain_hostnames() is
set to yes. If chain_hostnames() is set to yes, then syslog-NG appends the name of the host that
syslog-NG received the message from to the resolved hostname. So, for example, if the hostname
in the message is puppy but the hostname that syslog-NG has resolved the IP address to is puppy2,
then the message will change from this:

Jul 14 16:29:36 puppy su(pam_unix)[2979]: session closed for user bob

to the following:

Jul 14 16:29:36 puppy/pupp2 su(pam_unix)[2979]: session closed for user bob

If chain_hostnames() is set to no, then syslog-NG simply replaces the hostname with
a resolved hostname.

This can be a little confusing, so I will now illustrate it with another example. In Table 5-4
you have a message that has a hostname of server. When syslog-NG resolves this hostname,
DNS tells it that the real hostname of the system is server2. The table shows the resulting host-
name that will be displayed in the message with all possible combinations of the options.

Table 5-4. chain_hostnames() and keep_hostname() Interaction

Option Setting keep_hostname(yes) keep_hostname(no)

chain_hostnames(yes) server server/server2

chain_hostnames(no) server server2

■Tip By default chain_hostnames() is set to yes, and keep_hostname() is set to no.

Also related to hostnames are use_dns() and use_fqdn(). The use_dns() option allows you
to turn off DNS resolution for syslog-NG. By default it is set to yes. The use_fqdn() option spec-
ifies whether syslog-NG will use fully qualified domain names. If use_fqdn() is set to yes, then
all hosts will be displayed with their fully qualified domain names; for example, puppy would be
puppy.yourdomain.com. By default use_fqdn() is set to no.

4444c05_final.qxd 1/5/05 12:52 AM Page 245

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING246

You have a whole set of options available that deal with the creation of directories and
files (see Table 5-5). They control ownership, permissions, and whether syslog-ng will create
new directories.

Table 5-5. File and Directory Options

Option Purpose

owner(userid) The owner of any file syslog-ng creates

group(groupid) The group of any file syslog-ng creates

perm(permissions) The permission of any file syslog-ng creates

create_dirs(yes | no) Whether syslog-ng is allowed to create directories to store log files

dir_owner(userid) The owner of any directory syslog-ng creates

dir_group(groupid) The group of any directory syslog-ng creates

dir_perm(permissions) The permission of any directory syslog-ng creates

A few additional options could be useful for you. They are sync(seconds), stats(seconds),
time_reopen(seconds), and use_time_recvd(). The sync() option tells syslog-NG how many
messages to buffer before it writes to disk. It defaults to 0. The stats(seconds) option provides
you with regular statistics detailing the number of messages dropped.

■Note Messages are dropped, for example, if syslog-NG reaches the maximum available number of
connections on a network source (as defined with the maxconnections() option). The stats option will
record how many messages were dropped.

The seconds variable in the option indicates the number of seconds between each stats
message being generated. In the time_reopen(seconds) option, seconds is the amount of time
that syslog-NG waits before retrying a dead connection. This currently defaults to 60 seconds,
but you may want to reduce this. I have found around ten seconds is a sufficient pause for
syslog-NG. The last option you will look at is use_time_recvd(). When this option is set to yes,
then the time on the message sent is overridden with the time the message is received by
syslog-NG on the system. The default for this setting is no. The use_time_recvd() option is
important to consider when you use the destination{} file-expansion macros that I will dis-
cuss in the “destination{}” section.

source{}
Your source statements are the key to telling syslog-NG where its message inputs are coming
from. You can see an example of a source{} statement in Listing 5-17.

Listing 5-17. A syslog-NG source{} Statement

source s_sys { unix-stream("/dev/log" max-connections(20)); internal(); };

4444c05_final.qxd 1/5/05 12:52 AM Page 246

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 247

The source{} statement block is much like the options{} statement block in that it con-
tains different possible input sources and is terminated with a semicolon. The major differ-
ence is that the first part of each source{} statement block is its name you need to define. You
can see that in Listing 5-17 I gave s_sys as the name of the source{} statement. For these pur-
poses, you use a naming convention that allows you to easily identify each source: s_sys for
Linux system logs and syslog-NG internal logging, s_tcp for logs that come in over TCP, s_udp
for logs that come in over UDP, and s_file for file-based input sources.

Inside the source{} statement you have a number of possible input sources so that one
source statement can combine multiple messages sources; for example, the source{} state-
ment in Listing 5-17 receives both internal syslog-NG messages and standard Linux system
messages. Table 5-6 describes the sources you are most likely to use.

Table 5-6. syslog-NG Sources

Source Description

unix-stream() Opens an AF_UNIX socket using SOCK_STEAM semantics (for example, /dev/log) to
receive messages

unix-dgram() Opens an AF_UNIX socket using SOCK_DGAM semantics

tcp() Opens TCP port 514 to receive messages

udp() Opens UDP port 514 to receive messages

file() Opens a specified file and processes it for messages

pipe() Opens a named pipe

You can use both unix-stream() and unix-dgram() to connect to an AF_UNIX socket, such
as /dev/log (which is the source of most Linux system messages). You can also use it to specify
a socket file in a chroot jail, as shown in Listing 5-18.

Listing 5-18. Opening a Socket in a chroot Jail

source s_named { unix-stream("/chroot/named/dev/log"); };

Listing 5-18 shows syslog-NG opening a log socket for a named daemon inside a chroot jail.
The unix-stream() and unix-dgram() sources are similar but have some important differ-

ences. The first source, unix-steam(), opens an AF_UNIX socket using SOCK_STREAM semantics,
which are connection orientated and therefore prevent message loss. The second source, unix-
dgram(), opens an AF_UNIX socket using SOCK_DGRAM semantics, which are not connection orien-
tated and can result in messages being lost. The unix-dgram() source is also open to DoS attacks
because you are unable to restrict the number of connections made to it. With unix-stream()
you can use the max-connections() option to limit the maximum number of possible connec-
tions to the source.

■Tip You can see the max-connections() setting in the first line of Listing 5-17; it is set to 10 by
default, but on a busy system you may need to increase that maximum. If you run out of connections,
then messages from external systems will be dropped. You can use the stats option, as described in
the “options{}” section, to tell you if messages are being dropped.

4444c05_final.qxd 1/5/05 12:52 AM Page 247

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING248

As such, I recommend you use the unix-stream() source, not the unix-dgram() source.
The next types are tcp() and udp() sources.

source s_tcp { tcp(ip(192.168.0.1) port(514) max-connections(15)); };

source s_udp { udp(); };

These sources both allow syslog-NG to collect messages from external systems. As dis-
cussed during the “Syslog” section of this chapter, I do not recommend you use udp() for this
purpose. Unlike syslog, however, syslog-NG also supports message send via Transmission Con-
trol Protocol (TCP) using the tcp() source. This delivers the same functionality as UDP connec-
tions but with the benefit of TCP acknowledgments, which greatly raise the level of reliability.
The tcp() connections are also able to be secured by introducing a tool such as Stunnel. Stun-
nel encapsulates TCP traffic inside a Secure Sockets Layer (SSL) wrapper and secures the con-
nection with public-key encryption. This means attackers are not able to read your log traffic
and that you are considerably more protected from any potential DoS attacks because syslog-
NG is configured to receive only from those hosts you specify. I will discuss this capability in
the “Secure Logging with syslog-NG” section later in the chapter.

The previous tcp() source statements specify 192.168.0.1 as the IP address to which syslog-
NG should bind. This IP address is the address of a local interface, not that of the sending system.
It also specifies 514 as the port number to run on and 15 as the maximum number of simultane-
ous connections. If the max-connections() option is not set, then it defaults to 10. This is a safe-
guard against DoS attacks by preventing an unlimited number of systems from simultaneously
connecting to your syslog-NG server and overloading it. I will show how to further secure your
TCP connections in the “Secure Logging with syslog-NG” section.

The next type of source is a file() source statement. The file() is used to process special
files such as those in /proc.

source s_file { file("/proc/kmsg" log_prefix("kernel: ")); };

It is also commonly used to collect kernel messages on systems where you have replaced
klogd as well as syslogd.

■Tip This will not follow a file like the tail -f command. In the “Testing Logging with logger” section
I will explain how you can use logger to feed a growing file to the syslog-NG daemon.

It is easy to replace klogd with syslog-NG. To add kernel logging to syslog-NG, adjust your
source{} statement to include file("/proc/kmsg"). A source{} statement used to log most of
the default system messages would now look something like this:

source s_sys { file("/proc/kmsg" log_prefix("kernel: ")); ➥

unix-stream("/dev/log"); internal(); };

The log prefix option ensures all kernel messages are prefixed with "kernel: ". You need
to ensure you have stopped the klogd daemon before you enable and start syslog-NG with
kernel logging. Otherwise syslog-NG may stop, and all local logging will be disabled.

4444c05_final.qxd 1/5/05 12:52 AM Page 248

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 249

The last source is the pipe() source. This is used to open a named pipe as an input source.

source s_pipe { pipe("/var/programa"); };

This allows programs that use named pipes for their logging to be read by syslog-NG. This
source can be also used to collect system messages from /proc/kmsg.

source s_kern { pipe("/proc/kmsg"); };

destination{}
The destination{} statement block contains all the statements to tell syslog-NG where to put
its output. This output could be written to a log file, output to a program, or output to a data-
base. Listing 5-19 contains an example of a destination{} statement.

Listing 5-19. A syslog-NG destination{} Statement

destination d_mult { file("/var/log/messages"); usertty("bob"); };

The destination{} statement block is constructed like that of the source{} statement block.
I have continued in the vein of the naming convention I started in the “source{}” section and pre-
fixed the name of the destination blocks with d_ (for example, d_console).

As with source{} statements, you can combine more than one destination in a single source
statement. As you can see in Listing 5-19, the destination d_mult logs both to a file and to a ses-
sion signed on as the user bob. Various possible destinations for your messages are available.

Probably the most commonly used destination is file(), which logs message data to
a file on the system. The next line shows a file destination of /var/log/messages, which will be
owned by the root user and group and have its file permissions set to 0644.

destination d_mesg { file("/var/log/messages" owner(root) group(root) perm(0644)); };

So as you can see, the file() destination statement consists of the name of the file you
are logging to and a variety of options that control the ownership and permission of the file
itself. These are identical to the file-related permissions you can set at the global options{}
level, and the options for each individual destination override any global options specified.

In the next line, you can also see the use of the file-expansion macros:

destination d_host { file("/var/log/hosts/$HOST/$FACILITY$YEAR$MONTH$DAY"); };

File-expansion macros are useful for including data such as the hostname, facility, and
date and time in the filenames of your log files to make them easier to identify and manipu-
late. Each is placed exactly like a shell script parameter, prefixed with $. Using this example,
a cron message on the puppy system on March 1, 2005, would result in the following directory
and file structure:

/var/log/puppy/cron20050301

You can see a list of all possible file-expansion macros in Table 5-7.

4444c05_final.qxd 1/5/05 12:52 AM Page 249

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING250

Table 5-7. syslog-NG File-Expansion Macros

Macro Description

FACILITY Name of the facility from which the message is tagged as coming

PRIORITY Priority of the message

TAG Priority and facility encoded as a two-digit hexadecimal number

DATE The date of the message in the form of MMM DD HH:MM:SS

FULLDATE The date in the form of YYYY MMM DD HH:MM:SS

ISODATE The date in the form of YYYY-MM-DD HH:MM:SS TZ

YEAR Year the message was sent in the form YYYY

MONTH Month the message was sent in the form of MM

DAY Day of month the message was sent in the form of DD

WEEKDAY Three-letter name of the day of week the message was sent (for example, Mon)

HOUR Hour of day the message was sent

MIN Minute the message was sent

SEC Second the message was sent

TZOFFSET Time zone as hour offset from Greenwich mean time (for example, +1200)

TZ Time zone or name or abbreviation (for example, AEST)

FULLHOST Name of the source host from where the message originated

HOST Name of the source host from where the message originated

PROGRAM Name of the program the message was sent by

MESSAGE Message contents

The time-expansion macros, such as DATE, can either use the time that the log message
was sent or use the time the message was received by syslog-NG. This is controlled by the
use_time_recvd() option discussed in the “options{}” section.

Also using the same file-expansion macros you can invoke the template() option, which
allows you to write out data in the exact form you want to the destination. The template()
option also works with all the possible destination statements, not just file(). Listing 5-20
shows a destination statement modified to include a template.

Listing 5-20. The template() Option

destination d_host { file("/var/log/hosts/$HOST/$FACILITY$YEAR$MONTH$DAY" ➥

template("$HOUR:$MIN:$SEC $TZ $HOST [$LEVEL] $MSG $MSG\n") ➥

template_escape(no)); };

The template_escape(yes | no) option turns on or off the use of quote marks to escape
data in your messages. This is useful if the destination of the message is a SQL database, as the
escaping prevents the log data being treated by the SQL server as commands.

The pipe() destination allows the use of named pipes as a destination for message data.
This is often used to send messages to /dev/console.

destination d_cons { pipe("/dev/console"); };

4444c05_final.qxd 1/5/05 12:52 AM Page 250

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 251

Here the destination d_cons sends all messages to the /dev/console device. You will also
use the pipe() destination to send messages to the SEC log correlation tool and to a database.

Importantly for a distributed monitoring environment, it is also possible to forward messages
to another system using either TCP or UDP with the tcp() and udp() destination{} statements.

destination d_monitor { tcp("192.168.1.10" port(514)); };

You can see for the third statement of Listing 5-18 where the destination d_monitor is
a syslog server located at IP address 192.168.1.10 that listens to TCP traffic on the standard
syslog port of 514. As stated elsewhere, I do not recommend using UDP connections for your
logging traffic. You will see more of how this is used for secure logging in the “Secure Logging
with syslog-NG” section.

The usertty() destination allows you to send messages to the terminal of a specific
logged user or all logged users. In the next line, the destination d_root sends messages to
terminals logged in as the root user:

destination d_root { usertty("root"); };

You can also use the wildcard option (*) to send messages to all users.
Finally, the program() destination invokes a program as the destination. You have quite a

variety of possible uses for this, including mailing out certain messages or as an alternative method
of integrating syslog-NG with log analysis tools such as SEC or Swatch. See Listing 5-21.

Listing 5-21. Sample program() Destination

destination d_mailout { program("/root/scripts/mailout" ➥

template("$HOUR:$MIN:$SEC $HOST $FACILITY $LEVEL $PROGRAM $MSG\n")); };

In Listing 5-21 the d_mailout destination sends a message to the script /root/scripts/
mailout using a template. Note the \n at the end of the template() line. Because of the use of
a template, you have to tell the script that it has reached the end of the line and that the loop
must end. With a normal message, syslog-NG includes its own line break.

The mailout script itself is simple (see Listing 5-22).

Listing 5-22. mailout Script

#!/bin/bash

Script to mail out logs

while read line; do

echo $line | /bin/mail -s "log entry from mail out" pager@yourdomain.com

done

■Caution Always remember that any time you designate a message to be mailed out, you should ask
yourself if you are making yourself vulnerable to a self-inflicted DoS attack if thousands of messages were
generated and your mail server was flooded. Either choose only those most critical messages to be mailed
out or look at modifying the script you are using to mail out messages to throttle the number of messages
being sent out in a particular time period.

4444c05_final.qxd 1/5/05 12:52 AM Page 251

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING252

Lastly, you also have the destination{} statements unix-stream() and user-dgram() that
you can use to send message data to Unix sockets. Neither unix-stream() nor user-dgram()
has any additional options.

destination d_socket { unix-stream("/tmp/socket"); };

filter{}
The filter{} statement blocks contain statements to tell syslog-NG which messages to select.
This is much like the facility and priority selector used by the syslog daemon. For example,
the following line is a syslog facility and priority selector that would select all messages of the
mail facility with a priority of info or higher:

mail.info

This can be represented by a syslog-NG filter statement block that looks like this:

filter f_mail { facility(mail); priority(info .. emerg) };

In the previous line I have selected all messages from the facility mail using the facility()
option and with a range of priorities from info to emerg using the priority() option.

But the syslog-NG equivalent is far more powerful than the selectors available to you in
the syslog daemon. Selection criteria can range from selecting all those messages from a par-
ticular facility, host, or program to regular expressions performed on the message data itself.

The filter{} statement blocks are constructed like the source{} statement block, and
each filter must be named. Again, continuing with the naming convention, I generally prefix
all my filter statements with f_ (for example, f_kern). In Table 5-8 you can see a complete list
of items on which you can filter.

Table 5-8. Items You Can Filter on in syslog-NG

Filter Description

facility() Matches messages having one of the listed facility code(s)

priority() Matches messages by priority (or the level() statement)

program() Matches messages by using a regular expression against the program name field of
log messages

host() Matches messages by using a regular expression against the hostname field of log
messages

match() Tries to match a regular expression to the message itself

filter() Calls another filter rule and evaluate its value

netmask() Matches message IP address against an IP subnet mask

The simplest filters are facility and priority filters. With facility and priority filters you can list
multiple facilities or priorities in each option separated by commas. For example, in the f_mail
filter on the next line, you can see the filter is selecting all mail and daemon facility messages.

filter f_mail { priority(mail,daemon) };

4444c05_final.qxd 1/5/05 12:52 AM Page 252

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 253

You can also list multiple priories in a range separated by .., as you can see in the
f_infotoemerg filter on the next line:

filter f_infotoemerg { priority(info .. error); };

The filter{} statements can also contain multiple types of options combined using
Boolean AND/OR/NOT logic. You can see these capabilities in the f_boolean filter statement
on the next line where I am selecting all messages of priority info, notice, and error but not
those from the mail, authpriv, or cron facilities.

filter f_boolean { priority(info .. error) and not (facility(mail) ➥

or facility(authpriv) or facility(cron)); };

Another type of filtering is to select messages from a specific host. You can see this in the
f_hostpuppy filter on the next line:

filter f_hostpuppy { host(puppy); };

You can also select messages based on the netmask of the system that generated them.
The filter on the next line selects all messages from the network 10.1.20.0/24:

filter f_netmask { netmask("10.1.20.0/24") };

Another form of filtering you will find useful is to select only those messages from a par-
ticular program. The filter on the next line will select only those messages generated by the
sshd daemon:

filter f_sshd { program("sshd.*") };

Finally, you can match messages based on the content of the messages using the match()
option. You can use regular expressions to match on the content of a message.

filter f_regexp { match("deny"); };

Additionally, you can add a not to the front of your match statement to negate a match
and not select those messages with a particular content.

filter f_regexp2 { not match("STATS: dropped 0")};

log{}
As described earlier, after you have defined source{}, destination{}, and filter{} statements,
you need to combine these components in the form of log{} statement blocks that actually do
the logging. Unlike the other types of statement blocks, they do not need to be named.

For a valid log{} statement, you need to include only a source and a destination state-
ment. The following line logs all the messages from the source s_sys to the destination d_mesg:

log { source(s_sys); destination(d_mesg); };

But generally your log{} statement blocks will contain a combination of source, desti-
nation, and filter statements. You can also combine multiple sources and filters into a log{}

statement. As you can see in Listing 5-23, I am selecting messages from two sources, s_sys
and s_tcp, and then filtering them with f_mail and sending them to the d_mesg destination.

4444c05_final.qxd 1/5/05 12:52 AM Page 253

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING254

Listing 5-23. A syslog-NG log{} Statement with Multiple Sources

log { source(s_sys); source(s_tcp); filter(f_mail); destination(d_mesg); };

The log{} statement blocks also have some potential flag modifiers (see Table 5-9).

Table 5-9. log{} Statement Block Flags

Flag Description

final Indicates the processing of log statements ends here. If the messages matches this
log{} statement, it will be processed here and discarded.

fallback Makes a log statement “fall back.” This means that only messages not matching any
“nonfallback” log statements will be dispatched.

catchall The source of the message is ignored; only the filters are taken into account when
matching messages.

You can add flags to the end of log{} statements like this:

log { source(s_sys); destination(d_con); flags(final); };

This log statement is modified to show that if the message is from the source s_sys with
destination d_con, then log it to that destination and do not match that message against any
further log{} statements. This does not necessarily mean the message is logged only once.
If it was matched to any log{} listed in your syslog-ng.conf file prior to this one, they will
also have logged that message.

Sample syslog-ng.conf File
You have seen what all the possible syslog-NG statement blocks are. Now it is time to combine
them into an overall sample configuration. The configuration in Listing 5-24 shows basic host-
logging messages on a local system being sent to various destinations. This is a working con-
figuration, and you can further expand on it to enhance its capabilities.

■Tip Do not forget syslog-NG comes with an excellent example syslog-ng.conf file, and you can also
use the conversion tool, syslog2ng, to create a file from your existing syslog.conf file!

Listing 5-24. Starter syslog-ng.conf File

options {

sync (0);

time_reopen (10);

log_fifo_size (1000);

create_dirs (no);

owner (root);

group (root);

perm (0600);

};

4444c05_final.qxd 1/5/05 12:52 AM Page 254

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 255

source s_sys {

pipe ("/proc/kmsg" log_prefix("kernel: "));

unix-dgram ("/dev/log");

internal();

};

filter f_defaultmessages { level(info) and not (facility(mail) ➥

or facility(authpriv) or facility(cron) or facility(local4)); };

filter f_authentication { facility(authpriv) or facility(auth); };

filter f_mail { facility(mail); };

filter f_emerg { level(emerg); };

filter f_bootlog { facility(local7); };

filter f_cron { facility(cron); };

destination d_console { file("/dev/console"); };

destination d_allusers { usertty("*"); };

destination d_defaultmessages { file("/var/log/messages"); };

destination d_authentication { file("/var/log/secure"); };

destination d_mail { file("/var/log/maillog"); };

destination d_bootlog { file("/var/log/boot.log"); };

destination d_cron { file("/var/log/cron"); };

log { source(s_sys); filter(f_defaultmessages); destination(d_defaultmessages); };

log { source(s_sys); filter(f_authentication); destination(d_authentication); };

log { source(s_sys); filter(f_mail); destination(d_mail); };

log { source(s_sys); filter(f_emerg); destination(d_allusers); ➥

destination(d_console); };

log { source(s_sys); filter(f_bootlog); destination(d_bootlog); };

log { source(s_sys); filter(f_cron); destination(d_cron); };

To make sure you fully understand what the syslog-ng.conf file is doing, let’s step through
one of the items being logged here. In the s_sys source statement, you are collecting from the
standard logging device, /dev/log.

unix-dgram ("/dev/log");

Amongst the messages to this device are security-related messages sent to the auth and
auth-priv facilities. In the following line, I have defined a filter statement, f_authentication,
to pick these up:

filter f_authentication { facility(authpriv) or facility(auth); };

Next I have defined a destination for the messages, d_authentication. This destination
that writes to a file in the /var/log directory is called secure.

destination d_authentication { file("/var/log/secure"); };

In the global options{} block, I have told syslog-NG using the owner, group, and perm
options that this file will be owned by the root user and group and have permissions of 0600
(which allows only the owner to read and write to it).

4444c05_final.qxd 1/5/05 12:52 AM Page 255

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING256

Figure 5-2. Logging to a database

Lastly, I have defined a log{} statement to actually do the logging itself.

log { source(s_sys); filter(f_authentication); destination(d_authentication); };

The log{} statement combines the previous statements to perform the logging function.
With the steps defined here, you should be able to build your own logging statements

using the powerful options available to you with syslog-NG.

Logging to a Database with syslog-NG
So why log to a database? If you need to store logs for any length of time, most probably for some
statistical purpose or because of the need for an audit trail, you should look at logging to a data-
base, because it will make the task considerably easier. Querying megabytes of text files contain-
ing log messages using tools such as grep is cumbersome and prone to error. An SQL database,
on the other hand, is designed to be queried via a variety of tools. You can even enable ODBC on
your database flavor and query it with third-party tools such as Crystal Reports. This also makes
the process of pruning and purging your log entries easier, as you can build SQL queries to per-
form this task much more simply and with considerably more precision than with file-based log
archives.

So if you have the why of it, then how do you do it? I will assume you are using syslog-NG for
your logging; however, if you decide to retain syslogd, then you can find a link in the “Resources”
section to instructions for enabling database logging from syslogd.

■Note For the backend database I have chosen to use MySQL, but it is also possible to log to PostgreSQL
or even Oracle. This section assumes you have MySQL installed and running on your logging system. See the
“Resources” section for more information.

The architecture of database logging is simple. syslog-NG logs the messages you want to
store to a pipe, and a script reads those entries from the pipe and writes them to the database.
I have used d_mysql as the name of the destination in syslog-NG, mysql.pipe as the name of
the proposed pipe, and syslog.logs as the name of the database table. See Figure 5-2.

So first you need to tell syslog-NG where to send the messages you want to store to a pipe.
I will assume you are going to store all messages sent to the s_sys source. Listing 5-25 shows
the statements needed to log to the database. You can add these to the configuration file in
Listing 5-24 to allow you to test database logging.

4444c05_final.qxd 1/5/05 12:52 AM Page 256

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 257

Listing 5-25. syslog-NG Statements to Log to a Database

destination d_mysql { pipe("/tmp/mysql.pipe" template("INSERT INTO logs (host,

facility, priority, level, tag, date, time, program, msg) ➥

VALUES('$HOST','$FACILITY', '$PRIORITY', '$LEVEL', '$TAG', '$YEAR-$MONTH-$DAY',

'$HOUR:$MIN:$SEC', '$PROGRAM', '$MSG');\n") template-escape(yes)); };

log { source(s_sys); destination(d_mysql); };

■Tip You may also what to define a filter statement to select only particular messages you want to keep.
For example, you could use the f_authentication filter from Listing 5-24 to log only security-related
messages to the database.

Note the use of the template-escape(yes) option to ensure the macros are properly
escaped and will be written correctly to the MySQL database.

You then need to create a pipe to store the syslog-NG messages.

puppy# mkfifo /tmp/mysql.pipe

Now you need to create the MySQL database and a user to connect to it. You can use the
syslog.sql script shown in Listing 5-26.

Listing 5-26. The syslog.sql Script

Table structure for table `log`

CREATE DATABASE syslog;

USE syslog;

CREATE TABLE logs (

host varchar(32) default NULL,

facility varchar(10) default NULL,

priority varchar(10) default NULL,

level varchar(10) default NULL,

tag varchar(10) default NULL,

date date default NULL,

time time default NULL,

program varchar(15) default NULL,

msg text,

seq int(10) unsigned NOT NULL auto_increment,

PRIMARY KEY (seq),

KEY host (host),

KEY seq (seq),

KEY program (program),

KEY time (time),

KEY date (date),

4444c05_final.qxd 1/5/05 12:52 AM Page 257

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING258

KEY priority (priority),

KEY facility (facility)

) TYPE=MyISAM;

GRANT ALL PRIVILEGES ON syslog.* TO syslog@localhost identified by 'syslog' ➥

with grant option;

This script will create a database called syslog with a table called log accessible by a user
called syslog with a password of syslog. You should change the grant privileges, user, and pass-
word to suit your environment—the syslog user needs only INSERT privileges to the table.

To run this script, you use the following command:

puppy# mysql -u user -p < /path/to/syslog.sql

Enter password:

Replace user with a MySQL user with the authority to create tables and grant privileges,
and replace /path/to/syslog.sql with the location of the script shown in Listing 5-26. You will
be prompted to enter the required password for the user specified with the -u option.

You can check whether the creation of the database is successful by first connecting to the
MySQL server as the syslog user and then connecting to the syslog database and querying its
tables.

puppy# mysql -u syslog -p

Enter password:

mysql> connect syslog;

Current database: syslog

mysql> show tables;

Tables_in_syslog

logs

1 row in set (0.00 sec)

If the shows tables command returns a table called logs, then the script has been successful.
You then need a script to read the contents of the mysql.pipe pipe and send them to the data-

base. I provide a suitable script in Listing 5-27.

Listing 5-27. Script to Read mysql.pipe

syslog2mysql script#

#!/bin/bash

if [-e /tmp/mysql.pipe]; then

while [-e /tmp/mysql.pipe]

do

mysql -u syslog --password=syslog syslog < /tmp/mysql.pipe

done

else

mkfifo /tmp/mysql.pipe

fi

4444c05_final.qxd 1/5/05 12:52 AM Page 258

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 259

Now let’s test this script. First, you need to restart syslog-NG.

puppy# /etc/rc.d/init.d/syslog-ng restart

Second, on the command line, run the script from Listing 5-27 and put it in the background.

puppy# /root/syslog2mysql &

This script is now monitoring the pipe, mysql.pipe, you created in the /tmp directory and
will redirect any input to that pipe to MySQL.

■Tip I recommend you incorporate the starting and stopping of this script into the syslog-NG init script
to ensure it gets starts and stops when syslog-NG does.

Now send a log message using the logger command. If you have added filtering to the
log{} block defined in Listing 5-25, then you need to ensure whatever log message you send
with logger is going to be picked up by that filtering statement and sent to MySQL.

logger -p auth.info "Test syslog to MySQL messages from facility auth with ➥

priority info"

syslog-NG will write the log message to the mysql.pipe script, and the syslog2mysql script
will direct the log message into MySQL. Now if you connect to your MySQL server and query
the content of the logs table, you should see the log entry you have sent using logger. You can
do this with the following commands:

puppy# mysql -u syslog -p

Enter password:

mysql> connect syslog;

Current database: syslog

mysql> select * from logs

Now your syslog-NG should be logging to the MySQL database.

Secure Logging with syslog-NG
I have discussed in a few places the importance of secure logging and protecting your logging
system from both DoS attacks and attempts by intruders to read your logging traffic. To achieve
this, you will use Stunnel, the Universal SSL Wrapper, which, as mentioned earlier in the chap-
ter, encapsulates TCP packets with SSL. Stunnel uses certificates and public-key encryption to
ensure no one can read the TCP traffic.

■Tip I have discussed Stunnel in considerably more detail in Chapter 3. This is simply a quick-and-dirty
explanation of how to get Stunnel working for syslog-NG tunneling. I also discuss OpenSSL and SSL certifi-
cates in that chapter, and you may want to create your certificates differently after reading that chapter.

4444c05_final.qxd 1/5/05 12:52 AM Page 259

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING260

First, you need to install Stunnel. A prerequisite of Stunnel is OpenSSL, which most Linux
distributions install by default. You can get Stunnel from http://www.stunnel.org/ by clicking
the Download button in the left menu. Unpack the archive, and change in the resulting direc-
tory. The Stunnel install process is simple.

puppy# ./configure --prefix=/usr --sysconfdir=/etc

The --prefix and --sysconfdir options place the binaries and related files under /usr
and the Stunnel configuration files in /etc/stunnel.

Second, make and install like this:

puppy# make && make install

The make process will prompt you to input some information for the creation of an OpenSSL
certificate. Fill in the details for your environment.

Now you need to create some certificates using OpenSSL for both your syslog-NG server
and your clients. On your syslog-NG server, go to /usr/share/ssl/certs and create a certificate
for your server.

puppy# make syslog-ng-servername.pem

■Tip The certs directory can reside in different places on different distributions. On Red Hat and Mandrake
systems it is located in /usr/share/ssl/certs. On Debian it is located in /usr/local/ssl/certs, and on
SuSE it is located in /usr/ssl/certs.

Replace the servername variable with the name of your server. Copy this certificate to the
/etc/stunnel directory on the system you have designated as the central logging server.

The client certificates are a little different. You need to create a client certificate for each
client you want to connect to the syslog-NG server.

puppy# make syslog-ng-clientname.pem

Your certificates will look something like Listing 5-28.

Listing 5-28. Your syslog-ng Certificates

-----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQDOX34OBdIzsF+vfbWixN54Xfdo73PaUwb+JjoLeF7bu6qKHlgA

RvLiJaambwNCiRJ8jn6GSLiDwOGaffAuQO3YtSrW/No0sxH6wHEjvOW8d2tWOkbW

o3fOkAeNKCiqBTNDdDRHWnelY5nXgj3jPXOQsuOQq3TlNGy/Dx5YkbprVQIDAQ

4PRxBezKTsaoecCY0IMCQQCw7b0mpJX+DyqLX43STjHt4s7yKio16IOZR1Srsk68

zlOD7HgjNPW8wQEY6yRK7PI+j5o/LNulOXk7JOfOYQUQ

-----END RSA PRIVATE KEY-----

4444c05_final.qxd 1/5/05 12:52 AM Page 260

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 261

-----BEGIN CERTIFICATE-----

MIICoDCCAgmgAwIBAgIBADANBgkqhkiG9w0BAQQFADBFMQswCQYDVQQGE

M7Bfr321osTeeF33aO9z2lMG/iY6C3he27uqih5YAEby4iWmpm8DQokSfI5+hki4

g8Dhmn3wLkDt2LUq1vzaNLMR+sBxI7zlvHdrVjpG1qN3zpAHjSgoqgUzQ3Q0R1p3

pWOZ14I94z1zkLLjkKt05TRsvw8eWJG6a1UCAwEAAaOBnzCBnDAdBgNVHQ4EF

brNsdA==

-----END CERTIFICATE-----

As you can see, in each certificate file are two keys. The first is the private key, which is con-
tained within the BEGIN RSA PRIVATE and END RSA PRIVATE KEY text. The second is the certifi-
cate, which is contained within the BEGIN CERTIFICATE and END CERTIFICATE text.

To authenticate, your server needs the certificate portion of each of your client certificates.
So, copy the newly created client certificate, and remove the private key portion leaving the cer-
tificate portion. The file will now look like Listing 5-29.

Listing 5-29. SSL Certificate

-----BEGIN CERTIFICATE-----

MIICoDCCAgmgAwIBAgIBADANBgkqhkiG9w0BAQQFADBFMQswCQYDVQQGE

M7Bfr321osTeeF33aO9z2lMG/iY6C3he27uqih5YAEby4iWmpm8DQokSfI5+hki4

g8Dhmn3wLkDt2LUq1vzaNLMR+sBxI7zlvHdrVjpG1qN3zpAHjSgoqgUzQ3Q0R1p3

pWOZ14I94z1zkLLjkKt05TRsvw8eWJG6a1UCAwEAAaOBnzCBnDAdBgNVHQ4EF

brNsdA==

-----END CERTIFICATE-----

For ease of management I recommend storing all these certificates in a single file; I call
mine syslog-ng-clients.pem and simply append the certificate portion of each new client
onto the end of the file.

To authenticate on the client end, the client requires a copy of your certificate with the pri-
vate key and the certificate in it like the original file shown in Listing 5-28. Copy this into the
/etc/stunnel directory on the client. You also need the certificate portion of the server certifi-
cate. So make a copy of your server certificate. Call it syslog-ng-servername.pubcert. From the
syslog-ng-servername.pubcert file, remove the private key portion file and copy the resulting
file to the /etc/stunnel directory on the client

The following example shows the steps taken to add a new client:

1. Create a client certificate like this:

puppy# cd /usr/share/ssl/certs/

puppy# make syslog-ng-clientname.pem

2. Append the certificate portion of the new client certificate to the syslog-ng-
clients.pem file in /etc/stunnel.

3. Copy the /etc/stunnel/syslog-ng-servername.pubcert file and the syslog-ng-client-
name.pem file to the new client.

4444c05_final.qxd 1/5/05 12:52 AM Page 261

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING262

Now that you have keys on the client and server systems, you need to configure Stunnel to
read those keys and set up the connections. You do this by creating and editing stunnel.conf
files, which you should also locate in /etc/stunnel on both the client and server systems.

On the server side, your stunnel.conf should look like Listing 5-30.

Listing 5-30. Server-Side stunnel.conf Configuration

cert = /etc/stunnel/syslog-ng-servername.pem

pid = /var/run/stunnel.pid

Some debugging stuff

debug = debug

output = /var/log/stunnel.log

Service-level configuration

CAfile = /etc/stunnel/syslog-ng-clients.pem

verify = 3

[5140]

accept = 5140

connect = 514

■Tip I have enabled a fairly high level of logging in Stunnel (which is useful to help diagnose any errors).
If you want a lesser amount of logging, then change debug to a higher priority (for example, info).

The cert option defines the certificate for the local system (you would replace servername
with the name of your syslog-NG server), and the CAfile option points to the collection of cer-
tificates from which this server authorizes connection. The service-level configuration tells
Stunnel to accept connections on port 5140 and redirect those connections to port 514 on the
local host.

Your stunnel.conf should look like Listing 5-31.

Listing 5-31. Client-Side Configuration

cert = /etc/stunnel/syslog-ng-clientname.pem

pid = /var/run/stunnel.pid

Some debugging stuff

debug = debug

output = /var/log/stunnel.log

Service-level configuration

client = yes

CAfile = /etc/stunnel/syslog-ng-servername.pubcert

verify = 3

[5140]

accept = 127.0.0.1:514

connect = syslogserverIP:5140

4444c05_final.qxd 1/5/05 12:52 AM Page 262

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 263

On the client side, the cert file defines the certificate for the local system (you would replace
clientname with the name of your client system), and the CAfile option points to the certificate of
the server (you would replace servername with the name of your syslog-NG server) to which you
want to connect, in this case syslog-ng-servername.pubcert. The additional parameter client is
set to yes. This tells Stunnel that this system is a client of a remote Stunnel system. The service-
level configuration tells Stunnel to accept connections on IP 127.0.0.1 (localhost) at port 514
and redirect those connections to port 5140 on the syslog-NG server. In Listing 5-31 you would
replace syslogserverIP with the IP address of your syslog-NG server.

This sets up Stunnel, and now you need to make some changes to allow syslog-NG to
receive your Stunnel’ed traffic. On the syslog-NG server, ensure your tcp() source statement
in your syslog-ng.conf file looks like Listing 5-32.

Listing 5-32. Server-Side syslog-ng.conf for Stunnel

source s_tcp { tcp(ip("127.0.0.1") port(514)); };

This ensures syslog-NG is checking port 514 on localhost or 127.0.0.1 where Stunnel will
direct any incoming syslog-NG traffic coming from port 5140.

On the client side, ensure your syslog-ng.conf destination and log statements are also
updated, as shown in Listing 5-33.

Listing 5-33. Client-Side syslog-ng.conf for Stunnel

destination d_secure { tcp("127.0.0.1" port(514)); };

log { source(s_sys); destination(d_secure); };

This ensures syslog-NG is logging to port 514 on localhost or 127.0.0.1 where Stunnel
will redirect that traffic to port 5140 on your syslog-NG server. The log{} statement will log
everything from source s_sys to that destination.

■Tip If you are using Stunnel for secure logging, you need to ensure the keep_hostname() option is set to
yes; otherwise, all the messages will have localhost as their hostname.

Now you are almost ready to go. All you need to do is start Stunnel on both your server and
client systems. Starting Stunnel is easy. You do not need any options for the stunnel binary; how-
ever, it is probably a good idea to be sure Stunnel is pointing at the right configuration file.

puppy# stunnel /path/to/conf/file

Now restart syslog-NG on both your server and client systems, and your logging traffic
should now be secured from prying eyes.

Testing Logging with logger
Present on all Linux distributions, logger is a useful command-line tool to test your logging
configuration. Listing 5-34 demonstrates logger.

4444c05_final.qxd 1/5/05 12:52 AM Page 263

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING264

Listing 5-34. Running the logger Command

puppy# logger -p mail.info "This is a test message for facility mail and ➥

priority info"

Listing 5-34 would write the message “This is a test message for facility mail and priority
info” to your syslog or syslog-NG daemon and into whatever destination you have configured
for messages with a facility of mail and a priority of info. As you can see, the -p parameter
allows you specify a facility and priority combination and then the test message contained in
quotation marks.

I often use logger inside bash scripts to generate multiple messages for testing purposes.
The script in Listing 5-35 generates a syslog message for every facility and priority combination.

Listing 5-35. Log Testing bash Script

#!/bin/bash

for f in

{auth,authpriv,cron,daemon,kern,lpr,mail,mark,news,syslog,user,uucp,local0,➥

local1,local2,local3,local4,local5,local6,local7}

do

for p in {debug,info,notice,warning,err,crit,alert,emerg}

do

logger -p $f.$p "Test syslog messages from facility $f with priority $p"

done

done

You can also use logger to pipe a growing file into syslog or syslog-NG. Try the simple
script shown in Listing 5-36.

Listing 5-36. Piping a Growing File into syslog

#!/bin/bash

tail -f logfile | logger -p facility.priority

This script simply runs tail -f on logfile (replace this with the name of the file you want
to pipe into your choice of syslog daemon) and pipes the result into logger using a facility and
priority of your choice. Of course, this script could obviously be greatly expanded in complexity
and purpose, but it should give you a start.

Logger works for both syslog and syslog-NG.

Log Analysis and Correlation
Many people think log analysis and correlation are “black” arts—log voodoo. This is not entirely
true. It can be a tricky art to master, and you need to be constantly refining that art; however,
inherently once you implement a systematic approach to it, then it becomes a simple part of
your daily systems’ monitoring routine.

The first thing to remember is that analysis and correlation are two very different things.
Analysis is the study of constituent parts and their interrelationships in making up a whole. It

4444c05_final.qxd 1/5/05 12:52 AM Page 264

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 265

must be said that the best analysis tool available is yourself. System administrators learn the
patterns of their machines’ operations and can often detect a problem far sooner than auto-
mated monitoring or alerting systems have done on the same problem. I have two problems
with this model. The first problem is that you cannot be everywhere at once. The second prob-
lem is that the growing volume of the data collected by the systems can become overwhelming.

This is where correlation comes in. Correlation is best defined as the act of detecting rela-
tionships between data. You set up tools to collect your data, filter the “wheat from the chaff,”
and then correlate that remaining data to put the right pieces of information in front of you so
you can provide an accurate analysis. Properly setup and managed tools can sort through the
constant stream of data that the daily operations of your systems and any attacks on those sys-
tems generate. They can detect the relationships between that data and either put those pieces
together into a coherent whole or provide you with the right pieces to allow you to put that
analysis together for yourself.

But you have to ensure those tools are the right tools and are configured to look for the right
things so you can rely on them to tell you that something is wrong and that you need to inter-
vene. As a result of the importance of those tools to your environment, building and implement-
ing them should be a carefully staged process. I will now cover those stages in brief.

The first stage of building such an automated log monitoring system is to make sure
you are collecting the right things and putting them in the right place. Make lists of all your
applications, devices, and systems and where they log to. Read carefully through the sec-
tions in this chapter discussing syslog and syslog-NG, and make sure whatever you set up
covers your entire environment. Make sure your logging infrastructure encompasses every
piece of data generated that may be vital to protecting your systems.

The second stage is bringing together all that information and working out what you
really want to know. Make lists of the critical messages that are important to you and your
systems. Throw test attacks and systems failures at your test systems, and record the result-
ing message traffic; also, port scan your systems and firewalls, even unplugging hardware or
deliberately breaking applications in a test environment to record the results. Group those
lists into priority listings; some messages you may want to be paged for, others can go via
e-mail, and some may trigger automated processes or generate attempts at self-recovery
such as restarting a process.

The third stage is implementing your log correlation and analysis, including configur-
ing your correlation tools and designing the required responses. Make sure you carefully
document each message, the response to the message, and any special information that
relates to this message. Then test them. And test them again. And keep testing them. Your
logging environment should not be and almost certainly will never be static. You will always
discover something new you want to watch for and respond to. Attackers are constantly
finding new ways to penetrate systems that generate different data for your logging systems.
Attacks are much like viruses—you need to constantly update your definitions to keep up
with them.

So where do you go from here? I will now introduce you to a powerful tool that will help
you achieve your logging goals. That tool is called SEC.

4444c05_final.qxd 1/5/05 12:52 AM Page 265

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING266

3. SEC is written by Risto Vaarandi and supported by Vaarandi’s employer, The Union Bank of Estonia. It
is free to download and uses the GNU General Public License.

SEC is the most powerful open-source log correlation tool available.3 SEC utilizes Perl
regular expressions to find the messages that are important to running your system out of the
huge volume of log traffic most Linux systems generate. It can find a single message or match
pairs of related messages; for example, it can find matching messages that indicate when a
user has logged on and off a system. SEC can also keep count of messages it receives and act
only if it receives a number of messages exceeding a threshold that you can define. SEC can
also react to the messages it receives by performing actions such as running a shell script.
These actions can include the content of the messages. For example, it is possible to run a
shell script as a SEC action and use some or all of the message content as a variable to be
inputted into that shell script.

■Note As a result of SEC’s reliance on Perl regular expressions, you need to be reasonably comfortable with
using them. The Perl documentation on regular expressions is excellent. Try http://www.perldoc.com/
perl5.6.1/pod/perlre.html and http://www.perldoc.com/perl5.8.0/pod/perlretut.html. Also,
I have listed several excellent books on regular expressions in this chapter’s “Resources” section.

Seeing all this functionality you may think SEC is overkill for your requirements, but the
ability to expand your event correlation capabilities far outweighs the cost of implementation.
It is my experience that it is critical in your logging environment to avoid having to make com-
promises in your monitoring that could cause you to be exposed to vulnerabilities or a poten-
tially missing vital messages. The functionality richness of SEC should be able to cover all your
current and future event correlation needs.

Because of SEC’s complexity, it is impossible to completely cover all its features within this
chapter, so I will avoid discussing some of the more advanced features of SEC, most notably con-
texts. SEC’s full implementation and variables could easily occupy a book in their own right. I will
get you started with SEC by showing you how to install it, how to get it running, how to point your
logs to SEC, and how set up some basic message-matching rules; then I will point you to the
resources you will need to fully enable SEC within your own environment.

■Tip A good place to start learning more about SEC is the mailing list maintained at the SourceForge site
for SEC. You can subscribe to the mailing list and read its archives at http://lists.sourceforge.net/
lists/listinfo/simple-evcorr-users. SEC’s author Risto Vaarandi is a regular, active, and helpful par-
ticipant to this list, and the archives of the list contain many useful examples of SEC rules to help you.

4444c05_final.qxd 1/5/05 12:52 AM Page 266

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 267

Installing and Running SEC
You can download SEC from http://kodu.neti.ee/~risto/sec/ in the download section.
Installing SEC is a simple process. SEC is a Perl script. To use it, you will need at least Perl
version 5.005 installed on your system. (But a more recent version such as 5.6 is strongly
recommended.) SEC also relies on the modules Getopt, POSIX, Fcntl, and IO::Handle, but
these modules are included in the Perl base installation. Then unpack the SEC archive.
Inside the archive is the engine of the SEC tool, a Perl script called sec.pl. Copy the sec.pl
script to a directory of your choice. For these purposes, I have copied the sec.pl file into
a directory that I created called /usr/local/sec. SEC also comes with a comprehensive man
page that you should also install.

You start SEC from the command line by running the sec.pl script. Listing 5-37 shows
a command line you can use to start SEC.

Listing 5-37. Sample SEC Startup Options

puppy# /usr/local/sec/sec.pl -input=/var/log/messages ➥

-conf=/usr/local/sec/sec.conf -log=/var/log/sec.log -debug=6 -detach

To start SEC, the first option you need is -input. Inputs are where you define the source of
the messages SEC will be analyzing. You can have multiple input statements on the command
line that gather messages from several sources. Listing 5-37 uses one input, /var/log/messages.

The next option, -conf, tells SEC where to find its configuration file. The configuration file
contains all the rules SEC uses to analyze incoming messages. You probably do not have one
of these yet, but you can just create an empty file to get started; SEC will start fine just when
you use this empty file.

puppy# touch /usr/local/sec/sec.conf

You can specify more than one configuration file by adding more -conf options to the
command line. This allows you to have multiple collections of rules for different situations
or for different times of the day.

I have also specified some logging for SEC. In Listing 5-37, SEC is logging to the file
/var/log/sec.log with a debugging level of 6 (the maximum).

The last option, -detach, tells SEC to detach and become a daemon.
If you were to run the command in Listing 5-37, it would result in the following being

logged to the sec.log file in /var/log. The last line indicates the start was successful.

Fri Mar 5 17:28:09 2004: Simple Event Correlator version 2.2.5

Fri Mar 5 17:28:09 2004: Changing working directory to /

Fri Mar 5 17:28:09 2004: Reading configuration from /usr/local/sec/sec.conf

Fri Mar 5 17:28:09 2004: No valid rules found in configuration ➥

file /usr/local/sec/sec.conf

Fri Mar 5 17:28:09 2004: Daemonization complete

SEC is now running as a daemon on the system and awaiting events to process. If you
change a rule or add additional rules, you need to restart the SEC process to reload the config-
uration files.

puppy# killall -HUP sec.pl

4444c05_final.qxd 1/5/05 12:52 AM Page 267

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING268

■Tip SEC also comes with a file called sec.startup that contains an init script you can adjust to start
SEC automatically when you start your system; this should allow you to easily control reloading and restart-
ing sec.pl.

SEC has some additional command-line options to control its behavior and configura-
tion. Table 5-10 covers the important ones.

Table 5-10. SEC Command-Line Options

Option Description

-input=file pattern[=context] The input sources for SEC that can be files, named pipes, or
standard input. You can have multiple input statements on
your command line. The optional context option will set up
a context. Contexts help you to write rules that match events
from specific input sources. Note that I do not cover contexts
in this chapter.

-pid=pidfile Specifies a file to store the process ID of SEC. You must use
this if you want a PID file.

-quoting and -noquoting If quoting is turned on, then all strings provided to external
shell commands by SEC will be put inside quotes to escape
them. The default is not to quote.

-tail and -notail These tell SEC what to do with files. If -notail is set, then SEC
will read any input sources and then exit when it reaches the
end of the file or source. If -tail is set, then SEC will jump to
the end of the input source and wait for additional input as if
you had issued the tail -f command. The default is -tail.

-fromstart and -nofromstart These flags are used in combination with -tail. When
-fromstart is enabled, it will force SEC to process input files
from start to finish and then go into “tail” mode and wait for
additional input. These options obviously have no effect if
-notail is set. The default option is -nofromstart.

-detach and -nodetach If you add -detach to the command line, SEC will daemonize.
The default is -nodetach with SEC running in the controlling
terminal.

-testonly and -notestonly If the -testonly option is specified, then SEC will exit imme-
diately after parsing the configuration file(s) for any errors. If
the configuration file(s) do not contain any errors, then SEC
will exit with an exit code of 0 and otherwise with an exit code
of 1. The default is -notestonly.

You can read about additional SEC options on timeouts in input sources in the SEC man page.

4444c05_final.qxd 1/5/05 12:52 AM Page 268

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 269

Inputting Messages to SEC
The easiest way to get messages into SEC is to go through a named pipe. I recommend setting
up either syslog or syslog-NG to point to a named pipe and inputting your messages to SEC
through that pipe. First let’s create a named pipe. Create a pipe in the /var/log directory
called sec, like so:

puppy# mkfifo /var/log/sec

When I start SEC, I would now use this named pipe as an input on the starting command
line by adding the option -input /var/log/sec.

Now you need to define this pipe to the respective logging daemons. For syslog-NG this is
an easy process, as shown in Listing 5-38.

Listing 5-38. syslog-NG Configuration for SEC

destination d_sec { pipe("/var/log/sec"); };

log { source(s_sys); destination(d_sec); };

log { source(s_tcp); destination(d_sec); };

As you can see from Listing 5-37, you define a named pipe destination in syslog-NG, in this
case /var/log/sec, and then log all the sources you want to this pipe. You can add the statements
in Listing 5-38 to the sample configuration in Listing 5-24 to get this working immediately. You
will need to restart syslog-NG to update the configuration.

■Tip If you have an especially busy system or one with performance issues, it may be wise to increase the
syslog-NG global option log_fifo_size (num); (defined in the options{} statement block). This controls
the number of lines being held in buffer before they are written to disk. This should help prevent overflows
and dropped messages if your pipe is slow to process events.

For syslogd, the process of getting messages into SEC requires pointing the facilities and
priorities you want to input to SEC to a pipe. See Listing 5-39.

Listing 5-39. syslogd Configuration for SEC

*.info | /var/log/sec

This example would send all messages of info priority or higher from every facility to the
named pipe, /var/log/sec.

As SEC can also read from files, you could also log the event messages you want to
process with SEC to a file or series of files and use those as input sources. For the purpose
of this explanation and for ease of use and configuration, I recommend the named pipe
method. This is principally because there is no risk of log data being inputted to SEC twice
if you accidentally tell SEC to reprocess a log file (which can happen using the -fromstart
and -nofromstart options). Additionally, if you want to specify that messages go to SEC

4444c05_final.qxd 1/5/05 12:52 AM Page 269

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING270

and to a file or database, you are not required to store the data twice. You keep a copy in
a file or database, and the other copy goes into the pipe and directly into SEC without
being written to disk and therefore taking up disk space.

Building Your SEC Rules
The SEC configuration file contains a series of rule statements. Each rule statement consists
of a series of pairs of keys and values separated by an equals (=) sign. There is one key and
value pair per line. You can see an example of a key and value pair on the next line:

type=Single

For the purposes of this explanation, I will call these key=value pairs. You can use the
backslash (\) symbol to continue a key=value pair onto the next line. You can specify a com-
ment using the pound (#) symbol. SEC assumes that a blank line or comment is the end of
the current rule statement, so only add comments or blank lines at the start or end of a rule
statement. Let’s look now at an example of a rule statement to better understand how SEC
and SEC rules work. See Listing 5-40.

Listing 5-40. Sample SEC Rule Statement

type=Single

continue=TakeNext

ptype=regexp

pattern=STATS: dropped ([0-9]+)

desc=Dropped $1 messages - go check this out

action=shellcmd /bin/echo '$0' | /bin/mail -s "%s" admin@yourdomain.com

Let’s discuss this example line by line. The first line indicates the type of SEC rule that is
being used. In Listing 5-40 I have used the simplest rule, Single, which simply finds a message
and then executes an action.

The second line in Listing 5-40 is optional. The continue line has two potential options,
TakeNext and DontCont. The first option, TakeNext, tells SEC that even if the log entry matches
this rule, keep searching through the file for other rules that may match the entry. The second
option, DontCont, tells SEC that if the log entry matches this rule, then stop here and do not try
to match the entry against any additional rules. This means that a log entry will be checked
against every single rule in your configuration file until it finds a rule it matches that has a
continue setting of DontCont.

This is useful when some messages may be relevant to more than one rule in your configu-
ration file. An example of when you could use this is if a message has more than one implica-
tion or purpose. For example, a user login message may be used to record user login statistics,
but you may also want to be e-mailed if the root user logs on. You would use one rule to record
the user statistics that has a continue option of TakeNext. After processing this rule, the mes-
sage would be checked against the other rules in the configuration file and would be picked
up by the rule that e-mails you if root logged on.

■Note If you omit the continue option from the rule statement, SEC defaults to DontCont.

4444c05_final.qxd 1/5/05 12:52 AM Page 270

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 271

The next two lines in the rules statement allow SEC to match particular events. The first is
ptype, or the pattern type. The pattern type tells SEC how to interpret the information on the
next line, the pattern itself. You can use the pattern types shown in Table 5-11.

Table 5-11. SEC Pattern Types

Pattern Type Description

RegExp[number] A Perl regular expression.

SubStr[number] A substring.

NRegExp[number] A negated regular expression; the results of the pattern match are negated.

NSubStr[number] A negated substring; the results of the pattern match are negated.

The number portion after the pattern type tells SEC to compare the rule against the last
number of log entries. If you leave number blank, then SEC defaults to 1—the last log entry
received. Listing 5-40 used a standard regexp pattern type that tells SEC to interpret the pat-
tern line as a Perl regular expression.

The third line in Listing 5-40, pattern, shows the pattern itself. In this example, it is a reg-
ular expression. This regular expression would match on any message that consisted of the
text STATS: dropped and any number greater than one.

You may notice I have placed part of the regular expression, [0-9]+, in parentheses. In
SEC the content of anything in the pattern line that you place in parentheses becomes a vari-
able available to SEC. In this instance, ([0-9]+) becomes the variable $1; any subsequent data
enclosed in parentheses would become $2, then $3, and so on. So if the message being tested
against this rule was STATS: dropped 123, then the message would be matched and the vari-
able $1 would be assigned a content of 123. Another special variable, $0, is reserved for the
content of the log entry or entries the rule is being tested against. In this example, the variable
$0 would contain the input line STATS: dropped 123.

The fourth line in Listing 5-40 shows the desc key=value pair. This is a textual description
of the event being matched. Inside this description you can use any variables defined in the
pattern. Thus, the desc for Listing 5-40 is Dropped $1 messages - go check this out. Using
the message data in the previous paragraph, this would result in a description of Dropped 123
messages - go check this out. You will note that I have used the variables, $1, that I defined
in the pattern line in the desc line. The final constructed description is also available to you in
SEC as the %s variable.

The fifth and last line in Listing 5-40 shows the action key=value pair. This line tells SEC
what to do with the resulting match, log entry, and/or variables generated as a result of the
match. In the action line, in addition to any variables defined in the pattern (the $0 variable
and the %s variable indicating the desc line), you also have access to two other internal vari-
ables: %t, the textual time stamp that is equivalent to the result of the date command, and %u,
the numeric time stamp that is equivalent to the result of the time command.

Now you have seen your first SEC rule. It just scrapes the surface of what SEC is capa-
ble of doing. Let’s look at another example to show you what else SEC is capable of doing.
Listing 5-41 uses the SingleWithThreshold rule type to identify repeated sshd failed login
attempts.

4444c05_final.qxd 1/5/05 12:52 AM Page 271

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING272

Listing 5-41. Using the SingleWithThreshold Rule Type

type=SingleWithThreshold

ptype=regexp

pattern=(\w+)\s+sshd\[\d+\]\:\s+Failed password for (\w+) from ➥

(\d+.\d+.\d+.\d+) port \d+ \w+\d+

desc=User $2 logging in from IP $3 to system $1 failed to enter the correct password

thresh=3

window=60

action=write /var/log/badpassword.log %s

With this rule I am looking to match variations on the following log entry:

Mar 12 14:10:01 puppy sshd[738]: Failed password for bob ➥

from 10.0.0.10 port 44328 ssh2

The rule type I am using to do this is called SingleWithThreshold. This rule type
matches log entries and keeps counts of how many log entries are matched within a partic-
ular window of time. The window is specified using the window option and is expressed in
seconds. In Listing 5-41 it is set to 60 seconds. The window starts counting when SEC first
matches a message against that rule. It then compares the number of matches to a thresh-
old, which you can see defined in Listing 5-41 using the thresh option as three matches. If
the number of matches reaches the threshold within the window of time, then the action
line is performed. In Listing 5-41 the action I have specified is to write the contents of the
desc line to the specified file, /var/log/badpassword.log, using the write action. The write
action can write to a file, to a named pipe, or to standard output.

So what other rules types are available to you? Well, SEC has a large collection of possible
rules that are capable of complicated event correlation. You can see a list of all the other avail-
able rules types in Table 5-12.

Table 5-12. SEC Rule Types

Rule Type Description

SingleWithScript Matches an event, executes a script, and then, depending on the exit
value of the script, executes a further action.

SingleWithSuppress Matches an event, executes an action immediately, and then ignores
any further matching events for x seconds.

Pair Has a paired set of matches. It matches an initial event and executes an
action immediately. It ignores any following matching events until it
finds the paired event and executes another action.

PairWithWindow Also has a paired set of matches. When it matches an initial event, it
waits for x seconds for the paired event to arrive. If the paired event
arrives within the given window, then it executes an action. If the
paired event does not arrive within the given window, then it executes
a different action.

SingleWith2Thresholds Counts up matching events during x1 seconds, and if more than the
threshold of t1 events is exceeded, then it executes an action. It then
starts to count matching events again, and if the number during x2
seconds drops below the threshold of t2, then it executes another
action.

(Continues)

4444c05_final.qxd 1/5/05 12:52 AM Page 272

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 273

Rule Type Description

Suppress Suppresses any matching events. You can use this to exclude any events
from being matched by later rules. This is useful for removing high-
volume low-informational content messages that would otherwise clog
SEC.

Calendar Executes an action at a specific time.

So how do you use some of these other rules types? Let’s look at some additional exam-
ples. Specifically, Listing 5-42 shows using the Pair rule type.

Listing 5-42. Using the Pair Rule Type

type=Pair

ptype=regexp

pattern=(\w+\s+\d+\s+\d\d:\d\d:\d\d)\s+(\w+)\s+su\(pam_unix\)➥

(\[\d+\])\:\s+session opened for user root by (\w+)\(\w+\=\d+\)

desc=User $4 has succeeded in an su to root at $1 on system $2. ➥

Do you trust user $4?

action=shellcmd /bin/echo '%s' | /bin/mail -s ➥

"SU Session Open Warning" admin@yourdomain.com

ptype2=regexp

pattern2=(\w+\s+\d+\s+\d\d:\d\d:\d\d)\s+$2\s+su\(pam_unix\)➥

$3\:\s+session closed for user root

desc2=Potentially mischievous user %4 has closed their su session at %1 on system %2

action2=shellcmd /bin/echo '%s' | /bin/mail -s ➥

"SU Session Close Warning" admin@yourdomain.com

In this example, I am using Pair to detect whenever somebody used the su command to
become root on a system and then monitor the log file for when they closed that su session.
So, I will be looking to match variations of the following two log entries:

Mar 6 09:42:55 puppy su(pam_unix)[17354]: session opened for user ➥

root by bob(uid=500)

Mar 6 10:38:13 puppy su(pam_unix)[17354]: session closed for user root

The rule type I will use for this is Pair, which is designed to detect a matching pair of log
entries. You could also use the PairWithWindow rule type, which is designed to find a matching
pair of log entries within a particular time window much like the SingleWithThreshold rule type
you saw in Listing 5-41. With the Pair rule types you actually define two sets of pattern type and
pattern, description, and action items. This is because you are matching two log entries. The sec-
ond set of items are suffixed with the number 2 and referred to as ptype2 and pattern2, and so on,
to differentiate them from the first set. The first set of items are used when the first log entry is
matched; for example, the action line is executed when the log entry is matched. The second set
of items is used if the second log entry is matched; for example, the action2 line is executed when
the second log entry is matched.

For the first set of pattern type and pattern, I have used a regular expression pattern type.
Inside the pattern I have also defined a number of elements of the log entry I am seeking to

4444c05_final.qxd 1/5/05 12:52 AM Page 273

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING274

match as variables: the hostname on which the su session took place, the user who used the
su command, the time the session opened and closed, and the process ID that issued the
su command. You can then see that I have used some of these variables in the desc and action
lines. The action I am using in Listing 5-42 is called shellcmd to execute a shell command
when a log entry is matched.

The second pattern type will also be a regular expression. In this pattern, how do you know if
the log entry indicating the end of the su session is related to the original log entry opening the su
session? Well, SEC can use variables from the first pattern line, pattern, and these variables can
form part of the regular expression being matched in the second pattern line, pattern2. In the
first pattern line I defined the hostname of the system the su session was taking place on as $2
and the process ID of the session as $3. If you refer to those variables in the pattern2 line, then
SEC knows you are referring to variables defined in the first pattern line. You use the host name
and process ID to match the incoming log entry against the first log entry.

But this raises another question. How does SEC tell the difference between the variables
defined in the two pattern lines when you use them in the desc2 line, for example? Well, variables
for the first pattern line if you want to use them again in the desc2 or action2 lines are prefixed by
%, and variables from the second pattern line are prefixed with $. You can see I have used the $4
variable defined in the first pattern line in the desc2 line by calling it %4.

Another useful rule type is Suppress. Listing 5-43 shows an example of a Suppress rule.

Listing 5-43. Using the Suppress Rule Type

type=Suppress

ptype=regexp

pattern=\w+\s+syslog-ng\[\d+\]\:\s+STATS: dropped \d+

Listing 5-43 is designed to suppress the following log entry:

Mar 12 01:05:00 puppy syslog-ng[22565]: STATS: dropped 0

The Suppress rule type simply consists of the rule type, a pattern type, and a pattern to
match. Event suppression is especially useful for stopping SEC processing events you know
have no value. You can specify a series of Suppress rules at the start of your configuration file
to stop SEC unnecessarily processing unimportant messages. Be careful to be sure you are not
suppressing a useful message, and be especially careful not to make your regular expressions
too broad and suppress messages you need to see from getting through.

Suppress rules are also a place where you could use the pattern type of Substr. Let’s
rewrite Listing 5-43 using a substring instead of a regular expression.

type=Suppress

ptype=substr

pattern=This message is to be suppressed.

To match a log entry to a substring rule, the content of the pattern line must exactly match
the content of the log entry. If required in a substring, you can use the backslash constructs \t,
\n, \r, and \s to indicate any tabulation, newlines, carriage returns, or space characters.

4444c05_final.qxd 1/5/05 12:52 AM Page 274

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 275

■Tip As special characters are indicated with a backslash in Perl, if you need to use a backslash in
a substring or regular expression, you must escape it. For instance in Perl, \\ denotes a backslash.

The Suppress rule type is not the only type of rule that allows you to suppress messages.
You can also use the SingleWithSuppress rule type. This rule type is designed to match a single
log entry, execute an action, and then suppress any other log entries that match the rule for
a fixed period defined using the window line. This is designed to allow you to enable message
compression. Message compression is useful where multiple instances of a log entry are gen-
erated but you need to be notified or have an action performed for only the first matched log
entry. You can compress 100 messages to one response or action instead of each of the mes-
sages generating 100 individual responses or actions. Listing 5-44 shows an example of the
SingleWithSuppress rule type.

Listing 5-44. Using the SingleWithSuppress Rule Type

type=SingleWithSuppress

ptype=RegExp

pattern=(\S+): Table overflow [0-9]+ of [0-9]+ in Table (\S+)

desc=Please check for a table overflow in $2

action=shellcmd notify.sh "%s"

window=600

Listing 5-44 uses a regular expression to check for a table overflow message generated by
a database. I know this message can be generated hundreds of times in a short period, so I use
the SingleWithSuppress rule to match only the first log entry and notify a user about the error
message. If additional log entries are matched to this rule within the next 600 seconds (as
defined using the window line), then they are suppressed and no action is performed. If the log
entry appears again more than 600 seconds after the first log entry was matched, then another
action is generated and all further matching log entries would be suppressed for another 600
seconds. This, for example, could be because the original problem has not been fixed and
another notification is needed.

Within the last few examples, you have seen only a couple of SEC’s possible actions, write
and shellcmd. Within SEC additional possible actions are available. Table 5-13 describes some
key ones table. These actions you can view in the SEC man page.

4444c05_final.qxd 1/5/05 12:52 AM Page 275

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING276

Table 5-13. SEC Actions

Action Description

assign %letter [text] Assigns the content of text to a user-defined %letter variable. You
can use other % variables in your text, like those variables defined
in your pattern. If you do not provide any text, then the value of
the variable %s is used.

event [time] [event text] After time seconds, a event with the content of [event text] is
created. SEC treats the [event text] string exactly like a log entry
and compares it to all rules. If you do not specify any [event text],
then the value of the %s variable is used. If you specify 0 as [time]
or omit the value altogether, then it will be created immediately.

logonly The event description is logged to the SEC log file.

none Takes no action.

spawn shellcmd This is identical to the shellcmd action, but any standard output
from shellcmd is inputted to SEC as if it were a log entry and
matched against the rules. This is done by generating an event 0
[output line] to each line from standard output. Be careful that
the shellcmd command being spawned does not output a large
volume of data or an endless loop, as SEC will process these
results first and thus become locked.

You can put more than one action on an action line by separating them with a semicolon.
You can see this in the next line:

action=shellcmd notify.sh "%s"; write /var/log/output.log %s

Here I have combined the shellcmd and write actions.
Listing 5-45 shows one final example, the Calendar rule type. The Calendar rule type is

constructed differently than the other rule types are constructed.

Listing 5-45. Using the Calendar Rule Type

type=Calendar

time=1-59 * * * *

desc=This is an important message SEC needs to check

action=shellcmd purge.sh

The Calender rule type uses a special line called time. The time line uses the standard
crontab format of five fields, separated by whitespace; those fields are minutes, hours, days
of the month, months of the year, and weekdays. You can use the Calendar rule type to sched-
ule events or kick off log-related processes. I often use Calendar events to schedule the clear-
ing and management of files I use during the logging process.

These examples should have provided you with the grounding to start writing your own
SEC rules. For further information and assistance with writing SEC rules, check the SEC FAQ
and the example at http://kodu.neti.ee/~risto/sec/FAQ.html and http://kodu.neti.ee/
~risto/sec/examples.html, respectively. Also, as mentioned earlier, the SEC mailing list is an
excellent source of assistance and information.

4444c05_final.qxd 1/5/05 12:52 AM Page 276

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 277

Log Management and Rotation
An important part of managing your logging environment is controlling the volume of your
log files and keeping your log files to a manageable size.

■Tip If you need to store messages for the long term, I recommend you look at logging to a database.
I already discussed earlier in this chapter how to set up logging to a database.

This section will cover the process of automating rotating your logs on a daily, weekly, or
monthly basis.

Log rotation can be quite complicated to manually script, so I recommend you use the
logrotate tool. Most Linux distributions come with the logrotate tool. Of the common distri-
butions, it is present on all Red Hat variations, Mandrake, Debian, and SuSE, and an e-build
exists for it on Gentoo, which can be installed with the following command:

puppy# emerge logrotate

logrotate is simple to configure and relies on crontab to run on a scheduled basis. The
base logrotate configuration is located in /etc/logrotate.conf (see Listing 5-46).

Listing 5-46. logrotate.conf

#log rotation

weekly

keep old logs

rotate 4

#create new logs

create

#include .d files

include /etc/logrotate.d

This simple file contains the global options that logrotate uses to handle log files. In this
example, all logs files rotate weekly, logs are rotated four times before they are deleted, new
log files are created, and the logrotate tool checks the logrotate.d directory for any new
logrotate files. You can use other options you can use, as shown in Table 5-14. You can delve
into the logrotate man file for other options.

Table 5-14. logrotate.conf Options

Option Description

daily Logs are rotated on a daily basis.

weekly Logs are rotated on a weekly basis.

monthly Logs are rotated on a monthly basis.

compress Old log files are compressed with gzip.

(Continues)

4444c05_final.qxd 1/5/05 12:52 AM Page 277

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING278

Table 5-14. Continued

Option Description

create mode owner group Creates new log files with a mode in octal form of 0700 and
the owner and group (the opposite is nocreate).

ifempty Rotates the log file even if it is empty.

include directory or filename Includes the contents of the listed file and directory to be
processed by logrotate.

mail address When a log is rotated out of existence, mail it to address.

nomail Do not mail the last log to any address.

missingok If the log file is missing, then skip it and move onto the next
without issuing an error message.

nomissingok If the log file is missing, issue an error message (the default
behavior).

rotate count Rotate the log files count times before they are removed. If
count is 0, then old log files are removed, not rotated.

size size[M,k] Log files are rotated when they get bigger than the maximum
size; M indicates size in megabytes, and k indicates size in
kilobytes.

sharedscripts Pre- and post-scripts can be run for each log file being
rotated. If a log file definition consists of a collection of log
files (for example, /var/log/samba/*), and sharedscripts is
set, then the pre/post-scripts are run only once. The opposite
is nosharedscripts.

Listing 5-46 shows the last command, include, which principally drives logrotate. The
logrotate.d directory included in that example stores a collection of files that tell logrotate
how to handle your various log files. You can also define additional directories and files and
include them in the logrotate.conf file to suit your environment. Most distributions, how-
ever, use the logrotate.d directory and come with a number of predefined files in this direc-
tory to handle common log rotations such as mail, cron, and syslog messages. I recommend
adding your own logrotate files here also. Listing 5-47 shows you one of those files.

Listing 5-47. Red Hat syslog logrotate File

/var/log/messages /var/log/secure /var/log/maillog /var/log/spooler ➥

/var/log/boot.log /var/log/cron

{

daily

rotate 7

sharedscripts

postrotate

/bin/kill -HUP 'cat /var/run/syslog-ng.pid 2> /dev/null' 2> /dev/null || true

endscript

}

4444c05_final.qxd 1/5/05 12:52 AM Page 278

Inside these files you can override most of the global options in logrotate.conf to cus-
tomize your log rotation for individual files or directories. Listing 5-47 first lists all the files
I want to rotate. This could also include directories using the syntax /path/to/log/files/*.
Then enclosed in { } are any options for this particular set of files. In this example I have over-
ridden the global logging options to rotate these files on a daily basis and keep seven rotations
of the log files.

Next you are going to run a script. You can run scripts using the prerotate command,
which runs the script prior to rotating any logs, or using postrotate, which runs the script
after rotating the log file(s). Listing 5-47 runs a script that restarts syslog-NG after the log
file(s) have been rotated. As the option sharedscripts is enabled, the script will be run only
once no matter how many individual log files are rotated. The script statement is terminated
with the endscript option.

So how does logrotate run? You can have cron run logrotate at scheduled times, or you
can manually run it on the command line. If running on the command line, logrotate defaults
to a configuration file of /etc/logrotate.conf. You can override this configuration file as you
can see on the following line:

puppy# logrotate /etc/logrotate2.conf

logrotate also has several command-line options to use, as shown in Table 5-15.

Table 5-15. logrotate Command-Line Options

Option Description

-d Debug mode in which no changes will be made to log files; it will output the results of
what it may have rotated. Implies -v mode also.

-v Verbose mode.

-f Forces a log rotation even if not required.

By default on most systems logrotate is run on a daily basis by cron, and this is the model
I recommend you should use. Check your cron.daily directory in /etc for a logrotate script
that should contain something like Listing 5-48.

Listing 5-48. logrotate cron Script

#!/bin/sh

/usr/sbin/logrotate /etc/logrotate.conf

EXITVALUE=$?

if [$EXITVALUE != 0]; then

/usr/bin/logger -t logrotate "ALERT exited abnormally with [$EXITVALUE]"

fi

exit 0

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING 279

4444c05_final.qxd 1/5/05 12:52 AM Page 279

Resources
The following are resources you can use.

Mailing Lists
• syslog-NG: https://lists.balabit.hu/mailman/listinfo/syslog-ng

• SEC: http://lists.sourceforge.net/lists/listinfo/simple-evcorr-users

Sites
• syslog-NG: http://www.balabit.com/products/syslog_ng/

• Regular expressions: http://www.perldoc.com/perl5.8.0/pod/perlretut.html

• http://www.perldoc.com/perl5.6.1/pod/perlre.html

• http://www.weitz.de/regex-coach/

• SEC: http://kodu.neti.ee/~risto/sec/

• Syslog to MySQL: http://www.frasunek.com/sources/security/sqlsyslogd/

Books
• Friedl, Jeffrey E.F. Mastering Regular Expressions, Second Edition. Sebastopol, CA:

O’Reilly, 2002.

• Good, Nathan A. Regular Expression Recipes: A Problem-Solution Approach. Berkeley,
CA: Apress, 2004.

• Stubblebine, Tony. Regular Expression Pocket Reference. Sebastopol, CA: O’Reilly, 2003.

CHAPTER 5 ■ UNDERSTANDING LOGGING AND LOG MONITORING280

4444c05_final.qxd 1/5/05 12:52 AM Page 280

281

C H A P T E R 6

■ ■ ■

Using Tools for
Security Testing

So you think you have got world-class security and a hardened site and systems? But do you
really? Just because no one has penetrated your systems yet does not mean they are secure or
does it mean you should rest on your laurels. If you are serious about security, you need to be
constantly updating, refining, and, most important, testing your security and hardened sys-
tems. However, this by no means guarantees your security, as new exploits and vulnerabilities
are discovered on a daily basis, but it is the best way to become as confident as possible that
your systems are secure.

This chapter covers three layers of security testing: the inner security layer, the outer
security layer, and the application security layer. I define the inner layer as consisting of the
operating system of your systems, including such elements as your kernel security, file secu-
rity, and user and password security. Outer layer security consists of what is best described as
the “crust” of your system. These are your system’s network connections, ports, or anything
else that connects your systems to an intranet, the Internet, or other systems. The application
security layer consists of the security of the applications running on your system. In each chap-
ter where I discuss hardening a particular application, I will provide methods and tools to help
you test that particular application for any security holes or vulnerabilities. Additionally, one
of the outer layer security tools, Nessus, acts as a security scanner that often highlights poten-
tial issues with the applications or versions of applications you have running.

This chapter covers a variety of tools for testing the different layers of your security. Some
of these tools need to be installed on your local system (and some should be removed when
you are finished with them to prevent them from providing aid to an intruder), and some can
be run across your network or from another host. I will take you through installing and run-
ning those tools and how to interpret the results of those tools. These tools are by no means
the only tools available to you. Also, a variety of other security tools are useful. I will describe
some of those in the “Additional Security Tools” section.

Do not take the results of any of these tools as “security gospel.” They are fallible. When
a particular security tool tells you your systems are secure, it simply means they are secure
against all the exploits or vulnerabilities the author of that tool has envisaged or addressed.
You need to keep up-to-date with new vulnerabilities, bugs, and exploits and ensure your
systems and applications are up-to-date, as discussed in Chapter 1.

4444c06_final.qxd 1/5/05 12:53 AM Page 281

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING282

■Tip As previously mentioned, two good places to start if you want to keep track of vulnerabilities and
exploits are the Bugtraq mailing list (http://www.securityfocus.com/subscribe?listname=1), the
Vulnwatch site (http://vulnwatch.org/), and associated mailing lists.

This chapter also covers some methods of detecting a penetration that do not require any
tools. Lastly I will cover the worst-case scenario: someone has penetrated your system, and now
you need to know how to respond and recover. I will cover some general ideas about how to
respond and offer some advice on recovering your systems.

Inner Layer
Your inner layer security consists of the operating-system level of your system, including the
various programs, configurations, and settings that make up a well-secured and administered
system. The following sections cover three types of applications to assist with your inner layer
security. The first type is security-scanning software that can check for operating-system exploits,
root kits, weaknesses, and vulnerabilities. The second type is a password cracker that allows
you to test the security and strength of your system and users’ passwords. The third type of
software checks the security-related settings of your system.

Scanning for Exploits and Root Kits
A root kit is one variety of hacker tool kit. It can perform a number of functions depending
on the flavor of the root kit. The original core of most root kit applications was some kind of
network-sniffing tool designed to allow the attacker to find additional usernames and pass-
words. More recently, these functions have expanded to include capturing passwords using
Trojan programs, providing back doors into your system, and masking that your system has
been penetrated by purging or filtering logs. Root kits can also contain functionality designed
to hide the attacker’s logins and any processes they are running.

To install and run a root kit successfully, attackers need root access to your system. Thus,
they have totally compromised your system and are now looking to expand their hold on it.
Think about a root kit like a crowbar. Your attacker has penetrated your system, probably using
a username and password of a low-level user. They seize root access through an exploit and
use the root kit to pry open your system further, to grab other usernames and passwords, and
to provide themselves with a jumping-off point to attack other systems in your environment.

■Note I discuss reducing the risk of an attacker seizing root access in Chapter 1.

Recovery is going to be a long process. Your system has been seriously penetrated by the
time your attacker has installed a root kit. Even if he has only cracked open the door slightly,
there is still significant risk that he has subverted a variety of your resources. The first thing

4444c06_final.qxd 1/5/05 12:53 AM Page 282

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 283

1. RPM sometimes is incorrectly referred to as the Red Hat Package Manager. It is actually the abbrevia-
tion for RPM Package Manager, a command line–driven package management system that you can
use to install, uninstall, verify, query, and update software packages. It is not just limited to packages
developed by just Red Hat but is commonly used to distribute a variety of software packages.

most attackers do when they penetrate your systems is to secure their foothold, so it will be
harder for you to get rid of them. I recommend that if you spot a root kit, then you should pull
the plug on that system immediately and isolate it from your network. Then look at the rec-
ommendations later in the chapter in the “Detecting and Recovering from a Penetration or
Attack” section.

I will cover two tools that are capable of detecting a variety of root kits. These tools are by
no means infallible. They are generally not going to pick up root kits that are new or have changed
since the tools were released (depending on how they identify root kits). And they are not sub-
stitutes for actually knowing what is running on your systems, including activities such as on-
going log analysis and comprehensive systems monitoring. They are after-the-fact tools. They
are useful only for telling you what has happened after an attack. Finally, they are capable of
generating false positives. Some applications can appear to be acting like a root kit. So, inves-
tigate all results carefully before taking drastic action.

Rootkit Hunter
Rootkit Hunter helps you scan your system for signs of a root kit installed and to perform
a variety of other checks on related logs, commands, processes, and some configuration
settings. You can download Rootkit Hunter at http://www.rootkit.nl/projects/
rootkit_hunter.html. It is available in the form of a source download or an RPM.1 Down-
load it in the form that best suits you.

If you have downloaded it Rootkit Hunter in source form, unpack your source archive,
change into the created rkhunter directory, and install it using the command in Listing 6-1.

Listing 6-1. Installing via Source

puppy# ./installer.sh

If you have downloaded the RPM, you can install it using the command in Listing 6-2.

Listing 6-2. Installing via RPM

puppy# rpm -Uvh rkhunter-version.rpm

Rootkit Hunter installs a shell script, rkhunter, into /usr/local/bin and the rest of its files,
including Perl scripts and databases, into the directory /usr/local/rkhunter.

■Note You need Perl installed to run Rootkit Hunter correctly.

4444c06_final.qxd 1/5/05 12:53 AM Page 283

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING284

You can run Rootkit Hunter from the command line or via cron. Listing 6-3 shows a sam-
ple run of Rootkit Hunter.

Listing 6-3. Running rkhunter

puppy# rkhunter --checkall --createlogfile

Listing 6-3 is running rkhunter with --checkall, which runs all the Rootkit Hunter tests
and, with the option --createlogfile, creates a log file called rkhunter.log in /var/log. You
can use a variety of other useful command-lines options (see Table 6-1); I will discuss each
of them.

Table 6-1. Rootkit Hunter Command-Line Options

Option Description

--cronjob Runs as a cron job

--help Shows help

--nocolors Does not use colors in rkhunter output

--report-mode Cuts down report and is useful when running for crontab

--skip-keypress Runs in batch mode

--versioncheck Checks for the latest version of Rootkit Hunter

The first option, --cronjob, adjusts the output of Rootkit Hunter to be suitable to run as
a cron job. It is usually run in conjunction with the --report-mode option, which cuts down
the report to the essentials. The --cronjob option does not actually install the rkhunter as
a cron job. You need to add a crontab entry, such as in Listing 6-4, which runs the rkhunter
via cron and mails the results of the scan to the user or alias admin once a month at 9 p.m.

Listing 6-4. Rkhunter crontab Entry

0 21 1 * * /usr/local/bin/rkhunter --cronjob --report-mode 2>&1 ➥

|/bin/mail -s "Rootkit Hunter report" admin

The next option, --help, lists all the possible command-line options. You can use the
--nocolors option for those terminals that do not have color support. I discussed --report-mode
previously. The next option, --skip-keypress, runs Rootkit Hunter in batch mode and removes
prompts for key presses. The last option, --versioncheck, checks the Rootkit Hunter Web site
for a new version and reports if there is a new version and its version number.

So what does Rootkit Hunter report? Well, after some initial self-checks, it checks a list of
commonly penetrated binary commands for any sign they have been subverted. Listing 6-5
shows some of the results from this check.

4444c06_final.qxd 1/5/05 12:53 AM Page 284

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 285

Listing 6-5. Binary Command Checks

* System tools

Performing 'known bad' check...

/bin/cat [OK]

/bin/chmod [OK]

/bin/chown [OK]

/bin/csh [OK]

/bin/date [OK]

/bin/df [OK]

Then Rootkit Hunter checks for the presence of a variety of root kits and then finally for
a number of login back doors, root kit files, and sniffer logs. Check on the screen or the log file
if you use the --createlogfile option for any positive results.

Chkrootkit
Chkrootkit is another tool for checking for the presence of root kits. It also contains some
additional tools to check if interfaces are in promiscuous mode, to check lastlog and wtmp
deletions, and to check for hidden processes. (Although these additional tools run when you
run the primary chkrootkit script, you can also run them in a stand-alone mode.)

You can get Chkrootkit from http://www.chkrootkit.org/. You download a source archive
and unpack it to a directory. Enter that directory, and compile Chkrootkit using the command
in Listing 6-6.

Listing 6-6. Compiling chkrootkit

puppy# make sense

This will create a shell script called chkrootkit in the chkrootkit-version directory
together with the additional binary tools mentioned in the previous section. You can move
these files to a directory of your choice. Listing 6-7 shows how to do this.

Listing 6-7. Installing Chkrootkit

puppy# rm -f *.c Makefile

puppy# mkdir /usr/local/chkrootkit

puppy# mv * /usr/local/chkrootkit

You can run Chkrootkit from the command line or via cron, as you can see in Listing 6-8.

Listing 6-8. Running Chkrootkit from the Command Line

puppy# chkrootkit

You can run Chkrootkit without any command-line options, and it will perform all
available checks by default. You can also use the command-line options in Table 6-2 to alter
Chkrootkit’s behavior.

4444c06_final.qxd 1/5/05 12:53 AM Page 285

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING286

Table 6-2. chkrootkit Command-Line Options

Option Description

-d Debug mode

-q Quiet mode

-x Expert mode

-n Skips scanning NFS-mounted directories

-r directory Uses directory as the root directory

-p directory1:directory2 Alternate paths for the external commands used by chkrootkit

The -d option runs Chkrootkit in debug mode, which provides considerable amounts of
information about how Chkrootkit performs its checks. The -q option runs Chkrootkit in quiet
mode where it will return output only if it finds a root kit or suspicious result. This is useful if
you want to run Chkrootkit as a regular cron job. The -x option runs Chkrootkit in expert mode.
In expert mode Chkrootkit skips any analysis of the strings found in binaries files and leaves
any analysis to determine the presence of a Trojan to you. I recommend you pipe the output
from expert mode through more or into a file that you can then search using a tool such as grep.
The -n tells Chkrootkit to skip NFS-mounted directories.

The -r option allows you to specify an alternative location as the root directory. This is
useful if you have removed the disk or disks from a compromised system and mounted them
on another system (for example, an isolated test system). You can specify the root of the mount
as the starting point for your Chkrootkit scan.

Chkrootkit uses a variety of commands to perform its checks: awk, cut, egrep, find, head,
id, ls, netstat, ps, strings, sed, and uname. Of course, if your system has been penetrated, then
an attacker could have subverted these commands, too. This could mean that Chkrootkit has
unpredictable results or fails to identify the presence of an intrusion. Chkrootkit uses the -p
option to allow you to specify an alternate directory that you can populate with copies of the
commands you know are safe (for example, installed from your installation media). You can
list multiple directories separated by colons.

When run, Chkrootkit first checks a variety of binaries for the presence of Trojans. Listing 6-9
shows a sample of these results.

Listing 6-9. Sample chkrootkit Output

puppy# chkrootkit

ROOTDIR is `/'

Checking `amd'... not found

Checking `basename'... not infected

Checking `biff'... not found

Checking `chfn'... not infected

Checking `chsh'... not infected

Checking `cron'... not infected

Checking `date'... not infected

Checking `du'... not infected

Chkrootkit then checks for the presence of log files from sniffer programs and then for the
presence of a variety of root kits.

4444c06_final.qxd 1/5/05 12:53 AM Page 286

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 287

2. http://geodsoft.com/howto/password/cracking_passwords.htm#howlong

3. http://zdnet.com.com/2100-11-530187.html?legacy=zdnn

4. http://www.crypticide.com/users/alecm/

Testing Your Password Security
Chapter 1 talked about controlling the variables associated with your passwords to ensure
that your users must use the most secure passwords possible. It also talked about ensuring
you use modern password-encryption techniques such as MD5 and shadow passwording.
Although this greatly enhances the security of your password, it is not always a guarantee that
your passwords are totally impenetrable. Further testing is a good idea to add further reassur-
ance that your passwords are strong and secure. I will show you how to use the password
cracker John the Ripper to test the strength of your passwords.

■Caution Password cracking can be construed as a serious attack on a system. Do not run password crack-
ing on a system that you do not control or do not explicitly have permission to run password cracking on.

The two most common forms of password cracking are brute-force and dictionary-based
cracking. Brute-force cracking requires throwing computing resources at a password you want to
crack. Usually a brute-force password-cracking program generates character sequences starting
with one character and then incrementing from there and testing those character sequences
against the password. This often requires considerable time and resources, and if your passwords
are secure, then an attacker is unlikely to break them unless they are prepared to very patient. For
example, a random password of eight characters in length and created from the 94 displayable
ASCII characters would take a cracker approximately 1,930 years to crack using a typical desktop
PC.2 Of course, the more computing power you can throw at problem, the shorter you can make
this time. Thus, password cracking highly lends itself to using parallel processing and using multi-
ple systems to work on cracking passwords simultaneously.

The second form of password cracking relies on inputting a dictionary of potential pass-
words, encrypting them using the algorithm used by your password encryption, and then test-
ing them against the encrypted password. This sort of cracking assumes users have chosen
everyday words or combinations of everyday words as their passwords. This is quite common
unless you force your users not to use this style of password. The system administrator’s cliché of
easily hacked systems with passwords such as sex, god, and love is still alive and well out there.
Given the choice, your users will want to use a password they can easily remember, often con-
taining personal information such as birthdays or pets’ names rather than a complex string of
characters and symbols.3 This is simply the most dangerous form of password, and I strongly
urge you not to let your users use any word that is a dictionary word for a password.

Running a password cracker over your password files on a regular basis is a good way to
ensure your users are not choosing weak or easy-to-guess passwords.

Introducing John the Ripper
I use a password cracker called John the Ripper (JTR). A few password crackers are available,
including the now venerable Crack.4 I have chosen to cover JTR because it is regularly

4444c06_final.qxd 1/5/05 12:53 AM Page 287

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING288

updated, fast, and fairly simple to use. The other consideration I am making is that it is a known
quantity. Consider this scenario: You decide you would like to test your passwords and go to a
search engine and type in password cracking my Linux root password. You are directed to a page
with a useful-looking piece of software that you then download and install. It turns out to be
a Trojan horse program, which at the very least does something malicious with any password
files it tests or passwords it cracks if not actually root kits on your system. So you want to make
sure you download a safe password cracker.

Download JTR from http://www.openwall.com/john/, preferably verifying it using its MD5
signature.

■Note I used JTR version 1.6.37 for this explanation.

Unpack the archive, and change to the src directory. You have to tell JTR what sort of
system you are running. Type make to see a list of potential systems. Listing 6-10 shows the
possible Linux-based builds you can compile.

Listing 6-10. Compiling John the Ripper

puppy# make

To build John the Ripper, type:

make SYSTEM

where SYSTEM can be one of the following:

linux-x86-any-elf Linux, x86, ELF binaries

linux-x86-mmx-elf Linux, x86 with MMX, ELF binaries

linux-x86-k6-elf Linux, AMD K6, ELF binaries

linux-x86-any-a.out Linux, x86, a.out binaries

linux-alpha Linux, Alpha

linux-sparc Linux, SPARC

If you have an Intel system, then your best choice is to compile JTR by entering the
following:

puppy# make linux-x86-any-elf

This will create a binary called john in the directory john-version/run.
You run JTR from the command line, and Listing 6-11 shows a basic run of JTR.

Listing 6-11. JTR on the Command Line

puppy# john --wordlist=password.lst passwd

Listing 6-11 shows JTR performing a dictionary-based attack using a list of words con-
tained in the file password.lst against passwords contained in a file called passwd. JTR comes
with a simple file, password.lst, which is a collection of popular passwords. You will need
to need find some additional dictionaries and word lists, including word lists in other lan-
guages, especially if you have users who speak English as a second language and may use

4444c06_final.qxd 1/5/05 12:53 AM Page 288

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 289

foreign-language words as passwords. This does not make it any harder for attackers to pene-
trate their passwords. Attackers also have access to foreign language dictionaries and word
lists.

■Tip You can find dictionary files in a few places. Try ftp://ftp.cerias.purdue.edu/pub/dict/ and
ftp://ftp.ox.ac.uk/pub/wordlists/ for a variety of lists, including several foreign-language lists.

Customizing John the Ripper
JTR comes with a number of command-line options you can use to modify its behavior. I will
show you the list of the most useful in Table 6-3 and take you through their functions. You can
see the others by running the john binary without options from the command line.

Table 6-3. John the Ripper Command-Line Options

Option Description

--wordlist=file | --stdin Reads in a word list or text from standard in

--stdout=length Outputs passwords to standard out instead of cracking

--session=name Gives this cracking session a name

--status=name Prints the status of a particular session

--restore=name Restores a previous stopped session

--show Shows any passwords JTR has cracked

--test Performs benchmark testing

You saw the first option, --wordlist, in Listing 6-11; it allows you to test your passwords
against a list of words or a dictionary specified after the = symbol. Or you can add the option
--stdin to this option and read in a list of words from standard input, which is useful for
inputting passwords to be tested programmatically. The second option, --stdout, does not
actually crack passwords but rather outputs the list of words and combinations of characters
that JTR would be testing against your passwords.

The next three options relate to starting, stopping, and restarting JTR. Obviously, some crack-
ing efforts may take a long time. JTR allows you to stop and restart a session later if required. To
do this when first starting JTR, add the option --session=name, replacing name with the name you
want for this session. You can then stop that session using Ctrl+C, check the status of that session
later, and then, if you want, restart it. Listing 6-12 shows how to stop, check the status of a session,
and then restart that session.

Listing 6-12. Starting, Printing the Status of, and Restarting a Session

puppy# john --session=testsess passwd.1

Loaded 2 password hashes with 2 different salts (FreeBSD MD5 [32/32])

guesses: 0 time: 0:00:00:02 0% (2) c/s: 1896 trying: ranger

Session aborted

puppy# john --status=testsess

puppy# ./john --restore=testsess

4444c06_final.qxd 1/5/05 12:53 AM Page 289

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING290

The following option, --show, prints any passwords that JTR cracked in its last session.
The final option, --test, allows you to run benchmarking tests on your system to determine
how fast it is capable of cracking particular encryption formats. This is useful for choosing
a suitable machine on which to run JTR.

Most systems these days use shadow passwording. JTR comes with a function that allows
you to create a file, combining your passwd and shadow files, that JTR can use to attempt to
crack your shadow passwords. Listing 6-13 shows how to do this using the unshadow binary
in the run directory.

Listing 6-13. Creating a File for Cracking Shadow Password Files

puppy# unshadow /etc/passwd /etc/shadow > passwd.1

This combines the contents of your passwd and shadow files into a file that JTR can attempt
to crack.

You can also run JTR using a brute-force method. Listing 6-14 shows JTR running brute
force against the passwd.1 file created in Listing 6-13.

Listing 6-14. Running in Brute-Force Mode

puppy# john passwd.1

Be prepared to wait a long time using this method to crack a reasonably secure password!
I cannot tell you how often to run your password-cracking software. I recommend if this

is a new procedure to you, or you have recently tightened your password rules, you should be
regularly running password-cracking software to ensure all your passwords have been made
more secure. JTR also comes with an additional script, mailer (also in the run directory), that
you can modify and use to mail to any users that JTR finds with weak passwords. You can also
incorporate JTR into a script of your own and disable or expire the passwords of any users JTR
finds with weak passwords. After securing your passwords, I recommend you consider adding
a JTR dictionary-based scan to the cycle of your regular security checks. Perhaps on a weekly
or monthly basis timed in conjunction with your password expiry and automated with a cron

job or script.

Automated Security Hardening with Bastille Linux
On a Linux system a number of possible settings can have an impact on security. In this book,
I have tried to cover a lot of the basic settings that you need to secure your system and overall
how to implement a hardened security configuration methodology. However, a lot of individ-
ual settings can be overlooked or are time consuming to modify and secure. I cover an appli-
cation, Bastille Linux, which will help you secure many of those items.

What Is Bastille Linux?
Bastille Linux (hereafter Bastille) is a Perl-based hardening “script.” Bastille can be run in a graph-
ical mode under X or via the console. It is designed to harden or tighten a variety of system secu-
rity settings. Essentially Bastille takes system administrators through a variety of potential options
they can control, tries to educate the administrator about those options and the implications of

4444c06_final.qxd 1/5/05 12:53 AM Page 290

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 291

5. Comprehensive Perl Archive Network

a variety of settings, and then provides the option (with a clear explanation of the consequences)
to change those settings to make them more secure.

Currently Bastille supports a variety of platforms including several Linux flavors: Red Hat,
Mandrake, SuSE, Debian, and TurboLinux. Bastille was primarily developed by Jon Lasser and
Jay Beale and is available at http://www.bastille-linux.org/. It is an open-source application
that is freely available under a GPL license.

I will take you through installing and using Bastille Linux. I will not cover every poten-
tial security setting that you can manipulate with Bastille because the Bastille team already
provides excellent documentation about the various security settings and the implications
of changing those settings. I will also take you through how to undo any changes you have
made with Bastille.

Installing Bastille Linux
You can get Bastille from the Bastille site at http://www.bastille-linux.org/. It requires some
additional prerequisites, perl-TK (if you want to use the graphical interface) and perl-Curses
(if you want to use the console-based tool), that you need to install before you can install Bastille.
Let’s look at installing those first. I will show how to install both to give you the option of either
using the graphical application or using the console-based installation. You can install these
prerequisites via RPM or download and compile them via CPAN.5 CPAN is potentially less secure
than an RPM whose signature has been verified from a secure source; you need to assess the
risk here. Probably the easiest and safest path is to install the RPMs recommended for your ver-
sion of your distribution and ensure you use their MD5 signature to verify their integrity. Bastille
provides a compatibility table for a variety of Linux versions that indicate which are the rec-
ommended versions and sources for the required prerequisites. You can find this chart at
http://www.bastille-linux.org/perl-rpm-chart.html.

■Note Also, packages are available for Debian at http://packages.debian.org/cgi-bin/
search_packages.pl?searchon=names&version=all&exact=1&keywords=bastille.

Because so many versions of the prerequisites exist depending on the distribution and
version of that distribution you are using, I will cover installing on Red Hat 9 as a baseline; you
can adapt this installation to accommodate your specific requirements based on the required
combinations of prerequisites. From the compatibility chart, you can see I need to download
the following RPMs:

http://download.atrpms.net/production/packages/redhat-9-i386/atrpms/➥

perl-Tk-804.027-8.rh9.at.i386.rpm

http://download.atrpms.net/production/packages/redhat-9-i386/atrpms/➥

atrpms-56-1.rh9.at.i386.rpm

http://www.bastille-linux.org/perl-Curses-1.06-219.i586.rpm

4444c06_final.qxd 1/5/05 12:53 AM Page 291

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING292

Download the RPMs, and install them on your system.

puppy# rpm -ivh atrpms* perl-Tk*

Preparing... ### [100%]

1:atrpms ### [100%]

2:perl-Tk ### [100%]

puppy# rpm -ivh perl-Curses-1.06-219.i586.rpm

Preparing... ### [100%]

1:perl-Curses ### [100%]

Now download the current version of Bastille, which at the time of writing is
version 2.1.2-01, and install it.

puppy# rpm -ivh Bastille-2.1.2-0.1.i386.rpm

Preparing... ### [100%]

1:Bastille ### [100%]

Bastille is now installed and ready to use.

Running Bastille
Running Bastille is easy. You can run it in interactive or noninteractive (or batch) modes. The
first mode allows you to answer Bastille’s configuration questions on the screen interactively.
The second mode allows you to adjust your configuration based on the information contained
in a file. This means you can quickly replicate the security settings of a previous run of Bastille
onto the system, which is useful for replicating security settings across multiple systems. You
need to run Bastille interactively only once, take the configuration file it has created, and then
run Bastille with that configuration file on any other systems. Starting it in interactive mode is
simple; you can see the required command in Listing 6-15. It will generally detect whether it
is able to start in console or graphical mode, or you can override that with a command-line
switch.

Listing 6-15. Starting Bastille

puppy# bastille

Bastille has some additional command-line switches that are useful; I will take you through
those next. Table 6-4 lists all the potential Bastille command-line switches available at the time
of writing.

Table 6-4. Bastille Linux Command-Line Switches

Switch Description

-h Displays help text for the Bastille command

-c Uses console mode

-x Uses the graphical mode

-b Uses batch mode and a saved configuration file

-l Lists the configuration file from the last run of Bastille

-r Reverts Bastille changes

4444c06_final.qxd 1/5/05 12:53 AM Page 292

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 293

The first option, -h, displays some help text for Bastille’s command-line operation. The
next two options allow you to specify what mode you would like Bastille to run in: -c for con-
sole mode and -x for X-Windows. The next option, -b, tells Bastille to run in batch mode and
apply the configuration contained in the /etc/Bastille/config file to the system. As discussed
previously, this is useful for ensuring multiple systems have the same security settings.

If you run Bastille using the -b switch, then you need to have a configuration file contain-
ing the Bastille run you would like to duplicate in the /etc/Bastille/ directory in a file called
config. Listing 6-16 shows the start of a Bastille run using an already existing configuration.

Listing 6-16. Running Bastille Linux in Batch Mode

puppy# bastille -b

NOTE: Entering Critical Code Execution.

Bastille has disabled keyboard interrupts.

NOTE: Bastille is scanning the system configuration...

Bastille is now locking down your system in accordance with your

answers in the "config" file. Please be patient as some modules

may take a number of minutes, depending on the speed of your machine.

The next option, -l, requests the location of the file containing details of the last inter-
active run of Bastille performed. Finally, the -r option allows you to revert to your previous
configuration. I will cover that option a little further on in this section.

I will show you how to use Bastille running in console mode. To launch Bastille, run the
following:

puppy# bastille -c

If this is the first time you have run Bastille, it will show you its license and disclaimer. To
acknowledge the license and disclaimer, type accept when prompted, and Bastille will show
you a screen explaining how to use the console-based text interface. Bastille uses a simple set
of controls. You can use the Tab key to move between menu items and options and Enter to
select the required option. Thus, from the explanation screen, you can select the < Next >
option using the Tab key and hit Enter to continue through and launch the first of the configu-
ration screens.

Figure 6-1 shows you the first configuration screen.
So what does Bastille do? Well, it runs a variety of modules that allow you to configure

system-level security. These modules include such features as the following:

• Securing administration utilities

• Removing setuid from a variety of tools

• Setting password aging

• Setting a default umask

• Protecting GRUB and single-user mode

• Restricting root logons

4444c06_final.qxd 1/5/05 12:53 AM Page 293

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING294

Bastille explains in some detail what making each change will entail and why it is useful
or more secure to change a particular setting; I recommend reading carefully through each
section before making any changes.

■Tip After you have run Bastille, you need to reboot your system! This is important, and without it the
Bastille hardening process will not be fully active.

You can also undo the changes you have made on your system with Bastille. To do this,
run the command shown in Listing 6-17.

Listing 6-17. Undoing the Bastille Changes

puppy# bastille -r

This generally works fine, but a caveat is associated with using this. If you have changed
a great deal of your configuration since running Bastille, it may not properly recognize what
needs to be undone. In this case, Bastille will terminate with an error rather than try to revert
your configuration to what was previously stored.

Figure 6-1. Bastille’s text user interface explanation screen

• Disabling insecure network services

• Restricting use of the compiler

• Configuring firewalling

4444c06_final.qxd 1/5/05 12:54 AM Page 294

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 295

6. K Desktop Environment

Bastille Logging
Finally, you can see a log of what Bastille has done. These logs are located in /var/log/Bastille.
Two principal logs are generated: action-log and error-log. You should check them both to con-
firm the actions Bastille has taken and any potential errors generated during the Bastille process.
Listing 6-18 shows a sample of the contents of the error-log file.

Listing 6-18. Bastille Linux error-log File

{Mon May 24 10:55:34 2004} ERROR: open /etc/pam.d/kde failed.

{Mon May 24 10:55:34 2004} # Couldn't prepend line to /etc/pam.d/kde, ➥

since open failed.

{Mon May 24 10:55:34 2004} ERROR: Unable to open /etc/pam.d/kde as ➥

the swap file etc/pam.d/kde.bastille already exists. Rename the swap ➥

file to allow Bastille to make desired file modifications.

{Mon May 24 10:55:34 2004} ERROR: open /etc/pam.d/kde.bastille failed...

{Mon May 24 10:55:34 2004} ERROR: open /etc/pam.d/kde failed.

{Mon May 24 10:55:34 2004} # Couldn't append line to /etc/pam.d/kde, ➥

since open failed.

These are mostly harmless errors indicating that KDE6 is not installed. But you should
review the file for other potential errors that could indicate that part of the hardening process
has failed. This has the potential to leave your system exposed without your knowledge.

Outer Layer
Your outer layer security is critical; not only is it the first line of defense for your system, but it
is also the layer most commonly targeted by people seeking information about your system.
An attacker can tell a lot about your system and the applications running on it from examining
that outer “crust,” including what ports are open and applications you have running. Indeed,
many common applications and daemons routinely respond to queries with their name and
version that greatly assists attackers in tailoring exploits and picking the vulnerabilities of your
system.

The following sections cover two useful tools, NMAP and Nessus, that will allow you to
see what potential attackers see when they scan your system. Both tools perform different
functions. The NMAP tool is a powerful network scanner/mapper, and Nessus is a security
and vulnerability scanner that will help you find potential exposures in your systems and
applications and will offer suggestions for resolving them.

■Caution Scanning a system you do not own is not only rude but could readily be construed as an attack
in its own right. If you are going to scan hosts and devices across a network or over the Internet, ensure you
have carefully selected only those hosts that you either control or have permission to scan. The safest course
of action when dealing with hosts you do not personally administer is to get permission in writing from the
owner or administrator of those hosts or devices to scan them.

4444c06_final.qxd 1/5/05 12:54 AM Page 295

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING296

NMAP
One of the easiest to use and most powerful tools available to you is NMAP, the Network
Mapper. NMAP is designed for network exploration and security auditing. It can scan a host
or series of hosts using IP packets looking for hosts and devices and the ports, services, and
applications running on those hosts and devices. It also uses sophisticated fingerprinting to
determine what sort of host or device it is scanning and to detect operating systems and
firewalls. NMAP also allows you to save the results of your scan in a variety of forms that are
useful for system and security administrators to manipulate. NMAP is a complicated tool;
I will cover the key elements that make it so useful. If you want more detailed information
on some of NMAP’s more sophisticated functions, please use the man pages and resources
available on the NMAP Web site. NMAP is open source and comes by default with most dis-
tributions of Linux.

■Tip If you actually have access to the system you are scanning, it is often much easier to use the
netstat -a command to find out what ports are open on that system.

If NMAP is not on your system, you can get it in a number of ways. The easiest way is to
check the usual methods you use to update your distributions: apt-get, yum, up2date, emerge,
and so on, for an NMAP package in the form used by your distribution. If you cannot find one
using this method or want to get the latest version of NMAP, it is available in source form, RPMs,
and binaries on the NMAP Web site at http://www.insecure.org/nmap.

If you get the source archive, then compiling NMAP is a simple process. Unpack the archive,
and change into the resulting directory. When compiling, you may want to specify some config-
ure variables, such as the location of your OpenSSL installation that is used by NMAP. You can do
that by specifying configure flags, as follows:

puppy# ./configure --openssl=/path/to/openssl

Then make and install NMAP by entering the following:

puppy# make && make install

By default NMAP will be installed to /usr/local/bin, but you can also override this during
the ./configure process using the -prefix option.

NMAP is a command-line tool and comes with a front end that works in X. I will show
running NMAP from the command line. You can run NMAP by typing the command in
Listing 6-19.

Listing 6-19. Basic NMAP Scan

puppy# nmap 192.168.0.1

This will scan the host 192.168.0.1 (or any other IP address you specify) using a TCP
SYN scan. (The example assumes you are logged in as root.) It would return something like
Listing 6-20.

4444c06_final.qxd 1/5/05 12:54 AM Page 296

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 297

7. IDS stands for Intrusion Detection System.

Listing 6-20. NMAP Output

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-03-17 16:20 EST

Interesting ports on host.yourdomain.com (192.168.0.1):

(The 1657 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

80/tcp open http

8080/tcp open http-proxy

Nmap run completed -- 1 IP address (1 host up) scanned in 3.930 seconds

This response shows it scanned 192.168.0.1 and found that ports 80 and 8080 were open,
probably indicating this system is running a Web server and a proxy server. NMAP also has a
lot of additional types of scans, other options that modify your scans, and ways to scan multi-
ple hosts or even whole subnets.

The NMAP command line breaks down into three sections.

puppy# nmap [scan type(s)] [options] <host(s) or network list>

I will cover each section of the command line separately.
The first section of the NMAP command line is scan types. Each scan type is prefixed

with a hyphen (-); for example, you can use -sS for the TCP SYN stealth port scan, which is
the default if you run NMAP as root. Several possible scan types address different user require-
ments. Table 6-5 shows the most common types, and I will go through each of them and
explain their purposes. You can use other scan types that you find out about through the
NMAP man page.

Table 6-5. NMAP Scan Types

Scan Type Description

-sS TCP SYN stealth port scan (default for root user)

-sT TCP connect() port scan (default for normal user)

-sU UDP port scan

-sP Ping scan

The three basic types of NMAP scan most useful to you will be the types -sS, -sT, and -sU.
The first two are TCP-based based scans, each of which approaches the scanning process quite
differently, and the last is UDP based. The first TCP type is -sS, or TCP SYN scanning, also
known as stealth scanning. In this type of scan, NMAP sends a SYN packet to the target port
and requests a connection. The target will respond with a SYN/ACK packet telling NMAP
whether the port is open. When NMAP receives that SYN/ACK packet, it sends an RST packet
rather than responding with an ACK packet to the target and terminates the connection. The
objective is that by not making a full three-way connection to the target, the scan is “stealthy”
in nature. These days, however, most IDS7 systems such as Snort detect SYN scans, and many
network devices such as firewalls and packet filters reject SYN packets.

4444c06_final.qxd 1/5/05 12:54 AM Page 297

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING298

8. Requirements for IP Version 4 Routers (http://www.faqs.org/rfcs/rfc1812.html)

9. ICMP is an acronym for Internet Control Message Protocol as defined in RFC 792 (http://
www.faqs.org/rfcs/rfc792.html).

10. http://securityresponse.symantec.com/avcenter/venc/data/linux.slapper.worm.html

■Tip By default I recommend you configure your local firewall (iptables, for example) to reject some
combinations of packets with certain TCP flags. See Chapter 2 for more details on this.

The second type of TCP scan is -sT, or TCP connect() scanning. This is a basic form of TCP
scan. Here NMAP uses connect() to make a connection to a port to determine if the port is open.
This is a fast and simple way of scanning, but connect()-based scans should be immediately obvi-
ous to all good IDS systems because you will see a flurry of connect()’s logged to all the listening
ports on your target that are then immediately dropped. This will also potentially generate a lot of
error messages in some application logs.

The last of the basic scan types is -sU, which is a UDP-based scan. UDP scanning is very
basic. NMAP sends a zero-byte datagram to a target port and awaits an error response from that
port. If NMAP receives an error response, then the port is closed; otherwise NMAP assumes the
port is open. This can sometimes be misleading because a lot of firewalls block the error response
messages, so occasionally it is hard to present a truly accurate picture of which UDP ports are
open. UDP scanning is also slow because, as per RFC 1812,8 many Linux distributions limit the
number of ICMP9 error messages that are generated at a time, which means you can often wait
a long time for all responses to be received if scanning a lot of ports. Many people consider that
these two limitations to UDP scanning make it useless as a scanning technique. I do not agree.
A lot of Trojan and worm programs lurk on UDP ports; the W32.Blaster worm, for example, uti-
lizes the tftp port of 69, or on Linux the various variants of the Apache/mod_ssl or Slapper worm
utilize UDP ports 1978, 2002, or 4156.10 It is a good idea to get the best possible picture of what is
running on the UDP ports of hosts and devices in your network. The more complete picture you
have of the services and applications on your network, the easier it is to recognize and address
vulnerabilities and exploits.

Another sometimes useful type of scan is -sP, which is “ping-only” scanning. This sim-
ply sends an ICMP echo packet to all specified hosts to see if they respond. Any hosts that
respond are considered “up.” The -sP option can also use the -Px option (which you can see
detailed in the NMAP man page) to change the way it queries target hosts to determine if
they are up. This can be useful when ICMP echo packets are disabled on your network, as
is common in many places as a result of the variety of worms and viruses that have sub-
verted ICMP traffic.

If you do not specify a scan type on the command line, NMAP uses a different default
scan type depending on your level of security. If you are signed on as root, then NMAP will
default to the -sS, TCP SYN scan type. Any other user will default to the -sT, connect() scan
type.

You can modify each of these scan types with various options. Each option is prefixed by
a hyphen, -. A large number of possible options for NMAP exist; Table 6-6 lists the most useful
options. I will explain in more detail the use of some them after the table.

4444c06_final.qxd 1/5/05 12:54 AM Page 298

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 299

11. The similar tool Xprobe (http://www.sys-security.com/html/projects/X.html) has operating-system
fingerprinting as its primary purpose.

Table 6-6. NMAP Options

Options Description

-O Uses TCP/IP fingerprinting to guess the target’s operating system.

-p range Only scans a range of ports (in other words, -p 21 or -p 1,34,
64-111,139).

-F Only scans ports listed in the file nmap-services.

-v Increases NMAP’s verbosity. You can use -vv for further details.

-P0 Does not ping hosts; this is useful when ICMP traffic has been
disabled.

-T Paranoid|Sneaky|Polite| Timing policy. Can also be expressed as T1–T5.
Normal|Aggressive|Insane

-n/-R Never does DNS resolution or always resolves.

-S IP_Address The source IP address of your scan.

-e devicename The source interface of your scan.

-6 Causes NMAP to scan via IPv6 rather than IPv4.

-oN/-oX/-oG/-oA logfile Outputs normal, XML, “grepable,” or all types of scan logs to
logfile.

-iL inputfile Gets potential targets from a file or uses - for standard input.

One of NMAP’s most useful functions is the ability to try to guess what the device you are
scanning is based on operating-system fingerprinting.11 To enable this functionality, use the -O
option. If NMAP can find one open and one closed port on the target host, it will try to finger-
print the host’s operating system and often the version of the operating system. You can see the
full list of fingerprints in the file /usr/share/nmap/nmap-os-fingerprints. If NMAP cannot iden-
tify the operating system of the target host, it will provide a URL, http://www.insecure.org/
cgi-bin/nmap-submit.cgi, which provides instructions on how you can add the fingerprint of
that device to NMAP to help improve the operating-system fingerprint database. So be a good
open-source citizen and contribute.

The -O option also includes two other functions. These are a TCP uptime option and a TCP
Sequence Predictability Classification option. These options try to determine how long a device
has been up for and to determine the statistical probability of being able to establish a forged
TCP connection to the device. If you use the verbose option -v, NMAP will provide a descrip-
tion of the difficulty (for example, “Worthy Challenge” or “Formidable”).

■Tip You can find more information about operating-system fingerprinting at http://
www.insecure.org/nmap/nmap-fingerprinting-article.html.

4444c06_final.qxd 1/5/05 12:54 AM Page 299

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING300

The port range option, -p, is useful if you want to scan only some ports. You can specify
one port, many ports, or a range of ports. You can also specify a particular protocol by prefix-
ing the port or port range with U: or T:. Listing 6-21 shows UDP port 53 and TCP ports 111 to
164 of the 192.168.0.* network being scanned. If you specify both UDP and TCP ports, you
need to select a TCP scan type, such as -sT, and the UDP scan type, -sU.

Listing 6-21. Scanning a Port Range

puppy# nmap -sT -sU -p U:53,T:111-164 192.168.0.*

You can also use the -F option that scans only those ports in the nmap-services file. The
file contains the most commonly used ports and means your scan, whilst not being complete,
will be considerably faster than if NMAP had to scan all 65,535 ports.

You can get considerable detail from NMAP by using the -v and -vv switches, which
increase the amount of information NMAP generates when run. I recommend using at least
-v for most NMAP runs.

NMAP is also able to use a variety of ping types to check for the presence of hosts. This
is most useful where ICMP (ping) traffic has been disabled on the target hosts or even on
the whole network. To perform your scan without NMAP trying to ping the hosts, use the
-P0 option as shown in Listing 6-22. You can use a variety of other ping types (including
using multiple ping types in combination to increase the chances of being able to ping
hosts), and you can see the NMAP man page for these.

Listing 6-22. Using the -P0 Option

puppy# nmap -sT -P0 -v 192.168.0.1

You can also adjust the speed at which NMAP scans your hosts and networks by using dif-
ferent timing policies. You do this using the -Tx option. You have five possible timing policies
ranging from -T0 to -T5 (or Paranoid to Insane). Depending on what is selected, NMAP cus-
tomizes its approach. With the Paranoid timing policy, NMAP serializes all scans and waits at
least five minutes between sending packets, which is aimed at avoiding detection by an IDS
system, whereas the Insane timing policy is designed for very fast networks and waits only 0.3
seconds for individual probes. By default if you do not specify a timing policy, NMAP uses the
-T3 or Normal timing policy, which tries to run as fast as possible without overloading your net-
work or missing any hosts or ports.

■Caution Be careful using the -T5 or Insane timing policy, as you can easily lose data, which can result
in a very poor scan of your network.

The -S option is useful if NMAP is unable to determine the source address it should be
using for the scan. Used in combination with the -e option, it allows you to specify the IP
address and interface that NMAP should use to conduct the scan.

The output options (-oX, -oG, -oN, and -oA) allow NMAP to output the results of its scan in
a variety of forms. You specify one of the selected output types and then specify the name of

4444c06_final.qxd 1/5/05 12:54 AM Page 300

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 301

a file to store that output. NMAP will automatically create the file; or, if you already have an
existing file you want to add to, you can use the -append_output option. The first output type,
-oX, will present the results of the NMAP scan in XML format. This is useful for populating moni-
toring tools such as Nagios or to provide an input source for a script. The second, -oG, presents
the scan results in a single line to make it easier to grep the resulting file for the results you want.
The -oN option will present the results of a scan in a human-readable form much the same as the
results that are displayed on the screen when you run NMAP interactively. The last option, -oA,
tells NMAP to output to all three forms. If you specify a filename, then NMAP will create output
files: yourfilename.grep, yourfilename.normal, and yourfilename.xml. Listing 6-23 shows an
NMAP scan outputting in all output forms.

Listing 6-23. Outputting a Scan in All Output Types

puppy# nmap -sT -P0 -vv -oA yourfilename 192.168.0.1

The last option, -iL, allows you to input target hosts and networks from a file. Specify
a filename with a collection of target specifications (which I will describe next) all separated
by spaces, tabs, or newlines. You can also specify the hyphen, -, for standard input to allow
you to pipe in a target from the command line or a script.

This leads me into the last section of the NMAP command line: target selection. You can
specify targets in the form of single IP addresses or hostnames (for example, 192.168.0.1). You
can specify a list of IP addresses and hostnames by separating each with a space. If you want
to specify an entire network, you can do that in a number of ways. The first is by adding the
netmask in the form of /mask; for example, 192.168.0.0/24 will scan the entire 192.168.0.0
Class C network. The second method is to use asterisks (*) to indicate an entire network; for
example, 192.168.0.* will scan all the hosts of the 192.168.0.0 network from 1 to 254. You
can also specify ranges, with the upper and lower ranges separated by a hyphen (for example,
192.168.0.100-150).

Listing 6-24 shows some typical NMAP scans; I will break down their functionality.

Listing 6-24. NMAP Scans

puppy# nmap -sT -P0 -v -F 192.168.0.1-64

puppy# nmap -sT -P0 -p 1-1024 -v 192.168.0.*

puppy# nmap -sU -vv -oX xmlscan 192.168.0.1

The first scan uses TCP SYN scanning (-sT), does not use ICMP (-P0) to scan the ports
contained in the nmap-services (-F) of the target hosts 192.168.0.1 to 192.168.0.64
(192.168.0.1-64), and outputs the data in a verbose form (-v) to standard output.

The second scan shows a port-ranged scan also using a TCP SYN scan with no ICMP
pings. The scan will scan the port range of 1–1024 of every host in the 192.168.0.0 network
and outputs in a verbose form to standard output.

The last scan is a UDP scan of one host, 192.168.0.1, which will produce very verbose
output (-vv) in the form of an XML file called xmlscan (using the -oX output option).

These examples and the preceding explanation should indicate how to use NMAP to find
out about open ports on your hosts, on your devices, and across entire networks. NMAP comes
with a lot of additional options and capabilities that I recommend you explore using the NMAP
man page.

4444c06_final.qxd 1/5/05 12:54 AM Page 301

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING302

Nessus
Nessus is a security and vulnerability-scanning tool that attempts to scan and determine from
the ports open on your hosts if any of your running applications are exploitable. You can run it
across remote networks or on a local system. It consists of a client-server model with two com-
ponents: the server daemon nessusd and the client nessus. The server uses a collection of exter-
nal plug-ins separate from the core Nessus daemon that allows you to also update or create
your own plug-ins without changing the core code of the Nessus package.

■Tip You can create plug-ins in C or using the built-in Nessus Attack Scripting Language (NASL). You can
read about NASL at http://www.nessus.org/doc/nasl2_reference.pdf.

Nessus plug-ins are regularly updated by the development and support team, and you
can update your collection of plug-ins using a single command.

The scans that Nessus conducts are quick and take place on multiple hosts as simultane-
ously as possible. Nessus can also output reports in a variety of forms, including HTML, PDF,
LaTeX, and plain text. Overall, Nessus is a powerful and extremely useful tool that, if kept up-
to-date, will help you determine if any of your systems suffer from vulnerabilities or could be
subject to exploits. I will show you how to install and run Nessus in your environment and
how to use the results to get the best possible information from Nessus.

■Caution Nessus is a powerful tool, and some of its scans can be dangerous to your systems. Whilst
testing for certain exploits, it is possible that some applications or even entire systems can crash. Unless
you know precisely what you are testing for, do not run Nessus on a production system without considering
the possibility that it could result in a system crash or application outage.

Installing Nessus is actually quite easy. This is because the team behind Nessus provides
an automated installation script you can download from a variety of FTP and HTTP servers.
But before you do that, you need a couple of prerequisites. The first is the Gimp Toolkit (GTK)
version 1.2, and the second is OpenSSL. OpenSSL is not absolutely required, but I strongly
urge you to install it—though I hope you would already have it installed. Nessus uses OpenSSL
for both securing client-server communications and for testing OpenSSL related services.

Many distributions have GTK installed by default, and a good way of finding out whether
it is installed is to try the following command:

puppy# gtk-config --version

The command should return the version of GTK; for example, on the puppy system, it is
1.2.10. If you have GTK version 1.2 or later, then you can continue with your install of Nessus.
If not, you can get GTK from ftp://ftp.gimp.org/pub/gtk/v1.2. You will also need the latest
version of the glib libraries, which are also available at the same FTP site. Unpack the archive
of the latest version of glib, and configure it by entering the following:

puppy# ./configure

4444c06_final.qxd 1/5/05 12:54 AM Page 302

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 303

Then make glib by entering the following:

puppy# make

Finally, as root, install glib by entering the following:

puppy# make install

Now unpack the GTK archive, and perform the same steps you undertook to install glib
to install GTK.

Once you have the latest version of GTK and glib installed, you are now able to install
Nessus. As mentioned earlier, Nessus comes with a shell script that you can download from
a variety of sources at http://www.nessus.org/nessus_2_0.html. Also available as part of that
download is an MD5 file that you can use to verify the script you have downloaded is safe to
install.

Download the script, make sure it is owned by the user you intend to install it with, and
make sure it possesses execute permissions. Do not use root to install Nessus (you will use
root privileges during the installation), but you should start the install as a normal user. Start
the installation process by entering the following:

Puppy$ sh nessus-installer.sh

If all your prerequisites are installed, you should see the installation screen in Figure 6-2.

Follow the instructions to continue, and Nessus will begin to install. After unpacking itself,
Nessus launches a suid shell to perform the required root install actions. You will need to enter
your root password at this point to continue with the installation. Nessus next requires the loca-
tion to install itself; by default it is /usr/local/. I recommend you install Nessus to the default
location. Nessus will then compile and install itself.

Figure 6-2. The Nessus installation screen

4444c06_final.qxd 1/5/05 12:54 AM Page 303

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING304

Figure 6-3. Creating an SSL certificate

When Nessus is finished compiling and installing itself, it will present a Finished screen
that provides some instructions for the remaining additional steps needed to complete your
install. The first additional step is to create an SSL certificate to help secure Nessus. Create
your certificate using (assuming you installed Nessus into /usr/local/), like so:

puppy# /usr/local/sbin/nessus-mkcert

You will need to be logged in as root to create a certificate. Follow the on-screen instruc-
tions to create a standard SSL certificate. (See Chapter 3 for more details on SSL certificates.)
The nessus-mkcert command will create several files, as shown in Figure 6-3.

■Note I will not show how to use SSL certificates with Nessus. Instead, I will cover password-based
authentication for Nessus. If you want to use SSL authentication, then you can find details at the Nessus
Web page at http://www.nessus.org.

The next step is to create a Nessus user. Nessus requires its own users with logins and pass-
words to be created to utilize Nessus. The Nessus command nessus-adduser, also located in
/usr/local/sbin, performs this function. You must provide a login name and then tell Nessus
whether to use a password or certificate for authentication. I recommend keeping it simple ini-
tially and creating a user that is authenticated via password. You enter pass at the Authentication
prompt to do this. You will then be prompted to enter a password.

Nessus also has a user-based rule system that allows you to control what hosts and networks
each user is able to scan. These rules consist of the statements accept, deny, and default. The

4444c06_final.qxd 1/5/05 12:54 AM Page 304

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 305

accept and deny rules are both followed by an IP address and netmask. The default statement
always comes last and is followed by either accept or deny, which specifies the default response
for that particular user. Listing 6-25 shows this.

Listing 6-25. Basic Nessus deny default User Rule

accept 192.168.0.0/24

default deny

This rule set would allow the user to scan the 192.168.0.0/24 network, but all other scans
would be denied by default. You can reverse this behavior, as shown in Listing 6-26.

Listing 6-26. Basic Nessus accept default User Rule

deny 192.168.0.0/24

default accept

In Listing 6-26 the user is specifically excluded from scanning the 192.168.0.0/24 net-
work, but all others are accepted by default.

If you want to allow a user to scan only the system they are located on, then Nessus has
a special keyword, client_ip, which is replaced at runtime by the IP address of the system on
which you are running Nessus. The user’s rule would look like Listing 6-27.

Listing 6-27. Allow Nessus User Only to Scan Local System

accept client_ip

default deny

This would allow that user to scan only the local IP address. All other scan attempts would
be denied. You can read about these user rules in more detail in the nessus-adduser man page.

■Tip You can also create a user with an empty rule set by pressing Ctrl+D without entering any rules at the
rules prompt. That user has no restrictions on what they can and cannot scan.

With a certificate and a Nessus user created, you have completed the base Nessus instal-
lation. If you ever want to uninstall Nessus, you can do so with the following command:

puppy# /usr/local/sbin/uninstall-nessus

Once you have gotten Nessus installed, it is a good idea to ensure the external plug-ins
that Nessus uses for its tests are up-to-date. To do so, run the command in Listing 6-28 as the
root user to update them.

Listing 6-28. Updating Your Nessus Plug-Ins

puppy# nessus-update-plugins

4444c06_final.qxd 1/5/05 12:54 AM Page 305

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING306

Running the Nessusd Daemon
The next step in getting your Nessus installation up and running is starting the Nessus daemon
that is required for running any scans. The Nessus daemon binary, nessusd, is located by default
in /usr/local/sbin/. The simplest way to start nessusd is in the daemon mode, as you can see in
Listing 6-29.

Listing 6-29. Starting nessusd As a Daemon

puppy# nessusd -D

The -D option in Listing 6-29 detaches the nessusd daemon as a background process. You
can also use some additional options to customize the daemon. Table 6-7 shows the most use-
ful of those options.

Table 6-7. nessusd Options

Option Description

-a address Tells nessusd to listen only to connections on the address address

-c config-file Uses an alternative configuration file

-d Makes the server dump its compilation options

-D Makes the server run in background (daemon mode)

-p port-number Tells the server to listen on the port port-number rather than the default port
of 1241

The first option, -a, tells nessusd to listen only to requests on the IP address specified
after the option; for example, -a 192.1680.1 would accept requests only from the IP address
192.168.0.1.

The default nessusd configuration file is located at /usr/local/etc/nessus/nessusd.conf.
Using the -c option you can override this file with one of your choice. Read through the default
configuration file for an explanation of the options available in that file.

Another useful option for troubleshooting is -d, which dumps the compilation options
and versions of Nessus to the command line. You should see something like Listing 6-30.

Listing 6-30. nessusd -d Dump

This is Nessus 2.0.10 for Linux 2.4.21-9.EL

compiled with gcc version 3.2.3 20030502 (Red Hat Linux 3.2.3-24)

Current setup :

Experimental session-saving : enabled

Experimental KB saving : enabled

Thread manager : fork

nasl : 2.0.10

libnessus : 2.0.10

SSL support : enabled

SSL is used for client / server communication

Running as euid : 0

4444c06_final.qxd 1/5/05 12:54 AM Page 306

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 307

You should include these details for any requests for support via the Nessus mailing lists
at http://list.nessus.org/ or the Nessus Bugzilla interface at http://bugs.nessus.org/.

The last option allows you to specify on which port Nessus will listen for scan requests.
By default nessusd listens on port 1241, but you can override this on the command line with
-p port-number. See Listing 6-31.

Listing 6-31. Running nessusd on a Different Port

puppy# nessusd -D -p 1300

Listing 6-31 detaches nessusd as a background process and tells it to listen for scans on
port 1300.

Running the Nessus Client
The nessus client can be either run as an X11 client based on GTK or run in a batch mode via
the command line. It acts as a client interface to the nessusd server daemon.

■Note Also, a freeware Windows-based client called NessusWX is available for Nessus. You can find it
at http://nessuswx.nessus.org/. The Windows client is fully featured and replicates the functionality
of the Nessus X11 client completely. Because of the ease of use of the interface, many people prefer the
NessusWX client. I recommend you try both and choose the one that suits you best.

You can run the Nessus client from the command line by entering the following:

puppy# nessus

This will start the X11 client by default. If you want to run the batch-mode client or
change how the nessus client is run, you can add command-line options to the nessus client.
Table 6-8 lists these options.

Table 6-8. nessus Client Options

Option Description

-c config-file Uses another configuration file.

-n No pixmaps. This is handy if you are
running Nessus on a remote computer.

-q host port user password target-file result-file Quiet or batch mode.

-T type Save scan data as either nbe, html,
html_graph, text, xml, old-xml, tex, or
nsr.

-V Makes batch mode display any status
messages to the screen.

-x Does not check SSL certificates.

4444c06_final.qxd 1/5/05 12:54 AM Page 307

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING308

Running nessus Client in Batch Mode
Most of these options are self-explanatory, but I will go through the batch-mode options
because this is a useful way to execute Nessus. The batch mode allows you to run checks
from the command line without starting the X11 client. This is useful when running scans
from a system that lacks X or when you are using a terminal that is unable to display a graph-
ical environment (a headless server, for example).

You enable batch mode by specifying -q on the nessus command line. To run in this mode,
you specify some details after the -q option: a hostname for the nessusd server, a port number,
your username and password, a file containing your target selections, and a file for your results.
You can also specify a precise output type.

The target file should consist of your target selections in a form Nessus will understand;
for example, it should contain a list of IP addresses or an IP address range in the form of
address/netmask (in other words, 192.168.0.0/24). Put each target on its own line.

You can output the results in a number of forms by using the -T option. Most of the out-
put options will create a file of the type you specify; for example, -T "html" would create an
HTML file containing the results of the scan. The only exception to this is the "html_graph"
output type, which will create a directory with the same name as the results file you specify
that will contain an HTML index file and the Nessus results in a variety of graphs.

■Tip If you want to know the progress of your batch scan, then add the -V option to the nessus command
line. This option outputs any status messages from the nessusd server to the screen.

So the whole command-line run of a batch scan by the Nessus client could look like
Listing 6-32.

Listing 6-32. Running Nessus in Batch Mode

puppy# nessus -q 192.168.0.1 1241 nessus password targets.file results.file ➥

-T "html_graph" -V

Running the Nessus Client in Graphical Mode
If you do not specify batch mode on the command line, Nessus will try to launch the X11 GTK
client. The first screen you will see is a setup and login screen from which you need to specify
a nessusd server, the port number that nessusd is running on, and a username and password
to connect to that server. You can see an example of this screen in Figure 6-4.

■Tip By placing your mouse curser over many options and plug-ins in the Nessus client, you will see an
explanation of what that option or plug-in does.

4444c06_final.qxd 1/5/05 12:54 AM Page 308

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 309

In Figure 6-4 the session is configured to connect to a Nessus server on localhost using
port 1241 with a user of nessus. Put in the details for the nessusd server you want to connect
to, and click the Login button. Once you have logged in, the Nessus client will change to the
next tab, Plugins, as shown in Figure 6-5. On this screen you can select which attacks and
scans you want to run against the target systems.

You will see several options here: Enable All, Enable All but Dangerous Plugins, Disable
All, and Upload Plugins. Unless you have a specific attack you are interested in testing against
a target, I recommend using the Enable All but Dangerous Plugins option. Then move onto
the next tab, Prefs.

The Prefs. tab controls the options and variables for all the plug-ins you have selected to
run. Far too many potential options exist to run through each individually, but by browsing
through them you should be able to determine the required inputs and potential changes you
may like to make. A good example of the sort of options you can specify is the NMAP port scan

Figure 6-4. Nessus login and setup session screen

4444c06_final.qxd 1/5/05 12:54 AM Page 309

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING310

Figure 6-5. Nessus plug-in screen

■Tip You can find an excellent reference Knowledge Base of most, if not all, of the Nessus X11 client
options available at http://www.edgeos.com/nessuskb/.

Select the next tab, Scan Options, to specify the Nessus-specific options for this scan. You
can see an example of the Scan Options tab in Figure 6-6. These include the port range you
want to scan, which defaults to the setting default (ports 1 to 15000); the number of hosts to
test simultaneously; and the number of checks to perform at the same time. One of the more
important options here is the Safe Scan option. If selected, this tells Nessus to check only the
banners of applications for potential vulnerabilities or exploits rather than actually try to test

that Nessus can conduct. You can tell Nessus exactly what sort of scan to conduct; for exam-
ple, you can specify a TCP SYN scan or a connect() scan or turning on the equivalent of the
NMAP -P0 command-line option.

4444c06_final.qxd 1/5/05 12:54 AM Page 310

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 311

that vulnerability or exploit. This results in a less accurate scan but reduces the risk that a pro-
duction application or system will be crashed or disabled as the result of a Nessus scan.

The next tab is Target Selection, where you can specify which hosts Nessus should scan.
The first option is a targets line. You can specify targets here in form of a comma-separated list
of hosts or in CIDR notation (IP address and netmask). Targets can consist of IP addresses
(recommended) or DNS-resolvable hostnames. You can also specify hostnames or IP addresses
of virtually hosted services. This allows Nessus to scan an IP address that may host many Web
services for several domains and direct Web-based data to a particular name-based virtual
host. You can specify this on the target line in the form of IP_Address[Virtual_Domain_Name]
(for example, 192.168.0.1[www.yourdomain.com]). Figure 6-7 shows the contents of the Target
Selection tab.

You can also tell Nessus to read its target list from a file. This file should take the same
form as the target file specified in the command-line batch-mode process with each target
host or target network listed on an individual line.

Figure 6-6. Nessus scan options

4444c06_final.qxd 1/5/05 12:54 AM Page 311

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING312

Figure 6-7. Nessus target selection

The Target Selection tab also contains records of your previous sessions. If you have scanned
targets before and specified that you wanted to save those sessions, they will be displayed in the
Previous Sessions box.

Once you have entered your target selection, you should have enough information to start
your attack scans. So you can skip the remaining tabs and click the Start the Scan button to begin
your scan.

Your attack scans can take a long time to run depending on the number of plug-ins you
are testing and the number of hosts or networks you are scanning. The progress screen will
show the list of host(s) as they are scanned. When the scan is completed, Nessus will show
the Report screen.

From here you can go through all of Nessus’s findings. Figure 6-8 shows a Nessus recom-
mendation to upgrade the version of OpenSSH installed on the target host. Nessus provides
the exact version of OpenSSH that you need to get to address the issue and even explains how
to find out what version you are running. Nessus also usually provides additional links to fur-
ther information about the issue that will help you decide what action to take.

4444c06_final.qxd 1/5/05 12:54 AM Page 312

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 313

You can save this report in a variety of forms, as discussed earlier, including an HTML
page and a collection of graphs that detail the results of the scan.

It is important to remember that Nessus is not always perfect. Not everything that Nessus
finds will be an exploit or vulnerability that applies to your system. But all the findings are worth
at least investigating. Nessus provides quite detailed explanations of the exploits and vulnerabil-
ities it finds on your systems. They often include potential changes and solutions. To get the full
benefit from Nessus and to be able to ensure that all the potential issues Nessus finds are either
addressed or determined not relevant, I recommend you study these findings carefully.

Other Methods of Detecting a Penetration
You can look for some additional things that indicate a possible penetration of your system or
a compromised system. The following items are all things you should perform regular checks
of (in addition to any automated tools such as Chkrootkit that I discussed earlier):

Figure 6-8. Nessus report screen

4444c06_final.qxd 1/5/05 12:54 AM Page 313

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING314

• Log files

• Files, directories, and binaries

• cron and at jobs

• The contents of the /etc/passwd and /etc/group files

The first step, as discussed in Chapter 5, is to make sure you know what is happening on
your system by examining your logs. Check the following items especially:

• Base log files including messages, secure, cron, and related operating-system logs for
unusual activity or entries. Potentially examine them using a tool such as SEC or Swatch
to help filter your logs.

• Any firewall logs you are collecting. See Chapter 2 for further details.

• The wtmp file, which is usually contained in /var/log. This file contains records of the
date and time of the last successful login of all users on the system. You can access this
information via the last command.

• The utmp file that is contained in /var/run. This file contains information on each user
currently logged on. It is what is accessed when you use the w or who command.

Unfortunately, I cannot tell you exactly what to look for, as every system is different; how-
ever, I emphasis that as part of securing your system, you should know exactly who and what
should be running on your system. It is impossible to secure a system if you do not have a
precise picture of what is occurring on your system.

Next you should check for a variety of file-related items. This is mostly based around set-
ting a baseline of what you know is on the system (for example, what setuid files exist on the
system and checking against that baseline on a regular basis). The addition of new setuid files
without your knowledge, for example, would almost certainly imply something is amiss.

So, you should start with checking for new or changed setuid or setgid root files on your
system. These types of files are often not only points of entry and exploited by attackers, but
files with these permissions are regularly added by attackers during penetration. The com-
mand in Listing 6-33 should show all executable files with setuid and setgid permissions.

■Note I provide much more information about this in Chapter 4.

Listing 6-33. Finding setuid and setgid Files

puppy# find / -type f -perm +6000 -ls

You should review all the files on your system with these permissions and confirm if they
are actually required by setuid or setgid root files. If they are not required, you can remove
the permissions with the following command:

puppy# chmod -s filename

4444c06_final.qxd 1/5/05 12:54 AM Page 314

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 315

Listing 6-34 shows a command to find all the world-writable files and directories on the
system.

Listing 6-34. Find World-Writable Files and Directories

puppy# find / -perm -2 ! -type l -ls

You should also check for any unusually named files. For example, files preceded by a
period (.) do not show up when you use the ls command and are a simple way for an attacker
to hide a file from a casual inspection. You can use the find command to locate a combination
of unusually named files. Listing 6-35 shows find commands that will show all files on your
system prefixed by . and ... You can construct other variations of these to find other files.

Listing 6-35. Finding Unusually Named Files

puppy# find / -name ".*" -print -xdev

puppy# find / -name "..*" -print -xdev

Lastly, unowned12 files and directories may also be an indication of a penetration on your
system. Listing 6-36 shows a command to find all the unowned files and directories.

Listing 6-36. Finding Unowned Files and Directories

puppy# find / -nouser -o -nogroup -ls

You should also look at ensuring the integrity of your binaries using a tool such as Tripwire or
MD5 or similar checksums. I talk about cryptographic checksums in Chapter 1 and the Tripwire
application in Chapter 4.

You should check the contents of the root crontab and at files for any scheduled commands
or processes that an attacker may have left behind. You can use the commands in Listing 6-37 to
do this.

Listing 6-37. Checking the Contents of cron and at

puppy# crontab -l

puppy# at -l

Lastly, you need to check your /etc/passwd and /etc/group files for any new users you
have not created, changes to existing accounts, UID changes (especially those related to UID 0
or root), or accounts without passwords.

Recovering from a Penetration
The first thing you need to come to terms with is that a penetrated system, from a recovery
point of view, is generally a lost cause. You can never guarantee you have removed and purged

12. Unowned files are those files that are not owned by any user or group.

4444c06_final.qxd 1/5/05 12:54 AM Page 315

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING316

all the potential malicious exploits left on your system, and you cannot guarantee that you
have spotted any potential time bombs or booby traps left by your attacker. You will need to
rebuild this system either from a safe set of backups or from safe media. I recommend doing
this from safe media and restoring your data carefully from safe backups.

The word safe is important here. You may not find out exactly when an attacker penetrated
your system. Data and files you have backed up could contain tools, exploits, or other hidden
and nasty surprises that come back to haunt your rebuilt system. The worst-case scenario is
that you rebuild your system, reinstall your applications, and then restore from your backups,
but your attacker has left a binary or a script behind that is now present in your backed-up data
that allows them to easily repenetrate your system or has some delayed malicious intent such
as damage to your system or deletion of your data.

The following recommendations apply to system recovery after an attack or penetration:

• Isolate the system; remove it from the network, and do not plug it back into your net-
work or any other network that contains production or at-risk systems. If you must
plug it back into the network, do so in an isolated, preferably stand-alone network
with no connections to the Internet or your local network.

• Check your other systems immediately for signs of attack. Check logs, check logins,
and run your collection of scanning tools.

• Change all your secure passwords, including your root passwords and passwords for
network devices immediately. Do not use electronic means to disseminate these new
passwords.

• Examine your system for the source of the attack, and, if required, involve any relevant
law-enforcement agencies.

• Attempt to determine the how the attack was achieved, and ensure you can address
the exploit(s) or penetration methods before you rebuild your system.

• If you rebuild your system, then confirm you are building from safe and up-to-date
media.

• If you rebuild your system, then check that any data you restore to your system is safe
and not corrupted, infected, or booby-trapped by your attacker.

But before you rebuild your system, you need to look at that the potential forensic value of
that system. If you intend to investigate the nature of the penetration on your system, then you
should keep a detailed record of what you do and what you find. This record is useful for your
own purposes in tracking the path of the attacker, and it also provides input for any auditors
who may become involved in reviewing the attack from a wider security perspective. Addition-
ally, if your organization chooses to involve law enforcement in the aftermath of an attack, this
record could eventually form some kind of evidence. The following are a few steps you should
take to gather this information:

• Maintain a journal of your actions on the penetrated system.

• Take copies of all major configuration files, including your network configuration,
passwd and group files, and so on.

4444c06_final.qxd 1/5/05 12:54 AM Page 316

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 317

• Take copies of your log files including any relevant log entries.

• Take snapshots of your running processes, network status, memory states, /proc direc-
tory, and disks. Store these securely.

You can use a few basic tools to help you keep a journal of your activities. The first thing
to ensure is that you mark all your entries with the system name, the type, and the correct date
and time. Prefix all journal entries with the following command:

puppy# (date; uname -a)

Another useful tool is the script command, which records the contents of an interactive
session. You can start script with the following command:

puppy# script -a penetration_log.txt

The -a option appends data to a previously connected file so you do not overwrite the
contents of an existing file. The collection of data will stop when you issue an exit command,
log out, or issue Ctrl+D. The script command really works only with commands that write to
stdout. If you execute a tool such as ed or vi that clears the screen and opens another screen,
this tends to write junk to the script log file.

You should take snapshots of a variety of system configuration files in both hard and soft
copy. This includes all the major configuration operating-system files as well as the configura-
tion files of any applications you think may have been penetrated or used to achieve the pene-
tration. You should also take hard and soft copies of any relevant log entries and log files.

Additionally, you need to capture the running state of the system. Start with the running
processes on the system. Enter the following:

puppy# (ps -aux; ps -auxeww; lsof) > current_procs.txt

Then grab the contents of the /proc directory. Enter the following:

puppy# tar -cvpf proc_directory.tar /proc/[0-9]*

Next, take a snapshot of the network state of the system. Enter the following:

puppy# (date; uname -a; netstat -p; netstat -rn; arp -v) > network_status.txt

■Note I have included the current date and time and the uname information to the start of the records
I have generated.

Finally, take a snapshot of the currently active and kernel memory. Listing 6-38 shows the
commands to do this.

Listing 6-38. Snapshot of Currently Active Memory

puppy# dd bs=1024 < /dev/mem > mem

puppy# dd bs=1024 < /dev/kmem > kmem

4444c06_final.qxd 1/5/05 12:54 AM Page 317

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING318

I also recommend taking snapshots of the disk of the suspect system, so you can use them
for further forensic work later. You can use the command in Listing 6-39 to take the snapshot.
In this example, I am taking a snapshot of the hda1 partition. You need to take snapshots of any
additional partitions on the system.

Listing 6-39. Taking a Disk Snapshot

puppy# dd if=/dev/hda1 bs=1024 > hda1

Additional Security Tools
The following sections list (by no means comprehensively) some additional security tools that
may be useful to you. These include network scanners and sniffers, traffic-capture tools, net-
work intrusion detection systems, secure kernels, and security-auditing tools.

dsniff
This suite of packet-sniffing tools allows you to monitor traffic on your network for sensitive
data. It comes with a number of tools, including its namesake, dsniff, which allows you to sniff
network traffic that could potentially contain items such as passwords. It comes with the addi-
tional tools filesnarf, mailsnarf, and urlsnarf that specialize in sniffing for filenames, mail
passwords, and traffic and HTTP traffic. dsniff requires libnet (http://www.packetfactory.net/
projects/libnet/) and libnids (http://www.packetfactory.net/projects/libnids/) for opera-
tion. You can find dsniff at http://monkey.org/~dugsong/dsniff/.

Ethereal
Ethereal is a network data-capture tool that can grab data off your network and read in the con-
tents of tcpdump files or read in data from a variety of other sources. You can dissect and analyze
a variety of data from a wide selection of protocols and can even edit the contents of captured
traffic. Ethereal also comes with an X-based GUI tool that you can use to display data being cap-
tured in real time. You can find Ethereal at http://www.ethereal.com/.

Ettercap
The Ettercap suite simulates and sniffs for man-in-the-middle attacks on your network. It is capa-
ble of sniffing live connections and performing content filtering on the fly. It can support active
and passive dissection of a number of protocols and has built-in fingerprinting capabilities with
a large library of fingerprints. You can find Ettercap at http://ettercap.sourceforge.net/.

LIDS
LIDS is a secured kernel designed to replace your existing kernel. It provides file-system protec-
tion, provides protection of processes (including hiding processes), introduces access control
lists (ACLs) that allow you control access to applications, and contains some network security
features and a port scanner detector. LIDS also has a built-in secured alerting system. You can
find LIDS at http://www.lids.org/.

4444c06_final.qxd 1/5/05 12:54 AM Page 318

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING 319

Netcat
Netcat is similar in function to nmap but has some useful additional functionality. It is capable
of the same network and port scanning as nmap but also allows you to send TCP/IP data. You
can use it to open TCP connections, listen on arbitrary TCP and UDP ports, and send TCP and
UDP packets. You can find Netcat at http://netcat.sourceforge.net/.

SARA
Security Auditor’s Research Assistant (SARA) is a security-analysis tool. It is an inheritor of
SATAN, the original security analysis tool. SATAN has become outdated and obsolete in recent
times, and SARA has overtaken its core functionality. It is able to perform a series of built-in
scans or can scan using third-party plug-ins. You can run it in stand-alone and daemon mode.
You can find SARA at http://www-arc.com/sara/.

Snort
Snort is a packet-sniffing tool and intrusion-detection tool. It is a complex, powerful, and
highly configurable tool. It can run in three modes: as a network sniffer reading packets off
the network and displaying them, in packet logging mode logging those packets to disk, and
in the last mode as a network intrusion detection tool. This allows you to match the packets
against a series of rules. Some rules are provided by default, and you can also define your
own; for example, as a new virus or worm is discovered, you can define a rule to detect that
worm and identify any computers that may be infected. Snort can also perform actions, trig-
ger events, or conduct alerting if it detects packets matching its or your rules. You can find
Snort at http://www.snort.org/.

tcpdump
One of the more useful tools in your security arsenal, the tcpdump command allows you to dump
network traffic in the form of the headers of packets. You can select headers using Boolean expres-
sions, collect packets from a particular interface, and use a variety of other options. You can display
the packet headers on the console or log them to a file for later review. Most Linux systems come
with the tcpdump command, or you can find it at http://www.tcpdump.org/.

Titan
Similar to Bastille Linux in functionality, the Titan package also provides operating-system
hardening. Titan runs a series of tests, provides analysis, and corrects deficiencies it detects
on your system. It is written in the form of Bourne script and is easily able to be added to and
customized. Titan is available at http://www.fish.com/titan/.

Resources
The following are some resources you can use.

• Bastille Linux mailing lists: http://www.bastille-linux.org/mail.html

• NMAP hacker list: http://seclists.org/about/nmap-hackers.txt

• Nessus mailing lists: http://list.nessus.org/

4444c06_final.qxd 1/5/05 12:54 AM Page 319

CHAPTER 6 ■ USING TOOLS FOR SECURITY TESTING320

Sites
• Chkrootkit: http://www.chkrootkit.org/

• Rootkit Hunter: http://www.rootkit.nl/

• John the Ripper: http://www.openwall.com/john/

• Bastille Linux: http://www.bastille-linux.org/

• NMAP: http://insecure.org/nmap/

• Xprobe: http://sys-security.com/html/projects/X.html

• Nessus: http://www.nessus.org

• Nessus Knowledge Base: http://www.edgeos.com/nessuskb/

4444c06_final.qxd 1/5/05 12:54 AM Page 320

321

C H A P T E R 7

■ ■ ■

Securing Your Mail Server

One of the most vital components in any modern business is e-mail. It has become common
for commercial organizations to do a significant part of their communication via e-mail, and
end users and management now generally consider an outage of a corporate e-mail system to
be a major, if not critical, issue. With the rise of the importance of e-mail, several serious issues
have emerged with respect to the stability, functionality, and security of e-mail communica-
tion. These include the security of transmitted information, the prevalence of spam, the use
of e-mail to disseminate viruses, and the potential for penetrating your Simple Mail Transfer
Protocol (SMTP) services either to cause a Denial of Service (DoS) attack or to use as a poten-
tial route into your system.

This has not been helped by the fact that (both before and after the rise of popularity of
e-mail as a service) the security, integrity, and stability of many of the available mail server
applications have had major issues. This is especially true of Unix-based and Linux-based
environments where e-mail servers have been frequent targets of attackers; several major
vulnerabilities and exploits have been discovered for mail servers running on these platforms.
Additionally, many Linux distributions offer pre-installed mail servers and services that are
poorly configured and secured or not secured at all.

With the combination of heavy reliance on e-mail functionality and the relatively poor secu-
rity track record of e-mail servers, system administrators and security officers need to take partic-
ular care in selecting, maintaining, and securing their e-mail infrastructures. In this chapter, I will
address each of the major threats facing your e-mail server. I will provide practical working con-
figurations that will provide you with some methods of securing the transmission of e-mail, help
you reduce spam, and protect your e-mail system and users from viruses. To provide real-world
examples of how you can go about doing all this, I will cover principally two mail server applica-
tions: Sendmail and Postfix.

More important, what won’t I cover? Well, I will not tell you how to configure the base func-
tionality of your e-mail server unless it has some security implications. I will also not explain how
to set up and configure complex mail server environments such as virtual addressing or the like.
You can get this sort of information from the man pages, FAQs, and associated documentation of
the mail server application of your choice.

Which Mail Server to Choose?
An important question is which mail server to choose; unfortunately, not a lot of independent
guidance is available to you from a functionality or security standpoint. I will make any recom-
mendations based on the core functionality of a mail server. Whether you choose Sendmail,

4444c07_final.qxd 1/5/05 12:55 AM Page 321

CHAPTER 7 ■ SECURING YOUR MAIL SERVER322

Postfix, Qmail, Courier, or one of a number of other variants, the essential function of those
mail servers remains similar. I also have no intention of buying into the “my e-mail server is
better than your e-mail server” wars that occasionally spring up on Usenet and mailing lists
when discussing the relative merits of a particular mail server.

From a security standpoint, however, I do have some opinions and advice that is valuable
when selecting a mail server. My recommendation for a mail server is Postfix. Postfix was written
by Dr. Wietse Venema, who is one of the authors of the Security Administrator Tool for Analyzing
Systems (SATAN); he has a considerable pedigree in the TCP/IP and Unix security worlds.

Postfix was designed with security in mind and contains a variety of security safeguards.

• It has a distributed architecture with smaller programs performing individual functions
instead of one monolithic program.

• Almost all these smaller programs can be chrooted.

• Those chrooted functions all run at low privilege.

• You have to penetrate these smaller programs before you have access to local delivery.

• Memory for buffers is allocated dynamically to restrict the risk of buffer overflow attacks.

• No Postfix program uses set-uid.

• Postfix does not trust the content of its own queues.

• Postfix integrates relatively easily with antivirus and antispam tools.

All these in combination mean that Postfix addresses some of the key areas in which Mail
Transfer Agents (MTAs) are vulnerable to attack. I recommend you at least look at Postfix as an
alternative to your current mail server.

■Note On the functionality front (not as an exercise in one-upmanship but more to articulate that Postfix
meets the same functionality standards as alternatives such as Sendmail), Postfix also offers excellent per-
formance in terms of throughput and capacity and is easy to configure.

From a security advice perspective for existing systems, this is not to say I recommend
absolutely getting rid of your existing mail server. Obviously, if you have a significant invest-
ment in that system or have a technical preference for another variety of MTA, then I recom-
mend you stay with that package and secure it. This is especially true of Sendmail servers. If
you ensure you have an up-to-date version of Sendmail (and most of the releases from version
8.11 and beyond have proven to be reasonably secure) and follow some basic steps to secure
it, then you should be reasonably confident of a secure MTA.

I believe, though, that the vast numbers of mail servers attached to the Internet mean that
attackers have a huge pool of potential targets and thus perceive mail servers as an excellent
choice of application to probe and dismember in order to look for exploits and vulnerabilities.
So, update your software. Regularly. You should try not to fall too many versions behind the
current release of your MTA. Subscribe to the announce mailing list for your MTA. Subscribe

4444c07_final.qxd 1/5/05 12:55 AM Page 322

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 323

to vulnerabilities mailing lists, and watch for posts related to your MTA. Join Usenet news
groups. Protect your system with your antivirus and antispam protection. Keep your users up-
to-date and informed about potential virus and spam threats.

How Is Your Mail Server at Risk?
So what does security for a mail server mean? Well, in order for your mail server to be consid-
ered at least partially secure, you need to address the following issues:

• Reduce the risk of penetration of your system and/or an attacker gaining root via your
mail server.

• Reduce the risk of DoS attacks.

• Reduce spam.

• Inhibit the spread of viruses, and protect users from virus infections via e-mail.

• Secure your mail and its transmission.

• Prevent the unauthorized use of relaying whilst allowing authorized users to relay.

• Reduce the risk of forgery of mail messages.

The MTAs I will cover both have some inherent security, but you need to do more to really
ensure the security of your MTA. In this chapter, I will take you through addressing the first four
issues I listed previously: reducing the risk of penetration of your system, reducing the risk of
DoS attacks, providing antispam protection, and providing antivirus protection. In Chapter 8
I will take you through the remaining three issues: securing your mail transmission, preventing
relaying, and reducing the risk of mail forgery.

Protecting Your Mail Server
This section covers some ways to protect your MTA from penetration and reduce the risk of
an attacker gaining root through your MTA. I will cover a bit about chrooting your MTA, hid-
ing your MTA’s identity, disabling some dangerous SMTP commands, protecting your MTA
from DoS attacks, and providing some general security.

One of the biggest issues with MTA security is the need for many MTAs to utilize root,
utilize setuid, or require quite high privileges to correctly function. Older Sendmail versions
are particular culprits of this. Both Postfix and more recent versions of Sendmail, from version
8.12 onward, run without setuid root, which reduces the potential risk of an attacker using
your MTA as a conduit to root privileges on your system. This is another reason, if you are run-
ning Sendmail, to update to a more recent version.

So how does Sendmail achieve this? Sendmail is split into two operational modes: an MTA
function and a Mail Submission Program (MSP) function. How you start Sendmail depends on
which function is called. So, effectively now you have two running Sendmail modes: one is an
SMTP daemon that performs your MTA functions, and the other is an MSP daemon that han-
dles the submission and queuing of e-mail. To accommodate for this, an additional configura-
tion file has been created, submit.cf, which controls the mail submission functions.

4444c07_final.qxd 1/5/05 12:55 AM Page 323

CHAPTER 7 ■ SECURING YOUR MAIL SERVER324

In version 8.12, Sendmail still needs root privileges to perform a few actions, such as binding
to port 25, reading .forward files, performing local delivery of mail, and writing e-mail submitted
via the command line to the queue directory. The last option is what Sendmail principally had
used a setuid root binary for. The new version downgrades the requirements for root privileges
by changing the sendmail binary to a setgid binary and writing to a group-writable queue direc-
tory. Sendmail still needs to be started as root, but then it drops privileges once it has performed
the required root tasks.

This is a fairly simplistic explanation, and I recommend you carefully read the changes
articulated in the Sendmail README and SECURITY documents that come with the source
distribution to fully understand how the structure and running of Sendmail has changed. You
need to consider a few caveats and warnings, though. You can also find these documents on
the Sendmail Web site.

■Note Both Sendmail and Postfix still use the less dangerous setgid for several functions. Postfix uses
setgid as part of the postdrop program for mail submission whilst Sendmail uses it to setgid to a differ-
ent user and group, called smmsp, as part of the new separate mail submission process.

So how do you further limit the risk to your system from a penetration of your MTA’s
daemons? Well, one of the possible methods is chrooting. I will cover how both MTAs I am
discussing can be chrooted and under what circumstances you may choose to do this.

Sendmail can be highly complicated to completely chroot, and because of its monolithic
nature, the benefits derived from chrooting are potentially much more limited. Postfix consists
of many small daemons, so you can therefore be selective about which you chroot; however,
Sendmail is one binary, which means you have to attempt to chroot all its functions. Since Send-
mail requires write access to objects that are almost certainly going to be outside your chroot
jail, the value of the jail is negated.

The security changes that have been made to the way Sendmail runs in version 8.12
reduce the risk of a root penetration. This does not mean you should not look at chroot for
Sendmail. I still think, though, you may want to run Sendmail chrooted in some important
instances, such as if you are running an SMTP gateway, so I will take you through chrooting
that type of Sendmail installation in the next section.

Postfix by default is designed to have most of its daemons running chrooted with fixed
low privileges. Additionally, adjusting its configuration to enable chroot is simple and quick
to achieve. I will cover the configuration of Postfix as a chrooted system in the “Chrooting
Postfix” section.

Chrooting a Sendmail SMTP Gateway or Relay
Many enterprises run an SMTP gateway or relay on the “border” of their network, usually
housed in a DMZ with a firewall protecting it, to provide front-line mail services on the Inter-
net. The SMTP gateway sends and receives all mail for the enterprise but does no local deliv-
ery of mail; rather, it relays it onto other mail servers that handle internal mail. This frontend
mail server provides another layer of security for your network and often also performs spam
filtering or antivirus functions. See Figure 7-1.

4444c07_final.qxd 1/5/05 12:55 AM Page 324

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 325

Figure 7-1. An SMTP gateway or relay server

As Sendmail is only relaying mail onward (or discarding it in the case of some spam- and
virus-infected items), you are able to tightly chroot Sendmail within a jail on the gateway sys-
tem because it does not need to write mail to local users. As I discussed elsewhere, the chroot
jail protects your system from penetrations by locking the hacker into a “jail” where they can
access the resources only in that jail and should be unable to take further action to compro-
mise your system. With Sendmail, you achieve this by adding a user that Sendmail will “run
as” who has limited privileges.

■Caution The chroot setup for Sendmail is quite complicated; you will need to carefully test that all the
potential Sendmail functions you want to use actually work before putting this into production.

The first step in setting up your chroot jail is to create a directory structure. You need to
specify a root directory for your chroot jail. I often use /chroot with subdirectories for all the
applications chrooted below this directory. In this case, /chroot/sendmail is the Sendmail
chroot root directory. Create the directories in Listing 7-1 underneath the /chroot/sendmail
directory.

4444c07_final.qxd 1/5/05 12:55 AM Page 325

CHAPTER 7 ■ SECURING YOUR MAIL SERVER326

Listing 7-1. chroot Directory Structure

/dev

/etc

/etc/mail

/lib

/lib/tls

/tmp

/usr

/usr/bin

/usr/sbin

/usr/lib

/usr/lib/sasl2

/var

/var/run

/var/spool

/var/spool/mqueue

Next you will want to add a user for Sendmail to run as. I usually call this user sendmail
and add it to the mail group. Enter the following:

puppy# useradd -u 501 -g mail -s /sbin/nologin -d /dev/null sendmail

Then enable the RunAsUser setting in sendmail.mc, and change it to the user you have
created to run the Sendmail daemon. The following shows this:

define(`confRUN_AS_USER',`sendmail')

Re-create your sendmail.cf file to enable this.

Populating the /chroot/sendmail/etc Directory
Now you need to populate these directories with some of the files you will need. You can start
with the /chroot/sendmail/etc directory. You need to copy the following:

aliases

aliases.db

passwd

group

resolv.conf

host.conf

nsswitch.conf

services

hosts

localtime

Once you have copied in your passwd and group files, you should edit these down to just
the users and groups you need to run Sendmail. My passwd file contains the following:

4444c07_final.qxd 1/5/05 12:55 AM Page 326

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 327

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin

sendmail:x:501:501::/dev/null:/sbin/nologin

The group file contains the following:

root:x:0:root

bin:x:1:root,bin,daemon

daemon:x:2:root,bin,daemon

mail:x:12:mail,sendmail

mailnull:x:47:

Finally, you need to put in your Sendmail configuration files. Simply copy the entire contents
of your /etc/mail directory and all subdirectories into the /chroot/sendmail/etc/ directory. As
much as I would like to say there is an easier way to do this—mount or links, for example—there is
not, and both these methods punch a hole in your chroot jail that could allow an attacker to get
out. So you need copy these files from the source directory to the target directory. When you are
updating databases and files, ensure that you update the files in the chroot jail.

Populating the /chroot/sendmail/dev Directory
The next directory you will populate is your /chroot/sendmail/dev directory. You need to cre-
ate some devices in this directory to allow Sendmail to correctly function. These devices, null
and random, should duplicate the devices of the same name in the /dev directory. You can do
this using the mknod commands shown in Listing 7-2.

Listing 7-2. Making Devices for Sendmail

puppy# mknod /chroot/sendmail/dev/null c 1 3

puppy# mknod /chroot/sendmail/dev/random c 1 8

Now secure your newly created devices. They should both be owned by the root user, with
their permissions changed using chmod: null to 0666 and random to 0644.

Also in your /dev directory you need to create a log device to allow the chrooted Sendmail
to log to syslog. If you are using syslog, then you need to add the -a switch to the command
that starts syslog. For the sample configuration, you would add the following:

-a /chroot/sendmail/dev/log

If you are using syslog-NG, then add a line similar to the following one to your
syslog-ng.conf file in one of your source block statements:

unix-stream("/chroot/sendmail/dev/log");

■Tip See Chapter 5 for more details on how to do this.

4444c07_final.qxd 1/5/05 12:55 AM Page 327

CHAPTER 7 ■ SECURING YOUR MAIL SERVER328

Then restart syslog or syslog-NG, a new log device in the dev directory will allow Sendmail
to log to your syslog daemon.

Adding the Sendmail Binary and Libraries to the chroot Jail
Next put a copy of your sendmail binary into /chroot/sendmail/usr/sbin. This is the copy of
Sendmail that will run when you start your chroot. You should also create symbolic links to
this binary for your mailq and newaliases commands. Enter the following:

puppy# ln -s /chroot/sendmail/usr/sbin/sendmail /chroot/sendmail/usr/bin/mailq

puppy# ln -s /chroot/sendmail/usr/sbin/sendmail /chroot/sendmail/usr/bin/newaliases

Sendmail will also require a variety of libraries to run correctly in the chroot jail. The best way
to work this out is to run ldd on the sendmail binary and record the list of libraries shown and to
copy them into their respective locations in the chroot jail. Listing 7-3 shows the partial results of
the ldd command and the copy of the libraries in their correct locations in the chroot jail.

Listing 7-3. Adding the Sendmail Libraries

puppy# ldd /usr/sbin/sendmail

libssl.so.4 => /lib/libssl.so.4 (0xb75ab000)

libcrypto.so.4 => /lib/libcrypto.so.4 (0xb74ba000)

libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0xb74a4000)

libdb-4.1.so => /lib/libdb-4.1.so (0xb73e2000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0xb71b1000)

puppy# cp /lib/libssl.so.4 /chroot/sendmail/lib

puppy# cp /usr/lib/libsasl2.so.2 /chroot/sendmail/usr/lib

puppy# cp /lib/tls/libpthread.so.0 /chroot/sendmail/lib/tls

■Caution If you see any libraries located in /usr/kerberos/lib in your list of Sendmail libraries, do not
copy them into a similar location under the Sendmail chroot; instead, copy them into /chroot/sendmail/
usr/lib. Sendmail seems unable to find them otherwise.

You will also need some other libraries. Listing 7-4 lists these libraries, which are usually
contained in /lib.

Listing 7-4. Additional Libraries Required by Sendmail

libnss_dns.so.2

libresolv.so.2

libnss_files.so.2

Copy the libraries from Listing 7-4 to /chroot/sendmail/lib to proceed.
Finally, if you will be using Simple Authentication and Security Layer (SASL), then you

need to copy the Sendmail.conf file and all the required SASL mechanisms and plug-ins you
intend to support. You do this simply by copying all the files in the /usr/lib/sasl2 directory to
/chroot/sendmail/usr/lib/sasl2. If you are using saslauthd, you also need to adjust the loca-
tion of your saslauthd mux file to within your chroot jail. See Chapter 8 for how to do this.

4444c07_final.qxd 1/5/05 12:55 AM Page 328

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 329

Permissions and Ownership
Before you can start your Sendmail daemon in the chroot jail, you need to ensure some permis-
sions and ownerships are set up correctly. First, the /chroot/sendmail/var/spool/mqueue direc-
tory needs to be owned by the user you have specified in the RunAsUser option and chmoded to
0700 (in this case the user sendmail).

puppy# chown sendmail /chroot/sendmail/var/spool/mqueue

puppy# chmod 0700 /chroot/sendmail/var/spool/mqueue

USING CHROOT

In this and other chapters I have discussed chroot jails. A chroot jail uses the chroot() function to lock
a process into its own directory structure. Essentially the chroot() function redefines what the root, or /,
directory is for a process. For example, the chroot() function is frequently used for FTP servers to lock local
users into their home directories. This way, if user bob signs onto the FTP server, he is placed in his home
directory, /home/bob. If he issues the following command:

puppy# cd /

he will not go to the / directory; rather, he will return to the /home/bob directory, as this has been defined
as his root directory. This allows you to control the access your processes have to your file systems.

Because you have no access to resources outside the chroot jail, you need to provide all the resources
required by the jailed process or daemon inside the jail. You do this by copying the required files and objects.
These include devices, libraries, commands, or files. Hence, an important step in building a chroot jail is cre-
ating and populating the directory structure and content of the jail. Throughout this book I have constructed
the chroot jails with the bare minimum of resources required for the various processes to function.

Many daemons, such as Postfix or BIND, come with the ability to create their own built-in chroot jails.
These processes can be jailed by setting a configuration or command-line option. Other processes require that
you build your own custom jail and then execute the chroot command. The chroot command provides a
userland interface to the chroot() function. It works by specifying the new root directory of the proposed jail
and then executing the required command like so:

puppy# chroot /chroot/newroot /usr/sbin/jailed

On the previous line, the chroot command changes to the directory /chroot/newroot and then
executes the command /usr/sbin/jailed. The jailed daemon will now be able to access only the files
and objects in the directory /chroot/newroot and any subdirectories. It will have no other access to the
rest of the host’s file systems.

It is possible, albeit technically challenging, to break out of a chroot jail. A number of methods exist:
buffer overflows, open directory handles in file systems outside the chroot jail, or the injection of code into
the kernel. All these methods are made more difficult if the process or daemon inside the chroot jail has
dropped privileges. The ideal model for running a chroot jail is with a process that has normal user privi-
leges. For example, this is how the BIND named daemon can be run.

4444c07_final.qxd 1/5/05 12:55 AM Page 329

CHAPTER 7 ■ SECURING YOUR MAIL SERVER330

All files and databases (including alias files, :include: files, statistics files, and databases)
must also be readable by that user. Next ensure there are no group-writable files in the chroot
jail and that your cf files are secure using the following:

puppy# chmod -R go-w /chroot/sendmail

puppy# chmod 0400 /chroot/sendmail/etc/mail/*.cf

Finally, because you have chrooted Sendmail and you are running it on an SMTP gateway,
you do not need to do local delivery; therefore, your sendmail binary does not need to setgid
smmsp or belong to the smmsp group. Change it by entering the following:

puppy# chmod g-s /chroot/sendmail/usr/sbin/sendmail

puppy# chgrp root /chroot/sendmail/usr/sbin/sendmail

Change any other ownerships and permissions according to the instructions in the Send-
mail op.ps file. When you start Sendmail, it should identify any other potential permissions
problems—the more recent versions of Sendmail are especially strict about this—and you can
correct these as you go.

Starting and Troubleshooting Your Sendmail chroot Jail
Obviously you will also need to configure your Sendmail to relay your mail to its final destina-
tion; I recommend setting up some fairly stringent antispam and antivirus rules on any SMTP
gateway system. Once this is complete, you can start your chrooted Sendmail. Listing 7-5
shows the required command.

Listing 7-5. Starting your Chrooted Sendmail

puppy# chroot /chroot/sendmail /usr/sbin/sendmail -bd -q15m

This command first specifies the location of the chroot root directory, /chroot/sendmail,
and then executes the sendmail binary. The binary it executes is the sendmail you have located
in the chroot jail, because /usr/sbin is now relative to the new root directory, not to your exist-
ing / root directory.

During your testing phase, I recommend you change your Sendmail logging level in
sendmail.cf to the highest level to pick up all the possible error messages whilst you are testing
your chroot jail. You need to change the logging setting, LogLevel, to 15. You should change this
back to your choice of logging level after you have finished testing. The most common prob-
lems with this setup are usually related to permissions. Carefully read your mail logs to deter-
mine exactly where the problem is.

Chrooting Postfix
Postfix is remarkably easy to chroot. Or perhaps, better said, most of the Postfix daemons are
easy to chroot. Almost all the Postfix daemons can be run in a chroot jail using fixed low privi-
leges with access only to the Postfix queue at /var/spool/postfix. The only daemons that can-
not be chrooted are the daemons associated with the local delivery of e-mail.

■Note This assumes you have already installed and configured Postfix and it is running on your system.

4444c07_final.qxd 1/5/05 12:55 AM Page 330

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 331

You first need to create your chroot jail and populate it with all the files Postfix requires to
run. The default place to create your Postfix chroot jail is in /var/spool/postfix.

■Caution Always remember any chrooted daemon resolves filenames and directories relative to the root
of the chroot jail. In this case, that is /var/spool/postfix. So if it is looking for the file /etc/localtime,
then it expects to find it in /var/spool/postfix/etc/localtime.

Create the following subdirectories under this directory:

/dev

/etc

/lib

/usr

/usr/lib

/usr/lib/zoneinfo

/var

/var/run

You will need some files from elsewhere in the system to allow Postfix to function. Copy
the following files into /var/spool/postfix/etc from /etc:

/etc/localtime

/etc/host.conf

/etc/resolv.conf

/etc/nsswitch.conf

/etc/services

/etc/hosts

/etc/passwd

You also need to add the Postfix required libraries to the /var/spool/postfix/lib direc-
tory. You can do this by copying all of the following:

puppy# cp /lib/libnss_*.so* /var/spool/postfix/lib

puppy# cp /lib/libresolv.so* /var/spool/postfix/lib

puppy# cp /lib/libdb.so* /var/spool/postfix/lib

You also need to copy the file /etc/localtime to /var/spool/postfix/usr/lib/zoneinfo/
localtime. You can use the following command for this:

puppy# cp /etc/localtime /var/spool/postfix/usr/lib/zoneinfo

■Tip If you downloaded the Postfix source and installed it that way, then the source package contains some
scripts to automate the creation of the required directories and to copy the required files for you. These scripts
are located in postfix-version/examples/chroot-setup/. An example script called LINUX2 is specifically
for Linux. You just need to make the script executable and then run it. It also automatically reloads Postfix.

4444c07_final.qxd 1/5/05 12:55 AM Page 331

CHAPTER 7 ■ SECURING YOUR MAIL SERVER332

Also in your /var/spool/postfix/dev directory you need to create a log device to allow the
chrooted Postfix to log to syslog. If you are using syslog, then you need to add the -a switch to
the command to start syslog. For this configuration, I would use the following:

-a /var/spool/postfix/dev/log

If you are using syslog-NG, then add a line similar to the following one to your
syslog-ng.conf file in one of your source statements:

unix-stream("/var/spool/postfix/dev/log");

■Tip See Chapter 5 for more details on how to do this.

Then restart syslog or syslog-NG, which should create a log device in the dev directory
that will allow Postfix to log to your syslog daemon.

Finally, if you are going to be using SASL, then you will need to copy the smtpd.conf file and
all the required SASL mechanisms and plug-ins you intend to support. You can do this simply
by copying all the files in the /usr/lib/sasl2 directory to /var/spool/postfix/usr/lib/sasl2.
If you are using saslauthd, you also need to adjust the location of your saslauthd mux file to
within your chroot jail. See Chapter 8 for how to do this.

Now that you have a chroot jail for Postfix, you need to configure Postfix itself to use
that jail. The Postfix daemons are controlled by the master.cf file, which is usually located
in the /etc/postfix/ or /etc/mail directory. Open this file, and review its contents. The
start of the file contains documentation explaining the daemons controlled from this file
and their settings. After this documentation you will find a list of daemons that resembles
Listing 7-6.

Listing 7-6. Postfix master.cf File

service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (100)

smtp inet n - y - - smtpd

#628 inet n - y - - qmqpd

pickup fifo n - y 60 1 pickup

cleanup unix n - y - 0 cleanup

qmgr fifo n - y 300 1 qmgr

#qmgr fifo n - y 300 1 nqmgr

rewrite unix - - y - - trivial-rewrite

bounce unix - - y - 0 bounce

defer unix - - y - 0 bounce

flush unix n - y 1000? 0 flush

proxymap unix - - y - - proxymap

smtp unix - - y - - smtp

relay unix - - y - - smtp

4444c07_final.qxd 1/5/05 12:55 AM Page 332

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 333

-o smtp_helo_timeout=5 -o smtp_connect_timeout=5

showq unix n - y - - showq

error unix - - y - - error

local unix - n n - - local

virtual unix - n n - - virtual

lmtp unix - - y - - lmtp

You should see that each daemon is followed by several columns of configuration switches.
A hyphen (-) in a column indicates that Postfix will use the default setting for that setting, which
is specified in the second commented line beneath the description of what each column does.
For example, the default for unpriv is y (for yes).

The most important columns are unpriv and chroot. In the chroot column, make sure all the
daemons except those that use local or virtual services (check the last column under command to
confirm this) are set to y. Then check that all the entries underneath unpriv are set to either - or y
again with the same exceptions: the local and virtual services.

Now reload Postfix by entering the following:

puppy# postfix reload

Check your mail log file (usually /var/log/maillog) for the results of the reload; if it
reports that Postfix reloaded without incident, your system is now running Postfix chrooted!

Securing Your SMTP Server
I will now show you some options for securing Sendmail and Postfix, including hiding your ban-
ner, disabling some SMTP commands, setting the privacy flags for Sendmail, and using smrsh
with Sendmail, amongst other issues. A large portion of the following sections focus on Send-
mail rather than Postfix because Postfix provides built-in protection or turns on or off some
security-related options by default and does not require you to manually do this. I will identify
where any manual intervention for Postfix is required.

Obfuscating the MTA Banner and Version
Your MTA’s banner is one of the few occasions when it does not pay to advertise. One of the
easiest ways for attackers to customize their assaults on your MTA is by Telneting to port 25
on your system and watching your MTA’s banner tell the attackers what application it is and
its version. So I will take you through the steps required to change Sendmail and Postfix’s ban-
ner to something that does not broadcast these details.

Sendmail
Sendmail controls its banner by settings in the sendmail.cf file. If you know Sendmail, you will
be aware it is recommended you do not directly edit the sendmail.cf file; rather, you should up-
date the m4 macro file, sendmail.mc, and then re-create the sendmail.cf file. In Listing 7-7 you
can see the default Sendmail banner.

Listing 7-7. Default Sendmail Banner

220 puppy.yourdomain.com ESMTP Sendmail 8.12.11/8.12.10; ➥

Fri, 26 Mar 2004 20:45:50 +1100

4444c07_final.qxd 1/5/05 12:55 AM Page 333

CHAPTER 7 ■ SECURING YOUR MAIL SERVER334

You can change this by setting the confSMTP_LOGIN_MSG parameter inside the sendmail.mc
file. By default it does not appear in most sendmail.mc files, so you will need to add it. Listing 7-8
shows how to do it.

Listing 7-8. The sendmail.mc Parameter That Controls the Sendmail Banner

define(`confSMTP_LOGIN_MSG', `$j')

The $j macro represents the fully qualified domain name of your system. Remember, you
will need to re-create the sendmail.cf file by issuing an m4 command and restarting sendmail.
Enter the following:

puppy# m4 /etc/mail/sendmail.mc > /etc/mail/sendmail.cf

puppy# /etc/rc.d/init.d/sendmail restart

■Note I am restarting Sendmail on a Red Hat system here using an init script. You should restart using
whatever mechanism your distribution provides.

This will produce a banner that looks like Listing 7-9.

Listing 7-9. A De-identified Sendmail Banner

220 puppy.yourdomain.com ESMTP

The word ESMTP1 is automatically inserted between the first and second words in the
banner to encourage other MTAs to speak ESMTP.

Many people happily disable their Sendmail banner and think attackers are now up for
a much harder job to determine their software version. But, unfortunately, another SMTP com-
mand, HELP, happily spits out your Sendmail version and offers help on the commands you can
run on your MTA. It is not easy to disable this. You can remove the content of the HELP command
response by adding the contents of Listing 7-10, which specifies you do not want a help file. Add
this to your sendmail.mc file.

Listing 7-10. Hiding Help Contents from Display

define(`HELP_FILE', `')

But even if you do hide the content of the HELP command response, it still returns the
Sendmail version, as demonstrated in Listing 7-11.

Listing 7-11. Sendmail Help with Hidden Contents

HELP

502 5.3.0 Sendmail 8.12.11 -- HELP not implemented

1. The Enhanced Simple Mail Transfer Protocol (ESMTP)

4444c07_final.qxd 1/5/05 12:55 AM Page 334

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 335

At the time of this writing, the only way for the paranoid (and I fall into this category
because I believe every trick or edge you can get on potential attackers is good) to disable this
behavior is to edit the source code of Sendmail itself. If you really want to do this, then you
will find the relevant code in the sendmail subdirectory of your Sendmail source distribution
in the file srvrsmtp.c. In this file find the line in Listing 7-12.

Listing 7-12. HELP Command in srvrsmtp.c

message("502 5.3.0 Sendmail %s -- HELP not implemented",

Version);

Remove Sendmail %s from the line in Listing 7-12 and recompile. The Sendmail server will
now not display the application name or version in the HELP command response. Of course, you
would need to repeat this every time you upgrade Sendmail.

■Caution If you do not know what you are doing, do not mess with the Sendmail source code, because
there is every chance you will break something! Security is good, but your users also need a working MTA.

Postfix
The banner presented by Postfix is easy to configure. It is controlled by the smtpd_banner
parameter in the main.cf file. The main.cf file is normally located in /etc/postfix or
/etc/mail. Listing 7-13 shows the default banner.

Listing 7-13. Default Postfix Banner

220 puppy.yourdomain.com ESMTP Postfix

You can create this by setting the smtpd_banner parameter in the main.cf file to the following:

smtpd_banner = $myhostname ESMTP $mail_name

The $myhostname variable expands to the hostname and domain of the system, and the
$mail_name variable expands to Postfix. To hide the Postfix server identification from view,
change the banner parameter to the following:

smtpd_banner = $myhostname ESMTP

■Caution You must include the $hostname variable. It is a requirement of the RFC. You should also leave
ESMTP in the banner, as by default Postfix sends only an EHLO at the start of a connection if ESMTP appears in
the banner. You can override this behavior by adding smtp_always_send_ehlo = yes to the main.cf file.

The Postfix MTA does not implement the HELP command.

4444c07_final.qxd 1/5/05 12:55 AM Page 335

CHAPTER 7 ■ SECURING YOUR MAIL SERVER336

Disabling Dangerous and Legacy SMTP Commands
One of the first things you need to do is to look at some SMTP commands. SMTP was designed
with some useful commands, such as VRFY, that used to make sending e-mail easier. Those com-
mands now represent more of a liability for your SMTP server than a benefit. I will go through all
of these “legacy” commands and examine how to deal with them. You can see a list of all the
potentially unsafe SMTP commands like this in Table 7-1. Some of these commands may be dis-
abled, may be turned off, or are simply not available in future versions of Sendmail and Postfix,
but it is better to be sure you have addressed these commands.

Table 7-1. SMTP Commands That Are Potentially Insecure

Command Purpose Recommended Setting

VRFY Verifies the presence of an e-mail address Disable

EXPN Expands an e-mail address and shows a list of all the mail- Disable
boxes or users who will receive messages when e-mail is
sent to this address

ETRN Allows dial-up hosts to retrieve only the mail destined for Disable if not used
their domain

Disabling VRFY
VRFY, for example, is a way for a remote SMTP server to verify that a user or e-mail addresses
exists and is valid at another SMTP server. For example, if you Telnet to a Sendmail server with
VRFY enabled, you should see something like Listing 7-14.

Listing 7-14. Using the VRFY Command

[john@kitten]$ telnet puppy.yourdomain.com 25

Trying 192.168.0.1...

Connected to puppy.yourdomain.com.

Escape character is '^]'.

220 puppy.yourdomain.com ESMTP

VRFY root

250 2.1.5 root@puppy.yourdomain.com

VRFY jim

550 5.1.1 jim... User unknown
This is a Sendmail server, and I have Telneted into it and asked it to check for the presence

of some local users. First, I try to VRFY root. Sendmail gives SMTP response code 250 and pro-
vides root’s e-mail address. In the second attempt I try to VRFY jim. Sendmail reports that jim
is an unknown user and returns response code 550.

With the VRFY option enabled only attackers and the harvesters of e-mail addresses for
spam purposes are able to do two things—confirm the presences of a username on your sys-
tem or confirm that an e-mail address will receive mail and is thus of some value as a target
for spam.

You can control most of the SMTP command options in Sendmail using this option:

define(`confPRIVACY_FLAGS', `flags').

4444c07_final.qxd 1/5/05 12:55 AM Page 336

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 337

In Sendmail to disable VRFY and other SMTP commands, you need to add flags to the
confPRIVACY_FLAGS option in sendmail.mc and then rebuild your sendmail.cf. So to disable
VRFY in Sendmail, do this:

define(`confPRIVACY_FLAGS', `novrfy')

Restart Sendmail, and the VRFY command will be disabled. Listing 7-15 shows the results
if you try a VRFY with it disabled in Sendmail

Listing 7-15. Results from Sendmail with VRFY Disabled

VRFY jim

252 2.5.2 Cannot VRFY user; try RCPT to attempt delivery (or try finger)

In Postfix you need to add the option in Listing 7-16 to the main.cf file and then reload or
restart Postfix.

Listing 7-16. Disabling VRFY in Postfix

disable_vrfy_command = yes

With this option, Postfix should respond similarly to Listing 7-17.

Listing 7-17. Results from Postfix with VRFY Disabled

VRFY jim

502 VRFY command is disabled

Disabling EXPN
EXPN stands for expand and allows someone to Telnet to your MTA and query a name. If that
name is an alias for multiple recipients, that EXPN command expands that alias into a list of those
users. On a Sendmail server using a .forward file, the EXPN command will also show the real for-
warding destination of mail. Or you can issue EXPN for the root user and see who receives mail
addressed to the system administrator. As you can imagine, this is dangerous both from a secu-
rity point of view, as attackers can identify a variety of potential user accounts on your system,
and from a spam point of view, as spammers can gather considerable numbers of addresses by
expanding aliases.

As with disabling VRFY, you use the same confPRIVACY_FLAGS option for EXPN. In Listing 7-18
you can see the argument for disabling EXPN added to the confPRIVACY_FLAGS option.

Listing 7-18. Disabling EXPN in Sendmail

define(`confPRIVACY_FLAGS', `novrfy,noexpn')

Rebuild sendmail.cf, and restart Sendmail. When you issue an EXPN, as shown in
Listing 7-19, you should see results.

Listing 7-19. Results from Sendmail with EXPN Disabled

EXPN

502 5.7.0 Sorry, we do not allow this operation

4444c07_final.qxd 1/5/05 12:55 AM Page 337

CHAPTER 7 ■ SECURING YOUR MAIL SERVER338

In Postfix the EXPN is not implemented by default, and in Listing 7-20 you can see how
Postfix will respond to EXPN requests.

Listing 7-20. EXPN in Postfix

EXPN jim

502 Error: command not implemented

Disabling ETRN
Before disabling the ETRN command, you need to put some thought into whether disabling
it is the most appropriate choice. The command is a more secure enhancement of the TURN
command. It is designed to assist hosts that are not permanently connected to the Internet.
The mail for the occasionally connected hosts is accumulated at another SMTP server, and,
when the host connects to the Internet, the host sends an ETRN command that instructs the
storing SMTP Server to deliver all the stored mail. If the given SMTP server does not have any
stored messages, it does not reply to your SMTP server and the SMTP connection times out.

In most cases, ETRN does not pose a significant risk, but at least one exploit has used ETRN
for a DoS service attack in the past.2 If you do not use ETRN for anything, then to err on the side
of caution, I recommend you disable it. For Sendmail, simply change your confPRIVACY_FLAGS
to Listing 7-21.

Listing 7-21. Disable ETRN in Sendmail

define(`confPRIVACY_FLAGS', `novrfy,noexpn,noetrn')

Listing 7-21 now shows all the SMTP commands I have discussed (VRFY, EXPN, and ETRN)
in a disabled state.

In Postfix you cannot entirely disable ETRN, but you can reduce the any potential threat by
specifying what domains are able to use the ETRN command. Add the option in Listing 7-22 to
main.cf, and reload Postfix to enable this.

Listing 7-22. ETRN in Postfix

smtpd_etrn_restrictions = permit_mynetworks, hash:/etc/postfix/allow_etrn, reject

This command tells Postfix to allow ETRN commands from two sources: any networks
listed in the main.cf config option $mynetworks, denoting any networks that Postfix trusts for
purposes such as relaying, and any domains or IP addresses listed in a Postfix access database
called allow_etrn in /etc/postfix. The final statement, reject, tells Postfix to reject any other
attempts to use ETRN.

■Tip You can create Postfix access databases using the postmap command. You can read about them in
the postmap man page or on the Web at http://www.postfix.org/access.5.html.

2. http://www.securityfocus.com/bid/904/info/

4444c07_final.qxd 1/5/05 12:55 AM Page 338

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 339

Some Additional Sendmail Privacy Flags
In addition to the flags I have discussed, Sendmail also has a number of other useful flags for
the confPRIVACY_FLAGS option. In Table 7-2 you can see a list of the ones I think are useful and
recommend you set to increase the integrity and security of your Sendmail server.

Table 7-2. Additional Sendmail Privacy Flags

Flag Purpose

authwarnings Inserts a header, X-Authentication-Warnings, into any mail it suspects is not
authentic. This is usually on by default in most Sendmail installations.

goaway Combines the functions of novrfy, noverb, and noexpn and also includes
noreceipts, needmailhelo, needvrfyhelo, needexpnhelo, and nobodyreturn.

needmailhelo A remote server must issue a HELO before sending mail.

nobodyreturn Does not return the original body of a message when it is bounced.

noreceipts Disables DSN (SUCCESS return receipts).

noverb Disables the SMTP VERB command.

restrictexpand Tells Sendmail to drop privilege when a non-root user runs sendmail -bv to
protect ./forward files, aliases, and :include: files from snooping.

restrictmailq Restricts who can examine the mail queue to root or the queue owner.

restrictqrun Restrict who can run or process the mail queue using the -q option to root or
the queue owner.

I recommend setting your privacy options to the most secure possible. Listing 7-23 shows
my recommended setting.

Listing 7-23. Recommended Sendmail confPRIVACY_FLAGS Options

define(`confPRIVACY_FLAGS', `goaway,restrictmailq,restrictqrun')

■Tip If you are going to restrict access to the mail queue, ensure you turn off read permissions for ordinary
users on your logs. You can extract the same information via grepping your logs as you can reading the mail
queue.

Sendmail and smrsh
Sendmail also offers users the ability to run programs using the “prog” mailer function.
This poses some risks if users are able to execute programs or code that could allow
exploits or threaten the integrity of the system. The solution to this issue is the introduc-
tion of smrsh, the Sendmail restricted shell. The smrsh shell was designed as a replacement
for the standard shell, sh, to prevent people from misusing the Sendmail |program func-
tions by limiting those programs and shell functions that can be executed. If you specify
the smrsh shell, then Sendmail can execute only those programs contained in the smrsh

4444c07_final.qxd 1/5/05 12:55 AM Page 339

CHAPTER 7 ■ SECURING YOUR MAIL SERVER340

directory (by default /usr/adm/sm.bin). It limits the use of shell commands to exec, exit,
and echo. The smrsh shell also disables the use of the following characters when executing
programs:

' < > ; $ () \r \n

You can enable smrsh by adding the feature in Listing 7-24 to your sendmail.mc file.

Listing 7-24. Enabling SMRSH in Sendmail

FEATURE(`smrsh',`/usr/sbin/smrsh')

Ensure the second option /usr/sbin/smrsh is the location of your smrsh binary. Then
create your /usr/adm/sm.bin directory to hold your “safe” programs.

■Tip Some distributions change the default location for the smrsh programs directory. Use the command
strings /path/to/smrsh | grep '^/' to find the directory. One of the directories returned should be
the smrsh directory.

You should populate your smrsh “safe” programs directory with only those programs you
believe cannot be compromised or used for hacking purposes. So, do not include the perl
interpreter, sed, awk, or the like. And do not include shells such as sh or csh, as this defeats the
purpose of having a secure shell. I usually include programs such as mail and vacation and, if
you use them, programs such as maildrop and procmail. When populating your “safe” pro-
grams directory, the easiest method is to simply symbolically link in the required programs.

Writing to Files Safely
Starting with version 8.7, Sendmail also has the ability to control how delivery is made to files,
including defining a “safe” directory environment in the form of a limited chroot jail. Ordinarily,
Sendmail will write to any file or object it has permission to write to, including ordinary files, direc-
tories, and devices. This poses a serious risk if Sendmail were to write over something crucial or if
an attacker was able to overwrite something that created a vulnerability or hole in your security.

The SafeFileEnvironment option handles the ability to control how delivery is made to files.
Enabling it can achieve two possible outcomes. The first is to restrict delivery to ordinary files
only, and the second to create an area to which Sendmail must write its files. Listing 7-25 simply
declares the option in sendmail.mc, which restricts delivery to ordinary files only.

Listing 7-25. Setting SafeFileEnvironment

define(`confSAFE_FILE_ENV', `/')

With the SafeFileEnvironment declared as / or root, Sendmail will now to refuse to write
to anything except a normal file. This includes banning writes to directory, devices, and,
importantly for some systems, symbolic links. The only exception to this is that it is still possi-
ble for Sendmail to write to /dev/null. Turning this option on is a good idea as a bare mini-
mum to prevent an inadvertent or malicious write by Sendmail to some critical location.

4444c07_final.qxd 1/5/05 12:55 AM Page 340

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 341

The second way to use the SafeFileEnvironment option is to define a directory or direc-
tory tree in which all files that Sendmail wants to write to must be contained. This applies only
to delivery to files. This does not include things such as your aliases, include files, maps, or any-
thing written by a delivery agent such as procmail. Listing 7-26 shows how you can define a
directory.

Listing 7-26. Setting SafeFileEnvironment

define(`confSAFE_FILE_ENV', `/safe')

Sendmail will chroot into the /safe directory before making any writes. But Sendmail also
is careful to check that you are not referencing the “safe” directory twice. For example, if your
alias file contains the following:

jim: \jim, /safe/home/jim/jim.old

and your SafeFileEnvironment option is set like Listing 7-26, then Sendmail will strip off the
extra /safe in your aliases file before writing.

■Note The \ in front of jim tells Sendmail to write immediately ignoring any other aliasing, including
.forward files.

This means rather than incorrectly writing to /safe/safe/home/jim/jim.old, Sendmail
checks for the extra directory and sees that you have included it in both the alias file and the
sendmail.cf file, removes the extra reference, and actually writes to /safe/home/jim/jim.old.

The last thing to consider with the SafeFileEnvironment is if you use it in conjunction with
the RunAsUser option. Turning on the RunAsUser option will make all deliveries to files or programs
unsafe and thus conflicts with the SafeFileEnvironment option. If you use the RunAsUser option,
then do not enable the SafeFileEnvironment.

Limiting the Risk of (Distributed) DoS Attacks
DoS and Distributed Denial of Service (DDoS) attacks are designed to overwhelm your mail
server by using multiple, simultaneous requests, e-mails, or commands. Eventually your
e-mail server uses too much memory, runs out of disk, or spawns too many processes, or
your network is overloaded and your system either becomes ineffective or crashes. There is
some good news here. You can prevent some of this behavior with some relatively simple-
to-implement changes.

But (and there are a couple of big buts), you must also be careful when setting this
up depending on the volume and throughput of your e-mail server. First, you could risk
severely crippling the performance of your e-mail server if you restrict it to a certain num-
ber of processes/daemons or a certain volume of e-mail. You should watch your system
closely, collect performance data and statistics, and set any thresholds at least 50 percent
to 100 percent higher than the peak for that service, rate, or process. This reduces the risk
of you artificially denying service to your own e-mail server by setting any limits too low.

4444c07_final.qxd 1/5/05 12:55 AM Page 341

CHAPTER 7 ■ SECURING YOUR MAIL SERVER342

3. You can find some excellent information on tuning Sendmail at
http://people.freenet.de/slgig/op_en/tuning.html and on Postfix at
http://www.porcupine.org/postfix-mirror/newdoc/TUNING_README.html.

4. You can find PortSentry at http://sourceforge.net/projects/sentrytools/.

You need to keep watching and analyzing this also. Do not assume your e-mail server’s per-
formance is going to be static. Watch and adjust your thresholds and limits accordingly.3

Second, you will probably never be able to fully prevent an all-out DoS attack. There is
a good chance your mail server will succumb before you get a chance to protect it. What can
help with this (or at least enhance your chances of reducing any potential outage because of
a DoS attack) is to ensure that you are protecting your e-mail server from DoS attacks in
a multilayered fashion. You should ensure your firewalling is correct and that you have the
ability to drop connections to hostile sources quickly and effectively (using a tool such as
PortSentry).4 I cover some of this in more detail in Chapter 2. You should also have early-
response warnings set up either by watching performance data and logs or via intrusion
detection software such as Snort and alerting via a non-e-mail source!

■Tip This is very important to consider. It is all well and good sending incident warnings and alerts via
e-mail—until your e-mail server is the target of the attack and you simply are not getting the warnings or
they are buried in a sea of other error messages. Look at using SMS or paging as an alternative source of
alerts for critical messages related to your e-mail servers and services.

Limiting DoS Attacks with Sendmail
The objective in reducing the risk of DoS and DDoS attacks is to inhibit the overflow of inputs
to your Sendmail mail server without inhibiting the normal flow of inputs, where the inputs
are the e-mail messages and connections inbound and outbound on your system. You can use
a number of settings in Sendmail to help do this. I will divide these settings into rate-control
settings and resource settings. Rate-control settings handle the thresholds and levels at which
Sendmail conducts itself, including process limits and delays. Table 7-3 shows the rate-control
settings. Resource controls are related to the resources available to Sendmail. All these settings
are located in your sendmail.mc file.

Table 7-3. Rate-Control Settings to Stop DoS and DDoS Attacks in Sendmail

Directive Description

confCONNECTION_RATE_THROTTLE Limits the number of incoming connection per second per
daemon

confMAX_DAEMON_CHILDREN Limits the number of daemon children Sendmail will spawn

ConnectionRateThrottle tells Sendmail how many incoming connections to open per
second and per daemon. Remember that this can cause a DoS attack in its own right if set too
low for your site. It is set to no limit by default. Sendmail spawns additional daemon children

4444c07_final.qxd 1/5/05 12:55 AM Page 342

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 343

for incoming mail and queue runs. The MaxDaemonChildren setting causes Sendmail to refuse
connections if the limit of children is exceeded. This has no effect on outgoing connections.
Again, remember this can cause a DoS attack in your site if set too low. It is set to no limit by
default.

Additionally, in the upcoming 8.13.0 release of Sendmail, some basic rate-control func-
tionality has been introduced to limit the number of connections from a particular client
source. This potentially should significantly reduce the risk of connection-based DoS attacks.
The functionality is also available for Sendmail 8.12 in an experimental form. You can find it
at http://j-chkmail.ensmp.fr/sm/.

The second category of settings is resource related, including controlling potential attacks
based on the size and form of mail messages sent and the minimum free space available on
the system in order for Sendmail to receive mail. Table 7-4 shows these directives.

Table 7-4. Resource-Control Settings to Stop DoS and DDoS Attacks in Sendmail

Directive Description

confMAX_HEADERS_LENGTH Limits the maximum length of all mail headers

confMAX_MIME_HEADER_LENGTH Limits the maximum length of some MIME headers

confMAX_MESSAGE_LENGTH Limits the maximum size of a message that Sendmail will
receive

confMIN_FREE_BLOCKS The number of free blocks required to before a mail message is
accepted

Listing 7-27 shows the settings for these options for my Sendmail server.

Listing 7-27. Mail-Based DoS and Overflow Attack Settings for Sendmail

define(`confMAX_HEADERS_LENGTH', `32768')

define(`confMAX_MIME_HEADER_LENGTH', `256/128')

define(`confMAX_MESSAGE_LENGTH', `10485760')

define(`confMIN_FREE_BLOCKS', `250')

The first option, MaxHeaderLength, tells Sendmail to limit the maximum header length to
32,768 bytes. By default this is set to 0, which indicates no limit on the header size. The second
option, MaxMIMEHeaderLength, is designed to protect your Mail User Agents (MUAs). MaxMIME-
HeaderLength is divided into two numbers. The first, before the slash (/), is the maximum size
in characters of all those MIME headers belonging to the class {checkMIMETextHeader}. The
second number, after the slash (/), is for those headers in that class that take parameters and
sets the maximum size in characters of those parameters. The defaults for this are 2048/1024.

The next option, MaxMessageLength, controls the maximum size of an e-mail that Send-
mail will accept. In Listing 7-27 I have set this to 10MB but you may want to set this to what-
ever amount suits your site or organization. I recommend you note that SMTP is not a file
transfer protocol. If your users need to send huge files, you should encourage them, if not
force them, to seek other means and not to resort to e-mail.

4444c07_final.qxd 1/5/05 12:55 AM Page 343

CHAPTER 7 ■ SECURING YOUR MAIL SERVER344

■Note This also controls the response of the SMTP command SIZE. Smart clients will ask Sendmail first
what size messages it will accept and not try to send the message if its size exceeds the threshold. Dumb
clients will send the message (which on a dial-up connection, for example, could take a long time) and then
realize it has been rejected and stop processing the message. You will need to test your clients to determine
what their behavior is.

The last setting, MinFreeBlocks, forces Sendmail to ensure you have a minimum amount
of free space before it will accept e-mail. This will stop your spool from filling up and poten-
tially crashing your system. It is set to 100 blocks by default.

Obviously, after changing any of these settings, you need to re-create your sendmail.cf
file and restart Sendmail.

Limiting DoS Attacks with Postfix
The objective in reducing the risk of DoS and DDoS attacks is to inhibit the overflow of inputs
to your Postfix mail server without inhibiting the normal flow of inputs, where the inputs are
the e-mail messages and connections inbound and outbound on your system. You can use
a number of settings in Postfix to help you do this. I will divide these settings into rate-control
settings and resource settings. Rate-control settings handle the thresholds and levels at which
Postfix conducts itself, including process limits and delays. Table 7-5 shows the rate-control
settings. Resource controls relate to the resources available to Postfix. Table 7-6 shows these
controls. The main.cf file contains all these settings.

Table 7-5. Rate-Control Settings to Stop DoS and DDoS Attacks in Postfix

Default
Directive Setting Description

default_process_limit 100 Controls inbound and outbound
delivery rates by limiting the number
of concurrent processes

local_destination_concurrency_limit 20 Controls how many messages are
delivered simultaneously to a local
recipient

smtpd_recipient_limit 1000 Limits the number of recipients the
SMTP daemon will take per delivery

smtpd_soft_error_limit 10 Error count

smtpd_hard_error_limit 20 Error count

smtpd_error_sleep_time 1 Pause that Postfix takes between
reporting errors in seconds

I will take you through all of the options available to you. The first is
default_process_limit, which simply controls the number of possible concurrent Postfix
processes and includes SMTP clients and servers as well as local delivery functions. This
defaults to 100, which is potentially a substantial number on a smaller system and could easily
overload a smaller spec mail server but is probably acceptable for a large mail hub. You can

4444c07_final.qxd 1/5/05 12:55 AM Page 344

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 345

also edit the number of processes available to a specific daemon by editing the master.cf file.
You need to edit the column maxproc to change the maximum number of processes available
to that particular daemon. You can also specify 0 for no maximum. This is probably not a good
idea, as it defeats the purpose of restricting the number of running processes and leaves you
open to a DoS attack.

The local_destination_concurrency_limit option controls how many messages are
delivered simultaneously to the same local recipient. You should keep this low (or if you want
to increase it, do it gradually so you can see the results); otherwise, you could easily allow
a DDoS or DoS attack to cripple your system as your mail delivery is overloaded. The default
setting of 20 works well for most Postfix systems.

The smtpd_recipient_limit option tells Postfix the limit of recipients to take per delivery.
It defaults to 1000, which should cover most normal SMTP clients; however, I recommend you
lower it to prevent issues with broken client. The limit should also be considered as a potential
antispam tool. Messages with large numbers of recipients are often more likely to be spam,
Trojans, or viruses than legitimate e-mails. Whilst there is some risk of rejecting mailing list
messages by lowering this limit, polite and well-configured mailing list software should divide
outgoing mail into multiple mails with small blocks of recipients. This being said, RFC 821
does suggest a minimum of 100 recipients; I recommend not going lower than this.

Postfix also keeps a running tally of errors as messages are sent and received. It tracks two
kinds of errors: soft errors and hard errors. Each has its own thresholds,
smtpd_soft_error_limit and smtpd_hard_error_limit, respectively, that can be set. If those
thresholds are breached, then there are two possible responses. The first is to pause for the
smtpd_error_sleep_time period in seconds. The second is to disconnect the connection. Post-
fix decides what is going to do based on the following rules:

• When the error count is less than smtpd_soft_error_limit, it does not pause or sleep
between errors.

• When the error count is greater than or equal to smtpd_soft_error_limit, then it
pauses for the period specified in smtpd_error_sleep_time.

• Finally, if the error count is greater than or equal to smtpd_hard_error_limit, then the
SMTP daemon disconnects the connection.

Listing 7-28 shows the Postfix smtpd error-rate controls I generally use, but you would be
best served to experiment with different combinations. Be careful of not setting your error
limits too low and setting your smtpd_error_sleep_time too high in case you slow your system
to a halt over minor errors.

Listing 7-28. Error-Rate Controls in Postfix

smtpd_error_sleep_time = 10

smtpd_soft_error_limit = 10

smtpd_hard_error_limit = 20

Recent snapshots of Postfix have included some additional rate-control options. This has
consisted of an anvil server that allows Postfix to track connection totals from particular clients.
When this is rolled into the main Postfix release, you should be able to introduce client-based
limits for simultaneous connections both in terms of number of connections and numbers of
connections per time period. If you need this sort of functionality now, then I recommend you

4444c07_final.qxd 1/5/05 12:55 AM Page 345

CHAPTER 7 ■ SECURING YOUR MAIL SERVER346

look at the snapshots of Postfix—though I stress that they are experimental, and I do not recom-
mend running a production system on one.

Table 7-6. Resource-Control Settings to Stop DoS and DDoS Attacks in Postfix

Directive Default Description

message_size_limit 10240000 Controls max size in bytes of a Postfix queue file

queue_minfree No restriction Controls number of free bytes required in the queue
file system to allow incoming mail delivery

The first option controls the size in bytes of any Postfix message queue and therefore any
incoming message. You can set this to the limit that bests suits your environment and the poli-
cies of your organization. I recommend that you note that SMTP is a mail transfer protocol,
not a file transfer protocol. If your users need to send huge files, you should encourage them,
if not force them, to seek other means and not to resort to e-mail.

The next option is the free space in bytes required in the file system in which your mail
queue is contained in order to allow Postfix to accept incoming mail deliveries. I recommend
you set this to a multiple of message_size_limit to ensure a single big message does not halt
your mail delivery.

You can look other variables to further fine-tune your environment. You can see these at
http://www.postfix.org/rate.html and http://www.postfix.org/resource.html.

Obviously, you need to reload Postfix for any changes you have made here to take effect.

Relaying, Spam, and Viruses
Spam, also known as unsolicited commercial e-mail (UCE) or unsolicited bulk e-mail (UBE),
and viruses are the major banes of any system administrator’s life. The prevalence of both and
the scope for potential disaster for your network and users if an infected or spyware e-mail is
opened by an unsuspecting user means that anyone who addresses security-hardening issues
should also address spam and viruses as threats in their own right.

So I will explain a bit about open relaying and how to ensure you are not an open relay
and then launch into a breakdown of some MTA-based methods of significantly reducing the
volume of spam that hits your servers. I will also cover adding antivirus scanners to both
Sendmail and Postfix.

Relaying
Relaying is the act of an MTA accepting a message from an e-mail client and forwarding that
message onto its final destination. Now that sounds like a perfectly reasonable thing for an
MTA to do—if not part of an MTA’s core functionality. When I talk about relaying being an issue,
what I am really talking about is open relaying.

A system can be described as an open relay if its SMTP server is willing to send mail
where neither the sender nor the recipient is local to the machine or local trusted network(s).
Also, if the SMTP server is willing to send mail if the sender appears to be a local user but is
coming from a nontrusted source such as another network.

4444c07_final.qxd 1/5/05 12:55 AM Page 346

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 347

■Caution You may think that if an e-mail is coming from jim@yourdomain.com, then the server
mail.yourdomain.com should relay that message because jim is a local user. Unfortunately, “from” e-mail
addresses are ludicrously easy to forge, and thus just because a message says it has come from jim does
not guarantee it actually has.

Spammers use open relays to transmit mail to recipients who have blocked mail from
known spammers and also as a means to send e-mail when their ISP blocks mass e-mail. They
are also used by spam bots and mail-based viruses to transmit spam or spread themselves to
new systems. Open relaying is bad. You will not make yourself or your systems popular if you
maintain an open relay, and indeed you may end up blacklisted by a variety of third-party
blocking lists or spam prevention systems, which means your user’s ability to send e-mail will
be seriously compromised.

So why not just not use relaying? Well, unfortunately, if you have remote users, whether
they are roaming users or users who work from home, then they are often on networks your
system does not recognize as local. They still need to send mail, but you also need some way
of authenticating who they actually are. In Chapter 8 I will explain authentication using SMTP
AUTH, SASL, and TLS to allow you to do this.

But I have some good news. Most recent releases of all major MTAs (including Microsoft
Exchange 2000/2003) come with relaying disabled by default. Both Postfix (pretty much since
its first release) and Sendmail (from version 8.9 onward) also both have open relaying disabled
by default. This is yet another good reason to keep your software up-to-date. So, you have to
explicitly go out of your way to enable open relaying! But, unfortunately, mail servers exist that
have open relaying been turned on by accident or as the result of incorrect configuration.
I will show you in the next section how to make sure you are not one of those sites.

Testing If You Are an Open Relay
So, you want to find out if you are an open relay? Well, you have a couple of ways to do this.
One is to test your own mail server by trying to relay a message through it to another address
from an untrusted network, such as a dial-up connection. If the message is sent, then your
e-mail server is almost certainly acting as an open relay. If it is not sent and your MTA
responds with a message saying relaying is denied, then your MTA is probably not relaying.
This is, however, not a 100 percent foolproof method of detecting an open relay, though.
Spammers use a lot of tricks to defeat your MTA’s relaying restrictions.

The other method you can use to test for an open relay is to use one of the several free
open relay test tools. Several are available.

• http://www.abuse.net/relay.html

• http://www.ordb.org/submit/

• http://www.rbl.jp/svcheck.php

If you are not able to use a Web-based test, several Telnet tests are available:

4444c07_final.qxd 1/5/05 12:55 AM Page 347

CHAPTER 7 ■ SECURING YOUR MAIL SERVER348

• relay-test.mail-abuse.org

• www.relaycheck.com

• rt.njabl.org 2500

You can access these via Telnet from your command line. Finally, you can download
a variety of scripts to do your testing.

• http://www.cymru.com/Tools/mtaprobe.exp (Expect)

• http://www.monkeys.com/mrt/ (Perl)

• http://sorbs.sourceforge.net (Checks incoming servers for open relaying)

Try to test your MTA against a few different test tools. I recommend scheduling periodic
testing of your system or including a test of relaying after making configuration changes
related to relaying on your MTA.

Relaying in Sendmail
By default, from version 8.9 Sendmail does not allow the relaying of SMTP messages. To con-
firm this, you can check your sendmail.cf file for the contents of Listing 7-29.

Listing 7-29. Restricting Relaying in Sendmail

FR-o /etc/mail/relay-domains

This forces Sendmail to accept relaying only from the domains listed in the relay-domains
file. You can add hosts, domains, IP addresses, and subnets to this file. Listing 7-30 shows you
the content of my relay-domains file.

Listing 7-30. Sendmail relay-domains File

yourdomain.com

192.168.0

kitten.anotherdomain.com

Listing 7-30 allows relaying from the domain yourdomain.com, the network 192.168.0.0/28,
and the host kitten.anotherdomain.com. I recommend you use the relay-domains file for the
networks and domains that are local to your system. This is because you need to restart Send-
mail to update this file, so you want to make sure it is relatively static. If you want to frequently
change your relaying settings, then I recommend you use the access database file. I will discuss
how to handle relaying with the access database a little later.

You can further modify the behavior of the relay-domains file (and any RELAY options you
specify in your access database also) by adding some options to the sendmail.mc file. Table 7-7
lists those options. I will take you through all these features.

4444c07_final.qxd 1/5/05 12:55 AM Page 348

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 349

Table 7-7. Sendmail Relay-Related Configuration Settings

Option Description

FEATURE(relay_hosts_only) Allows relaying from only hosts listed in the relay-domains
file

FEATURE(relay_entire_domain) Allows relaying from any host of all the domains listed in the
relay-domains file

FEATURE(relay_based_on_MX) Allows relaying for any domain that has your host as a mail
exchange record

The first feature, relay_hosts_only, changes the behavior of the relay-domains file. By
default the relay-domains file allows relaying from any host from a domain listed in that file.
By adding this feature you must specify each host in that domain that is allowed to relay
e-mail. The relay_entire_domain feature does the opposite of the relay_hosts_only and
allows relaying from all hosts listed in a domain in the relays-domains file. This is the same as
the default behavior for Sendmail. The last option allows you to enable relaying for any
domain that is directed at your host; in other words, if the domain anotherdomain.com has
a Mail Exchange Record (MX) record of puppy.yourdomain.com, which is your Sendmail host,
then relaying for anotherdomain.com will be allowed on that host.

You can also specify relaying using an access database file. The access db feature of Send-
mail provides for the support for the access database. This feature allows you to maintain
a central database that contains a number of rules that tell Sendmail to allow certain func-
tions(for example, relaying), if the criteria in those rules are met. First you need to ensure the
access db feature is enabled in Sendmail. Look for the following line in your sendmail.mc file:

FEATURE(`access_db',`hash -T<TMPF> -o /etc/mail/access.db')

■Tip This FEATURE is for a hash database and is correct for the Sendmail version 8.12 I am using. If you
are using 8.11 or earlier, then the feature would be FEATURE(`access_db',`hash
/etc/mail/access.db'). You can see how to enable other database formats in the Sendmail op manual.

If it is not present, add it and re-create sendmail.cf. You may already have an access data-
base located in your /etc/mail directory. This file is created using the Sendmail makemap com-
mand, which takes an input of a text file, which I have called access, and creates a map file in
a variety of database formats. I have chosen a hash database, but you could use any of one the
other database formats. Listing 7-31 shows how this is done.

Listing 7-31. Creating Your access.db File

puppy# makemap hash access.db < access

As with your relay-domains file hosts, domains, IP addresses, and subnets can be listed.
You list these on the left side of the entry, and you list the required relay response on the right

4444c07_final.qxd 1/5/05 12:55 AM Page 349

CHAPTER 7 ■ SECURING YOUR MAIL SERVER350

side, separated by whitespace or a tab. Listing 7-32 shows a few examples of access db–based
relaying.

Listing 7-32. access db Relaying Sendmail

yourdomain.com RELAY

evilspamdomain.com REJECT

anotherevilspammer.com DISCARD

athirdevilspammer.com 554 Go away you spamming scumbag

As you can see, you can have four possible responses. The first is to RELAY the message;
the second is to REJECT and refuse connections from this domain; the next is DISCARD, which
accepts the message but discards it without processing (the sender will believe it has been
received); and the last option is a customized error response. In Listing 7-32 I have used a per-
manent error code of 554, which is the SMTP error code for transaction failed together with
a message indicating how you feel about spammers attempting to relay through your Send-
mail server.

I will also cover using the access db as part of the “Antispam” section later in this chapter
and with SMTP AUTH in Chapter 8.

Relaying in Postfix
Postfix has never allowed the open relaying of e-mail. If you want to change how relaying is
handled or enable some form of relaying, you can control this using settings in the main.cf
file. The major setting for this is the relay_domains option in the main.cf file. This option,
relay_domains, is commented out and disabled by default.

So, will Postfix relay anything by default? Yes, it will, but it allows e-mail to be relayed only
from trusted clients. It determines trusted clients to be any user with an IP address that is on
the $mynetworks variable list. The $mynetworks option looks like this:

mynetworks = 192.168.0.0/28, 127.0.0.0/8

This allows relaying for localhost and any users in the local 192.168.0.0/28 subnet.
If you want to enable relaying for some domains or hosts, then you can enable the

relay_domains option and add then a comma-separated list of hosts, domains, files, or
Postfix lookup tables. Listing 7-33 shows how to set this option.

Listing 7-33. Postfix’s relay_domains Option

relay_domains = anotherdomain.com, kitten.yetanotherdomain.com

This allows relaying from the trusted clients defined in the $mynetworks variable and from
any hosts in the anotherdomain.com domain and the kitten.yetanotherdomain.com host. You
can also specify files and lookup tables (created with the postmap command) in this list. If you
do not specify any domains of your own when you enable relay_domains, then you will see
that Postfix has it set to the variable $mydestination, which would allow relaying only from
those hosts and domains specified in the $mydestination variable. Your $mydestination vari-
able will probably contain something like this:

mydestination = $myhostname, localhost.$mydomain, $mydomain

4444c07_final.qxd 1/5/05 12:55 AM Page 350

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 351

This would again allow relaying only from the localhost and the local domain picked up
by the variable $mydomain.

Postfix also offers control of relaying through the smtpd_recipient_restrictions list.
Listing 7-34 shows a typical list.

Listing 7-34. smtpd_recipient_restrictions in Postfix to Control Relaying

smtpd_recipient_restrictions =

permit_sasl_authenticated,

permit_mynetworks,

check_client_access hash:/etc/postfix/pop-before-smtp,

reject_unauth_destination

I will show you how to use of this restriction list in a bit more detail in the “Antispam” sec-
tion, but Listing 7-34 will allow relaying from any SASL-authenticated (see the discussion of
SMTP AUTH in Chapter 8) users, any users who are in the networks defined in the $mynetworks
variable, and any users who are in an access map called pop-before-smtpd. It then ends with
reject_unauth_destination, which rejects any mail that is not for a relay_domains entry or
the local machine. You should always have the reject_unauth_destination option in the
smtpd_recipient_restrictions statement. If you fail to have this statement in the restriction
list, then Postfix will not function.

Antispam
In this section I will show you the best methods of configuring your MTA to filter as much spam
as possible. This section will use the resources of your MTA only. I will not cover adding third-
party content filtering software. Though personally I strongly recommend you also investigate the
variety of third-party tools available to defeat spam. I will especially highlight the SpamAssassin
product available for free and as open source from http://www.spamassassin.org. It is a powerful
antispam tool that utilizes Bayesian statistical filtering to help identify tricky spam. (It can also be
integrated with tools such as Vipul’s Razor and DCC.) It is well maintained, is regularly updated,
has an extensive user base, and has good support resources. Most important, it is easy to inte-
grate into both Sendmail and Postfix at a variety of points in the mail delivery process. Commer-
cial products are also available from companies such as GFI (http://www.gfi.com) and Trend
Micro (http://www.trendmicro.com) that you can use for the same purpose.

Antispam Settings for Sendmail
Sendmail does not provide a lot of antispam functionality that is easily and simply enabled.
It does allow some filtering using the access db feature and allows you to enable one or more
real-time blackhole lists (RBLs). Most additional spam filtering requires writing rule sets or
integrating a product such as SpamAssassin into Sendmail using milter or via procmail.

I will now cover the uses for the access db as part of your antispam configuration. I will also
cover enabling some RBLs in Sendmail. Finally, I will cover some header checking to reject spam
using rule sets. I will not show you how to integrate third-party antispam tools into Sendmail,
but a large volume of material is available on the Web that should point you in the right direction
to do this.

4444c07_final.qxd 1/5/05 12:55 AM Page 351

CHAPTER 7 ■ SECURING YOUR MAIL SERVER352

Using Your access db for Antispam

One of the key features you can enable for Sendmail to process spam is to control the messages
based on the connection, MAIL FROM, RCPT TO, or envelope information via an access db. I dis-
cussed creating an access database in earlier. I also want to enable another two options to expand
the functionality of the access db feature. Add the following lines to your sendmail.mc file:

FEATURE(`blacklist_recipients')

FEATURE(`compat_check')

The blacklist_recipients feature allows you to block e-mail directed to specific users on
your site. The compat_check feature allows you to create access controls based on envelope-
sender and envelope-recipient pairs. Listing 7-35 shows some potential access db entries.

Listing 7-35. Using an access db to Control Spam in Sendmail

spamdomain.com REJECT

203.54.58 REJECT

222.154.19.203 REJECT

Connect:203.43.12.1 REJECT

From:spammer@evildomain.com DISCARD

To:offers@ ERROR:"550 Go away spammer"

Compat:spammer@dodgydomain.com<@>gooduser@yourdomain.com ERROR:550 ➥

Your dodgy email rejected

From:notaspammer@yetanotherdomain.com OK

I will now go through each entry and explain what is does. The first three lines indicate that
Sendmail will reject any message from the domain spamdomain.com, from hosts 203.54.58.0 to
203.54.58.255, and from the host 222.154.19.203. You can gradually build up this list by identi-
fying the senders of spam e-mails and adding them to the database.

The next line blocks connections from the IP address 203.43.12.1. This stops known spam IP
addresses from even connecting to your Sendmail server. The next two lines block MAIL FROM and
RCPT TO fields. The From: line blocks any e-mail from spammer@evildomain.com, and the To: line
blocks any mail addressed to the address offers at any of your local, virtual, or relay domains.
(This is indicated by the use of the @ symbol without anything to the right of it.) This line also has
a custom rejection error code and message. The remote SMTP server would log the error 550 (a
permanent error) and the message “Go away spammer.”

The next line uses the compat_check function and matches a sender and recipient pair of
addresses. In this case, any e-mail from spammer@dodgydomain.com to gooduser@yourdomain.com
will be rejected with the error message “550 Your dodgy email rejected.” You can also DISCARD
or use the option TEMP: to send a temporary error (you need to add the appropriate 4xx error
code and message after the colon) rather than rejecting the message with a permanent error.

The last line allows you to whitelist particular addresses, hosts, or domains from being
subject to antispam rules. Use this sparingly on sources that you are sure are not spam.

■Tip Do not forget to re-create your access db file after you have changed it using the makemap command.

4444c07_final.qxd 1/5/05 12:55 AM Page 352

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 353

When your Sendmail rejects an e-mail because it hits a REJECT statement in your access
database, then it sends a standard error response.

550 5.7.1 Access Denied

You may want to customize this response for your site. You can do this by adding the fol-
lowing line to your sendmail.mc configuration:

define(`confREJECT_MSG', `550 Your email has been rejected. See

http://www.yourdomain.com/rejected_email.html')

Replace the message with a message of your choice.

Sendmail and RBLs

Sendmail also offers the capability of using RBLs (see the “Blacklists” sidebar) to help filter your
incoming e-mail. Sendmail is by default hard-coded to use the RBL list at mail-abuse.org. You
can enable this by adding the following line to your sendmail.mc file:

FEATURE(dnsbl)

You can also add your own RBLs to Sendmail by adding dnsbl feature lines. The next line
shows how to add support for the sbl.spamhaus.org RBL to Sendmail:

FEATURE(dnsbl,`sbl.spamhaus.org',`"550 Mail rejected by sbl.spamhaus.org"',`t')

The feature arguments include the address of the RBL you want to add to Sendmail and an
optional error message specifically for that RBL rejection. By adding t as the third argument, you
tell Sendmail that in the event of being unable to lookup an RBL it returns a temporary error mes-
sage and tells the sending site to defer the e-mail. This ensures that a temporary failure at the RBL
will not mean a potential spam mail gets past. However, a long outage at an RBL could result in
delays in sending mail. Care is needed when setting this argument.

An enhanced version of dnsbl is called enhdnsbl. One of the principal differences is the
addition of a further argument, which is the required response code(s) from the RBL. The next
line shows an enhanced RBL feature:

FEATURE(enhdnsbl,`sbl.spamhaus.org',`"550 Mail from" $&{client_addr} ➥

"rejected by sbl.spamhaus.org"',`t',`127.0.0.2.')

■Note $&{client_addr} is a macro that inserts the client address from which the message was sent.

The last option present, 127.0.0.2. (note the trailing dot, which you need that for the syn-
tax to be correct), is the response code that Sendmail expects from the RBL in order to reject an
e-mail. You can specify more than one response by adding response codes. You can also use rule
operators to make up specific response codes. The next two lines show both these capabilities:

FEATURE(enhdnsbl,`sbl.spamhaus.org',`"550 Mail from" $&{client_addr} ➥

"rejected by sbl.spamhaus.org"',`t',`127.0.0.2.', `127.0.0.3.', `127.0.0.4.')

FEATURE(enhdnsbl,`bl.spamcop.net',`"550 Mail from" $&{client_addr} ➥

4444c07_final.qxd 1/5/05 12:55 AM Page 353

CHAPTER 7 ■ SECURING YOUR MAIL SERVER354

You can see in the first line that the RBL feature will reject e-mail as spam when it
receives the response 127.0.0.2., 127.0.0.3., or 127.0.0.4. from the RBL. In the second
option I have used the rule operator, $-, which tells the feature to reject any e-mail as spam
when the response code matches 127.0.0.anynumber. You could also use a class to specify
all the possible response codes you want to match against.

Sendmail Header Checks

Using header checks allows you to filter e-mail using Sendmail rule sets. You can filter using nor-
mal text or via a regular expression. I will show you how to filter using both methods, focusing
on the checking the content of the Subject: line. Using rule sets in Sendmail is a complicated
undertaking. I will introduce you to the basics as they relate to my particular requirements to
do antispam filtering. I recommend you do further reading on the topic to fully understand the
scope and usage of these rule sets.

The first thing to consider is that your rule sets are going to be quite long. You need a lot
of code to do filtering using rule sets, and as you add additional items to be checked, this will
increase the content of your rule sets. Rather than clutter your sendmail.mc file with a large
number of rule sets, I recommend you use the include function to include additional mc files.
The next line shows how to include an additional file to your sendmail.mc file:

include(`/etc/mail/subject_rulesets.mc')

Here I have added another mc file called subject_rulesets.mc located in the /etc/mail
directory. I usually divide my different rule sets into separate files and include each of them
individually. I have separate files for To:, From:, and other major header fields. This keeps my
sendmail.mc file neat and reduces the risk of confusion and errors.

So how do you filter on a particular subject? Listing 7-36 shows header checking, and
I will break it down to explain it.

Listing 7-36. Sample Subject Header Check in Sendmail

HSubject: $>Check_Subject_Spam

D{SMsg}This email has been rejected as spam

D{Subj001}Test our Internet pharmacy

D{Subj002}Low Interest Rate

SCheck_Subject_Spam

R${Subj001} $* $#error $: 550 ${SMsg}

RRe: ${Subj001} $* $#error $: 550 ${SMsg}

R${Subj002} $* $#error $: 550 ${SMsg}

RRe: ${Subj002} $* $#error $: 550 ${SMsg}

The first line declares the header. It is structured like this:

Hheaderfield: $>ruleset

where headerfield: and ruleset are replaced with the relevant header you want to act on; in
this case in Listing 7-36 I am using the Subject: header and the name of the rule set that I want
to use to process this header field. (You should not include spaces or special characters in your

4444c07_final.qxd 1/5/05 12:55 AM Page 354

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 355

rule set name.) Overall, the line sends the content of the header field, Subject:, into the rule set
Check_Subject_Spam to be processed for matches.

■Tip If you want to include any RFC 2822 comments in the data outputted from the Subject: field, then
replace the $> with $>+ in the H line.

The next lines declare configuration file macros. The macros are structured like this:

D{macroname}macro content

The first line declares a macro called SMsg with the content of “This email has been rejected
as spam.” I will use this macro to provide a message that Sendmail will send to the sending SMTP
server if the e-mail is rejected because of the Subject: content. The next two lines are subject
lines that I am testing for in my incoming mail. I have named the first macro Subj001 and the sec-
ond Subj002. It is important to note that when you test against the subject that it is not a regular
expression. The test will try to match the exact content of the Subj001 macro. So the subject “Test
our Internet Pharmacy” will be picked up by the rule set, but the subject “Test our Internet Phar-
macy!!!” will not be matched. This limits the functionality of this sort of rule set.

The next line declares the start of the particular rule set. The name after the S must match
the rule set you specified in the H line. Following this S line are R lines that are the actual rules
being used. The R lines are divided into three sections.

RLHS RHS comment

The R line starts the rule. Then you will see the left-and side (LHS) of the rule, the right-hand
side (RHS) of the rule, and an optional comment. The LHS of the rule does not need to be sepa-
rated from the R line. But the LHS, RHS, and comments should all be separated by a tab character;
otherwise, Sendmail will fail to parse the rule. (You cannot use space characters—the separator
must be a tab).

In the case of the Subject: checking antispam rule, the LHS content is going to be the
macro ${subj001}. I tell the rule set that it is a macro by prefixing $ to the front of the macro
name (which is still enclosed in brackets). It is then followed by the rule operator $*, which is
a wildcard operator that tries to match zero or more tokens (in the case the tokens being the
content of the Subject: header field).

R${Subj001} $* $#error $: 550 ${SMsg}

The RHS side starts with the operator $#, which indicates an action. When you are testing for
a match on your headers, these rule sets can return two possible values: $#error and $#discard.
The first response tells Sendmail to reject the message, and the second tells Sendmail to silently
discard it. Following the action returned by the rule is the operator $:, which defines the default
value to return. So if the Subject: field matches the ${subj001} macro, then Sendmail generates
an $#error and specifies the value to return to Sendmail, which in this case is: “550 This email has
been rejected as spam,” which is the content of the first macro I defined as ${SMsg}.

The second line that matches against the macro ${subj001} adds Re: in front of the macro
to match any case where this subject appears with a reply appended to the subject. This pattern
is repeated for the next macro ${subj002} in Listing 7-36.

4444c07_final.qxd 1/5/05 12:55 AM Page 355

CHAPTER 7 ■ SECURING YOUR MAIL SERVER356

As you can only match against the exact text in a macro header checking, the previous
example has some serious limitations. A small change or variation by a spammer or virus pro-
gram in the subject line could mean the subject will slip through. To reduce this risk, I will show
you how to use regexp maps to perform regular expression matches on your header fields, this
time again focusing on the Subject: field. First, you need to check that Sendmail was compiled
with regex database maps enabled. Type the following command to check this:

puppy# sendmail -bv -d0.4 root | grep 'MAP_REGEX'

If you see MAP_REGEX in the Compiled With: options listed, then your Sendmail is compiled
with regex enabled.

Compiled with: DNSMAP LOG MAP_REGEX MATCHGECOS MILTER MIME7TO8 MIME8TO7

If not, then add the following line to your site.config.m4 file and recompile Sendmail
using Build -c to enable regex map support:

APPENDDEF(`confMAPDEF', `-DMAP_REGEX')

Second, you can configure some regular expressions to test your incoming mail against.
Listing 7-37 shows a sample regex header check.

Listing 7-37. Sample Regex Header Check

HSubject: $>+check_regex

Kregex001 regex -f -a@MATCH ^(Joke|joke|Very.Funny|Great.joke)$

Scheck_regex

R$+ $: $(regex001 $1 $: <OK> $)

R<OK> $@ OK

R$+ $#error $: 550 Spam rejected with a regular expression

As you can see from Listing 7-37, the code is pretty similar to that in Listing 7-36. The H line
inputs the content of the Subject: field to the rule set. I have used the $>+ operator instead of the
$> operator to capture RFC 822 comment fields in the subject lines. But the major difference is
with the specification of a regular expression instead of a pattern.

The next line defines the regular expression. This line starts with a K (which is a configura-
tion line used to match a symbolic name with a particular database map, in this case with a
regex map). You define the name of the regex map, regex001, and then define its type, regex.
The next item, the -f option, tells the regex map to treat any regular expression as case insen-
sitive and match both uppercase and lowercase examples of the expression. The -a option
returns the data @MATCH if the regular expression is matched. Next you have the regular expres-
sion itself, which matches any subjects including “Joke,” “joke,” “Very Funny,” and “Great
joke.” Note the use of periods instead of spaces. You should replace all spaces with periods
to ensure the regex functions correctly.

Next you have the actual rule set with its name declared by the S line. The rule set is slightly
different in its syntax from Listing 7-37 but achieves the same end. The Subject: line is checked
for one of the possible subjects; if it is not found, then the rule set returns OK to Sendmail. If it
does match one of the subjects, then it rejects the message with the error “550 Spam rejected

4444c07_final.qxd 1/5/05 12:55 AM Page 356

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 357

with a regular expression.” You can create a variety of your own rules to address the require-
ments of your antispam configuration.

Finally, it is easy to test your new rules. Using the command in Listing 7-38, start Send-
mail in Address Test Mode.

Listing 7-38. Starting Sendmail in Address Test Mode

puppy# sendmail -d21.4 -bt

■Tip If you want to test your regular expression rule sets, it is basically the same process; start sendmail
as sendmail -d38.2 -bt, and your regex maps will be automatically initiated.

You will see > on the command line. Enter the name of your rule (for example,
Check_Subject_Spam) and then the text you are checking for (for example, Low Interest Rate).
Sendmail will test the rule using the text provided. If you are using Listing 7-36, you should see
a response like this one:

> Check_Subject_Spam Low Interest Rate

Check_Subject_Sp input: Low Interest Rate

rewritten as: $# error $: 550 This e-mail has been rejected as spam

Check_Subject_Sp returns: $# error $: 550 This e-mail has been rejected as spam

This indicates that the test has been successful; Sendmail has matched the subject and
responded with the correct error response.

Antispam Settings for Postfix
The basic idea behind stopping spam with Postfix is to test the message against a variety of
restrictions, checks, and filters. If a message successfully navigates through these, then there is
a good chance it is not spam. These checks start with a collection of restrictions lists that allow
you to block e-mail based on the content of HELO, MAIL FROM, RCPT TO, and other fields. Then you
have the ability to specify header and body checks that use regular expressions to filter mail
based on their subject or content. Finally, you can integrate tools such as SpamAssassin to pro-
vide external content filtering to Postfix. I will show you how to use restriction lists and header
and body checks and then provide you with a configuration that should be a good starting point
to block spam using Postfix. I will not cover integrating Postfix with third-party content-filtering
tools. Quite a few HOWTOs and resources are available on the Postfix site and elsewhere that
can explain this.

Postfix processes antispam restrictions, checks, and filters in a particular order. It is impor-
tant to understand what that order is so as to both design the most efficient antispam structure
and ensure you are correctly permitting and restricting the right things. It is no good placing
a permit statement in a restriction if Postfix is already going to reject a message because of an
earlier processed restriction. So Postfix first processes any restriction lists, then any header or
body checks, and then in turn any content filters such as SpamAssassin or ClamAV.

4444c07_final.qxd 1/5/05 12:55 AM Page 357

CHAPTER 7 ■ SECURING YOUR MAIL SERVER358

Postfix Restriction List

This section will cover the restriction lists available in Postfix. Postfix also checks these restric-
tion lists in a particular order. Table 7-8 lists all the possible restriction lists, what they do, and
displays them in the order in which they are processed.

Table 7-8. Processing Order of Postfix Restriction Lists

Restriction Description

smtpd_client_restrictions Restrictions on sending e-mail based on the client

smtpd_helo_restrictions Restrictions on sending e-mail based on the HELO identification
string

smtpd_sender_restrictions Restrictions in sending e-mail based on the sender

smtpd_recipient_restrictions Restrictions in sending e-mail based on the recipient

smtpd_data_restrictions Restrictions in sending e-mail based on the content of the
SMTP DATA command

Listing 7-39 shows what a restriction list looks like.

Listing 7-39. Sample Postfix Restriction List

smtpd_recipient_restrictions =

reject_unknown_recipient_domain,

permit_mynetworks,

reject_unauth_destination,

check_sender_access hash:/etc/postfix/access,

permit

As you can see from Listing 7-39, each type of restriction is listed in a line after the option
and should be separated by either a comma or whitespace. Listing 7-39 is checking the RCPT
TO field against recipient data. It first uses reject_unknown_recipient_domain (which rejects if
the domain does not have a valid A or MX record). Then it permits all e-mail if the client IP
address is listed in $mynetworks. Then it rejects any mail not for the local machine or a domain
contained in the relay_domains option using the reject_unauth_destination. (This restriction
is mandatory in this restriction list to prevent open relaying.) Finally, it checks the contents of
an access map and finally ends with a generic permit statement.

The last permit statement is one of several generic restrictions you can use to specify the
default policy in a restriction option. The two simplest options are reject and permit. You also
have the options to defer, which informs the client to try again later, and warn_if_reject, which
logs a warning instead of rejecting. warn_if_reject is useful for testing new configurations with-
out risking rejecting legitimate mail. You should end each restriction option with either a permit

statement or a reject statement. It is not strictly necessary, but it is a neat way of making it clear
what the default behavior of the restriction list is.

As you can also see from Listing 7-39, you can specify an access list in the form of a
postmap-created map file (in this case, hash:/etc/postfix/access). All the restriction lists are
able to check access maps. Listing 7-39 uses the check_sender_access restriction to check the
MAIL FROM field. There are also client, HELO, and recipient access checks (check_client_access,
check_helo_access, and so on). Listing 7-40 shows the contents of a typical map.

4444c07_final.qxd 1/5/05 12:55 AM Page 358

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 359

Listing 7-40. Access Maps for Postfix Restriction Lists

spammer@spamdomain.com REJECT

anotherdomain.com OK

morespam.com DISCARD

confused.uncertain.com DUNNO

uncertain.com REJECT

The first line shows all e-mail from address spammer@spamdomain.com will be rejected. The
second line says that domain anotherdomain.com is OK and should be permitted. The third line
tells Postfix that all e-mail from domain morespam.com is to be discarded silently. (The sender
will think the message is received.) The fourth line tells Postfix to ignore any messages from
the host confused.uncertain.com and thus stop processing that restriction and skip to the next
restriction if any. The DUNNO option is useful to provide exceptions to restriction. You can see in
Listing 7-40 that messages from confused.uncertain.com would be ignored because they are
specified as DUNNO but any other messages from the domain uncertain.com will be rejected.

■Tip You can also provide customized error code responses to rejections. Postfix allows you to specify the
exact error code response to a remote system. For example, by using the relay_domains_reject_code
option (which defaults to error code 554), you can override the error code response Postfix sends when
a rejected request is processed. A variety of reject code options exist; you can see them at http://
www.postfix.org/uce.html.

Postfix Header and Body Checks

I will now briefly discuss Postfix’s header and body checks. These checks occur after your
restrictions list checks and before any content filtering. These checks consist of map files that
contain entries that are matched against either the headers or the body of e-mail messages.
I recommend using the regular expression type of map file to do this, as it allows you do some
powerful pattern matching. Listing 7-41 shows a portion of my header checks map.

■Tip Regular expression map files are not created with postmap. They are simply ASCII files. I use the
extension .regexp to identify my files.

Listing 7-41. Sample Postfix Header Checks Map

/^Subject: Make Money Fast/ REJECT

/^Subject: Need a Home Loan? We Can Help!!/ REJECT

/^Subject: .*Important News On Aging/ REJECT This is a spam message

As you can see, I have used the regular expressions (enclosed in / and /) to match a few
spam subjects and reject them. In the header checks file, you can test any header that is con-
tained in the e-mail (in Listing 7-41 I have used Subject:), but you could any header field. For
body checks it is any text that appears in the body of the message.

4444c07_final.qxd 1/5/05 12:55 AM Page 359

CHAPTER 7 ■ SECURING YOUR MAIL SERVER360

If a match occurs, Postfix performs the action specified next to that regular expression.
This includes rejecting the message (and optionally adding some text with the rejection as you
can in the last line of Listing 7-41); ignoring the message using the IGNORE option, which deletes
the matched header from the message; and discarding the message using the DISCARD option.
For simplicities sake, I recommend you use header and body checks to REJECT messages only.

You can define both header and body checks to Postfix. Listing 7-42 shows how to define
them in your main.cf file.

Listing 7-42. Defining Header and Body Checks in Postfix

header_checks = regexp:/etc/postfix/header_checks.regexp

body_checks = regexp:/etc/postfix/header_checks.regexp

■Tip The site at http://www.hispalinux.es/~data/postfix/ contains a good collection of sample
header and body checks you can use with Postfix.

A Postfix Antispam Configuration

Now I will try to provide you with a solid basic configuration to defeat spam. I will initially
start with some basic options that set the scene for your antispam configuration. Table 7-9
lists these base options and explains their use. I will describe their recommended settings
after the table.

■Note Many of the options in Table 7-9 complement and interact with the options detailed in the earlier “Lim-
iting DoS Attacks with Postfix” section, and you should implement them in conjunction with those options. Addi-
tionally, you should be at least also disabling the VRFY command, as mentioned earlier in this chapter.

Then I will move onto sender, recipient, and data-specific restrictions. I will not the use of
header or body checks and content filters such as SpamAssassin.

■Tip All the settings I am working with here are located in the main.cf file. You will also need to issue
a postfix reload in order for any changes you make to take effect.

4444c07_final.qxd 1/5/05 12:55 AM Page 360

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 361

Table 7-9. Basic Antispam Options in Postfix

Option Description

allow_untrusted_routing Controls whether sender specified routing will be honored

smtpd_helo_required Specifies whether a HELO command is required at the start of an SMTP
transaction

smtpd_delay_reject Rejects immediately and does not wait for the RCPT TO command

strict_rfc821_envelopes Specifies whether strict RFC 821 rules are applied to MAIL FROM and
RCPT TO addresses

The first option, allow_untrusted_routing, tells Postfix whether to trust routing provided
by senders, such as bill%evilspam.com@puppy.yourdomain.com. You should set this to no to pre-
vent people from attempting to spoof your mail server.

The second option, smtpd_helo_required, tells Postfix that any SMTP clients must provide
a HELO (or an EHLO) statement at the start of the session or Postfix will not process that session.
This is set to no by default. This setting addresses the variety of spam bots and clients that do
not behave in an RFC-compliant manner and therefore do not send a HELO or EHLO statement
to Postfix. The only problem with enabling this is that there are also a lot of broken clients and
badly built e-mail packages that also do not send HELO or EHLO statements when sending e-mail.
This is a judgment call from a setup perspective—I suggest you test it, and see the results. Just
remember that if this is set to no, then you cannot use the smtpd_helo_restrictions option either,
because obviously you need a HELO before you can test against it.

The third option, smtpd_delay_reject, is set to yes by default. This tells Postfix to wait until
it receives the RCPT TO command before processing any rejections. You can set this to no to reject
mail messages immediately upon determining they are to be rejected. I recommend you do not
do this, because there is a risk that some broken clients will suffer unexpected results if you reject
before the RCPT TO command.

The last option controls whether Postfix will insist that any envelopes are strictly RFC 821
compliant. In reality this means the MAIL FROM and RCPT TO addresses need to be enclosed in <>
and not contain any comments or phrases. This should be a good thing. E-mail clients should
behave in an RFC-compliant manner. Unfortunately, a number of clients do not deliver with
RFC-compliant envelopes. Like the previous three options in this section, this requires some
testing before you implement it. I recommend, though, that you turn it on, as I have found it
catches more spam than it incorrectly rejects.

Now I will add some restriction lists. I will add two of the restriction lists:
smtpd_recipient_restrictions and smtpd_data_restrictions. Listing 7-43 shows the anti-
spam configuration on my Postfix server. I will take you through how it works after the listing.

Listing 7-43. A Basic Antispam Configuration for Postfix

allow_untrusted_routing = no

smtpd_helo_required = yes

smtpd_delay_reject = yes

strict_rfc821_envelopes = yes

disable_vrfy_command = yes

4444c07_final.qxd 1/5/05 12:55 AM Page 361

CHAPTER 7 ■ SECURING YOUR MAIL SERVER362

smtpd_recipient_restrictions =

permit_mynetworks,

permit_sasl_authenticated,

reject_unauth_destination,

reject_non_fqdn_sender,

reject_non_fqdn_recipient,

reject_unknown_sender_domain,

reject_unknown_recipient_domain,

reject_invalid_hostname,

reject_unknown_hostname,

reject_multi_recipient_bounce,

reject_rbl_client bl.spamcop.net,

reject_rbl_client sbl.spamhaus.org,

reject_rbl_client relays.ordb.org,

reject_rbl_client opm.blitzed.org,

reject_rhsbl_client bogusmx.rfc-ignorant.org,

reject_rhsbl_client dsn.rfc-ignorant.org,

reject_rhsbl_sender bogusmx.rfc-ignorant.org,

reject_rhsbl_sender dsn.rfc-ignorant.org,

permit

smtpd_data_restrictions =

reject_unauth_pipelining,

permit

I have already discussed the first few options earlier, so I will jump straight into the
smtpd_recipient_restrictions list. Table 7-10 shows all the restrictions and permissions
I have specified here. I will discuss them in more detail after the table together with the
RBL-based and RHSBL-based rejections.

Table 7-10. Restrictions and Permissions in Postfix

Restriction/Permission Description

reject_invalid_hostname Rejects the request when the EHLO or HELO hostname is badly
formed

reject_unknown_hostname Rejects the request when the EHLO or HELO hostname has no
A or MX record

reject_non_fqdn_sender Rejects the request when the MAIL FROM is not a FQDN

reject_non_fqdn_recipient Rejects the request when the RCPT TO is not a FQDN

reject_unknown_sender_domain Rejects the request when the sender domain has no A or MX
record

reject_unknown_recipient_domain Rejects the request when the recipient domain has no A or
MX record

reject_multi_recipient_bounce Rejects bounce messages with multiple recipients

reject_unauth_destination Rejects the message unless the destination is contained in
relay_domains or $mydestination

permit_mynetworks Permits messages from any network defined in $mynetworks

om SASL-authenticated users

4444c07_final.qxd 1/5/05 12:55 AM Page 362

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 363

In Listing 7-43 you can see a variety of restriction and permission options. Some of
them reject based on information in the HELO/EHLO identification string; others check MAIL
FROM or RCPT TO. You may think the HELO/EHLO and MAIL FROM restrictions would have to be
checked in the smtpd_helo_restrictions and the smtpd_sender_restrictions lists. But
because smtpd_delay_reject is set to yes, Postfix delays until the RCPT TO command before
rejecting, which means you can combine a variety of restrictions or permissions from other
restriction lists in the smtpd_recipient_restrictions list. This is a much cleaner and more
efficient way of doing this and means your antispam configuration is easy to understand
and simple to manage.

The first step in the smtpd_recipient_restrictions list is to allow through anything in
$mynetworks. It is a waste of processor cycles to test mail from your local network. Then you
permit through mail from SASL authenticated users. Next and very importantly you add the
reject_unath_destination statement. This statement means that e-mail is rejected from
unauthorized locations and ensures your Postfix server is not an open relay.

Next is a series of rejections based on the contents of a variety of fields, including the
HELO/EHLO, MAIL FROM, and RCPT TO fields and queries based on the DNS status of senders,
recipients, domains, and hosts. Table 7-10 explains all these rejections. Then you have a list
of RBLs and RHSBLs, which Postfix checks (see the “Blacklists” sidebar). Finally, you end the
restriction list with a permit statement.

Finally, the smtpd_data_restrictions list contains the statement reject_unauth_pipelining.
This final restriction list rejects requests from clients that send SMTP commands in a pipeline
before knowing whether Postfix supports pipelining. The main offenders in this sort of behavior

BLACKLISTS

RBLs and right-hand side blacklist (RHSBLs) are lists of IP addresses (for RBLs) and domain names (for RHS-
BLs) that have been marked as being used by spammers, open relays, or systems that are nonconformant to
RFC. They could also include other IP addresses or domains that have been marked according to additional
criteria or submitted by users, ISPs, or system administrators.

This is the key weakness of blacklists—the data they contain is not always accurate, and you could have
e-mail rejected on the basis on incorrect blacklisting. This is especially common with dynamically assigned IP
addresses that are often assigned to residential ADSL and cable customers. A spammer uses an address, and
it is added to a blacklist and then assigned to someone else. But the address is not removed from the blacklist,
and any e-mail sent from the address that is checked against that blacklist is marked as spam.

Another issue with blacklists is that you need to trust the people running the blacklist. You are trusting
that a third party is being both dutiful and accurate about the IP addresses and domains being collecting. As
anyone who has tried to remove an IP address or domain from a blacklist can tell you, that trust can some-
times be misplaced. Some blacklists do not operate in a professional or, what can be worse, a prompt man-
ner. This can seriously inconvenience to you and your users if a large volume of false positives are generated
because of blacklisting.

If you choose to enable RBLs and RHSBLs, then you should carefully review the blacklists you are select-
ing. Check out the blacklist’s home page for the frequency of updates and determine its responsiveness by ask-
ing questions and investigating it. Many of the MTA mailing lists, such as the Sendmail and Postfix user mailing
lists, have people asking about the functionality and stability of various blacklists, so the archives should reveal
some further information.

4444c07_final.qxd 1/5/05 12:55 AM Page 363

CHAPTER 7 ■ SECURING YOUR MAIL SERVER364

5. Examples of this sort of virus include the W32.Beagle, W32.Netsky, W32.Chir worms, as well as a num-
ber of others.

The contents of Listing 7-43 should provide you with a good basis for your antispam con-
figuration. You can further add access maps customized to your own environment, build a col-
lection of header and body checks, and add the functionality of a SpamAssassin-type product.
Also, your antispam configuration should never stay static. Spammers are always adapting and
advancing their techniques for defeating antispam measures, so you need to keep updating
your own configuration.

Antivirus Scanning Your E-mail Server
A virus is loosely defined as a piece of programming or code that is installed on your computer
without your knowledge and that has some effect, usually malicious, on your system or data.
Viruses are usually coded to replicate themselves via a variety of means. Recently a large spate
of virus attacks has occurred via e-mail. An e-mail is sent to the user with an alluring message
and an attachment that contains the virus. After a user has executed the script, piece of code,
or executable attached to an e-mail, then their system has been infected and the virus spawns
an SMTP server and e-mails itself to all the addresses it can find on that system.5

This is just one example of virus infection via e-mail. So, protecting your users against
e-mail-borne viruses has become absolutely critical. I will take you through installing and
configuring an antivirus scanner for your Linux system and integrating it with your MTA.
I will cover integration with both Sendmail and Postfix.

Installing ClamAV
I will cover integrating Sendmail and Postfix with an open-source virus-scanning engine. I have
chosen to cover ClamAV as that virus-scanning engine. I have chosen ClamAV for a couple of
reasons. The first is that it is freely available and well maintained. The second is that its virus
definitions are updated as frequently as the commercially available packages.

You can get ClamAV from http://prdownloads.sourceforge.net/clamav. Download the lat-
est stable version, and unpack the archive (I used version 0.70 for this explanation). The first step
you need is to create a clamav user and group. Enter the following:

puppy# groupadd clamav

puppy# useradd -g clamav -s /sbin/nologin -M clamav

I have created a group clamav and a user clamav who cannot login, has no home directory,
and belongs to the clamav group. I will also create a directory to hold some ClamAV files. I usu-
ally create this under /var/run. I have used clamav as the directory name and set it to be owned
by the user clamav and the group clamav. Enter the following:

puppy# mkdir /var/run/clamav

puppy# chown clamav:clamav /var/run/clamav

Now you need to configure ClamAV. A number of potentially useful configure options are
available, but I will cover only a couple. The first is --prefix; by default ClamAV is installed
under /usr/local. If you want to move it elsewhere, specify an alternative prefix. A little later
I will show how to integrate ClamAV with Sendmail using milter, so if you are using Sendmail,
then you want to enable milter support. For this, use the option --enable-milter.

4444c07_final.qxd 1/5/05 12:55 AM Page 364

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 365

So, to install ClamAV, configure it, make, and then make install it. Listing 7-44 shows
these commands for a ClamAV installation, which I intend to integrate with Sendmail using
milter.

Listing 7-44. Installing ClamAV

puppy# ./configure --enable-milter

puppy# make && make install

ClamAV comes with three major components. First, the clamscan tool is a command-line
virus scanner. Second, the clamd daemon has two methods of receiving inputs; the first is via
a local socket, and the second is by listening on a particular TCP IP address and port and wait-
ing for items to scan.

■Tip You can run clamd in only one mode of operation—either local socket or TCP daemon.

Third, the clamav-milter program uses the Milter API to provide Sendmail integration.
I will cover clamav-milter in the next section. Finally, the freshclam daemon keeps ClamAV’s
virus database up-to-date. I will focus on the clamd daemon only as it is the easiest and most
efficient way for you to integrate a virus scanner into the respective MTAs.

By default all of the binaries I will use are installed into /usr/local/sbin, and the first file
I will change, ClamAV’s configuration file clamav.conf, is located in /usr/local/etc. Listing 7-45
shows the working clamav.conf file. I will take you through all the configuration options you need
to configure clamd.

Listing 7-45. The clamav.conf File

#Example

LogFile /var/log/clamd.log

LogSyslog

LogVerbose

PidFile /var/run/clamav/clamd.pid

#LocalSocket /var/run/clamav/clamd.sock

#FixStaleSocket

#TCPAddr 127.0.0.1

#TCPSocket 3310

User runasuser

ScanMail

ScanArchive

ScanRAR

StreamSaveToDisk

StreamMaxLength 10M

ArchiveMaxFileSize 10M

ArchiveMaxRecursion 5

ArchiveMaxFiles 1000

ArchiveMaxCompressionRatio 200

4444c07_final.qxd 1/5/05 12:55 AM Page 365

CHAPTER 7 ■ SECURING YOUR MAIL SERVER366

6. Process ID

The first option you need to address is to comment out or delete the line labeled Example in
your clamav.conf configuration file. Otherwise, ClamAV will ignore the configuration file. Then
configure some logging for clamd. Enable LogFile /path/to/your/log/file; in Listing 7-45
I have used /var/log/clamd.log. If you want to log to syslog, then also enable the line LogSyslog.
I also usually enable verbose logging using the line LogVerbose (at least initially while I am getting
clamd running). You can always disable it later. I also define the location of a PID6 file to store the
clamd process ID. I have located the PID in the directory I created earlier /var/run/clamav.

Now you come to the first of the possible ways you can configure clamd—as a local socket
that receives input and processes them for viruses and then returns them to the inputting pro-
gram. I will use this method to integrate with Sendmail, so if you are using Sendmail, then
choose local socket operation. To use local socket clamd, enable these lines:

LocalSocket /var/run/clamav/clamd.sock

FixStaleSocket

This creates a local socket in the specified directory. If you want, you can replace /var/
run/clamav/clamd.sock with the location where you want to place the clamd local socket. For
the sake of consistency, I place it in the /var/run/clamav directory. The option FixStaleSocket
ensures clamd cleans up any sockets remaining from an improper shutdown or failure before
trying to start a new socket.

The alternative method of configuring clamd is as a TCP daemon. I will use this method
to integrate ClamAV with Postfix, so if you are using Postfix, choose TCP daemon operation.
To use clamd as a TCP daemon, enable these lines:

TCPAddr 127.0.0.1

TCPSocket 3310

This binds clamd to localhost on the TCP port 3310. Or you can choose to bind it to another
port. By binding it to localhost, you are ensuring you can access the daemon only from the local
machine.

The next option, User, tells clamd to run as a particular user. I recommend you specify the
clamav user.

The remaining options control what sort of scanning ClamAV conducts. Table 7-11 details
all these options and their functions.

Table 7-11. Additional ClamAV Configuration File Options

Option Description

ScanMail Enables scanning of Microsoft Office document macros.

ScanOLE2 Enables mail scanning.

ScanArchive Enable scanning of archives.

ScanRAR Enable the built-in RAR unpacker.

StreamSaveToDisk Saves the stream to disk before scan to allow archive
scanning.

StreamMaxLength 10M The maximum size of the stream (or message). This should
be at least the size of your maximum mail message size. The
default is 10MB.

4444c07_final.qxd 1/5/05 12:55 AM Page 366

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 367

Option Description

ArchiveMaxFileSize 10M The maximum size of archives files to be scanned. This
should be set to at least the size of your maximum mail
message size. The default is 10MB.

ArchiveMaxRecursion 5 With this option you may set the recursion level. The default
is 5.

ArchiveMaxFiles 1000 Number of files to be scanned within archive. The default is
1000.

ArchiveMaxCompressionRatio 200 Marks potential archive bombs as viruses.

ArchiveDetectEncrypted Marks encrypted archives as viruses.

These are all fairly self-explanatory; more details are available in the clamav.conf file that
comes with ClamAV and the ClamAV documentation.

You have now configured clamd. You will want to start clamd automatically when your sys-
tem starts (before you start your MTA). A variety of example init scripts are available in the
ClamAV source distribution in the contrib/init directory, which you can use to create your
own init script.

The last step in configuring ClamAV is to ensure your virus database is kept up-to-date.
For this, you use the freshclam daemon. This is located in the /usr/local/bin directory by
default. You can run it from the command line, run it via an init script, or run it from cron at
scheduled intervals. You can also start it as a daemon in its own right—which is how I recom-
mend you run it. It is controlled by a configuration file, freshclam.conf, which is located in
/usr/local/etc. Listing 7-46 shows the freshclam.conf file.

Listing 7-46. The freshclam.conf File

#Example

DatabaseDirectory /var/lib/clamav

DatabaseOwner clamav

DatabaseMirror database.clamav.net

MaxAttempts 3

UpdateLogFile /var/log/freshclam.log

LogVerbose

NotifyClamd /usr/local/etc/clamav.conf

As with the clamav.conf file, you first need to delete or comment out the Example line.
The next line marks the location of the ClamAV virus database. By default this should install
to /var/lib/clamav. Override this only if you have changed the database’s location. Next you
specify the owner of the database, which is the user you created previously, clamav, and then
the location of the download mirror for the ClamAV database. You should not need to change
this. The MaxAttempts variable sets the maximum number of times freshclam should retry to
download the virus database if it fails.

I have next specified a logfile located in /var/log and called freshclam.log to record the
details of any update attempts. I initially enabled the option LogVerbose to test freshclam, but
you can take this out once you are sure freshclam is working. The last option, NotifyClamd,
tells the daemon about a new database being downloaded. Just point it to the location of your
clamav.conf file; by default and here this is /usr/local/etc/clamav.conf.

4444c07_final.qxd 1/5/05 12:55 AM Page 367

CHAPTER 7 ■ SECURING YOUR MAIL SERVER368

I recommend you run freshclam as a daemon. Listing 7-47 shows the command line you
use to start freshclam as a daemon.

Listing 7-47. Starting freshclam As a Daemon

puppy# /usr/local/bin/freshclam -d -c 24

The first option, -d, tells freshclam to go into daemon mode. The second option, -c, tells
freshclam the frequency of its checks. In this case you have 24 times a day or once an hour. This
is probably the most frequently you will need to update your virus database. Any more frequent
updates could put an undue load on the database site.

If you want to start freshclam when your system boots, then sample init scripts are avail-
able in the ClamAV source distribution in the contrib/init directory.

Your ClamAV setup is now complete, and you can now proceed to integrate your antivirus
scanner with your MTA.

Integrating ClamAV with Sendmail
I will use milter, which is the Mail Filtering API that has supported by Sendmail since version
8.10, to integrate ClamAV with Sendmail. This API communicates with Sendmail using sockets
and is enabled by defining filters in your sendmail.mc file. The milter functionality comes with
Sendmail by default but may not have been compiled into your version of Sendmail. A quick
way to check this is to run the following:

puppy# sendmail -d0 < /dev/null | grep MILTER

If your Sendmail binary supports milter, it should return something like this:

Compiled with: DNSMAP LOG MATCHGECOS MILTER MIME7TO8 MIME8TO7

If it does not return MILTER in the Compiled with options, you need to enable milter sup-
port by adding the following line to your site.config.m4 file. APPENDDEF enables the mail filter
interface. Enter the following:

APPENDDEF(`confENVDEF', `-DMILTER')

Now rebuild Sendmail with the Build -c option.
You also need the libmilter library that comes with Sendmail. In your Sendmail source

distribution, change into the libmilter directory and run the following:

puppy# ./Build install

■Tip If you are using a Red Hat or Mandrake distribution, then you can use the RPM package
sendmail-devel. On Debian the package is libmilter-dev.

You should already have clamd configured and running according to the instructions
in the “Installing ClamAV” section. You want it to be creating a local socket, which is the
first method of setting it up that was described in that section. Now you need to start the

4444c07_final.qxd 1/5/05 12:55 AM Page 368

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 369

clamav-milter function running. You can run the daemon from the command line; it
comes with a number of options. Table 7-12 details some of those options.

Table 7-12. clamav-milter Command-Line Options

Option Description

-b Sends a failure message to the sender (not recommended)

-D Prints debug messages

-l Controls scanning of messages sent from local network

-o Controls scanning of outgoing messages

--quiet Does not send e-mail notifications of virus detection

--max-children=x Restricts the maximum number of processes spawned to filter e-mail

Most of these options are pretty much self-explanatory, but several deserve a special men-
tion. The -b option is often turned on in clamav-milter configurations. These days this is not
a good idea. This is for two reasons. First, more often than not the sender address on a virus
infected e-mail is unlikely to be the person who actually sent it. Second, if you are under a seri-
ous virus attack, you could create serious performance issues for your MTA by trying to process
thousands of outgoing bounce messages in addition to the incoming mail. So do not bother to
bounce messages. The other option, --quiet, stops clamav-milter from sending an e-mail noti-
fication of the virus detection to the sender of the e-mail. For the previous reasons this is a good
option to have on. Listing 7-48 shows the command line you can use to start clamav-milter.

Listing 7-48. Starting clamav-milter from the Command Line

puppy# /usr/local/sbin/clamav-milter -ol --quiet ➥

- -max-children=20 local:/var/run/clamav/clamav-milter.sock

local:/var/run/clamav/clamav-milter.sock defines the socket milter will use to com-
municate with the clamd daemon; you need to specify this to Sendmail in the next section.
I have put the socket in the same directory as the clamd socket specified in the previous sec-
tion. You should automate the start of your clamav-milter daemon when your system starts—
make sure it is before you start Sendmail. In the clamav-milter directory in the ClamAV source
distribution, an init script is available for clamav-milter that you can customize.

Now you need to tell Sendmail about clamav-milter. Add these two lines to your sendmail.mc
file to define clamav-milter as a filter:

INPUT_MAIL_FILTER(`clamav', `S=local:/var/run/clamav/clamav-milter.sock, ➥

F=, T=S:4m;R:4m')

define(`confINPUT_MAIL_FILTERS', `clamav')

This will define an input mail filter for all incoming mail that will send that mail to the
socket clamav-milter has created. The delivery agent F= option in the first line tells Sendmail
how you would like it to handle the milter being unavailable. You can make a few possible
choices about how Sendmail should handle it if the milter is unavailable. By leaving F= blank
you are specifying mail should keep flowing even if the milter is unavailable. This is poten-
tially a very bad idea, because if your clamav-milter breaks, then virus-infected e-mail will

4444c07_final.qxd 1/5/05 12:56 AM Page 369

CHAPTER 7 ■ SECURING YOUR MAIL SERVER370

simply pass straight through Sendmail. You could also set it to F=T, which would temporarily
reject the message. Or you could even set it to F=R, which would reject the message as undeliv-
erable. I recommend you read about the delivery agent options before making a definitive choice
as to your response. The T= options are all timeouts. For most systems, these defaults should
be fine.

Now if you rebuild sendmail.cf and restart Sendmail, all your mail will now be filtered
through ClamAV. If you initially set the -D option in clamav-milter, you should be able to track
the submission and scanning of all your e-mail via milter and ClamAV in your mail logs.

■Tip If you do not want to integrate ClamAV and Sendmail using milter, you could also look at AMaVis
(http://www.amavis.org/) or MailScanner. You could also do filtering during the local delivery process
using procmail or maildrop, but I recommend that the earlier you address any virus and spam filtering in
the mail process is best.

Integrating ClamAV with Postfix
Integrating ClamAV with Postfix is slightly more complicated than integrating it with Sendmail.
You will require an extra component, AMaViS.

■Caution Older versions of AMaViS have had security issues. Ensure you are using an up-to-date version
of the script and that you add it to your list of products to monitor for security exploits.

AMaViS is a Perl script that processes the mail using your specified antivirus engine (in this
case, ClamAV) and then re-injecting it back into Postfix. It is relatively simple to set up, and you
can download it at http://www.amavis.org/download.php3.

■Note You may need some additional Perl CPAN modules to run AMaViS. Check the AMaViS documenta-
tion, and use perl -MCPAN -e shell to retrieve any modules you require.

Unpack the source archive, and configure it. As you are going to integrate it with Postfix,
use the next line as your configure statement:

puppy# ./configure --enable-postfix --with-mailto=virusadmin --with-syslog

replacing virusadmin with the user you want to have admin notifications of virus detections
sent to. Then run make and make install.

The install process will create an amavis user and group. It also creates two directories:
/var/amavis and /var/virusmails. The /var/virusmails is the default location for AMaViS to
quarantine virus e-mails. By default the AMaViS script itself will be installed into /usr/sbin.

4444c07_final.qxd 1/5/05 12:56 AM Page 370

CHAPTER 7 ■ SECURING YOUR MAIL SERVER 371

You do not need to tell AMaViS anything about your installed ClamAV, because it auto-
matically knows where to look for most packages. You will need to adjust your ClamAV clamd
daemon so that is it running as a TCP daemon on localhost at port 3310 (or whichever port
you chose). This is the second way of setting up the clamd daemon I showed you earlier. You
should also change the user who the clamd is running as, using the User option in the
clamav.conf file, to amavis. Just remember to also change the ownership of the /var/run/
clamav directory to allow clamd to write its PID file and socket.

Now you need to add some configuration into Postfix. Add the next line into the main.cf
file, like this:

content_filter = amavis:

Then add all the lines in Listing 7-49 to the master.cf file.

Listing 7-49. Postfix master.cf Service Additions for AMaViS

amavis unix - n n - 10 pipe user=amavis ➥

argv=/usr/sbin/amavis ${sender} ${recipient}

localhost:10025 inet n - y - - smtpd

-o content_filter=

-o local_recipient_maps=

-o smtpd_helo_restrictions=

-o smtpd_client_restrictions=

-o smtpd_sender_restrictions=

-o smtpd_recipient_restrictions=permit_mynetworks,reject

-o mynetworks=127.0.0.0/8

■Caution I have turned on chroot for the localhost smtpd re-injection. If you are not using chroot,
change the y on that line to n.

This creates two new services. The first, amavis, is a content filter that all incoming mail
is piped into for processing by AMaViS, which runs it through the clamd daemon to check for
viruses. The second is a localhost smtpd daemon, which sends (re-injects) the mail back to
Postfix for further processing.

Finally, reload Postfix, and you should be able to see that AMaViS is now scanning your
e-mail for viruses. You can confirm this by checking for a mail header on your e-mails, which
should say something like this:

X-Virus-Scanned: by AMaViS 0.3.12

You should also be able to see the results from this scanning in your mail logs. I recom-
mend you probably tweak your configuration as you go. For example, if you use procmail or
maildrop for local mail delivery, you can customize the handling of any virus e-mail notifica-
tions to go into a special folder to allow your users to view them and perhaps identify any false
positives.

4444c07_final.qxd 1/5/05 12:56 AM Page 371

CHAPTER 7 ■ SECURING YOUR MAIL SERVER372

■Tip You could also do this filtering during the local delivery process using procmail or maildrop, but
I recommend that the earlier in your mail process that you address any virus and spam filtering is best.

Resources
The following are resources you can use.

Mailing Lists
• Sendmail Usenet and mailing list: http://www.sendmail.org/usenet.html

• Postfix mailing lists: http://www.postfix.org/lists.html

• ClamAV mailing lists: http://www.clamav.net/ml.html#pagestart

• AMaViS mailing lists: http://sourceforge.net/mail/?group_id=6006

Sites
• Sendmail: http://www.sendmail.org/

• Postfix: http://www.postfix.org

• ClamAV: http://www.clamav.net/

• Milter: http://www.milter.org/

• AMaViS: http://www.amavis.org/

4444c07_final.qxd 1/5/05 12:56 AM Page 372

373

C H A P T E R 8

■ ■ ■

Authenticating and
Securing Your Mail

In this chapter, I will cover Transport Layer Security (TLS), Simple Authentication and Secu-
rity Layer (SASL), and SMTP AUTH as tools to further secure and harden your mail server.
These tools allow you to secure and encrypt the transmission (though not the content) of your
e-mails. They also help ensure that the mail servers and clients that you communicate with
are authentic. Probably most important for mail administrators, they provide the ability for
roaming and remote users to have an encrypted authenticated connection to their mail server
that allows functionality such as relaying. You saw in Chapter 7 how relaying is locked down
and the inconvenience this can cause your users. SMTP AUTH using SASL and TLS can allow
your users to relay e-mails via your server using authentication whilst you continue to main-
tain your antispam and antirelaying controls.

I will first take you through setting up TLS and some examples of how to use TLS (though
most people will probably use TLS as an encryption layer in conjunction with SASL and SMTP
AUTH). Then I will cover Cyrus SASL and SMTP AUTH and how to use them. Finally, I will
cover how to implement these tools on both Sendmail and Postfix.

TLS
By default the vast majority of communication on the Internet is both unauthenticated and
unencrypted. This means anyone in the right place at the right time with the correct tools
can read any of your traffic, including your e-mail traffic. Even potentially more dangerous
is the possibility that anyone could alter or delete portions or all of your traffic. With this in
mind, Netscape came up with a new protocol called Secure Sockets Layer (SSL), which pro-
vides a twofold solution to this. The first part of that solution is to hide your traffic from
eavesdropping by encrypting it, and the second part is to provide an authentication mecha-
nism by which the sender and recipient of traffic can be assured that both ends of the trans-
action are the people they claim to be and that the data being sent has not been altered.

TLS1 is an extension of the SSL protocol and requires you have OpenSSL installed. TLS
uses public-key encryption to encrypt mail transactions. Public-key encryption works with two
keys; the public key, often called a certificate, is available publicly, and the private key is stored
on the server and kept secret. So anything that is encrypted using the public key can be
decrypted only with the corresponding private key, and vice versa.

1. See RFC 2246 (http://www.ietf.org/rfc/rfc2246.txt) for the details of TLS.

4444c08_final.qxd 1/5/05 12:58 AM Page 373

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 374

2. See the “Sites” section for some links.

■Note It is possible to use TLS for encryption without a certificate at all, but I do not recommend this
approach. Using a certificate authority (CA) and certificates further enhances the level of security available to
you because it adds a layer of authentication in addition to the layer of encryption.

Your Mail Transfer Agent (MTA) can use TLS as part of its initial connection negotiation
with a remote client or server. A server or client connecting to your server sends an EHLO request,
which your MTA responds to by advertising it has support for the STARTTLS command. The
server or client then requests that the server uses TLS by issuing the STARTTLS command.

So what could you use TLS for? Well, TLS is probably most often used in conjunction
with SASL and SMTP AUTH to provide encryption for SASL plain-text authentication.
Many enterprises also use TLS to encrypt and authenticate the transfer of e-mail traffic
from two TLS-enabled hosts each at a different site across the Internet. Or, at the most
basic level, many people use a TLS-capable client such as Outlook Express or Eudora to
provide encryption and authentication when sending mail directly to a remote server.

TLS has some significant limitations that are especially important to note. What TLS does
is to encrypt and authenticate the transfer of e-mail from server to server and from client to
server, and vice versa. If your e-mail passes through a mail hub that does not have STARTTLS
enabled, then it will not be secured. It is also not an end-to-end encryption tool. The content
of your e-mail messages will remain unencrypted on both the sender and receiver systems—
only the transfer is encrypted. If you want to encrypt your e-mail, you need to look at solutions
such as S/MIME or PGP-MIME. I will not cover S/MIME or PGP-MIME in any detail, though,
because I perceive these as client-based encryption and not therefore directly related to hard-
ening the server end of your e-mail infrastructure. Quite a few resources are available that do
discuss e-mail content encryption.2

In the next sections, I will take you through creating certificates for using with TLS and
your MTA. Then I will show you how to enable TLS in both Sendmail and Postfix and provide
examples of how you can use TLS.

Creating Certificates for TLS
TLS uses SSL certificates to authenticate servers and clients for a variety of functions. I discuss
SSL in more depth in Chapter 3, but for the purposes of this explanation, I will cover only one
type of certificate model. In this model, you are running your own CA and creating X.509 cer-
tificates from that CA. The reason I have chosen to look at this model is because it is financially
free and does not require you to purchase certificates.

But as I detailed in Chapter 3, some risks come with being your own CA and signing your
own certificates; you need to weigh those risks before proceeding, and you need to consult with
any partners you intend to authenticate with certificates. However, with mail server authenti-
cation, unlike an SSL certificate for a Web page, I usually assume you have only a limited num-
ber of partners you are going to authenticate with certificates (almost certainly all clients and
systems that you administer); this means it is more likely those partners will accept a private
CA rather than a commercial CA.

4444c08_final.qxd 1/5/05 12:58 AM Page 374

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 375

■Caution By detailing this model, I am not recommending it as the preferred option. If you operate
production e-mail systems that use OpenSSL, I recommend you at least examine the option of using a
commercial CA.

If you are happy with using your own internal CA, then read about the CA creation process
in Chapter 3 to get a better understanding of how this works and then create a CA of your own.
When you have created your new CA, you can start to create and sign your own certificates. For
this example, I have followed the instructions in Chapter 3 and created a new CA called mailCA.

■Tip I recommend locating your certificates underneath the configuration directory of your MTA. So, Send-
mail should look for its certificates in /etc/mail/certs, and Postfix should look in /etc/postfix/certs.

To create your first certificate, you need to create a certificate request that will then be
signed by the new CA. I will create the certificate request that is unencrypted and valid for
three years together with a private key.

The certificate you create consists of several items, but the most important for the pur-
poses of using TLS for your MTA is the distinguished name. This consists of a series of pieces
of information you provide during the certificate creation process, including your geographi-
cal location, the hostname of the system, and an e-mail address. This information, in conjunc-
tion with the validity of the certificate, can be used to create access controls that allow you to
enable functionality, such as relaying, for specific hosts that present a valid certificate.

The most important piece of information you need to provide for the certificate’s distin-
guished name is the common name, which for the purposes of TLS is the hostname of your sys-
tem. If you want this to work with your MTA, then this needs to be the fully qualified domain
name (FQDN) of the system the certificate is being created for; so, in Listing 8-1, the common
name is puppy.yourdomain.com. To create your first certificate, go to your certs directory.
Listing 8-1 shows you how to run the command and what resulting messages you will see.

Listing 8-1. Creating a Certificate Request

puppy# openssl req -config /etc/mail/certs/mailCA/openssl.cnf -new ➥

-nodes -days 1095 -keyout puppy.yourdomaim.com.key.pem ➥

-out puppy.yourdomaim.com.csr.pem

Generating a 1024 bit RSA private key

.......++++++

..............................++++++

writing new private key to 'puppy.yourdomain.com.key.pem'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

4444c08_final.qxd 1/5/05 12:58 AM Page 375

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 376

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [New South Wales]:

Locality Name (eg, city) [Sydney]:

Organization Name (eg, company) [puppy.yourdomain.com]:

Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:puppy.yourdomain.com

Email Address []:admin@puppy.yourdomain.com

■Caution I used the -nodes option to create the certificate and private key. This tells OpenSSL to not
secure the certificate with a passphrase. Otherwise, every time the certificate was accessed, it would require
the passphrase. The SMTP server has no scope to enter this passphrase, and a connection would simply hang
while waiting for the passphrase to be entered.

This will create two files: puppy.yourdomain.com.key.pem and puppy.yourdomain.com.csr.pem.
These files consist of a keyfile for your system and a certificate request.

The final stage of your certificate creation is to sign the certificate request using your new
CA. Listing 8-2 shows the resulting messages after you run the command.

Listing 8-2. Signing Your Certificate Request

puppy# openssl ca -config /etc/mail/certs/mailCA/openssl.cnf ➥

-policy policy_anything -out puppy.yourdomain.com.cert.pem ➥

-infiles puppy.yourdomain.com.csr.pem

Using configuration from /etc/mail/certs/mailCA/mailssl.cnf

Enter pass phrase for /etc/mail/certs/mailCA/private/cakey.pem:

Check that the request matches the signature

Signature ok

Certificate Details:

Serial Number: 2 (0x2)

Validity

Not Before: Apr 2 00:46:41 2004 GMT

Not After : Apr 2 00:46:41 2007 GMT

Subject:

countryName = AU

stateOrProvinceName = New South Wales

localityName = Sydney

organizationName = puppy.yourdomain.com

commonName = puppy.yourdomain.com

emailAddress = admin@puppy.yourdomain.com

4444c08_final.qxd 1/5/05 12:58 AM Page 376

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 377

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

Netscape Comment:

OpenSSL Generated Certificate

X509v3 Subject Key Identifier:

EB:62:9D:27:65:3E:AB:55:44:67:8D:A7:09:E5:08:B3:FC:FF:0B:38

X509v3 Authority Key Identifier:

keyid:09:6A:E4:42:E8:DD:53:93:9C:49:01:49:D4:B3:BD:20:5F:82:2A:20

DirName:/C=AU/ST=New South Wales/L=Sydney/O=puppy.yourdomain.com/➥

CN=puppy/emailAddress=admin@puppy.yourdomain.com

serial:00

Certificate is to be certified until Apr 2 00:46:41 2007 GMT (1095 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

This will output a final file called puppy.yourdomain.com.cert.pem, which is your certifi-
cate file. You can now delete the certificate request file, which is
puppy.yourdomain.com.csr.pem.

■Note You can use whatever naming convention you like for your certificates, keys, and requests. I just
use the previous convention because it represents a simple way to identify all your SSL components and
to which system they belong.

Finally, as you can see in Listing 8-3, you should change the permissions of the files in
your certs directory to ensure they are more secure.

Listing 8-3. Certificate Permissions

puppy# cd /etc/mail

puppy# chmod 0755 certs

puppy# cd certs

puppy# chmod -R 0400 *

Now you have your first set of certificates and can use them to secure your TLS
connections.

TLS with Sendmail
The first thing Sendmail needs to run TLS is OpenSSL. You need to ensure the latest version
of OpenSSL is installed and that Sendmail has been compiled with SSL support. Listing 8-4
shows the fastest way to check the options with which Sendmail has been compiled.

4444c08_final.qxd 1/5/05 12:58 AM Page 377

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 378

Listing 8-4. Determining the Options with Which Sendmail Has Been Compiled

puppy# sendmail -bt -d0.1

Sendmail will respond with a list of the options compiled into it similar to the one in
Listing 8-5. If you see STARTTLS in that list, then TLS already has been compiled into Send-
mail; you can skip to the section “Configuring Sendmail with TLS.” Otherwise, see the next
section for instructions about how to compile TLS into Sendmail.

Listing 8-5. Options Compiled into Sendmail

Version 8.12.11

Compiled with: DNSMAP LOG MATCHGECOS MIME7TO8 MIME8TO7 NAMED_BIND

NETINET NETUNIX NEWDB PIPELINING SASL SCANF STARTTLS USERDB

XDEBUG

Compiling Sendmail with TLS
Compiling Sendmail with support for TLS is a simple process. Add the lines in Listing 8-6 to
site.config.m4.

Listing 8-6. Sendmail with TLS

APPENDDEF(`conf_sendmail_ENVDEF', `-DSTARTTLS')

APPENDDEF(`conf_sendmail_ENVDEF', `-lssl -lcrypto')

On some systems, the SSL libraries and includes are not in the place Sendmail expects.
Add the two lines in Listing 8-7 to tell Sendmail where to find the SSL libraries and includes.

Listing 8-7. Specifing the SSL Libraries and Includes

APPENDDEF(`conf_sendmail_INCDIRS', `-I/path/to/ssl/include')

APPENDDEF(`conf_sendmail_LIBDIRS', `-L/path/to/ssl/lib')

■Tip On some Red Hat systems, most notably Red Hat 9 and RHEL 3, you may also need to add an include
to point Sendmail to the Kerberos includes. Usually they would be located in /usr/include/kerberos, but
Red Hat has moved them in recent releases to /usr/kerberos/include.

Compile or recompile Sendmail mail with the Build command from
/sendmail-yourversion/. Enter the following:

puppy# ./Build -c

The -c tells the Sendmail compile to include the contents of the site.config.m4 file. Then
install the new Sendmail with TLS included by entering the following:

puppy# ./Build install

Finally, restart Sendmail to make sure you are running the new version.

4444c08_final.qxd 1/5/05 12:58 AM Page 378

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 379

Configuring Sendmail with TLS
Now that you have your version of Sendmail into which TLS has been compiled in, you need
to configure Sendmail to use it. The configuration for STARTTLS is all contained within your
sendmail.mc file. You first need to tell Sendmail where to find the certificates you created (see
the “Creating Certificates for TLS” section). Add the following lines to your sendmail.mc file:

define(`confCACERT_PATH',`/etc/mail/certs/')

define(`confCACERT',`/etc/mail/certs/cacert.pem')

define(`confSERVER_CERT',`/etc/mail/certs/puppy.yourdomain.com.cert.pem')

define(`confSERVER_KEY',`/etc/mail/certs/puppy.yourdomain.com.key.pem')

define(`confCLIENT_CERT',`/etc/mail/certs/puppy.yourdomain.com.cert.pem')

define(`confCLIENT_KEY',`/etc/mail/certs/puppy.yourdomain.com.key.pem')

Table 8-1 explains each of these defines.

Table 8-1. STARTTLS-Related Defines in sendmail.mc

Define Parameter Purpose

confCACERT_PATH The path to the location of your CA certificate

confCACERT The file containing your CA certificate

confSERVER_CERT The file containing the server certificate of this server that is used if Sendmail
is acting as a server

confSERVER_KEY The file containing the key of the server certificate

confCLIENT_CERT The file containing the client certificate of this server that is used if Sendmail
is acting as a client

confCLIENT_KEY The file containing the key of the client certificate

Here I have defined both the same client and server keys. This means the Sendmail server
is able to act as both a client and a server for TLS purposes. Now re-create your sendmail.cf
file, and restart Sendmail. You should be able to test if STARTTLS is working using Telnet to con-
nect to port 25 on your Sendmail system. Enter the following:

puppy# telnet puppy.yourdomain.com 25

Issue an EHLO anotherhostname to the Sendmail server. This should generate a list of capabil-
ities. If this list includes STARTTLS, then TLS is now enabled for your Sendmail server. Listing 8-8
shows the abbreviated results of this request.

Listing 8-8. Checking That STARTTLSWorks

puppy# telnet puppy.yourdomain.com 25

Trying 192.168.0.1...

Connected to puppy (192.168.0.1).

Escape character is '^]'.

220 puppy.yourdomain.com ESMTP

EHLO testbox

250-puppy.yourdomain.com Hello testbox [192.168.0.10], pleased to meet you

250-STARTTLS

4444c08_final.qxd 1/5/05 12:58 AM Page 379

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 380

If STARTTLS does not show up in the list of capabilities, the first place to check is your
maillog or equivalent mail-logging file. Sendmail will log its TLS-related errors to syslog. For
example, if you leave one of your keys or certificates group-readable, then Sendmail will gen-
erate the error, like this:

Apr 1 18:41:27 puppy sendmail[2923]: STARTTLS=server: ➥

file /etc/mail/certs/key.pem unsafe: Group readable file

Until you change the permissions to a more restrictive choice (I recommend 0400), then
Sendmail will not enable TLS.

Using TLS with Specific Hosts
To provide an example of how you can use TLS with Sendmail, I will demonstrate how to force
Sendmail to require inbound or outbound connections to specific hosts or domains to use
encryption. By default, because only a limited number of MTAs use TLS, most e-mail transfers
are clear text. I will assume you need to ensure that connections between specific hosts (for
example, if you have two mail servers on different sites connected via the Internet) must send
their traffic with encryption. To do this, you need to specifically tell Sendmail about those
hosts and that they must use TLS.

How you tell Sendmail involves using the access db feature. I discussed the access db fea-
ture in Chapter 7; refer to that chapter for further information about it and how to enable it.
One of the possible rules types is using STARTTLS and certificates to allow certain actions. In
this example, I will tell Sendmail to allow a connection to or from my Sendmail server only if
the certificate is signed by a trusted CA (for example, the CA created earlier in Chapter 3 or
a commercial CA).

Inside your access db file (I have used /etc/mail/access), you can specify some rules for
connections; these rules are TLS_Clt and TLS_Srv. Let’s look at inbound connections first. To
insist on encryption from a specific client, you need to add a TLS_Clt rule to your access db.
The TLS_Clt rule consists of three parts: a name, a requirement, and a flag determining the
nature of the error response from Sendmail if the rule is not met. The name is the hostname
or IP address of the client system, and the requirement is the level of encryption required to
allow incoming mail. A typical TLS_Clt rule could look like this:

TLS_Clt:kitten.yourdomain.com ENCR:128

This tells your Sendmail server to allow connections from the host kitten.yourdomain.com
only if at least 128-bit encryption is used. If the host kitten.yourdomain.com tries to send mail
without at least 128-bit encryption, it will fail, as shown in Listing 8-9, with an error message.

Listing 8-9. TSL_Clt Encryption Failure

Apr 4 09:51:31 puppy sendmail[18096]: i33NpVcd018096: ➥

--- 403 4.7.0 encryption too weak 0 less than 128

I mentioned a flag concerning the nature of Sendmail’s error response. By default, if
Sendmail receives a message without a suitable level of encryption, it will send back the error
code 403. The fact that this error code starts with 4 indicates it is a temporary error and the
client sending to Sendmail should try again the next time it processes its ongoing mail. If you
want to change this to a permanent error, which would tell the remote client to not try to

4444c08_final.qxd 1/5/05 12:58 AM Page 380

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 381

resend the e-mail, then you can prefix your ENCR:bits portion of the rule with PERM+. So now
your rule would look like the following:

TLS_Clt:kitten.yourdomain.com PERM+ENCR:128

Any mail that was not suitably encrypted from the specified client will now receive the per-
manent error 503. What you choose to do here probably depends on the nature of the client to
which you are connecting. The default of a temporary error 403 is correct from an RFC perspec-
tive, but you may want to address this differently.

Outbound connections are handled in a similar way. These also use your access db fea-
ture, but they use the rule TLS_Srv. The TLS_Srv and TLS_Clt rules are constructed identically.
TLS_Srv consists of a name and requirement with the option to change the error response also
available. The following is an access rule telling Sendmail that all mail being sent to the host
kitten.yourdomain.com needs to be encrypted to at least 128-bits:

TLS_Srv:kitten.yourdomain.net ENCR:128

■Tip Do not forget to re-create your access db file after you have changed it using the makemap command.

These are just some of the ways you can use TLS in conjunction with Sendmail. One of
the other more common uses is to allow or disallow relaying from systems verified with cer-
tain certificates. You can find more examples of how to use TLS at the Sendmail site at http://
www.sendmail.org.

TLS with Postfix
In this section, I will take you through adding TLS support to Postfix and configuring that sup-
port, and I will show an example of forcing Postfix to use TLS to connect to specified hosts and
domains.

To use Postfix with TLS, you need OpenSSL. Postfix, as available from the Postfix Web site
in source form, does not come with TLS by default. Some distributions contain a version of
Postfix with TLS enabled. The fastest way to check for TLS support in Postfix is to use the ldd
command to determine what shared libraries are compiled into your smtpd binary (which is
the binary that runs the SMTP daemon for Postfix). Listing 8-10 shows how to do this, assum-
ing your smtpd binary is located in /usr/libexec/postfix/ (which it should be by default).

Listing 8-10. Shared Libraries Compiled into Postfix

puppy# ldd /usr/libexec/postfix/smtpd

libssl.so.2 => /lib/libssl.so.2 (0x40021000)

libcrypto.so.2 => /lib/libcrypto.so.2 (0x40052000)

libdb-4.0.so => /lib/libdb-4.0.so (0x40126000)

libnsl.so.1 => /lib/libnsl.so.1 (0x401ce000)

libresolv.so.2 => /lib/libresolv.so.2 (0x401e4000)

libc.so.6 => /lib/i686/libc.so.6 (0x42000000)

libdl.so.2 => /lib/libdl.so.2 (0x401f6000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

4444c08_final.qxd 1/5/05 12:58 AM Page 381

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 382

If you can see the libssl library in the output from the ldd command, then Postfix has
been compiled with OpenSSL and therefore TLS support. If you do not see that library, you
will either need to compile support into Postfix or find a Postfix package for your release that
already contains TLS support.

If you need to find a version of Postfix and you do not want to compile from source, a
few options are available depending on your distribution. For Red Hat (a variety of releases),
Mandrake, and YellowDog Linux, you can find RPMs with TLS and SASL enabled at http://
postfix.wl0.org/en/. These RPMs are specifically for Red Hat but should work reasonably
well on Mandrake and other RPM-based distributions as well. Debian has a package called
postfix-tls that contains the functionality for both TLS and SASL, so you can simply apt-get
this package and add it to the existing postfix package. You should keep this up-to-date as
part of the stable release. If you use SuSE, Gentoo, Slackware, or other distributions, you will
need to install the TLS patch and recompile Postfix. I take you through that in the next section.

Compiling TLS into Postfix
If your distribution does not come with a TLS-enabled Postfix, it is a bit harder than enabling
it with Sendmail. This is because Postfix needs a third-party patch to enable TLS. This third-
party patch, provided by Lutz Janicke at http://www.aet.tu-cottbus.de/personen/jaenicke/
postfix_tls/, is kept reasonably up-to-date with the current release of Postfix. I will show you
how to integrate that with Postfix in this section.

■Note Recent experimental releases of Postfix have included TLS support based on Lutz Janicke’s patch.
Future production releases of Postfix will include TLS support without the need to apply this patch.

First download the patch from the site mentioned. Second, you will need the Postfix source
code. The site lists all the required compatibilities, including what versions of Postfix and OpenSSL
you will need depending on the version of the patch you are downloading. Check that you have
the correct version of the Postfix source code, check that you have the correct patch version,
and check that the version of OpenSSL on your system is also compatible.

Unpack the patch source. It will create a directory such as pfixtls-0.8.16-2.0.18-0.9.7c,
where 0.8.16 is the version of the Postfix TLS patch, 2.0.18 is the version of Postfix this patch
applies to, and 0.9.7c indicates the version of OpenSSL recommended. You should have at
least have version 0.9.6 of OpenSSL installed. Unpack the patch into a directory that also con-
tains the unpacked Postfix source. So, if you did an ls of that directory, you see both the Post-
fix source directory and directory containing the Postfix-TLS patch.

drwxr-xr-x 15 1001 wheel 4096 Mar 26 21:54 postfix-2.0.18

drwxr-xr-x 5 11019 11000 4096 Mar 26 21:38 pfixtls-0.8.16-2.0.18-0.9.7c

Now you need to patch the Postfix source code. Listing 8-11 shows you how to run the
command required to do this. You need to substitute path/to/patch and the correct version
in the command. Then run this command from the directory that contains the subdirectories
that contain the patch and the Postfix source code.

4444c08_final.qxd 1/5/05 12:58 AM Page 382

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 383

Listing 8-11. Patching the Postfix Code

patch -p0 < /path/to/patch/pfixtls-version/pfixtls.diff

This should generate a list of the files being patched and then return you to the command
line.

Once the patch is complete, then you need to adjust Postfix’s Makefiles to add the OpenSSL
header files. Move to the Postfix source directory, and run the command in Listing 8-12, changing
the -I to the location of your OpenSSL include files and the -L to the location of your OpenSSL
libraries. The locations listed in Listing 8-12 represent the general defaults for an OpenSSL instal-
lation. This may differ on your distribution.

Listing 8-12. Adding OpenSSL to the Postfix Makefiles

make makefiles CCARGS="-DUSE_SSL -I/usr/local/ssl/include" ➥

AUXLIBS="-L/usr/local/ssl/lib -lssl -lcrypto"

Then run make and make upgrade if you already have Postfix installed, or run make install
for a new install of the Postfix source. Now if you run ldd on the smtpd binary, you should see
that libssl is included in the list of libraries. If Postfix is already running, then you will also
need to restart it.

Configuring TLS in Postfix
Now that you have TLS compiled into Postfix, you need to enable it. You do this in the main.cf
Postfix configuration file, which is usually located in /etc/postfix. You should already have
a key, a public certificate, and the CA cert that was generated at the start of the “Creating Cer-
tificates for TLS” section. You need to define these and their locations to Postfix.

■Tip Do not forget to hash your CA certificate!

You need to define two sets of options: one set for Postfix to act as a TLS server and one
set for Postfix to act as a TLS client. For a TLS server, add the following lines in your main.cf
file, replacing /path/to/certs with the path to the location of your certificates (including your
CA cert file) and replacing cert, key, and CAcert with the names of your certificate, key, and CA
cert files in PEM format, respectively.

smtpd_tls_cert_file = /path/to/certs/cert.pem

smtpd_tls_key_file = /path/to/certs/key.pem

smtpd_tls_CAfile = /path/to/certs/CAcert.pem

■Caution If you are running Postfix chrooted and you have more than one CA certificate, then you need
to combine them into one file. Before chrooting itself, the smtpd daemon will read the contents of the file
defined by the smtpd_tls_CAfile option and then chroot. This means if all the CA certs are combined in
one file, they are available in the chroot jail for Postfix. The same also applies to the smtp_tls_CAfile
option in the unusual event you have different CAs for clients.

4444c08_final.qxd 1/5/05 12:58 AM Page 383

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 384

For a TLS client, add the following lines in your main.cf file, again replacing /path/to/certs
with the path to the location of your certificates (including your CA cert file) and replacing
cert, key, and CAcert with the names of your certificate, key, and CA cert files in PEM format,
respectively.

smtp_tls_cert_file = /path/to/certs/cert.pem

smtp_tls_key_file = /path/to/certs/key.pem

smtp_tls_CAfile = /path/to/certs/CAcert.pem

You can also add some other options that are useful. The first is logging. Add the following
line to main.cf to enable logging for Postfix as a TSL server:

smtpd_tls_loglevel = 1

You can also add the following for Postfix TLS client logging:

smtp_tls_loglevel = 1

Five logging levels exist and are identical for both the server and client logging options.
Table 8-2 details them.

Table 8-2. TLS Logging levels for Postfix

Level Description

0 No logging

1 Startup and certificate information

2 Level 1 plus display levels during negotiation

3 Level 2 plus a HEX and ASCII dump of the negotiation process

4 Level 3 plus a HEX and ASCII dump of the complete STARTTLS transaction

I recommend during normal operations a logging level of 1 or 2. I recommend not using
Level 4 unless you absolutely need this information for Postfix TLS client logging, as this will
generate a huge volume of data and could considerably slow down your server.

A useful option for server TLS is smtpd_tls_auth_only. This stops Postfix from sending
AUTH data over an unencrypted channel. This is useful when you are also using SMTP AUTH.
If this option is set to yes, then Postfix will send AUTH data only once TLS has been activated
via the STARTTLS command. To enable this option, add the following to the main.cf file:

smtpd_tls_auth_only = yes

Finally, you need to add a line explicitly starting TLS to your main.cf file. For a Postfix
acting as a TLS server, add the following:

smtpd_use_tls = yes

For Postfix acting as a TLS client, add the following:

smtp_use_tls = yes

After adding one or both options, you need to reload Postfix.

4444c08_final.qxd 1/5/05 12:58 AM Page 384

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 385

Now when you Telnet to your Postfix server and issue the EHLO command, you should see
STARTTLS as one of the available capabilities of your Postfix server.

puppy# telnet puppy.yourdomain.com 25

Trying 192.168.0.1...

Connected to puppy.

Escape character is '^]'.

220 puppy.yourdomain.com

EHLO kitten.yourdomain.com

250-puppy.yourdomain.com

250-STARTTLS

You are now ready to use TLS with Postfix!

■Note With Postfix-TLS you may want to investigate a few other options. The Postfix-TLS patch also
comes with a sample configuration file that details all the options available. This usually located in
/etc/postfix/sample-tls.cf.

Using TLS for a Specific Host
As an example of how to use TLS with Postfix, I will take you through the process of enforcing the
use of TLS for specific hosts or domains. I will do this by defining a new option, smtp_tls_per_site,
in the main.cf file. This option will reference a list of hosts and domains and contain specific
instructions that tell Postfix whether to use TLS with that host or domain. Remember to be
careful. The host or domain you are sending to must be capable of TLS, and if you specify it
must use TLS, then you need to be sure it has TLS capabilities; otherwise, you will not be able
to send mail to that host or domain. As most systems on the Internet are not TLS capable, you
should reserve this sort of enforcement for hosts and domains with which you were sure you
are able to initiate TLS.

To get started, add the following line to your main.cf file:

smtp_tls_per_site = hash:/etc/postfix/tls_per_site

The hash:/etc/postfix/tls_per_site entry refers to a Postfix hash map created with the
postmap command that you will create shortly.

Now you need to specify the hosts and domains that will or will not use TLS. Create a new
file called tls_per_site, and add entries for all the hosts and systems you want to define. Each
entry should consist of a hostname or domain name followed by a space or tab with each new
host or domain on a new line. Listing 8-13 shows you how to do it.

Listing 8-13. A Sample tls_per_site File

puppy.yourdomain.com MUST

yourdomain.com MAY

otherdomain.com NONE

anotherdomain.com MUST_NOPEERMATCH

4444c08_final.qxd 1/5/05 12:58 AM Page 385

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 386

As you can see from Listing 8-13, you can specify four possible options to tell Postfix how
to handle potential TLS connections. Table 8-3 details these options.

Table 8-3. The smtp_tls_per_site Options

Option Description

NONE Do not use TLS.

MAY If available, use TLS; otherwise do not bother.

MUST Enforces TLS use. E-mail send fails if certificate verify fails.

MUST_NOPEERMATCH Enforces TLS use and verification of certificate but ignores any difference
between the system’s FQDN and the certificate’s common name.

So, if you had a system you wanted to enforce the use of TLS for any e-mails sent, then you
would add it to the tls_per_site file and use the MUST or MUST_NOPEERMATCH option. If you are
testing this, I recommend you start with MAY options. This way you can send test e-mails and
confirm, using your log files, that a TLS connection is being established and that the certificate
is being verified with the specified remote host or domain before attempting to enforce the use
of TLS. This limits the risk that you might suffer a mail outage because TLS was not able to be
established and e-mail ceased to be sent.

Once you have created your tls_per_site file, then you can create a hash map from that
file with the postmap command.

puppy# postmap hash:/etc/postfix/tls_per_site

This will create the hash map called tls_per_site.db in /etc/postfix. Finally, you then
need to reload Postfix to update your configuration.

puppy# postfix reload

You should now be able to see in your mail logs when Postfix makes a TLS connection.
Listing 8-14 shows some of the log entries generated when sending an e-mail from
admin@puppy.yourdomain.com to admin@kitten.yourdomain.com, which are both TLS-capable
systems and are enforcing TLS.

Listing 8-14. Postfix TLS Log Entries

Apr 6 18:04:35 puppy postfix/smtp[13437]: ➥

setting up TLS connection to kitten.yourdomain.com

Apr 6 18:04:35 puppy postfix/smtp[13437]: ➥

Verified: subject_CN=kitten.yourdomain.com, issuer=puppy.yourdomain.com

Apr 6 18:04:35 puppy postfix/smtp[13437]: ➥

TLS connection established to puppy.yourdomain.com: TLSv1 with cipher ➥

EDH-RSA-DES-CBC3-SHA (168/168 bits)

Apr 6 18:04:35 puppy postfix/smtp[13437]: 75AB6231E4F: ➥

to=<admin@kitten.yourdomain.com>, relay=kitten.yourdomain.com[192.168.0.2], ➥

delay=0, status=sent (250 2.0.0 i3686BnY019481 Message accepted for delivery)

This shows just one of the uses for TLS in Postfix. As you can with Sendmail, you could
also use TLS in Postfix to allow relaying from clients using the smtpd_recipient_restrictions
options permit_tls_clientcerts and permit_tls_all_clientcerts.

4444c08_final.qxd 1/5/05 12:58 AM Page 386

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 387

3. http://www.faqs.org/rfcs/rfc2554.html

SMTP AUTH Using Cyrus SASL
As mentioned, SMTP does not by default have a mechanism to allow clients to authenticate
to servers or to allow servers to authenticate to other servers. Given the increased require-
ments for security, for remote access to e-mail, and for the prevalence of spam, there was a
need to provide an extension to basic SMTP to allow such authentication. This requirement
was detailed in RFC 2554, “SMTP Service Extension for Authentication.”3 The functionality
contained within RFC 2554 provides administrators with a new SMTP verb, AUTH, to allow
remote clients or servers to connect to the resources they require, in the form of a mail
server, and for the server to be sure they are who they say they are. This new verb, AUTH,
uses the SASL framework to provide that authentication.

I will cover only the basics of SMTP AUTH and SASL and show you how to authenticate
using simple mechanisms either using a database map stored on your system or using the
saslauthd daemon. SASL comes in a number of different flavors. I will specifically cover the
Cyrus SASL libraries, which are widely used on Linux systems for authenticating applications
such as mail servers. The SASL libraries themselves are authentication frameworks; they pro-
vide the hooks and functions to allow authentication—they do not perform authentication
by themselves. To conduct the actual authentication, SASL uses a series of mechanisms that
integrate into the SASL framework. Table 8-4 shows these mechanisms.

Table 8-4. SASL Authentication Mechanisms

Mechanism Description

ANONYMOUS Like an anonymous FTP login. Useless to SMTP servers because it mirrors the
behavior of an open relay and should be disabled at all times.

CRAM-MD5 Uses MD5 algorithms for a challenge-response style authentication.

DIGEST-MD5 More advanced form of CRAM-MD5 that offers additional features.

GSSAPI Uses Kerberos 5 tickets for authentication.

PLAIN Uses plain-text usernames and passwords.

LOGIN A nonstandard version of the PLAIN mechanism using the same principles.

SASL also allows you to develop your own mechanisms and use them for authentication.
You can choose to use any form of mechanism that suits your environment.

■Caution If you want to use LOGIN (used by default if your clients are Outlook derivatives) or PLAIN, then
you should combine their use with TLS to ensure your passwords are encrypted before being sent across the
network.

As with TLS, some distributions come with Cyrus SASL packages. For example, for Red
Hat and Mandrake, you need to install the cyrus-sasl RPM; for Debian you need to apt-get

4444c08_final.qxd 1/5/05 12:58 AM Page 387

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 388

the package cyrus-sasl. Each of these packages Cyrus SASL slightly differently, including
dividing SASL functions into multiple packages. You should check with your distribution ven-
dor’s documentation or Web site for the exact combination of packages you need in order to
install Cyrus SASL using packages. You can also download the most recent Cyrus-SASL source
directly from Carnegie Mellon University. I will show you in the next section how to compile
that SASL package, but certainly if your system comes with packages for SASL, I recommend
trying to use those first.

Compiling Cyrus SASL
If you want to build Cyrus SASL from source, then you need to download the source package
from http://asg.web.cmu.edu/cyrus/download/. Unpack the source code, and configure the
package using the following:

puppy# ./configure --enable-login --with-saslauthd

Table 8-5 shows some useful options you can use.

Table 8-5. Cyrus SASL Configuration Options

Option Description

--enable-krb4 Enables Kerberos 4 authentication

--enable-login Enables the usually unsupported LOGIN authentication mechanism

--enable-sql Enables SQL authentication using auxprop (you must have the MySQL
libraries installed)

--with-saslauthd Adds saslauthd support

--with-pam Adds PAM support

I recommend you enable the nonstandard LOGIN authentication mechanism because it is
the default authentication mechanism used by Outlook-based clients, which are increasingly
common for remote users. Also, if you need to enable saslauthd, then you also need to add
the with-saslauthd flag. Then run make and make install.

By default, the SASL libraries are installed into /usr/local/lib/sasl2. Most applications,
including Postfix and Sendmail, look for the SASL libraries in /usr/lib/sasl2. I recommend
you make a symbolic link to the libraries.

puppy# ln -s /usr/local/sasl2/lib /usr/lib/sasl2

You can also you can use the environment variable SASL_PATH to set the location of the
libraries.

■Tip Also, if you have chrooted your Sendmail MTA, you will need to copy the contents of your
/usr/local/sasl2 into your chroot jail (for example, into /chroot/sendmail/usr/local/sasl2).
Postfix does not require this.

4444c08_final.qxd 1/5/05 12:58 AM Page 388

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 389

Configuring SASL saslauthd
The major configuration you need to do for Cyrus SASL is if you intend to use the saslauthd
daemon for authentication. The saslauthd daemon provides plain-text authentication for the
SASL libraries and replaces the old SASL 1.x pwcheck option. The saslauthd daemon uses a
named socket to listen for connection requests for authentication.

You can start the daemon from the command line. Listing 8-15 shows the saslauthd
daemon being started to do shadow password authentication. You can also start saslauthd
using an init script. (Indeed, a number of distributions such as Red Hat come with already
installed init scripts for saslauthd.)

Listing 8-15. Starting saslauthd from the Command Line

puppy# /usr/sbin/saslauthd -m /var/run/saslauthd -a shadow

The -m flag tells saslauthd where to install its named socket and process ID. The -m flag
should point to a directory; in Listing 8-15 it points to the default location for saslauthd,
which is /var/run/saslauthd. This directory must exist for saslauthd to start. The -a option
tells saslauthd which authentication mechanism to use; in this case, it is saying to perform
authentication against your shadow password file. Table 8-6 describes the possible authen-
tication mechanisms you can specify.

Table 8-6. saslauthd -a Mechanisms

Mechanism Description

getpwent Authenticates using the getpwent library function, usually against the local pass-
word file

kerberos4 Authenticates against a local Kerberos 4 realm

kerberos5 Authenticates against a local Kerberos 5 realm

pam Authenticates using Pluggable Authentication Modules (PAM)

shadow Authenticates against the local shadow password file

ldap Authenticates against an LDAP server

A number of other options are available, which you can learn about in the saslauthd man
page.

■Tip The saslauthd daemon logs to syslog using the auth facility.

SMTP AUTH Using Cyrus SASL for Sendmail
The first version of Sendmail to support SASL was 8.10. I will cover how to add SASL support
using the Cyrus SASL libraries from Carnegie Mellon University (in addition to the TLS sup-
port you may have already added).

4444c08_final.qxd 1/5/05 12:58 AM Page 389

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 390

■Note I will cover only SASL 2 here! If your system still runs SASL 1.5 or older, then you should upgrade to
take advantage of the functionality that SASL 2 offers.

I discussed in the “SMTP AUTH Using Cyrus SASL” section how to get and install the SASL
library. Now you need to tell Sendmail those libraries are available and configure Sendmail to
activate them. You should first check to see if your version of Sendmail already contains sup-
port for SASL. Listing 8-16 shows you how to use the ldd command on your sendmail binary
to do this and gives a selected list of the libraries Sendmail should return if SASL and OpenSSL
are supported.

Listing 8-16. Checking for Cyrus SASL Support in Sendmail

puppy# ldd /usr/sbin/sendmail

libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0xb7474000)

libssl.so.4 => /lib/libssl.so.4 (0xb743f000)

libcrypto.so.4 => /lib/libcrypto.so.4 (0xb734e000)

■Tip You could also use the sendmail -d0.1 -bv root command for this. Check the compiled with
options for an entry called SASLv2.

If you see the entry for libsasl2 in the list of compiled libraries, then Sendmail already
has SASL support; you can skip to the “Configuring Cyrus SASL for Sendmail” section. If the
SASL support is not present, then go to the “Compiling Cyrus SASL into Sendmail” section;
I will show you how to activate the SASL support.

Compiling Cyrus SASL into Sendmail
To add support to Sendmail, you need to put some additional variables in Sendmail’s
site.config.m4 file to allow Sendmail to find the SASL libraries and includes during com-
pilation. Listing 8-17 shows these options.

Listing 8-17. site.config.m4 Options for SASL

APPENDDEF(`confENVDEF', `-DSASL=2')

APPENDDEF(`conf_sendmail_LIBS', `-lsasl2')

You should now be able to build Sendmail using Build -c. (The -c option tells Sendmail
to include the contents of the site.config.m4 file.) If this compile fails because it cannot find
all the SASL includes and libraries, you may also need to point Sendmail at the SASL includes
and libraries. Use the following additional lines in the site.config.m4 file, replacing /path/to/
SASL/includes and libraries with the location of your SASL includes and libraries:

APPENDDEF(`confINCDIRS', `-I/path/to/SASL/includes')

APPENDDEF(`confLIBDIRS', `-L/path/to/SASL/libraries')

4444c08_final.qxd 1/5/05 12:58 AM Page 390

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 391

Then try your Build -c again. If this completes successfully, then test your Sendmail binary
as described in Listing 8-16 to confirm the SASL support has been compiled into Sendmail. Now
you need to configure SASL support in Sendmail.

Configuring Cyrus SASL for Sendmail
The first step in configuring SASL is to articulate what authentication method SASL should be
using. SASL maintains a separate configuration file for each application with which it works.
For Sendmail, you do this by creating a file called Sendmail.conf in /usr/lib/sasl2. Listing 8-18
shows how you can set up the Sendmail.conf file.

Listing 8-18. Sendmail.conf File from /usr/lib/sasl2

pwcheck_method: saslauthd

In this file you need to specify what method SASL will use to authenticate users. In
Listing 8-18 the method is saslauthd, which indicates that SASL will use the daemon process
saslauthd to authenticate. This sort of authentication will use whatever authentication mech-
anism the saslauthd daemon is configured to use. I talked about getting saslauthd to run in
the “Configuring SASL saslauthd” section earlier.

If you intend to use saslauthd and you run Sendmail chrooted, you need to make some
modifications to allow the chrooted Sendmail daemon to access SASL. By default, saslauthd
creates a mux file that receives the authentication requests. This mux file is usually located in the
directory /var/run/saslauthd (often together with a PID file). If the file is not created there,
you can check with location of the mux file by reviewing the command you are using to start
saslauthd. You can specify the location of the mux file using the -m option. Or you can run the
following command to find it:

puppy# netstat -peln | grep saslauthd

unix 2 [ACC] STREAM LISTENING 256149 7645/saslauthd /var/run/saslauthd/mux

The last part of the returned output indicates the location of the mux file. As a result of Send-
mail being chrooted, it cannot see this file (because it is outside the chroot jail) and therefore
refuses to authenticate using SASL. So, you need to move the mux and other saslauthd files into
the chroot jail and link it back to its old location via a symbolic link to keep the saslauthd dae-
mon happy. The command in Listing 8-19 takes you through the steps needed to do this—mak-
ing a new directory in your chroot environment, moving the required files into the chroot jail,
and linking (a symbolic link only, which is important to maintain the security of your chroot jail)
back to the original location. You need to restart saslauthd after doing this.

Listing 8-19. Running saslauthd in Sendmail chroot Jail

puppy# mkdir -p /chroot/sendmail/var/run

puppy# mv /var/run/saslauthd /chroot/sendmail/var/run/saslauthd

puppy# ln -s /chroot/sendmail/var/run/saslauthd /var/run/saslauthd

If your remote users do not have a local login to the mail system (for example, virtual
users), then you can use some other methods to authenticate them. One of the easiest is to
create a stand-alone database of usernames and passwords. In this case, you would change
your pwcheck_method to the following:

pwcheck_method: auxprop

4444c08_final.qxd 1/5/05 12:58 AM Page 391

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 392

auxprop stands for auxiliary property plug-ins, of which the default is the sasldb type. As it
is the default, you do not need to specify anything else other than auxprop, because SASL knows
this indicates sasldb. By default with the sasldb plug-in, SASL looks for the file /etc/sasldb2.
This may already exist on your system; if it does not, do not panic. When you create your first
user, SASL will automatically create the /etc/sasldb2 file if it does not already exist.

To add users to the sasldb2 file, you use the saslpasswd2 command that comes with the
SASL package. You will need a username and a domain, which should match the FQDN that is
defined in Sendmail. Listing 8-20 shows you how to set up the command.

Listing 8-20. The saslpasswd2 Command

puppy# saslpasswd2 -c -u domain username

The -c option tells SASL to create a new user account. The -u option specifies the domain
for that user. You should replace the variables domain and username with the FQDN of the Send-
mail server and the required username for the user, respectively. You will be prompted by the
saslpasswd2 binary to enter a password for this username. If you have Sendmail located in a
chroot jail, then you can use an additional option, -f, to specify the location of the sasldb2 file
so you can place it in the jail and have it accessible to Sendmail.

puppy# saslpasswd2 -c -f /chroot/sendmail/etc -u domain username.

Using the auxprop method, you can also configure Sendmail to authenticate via Light-
weight Directory Access Protocol (LDAP) or a variety of SQL-based databases such as MySQL
or PostgreSQL. These methods are most useful when setting up virtual domains and virtual
users. See the Sendmail Web site for some HOWTOs about how to achieve this authentication.

Finally, it is important to note that if you are using saslauthd or sasldb2 as the authentication
method, then you are using the PLAIN or LOGIN mechanism for authentication. These use simple
Base64-encoded passwords that can be easily sniffed out and cracked across your network. This
is where TLS comes together with SASL to allow encrypted authentication. You should ensure
your mail client is configured to attempt an SSL/TLS connection with your mail server as well as
configured to do an SMTP AUTH when sending e-mail. You can also ensure your AUTH_OPTIONS
flag includes the p parameter, which requires Sendmail to allow SMTP AUTH only if a security
layer such as TLS is in place first. If you do not use TLS with SMTP AUTH and SASL, then the level
of security offered is minimal; in that case, I recommend you look at alternative methods of
authentication.

Using SMTP Server Authentication with Sendmail
To tell Sendmail about the SASL capabilities available to it, you need to define some options in
your sendmail.mc file. Add the two lines from Listing 8-21 to your sendmail.mc file.

Listing 8-21. Enabling SASL in Sendmail

define(`confAUTH_MECHANISMS', `PLAIN LOGIN')

TRUST_AUTH_MECH('LOGIN PLAIN')

4444c08_final.qxd 1/5/05 12:58 AM Page 392

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 393

The first line defines the list of mechanisms that are available to Sendmail to authenticate
a connection. In this instance, I have specified only PLAIN and LOGIN. The second line is a class
that further refines this list into those mechanisms that allow relaying; again, in this case, they
are PLAIN and LOGIN. This class can be a subset of the AUTH_MECHANISMS list or the same list.

You can also define the AUTH_OPTIONS parameter. This allows you to control and tune your
Sendmail authentication options. Add this line to your sendmail.mc file:

define(`confAUTH_OPTIONS'. `options')

options is one of a string of characters that changes the way authentication functions are
performed. In Table 8-7 you can see a list of some of the more useful parameters.

Table 8-7. AUTH_OPTION Options

Character Description

a Provides protection from active attacks during authentication exchange.

y Does not permit anonymous mechanisms.

d Does not permit mechanisms that are vulnerable to dictionary attacks (in other
words, LOGIN and PLAIN).

p Does not permit mechanisms that are vulnerable to dictionary attacks (in other
words, LOGIN and PLAIN, unless TLS is activated).

A Fixes from broken MTAs that do not abide by the RFC. This is needed only if you
using Sendmail as an SMTP AUTH client.

For example, I recommend you set the AUTH_OPTIONS flags to at least the following:

define(`confAUTH_OPTIONS'. `a y p A')

The use of the p option means you must have TLS running in Sendmail as well; otherwise,
you will be not be able to authenticate with SMTP AUTH.

Re-create your sendmail.cf file with these options configured, and you should now have
SMTP AUTH and SASL working. To check this, try the commands in Listing 8-22 to see if your
Sendmail server responds to an EHLO with the availability of the AUTH command.

Listing 8-22. Checking SMTP AUTH Is Available in Sendmail

puppy# telnet puppy.yourdomain.com 25

Trying 192.168.0.1...

Connected to puppy (192.168.0.1).

Escape character is '^]'.

220 puppy.yourdomain.com ESMTP

EHLO kitten

250-puppy.yourdomain.com Hello kitten [192.168.0.2], pleased to meet you

250-AUTH LOGIN PLAIN

250-STARTTLS

You can now test SMTP AUTH using the client of your choice. I will show you how it works
with Outlook Express in the “Testing SMTP AUTH with Outlook Express” section.

4444c08_final.qxd 1/5/05 12:58 AM Page 393

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 394

Using SMTP Client Authentication with Sendmail
You can also use SASL in Sendmail to provide SMTP AUTH authentication between servers.
In this model, your Sendmail server acts as a client of another MTA. This relies on you having
suitable credentials stored on your Sendmail MTA to authenticate you to the remote server.
Sendmail can store those credentials either in the access database or via the authinfo file.
I recommend you use the authinfo file, as this gives you the ability to separate entries that
require higher security from your more general access database, which a number of users
might see. To enable authinfo, add the following line to your sendmail.mc file:

FEATURE(`authinfo')

This will create an entry in your sendmail.cf file when you re-create it using m4, which
looks like this:

Kauthinfo hash /etc/mail/authinfo

You need to create this authinfo database. Place your authentication entries into a file,
call it authinfo, and then makemap it into a hash database or the database of your choice. The
authinfo entries follow a simple structure of two columns. The left column contains the
AuthInfo statement followed by the domain, host, or IP address of the remote server being
authenticated to, separated by a colon. The right column contains a list of configuration
items, each quoted and separated by a space. Table 8-8 lists them. The two columns are sep-
arated by tabs or one or more spaces.

Table 8-8. authinfo Configuration Items

Item Description

P : | = The password for the connection. If it is displayed as P:, the password is in plain text.
P= the password is Base64 encoded.

U Username for authentication.

I The user allowed to set up the connection.

R The realm. Usually the FQDN of your system. If it is omitted, Sendmail will use the
content of the $j macro.

M A list of the supported mechanisms for this connection, separated by spaces. If you omit
this, then Sendmail will use the contents of the AuthMechanisms option.

To authenticate, you must have at least a username, U, or the authentication identifier, I.
Listing 8-23 shows some sample entries.

Listing 8-23. Sample authinfo Entries

AuthInfo:anotherdomain.com "U:jim" "P:tinker"

AuthInfo:host.overthere.com "U:jim" "P=a1323498fkfg" "M:PLAIN LOGIN"

AuthInfo:192.168.1.100 "U:jim" "P:tailor" "R:puppy.yourdomain.com"

Create your authinfo database.

puppy# makemap hash /etc/mail/authinfo < authinfo

4444c08_final.qxd 1/5/05 12:58 AM Page 394

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 395

Now secure it. It should be owned by the root user and chmoded to 0600. Now restart
Sendmail to update your configuration, and you should be able to authenticate using the
entries contained in your authinfo database.

■Caution Do not ever use the root user or indeed any username or password combination that exists on
your client or server system as a login. Always assume that the contents of your authinfo database could
be compromised.

SMTP AUTH Using Cyrus SASL for Postfix
To get SMTP AUTH and Cyrus SASL working with Postfix, I will add support for the Cyrus SASL
libraries from Carnegie Mellon University (in addition to the TLS support you may have already
added).

■Note I will cover only SASL 2 here! If your system still runs SASL 1.5 or older, then you should upgrade
to take advantage of the functionality that SASL 2 offers. Also, it has been noted that support for earlier ver-
sions of SASL will be phased out of the newer versions of Postfix.

I discussed in the “SMTP AUTH Using Cyrus SASL” section how to get and install the SASL
library. Now you need to tell Postfix those libraries are available and configure Postfix to acti-
vate them. You should check to see if your version of Postfix already contains support for SASL.
Listing 8-24 shows you how to use the ldd command on your smtpd binary to do this and gives
a selected list of the libraries Postfix should return if SASL and OpenSSL are supported.

Listing 8-24. Checking for Cyrus SASL Support in Postfix

puppy# ldd /usr/libexec/postfix/smtpd

libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0x40021000)

libssl.so.2 => /lib/libssl.so.2 (0x40035000)

libcrypto.so.2 => /lib/libcrypto.so.2 (0x40065000)

If you see the entry for libsasl2 in the list of compiled libraries, then your Postfix already
has SASL support; you can skip to the “Configuring Cyrus SASL for Postfix” section. If the SASL
support is not present, then go to the “Compiling Cyrus SASL into Postfix” section; I will show
you how to activate the SASL support.

Compiling Cyrus SASL into Postfix
To recompile Postfix with support for SASL, you need to change your Makefiles to point to
the locations of the SASL includes and libraries. In the TLS section I used the command in
Listing 8-12 to add the support for TLS to the Postfix Makefiles. In Listing 8-25 I have taken

4444c08_final.qxd 1/5/05 12:58 AM Page 395

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 396

that Makefile update and added support for SASL as well. As with Listing 8-12, the exact loca-
tion of the OpenSSL and Cyrus SASL includes and libraries may be different, so you will need
to adjust Listing 8-25 to match your environment.

Listing 8-25. Adding SASL and OpenSSL to the Postfix Makefiles

make makefiles CCARGS="-DUSE_SASL_AUTH -I/usr/include/sasl ➥

-DHAS_SSL -I/usr/include/openssl" AUXLIBS="-lsasl2 -lssl -lcrypto"

Then run make and make upgrade if you already have Postfix installed, or run make install
for a new install of the Postfix source. Now if you run ldd on the smtpd binary, you should see
that libsasl2 is included in the list of libraries. If Postfix is already running, then you will also
need to restart it.

Configuring Cyrus SASL for Postfix
The first step in configuring SASL is to articulate what authentication method SASL should be
using. SASL maintains a separate configuration file for each application with which it works.
For Postfix you do this by creating a file called smtpd.conf in /usr/lib/sasl2. Listing 8-26
shows a typical file.

Listing 8-26. smtpd.conf File from /usr/lib/sasl2

pwcheck_method: saslauthd

In this file you need to specify what method SASL will use to authenticate users. In
Listing 8-26 the method is saslauthd, which indicates that SASL will use the daemon process
saslauthd to authenticate against your passwd file (which is rare these days, as most systems
use shadow passwords), against shadow passwords, or via PAM. This sort of authentication
uses your existing user and password system to verify users. This implies that the remote
users have a login to the mail system that Postfix and SASL are able to authenticate. I earlier
discussed in the “Configuring SASL saslauthd” section how to get saslauthd running

If you intend to use saslauthd and you run Postfix chrooted, you need to make some
modifications to allow the chrooted Postfix daemon to access SASL. By default saslauthd
creates a mux file that receives the authentication requests. This mux file is usually located in
the directory /var/run/saslauthd (often with a PID file). If the file is not created there, you
can check the location of the mux file by reviewing the command you are using to start
saslauthd. You can specify the location of the mux file by using the -m option. Or you can
run this command to find it:

puppy# netstat -peln | grep saslauthd

unix 2 [ACC] STREAM LISTENING 256149 7645/saslauthd /var/run/saslauthd/mux

The last part of the returned output indicates the location of the mux file. As a result of
Postfix being chrooted, it cannot see this file (because it is outside the chroot jail) and there-
fore refuses to authenticate using SASL. So, you need to move the mux file and other saslauthd
files into the chroot jail and link it back to its old location via a symbolic link to keep the
saslauthd daemon happy. The command in Listing 8-27 takes you through the steps needed
to do this—making a new directory in your chroot environment (I have assumed you have
installed Postfix in the default chroot location, but you can change this to your Postfix chroot

4444c08_final.qxd 1/5/05 12:58 AM Page 396

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 397

location if required), moving the required files into the chroot jail, linking (a symbolic link
only, which is important for maintaining the security of your chroot jail) back to the original
location. You need to restart saslauthd after doing this.

Listing 8-27. Running saslauthd in Postfix chroot Jail

puppy# mkdir -p /var/spool/postfix/var/run

puppy# mv /var/run/saslauthd /var/spool/postfix/var/run/saslauthd

puppy# ln -s /var/spool/postfix/var/run/saslauthd /var/run/saslauthd

If your remote users do not have a local login to the mail system (for example, virtual
users), then you can use some other methods to authenticate them. One of the easiest is to
create a stand-alone database of usernames and passwords. In this case, you can change your
pwcheck_method to the following:

pwcheck_method: auxprop

auxprop stands for auxiliary property plug-ins, of which the default is the sasldb type. As it
is the default, you do not need to specify anything else other than auxprop, because SASL knows
this indicates sasldb. By default with the sasldb plug-in, SASL looks for the file /etc/sasldb2.
This may already exist on your system; however, if it does not, do not panic. When you create
your first user, SASL will automatically create the /etc/sasldb2 file if it does not already exist.

To add users to the sasldb2 file, you use the saslpasswd2 command that comes with the
SASL package. You will need a username and a SASL domain, which for Postfix defaults to the
content of the $myhostname variable. Listing 8-28 shows how you can set up the command.

Listing 8-28. The saslpasswd2 Command

puppy# saslpasswd2 -c -u domain username

The -c option tells SASL to create a new user account. The -u option specifies the domain
for that user. You would replace the variables domain and username with the FQDN of the Post-
fix server and the required username for the user, respectively. You will be prompted by the
saslpasswd2 binary to enter a password for this username.

If you run Postfix in a chroot jail, then you need to move your sasldb2 file in the chroot
jail or create it in there yourself; otherwise, Postfix will not be able to read the contents of the
database. The saslpasswd2 command allows you to specify where you would like to create the
sasldb2 database using the -f option.

puppy# saslpasswd2 -f /var/spool/postfix/etc/sasdb2 ➥

-c -u `postconf -h myhostname` admin

The command on the previous line will create your sasldb2 database in the /var/spool/
postfix/etc directory and add a user called admin. I have also added `postconf -h myhostname`
as the content of the -u option where you would normally specify the domain of the Postfix sys-
tem. This addition to the command will ensure you get the correct domain in the -u option by
outputting the correct Postfix value. You also need to adjust the permissions of the sasldb2 file,
as shown in the next line, to allow Postfix to be able to read it:

puppy# chmod 0644 /var/spool/postfix/etc/sasldb2

4444c08_final.qxd 1/5/05 12:58 AM Page 397

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 398

Using the auxprop method you can also configure Postfix to authenticate via a MySQL data-
base or via LDAP. These methods are most useful when setting up virtual domains and virtual
users. See the Postfix Web site for some HOWTOs about how to achieve this authentication.

Finally, it is important to note that if you are using saslauthd or sasldb2 as the authenti-
cation method, then you are using the PLAIN or LOGIN mechanism for authentication. These
use simple Base64-encoded passwords that can be easily sniffed out and cracked across your
network. This is where TLS comes together with SASL to allow encrypted authentication. You
should ensure your mail client is configured to attempt an SSL/TLS connection with your mail
server as well as configured to do an SMTP AUTH when sending e-mail. You can also enable
the smtpd_tls_auth_only = yes option in your main.cf file, which allows SMTP AUTH to make
a connection only if a STARTTLS has been issued first. If you do not use TLS with SMTP AUTH
and SASL, then the level of security offered is minimal, and I recommend you look at alterna-
tive methods of authentication.

Using SMTP Server Authentication with Postfix
The first step in activating SMTP AUTH with SASL in Postfix is to add some configuration options
to the main.cf file. For SASL server functions, all the configuration options start with smtpd_sasl*,
and for all the SASL client functions, the configuration options start with smtp_sasl*. Let’s acti-
vate the SASL server functions. Add the following four lines to your main.cf file:

smtpd_sasl_auth_enable = yes

smtpd_sasl_local_domain =

smtpd_sasl_security_options = noanonymous

broken_sasl_auth_clients = yes

The first line, smtpd_sasl_auth_enable = yes, simply tells Postfix to turn on support for SASL.
The second line, smtpd_sasl_local_domain =, tells SASL what the local domain is. This line can be
somewhat confusing for many people. A lot of sources recommend adding the Postfix variable
$myhostname (which should be the FQDN of your system) to this line. This was the correct behav-
ior for SASL, but for SASL 2 and Postfix the correct default is to leave this blank. This is something
to note if you are upgrading from SASL to SASL 2 as part of this configuration process. The third
line, smtpd_sasl_security_options, allows you to control what SASL authentication frameworks
Postfix offers. Table 8-9 shows a full list of the options available to you.

Table 8-9. smtpd_security_options for Postfix

Option Description

noanonymous Disables methods that allow anonymous authentication such as ANON (the
default)

noplaintext Disables methods that use plain-text passwords such as PLAIN and LOGIN

noactive Disables methods that could be subject to active attacks

nodictionary Disables methods that could be subject to passive attack

All of these are relatively self-explanatory. But you should note that the nonanoymous
option is the default behavior for Postfix. By changing this or adding additional options, you

4444c08_final.qxd 1/5/05 12:58 AM Page 398

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 399

are overriding that default. Thus, I recommend you always leave noanonymous at the end of the
list, as shown in the next line:

smtpd_sasl_security_options = noactive, noanonymous

The previous line is useful if you have users with older e-mail clients. By default, Postfix
presents the AUTH command as per the RFC. Some older broken clients (for example, Outlook
versions prior to 5 suffer from this problem) expect the command to look like AUTH=. Setting
this option to yes tells Postfix to present AUTH both ways and enables these older clients to
use SMTP AUTH correctly. I recommend you use it because it has no ill effects for Postfix, and
it means if there are any older clients out in your network, SMTP AUTH will work for them.

Now if you restart Postfix, you will be able to Telnet your mail server and see the AUTH
statement and any SASL authentication frameworks that are supported.

puppy# telnet puppy.yourdomain.com 25

Trying 192.168.0.1...

Connected to puppy.

Escape character is '^]'.

220 puppy.yourdomain.com

EHLO kitten

250-puppy.yourdomain.com

250-STARTTLS

250-AUTH PLAIN LOGIN GSSAPI DIGEST-MD5 CRAM-MD5

■Caution If you have smtpd_tls_auth_only = yes set in your main.cf file, you will not see the
AUTH message presented, because you have not initiated STARTTLS. If you intend to use the
smtpd_tls_auth_only option, then I recommend you turn it off during your initial testing.

As you can see, AUTH is available and is advertising the PLAIN, LOGIN, GSSAPI, DIGEST-MD5,
and CRAM-MD5 authentication methods.

Now to actually use SASL and SMTP AUTH to authenticate relaying, you need to adjust
your smtpd_recipient_restrictions so Postfix uses the results of SMTP AUTH to authenticate
users. Find the smtpd_recipient_restrictions option in Postfix. By adding the option
permit_sasl_authenticated, you allow any client authenticated with SASL to relay using your
mail server. Listing 8-29 shows the restrictions option with SASL authentication permitted.

Listing 8-29. smtpd_recipient_restrictions in Postfix

smtpd_recipient_restrictions =

permit_mynetworks,

permit_sasl_authenticated,

reject_unauth_destination

4444c08_final.qxd 1/5/05 12:58 AM Page 399

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 400

■Tip Always remember to end your restrictions with a rejection, here reject_unauth_destination,
to ensure that the default behavior is to reject relaying.

Finally, restart Postfix.

Using SMTP Client Authentication with Postfix
You may want to enable server-to-server relaying using SMTP AUTH and SASL. This is handled
a bit differently than authorizing client-to-server relaying, because your Postfix server needs to
provide a username and password to the remote server to allow it to authenticate your mail
server. I provide these usernames and passwords to Postfix in the form of a postmap-created
password file.

First, enable client-based SMTP AUTH and SASL in Postfix and use the
smtp_sasl_password_maps option to tell Postfix where to find your password file. Listing 8-30
shows the required commands.

Listing 8-30. Enabling Client SMTP AUTH

smtp_sasl_auth_enable = yes

smtp_sasl_password_maps = hash:/etc/postfix/sasl_client_passwd

Second, create your password file. You will need to specify a domain and username:password
combination. The next line shows a username and password for the anotherdomain.com domain
to be used when trying to relay through to that domain.

anotherdomain.com admin:secretpassword

Then run postmap on the file, like so:

puppy# postmap /etc/postfix/sasl_client_passwd

and reload Postfix. Now if you were to send a message to a user at anotherdomain.com, your
Postfix system would offer the credentials of admin with a password of secretpassword.

Testing SMTP AUTH with Outlook Express
To show how to test SMTP AUTH, I will set up an Outlook Express client to use SMTP AUTH to
log in with a login name and password and perform a relay. If you do not have Outlook Express,
you can use any e-mail client that is capable of authenticating outbound connections. Open
Outlook Express, and select Tools ➤ Accounts... to edit the properties of an e-mail account. Click
the Servers tab. At the bottom of this tab is an entry under Outgoing Mail Server. Highlight the
option for My Server Requires Authentication, and click the Settings... button (see Figure 8-1).

4444c08_final.qxd 1/5/05 12:58 AM Page 400

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 401

Inside the Settings tab you have two options. You can tell Outlook to provide the same
details it uses to log into your e-mail account (which should be your login name and password
for your mail server if you use a local login), or you can specify another login and password, if
you are using the sasldb authentication option. Click OK; when the dialog box appears, click
OK again, and then click Close to shut down the Account Setup tab. Now send a test e-mail to
an external e-mail address.

If everything is set up correctly, you should see some resulting messages similar to those
in Listing 8-31 in your mail log file. This example shows a successful TLS connection being
created from your client and a successful SMTP AUTH authentication using the LOGIN method
for username admin.

Listing 8-31. Successful SMTP AUTH Authentication in Postfix

Apr 8 14:50:35 puppy postfix/smtpd[30017]: ➥

connect from client.yourdomain.com[192.168.0.50]

Apr 8 14:50:35 puppy postfix/smtpd[30017]: ➥

setting up TLS connection from client.yourdomain.com[192.168.0.50]

Apr 8 14:50:35 puppy postfix/smtpd[30017]: ➥

TLS connection established from client.yourdomain.com[192.168.0.50]: ➥

TLSv1 with cipher RC4-MD5 (128/128 bits)

Apr 8 14:50:35 puppy postfix/smtpd[30017]: ➥

99C9F231E56: client= client.yourdomain.com[192.168.0.50], ➥

sasl_method=LOGIN, sasl_username=admin

Figure 8-1. Configuring Outlook Express to use SMTP AUTH

4444c08_final.qxd 1/5/05 12:58 AM Page 401

CHAPTER 8 ■ AUTHENTICATING AND SECURING YOUR MAIL 402

Resources
The following are resources you can use.

Mailing Lists
• Sendmail Usenet and mailing list: http://www.sendmail.org/usenet.html

• Postfix mailing lists: http://www.postfix.org/lists.html

• Postfix TLS mailing list: http://www.aet.tu-cottbus.de/mailman/listinfo/
postfix_tls

Sites
• Sendmail: http://www.sendmail.org/

• Postfix: http://www.postfix.org

• Postfix TLS patch: http://www.aet.tu-cottbus.de/personen/jaenicke/postfix_tls/

• Postfix TLS RPMs: http://postfix.wl0.org/en/

• Cyrus SASL: http://asg.web.cmu.edu/sasl/

• S/MIME and PGP-MIME: http://www.imc.org/smime-pgpmime.html and
http://www.ietf.org/html.charters/smime-charter.html

4444c08_final.qxd 1/5/05 12:58 AM Page 402

403

C H A P T E R 9

■ ■ ■

Hardening Remote Access
to E-mail

More and more users expect to be able to access their e-mail remotely, including from home
and while traveling. Even more users are best classified as “roving” users who do not regularly
return to a home base and need to be able to access their e-mail resources remotely. These users
are forced by the nature of their movements to rely on remote access to provide access to vital
corporate resources such as e-mail.

To address the requirement for remote access, several protocols were developed to provide
remote-access functionality to a variety of resources. This chapter focuses on the protocols that
give you remote access to your e-mail resources in the form of messages and message stores.
The two key protocols I will cover are the Internet Message Access Protocol (IMAP) and the Post
Office Protocol (POP); I will also cover a variety of related offshoots of these protocols. These
protocols basically perform the same core function, providing remote access to your e-mail,
but they perform that function using different methods.

Naturally, the farther your users are from your internal network (especially as the medium
of the Internet is interposed between your remote users and the resources they require), the
higher the risk that your data (usernames, passwords, valuable commercial data) could be inter-
cepted, diverted, or altered. Earlier implementations of remote-access protocols and systems
assumed that the fabrics and networks those protocols were traveling across were much nicer
and friendlier places than the current environment has proven to be. Additionally, opening con-
nections to the Internet for these protocols to operate also puts your system at risk and adds
points through which an attacker could attempt to penetrate your system.

I will explain a bit about IMAP and POP. Then I will make some recommendations about
particular servers I think are the most secure applications to provide this functionality. I will take
you through the risks and potential exploits that running IMAP and POP exposes you to and
then take you through installing, configuring, and securing an IMAP server and a POP server.
I will also cover the commonly used Fetchmail tool and the security risks associated with using
it, as well as how to mitigate some of the risks and harden your Fetchmail installation.

I will not go into a lot of detail about non-security-related configuration and management
issues such as performance.

4444c09_final.qxd 1/5/05 12:59 AM Page 403

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL404

1. http://www.faqs.org/rfcs/rfc3501.html

2. Refer to http://www.faqs.org/rfcs/rfc1939.html. You should probably also look at the “POP Exten-
sions” RFC at http://www.faqs.org/rfcs/rfc2449.html.

IMAP
IMAP is a protocol for retrieving e-mail messages. The latest version is called IMAP4 and
described in RFC 3501.1 Essentially, it allows a client (such as Pine, mutt, or Outlook) to access
messages stores on a remote server as if they were stored locally. This allows users to manipu-
late messages on that remote server without having to send those messages back and forth.

It is similar in functionality to the other protocol I will cover in this chapter, POP, but has
some important differences. IMAP and POP both aim to achieve the same basic objective—
allowing remote access to message stores. POP is much more focused on retrieving those mes-
sages from the remote message store from a single client, storing those messages on the
client, and then deleting the messages from the remote message store. IMAP generally
assumes users will retrieve their mail from multiple different systems and thus leaves the mes-
sages in place on the remote message store. The following list covers most of the key function-
ality of IMAP:

• Checking for new messages

• Deleting and permanently removing messages

• Creating, deleting, and renaming mailboxes

• Creating, deleting, and renaming folders in a mailbox

• Searching and selectively retrieving messages and message attributes

• RFC-822 and MIME parsing on the remote server

■Note IMAP does not in itself send e-mail. You still need an SMTP server for that. IMAP merely retrieves
the messages from your remote message store.

POP
POP is similar to IMAP in nature, designed for the retrieval of messages from remote message
stores. It is currently in its third version, POP3, which is described in RFC 1939.2

■Note When I refer to POP, I am talking about POP3.

POP uses a client (for example, a mail client such as Pine or mutt or a mail retrieval tool
such as Fetchmail) to connect to a remote server running POP. The client usually retrieves the
messages from the remote message store, stores them locally, and (unlike IMAP) generally

4444c09_final.qxd 1/5/05 12:59 AM Page 404

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 405

deletes the remote messages. It was principally designed to allow remote computers without
permanent connections to the Internet to use another system as a “post office” and to hold all
mail until that remote client could connect and receive its mail. ISPs commonly utilize this
system.

■Note In fact, most individual ISP users employ POP to retrieve their e-mail. IMAP is considerably less
frequently used by ISPs for this function.

POP is also often used to collect e-mail from multiple remote messages stores and to
consolidate it to a single central location when a user has multiple e-mail accounts.

■Note Like IMAP, POP also does not allow you to send e-mail and instead relies on a SMTP server to
perform this function.

Choosing IMAP or POP Servers
Should you choose IMAP or POP? There are really two parts to this question. The first is, should
you use IMAP or POP (or should you use both)? Well, that depends on your requirements. As
I have talked about previously, POP is a good choice if you have users who are retrieving e-mail
from a single location and deleting that e-mail from the remote message store in the process.
They maintain local messages stores containing the e-mail they retrieve. For other sites, IMAP
is a good choice because it allows you to maintain a central message store where users hold
and manipulate their messages. This means they log into that message store from a variety of
locations or clients and always have access to their messages. Or you could run both protocols
and provide users with the option of having the solution that suits their requirements best. So
decide what model suits your organization and then choose a suitable server.

Indeed, a lot of IMAP and POP servers are available from which to choose. IMAP servers
include Courier-IMAP, Cyrus IMAP, and UW-IMAP, among others. Also, several open-source
POP servers are currently available. Courier-IMAP includes a POP server, as does Cyrus IMAP
and UW-IMAP; Qmail includes a POP server; and others include Qpopper, vm-pop3d, GNU
pop3d, POPular, and TeaPOP.

■Note I provide a list of all the home pages of these IMAP and POP servers in the “Sites” section.

I will choose a package that allows you to use both IMAP and POP, and I will assume you
want to enable both IMAP and POP functionality. You can, of course, disable one or more of
the protocols if you do not want to use it. This also makes configuring your IMAP and POP

4444c09_final.qxd 1/5/05 12:59 AM Page 405

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL406

3. http://www.securityfocus.com/archive/1

4. I discuss the best approach to this in Chapter 1.

server easier because you need to learn how to use only one package. The package I have cho-
sen to cover is Cyrus IMAP. Cyrus IMAP is produced by the same team that developed Cyrus
SASL and thus comes with good integration to SASL; it is also easy to integrate with TSL/SSL.
It even has a number of additional features that make it an ideal choice for a secure IMAP or
POP server. I will discuss those features in the “Cyrus IMAP” section.

This is not to say that whatever you use as your existing IMAP or POP server is not a good
solution. But there have been some serious issues with some of the servers available. Of obvious
note are the continuing security issues with UW-IMAP and Qpopper, which are both commonly
and popularly used packages. If you are running one of these, I recommend at the least you
upgrade to the latest version but perhaps also consider looking at alternatives such as Cyrus
IMAP. The best idea is to examine the Security Focus Bugtraq mailing list3 and review any IMAP-
or POP-related security exploits and vulnerabilities and the packages they affect. In combination
with a careful analysis of your requirements, the functionality offered by particular packages and
by examining how they address security-related functionality and issues should give you a good
picture of whether a package is secure and suitable for your environment.

How Is Your IMAP or POP Server at Risk?
So in what ways is your IMAP or POP server at risk of attack? Well, there are two major threats
here. The first is the risk posed by placing an IMAP and/or POP server on the Internet and the
opportunities this offers for an attacker to use that daemon to stage an attack on your system.
The second is the privacy and security of your e-mail, passwords, and users as they send and
receive data from the remote message store to their clients, especially across the Internet.
I will cover both these threats individually and later in this chapter; I will also discuss some
ways to mitigate these risks, provide some practical configurations using Cyrus IMAP, and
show this risk mitigation in action.

The first area of threat is generally an attacker scanning for an open port, discovering
your IMAP or POP server, and attempting to exploit that server and penetrate your system.
This is further exacerbated by the large number of exploits that can and have affected IMAP
and POP servers. This is a key reason to keep your IMAP or POP server up-to-date with the
latest stable version and any available and relevant security patches. You should ensure you
are using the most recent stable version of the server and that you regularly check that no new
security exposures, exploits, or issues have been discovered.4

Additionally, in some cases with some types of services, you can mitigate the risk of
having open ports on the Internet by placing that server inside a chroot jail, such as BIND
or SMTP. Unfortunately, many IMAP and POP servers are not good candidates for chrooting
because of their need to read all users’ mbox or Maildir files. Additionally, some IMAP servers
insist on running as the root user and not dropping their privileges. The server I have cho-
sen, though, Cyrus IMAP, is able to be chrooted because it stores messages in a central pri-
vate message store, not in users’ home directories. Cyrus IMAP also requires only root to
bind to its required IP addresses and ports, and then it drops privileges and by default runs
as the cyrus user. I will take you through chrooting Cyrus IMAP in the next section.

4444c09_final.qxd 1/5/05 12:59 AM Page 406

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 407

The second area of threat is the threat to your users’ data, usernames, and passwords. When
run out of the box, many IMAP and POP installations perform simple plain-text authentication,
usually against a local user in your /etc/passwd file. They also conduct the transmission of those
passwords unencrypted between the client and the server. This means that via some fairly simple
network-sniffing techniques, attackers can read both the username and password of a user. This
results in their ability to access that user’s message store or, if the user has a shell login, to log into
the system and continue their attack from within your system. You can reduce this threat greatly
by using encryption on your IMAP and POP connections using OpenSSL and/or using more
sophisticated authentication methods through a framework such as SASL. It is also good to con-
sider whether you would like to create a “sealed” system where no IMAP or POP user has an
account with shell access to the system. I will now take you through configuring and running
Cyrus IMAP with OpenSSL, cover some authentication methods, and show the best way to create
a “sealed“ system.

Cyrus IMAP
The Andrews System Group at Carnegie Mellon University produces Cyrus IMAP, which is part
of the broader Cyrus Electronic Mail Project that includes close links to its sister project, the
Cyrus SASL project. It is designed to be part of a scalable electronic mail infrastructure that can
be used by small organizations right up to enterprise-sized deployments. The main home of
the Cyrus IMAP project is at http://asg.web.cmu.edu/cyrus/; also, a Cyrus IMAP wiki is avail-
able at http://acs-wiki.andrew.cmu.edu/twiki/bin/view/Cyrus/WebHome and is more frequently
updated than the project home page.

Several features make Cyrus IMAP an attractive choice as a secure solution for an IMAP
and/or POP server. The following list details each of those features; I will go through them to
explain why and how they offer security benefits for your IMAP and POP server:

• You do not need to create local user accounts for IMAP/POP users; thus, you can “seal”
your system and not allow local logins.

• You can tightly control access to your user’s mail using customizable access control lists
(ACLs) that utilize the IMAP ACL command.

• You can chroot your Cyrus IMAP server.

• Cyrus IMAP integrates easily with Cyrus SASL for a variety of user authentication meth-
ods using the IMAP AUTH command.

• Cyrus IMAP integrates easily with TLS/SSL to allow encrypted communication between
your clients and server.

• The package has a limited number of security-related flaws or issues. At the time of
publication, Security Focus did not have any Cyrus IMAP vulnerabilities listed.

One of the key factors behind choosing a Cyrus IMAP server is that it overcomes one of
the major security flaws I have highlighted—the use of usernames and passwords to authenti-
cate to the message store that can also be used to log into the IMAP/POP server. Whilst under
some circumstances, this is not an issue; for example, when you have small volumes of users,
or when your IMAP server supports hundreds of users or a large volume of virtual users, it is

4444c09_final.qxd 1/5/05 12:59 AM Page 407

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL408

Figure 9-1. How your Cyrus IMAP server works

both a security risk and a large administrative overhead to require that all IMAP/POP users
need a valid and unique UID number.

Cyrus IMAP does not need a unique ID (UID) or even a user created on the system to
allow access to mailboxes. Rather, Cyrus IMAP allows you to choose the model you would like
to implement, including authentication to passwd files, an LDAP server, a MySQL database,
PAM authentication, Kerberos 4 or 5 authentication, or a sasldb database file. This is espe-
cially useful to create POP/IMAP servers that are “sealed” and allow no user logins at all,
which greatly enhances the security of these systems.

Cyrus IMAP also uses ACLs to control access by a user or group of users to the particular
mailbox. This allows you to configure some quite complex access models. Cyrus IMAP also
provides a comprehensive authentication framework (I have listed some of the possible
authentication methods previously) and is easy to integrate with TLS/SSL. This includes the
capability, similar to the capability also described in Chapter 8 for Sendmail and Postfix, of
allowing only plain-text authentication methods when a session between a client and the
server is suitably encrypted using TLS.

Finally, Cyrus IMAP is also a good choice performance-wise. Cyrus IMAP uses a message
store database to hold your mail and your message metadata, which provides excellent per-
formance and stability. Using this mail storage format has a caveat: if you have users who sign
on and access their e-mail from the command line, then you need to consider that their mail
is no longer stored in an mbox- or Maildir-style message store. Rather, it is stored in Cyrus’s
message store, and the command-line e-mail client needs to access this messages store via
IMAP; for instance, the mail command will no longer function. This being said, Cyrus IMAP is
designed to run on a “sealed” system where there are no local shell logins except those of
administrators. Figure 9-1 illustrates a functional model of a Cyrus IMAP server.

4444c09_final.qxd 1/5/05 12:59 AM Page 408

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 409

5. http://www.ietf.org/rfc/rfc2033.txt

So how does Cyrus IMAP actually work? It is usually integrated with your MTA. You con-
figure your MTA to deliver mail to Cyrus IMAP. (I will show you how to integrate it with both
Sendmail and Postfix.) I will be using the Local Mail Transfer Protocol (LMTP)5 to put e-mail
from your MTA into the private message store. In the model, I will show you that the private
message store will reside within a chroot jail. When an e-mail client connects to the IMAP or
POP daemon, it accesses the Cyrus IMAP message store and retrieves the required message or
messages. Figure 9-1 also shows this process.

Installing and Compiling Cyrus IMAP
Installing and compiling Cyrus IMAP can occasionally be a temperamental process, as Cyrus
IMAP has a few quirks that I will help you address and that should make your Cyrus IMAP
install as smooth as possible.

■Note You will also need Cyrus SASL. See Chapter 8 for instructions on how to install and configure Cyrus
SASL. You should install Cyrus SASL before you install Cyrus IMAP!

First, you need to download the latest version of Cyrus IMAP from ftp://
ftp.andrew.cmu.edu/pub/cyrus-mail/.

■Tip I used Cyrus IMAP 2.2.3 for this installation.

Second, you need to create a user for Cyrus IMAP and assign the user to a group. Enter
the following:

puppy# useradd -g mail -s /sbin/nologin -d /dev/null cyrus

I have created a user called cyrus who belongs the group mail, who cannot log on, and
who has a home directory of /dev/null. You could also create your own cyrus group, but
I have chosen to use the mail group rather than clutter the system with additional groups.

Now unpack the source package, and change into the resulting created directory. You
need to check whether you have the makedepend command. Use find or locate to check for it;
if it does not exist on your system, then you can create it using source from within the Cyrus
IMAP source package. Change into the makedepend directory, compile the command, and
install it. Listing 9-1 shows the process I undertook to do this.

Listing 9-1. Installing makedepend for Cyrus IMAP

puppy# cd path/to/Cyrus/source/makedepend

puppy# ./configure && make

puppy# cp makedepend /usr/local/bin

4444c09_final.qxd 1/5/05 12:59 AM Page 409

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL410

Now to compile Cyrus IMAP, you first need to configure it. Listing 9-2 shows the configure
statement I used for Cyrus IMAP. I will take you through that statement and, in Table 9-1.
some of the other potential configure options.

Listing 9-2. Cyrus IMAP configure Statement

puppy# ./configure --with-sasl=/usr/lib/sasl2 --with-openssl=/usr/lib/ssl \

--with-auth=unix --disable-sieve

The configure statement in Listing 9-2 configures Cyrus IMAP and enables SASL support
and OpenSSL support. It also specifies the unix authorization module, which tells Cyrus IMAP
to use Unix-based authorization. I have also disabled sieve, which is Cyrus IMAP’s mail-filtering
language (such as procmail for IMAP). Table 9-1 shows some additional configuration options
available for Cyrus IMAP.

Table 9-1. Cyrus IMAP configure Options

Option Description

--with-cyrus-user=user Uses user as Cyrus IMAP user

--with-cyrus-group=group Uses group as Cyrus IMAP group

--with-auth=method Uses authorization method (including unix, krb, krb5, or pts)

--with-openssl=/path/to/ssl Uses OpenSSL at /path/to/ssl

--with-sasl=/path/to/sasl Uses SASL 2 at /path/to/sasl

--with-krb=/path/to/krb Uses Kerberos at path/to/krb

--with-com_err=/path/to/com_err Specifies path to com_err files

The first two options allow you to specify a particular user and group for Cyrus IMAP to
use. By default, Cyrus IMAP uses the cyrus user and the mail group.

The next option controls the authorization module used by Cyrus IMAP. It is important to
note I am talking about authorization here, not authentication. Authentication proves you are
who you say you are and allows you to connect to Cyrus IMAP. Once connected, authorization
determines what rights you have to access the Cyrus IMAP message stores and mailboxes. With
Cyrus IMAP, authorization refers to controls over permissions and the ACLs. Authentication refers
to the different ways you can log into Cyrus IMAP. You could also use Kerberos, Kerberos 5, or an
external authorization process to perform authorization (using the configure option krb, krb5, or
pts, respectively). We have specified unix here, which is the most commonly used authorization
model. I will cover how to control authorization in the “Cyrus IMAP Access Control and Authori-
zation” section. We cover authentication in the "Cyrus IMAP Authentication with SASL" section.

The next three options all allow you to specify the location of OpenSSL, SASL, and Kerberos,
respectively.

■Note On Red Hat 8, Red Hat 9, and Enterprise 3 systems, the standard location of the Kerberos includes
has been moved, and this causes the Cyrus IMAP compilation to fail. Use the command CPPFLAGS="-I/
usr/kerberos/include" && export CPPFLAGS to add the CPPFLAG environment flag on these systems
to allow Cyrus IMAP to find these additional includes. Add this flag before you make Cyrus IMAP.

4444c09_final.qxd 1/5/05 12:59 AM Page 410

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 411

The final option allows you to overcome issues with the location of com_err.h during
compilation. If your make fails with an error indicating that it cannot find com_err.h, then you
can overcome these issues by installing com_err.h into the include directory of your choice.

Listing 9-3. Overcoming com_err.h Compile Errors in Cyrus IMAP

puppy# cd path/to/Cyrus/source/et

puppy# cp com_err.h /usr/local/include

If you do not want to install the com_err.h include file, then you can also point Cyrus IMAP
to the file using a configure option. Listing 9-4 shows the previous configure statement with
the option added.

Listing 9-4. Specifying the Location of the com_err.h File Using configure

puppy# ./configure --with-sasl=/usr/lib/sasl2 --with-openssl=/usr/lib/ssl \

--with-auth=unix -with-com_err=/path/to/Cyrus/source/et

After you have configured Cyrus IMAP, you need to make and install it. Listing 9-5 shows
the relevant commands.

Listing 9-5. Making and Installing Cyrus IMAP

puppy# make && make install

By default Cyrus IMAP installs the Cyrus binaries into /usr/cyrus. (You can override this
with the --with-cyrus-prefix configure option.)

Installing Cyrus IMAP into a chroot Jail
I will take you through the basics of configuring Cyrus IMAP in a chroot jail. First, you should
create a directory structure to hold the chroot jail. I have created a directory called
/chroot/cyrus in the root directory by entering the following:

puppy# mkdir -R /chroot/cyrus

Second, you need to create some additional directories under /chroot/cyrus. Listing 9-6
shows the directories and directory you need to create.

Listing 9-6. Cyrus IMAP chroot Directory Structure

/dev

/etc

/lib

/lib/tls

/tmp

/usr

/usr/cyrus

/usr/cyrus/bin

/usr/lib

/usr/lib/sasl2

4444c09_final.qxd 1/5/05 12:59 AM Page 411

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL412

/var

/var/imap

/var/imap/db

/var/imap/log

/var/imap/msg

/var/imap/proc

/var/imap/ptclient

/var/imap/socket

/var/run

/var/spool

/var/spool/imap

/var/spool/imap/stage.

■Note The trailing full stop, ., in the last directory in Listing 9-6 needs to be there.

Adding Cyrus IMAP Binaries and Libraries to the chroot Jail
Now you need to populate your Cyrus IMAP installation. I will start with the Cyrus IMAP bina-
ries. If you have installed them in the standard location, then copy the binaries into the chroot
jail using the following command; otherwise, copy them from wherever you installed them.

puppy# cp /usr/cyrus/bin/* /chroot/cyrus/usr/cyrus/bin

■Tip If you are not using the sieve application, you should not copy the sievec and timsieved binaries.

Next, you need to add the required libraries to the chroot jail. Cyrus Mail will also require
a variety of libraries to run correctly in the chroot jail. The best way to work this out is to run
ldd on the master and lmtpd binaries. Record the list of libraries shown, and copy them into
their respective locations in the chroot jail. Listing 9-7 shows the partial results of running the
ldd command on the master binary and a subsequent copy of the required libraries in their cor-
rect locations in the chroot jail. You need to perform the same process for the lmtpd binary.

Listing 9-7. Adding the Cyrus Mail Libraries

puppy# ldd /usr/cyrus/bin/master

libresolv.so.2 => /lib/libresolv.so.2 (0xb75ce000)

libdb-4.1.so => /lib/libdb-4.1.so (0xb750c000)

libssl.so.4 => /lib/libssl.so.4 (0xb74d7000)

libcrypto.so.4 => /lib/libcrypto.so.4 (0xb73e6000)

libcom_err.so.2 => /lib/libcom_err.so.2 (0xb73e4000)

libc.so.6 => /lib/tls/libc.so.6 (0xb72ad000)

libz.so.1 => /usr/lib/libz.so.1 (0xb7207000)

4444c09_final.qxd 1/5/05 12:59 AM Page 412

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 413

libpthread.so.0 => /lib/tls/libpthread.so.0 (0xb729c000)

libgssapi_krb5.so.2 => /usr/kerberos/lib/libgssapi_krb5.so.2 (0xb7289000)

puppy# cp /lib/libssl.so.4 /chroot/cyrus/lib

puppy# cp /usr/lib/libz.o.1/chroot/cyrus/usr/lib

puppy# cp /lib/tls/libpthread.so.0 /chroot/cyrus/lib/tls

■Caution If you see any libraries located in /usr/kerberos/lib in your list of Cyrus Mail libraries,
do not copy them into a similar location under the Cyrus Mail chroot; instead, copy them into /chroot/
cyrus/usr/lib. Cyrus Mail seems unable to find them otherwise.

You will also need some other libraries. Listing 9-8 lists these libraries, which are usually
contained in /lib.

Listing 9-8. Additional Libraries Required by Cyrus Mail

libnss_files.so.2

libnss_dns.so.2

Copy the libraries from Listing 9-8 into /chroot/cyrus/lib to proceed.
If you are using Cyrus SASL (which you almost certainly are), then you should copy the

contents of /usr/lib/sasl2 (or /usr/local/lib/sasl2 depending where you have installed the
Cyrus SASL libraries) to chroot/cyrus/lib/sasl2.

Populating the /chroot/cyrus/dev Directory
The next directory you will populate is your /chroot/cyrus/dev directory. You need to create
some devices in this directory to allow Cyrus IMAP to correctly function. These devices, null
and random, should duplicate the devices of the same name in the /dev directory. You can do
this using the mknod command. Enter the following:

puppy# mknod /chroot/cyrus/dev/null c 1 3

puppy# mknod /chroot/cyrus/dev/random c 1 8

Now secure your newly created devices. They should both be owned by root with null
being chmoded to 0666 and random to 0644.

Also in your /dev directory, you need to define a log device to allow the chrooted Cyrus
IMAP to log to syslog. If you are using syslog, then you need to add an -a switch to the com-
mand that starts syslog. For my configuration, I add the following:

-a /chroot/cyrus/dev/log

If you are using syslog-NG, then add a line similar to the following one to your
syslog-ng.conf file in one of your source statements:

unix-stream("/chroot/cyrus/dev/log");

4444c09_final.qxd 1/5/05 12:59 AM Page 413

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL414

■Tip See Chapter 5 for more details on how to do this.

Then restart syslog or syslog-NG; a new log device in the dev directory will allow Cyrus
IMAP to log to your syslog daemon.

■Tip Cyrus IMAP logs to facility local6, so you should be able to create entries that will capture just your
Cyrus IMAP log entries.

Populating the /chroot/cyrus/etc Directory
Now you need to copy some files from the /etc directory to the /chroot/cyrus/etc directory.
Copy the following:

passwd

group

resolv.conf

host.conf

nsswitch.conf

services

hosts

localtime

Once you have copied your passwd and group files, you should remove all the users and
groups that are not required to run Cyrus IMAP. My passwd file contains the following:

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

cyrus:x:503:503::/var/imap:/sbin/nolgin

My group file contains the following:

root:x:0:root

bin:x:1:root,bin,daemon

daemon:x:2:root,bin,daemon

mail:x:12:mail,cyrus

cyrus:x:503:

You should also ensure the services file has entries for the IMAP or POP services you
want to use. Listing 9-9 shows those entries for POP, IMAP, and IMAPS.

4444c09_final.qxd 1/5/05 12:59 AM Page 414

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 415

Listing 9-9. POP and IMAP Services in /etc/service

pop3 110/tcp pop-3 # POP version 3

pop3 110/udp pop-3

imap 143/tcp imap2 # Interim Mail Access Proto v2

imap 143/udp imap2

imaps 993/tcp # IMAP over SSL

imaps 993/udp # IMAP over SSL

pop3s 995/tcp pop3s # POP over SSL

pop3s 995/udp pop3s # POP over SSL

You also need to create the Cyrus IMAP configuration files, imapd.conf, and the master
control configuration file. I will cover the imapd.conf file in the “Configuring Cyrus IMAP”
section, so for the moment just create an empty file like this:

puppy# touch /chroot/cyrus/etc/imapd.conf

The source package of Cyrus IMAP contains some sample master daemon control config-
uration files. These are located in cyrus-imapd-version/master/conf in that package. For most
configurations, I recommend using the normal.conf file. Copy that file into your /chroot/
cyrus/etc directory and then rename it to cyrus.conf.

puppy# cp cyrus-imapd-2.2.3/master/conf/normal.conf /chroot/cyrus/etc/cyrus.conf

You will find other example master control files in that directory, and you can review the
installation documentation to ensure you choose a suitable configuration file. I will talk about
editing that configuration to suit your environment in the “Configuring Cyrus IMAP” section.

Permissions and Ownership in the Cyrus IMAP chroot Jail
Now you need to set permissions and ownerships for all your directories. All the directories
need to be owned by the Cyrus IMAP user and group. In this case, this is cyrus and mail,
respectively. From within the /chroot/cyrus directory, run the following command:

puppy# chown -R cyrus:mail *

This will recursively change the ownership of all the directories in the chroot jail. Now you
need to set the permissions for the directories. Listing 9-10 shows how you set permissions
inside your chroot jail from the /chroot/cyrus directory.

Listing 9-10. Setting Permissions in the Cyrus IMAP chroot Jail

puppy# chmod -R 0644 dev/random etc

puppy# chmod -R 0666 dev/null

puppy# chmod -R 0750 dev/log lib tmp usr var/spool var/run

puppy# chmod -R 0755 var/imap

4444c09_final.qxd 1/5/05 12:59 AM Page 415

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL416

Starting and Stopping Cyrus IMAP in the chroot Jail
As Cyrus IMAP is installed in a chroot jail, you need to adjust how you would normally start and
stop it. Cyrus IMAP is normally started by running the master daemon, which then spawns addi-
tional processes to handle local delivery and incoming connections. Enter the following:

puppy# /usr/cyrus/bin/master -d

The -d option tells the master daemon to run in the background. Table 9-2 details some
additional command-line options for the Cyrus IMAP master daemon.

Table 9-2. Cyrus IMAP Master Daemon Command-Line Options

Option Description

-C file Specifies an alternative imapd.conf file for use by the master process.

-M file Specifies an alternate cyrus.conf file.

-p pidfile Specifies the PID file to use. If not specified, defaults to /var/run/cyrus-master.pid.

-d Starts in daemon mode.

-D Does not close standard in, out, and error.

With Cyrus IMAP installed into your chroot jail, you need to start and stop it using the fol-
lowing chroot command:

puppy# chroot /chroot/cyrus /usr/cyrus/bin/master -d

This starts Cyrus IMAP with the root directory of /chroot/cyrus instead of /. The Cyrus
IMAP master binary it starts is located in the /chroot/cyrus/usr/cyrus/bin directory.

For normal operation, I recommend starting Cyrus IMAP using an init script. In Listing 9-11
I have included a basic init script.

Listing 9-11. Example Cyrus IMAP init Script

#!/bin/bash

Cyrus IMAP startup script

Source function library.

. /etc/init.d/functions

prog="/usr/cyrus/bin/master"

opt="-d"

case "$1" in

start)

Starting Cyrus IMAP Server

chroot /chroot/cyrus/ $prog $opt

;;

stop)

Stopping Cyrus IMAP Server

killproc $prog

;;

*)

4444c09_final.qxd 1/5/05 12:59 AM Page 416

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 417

echo "Usage: $0 {start|stop}"

exit 1

;;

esac

■Tip Remember that if you are using the saslauthd daemon, you need to start that, too.

Configuring Cyrus IMAP
I will now show you how to configure Cyrus IMAP in a basic manner to get it operational using
TLS and SASL for encryption and authentication, respectively. I will not go into any detailed
Cyrus IMAP configuration. If you need more information, then Cyrus IMAP is well-documented
both on the Cyrus IMAP Web site at http://asg.web.cmu.edu/cyrus/imapd/ and in the extensive
man pages that come with the package.

Cyrus IMAP is largely controlled by two files: the imapd.conf and cyrus.conf files. Both
of them are stored in /etc or, if using the chrooted configuration described in the previous
section, in the /chroot/cyrus/etc directory. I will first take you through the imapd.conf file
and its contents and explain how it impacts the configuration of Cyrus IMAP. Listing 9-12
shows a sample imapd.conf file.

Listing 9-12. Sample imapd.conf File

configdirectory: /var/imap

partition-default: /var/spool/imap

admins: root bob

sasl_pwcheck_method: saslauthd

The first two lines in the imapd.conf file control the location of the Cyrus IMAP configura-
tion files and the location of the message store and mailboxes, respectively. If Cyrus IMAP is
located in the chroot jail, as described in the previous section, then these are subdirectories
of /chroot/cyrus.

■Note You should always remember that any files contained in your chroot jail are relative to the root
directory (in this case, /chroot/cyrus) of the jail, not your root, /, directory.

The first line, configdirectory, tells Cyrus IMAP where to find its general configuration
files. The partition-default variable tells Cyrus IMAP where to locate its messages stores and
mailboxes. You can specify more than one location for your message stores (for example,
spread them over several file systems or disks) if required, but in this example I will just use
the one location.

The next two options control two security-related functions. The first, admins, allows you
to specify one or more users who are able to administer Cyrus IMAP, including functions such

4444c09_final.qxd 1/5/05 12:59 AM Page 417

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL418

as creating or managing mailboxes and using the cyradm tool. Separate each user with a space.
The last option, sasl_pwcheck_method, tells Cyrus IMAP what type of Cyrus SASL authentica-
tion to use. Listing 9-12 shows Cyrus IMAP using saslauthd, which is the Cyrus SASL authenti-
cation daemon. The saslauthd daemon is used for authentication for shadow passwords, LDAP,
or MySQL. You could also specify auxprop or pwcheck here, with auxprop indicating the use of
a Cyrus SASL sasldb authentication database and pwcheck being used for older versions of
Cyrus SASL.

You also need to configure a Cyrus SASL configuration file for Cyrus IMAP. You should
call this file Cyrus.conf; it is located in /chroot/cyrus/usr/lib/sasl2/ if you have chrooted
Cyrus IMAP or in /usr/lib/sasl2 or /usr/local/lib/sasl2 (depending on where you have
installed Cyrus SASL). Like you can see in Listing 9-13, you need to add a pwcheck_method

option to that file.

Listing 9-13. The Cyrus.conf File

pwcheck_method:saslauthd

The method should match the method you have used in your imapd.conf file: saslauthd,
auxprop, and so on.

The four lines in Listing 9-12’s imapd.conf are enough to get Cyrus IMAP running, so
you can add them to your empty imapd.conf file in your chroot jail. A few other options are
worth mentioning, including those controlling adding TLS to Cyrus IMAP. Table 9-3 shows
these options, and I will cover them in more detail after the table. You can read about addi-
tional options in the imapd.conf man page.

puppy# man imapd.conf

Table 9-3. imapd.conf File Configuration Variables

Variable Description

allowanonymouslogin: yes | no Allows the use of “anonymous” logins and the Cyrus SASL
ANONYMOUS mechanism. This is no by default.

allowplaintext: yes | no Allows the use of clear-text passwords. This is yes by default.

servername: server_name This is the hostname visible in the greeting messages of the
POP, IMAP, and LMTP daemons. If not set, then it will default
to the result of gethostname.

syslog_prefix: string A string to be appended to the process name in syslog entries.

temp_path: temp_directory Location of the temporary directory.

tls_cert_file: filename Location of the certificate belonging to the server. Entering
disabled will disable SSL/TLS.

tls_key_file: filename Location of the private key belonging to the server. Entering
disabled will disable SSL/TLS.

tls_ca_file: filename Location of your CA file.

tls_ca_path: path Path to the CA certificates. This directory must have the cer-
tificate hashes also.

4444c09_final.qxd 1/5/05 12:59 AM Page 418

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 419

The allowanonymous and allowplaintext options both relate to the use of SASL authenti-
cation mechanisms. The first disables the SASL ANONYMOUS mechanism (which is done by
default). You should ensure this remains off, as the ANONYMOUS mechanism provides no secu-
rity and allows anybody to sign into your Cyrus IMAP. The second controls whether Cyrus
IMAP will accept plain-text mechanisms of authentication such as PLAIN or LOGIN. Setting
this to no will disable plain-text passwords unless TLS is enabled and running. This ensures
that if you use plain-text authentication mechanisms, you can use them only if your connec-
tion is encrypted with TLS. I recommend setting this option to no and enabling TLS.

The next three options control additional configuration items in Cyrus IMAP. The server-
name variable allows you to specify the hostname that Cyrus IMAP will present to incoming IMAP
or POP connections. If it is not specified, then this defaults to the result of the gethostname sys-
tem call. The syslog_prefix variable allows you to append a string to the process field of any
Cyrus IMAP syslog entries. The last of these three entries, the temp_path variable, tells Cyrus
IMAP what directory to use as its temporary directory. If this is not specified, it defaults to /tmp.

The last four options in Table 9-3 control Cyrus IMAP’s use of TLS. The first two entries,
tls_cert_file and tls_key_file, specify the location of your server’s certificate and keyfile
to Cyrus IMAP. You can also specify disabled as the content of either of these options to dis-
able TLS. The next two options, tls_ca_file and tls_ca_path, allow you to specify the loca-
tion of your CA certificate file and the path that contains your CA files (including your
certificate hashes).

■Note See Chapter 8 for details of TLS and TLS certificates, and see Chapter 3 for details on OpenSSL.

To enable TLS, you need to add these lines to your imapd.conf file. Listing 9-14 shows my
imapd.conf with TLS enabled and some of the options I have been discussing added.

Listing 9-14. Enabling TLS with Cyrus IMAP

configdirectory: /var/imap

partition-default: /var/spool/imap

admins: root bob

sasl_pwcheck_method: saslauthd

allowplaintext: no

allowanonymouslogin: no

tls_cert_file: /var/imap/certs/puppy_cert.pem

tls_key_file: /var/imap/certs/puppy_key.pem

tls_ca_file: /var/imap/certs/CA_cert.pem

tls_ca_path: /var/imap/certs/

If you have set up Cyrus IMAP in a chroot jail, you need to create, copy, or move your cer-
tificates and the directory containing your CA certificate and hashes into the chroot jail. Ensure
you use the tightest permissions possible on your keys so they are not vulnerable. I generally
set its permissions to 0400. Enter the following:

puppy# chmod 0400 puppy_key.pem

4444c09_final.qxd 1/5/05 12:59 AM Page 419

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL420

The next configuration file, cyrus.conf, controls the master daemon. I have created one
from the sample normal.conf contained in the Cyrus IMAP source package and copied it
into my chroot jail as cyrus.conf. The cyrus.conf file does two important functions for you;
it tells Cyrus IMAP which services (IMAP or POP, or both, for example) to start, and it tells
Cyrus IMAP the location of the lmtp socket your MTA uses to inject mail into Cyrus and then
the mailboxes. I will cover these two functions. The cyrus.conf man file describes the other
options in the cyrus.conf file.

puppy# man cyrus.conf

The functions relating to starting and stopping services and specifying the location of the
lmtp socket are contained in a block of configuration items called SERVICES. This block of con-
figuration items is contained in brackets, { }. The first function the cryus.conf file performs is
to tell Cyrus IMAP which services to start. As you can see in Listing 9-15, the uncommented
items in the first seven lines handle this.

Listing 9-15. The cyrus.conf Services

SERVICES {

add or remove based on preferences

imap cmd="imapd" listen="imap" prefork=0

imaps cmd="imapd -s" listen="imaps" prefork=0

pop3 cmd="pop3d" listen="pop3" prefork=0

pop3s cmd="pop3d -s" listen="pop3s" prefork=0

sieve cmd="timsieved" listen="sieve" prefork=0

these are only necessary if receiving/exporting usenet via NNTP

nntp cmd="nntpd" listen="nntp" prefork=0

nntps cmd="nntpd -s" listen="nntps" prefork=0

at least one LMTP is required for delivery

lmtp cmd="lmtpd" listen="lmtp" prefork=0

lmtpunix cmd="lmtpd" listen="/var/imap/socket/lmtp" prefork=0

this is only necessary if using notifications

notify cmd="notifyd" listen="/var/imap/socket/notify" proto="udp" prefork=1

}

To stop services from starting when the master daemon is started, you need to comment
out that particular service. Listing 9-15 shows the following services being started: imaps and
pop3s. The other potential services (imap, pop3, and sieve) are commented out and will not
start when the master daemon starts.

The next function the cyrus.conf file handles for you that I will cover is specifying the
location of the lmtp socket. The line, starting with lmtpunix, in Listing 9-15 tells Cyrus IMAP
the location of the lmtp socket through which your MTA will inject mail into Cyrus IMAP. In
Listing 9-15 this points to /var/imap/socket/lmtp.

4444c09_final.qxd 1/5/05 12:59 AM Page 420

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 421

6. http://www.faqs.org/rfcs/rfc2033.html

7. http://www.sendmail.org/m4/mailers.html

Integrating Cyrus IMAP with Sendmail and Postfix
As discussed earlier in the chapter, I will integrate Cyrus IMAP into your MTA using LMTP. LMTP is
a fast and efficient method of delivering mail from your MTA to Cyrus IMAP. LMTP is described in
RFC 2033.6 Mail is delivered from your MTA to a local or remote lmtp socket on which your Cyrus
IMAP server is listening. The mail is received and added to the user’s mailbox.

Sendmail

You can start integration with Sendmail by adding some configuration lines to your sendmail.mc
file. These lines tell Sendmail about Cyrus and specify the location of the lmtp socket to your
Sendmail configuration. This is made easier by the fact that Sendmail has a custom Mailer
designed specifically for Cyrus IMAP; I will show how to configure that Mailer with a specific
location for the lmtp socket.

■Tip You can read more about Mailers at the Sendmail site.7

Listing 9-16 shows the lines you need to add to your sendmail.mc file.

Listing 9-16. Cyrus IMAP Sendmail Integration

define(`confLOCAL_MAILER', `cyrusv2')dnl

define(`CYRUSV2_MAILER_ARGS', `FILE /chroot/cyrus/var/imap/socket/lmtp')dnl

MAILER(`cyrusv2')dnl

You will notice I have defined the location of the lmtp socket from the perspective of the
root directory of the system, as opposed to inside the chroot jail, because Sendmail is running
outside the jail and not inside it. After adding these lines, then re-create your sendmail.cf file
and restart Sendmail. This completes your Cyrus IMAP integration with Sendmail; now Send-
mail should be delivering mail into your Cyrus IMAP mailboxes.

Postfix

If instead you use Postfix, you go about the integration a little differently. First, you need to
identify the user who Postfix is running as, usually postfix. Second, you need to add this user
to the mail group or to whichever group Cyrus IMAP is running as if you have overridden the
default group during the configure process. This gives Postfix permission to write to the lmtp
socket that Cyrus IMAP creates. Listing 9-17 shows the entry I have for the mail group.

Listing 9-17. /etc/group Entry for Postfix and Cyrus IMAP Integration

mail:x:12:mail,cyrus,postfix

4444c09_final.qxd 1/5/05 12:59 AM Page 421

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL422

Next you need to add a mailbox_transport entry to Postfix’s main.cf file to tell Postfix to write
and deliver to Cyrus IMAP the location of the socket. As I did with Sendmail, I will use LMTP
because of its excellent performance. You can define the lmtp socket created by Cyrus IMAP and
indicated in the cyrus.conf file to Postfix. In Listing 9.18, you can see the mailbox_transport.

Listing 9-18. main.cf mailbox_transport Entry

mailbox_transport = lmtp:unix:/chroot/cyrus/var/imap/socket/lmtp

As Postfix is delivering from outside the Cyrus IMAP chroot jail, you need to reference the
full directory of the socket, not just the directory from the point of view of the root of the chroot
jail. After you have added this line to the main.cf file, then you need to reload Postfix. After this,
Postfix should be delivering mail to the indicated socket.

■Tip With both Sendmail and Postfix, you can use other methods of integrating with Cyrus IMAP, including
using the deliver binary that comes with Cyrus IMAP. If you do not want to use LMTP, then see the Cyrus
IMAP documentation for other methods.

Cyrus IMAP Authentication with SASL
So, you have compiled, installed, and integrated Cyrus IMAP with your MTA (and installed
Cyrus SASL!).

■Note I talk about Cyrus SASL in further detail in Chapter 8.

Now you want to use it to connect a client securely over an encrypted connection and
retrieve e-mail. I will briefly cover authentication via some simple methods and provide you
with the basis for other forms of authentication.

So how does this work? With Cyrus IMAP running, the master daemon is bound to your
chosen interface and has opened the required ports. The master daemon then advertises its
capabilities to any clients connecting to it. Amongst those capabilities is the IMAP AUTH com-
mand. This lists any authentication mechanisms that Cyrus IMAP is capable of using. These
are the authentication mechanisms that Cyrus SASL has provided to Cyrus IMAP; for example,
this could be the PLAIN, LOGIN, or GSSAPI mechanism (plain-text login, the Outlook-style LOGIN
function, and the Generic Security Services Application Programming Interface that is inte-
grated into Kerberos 5 and allows Kerberos 5 authentication, respectively). The login client
provides credentials for one of these authentication mechanisms, and Cyrus IMAP queries the
required mechanisms to verify the authenticity of the credentials. For example, a client using
Kerberos 5 authentication connects to Cyrus IMAP using the GSSAPI mechanism. Cyrus IMAP
queries the Cyrus SASL authentication mechanism and using that configuration queries the
required Kerberos 5 server. Figure 9-2 shows this process at work.

4444c09_final.qxd 1/5/05 12:59 AM Page 422

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 423

■Note In Listing 9-14 I have configured Cyrus IMAP to advertise plain-text authentication mechanisms
only if I am running TLS for added security. So in Figure 9-2 the IMAP AUTH command would appear only
if the STARTTLS command had been initiated first.

So let’s go back to Listing 9-14 where I have configured the imapd.conf file to tell Cyrus
IMAP how to authenticate itself. In that example, I configured the use of the saslauthd dae-
mon to perform the authentication function. You could also have used pwcheck or auxprop as
the sasl_pwcheck_method option, which I will talk about later in this section. Before that, I will
cover the saslauthd daemon that can be configured to perform a number of different types of
authentication. The particular type of authentication used is specified by the -a option when
starting saslauthd. Table 9-4 describes some of the saslauthd authentication types.

Table 9-4. saslauthd -a Mechanisms

Mechanism Description

getpwent Authenticates using the getpwent library function usually against the local
password file

kerberos4 Authenticates against a local Kerberos 4 realm

kerberos5 Authenticates against a local Kerberos 5 realm

pam Authenticates using Pluggable Authentication Modules (PAM)

shadow Authenticates against the local shadow password file

ldap Authenticates against an LDAP server

Figure 9-2. Cyrus IMAP authentication

4444c09_final.qxd 1/5/05 12:59 AM Page 423

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL424

I will cover one of the most commonly used types of authentication: shadow. The shadow
authentication mechanisms are designed to allow you to authenticate against a local pass-
word file that uses shadow passwording. In Listing 9-19, you can see how to start saslauthd
with the shadow authentication mechanism enabled.

Listing 9-19. Cyrus SASL saslauthd with shadow Authentication

puppy# /usr/sbin/saslauthd -m /var/run/saslauthd -a shadow

The -m option allows you to specify the location of a PID file. The saslauthd daemon will
now check the contents of your /etc/shadow file for usernames and passwords passed to Cyrus
SASL from Cyrus IMAP.

If you intend to use saslauthd and you have chrooted Cyrus IMAP, you need to make
some modifications to allow the chrooted Cyrus IMAP daemon to access saslauthd. By
default saslauthd creates a mux file to receive the authentication requests. This mux file is
usually located in the directory /var/run/saslauthd (often together with a PID file). If the
file is not created there, you can check with location of the mux file by reviewing the com-
mand you are using to start saslauthd. You specific the location of the mux file using the -m
option. Or you can run the following command to find it:

puppy# netstat -peln | grep saslauthd

unix 2 [ACC] STREAM LISTENING 256149 7645/saslauthd /var/run/saslauthd/mux

The last part of the returned output, /var/run/saslauthd/mux, indicates the location of the
mux file. As a result of Cyrus IMAP being chrooted, it cannot see this file (because it is outside the
chroot jail) and therefore refuses to authenticate using SASL. So you need to move the mux file and
other saslauthd files into the chroot jail and link it back to its old location via a symbolic link to
keep the saslauthd daemon happy. The command in Listing 9-20 takes you through the steps
needed to do this—making a new directory in your chroot environment, moving the required
files into the chroot jail, linking (a symbolic link only, which is important to maintain the security
of your chroot jail) back to the original location, and changing the ownership of the saslauthd
directory.

Listing 9-20. Running saslauthd in Cyrus IMAP chroot Jail

puppy# mv /var/run/saslauthd /chroot/cyrus/var/run/saslauthd

puppy# ln -s /chroot/cyrus/var/run/saslauthd /var/run/saslauthd

puppy# chown cyrus:mail /chroot/cyrus/var/run/saslauthd

You need to restart saslauthd after doing this.
I have covered using the saslauthd daemon for Cyrus IMAP authentication. You can also

use some other mechanisms. I will cover how to use the sasldb mechanism. This is best used
for “sealed” systems, as I discussed earlier where the users signing onto the Cyrus IMAP server
do not have shell logins. The sasldb file contains usernames and passwords. In this case, change
your sasl_pwcheck_method in the imapd.conf to the following:

sasl_pwcheck_method: auxprop

■Note You also need to change the pwcheck_method option in the Cyrus.conf file.

4444c09_final.qxd 1/5/05 12:59 AM Page 424

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 425

auxprop stands for auxiliary property plug-ins, of which the default is the sasldb type. As
it is the default, you do not need to specify anything else other than auxprop because Cyrus
SASL knows this indicates sasldb. By default with the sasldb plug-in, Cyrus SASL looks for
the file /etc/sasldb2. This may already exist on your system; however, if it does not, do not
panic. When you create your first user, Cyrus SASL will automatically create the /etc/sasldb2
file if it does not already exist.

To add users to the sasldb2 file, you use the saslpasswd2 command that comes with the
SASL package. You will need a username and a domain that should match the fully qualified
domain name defined in Sendmail. Listing 9-21 shows how to use this command.

Listing 9-21. The saslpasswd2 Command

puppy# saslpasswd2 -c username

The -c option tells SASL to create a new user account. You would replace the variable
username with the required username for the user. You will be prompted by the saslpasswd2
binary to enter a password for this username. If you have Cyrus IMAP located in a chroot jail,
then you can use an additional option, -f, to specify the location of the sasldb2 file so you can
place it in the jail and have it accessible to Cyrus IMAP.

puppy# saslpasswd2 -c -f /chroot/cyrus/etc username

You need to ensure Cyrus IMAP can read the sasldb2 file. The sasldb2 file should be owned
by the user and group that Cyrus IMAP runs as. In this case, this is the user, cyrus, and the group,
mail. You also need to ensure the file is secured against intrusion by restricting its permissions.
The most suitable permissions to secure the file are 0400.

puppy# chmod 0400 sasldb2

Using the auxprop method, you can also configure Cyrus IMAP to authenticate via LDAP
or a variety of SQL-based databases such as MySQL or PostgreSQL. These methods are most
useful when setting up virtual domains and virtual users. See the Cyrus IMAP Web site’s HOW-
TOs for information on how to achieve this authentication.

Finally, it is important to note that if you are using saslauthd or sasldb2 as the authentica-
tion methods, then you are using the PLAIN or LOGIN mechanisms for authentication. These use
simple Base64-encoded passwords that can be easily sniffed out and cracked across your net-
work. This is where TLS comes together with Cyrus SASL to allow encrypted authentication.
You should ensure your IMAP/POP client is configured to attempt an SSL/TLS connection by
configuring your client to use the SSL-enabled ports (993 for IMAPS and 995 for POP3S) with
your Cyrus IMAP server. As I discussed previously, you should ensure you have set the allow-
plaintext option to no in the imapd.conf file. This means Cyrus IMAP allows IMAP AUTH only
if a security layer such as TLS is in place first. If you do not use TLS with IMAP AUTH and Cyrus
SASL, then the level of security offered is minimal, and I recommend you look at alternative
methods of authentication.

Cyrus IMAP Access Control and Authorization
I have discussed authenticating and connecting to your Cyrus IMAP server. Cyrus IMAP has
an additional layer of security available to you to protect your users’ e-mail and mailboxes.
This authorization layer allows you to control the access rights to a particular mailbox that

4444c09_final.qxd 1/5/05 12:59 AM Page 425

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL426

you grant to various users. You achieve this using ACLs that are administered with the cyradm
tool. The cyradm tool connects you to your Cyrus IMAP server and allows an administrator
(who is defined using the admins option in the imapd.conf file) to sign in and manage your
Cyrus IMAP site. Listing 9-22 shows you how to start cyradm.

■Note The cyradm binary is a bash script that calls the Perl module Cyrus::IMAP. Sometimes, on some sys-
tems, cyradm is unable to find the perl modules it requires. If you get an error message when you run cyradm
stating Can't locate Cyrus/IMAP/Shell.pm, then insert the following into the top of the cyradm script:
PERL5LIB=/usr/local/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi; export PERL5LIB.

Listing 9-22. Starting cyradm for Cyrus IMAP Administration

puppy# cyradm --user root --port 143 --server puppy

This starts the cyradm administration tool and connects to port 143 as the root user of the
puppy server.

Now I will show an example of how you can use cyradm. I will create a user and a mail-
box for that user and then assign some rights to the user to that mailbox. I will assume you
are using Cyrus SASL with the auxprop mechanism using a sasldb file. So first you need to
create a user, bob, in the sasldb.

puppy# saslpasswd2 -c -f /chroot/cyrus/etc bob

Password:

Again (for verification):

When you enter the command, you will be prompted for the new user’s password twice.

■Tip Ensure you select passwords for your users that are secure. I discuss approaches to secure pass-
words in Chapter 1.

Now you need to start cyradm.

puppy# cyradm --user root --server puppy

Password:

puppy>

Now you need to create a new mailbox. Cyrus IMAP has a default convention for naming
mailboxes; it requires that you prefix user’s mailboxes with user.username. You can use the
command createmailbox or its abbreviation, cm, to create the mailbox.

puppy> createmailbox user.bob

Several other commands are available that you can use on mailboxes, such as commands
enabling you to delete and rename the mailbox. Table 9-5 details the some of the commands
you can use with cyradm. You can review the cyradm man page for further commands.

4444c09_final.qxd 1/5/05 12:59 AM Page 426

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 427

Table 9-5. cyradm Commands

Command Abbreviation Description

createmailbox cm Creates a mailbox

listmailbox lm Lists mailboxes

renamemailbox renm Renames a mailbox

deletemailbox dm Deletes a mailbox

setaclmailbox sam Sets an ACL on a mailbox

listaclmailbox lam Lists the ACL on a mailbox

deleteaclmailbox dam Deletes an ACL on a mailbox

setquota sq Sets quota limits

listquota lq Lists quota on root

help Gets help on commands

quit Exits cyradm

The new mailbox I have created has some default access rights assigned to it. You can
display these default access rights by using the listaclmailbox command or its abbreviation,
lam.

puppy> listaclmailbox user.bob

bob lrswipcda

You can see that bob has a variety of access rights to his mailbox. In fact, as the owner of
that mailbox, bob has all rights to that mailbox. Now I will explain what those rights means.
Table 9-6 lists all the rights and provides an explanation of what each does.

■Note The users listed in the admins option in the imapd.conf file automatically have l and a rights to
the mailbox.

Table 9-6. Cyrus IMAP ACL Rights

Letter Access Right Description

l lookup Sees that the mailbox exists

r read Reads the mailbox

s seen Modifies the Seen and Recent flags

w write Modifies flags and keywords other than Seen and Deleted

i insert Inserts new messages into the mailbox

p post Sends mail to the submission address for the mailbox

c create Creates new submailboxes of the mailbox, or deletes or renames the
current mailbox

d delete Uses the Deleted flag and expunges deleted mail

a administer Changes the ACL on the mailbox

4444c09_final.qxd 1/5/05 12:59 AM Page 427

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL428

The Cyrus IMAP administrators do not automatically have all the rights to a user’s mail-
box. I will use this to show you how to grant rights to a mailbox. So now you will see an exam-
ple of granting rights to a user and using the setaclmailbox command or its abbreviation, sam,
to another user’s mailbox.

puppy> setaclmailbox user.bob root d

In this example, I am giving the root user the d access right to the mailbox user.bob. This
gives root the right to delete and expunge e-mail from bob’s mailbox. You can also use the option
all to assign all the available access rights for a user to a mailbox.

puppy> setaclmailbox user.bob root all

You can also delete an ACL from a mailbox using the deleteaclmailbox command or its
abbreviation, dam.

puppy> deleteaclmailbox user.bob root

This will delete the entire ACL for the root user. All access rights granted to the root user
to the mailbox user.bob will be removed.

All the commands used to control ACLs on Cyrus IMAP involve assigning rights to a particu-
lar user ID or identifier. You can also two special identifiers: anyone and anonymous. You probably
will not (and should not) use the anonymous identifier. It refers to users who have been anony-
mously authenticated to Cyrus IMAP, and as I have previously mentioned, anonymous authentica-
tion is not safe, as it is impossible to verify who the user connecting is. The other special identifier
is anyone, which means anyone authenticated can access the mailbox. This is useful for creating
public folders.

Testing Cyrus IMAP with imtest/pop3test
Cyrus IMAP comes with two test tools, imtest and pop3test; the latter is especially useful for
testing TLS and Cyrus SASL authentication. I will briefly cover both of them. The imtest and
pop3test tools are usually located in /usr/local/bin and cover testing IMAP and POP3, respec-
tively. You can start them from the command line. I will specifically cover the imtest command
as an example of the two commands; the options and functions of both commands are nearly
identical.

puppy# imtest servername

Without options, imtest will try to connect, as the user you are currently logged on as, to
the IMAP port 143 and to the particular server indicated by the servername variable. You can
also try to connect to the SSL-enabled port by adding the -s switch to imtest.

puppy# imtest -s servername

This connects to either port 993 (for IMAPS) or port 995 for POP3S (depending on the tool
being used) and displays the TLS negotiation and the available capabilities of the server indi-
cated by servername. Listing 9-23 shows the messages this command generates on my Cyrus
IMAP server.

4444c09_final.qxd 1/5/05 12:59 AM Page 428

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 429

Listing 9-23. Using the imtest -s Command

puppy# imtest -s puppy

TLS connection established: TLSv1 with cipher AES256-SHA (256/256 bits)

S: * OK puppy Cyrus IMAP4 v2.2.3 server ready

C: C01 CAPABILITY

S: * CAPABILITY IMAP4 IMAP4rev1 ACL QUOTA LITERAL+ MAILBOX-REFERRALS NAMESPACE

UIDPLUS ID NO_ATOMIC_RENAME UNSELECT CHILDREN MULTIAPPEND BINARY SORT

THREAD=ORDEREDSUBJECT THREAD=REFERENCES ANNOTATEMORE IDLE AUTH=PLAIN

AUTH=LOGIN AUTH=DIGEST-MD5 AUTH=CRAM-MD5 SASL-IR

S: C01 OK Completed

C: A01 AUTHENTICATE DIGEST-MD5

S: + bm9uY2U9Ikl3MHZGNHhGY05pbzVXa0N4VU8vSUI0RjhwZS9uTldJbTNqMXR0dTFrQ1k9

IixyZWFsbT0icHVwcHkiLHFvcD0iYXV0aCIsbWF4YnVmPTQwOTYsY2hhcnNldD11dGYtOCxhb

Gdvcml0aG09bWQ1LXNlc3M=

Please enter your password:

You can see that the IMAP AUTH command has displayed the LOGIN and PLAIN mecha-
nisms. If I run this against the non-SSL-enabled IMAP on port 143, you would not see these
mechanisms, because the plain-text mechanisms are enabled only with TLS.

Table 9-7 lists a variety of other options you can input as command-line options to imtest.

Table 9-7. imtest/pop3test Command-Line Options

Option Description

-t keyfile Specifies the location of a TLS keyfile that contains the TLS public and private
keys. Specify "" to negotiate a TLS encryption layer but not use TLS
authentication.

-p port Allows you to specify the port to connect to.

-m mechanism Specifies the particular authentication mechanism to use (for example, PLAIN).

-u user Specifies the username to log in as, which defaults to the current user.

-v Enables verbose mode.

Listing 9-24 shows the process of logging into my Cyrus IMAP server, puppy, using the
PLAIN authentication method on the SSL-enabled port 993 as the user cyrus, with the verbose
mode enabled, and using a specific TLS keyfile.

Listing 9-24. Further imtest Options

puppy# imtest -s -a plain -p 993 -u cyrus -t /var/imap/certs/puppy.pem -v puppy

4444c09_final.qxd 1/5/05 12:59 AM Page 429

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL430

8. http://www.catb.org/~esr/who-is-ESR.html and http://www.opensource.org/

9. http://www.faqs.org/rfcs/rfc2645.html

10. I recommend if you want to investigate these other protocol and configuration options that you start
with the Fetchmail home page, which is referenced in the “Resources” section, and specifically its FAQ
section.

Fetchmail
Fetchmail is a popular tool authored by Eric S. Raymond (of open-source fame8) to provide
remote e-mail retrieval and forwarding functionality using a variety of protocols, including
POP3 (and related protocols such as APOP, RPOP, and KPOP) and most flavors of IMAP, ETRN,
and ODMR.

■Note I briefly discuss ETRN in Chapter 7. ODMR is On-Demand Mail Relay, also known as ATRN, which
is best defined as an authenticated version of the SMTP TURN command. It allows SMTP functionality using
dynamic IP addresses instead of static IP addresses. See RFC 26459 for more details.

As previously mentioned, Fetchmail is a remote mail retrieval and forwarding tool that
uses a variety of protocols to retrieve e-mail via TCP/IP links. Fetchmail retrieves mail from
remote MTAs and forwards it via SMTP or local delivery such as LMTP to your mailbox or
message store. This allows you to gather e-mail from a variety of remote mailboxes and servers
and centralize that e-mail at your local server. This also allows the spam filtering, antivirus, or
aliasing functionality capabilities of your MTA to be used on these remote messages as they
come in. Figure 9-3 shows how this process works.

So why is Fetchmail potentially insecure? Some of the insecurities are related to its use of
particular protocols, such as IMAP and POP, to retrieve e-mail. For example, Fetchmail by
default runs POP and IMAP unencrypted and transmits your password to the remote system
in the clear. This exposes you to the potential risk, which also exists with regular unencrypted
IMAP or POP, that with relatively simple network-sniffing tools an attacker could sniff out the
username and password you are using to connect. Additionally, if you are using .fetchmailrc,
your password is often hard-coded into that file to allow Fetchmail to act as a daemon without
requiring you to input your password for each session. Finally, as with any other similar tool,
I see the possibility of Fetchmail being used as a conduit for Denial of Service (DoS) attacks.

I will cover installing Fetchmail and then cover some examples of common uses, such as
securely retrieving e-mail from a POP and IMAP server using SSL authentication with Fetch-
mail, encapsulating Fetchmail transactions using ssh, and demonstrating the most secure
ways to configure and use Fetchmail. I will also address how to secure your .fetchmailrc file
and limit the potential of Fetchmail being used for a DoS attack.

In doing this, I will focus on Fetchmail’s use as a mail retrieval tool for POP and IMAP
accounts and not cover its use with other protocols such as ETRN or look at using more spe-
cialized authenticated protocols such as APOP and KPOP. I am taking this approach because
I am attempting to address the practical issues facing most users rather than the more special-
ized approaches.10 I will not cover any complex Fetchmail configurations or any of the meth-
ods of integrating Fetchmail with your MTA. (I will assume you are injecting the mail into an
SMTP server located on your local host.)

4444c09_final.qxd 1/5/05 12:59 AM Page 430

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 431

Figure 9-3. How Fetchmail works

Installing Fetchmail
You can find Fetchmail at its home page at http://www.catb.org/~esr/fetchmail/. Fetchmail is
available from this page in the form of a source package, an RPM, and a source RPM. Addition-
ally, many distributions already come with Fetchmail installed or have a Fetchmail RPM, deb, or
package of some kind available. You can check for the presence of Fetchmail on a Red Hat and
Mandrake system (or any system that uses the RPM system) using the following command:

puppy# rpm -q fetchmail

or on a Debian system by entering the following:

kitten# dpkg --list fetchmail*

If you already have a copy of Fetchmail on your system, then Listing 9-25 shows you how
to check what version it is.

Listing 9-25. Checking the Fetchmail Version

puppy# fetchmail --version

At the time of this writing, the current version of Fetchmail was version 6.2.5. Fetchmail is
a fairly mature product, and not a great deal of functionality has been added in recent releases;
these releases have mostly been focused on addressing maintenance issues.

4444c09_final.qxd 1/5/05 12:59 AM Page 431

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL432

11. http://www.securityfocus.com/bid/8843

You can either run the Fetchmail that comes with your distribution or download and install
the Fetchmail available from the Fetchmail home page. However, a recent version, Fetchmail
6.2.4, has at least one vulnerability.11 (However, there have been no known exploits of that vul-
nerability.) So I recommend you install Fetchmail from the source package and compile it your-
self to ensure you have the most secure and up-to-date version of the application. I will show
you how to do that next. If you want to use the Fetchmail that comes with your distribution, you
can skip to the next section.

If you download Fetchmail from its site, then I recommend you check its GNU Privacy
Guard (GPG) signature and checksums to ensure you have an unadulterated copy before you
install it (see Listing 9-26).

■Note I talk about GPG and MD5 checksums in more detail in Chapter 1.

Listing 9-26. Checking the GPG Signature of Fetchmail

puppy# gpg --verify fetchmail-version.tar.gz.asc fetchmail-version.tar.gz

You can find the Fetchmail checksums at http://www.catb.org/~esr/fetchmail/checksums.
You can use the command in Listing 9-27 to verify those checksums.

Listing 9-27. Checking the Fetchmail Checksums

puppy# gpg --verify checksums

If you have downloaded Fetchmail in the form of an RPM, it is easy to install. Use the
command in Listing 9-28 to install the RPM.

Listing 9-28. Installing Fetchmail via RPM

puppy# rpm -Uvh fetchmail-version.rpm

If you want to compile Fetchmail from source, then download the source package and
unpack it. Change into the fetchmail-version directory, and configure Fetchmail. You can
simply configure Fetchmail using the command in Listing 9-29. Replace the /path/to/ssl
with the location of your OpenSSL installation to enable SSL support for Fetchmail. This
configuration should cover most purposes for which you want to use Fetchmail.

Listing 9-29. Configuring Fetchmail

puppy# ./configure --with-ssl=/path/to/ssl

4444c09_final.qxd 1/5/05 12:59 AM Page 432

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 433

■Tip If you are compiling OpenSSL support into Fetchmail, you should note that an issue exists with finding
the Kerberos includes on Red Hat systems. Red Hat has relocated the Kerberos includes to /usr/kerberos/
include. Thus, on these systems, you need to add the following environment variable to the system before
you configure Fetchmail: CFLAGS=-I/usr/kerberos/include; export CFLAG.

As shown in Table 9-8. Fetchmail also has some additional configuration options that you
can use.

Table 9-8. Fetchmail Configuration Options

Option Description

--prefix=prefix Installs Fetchmail using the directory prefix of prefix

--enable-fallback=procmail | Enables Procmail, Sendmail, Maildrop, or no fallback transport
maildrop | sendmail | no

--enable-RPA Compiles support for the RPA protocol

--enable-NTLM Compiles support for NTLM authentication support

--enable-SDPS Compiles support for the SDPS protocol

--enable-opie Supports OTP with the OPIE library

--enable-inet6 Supports IPv6 (Requires the inet6-apps library)

--with-kerberos5=dir Compiles Fetchmail with Kerberos 5 support

--with-kerberos=dir Compiles Fetchmail with Kerberos 4 support

--with-socks=dir Adds SOCKS firewall support

--with-socks5=dir Adds SOCKS5 firewall support

--with-gssapi=dir Adds GSSAPI support to Fetchmail

The first option allows you to change the location prefix of Fetchmail. The second option
allows you specify a fallback transport in the event that SMTP is not available. Fetchmail first
tries to submit e-mail via SMTP to port 25; then, if a fallback transport is specified, it tries to
submit the e-mail using that. You can specify sendmail, procmail, or maildrop as the fallback
transport.

The next few options allow you to enable support for other protocols and tools. These
include the Remote Passphrase Authentication (RPA) protocol (used by CompuServe), NTML
(the Microsoft standard authentication protocol), and Demon Internet’s SDPS protocol. The
-enable-opie option allows you to enable the one-time passwords using the One Time Pass-
words in Everything library.12 You can enable IPv6 support (for which you need the inet6-apps
library) by using the --enable-inet6 option.

You can enable Kerberos or Kerberos 5 by using the -enable-kerberos and
-enable-kerberos5 options. Support for SOCKS and SOCKS5 is also available by using the

12. http://inner.net/opie

4444c09_final.qxd 1/5/05 12:59 AM Page 433

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL434

--enable-socks and --enable-socks5 options, respectively. Finally, you can enable the
Generic Security Services Application Programming Interface (GSSAPI) by using the option
--enable-gssapi.

Once you have configured Fetchmail to your requirements, you need to make and install
it by entering the following:

puppy# make && make install

By default, the Fetchmail binary is installed into /usr/local/bin (unless you have over-
ridden that location using the --prefix configure option).

Configuring and Running Fetchmail
Fetchmail can be run both from the command line and as a daemon. On the command line, you
can specify a particular account or system you would like to retrieve mail from via POP or IMAP
whilst running in daemon mode. Fetchmail can process multiple accounts for multiple users.
Fetchmail draws its configuration from either command-line options or the .fetchmailrc file.
Any command-line options override duplicate options specified in the .fetchmailrc file. You
can have many .fetchmailrc files (one for each user, for example), each of which can contain
multiple potential accounts using different protocols from which to retrieve e-mail. I will prima-
rily cover the basic command-line options and show you some examples of .fetchmailrc con-
figurations that are relevant to using Fetchmail in a secure manner. I will not go into a lot of
detail about .fetchmailrc files.

■Tip Also, a GUI Fetchmail configuration client called fetchmailconf runs under X-Windows. It
requires TCL/TK to operate. It comes with the current releases of Fetchmail, or you can find a Debian ver-
sion at http://packages.debian.org/stable/mail/fetchmailconf and RPM packages for a variety
of distributions at http://rpmfind.net.

I will start by looking at running Fetchmail from the command line. This is often a use-
ful way to test your connection before you commit your configuration to a .fetchmailrc file.
Listing 9-30 shows the start of a typical Fetchmail session. I will cover the makeup of that
command and explain how to use the options. Then I will cover exactly what the command
has done and any potential risks that exist.

Listing 9-30. Sample Fetchmail Command

puppy# fetchmail -v -p IMAP -u bob kitten.yourdomain.com

Enter password for bob@yourdomain.com:

fetchmail: 6.2.1 querying yourdomain.com (protocol IMAP) at ➥

Thu 27 May 2004 19:45:37 EST: poll started

I have executed the fetchmail binary with a few basic options. The first option, -v, enables
the verbose mode, which increases the logging level. All logging is done to stdout as Fetchmail
runs. The next option, -p, selects the protocol with which you want to connect to the remote
system. Table 9-9 shows the list of available protocols.

4444c09_final.qxd 1/5/05 12:59 AM Page 434

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 435

Table 9-9. Available Fetchmail Protocols

Protocol Description

AUTO Tests the remote system for IMAP, POP2, and POP3 and then chooses the first
acceptable protocol it finds

POP2 Post Office Protocol 2

POP3 Post Office Protocol 3

APOP POP3 with MD5-challenge authentication

RPOP POP3 with RPOP authentication

KPOP POP3 with Kerberos V4 authentication

SDPS POP3 with Demon Internet’s SDPS extensions

IMAP IMAP2bis, IMAP4, or IMAP4rev1 (detects and selects the correct protocol on the
remote system)

ETRN ETRN

ODMR On-Demand Mail Relay

In Listing 9-30 I used IMAP to connect to my remote system. The next option, -u, tells you
I am trying to retrieve the mail of the user, bob. Finally, I list the name of the remote server I am
connecting to, which in this case is kitten.yourdomain.com.

As you can see from Listing 9-30, when you run Fetchmail from the command line, it
prompts you for your password. After this it connects to the remote server (in this case via
IMAP connecting to port 143 on the remote system) and will attempt to retrieve your mail
and then deliver it to port 25 on your local host. This is also probably the safest way to run
Fetchmail, as it prompts you for your password when you run it and therefore does not
require that you to hard-code a password in a .fetchmailrc file. It is, however, quite incon-
venient (if not impossible) to repeatedly have to enter your password, especially if you want
to use Fetchmail as a daemon; I will show how to mitigate that risk in the “Automating
Fetchmail Securely” section. Additionally, of course, you need to ensure that whatever pro-
tocol you are using to connect to the remote system is encrypted; otherwise, your password
is traveling across the network in clear text. I will show how to do that now.

Using Fetchmail with OpenSSL
As you can see from Listing 9-29, I have compiled my Fetchmail with OpenSSL. This allows
you to use IMAPS and POP3S instead of IMAP and POP3 if the remote server you are connect-
ing to supports these protocols. As you can see from Listing 9-31, it is easy to enable OpenSSL
with Fetchmail.

Listing 9-31. Fetchmail with SSL-enabled

puppy# fetchmail -v -p IMAP -u bob kitten.yourdomain.com --ssl

Enter password for bob@kitten.yourdomain.com:

fetchmail: 6.2.5 querying kitten.yourdomain.com (protocol IMAP) at ➥

Thu 27 May 2004 23:33:50 EST: poll started

fetchmail: Issuer Organization: kitten.yourdomain.com

4444c09_final.qxd 1/5/05 12:59 AM Page 435

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL436

fetchmail: Issuer CommonName: kitten.yourdomain.com

fetchmail: Server CommonName: kitten.yourdomain.com

fetchmail: kitten.yourdomain.com key fingerprint: ➥

A3:AE:91:83:91:2C:65:1F:62:6C:1F:F5:B4:FE:3E:70

fetchmail: Warning: server certificate verification: self signed certificate

fetchmail: Issuer Organization: kitten.yourdomain.com

fetchmail: Issuer CommonName: kitten.yourdomain.com

fetchmail: Server CommonName: kitten.yourdomain.com

fetchmail: Warning: server certificate verification: self signed certificate

You can see from Listing 9-31 that adding the option --ssl to the command line causes
Fetchmail to now connect to kitten.yourdomain.com using SSL. It is thus now not connect-
ing on the IMAP port 143 but rather on the IMAPS port 993. By default if you do not specify
a particular port (which you can do with the -P option), Fetchmail tries the ports for the
SSL-enabled versions of various protocols (for example, 993 for IMAPS and 995 for POP3S).
Table 9-10 shows some additional SSL options you can specify to Fetchmail.

Table 9-10. Fetchmail OpenSSL-Related Options

Option Description

--sslcert name Specifies the filename of the client-side public SSL certificate

--sslkey name Specifies the filename of the client-side private SSL key

--sslcertpath directory Sets the directory Fetchmail uses to look up local certificates

--sslproto name Forces a particular SSL protocol, such as SSL2, SSL3, or TLS1

--sslcertck Causes Fetchmail to strictly check the server certificate against a set
of local trusted certificates

--sslfingerprint Specifies the fingerprint of the server key (an MD5 hash of the key)

The first three options in Table 9-10 allow you to specify a particular client certificate,
a key, and the directory for use when connecting to a remote server. Often you do not need
to do this. Many IMAPS and POP3S servers do not require a certificate and enable encryption
without it. But if your remote server does require client-based certificates and keys, then you
can use these three options to specify them.

The next option, --sslproto, allows you to specify a particular flavor of the SSL protocol
with the choice of SSL2, SSL3, and TLS1. The --sslcertck option tells Fetchmail to strictly
check the server certificate against the set of local certificates to ensure it is trusted. If the
server certificate is not signed by one of the trusted local certificates, then Fetchmail will
not connect. This is designed to prevent “man-in-the-middle” attacks and ensure that the
remote location you are speaking to is trusted. The location of the trusted local SSL certifi-
cates is specified by the --sslcertpath option. The last option, --sslfingerprint, performs
a similar function. You can specify the MD5 hash, or fingerprint, of the remote server certifi-
cate to Fetchmail, and it will verify that the fingerprint provided matches the remote server
certificate fingerprint. If they do not match, Fetchmail will terminate the connection.

4444c09_final.qxd 1/5/05 12:59 AM Page 436

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 437

Tunneling Fetchmail with SSH
So, in the previous section, I explained what you can do to secure your Fetchmail using SSL-
enabled protocols. What do you do if the server to which you are connecting to is not willing
or able to run SSL-enabled protocols? Well, you can also tunnel your Fetchmail connection
using OpenSSH. This tunneling is achieved by the OpenSSH function known as port forward-
ing. A few prerequisites exist for this. First, you need the OpenSSH package installed on both
the local and remote systems. Second, you need access to the ssh command on the local sys-
tem, and the sshd daemon needs to be running on the remote system.

■Note I talk more about OpenSSH and port forwarding in Chapter 3.

You need to start by using ssh to forward a port, such as an IMAP port, on the remote sys-
tem to a port on your local system. I will choose to forward it to an ephemeral port to allow
any user to do this.

■Tip I do this because generally only the root user can bind ports lower than 1024.

The command in Listing 9-32 forwards the IMAP port on the remote system,
kitten.yourdomain.com, to the local port 10143 and then forks into the background.

Listing 9-32. Forwarding a Remote IMAP Port Using SSH

puppy# ssh -l bob -f kitten.yourdomain.com -L 10143:kitten.yourdomain.com:143 \

sleep 120

bob@kitten.yourdomain.com's password:

Let’s break this command down a little. First, you use ssh’s -l option to specify the user (for
example, bob) to log in as on the remote system. Second, the -f option tells ssh to fork into the
background. Then comes the server you are connecting to, kitten.yourdomain.com, and finally
the port forwarding itself prefixed by the -L option, which tells ssh to forward to local port 10143
everything from remote port 143 on server kitten.yourdomain.com. Last, you have the sleep
120 command, which, because I have specified the -f option, is executed when ssh forks into the
background. As you can see from the next line in Listing 9-32, the remote sshd daemon prompts
you for bob’s password on the remote system. This is the password for bob’s shell account on that
system.

■Caution Remember that you are still talking to the local port in clear text—before the traffic leaves your
system. A network sniffer on your localhost would see your password. This is, of course, a minimal risk
and would imply your system is already penetrated, but it does need to be communicated. You have no real
way of mitigating this risk, so I recommend that if your systems require the level of the security that makes
this an unacceptable risk, then do not use Fetchmail.

4444c09_final.qxd 1/5/05 12:59 AM Page 437

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL438

Once you have entered your password, your connection should exist for the duration of
the sleep command, which is 120 seconds in this case. Remember that if Fetchmail has not
completed retrieving any e-mail when the connection ends, then it will fail with an error mes-
sage. So, ensure the sleep duration is sufficient time for your Fetchmail session to complete.

■Tip You could also add the -C option to the ssh command in Listing 9-32. The -C option enables SSH
compression, which could increase throughput on slower connections.

As shown in Listing 9-33, you can also try to Fetchmail using the port of your local system.

Listing 9-33. Using Fetchmail over an SSH Tunnel

puppy# fetchmail -v -p IMAP -P 10143 -u bob localhost

I have added the option -P, which allows you to specify the port number to which you want
to connect and changes the target server to localhost. Using the -u option, you could also specify
a different username. For example, you could set it up so that all your users could connect to the
remote system using a shell account called bob (which was designed to perform this port forward-
ing and nothing else) and then log into the resulting SSH-secured and forwarded port using their
own POP or IMAP user. Now when using the command in Listing 9-33, you would be prompted
for your password—remember this is your POP or IMAP password, not the shell account pass-
word you provided earlier. After entering your password, Fetchmail should now retrieve and
deliver any e-mail that is waiting for you on the remote system.

So, I have shown two ways to connect to a remote POP- or IMAP-style mail server using
an encrypted connection, one with SSL and the other with SSH. But what do you do if you are
not able to use SSL-enabled protocols or set up SSH tunneling? Well, the safest thing to do is
not use Fetchmail. The risk will always exist with IMAP or POP running without SSL that an
attacker will be able to capture your username and password from the network and use it
maliciously. Without a way to mitigate that risk, I recommend you do not use Fetchmail!

Automating Fetchmail Securely
You will notice one thing about all the previous commands I have covered: they happen inter-
actively. This works fine if you are using the command line. But many people want to retrieve
their e-mail in the background (and indeed most users run Fetchmail in its daemon mode to
achieve this). This means you use Fetchmail’s other configuration style, the .fetchmailrc file.
Fetchmail can read this file when launched from the command line or whilst running as a dae-
mon. I will first look at getting Fetchmail running as a daemon. Listing 9-34 shows you how this
works, and I will then explain how to use the various options of that command.

Listing 9-34. Starting Fetchmail As a Daemon

puppy# fetchmail -d 300

As you can see, starting Fetchmail as a daemon is simple; you need to use only the -d
option and a polling interval (in seconds). Fetchmail will run as a daemon in the background
and wake up every polling interval to check the remote system for e-mail.

4444c09_final.qxd 1/5/05 12:59 AM Page 438

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 439

Fetchmail uses the configuration it finds in the home directory of the user who has
started Fetchmail, normally stored in the file .fetchmailrc. You can also override options in
that file by adding command-line switches to Fetchmail. To give you an idea of what a typical
.fetchmail file contains, I will duplicate the command-line configuration for Listing 9-30 and
9-31 in the form of .fetchmailrc files. The first example showed a simple, non-SSL-enabled
retrieval of e-mail from an IMAP. Listing 9-35 shows the .fetchmailrc equivalent to the non-
SSL-enabled Fetchmail command in Listing 9-30.

Listing 9-35. .fetchmailrc File

poll kitten.yourdomain.com with proto IMAP

user "bob"

pass "yourpassword"

This is mostly self-explanatory. As with Listing 9-30, you are polling kitten.yourdomain.com
for the user bob’s mail, which you want to retrieve via IMAP. In the second example, Listing 9-31
showed this retrieval using SSL-enabled IMAP. Listing 9-36 shows the .fetchmailrc equivalent
of the SSL-enabled Fetchmail in Listing 9-31.

Listing 9-36. .fetchmailrc File #2

poll kitten.yourdomain.com with proto IMAP

user "bob"

pass "yourpassword"

ssl

By adding the ssl line to the .fetchmailrc file, you have enabled SSL functionality.
As you can see from both Listings 9-35 and 9-36, your password is contained in the

.fetchmailrc file. This poses a risk if someone gets access to your .fetchmailrc file. It is a risk
of your mail being intercepted and retrieved by someone else. Additionally, the password you
are using to connect to the remote system is also often the password to a shell account on that
remote system. That could allow an attacker to use that username and password to penetrate
that remote system. So you need to protect your .fetchmailrc file as much as possible. The
.fetchmailrc file needs to be owned by the user who is going to launch Fetchmail and have
the tightest possible permissions. I recommend you chmod the .fetchmailrc file to 0600. Fetch-
mail will not start if the .fetchmailrc file is not owned by the user who is starting Fetchmail or
if that file has permissions more than 0710. This will restrict who can access your .fetchmailrc
file, but it stills means your password is present in that file. If this seems to be an undue risk to
you, then I recommend you refrain from using Fetchmail in this way.

Finally, in the previous section, I showed you how to tunnel Fetchmail through an SSH
connection. You will remember that starting the ssh port forwarding requires that you enter
your shell password on the remote system to make the connection. Obviously, when running
in daemon mode, you will not be able to provide this password to Fetchmail. So you need to
find an alternative method of authenticating the SSH connection. You have a couple of ways
of doing this. In the first example, you need to create an SSH key pair using the ssh-keygen
command, as you can see in Listing 9-37, and add the public key to the authorized_keys file
on the remote system. I will create the key pair without a passphrase to stop Fetchmail
prompting for one.

4444c09_final.qxd 1/5/05 12:59 AM Page 439

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL440

Listing 9-37. Generating an SSH Key Pair for Fetchmail

puppy# ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/bob/.ssh/id_rsa): ➥

/home/bob/.ssh/fetchmail_rsa

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/bob/.ssh/fetchmail_rsa.

Your public key has been saved in /home/bob/.ssh/fetchmail_rsa.pub.

The key fingerprint is:

b5:33:94:19:32:10:41:38:25:15:c3:7e:d6:af:fa:d5 bob@kitten.yourdomain.com

■Note I go into more detail on OpenSSH in Chapter 3.

Still, some risks are associated with this. An SSH key pair without a passphrase means
anyone who gets hold of your private key has access to any system for which that key is
authorized. I recommend using that key pair simply for Fetchmail authorization.

■Tip You could also use the functionality of the OpenSSH ssh-agent key-caching tool to use keys with
passphrases, but the possibility exists that an attacker could extract the private keys from the agent.

Protecting Fetchmail from Denial of Service Attacks
Lastly, I will cover protecting Fetchmail from DoS attacks. The risk exists for both DoS attacks
aimed at disrupting your Fetchmail application and at threatening your system through Fetch-
mail or both.13 The most obvious way to protect your Fetchmail system is to ensure you are
using the latest version of Fetchmail and that you include the Fetchmail application in the list
of applications in which you regularly review your Bugtraq or vendor security announcements
for potential vulnerabilities. So, as I have often said in this book, update frequently, research
carefully, and check for new developments, announcements, exploits, and vulnerabilities.

You can also further reduce the risk to your Fetchmail application by setting a few
resource-control settings in your Fetchmail daemon. Table 9-11 shows the command-line
switches for resource control in Fetchmail, and I will take you through each of them next.

13. Such as this exploit—http://www.securityfocus.com/bid/8843

4444c09_final.qxd 1/5/05 12:59 AM Page 440

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL 441

Table 9-11. Resource Limit Control Options

Options Description Default

-l bytes Limits the size of messages Fetchmail will retrieve in bytes 0

-w interval Controls the interval between warnings being sent when detecting 0
over-sized messages

-B number Limits the number of messages accepted from a given server in a 0
single poll

Most of the items in Table 9-11 are self-explanatory. The first option, -l, limits the size of
messages that Fetchmail will receive. You can set this in bytes, and it defaults to 0 for no limit.
The next option, -w, allows you to specify an interval in seconds (which defaults to 0 or dis-
abled) between warnings being sent for oversized messages to the user who called Fetchmail
(or if overridden by the postmaster option to that user). The last option, -B, limits the number
of messages Fetchmail will download in a single session.

■Tip Your MTA should also be set up to process incoming messages for viruses, spam, or malicious con-
tent or attachments.

Resources
The following are resources you can use.

Mailing Lists
• Security Focus Bugtraq mailing list archives: http://www.securityfocus.com/

archive/1

• Cyrus IMAP: http://asg.web.cmu.edu/cyrus/mailing-list.html

• Fetchmail: http://lists.ccil.org/mailman/listinfo/fetchmail-friends

Sites
• IMAP: http://www.imap.org/

• IMAP servers:

• Cyrus IMAP: http://asg.web.cmu.edu/cyrus/imapd/

• Courier-IMAP: http://www.courier-mta.org/imap/

• Cyrus wiki: http://acs-wiki.andrew.cmu.edu/twiki/bin/view/Cyrus/WebHome

4444c09_final.qxd 1/5/05 12:59 AM Page 441

• POP servers:

• GNU pop3d: http://freshmeat.net/projects/gnupop3d

• POPular: http://www.remote.org/jochen/mail/popular/

• Qpopper: http://www.eudora.com/products/unsupported/qpopper/index.html

• TeaPOP: http://www.toontown.org/teapop/

• vm-pop3d: http://www.reedmedia.net/software/virtualmail-pop3d/

• Fetchmail: http://www.catb.org/~esr/fetchmail/

• One Time Passwords in Everything: http://inner.net/opie

CHAPTER 9 ■ HARDENING REMOTE ACCESS TO E-MAIL442

4444c09_final.qxd 1/5/05 12:59 AM Page 442

443

C H A P T E R 1 0

■ ■ ■

Securing an FTP Server

File Transfer Protocol (FTP) is one of the original core protocols of the Internet and was first
documented in 1971. It was designed to provide the functionality to exchanges files over the
Internet and is specified in RFC 959.1 It is still currently used for a number of purposes,
including running user-authenticated and anonymously authenticated FTP servers to down-
load files and applications. For example, software vendors utilize it to provide updates or
patches to clients. It is also used to transfer files between disparate systems; for example,
many non-Unix systems also support FTP. One of the most common uses of FTP is by ISPs
to provide customers with the ability to upload files to their Web sites.

At first look FTP would seem to fulfill a useful and practical function. Unfortunately, FTP
is also inherently insecure. The only security available to most FTP sessions is a username and
password combination. By default, FTP transactions are unencrypted, and all traffic is sent in
clear text across your network. One example is the transmission of usernames and passwords.
This exposes you to a considerable level of risk that is difficult to mitigate with available tools.

Because of the inner workings of FTP, it is not possible to use tools such as Stunnel to
secure FTP traffic; I will explain why this is so in the next section. Additionally, many of the
available open-source and commercial FTP servers have proven to be highly vulnerable to
attack. Many FTP servers are easily compromised and thus can provide a point of access for
an attacker to enter your system. Or they have vulnerabilities that could allow Denial of Service
(DoS) attacks on your systems. In addition to these potential insecurities, FTP is also vulner-
able to so-called man-in-the-middle attacks where your data is intercepted and then either
stolen or altered and sent on. For example, this is one of the primary methods hackers use to
penetrate and hack Web servers. New material is uploaded to a Web server via FTP. The hacker
finds the IP address of the Web server and sets up a sniffer to watch FTP’s TCP port 21. The
next time you update the site, the attacker grabs your username and password, which are used
to upload material of the hacker’s choice to the system or to steal any valuable information, such
as credit card details, from your site.

Given the weaknesses of FTP, I recommend you not run it at all as a production server on
any systems, unless you absolutely require the functionality. Some commercial secure FTP
servers are available. But these usually require a client that is compatible with the secure server.
If you have a proprietary commercial FTP server running with encryption or enhanced authen-
tication, then generally clients other than the proprietary client designed for that server will not
be able to connect or will be able to connect to the server using only standard FTP without any
additional security.

1. http://www.ietf.org/rfc/rfc0959.txt?number=959

4444c10_final.qxd 1/5/05 1:02 AM Page 443

CHAPTER 10 ■ SECURING AN FTP SERVER444

You do have some alternatives to FTP. Indeed, for the process of transferring files between
systems, other mechanisms are considerably more secure. These include sftp or scp from the
OpenSSH toolkit (as discussed in Chapter 3). If the remote systems are configured correctly,
then you can use SSH to upload files to remote systems such as Web servers without requiring
an FTP port to be open on them. I recommend you look at these options rather than use FTP.

If you must use FTP, then in this chapter I will try to provide a secure as possible imple-
mentation of an FTP server. I will show you how FTP works and how best to firewall it. Addi-
tionally, I will take you through installing a secure anonymous FTP server, show you a local
user–authenticated FTP server, and cover support for FTP over SSL/TLS. As part of this, I will
also demonstrate how to chroot your FTP server and mitigate the risk of DoS attacks.

How Does FTP Work?
FTP has two key components: a client and a server. This chapter will focus on the server
component of FTP. FTP is a stateful protocol, meaning that connections between clients and
servers are created and kept open during an FTP session. Commands that are issued to the
FTP server (for example, to upload a file or list files in a directory) are executed consecutively.
If a command arrives while another command is being executed, then the new command is
queued and will execute when the current command has been completed.

■Note FTP is a TCP-only protocol. FTP does not have any UDP elements.

When making an FTP connection, two types of connections are initiated. They are a con-
trol connection, also called a command, and a data connection. When you connect an FTP
client to an FTP server, a single control connection is established by default using the TCP
port 21. This connection is used for the authentication process, for sending commands, and
for receiving response messages from the remote server. It does not do the actual sending and
receiving of information or files. The data connection handles sending and receiving files.
A data connection is established only when a file needs to be transferred and is closed at the
end of the transfer.

Two types of data connection exist: active mode and passive mode. Active connections
use the PORT command and are initiated by the remote server, and the client listens for the
connection. Passive connections use the PASV command; the client initiates the connection
to the remote server, and the server listens for the data connections. When the client starts
a transfer, it tells the server what type of connection it wants to make. In modern FTP clients
and servers, the most common connection type is passive connections.

In active mode, the client connects from a random source port in the ephemeral port
range (see Chapter 2) to the FTP control port 21. All commands and response codes are sent
on this control connection. When you actually want to transfer a file, the remote FTP server
will initiate a connection from the FTP data port 20 on the server system back to a destination
port in the ephemeral port range on the client. This destination port is negotiated by the port
21 control connection. Often, the destination port used is one port number higher than the
source port on the client. Figure 10-1 shows an active mode connection.

4444c10_final.qxd 1/5/05 1:02 AM Page 444

CHAPTER 10 ■ SECURING AN FTP SERVER 445

Figure 10-1. Active mode FTP connection

Active mode connections often have issues with firewalls. On the server side with an
active mode connection, you need to have the TCP ports 20 and 21 open on your firewall. On
the client side, you need the range of ephemeral ports open. Often opening these ports is hard
to do if your FTP client is behind a firewall. In a secure firewall configuration, these ports should
generally be closed. Additionally, because the remote server initiates the connection, many
firewalls will drop the connection because they are designed to accept only established con-
nections on specific limited ports. Finally, if you are behind a firewall that uses many-to-one
Network Address Translation (NAT), it is often impossible for the firewall to determine which
internal IP address initiated the FTP connection. This is caused by the firewall’s inability to
correlate the control and data connections.

As a result of the issues active mode connections have with firewalls, passive mode con-
nections were introduced. In passive mode, the client initiates both sides of the connection.
First, the client initiates the control connection from a random ephemeral port on the client
to the destination port of 21 on the remote server. When it needs to make a data connection,
the client will issue the PASV command. The server will respond by opening a random
ephemeral port on the server and pass this port number back to the client via the control con-
nection. The client will then open a random ephemeral source port on the client and initiate
a connection between that port and the destination remote port provided by the FTP server.
Figure 10-2 shows a passive mode FTP connection.

Figure 10-2. Passive mode FTP connection

4444c10_final.qxd 1/5/05 1:02 AM Page 445

CHAPTER 10 ■ SECURING AN FTP SERVER446

Passive mode connections mitigate the risk of the remote server initiating the connection
to the client and being blocked by a firewall. This is because the client initiates both the con-
trol and data connections. Thus, firewalls see the outgoing FTP data connection as part of an
established connection. You still need to have ephemeral ports open on the server and client
side of the connection. But this too can be partially mitigated because many FTP servers allow
you to specify the range of ephemeral ports rather than using the entire ephemeral port range.
But you still need to open a suitable range to allow your FTP server to function.

Overall, the random ephemeral port selection, for both active and passive connec-
tions, is one of the reasons why securing FTP is difficult. To achieve a secure connection,
the securing application needs to know which ports to secure. As this port choice is ran-
dom, the securing application has no means of determining what port needs to be secured.

Firewalling Your FTP Server
Another method exists for further locking down your FTP connections. To do this, you can use
iptables with a module called ip_conntrack_ftp. The ip_conntrack_ftp module uses connec-
tion state tracking to correlate and track FTP transactions. I first introduced connection state
tracking in Chapter 2. Let’s look at creating some iptables rules for your FTP server.

I discussed earlier that in order for the FTP server to function, you will need a combina-
tion of the port 20, the port 21, and the range of ephemeral ports open on both the client and
server. This combination is partially dependant on the connection mode you are running on
your FTP server. I will assume you are creating firewall rules for an FTP server running on inter-
face eth0 and bound to IP address 192.168.0.1. I will also assume you want FTP connections
only into the system and you do not want to allow outgoing FTP connections.

The first rules you will create are for the FTP server’s control connection, which uses TCP
port 21. They are identical for active and passive mode FTP, as the control connection is
required for both modes.

puppy# iptables -A INPUT -i eth0 -p tcp --dport 21 -d 192.168.0.1 -m state \

--state NEW,ESTABLISHED,RELATED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp --sport 21 -s 192.168.0.1 -m state \

--state ESTABLISHED,RELATED -j ACCEPT

In the two rules you have just specified, incoming traffic on interface eth0 to IP address
192.168.0.1 and TCP port 21 in the connection state NEW, ESTABLISHED, or RELATED is allowed
to enter the host. Outgoing traffic on the same interface, IP address, and port in the connec-
tion states ESTABLISHED and RELATED is allowed to exit the host.

The control connection is not the whole story, though. The FTP server also needs the data
connection opened in your firewall for the server to correctly function. As I have discussed,
this data connection can run in two modes: active and passive. For example, the active mode
connection requires a substantial port range to be open. To function correctly, the active
mode requires port 20 to be open on the FTP server. Additionally, on the server you need to
accept incoming connections from the ephemeral port range on the client host. The passive
mode connection requires ports in the ephemeral port range to be open on both the client
and the server. Both of these models pose security risks.

To help mitigate this security risk, I will show how to utilize the ip_conntrack_ftp module.
This module is an iptables kernel module that extends the functionality of the connection

4444c10_final.qxd 1/5/05 1:02 AM Page 446

CHAPTER 10 ■ SECURING AN FTP SERVER 447

state tracking discussed in Chapter 2. This module is provided with most distributions and
with all recent releases of iptables.

Load the required module like this:

puppy# insmod ip_conntrack_ftp

The module may be already loaded on your system, and it will return an error message if
this is the case. You need to load the module each time your system restarts. It is recom-
mended you load this module when you start iptables.

The ip_conntrack_ftp module tracks FTP connections and watches for the use of the PORT
or PASV command on port 21, which indicates that a data connection is being initiated. The
module then makes note of and tracks the ports being used by the data connection. This allows
iptables to correlate and track the control and data connections for a particular FTP trans-
action. The module allows iptables to reference the data connection as a RELATED state. Thus,
you can use the RELATED connection state rather than the NEW connection state in your INPUT
chain. This means ports on your host need to be open only for RELATED connections, not NEW
connections from ephemeral ports. This reduces the risk posed by running an FTP server and
allows you to more tightly firewall these connections.

You still need to use a different approach in applying rules for active and passive mode con-
nections to address their different port requirements, but now you can specify a much tighter set
of iptables rules. Listing 10-1 specifies some rules for active mode data connections.

Listing 10-1. Rules for Active Mode Connections

puppy# iptables -A INPUT -i eth0 -p tcp --sport 1024: --dport 20 -d 192.168.0.1 \

-m state --state ESTABLISHED,RELATED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp --dport 1024: --sport 20 -s 192.168.0.1 \

-m state --state ESTABLISHED -j ACCEPT

The first rule in Listing 10-1 allows incoming traffic from source ports higher than 1024 on
interface eth0 to IP address 192.168.0.1 and port 20 in the ESTABLISHED and RELATED states.
This prevents new connections from being made to this port. The only incoming connections
should be the data connection portions of existing FTP connections. This increases the level
of security on your host firewall. The second rule allows outgoing traffic in the ESTABLISHED
and RELATED states outbound from the host to destination ports higher than 1024.

Passive mode FTP is similar. Using the ip_conntrack_ftp module, you can track the state
of the connections and the port numbers used and thus can use the RELATED state for your
iptables rules. Listing 10-2 shows an INPUT and OUTPUT rule for passive mode connections.

Listing 10-2. Rules for Passive Mode Connections

puppy# iptables -A INPUT -i eth0 -p tcp --sport 1024: \

--dport 1024: -d 192.168.0.1 -m state --state ESTABLISHED,RELATED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp --sport 1024: \

--dport 1024: -s 192.168.0.1 -m state --state ESTABLISHED -j ACCEPT

The first rule in Listing 10-2 allows incoming traffic from the ephemeral ports (which you
have defined as all ports greater than 1024 in your rules) to interface eth0 and IP address
192.168.0.1. The second rule provides the same functionality for outgoing traffic.

4444c10_final.qxd 1/5/05 1:02 AM Page 447

CHAPTER 10 ■ SECURING AN FTP SERVER448

2. http://www.securityfocus.com/bid

Neither Listing 10-1 nor Listing 10-2 is an ideal solution. These rules leave your firewall com-
paratively quite open compared to the models proposed in Chapter 2. These are the securest pos-
sible rules you can create on a host system for an FTP server. This again highlights that there are
risks involved in running an FTP server. Some of these risks simply cannot be mitigated.

■Tip When I cover vsftpd, I will refine the range of ephemeral ports that the FTP server can use. This can
further limit the range of ports you need to open on your host.

What FTP Server to Use?
Several FTP servers are available, including both commercial and open-source products. I will
cover vsftpd, which is an open-source FTP server. The vsftpd package has a reputation for
security and is a compact but also fully featured and well-performing application. At the time
of writing, vsftpd had only one vulnerability listed at the Security Focus’s Bugtraq2 site as
opposed to multiple issues for other FTP server packages such as ProFTPD and WU-FTPD. It
is regularly updated and maintained. It is also widely available on most Linux distributions.

The vsftpd daemon has some good security features, including the following:

• Can run as a nonprivileged user with privilege separation

• Supports SSL/TLS FTP transfers

• Can chroot users into their home directories and chroot anonymous FTP access to
a particular directory

• Can limit the FTP commands that a user can execute

• Reduces the risk of DoS attacks with bandwidth and connection limits

• Coded to reduce the risk of buffer overflow attacks

The vsftpd FTP server is both secure and high performing. It is used by a number of
organizations as a result of this, including Red Hat, Debian, OpenBSD.org, ftp.kernel.org,
and ftp.isc.org. If you do not use vsftpd, I recommend you migrate to it, especially if you are
using ProFTPD and WU-FTPD, both of which have been subject to several vulnerabilities that
are easy to exploit. If you are going to take the risk of using an FTP server, then I recommend
you choose the safest and most secure possible server.

Installing vsftpd
Many distributions come with vsftpd, and it should be available through your package man-
agement system. On a Debian system it is available as a package, and you can use apt-get to
install vsftpd.

4444c10_final.qxd 1/5/05 1:02 AM Page 448

CHAPTER 10 ■ SECURING AN FTP SERVER 449

kitten# apt-get install vsftpd

Or it is available as an RPM for Red Hat and Mandrake. To get the most recent version of
vsftpd, you can download the source package from ftp://vsftpd.beasts.org/users/cevans/.
You can download the source package to ensure you are using the most up-to-date version of
the package.

puppy# wget ftp://vsftpd.beasts.org/users/cevans/vsftpd-2.0.1.tar.gz

After downloading the package, unpack the source package and change into the resulting
directory. vsftpd does not use a configure script but rather has a file called builddefs.h that
contains the compilation variables. Listing 10-3 shows the contents of this file.

Listing 10-3. Initial builddefs.h

#ifndef VSF_BUILDDEFS_H

#define VSF_BUILDDEFS_H

#undef VSF_BUILD_TCPWRAPPERS

#define VSF_BUILD_PAM

#undef VSF_BUILD_SSL

#endif /* VSF_BUILDDEFS_H */

You can enable SSL, PAM, and TCP Wrappers in this file. To enable features in vsftpd, you
need to change each definition line for the feature you want to enable from the following:

#undef VSF_BUILD_SSL

to this:

#define VSF_BUILD_SSL

I will now show how to enable SSL and PAM in vsftpd. Listing 10-4 shows the final build-
defs.h file.

Listing 10-4. Final builddefs.h

#ifndef VSF_BUILDDEFS_H

#define VSF_BUILDDEFS_H

#undef VSF_BUILD_TCPWRAPPERS

#define VSF_BUILD_PAM

#define VSF_BUILD_SSL

#endif /* VSF_BUILDDEFS_H */

Now you can make the vsftpd binary.

puppy$ make

4444c10_final.qxd 1/5/05 1:02 AM Page 449

CHAPTER 10 ■ SECURING AN FTP SERVER450

This will create a binary called vsftpd in the package directory. You can then install vsftpd
using the following command:

puppy# make install

vsftpd requires that you create some supporting configuration items. First you need to
create a user for the vsftpd binary to run as. This allows the vsftpd binary to drop privileges
and run as a normal user, thus providing more security against any compromise of the vsftpd
daemon. By default vsftpd runs as the user nobody. This user exists on most systems but may
be being used by a number of different daemons. It is safest to create another user. Next, you
can use this new user to run the vsftpd daemon. I have chosen to create a user called ftp_nopriv.
You can create this user with the command in Listing 10-5.

Listing 10-5. Creating the ftp_nopriv User

puppy# useradd -d /dev/null -s /sbin/nologin ftp_nopriv

You also need to create the /usr/share/empty directory.

puppy$ mkdir /usr/share/empty

This directory may already exist on some systems. It is used by vsftpd as a chroot direc-
tory when the daemon does not require file system access. You should ensure that the ftp user
cannot write to this directory and that no files are stored in this directory.

If you want to use anonymous FTP, then you need to create a user called ftp. This user
needs to have a valid home directory that needs to be owned by the root user and has its per-
missions set to 0755. The ftp user’s home directory will be the root directory for anonymous
FTP access.

puppy# mkdir /var/ftp

puppy# useradd -s /sbin/nologin -d /var/ftp ftp

puppy# chown root:root /var/ftp

puppy# chmod 0755 /var/ftp

Last, you need to copy the sample configuration file from the vsftpd package into the
/etc directory.

puppy# cp vsftpd.conf /etc

In the next section I will cover how to modify this configuration file.

Configuring vsftpd for Anonymous FTP
The vsftpd.conf file controls the vsftpd daemon. The vsftpd binary has only one command-
line option, which allows you to specify the location of the vsftpd.conf configuration file.

puppy# vsftpd /etc/vsftpd.conf

If the configuration file is not specified on the command line, then vsftpd defaults to the
file /etc/vsftpd.conf.

4444c10_final.qxd 1/5/05 1:02 AM Page 450

CHAPTER 10 ■ SECURING AN FTP SERVER 451

■Tip Some Red Hat RPMs install the vsftpd.conf file into the directory /etc/vsftpd/, and vsftpd may
look for the configuration file here.

I will now show a sample FTP server configuration and use that to explore the options
available in vsftpd. Listing 10-6 shows a simple configuration file for a secure stand-alone
anonymous FTP server that allows only downloads.

Listing 10-6. Stand-Alone Anonymous Server

General Configuration

listen=YES

background=YES

listen_address=192.168.0.1

nopriv_user=ftp_nopriv

xferlog_enable=YES

Mode and Access rights

anonymous_enable=YES

local_enable=NO

write_enable=NO

cmds_allowed=PASV,RETR,QUIT

Security

ftpd_banner=Puppy.YourDomain.Net FTP Server

connect_from_port_20=YES

hide_ids=YES

pasv_min_port=50000

pasv_max_port=60000

DoS

ls_recurse_enable=NO

max_clients=200

max_per_ip=4

I will go through each of these options with a particular focus on the security and access
control features of the vsftpd daemon. Each vsftpd.conf option is structured like this:

option=value

There should be no spaces between the option, the = symbol, and the value. You can add
comments to your configuration file by prefixing the comment line with #.

In Listing 10-6 I have divided the configuration into different sections using comments.
The first comment-titled section is General Configuration, which handles the setup and
management of vsftpd. I will cover those options first.

General Configuration
The first two options, listen and background, control how vsftpd will be run. Both options
have Boolean values, and you can specify either YES or NO as their value. Many vsftpd.conf
options are Boolean, and you must specify the YES and NO values in uppercase.

4444c10_final.qxd 1/5/05 1:02 AM Page 451

CHAPTER 10 ■ SECURING AN FTP SERVER452

The listen option runs vsftpd in stand-alone mode. This means vsftpd is run as a nor-
mal daemon rather than through the inetd or xinetd daemon. It defaults to NO. I have enabled
vsftpd to run in stand-alone mode by changing this option to YES. The background option tells
the vsftpd to fork to the background. It also defaults to NO. I have changed it to YES to have the
vsftpd daemon run in the background.

The listen_address option allows you to bind vsftpd to a particular IP address, thus con-
trolling on which interface your FTP server runs. I have specified the IP address of the puppy
host, 192.168.0.1.

The nopriv_user option allows you to specify which user the vsftpd daemon will run as.
I have specified the ftp_nopriv user that I created as part of the installation process. This causes
vsftpd to run as a nonprivileged user and enhances the security of the daemon. This mitigates
the risk of an attacker gaining root privileges through the daemon.

The xferlog_enable option enables a log file that records all file uploads and downloads.
The log file defaults to /var/log/vsftpd.log, but you can override this with the
vsftpd_log_file option.

vsftpd_log_file=/var/log/transfer_log.log

Also available is the xferlog_std_format option, which allows you to specify that logging
should be in the xferlog format. This is the default log format used by WU-FTPD and allows you
to also use a variety of statistical tools developed for this application for reporting on vsftpd.
You can enable this option like this:

xferlog_std_format=YES

Alternatively, you can enable the option syslog_enable to log to syslog instead.

syslog_enable=YES

The syslog_enable option overrides all the other logging options, and if set to YES, then
vsftpd will not log to any other specified log files.

Mode and Access Rights
The mode options control what type of FTP server vsftpd will run; for example, it could spec-
ify an anonymous FTP server or an FTP server that accepts local user logins. The access rights
options control what capabilities are offered to anonymous or local users signed into the FTP
server (for example, whether uploads are enabled). In Listing 10-6 I have specified an anony-
mous FTP server that you can only download files from the server. This is the only type of
server I recommend you run.

■Note I will demonstrate how to build a local user FTP server with SSL/TLS in the next section.

You can enable anonymous FTP by setting the anonymous_enable option to YES. The anony-
mous FTP mode is vsftpd’s default mode; thus, YES is the default setting for this option. In
anonymous FTP mode only the users anonymous and ftp can log onto the FTP server. When
either of these users log in, they will be prompted for a password. vsftpd will accept any text

4444c10_final.qxd 1/5/05 1:02 AM Page 452

CHAPTER 10 ■ SECURING AN FTP SERVER 453

3. Grim’s Ping (http://grimsping.cjb.net/) is an example of a tool that could be misused for FTP scan-
ning and that can be stopped with this option.

as a password when in anonymous mode. It is usually assumed a remote user will enter an
e-mail address as this password. You can control this password to some extent using the
deny_email_enable and secure_email_list_enable options. The deny_email_enable option
allows you to specify a list of passwords (including both e-mail addresses and other pass-
words) that if used to log in will result in a login failure. You enable this option like this:

deny_email_enable=YES

By default this list of passwords is stored in the file /etc/vsftpd.banned_emails. You may
need to create this file. One of the possible uses of this option is to stop automatic FTP-scanning
tools. Many of these tools attempt to log into your server using a default password. You can
specify the default passwords these tools use in the /etc/vsftpd.banned_emails file to prevent
the tools from logging in.3 In Listing 10-7 you can see the result of trying to log in with a
banned password. For this example I have added the password bob@anotherdomain.com to
the /etc/vsftpd.banned_emails file.

Listing 10-7. Banned Anonymous Passwords

kitten# ftp puppy

Connected to puppy (192.168.0.1).

220 Welcome to Puppy FTP service.

Name (puppy:bob): anonymous

331 Please specify the password.

Password: bob@anotherdomain.com

530 Login incorrect.

Login failed.

■Tip You can use the banned_email_file option to override the file used by the deny_email_enable
option with a different file.

The secure_email_list_enable option allows you to specify a list of passwords that will be
accepted for anonymous login. No other passwords will be accepted. This is not overly secure,
as these passwords are stored in plain text. These are not as secure as traditional passwords,
and you should use this as a low-security restriction only. You can specify this option like this:

secure_email_list_enable=YES

By default these passwords are specified in the /etc/vsftpd.email_passwords file. You may
need to create this file. You can also override this default file using the email_password_file
option like this:

email_password_file=/etc/accepted_passwords

4444c10_final.qxd 1/5/05 1:02 AM Page 453

CHAPTER 10 ■ SECURING AN FTP SERVER454

4. You can see a list of most FTP commands at http://www.nsftools.com/tips/RawFTP.htm.

Once the ftp or anonymous user is logged into your anonymous FTP server, the user will
have access only to the contents of the home directory of the ftp user. I showed how to create
this user and specify their home directory as part of the vsftpd installation process in the
“Installing vsftpd” section. In that section I used the /var/ftp directory.

If you want to enable local user mode, which allows local users contained in the /etc/passwd
file to log into the FTP server, you should set the local_enable option to YES. I will talk about that
option in the “Configuring vsftpd with Local Users” section.

The first of the access rights options, the write_enable option, specifies whether FTP
commands that are capable of writing to the file system are enabled. This includes FTP com-
mands such as STOR or DELE.4 By default this option is set to NO. This means no files can be
written to, renamed, or deleted from your system. The vsftpd.conf man file contains a full list
of the commands this option disables.

The second access right I have specified, cmds_allowed, controls the FTP commands that
you are able to run on your FTP server. This is a powerful tool for locking down your FTP
server to a limited number of FTP commands. Listing 10-6 specifies that only the commands
PASV, RETR, and QUIT are allowed to run on the server. This means users can only download
files and exit the server. With a limited number of FTP commands enabled, you can quite
tightly secure your FTP server.

General Security
The general security options control a variety of security-related settings for your FTP server.
The first option deals with the use of a banner for your FTP server. Like many services, when
you connect to an FTP server, it displays a banner advertising details about the server to
which you are connecting. Generally, the default vsftpd banner reveals little information
about the server to which you are connecting. You should confirm your banner does not
reveal the package or version of your FTP server.

The banner is controlled by two options: the ftpd_banner option and the banner_file
option. The ftpd_banner option specifies a line that will be displayed when you connect to
the FTP server.

ftpd_banner=Welcome to Puppy FTP service.

The banner_file option overrides this and allows you to specify a file containing your banner.

banner_name=/etc/vsftpd_banner

Confirm the details contained in your ftpd_banner. The banner_file option should suitably
obfuscate your FTP server package and version or any details that may provide an attacker with
information that could aid in an attack.

The next option, connect_from_port_20, tells PORT or active mode connections to use port
20. This is required for some FTP clients. Do not disable this without testing that all your remote
clients still function correctly.

The hide_ids option hides the actual owner and group of the objects stored on your FTP
server. With this option set to YES, the files will all appear to be owned by the user and group
ftp. You can see this in the example in Listing 10-8.

4444c10_final.qxd 1/5/05 1:02 AM Page 454

CHAPTER 10 ■ SECURING AN FTP SERVER 455

Listing 10-8. Hiding Owners and Groups

ftp> ls

227 Entering Passive Mode (192,168,0,1,63,131)

150 Here comes the directory listing.

drwxr-xr-x 2 ftp ftp 4096 Oct 04 06:36 pub

-rw-r--r-- 1 ftp ftp 51 Oct 05 15:05 tmp

226 Directory send OK.

The next two options, pasv_min_port and pasv_max_port, control the range of the ephemeral
ports used by vsftpd. I have specified a lower range of 50000 and an upper range of 60000. This
means all passive mode connections will have an ephemeral port assigned from within this port
range. This should allow you to tighten your firewall rules down to only this port range rather
than the entire ephemeral port range. Listing 10-9 specifies iptables rules, restricting vsftpd
to this ephemeral port range.

Listing 10-9. Rules for Passive Mode Connections

puppy# iptables -A INPUT -i eth0 -p tcp --sport 50000:60000 --dport 50000:60000 \

-d 192.168.0.1 -m state --state ESTABLISHED,RELATED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp --sport 50000:60000 --dport 50000:60000 \

-s 192.168.0.1 -m state --state ESTABLISHED -j ACCEPT

You may ask, “Why don’t I simply restrict the ephemeral port range to only one or a hand-
ful of ports?” The limitation here is that each FTP data connection requires an individual port.
You can create a bottleneck on your system by limiting the ephemeral port range to a range
that is too small.

Preventing Denial of Service Attacks
The last options from the example anonymous FTP server allow you to specify some limita-
tions to the resources used by the FTP server. These limitations assist in mitigating the risk of
DoS attacks against your FTP server. Setting the ls_recurse_enable option to YES allows the
use of the ls -R directory-listing command. This can potentially consume a large volume of
resources if run from the root directory of a large site. I recommend that if you have a large
number of files in multiple directories that you set this option to NO.

The next two options, max_clients and max_per_ip, specify the maximum number of
clients and the maximum number of connections from a single IP address, respectively. The
max_clients option specifies the maximum number of clients that can be connected simulta-
neously to your FTP server. Any additional clients that try to connect to the server will get the
following error message:

Connected to puppy.yourdomain.com

421 There are too many connected users, please try later.

The max_per_ip option specifies the maximum number of clients that can connect from
a single IP address. Any additional clients will get the following error message:

Connected to puppy.yourdomain.com

421 There are too many connections from your internet address.

4444c10_final.qxd 1/5/05 1:02 AM Page 455

CHAPTER 10 ■ SECURING AN FTP SERVER456

5. Local users are those users contained in the /etc/passwd file on the local machine.

You should tune both of these options while considering the load on your FTP server. Do
not cause a self-induced DoS attack on your system by setting these options lower than nor-
mal operations require. I recommend setting them to at least a quarter to a third higher than
your peak load.

■Tip You can also limit the data volumes transferred to and from your FTP server. See the vsftpd.conf
man page for some options that provide this capability.

Configuring vsftpd with Local Users
I have shown you how to create an anonymous FTP server. In this section I will explain how to
create an FTP server that your local users can log onto.5 In doing this I recommend you allow
logins only from trusted local networks. You can achieve this by using iptables to limit the
source of any FTP connection. Unless you can absolutely avoid it, do not open an FTP server
to local user login over the Internet. This is especially true if the data you are hosting on your
FTP server is sensitive or valuable. You can mitigate this somewhat by using SSL/TLS for FTP;
I will discuss that in the “Adding SSL/TLS Support” section.

Listing 10-10 provides a sample stand-alone configuration for a local user FTP server. This
provides the ability for your local users to log on and download files. I have also utilized PAM
authentication for this server, and I will demonstrate how to configure that.

Listing 10-10. Stand-Alone Local User FTP Server

General Configuration

listen=YES

background=YES

listen_address=192.168.0.1

nopriv_user=ftp_nopriv

xferlog_enable=YES

Mode and Access rights

anonymous_enable=NO

local_enable=YES

chroot_local_user=YES

write_enable=YES

pam_service_name=vsftpd

Security

ftpd_banner=Puppy.YourDomain.Net FTP Server

connect_from_port_20=YES

hide_ids=YES

pasv_min_port=50000

pasv_max_port=60000

DoS

ls_recurse_enable=NO

max_clients=200

max_per_ip=4

4444c10_final.qxd 1/5/05 1:02 AM Page 456

CHAPTER 10 ■ SECURING AN FTP SERVER 457

Many of the options in Listing 10-10 are identical to those in Listing 10-6. I will identify
the changes in this section and explain how they impact the server configuration. The most
obvious modification is in the mode and access rights configuration. Here I have disabled any
anonymous access to the server by setting the anonymous_enable option to NO. I have also
enabled the option local_enable by setting it to YES. This allows any local user to log into the
FTP server.

■Tip You can enable anonymous and local user access on the same FTP server if required. You would set
the anonymous_enable and local_enable options both to YES.

When local users are signed into the FTP server, they will be placed in their home directory by
default. They have access to any files or directories that are available to them as a result of their
ownership, permissions, and group membership. For FTP purposes this is quite often a greater
level of access than they really require. To reduce this access, I have enabled the chroot_local_user
option. This option creates a mini-chroot jail for each of your users. Local users are jailed into
their home directories. This prevents them from changing the directory out of their home
directory and allows them access only to their home directory and any subdirectories beneath.
This prevents them from downloading or uploading files to or from any other directory.

■Caution Some small risk is associated with using chroot jails for local users if those local users
have upload privileges. See the vsftpd FAQ at ftp://vsftpd.beasts.org/users/cevans/untar/
vsftpd-2.0.1/FAQ. If you are restricting access to local users in a trusted network, I think the risk is
outweighed by the overall added security of the chroot jail.

If the chroot_local_user option is set to YES, then vsftpd also allows you to not chroot
specific users with the chroot_list_enable option, like so:

chroot_list_enable=YES

chroot_list_file=/etc/vsftpd.chroot_list

You specify the list of users in the file /etc/vsftpd.chroot_list that vsftpd should not
chroot. When these non-chroot users log in, they will have access to all file and directories
granted to them via their permissions and groups.

■Note If chroot_local_user is set to NO and chroot_list_enable is set to YES, then the file specified
in the chroot_list_file becomes a list of local users to chroot. All other local users would log on and
not be confined to a chroot jail.

I also enabled the write_enable option, setting it to YES. This allows any users logged onto
your FTP server to upload files. As the users have been placed in chroot jails in their home
directories, they will only be able to upload files to this directory and subdirectories of their
home directory.

4444c10_final.qxd 1/5/05 1:02 AM Page 457

CHAPTER 10 ■ SECURING AN FTP SERVER458

You can set some additional options to govern file uploads on your FTP server. The first
option is file_open_mode, which controls the permissions for any uploaded files. By default
this is set to 0666, like so:

file_open_mode=0666

You can also apply an umask (as discussed in Chapter 4) to any uploaded file by specifying
the local_umask option like this:

local_umask=077

The default umask is 077. This is quite restrictive and probably the safest option for your
FTP server.

■Caution Be wary of allowing users to upload executable files to the FTP server. This could be a potential
route for an attack. Ensure you set your default upload permissions and umask to prevent this.

I have also removed the cmds_allowed option, which restricted the commands allowed to
be executed on the FTP server. You could reintroduce this with a wider command set on your
FTP server if there were specific FTP commands that you did not want your local users to be
able to execute.

vsftpd can have PAM support compiled into it, as demonstrated during the installation
process. This is the best method for authenticating vsftpd with your local users. Listing 10-10
specifies the option pam_server_name. This allows you to specify the PAM service name that
vsftpd will use for authentication. The default PAM service name for most Debian systems is
ftp, and for more recent Red Hat versions it is vsftpd. Listing 10-11 shows a sample vsftpd
PAM service file for a Red Hat system. This file should be located in /etc/pam.d.

■Note I cover PAM in more detail in Chapter 1.

Listing 10-11. vsftpd PAM Service

#%PAM-1.0

auth required pam_listfile.so item=user sense=deny ➥

file=/etc/vsftpd.ftpusers onerr=succeed

auth required pam_stack.so service=system-auth

auth required pam_shells.so

account required pam_stack.so service=system-auth

session required pam_stack.so service=system-auth

Listing 10-11 will deny login by any user specified in the /etc/vsftpd.ftpusers file. You
can use this to list any users you explicitly do not want to log in via FTP, such as the root user.
It will then call the system-auth PAM service to provide authentication. All users logging in will

4444c10_final.qxd 1/5/05 1:02 AM Page 458

CHAPTER 10 ■ SECURING AN FTP SERVER 459

thus ultimately be authenticated against the /etc/passwd file, in addition to any further
authentication or access control checks the system-auth service is configured to perform.

All other options in Listing 10-10 are the same as those for the anonymous FTP server.

Adding SSL/TLS Support
The more recent versions of vsftpd come with support for SSL/TLS. The first version to do
so was vsftpd version 2.0.0. In some cases this support has been backported to the packages
available in various distributions. If this support has not been backported, you may be able to
compile vsftpd from source or adapt a package that already supports SSL/TLS for your distri-
bution. For example, Red Hat has introduced support to the vsftpd RPM provided with Fedora
Core 3. You should be able to use this RPM on some other, earlier versions of Red Hat or
potentially on Mandrake systems. So to quickly add SSL/TLS support to vsftpd, you need to
ensure vsftpd has support for SSL/TLS, create a certificate, update your vsftpd.conf file with
your SSL/TLS configuration, and restart the vsftpd daemon. I will take you through all these
steps in this section.

To enable SSL/TLS, you first need to compile it into vsftpd as you did in the “Installing
vsftpd” section. You can check if your version of vsftpd is compiled with SSL/TLS using the
ldd command.

puppy# ldd vsftpd

libssl.so.4 => /lib/libssl.so.4 (0x4000d000)

libcrypto.so.4 => /lib/libcrypto.so.4 (0x401ab000)

libgssapi_krb5.so.2 => /usr/kerberos/lib/libgssapi_krb5.so.2 (0x4029d000)

libk5crypto.so.3 => /usr/kerberos/lib/libk5crypto.so.3 (0x40311000)

...

If your vsftpd binary contains the library libssl.so.x, then it has been compiled with
SSL/TLS.

You will also need to create a certificate for vsftpd to use. I talk about creating certificates in
Chapter 3. Follow the process described in this chapter to create your certificate. Sign it against
an existing certificate authority (CA) if you have created a local CA or against a commercial CA if
you prefer to do so. If you intend to use this server for customers via the Internet, I recommend
you purchase a commercial SSL certificate.

You can also quickly create a certificate using the OpenSSL make process that is provided
with the OpenSSL package. This may be a simple option for FTP servers that are accessed only
from internal networks. These require SSL encryption, but you may not be overly concerned
about needing to prove the authenticity of the FTP server certificate. Listing 10-12 shows how
to create such a certificate.

Listing 10-12. Creating an SSL Certificate

puppy# cd /usr/share/ssl/certs

puppy# make vsftpd.pem

umask 77 ; \

PEM1=`/bin/mktemp /tmp/openssl.XXXXXX` ; \

PEM2=`/bin/mktemp /tmp/openssl.XXXXXX` ; \

4444c10_final.qxd 1/5/05 1:02 AM Page 459

CHAPTER 10 ■ SECURING AN FTP SERVER460

/usr/bin/openssl req -newkey rsa:1024 -keyout $PEM1 -nodes -x509 -days 365 ➥

-out $PEM2 ; \

cat $PEM1 > vsftpd.pem ; \

echo "" >> vsftpd.pem ; \

cat $PEM2 >> vsftpd.pem ; \

rm -f $PEM1 $PEM2

Generating a 1024 bit RSA private key

...

This will result in a PEM file called vsftpd.pem, which contains a private key and a
certificate.

You then need to define your certificate to vsftpd and specify some additional options to
control your FTP over SSL/TLS. Listing 10-13 includes the key configuration options you need
to set in the vsftpd.conf file.

Listing 10-13. SSL/TLS Options

SSL/TLS Options

ssl_enable=YES

rsa_cert_file=/usr/share/ssl/certs/vsftpd.pem

ssl_tlsv1=YES

force_local_data_ssl=YES

force_local_logins_ssl=YES

The first option in Listing 10-13, ssl_enable, controls whether SSL/TLS is enabled for your
vsftpd server. You must set this option to YES to use SSL/TLS. The next option, rsa_cert_file,
allows you to specify the location of your certificate file. I have specified the PEM file I created
earlier, /usr/share/ssl/certs/vsftpd.pem.

The ssl_tlsv1 option is one of a series of options that allows you to enable particular ver-
sions of SSL. The ssl_tlsv1 option, if set to YES, then enables the use of TLS. You can also enable
SSL 2 with the ssl_sslv2 option and SSL 3 with the ssl_sslv3 option. I recommend you use only
TLS, as it is generally considered the most secure of the SSL/TLS versions available.

The last two options control when SSL/TLS will be required in the FTP process. When set
to YES, the first option, force_local_data_ssl, requires that a SSL/TLS connection be made for
all FTP data connections. The second option, force_local_logins_ssl, requires a SSL/TLS
connection to be made in order for a user to log in.

Also available is the allow_anon_ssl option. When this option is enabled, it allows the use
of SSL/TLS for anonymous connections also.

Once you have updated your vsftpd.conf file, you need to restart the vsftpd daemon for
the new setting to take effect.

■Note You will need a remote FTP client that supports SSL/TLS to use it with vsftpd. A lot of FTP clients,
including the ftp command that comes with most Linux distributions, do not offer SSL/TLS support.

4444c10_final.qxd 1/5/05 1:02 AM Page 460

CHAPTER 10 ■ SECURING AN FTP SERVER 461

6. A Red Hat init script, available at http://freshrpms.net/packages/builds/vsftpd/vsftpd.init,
should be easy to adapt to other distributions.

Starting and Stopping vsftpd
You can start and stop vsftpd using the vsftpd binary. The daemon will first check the validity
of vsftpd.conf and then, depending on the configuration, will either run in the foreground or
fork the process into the background.

puppy# vsftpd &

To stop vsftpd, simply kill the daemon.
You could also start and stop vsftpd from an init script.6 I recommend using this

approach for ease of operation.

Resources
The following are resources you can use.

Sites
• vsftpd: http://vsftpd.beasts.org/

• vsftpd HOWTO: http://www.vsftpd.org/

4444c10_final.qxd 1/5/05 1:02 AM Page 461

463

C H A P T E R 1 1

■ ■ ■

Hardening DNS and BIND

Domain Name Services1 (DNS) is the phone directory of the Internet and private networks.
DNS maps the IP addresses of hosts to their names, and vice versa. It provides the ability for
applications, tools, and hosts to find and resolve the IP addresses or names of hosts with which
they want to communicate. It is one of the most critical Internet and network services utilized
by ISPs and organizations. Without DNS, the Internet and your internal network would be
unable to function.

A DNS server is, in its simplest form, a database of names and addresses. This DNS data-
base performs two core roles: it tracks the names and addresses of your hosts and provides
these names and addresses in response to queries. These names and addresses can describe
hosts and networks inside your internal network, on the Internet, or on another network. It
can also describe the same host in two different contexts, depending on who asks the question.
For example, the host kitten.yourdomain.com could have the IP address of 192.168.0.100 on
your internal network. Clients of your internal network need to use this address to communi-
cate with this host. On the Internet, however, kitten.yourdomain.com may be known by IP
address 220.240.52.228, and clients there need this address instead. Your DNS server deter-
mines which IP address for the kitten.yourdomain.com host it can provide to a client, depend-
ing on whether the query comes from your internal network or the Internet.

This name and address resolution role is critical to how almost all network services and
applications function. It is also an extremely useful resource for attackers to control on your
network because they can see the contents of your entire network and also use that informa-
tion to subvert your hosts, stage “man-in-the-middle” attacks, or inflict crippling Denial of
Service (DoS) attacks on your environment. In this chapter, I aim to mitigate and minimize
the risk of these sorts of compromises and attacks from occurring and prevent an attacker
from turning your DNS assets into dangerous liabilities.

In this chapter I will briefly cover some of the potential threats and risks to your DNS
servers. Then I will address choosing a suitable DNS server and creating a secure DNS design.
I will take you through installing, configuring, and hardening a DNS server and use the BIND
DNS server as a model. I will provide an overview of the basic configuration of BIND, which
should allow you to set up some simple DNS server configurations. I will also cover TSIG,
which allows you to secure transactions between the BIND server and the rndc command,
which provides an administration interface to your BIND server.

I will not go into a large amount of detail about how DNS functions, unless it relates
to securing DNS or DNS servers. To fully appreciate this chapter, you need to have a basic

1. Also known as Domain Name Service, Domain Name Server, or Domain Name System

4444c11_final.qxd 1/5/05 1:04 AM Page 463

CHAPTER 11 ■ HARDENING DNS AND BIND464

2. See RFC 2535 at http://www.faqs.org/rfcs/rfc2535.html.

3. http://www.isc.org/index.pl?/sw/bind/bind-security.php

4. See a recent survey of DNS server software at http://mydns.bboy.net/survey/.

understanding of how DNS works. Additionally, you should understand the relationships
between the various DNS infrastructure components, including primary and secondary DNS
servers, how record types are used in DNS, and how zone files are constructed. Some excellent
information is available, as I have cited in the “Resources” section, that describes the inner
workings and design of DNS in much greater depth than is possible here.

■Note I will not cover DNSSEC (as described in RFC 2535).2 This is principally because I do not believe
DNSSEC is mature enough or the RFC itself is final enough. Both the RFC and the current implementation of
DNSSEC need a considerable amount of development before they can be readily implemented in a produc-
tion environment.

Your DNS Server at Risk
Your DNS server is subject to a similar range and type of attacks as most of your other Internet-
facing daemons: the exploitation of software vulnerabilities and bugs, DoS attacks, poor con-
figuration, and poor server and infrastructure hardening. Several DNS servers, especially the
commonly implemented BIND server, have been subject to a variety of vulnerabilities and
compromises in recent years.3 These have included vulnerabilities such as buffer overflows and
other code exposures that could potentially allow attacks or penetrations.

Additionally, DNS server software is often installed but then not regularly updated or prop-
erly managed. Many DNS servers operating on the Web are older versions of software or versions
with known compromises.4 Other than configuration changes to add additional zones or hosts,
many DNS servers and their configuration are not updated to take advantage of new features or
to address security exposures. This has left many DNS systems seriously exposed to potential
attacks.

The DNS protocol itself can also be subject to compromises such as improper DNS data
updates and to attacks aimed at compromising your DNS data. Many of these attacks are sim-
ilar in nature or are only subtlety different from each other. Additionally, attacks against your
DNS infrastructure are frequently combinations of multiple attack types. For example, many
DNS protocol attacks require an attacker to stage a DoS attack against your DNS server prior
to another form of attack. Let’s look at some of the common types of DNS-specific attacks.

Man-in-the-Middle Attacks
Man-in-the-middle attacks allow an attacker to intercept your DNS traffic or impersonate your
DNS server for the purpose of spoofing its input or output or assuming the entire identity of
your DNS server. To do this, attackers sniff traffic on your network, detect your DNS packets,
and use the information in them to replicate these packets and interpose themselves into the

4444c11_final.qxd 1/5/05 1:04 AM Page 464

CHAPTER 11 ■ HARDENING DNS AND BIND 465

5. http://www.securityfocus.com/guest/17905

DNS packet flow. This interposition is easier than it sounds because DNS traffic is generally
unsigned, unencrypted UDP packets whose only control is a sequence number. Although the
sequence number generally starts from a random point, it is generally simply incremented,
which makes it easy to guess the next sequence number. Questions have also been raised
about the true randomness of the sequence numbers.5

To perform this interposition, the attacker generally initiates a DoS attack against one of
the components in your DNS infrastructure; for example, the attackers launch a DoS attack on
a secondary DNS server in order to silence it and interpose themselves between the primary
and secondary server. An attacker can also simply be in a right position, figuratively “closer”
to your DNS server than another component in the DNS traffic flow. For example, an attacker
can install a new DNS server on your network and respond to DNS queries before the real DNS
server is able to do so. This is often possible if the DNS server being impersonated is on a dif-
ferent network or accessed via the Internet.

Once in this position, the attacker has considerable scope to both gain critical informa-
tion about the structure and contents of your networks or to insert malicious or bogus infor-
mation into your environment. For example, by interposing themselves between a primary
and secondary DNS server, attackers can acquire details of all the zones for which the DNS
servers are responsible. This gives attackers a very detailed picture of your network without
requiring them to perform any high-profile activities. These activities, such as scanning or
probing your network, potentially have a much higher detection profile than the compro-
mise of your DNS server.

Cache Poisoning
Probably the most dangerous form of DNS-based attack is cache poisoning. Cache poisoning
occurs when an attacker introduces or substitutes malicious data into the cache of a DNS server.
For example, the attacker monitors queries from a DNS server, intercepts the query, and provides
a false answer. This could be a bogus IP address for a particular domain, such as providing a new
IP address for the domain name of an Internet banking site. This bogus data is now stored in the
cache of the DNS server. This bogus data can be used to direct clients that use this poisoned DNS
server to the new IP address for that Internet banking site. The attacker situates a forged site,
designed to resemble the real Internet banking site, at this new IP address. The user will assume
this forged site is the legitimate Internet banking site and provide banking information. The
attacker now has this information and can defraud the user.

Denial of Service Attacks
Attackers generally have two reasons why they want to stage a DoS attack on your DNS infra-
structure. The first reason is the normal purpose of a DoS attack: to deny service to your organiza-
tion and users. The second reason is as an adjunct or precursor to another attack and to prevent
your DNS server functioning whilst an attacker substitutes bogus information or a bogus name
server for the domains and clients for which your DNS server provides services.

Traffic-based DoS attacks are also possible with DNS data. This is because the size of an
initial DNS query is quite small but usually results in a reply of a larger size. For example, a DNS

4444c11_final.qxd 1/5/05 1:04 AM Page 465

CHAPTER 11 ■ HARDENING DNS AND BIND466

6. Berkeley Internet Name Domain (http://www.isc.org/index.pl?/sw/bind/)
7. http://cr.yp.to/djbdns.html
8. http://www.isc.org/index.pl?/ops/ds/

query asking for the name servers for a domain will require a small volume of data but gener-
ally will result in a larger volume of data being generated. An attacker can thus use a DNS server
as a traffic multiplier to either deny service to the DNS server itself or target other hosts by
directing a large volume of DNS replies toward them.

Data Corruption and Alteration
The contents of your configuration and zone files contain the information that controls your
DNS server, in addition to the information it provides to clients in response to queries. One of
the ways an attacker can subvert your DNS server is to penetrate your host and change or cor-
rupt this data. This can cause your DNS server to fail, if the data has been corrupted, or it may
deliver data that is incorrect or malicious, if the data has been altered.

Other Risks
Finally, I hear you ask, “My DNS server is hardened, is secured, and runs the latest version of
DNS software. Am I still at risk?” Unfortunately, one of the reasons DNS is such a vulnerable
service is that you are reliant on the security and stability of any DNS servers that are poten-
tially more authoritative than your DNS server or that provide DNS resolution for you. This
means if a DNS server that you rely on to provide information for your DNS is compromised,
you could receive bogus data from that server. Unfortunately, you cannot do anything to pro-
tect yourself from this risk. I hope future developments in RFCs such as DNSSEC can help to
somewhat mitigate this risk. In the meantime, you should ensure your own DNS environment
is secure and up-to-date.

What DNS Server Should You Choose?
Many DNS servers are available to provide DNS capabilities. But only three major players occupy
this space. They are BIND, djbdns, and Microsoft DNS. Obviously, I will not cover Microsoft DNS,
as it runs on Windows hosts only. In the Linux (and other *nix and BSD dialects) space, this leaves
BIND,6 provided by Internet Systems Consortium (ISC), and djbdns,7 written by Daniel. J. Bern-
stein. The debate between which of these is the better DNS server, both operationally and with
respect to security, is both vitriolic and controversial.

The BIND server has the larger market share. Depending on whose figures you believe, it is
used by approximately 80 percent of the DNS servers on the Internet.8 It has also had a difficult
past history with a large number of both operational-related and security-related bugs being
discovered in various versions of the server software. Some versions of BIND are fundamentally
flawed, and running them exposes your organization to an extreme level of risk. More recent
versions (from BIND 9 onward) have been somewhat more stable, and the incidence of major
security vulnerabilities has decreased. But still a lot of older, easily exploitable versions of BIND
are running on the Internet.

4444c11_final.qxd 1/5/05 1:04 AM Page 466

CHAPTER 11 ■ HARDENING DNS AND BIND 467

9. http://cr.yp.to/djbdns/run-cache.html

Alternatively, djbdns has not had a major security problem. Indeed, Bernstein offers
a challenge for anyone to discover one in his code.

■Note The djbdns package does have some functional issues. They are described at
http://homepages.tesco.net/~J.deBoynePollard/FGA/djbdns-problems.html.

But it can also be argued that Bernstein has not fully implemented the total scope of the
DNS RFCs and that occasionally djbdns does not have the correct RFC behavior. For example,
djbdns does not support TSIG or DNSSEC. These variations result because Bernstein’s develop-
ment approach tends to be based on his interpretation of the RFCs. To his credit, his software
does address issues and flaws with the RFCs. Overall, though, this arbitrary and interpretational
approach to standards compliance is problematic. Indeed, it has created some problems for
djbdns’ interoperability with BIND and other DNS servers. Finally, it could also be stated that
the djbdns package is limited because it has a single author who controls the code base. The
future development of the package depends on that author.

So where does this leave you with regard to choosing a DNS server? Well, it is very much an
individual choice. With regard to the core functionality required to run DNS services, both BIND
and djbdns offer a full feature set. For many purposes, djbdns is a good choice, such as when run-
ning a personal caching server on an individual system with the dnscache application.9 From
a security perspective, you may see some benefits in running djbdns because of its lack of dis-
covered vulnerabilities. For interoperability purposes with other BIND servers, or if you want to
use features such as TSIG, you may want to go with a BIND infrastructure.

For the purposes of this chapter, I have chosen to cover securing and hardening the BIND
package. I have chosen BIND as a result of its extensive installation base. BIND is the DNS server
you are most likely to encounter or to have as a standard for your organization. This is not to say
that potentially djbdns is not a better solution. But BIND is distinctly more pervasive. Addition-
ally, in defense of BIND’s security, the more recent releases of BIND have been more stable and
secure. Finally, the support available for BIND from ISC and other sources also contributed to
the decision to cover BIND.

Secure BIND Design
One of the factors in securing your DNS services is designing a secure BIND infrastructure.
As with designing a secure network, where you place your BIND servers and what functions
those servers will perform is as important as how you build and secure them. I will briefly
explain the major concepts in good DNS/BIND design and provide some simple rules that
I recommend you follow.

• Do not use a single DNS host as an authoritative name server and a caching server.

• Ensure each DNS host provides only the functionality required. For example, do not
provide resolution and caching services on a host that does not require it.

4444c11_final.qxd 1/5/05 1:04 AM Page 467

CHAPTER 11 ■ HARDENING DNS AND BIND468

Figure 11-1. Recommended DNS infrastructure model

• Use separate authoritative name servers to answer queries from different sources. For
example, queries from the Internet and queries from your internal networks should be
answered by separate hosts.

• Always ensure your DNS infrastructure is redundant.

Figure 11-1 illustrates these recommendations for DNS infrastructure.

10. DNS servers are also capable of forwarding queries to other DNS servers.

First, let’s look at some explanations of the different types of BIND servers and their func-
tions. DNS servers perform two core functions: name server and resolver/caching.10 Using
the name server function, they provide answers to queries about domains they know. This is
known as being authoritative for these domains. Being authoritative for a domain means you
are the principal source of information about that domain, the hosts in it, their IP addresses,
and other information. I will refer to this sort of DNS server as a name server.

Second, using the resolver/caching function, your DNS servers query other DNS servers
for information about domains they do not know. These are domains for which your servers
are nonauthoritative. This is where you rely on information from other DNS servers to learn
about that nonauthoritative domain. This information is stored or cached by BIND for a set
period and used to provide answers to DNS lookups by clients. I will refer to this sort of DNS
server as a caching server.

In the most common implementation model for BIND, single hosts perform both name
server and caching functions. So why should you care if a BIND server is authoritative for
domains and provides caching and resolution? Well, separating these functions has two

4444c11_final.qxd 1/5/05 1:04 AM Page 468

CHAPTER 11 ■ HARDENING DNS AND BIND 469

principal advantages. The first is that you make your DNS services more resilient from an
availability perspective. With a combined name and caching server, you create a single point
of failure. For example, if a DoS attack results in the failure of your BIND server, then you
will lose both your name server and caching functions. This would stop you from being
authoritative for your domains as well as stop you from resolving DNS queries for your
clients. With functional separation onto separate hosts, the impact of such a DoS attack
is more limited, and you would potentially lose only one function.

The second advantage is that a compromise of your BIND server will allow attackers to
take advantage of only one function. If attackers compromise a BIND server that combines
both functions, then they now control responses to queries about the domains for which that
server is authoritative, and they can influence the results of any DNS queries your clients make
or poison the cache of that server. Separating these functions limits the risk of attackers con-
trolling your entire DNS infrastructure with a single attack. So, if you have the resources to
provide multiple servers to perform these separate functions, you should look into doing so.

Where you position your BIND servers and what role they play in your DNS infrastructure
is also often critical. For example, you only need to place caching servers within your internal
network. This is because you will not be providing DNS resolution to external clients. In fact,
you should ensure your BIND servers are not providing resolution and caching to external
clients to protect them, both from attacks and to prevent external clients using your valuable
bandwidth and resources. I recommend you never place a caching DNS server on a bastion
host or in a DMZ.

Alternatively, your name servers, which provide resolution for domains you control, gen-
erally need to be placed facing both your internal and external networks. This is because you
need to provide different DNS answers for external clients and internal clients. You can do this
on single name servers using split DNS with view statements (which I will demonstrate in the
“Views and Zones” section), or you can implement separate name servers, some located in
your internal network and some located in a DMZ or in a bastion host protected by a firewall.
I recommend you take the separate name server approach and provide different name servers
to respond to queries from different clients. This again enhances the availability of your DNS
infrastructure and also limits unnecessary connectivity between your higher risk areas, such
as a DMZ, and your internal network.

The final element to any secure DNS infrastructure design is redundancy. You should have
more than one host providing resolution and caching services to your internal clients. If a caching
server fails without a backup, then your clients will not be able to resolve IP addresses and host-
names. This will render most software that requires communication with the network inoperable.

For name servers you also need redundancy. With name servers you should have both pri-
mary and secondary name servers (also known as masters and slaves) configured. What does
this mean? Domains (referred to in BIND as zones) defined to a BIND name server can be of
two major types, masters and slaves. A master zone is the authoritative and primary source of
information about that domain. The name server where that master zone is defined is the pri-
mary, or master, server for that zone. A slave zone is an exact copy of the master zone, and it is
defined on a secondary, or slave, name server. On a regular basis the master zone is transferred
from the master server to the slave server. This transfer generally occurs either when the master
zone is changed or when a fixed period expires. In your DNS infrastructure you define both
your master and slaves as potential name servers for particular domains to your clients. If the
master server fails, then the client can use the slave server or servers to answer queries about
that domain.

4444c11_final.qxd 1/5/05 1:04 AM Page 469

CHAPTER 11 ■ HARDENING DNS AND BIND470

11. At the time of writing, the latest stable release is 9.3.0. This chapter is based on this version.

You always need to have secondary or slave name servers to provide redundancy in the event
of an attack, a compromise, or an availability issue such as hardware failure. For example, if you
have separate name servers, one that performs internal resolution and one that performs exter-
nal resolution for your domains, then both servers need to have slave servers defined. These slave
servers can then take over in the event that the primary master servers are unavailable.

Installing BIND
The first step I will cover is how to install BIND. If you already have a BIND installation, then
some of this material may not be relevant to you. But since I recommend you regularly update
your BIND version, this process may be useful to gain an understanding of how to do that. Or,
if you are running an older BIND version, I recommend you upgrade to the latest available
version. You can use these instructions to do that also.

One of the first things you need to know is that three major versions of BIND are in general
use as DNS servers. These are versions 4, 8, and 9. Versions 4 and 8 are deprecated and have been
the subject of numerous vulnerabilities. However, still a number of version 4 and 8 BIND servers
are being utilized. ISC does attempt to ensure security-related patches to address known vulnera-
bilities that are released for version 4 and 8 releases of BIND. But generally no new development
is performed on these versions. If you are running BIND versions 4 and 8, you should upgrade to
the latest release of BIND, preferably the latest stable version 9 release. If you do not upgrade, you
risk exposing your DNS servers to relatively simple compromises and exploits by attackers. The
newer versions of BIND also offer additional functionality and performance improvements.

This chapter will cover BIND version 9 only. BIND 9 has some differing configuration options
from previous BIND versions; if upgrading, you will need to review your existing configuration in
light of this. In this chapter I will address building a secure BIND server from scratch, and, where
possible, I will highlight the areas in which this version of BIND differs from previous releases.

The first step in installing BIND is downloading the latest version of BIND.11 BIND is also
available as a package for those distributions with package management software; for example,
it is available as an RPM for Red Hat and a deb package for Debian. I recommend, though, that
BIND is a package you compile from source and install, rather than relying on your distribution’s
version. This is because the latest stable version of BIND is generally the safest version to use.
Many distributions provide older versions of BIND or modify BIND to suit their own purposes.
This means you get a potential delay between a vulnerability being discovered and a distribution
vendor updating its BIND package. Obviously, you should download, compile, and test the latest
version of BIND on a test system before upgrading your production environment.

To download BIND, first download ISC’s PGP key and import it into your keyring so that
you can verify any downloads from ISC.

kitten# wget http://www.isc.org/about/openpgp/pgpkey2004.txt

kitten# gpg --import pgpkey2004.txt

gpg: key C3755FF7: public key "Internet Systems Consortium, Inc. ➥

(Signing key, 2004) <pgpkey2004@isc.org>" imported

gpg: Total number processed: 1

gpg: imported: 1

4444c11_final.qxd 1/5/05 1:04 AM Page 470

CHAPTER 11 ■ HARDENING DNS AND BIND 471

Next, download the latest version of BIND and its associated signature and compare the
signature using the PGP key you downloaded to verify the integrity of the package.

kitten# wget ftp://ftp.isc.org/isc/bind9/9.3.0/bind-9.3.0.tar.gz

kitten# wget ftp://ftp.isc.org/isc/bind9/9.3.0/bind-9.3.0.tar.gz.asc

kitten# gpg --verify bind-9.3.0.tar.gz.asc bind-9.3.0.tar.gz

gpg: Signature made Thu 23 Sep 2004 02:03:16 EST using DSA key ID C3755FF7

gpg: Good signature from "Internet Systems Consortium, Inc. ➥

(Signing key, 2004) <pgpkey2004@isc.org>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 9254 46B5 D3C8 BB29 E337 379D 6791 2F50 C375 5FF7

If you receive the message indicating that a good signature has been found, then the
BIND package you have downloaded is authentic.

■Note Ignore any messages about no ultimately trusted keys being found. This simply means you do not
have the full key chain used by ISC to generate its PGP key.

Now you need to unpack the package file and change into the directory that has been
created.

kitten# tar -zxf bind-9.3.0.tar.gz

kitten# cd bind-9.3.0

Next you need to configure and make BIND. By default BIND will install itself underneath
the directory /usr/local. If required, you can override this with the configure option --prefix.

kitten# ./configure --prefix=/usr

In the previous line, I have specified that BIND should install underneath the directory
/usr. Some additional configuration options are also available that you can review with the
--help option of the configure script.

kitten# ./configure --help

Generally, you will not require any of these options for Linux compilation with the excep-
tion of the --disable-threads option. BIND is now multithreaded and is better designed to
run on multiprocessor systems. Some distributions are running kernels or have modifications
that make using threads unwise. If this is the case with your distribution, then you can disable
threads support with the --disable-threads configure option, like this:

kitten# ./configure --disable-threads

You then need to make and install BIND to compile and install the package files into the
designated directories.

kitten# make && make install

4444c11_final.qxd 1/5/05 1:04 AM Page 471

CHAPTER 11 ■ HARDENING DNS AND BIND472

Chrooting BIND
The heart of the BIND package is the named daemon, which provides the core DNS function-
ality. To better protect your BIND server, I recommend placing your BIND daemon, named,
into a chroot jail. The named daemon is also able to run as a normal user and can drop root
user privileges. In combination, these two options provide additional security that can pre-
vent an attacker from compromising your system via the named daemon. I will take you
through installing BIND into a chroot jail and creating a user and group to run the named
daemon.

■Note See Chapter 7 for a description of the chroot command.

The first step is to create a directory structure for your chroot jail. I have decided to locate
my chroot jail under the directory /chroot/named.

kitten# mkdir -p /chroot/named

Now you need to add the other directories the jail will require. You need to create the
directories in Listing 11-1.

Listing 11-1. chroot Jail Directory Structure Under /chroot/named

/dev

/etc

/master

/slave

/var

/var/logs

/var/run

■Note I created the /master and /slave directories to hold the zone files for my system. You can create
any directory structure you like for your zone files.

Next, you need to populate the jail with some required files. I will start with three device
files that the named daemon will need to use: random, null, and zero. You can create these with
the mknod command, and you want to create functional duplicates of the existing device files
located /dev. You can review the settings of these files like this:

kitten# ls -l /dev/zero /dev/null /dev/random

crw-rw-rw- 1 root root 1, 3 Feb 19 2004 /dev/null

crw-r--r-- 1 root root 1, 8 Feb 19 2004 /dev/random

crw-rw-rw- 1 root root 1, 5 Feb 19 2004 /dev/zero

4444c11_final.qxd 1/5/05 1:04 AM Page 472

CHAPTER 11 ■ HARDENING DNS AND BIND 473

The new device files need the same minor and major numbers as the existing device files.
You can re-create them using the mknod command with the c option. For example, the major
and minor numbers for the /dev/null device are 1 and 3, respectively. Listing 11-2 re-creates
all the required devices and locates them in the directory /chroot/named/dev.

Listing 11-2. Creating Jailed Devices

kitten# mknod /chroot/named/dev/null c 1 3

kitten# mknod /chroot/named/dev/random c 1 8

kitten# mknod /chroot/named/dev/zero c 1 5

You also want to copy in a time source. I will use the /etc/localtime file and copy it into
the /chroot/named/etc/ directory.

kitten# cp /etc/localtime /chroot/named/etc/localtime

Next, you need to create a user and group to run the named daemon. I have decided to
create a user called named and a group of the same name. Listing 11-3 shows how to do this.

Listing 11-3. Creating a User and Group

kitten# groupadd named

kitten# useradd -g named -d /dev/null -s /sbin/nologin named

I have specified a home directory of /dev/null for the named user and a default shell of
/sbin/nologin to prevent this user from logging in. The named user will belong to the named group.

I also recommend, for an added level of security, that you lock this user with the passwd -l
command, like this:

kitten# passwd -l named

Locking password for user named.

passwd: Success

Finally, create an empty named.conf file to hold your BIND configuration.

kitten# touch /chroot/named/etc/named.conf

Permissions in the chroot Jail
So far you have not set permissions for the files and directories in your chroot jail. This is
a fairly simple process, but it should be done once you have finished configuring your BIND
server and may need to be repeated at regular intervals as you add zones files or change the
BIND configuration.

First, you want to set the ownership of the files in your chroot jail. I created a new user
and group, both called named, in the previous section. In the next section you will see that the
named daemon will run as the named user. Thus, the named user needs access to the files in your
chroot jail. The first step in providing this access is setting the ownership of the objects and
files in the jail. You can set the ownership like this:

kitten# cd /chroot/

kitten# chown -R named:named named

4444c11_final.qxd 1/5/05 1:04 AM Page 473

CHAPTER 11 ■ HARDENING DNS AND BIND474

Second, you need to change the permissions on the directories. You want the named user to
have all permissions to the directory and give the named group read and execute permissions to
the directories. You can use the following commands to do this:

kitten# cd /chroot/named

kitten# find . -type d -print | xargs chmod 0750

The second command finds all directories below the /chroot/named directory and changes
their permissions to 0750.

Next, you want to secure your files. Only the named user and group should have permissions
to the files in your chroot jail. Everyone else on the system should have no permissions to the files
and objects. So, the files need to be readable and writable by the named user, need to be readable
by the named group, and need to have no world permissions granted. You can do this using the fol-
lowing commands:

kitten# cd /chroot/named

kitten# find . -type f -print | xargs chmod 0640

■Caution As the named group has read permissions to the files in your chroot jail, you should ensure
you do not add users to that group, unless absolutely required.

Finally, change the attributes on the localtime file to make it immutable to prevent the
time from being changed.

kitten# chattr +i /chroot/named/etc/localtime

It is especially important to ensure that you carefully secure your configuration and zone
files. I recommend using a tool such as Tripwire (see Chapter 4) to monitor these files. Addition-
ally, another potential file to consider making immutable is your named.conf file, which contains
your BIND configuration. This can inconvenience the process of administering your BIND server
but adds a greater level of assurance that your configuration file cannot be changed for malicious
purposes.

kitten# chattr +i /chroot/named/etc/named.conf

■Tip You should also update your permissions on a regular basis to ensure they remain correct and that any
new files—for example, new zone files—receive the correct ownership and permissions. I generally do this
when the named daemon is started and stopped by adding a section resetting permissions to the defaults in
my init script.

Starting and Running named
To use BIND, you need to start the named daemon. You can do this by running the named binary.
When the named binary is executed without options, it will bind the ports it requires, read in

4444c11_final.qxd 1/5/05 1:04 AM Page 474

CHAPTER 11 ■ HARDENING DNS AND BIND 475

12. For a quick reference for Red Hat systems, see http://www.vsl.gifu-u.ac.jp/freeman/misc/
initscripts-6.51/sysvinitfiles. For Debian, see http://www.debianhelp.org/
modules.php?op=modload&name=News&file=article&sid=3306.

the configuration from the configuration file (which it expects to find in /etc/named.conf),
and then daemonize.

■Tip By default the named daemon binary is installed into /usr/local/sbin.

You can start the named binary on the command line or via an init script. Most of the
packages available for BIND on various distributions come with an init script. If you have
installed from source, you can extract one of these init scripts from a package and customize
it for your own environment. You could also write your own script or get an init script from
the Web.12

■Tip I have included a sample init script in Appendix B.

Listing 11-4 shows how to start the named daemon by running the named binary.

Listing 11-4. Starting named

kitten# named -t /chroot/named -u named

In Listing 11-4 the -t option specifies the root directory of the chroot jail I am using,
/chroot/named. This is the directory that named will change to when it is chrooted. This then
becomes the root directory for the named daemon. All directories you reference will be relative
to this directory rather than the system’s normal root directory. For example, the named dae-
mon looks for the random device in /dev. In Listing 11-4, as the daemon is chrooted, the actual
directory it will look for the device in is /chroot/named/dev.

The -u option specifies the user you want to run the named daemon; I have specified the
user named. In this example, the named daemon will start with root user privileges and then
drop these privileges to run as the named user.

■Note I show how to create both the chroot jail directories and the named user in the “Chrooting BIND”
section.

Other options are available for the named daemon (see Table 11-1).

4444c11_final.qxd 1/5/05 1:04 AM Page 475

CHAPTER 11 ■ HARDENING DNS AND BIND476

Table 11-1. named Command-Line Options

Option Description

-4 Uses IPv4 only.

-6 Uses IPv6 only.

-c file Uses file as the configuration file. Defaults to /etc/named.conf.

-d level Sets the debug level to level.

-f Runs the daemon in the foreground.

-g Runs the daemon in the foreground and logs to stderr.

-p port Listens for queries on port port. Defaults to port 53.

-v Reports the version number and exit.

The named daemon generally automatically detects what form of IP networking to utilize,
either IPv4 or IPv6. The -4 and -6 options allow you to force which will be used. If you specify the
-4 option, then only IPv4 networking will be used, even if IPv6 networking is available. The -6
option dictates that only IPv6 networking will be used, even if IPv4 networking is available. These
two options are mutually exclusive and cannot be specified on the command line together.

The -c option allows you to specify the location of the named configuration file. The
default file the named daemon expects to find is /etc/named.conf. If you are running the named
daemon in a chroot jail, then this location must be relative to the root directory of the jail. For
example, if you specified the configuration file named2.conf like this:

kitten# named -c /etc/named2.conf -t /chroot/named

then the -t option specifies a chroot jail located in /chroot/named, and thus the named2.conf
file would have to be located in the /chroot/named/etc/ directory so that the named daemon
can locate the correct configuration file.

The -d option specifies the level of logging with which your named daemon will start. You
can specify a number between 1 and 99, where 1 is minimal debugging information and 99 is
the maximum level of debugging information.

The -f and -g options allow you to launch the named daemon and not to daemonize. The
first option, -f, launches named and runs it in the foreground. The second option, -g, does the
same but redirects any logging output from the daemon to stderr.

The -p option allows you to override the use of the default port with another port for the
named daemon to listen on. By default DNS is principally a UDP-based protocol, and the named
daemon listens on UDP port 53. But for some queries the named daemon also uses TCP, and
thus it also listens on TCP port 53. The named daemon generally uses TCP connections only for
zone transfers and queries that result in large records. Generally, as most clients and others
servers expect to find your DNS server listening on port 53, I would not change this option.
But it does provide the ability to run a named daemon on another port for testing purposes.

The final option, -v, outputs the named version and exits.

Configuring BIND
The core of BIND’s configuration is the named.conf file. It is normally located in the /etc/
directory. It controls all the major BIND configuration options. It is in this file that you define

4444c11_final.qxd 1/5/05 1:04 AM Page 476

CHAPTER 11 ■ HARDENING DNS AND BIND 477

the zones your BIND server knows. This includes any master zones for which your server is
authoritative or any zones for which your server is a secondary, or slave, server. It is in this file
that you also configure access controls, logging, networking, and other options.

The named.conf file contains a number of statement declarations. These statements
can define a number of configuration components; Table 11-2 lists the most frequently
used statements.

■Note This section is a basic introduction to the named.conf file and the statements used to configure BIND.
I recommend, for more complicated configuration models, that you read more widely on BIND configuration.

Table 11-2. named.conf Statements

Statement Description

acl Defines access control lists containing lists of sources that can be defined in access
control statements

controls Defines a control statement for the rndc command

key Defines a cryptographic key you can use for functions such as TSIG

logging Defines the logging configuration for the BIND server

options Defines the global configuration options for the BIND server

server Defines a server

view Acts as a container for a collections of zones

zone Defines the configuration of a domain

I will cover the acl, logging, options, view, and zone statements and their various options
in this section. I will cover the server and key statements in the “TSIG” section and the controls
statement in “The rndc Command” section.

Most statements types in the named.conf file are generally constructed like this:

statement "name" {

contents-of-statement;

};

or like this:

statement {

contents-of-statement;

};

Some statements are given a name; if so, you should use quotations marks to enclose that
name. The quotation marks allow you to use any name, including reserved DNS configuration
words, as the name of the statement. Other statements do not require a name, and I will iden-
tify them.

Each statement can contain substatements, and these are contained within braces. Each
statement must be terminated with a semicolon after the closing brace. Most of the substate-
ments within a statement also need to be terminated with a semicolon.

4444c11_final.qxd 1/5/05 1:04 AM Page 477

CHAPTER 11 ■ HARDENING DNS AND BIND478

You can also add comments to your named.conf file by prefixing the comment with any of
three commenting syntaxes like this:

// This is a comment

/* This is also a comment */

This is another comment

I will go through the key configuration statements in your named.conf file, with a particu-
lar emphasis on the security-related features. This should provide you with a good grounding
to develop BIND configurations, but it will not be a definitive explanation of exactly how to
configure every BIND statement or every configuration option.

Let’s start with a sample named.conf file for a caching-only BIND server (see Listing 11-5).
This server is not authoritative for any domains but merely provides DNS resolution and
caching for clients.

Listing 11-5. Caching-Only named.conf File

acl "trusted" {

192.168.0.0/24;

192.168.1.0/24;

};

logging {

channel "default_syslog" { syslog daemon; severity info; };

category default { default_syslog; };

};

options {

directory "/";

pid-file "/var/run/named.pid";

version "[null]";

allow-query { trusted; };

query-source address * port 53;

};

view "internal" {

match-clients { trusted; };

zone "." {

type hint;

file "/master/db.cache";

};

zone "localhost" {

type master;

file "/master/db.localhost";

notify no;

};

4444c11_final.qxd 1/5/05 1:04 AM Page 478

CHAPTER 11 ■ HARDENING DNS AND BIND 479

zone "0.0.127.in-addr.arpa" {

type master;

file "/master/db.127.0.0";

notify no;

};

};

Let’s now look at each of these statements and see how they combine to make a BIND
server configuration.

■Note I will also provide several secure named.conf configurations in Appendix B.

Access Control Lists
The first statement I will cover is the acl (access control list) statement. The acl statement
allows you to nickname and group lists of IP networks and addresses, other acl statements, or
key IDs. These lists can then control access to the BIND server or to individual functions of the
server. For example, you can define the IP addresses or networks of all the trusted local clients
in an acl. You can then specify that acl as being allowed to recursively query the BIND server.
Listing 11-5 defines one acl statement, which looks like this:

acl "trusted" {

192.168.0.0/24;

192.168.1.0/24;

};

I have called the acl trusted and specified two networks, 192.168.0.0/24 and 192.1.0.0/24,
in it. You will note each network has been separated by a semicolon. This is how the named.conf
file separates list items.

■Tip If you fail to insert a semicolon after a list item, then when you attempt to start the named daemon,
a syntax error will result and the daemon will not start. This is one of the most common errors people make
in their named.conf files. You should run the named-checkconf command that comes with BIND on your
configuration file to confirm its syntax is correct.

The syntax used by the acl statement to match IP addresses, networks, and keys is known
as an address match list (even though you are matching more than just addresses). It is used by
a variety of options in your named.conf file to provide control over who can perform particular
functions. For example, the allow-transfer option (which controls who can transfer zones) also
uses address match lists. The acl statement allows you to specify these controls in one location
rather than having to repeatedly enter lists of IP addresses and networks into every option that
requires access control.

4444c11_final.qxd 1/5/05 1:04 AM Page 479

CHAPTER 11 ■ HARDENING DNS AND BIND480

For example, I have used the acl in Listing 11-5 to define clients I trust in my internal net-
work. You can refer to the trusted acl in every option where you need to provide access to your
trusted network devices. This both reduces the complexity of your named.conf file and reduces
the administrative overhead in maintaining the file, as you have to make changes in only one
acl rather than in the access controls for multiple options. I recommend placing your acl state-
ments at the top of your named.conf file.

You can list as many matches as you like in each acl statement. The items within each list
are processed in sequence. If you include the 192.168.0.0./24 network and then the IP address
192.168.0.100 in an acl like this:

acl "sequence" {

192.168.0.0/24;

192.168.0.100;

};

then the second 192.168.0.100 IP address entry would have no effect because you have
already previously specified the entire 192.168.0.0 network in the acl.

You can also specify four special keywords in acl statements. They are any, none, localhost,
and localnets. The any keyword allows access from any source, and none denies access to all
sources. The localhost keyboard grants access to all the IP addresses of the local host. The
localnets keyword matches all local IP addresses and subnets attached to the local host. You
need to be careful with the localhost and localnets keywords if your host is a bastion host and
is connected to the Internet on one of its interfaces. For example, you do not want to grant access
to inappropriate resources or functionality on your host because you have granted access to an
Internet-facing subnet using the localnets keyword.

Additionally, you can also specify a key ID in an acl statement. I discuss TSIG and keys in
the “TSIG” section of this chapter.

acl "key" {

key_id;

192.168.0.100;

};

The key_id must be defined with a key statement if it is to be used in an acl statement.
Finally, you can negate an item in an acl by prefixing it with an exclamation mark, like

this:

acl "negation" {

! 192.168.0.100;

};

The negation acl matches any source except the IP address of 192.168.0.100.

Logging
The next statement in Listing 11-5 is the logging statement. This statement controls what
BIND will log, how much it will log, and to where it will log it. Let’s dissect the logging state-
ment in Listing 11-5. The logging statement is broken down into channels, categories, and
a series of substatements specific to each. Unlike some other statement types, the logging
statement does not need to be named.

4444c11_final.qxd 1/5/05 1:04 AM Page 480

CHAPTER 11 ■ HARDENING DNS AND BIND 481

Channels
A channel is a target destination for your log data; for example, the syslog daemon is a poten-
tial logging channel. Each channel consists of a channel name, the destination of the log data,
any limits on the message severity to be delivered to the channel, and additional options. You
can define as many channels as you like.

Only one channel is defined in Listing 11-5. It is called default_syslog and is one of four
built-in channels that are predefined to BIND. (I will discuss the other default channels shortly.)
The destination of the default_syslog channel is syslog. The syslog destination also has one
option: the facility to which you are going to send the messages. In this case I have defined the
daemon facility, but you can specify any of the available syslog facilities.

You are also able to specify the severity of the messages you want to send. In this case
I have specified info, which will send all messages of info severity or higher. In combination,
these options indicate that the default_syslog channel will send all messages of info severity
or higher to the daemon facility of the local syslog daemon.

■Tip See Chapter 5 for more detail on syslog facilities and severities.

You can use four possible destinations (including syslog) in BIND logging (see Table 11-3).

Table 11-3. BIND Logging Destinations

Destination Description

file Logs to a file

null Discards log entries

stderr Logs to standard error

syslog Logs to the syslog daemon

THE INCLUDE STATEMENT

You can use another statement, include, in the named.conf file. The include statement allows you to
include the contents of other files into your named.conf file. It is constructed like so:

include "/etc/keys.secret";

The previous statement would include the contents of the keys.secret file into the named.conf file at the
point where the include statement was placed. Any file you include into the named.conf file needs to have
read permissions granted to the user or group that the named daemon is utilizing; otherwise, the daemon will
not be able to include it. Additionally, if any sensitive configuration information is contained in included files,
you should ensure that the permissions of the files are adequately secure.

Always remember that if your BIND daemon is chrooted, the location of any file you include will be rela-
tive to the root of the chroot jail.

4444c11_final.qxd 1/5/05 1:04 AM Page 481

CHAPTER 11 ■ HARDENING DNS AND BIND482

The first destination in Table 11-3 is file. This allows BIND logging to a file and comes
with a number of additional options. Listing 11-6 defines a typical file destination channel.

Listing 11-6. File Logging Destination

channel "log_file" {

file "/var/logs/named.log" versions 7 size 1m;

print-time yes;

print-category yes;

print-severity yes;

};

I have named the channel log_file and specified a destination of file. The file destina-
tion has some additional options. The first option is the actual file you want to log to, in this
case /var/logs/named.log.

■Tip If you were running in a chroot jail, the location of this file would be relative to the root directory of
the chroot jail; for example, it would be /chroot/named/var/logs/named.log, not the root directory
of the host.

The next two options control the rotation of your log file. The versions option specifies
how many backup versions of the log file to keep. I have specified 7, which configures BIND
to keep the last seven log files. When the log rotates, BIND will create a new file and rename
the old file by suffixing a numeric increment to it; for example, named.log is renamed to
named.log.0. When it rotates again, named.log.0 will be renamed named.log.1, named.log will
be renamed named.log.0, and so on. If you specify versions unlimited, then BIND will not
limit the number of versions. The actual log rotation is controlled by the size option. In this
case I have specified a logging limit of 10m, which indicates individual log files of 10MB in size.
When this size limit is reached, the log file will be rotated. If the size limit is reached and the
versions option has not been specified, then BIND will stop logging.

The last three substatements in Listing 11-6 are print-time, print-category, and
print-severity. These all output additional logging information and can be used with the
file, syslog, and stderr destinations. The print-time option prints the current date and
time with the message. The print-category option prints the category of the messages (see
Table 11-5 for details of the categories). Lastly, the print-severity option prints the sever-
ity of the message (for example, info or debug).

Another possible destination is null. You can define this destination like so:

channel "discard" {

null;

};

The null destination causes all messages sent to this channel to be discarded.
The last destination is stderr. Messages directed to this channel are output to the server’s

standard error stream. This is designed to be used when named is running in foreground (for
example, if it has been started with the -f option and is used for debugging purposes).

4444c11_final.qxd 1/5/05 1:04 AM Page 482

CHAPTER 11 ■ HARDENING DNS AND BIND 483

The BIND server comes with four predefined channels (see Table 11-4). You do not need
to specify these channels to use them in your logging statement, but additionally you cannot
redefine new channels with the same name as these predefined channels.

Table 11-4. Predefined BIND Channels

Channel Description

default_debug Writes debugging messages to the named.run according to debugging level

default_stderr Sends severity info or higher messages to standard error

default_syslog Sends severity info or higher messages to syslog

null Discards all messages

Most of the channels are self-explanatory, but the default_debug channel needs further
clarification. The default_debug channel is enabled only when you start the named daemon
with the -d debug option; you can see it defined in Listing 11-7.

Listing 11-7. default_debug Channel

channel "default_debug" {

file "named.run";

severity dynamic;

};

The severity setting of dynamic indicates that the channel will output messages depend-
ing on the level of debug the named daemon is started with; for example, if the -d option is set
to 5, then it outputs debugging level 5 messages. The messages are outputted to a file called
named.run in the default working directory of the server, usually / or the root directory of your
chroot jail. If the named daemon is started in the foreground, then the debug output is redirected
to standard error rather than the named.run file.

You can also output debugging information using the severity debug option. To do so,
add the required debug level to the severity debug option like this:

channel "debug_log" {

file "named_debug.log";

severity debug 5;

};

This channel will, when the named daemon is started with the -d option, output all level 5
and higher debugging messages.

Categories
Channels are used in conjunction with categories. A category is a particular type of logging
data; for example, a category could contain logging entries related to configuration changes.
Each category of logging information can be directed to one or more channels. Table 11-5
defines the key categories.

4444c11_final.qxd 1/5/05 1:04 AM Page 483

CHAPTER 11 ■ HARDENING DNS AND BIND484

Table 11-5. Logging Categories

Category Description

default The default category defines the logging options for those categories where no
specific configuration has been defined.

general Any messages that are not defined into a particular category. This is a catchall
for these messages.

security Security-related messages.

config Configuration messages.

xfer-in Incoming zone transfer messages.

xfer-out Outgoing zone transfer messages.

client Client request processing messages.

network Network operations messages.

dnssec DNSSEC and TSIG messages.

lame-servers Lame server reports.

You can specify one or more channels for each category. Listing 11-5 specified only one
category, default, and directed it to the default_syslog channel, like so:

category default { default_syslog; };

But you can also specify multiple categories and multiple channels, like so:

category default { default_syslog; debug_log; log_file; };

category config { default_syslog; default_debug; };

category dnssec { null; };

I recommend specifying most of the major categories to your syslog or to a specific log
file (or both).

Options
The options statement controls a variety of BIND configuration options (for example, default
ports), the location of various directories and files, and default access controls. Like the logging
statement, the option statement does not need to be named. The options statement should
appear only once in the named.conf file.

The options statement encloses a list of individual options in two possible syntaxes. The
first syntax is as follows:

option "option value";

Here you enclose the option value in quotation marks and terminate it with a semicolon.
The second syntax is as follows:

option { option value; };

In this syntax, the option value is enclosed in braces and terminated with a semicolon.
The option itself is also terminated with a semicolon after the closing brace.

4444c11_final.qxd 1/5/05 1:04 AM Page 484

CHAPTER 11 ■ HARDENING DNS AND BIND 485

Listing 11-8 shows a selection of basic options. Let’s walk through each of these and look
at related and other options available to use. I will specifically focus on the security and access
control options, but I will also cover the options required to run BIND.

Listing 11-8. options Statement

options {

directory "/";

pid-file "/var/run/named.pid";

version "[null]";

allow-query { trusted; };

query-source address * port 53;

};

The first option in Listing 11-8, directory, specifies the default working directory for the named
daemon. I have specified / or the root directory. This is either the root directory of the host or, if the
named daemon is in a chroot jail, the root directory of the jail. If you have used the directory struc-
ture defined in the “Chrooting BIND” section, then the root directory would be /chroot/named/.
I also specified the pid-file option, which allows you to define the location of PID file; I have used
/var/run/named.pid. Another related option you could use is statistics-file, which allows you to
specify a location for the BIND statistics file. You can use this option like so:

statistics-file "/var/named.stats";

This file is used when the rndc stats command is run, and it stores the statistics gener-
ated by this command.

■Note See the “The rndc Command” section for more details on using the rndc command.

Hiding the BIND Version
The next option in Listing 11-8 is the version option. This option controls what the BIND server
will return when it receives a query for its version. This provides you the ability to obfuscate the
BIND version from an attacker by specifying the output to the version query. Whilst this does not
gain you a great deal of security, it does at least limit the ability of attackers to easily determine if
you have a BIND version that may be vulnerable to a particular attack. In this example, I have
specified a version value of [null]. I recommend you always specify this option and never allow
the BIND server to return its actual version to queries.

In conjunction with this option, you would generally define a chaos class view and a zone
for the pseudo-domain bind. The chaos class specifies zone data for the CHAOSnet protocol,
a MIT-developed LAN protocol that was created in the mid-1970s. BIND now uses the chaos
class to provide diagnostic information when TXT resource records in that domain are queried.
You can define the view and the bind domain using a zone statement as in Listing 11-9.

■Note Do not worry too much about the configuration of the view and zone, as I will discuss views and
zones in more detail in the “Views and Zones” section.

4444c11_final.qxd 1/5/05 1:04 AM Page 485

CHAPTER 11 ■ HARDENING DNS AND BIND486

Listing 11-9. bind Domain Zone

view "chaosnet" chaos {

match-clients { any; };

zone "bind" chaos {

type master;

file "/master/db.bind";

allow-query { any; };

allow-transfer { none; };

};

};

Listing 11-9 defines a view called chaosnet and a zone called bind. It is defined as a chaos

class zone rather than the normal in zone class by specifying chaos after the zone name. The
data for the zone is contained in the file db.bind.

You should place the chaosnet view you have created after any other views contained in
your named.conf file. I show this in the example files in Appendix B.

I have put the contents of a sample bind domain zone file in Listing 11-10.

Listing 11-10. bind Domain Zone File

$TTL 1d

@ CH SOA kitten.yourdomain.com. hostmaster.yourdomain.com. (

2004110300 86400 3600 604800 3600)

CH NS kitten.yourdomain.com.

version.bind. CH TXT "[null]"

The zone file contains only one record, a TXT record containing the data you want to return
when the BIND version is queried. You would need to change the host details in Listing 11-10 to
match the name servers in your environment.

To demonstrate the response using the bind domain, I have queried its contents using the
dig command in Listing 11-11.

Listing 11-11. Using Dig to Retrieve the BIND Version

kitten# dig version.bind txt chaos

; <<>> DiG 9.2.3 <<>> version.bind txt chaos

...

;; QUESTION SECTION:

;version.bind. CH TXT

;; ANSWER SECTION:

version.bind. 86400 CH TXT "[null]"

;; AUTHORITY SECTION:

bind. 86400 CH NS kitten.yourdomain.com.

...

Listing 11-11 shows the dig command and a sample of the output, including the version
response of [null].

4444c11_final.qxd 1/5/05 1:04 AM Page 486

CHAPTER 11 ■ HARDENING DNS AND BIND 487

■Tip If you specify only the version option without defining the version TXT record in the bind zone,
then BIND will not log attempts to query the version. Only if you have defined the version.bind zone will
the query be logged. You should define the zone to enable logging of people who query your BIND version.
This query is often a precursor to an attack, and logging of this can provide a warning.

Access Controls
One of the key purposes of the options statement is to provide global rules for a number of
access control options. Access control options allow you to specify which sources are author-
ized to perform particular functions on your BIND server. For example, the options statement
in Listing 11-8 contains the access control substatement.

allow-query { trusted; };

This substatement specifies which hosts or networks can perform ordinary DNS queries
using this BIND server. This is important for a couple of reasons. First, it prevents your DNS
server from being used for resolution by anyone except the users you want. You want to provide
caching and resolution to internal users only. Second, it reduces the risk your BIND server will be
used for malicious purposes, for example, as a traffic multiplier in a DoS attack. In Listing 11-8 the
allow-query access control option is configured to use an acl defined earlier: trusted. This allows
only trusted local clients to query the server. All other query requests from sources not listed in
the trusted acl will be denied. This is the recommended approach for controlling who can query
your BIND server.

The access control options use the same address list match syntax as acl statements to
define the allowed sources. Thus, in each option you can specify individual hosts, networks,
acl statements, or one of the keywords such as none or localnets described in the “Access
Control Lists” section.

Any options defined in the options statement are global rules for the BIND server and
specify the server’s default behavior. You can override many of these access control options
individually within zone or view statements to allow a greater granularity of access controls.
I will cover how to do this in the “Views and Zones” section.

You can use a variety of other access control options (see Table 11-6).

Table 11-6. Option Statement Access Controls

Control Description

allow-notify Sources allowed to notify a slave server of zone changes. This is relevant only
on a slave server.

allow-query Sources that can perform DNS queries on this server.

allow-recursion Sources allowed to make recursive queries through this server.

allow-transfer Sources allowed to receive zone transfers from the server.

blackhole Sources that the server will not use for queries or query resolution.

Let’s look at several of these access controls. I have already discussed the allow-query access
control, which provides control over who can query the BIND server. The allow-recursion

4444c11_final.qxd 1/5/05 1:04 AM Page 487

CHAPTER 11 ■ HARDENING DNS AND BIND488

control is particularly important. It specifies the sources, if any, that will be allowed to make
recursive queries to this BIND server. I will talk more about recursion in the “Notify, Recursion,
and Forwarding” section.

The allow-transfer option specifies which hosts are allowed to receive zone transfers
from this host. You should limit this to only those hosts that actually need to conduct zone
transfers with the server. For example, if this server is authoritative for one or more domains,
then I recommend creating an acl containing the IP addresses of any slave servers and limit-
ing the allow-transfer access control to that acl. You can see this in Listing 11-12.

Listing 11-12. The allow-transfer Option

acl "transfer" {

192.168.0.200;

192.168.1.10;

192.168.2.20;

};

...

options {

allow-transfer { transfer; };

};

...

In Listing 11-12 I have created an acl called transfer that contains the IP addresses of some
hypothetical slave servers. I have then used this acl in the allow-transfer option to allow only these
slave servers to receive zone transfers from this server. You can also override the allow-transfer
option for an individual view or zone by specifying the option in the view or zone statement.

The last access control option in Table 11-6 is blackhole. The blackhole access control
option allows you to specify a list of sources that the server will never accept queries for and,
importantly, will never use to resolve a query. Many people define a special acl that contains
a variety of IP addresses and networks, such as bogon networks or the IP addresses of attack-
ers, and then uses this acl in the blackhole option to block queries from these addresses.13

You can see this in Listing 11-13.

Listing 11-13. The blackhole Option

acl "badsource" {

0.0.0.0/8;

1.0.0.0/8;

2.0.0.0/8;

203.28.13.12;

};

...

options {

blackhole { badsource; };

};

...

13. See Chapter 2 for details of bogon networks and other potential sources to block.

4444c11_final.qxd 1/5/05 1:04 AM Page 488

CHAPTER 11 ■ HARDENING DNS AND BIND 489

■Note See Chapter 2 for some information on IP networks from which you should not accept queries.

You can override all these access controls, except blackhole, by specifying the access con-
trol options in individual view or zone statements. This allows you to increase the granularity
of your access control by controlling it at the individual view or zone level.

Ports, Addresses, and Firewalling
The next couple of options I will cover control the source IP addresses and ports that your
BIND server will use. This can have a significant impact on how you firewall your host and
how your network firewalls handle your DNS traffic. By default, when started, BIND will lis-
ten on UDP and TCP port 53 on all interfaces attached to your system. When remote clients
send their query requests, they originate from ephemeral ports and connect to port 53 on the
BIND server.14 The BIND server sends its replies from port 53 back to the ephemeral port on
the client.

■Note I describe using iptables to firewall DNS servers in Chapter 2.

Binding to all interfaces on the BIND server is often not an ideal configuration, so you will
probably want to limit the interfaces to which BIND is bound. The listen-on option addresses
this requirement and allows you to specify the port and IP address on which BIND will listen.
Listing 11-14 shows the listen-on option.

Listing 11-14. listen-on Option

listen-on { 192.168.0.100; };

You can also specify multiple IP addresses in your listen-on option to allow BIND to lis-
ten on multiple interfaces, like so:

listen-on { 192.168.0.101; 203.28.13.12; };

By default BIND listens on port 53, but you can also specify a different port using the lis-
ten-on option, like so:

listen-on port 1053 { 192.168.0.100; };

Finally, you can specify more than one listen-on option to provide a greater granularity
of control over where BIND listens. You can see this in Listing 11-15.

14. For information on ephemeral ports, see Chapter 2.

4444c11_final.qxd 1/5/05 1:04 AM Page 489

CHAPTER 11 ■ HARDENING DNS AND BIND490

Figure 11-2. New BIND port usage

Listing 11-15. Multiple listen-on Options

listen-on { 192.168.0.100; };

listen-on port 1053 { 10.0.0.100; };

Using the configuration in Listing 11-15 configures BIND to listen on IP address
192.168.0.100 on port 53 and also on IP address 10.0.0.100 on port 1053.

You need to also look at the port from which the BIND server sends its own requests and
queries. These queries include DNS queries initiated by the BIND server and transfer and DNS
NOTIFY queries from slave servers to master servers. In versions prior to BIND 8, the BIND server
sent its own queries on port 53. In BIND versions 8 and 9 this behavior has been changed. The
BIND server now uses a random ephemeral port as the source port for these queries. You can
see this new behavior demonstrated in Figure 11-2.

This can create issues for your firewall configuration. This is because generally DNS traffic
to and from your BIND servers is firewalled to allow traffic in and out on port 53 only. They do
not allow BIND servers to send queries from the ephemeral ports. One potential way of address-
ing this problem is to open the ephemeral port range on your host and network firewalls. But to
most people, opening these ports is not an acceptable option, as it exposes your network and
hosts to a greater risk of attack.

You can, however, configure BIND to behave as it did in previous versions. You can
achieve this using the query-source, transfer-source, and notify-source option substate-
ments, as you can see in the Listing 11-16.

Listing 11-16. The Source Substatements

query-source address * port 53;

transfer-source address * port 53;

notify-source address * port 53;

These substatements allow you to specify the source IP address and port number for
a variety of BIND queries, including zone transfers. The query-source substatement sets the
source IP address and port for DNS resolution queries generated by your BIND server. The

4444c11_final.qxd 1/5/05 1:04 AM Page 490

CHAPTER 11 ■ HARDENING DNS AND BIND 491

15. See the article at http://sysadmin.oreilly.com/news/views_0501.html to learn why this could be
useful.

16. See RFC 1996 for details of the DNS NOTIFY function (http://www.ietf.org/rfc/rfc1996.txt).

transfer-source substatement controls the source IP address and port used for zone transfers
and refresh queries. The notify-source substatement defines the source IP address and port
used for DNS NOTIFY queries.

All these substatements are identical in syntax and have two options: address, which
allows you to specify the source IP address, and port, which allows you to specify the source port.
For either you can specify a wildcard using the * symbol. In each substatement in Listing 11-16
I have specified a source address of *, which indicates that BIND can send from all local net-
work interfaces. For each substatement I have also specified a source port of 53, which indi-
cates that BIND will only send queries from port 53. Setting the source substatements as I have
in Listing 11-16 will change its behavior back to that of previous BIND releases where queries
are sent from port 53.

■Caution The specification of a fixed port applies only to UDP traffic. Any TCP traffic will still use an
ephemeral port.

You can also limit the source IP address by specifying a particular IP address, like so:

query-source address 192.168.0.100 port *;

I have also specified a wildcard * as the source port in the query-source substatement.
This tells the BIND server to use its new default behavior and to send DNS queries from the
ephemeral ports.

You can also use the transfer-source and notify-source substatements in your zone
statements. Using either of these substatements in a zone statement will override the values
in the options statement. This allows you to specify a particular query or transfer query source
for an individual zone.15

■Tip I recommend you revert to the previous behavior for your BIND server, as it makes securing your
hosts and networks with firewalls considerably easier.

Notify, Recursion, and Forwarding
You can specify some additional configurations settings in the options statement that can
be useful when configuring your BIND server. The first option is the notify option. This
controls whether BIND will send DNS NOTIFY messages to slave servers to notify them when
zones change.16 When the zone changes, the master server will send the NOTIFY messages to
all the name servers, except the master server, listed in each zone. When the slave servers

4444c11_final.qxd 1/5/05 1:04 AM Page 491

CHAPTER 11 ■ HARDENING DNS AND BIND492

receive the NOTIFY messages, they are prompted to check the master server to ensure they
have the most recent version of the zone. If there is an update to the zone, then the slave
servers will initiate a zone transfer. The notify option can also be set in individual zone
statements to override the value of the option set in the options statement.

The notify option is set to yes by default. You can also specify two other settings for this
option: no, which stops the sending of the NOTIFY messages, and explicit, which is used with
another option, also-notify. The also-notify option allows you to specify additional servers,
other than the name servers defined in your zones, that you can use to receive NOTIFY mes-
sages when zones change. You can specify this option in the options statement like this:

notify explicit;

also-notify { 192.168.1.10; 192.168.2.10; };

You can override the also-notify option in the options statement by placing the option
individually in a zone statement. This allows you to specify additional slave servers to be sent
NOTIFY messages on an individual zone basis.

This option is further supplemented by the allow-notify access control option. On a slave
server this allows you to specify the addresses of all the servers that are authorized to send this
slave server NOTIFY messages. You can specify it like this:

allow-notify { 192.168.1.100; };

The allow-notify option on the previous line configures the server to accept NOTIFY
messages with a source address of 192.168.1.100 only.

The next option I will cover is the recursion option. This option controls whether the BIND
server will allow recursion. Recursion is the process that occurs when a DNS server receives a
query for a domain for which it is not authoritative. To provide an answer to this query, the DNS
server must query other DNS servers for the answer. This is called a recursive query.

For example, the BIND server kitten.yourdomainc.com is authoritative for the domain your-
domain.com but not for the domain anotherdomain.com. If a client queries the kitten server about
the yourdomain.com domain, they will receive an answer because the kitten server is authorita-
tive for that domain. If the client then queries the kitten server about the anotherdomain.com
domain and recursion is disabled, then the query will fail. This is because kitten is not authori-
tative for that domain and, with recursion disabled, is not allowed to ask other DNS servers for
an answer. If recursion was enabled, then the kitten server would attempt to provide an answer
to the query by querying its cache or other DNS servers.

By default, the recursion option is set to yes like this:

recursion yes;

The recursion option is linked to the allow-recursion access control option. Using this
option you can specify which of your clients is allowed to recursively query the server. Only
your trusted internal clients should be allowed to make recursive queries. You do not want to
provide answers to recursive queries to external sources. This is to prevent your bandwidth
and resources from being used by unauthorized people and to reduce the exposure of your
BIND server to a potential attack.

One method of allowing controlled recursion is to define an acl for your trusted hosts or
networks and specify this acl in your allow-recursion option. Listing 11-17 demonstrates this
method.

4444c11_final.qxd 1/5/05 1:04 AM Page 492

CHAPTER 11 ■ HARDENING DNS AND BIND 493

Listing 11-17. Controlling the Recursion Option

acl "trusted" {

192.168.0.0/24;

192.168.1.0/24;

};

...

options {

recursion yes;

allow-recursion { trusted; };

};

...

In Listing 11-17 only the 192.168.0.0/24 and the 192.168.1.0/24 networks are able to
recursively query the server.

Lastly, I will cover the forward and forwarders options. These options allow you to configure
a BIND server to forward all or some queries to another DNS server for resolution. The forwarders
options allow you to specify a list of DNS servers for queries to be forwarded to, like this:

forwarders { 192.168.1.110; };

In the previous line I have configured BIND to forward all queries to the DNS server at
192.168.1.110. You can also specify forwarding to a particular port on an IP address like this:

forwarders { 192.168.0.100 1053; };

In the previous line I have configured BIND to forward all queries to the DNS server at IP
address 192.168.0.100 and to port 1053.

The forward option modifies the behavior of the forwarders option. It has two settings,
only and first. When the forward option is set to only, then the BIND server will forward all
queries to the designated forwarders. If set to first, then queries will be forwarded; how-
ever, if the forwarder is unable to answer the query, then the BIND server will then attempt
to answer the query itself. The default setting for this option is first.

You can override both of these global options by using them in individual zone statements.

■Note I recommend you review the BIND Administrator’s Reference Manual available at http://
www.bind9.net/Bv9ARM.html for full details of all the options available in the options statement.

Views and Zones
In this section I will briefly cover the view and zone statements and how they are constructed.
This is by no means a definitive explanation of these statements; I recommend you do further
research and study to ensure you fully understand how both statement types work and how
they can impact your DNS configuration and design.

4444c11_final.qxd 1/5/05 1:04 AM Page 493

CHAPTER 11 ■ HARDENING DNS AND BIND494

Views
The view statement is linked to the zone statement and was introduced in BIND version 9. The
view statement acts as a container for a series of zone statement and allows you to answer a DNS
query differently depending on who is asking. For example, suppose you have a bastion host
running BIND and connected to both your internal network and the Internet. Using views, it
could provide one answer to a query from your internal network and a different answer to the
same query from the Internet.

Why is this useful? Well, it can offer you two advantages. First, it can allow a single BIND
host to be simultaneously authoritative for domains internal to your network and external to the
Internet. Second, it can allow a single BIND host to perform both server and caching functions.

So, how do views provide these advantages? Let’s take the BIND host
kitten.yourdomain.com. It is a bastion host connected to the local 192.168.0.0/24 network
with an IP address of 192.168.0.100 and also connected to the Internet with an IP address of
203.28.13.12. The kitten.yourdomain.com domain is authoritative for the yourdomain.com
domain. From the internal network, if someone queries the hostname puppy.yourdomain.com,
you want the BIND server to return the IP address 192.168.0.10. From the Internet, if some-
one queries the same hostname, you want the BIND server to return its Internet-facing IP
address, 203.28.13.13. But before you had views, you could define only one yourdomain.com
zone with one zone file in a named.conf file. This meant you could not provide both these
answers from a single host, unless you were running two instances of BIND. This configura-
tion required considerable overhead and was highly complicated to administer.

With views you can define a view for each type of query, internal or external. You then
match the incoming clients to the appropriate view. You then have two yourdomain.com zones
defined, one in each view and each with their own zone files. Clients from the internal net-
work will receive answers from the internal view, and clients querying from the Internet will
receive answers from the external view. This combines the functionality of two BIND servers
into one server.

You can use the same view functionality to provide two different types of BIND function-
ality, server and caching, on one host. Using views you can match one set of clients (for exam-
ple, any external untrusted clients) to a view that resolves queries only for domains for which
it is authoritative and does not provide caching or recursion. Another set of clients (for exam-
ple, your trusted internal clients) can be matched to a view that allows caching and recursive
queries but is not authoritative for any domains.

■Caution Both internal and external DNS or shared server and caching functions on one host can be
useful, especially if your budget for infrastructure is limited, but they are always the best model for your
DNS infrastructure. See the discussion in the “Secure BIND Design” section for more details, but I recom-
mend you split your internal and external DNS resolution services and your server and caching functions
onto separate hosts. Additionally, you should always ensure you have slave servers to provide redundancy
to your master servers.

So, how do you define a view statement? Let’s look at Listing 11-18.

4444c11_final.qxd 1/5/05 1:04 AM Page 494

CHAPTER 11 ■ HARDENING DNS AND BIND 495

Listing 11-18. A view Statement

view "internal" IN {

match-clients { trusted; };

recursion yes;

...

Your zones here.

...

};

Views need to be named, and you should place the name in quotation marks to allow the
use of any name, including protected BIND configuration words. Listing 11-18 has defined a
view called internal. After the name of the view, I have specified its class, IN. This is the Inter-
net class, and it should be used for almost all views. If you do not specify a class, then BIND will
default to a class of IN. Finally, the contents of the view are contained within braces, and the
last brace needs to be terminated with a semicolon, in line with the standard named.conf con-
figuration statement style.

The view statement has three major sections: the client matching options, the view options,
and the zones defined in this view. The client matching option is required for all views, and for
this I specify the match-clients substatement. You can see this in Listing 11-18. This substate-
ment allows you to specify the particular clients who can use this view. You must specify this
substatement to ensure that the view is matched to particular clients. In the match-clients sub-
statement in Listing 11-18 I have specified an acl, trusted, which was defined in Listing 11-5
earlier in the chapter. This configures BIND to match all the addresses specified in that acl to
this view. The match-clients option can also use the normal BIND address matching list param-
eters such as IP addresses, networks, or keys.

You can also specify an additional client matching substatement, match-destinations.
The match-destinations substatement allows you to match clients by the destination to which
they have connected. You can also use both of these substatements together to match a client
source and destination.

Finally, you can also specify the match-recursive-only substatement, which indicates
that only recursive queries from matching clients will be matched to the view. Other types of
queries will not be matched to the view.

The order in which you specify your view statements in the named.conf file is also impor-
tant. BIND will check the client matching criteria from each view in sequence. The first view that
matches the selection criteria will be the view BIND will use to resolve queries for that client.

You can also use a number of the same options that you can specify in the options state-
ment in your view statements. If you have set the same option in the options statement and the
view statement, then the value in the view statement will override the value in the option state-
ment. The most common option you might use in a view statement is the recursion option. With
this option specified in a view statement, you can allow or disallow recursive queries for a par-
ticular view. The list of other options you can use with the view statement grows with each release
of BIND, but most options can be specified, including the access control options described in
the “Access Controls” section.

Inside your view statement you also need to specify all the zones that are to be defined in
the view. The default syntax of the zone statement does not change because you have placed
the zone in a view.

4444c11_final.qxd 1/5/05 1:04 AM Page 495

CHAPTER 11 ■ HARDENING DNS AND BIND496

But if you use views, then you must place all zone statements in the named.conf file into
views. If you use views, then you cannot have zones defined outside of view statements, even
if you have only one view statement. I recommend that for all BIND servers, including those
with only one potential view, that you define a view statement to hold all your zones. You can
see how I have done this in the example configurations provided in Appendix B.

■Note I discuss zone statements and their structure in the next section.

Let’s finish the discussion of zones with an example of how to create a split DNS model
using views (see Listing 11-19).

Listing 11-19. Split DNS Using Views

view "internal" IN {

match-clients { trusted; };

recursion yes;

zone "yourdomain.com" IN {

type master;

file "master/db.yourdomain.com.internal";

};

};

view "external" IN {

match-clients { any; };

recursion no;

zone "yourdomain.com" IN {

type master;

file "master/db.yourdomain.com.external";

};

};

Listing 11-19 specifies two views, internal and external. The internal view matches
all clients in the trusted acl and allows recursion. It will also answer queries about the
youdomain.com domain with information from the db.yourdomain.com.internal zone file
in he master directory. The external view matches any client and does not allow recursion.
It will also answer queries about the youdomain.com domain with information from the
db.yourdomain.com.external zone file in the master directory.

You can see also see the importance of the order of your view statements: all trusted
clients would be matched first to the internal view. All other clients will match the external
view because you have used the any criteria with the match-clients substatement.

4444c11_final.qxd 1/5/05 1:04 AM Page 496

CHAPTER 11 ■ HARDENING DNS AND BIND 497

Zones
All BIND servers use zone statements to a varying degree. For example, if your BIND master
server is authoritative for any domains, then these are defined in zone statements. On a slave
server these domains are defined as slave domains using a zone statement. Even if you are
configuring a caching-only BIND server, which has no domains for which it is authoritative,
then it is still necessary to define some zone statements, especially the root hints domain that
provides your server with the addresses of the DNS root servers.

■Tip You will generally always need to define two zone statements: a localhost zone and a reserve
mapping of the 127.0.0.1 IP address. This provides DNS resolution to the local system for the loopback
address. I have created these zones in the example configurations in Appendix B.

A zone statement defines what the BIND server knows about a domain, including its type,
the location of the zone file containing the zone data, and who is allowed to query, transfer, or
update the zone, amongst other options.

Let’s now look at an example of a simple master zone statement (see Listing 11-20).

Listing 11-20. A Master Zone Statement

zone "yourdomain.com" IN {

type master;

file "/master/db.yourdomain.com";

In Listing 11-20 you can see my zone statement has a name, yourdomain.com, which I have
placed in quotation marks. The IN after the zone name indicates that this is an Internet class
zone. The Internet class is the normal and default setting for most domains. If you omit a
class, then BIND defaults to the IN class.

Inside the zone statement’s braces you place the options defining the zone. The first
option is type, which indicates the type of zone; in Listing 11-20 I have defined a master zone.
Five zones types exist (see Table 11-7).

Table 11-7. Zone Types

Type Description

master Master copy of the data for a zone.

slave Replica of a zone. Another server holds the master of this zone.

stub Abbreviated replica of a zone containing only the NS records. Deprecated in BIND 9.

forward Allows forwarding for an individual zone.

hint Specifies the names and IP addresses of the root servers.

4444c11_final.qxd 1/5/05 1:04 AM Page 497

CHAPTER 11 ■ HARDENING DNS AND BIND498

Master zones are the master copy of zone data for a domain and provide authoritative
answers to queries for that domain. To define a master zone, you must define at least the type
and file options. If either of these is omitted, the zone will not load.

A slave zone is a replica of a master zone. You define a slave zone on a secondary or slave
DNS server. The slave server connects to the master server and transfers the zone’s data either
when prompted by a DNS NOTIFY message or on a regular schedule. You define the master DNS
servers for each slave zone in the zone definition like this:

zone "yourdomain.com" IN {

type slave;

file "/slave/db.yourdomain.com";

masters { 192.168.0.100; };

The masters option allows you to specify the IP address of DNS server that holds the mas-
ter zone for a domain. The slave zone will use this IP address to retrieve the zone data. You can
specify multiple IP addresses in this option and particular port numbers, as you can see in
Listing 11-21.

Listing 11-21. Multiple Master Servers

masters { 192.168.0.100; 192.168.1.100 1053; };

In Listing 11-21 I have specified two master servers, 192.168.0.100 and 192.168.1.100.
I have also configured the slave server to connect to the master server at 192.168.1.100 on
port 1053 instead of the normal port 53. To define a functional slave zone, you must define
at least the type, file, and masters options. If any of these is omitted, the zone will not load.

A stub type zone is like a slave zone but contains only a subset of the data of the master
zone. In this case it contains only the NS, or name server, records for the zone. Unless you have
previously used stub zones in BIND 4 or 8, then you will probably not use them with BIND 9,
and support is now limited for them.

A forward zone allows you to specify the forwarding of DNS queries on an individual
domain basis. With a forward zone, you can specify a forwarder or forwarders for a particular
domain. For example, all queries for the yetanotherdomain.com domain could be forwarded to
the DNS server 192.168.1.110 like this:

zone "yetanotherdomain.com" {

type forward;

forwarders { 192.168.1.110; };

};

You can include multiple forwarders in your forwarders substatement. Additionally, like
the masters option, you can specify a particular port on the IP address of the forwarder.

■Note See the “Notify, Recursion, and Forwarding” section for additional information on forwarding.

The last domain type, hint, is used for hint zones that define the initial set of root servers
that BIND will use in resolving queries. The root servers provide “seed data” sources to your

4444c11_final.qxd 1/5/05 1:04 AM Page 498

CHAPTER 11 ■ HARDENING DNS AND BIND 499

17. You will find a brief but comprehensive presentation on root servers at http://www.root-servers.org/
presentations/rootops-gac-rio.pdf.

DNS server to help initiate resolution. These root servers provide an entry point into the DNS
“cloud” and point your DNS servers to other DNS servers that may be able to resolve queries.17

A hint zone is always required for a caching BIND server that resolves recursive queries for
clients. It is not required for a BIND server that is simply authoritative for a domain or domains.
You can specify a hint zone like this:

zone "." {

type hint;

file "db.hint";

};

The name for a hint zone is always an ending punctuation mark, and the zone type is hint.
If you need to define a hint zone, then I recommend you place this zone statement before all
your other zone statements in the named.conf file.

The next option in Listing 11-20 is the file option. This option defines the location of the
zone file that contains the zone data. Several types of zone statements, such as master, slave,
and stub, require that a zone file option be defined. I will not discuss the contents of zone files,
as this is a much broader topic than the scope of this chapter allows. It is important to remem-
ber that if your BIND daemon is in a chroot jail, then these files are defined relative to the root
directory of the chroot jail. I also recommend you distinctly name your zone data files so as to
make their contents readily identifiable. I tend to use a naming convention like the following:

db.domainname.tld.suffix

replacing domainname.tld with the domain name (for example, yourdomain.com) and suffix
with the suffix.

■Note For references to information on building zone files, see the “Resources” section at the end of the
chapter.

THE HINT ZONE

The content of the hint zone data file includes the names and IP addresses of the root DNS servers.
These addresses change occasionally, so you should ensure you have a regular process to update this
file. For example, you could redirect the output of a dig command to the hints zone data file like this:

kitten# dig @l.root-servers.net . ns > /chroot/named/master/db.hint

You can also download this data (if you trust the source) from a variety of FTP servers and Web sites. Many
DNS administrators write scripts and automate this process with cron.

4444c11_final.qxd 1/5/05 1:04 AM Page 499

CHAPTER 11 ■ HARDENING DNS AND BIND500

18. http://www.nominum.com/content/documents/bind9arm.pdf

19. TSIG is defined by RFC 2845 (http://www.faqs.org/rfcs/rfc2845.html).

Each zone statement can also contain a number of options, including many of the options
that can be defined in the options statement. If you specify an option in the zone statement
that is also set in the options statement, then the zone statement option will override the
options statement option for that zone.

Table 11-8 lists some of the key options available to the zone statement. I explained almost
all these options earlier in the chapter, in a variety of different sections; where I have done this,
I have referred to those sections in the table. You can read about the additional options not
listed in Table 11-8 in the BIND Administrator Reference Manual.18

Table 11-8. A Selection of Zone Statement Options

Option Description

allow-notify See the description in the “Notify, Recursion, and Forwarding” section.

allow-query See the description in the “Access Controls” section.

allow-transfer See the description in the “Access Controls” section.

notify See the description in the “Notify, Recursion, and Forwarding” section.

also-notify See the description in the “Notify, Recursion, and Forwarding” section.

masters Species the master DNS servers for a slave zone.

forward See the description in the “Notify, Recursion, and Forwarding” section.

forwarders See the description in the “Notify, Recursion, and Forwarding” section.

transfer-source See the description in the “Ports, Addresses, and Firewalling” section.

notify-source See the description in the “Ports, Addresses, and Firewalling” section.

allow-update Specifies who is allowed to dynamically update master zones.

update-policy Specifies policy for Dynamic DNS updates.

■Note One of the areas I have not covered is the dynamic update of DNS data. This is disabled by default
but can be controlled with the allow-update and update-policy access control options. See http://
www.bind9.net/Bv9ARM.ch04.html#dynamic_update and http://www.bind9.net/
Bv9ARM.ch07.html#dynamic_update_security for more details on dynamic updates.

TSIG
Transaction signatures (TSIG) provide a mechanism for verifying the identity of the DNS
servers with which you are communicating.19 Before TSIG was available, the only method
available to determine if information from a particular DNS server was authentic was via IP
address verification. Unfortunately, IP addresses are easily spoofed and do not generally pro-
vide adequate certainty of a server’s identity. TSIG adds cryptographic signatures to DNS

4444c11_final.qxd 1/5/05 1:04 AM Page 500

CHAPTER 11 ■ HARDENING DNS AND BIND 501

20. Much like the digital signatures you looked at in Chapter 8

transactions to authenticate those transactions. This signature acts as a shared secret between
the servers that are communicating. TSIG is most commonly used to authenticate zone trans-
fers between primary and secondary DNS servers but can also be used to secure queries,
responses, and dynamic updates.

■Caution TSIG will not work for transfers between BIND servers and Microsoft DNS servers. Microsoft
DNS supports a variation of GSS-TSIG only, which is a Microsoft-proprietary implementation of secure DNS
updates. It uses a different algorithm and is not compatible with TSIG.

TSIG works by signing each DNS transaction between two servers. The transaction is signed
by adding a TSIG record to the DNS transaction. The TSIG record is created by hashing the con-
tents of the DNS transaction with a key.20 This key is identical on both servers and represents the
shared secret between the two servers. The sending server hashes the DNS transaction with the
key. It then sends the DNS transaction and the TSIG record to the receiving server. The receiving
server verifies, using its copy of the key, that the hash is valid. If it is valid, then the receiving server
accepts the DNS transaction.

Let’s first look at an example of using TSIG. Say you have two servers, kitten.yourdomain.com
with the IP address 192.168.0.2 and puppy.yourdomain.com with the IP address 192.168.0.1. You
will secure zone transfers between the two servers using TSIG.

The first step in doing this is to create a key that both servers will use. You can do this on
either server using the dnssec-keygen command. This command is provided with the BIND
distribution and allows you to generate keys for TSIG (and also for DNSSEC, which is where
the name of the command comes from), as you can see in Listing 11-22.

Listing 11-22. The dnssec-keygen Command

kitten# dnssec-keygen -a HMAC-MD5 -b 512 -n HOST kitten_puppy.yourdomain.com

Let’s break down this command. The first option in the command, -a, allows you to spec-
ify the algorithm to be used to generate the key. I have specified HMAC-MD5, which is the only
algorithm you can use for your TSIG keys. The -b option specifies the length of the key in bits.
I have used the highest possible value, 512. I recommend you do the same. The -n option tells
the dnssec-keygen command what type of key you want to generate, and I have specified HOST,
which is the only appropriate type of key for TSIG transactions. Lastly I have called the key,
kitten_puppy.yourdomain.com, making clear its purpose as the shared secret between these
two servers. I recommend naming all your keys in a similar manner.

The command in Listing 11-22 created two files:
Kkitten_puppy.yourdomain.com.+157+45723.key and
Kkitten_puppy.yourdomain.com.+157+45723.private. The filenames are structured like this:

Kname_of_key.+algorithm_number+random_key_id.suffix

They have a key name of kitten_puppy.yourdomain.com and an algorithm number of
157, which indicates the algorithm HMAC-MD5. You can ignore the random key identifier. The

4444c11_final.qxd 1/5/05 1:04 AM Page 501

CHAPTER 11 ■ HARDENING DNS AND BIND502

Kkitten_puppy.yourdomain.com.+157+45723.private file contains the key I have created for
TSIG. If you examine this file, you can see the key, as shown in Listing 11-23.

Listing 11-23. dnssec-keygen-Created Key

Private-key-format: v1.2

Algorithm: 157 (HMAC_MD5)

Key: faZLpiU7TypWy3kNkp47I9P+G0r1u+aRu2djQN63cv7QGgSDlajn5VrNjlxYhP8enV2RxEwlxxp==

The part of the file you require is the key specified after the Key: section of this file. The
key in Listing 11-23 starts with faZLp.

Now you need to define this key to BIND by adding key statements to the named.conf files
on both the puppy and kitten systems. Each key is defined using an individual key statement,
and you can define multiple keys. The key statement specifies the name of the key being defined
and has two required substatements. The first required substatement is the algorithm used by
the key. The second required substatement, secret, holds the key itself. You can see a key state-
ment in Listing 11-24.

Listing 11-24. Key Statement

key "kitten_puppy.yourdomain.com" {

algorithm "hmac-md5";

secret ➥

"faZLpiU7TypWy3kNkp47I9P+G0r1u+aRu2djQN63cv7QGgSDlajn5VrNjlxYhP8enV2RxEwlxxp==";

};

I have named my key kitten_puppy.yourdomain.com. The name of each key statement in
your named.conf file should be unique. You can see that I have added the actual key I generated
to the secret option of the key statement. You need to add the key statement to the named.conf
file on both systems, and you need to ensure the key statements are identical; otherwise, TSIG
authentication will not function.

■Caution You need to transmit any TSIG keys between systems in a secure manner. You should treat
your TSIG keys as if they were PKI private keys and thus use your normal secure key distribution method
to distribute the key to other systems. This may involve PGP-encrypted mail, secure fax, or even paper. If
attackers acquire your TSIG keys, they can impersonate one of your BIND servers and potentially compro-
mise your DNS environment.

Next you need to tell BIND when to use TSIG to verify transactions. The first part of doing
this is to set up server statements in your named.conf file. These server statements allow you to
specify options for BIND for each server with which it communicates. You should place your
server statements after your key statements in the named.conf file.

Listing 11-25 provides a server statement for the named.conf file on the kitten system.
This defines the puppy system (192.168.0.1) and the key to the kitten server.

4444c11_final.qxd 1/5/05 1:04 AM Page 502

CHAPTER 11 ■ HARDENING DNS AND BIND 503

21. http://www.ntp.org/

Listing 11-25. kitten Server Statement

server 192.168.0.1 {

keys { kitten_puppy.yourdomain.com; };

};

In Listing 11-26 you add the server statement for the named.conf file on the puppy server.
This defines the kitten system (192.168.0.2) and the key to the puppy server.

Listing 11-26. puppy Server Statement

server 192.168.0.2 {

keys { kitten_puppy.yourdomain.com; };

};

This now tells BIND that any communications between the servers, kitten and puppy, will
use the kitten_puppy.yourdomain.com key.

Finally, you need to restart or reload the BIND configuration on both systems, for exam-
ple, using the rndc command.

kitten# rndc reload

Listing 11-27 shows an extract from a zone transfer between the kitten and puppy servers
that has been authenticated with the TSIG key kitten_puppy.yourdomain.com, which I have
defined.

Listing 11-27. Log of a TSIG-Signed Zone Transfer

26-Oct-2004 22:36:02.489 zone yourdomain.com/IN/internal-in: Transfer started.

26-Oct-2004 22:36:02.514 transfer of 'yourdomain.com /IN' from ➥

192.168.0.1#53: connected using 192.168.0.2#32796

26-Oct-2004 22:36:02.736 zone yourdomain.com /IN/internal-in: ➥

transferred serial 200306073: TSIG 'kitten_puppy.yourdomain.com'

26-Oct-2004 22:36:02.736 transfer of 'yourdomain.com /IN' ➥

from 192.168.0.1#53: end of transfer

In Listing 11-27 you can see the transfer has used the TSIG key to transfer the
yourdomain.com zone.

■Tip The time on both servers is crucial to providing authentication. You need to ensure both servers have
identical and accurate time; for example, you can use Network Time Protocol (NTP) to provide an identical
time source for your servers.21

4444c11_final.qxd 1/5/05 1:04 AM Page 503

CHAPTER 11 ■ HARDENING DNS AND BIND504

You can also tell BIND to use the TSIG key to authorize individual zone transfers rather
than for entire servers. You still need to add key statements defining your keys to the named.conf
files on both systems involved. But instead of referring to these keys in a server statement, you
refer to them in a zone statement like in Listing 11-28.

Listing 11-28. Zone Transfers with TSIG

zone "yourdomain.com" in {

type master;

file "master/db.yourdomain.com";

allow-transfer { key kitten_puppy.yourdomain.com; };

};

I have specified the key I created in the allow-transfer option and prefixed it with the
keyword key to identify it as a key.

Using keys to provide authentication also works with the allow-update and update-policy
options used for dynamic DNS.

■Caution Your shared keys can be compromised using brute-force methods. You should change your
TSIG keys on a regular basis to limit the risk of this occurring.

The rndc Command
Version 9 of BIND introduced a new command called rndc. The rndc command performs a num-
ber of administrative functions for BIND servers such as loading changes to the BIND tables or
flushing the DNS cache. In previous releases of BIND, you usually had to restart the named daemon
to perform these types of function. The rndc command allows your DNS administrators to refresh
the zones or flush the cache without the named daemon needing to be restarted.

■Note BIND 8 introduced a command, initially in the form of a shell script and then later a binary, called
ndc. This command performed similar functions to rndc. The rndc command is a considerably more
advanced version of this original command and replaces it in the BIND package.

The rndc command functions by connecting to a control channel. By default this channel
usually listens on the localhost address 127.0.0.1 at port 953 and is initiated by the named
daemon when it is started. By listening on the IP address 127.0.0.1, the channel will accept
connections only from the local host.

You can also configure the channel to listen for remote connections on an external inter-
face. This provides remote DNS administrators the ability to use the rndc command and
issues commands to your BIND server. To do this, you need to open port 953 on your host’s
firewall, and you would need to have a copy of the rndc binary and related configuration file
rndc.conf on the remote system.

4444c11_final.qxd 1/5/05 1:04 AM Page 504

CHAPTER 11 ■ HARDENING DNS AND BIND 505

■Caution If you enable remote access to the rndc command, you should be careful to grant access only
to networks you trust. I recommend you limit connectivity to the local host unless remote access is a critical
requirement.

rndc.conf
Let’s first look at configuring the rndc command. The configuration of the rndc command is
controlled in two places: in the rndc.conf configuration file and by controls and key state-
ments you need to add to the named.conf configuration file.

The rndc.conf configuration file contains the configuration options that specify how the
rndc command connects to the named daemon. This file also contains a cryptographic hash,
like that used by TSIG (see the “TSIG” section), which authenticates the command to the con-
trol channel. The controls statement in the named.conf file specifies the options to configure
the control channel the rndc command connects to, and the key statement of the named.conf
file contains a copy of the cryptographic hash specified in the rndc.conf file. Defined in both
the rndc command’s configuration and the BIND server’s configuration, the cryptographic
hash acts as a shared secret.

By default, the rndc.conf file is located in /etc. If you have chrooted the named daemon,
you need to create a symbolic link to the file in the chroot jail; for example, using the chroot
jail created in the “Chrooting BIND” section, you would create the symbolic link in the direc-
tory /chroot/named/etc (see Listing 11-29).

kitten# ln -s /etc/rndc.conf /chroot/named/etc

Listing 11-29 shows a typical rndc.conf file.

Listing 11-29. rndc.conf File

options {

default-server 127.0.0.1;

default-key "rndc_key";

};

server 127.0.0.1 {

key "rndc_key";

};

key "rndc_key" {

algorithm "hmac-md5";

secret "private-key goes here";

};

The rndc.conf file can contain three statement types: options, server, and key. These state-
ments use the same syntax as named.conf statements, and all must be terminated with semicolons.

The first statement, options, specifies any defaults for the rndc command. In Listing 11-29
I have specified the default-server and default-key options. The default-server option controls
the default server the rndc command will try to connect to, in this case 127.0.0.1. The default-key

4444c11_final.qxd 1/5/05 1:04 AM Page 505

CHAPTER 11 ■ HARDENING DNS AND BIND506

22. See http://www.faqs.org/rfcs/rfc2104.html and http://www.faqs.org/rfcs/rfc2085.html for details
of HMAC-MD5.

option specifies the default key that the rndc command will use to make connections. I have
specified a key called rndc_key, which I will create shortly.

The next statement in Listing 11-29 is a server statement. You need to define one server
statement for each BIND server to which you want to connect. In Listing 11-29 I have specified
only one server statement. The server can be specified by IP address or hostname. For the server
statement I have specified the localhost IP address 127.0.0.1. For each server statement you
also need to specify the key to be used for this server. You can do this using the key substatement.
In Listing 11-29 I have defined the key rndc_key. You can specify more than one server by adding
server options like this:

server 127.0.0.1 {

key "rndc_key";

};

server dns1.yourdomain.com {

key "dns1_key";

};

In the previous lines I have added another server that the rndc command could connect
to: dns1.yourdomain.com. This server will use the key dns1_key to authenticate.

The last statement type, key, defines the key or cryptographic hash you will use to authen-
ticate. Each key is defined using an individual key statement, and you can define multiple keys.
The key statement specifies the name of the key being defined and has two required substate-
ments. Listing 11-29 defines a key name of rndc_key.

The first required substatement is the algorithm used by the key. In Listing 11-29 I have
specified the hmac-md5 algorithm.22 The HMAC-MD5 algorithm uses MD5 hashing to make
a Base64-encoded version of a password and is currently the only algorithm available to cre-
ate keys. It is the same algorithm used for TSIG keys. The second required substatement,
secret, holds the key itself.

Like in TSIG, you can generate keys using the dnssec-keygen command that is provided
with the BIND package. Listing 11-30 shows how to use the dnssec-keygen command to create
a key for the rndc command.

Listing 11-30. Creating an rndc Key

kitten# dnssec-keygen -a HMAC-MD5 -b 512 -n HOST rndc_key

Listing 11-30 will create two files: one file with a suffix of .key file and one file with a suffix
of .private. The file with the .private suffix contains the key you have created for the rndc
command. If you examine a typical file, you can see the key (see Listing 11-31).

Listing 11-31. dnssec-keygen-Created Key

Private-key-format: v1.2

Algorithm: 157 (HMAC_MD5)

Key: IoMYJlJoLOKtZnNXxGbcuHB0vY9MME➥

9p1VHJIM7mwnXHjFLyblbf9KGHoLIXR2IGFjbI/MSLYYPYvaHYGxq/wQ==

4444c11_final.qxd 1/5/05 1:04 AM Page 506

CHAPTER 11 ■ HARDENING DNS AND BIND 507

The key is located in the Key: section of this file and consists of a Base64-encoded string
of characters. You need to add this key to the secret substatement of the key statement you
saw in Listing 11-29, as shown in Listing 11-32.

Listing 11-32. Key Statement

key "rndc_key" {

algorithm "hmac-md5";

secret

"IoMYJlJoLOKtZnNXxGbcuHB0vY9MME9p1VHJIM7mwnXHjFLyblbf9KGHoLIXR2IGFjbI/MSLYYPYvaHY

Gxq/wQ==";

};

This completes the configuration of the rndc.conf file. Like your named.conf file, you do
not want people eavesdropping on the rndc.conf file. You should restrict the permissions on
this file to 0640 and have it owned by the named user and group.

■Tip You should delete the two files created by the dnssec-keygen process. They contain your key, which
you do not want to fall into the wrong hands.

Adding rndc Support to named.conf
You now need to add rndc support to the named.conf file so that a control channel is started by
the named daemon. You also need to add your key to the named.conf file so that the rndc com-
mand can be authenticated to the control channel. You do this using the controls and key
statements in the named.conf file (Listing 11-33).

Listing 11-33. named.conf Key and Controls Statements

key "rndc_key" {

algorithm "hmac-md5";

secret ➥

"IoMYJlJoLOKtZnNXxGbcuHB0vY9MME9p1VHJIM7mwnXHjFLyblbf9KGHoLIXR2IGFjbI/MSLYYPYvaHY

Gxq/wQ==";

};

controls {

inet 127.0.0.1 port 953 allow { 127.0.0.1; } keys { "rndc_key"; };

};

First, you add the identical key statement from Listing 11-32 to the named.conf file. You
must ensure you have the identical key and that the key name is the same in both the
rndc.conf and the named.conf files.

The controls statement declares the control channel to which the rndc command will
connect. In Listing 11-33 you can see a typical controls statement. Let’s break the statement
down. The first part of the statement is the inet option. This option specifies the IP address

4444c11_final.qxd 1/5/05 1:04 AM Page 507

CHAPTER 11 ■ HARDENING DNS AND BIND508

and port on which the control channel will listen. In Listing 11-33 specifies the loopback address
of 127.0.0.1 and the port 953. This means only users on the local system will be able to connect
to the control channel, and it will not be open to external connections. If you wanted to open
the channel to external connections, you would need to specify an external interface (see List-
ing 11-34).

Listing 11-34. Control Channel on an External Interface

controls {

inet 192.168.0.1 port 953 allow { trusted; } keys { "rndc_key"; };

};

The allow option specifies who is allowed to connect to the control channel. The option can
contain IP addresses, networks, or acl statements that you have already specified. Listing 11-33
allows connections only from the loopback address 127.0.0.1. Listing 11-34 specifies the trusted
acl. This acl would need to be defined in your named.conf file.

The last option of the controls statements is the keys option. This specifies which key state-
ment provides the cryptographic signature that is used to authenticate the rndc command to the
control channel. Listing 11-33 specifies rndc_key, which I have defined in both the rndc.conf
and named.conf files.

Using rndc
Now let’s look at the functionality of the rndc command. The rndc command consists of
command-line options and server commands and is constructed like this:

kitten# rndc options command

The options allow you to specify which BIND server to which you want the rndc com-
mand to connect. The command-line options are mostly self-explanatory and replicate much
of information configured in the rndc.conf file (see Table 11-9).

Table 11-9. rndc Options

Options Description

-c file Uses file as the configuration file. Defaults to /etc/rndc.conf.

-s server Connects to the server indicated by server. Defaults to the default-server
specified in the rndc.conf file.

-p port Connects to port. Defaults to 953.

-V Enables verbose logging.

-y key Specifies a particular key ID to use. The key ID must be defined in the rndc.conf
file.

For example, I use the -c and -s options in Listing 11-35.

Listing 11-35. Using rndc Options

kitten# rndc -c /etc/rndc_other.conf -s puppy.yourdomain.com reload

4444c11_final.qxd 1/5/05 1:04 AM Page 508

CHAPTER 11 ■ HARDENING DNS AND BIND 509

The options in Listing 11-35 point the rndc command to an alternative configuration file,
rndc_other.conf, and to a server called puppy.yourdomain.com. I discuss the reload option in
a moment.

I will not go into any detail of most of the actual BIND functions that the rndc command
can perform, but Table 11-10 lists some of the more useful ones.

Table 11-10. rndc Commands

Command Description

flush [view] Flushes the server cache for a view

halt [-p] Stops the server without saving pending updates

querylog Toggles query logging on or off

reconfig Reloads configuration file and any new zones

reload Reloads configuration file and zones

retransfer zone [class [view]] Retransfers a single zone

stats Writes the server statistics to the statistics file

status Displays status of the server

stop [-p] Saves any pending updates to master files, and stops the server

trace Increments the debugging level by one

trace level Changes the debugging level

Most of these commands are self-explanatory. The most useful and the commands you
will most commonly use are reload and reconfig. These allow you to reload your configura-
tion file and zones without having to start and stop the named daemon. Anytime you change
your named.conf file or your zone files, you need to perform this function before those changes
will take effect, like this:

kitten# rndc reload

Another useful command is the rndc status command, which provides a summary of the
current status of your BIND server. You can see a typical status report in Listing 11-36.

Listing 11-36. rndc Status Command

number of zones: 15

debug level: 0

xfers running: 2

xfers deferred: 1

soa queries in progress: 1

query logging is ON

recursive clients: 5/1000

tcp clients: 12/100

server is up and running

4444c11_final.qxd 1/5/05 1:04 AM Page 509

CHAPTER 11 ■ HARDENING DNS AND BIND510

Resources
The following are resources you can use.

Mailing Lists
• ISC BIND mailing lists: http://www.isc.org/index.pl?/sw/bind/bind-lists.php

Sites
• BIND: http://www.isc.org/index.pl?/sw/bind/

• BIND 9: http://www.bind9.net/

• BIND Administrator Reference Manual: http://www.nominum.com/content/documents/
bind9arm.pdf

• BIND FAQ: http://www.isc.org/sw/bind/FAQ.php

• djbdns: http://cr.yp.to/djbdns.html

• DNSSEC RFC: http://www.faqs.org/rfcs/rfc2535.html

• Network Time Protocol: http://www.ntp.org/

Information About Zone Files
• An explanation of DNS records: http://support.algx.net/cst/dns/dns2.html

• BIND master file format: http://www.isc.org/index.pl?/sw/bind/docs/
bind8.2_master-file.php

• BIND 9 zone files: http://www.bind9.net/Bv9ARM.ch06.html#AEN3755

• DNS resource records: http://www.dns.net/dnsrd/rr.html

Books
• Albitz, Paul, and Cricket Liu. DNS and BIND, Fourth Edition. Sebastopol, CA: O’Reilly,

2001.

4444c11_final.qxd 1/5/05 1:04 AM Page 510

511

A P P E N D I X A

■ ■ ■

The Bastion Host
Firewall Script

This appendix contains a script to set up firewall rules for a bastion host. I discussed this
script and the firewall rules in Chapter 2. Modify the rules and the variables I have specified
to suit your firewalling requirements. You can then add these to a script file, make the file exe-
cutable using the chmod command, and run the script to apply your firewall rules. You will need
to modify the script to suit your host. I have included a variables section at the start of the script,
and I recommend you configure these to suit your host. This also makes it easier to maintain
your rules and settings, as you need to make any required changes in only one place, rather
than repeatedly in your script.

You can also find this script in the Downloads section of the Apress Web site (http://
www.apress.com).

#!/bin/bash

Bastion Host IPTables Script

VARIABLES - Change these to match your environment.

Location of the binaries

IPT="/sbin/iptables"

SYSCTL="/sbin/sysctl"

Loopback Interface

LOOPBACK="lo"

Define External Network

EXT_INTER="eth0"

EXT_ADDR="220.240.52.228"

Define External Servers

EXT_NTP1="clock3.redhat.com"

EXT_NTP2="ntp.public.otago.ac.nz"

Define Internal Network

INT_INTER="eth1"

INT_ADDR="192.168.0.100"

INT_NET="192.168.0.0/24"

4444AppA_final.qxd 1/5/05 1:05 AM Page 511

APPENDIX A ■ THE BASTION HOST F IREWALL SCRIPT512

Define Internal Servers

INT_SMTP="192.168.0.20"

INT_DNS1="192.168.0.10"

INT_DNS2="192.168.0.11"

Set Kernel Parameters

$SYSCTL -w net/ipv4/conf/all/accept_redirects="0"

$SYSCTL -w net/ipv4/conf/all/accept_source_route="0"

$SYSCTL -w net/ipv4/conf/all/log_martians="1"

$SYSCTL -w net/ipv4/conf/all/rp_filter="1"

$SYSCTL -w net/ipv4/icmp_echo_ignore_all="0"

$SYSCTL -w net/ipv4/icmp_echo_ignore_broadcasts="1"

$SYSCTL -w net/ipv4/icmp_ignore_bogus_error_responses="0"

$SYSCTL -w net/ipv4/ip_forward="0"

$SYSCTL -w net/ipv4/tcp_syncookies="1"

Flush all Rules

$IPT -F

#Set Policies

$IPT -P INPUT DROP

$IPT -P OUTPUT DROP

$IPT -P FORWARD DROP

Delete all User-created Chains

$IPT -X

Allow access to the Loopback host

$IPT -A INPUT -i $LOOPBACK -j ACCEPT

$IPT -A OUTPUT -o $LOOPBACK -j ACCEPT

Create ICMP Incoming Chain

$IPT -N ICMP_IN

Pass ICMP Incoming Traffic to the ICMP Incoming Chain

$IPT -A INPUT -p icmp -j ICMP_IN

Rules for ICMP Incoming Traffic

$IPT -A ICMP_IN -i $EXT_INTER -p icmp --icmp-type 0 -m state --state ➥

ESTABLISHED,RELATED -j ACCEPT

$IPT -A ICMP_IN -i $EXT_INTER -p icmp --icmp-type 3 -m state --state ➥

ESTABLISHED,RELATED -j ACCEPT

$IPT -A ICMP_IN -i $EXT_INTER -p icmp --icmp-type 11 -m state --state ➥

ESTABLISHED,RELATED -j ACCEPT

$IPT -A ICMP_IN -i $EXT_INTER -p icmp -j LOG --log-prefix ➥

"IPT: ICMP_IN " $IPT -A ICMP_IN -i $EXT_INTER -p icmp -j DROP

4444AppA_final.qxd 1/5/05 1:05 AM Page 512

Create ICMP Outgoing Chain

$IPT -N ICMP_OUT

Pass ICMP Outgoing Traffic to the ICMP Outgoing Chain

$IPT -A OUTPUT -p icmp -j ICMP_OUT

Rules for ICMP Outgoing Traffic

$IPT -A ICMP_OUT -o $EXT_INTER -p icmp --icmp-type 8 -m state --state ➥

NEW -j ACCEPT

$IPT -A ICMP_OUT -o $EXT_INTER -p icmp -j LOG --log-prefix "IPT: ICMP_OUT "

$IPT -A ICMP_OUT -o $EXT_INTER -p icmp -j DROP

Create Bad Sources Chain

$IPT -N BAD_SOURCES

Pass traffic with bad source addresses to the Bad Sources Chain

$IPT -A INPUT -j BAD_SOURCES

Rules for traffic with bad source addresses

Drop incoming traffic allegedly from our own host

$IPT -A BAD_SOURCES -i $INT_INTER -s $INT_ADDR -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s $EXT_ADDR -j DROP

Drop outgoing traffic not from our own host

$IPT -A BAD_SOURCES -o $INT_INTER -s ! $INT_ADDR -j DROP

$IPT -A BAD_SOURCES -o $EXT_INTER -s ! $EXT_ADDR -j DROP

Drop traffic from other bad sources

$IPT -A BAD_SOURCES -s 168.254.0.0/16 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 10.0.0.0/8 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 172.16.0.0/12 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 192.168.0.0/16 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 192.0.2.0/24 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 224.0.0.0/4 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 240.0.0.0/5 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 248.0.0.0/5 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 127.0.0.0/8 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 255.255.255.255/32 -j DROP

$IPT -A BAD_SOURCES -i $EXT_INTER -s 0.0.0.0/8 -j DROP

Create Bad Flags Chain

$IPT -N BAD_FLAGS

Pass traffic with bad flags to the Bad Flags Chain

$IPT -A INPUT -p tcp -j BAD_FLAGS

APPENDIX A ■ THE BASTION HOST F IREWALL SCRIPT 513

4444AppA_final.qxd 1/5/05 1:05 AM Page 513

Rules for traffic with bad flags

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j LOG --log-prefix ➥

"IPT: Bad SF Flag "

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j LOG --log-prefix ➥

"IPT: Bad SR Flag "

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,PSH SYN,FIN,PSH -j LOG ➥

--log-prefix "IPT: Bad SFP Flag "

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,PSH SYN,FIN,PSH -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST SYN,FIN,RST -j LOG ➥

--log-prefix "IPT: Bad SFR Flag "

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST SYN,FIN,RST -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST,PSH SYN,FIN,RST,PSH ➥

-j LOG --log-prefix "IPT: Bad SFRP Flag "

$IPT -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST,PSH SYN,FIN,RST,PSH -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags FIN FIN -j LOG --log-prefix ➥

"IPT: Bad F Flag "

$IPT -A BAD_FLAGS -p tcp --tcp-flags FIN FIN -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags ALL NONE -j LOG --log-prefix ➥

"IPT: Null Flag "

$IPT -A BAD_FLAGS -p tcp --tcp-flags ALL NONE -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags ALL ALL -j LOG --log-prefix ➥

"IPT: All Flags "

$IPT -A BAD_FLAGS -p tcp --tcp-flags ALL ALL -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags ALL FIN,URG,PSH -j LOG --log-prefix ➥

"IPT: Nmap:Xmas Flags "

$IPT -A BAD_FLAGS -p tcp --tcp-flags ALL FIN,URG,PSH -j DROP

$IPT -A BAD_FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j LOG ➥

--log-prefix "IPT: Merry Xmas Flags "

$IPT -A BAD_FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP

Prevent SYN Flooding

$IPT -A INPUT -i $EXT_INTER -p tcp --syn -m limit --limit 5/second -j ACCEPT

Log and Drop Traffic in the INVALID state

$IPT -A INPUT -m state --state INVALID -j LOG --log-prefix "IPT: INV_STATE "

$IPT -A INPUT -m state --state INVALID -j DROP

Log and Drop Fragmented Traffic

$IPT -A INPUT -f -j LOG --log-prefix "IPT: Frag "

$IPT -A INPUT -f -j DROP

APPENDIX A ■ THE BASTION HOST F IREWALL SCRIPT514

4444AppA_final.qxd 1/5/05 1:05 AM Page 514

Bastion Host Service Rules

Internet SMTP Rules

$IPT -A INPUT -i $EXT_INTER -p tcp --dport smtp -m state --state ➥

NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $EXT_INTER -p tcp --sport smtp -m state --state ➥

NEW,ESTABLISHED -j ACCEPT

Internal Network SMTP Rules

$IPT -A INPUT -i $INT_INTER -p tcp -s $INT_SMTP --sport smtp -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $INT_INTER -p tcp -d $INT_SMTP --dport smtp -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

Internet DNS Rules

$IPT -A INPUT -i $EXT_INTER -p udp --dport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A INPUT -i $EXT_INTER -p tcp --dport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $EXT_INTER -p udp --sport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $EXT_INTER -p tcp --sport domain -m state ➥

--state NEW,ESTABLISHED –j ACCEPT

Internal Network Incoming DNS Rules

$IPT -A INPUT -i $INT_INTER -p udp -s $INT_DNS1 --dport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A INPUT -i $INT_INTER -p udp -s $INT_DNS2 --dport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A INPUT -i $INT_INTER -p tcp -s $INT_DNS1 --dport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A INPUT -i $INT_INTER -p tcp -s $INT_DNS2 --dport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

Internal Network Outgoing DNS Rules

$IPT -A OUTPUT -o $INT_INTER -p udp -d $INT_DNS1 --sport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $INT_INTER -p udp -d $INT_DNS2 --sport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $INT_INTER -p tcp -d $INT_DNS1 --sport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $INT_INTER -p tcp -d $INT_DNS2 --sport domain -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

APPENDIX A ■ THE BASTION HOST F IREWALL SCRIPT 515

4444AppA_final.qxd 1/5/05 1:05 AM Page 515

Internet NTP Rules

$IPT -A INPUT -i $EXT_INTER -p udp -s $EXT_NTP1 --dport ntp -m state ➥

--state ESTABLISHED -j ACCEPT

$IPT -A INPUT -i $EXT_INTER -p udp -s $EXT_NTP2 --dport ntp -m state ➥

--state ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $EXT_INTER -p udp -d $EXT_NTP1 --sport ntp -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $EXT_INTER -p udp -d $EXT_NTP2 --sport ntp -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

Internal Network NTP Rules

$IPT -A INPUT -i $INT_INTER -p udp -s $INT_NET --dport ntp -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $INT_INTER -p udp -d $INT_NET --sport ntp -m state ➥

--state ESTABLISHED -j ACCEPT

Internal Network SSH Rules

$IPT -A INPUT -i $INT_INTER -p tcp -s $INT_NET --dport ssh -m state ➥

--state NEW,ESTABLISHED -j ACCEPT

$IPT -A OUTPUT -o $INT_INTER -p tcp -d $INT_NET --sport ssh -m state ➥

--state ESTABLISHED -j ACCEPT

APPENDIX A ■ THE BASTION HOST F IREWALL SCRIPT516

4444AppA_final.qxd 1/5/05 1:05 AM Page 516

517

A P P E N D I X B

■ ■ ■

BIND Configuration Files

This Appendix contains a series of secure BIND configuration files demonstrating the differ-
ent types of BIND configuration files discussed in Chapter 11.

A Caching Server
The named.conf file in Listing B-1 is for a caching-only server that is designed to be deployed
in your internal network in order to provide recursive DNS resolution to internal clients. It is
not authoritative for any domains. You will need to fill in the details of your trusted networks
and any IP addresses or networks you would like to block with the blackhole option. I would
also recommend adding the bad source networks listed in Chapter 2.

I have included extensive logging to the syslog daemon, and I have also added a log
file, named_sec.log, as an additional repository to hold your security-, configuration-, and
DNSSEC/TSIG-related logs.1

Listing B-1. named.conf, Caching Only

acl "trusted" {

//specify your trusted network here

};

acl "bad_source" {

//specify any sources you wish to blackhole here

};

logging {

channel "default_syslog" { syslog daemon; severity info; };

channel "security_log" {

file "/var/logs/named_sec.log" versions 32 size 1m;

severity dynamic;

print-time yes;

print-category yes;

print-severity yes; };

1. None of the named.conf configuration files contain support for rndc. See Chapter 11 for details of
adding this support.

4444AppB_final.qxd 1/5/05 1:07 AM Page 517

APPENDIX B ■ BIND CONFIGURATION FILES518

category default { default_syslog; };

category general { default_syslog; };

category xfer-in { default_syslog; };

category xfer-out { default_syslog; };

category client { default_syslog; };

category network { default_syslog; };

category config { default_syslog; security_log; };

category security { default_syslog; security_log; };

category dnssec { default_syslog; security_log; };

};

options {

directory "/";

pid-file "/var/run/named.pid";

version "[null]";

allow-transfer { none; };

blackhole { bad_source; };

query-source address * port 53;

};

view "internal" {

match-clients { trusted; };

recursion yes;

zone "." {

type hint;

file "/master/db.cache";

};

zone "localhost" {

type master;

file "/master/db.localhost";

notify no;

allow-transfer { none; };

};

zone "0.0.127.in-addr.arpa" {

type master;

file "/master/db.127.0.0";

notify no;

allow-transfer { none; };

};

};

view "chaosnet" chaos {

match-clients { any; };

recursion no;

4444AppB_final.qxd 1/5/05 1:07 AM Page 518

APPENDIX B ■ BIND CONFIGURATION FILES 519

zone "bind" chaos {

type master;

file "/master/db.bind";

allow-transfer { none; };

};

};

An Authoritative Master Name Server
The named.conf file in Listing B-2 is for an authoritative master name server that is designed to
be deployed in your DMZ in order to provide answers to DNS queries from external clients. It is
authoritative for two domains: yourdomain.com and anotherdomain.com. You will need to replace
the zone statements with statements applicable to your domains.

You will need to specify details of any slave servers in the transfer acl statement. I rec-
ommend also adding TSIG security for any zone transfers. You will also need to specify any
IP addresses or networks you would like to block with the blackhole option. I recommend
adding the bad source networks listed in Chapter 2.

I have included extensive logging to the syslog daemon, and I have also added a log
file, named_sec.log, as an additional repository to hold your security-, configuration-, and
DNSSEC/TSIG-related logs.

Listing B-2. named.conf, Authoritative Master

acl "transfer" {

//specify your slave servers here

};

acl "bad_source" {

//specify any sources you wish to blackhole here

};

logging {

channel "default_syslog" { syslog daemon; severity info; };

channel "security_log" {

file "/var/logs/named_sec.log" versions 30 size 1m;

severity dynamic;

print-time yes;

print-category yes;

print-severity yes; };

category default { default_syslog; };

category general { default_syslog; };

category xfer-in { default_syslog; };

category xfer-out { default_syslog; };

category client { default_syslog; };

category network { default_syslog; };

4444AppB_final.qxd 1/5/05 1:07 AM Page 519

APPENDIX B ■ BIND CONFIGURATION FILES520

category config { default_syslog; security_log; };

category security { default_syslog; security_log; };

category dnssec { default_syslog; security_log; };

};

options {

directory "/";

pid-file "/var/run/named.pid";

version "[null]";

allow-transfer { transfer; };

blackhole { bad_source; };

query-source address * port 53;

};

view "external" IN {

match-clients { any; };

recursion no;

zone "yourdomain.com" {

type master;

file "/master/db.yourdomain.com";

};

zone "anotherdomain.com" {

type master;

file "/master/db.anotherdomain.com";

};

};

view "chaosnet" chaos {

match-clients { any; };

recursion no;

zone "bind" chaos {

type master;

file "/master/db.bind";

allow-transfer { none; };

};

};

A Split DNS Name Server
The named.conf file in Listing B-3 is for a split DNS name server that is designed to be
deployed in your DMZ in order to provide answers to DNS queries from both internal and
external clients for the domains for which it is authoritative. It also allows recursion for your
internal clients. It is authoritative for two domains: yourdomain.com and anotherdomain.com.
You will need to replace the zone statements with statements applicable to your domains.

4444AppB_final.qxd 1/5/05 1:07 AM Page 520

APPENDIX B ■ BIND CONFIGURATION FILES 521

You will need to specify details of any slave servers in the transfer acl statement. I rec-
ommend also adding TSIG security for any zone transfers. You will also need to specify any
IP addresses or networks you would like to block with the blackhole option. I recommend
adding the bad source networks listed in Chapter 2.

I have included extensive logging to the syslog daemon, and I have also added a log
file, named_sec.log, as an additional repository to hold your security-, configuration-, and
DNSSEC/TSIG-related logs.

Listing B-3. named.conf, Split DNS

acl "trusted" {

//specify your trusted network here

};

acl "transfer" {

//specify your slave servers here

};

acl "bad_source" {

//specify any sources you wish to blackhole here

};

logging {

channel "default_syslog" { syslog daemon; severity info; };

channel "security_log" {

file "/var/logs/named_sec.log" versions 30 size 1m;

severity dynamic;

print-time yes;

print-category yes;

print-severity yes; };

category default { default_syslog; };

category general { default_syslog; };

category xfer-in { default_syslog; };

category xfer-out { default_syslog; };

category client { default_syslog; };

category network { default_syslog; };

category config { default_syslog; security_log; };

category security { default_syslog; security_log; };

category dnssec { default_syslog; security_log; };

};

options {

directory "/";

pid-file "/var/run/named.pid";

version "[null]";

recursion no;

allow-recursion { none; };

4444AppB_final.qxd 1/5/05 1:07 AM Page 521

APPENDIX B ■ BIND CONFIGURATION FILES522

allow-transfer { transfer; };

blackhole { bad_source; };

query-source address * port 53;

};

view "internal" IN {

match-clients { trusted; };

recursion yes;

zone "." {

type hint;

file "/master/db.cache";

};

zone "localhost" {

type master;

file "/master/db.localhost";

notify no;

allow-transfer { none; };

};

zone "0.0.127.in-addr.arpa" {

type master;

file "/master/db.127.0.0";

notify no;

allow-transfer { none; };

};

zone "yourdomain.com" {

type master;

file "/master/db.yourdomain.com.internal";

};

zone "anotherdomain.com" {

type master;

file "/master/db.anotherdomain.com.internal";

};

};

view "external" IN {

match-clients { any; };

recursion no;

zone "yourdomain.com" {

type master;

file "/master/db.yourdomain.com.external";

};

4444AppB_final.qxd 1/5/05 1:07 AM Page 522

APPENDIX B ■ BIND CONFIGURATION FILES 523

zone "anotherdomain.com" {

type master;

file "/master/db.anotherdomain.com.external";

};

};

view "chaosnet" chaos {

match-clients { any; };

recursion no;

zone "bind" chaos {

type master;

file "/master/db.bind";

allow-transfer { none; };

};

};

A Sample Named init Script
Listing B-4 shows a sample named init script.

Listing B-4. Named init Script

#!/bin/sh

This shell script takes care of starting and stopping named

chkconfig: 345 55 45

description: named (BIND) is a Domain Name Server daemon

Source function library.

. /etc/rc.d/init.d/functions

Source networking configuration.

. /etc/sysconfig/network

Check that networking is up.

[${NETWORKING} = "no"] && exit 0

[-f /usr/local/sbin/named] || exit 0

[-f /chroot/named/etc/named.conf] || exit 0

See how we were called.

case "$1" in

start)

Start daemons.

echo -n "Starting named: "

daemon /usr/local/sbin/named -u named –t /chroot/named

echo

4444AppB_final.qxd 1/5/05 1:07 AM Page 523

APPENDIX B ■ BIND CONFIGURATION FILES524

touch /var/lock/subsys/named

;;

stop)

Stop daemons.

echo -n "Shutting down named: "

killproc named

rm -f /var/lock/subsys/named

echo

;;

status)

status named

exit $?

;;

restart)

$0 stop

$0 start

exit $?

;;

reload)

/usr/local/sbin/rndc reload

exit $?

;;

*)

echo "Usage: named {start|stop|status|restart|reload}"

exit 1

esac

exit 0

4444AppB_final.qxd 1/5/05 1:07 AM Page 524

525

A P P E N D I X C

■ ■ ■

Checkpoints

This appendix summarizes the checkpoints from each chapter.

Chapter 1
Install only what you need. Use your distribution’s minimal installation option. Remove
extraneous or unnecessary packages. Confirm that each package on your system is actu-
ally required by your system.

Do not install your system when connected to the Internet or an Internet-connected
network. Install any required patches and updates offline.

Secure your system’s physical security, BIOS, and boot loader. Protect your boot process
with passwords. I recommend using the Grub boot loader rather than the LILO boot
loader, as Grub has a more robust security model.

Start only the services you need for your system, and secure the functions controlled in
the inittab file.

Secure your console and virtual terminals. Also ensure your login screen provides the
minimum possible information to a user or potential attacker. Defense through obscu-
rity can be a powerful tool. The less information you reveal about your system and its
purpose, the better.

Add only those users and groups that you require. Delete any others. Refer to the list of
the users and groups I have provided in Chapter 1 to find some of those users who can
be removed.

Use MD5 passwords and shadow passwording. Ensure users select secure passwords
and configure your passwording environment accordingly. Ensure passwords are
scheduled to regularly expire.

Turn on user (and if required process) accounting for your system. Monitor the reports
generated by these accounting processes regularly for anomalies.

Use sudo rather than root to administer your system. Ensure you carefully test your sudo
configuration before implementing it to ensure it is secure.

4444AppC_final.qxd 1/5/05 1:08 AM Page 525

APPENDIX C ■ CHECKPOINTS526

Use PAM to secure the authentication processes of your system. PAM offers an easy-to-
use, highly configurable framework to control access to your system using a large number
of different criteria.

Confirm the integrity of any files you download or install on your system using methods
such as MD5 and SHA1 checksums or digital signatures. This includes using the rpm com-
mand with the --checksig option to verify any RPM files.

Review the available kernel hardening options, and install one of the packages or patches
to further harden your kernel. I recommend the Openwall patch, but if you want to take
kernel security further, then an access control model-based package such as SELinux,
whilst requiring more implementation effort, offers a considerable amount of additional
security.

Keep up with security updates, and keep informed about newly discovered vulnerabilities
using resources such as Security Focus’s Vulnerability Database and the CERT advisory
mailings.

Chapter 2
Base your firewall on a minimalist design that denies by default and allows by exception.
You should build your firewall like building a wall around your host and remove only those
bricks you absolutely need to see through.

Use a default policy of DROP for your built-in chains. This is in line with the denial by
default model I have recommended by allowing only incoming and outgoing traffic
you’ve explicitly authorized.

Model your traffic and design your firewall on paper before you start creating your rules.
This should include incoming and outgoing connections, the source, and destination of
your traffic, including addresses and ports. You can also include the required connection
states for your traffic.

Use connection states to further restrict your allowed incoming and outgoing traffic.
If you only require existing connections to enter and leave your host, then you can use
states to control this. Only allow new connections in and out of your hosts if they are
absolutely required.

Ensure you have a suitable amount of logging in place so that you know what is going on
with your firewall. Ensure you have sufficient disk space to hold the required volume of logs.

Set rules to block spoofed addresses, bad flags, bad fragments, and states and to limit the
possibility of Denial of Service attacks. These types of attacks change and evolve over
time. You should keep updated with new variations and attacks on mailing lists such as
the Netfilter list and on the security lists and sites (see Chapter 1).

4444AppC_final.qxd 1/5/05 1:08 AM Page 526

If you take care to test them, the Patch-O-Matic tool comes with several useful patches
and modules that can extend iptables functionality. Additionally, review and carefully
configure your kernel parameters to best suit the requirements of your environment.

Use a tool such as tcpdump to examine the traffic on your host to ensure your firewall is
fully functional and allowing or denying the right traffic. Remember you can filter your
traffic to display only the traffic on which you want to focus.

Chapter 3
OpenSSL is a widely used and useful open-source version of the SSL protocol that can be
used to secure a variety of applications. I recommend developing a solid knowledge of its
capabilities and functionality.

If you have unencrypted connections, then you can use Stunnel with OpenSSL to encap-
sulate and secure them.

Use a VPN tool utilizing IPSec such as Openswan to secure your network connections,
securely join two systems, or two subnets together across the Internet.

Do not use clear-text administrations tools such as rsh and telnet. Replace them with
SSH-based tools.

Though you can tunnel X through SSH I recommend you exercise caution in doing this
or indeed in running X on a production server system at all.

Chapter 4
Ensure you understand how basic Unix permissions work and grant only the minimum
permissions you need to users and applications to maintain functionality.

World permissions are dangerous and potentially allow attackers to misuse files and
applications. Review all the objects on your system with world-readable, world-writable,
and world-executable permissions and ensure you understand why they have those per-
missions. If they do not need those permissions, then revoke them!

Sticky bits allow you to better control access to directories where multiple users shared
access permissions by allowing users to manage only the files and objects they have cre-
ated. Investigate the potential of using sticky bits where you have directories in which
multiple users shared access permissions.

Amongst the most dangerous permission settings on your system are setuid and setgid
permissions. When set on binaries, these allow any users to adopt the permissions of the
object’s owner or group when running that binary. These binaries have the potential to be
serious vulnerabilities on your system, and you should check that all setuid and setgid
binaries actually require these permissions to function. If they do not, then remove them!

APPENDIX C ■ CHECKPOINTS 527

4444AppC_final.qxd 1/5/05 1:08 AM Page 527

All files and objects on your system should be owned by a user and belong to a group. Any
files that do not could potentially be malicious in nature, and you should investigate them
and either assign them to a user or group or remove them.

You should regularly scan your system for unowned files and objects with world-permissions
set and/or with setuid or setgid permissions. You can use tools such as sXid or Adeos to
do this. Files with these permissions introduced into your system without your approval
are often signs of a potential attack or penetration of your system.

Immutable files cannot be changed, deleted, hard-linked to, or renamed even by the root
user. They allow you to protect some files—for example, configuration files and some
important binaries—from most forms of compromise. You should examine your system
for files or binaries that you can make immutable. On some bastion-type systems, you
may be able to make most of your configuration files and binaries immutable. Remem-
ber, you will need to remove their immutable status to update or upgrade your config-
uration and binaries.

File encryption provides a useful method of securing your individual files against eaves-
dropping by an attacker. Use file encryption to secure files that need to be kept private.
Always ensure you choose a suitable passphrase to secure your encrypted files to prevent
your encrypted files from being compromised.

You can mount your file systems (including removable file systems) with a variety of options,
including mounting them read-only, preventing setuid and setgid permissions from func-
tioning, stopping devices from being interpreted, and disallowing binary execution. These
options, especially when used with removable devices such as CD drives, and floppy drives,
as well as pluggable devices such as USB drives, reduce the risk of a threat being introduced
to your system from these devices. You should examine what file systems you have and how
they are mounted.

Like you can encrypt files, you can also create entire encrypted file systems. This allows
you to create secure, encrypted file systems for large numbers of files that need to be
protected. Or create protected file systems for devices such as laptops to secure sensitive
information while in transit.

Monitoring your files and objects for changes is a good way of detecting unauthorized
access to your systems. You can use a file integrity scanner such as Tripwire to monitor
the characteristics of your files and objects such as size, permissions, ownership, and
hash values. Tripwire will alert you via e-mail or through a report of any files or objects
on your system that have changed from an established baseline.

Chapter 5
If your logging environment is large, is complicated, or you want to better control your
logs and their destinations and filtering, then I recommend you use Syslog-NG.

Constantly refine your logging environment to ensure you have picked up on all the
possible sources of information.

Constantly refine your filtering so you are not overwhelmed with irrelevant log data.

APPENDIX C ■ CHECKPOINTS528

4444AppC_final.qxd 1/5/05 1:08 AM Page 528

Secure the transmission of your logs, as an attacker can gain considerable advantages by
reading your logs.

Use correlation and analysis tools to highlight the messages important to you, and use
alerting tools to get that information to you.

Design and manage your archiving and rotation of logs to ensure you keep the informa-
tion you need for the time frame and discard information that is not relevant.

Chapter 6
Remember to keep up-to-date with regular security reviews.

Schedule regular checks of your system for root kits.

Ensure your users have secure passwords, and regularly check the integrity and security
of your users’ passwords.

For a consistent approach to some base-level security, run a hardening script such as
Bastille Linux across your systems.

Use NMAP to scan your systems to confirm that you know and understand all the serv-
ices and ports that are active on your systems.

Use a tool such as Nessus or SARA to audit your applications and systems for known
vulnerabilities.

If you are attempting to investigate a potential penetration, keep detailed records both
for your own purposes and in case auditors or law enforcement require evidence of the
penetration.

If you recover a system, you should follow the basic rules I have articulated.

Chapter 7
Keep your mail server software up-to-date by regularly checking its site (http://
www.sendmail.org for Sendmail and http://www.postfix.org for Postfix). You should also
consider subscribing to any announcement mailing lists available for your mail server.

Keep informed about threats to your mail infrastructure via mailing lists such as BugTraq
and via Web sites such as CERT (http://www.cert.org). I also detail a variety of other sites
and mailing lists in Chapter 1.

Ensure you have secured your mail server from penetration and DoS attacks by configur-
ing your mail server securely, as described in this chapter. You should also ensure your
firewall rules are strong and secure as described in Chapter 2.

Keep on top of new trends in spammer tactics and antispam techniques. You can do
this at sites such as http://spam.abuse.net/ and http://www.arachnoid.com/lutusp/
antispam.html.

APPENDIX C ■ CHECKPOINTS 529

4444AppC_final.qxd 1/5/05 1:08 AM Page 529

Regularly tweak your antispam rules and checks to ensure they are doing the job. Ask
your users to forward spam that slips through your filters to a central Spam mailbox, and
use this spam to tweak your antispam rules. Regularly check the efficiency of any RBLs
you have defined against other available RBLs.

Ensure your antivirus software is up-to-date and that your virus definitions are updated
regularly.

Chapter 8
Where possible, you should try to always use TLS encryption for your mail transmission.

Handle your TLS keys and passphrases with the same level of security you would treat
other system passwords.

If you need relaying, use SMTP AUTH with Cyrus SASL with authenticate your users and
ensure only legitimate users are allowed to relay mail through your MTA.

Always try to use SMTP AUTH in conjunction with TLS encryption.

Keep your OpenSSL and Cyrus SASL packages up-to-date to ensure you address any
potential vulnerabilities and exploits.

Chapter 9
Choose appropriate remote e-mail access for your site, taking into consideration the pur-
poses, benefits, and disadvantages of the available protocols. I recommend for security,
stability and available access controls that you use a server based on IMAP.

Choose a stable and secure server as your platform for remote e-mail access and ensure
you periodically update it and apply any relevant security patches.

If you are using a product such as UW-IMAP or Qpopper, which have proven to have
a number of security flaws, consider using another application such as Cyrus IMAP.

Consider chrooting your remote e-mail installation to further secure your installations
from penetration. I show you how to do this using Cyrus IMAP.

Always ensure you use SSL/TSL-enabled remote access via IMAP or POP, and ensure your
clients use SSL/TLS to encrypt any connections. This will protect your e-mail traffic from
eavesdropping during its transmission.

Always use a secure authentication method such as those available through Cyrus SASL
to authenticate your users against the remote e-mail access server. Also consider using
a “sealed” system where the only local shell logins are for system administration use only,
and all other users have access to their e-mail stores only.

If you are going to use Fetchmail, then ensure you use TLS to ensure all connections are
encrypted. If you cannot use TLS, try to tunnel your connections through OpenSSH. This
will help prevent attackers from eavesdropping on your Fetchmail sessions.

APPENDIX C ■ CHECKPOINTS530

4444AppC_final.qxd 1/5/05 1:08 AM Page 530

Chapter 10
Unless you have a real need to run an FTP server, then I recommend you do not run one.
The inherent insecurities in FTP server daemons and the difficulty in securing FTP traffic
make FTP an extremely risky proposition as a production service.

If you do choose to run an FTP server, then I recommend the vsftpd FTP server available
from http://vsftpd.beasts.org/. It is secure, has good performance, and contains a num-
ber of security features including support for SSL/TLS FTP transfers.

Ensure you adequately firewall your FTP server. You should utilize the ip_conntrack_ftp
module provided with iptables to enable FTP connection state tracking. This provides
you with the ability to limit the types of connections made to your host. Additionally, you
should look at limiting the range of ephemeral ports used by your FTP server for its data
connections.

If you going to allow local user access to your FTP server, consider limiting the networks
able to log into that server. I recommend you allow access only from trusted networks.

I recommend placing your local users in chroot jails. The vsftpd server allows you to
chroot your local users into their home directories.

If you are going to allow the uploading of files to your FTP server, ensure you set your umask
and default upload permissions carefully to prevent the uploading of files that could be
used to compromise your host. For example, restrict the uploading of executable files.

Ensure you set up resource controls on your FTP server to limit the number of incoming
connections and the number of connections from an individual IP address. This limits
the risk that your FTP server could be subject to a DoS attack. You could also limit the data
transfer volumes on your FTP server.

Examine the feasibility of using SSL/TLS for your FTP control and data connections. You
will need to utilize FTP clients that support SSL/TLS.0

Chapter 11
One of the key reasons so many BIND servers are the targets of attacks is that a large num-
ber of vulnerabilities have been discovered in older versions of BIND. If you are running an
older version of BIND, especially a version prior to BIND 8, you should upgrade immedi-
ately. You should keep your BIND version up-to-date and regularly monitor the CERT and
BIND mailing lists and the ISC Web site for notifications of any vulnerabilities or issues.

When designing your DNS infrastructure, you should provide separate servers for your
server and caching functions. This reduces the risk that an attack on one function will affect
the other function. The same principle applies to your internal- and external-facing BIND
servers. You should place your external BIND servers in a DMZ, protected by a firewall, or
a similar network design. These servers should not also provide server or caching functions
for your internal network. You should provide other servers, located on your internal net-
work, for the provision of server and caching functions for your internal clients.

APPENDIX C ■ CHECKPOINTS 531

4444AppC_final.qxd 1/5/05 1:08 AM Page 531

Always ensure you have suitable slave servers for all your master servers. For every domain
for which you are authoritative, you should ensure you have at least one slave server that
will able to resolve that domain in the event the master server is unavailable.

You should place your BIND installation in a chroot jail and run it as a nonprivileged user.
This will help limit the risk that if an attacker compromises BIND that they will be able to
do further damage on your host.

Use access control lists, created with acl statements, to centralize the management of
whom has access to the functions of your BIND server. This allows you to specify your
access controls at one source rather than having to update numerous options in your
named.conf file.

Ensure you are logging enough information and that you regularly review your logs to
check for anomalies. I recommend logging from your BIND daemon be directed to the
syslog daemon.

Hide your BIND version using the version option in your options statement. Remember,
if you want to log requests for your BIND version, then you need to configure a bind chaos

class domain in your named.conf file.

Only allow trusted sources to perform functions, for example, recursion. Do not open
your BIND server to recursive queries or caching functions from external sources. Only
allow your internal, trusted networks to perform these functions. The only access external
sources should have to your BIND servers is for the external resolution of domains for which
your BIND servers are authoritative.

If you use the rndc command to control your BIND server, you should preferably allow
access only to the local system. The rndc command authenticates to the BIND server
using a key. You should protect your rndc.conf file to ensure an attacker cannot read
or write to this file and potentially compromise the key.

Consider using TSIG to secure communications between your DNS servers. Using a key-
based hash with your DNS transactions provides a greater level of confidence that you are
communicating with the correct and authentic server. Remember you need to protect your
TSIG keys by securing the permissions of your configuration files. If attackers compromise
your keys, then they can impersonate the server with which you are communicating.

APPENDIX C ■ CHECKPOINTS532

4444AppC_final.qxd 1/5/05 1:08 AM Page 532

Index

533

■Special Characters
- flag, 189
-? option, 213
- syntax, 221
! prefix, 224
$> operator, 356
$>+ operator, 356
\d escape character, 19
\n escape character, 251
\t escape character, 19
=m suffix, 210
-> symbol, 219
-2 option, 172
-4 option, 172
-6 option, 172
-A flag, 83
-a (nessusd option), 306

■A
A option, 393
-a option, 14, 240
-a switch, 327
ACCEPT policy, 82
accept statement, 154, 304–5
accept_redirects parameter, 126
Access Control List (ACL), 75, 188
access db, 352–53
access permissions, 188–96

overview, 188–91
setuid and setgid permissions, 194–96
sticky bits, 193–94
umask command, 191–92
world-readable, world-writable, and

world-executable files, 192–93
accounting

process, 44–46
user, 42–44

acct package, 44
accton command, 45
ACK flag, 112
ACL (Access Control List), 75, 188
acl statement, 477
action-log file, 295
--add option, 11
adeos command, 198
Adeos command-line options, 197
adm user, 28
agent forwarding, 172, 177–79
AH (Authentication Header), 166

ALL flag, 114
ALL variable, 39
allow_untrusted_routing option, 361
allowanonymous option, 419
AllowGroups option, 183
allow-notify control, 487
allowplaintext option, 419
allow-query control, 487
allow-recursion control, 487
allow-transfer control, 487
allow-transfer option, 479
AllowUsers option, 183
AMaVis, 370–72
anacron service, 9
Andrews System Group, 407
anonymous identifier, 428
ANONYMOUS mechanism, 387
anonymous_enable option, 452, 457
antispam, 351–64

overview, 351
settings for Postfix, 357–64
settings for Sendmail, 351–57

antivirus scanning, of e-mail server, 364–72
installing ClamAV, 364–68
integrating ClamAV with Postfix, 370–72
integrating ClamAV with Sendmail,

368–70
overview, 364

ANY flag, 112
any keyword, 480
anyone identifier, 428
Apache Web server, 3, 152
apmd service, 9
APOP protocol, 435
apt.conf file, 63
apt-get command, 62–63, 448
ArchiveDetectEncrypted option, 366
ArchiveMaxCompressionRatio option, 366
ArchiveMaxFiles option, 366
ArchiveMaxFileSize option, 366
ArchiveMaxRecursion option, 366
ARP, 109
as limit, 52
ASCII, 203
atd service, 9
AUTH command, 393
auth facility, 236
auth module, 46
authconfig tool, 35

4444_IDX_final.qxd 1/5/05 1:09 AM Page 533

■INDEX534

authentication, 1, 410. See also mail,
authenticating and securing

Authentication Header (AH), 166
authentication-agent forwarding, 179
authorization, 39, 410
auth-priv facility, 236
authwarnings flag, 339
auto option, 205
AUTO protocol, 435
Autodetect option, 72
autofs service, 9
automated security hardening, with Bastille

Linux, 290–95
Bastille logging, 295
installing Bastille Linux, 291–92
overview, 290–91
running Bastille, 292–94

automating Fetchmail, 438–40
auxprop (Auxiliary Property), 392
awk command, 286

■B
-b (clamav-milter option), 369
-b option, 174
-B option, 441
background option, 451
backup user, 28
BAD_FLAGS chain, 113
banner_file option, 454
barf function, 166
bash script, 426
Basic Input/Output System (BIOS), 5
basics of hardening. See hardening basics
Bastille Linux, 290–95

installing, 291–92
logging, 295
overview, 290–91
running, 292–94

bastion host, creating firewalls for, 97–117
bastion host rules, 116–17
firewall logging, 101–5
handling ICMP traffic, 105–8
iptables and TCP flags, 111–16

blocking bad flag combinations, 113–15
overview, 111–12
SYN flooding, 115–16

overview, 97–98
securing bastion services, 98–101
spoofing, hijacking, and denial of service

attacks, 108–11
bastion host firewall script, 511–16
Batchmode option, 181
Beale, Jay, 291
bin user, 28
BIND

chrooting, 472–73
configuration files, 517–24

authoritative master name server, 519–20
caching server, 517–19
overview, 517
sample named init script, 523–24
split DNS name server, 520–23

configuring, 476–500
access control lists, 479–80
logging, 480–84
options, 484–93
overview, 476–79
views and zones, 493–96
zones, 497–500

installing, 470–71
permissions in chroot jail, 473–74
resources, 510
rndc command, 504–9

adding rndc support to named.conf,
507–8

overview, 504–5
rndc.conf, 505–7
using rndc, 508–9

secure BIND design, 467–70
starting and running named daemon,

474–76
/bin/false script, 21
BIOS (Basic Input/Output System), 5
blackhole control, 487
blackhole option, 517
blacklist_recipients feature, 352
blind spoofing, 109
Blowfish, 209
boat loader, 5–8

overview, 5
securing grub with password, 6–8
securing LILO with password, 5–6

Boolean, 125
/boot directory, 71
boot image, 121
boot sequencing, 15
bottlenecking, 116
Bourne script, 319
Bourne shell command, 178
Brute-force cracking, 287
btmp file, 44
buffer overflow, 74
Build command, 378
builddefs.h file, 449
burst function, 115
bzImage option, 72

■C
c flag, 189
-C option, 172
-c option, 390–91
C programming language, 73
CA (Certificate Authority), 139, 142–48,

374–76, 459

4444_IDX_final.qxd 1/5/05 1:09 AM Page 534

ca (Openssl command-line function), 142
cache poisoning, of DNS server, 465
CAfile option, 262–63
-CAfile option, 151
Calendar rule type, 276
-CApath option, 151
Carnegie Mellon University, 388–89
cat command, 38
catchall flag, 254
cert option, 262
Certificate Authority (CA), 139, 142–48,

374–76, 459
Certificate Revocation List (CRL), 149
certificates, signing, 142–48
certs directory, 260
CFS, 208
chage tool, 36
chains, of iptables rules, 82
CHAOSnet protocol, 485
chattr command, 198–99
--checkall option, 284
CheckHostIP option, 181
CheckPoint Firewall, 79
checksecurity, 196
--checksig option, 61
chkconfig, 10–11
Chkrootkit, 285–86
chmod command, 189–90, 193–94, 511
chmod man, 191
chroot command, 416, 472
chroot jail, permissions in, 473–74
chroot_list_enable option, 457
chroot_local_user option, 457
chrooting

BIND, 472–73
Postfix, 330–33
Sendmail SMTP gateway or relay, 324–30

/chroot/sendmail/dev directory, populating,
327–28

/chroot/sendmail/etc directory, populating,
326–27

CIDR notation, 311
--cipher-algo option, 203
Cisco devices, 235
Cisco PIX firewall, 97
ClamAV

installing, 364–68
integrating with Postfix, 370–72
integrating with Sendmail, 368–70

clamav-milter program, 365, 369
clamd daemon, 365
clamscan tool, 365
client authentication, 140
client category, 484
command-line options, 11, 26
comment module, 123–24
--comment module, 124

compat_check feature, 352
compilers and development tools, 64–66

overview, 64
removing, 64–65
restricting, 65–66

Compression option, 181
-conf option, 267
config category, 484
.config file, 71
config script, 141
CONFIG_CRYPTO prefix, 210
configure statement, 410
conn section, 164
connect statement, 154
connect_from_port_20 option, 454
ConnectionRateThrottle directive, 342
connections and remote administration. See

also public-key encryption
overview, 137
remote administration, 169–85

configuring ssh and sshd, 180–83
forwarding X with OpenSSH, 184–85
overview, 169–71
port forwarding with OpenSSH, 183–84
scp and sftp, 175–76
ssh, 171–75
ssh-agent and agent forwarding, 177–79
sshd daemon, 179–80

resources, 185
console, 16
console.perms file, 17, 207
contrib directory, 179, 242
controls statement, 477
core limit, 52
correlation, 265
CPAN, 291
cpu limit, 52
CRAM-MD5 mechanism, 387
create option, 213
create_dirs() option, 246
createmailbox command, 427
crit priority, 238
CRL (Certificate Revocation List), 149
-crldays option, 149
crond service, 9, 46
--cronjob option, 284
Cryptoloop, 208
cryptosystem, 143
cryptsetup command, 211–12
cryptsetup package, 209
Crystal Reports, 256
cups service, 9
Custom (installation option), 2
cut command, 286
cyradm tool, 426
Cyrus IMAP, 407–29

access control and authorization, 425–28

■INDEX 535

4444_IDX_final.qxd 1/5/05 1:09 AM Page 535

Cyrus IMAP (continued)
authentication with SASL, 422–25
configuring, 417–22

integrating Cyrus IMAP with Sendmail
and Postfix, 421–22

overview, 417–20
installing and compiling, 409–11
installing into chroot jail, 411–17

adding Cyrus IMAP binaries and
libraries, 412–13

overview, 411–12
permissions and ownership, 415
populating /chroot/cyrus/dev

directory, 413–14
populating /chroot/cyrus/etc directory,

414–15
starting and stopping Cyrus IMAP in

chroot jail, 416–17
overview, 407–9
testing with imtest/pop3test, 428–29

Cyrus SASL. See SMTP AUTH using Cyrus
SASL

cyrus-sasl package, 388

■D
-d (logrotate Command-Line Option), 279
-d (nessusd option), 306
-D (clamav-milter option), 369
-D (nessusd option), 306
daemon user, 28
daemons, 10
data corruption and alteration, of DNS

server, 466
dd command, 210–11
DDoS. See Distributed Denial of Service

attacks
deb package, 470
Debian, 9, 11–13, 76
default category, 484
default policy, 90
default statement, 304–5
default_bits option, 145
default_debug channel, 483
default_process_limit option, 344
default_stderr channel, 483
default_syslog channel, 483
defaults option, 205–6
--del option, 11
delay option, 157
deleteaclmailboxd command, 427
deletemailbox command, 427
deleting unnecessary users and groups,

28–30
Demilitarized Zone (DMZ), 91, 324, 519
Denial of Service (DoS) attacks, 4, 51, 108–11,

167, 463. See also Distributed Denial
of Service (DDoS) attacks

on DNS server, 465–66
and FTP server, 443–44, 455–56
protecting Fetchmail from, 440–41

deny statement, 304–5
deny_email_enable option, 453
DenyGroups option, 183
DenyUsers option, 183
dep option, 72
-des3 option, 142
desktop user, 28
destination{ }, 244, 249–52
-detach option, 267
dev option, 205–6
development tools. See compilers and

development tools
Dictionary-based cracking, 287
.diff file, 70
dig command, 486
DIGEST-MD5 mechanism, 387
digital signatures, 138

and GNU privacy guard, 58–59
and RPM, 59–61

dir_group() option, 246
dir_owner() option, 246
dir_perm() option, 246
--disable-threads option, 471
DISCARD option, 360
Distributed Denial of Service (DDoS) attacks,

limiting risk of, 341–46
overview, 341–42
with Postfix, 344–46
with Sendmail, 342–44

distribution security sites, 76
djbdns package, 467
-dla options, 193
dm_mod module, 210
dm-crypt module, 208–10
DMZ (Demilitarized Zone), 91, 324, 519
DNS server

choosing, 466–67
resources, 510
risks to, 464–66

cache poisoning, 465
data corruption and alteration, 466
denial of service attacks, 465–66
man-in-the-middle attacks, 464–65
overview, 464

and transaction signatures (TSIG),
500–504

DNS_COMMANDS command alias, 40
DNS_SERVERS command alias, 40
dnscache application, 467
DNSSEC, 464
dnssec category, 484
dnssec-keygen command, 501
domains, 469
DontCont option, 270

■INDEX536

4444_IDX_final.qxd 1/5/05 1:09 AM Page 536

DoS. See Denial of Service (DoS) attacks
downloading updates and patches, 61–64

apt-get, 62–63
overview, 61
up2date, 62
Yum, 63–64

--dport flag, 84, 123
DROP policy, 82, 98, 132
dselect tool, 65
dsniff, 318
dump command, 205
DUNNO option, 359

■E
-e option, 174
e2fsprogs package, 198
Eavesdropping, 138
echo (Shell command), 340
egrep command, 286
EHLO command, 385
EJBCA, 139
EL (Enterprise Linux), 67
e-mail, hardening remote access to, 403–42.

See also Cyrus IMAP; Fetchmail
choosing IMAP or POP servers, 405–6
how IMAP or POP server is at risk, 406–7
IMAP, 404
overview, 403
POP, 404–5
resources, 441–42

e-mail server, antivirus scanning of, 364–72
installing ClamAV, 364–68
integrating ClamAV with Postfix, 370–72
integrating ClamAV with Sendmail, 368–70
overview, 364

emailto attribute, 222
emerg priority, 238–39
emulate GCC trampolines option, 72
--enable-inet6 option, 433
--enable-krb4 option, 388
--enable-login option, 388
-enable-opie option, 433
--enable-sql option, 388
encrypted file system, creating, 208–15

enabling functionality, 209–10
encrypting loop file system, 210–14
installing userland tools, 209
overview, 208–9
remounting, 215
unmounting encrypted file system, 214

encrypting files, 202–4
encryption. See public-key encryption
Enhanced Simple Mail Transfer Protocol

(ESMTP), 334
enhdnsbl feature lines, 353
Enterprise Linux (EL), 67
ephemeral port, 437

err priority, 237
error-log file, 295
ESMTP (Enhanced Simple Mail Transfer

Protocol), 334
ESTABLISHED connection, 93–97
/etc/default/useradd file, 24
/etc/fstab file, 208
/etc/group file, 20
/etc/groups file, 23
/etc/gshadow file, 24
/etc/ipsec.secrets file, 164
/etc/login.defs file, 36
/etc/modules.conf file, 210
/etc/pam.d directory, 31, 55
/etc/pam.d/passwd file, 34
/etc/passwd file, 20
/etc/security directory, 207
/etc/shadow file, 20, 23
/etc/shells file, 21
/etc/ssh file, 173
/etc/sysconfig/iptables file, 131
/etc/tripwire directory, 225
eth0 interface, 87
eth1 interface, 87
Ethereal, 80, 318
ETRN command, 336–38
Ettercap, 318
Eudora, 374
exec command, 340
exec option, 205–6
execute permission, 189
exit (shell command), 340
EXPIRE, 25
EXPN command, disabling, 337–38

■F
-F flag, 89
-f (logrotate command-line option), 279
f_infotoemerg filter, 253
facility() filter, 252
fallback flag, 254
Fedora, 62
Fetchmail

configuring and running, 434–41
automating Fetchmail securely, 438–40
overview, 434–35
protecting Fetchmail from denial of

service attacks, 440–41
tunneling Fetchmail with SSH, 437–38
using Fetchmail with OpenSSL, 435–36

installing, 431–34
overview, 430–31

.fetchmailrc file, 439
FIFO (First In First Out), 69
file() source, 247–49
File Transfer Protocol. See FTP
file_open_mode option, 458

■INDEX 537

4444_IDX_final.qxd 1/5/05 1:09 AM Page 537

files and file systems, 187–231. See also
permissions and attributes; Tripwire

capabilities and lcap, 200–201
creating encrypted file system, 208–15

enabling functionality, 209–10
encrypting loop file system, 210–14
installing userland tools, 209
overview, 208–9
remounting, 215
unmounting encrypted file system, 214

encrypting files, 202–4
ensuring file integrity, 57–61

digital signatures and GNU privacy
guard, 58–59

MD5 and SHA1 checksums, 57–58
overview, 57
RPM and digital signatures, 59–61

file destination, 481
immutable files, 196–99
Network File System (NFS), 229–30
overview, 187–88
resources, 231
securely mounting file systems, 204–7
securing removable devices, 207–8

filesnarf tool, 318
filter table, 82
filter{ }, 244, 252–53
FIN flag, 112–13
final flag, 254
find command, 192–93, 205, 286, 315
finger command, 21
Firestarter tool, 129
firewalls, 79–136

adding first rules, 83–85
and boot sequencing, 15
choosing filtering criteria, 86–87
creating basic firewall, 91–97
creating for bastion host, 97–117

bastion host rules, 116–17
firewall logging, 101–5
handling ICMP traffic, 105–8
iptables and TCP flags, 111–16
overview, 97–98
securing bastion services, 98–101
spoofing, hijacking, and denial of

service attacks, 108–11
enabling during installation, 2
firewalling FTP server, 446–48
how Linux firewall works, 80–83

chains, 82
overview, 80–82
policies, 82–83
tables, 82

iptables command, 87–91
kernel modules, 117. See also Patch-o-Matic
kernel parameters, 124–29. See also Patch-o-

Matic

/proc/sys/net/ipv4/conf/all/
accept_redirects, 126

/proc/sys/net/ipv4/conf/all/
accept_source_route, 126

/proc/sys/net/ipv4/conf/all/
log_martians, 126–27

/proc/sys/net/ipv4/conf/all/rp_filter,
127–28

/proc/sys/net/ipv4/
icmp_echo_ignore_all, 128

/proc/sys/net/ipv4/
icmp_echo_ignore_broadcasts, 128

/proc/sys/net/ipv4/
icmp_ignore_bogus_error_responses,
128

/proc/sys/net/ipv4/ip_forward, 129
/proc/sys/net/ipv4/tcp_syncookies, 129
overview, 117, 124–26
managing iptables and rules, 129–35

iptables init scripts, 131
iptables-save and iptables-restore,

130–31
overview, 129–30
testing and troubleshooting, 132–35

overview, 79–80
resources, 136

First In First Out (FIFO), 69
-fN option, 183
FORWARD chain, 82, 92
forward option, 493
forward type, 497
ForwardAgent option, 181
forwarders option, 493
forwarding X, with OpenSSH, 184–85
ForwardX11 option, 181
FQDN (Fully Qualified Domain Name), 375
fraggling, 109
FreeSWAN, 162
-fromstart option, 269
fsck command, 205
fsize limit, 52
FTP server, 443–61

adding SSL/TLS support, 459–60
configuring vsftpd for anonymous FTP,

450–56
general configuration, 451–52
general security, 454–55
mode and access rights, 452–54
overview, 450–51
preventing denial of service attacks,

455–56
configuring vsftpd with local users, 456–59
firewalling FTP server, 446–48
how FTP works, 444–46
installing vsftpd, 448–50
overview, 443–44
resources, 461

■INDEX538

4444_IDX_final.qxd 1/5/05 1:09 AM Page 538

starting and stopping vsftpd, 461
what FTP server to use, 448

ftp user, 28
ftpd_banner option, 454
Fully Qualified Domain Name (FQDN), 375

■G
-g option, 184
games user, 28
gcc package, 65
gdm user, 28
GECOS3, 21
gendsa (Openssl command-line function),

142
general category, 484
Generic Security Services Application

Programming Interface (GSSAPI),
422

genrsa option, 142
Gentoo, 76, 382
getpwent mechanism, 423
GFI, 351
GID, 24
Gimp Toolkit (GTK), 302–3
glibc, 72
GMP (GNU Multi-Precision), 159
gnats user, 28
Gnome Lokkit, 129
GNU Multi-Precision (GMP), 159
GNU Privacy Guard (GPG), 4, 58–59, 432
goaway flag, 339
gopher user, 28
gpasswd command, 27
gpg -c command, 202
gpg command, 202
GPG (GNU Privacy Guard), 4, 58–59, 432
gpg --import option, 58
gpm service, 9
Graphical User Interface (GUI), 3
group() option, 246
groupadd command, 26
groupdel command, 28
groupmod command, 28
groups. See users and groups
grsecurity package, 74
Grub, securing with password, 6–8
grub.conf configuration file, 73
GSSAPI (Generic Security Services Applica-

tion Programming Interface), 422
GTK (Gimp Toolkit), 302–3
GuardDog tool, 129
GUI (Graphical User Interface), 3

■H
-h option, 212–13
halt user, 28
handshake, 140

hardening basics, 1–77. See also kernel
boot sequencing, 15
compilers and development tools, 64–66

overview, 64
removing, 64–65
restricting, 65–66

Debian init scripts, 11–13
downloading updates and patches, 61–64

apt-get, 62–63
overview, 61
up2date, 62
Yum, 63–64

ensuring file integrity, 57–61
digital signatures and GNU privacy

guard, 58–59
MD5 and SHA1 checksums, 57–58
overview, 57
RPM and digital signatures, 59–61

inittab file, 13–14
installing distribution securely, 2–4
keeping informed about security, 75–76
overview, 1–2
pluggable authentication modules (PAM),

46–56
overview, 46–48
PAM module stacking, 48–49
PAM “other” service, 49–50
restricting su using, 50–51
restricting users to specific login times

with, 53–56
setting limits with, 51–53

process accounting, 44–46
Red Hat console, 16–17
Red Hat init scripts, 10–11
resources, 76–77
securing boat loader, 5–8

overview, 5
securing Grub with password, 6–8
securing LILO with password, 5–6

securing console, 16
securing login screens, 18–19
securing virtual terminals, 17–18
users and groups, 19–44

adding groups, 26–28
adding users, 24–26
deleting unnecessary users and groups,

28–30
groups, 23–24
overview, 19–22
password aging, 35–37
passwords, 31–35
shadow passwording, 22–23
sudo, 37–42
user accounting, 42–44

hash, 146
head command, 286
header checks, Sendmail, 354–57

■INDEX 539

4444_IDX_final.qxd 1/5/05 1:09 AM Page 539

help command, 427
--help option, 153, 284, 471
hide_ids option, 454
hijacking, 108–11
hint type, 497
HMAC-MD5 algorithm, 506
home directory, 25
/home partition, 21
host() filter, 252
host keys, 173
host selector, 134
HTML (Hyper Text Markup Language), 302
HTTPS (Hyper Text Transfer Protocol–

Secured), 84

■I
-i flag, 83–84
-I flag, 87
IANA (Internet Assigned Numbers

Authority), 86
ICMP (Internet Control Message Protocol),

81
ICMP traffic, handling, 105–8, 128
icmp_echo_ignore_all parameter, 128
--icmp-type flag, 107
id command, 286
identd user, 28
if option, 211
ifconfig, 80
IGNORE option, 360
IKE (Internet Key Exchange), 165
IMAP (Internet Message Access Protocol),

403–7. See also Cyrus IMAP
immutable files, 196–99
import module, 121
imtest tool, 428
INACTIVE option, 25
include command, 278
include function, 354
inet option, 507
inetd and xinetd-based connections, 167–69
inetd daemon, 167–68
--init option, 226
init process, 4
init script, 10, 475
init scripts

Debian init scripts, 11–13
Red Hat init scripts, 10–11
sample named init script, 523–24

inittab file, 13–14
inner layer security, 282–95

automated security hardening with
Bastille Linux, 290–95

Bastille logging, 295
installing Bastille Linux, 291–92
overview, 290–91
running Bastille, 292–94

overview, 282
scanning for exploits and root kits, 282–86

Chkrootkit, 285–86
overview, 282–83
Rootkit Hunter, 283–85

testing password security, 287–90
INPUT chain, 82, 107, 113
-input option, 267
insmod command, 122–23
Installation option (Custom), 2
Installation option (Minimal), 2
installing

Bastille Linux, 291–92
BIND, 470–71
Fetchmail, 431–34
Openwall Project, 69–73
SEC, 267–68
userland tools, 209
vsftpd, 448–50

Internet Assigned Numbers Authority
(IANA), 86

Internet Control Message Protocol. See ICMP
Internet Key Exchange (IKE), 165
Internet Message Access Protocol. See IMAP
Internet Systems Consortium (ISC), 466
intrusion, 286
INVALID state, 93, 116
invoke-rc.d command, 168
IP security (IPSec), 159
ip_conntrack_ftp module, 446–47
ip_forward option, 125–26
ipchains command, 81
ipfwadm command, 81
iprange module, 121, 122
ipsec command, 161, 166–67
IPSec (IP security), 159
ipsec setup command, 166
ipsec showhostkey --right command, 165
IPSec, VPNs, and Openswan, 159–67

firewalling for Openswan and IPSec,
165–66

ipsec command, 166–67
ipsec.conf file, 162–65
overview, 159–62

ipsec.o module, 161
ipt_conntrack module, 93
iptables and TCP flags, 111–16

blocking bad flag combinations, 113–15
managing iptables and rules, 129–35

iptables init scripts, 131
iptables-save and iptables-restore,

130–31
overview, 129–30
testing and troubleshooting, 132–35

overview, 111–12
SYN flooding, 115–16

iptables command, 83, 87–91

■INDEX540

4444_IDX_final.qxd 1/5/05 1:09 AM Page 540

iptables match module, 115
iptables-restore command, 130–31
iptables-save command, 130–31
IPv4 networking, 476
IPv6, 433, 476
irc user, 28
irda service, 9
ISC (Internet Systems Consortium), 466
isdn service, 9
issue.net file, 18

■J
-j flag, 84
Janicke, Lutz, 382
John the Ripper (JTR) password cracker,

287–90

■K
KDE (K Desktop Environment), 295
Kerberos, 410
kerberos4 mechanism, 389
kerberos5 mechanism, 389
kern facility, 236
kern logging, 128
kernel, 1–2, 5–6, 8, 66–75

getting kernel source, 66–68
grsecurity package, 74
Linux Intrusion Defense System (LIDS), 74
modules, 117. See also Patch-o-Matic
Openwall Project, 68–74

installing, 69–73
overview, 68–69
testing, 73–74

overview, 66
parameters, 124–29. See also Patch-o-

Matic
/proc/sys/net/ipv4/conf/all/

accept_redirects, 126
/proc/sys/net/ipv4/conf/all/

accept_source_route, 126
/proc/sys/net/ipv4/conf/all/

log_martians, 126–27
/proc/sys/net/ipv4/conf/all/rp_filter,

127–28
/proc/sys/net/ipv4/icmp_echo_ignore_

all, 128
/proc/sys/net/ipv4/icmp_echo_ignore_

broadcasts, 128
/proc/sys/net/ipv4/icmp_ignore_

bogus_error_responses, 128
/proc/sys/net/ipv4/ip_forward, 129
/proc/sys/net/ipv4/tcp_syncookies,

129
overview, 117, 124–26

Rule Set Based Access Controls (RSBAC)
project, 74

SELinux package, 75

key statement, 477
keyserver, 60
keytable, 9
klipsdebug option, 163
klogd daemon, 234
KPOP protocol, 435
kudzu service, 9

■L
-l (clamav-milter option), 369
l flag, 189
-L flag, 88
-l option, 36, 174, 441
lame-servers category, 484
LAN (Local Area Network), 110
Lasser, Jon, 291
last command, 43, 314
lastb command, 43
lastcomm command, 45
lastlog command, 44
LaTeX, 302
lcap command, 200–201
LDAP (Lightweight Directory Access

Protocol), 392
ldap mechanism, 423
ldd command, 328, 381–83, 412
libmilter library, 368
libnet, 318
libnids, 318
libol library, 241
libpam-cracklib, 32
LIDS (Linux Intrusion Defense System), 74,

318
Lightweight Directory Access Protocol

(LDAP), 392
LILO, securing with password, 5–6
lilo.conf, 73
limit module, 115
--limit-burst option, 115
limits.conf file, 52
--line-numbers flag, 88
Linux Intrusion Defense System (LIDS), 74,

318
list user, 28
listaclmailboxl command, 427
listen option, 451, 452
listen_address option, 452
listen-on option, 489
listmailbox command, 427
listquota command, 427
LMTP (Local Mail Transfer Protocol), 409
lmtp socket, 420–22
lo host, 98
Local Area Network (LAN), 110
Local Mail Transfer Protocol (LMTP), 409
local option, 157
Local port forwarding, 183

■INDEX 541

4444_IDX_final.qxd 1/5/05 1:09 AM Page 541

local_destination_concurrency_limit option,
344–45

local_enable option, 457
local0–local7 facility, 236
localhost keyword, 480
localnets keyword, 480
--localstatedir option, 153
log_martians parameter, 126–27
log{ }, 253–54
logger command, 259
logger (command-line tool), 263–64
logging and log monitoring, 233–80. See also

syslog; syslog-NG
firewall logging, 101–5
log analysis and correlation, 264–76

building SEC rules, 270–76
inputting messages to SEC, 269–70
installing and running SEC, 267–68
overview, 264–66

log management and rotation, 277–79
overview, 233
resources, 280

logging statement, 477
login command, 50
LOGIN mechanism, 387–88
login screens, 18–19
login_alert.conf file, 55
login.defs file, 23
LoginGraceTime option, 183
--log-ip-options flag, 102
--log-level flag, 102
--log-prefix flag, 101
logrotate tool, 277–79
--log-tcp-options flag, 102
--log-tcp-sequence flag, 102
loop file system, encrypting, 210–14
Loop-AES, 208
Loopback addresses, 109
losetup command, 211, 214
lp user, 28
lpd service, 9
lpd user, 28
lpr facility, 236
ls command, 45, 188, 193, 286, 315
ls_recurse_enable option, 455

■M
-m mins option, 239
-m option, 36
-M option, 36, 416
m4 command, 334
mail, authenticating and securing, 373–402.

See also TLS
overview, 373
resources, 402
SMTP AUTH using Cyrus SASL, 387–89

compiling Cyrus SASL, 388

configuring SASL saslauthd, 389
overview, 387–88

SMTP AUTH using Cyrus SASL for Postfix,
395–400

compiling Cyrus SASL into Postfix,
395–96

configuring Cyrus SASL for Postfix,
396–98

overview, 395
using SMTP client authentication with

Postfix, 400
using SMTP server authentication with

Postfix, 398–400
SMTP AUTH using Cyrus SASL for

Sendmail, 389–95
compiling Cyrus SASL into Sendmail,

390–91
configuring Cyrus SASL for Sendmail,

391–92
overview, 389–90
using SMTP client authentication with

Sendmail, 394–95
using SMTP server authentication with

Sendmail, 392–93
testing SMTP AUTH with Outlook Express,

400–401
Mail Exchange Record (MX), 349
mail server, 321–72, 346–64

antispam, 351–64
antispam settings for Postfix, 357–64
antispam settings for Sendmail, 351–57
overview, 351

antivirus scanning of e-mail server, 364–72
installing ClamAV, 364–68
integrating ClamAV with Postfix, 370–72
integrating ClamAV with Sendmail,

368–70
overview, 364

choosing, 321–23
how mail server is at risk, 323
overview, 321, 346
protecting mail server, 323–33

chrooting Postfix, 330–33
chrooting Sendmail SMTP gateway or

relay, 324–30
overview, 323–24

relaying, 346–51
overview, 346–47
in Postfix, 350–51
in Sendmail, 348–50
testing if you are open relay, 347–48

resources, 372
securing SMTP server, 333–46

disabling dangerous and legacy SMTP
commands, 336–38

limiting risk of (Distributed) DoS
attacks, 341–46

■INDEX542

4444_IDX_final.qxd 1/5/05 1:09 AM Page 542

obfuscating MTA banner and version,
333–35

overview, 333
Sendmail and smrsh, 339–40
some additional Sendmail privacy flags,

339
writing to files safely, 340–41

Mail Submission Program (MSP), 323
Mail Transfer Agent (MTA), 146, 333–35
mail user, 28
mail_always option, 41
mail_badpass option, 41
mail_no_host option, 41
mail_no_perms option, 41
mail_no_user option, 41
mailCA, 375
Maildir mailbox, 25
maildrop program, 340
mailing lists, 75–76
mailnull user, 28
mailq command, 328
mailsnarf tool, 318
main.cf file, 335
make bzImage command, 160
make config command, 71
make mrproper function, 70
make oldconfig command, 72
make process, 260, 459
makedepend command, 409
makemap command, 349
man user, 29
Mandrake, 17, 76
man-in-the-middle attacks, on DNS server,

464–65
mark facility, 236, 239–40
master type, 497
match() filter, 252
match-clients substatement, 496
match-destinations substatement, 495
match-recursive-only substatement, 495
max_clients option, 455
max_per_ip option, 455
--max-children (clamav-milter option), 369
MaxDaemonChildren directive, 342
MaxHeaderLength option, 343
maxlogins limit, 52
MaxMessageLength option, 343
MaxMIMEHeaderLength option, 343
MAY option, 386
MD5, 2, 4, 6–7, 21, 23, 31, 34, 57, 287–88
md5sum command, 57
memlock limit, 52
Message digest, 57, 138
message_size_limit option, 346
Microsoft Certificate Server, 139
MinFreeBlocks option, 344
minimal installation option, 2, 525

mkfs.ext3 command, 214
mknod command, 327, 413, 472–73
mode numbers, 190
modprobe command, 210
module command, 121
module stacking, 33
modules_install command, 121
modules_install option, 72
MonMotha tool, 129
mounting file systems securely, 204–7
mport module, 123
MSP (Mail Submission Program), 323
MTA (Mail Transfer Agent), 146, 333–35
multiport module, 123
MUST option, 386
MUST_NOPEERMATCH option, 386
mux file, 391
MX (Mail Exchange Record), 349
MySQL, 39, 256–59

■N
n option, 120
named daemon, 472, 474–76
named.conf file, 476–78, 507–8
NASL (Nessus Attack Scripting Language),

302
NAT (Network Address Translation), 79, 445
NAT-T (Network Address Translation

Traversal), 160
needmailhelo flag, 339
Nessus, 281, 295, 302–13

overview, 302–5
running Nessus client, 307–13
running Nessusd daemon, 306–7

Nessus Attack Scripting Language (NASL),
302

nessus client options, 307
nessus-adduser command, 304
nessus-mkcert command, 304
NessusWX, 307
net selector, 134
NetBSD, 80
Netcat, 319
Netfilter, 79–81
netfs service, 9
NetHack, 3
netmask() filter, 252
Netscape Certificate Management System,

139
netstat -a command, 169, 296
netstat command, 286
Network Address Translation (NAT), 79, 445
Network Address Translation Traversal

(NAT-T), 160
network category, 484
Network File System (NFS), 229–30
Network Time Protocol (NTP), 100–101, 503

■INDEX 543

4444_IDX_final.qxd 1/5/05 1:09 AM Page 543

NEW connection, 93–97
newaliases command, 328
-newca option, 145
newgrp command, 27
news user, 29
NFS (Network File System), 229–30
nfslock service, 9
nfsnobody user, 29
nfswatch command, 230
NMAP, 296–301
nmap tool, 112–13
no_oe.conf file, 165
noactive option, 398
noanonymous option, 398–99
noauto option, 205
nobody user, 29
nobodyreturn flag, 339
--nocolors option, 284
--nodeps option, 65
-nodes option, 376
nodev option, 205
nodictionary option, 398
noexec option, 205–6
nofile limit, 52
-nofromstart option, 269
NONE option, 112
noplaintext option, 398
nopriv_user option, 452
noreceipts flag, 339
normal mode, 197
noshell, 21–22
nosuid option, 205–6
notify-source substatement, 491
nouser option, 205–6
noverb flag, 339
nproc limit, 52
NSA, 75
nscd user, 29
NTML protocol, 433
NTP (Network Time Protocol), 100–101, 503
ntpd service, 9
ntsysv, 11
null channel, 483
null destination, 481

■O
-o option, 172, 369
-o=w flag, 192
obscure option, 32
ODBC (Open Database Connectivity), 256
ODMR (On-Demand Mail Relay), 430
OE (Opportunistic Encryption), 162
of option, 211
On-Demand Mail Relay (ODMR), 430
one-way hash, 138
Open Database Connectivity (ODBC), 256

OpenSSH, 169–71, 312
forwarding X with, 184–85
port forwarding with, 183–84

OpenSSL, 302, 377, 435–36, 459. See also SSL,
TLS, and OpenSSL

openssl command, 150–52
openssl s_client command, 150
openssl s_server function, 151
openssl.cnf file, 143
Openwall Project, 68–74

installing, 69–73
overview, 68–69
testing, 73–74

operator user, 29
Opportunistic Encryption (OE), 162
op.ps file, 330
optional module, 47
options statement, 477
options{ }, 244–46
-out option, 142
outer layer security, 295–313

Nessus, 302–13
overview, 302–5
running Nessus client, 307–13
running Nessusd daemon, 306–7

NMAP, 296–301
overview, 295

Outlook Express, 374
OUTPUT chain, 107
owner option, 205–6, 246
ownership, 196

■P
p flag, 189
-p flag, 83
-p (nessusd option), 306
-P0 (NMAP command-line option), 310
PAM (pluggable authentication modules),

46–56
enabling, 170
module stacking, 48–49
modules, 16, 31–32, 34
overview, 46–48
PAM “other” service, 49–50
Red Hat preconfiguration with, 1–2
restricting su using, 50–51
restricting users to specific login times

with, 53–56
setting limits with, 51–53

pam_access.so module, 56
pam_console.so, 16
pam_cracklib.so module, 32–33
pam_deny.so module, 49
pam_env.so module, 56
pam_group.so module, 56
pam_limits.so module, 51
pam_local.so module, 48

■INDEX544

4444_IDX_final.qxd 1/5/05 1:09 AM Page 544

pam_login_alert.so module, 54–55
pam_rhosts_auth.so module, 49
pam_server_name option, 458
pam_stack.so module, 48
pam_time.so module, 53
pam_unix.so module, 32
pam_warn.so module, 50
pamnotsosecure.so module, 48
parameters, kernel, 124–29

overview, 124–26
/proc/sys/net/ipv4/conf/all/

accept_redirects, 126
/proc/sys/net/ipv4/conf/all/

accept_source_route, 126
/proc/sys/net/ipv4/conf/all/

log_martians, 126–27
/proc/sys/net/ipv4/conf/all/rp_filter,

127–28
/proc/sys/net/ipv4/

icmp_echo_ignore_all, 128
/proc/sys/net/ipv4/

icmp_echo_ignore_broadcasts, 128
/proc/sys/net/ipv4/

icmp_ignore_bogus_error_responses,
128

/proc/sys/net/ipv4/ip_forward, 129
/proc/sys/net/ipv4/tcp_syncookies, 129

paranoid mode, 197
passwd file, 194
passwd function, 49
password module, 47
password option, 6
PasswordAuthentication option, 182
password.lst file, 288
passwords, 31–35

aging, 35–37
shadow passwording, 22–23
testing security of, 287–90

John the Ripper (JTR) password cracker,
287–90

overview, 287
PASV command, 444–45
pasv_max_port option, 455
pasv_min_port option, 455
patches. See updates and patches
Patch-O-Matic (POM), 117–24, 527

comment module, 123–24
iprange module, 122
mport module, 123
overview, 117–21

PaX project, 74
pcmcia service, 9
PDF file format, 302
Peer certificate verification, 156
PEM file, 460
PERL, 65
perl-TK, 291

-perm option, 192
permissions and attributes, 188–96

access permissions, 188–96
overview, 188–91
setuid and setgid permissions, 194–96
sticky bits, 193–94
umask command, 191–92
world-readable, world-writable, and

world-executable files, 192–93
overview, 188
ownership, 196

permit_mynetworks permission, 362
permit_sasl_authenticated permission, 362
PermitRootLogin option, 182
PGP-MIME, 374
pgp.net key server, 67
PID (Process ID), 366, 485
PIN, 31
ping command, 105
pipe() source, 247–51
PKI (public-key infrastructure), 138
PLAIN mechanism, 387
pluggable authentication modules. See PAM
Pluto IKE, 163
plutodebug option, 163
policies, 82–83
policy file, 218
POM. See Patch-O-Matic
POP (Post Office Protocol), 403–7, 435
pop3test tool, 428
PORT command, 444
port forwarding, with OpenSSH, 183–84
portmap service, 9
PortSentry tool, 342
Post Office Protocol (POP), 403–7, 435
Postfix, 330–33, 335, 529

antispam configuration, 360–64
antispam settings for, 357–64
chrooting, 330–33
header and body checks, 359–60
integrating Cyrus IMAP with, 421–22
limiting risk of Denial of Service (DoS)

attacks with, 344–46
relaying in, 350–51
restriction list, 358–59
SMTP AUTH using Cyrus SASL for, 395–400

compiling Cyrus SASL into Postfix,
395–96

configuring Cyrus SASL for Postfix,
396–98

overview, 395
using SMTP client authentication with

Postfix, 400
using SMTP server authentication with

Postfix, 398–400
TLS with, 381–86

compiling TLS into Postfix, 382–83

■INDEX 545

4444_IDX_final.qxd 1/5/05 1:09 AM Page 545

Postfix (continued)
configuring TLS in Postfix, 383–85
overview, 381–82
using TLS for specific host, 385–86

Postfix-TLS patch, 385
postgres user, 29
PostgreSQL, 392
postmap command, 338, 386
postrotate command, 279
--prefix option, 260, 471
--prefixconfigure option, 434
prerotate command, 279
print-category option, 482
--print-report option, 227
print-severity option, 482
print-time option, 482
priority() filter, 252
priority limit, 52
private-key encryption, 202
/proc directory, 69
/proc/crypto file, 210
process accounting, 44–46
Process ID (PID), 366, 485
procmail program, 340
/proc/sys/net/ipv4/conf/all/

accept_redirects, 126
/proc/sys/net/ipv4/conf/all/

accept_source_route, 126
/proc/sys/net/ipv4/conf/all/log_martians,

126–27
/proc/sys/net/ipv4/conf/all/rp_filter, 127–28
/proc/sys/net/ipv4/icmp_echo_ignore_all,

128
/proc/sys/net/ipv4/

icmp_echo_ignore_broadcasts, 128
/proc/sys/net/ipv4/

icmp_ignore_bogus_error_responses,
128

/proc/sys/net/ipv4/ip_forward, 129
/proc/sys/net/ipv4/tcp_syncookies, 129
ProFTPD FTP server, 448
program() filter, 252
property summaries, 221
protocol option, 157
proxy user, 29
ps -A command, 169
ps command, 286
PSH flag, 112
public-key encryption, 58, 137–69

inetd and xinetd-based connections, 167–69
IPSec, VPNs, and Openswan, 159–67

firewalling for Openswan and IPSec,
165–66

ipsec command, 166–67
ipsec.conf file, 162–65
overview, 159–62

overview, 137–39

SSL, TLS, and OpenSSL, 140–52
creating certificate authority and

signing certificates, 142–48
overview, 140–42
revoking certificate, 149–50
testing connections using openssl

command, 150–52
Stunnel, 152–58

public-key infrastructure (PKI), 138

■Q
q option, 121
query-source substatement, 490
queue_minfree option, 346
--quiet (clamav-milter option), 369
quit command, 427

■R
-r option, 30, 240
-R option, 172
RAM (Random Access Memory), 178
Raymond, Eric S., 430
RBLs, and Sendmail, 353–54
rcp command, 175
read permission, 189
recurse attribute, 223
recursion option, 492
Red Hat, 1, 3, 9

console, 16–17
init scripts, 10–11

REJECT policy, 82
reject_invalid_hostname restriction, 362
reject_multi_recipient_bounce restriction,

362
reject_non_fqdn_recipient restriction, 362
reject_non_fqdn_sender restriction, 362
reject_unauth_destination restriction, 362
reject_unknown_hostname restriction, 362
reject_unknown_recipient_domain

restriction, 362
reject_unknown_sender_domain restriction,

362
RELATED state, 93
relaying, 346–51

overview, 346–47
in Postfix, 350–51
in Sendmail, 348–50
testing if you are open relay, 347–48

reload option, 213, 243
remote access to e-mail, hardening.

See e-mail, hardening remote
access to

remote command, 175
Remote port forwarding, 183
Remote Procedure Call (RPC), 229
remounting encrypted file system, 215
removable devices, 207–8

■INDEX546

4444_IDX_final.qxd 1/5/05 1:09 AM Page 546

remove option, 213
removing compilers and development tools,

64–65
renamemailbox command, 427
--report-mode option, 284
req (Openssl command-line function), 142
required flag, 47
requisite flag, 47
resize option, 213
resources, 510

connections and remote administration,
securing, 185

DNS server, 510
e-mail, hardening remote access to,

441–42
files and file systems, securing, 231
FTP server, securing, 461
hardening basics, 76–77
logging and log monitoring, 280
mail, authenticating and securing, 402
tools, using for security testing, 319–20

--restore option, 289
restricted option, 6
restrictexpand flag, 339
restrictmailq flag, 339
restrictqrun flag, 339
RFC 1122, 128
RFC 3164, 234
rhnsd service, 9
RHSBL (Right-Hand Side Blacklist), 363
rkhunter script, 283
rkhunter.log file, 284
RLIMIT_NPROC setting, 69
rlogin command, 171
rndc command, 463, 485, 504–9

adding rndc support to named.conf,
507–8

overview, 504–5
rndc.conf, 505–7
using rndc, 508–9

rndc stats command, 485
rndc status command, 509
rndc.conf file, 505
ro option, 205–6
root kit, 282–83
root user, 29
Rootkit Hunter, 283–85
routers, 126
rp_filter File, 127–28
RPA protocol, 433
RPC (Remote Procedure Call), 229
rpc user, 29
rpcuser user, 29
RPM, 59–61, 200, 283
rpm --checksig command, 61
rpm --import command, 60
rpm user, 29

RPOP Protocol, 435
rsa (Openssl command-line function), 142
RSA private key, 141
rsa_cert_file option, 460
RSAAuthentication option, 182
rsautl (Openssl command-line function), 142
RSBAC (Rule Set Based Access Controls)

project, 74
rss limit, 52
RST flag, 112
rule attribute, 222
Rule Set Based Access Controls (RSBAC)

project, 74
rulename attribute, 223
ruleset, 131–32
RunAsUser option, 341
Rusty Russell, 80
rw option, 205–6

■S
s flag, 189
-s flag, 94
s_client (Openssl command-line function),

142
s_server (Openssl command-line function),

142
sa tool, 46
SafeFileEnvironment option, 340–41
Samba, 10
SANS, 75
SARA (Security Auditor’s Research Assistant),

319
SASL (Simple Authentication and Security

Layer), 328
sasl_pwcheck_method option, 418
saslauthd daemon, 389
sasldb2 file, 425
saslpasswd2 command, 392, 397
SASLv2, 390
SATAN (Security Administrator Tool for

Analyzing Systems), 319
/sbin/nologin script, 21
ScanArchive option, 366
ScanMail option, 366
ScanOLE2 option, 366
ScanRAR option, 366
Scheidler, Balazs, 241
scp command, 165, 175–76
script command, 317
SDPS protocol, 435
SEC, 104, 265–76

actions, 276
building SEC rules, 270–76
command-line options, 268
FAQ, 276
inputting messages to, 269–70
installing and running, 267–68

■INDEX 547

4444_IDX_final.qxd 1/5/05 1:09 AM Page 547

SEC (continued)
pattern types, 271
rule types, 272

sec.pl script, 267
sec.startup file, 268
Secure Hash Algorithm (SHA), 57
Secure Sockets Layer. See SSL, TLS, and

OpenSSL
Secure Wide Area Network (S/WAN), 159
secure_email_list_enable option, 453
Security Administrator Tool for Analyzing

Systems (SATAN), 319
Security Auditor’s Research Assistant (SARA),

319
security category, 484
security, keeping informed about, 75–76
security sites, 75–76
security testing. See tools, using for security

testing
sed command, 286
SELinux package, 74–75
Sendmail, 8, 377–81, 529

antispam settings for, 351–57
banner control, 333–35
chrooting Sendmail SMTP gateway or

relay, 324–30
header checks, 354–57
integrating ClamAV with, 368–72
integrating Cyrus IMAP with, 421–22
limiting risk of Denial of Service (DoS)

attacks with, 342–44
privacy flags, 339
and RBLs, 353–54
relaying in, 348–50
and smrsh, 339–40
SMTP AUTH using Cyrus SASL for, 389–95

compiling Cyrus SASL into Sendmail,
390–91

configuring Cyrus SASL for Sendmail,
391–92

overview, 389–90
using SMTP client authentication with

Sendmail, 394–95
using SMTP server authentication with

Sendmail, 392–93
TLS with, 377–81

compiling Sendmail with TLS, 378
configuring Sendmail with TLS, 379–80
overview, 377–78
using TLS with specific hosts, 380–81

sendmail.cf file, 333–34
sendmail.mc file, 333–34
server authentication, 140
server statement, 477
service configuration files, 46
session module, 47
--session option, 289

setaclmailboxs command, 427
setgid permission, 194–96
setquota command, 427
setuid permission, 194–96
severity attribute, 223
sftp command, 175–76
SHA (Secure Hash Algorithm), 57
SHA1 checksum, 57–58
sha1sum command, 57
shadow authentication, 424
shadow mechanism, 389, 423
shadow passwording, 2, 22–23
sharedscripts option, 279
SHELL, 25
shell commands, 340
shellcmd action, 276
--show option, 289–90
shows tables command, 258
shutdown command, 14
shutdown user, 29
shutdown.allowed file, 14
SIGINT, 133
Simple Authentication and Security Layer

(SASL), 328
Simple Mail Transfer Protocol (SMTP), 147,

321. See also SMTP server
SingleWithSuppress rule type, 275
site.config.m4 file, 390
SKEL, 25
--skip-keypress option, 284
Slackware, 382
slave type, 497
sleep command, 438
S/MIME, 374
smime (Openssl command-line function), 142
SmoothWall, 79
smrsh shell, 339–40
SMsg macro, 355
SMTP AUTH using Cyrus SASL, 387–89

compiling Cyrus SASL, 388
configuring SASL saslauthd, 389
overview, 387–88
for Postfix, 395–400

compiling Cyrus SASL into Postfix,
395–96

configuring Cyrus SASL for Postfix,
396–98

overview, 395
using SMTP client authentication with

Postfix, 400
using SMTP server authentication with

Postfix, 398–400
for Sendmail, 389–95

compiling Cyrus SASL into Sendmail,
390–91

configuring Cyrus SASL for Sendmail,
391–92

■INDEX548

4444_IDX_final.qxd 1/5/05 1:09 AM Page 548

overview, 389–90
using SMTP client authentication with

Sendmail, 394–95
using SMTP server authentication with

Sendmail, 392–93
SMTP server, 333–46

disabling commands, 336–38
ETRN, 338
EXPN, 337–38
overview, 336
VRFY, 336–37

limiting risk of (Distributed) DoS attacks,
341–46

overview, 341–42
with Postfix, 344–46
with Sendmail, 342–44

obfuscating MTA banner and version,
333–35

overview, 333
Postfix, 335
Sendmail, 333–35

overview, 333
privacy flags, 339
Sendmail and smrsh, 339–40
writing to files safely, 340–41

smtpd_delay_reject option, 361
smtpd_error_sleep_time option, 344–45
smtpd_hard_error_limit option, 344–45
smtpd_helo_required option, 361
smtpd_recipient_limit option, 344–45
smtpd_soft_error_limit option, 344–45
smurf attack, 128
smurfing, 109
snmpd service, 9
snmtptrap service, 9
Snort, 319
sockets, 81
soft limit, 52
source port, 86
source tarball, 216
source{ }, 244, 246–49
SourceForge, 216
source-routed packets, 126
sources.list file, 63
-sP scan type, 297
SpamAssassin, 351
spoofing, 108–11
--sport flag, 123
--sport option, 84
SQL server, 250
srvrsmtp.c file, 335
-sS scan type, 297
SSH, 15–16, 92, 95–96, 171–75, 230

configuring, 180–83
tunneling Fetchmail with, 437–38

ssh command, 171, 438
ssh connection, 133

ssh-add options, 178
ssh-agent and agent forwarding, 177–79
sshd daemon, 179–80, 437
sshd options, 180
sshd server, 170
sshd service, 9
sshd user, 29
sshd_config file, 176, 180–83
ssh-keygen command, 173
--ssl option, 436
SSL, TLS, and OpenSSL, 140–52

creating certificate authority and signing
certificates, 142–48

overview, 140–42
revoking certificate, 149–50
SSL/TLS support, 459–60
testing connections using openssl

command, 150–52
--sslcert option, 436
--sslcertck option, 436
--sslcertpath option, 436
SSLdump, 152
--sslfingerprint option, 436
--sslkey option, 436
--sslproto option, 436
-sT scan type, 297
stack, 47, 52
stacktest, 74
STARTTLS, 374, 379–80
-starttls option, 150
--state flag, 94
state module, 93, 115
stateful packet-filtering firewall, 81
stateful protocol, 444
stateless packet-filtering firewall, 81
stats() option, 246
--status option, 289
stderr destination, 481
--stdout option, 289
sticky bits, 193–94
stop rule, 224
StreamMaxLength option, 366
StreamSaveToDisk option, 366
strict_rfc821_envelopes option, 361
StrictHostKeyChecking option, 181
StrictModes option, 182
strings command, 286
stub type, 497
Stunnel, 152–58, 260
stunnel.conf file, 154
stunnel.pem file, 156
stunnel-sample.conf, 154
su command, 50–51, 273
-sU scan type, 297
subnet-to-subnet connection, 164
sudo command, 37–42
sudoers file, 38–40

■INDEX 549

4444_IDX_final.qxd 1/5/05 1:09 AM Page 549

sufficient flag, 47
suid option, 205–6
Sun Microsystems, 46
Suppress rule type, 274–75
SuSE, 10, 179, 382
S/WAN (Secure Wide Area Network), 159
sXid tool, 196
symmetrical encryption, 202
SYN cookies, 116, 129
SYN flag, 112
SYN flooding, 115–16
--syn option, 116
sync() option, 246
sync user, 29
sys user, 29
sysacc service, 13
--sysconfdir option, 153–54, 260
sysctl command, 124–25
sysctl.conf file, 124
syslog, 233–40

configuring, 104, 235–39
actions, 237–38
combining multiple selectors, 238–39
facilities, 235–36
overview, 235
priorities, 236–37

overview, 233–35
starting syslogd and its options, 239–40

syslog_enable option, 452
syslog2ng script, 242
syslog.conf file, 239
syslog-NG, 241–64, 327–28

contrib directory, 242
installing and configuring, 241–42
logging to database with, 256–59
overview, 241
running and configuring, 242–54

destination{ }, 249–52
filter{}, 252–53
log{ }, 253–54
options{ }, 244–46
overview, 242–44
source{ }, 246–49

sample syslog-ng.conf file, 254–56
secure logging with, 259–63
testing logging with logger, 263–64

syslog-NG File-Expansion Macros, 250
system administrator, 37
system-auth service, 46

■T
-t flag, 90
t option, 120
-t option, 174, 475
tables, in Netfilter, 82
TakeNext option, 270
TCP flags. See iptables and TCP flags

tcp() source, 247–48
TCP SYN scan, 296–97
TCP (Transmission Control Protocol), 81
TCP Wrapper, 154
tcpdump command, 132–35, 319
--tcp-flags flag, 112
TCP/IP (Transmission Control Protocol /

Internet Protocol), 137, 322
telnet command, 171
telnetd user, 29
Tempest-shielding technology, 144
--test option, 289–90
testing. See also tools, using for security

testing
iptables, 132–35
Openwall Project, 73–74
password security, 287–90

John the Ripper (JTR) password cracker,
287–90

overview, 287
SMTP AUTH with Outlook Express,

400–401
TEST-NET address range, 109
three-way handshake, 111
time line, 276
time_reopen() option, 246
time.conf file, 53
TIMEOUTbusy option, 157
TIMEOUTclose option, 157
TIMEOUTidle option, 157
Titan package, 319
title option, 8
TLS (Transport Layer Security), 140, 373–86.

See also SSL, TLS, and OpenSSL
creating certificates for, 374–77
overview, 373–74
with Postfix, 381–86

compiling TLS into Postfix, 382–83
configuring TLS in Postfix, 383–85
overview, 381–82
using TLS for specific host, 385–86

with Sendmail, 377–81
compiling Sendmail with TLS, 378
configuring Sendmail with TLS, 379–80
overview, 377–78
using TLS with specific hosts, 380–81

/tmp directory, 68
tools, using for security testing, 281–321.

See also inner layer security; outer
layer security

additional security tools, 318–19
other methods of detecting penetration,

313–16
overview, 281–82
recovering from penetration, 315–18
resources, 319–20

traceroute command, 106

■INDEX550

4444_IDX_final.qxd 1/5/05 1:09 AM Page 550

transaction signatures (TSIG), 463, 500–504
transfer acl statement, 519
Transmission Control Protocol / Internet

Protocol (TCP/IP), 137, 322
Transmission Control Protocol (TCP), 81
Transport Layer Security. See SSL, TLS, and

OpenSSL; TLS
TrendMicro, 351
Tripwire, 187, 215–29

configuring, 216–18
overview, 215–16
policy, 218–29

global variables, 218–19
initializing and running Tripwire,

224–29
overview, 218
Tripwire rules, 219–24

property masks, 220
tripwire-setup-keyfiles command, 224–25
Trojan program, 282
troubleshooting iptables, 132–35
TSIG (transaction signatures), 463, 500–504
twadmin command, 225, 228–29
twcfg.txt file, 217–18
twinstall.sh script, 224
twpol.txt file, 217–18
twprint command, 227
--twrfile option, 227–28
TXT record, 486–87

■U
u flag, 190
-u option, 258, 475
UBE (Unsolicited Bulk E-mail), 346
UCE (Unsolicited Commercial E-mail), 346
UDP packets, 465
udp() source, 247–48
UDP (User Datagram Protocol), 81, 135,

298
UID (Unique ID), 408
ulimit command, 53
umask command, 191–92
umount command, 214
uname -a command, 66, 73
uname command, 286
Unique ID (UID), 408
unix-dgram() source, 247–48
unix-stream() source, 247–48
unmounting encrypted file system, 214
Unsolicited Bulk E-mail (UBE), 346
Unsolicited Commercial E-mail (UCE),

346
up2date command, 61–62
-update option, 228
--update-policy option, 229
update.rc-d command, 11–12
update-rc.d command, 168

updates and patches, downloading, 61–64
apt-get, 62–63
overview, 61
up2date, 62
Yum, 63–64

URG flag, 112
urlsnarf tool, 318
use_time_recvd() option, 246
use_uid option, 51
UsePriviledgeSeparation option, 182
user account, 19
User Datagram Protocol (UDP), 81, 135, 298
user facility, 236
user option, 205–6
useradd command, 24
userdel command, 28
usermod command, 28
users and groups, 19–44

adding groups, 26–28
adding users, 24–26
deleting unnecessary users and groups,

28–30
overview, 19–22
passwords, 31–37
shadow passwording, 22–23
sudo, 37–42
user accounting, 42–44

usertty() option, 251
/usr/sbin directory, 224
/usr/src directory, 67, 69
/usr/src/linux directory, 68, 70
uucp facility, 236
uucp user, 29

■V
-v flag, 133, 243
-v (logrotate command-line option), 279
-V option, 199
Vaarandi, Risto, 266
vcsa user, 29
verbose mode, 197
--verify gpg option, 59
verify (Openssl command-line function),

142
verify option, 156
VerifyReverseMapping option, 183
--versioncheck option, 284
versions option, 482
view statement, 477, 493
Virtual Network Computing (VNC), 157–58
virtual private networks. See IPSec, VPNs,

and Openswan
virtual terminals, 14, 17–18
visudo command, 38
Vlock tool, 17–18
VNC (Virtual Network Computing), 157–58
VPNs. See IPSec, VPNs, and Openswan

■INDEX 551

4444_IDX_final.qxd 1/5/05 1:09 AM Page 551

VRFY command, disabling, 336–37
vsftpd

configuring for anonymous FTP, 450–56
general configuration, 451–52
general security, 454–55
mode and access rights, 452–54
overview, 450–51
preventing denial of service attacks,

455–56
configuring with local users, 456–59
installing, 448–50
starting and stopping, 461

vsftpd.conf file, 450, 460
vsftpd.conf man file, 454
-vv flag, 133
-vv option, 61

■W
w command, 314
w flag, 190
-w option, 441
Wd entry, 54
Webmin, 169
who command, 42, 314
wildcard, 54
winbind service, 9
window option, 272
--with-auth option, 410
--with-com_err option, 410
--with-cyrus-group option, 410
--with-cyrus-user option, 410
--with-krb option, 410
--with-openssl option, 410
--with-pam option, 388
--with-sasl option, 410
--with-saslauthd option, 388
--with-ssl option, 153
--wordlist option, 289
world-readable, world-writable, and

world-executable files, 192–93
write action, 272
write permission, 189–90

write_enable option, 454
writing to files safely, 340–41
wtmp file, 43, 314
WU-FTPD FTP server, 448
-www option, 151
www-data user, 29

■X
-X flag, 91
X forwarding, with OpenSSH, 184–85
X mode, 290
-X option, 172
-x option, 172
X11, 184–85, 307–8
x509 (Openssl command-line function), 142
xfer-in category, 484
xferlog_enable option, 452
xferlog_std_format option, 452
xfer-out category, 484
xfs service, 9
xfs user, 29
xinetd daemon, 167–68
Xmas-style scanning, 114
Xprobe, 299
X-Windows, 3, 169, 293

■Y
y option, 120, 393
-y option, 174, 211
yast tool, 65
Yellow Dog Updater, Modified (Yum), 63–64
Yellow Dog web site, 76
ypbind service, 9
yum command, 61–64, 209
Yum (Yellow dog Updater, Modified), 63–64

■Z
-Z flag, 91
zero address, 111
Zeroconf IP address range, 109
Zlib, 170
zone statement, 477, 493–94

■INDEX552

4444_IDX_final.qxd 1/5/05 1:09 AM Page 552

	Hardening Linux
	Table of Content
	Chapter 1 Hardening the Basics
	Chapter 2 Firewalling Your Hosts
	Chapter 3 Securing Connections and Remote Administration
	Chapter 4 Securing Files and File Systems
	Chapter 5 Understanding Logging and Log Monitoring
	Chapter 6 Using Tools for Security Testing
	Chapter 7 Securing Your Mail Server
	Chapter 8 Authenticating and Securing Your Mail
	Chapter 9 Hardening Remote Access to E-mail.
	Chapter 10 Securing an FTP Server
	Chapter 11 Hardening DNS and BIND
	Appendix A The Bastion Host Firewall Script
	Appendix B BIND Configuration Files
	Appendix C Checkpoints
	Index

