Hardening
Linux

JAMES TURNBULL

Apress’

Hardening Linux
Copyright © 2005 by James Turnbull

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-444-4
Printed and bound in the United States of America 9 8 7 6 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jim Sumser
Technical Reviewer: Judith Myerson

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason
Gilmore, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett

Production Manager: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Linda Weidemann
Proofreader: Lori Bring

Indexer: Kevin Broccoli

Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liabil-
ity to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

Contents at a Glance

About the AUThOr XV
About the Technical Reviewer. Xvii
ACKNOWIBdgmMeNtS Xix
INtrOdUCHION. . .. XXi
CHAPTER 1 Hardeningthe Basics........................... 1
CHAPTER 2 FirewallingYourHosts ... 79
CHAPTER 3 Securing Connections and Remote Administration............. 137
CHAPTER 4 Securing Files and File Systems 187
CHAPTER 5 Understanding Logging and Log Monitoring 233
CHAPTER 6 Using Tools for Security Testing 281
CHAPTER 7 Securing Your Mail ServerL. 321
CHAPTER 8 Authenticating and Securing Your Mail 373
CHAPTER 9 Hardening Remote Accessto E-mail........................... 403
CHAPTER 10 SecuringanFTP Server....................................... 443
CHAPTER 11 Hardening DNSandBIND 463
APPENDIX A The Bastion Host Firewall Script 511
APPENDIX B BIND Configuration Files...................................... 517
APPENDIX C Checkpoints............. 525

Contents

ADOULTNE AUTNOT. . .. XV
About the Technical Reviewer. Xvii
ACKNOWIBAGMENTS Xix
I OdUCHION. . .. o XXi
CHAPTER 1 HardeningtheBasics.. 1
Installing Your Distribution Securely. 2

Some Answers to Common Installation Questions. 2

Install Only WhatYouNeed.coiiiiiinns. 2

Secure Booting, Boot Loaders, and Boot-Time Services 4

Securing Your Boat Loader.......................cal 5

Init, Starting Services, and Boot Sequencing 8

Consoles, Virtual Terminals, and Login Screens. 15
SecuringtheConsole ..., 16
TheRedHatConsole.................coiiiiiiiiiii, 16

Securing Virtual Terminals 17

Securing Login SCreens ... 18

Users and GroUPSovirit it e 19

Shadow Passwording ... 22

GrOUDS . . o 23

AddingUSers. ... 24

Adding Groups oo 26

Deleting Unnecessary Users and Groups. 28

Passwords. ... 31

Password Aging 35

SUAD . ..o 37

User Accounting. ...t 42

Process Accounting. 44

Pluggable Authentication Modules (PAM) 46

PAM Module Stacking................coiiii 48

The PAM “Other” Service 49
RestrictingsuUsingPAM, 50

vii

viii

CONTENTS

CHAPTER 2

Setting Limitswith PAM 51
Restricting Users to Specific Login Times with PAM 53
Package Management, File Integrity, and Updating 56
Ensuring File Integrity i 57
Downloading Updates and Patches 61
Compilers and DevelopmentTools........................ciit 64
Removing the Compilers and Development Tools 64
Restricting the Compilers and Development Tools. 65
Hardening and Securing Your Kernel 66
Getting Your Kernel Source................. 66
The Openwall Project 68
Other Kernel-Hardening Options.. 74
Keeping Informed About Security...............l 75
Security Sites and Mailing Lists 75
Vendor and Distribution Security Sites......................... 76
RESOUICES. 76
Mailing Lists 76
SHES . . 77
Firewalling YourHosts...................................... 79
So, How Does a Linux Firewall Work? 80
Tables. 82
Chains 82
PoliCiES. 82
Adding Your FirstRules. ... 83
Choosing Filtering Criteria i it 86
Theiptables Command i, 87
CreatingaBasic Firewall, 91
Creating a Firewall foraBastionHost 97
Securing the Bastion Services. 98
Firewall LOgging.ooovii 101
Handling ICMP Traffic 105
Spoofing, Hijacking, and Denial of Service Attacks 108
iptablesand TCPFlagsooo i, 11
Some Final Bastion HostRules 116
Kernel Modules and Parameters. 117
Patch-o-Matic...............l 117
Kernel Parameters. ... 124
Managing iptablesand YourRules................................ 129

iptables-save and iptables-restore........................... 130

CHAPTER 3

CHAPTER 4

CONTENTS
iptables init Scripts L 131
Testing and Troubleshootingoo.s. 132

RESOUICES. 136
Mailing Lists 136
SHES . .o 136
BOOKS. 136

Securing Connections and Remote Administration. 137

Public-Key Encryption. 137
SSL,TLS,and OpenSSL 140
Stunnel. 152
IPSec, VPNs, and Openswancovvinieninnn.. 159
inetd and xinetd-Based Connections 167

Remote Administration................. 169
SSN 171
scpandsftp ... 175
ssh-agent and Agent Forwarding 177
ThesshdDaemon 179
Configuringsshandsshd................................... 180
Port Forwarding withOpenSSH. 183
Forwarding X with OpenSSH 184

RESOUICES. 185
Mailing Lists o 185
SHES . . 185

Securing Files and File Systems 187

Basic File Permissions and File Attributes. 188
Access Permissions. 188
Ownership. ... 198

Immutable Files.......... 198

Capabilitiesand lcap................. o 200

Encrypting Files........... 202

Securely Mounting File Systems. 204

Securing Removable Devices ... 207

Creating an Encrypted File System 208
Installing the Userland Tools 209
Enabling the Functionality 209
Encrypting a Loop File System 210
Unmounting Your Encrypted File System...................... 214

Remounting. ... 215

ix

X

CONTENTS

CHAPTER 5

CHAPTER 6

Maintaining File Integrity with Tripwire 215
Configuring Tripwire i, 216
Explaining Tripwire Policy 218

Network File System (NFS)o i 229

RESOUICES. .. . 231
Mailing Lists 231
SHES . .o 231
Sites ADOULACLS 231

Understanding Logging and Log Monitoring............. 233

SYSIOg . . 233
Configuring Syslog. 235
Starting syslogd and Its Options 239

SYSIOG-NGo 241
Installing and Configuring syslog-NG......................... 241
The contrib Directory. 242
Running and Configuring syslog-NG. 242
Sample syslog-ng.confFile 254
Logging to a Database with syslog-NG 256
Secure Logging with syslog-NG 259
Testing Logging with logger...................oiiitt. 263

Log Analysis and Correlation.............................ooiitl. 264
Installing and Running SEC 267
Inputting Messagesto SECL. 269
Building Your SECRuleSo 270

Log Management and Rotation................................... 277

RESOUICES. ... 280
Mailing Lists 280
SHES . . 280
BOOKS 280

Using Tools for Security Testing 281

INNer Layer 282
Scanning for Exploits and RootKits 282
Testing Your Password Security. 287
Automated Security Hardening with Bastille Linux 290

OuterLayer. 295
NMAP . 296

CHAPTER 7

CHAPTER 8

CONTENTS

Other Methods of Detecting a Penetration 313
Recovering from a Penetration................................... 315
Additional Security Tools 318
asniff ... 318
Ethereal 318
Ettercap.............. o 318
LIDS .. 318
Netcat. ... 319
SARA 319
SNOMt. .. 319
CpdUMD 319
THan. .. 319
RESOUICES. 319
SHBS . .o 320
Securing Your Mail Server................................. 321
Which Mail Serverto Choose?coiiiiiin... 321
How Is Your Mail Server atRisk? 323
Protecting Your Mail Server............... ... i 323
Chrooting a Sendmail SMTP Gateway orRelay 324
Chrooting Postfix, 330
Securing Your SMTP Server.o 333
Obfuscating the MTA Banner and Version..................... 333
Disabling Dangerous and Legacy SMTP Commands. 336
Some Additional Sendmail Privacy Flags...................... 339
Sendmailandsmrsh.................. 339
Writingto FilesSafely 340
Limiting the Risk of (Distributed) DoS Attacks 34
Relaying, Spam, and Viruses, 346
Relaying. ... 346
Antispam 351
Antivirus Scanning Your E-mail Server........................ 364
RESOUICES. 372
Mailing Lists 372
SHES . . 372
Authenticating and Securing Your Mail 373
TS 373

Xi

Xii

CONTENTS

CHAPTER 9

TLSwith Sendmail................. 377
TLSwith Postfix ... 381
SMTPAUTHUsIng Cyrus SASL 387
Compiling Cyrus SASL. 388
Configuring SASL saslauthd. 389
SMTP AUTH Using Cyrus SASL for Sendmail 389
Compiling Cyrus SASL into Sendmail......................... 390
Configuring Cyrus SASL for Sendmail 391
Using SMTP Server Authentication with Sendmail. 392
Using SMTP Client Authentication with Sendmail 394
SMTP AUTH Using Cyrus SASL for Postfix.......................... 395
Compiling Cyrus SASL into Postfix 395
Configuring Cyrus SASL for Postfix........................... 396
Using SMTP Server Authentication with Postfix 398
Using SMTP Client Authentication with Postfix................. 400
Testing SMTP AUTH with Qutlook Express 400
RESOUICES. ...\ 402
Mailing Lists 402
SHES . .o 402
Hardening Remote Accessto E-mail 403
IMAP 404
POP . 404
Choosing IMAP or POP Servers.ccoiiiiiiiiii... 405
How Is Your IMAP or POP Server atRisk?.......................... 406
CYrus IMAP 407
Installing and Compiling Cyrus IMAP 409
Installing Cyrus IMAP into a chroot Jail 411
Configuring Cyrus IMAP 47
Cyrus IMAP Authentication with SASL 422
Cyrus IMAP Access Control and Authorization 425
Testing Cyrus IMAP with imtest/pop3test 428
Fetchmail 430
Installing Fetchmail 431
Configuring and Running Fetchmail 434
RESOUICES. 441
Mailing Lists 441

CONTENTS
CHAPTER 10 Securingan FTP Server.................................... 443
How Does FTPWork? 444
Firewalling Your FTP Server. ... 446
What FTP Serverto Use?.............. ... it 448
Installingvsftpd 448
Configuring vsftpd for Anonymous FTP............................ 450
General Configuration.................. i, 451
Mode and Access Rights...................... 452
General Security............ ... 454
Preventing Denial of Service Attacks 455
Configuring vsftpd with Local Users.coooo.t. 456
Adding SSL/TLS Support ... 459
Starting and Stopping vsftpd. 461
RESOUICES. 461
SHES . .o 461
CHAPTER 11 Hardening DNSandBIND.................................. 463
Your DNS ServeratRisk.............. 464
Man-in-the-Middle Attacks 464
Cache PoiSONING. 465
Denial of Service Attacks 465
Data Corruption and Alteration 466
Other RiSKS 466
What DNS Server Should You Choose? 466
Secure BIND Designovii 467
Installing BIND 470
Chrooting BIND 472
Permissionsinthe chroot Jail.................................... 473
Startingand Runningnamed. L. 474
Configuring BIND. 476
Access Control Lists 479
LOgging 480
OptiONS. . ..o 484
Viewsand Zoneso i 493
OMBS . i 497

Xiii

Xiv

CONTENTS

APPENDIX A

APPENDIX B

APPENDIX C

TherndcCommando i 504
MAC.CONT. 505
Adding rndc Support to named.conf............. 507
Usingrndc. ... 508

RESOUICES. 510
Mailing Lists 510
SHES . . 510
Information About Zone Files................................ 510
BOOKS. 510

The Bastion Host Firewall Seript.......................... 511

BIND ConfigurationFiles 517

ACaching Server. 517

An Authoritative Master Name Server 519

ASplitDNS Name Server................ i, 520

A Sample Named init Script............l 523

Checkpoints... 525

Chapter 1 525

Chapter 2 ... 526

Chapter 3 527

Chapter 4 527

Chapter b ... 528

Chapter 6 529

Chapter 7 ... 529

Chapter 8o 530

Chapter 9 530

Chapter 10 531

Chapter 11 ... 531

About the Author

JAMES TURNBULL is an IT&T security consultant at the Commonwealth Bank of Australia.
He is an experienced infrastructure architect with a background in Linux/Unix, AS/400,
Windows, and storage systems. He has been involved in security consulting, infrastructure
security design, SLA and support services design, and business application support.

Xv

About the Technical Reviewer

JUDITH MYERSON is a systems architect and engineer. Areas of interest include middleware
technologies, enterprise-wide systems, database technologies, application development,
server/network management, security, firewall technologies, and project management.

xvii

Acknowledgments

M ark Chandler, for his friendship and technical assistance during the writing of this book.
Nate Campi, for providing syslog-NG, SEC, and logging information.

Xix

Introduction

This book is a technical guide to hardening and securing Linux hosts and some of the com-
mon applications used on Linux hosts. It provides information on how to harden the base
Linux operating system, including firewalling and securing connections to your hosts. It also
looks at hardening and securing some of the applications commonly run on Linux hosts, such
as e-mail, IMAP/POP, FTP, and DNS.

No single book on security, even a book on the security of a single operating system, will
ever answer all the security questions or address all the possible threats. This book is about
providing risk mitigation and minimization. I have set out to identify risks associated with
running Linux and some of the applications that run on Linux hosts. I have then provided
technical solutions—backed by frequent examples, code, and commands—that minimize,
mitigate, or in some circumstances negate those risks. The configurations and examples I
provide are designed to ensure your Linux hosts are hardened against attack while not limit-
ing the functionality available to your users.

So why should you care about security? The answer to this is simple—because a significant
portion of businesses today rely heavily on the security of their IT assets. To use a metaphor:
running a computer host is like owning a house. When Unix-flavored operating systems and
TCP/IP networking were in their infancy, it was like owning a house in a small country town.
The emphasis was on making it easy for people to cooperate and communicate. People left their
doors open and did not mind other people exploring their houses or borrowing a cup of sugar.
You probably did not really keep anything too valuable in your house, and if you did, people
respected it. Your neighborhood was friendly, everyone knew everyone else, and you trusted
your neighbors. Your local neighborhood “hacker” was someone who showed expertise with
programming, systems, or telecommunications. Security was a secondary consideration, if
it was considered at all.

Times have changed. Now the little country town has a big interstate running right
through it. You need to lock up your house, install a burglar alarm, and put up a big fence.
Your neighbors have become considerably unfriendlier, and instead of borrowing a cup of
sugar, they are more interested in stealing your DVD player or burning your house down.
Additionally, the items you store in your house now have considerably more value to you,
in terms of both their financial cost and their importance to you. Worse, your local neighbor-
hood “hacker” has morphed into a variety of bad guys with skills ranging from the base to
the brilliant.

Note | do not like the term hackerto describe the people who attack your hosts. The term still has ambi-
guities associated with it, and its usage to describe attackers is not 100 percent accurate. Throughout this
book | use the term attackerto describe the people who threaten your hosts and applications.

XXi

XXii

INTRODUCTION

Many people scoff at IT security. They claim IT security professionals are paranoid and
are overstating the threat. Are we paranoid? Yes, probably we are. Is this paranoia justified? We
believe so; in fact, a common refrain in the IT security industry is “Are we being paranoid
enough?” IT assets have become absolutely critical to the functioning of most businesses,
both large and small. They have also become the repositories of highly valuable commercial,
research, customer, and financial information. The guys in the white hats are not the only
ones who have noticed the increase in importance of IT assets and the increase in value of the
information they contain. The guys in the black hats know exactly how important IT assets
are. They know how much damage they can do and how much they can gain from attacking,
penetrating, and compromising those assets.

The IT security skeptics claim that the threat of these attackers is overstated. They state
that the vast majority of attackers are unskilled, use collections of prepackaged tools that
exploit known vulnerabilities, and are no threat to most of your assets. That these make up
a significant portion of attacks is indeed true. Take a look at your Internet-facing firewall or
IDS logs, and you will see a considerable volume of attacks on your hosts with the patterns or
signatures of automated attack tools. Does this lessen the threat to your hosts? Yes, some-
times. It can be easier to defend against the less-skilled attacker using a prepackaged tool. The
vulnerabilities exploited by these tools and how to fix them are usually well-documented or
can be easily patched. But if you do not know about the vulnerability or have not applied the
patch, then an attacker using an automated or prepackaged attack tool becomes the same
level of threat as a brilliant attacker with a hand-coded attack tool.

The danger posed by these unskilled attackers has also increased. New vulnerabilities are
discovered daily. Exploits are frequently built on these vulnerabilities within hours of them
being discovered. Some vulnerabilities are not even discovered until someone uses them to
exploit a host. This means pre-packaged attack tools are often available to exploit a vulnera-
bility before the application developer or vendor has even released a patch. The combination
of the speed with which new methods of attack spread and the diminishing gap between the
discovery of a vulnerability and the development of an exploit means the risk that one of these
attacks gets through is significantly increased if you are not being vigilant. You must take seri-
ous, consistent, and systematic precautions to secure your hosts.

In addition to the vast majority of unskilled attackers, a smaller group of skilled attackers
exists. These are either intelligent and cunning outsiders or internal staff with in-house knowl-
edge. These attackers also pose a serious threat to your hosts, and you need to ensure that
your hosts are protected from them, too. This requires that your hosts be hardened and locked
down to ensure that only activities that you have authorized using functionality you have
approved and installed are conducted.

To return to the metaphor of an IT asset as a house, securing your host is a bit like having
home insurance. You hope you do not need it, but you would be foolish not to have it. Do not
underestimate the potential damage an attacker can cause or envisage these threats as being
somehow hypothetical. For example, imagine the response if you asked the staff of your
organization to go without e-mail for a week? This happened to many organizations during
the Netsky, Sobig, and Mimail virus attacks. Or imagine if your customers were denied access
to your e-commerce site as happened to Amazon, eBay, and Yahoo as the result of Distributed
Denial of Service (DDoS) attacks in 1999, 2000, and 2001. Or imagine if an attacker penetrated

INTRODUCTION

your hosts and stole your organization’s bank account detail, the numbers of its corporate
credit cards, or, worse, the credit card numbers of your customers.

You can see that the potential cost of attacks on IT assets is high. There is a potential
monetary cost to your organization from theft, loss of revenue, or productivity. There is also
a potential public relations cost through loss of customer or industry confidence. You need
to understand how to simply, consistently, and practically secure your IT environment. For
your Linux hosts and applications, this book provides this practical understanding.

Note In a later section of this introduction, “Basic Security Tenets,” | talk broadly about some basic secu-
rity tenets and theory. This should provide a basic understanding of IT security theory. | recommend you read
more widely in this area.

Who Should Read This Book?

This book is aimed at people who are new to security but who are not entirely new to Linux.
This includes system administrators and engineers, security administrators, and IT managers.
This is not a book for absolute beginners. I provide real-world examples of configurations,
commands, and scenarios that will help you harden and secure your Linux hosts. While doing
this, I try to explain in as much detail as possible to accommodate systems administrators of
varying skills. But I do expect that readers are at least familiar with basic to intermediate Linux
operations and systems administration.

I recommend you understand the following:

* Basic file manipulation (editors, grep, and so on)

* Basic file permissions and ownership

* Basic user administration

¢ Package management including some knowledge of compiling source packages
* Basic understanding of init and init scripts

¢ Basic networking including IP addressing, subnets, and administering network
resources using the command line

 Basic storage management: partitions, mounting and unmounting, and devices

The book is also designed to be used by those setting up new hosts in addition to people
seeking to harden and existing hosts. Thus, it covers addressing security vulnerabilities from
scratch, but you can also take the instructions and examples provided in this book and apply
them selectively to harden portions of your existing hosts and applications.

XXiii

XXiv

INTRODUCTION

Note One of the topics | do not cover in this book is Web serving, specifically Apache. For this | recom-
mend another book in this series, Hardening Apache (Apress, 2004) by Tony Mobily, for the complete picture
on installing, configuring, and running secure Apache servers. In the limited space available in this book,

I could not do this complicated and extensive topic justice.

How This Book Is Structured

This book covers the following topics:

Chapter 1, “Hardening the Basics,” covers the basics of hardening your Linux hosts. It
introduces the core security features of the Linux operating system and kernel and pro-
vides information and examples on how to harden them. It also covers patching and
updating your hosts and how to keep up-to-date with the latest security-related infor-
mation for Linux.

Chapter 2, “Firewalling Your Hosts,” addresses securing your Linux hosts with the
iptables firewall. It covers setting up a basic firewall and configuring and managing
iptables and then moves onto advanced topics such as firewall logging, protecting from
Denial of Service (DoS) attacks and other network-based attacks. (Appendix A contains
firewall scripts for securing a bastion host based on the contents of this chapter.)

Chapter 3, “Securing Connections and Remote Administration,” examines securing con-
nections on your hosts. This includes providing secure connections for the administra-
tion of your systems using tools such as OpenSSH. I address using OpenSSL and Stunnel
to encapsulate connections, and I show how to set up VPN connections.

Chapter 4, “Securing Files and File Systems,” looks at securing your files and file sys-
tems. I cover file permissions, file attributes, and symmetric file encryption. I also
explain securely mounting your disks and removable file systems, encrypting entire
file systems, and using the Tripwire tool to monitor the integrity and status of your
files and directories.

Chapter 5, “Understanding Logging and Log Monitoring,” covers logging and monitoring
and filtering your logs. I cover the syslog and syslog-ng tools for gathering your log mes-
sages. I also show you how to use the SEC tool to correlate log messages and demonstrate
how to manage and rotate your log files.

Chapter 6, “Using Tools for Security Testing,” provides information on the tools available
to you for testing the security of your hosts. I address testing the security of your pass-
words and scanning for root kits. I cover scanning your hosts for vulnerabilities and open
ports with tools such as nmap and Nessus. I also demonstrate how to use the Bastille hard-
ening script to harden your host.

1. http://www.apress.com/book/bookDisplay.html?bID=320

INTRODUCTION

Chapter 7, “Securing Your Mail Server,” looks at securing and hardening two of the most
commonly used e-mail servers, Sendmail and Postfix. I examine running these e-mail
servers in a chroot jail as well as other methods of limiting their exposure to attack. I also
explain how to protect your users from spam and viruses.

Chapter 8, “Authenticating and Securing Your Mail,” addresses securing the transmission
of your e-mail and the authentication of your clients to your e-mail servers. I examine
using Cyrus SASL and SMTP AUTH to ensure only authenticated clients can use your
e-mail servers and demonstrate how to use TLS to provide encryption of the transmis-
sion of your e-mail.

Chapter 9, “Hardening Remote Access to E-mail,” addresses securing your user’s remote
access to their e-mail via IMAP and POP and using tools such as Fetchmail. I cover pro-
viding secure IMAP and POP using SSL and how to build a “black box” secure IMAP
server using Cyrus IMAP.

Chapter 10, “Securing an FTP Server,” covers the FTP server and file transfers. I demon-
strate how to run secure local and anonymous FTP servers, including how to integrate it
with SSL/TLS and authenticate your users with PAM.

Chapter 11, “Hardening DNS and BIND,” looks at running DNS services. I cover DNS-
related threats and attacks, how to choose your DNS server, and the basics of secure DNS
design. I also cover installing and hardening a BIND DNS server and take you through the
security-related configurations options of BIND. Finally, I cover some BIND security fea-
tures such as TSIG. (Appendix B contains a number of secure BIND configuration files
based on the contents of this chapter.)

Basic Security Tenets

The practical examples I demonstrate in this book are built on some underlying tenets that
are crucial to maintaining your security.

¢ Be minimalist and minimize the risk.
¢ Defense in depth

* Vigilance

An understanding of these tenets, in combination with the examples and a little common
sense, can help you mitigate the risk of an attack on your hosts. In the following sections
I briefly articulate the IT security tenets on which I have based this book.

Be Minimalist, and Minimize the Risk

The first principle, that of minimalism, can also be expressed with the acronym KISS, or Keep
It Simple Stupid. The safest way to reduce the risks to your hosts is to not introduce risks in
the first place. For example, many distributions install services, tools, applications, and func-
tionality that could pose risks to your host. In some cases, they even start services. They also
create users for these services and applications that are often not needed or could be used by

XXV

XXvi

INTRODUCTION

an attacker to compromise your host. The first step in minimizing the risk to your hosts is to
remove this excess and unnecessary material. The second step is ensuring that you tightly
control what is installed on your hosts. Do not install more than you need to, do not run serv-
ices or functionality you do not need, and do not have users you do not need.

This is something you need to do from scratch with the installation of a new hardened
host or if hardening an existing host. Obviously, minimizing the functionality of an existing
host is harder. You need to make sure you are fully aware of all the functions that host per-
forms and ensure you do not switch off or remove something that is required for that host
to provide the required functionality. Hardening a production host requires extensive test-
ing, and I recommend you proceed only if you have the ability to back out any changes and
revert to your original configuration in the event a security change has an adverse effect.

Tip I recommend you use a change control system to ensure all changes are managed and planned
rather than simply implemented. At the least you should keep a journal of the activities you conduct on
a particular host. Every time you make a configuration change, you should detail the old and new settings
and the change performed in a logbook.

Defense in Depth

The second tenet of good security is defense in depth. At its most basic, defense in depth
means taking a layered approach to defending your hosts. The defense in depth concept pro-
poses using layers of technology, policies, and processes to protect your systems. This means
that, wherever possible in your environment, you do not rely on a single layer for defense of
your hosts.

As an example you can look at your connectivity to the Internet. Just installing a firewall
between your internal network and the Internet is not enough. In addition to a firewall between
your network and the Internet, you should firewall your individual internal hosts, install an IDS
system of some kind, and conduct regular penetration testing and vulnerability scanning of your
hosts. You should apply this principle to all the components of your host security.

Vigilance

One of the biggest threats to your security is simply doing nothing. No matter how secure your
hosts are at this point in time, they will, at varying rates, become less secure as time goes by.
This is a consequence of simple entropy, as changes to your applications, environment, and
requirements alter the configuration and potentially purpose of your systems. It is also a con-
sequence of the changing nature of the threats against you. What you have protected yourself
against now may not be what you need to protect yourself against in the future. This is most
obviously manifested as new vulnerabilities and exploits of those vulnerabilities are discov-
ered in the operating systems, applications, and tools you have running.

You need to ensure you include security administration and monitoring as part of your
regular system administration activities. Check your logs, audit your users and groups, and
monitor your files and objects for suspicious activity. Know the routines and configuration of

INTRODUCTION XXvii

your hosts; the more you understand about the normal rhythms of your hosts, the easier it is
to spot anomalies that could indicate you are under attack or have been penetrated.

You also need to ensure you keep up-to-date with vulnerabilities, threats, and exploits. In
Chapter 1 I talk about some of the sources of information you can utilize to do this. You should
subscribe to or review the security-related information your vendors distribute as well as those
available from third-party sources such as SANS or CIS.

Finally, the truly vigilant test. And test again. Perform regular security assessments of your
hosts and environment. Scan for vulnerabilities using tools such as Nessus or commercial tools
such as ISS Security Scanner. Consider using independent third parties to perform penetration
testing of your environment and hosts. Ongoing security assurance is vital to make sure you
stay protected and hardened from attack.

Downloading the Code and Examples

Some of the lengthier configurations and examples from this book are also available in a zip file
from the Downloads section of the Apress Web site (http://www.apress.com). These include the
iptables firewall script from Chapter 2, the BIND named. conf configuration files from Chapter 11,
and a variety of other configuration files and scripts.

Contacting the Author

You can reach James Turnbull at james@hardening-1linux.com.

CHAPTER 1

Hardening the Basics

At the heart of your Linux system is the Linux kernel and operating system. Combined, these
form the base level of your system on which all your applications run. Comparatively speak-
ing, the Linux operating system and kernel are actually reasonably secure. A large number of
security features are built in the kernel, and a variety of security-related tools and features come
with most distributions or are available in open-source form. Additionally, Linux offers excep-
tional control over whom, how, and what resources and applications users can access. So,
where are the risks?

Well, as the old saying goes, “The devil is in the details.” The security of your system
depends on a wide variety of configuration elements both at the operating system level and
the application level. Additionally, the Linux operating system and kernel are complex and
not always easy to configure. In fact, Linux systems are nearly infinitely configurable, and
subtle configuration changes can have significant security implications. Thus, some security
exposures and vulnerabilities are not always immediately obvious, and a lack of understand-
ing about the global impact of changing configuration elements can lead to inadvertent
exposures.

Furthermore, security on Linux systems never stays static. Once secured, your system does
not perpetually stay secure. Indeed, the longer you use your system, the less secure it becomes.
This can happen through operational or functional changes exposing you to threats or through
new exploits being discovered in packages and applications. Securing your system is an ongo-
ing and living process. Many of the steps and concepts in this chapter you will apply more
than once (for example, after you make an operational change to reaffirm the required level
of security), or you will apply on a regular basis to keep your security level consistent.

Finally, many distributions come prepackaged or preconfigured for you with a recom-
mended default set of packages, applications, and settings. Usually this configuration is based
on the author or vendor understanding what their end user requires of the distribution. Gen-
erally speaking, a lot of this preconfiguration is useful and enhances the potential security of
your system; for example, Red Hat comes preconfigured to use Pluggable Authentication Mod-
ules (or PAM) for a variety of authentication processes. But sometimes this preconfiguration
opens security holes or is poorly designed from a security perspective. For example, as a result
of the vendor’s desire to make it easy for you to set your system up, they may install, configure,
and start applications or services for you. Red Hat automatically configures and starts Send-
mail when you take the default installation options, for example.

To be able to address these issues, you need to have a solid understanding of the underly-
ing basic security requirements of your system—those of your operating system and kernel.
This chapter is entitled “Hardening the Basics” because it is aimed at exploring and explaining

CHAPTER 1 " HARDENING THE BASICS

the key areas of security and security configuration at that operating system and kernel level.
Additionally, I try to address some of the key weaknesses of a freshly installed Linux distribu-
tion or an existing unhardened Linux system and provide quick and practical fixes to them.

I will start with some guidelines for installing a Linux distribution and then address boot
security, user and password security, PAM, updates and package upgrades, and your kernel,
and I will finish up with some information that should help you keep up-to-date with the
latest vulnerabilities and security exposures.

Installing Your Distribution Securely

This book does not specifically cover a single distribution but rather tries to offer practical
examples that you can use on the majority of Linux distributions (though I most keenly focus
on Red Hat and Debian when offering examples of commands and application configuration).
As aresult, I am not going to take you through the process of installing a particular distribution
but rather offer some recommendations about how you should install your Linux distribution.
As I articulated in the chapter’s introduction, one of the key tenets of information technology
(IT) security is minimizing your risks. The default installation process for most Linux distribu-
tions does the opposite. Extraneous and inappropriate applications are installed, unnecessary
users are created, and some potentially highly insecure configuration decisions are made.

Let’s look at some ways to reduce the risks and the issues created during your distribu-
tion’s installation process.

Some Answers to Common Installation Questions

Almost all Linux distributions installations ask you a series of questions about your system’s pro-
posed configuration during the installation process. They are usually some important security-
related questions that you should take care answering. Obviously, whilst I cannot run through
what every distribution is going to ask, some questions remain similar across many distributions.

If prompted, enable MD5 and shadow passwording. This will make your passwords sig-
nificantly more secure.

When prompted to input a root password, always chose a secure password. I will briefly
talk about choosing suitable passwords in the “Users and Groups” section of this chapter.

Create a user other than root if prompted, ensuring you choose a suitable password for
this user also, so you have a user other than root to log onto the system.

If prompted during installation, enable any proposed firewall. If options to control the
configuration of the firewall are offered, select the bare minimum of allowed connections.
Only explicitly enable connections when you absolutely require them. Remember any
firewall you configure during installation will generally not be suitable for production
purposes, and you should see Chapter 2 for further information on firewalls.

Install Only What You Need

As T have stated, minimalism is important. If your distribution offers a Minimal or Custom
option when selecting packages that will allow you install a minimal numbers of packages or
allow you to deselect packages for installation, then you should use that option. In fact, on

CHAPTER 1 "/ HARDENING THE BASICS

a Red Hat system I recommend you deselect every possible package option and then install
the base system.

I cannot provide you with a definitive list of packages not to install. But a lot of this is com-
mon sense. Do you really need NetHack on your production Apache server? I can identify some
of the types of packages that are installed by default that you should be able to remove. This also
applies to hardening existing systems. You should review all installed packages and remove
those not required or those that present significant risks.

Some of the areas I recommend you remove packages from are as follows:

¢ Games

* Network servers

¢ Daemons and services

* Databases

* Web tools

 Editors

¢ Media-related (CD and MP3 players, CD burners)

¢ Development tools and compilers

* Printing and printing tools

¢ Office-style applications and tools

¢ Document management and manipulation

* X-Windows (including Gnome and KDE)

One of my most important recommendations when choosing not to install packages
involves X-Windows. Most, if not all, production Linux systems do not need X-Windows to per-
form their functions. An e-mail server, for example, should have no requirement for X-Windows.
So do notinstall it. X-Windows is a huge package with numerous components and a history of
numerous security vulnerabilities that make it a potentially dangerous package to install. Addi-

tionally, on a Linux system, unlike Windows systems, nothing requires the use of a graphical user
interface (GUI) to configure that you cannot configure from the command line.

Caution Do not install your distribution whilst connected to the Internet or to a network that is connected
to the Internet.

It may seem like a good idea to be connected to the Internet when you install your distribu-
tion to get patches and updates or register your system. But is it? Often the media used to install
a distribution could be quite old. A number of vulnerabilities could and probably will have been
discovered since the media was constructed. This means your system could be vulnerable to any
number of potential attacks. Until you have downloaded the updates that fix these vulnerabilities,

CHAPTER 1 " HARDENING THE BASICS

then your system is vulnerable. While you are busy waiting to download the required patches,
then an attacker has the potential to identify your unprotected system and penetrate it using
an as yet unfixed vulnerability.

To mitigate the risks of connecting an unpatched system to the Internet, I recommend you
stay offline until you have updated your system with all the required patches. To do this, I rec-
ommend you download all the updates and patches required for your system onto another sys-
tem first and check the MD5 checksums of the updates against those published by the vendor
and their GNU Privacy Guard (GPG) public key. For Red Hat updates the checksums and public
key are published on the Red Hat Network site, and for Debian they are contained in the .dsc
file, which describes each dpkg package. I go into more detail about how to do this in the “Pack-
age Management, File Integrity, and Updating” section later in this chapter.

I recommend setting up a central “updates and patches” machine and download and ver-
ify all updates and patches on that system. You can also use this system to perform testing of
new releases or updates before migrating them to your production systems. For a new instal-
lation you can package and burn the updates onto a CD and load them from the media directly
onto the system to be patched.

Secure Booting, Boot Loaders,
and Boot-Time Services

An attacker who has physical access to your system can easily bypass a great deal of your sys-
tem’s inherent security (especially controls such as users and passwords) and can reboot it or
change the configuration of your boot loader or your init process—including what services
are run at boot and what sequence they are run in. You need to secure the boot process and
ensure you fully understand what happens during your boot process so that your system is
secure from this sort of attack.

Attackers who are able to reboot your system can create two major problems. The first is
that Linux systems allow a great deal of access to someone who can control how they boot
into your system. The second is that taking your system offline is an excellent Denial of Ser-
vice attack. Thus, control over who is allowed to reboot your system, how they interact with
your boot loader, and what kernel they boot into is something you need to tightly restrict.

Additionally, what services you start and the order you start them in can expose your sys-
tem to further risks. Indeed, after a default installation or on an unhardened system, many
services that are started at boot are not required. Some of the running services even expose
you to vulnerabilities because of their particular functionality. In the next section, I will cover
some good rules you should follow for securing and organizing your boot process and
sequence, including what you allow to start up when your system boots.

Note | have described the items that start at boot time as services, but of course not all of them are.
Some are daemons, one-off commands, or configuration tools. | will use the generic term services for
simplicity’s sake.

CHAPTER 1 "/ HARDENING THE BASICS

Securing Your Boat Loader

Most Linux systems use one of two boot loaders, the Linux Loader (LILO) or Grub. These boot
loaders control your boot images and determine what kernel is booted when the system is started
or rebooted. They are loaded after your Basic Input/Output System (BIOS) has initialized your
system and generally wait a set period of time (generally between 10 and 30 seconds, but you can
override this) for you to select a kernel to boot into; if you have not intervened, then they default
to a specified kernel and boot into that.

I recommend you do not have too many kernel versions available to boot into, especially
older versions of kernels. Many people leave older kernels on their systems and in their boot
loader menus. The risk exists that you, or an attacker, could boot into an older kernel with
a security vulnerability that could allow an attacker to compromise your system. Clean up
when you perform kernel upgrades. I recommend leaving the current and previous versions
of the kernel on the system (unless, of course, you have upgraded from the previous kernel
to correct a security vulnerability).

Both boot loaders, LILO and Grub, are inherently insecure if your attacker has physical
access to your system. For example, by default both LILO and Grub will allow you to boot into
single-user mode. In single-user mode you have root privileges without having to enter the root
password. Additionally, you can enter a variety of other parameters on both the boot loader’s
command lines that can provide an attacker with opportunities to compromise your system.

But both LILO and Grub have the option of being secured with passwords to prevent this,
and I will show how to address this for both boat loaders.

Tip You should do this in addition to securing your BIOS. Set a BIOS password for your system, and dis-
able booting from a floppy drive or CD/DVD drive.

Securing LILO with a Password

To prevent LILO from allowing unrestricted booting, you can specify a password in the
lilo.conf file that must be entered if you want to pick a nondefault boot item, add options
to the boot items, or boot into single-user mode. Listing 1-1 shows a sample 1ilo.conf file.

Listing 1-1. Sample lilo.conf File

prompt

timeout=50
default=1linux
boot=/dev/hda
map=/boot/map
install=/boot/boot.b
message=/boot/message
linear
password=secretpassword
restricted

CHAPTER 1 " HARDENING THE BASICS

image=/boot/vmlinuz-2.4.18-14
label=1inux
initrd=/boot/initrd-2.4.18-14.1img
read-only
append="root=LABEL=/"

The two important lines to note are the restricted and password options. These do not
appear in your 1ilo. conf file by default; I have added them to Listing 1-1.

The password option allows you to specify a password that must be entered before you are
allowed to boot when the system is first started. In Listing 1-1 you would replace the phrase
secretpassword with a suitably secure password.! Unfortunately, this password is added into
the 1ilo.conf file in clear text, which means anyone with access to this file (though it should
be those only with root privileges) can see the password.

The restricted option changes the behavior of the password option. With restricted spec-
ified, LILO will prompt for a password only if you specify parameters on the boot loader com-
mand line. For example, it would prompt you for a password if you tried to enter the parameter
single (to enter single-user mode) on the boot loader command line.

You can also specify the password and restricted options with a particular kernel image
statement. This way you can protect a particular kernel image or provide separate passwords
for each kernel image. In the following example I have omitted the restricted option, which
means a password will always be prompted for when trying to boot this kernel image:

image=/boot/vmlinuz-2.4.18-14
password=secretpassword
label=1inux
initrd=/boot/initrd-2.4.18-14.img
read-only
append="root=LABEL=/"

Anytime you change your 1ilo.conf file, you need to run the 1ilo command to update
your LILO configuration.

puppy# /sbin/lilo

Finally, you need to ensure the 1ilo.conf file has the correct ownerships and permissions
to ensure only those authorized can see the password in the file.

puppy# chown root:root /etc/lilo.conf
puppy# chmod 0600 /etc/lilo.conf

Securing Grub with a Password

Like LILO, Grub suffers from security issues and allows anybody with access at boot time to
boot into single-user mode or change the boot parameters. The available Grub password secu-
rity to address these issues is somewhat more advanced than LILO’s and relies on generating
an MD5-encrypted password to secure the boot menu and boot entries. This MD5-encrypted

1. See the “Passwords” section for a definition of a suitably secure password.

CHAPTER 1 "/ HARDENING THE BASICS

password means that the password cannot be extracted by simply reading the Grub
configuration file, /etc/grub.conf.
Let’s first generate a Grub password. Listing 1-2 shows how to do this.

Listing 1-2. Generating a Grub Password

puppy# grub

grub> mdscrypt

Password: kkkkkk

Encrypted: $1$2FXKzQ0$I6k7iy22wB27CrkzdVPe70
grub> quit

You enter the Grub shell, execute the md5crpyt option, and are prompted for a pass-
word. The password is then encrypted and output on the screen in the form of an MD5
hash. Copy the MD5-encrypted password. Now you need to add the password to your
grub.conf configuration file.

Tip Red Hat has an unusual location for its grub. conf file. The grub. conf file in /etc is symlinked
to /boot/grub/grub. conf, which in turn is symlinked to /boot/grub/menu.1st. | recommend for
simplicity’s sake you edit /etc/grub. conf.

Listing 1-3 shows a sample grub. conf file.

Listing 1-3. Samplegrub.conf File

default=1
timeout=10
splashimage=(hd0,0)/grub/splash.xpm.gz
password --md5 $1$2FXKzQo$I6k7iy22wB27CrkzdVPe70
title Red Hat Linux (2.6.7)
root (hdo,0)
kernel /vmlinuz-2.6.7 ro root=LABEL=/
initrd /initrd-2.6.7.img

I have added the option password --mds to the file and specified the generated MD5 pass-
word. Now when you reboot you will not be allowed to interact with the Grub boot menu
unless you type p and enter the required password.

Tip You could also specify a plain-text password by excluding the - -md5 from the password option, but
I recommend for security that you stick with the MD5 password.

CHAPTER 1 " HARDENING THE BASICS

You can also add another parameter to the password option to launch a particular menu file
when you have entered the password. To do this, change your password option to the following:

password --md5 $1$2FXKzQ0$I6k7iy22wB27CrkzdVPe70 /boot/grub/administrator-menu.lst

When you enter the correct password, Grub will launch the specified menu file. This allows
you, for example, to create an additional menu of other kernels or boot options available only
to those users who provide the required password.

Like LILO, Grub allows you to protect a specific boot entry. It offers two ways of protecting
a particular entry. If you specify the option lock directly after the title entry, then you will not
be able to run that boot entry without entering a password previously specified by the password
option. I have modified Listing 1-3 to add the lock option to the following configuration file:

default=1
timeout=10
splashimage=(hd0,0)/grub/splash.xpm.gz
password --md5 $1$2FXKzQo$I6k7iy22wB27CrkzdVPe70
title Red Hat Linux (2.6.7)
lock
root (hdo,0)
kernel /vmlinuz-2.6.7 ro root=LABEL=/
initrd /initrd-2.6.7.img

Now unless you specified the password defined by the password option, you would not be
able to boot the Red Hat Linux (2.6.7) kernel image.

You can also use the password option within a boot entry to allow you to specify a particu-
lar password for each boot entry; Listing 1-4 shows you how to do it.

Listing 1-4. Protecting a Boot Entry with Grub

title Red Hat Linux (2.6.7)
password --md5 $1$200$I6k7iy22wB27CrkzdVPe70
root (hdo,0)
kernel /vmlinuz-2.6.7 ro root=LABEL=/
initrd /initrd-2.6.7.img

Here I have placed the password option directly after the title option. Now before you
can boot this entry you will need to specify the correct password.

Finally, you need to ensure the grub.conf file has suitable ownership and permissions to
ensure only those authorized can work with the file. Enter the following:

puppy# chown root:root /etc/grub.conf
puppy# chmod 0600 /etc/grub.conf

Init, Starting Services, and Boot Sequencing

Most systems come with a large number of services that start at boot. Obviously, some of
these are actually important to the functioning of your system, and others are designed to
start applications such as Sendmail or Apache that run on your system. But many of the
others are not necessary or start services that potentially pose security risks to your system.

CHAPTER 1 "/ HARDENING THE BASICS

Table 1-1 shows some of the typical services that are generally started on both Red Hat and
Debian systems, describes what they do, and tells whether I recommend removing them from
your startup.

Note | am referring to the releases Red Hat 9, Red Hat Fedora Core, Red Hat Enterprise Linux 3, and
Debian Woody 3 here, but generally speaking most distributions start similar services.

Table 1-1. Starting Services for Red Hat and Debian

Service Description Remove?

anacron A variation on the cron tool Yes

apmd Advanced Power Management Yes

atd Daemon to the at scheduling tool Yes

autofs Automount Yes

crond The cron daemon No

cups Printing functions Yes

functions Shell-script functions for init scripts No

gpm Mouse support for text applications Yes

irda IrDA support Yes (unless you have IrDA devices)

isdn ISDN support Yes (unless you use ISDN)

keytable Keyboard mapping No

kudzu Hardware probing Yes

1pd Printing daemon Yes

netfs Mounts network file systems Yes

nfs NFS services Yes

nfslock NEFS locking services Yes

ntpd Network Time Protocol daemon No

pcmcia PCMCIA support Yes

portmap RPC connection support Yes

random Snapshots the random state No

rawdevices Assigns raw devices to block devices Yes

rhnsd Red Hat Network daemon Yes

snmpd Simple Network Management Protocol Yes
(SNMP) support

snmtptrap SNMP Trap daemon Yes

sshd Secure Shell (SSH) daemon No

winbind Samba support Yes

xfs X Font Server Yes

ypbind NIS/YP client support Yes

10

CHAPTER 1 " HARDENING THE BASICS

Tip | will talk about inetd and xinetd in Chapter 3.

Alot of the services listed in Table 1-1 you can apply common sense when deciding whether
to start them. The pcmcia script, for example, is required only if you have PCMCIA devices or the
winbind service if you are using Samba. If you are not doing any printing, then do not start the
1pd and cups daemons. My recommendations to disable particular services listed in Table 1-1
are based on my experience that these services are not required on a secured production server.
For example, you would rarely find the apmd daemon running on a production server, but it is
commonly used on laptops to provide the appropriate power management functionality.

Tip The other area of security vulnerability during startup is the potential for your daemons to create files
that are too permissive. You set this using the umask function; I will cover umask in Chapter 4.

You can stop these services from starting via a number of methods depending on your
distribution. I will focus on the Red Hat and Debian distributions’ methods for handling init
scripts. After stopping services, I recommend also removing the related package to stop some-
one restarting it.

Tip If you use SuSE, then the yast central configuration tool will provide much the same functionality
as chkconfig or update-rc.d.

Working with Red Hat init Scripts

To help handle your init scripts, Red Hat comes with the command chkconfig. The chkconfig
command works by reading two commented lines near the top of each of your init scripts. (Your
init scripts should be located in the /etc/rc.d/init.d directory.) Listing 1-5 shows the top two
lines of a typical Red Hat network init script.

Listing 1-5. Sample chkconfig Line in an init Script

chkconfig: 2345 10 90
description: Activates/Deactivates all network interfaces configured to \
start at boot time.

You can see the first line in the script starts with chkconfig:, followed by three components.
The first component comprises the run levels at which a service should start. The second com-
ponent consists of the starting sequence number of the service, and the third component con-
tains the stopping sequence number of the service. This means at run levels 2, 3, 4, and 5, the
network begins the service at sequence number 10, and, in turn, each higher sequence number

CHAPTER 1 "/ HARDENING THE BASICS

(in ascending order) until it stops when the sequence number reaches 90. The description line
details the purpose of the service.

You need to add both these lines into any init script you want to manipulate using the
chkconfig command.

To use this embedded information, you have to use some command-line options. The
first --1ist shows the current status of all init scripts and what run levels they will start.
Listing 1-6 shows this functionality.

Listing 1-6. Listing init Scripts Using the chkconfig Command

puppy# chkconfig --list

kdcrotate 0:off 1:0ff 2:0ff 3:0off 4:off 5:0ff 6:0ff
ntpd 0:off 1:off 2:0ff 3:on 4:0ff 5:on 6:0ff
courier-imap 0:off 1:0ff 2:on 3:on 4:on 5:0n 6:0ff

You can see from Listing 1-6 that each init script is listed together with the available run
levels. An on after the run level indicates the service will be started at that run level, and an off
indicates that it will not be started.

To stop a service from starting, you can use the --del option.

puppy# chkconfig --del name

In this syntax, you should replace the name variable with the name of a script to remove.
That script must exist and must contain the two commented chkconfig lines in the top of the
script. To add the service back to the boot sequence, you can use the --add option.

puppy# chkconfig --add name

Again, you should replace the name variable with the name of the appropriate init script
to be added. If you do not intend to add the script to the init sequence again, then I recom-
mend you delete the script from the /etc/rc.d/init.d/ directory.

Red Hat also comes with the useful ntsysv command-line graphical interface that can be
used to configure what services will start in the current or specified run level. See the ntsysv
man page for further details.

After removing scripts from your /etc/rc.d/init.d directory, I recommend you further
secure the contents of this directory.

puppy# chown root:root /etc/rc.d/init.d/*
puppy# chmod -R 700 /etc/rc.d/init.d/*

Working with Debian init Scripts

Debian stores its init scripts in a slightly different location than Red Hat does. The base init
scripts are located in /etc/init.d. Debian also uses different commands for managing init
scripts. The update.rc-d command is the Debian equivalent of the chkconfig command and
works in a similar manner. To add or change an init script, first you must have a copy of the
script stored in /etc/init.d. Without the script being installed in this directory, update-rc.d
has nothing to use. Listing 1-7 shows how you can add a new init script with update-rc.d.

1

12

CHAPTER 1 " HARDENING THE BASICS

Listing 1-7. Adding a Debian init Script
kitten# update-rc.d network defaults

The defaults option is useful for adding a typical init script. The defaults tells Debian to
start the service at run levels 2, 3, 4, and 5 and to stop the service at run levels 0, 1, and 6 with
a default sequence number of 20. You can also specify the sequence numbers with the default
option by adding the required sequence numbers after the defaults option as a suffix.

kitten# update-rc.d network defaults 20 80

The first number indicates the starting sequence number, and the second number indi-
cates the stopping sequence number for the service. You can also more explicitly control when
an init script is started and stopped. Listing 1-8 shows how you can specify this control.

Listing 1-8. Explicitly Controlling a Debian init Script
kitten# update-rc.d network start 20 2 345 . stop 200 16 .

The command in Listing 1-8 provides the same configuration as the defaults option but
using the full command-line options. You should be able to customize any start and stop com-
binations required by modifying the command in Listing 1-8.

If you want to remove an init script, update-rc.d also provides an option to do this. In
the opposite manner of adding an init script, you must first delete the required init script
from the /etc/init.d directory before removing the associated start and stop scripts from
the various run levels. Listing 1-9 shows how to do this.

Listing 1-9. Removing a Debian init Script

kitten# rm -f /etc/init.d/network
kitten# update-rc.d network remove

The update-rc.d command also comes with two command-line flags you can use. The first
option, -n, makes no actual change to the system and merely shows the proposed changes.

kitten# update-rc.d -n network defaults

Adding system startup for /etc/init.d/network ...
/etc/rco.d/K20network -> ../init.d/network
/etc/rc1-d/K20network -> ../init.d/network
/etc/rc6.d/K20network -> ../init.d/network
/etc/rc2.d/S20network -> ../init.d/network
/etc/rc3.d/S20network -> ../init.d/network
/etc/rc4.d/S20network -> ../init.d/network
/etc/rc5.d/S20network -> ../init.d/network

The other command-line option, -f, is used in conjunction with the remove option to
specify that the update-rc.d command should remove all links even if the original init script
still exists in the /etc/init.d directory.

CHAPTER 1 "/ HARDENING THE BASICS

After removing scripts from your /etc/init.d directory, I recommend you further secure
the contents of this directory. Enter the following:

kitten# chown root:root /etc/init.d/*
kitten# chmod -R 700 /etc/init.d/*

Tip If you want, you can also download and install chkconfig on a Debian system. You can find a source
version that will compile on Debian at http://www.fastcoder.net/~thumper/software/sysadmin/
chkconfig/.

The inittab File

Your init scripts are not the only place where services are started. You should also review the
contents of the inittab file in the /etc directory. Though its use to start services is rarer these
days, some items still end up in this file. Red Hat systems, for example, place several services
in this file, including a trap for the Control+Alt+Delete key combination. Additionally, tty ter-
minals are often started in this file. Listing 1-10 shows some service lines in the inittab file.

Listing 1-10. inittab Service

sysacc:235:acct:/usr/sbhin/acct -q -d
~~:S:wait:/sbin/sulogin
ca::ctrlaltdel:/sbin/shutdown -t3 -1 now

The first line shows starting a service called sysacc. The line is broken down into the name
of the service being started, the run levels the service will start at, a label for the service, and the
command and any options to run separated by colons.

servicename:runlevels:label:command -option -option

You should review all commands being started in this file and determine if they are all
needed. If you want to remove a service, simply comment out or delete that line.

Tip For consistency | recommend not starting services in inittab but using init scripts.

The second line in Listing 1-10 shows a trap I have added specifically for Red Hat systems.
Red Hat allows booting into single-user mode by typing linux single on the LILO command line
or the Grub boot-editing menus. This line forces the execution of the command /sbin/sulogin if
single-user mode is started (run level S). The /sbin/sulogin requires the root password be to be
entered before single-user mode will be started. See the sulogin man page for more information.

The third line in Listing 1-10 shows a trap for the Control+Alt+Delete key combination
commonly used to reboot systems.

13

14

CHAPTER 1 " HARDENING THE BASICS

Tip Linux pays attention only to the Control+Alt+Delete key combination when used from the console
or virtual consoles. For users who are logged into the system via other means—for example, a terminal
session—opressing these keys will do nothing.

By default most Linux kernels trap this key combination when pressed and pass it to the init
system for processing. This allows you to specify the action taken when the Control+Alt+Delete
key combination is pressed. The default action is usually to run the shutdown command. I recom-
mend securing this a bit further by adding the -a option to the trap in Listing 1-10.

ca::ctrlaltdel:/sbin/shutdown -a -t3 -1 now

The -a option enables the use of the shutdown.allowed file. Create a file called
shutdown.allowed in the /etc directory. Add the users you want to be authorized to use the
shutdown command to the file, one username per line. You can also have comments and
empty lines in this file. Listing 1-11 shows what is inside the sample shutdown.allowed file.

Listing 1-11. Sample shutdown.allowed File

root
bob
sarah

If someone other than these users tries to issue a Control+Alt+Delete from the console,
they will get an error message.

shutdown: no authorized users logged in

On some systems you may not want anybody to be able to use Control+Alt+Delete. To do
this, change the trap line to the following:

ca::ctrlaltdel:

Your /etc/inittab file also contains the definitions for the virtual terminals available to
you on the console using the Alt+number key combination. You can define them using the
following lines in inittab:

1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2

Generally most distributions define six or so virtual terminals. You can reduce the num-
ber of virtual terminals started by commenting out some of the ttys in the /etc/inittab file.

After making any changes to the inittab file, you need to tell the init process to review
the file. Use the following command:

puppy# telinit q

Then you need to ensure the inittab file has the correct ownerships and permissions to
ensure only those authorized can work with the file.

puppy# chown root:root /etc/inittab

CHAPTER 1 "/ HARDENING THE BASICS

Boot Sequencing

The order in which you start and stop services on your system is also important. This is mainly
for controlling when your firewall and logging services start and stop. Ensure you start your
firewall, (iptables, for example) and your syslog daemon before you bring up your network.
This ensures your system will not be connected to any external systems or networks without
the protection of your firewall or without any logging of your system occurring. Then during
the shutdown of your system, ensure you stop your networking services before you stop your
firewall and syslog services.

On most systems init scripts are started and stopped according to the sequence number
given to them; sequence 20 will start before 30, and so on. I briefly covered sequence numbers in
the previous “Working with Debian init Scripts” and “Working with Red Hat init Scripts” sec-
tions. You should ensure the start sequence numbers for your firewall and your syslog daemons
are lower than the sequence number for your system’s networking service, in other words, the
daemons start before your network. Your networking services are usually started by an init
script called network on a Red Hat system and a script called networking on a Debian system.
Then confirm that your system’s networking service stops before your firewall and logging.

Tip 1 will talk further about booting and some additional security features related to securing file systems
in Chapter 4.

Consoles, Virtual Terminals, and Login Screens

The next area I will cover is the security of your console, your terminals, and the login screens
presented to your users when they log into the system. The console of your system is usually
physically attached to your system. (It is usually from the console you will have installed your
distribution.) In the Linux world, logging onto the console often allows you to perform activities,
commands, or functions that you would not be able to do from other locations, such as via a
secure shell (SSH) login. You need to understand what the capabilities of a user logged into the
console are and how to secure them further. Additionally, your console also has a number of vir-
tual terminals defined that you can access. I talked about defining these virtual terminals in the
earlier “The inittab File” section. These also need to be secured, and I will cover in the “Securing
Virtual Terminals” section a method of locking these virtual terminals from unauthorized use.

Lastly, when users connect to your systems, they are presented with a login screen. The
information presented on most default login screens can offer attackers information about
your system you do not want to share. Additionally, these login screens are a good method of
communicating warnings and notices to the user logging into your system.

Tip In addition to securing your console and terminals, do not neglect your physical security. Ensure your
systems are stored somewhere that makes access to the console difficult to all those bar authorized people.
Ensure the access is logged of any authorized people who can enter the area in which the console and sys-
tem are stored. Additionally, if you have a case lock or similar physical security devices on your system, then
use it to secure access to the interior of your system.

15

16

CHAPTER 1 " HARDENING THE BASICS

Securing the Console

I'will first talk about where root can log on. In Chapter 3 I will talk about restricting root logons
over SSH to your system. You can further limit where root can log on by restricting it to a specific
set of terminals. To do this, edit the contents of the /etc/securetty file. The login program refers
to this file to determine whether the root user can log into a particular device. Listing 1-12 shows
a sample of a typical securetty file.

Listing 1-12. A Sample securetty File

tty1

#tty2
#tty3
#ttys

All devices you want to allow root to log in from should be listed in the file (without the
/dev/ prefix). I recommend allowing root login only on one terminal and forcing all other logins
to be a non-root user and if required use su to gain root privileges. In Listing 1-12 you can see
that only device tty1 allows a root login. All other devices have been commented out of the file,
disabling root login on those devices. You also need to secure the securetty file to ensure it is
modifiable only by root. Enter the following:

puppy# chown root:root /etc/securetty
puppy# chmod 0600 /etc/securetty

Tip You can also achieve similar results using the PAM module, pam_access. so. See its configuration
file in /etc/security/access.conf.

The Red Hat Console

On Red Hat systems? when non-root users log into the console, they are granted access to
some additional programs that they would otherwise not be able to run. Additionally, they are
given permissions to certain files they would not have as normal users solely because they are
logged onto the console. To achieve this, Red Hat uses a PAM module called pam_console. so,
which is defined in the PAM login service. See the “Pluggable Authentication Modules (PAM)”
section.

Tip If more than one non-root user is logged onto console, the first user to log in gets the right to run
these programs and the additional permissions.

2. Red Hat 8, Red Hat 9, and Red Hat Enterprise Linux 3

CHAPTER 1 "/ HARDENING THE BASICS

The configuration files contained in the /etc/security/console.apps/ directory define
the additional programs that users logged onto the console can run. This directory contains
a collection of files, and each file corresponds to a command that users, after logging onto
the console, can run as if they were root.

puppy# 1s -1 /etc/security/console.apps/

-IW-I--I-- 1 root root 10 Aug 22 2003 authconfig
-TW-T--T-- 1 root root 87 Aug 22 2003 authconfig-gtk
-IW-T--T-- 1 root root 83 Sep 20 2003 dateconfig
-IW-I--I-- 1 root root 64 May 29 01:31 ethereal
-IW-Y--T-- 1 root root 66 Apr 15 00:33 gdmsetup
-IW-T--T-- 1 root root 14 Sep 26 2003 halt

Whilst perhaps this model of granting extra privileges to console users makes administra-
tion for your system easier, I do not think this is a good idea from a security perspective. Most,
if not all of these programs, should be run only by root, and the risk posed by this access being
granted to a non-root user just because the user is able to login to the console is not accept-
able on a production system. So, I recommend you disable this functionality. You can do this
by removing the contents of the /etc/security/console.apps directory. Enter the following:

puppy# rm -f /etc/security/console.apps/*

The file /etc/security/console.perms contains the additional permissions provided.
I also recommend you go through the permissions granted to users in the console.perms file
and confirm you are comfortable granting all of them to non-root users who are logged into
the console.

Tip You will also find sample configuration files for other PAM modules in the /etc/security directory.
| will talk about some of them in the Pluggable Authentication Modules (PAM)” section later in this chapter.

Securing Virtual Terminals

Your virtual terminals are useful to allow you to log into multiple sessions on your console.
But they can be dangerous if you leave sessions logged on unattended. I will show you a way
to lock them against unauthorized use with a password. This is especially useful when you
need to leave a process running interactively on the console. You start your process, change to
another virtual terminal, and lock all the other virtual terminals. Then, unless someone has
the root password, they cannot unlock the terminals and interfere with your running process.
You will learn how to do this using a tool called Vlock. The Vlock tool comes with some
Linux distributions but may need to be installed on others. Checking for the presence of the
vlock binary on your system will tell you if you have it installed. Otherwise you can install pack-
ages for Red Hat, Mandrake, Debian, and other distributions at http://1linux.maruhn.com/sec/
vlock.html. If not already installed, then add Vlock to your system, such as a Red Hat system.

puppy# rpm -Uvh vlock-1-3-13.i386.rpm

17

18

CHAPTER 1 " HARDENING THE BASICS

With Vlock you can lock a single virtual terminal and allow people to change to another
virtual terminal or lock all virtual terminals and disable changing between virtual terminals.
You can lock your current virtual terminal with the command in Listing 1-13.

Listing 1-13. Locking Your Current Virtual Terminal

puppy# vlock -c

This TTY is now locked.

Please enter the password to unlock.
root's Password:

To now unlock this virtual terminal, you need to enter the root password.
To disable all virtual terminals and prevent switching between virtual terminals, use the
-a option.

puppy# vlock -a

The entire console display is now locked.

You will not be able to switch to another virtual console.
Please enter the password to unlock:

root's Password:

Again, to now unlock the virtual terminals, you need to enter the root password. If you are
not able to enter the root password, the only way to disable the lock is to hard reset the system.

Securing Login Screens

Your login screen is the first thing users (and attackers) see when they connect to your system.
As aresult, it is a good idea if it abides by some guidelines.

¢ It should warn against unauthorized use.

¢ It should never reveal the operating system and version of the system you are signing
onto or indeed any more information than absolutely required. I call this defense through
obscurity; the less information attackers have, the harder it is for them to penetrate your
system.

e It should ensure the screen is clear from previous sessions.

To do this, you need to edit the contents of the /etc/issue and /etc/issue.net files. The
issue file is displayed when you log in via a terminal session and the issue.net file when you
login via a telnet session. Most distributions use these files for this purpose, including both
Red Hat and Debian. These files can contain a combination of plain text and escape charac-
ters. I usually start my files by forcing it to clear the screen; I achieve this by redirecting the
output of the clear command to the /etc/issue and issue.net files. Enter the following:

puppy# clear > /etc/issue
puppy# clear > /etc/issue.net

This will clear the screen of anything that was on it prior to displaying the login prompt to
ensure when a user signs off no information will be left on the screen that could be used by an
attacker to gain some advantage.

CHAPTER 1 "/ HARDENING THE BASICS

You should also include a warning message stating that unauthorized access to the system
is prohibited and will be prosecuted. You can also use one of a series of escape characters in the
files to populate the login screen with data from your system. I usually use a login screen such
as the screen in Listing 1-14.

Listing 1-14. Sample Login Screen

/\[C

\d at \t

Access to this system is for authorized persons only.
Unauthorized use or access is regarded as a criminal act

and is subject to civil and criminal prosecution. User
activities on this system may be monitored without prior notice.

The \d and \t escape characters would display the current date and time on the system,
respectively. Other escape characters are available to you if you check the issue, issue.net,
and getty man pages.

Tip If you find your changes in the /etc/issue and /etc/issue.net files are being overwritten every
time you reboot, you may find that your distribution resets the content of these files automatically as part of
your boot process to content such as the output of the uname -a command. If this is happening, it is usually
handled by an entry in the rc. local file in the last stage of the boot process. You need to comment out or
remove this entry to ensure your issue and issue.net files keep the content you require.

Also, the /etc/motd file’s contents display directly after login, and you may want to
adjust them to include an Acceptable Use Policy or similar information.

You need to secure all these files to stop other people from editing them. Enter the
following:

puppy# chown root:root /etc/issue /etc/issue.net /etc/motd
puppy# chmod 0600 /etc/issue /etc/issue.net /etc/motd

Users and Groups

One of the key facets of your system security is user and password security. Ensure that only
legitimate users can log in and that attackers will not be able to penetrate your system via
a weak or easily determined login. Additionally, once logged on it is important to understand
how users gain access to resources and to protect your system from improper and unautho-
rized use of those resources by controlling them by managing user accounts and groups.

What is a user account? User accounts provide the ability for a system to verify the identity of
a particular user, to control the access of that user to the system, and to determine what resources
that user is able to access. Groups are used for collecting like types of common users for the pur-
pose of providing them access to resources. This could both include groups of users from a partic-
ular department who all need access to particular shared files or a group of users who all need

19

CHAPTER 1 " HARDENING THE BASICS

access to a particular resource such as a connection, piece of hardware such as a scanner or
printer, or an application.

Linux stores details of users, groups, and other information in three files: /etc/passwd,
/etc/shadow, and /etc/group. The first file, /etc/passwd, contains a list of all users and their
details. Listing 1-15 shows an example of some passwd entries.

Listing 1-15. Some Sample passwd Entries

root:x:0:0:100t:/roo0t:/bin/bash
daemon:x:2:2:daemon:/sbin:/sbin/nologin

The entries can be broken into their component pieces, each separated by a colon.
username:password:UID:GID:GECOS:Home Directory:Shell

The username is up to eight characters long and is case sensitive (though usually all in
lowercase). As you can see in Listing 1-15, the x in the next field is a marker for the password.
The actual password is stored in the /etc/shadow file, which I will discuss in the “Shadow
Passwording” section.

Tip Systems often have usernames that are constructed from a combination of a user’s first and last
names. Introducing random usernames instead is often a good idea. Random usernames do not link users
to personal information. Even if a user has a password that is related to personal information, an attacker
will be less likely to be able to make the connection to a random username.

Next is the User ID (or UID) and the Group ID (GID). On a Linux system each user account
and group is assigned a numeric ID. Users are assigned a UID and groups a GID. Depending on
the distribution, lower-numbered UIDs and GIDs indicate system accounts and groups such as
root or daemon. On Red Hat systems UIDs and GIDs are those IDs lower than 500, and on Debian
those IDs are lower than 100.

Note The root user has a UID and GID of 0. This should be the only user on the system with a UID and
GID of 0.

In many cases the UID and GID for a user will be identical.

Tip You can specify the range of the UIDs and GIDs for users in the /etc/login.defs file using the
UID MIN and UID_MAX range for UIDs and the GID_MIN and GID MAX range for GIDs.

CHAPTER 1 "/ HARDENING THE BASICS

The next item is the GECOS3 information that has been previously used to store finger
daemon information and can contain data such as the name of the user, office locations, and
phone numbers. If you have more than one item of data in the GECOS field, then a comma
separates each data item.

The next item is the user’s home directory. This is usually located for most users in the
/home partition.

The last item is the user’s default shell. If the default shell points to a nonexistent file, then
the user will be unable to log in. The second line in Listing 1-15 uses the shell /sbin/nologin,
which not only stops the user from logging it but logs the login attempt to syslog. This is com-
monly used on Red Hat systems to indicate that this user cannot log on. On Debian systems
the shell /bin/false is used. On more recent versions of distributions these login shells have
been binaries with the sole function of logging error messages to syslog and exiting without
allowing a login to the system.

On older Linux systems, these shells, /sbin/nologin and /bin/false, are in fact shell scripts.
This is dangerous, because there have been instances where a shell script used here has been
subverted. You should replace these shell scripts with binaries or replace them entirely with an
alternative shell.

Unfortunately, whilst a user may not be able to log in with these shells defined, this is not
always a guarantee that this user cannot be utilized for other purposes. Some versions of Samba
and File Transfer Protocol (FTP) assume that if a shell is listed in the /etc/shells file,4 then it is
acceptable to use this user for Samba and FTP purposes. This is a big risk, and I recommend set-
ting the shell of those users you do not want to log in to /dev/null or using the noshell binary
that comes with the Titan hardening application.? This will prevent the login and use of this
account for any other purposes.

Using /dev/null as a shell has a weakness, however. If a login attempt is made, then no
syslog entry is generated that records a disabled user tried to log in. The noshell binary from
the Titan hardening application is useful for this purpose. You can download the source code
and compile it on your system. Listing 1-16 shows you the commands to download and verify
the source code.

Listing 1-16. Downloadingnoshell.c

puppy# wget http://www.fish.com/titan/src1/noshell.c
puppy# md5sum noshell.c
d4909448e968e60091e0b28c149dc712 noshell.c

The current MD5 checksum for the noshell. c file is d4909448e968e60091e0b28c149dc712.

Now you need to compile noshell. You should compile the noshell command using static
libraries, and you can use the Makefile in Listing 1-17 to do this on both Red Hat and Debian
systems.

3. From the General Electric Comprehensive Operating System and also called the comment field
4. This contains a list of all the shells you can use on this system; see man shells.
5. http://www.fish.com/titan/

21

22

CHAPTER 1 " HARDENING THE BASICS

Listing 1-17. Makefile fornoshell

CC = gcc

CPPFLAGS =

CFLAGS = -static

LDFLAGS = -dn

LIBS = -static /usr/lib/libc.a -static /usr/lib/libnsl.a

noshell: noshell.o
$(CC) $(CFLAGS) -o noshell $(LIBS) $(LDFLAGS) noshell.o

Create the Makefile from Listing 1-17 and you can now compile noshell. Enter the
following:

puppy# make noshell

Then copy the resulting noshell binary to /sbin and delete the downloaded source code,
the output, and the newly compiled binary.

puppy# cp noshell /sbin
puppy# rm -f noshell.c noshell.o noshell

Now you can use /sbin/noshell as the shell for those users for which you do not want
a shell login.

daemon:x:2:2:daemon:/sbin:/sbin/noshell

When a user with their shell set to noshell attempts a log into the system, the following
log entry will be generated to the auth facility with a log level of warning, and you can monitor
for this.

Jul 25 14:51:47 puppy -noshell[20081]: Titan warning: user bob login from a w»
disabled shell

Caution Just remember to ensure the noshell binary is not added to your /etc/shells file.

Shadow Passwording

You may have noted that no password appears in /etc/passwd but rather the letter x. This is
because most (if not all) modern distributions use shadow passwording now to handle pass-
word management. Previously passwords were stored as one-way hashes in /etc/passwd,
which provided limited security and exposed your usernames and passwords to brute-force
cracking methods (especially as the passwd file needs to be world readable). This was espe-
cially dangerous when a copy of your passwd file could be stolen from your system and brute
force cracked offline. Given the weak security of this type of password when stored in the
passwd file, it can take only a matter of minutes on a modern computer to crack simple pass-
words or only days to crack harder passwords.

CHAPTER 1 "/ HARDENING THE BASICS

Tip If prompted when installing your distribution, you should always install shadow and MD5 passwords
to ensure maximum potential security.

Shadow passwording helps reduce this risk by separating the users and passwords and stor-
ing the passwords as MD5 hashes in the /etc/shadow file. The /etc/shadow file is owned by the
root user, and root is the only user that has access to the file. Additionally, implementing shadow
passwording includes the ability to add password-aging features to your user accounts and pro-
vides the login.defs file that allows you to enforce a system-wide security policy related to your
users and passwords. Listing 1-18 shows a sample of the /etc/shadow file.

Listing 1-18. Some Sample Shadow Entries

root:$1$5S5szKz9V$vDvPkkazUPIZdCheEGOUX/:12541:0:99999:7:::
daemon: !*:12109:0:99999:7:::

You can also break down the shadow file into components, and like the passwd file, these
components are separated by colons. The components of the shadow file are as follows:

¢ Username

* Password

¢ Date password last changed

¢ Minimum days between password changes

¢ Password expiry time in days

¢ Password expiry warning period in days

* Number of days after password expiry account is disabled

¢ Date since account has been disabled

The username matches the username in the passwd file. The password itself is encrypted,
and two types of special characters can tell you about the status of the user account with which
the password field can be prefixed. If the password field is prefixed with ! or *, then the account
is locked and the user will be allowed to log in. If the password field is prefixed with ! !, then
a password has never been set and the user cannot log into the system. The remaining entries
refer to password aging, and I will cover those in the “Password Aging” section.

Groups

On Linux systems, groups are stored in the /etc/groups file. Listing 1-19 shows a sample of
this file.
Listing 1-19. Sample of the /etc/groups File

root:x:0:root
mail:x:12:mail,amavis

23

24

CHAPTER 1 " HARDENING THE BASICS

The group file is structured much like the passwd file with the data entries separated by
a colon. The file is broken into a group name, a password, the GID number, and a comma-
separated list of the members of that group.

groupname:password:GID:member,member

The password in the group file allows a user to log into that group using the newgrp com-
mand. If shadow passwording is enabled, then like the passwd file the passwords in the group
file are replaced with an x and the real passwords stored in the /etc/gshadow file. I will talk
about passwords for groups in the “Adding Groups” section.

Note | will cover permissions and file security and how they interact with users and groups in Chapter 4.

Adding Users

To add a user to the system, you use the useradd command. Listing 1-20 shows a basic user
being created.

Listing 1-20. Creating a User
puppy# useradd bob

This will create the user bob (and on Red Hat systems a corresponding private group called
bob) with a home directory of /home/bob and a shell of whatever the system’s default shell is, often
/bin/bash. You can see the results of this in the passwd, shadow, and group files.

bob:x:506:506: :/home/bob:/bin/bash
bob:!11:12608:0:99999:7:::
bob:x:506:

All the home directory and shell information in the previous lines are the default settings
for the useradd command. So where does the useradd command get these defaults from? Your
distribution should contain the /etc/default/useradd file. Listing 1-21 shows a sample of
a typical Red Hat file.

Listing 1-21. The /etc/default/useradd File

puppy# cat /etc/default/useradd
useradd defaults file
GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CHAPTER 1 "/ HARDENING THE BASICS

This file is sometimes populated by default at system installation, but you can also create
the file yourself and use your own settings. Table 1-2 shows the possible options you can
include in the useradd file.

Table 1-2. The /etc/default/useradd File

Option Description

SHELL The full path to the default shell

HOME The full path to the user’s home directory

SKEL The directory to use to provide the default contents of a user’s new home directory
GROUP The default GID

INACTIVE Maximum number of days after password expiry that a password can be changed
EXPIRE Default expiration date of user accounts

Additionally, you can change most of the options running the useradd command with the
-D option. Listing 1-22 shows you how to change the default shell for your new users, and
Table 1-3 shows the additional options available for use with the -D option.

Listing 1-22. Changinguseradd Defaults with the -D Option

puppy# useradd -D -s /bin/bash

Tip You can also change your default shell with the chsh command. Use chsh -1 to see a list of all the
available shells (which are specified in the /etc/shells file).

Table 1-3. Theuseradd -D Defaults

Option Description

-b path/to/default/home Specifies the initial path prefix of a new user’s home directory

-e date Specifies the default expiry date

-t days Specifies the number of days after a password has expired before
the account will be disabled

-g group Specifies the default group

-s shell Specifies the default shell

As T have shown in Table 1-2 another option in the /etc/defaults/useradd file, the SKEL
option, specifies a location under which you can create the required default directory and file
structure for all of your users. For example, I use Maildir-format mailboxes so I usually create
a Maildir mailbox under /etc/skel that will get copied into the new home directory of any
NEew user.

As you can see in Table 1-4 all these defaults can also be overridden on the useradd
command.

25

26

CHAPTER 1 " HARDENING THE BASICS

Table 1-4. Some useradd Command-Line Options

Option Description

-c comment The new user’s password file comment field.

-d homedir The user’s home directory.

-g initial group The group name or number of the user’s initial login group.

-G group1,group2 A list of additional groups of which the user is to be a member.

-m Create the user’s home directory if it does not exist.

-M Do not create the user’s home directory.

-n Red Hat creates a group with the same name as the user automatically
when the user is created. This option disables that behavior.

-r You can create a system account (with a UID in the range of system
accounts).

-p password Specifies the user’s password.

-s shell Specifies the shell the user will use.

Listing 1-23 shows a user addition command using some of these command-line options.

Listing 1-23. Creating a User with useradd
puppy# useradd -s /sbin/noshell -G mail,clam -d /var/spool/amavis amavis

In Listing 1-23 I am creating a user called amavis who cannot login (the shell is set to
/sbin/noshell), belongs to the additional groups mail and clam, and whose home directory
is /var/spool/amavis.

Adding Groups

To add a group to your system, you need to use the groupadd command. Listing 1-24 shows
you how to use this command.
Listing 1-24. The groupadd Command
puppy# groupadd sales
This will create the resulting group in the /etc/group file.
sales:x:508:

As shown in Table 1-5 command-line options are available with the groupadd command.

Table 1-5. The groupadd Command-Line Options

Option Description
-g GID Set the GID for the group. This must be a unique number.
-r Creates a system group (with a GID inside the system GID range).

-f Exits if the group already exists.

CHAPTER 1 "/ HARDENING THE BASICS 27

Once you have created groups, you need to assign users to these groups. You can do this
one of two ways. First, you can edit the /etc/groups file itself and add the specific user to a
group; second, you can use the gpasswd command. The gpasswd command provides a way to
add users to groups via the command line and can also assign passwords to a particular group
(storing these in the /etc/gshadow file).

To add users to a group, you would use the gpasswd command with the -a option.

puppy$ gpasswd -a bob sales

In the previous command the user bob is added to the group sales. To remove a user from
a group, you would use the -d option.

puppy$ gpasswd -d jane sales

In the previous command the user jane is removed from the group sales using the -d option.

You can also define one or more users as administrators of a particular group and allow
them to use the -a and the -d options to add and remove users to that particular group. To add
a group administrator to a group, use the following command:

puppy# gpasswd -A bob sales

This adds the user bob as an administrator of the group sales. Now bob can use the gpasswd
command to add users (jane, chris, and david) to the sales group. Or you can add both an
administrator and users at the same time to a group using this command:

puppy# gpasswd -A bob -M jane chris david sales

The -A option adds the group administer, bob, and the -M option specifies a list of users.
You can also add a password to a group. The password will be stored in the /etc/gshadow
file.

puppy# gpasswd sales

Changing the password for group sales
New Password:

Re-enter new password:

This password will allow users to use the newgrp command to temporarily add themselves
to the sales group if they know the required password.

puppy# newgrp sales
Password:

This gives them the access rights of the users of this group. The group access is removed
when the user logs off. You can use gpasswd -r to remove the password from a particular group.

Another option you can use with the gpasswd command is the -R option, which stops from
anyone adding themselves to the group using the newgrp command.

puppy# gpasswd -R sales

Tip You can use another command, grpck, to check the integrity of your /etc/group and
/etc/gshadow files. See its man page for further information.

28

CHAPTER 1 " HARDENING THE BASICS

Other tools are available for manipulating users and groups. First, if you want to delete a
user, then you can use the userdel command; for groups, you can use the groupdel command.
Second, you can modify existing users and groups with the usermod and groupmod commands,
respectively. You will look at deleting some users and groups next.

Deleting Unnecessary Users and Groups

Most distributions create a variety of default user accounts and groups. Many of these are not
required, and to enhance the security of your system you should remove them. Like with remov-
ing packages or services from your system, I recommend using common sense when removing
users and groups. For example, if you do not use Network File System (NFS), then you have no
requirement for the nfsnobody user; if you have not installed X Windows, then the gdm and xfs
users will not be required. Table 1-6 lists users, describes their purposes, and includes my rec-
ommendations regarding removing them. I have also provided a list of groups that can generally
be removed. Again, consider carefully the packages your system contains and the functions your
system will perform before removing any groups.

Tip I recommend making copies of your passwd and group files before performing multiple edits of them
to ensure you can recover if you delete a user or group that is fundamental to your system or an application.

Table 1-6. Default Users

User Purpose Remove?

adm Owns diagnostic and accounting tools Yes

backup Used by packing for backing up critical files No

bin Owns executables for user commands No

daemon Owns and runs system processes No

desktop KDE user Yes

ftp Default FTP user Yes

games Games user Yes

gdm GDM user Yes

gnats GNATS (bug tracking) user Yes

gopher Gopher user Yes

halt /sbin/halt user No

identd User for identd daemon Yes

irc Internet relay chat (IRC) user Yes

list Mailman user Yes (if not using mailman)
1p Printing user Yes (if no printing)
1pd Printing user Yes (if no printing)
mail Default user for Mail Transfer Agent (MTA) Maybe

mailnull Sendmail user Yes (if no Sendmail)

CHAPTER 1 "/ HARDENING THE BASICS

Table 1-6.

User Purpose Remove?

man Man-db user No

news Default news user Yes

nfsnobody NES User Yes

nobody Default user for Apache or NFS Maybe

nscd Name Service Cache Daemon user Yes (if not using nscd)
ntp Network Time Protocol user No

operator Ops user Yes

postgres Postgres default user Yes (if no Postgres)
proxy Default proxy user Yes

root Root user No

Ipc RPC user Yes

rpcuser Default RPC user Yes

pm RPM user No

shutdown Shutdown user No

sshd Privilege split sshd user No

sync Sync user Yes

sys Default mounting user No

telnetd Telnetd default user Yes

uucp Default uucp user Yes

vcsa Virtual console memory No

www-data Owns www data Yes (if not Web server)
xfs X Font Server Yes

Table 1-6 contains a combined list of the typical users created when a fresh Red Hat or
Debian system is installed; thus, not all users in the table may be present on your system, as
some are specific to one distribution or the other. This is also dependent on the packages you
have installed on your system, so others may be present on your installation.

Ilabeled two users as Maybe, meaning that they are optionally removable from your
system. These were the mail and nobody users. Several packages utilize these users to run
processes after the package has dropped privileges. For example, some e-mail servers, such
as Sendmail, use the mail user for this purpose, and it is common for Apache to use the
nobody user. You should check to see if any processes or packages are utilizing these users
before you delete them. You can do this by using the ps command.

puppy# ps -U mail -u mail

PID TTY
809 ?

TIME CMD

00:00:03 fetchmail

Replace mail with the username of each user you want to check.

29

30

CHAPTER 1 " HARDENING THE BASICS

To remove a user from your system, you can use the userdel command. If you use the
userdel command in conjunction with the -r option, you will also remove users’ home direc-
tories, any files in their home directories, and their mail spools. Be sure to check you are
removing material that should be deleted. Additional files or directories belonging to that user
outside their home directory will not be removed, and you will need to optionally find these
files and directories and remove them if required.

These are the groups that can generally be removed:

o 1p

* news

* uucp

* proxy

* postgres
* www-data
* backup

* operator
e list

e irc

* srC

* gnats

o staff

* games

* users

* gdm

e telnetd
¢ gopher

o ftp

* nscd

* 1pC

* rpcuser
* nfsnobody
e xfs

e desktop

To remove a group from the system, you can use the groupdel command. This command
has no options.

puppy# groupdel sales

CHAPTER 1 "/ HARDENING THE BASICS

Passwords

As part of the user and group creation process, you need to ensure your users choose suitable
and secure passwords for their accounts and that those passwords are managed and changed on
aregular basis. I mentioned earlier in this chapter shadow passwords and using the /etc/shadow
file. Additionally, most distributions also come with support for MD5 passwords. Without MD5
your passwords are encrypted via DES (the Data Encryption Standard), which is significantly
more vulnerable to cracking attempts than MD5 passwords. You should enable both shadow
passwording and MD5 passwords as part of your install process.

Your users’ ability to choose their own passwords is one of the most frustrating and dan-
gerous parts of user administration. Almost all your users have one objective when choosing
a password: choosing one that is easy for them to remember. Security is simply not a consid-
eration. Changing their password on a regular basis for them is an inconvenience and a
chore. But it is an essential activity for the ongoing security of your system. A lot of people in
the security world believe this sort of attitude is able to be changed with education about the
risks of poor password security. I believe this is only partially true. To an extent no matter
how often most of your users are told to treat their password like the personal identification
number (PIN) to their cash card, they simply do not attach the same importance to it as they
would something valuable to them personally. This is not to say you should not attempt to
educate them, but do not count on it changing their attitudes. I recommend taking a consul-
tative but ultimately dictatorial approach to determining the characteristics of your pass-
word variables and regime. Explain the security requirements of your environment to your
end users, but do not compromise that security by making exceptions to your overall pass-
word rules.

I recommend you set your password rules, taking into consideration the following points:

* Do not allow passwords with dictionary words, such as dog, cat, or elephant. The same
applies for non-English-language words.

¢ Do not allow passwords with only letters or numbers, such as 12345678 or abcdefghi.

¢ Ensure users do not use personal information such as dates of birth, pet names, names
of family members, phone numbers, or post and zip codes.

¢ Set a minimum password length of ten. Longer is better.

* Force users to mix case; in other words, use both uppercase and lowercase letters in the
password.

¢ Force users to mix letters, numbers, and punctuation in the password.

¢ Ensure your users change their passwords regularly; and if the password expires without
being changed, then set a time limit after which that user account should be disabled.

¢ Ensure the new password is not the same as a number of previous passwords.

You can control the characteristics of your users’ passwords in Linux via PAM. I talk about
PAM in more detail in the “Pluggable Authentication Modules (PAM)” section later in this chap-
ter, but I will cover the PAM modules specifically designed to handle the passwd application here.

The PAM modules are defined in individual files located in the /etc/pam.d directory. The
file you want to look at in this directory is passwd and contains all the relevant PAM modules

31

32

CHAPTER 1 " HARDENING THE BASICS

used by the passwd command. Listing 1-25 shows the contents of the default Debian
/etc/pam.d/passwd file.

Listing 1-25. Debian default File
password required pam unix.so nullok obscure min=4 max=8 md5

The entry in the line, password, indicates the module interface type of this line. In this case,
it includes password-related functions for manipulating authentication tokens. The next entry,
required, is the control flag that determines what PAM will do if the authentication succeeds or
fails. The required entry indicates the authentication module must succeed for the password to
be set or changed. The next entry, pam_unix. so, is the PAM module to be used. By default this is
located in the /1ib/security directory. The pam_unix.so module is designed to handle Unix
password authentication using the /etc/passwd and /etc/shadow files.

The last entries are arguments to be passed to the pam_unix.so module, and these argu-
ments also allow you to control the characteristics of your passwords and tell your system
whether a password is suitable for use. The first argument, nullok, allows you to change an
empty password. Without this option if the current password is blank or empty, then the
account is considered locked, and you will not be able to change the password. The next
option, obscure, performs some basic checks on the password.

Note The obscure option is the same as the OBSCURE_CHECKS_ENAB option that used to be defined
in the login.defs file.

The min=4 argument sets the minimum password length to four characters, and the max=8
argument sets the maximum password length to four characters. The last argument tells PAM
to use MD5 password encryption.

So, for the Debian distribution, the default PAM setup for passwords essentially addresses
only one of the proposed password rules, that of password length. I do not recommend this as
an acceptable password policy. But by adding additional PAM modules to the mix, you can
control additional passwords characteristics. Both Debian and Red Hat have an additional
PAM module, pam_cracklib.so, that you can use to address some of your other requirements.
You can also use the existing pam_unix.so module in another module; type account to check
that the user password has not expired or whether the account has been disabled. You first
comment out the line in Listing 1-25 in the /etc/pam.d/passwd file and instead use the lines in
Listing 1-26.

Note You may need to install the pam_cracklib.so module on your system. On Debian this is a pack-
age called 1ibpam-cracklib. On Red Hat the pam cracklib.so module comes with the pam RPM.

CHAPTER 1 "/ HARDENING THE BASICS

Listing 1-26. Using Additional PAM Modules in /etc/pam.d/passwd

account required pam_unix.so

password required pam cracklib.so retry=3 minlen=10 dcredit=-1 ucredit=-1 =
ocredit=-1 lcredit=0 difok=3

password required pam unix.so use_authtok remember=5 nullok md5

The construction of the PAM module declaration line in Listing 1-26 is essentially the
same as that of Listing 1-25 except you are now using what is called module stacking. With
module stacking you can combine modules together, so the results of their checks become
cumulative. The account interface of pam_unix.so is checked, and then the password inter-
faces of the pam_cracklib.so and pam unix.so modules are checked. As I have used the con-
trol flag required for all modules, all these checks need to be successful for the password to
successfully set.

The first line shows how to use the pam_unix.so module, but I have specified an interface
type of account that checks the age, expiry, and lock status of the user account before allowing
a user to change a password. On the next line I have specified the pam_cracklib.so module
with some new arguments. The first of these arguments is retry, which specifies the number
of tries the passwd program will give the user to choose a suitable password. I have specified
three attempts here. If the user has not provided a password by this point, then the password
change will fail. The next option, minlen, specifies the proposed minimum length of the new
password, which I have set to ten characters.

The next options control what sort of characters need to be present in the password. They
work on a system of credits toward the minimum length of the password. For example, speci-
fying dcredit=1 means each digit in your password will count as one character for the purposes
of determining the minimum password length. If you specify dcredit=2, then each digit you
use in your password counts as two characters for the purposes of meeting the minimum pass-
word length. This is generally relevant only for longer passwords. With a minimum password
length of ten, you can make better use of “negative” credits. To do this, you would specify
dcredit=-1. This tells PAM that the new password must have a minimum of one digit charac-
ter in it to be a successful password. You can specify dcredit=-2, and so on, to insist on more
characters of a particular type. The four credit options available to you are dcredit for digits,
ucredit for uppercase characters, lcredit for lowercase characters, and ocredit for other
characters, such as punctuation. So in Listing 1-26 you see a password with a minimum of
ten characters that must have one digit, one uppercase character, one other character, and
one lowercase character.

The final option in Listing 1-26 is difok. This controls how many characters have to be dif-
ferent in the new password from the old password. As I have specified difok=3 in Listing 1-26,
then if at least three characters in the old password do not appear in the new password, the
new password is acceptable. Be careful using this option. If you specify that a large number of
characters in the old password cannot appear in the new password, you can make it hard for
a user to choose a new password.

You should be able to use a combination of these settings to implement a password policy
that suits your environment. In addition to these checks, the pam_cracklib.so module performs
some other checks that do not require arguments.

33

34

CHAPTER 1 " HARDENING THE BASICS

* It checks whether the password is a palindrome® of the previous password.

e It checks the password against a list of dictionary words contained in /usx/1ib/
cracklib dict.pwd on Red Hat systems and /var/cache/cracklib_dict.pwd on Debian.

¢ It checks whether the password is only a case change from the previous password
(in other words, from uppercase to lowercase, and vice versa).

After processing the pam_cracklib.so module, PAM moves onto the pam_unix.so module.
I used some new arguments for this module when I used it in Listing 1-26. In this case I am spec-
ifying the pam_unix.so module with a special argument, use_authtok. This tells the pam_unix.so
module not to prompt the user for a password but rather use the password that has already been
checked by the pam_cracklib.so module as the password to be processed. I have also specified
the remember option on this line. This enables a password history function. I have specified that
PAM should check that the new password is different from the last five passwords, but you can
specify a number suitable for your environment. To enable password history, you must first cre-
ate a file to hold your old passwords.

puppy# touch /etc/security/opasswd
puppy# chown root:root /etc/security/opasswd
puppy# chmod 0644 /etc/security/opasswd

Now the last five passwords for all users will be held in the file /etc/security/opasswd in
MD5-encrypted format, and the user will not be able to use them as a new password.

Tip Other PAM modules are available for password authentication. One of the best is pam_passwdqc,
available from http://www.openwall.com/passwdqc/. It contains some additional characteristics you
can configure, including support for randomly generated passwords.

On Red Hat systems the PAM authentication works the same way but is configured differ-
ently. Listing 1-27 shows the content of the default /etc/pam.d/passwd file.

Listing 1-27. Default Red Hat File

auth Tequired pam_stack.so service=system-auth
account Tequired pam_stack.so service=system-auth
password required pam_stack.so service=system-auth

The /etc/pam.d/passwd file here calls the special module pam_stack.so that tells passwd
to check another file, system-auth in the /etc/pam.d directory for the required PAM modules
and authentication rules required for a password change. Listing 1-28 shows the contents of
the default system-auth file.

6. Aword or phrase that reads the same backward as forward

CHAPTER 1 "/ HARDENING THE BASICS

Listing 1-28. The Red Hat system-auth File

#%PAM-1.0
This file is autogenerated.
User changes will be destroyed the next time authconfig is run.

auth required /1ib/security/pam_env.so

auth sufficient /1ib/security/pam_unix.so likeauth nullok

auth required /1ib/security/pam_deny.so

account required /1ib/security/pam_unix.so

password required /1ib/security/pam_cracklib.so retry=3 type=

password sufficient /1ib/security/pam_unix.so nullok use_authtok md5 shadow
password required /1ib/security/pam_deny.so

session required /1ib/security/pam_limits.so

session required /1ib/security/pam_unix.so

The important lines you need to change to add your password policy here are as follows:

password required /1ib/security/pam_cracklib.so retry=3 type=
password sufficient /1ib/security/pam unix.so nullok use authtok md5 shadow

You should change these lines to match the requirements of your password policy.

Tip The message in the second two comment lines in Listing 1-28 indicates that this file is auto-
generated by running the authconfig tool and your changes will be lost. | recommend not running this
tool if you are going to manually change this file.

Password Aging

Password aging allows you to specify a time period for which a password is valid. After the
time period has expired, so will the password forcing the user to enter a new password. This
has the benefit of ensuring passwords are changed regularly and that a password that is stolen,
cracked, or known by a former employee will have a time-limited value. Unfortunately for many
users, the need to regularly change their passwords increases their desire to write down the
passwords. You need to mitigate this risk with user education about the dangers of writing
down passwords. I often use the metaphor of a cash card PIN. Writing down your password
at your desk is the same as putting your cash card PIN on a sticky note attached to your card.
You need to regularly enforce this sort of education with users; I recommend any acceptable
use policies within your organization also cite the users’ responsibilities for ensuring they do
not reveal their passwords to anyone else either through carelessness or deliberately.

Tip I recommend you use a password age between 30-60 days for most passwords depending on the
nature of the system.

35

36

CHAPTER 1 " HARDENING THE BASICS

Two ways exist to handle password aging. The first uses the command-line tool chage to
set or change the password expiry of a user account individually. Listing 1-29 shows this com-
mand working.

Listing 1-29. The chage Command
puppy# chage -M 30 bob
Listing 1-29 uses the -M option to set the password expiry period for the user bob to 30 days.

Table 1-7 shows several other variables you can set.

Table 1-7. Command-Line Options for the chage Command

Option Description

-m days Sets the minimum number of days between password changes. Zero allows the user
to change it at any time.

-M Sets the maximum number of days for which a password stays valid.

-E Sets a date on which the user account will expire and automatically be deactivated.

-W days Sets the number of days before the password expires that the user will be warned to
change it.

-d days Sets the number of days since Jan. 1, 1970, that the password was last changed.

-1 days Sets the number of days after password expiry that the account is locked.

First, the -m option allows you to specify the minimum amount of time between pass-
word changes. A setting of 0 allows the user to change the password at any time. Second, the
next option, -W, specifies the number of days before a user’s password expires that they will
get a warning that their password is about to expire. The -d option is principally useful to
immediately expire a password. By setting the -d option to 0, the user’s last password change
date becomes Jan. 1, 1970, and if the -M option is greater than 0, then the user must change
their password at the next login. The last option, -I, provides a time frame in days after
which user accounts with expired and unchanged passwords are locked and thus unable to
be used to log in. If you run chage without any options and specify only the user, then it will
launch an interactive series of prompts to set the required values. Listing 1-30 shows this.
The values between the [] brackets indicate the current values to which this user’s password
aging is set.

Listing 1-30. Running chage Without Options

puppy# chage bob

Changing the aging information for bob

Enter the new value, or press return for the default
Minimum Password Age [0]:

Maximum Password Age [30]:

Last Password Change (YYYY-MM-DD) [2004-06-27]:
Password Expiration Warning [7]:

Password Inactive [-1]:

Account Expiration Date (YYYY-MM-DD) [2004-07-28]:

CHAPTER 1 "/ HARDENING THE BASICS

Users can also utilize the chage command with the -1 option to show when a password is
due to expire.

puppy# chage -1 bob

The other method to handle password aging is to set defaults for all users in the
/etc/login.defs file.

Tip The /etc/login.defs file is used to also control password lengths. On both Debian and Red Hat
(and other distributions), PAM has taken over this function.

Listing 1-31 shows the controls available for password aging in /etc/login.defs.

Listing 1-31. The login.defs Password-Aging Controls

PASS MAX DAYS 60
PASS MIN DAYS 0
PASS WARN AGE 7

As you can see, you can set the core password-aging controls here, and I have set the maxi-
mum password age to 60 days, allowing users to change their passwords at any time and pro-
viding a warning to users that their passwords will expire seven days before password expiry.

sudo

One of the first things most system administrators are told is not to use the root user to per-
form activities that do not require it. This is inconvenient for administration purposes but
greatly enhances the security of the system. This enhancement reduces the risk of the root
user being compromised or used by unauthorized people and the risk of accidental misuse
of the root user privileges.

One of the ways you can reduce the inconvenience this causes whilst not increasing the
security exposure is to use the sudo function, which is a variation on the su function. I will
cover securing this in the “Pluggable Authentication Modules (PAM)” section. The sudo func-
tion allows selected non-root users to execute particular commands as if they were root. The
sudo command is a setuid binary that is owned by root to which all users have execute per-
missions. If you are authorized to do so, you can run sudo and effectively become the root
user. sudo is a complicated package, and I will take you through the basics of configuring it.

Note Most distributions come with sudo installed, but you may need to install it. On both Debian and
Red Hat, the package is called sudo.

37

38

CHAPTER 1 " HARDENING THE BASICS

The sudo command checks the /etc/sudoers file for the authorization to run commands.
You can configure the sudoers file to restrict access to particular users, to certain commands,
and on particular hosts.

Let’s look at Listing 1-32 to see how to use sudo. I am logged onto the system as the user bob.

Listing 1-32. Using sudo

puppy$ cat /var/log/secure

cat: /var/log/secure: Permission denied
puppy$ sudo cat /var/log/secure
Password:

In the first command in Listing 1-32, I try to cat the /var/log/secure, which would normally
be accessible only by root. As you can see, I get a permission-denied error, which is the result
I expect. Then I try again, prefixing the command with the sudo command. You will be prompted
for your password (not the root password). If you have been authorized to use sudo and author-
ized to use the cat command as root on this system, then you would be able to view the file.

Note You can also run sudo using a time limit. You can specify that for a defined time period after execut-
ing the sudo command the user can act as root. | do not recommend configuring sudo this way because it
creates similar issues to simply using the root user for administration. But if you want to configure it like this,
you can see how to do it in the sudo man page.

Let’s look at what you need to add to the /etc/sudoers file to get Listing 1-32 to work. You
need to use the command visudo to edit the /etc/sudoers file. The visudo command is the
safest way to edit the sudoers file. The command locks the file against multiple simultaneous
edits, provides basic sanity checks, and checks for any parse errors. If the file is currently being
edited, you will receive a message to try again later. I have added the content of Listing 1-33 to
the sudoers file.

Listing 1-33. Sample sudoers Line
bob ALL=/bin/cat
We can break this line down into its component parts.

username host = command

Listing 1-33 shows the user bob is allowed to, on all hosts (using the variable ALL), use the
command /bin/cat as if he were root. Any command you specify in the command option must
be defined with its full path. You can also specify more than one command, each separated by
commas, to be authorized for use, as you can see on the next line:

bob ALL=/bin/cat,/sbin/shutdown,/sbin/poweroff

CHAPTER 1 "/ HARDENING THE BASICS

In the previous line bob is now authorized to use the cat, shutdown, and poweroff com-
mands as if he were the root user. All configuration lines in the sudoers file must be on one
line only, and you can use the \ to indicate the configuration continues on the next line.

A single sudoers file is designed to be used on multiple systems. Thus, it allows host
specific access controls. You would change your sudoers file on a central system and distrib-
ute the updated file to all your systems. With host access controls you can define different
authorizations for different systems, as you can see in Listing 1-34.

Listing 1-34. Different sudo Authorization on Multiple Systems

bob puppy=/bin/cat,/sbin/shutdown
bob kitten=ALL

In Listing 1-34 the user bob is allowed to use only the cat and shutdown commands on the
system puppy, but on the system kitten he is allowed to use ALL possible commands. You should
be careful when using the ALL variable to define access to all commands on a system. The ALL
variable allows no granularity of authorization configuration. You can be somewhat more
selective with your authorization by granting access to the commands in a particular direc-
tory, as you can see on the next line:

bob puppy=/bin/*

This applies only to the directory defined and not to any subdirectories. For example, if
you authorized to the /bin/* directory, then you will not be able to run any commands in the
/bin/extra/ directory unless you explicitly define access to that directory like the configura-
tion on the next line:

bob puppy=/bin/*,/bin/extra/*

Sometimes you want to grant access to a particular command to a user, but you want that
command to be run as another user. For example, you need to start and stop some daemons
as specific users, such as the MySQL or named daemon. You can specify the user you want the
command to be started as by placing it in parentheses in front of the command, like so:

bob puppy=(mysql) /usr/local/bin/mysqld, (named) /usr/local/sbin/named

As you can imagine, lists of authorized commands, users, and hosts can become quite
long. The sudo command also comes with the option of defining aliases. Aliases are collections
of like users, commands, and hosts. Generally you define aliases at the start of the sudoers file.

Let’s look at some aliases. The first type of alias is User_Alias. AUser Alias groups like users.

User Alias OPERATORS = bob,jane,paul,mary

You start an alias with the name of the alias type you are using, in this case User_Alias, and
then the name of the particular alias you are defining, here OPERATORS. Then you specify a list of
the users who belong to this alias. You can then refer to this alias in a configuration line.

OPERATORS ALL=/bin/mount,/sbin/raidstop,/sbin/raidstart, \
(named) /usr/local/sbin/named

39

40

CHAPTER 1 " HARDENING THE BASICS

In the previous line I have specified that the users in User_Alias OPERATORS (bob, jane,
paul, and mary) are able to use the mount, raidstart, and raidstop commands and the named
command.

The next type of alias you can define is a command alias, Cmnd_Alias, which groups
collections of commands.

Cmnd_Alias DNS_COMMANDS = /usr/local/sbin/rndc,(named) /usr/local/sbin/named
You can use this alias in conjunction with the previous alias.
OPERATORS ALL=/bin/mount,DNS_COMMANDS

Now all users defined in the alias OPERATORS can use the commands /bin/mount and all
those commands defined in the command alias DNS_COMMANDS on ALL hosts.

You can also specify an alias that groups a collection of hosts. The Host_Alias alias can
specify lists of host names, IP addresses, and networks.

Host Alias DNS_SERVERS = elephant,tiger,bear
You can combine this alias with the preceding ones you have defined.
OPERATORS DNS_SERVERS=DNS_COMMANDS

Now all users specified in the OPERATORS alias can run the commands specified in
DNS_COMMANDS on the hosts defined in the DNS_SERVERS alias group.

You can also negate aliases by placing an exclamation (!) mark in front of them. Let’s look
at an example of this. First you define a command alias with some commands you do not want
users to use, and then you can use that alias in conjunction with a sudo configuration line.

Cmnd_Alias DENIED COMMANDS = /bin/su,/bin/mount,/bin/umount
bob puppy=/bin/*, !DENIED_COMMANDS

Here the user bob can use all the commands in the /bin directory on the puppy host except
those defined in the DENIED _COMMANDS command alias.

Caution This looks like a great method of securing commands via sudo, but unfortunately it is relatively
easy to get around negating commands simply by copying or moving the denied command from the direc-
tory you have denied it in to another location. You should be aware of this risk when using negated aliases.

Let’s look at one of the other ways you can authorize users to sudo. Inside the sudoers file
you can define another type of alias based on the group information in your system by prefix-
ing the group name with %.

%groupname ALL=(ALL) ALL

Replace groupname with the name of a group defined on your system. This means all mem-
bers of the defined group are able to execute whatever commands you authorize for them, in
this case ALL commands on ALL hosts. On Red Hat a group called wheel already exists for this

CHAPTER 1 "/ HARDENING THE BASICS

purpose, and if you uncomment the following line on your Red Hat system, then any users
added to the wheel group will have root privileges on your system.

%wheel ALL=(ALL) ALL

Additionally, the sudoers file itself also has a number of options and defaults you can
define to change the behavior of the sudo command. For example, you can configure sudo to
send e-mail when the sudo command is used. To define who to send that e-mail to, you can
use the option on the following line:

mailto "admin@puppy.yourdomain.com"
You can then modify when sudo sends that e-mail using further options.
mail_always on
To give you an idea of the sort of defaults and options available to you, Table 1-8 defines

alist of the e-mail-related options.

Table 1-8. Send E-mail When sudo Runs

Option Description Default
mail_always Sends e-mail every time a user runs sudo. This flag is set of f by default.
mail_badpass Sends e-mail if the user running sudo does not enter the correct password. This

flag is set to off by default.

mail no user Sends e-mail if the user running sudo does not exist in the sudoers file. This flag
is set to on by default.

mail no_host Sends e-mail if the user running sudo exists in the sudoers file but is not
authorized to run commands on this host. This flag is set to off by default.

mail no perms Sends e-mail if the user running sudo exists in the sudoers file but they do not
have authority to the command they have tried to run. This flag is set to off by
default.

There are a number of other options and defaults you can see in the sudoers man page.
The sudo command itself can also have some command-line options you can issue with
it. Table 1-9 shows some of the most useful options.

Table 1-9. sudo Command-Line Options

Option Description

-1 Prints a list out the allowed (and forbidden) commands for the current user on the
current host

-L Lists any default options set in the sudoers file

-b Runs the given command in the background

-u user Runs the specified command as a user other than root

The -1 option is particularly useful to allow you to determine what commands the cur-
rent user on the current host is authorized and forbidden to run.

4

42

CHAPTER 1 " HARDENING THE BASICS

puppy# sudo -1

Password:

User bob may run the following commands on this host:
(root) ALL

The sudo command is complicated and if improperly implemented can open your system
to security exposures. I recommend you carefully test any sudo configuration before you imple-
ment it and you thoroughly explore the contents of the sudo and sudoers man pages.

User Accounting

Keeping track of what your users are doing is an important part of user management. In Chapter 5
I will talk about logging onto your system, and indeed one of the first resources you will use to
keep track of the actions of your users is the content of your syslog log files. But also other
commands and sources are useful for keeping track of your users and their activities.

Caution The data used to populate the output of these commands is often one of the first targets of
an attacker. You should secure the integrity of this data by ensuring only root can read the log files.

The first command I will cover is the who command. This command displays all those users
logged onto the system currently, together with the terminal they are logged on to and if they
have connected remotely then the IP address or hostname from which they have connected.
Listing 1-35 shows the default output of the who command.

Listing 1-35. The Output of thewho Command

puppy# who
root tty1 Jul 3 12:32
bob pts/0 Jul 8 11:39 (host002.yourdomain.com)

You can also modify the output of the who command. Table 1-10 shows the command-line
options available to modify its output.

Table 1-10. Thewho Command-Line Options

Option Description

-a Displays all options in verbose mode

-b Displays the time of the last system boot

-d Displays any dead processes

-H Prints a line of column headings

--login Prints the system login processes

-p Prints all active processes spawned by init

-q Generates a count of all login names and number of users logged on
-T Prints the current run level

-t Prints the last system clock change

CHAPTER 1 "/ HARDENING THE BASICS

These options are mostly self-explanatory, but you should note the -a option that com-
bines a variety of the command-line options to provide a detailed overview of who is logged
into your system, the login processes, and the system reboot and run level details.

The next commands you will learn about are the last and lastb commands, which dis-
play a record of when users last logged into the system and a record of bad user logins, respec-
tively. To start collecting the data required to populate the output of these commands, you
need to create a couple of files to hold the data. Some distributions automatically create these
files, but others require them to be created manually. Once they are created, you do not need
to do anything else. The system will automatically detect the created files and begin logging
the required information. The two files you will require are /var/log/wtmp and /var/log/btmp.
If these files exist in the /var/log/ directory, then you can proceed to using the commands. If
not, then you need to create them and secure them from non-root users.

puppy# touch /var/log/wtmp /var/log/btmp
puppy# chown root:root /var/log/wtmp /var/log/btmp
puppy# chmod 0644 /var/log/wtmp /var/log/btmp

The /var/log/wtmp file contains the data for the last command, and the /var/log/btmp
file contains the data for the lastb command.

If you execute the last command without any options, it will print a report of the last
logins to the system. Listing 1-36 shows the results of this command.

Listing 1-36. Running the Last Command

puppy# last

root tty1 Sat Jul 3 12:32 still logged in
bob pts/0 192.168.0.23 Sat Jul 3 14:25 - 14:26 (00:01)
reboot system boot 2.4.20-28.8 Sat Jul 3 12:31 (4+05:40)

Asyou can see, the last command tells you that root is logged into tty1 and is still logged
in. The list also shows the user bob, who logged in from the IP address 192.168.0.23 and stayed
logged on for one second. The last entry shows a reboot entry. Every time the system is rebooted,
an entry is logged to the wtmp file, giving the time of the reboot and the version of the kernel into
which the system was booted.

The lastb produces the same style of report but lists only those logins that were “bad.”

In other words, it lists those logins in which an incorrect password was entered, or some other
error resulted in a failure to log in.

Both the last and lastb commands have some additional command-line options you
can use. Table 1-11 shows these additional options.

Table 1-11. Additional last and lastb Command-Line Options

Option Description

-n num Lists num of lines in the output

-t YYYYMMDDHHMMSS Displays the login status at the time specified
-X Displays the shutdown and run level changes

-f file Specifies another file to read for the last information

43

CHAPTER 1 " HARDENING THE BASICS

Related to the last and lastb commands is the lastlog command. The lastlog command
displays a report that is based on information in the /var/log/lastlog file that shows the login
status of all users on your system including those users who have never logged in. Like the wtmp
and btmp files, you may need to create the lastlog file.

puppy# touch /var/log/lastlog
puppy# chown root:root /var/log/lastlog
puppy# chmod 0644 /var/log/lastlog

This displays a list of all users and their last login date and time. Or it displays a message
indicating **Never Logged In**if thatuser has never logged in. You can also specify only the
lastlog record for a particular user by using the -u command-line option. Or you can use the
-t days option to specify only those logins more recent than days be displayed. Using the -t
flag overrides the use of the -u flag.

puppy# lastlog -u bob
puppy# lastlog -t 30

Tip Many systems also come with the ac command that provides statistics about the amount of time users
have been connected to your system, which can often provide useful information. The ac command uses the
contents of the /var/log/wtmp file to produce these reports; you can see its options in the sa man page.

Process Accounting

Another useful tool in tracking the activities on your system is process accounting. Process
accounting is a method of tracking every command issued on your system, the process or
user initiating that command, and the amount of processing time used, amongst other infor-
mation. All modern distributions have process accounting enabled in their kernels, and you
simply need to add some utilities for turning on and manipulating that data on your system.

If you have Red Hat, you can install the package psacct, which contains the required tools.
For Debian systems you can use the acct package. If you cannot find a suitable process account-
ing package for your distribution, then you can also download and compile the Acct utilities from
http://www.ibiblio.org/pub/linux/system/admin/accounts/acct-1-3.73.tar.gz. Thisis an old
release of the tools and, although stable, does not have the full functionality of the utilities avail-
able in the Red Hat and Debian packages, so some of the functions I will describe may not work.

If you installed a package, then skip down until you reach the section on the discussion of
starting process accounting. If you downloaded the utilities, then unpack the archive and change
into the resulting directory. This directory contains some kernel patches (which you will not all
need, as all modern kernels include process accounting code) and two directories, utils and
scripts. Change into the utils directory, and compile the programs in this directory. Enter the
following:

puppy# make

Then copy the compiled binaries to a program directory in your path; the recommended
default path is /usr/local/sbin.

CHAPTER 1 "/ HARDENING THE BASICS

puppy# cp acctentries accton accttrim dumpact lastcomm /usr/local/sbin

You can also refer to the man pages for each of these commands in this directory you can
install.

To get process accounting running, first create a file in /var/log to hold your process
accounting information. I usually create a file called pacct.

puppy# touch /var/log/pacct

As this file is going to contain some sensitive data, you need to secure it, and you must
ensure only root has privileges to it.

puppy# chown root:root /var/log/pacct
puppy# chmod 0644 /var/log/pacct

Now to turn on process accounting, you need to run the accton command and provide it
with the name of the file you have nominated to hold your process accounting information.

puppy# /usr/local/sbin/accton /var/log/pacct

If you want run process accounting all the time, you need to add this into the startup process
of your system also to ensure process accounting is started every time you reboot. You also need
to tell process accounting to stop when the system is shut down. If you execute the accton com-
mand without any options, this will turn off process accounting.

puppy# /usr/local/sbin/accton

Now you have process accounting collecting information. You can query this information
and find out who has been running what on your system. The easiest and fastest way to do
this is to use the lastcomm command, which summarizes the last commands used on the sys-
tem in reverse order. To run lastcomm and display all the commands run on the system in the
current process accounting file, you simply need to specify the file to be read.

puppy# lastcomm -f /var/log/pacct
1s root stdout 0.01 secs Wed Jul 7 17:49
accton S root stdout 0.01 secs Wed Jul 7 17:49

This shows the root user has started the accton command and also has performed the 1s
command. Each entry contains the command name of the process that has been run, some
flags (for example, in the previous accton entry the flag S indicates that the command was exe-
cuted by a superuser, and other flags are documented in the 1astcomm man page), the name of
the user who ran the process, where the output of the process was directed, and the time the
process ended. You can also filter the information by telling lastcomm to specify only some
commands executed or only those commands executed by a specific user or from a specific
device.

puppy# lastcomm -f /var/log/pacct --user bob

The previous line tells 1astcomm to display only those commands issued by the user bob.
You can also specify the option --command commandname to list all occurrences of that specific
command or the --tty ttyname option to specify only those commands issued on the speci-
fied TTY. You can also specify a combination of these options to further narrow your search.

45

CHAPTER 1 " HARDENING THE BASICS

The Red Hat and Debian packages also include the sa tool. The sa tool is capable of pro-
ducing detailed reports and summaries of your process accounting information. This includes
generating output reports of all processes and commands sorted by user or by command. You
can get more information about sa from its man page.

Process accounting can accumulate a lot of data quickly, especially on big systems with
a large number of users. To keep this manageable, you should trim down the size of your pro-
cess accounting file. In the Acct utilities, which are available to download, the scripts direc-
tory contains a script called handleacct.sh, which is an automated shell script for trimming
the size of your pacct file. You could easily modify this and run it regularly through cron to do
this trimming of files.

Pluggable Authentication Modules (PAM)

Sun Microsystems designed PAM to provide a plug-in authentication framework. It is heavily
used and developed in the Linux world, and a large number of PAM modules exist to perform
a variety of authentication functions. PAM is designed to integrate authentication into serv-
ices without changing those services. It means developers merely need to make applications
PAM aware without having to develop a custom authentication module or scheme for that
application. A suitable PAM module can be integrated and used to provide the authentication.

On most Linux distributions you have two possible locations to look for PAM configura-
tion. The legacy file /etc/pam.conf used to hold PAM configuration information on Linux dis-
tributions but now is generally deprecated and has been replaced by the /etc/pam.d directory.
This directory holds a collection of configuration file for PAM-aware services. The service
shares the same name as the application it is designed to authenticate; for example, the PAM
configuration for the passwd command is contained in a file called /etc/pam.d/passwd. I call
these files service configuration files.

The service configuration files themselves have four major directives, and Listing 1-37
shows a sample of a PAM service configuration file from the system-auth service on a Red Hat
system.

Note The system-auth service provides a default authentication process for a variety of system func-
tions such as logins or changing passwords. | talk about it further in the “PAM Module Stacking” section.

Listing 1-37. Sample Red Hat system-auth Line
auth required pam_unix.so nullok

The first of the four directives is the interface type. In Listing 1-37 you can see the inter-
face type is auth. There are four major interface types available in PAM.

¢ auth: These modules perform user authentication using permissions, for example, and
can also set credentials such as group assignments or Kerberos tickets.

¢ account: These modules confirm access is available by checking the user’s account, for
example, confirming that the user account is unlocked or if only a root user can perform
an action.

CHAPTER 1 "/ HARDENING THE BASICS

* password: These modules verify and test passwords and can update authentication
tokens such as passwords.

¢ session: These modules check, manage, and configure user sessions.

You can use some modules for more than one interface type. For example, you can use
the pam_unix.so module to authenticate password, auth, account, and session interface types.

auth sufficient /1ib/security/pam_unix.so likeauth nullok

account required /1ib/security/pam_unix.so

password sufficient /1ib/security/pam_unix.so nullok use_authtok md5 shadow
session required /1ib/security/pam_unix.so

It is also possible to stack modules of the same interface type together to allow more than
one form of authentication for that interface type. For example, on the next line I have stacked
together the pam_cracklib.so and pam_unix.so modules to perform password interface type
authentication.

password required /1ib/security/pam_cracklib.so retry=3 type=
password sufficient /1ib/security/pam_unix.so nullok use_authtok md5 shadow

This is described as a stack, and I talk about module stacking in the “PAM Module Stack-
ing” section.

The next directive, required in Listing 1-37, is a control flag that tells PAM what to do with
the module’s results. Processing a PAM module ends in either a success or a failure result. The
controls flags tell PAM what to do with the success or failure results and how that result impacts
the overall authentication process. The required flag means the module result must be a suc-
cess in order for the authentication process to succeed. If the result of this module is a failure,
then the overall authentication is also a failure. If more than one module is stacked together, the
other modules in the stack will also be processed but the overall authentication will still fail.

Three other possible control flags exist. The requisite flag indicates that the module result
must be successful for authentication to be successful. Additionally, unlike the required flag,
the success or failure of this module will be immediately notified to the service requesting
authentication, and the authentication process will complete. This means that if any modules
are stacked together and a module with a requisite control flag fails, then the modules remain-
ing to be processed will not be executed. But with the required control flag, the remaining
modules in the stack would continue to be processed.

The next control flag is sufficient. The sufficient flag means that the success of this
module is sufficient for the authentication process to be successful or if modules are stacked
for the stack to succeed. This is dependent on no other required modules, processed prior to
this module, failing. If a sufficient module fails, then the overall stack does not fail.

The last control flag is optional. An optional module is not critical to the overall success
and failure of the authentication process or the module stack. Its success or failure will not
determine the success or failure of the overall authentication process.

The next directive from Listing 1-37, pam_unix.so, indicates what PAM module will be used
and its location. If you specify a PAM module without a path such as shown in Listing 1-37, then
the module is assumed to be located in the /1ib/security directory. You can also specify a mod-
ule from another location here by providing the path to it, as you can see in the following line:

auth required /usr/local/pamlib/pam_local.so id=-1 root=1

47

CHAPTER 1 " HARDENING THE BASICS

The last directive from Listing 1-37, nullok, is an argument to be passed to the PAM mod-
ule. In the previous line, for example, you can see two arguments, id=-1 and root=1, being
passed to the module pam local.so. Most modules will ignore invalid or incorrect arguments
passed to them, and the module will continue to be processed though some modules do gen-
erate an error message or fail.

Tip You can find documentation on your Red Hat system for PAM and all the PAM modules supplied with
the pam RPM at /usr/share/doc/pam-version/txts, replacing version with the version number of your
pam RPM, or at http://www.kernel.org/pub/linux/1ibs/pam/.

PAM Module Stacking

As I mentioned earlier, you can stack modules for processing, with multiple modules being
used to authenticate each interface type of a particular service. If modules are stacked, then
they are processed in the order they appear in the PAM service configuration file. As you can
specify a variety of control flags when stacking modules, it is important to carefully consider
how to stack your modules and what dependencies to configure. In Listing 1-38, you will see
the Debian login PAM configuration file.

Listing 1-38. The Debian Login /etc/pam.d Configuration File

password required pam_cracklib.so retry=3 minlen=6 difok=3
password required pam_unix.so use_authtok nullok md5

Here I am first running the pam_cracklib.so module to check the strength of a new or
changed password and then the pam_unix.so module. Both are using a control flag of required,
which means both modules need to succeed for the password to be successfully changed and
both modules would be tested. If you changed the pam_cracklib.so control flag to requisite
and the pam_cracklib.so module failed, then the password change process would immediately
fail and the pam_unix.so module would not be checked at all.

Additionally, if you specified a module as sufficient that was not adequately secure, then if
this module check is successful the entire module stack is considered successful and you have
authenticated something without adequate authentication. For example:

auth sufficient pam notsosecure.so
auth required pam secure.so

In this case, if the check of pamnotsosecure. so was successful, then the authentication
process would be halted and authentication would be successful. If this module does not in
reality provide a sufficient security check for authentication, then this is a serious security
risk. Thus, it is important to ensure you order your modules and control flags in your PAM
configuration files.

Additionally on Red Hat systems, you can use a special module called pam_stack.so. This
module allows you to include another list of modules contained in an external file into a serv-
ice configuration file. For example, Red Hat systems use a special service called system-auth to

CHAPTER 1 "/ HARDENING THE BASICS

perform the default authentication for most services. In Listing 1-39 you will see the Red Hat
service configuration file for the passwd function.

Listing 1-39. The Red Hat passwd Function Service Configuration File

auth required /1ib/security/pam_stack.so service=system-auth
account required /1ib/security/pam_stack.so service=system-auth
password required /1ib/security/pam_warn.so

password required /1ib/security/pam_stack.so service=system-auth

Instead of defining the particular PAM modules to be used for authentication, the service
configuration file defines the pam_stack.so module with an option of service=system-auth.
This tells PAM to use the service configuration file called system-auth and the modules defined
in it for the authentication process. This is especially useful for maintaining a single, central-
ized authentication method that you refer to in a number of services. If you want to change the
authentication process, you have to change it in only one place—not in all the service configu-
ration files.

Finally, you should check the contents of all your PAM module stacks and configuration
to ensure you fully understand the sequence in which authentication occurs. Additionally, you
should check for the presence of the pam_rhosts_auth.so module. This module is designed to
allow access using .rhosts files, which are used by the so-called r-tools, rlogin, rsh, and so on.
These tools and this authentication model are not secure, and I strongly recommend you remove
all references to this module from your PAM configuration. I will talk about the r-tools and
their security weaknesses further in Chapter 3.

The PAM “Other” Service

One of the advantages of implementing PAM on your system is that it comes with a catchall

authentication service that handles the authentication for any PAM-aware service that does

not have a specific service configuration file. The PAM configuration for this is located in the
/etc/pam.d/other file, and in Listing 1-40 you can see the default Red Hat other file.

Listing 1-40. Default Red Hat /etc/pam.d/other File

#%PAM-1-0

auth required /1ib/security/pam deny.so
account required /1ib/security/pam deny.so
password required /1ib/security/pam deny.so
session required /1ib/security/pam deny.so

Listing 1-40 shows a very strong other file. Each of the possible interface types is repre-
sented here with a control flag of required, which means each authentication request must
succeed for the service to authenticate and that all interface types will be checked. The speci-
fied module, pam_deny.so, does exactly what the name suggests and denies any request made
to it. So this is a good configuration for security purposes because the authentication in List-
ing 1-40 will never succeed, thus stopping any PAM-aware service from being inadvertently
authenticated.

This configuration does pose a risk, though, if you or someone else accidentally deletes
one of the service configuration files from the /etc/pam.d directory, for example, the login file.

49

50

CHAPTER 1 " HARDENING THE BASICS

Then the login command will default to using the other configuration and deny all logins to
the system. The other risk is that when the pam_unix.so module denies a request, it does not
log any record of that denial. This can sometimes make it hard to both spot any intrusion
attempts or to determine for diagnostic purposes where an authentication attempt is failing.
Listing 1-41 shows a way around this by using the additional PAM module, pam_wazrn.so.

Listing 1-41. Updated Red Hat /etc/pam.d/other File

#%PAM-1-0

auth required /1ib/security/pam_warn.so
auth required /1ib/security/pam_deny.so
account required /1ib/security/pam_warn.so
account required /1ib/security/pam_deny.so
password required /1ib/security/pam_warn.so
password required /1ib/security/pam_deny.so
session required /1ib/security/pam_warn.so
session required /1ib/security/pam_deny.so

The pam_warn.so module will log a warning message to syslog every time an authentica-
tion request is made using the syslog facility of auth and a log level of warning.

Tip On Red Hat system this usually logs to the /var/log/secure file with a program ID of PAM-warn
if you want to use your log filtering tools to highlight these messages as | will describe in Chapter 5.

Irecommend reviewing the current contents of your /etc/pam.d/other file to see if it meets
your security requirements. I strongly recommend that the default PAM authentication response
be to deny any request from a service that is not explicitly configured with its own PAM service
configuration file.

Restricting su Using PAM

The su command allows you to log into a new shell as another user.

puppy$ su jane
Password:

This would log into a new shell as the user jane with the privileges of that user (if you
entered that user’s correct password). If you use the su command without specifying a user,
then the system will attempt to log in as the root user. For example, you can also use the su
command to log in as the root user if you know the root password.

puppy$ su
Password:

Tip You can find more about su using man su.

CHAPTER 1 "/ HARDENING THE BASICS

As you can imagine, this is a powerful tool but also a dangerous one to which you should
restrict access. PAM offers a way to easily secure access to this tool to only those users you want.
To configure for access restriction, review the contents of the su PAM service configuration
files inside your /etc/pam.d directory. On both Debian and Red Hat systems, you should find
the following line:

auth required /1ib/security/pam_wheel.so use uid

Uncomment this line, so PAM will allow su to be used only by members of the wheel group.

Note The wheel group may exist on your system already, or you may need to create it and add the
required members to it.

The use_uid option tells PAM to check the UID of the current user trying to use su to log in.
You can also specify the group= option to indicate that a group other than wheel is allowed to
use su to log in. See the following line:

auth required /1ib/security/pam wheel.so use_uid group=allowsu

Now only those users belonging to the allowsu group will be able to use the su command.

Tip Some other useful configuration models for su are documented in the /etc/pam.d/su service and
are worth examining. These may also give you ideas for some other uses of PAM.

Setting Limits with PAM

The PAM module pam_limits.so is designed to prevent internal- and some external-style Denial
of Service attacks. An internal Denial of Service attack can occur when internal users either delib-
erately or inadvertently cause a system or application outage by consuming too many resources
such as memory, disk space, or CPU. External Denial of Service attacks occur in the same manner
but originate from outside the host.

To enable limits on functionality, you need to add or enable the pam limits.so module in
the services for which you require limiting to operate. On a Debian system, for example, an entry
exists for the pam_1limits.so functionality in the login service configuration file in /etc/pam.d.

session required pam limits.so

By default on Debian, this entry is commented out. Uncomment it to enable limits. As
you can see, the pam_limits.so module is used for the session interface type.

Note On the Red Hat system the default system-auth service contains an entry for the pam_limits.so
module.

51

52

CHAPTER 1 " HARDENING THE BASICS

You can also add it to other services, for example, adding it to the imap service to provide
limits to users accessing IMAP resources.

The pam_limits.so module is controlled by a configuration file called 1imits.conf thatis
located in /etc/security. Listing 1-42 shows an example of this file.

Listing 1-42. Sample limits.conf File

domain type item value
* soft core 0
* hard core 0

Here the limits. conf file is controlling the size of any core dumps generated. This is one
of the most common uses of the pam_limits.so module. Let’s examine the structure of the file.
It is broken into four elements: domain, type, item, and value.

The domain is the scope of the limit and who it effects, for example, a particular user, group
of users, or a wildcard entry (*), which indicates all users. The type is either soft or hard. A soft
limit is a warning point and can be exceeded but will trigger a warning syslog entry. A hard limit
is the maximum possible limit. A resource cannot exceed this hard limit. Thus, you should set
your soft limits as a smaller size or number than your hard limits.

The type of limit describes what is being limited, and the value is the size of that limit.
Table 1-12 lists all the possible types of resources you can limit with the pam limits.so module.

Table 1-12. Limits You Can Impose

Limit Description Value
core Limits the core file size Kilobytes
data Limits the maximum data size Kilobytes
fsize Limits the maximum file size Kilobytes
memlock Defines the maximum locked-in-memory address space Kilobytes
nofile Limits the number of open files Number
1ss Limits the maximum resident set size Kilobytes
stack Limits the maximum stack size Kilobytes
cpu Limits the maximum CPU time Minutes
nproc Limits the maximum number of processes Number
as Specifies the address space limit Number
maxlogins Limits the maximum number of logins for a user Number
priority Limits the priority with which to run a user’s process Number

I also show the type of value you can use for a resource limit. For example, the maxlogins
limit type is expressed as number that indicates the maximum number of times a user or users
can simultaneously log in. cpu is expressed as the maximum number of minutes of CPU time
that a user can consume.

Where the value is set to 0, this indicates the specified user or users (or all users) are unable
to use any of that resource. For example, setting the core limit to 0 will result in no core dump
files being created.

CHAPTER 1 "/ HARDENING THE BASICS

bob soft core 0
bob hard core 0

So, in the previous two lines, the user bob is prevented from creating any core dump files.

Tip Even if you do not use any other type of limit, you should set the core dump size limit to 0 to prevent the
creation of core dump files. Core dump files often contain valuable or dangerous information, and unless you
have a requirement for them (for example developers need them), then | recommend you limit their creation.

You can also restrict this to a particular group by prefixing the group name with an at (@)
character

@sales soft core 0
@sales hard core 0

or to everyone on the system using the * wildcard, as you saw in Listing 1-42.

Note You can also control the limits being set with the ulimit command.

Restricting Users to Specific Login Times with PAM

Most distributions come with the pam_time.so module. This allows you to control when and
where from users can log onto the system. It is defined as an account interface type. You can
add it to the login service in the so file like this:

account required /lib/security/pam_time.so

If you have more than one module stacked, then you should add the pam_time.so module
before all the other account interface type modules. In the previous line, I added it as a required
module, which means the check must be successful for authentication to succeed.

The pam_time.so module is configured using the file time.conf, which is stored in the
/etc/security directory. Listing 1-43 shows a line from this file.

Listing 1-43. Thetime.conf File

login;*;bob|jane; !A12100-0600

I will break this rather confusing piece of configuration down and explain its component
elements. Each element is separated by a semicolon. Each of these elements is a logic list, and
you can use logical operators and tokens to control it further.

service;terminal;users;times

So the first element is service. In Listing 1-43 you can see that login is the service. If you
specify a line in this file that refers to a service, you must also define the pam_time.so module

53

54

CHAPTER 1 " HARDENING THE BASICS

in that service’s configuration file in /etc/pam.d. You can add the pam_time.so module to
almost any one of the services defined in the /etc/pam.d directory.

The next element is the terminal to which this time restriction applies. Here I have speci-
fied the wildcard operator * for all terminals. You can use a wildcard in any element except
service but only once per element. You could also specify a list of terminals separated by a
|, tty1|tty2]|tty3, or a type of terminal suffixed with a * wildcard such as ttyp*.

In the next element I specify which users this time restriction applies to, and I have used
alogical operator here. The first user is bob. I have then used the logical or separator, |, to spec-
ify a second user, jane. In this example this means the time restrictions apply to either bob or
jane. You could also use the logical operator & here to represent and. For example, time restric-
tions apply to both bob and jane as in bob&jane.

The last element is the time restriction itself. The time here is prefixed with !. This means
“anything but.” The next two letters Al is short for “all,” which indicates all days of the week.
The next eight digits are start and finish times in 24-hour time format separated by a hyphen
(-). In Listing 1-43, you saw that the start and finish times are 21:00 (or 9 p.m.) and 06:00 (or
6 a.m.), respectively. If the finish time is lower than the start time (as is the case in Listing 1-43),
then the finish time is deemed to be during the next day. So, putting this all together means
that bob and jane can log onto any terminal at any time except between 9 p.m. and 6 a.m.

Let’s look at another example.

login;ttyp*;!root; IWd0000-2400

Here I block logins from all pseudo-terminals on the weekends for all users except root.
In the time element I have used the Wd entry, which indicates weekends. You can also use Wk,
which stands for weekdays, or the entries for the individual days of the week, which are Mo, Tu,
We, Th, Fr, Sa, Su.

Logging an Alert on User Login with PAM

The next PAM module is called pam_login_alert.so and alerts via e-mail or syslog when
a particular user (or users) logs onto the system. You can download the module at http://
www . kernel.org/pub/linux/1ibs/pam/pre/modules/pam login alert-0.10.tar.gz.

Tip A variety of other PAM modules are also available at this site that you may find useful.

Create a temporary directory, and unpack the tar file into it. The package contains a num-
ber of files, including the source for the module. To create the module, you need to make and
install it.

puppy$ make
puppy# make install

This will results in a file called pam_login alert.so, which is installed by default to the
/1ib/security directory. Also, two configuration files are created and copied to /etc. They are
login alert.conf and login.alert.users.

CHAPTER 1 "/ HARDENING THE BASICS

Let’s have a look at these configuration files first. Listing 1-44 shows the login_alert.conf
file.

Listing 1-44. Thelogin_alert.conf File

PAM login alert configuration file
Specify e-mail support

mail on

Specify the user to e-mail the alert
email admin@puppy.yourdomain.com

Specify syslog support

syslog off

Specify the syslog facility

syslog facility LOG_AUTHPRIV

Specify the syslog priority

syslog priority LOG INFO

Specify the user list

user list /etc/login alert.users

Its contents are fairly self-explanatory. You can send an alert either by e-mail or by syslog
(with e-mail being the default). The e-mail is sent by default to root. You specify the list of users
to alert onin the /etc/login_alert.users file. Let’s add some users to this file.

puppy# echo 'bob' >> /etc/login alert.users
puppy# echo 'jane' >> /etc/login alert.users

I have added the users bob and jane to the file. Now I need to define the new module to
the PAM configuration. As I am sending an alert on the login of a user, I need to add the mod-
ule to the login service in the /etc/pam.d directory. Currently on my Red Hat system, the login
service looks like this:

auth required pam_securetty.so

auth required pam_stack.so service=system-auth
auth required pam_nologin.so

account required pam_stack.so service=system-auth
password required pam_stack.so service=system-auth
session required pam_stack.so service=system-auth
session optional pam_console.so

The pam_login_alert.so module is available with the account and session interface types.
I'will add it as a session interface with a control flag of optional. I will also add the module at
the end of the stack of modules using the session interface type. I use the end of the session
modules because I am interested in when the user logs on, the time of which can take place
only after the auth and account modules were successfully processed. I use optional because
I am considering logging not critical to the authentication process. My login service would
now look like this:

auth required pam_securetty.so
auth required pam_stack.so service=system-auth
auth required pam_nologin.so

55

56

CHAPTER 1 " HARDENING THE BASICS

account required pam_stack.so service=system-auth
password required pam_stack.so service=system-auth
session required pam_stack.so service=system-auth
session optional pam_console.so

session optional pam_login alert.so

Now when bob or jane logs in, an e-mail will be generated and a message will be sent to
root notifying of the new login. You could also enable the syslog function to send a log entry
when either of these users log in.

Some Other Pam Modules

I recommend you investigate some other PAM modules and potentially configure them to aid
in securing your system.

pam_access.so: The pam_access.so module controls login access and is configured using
the /etc/security/access.conf file. For example, it controls who can log in and where
they can log in from. It can include restrictions based on group membership as well.

pam_group.so: The pam_group.so module works with group membership and PAM. This is
a slightly more dangerous module, as it is able to grant temporary group membership to
users; you should use it with caution. See the /etc/security/group.conf file for configu-
ration details.

pam_env.so: This module allows you to set your environment variables using PAM. See the
/etc/security/pam_env.conf file for configuration details.

Package Management, File Integrity, and Updating

One of the great advantages attackers have when attempting to penetrate systems is some sys-
tem administrators’ inertia about updating software packages and applications. A large num-
ber of systems have software installed that is one or more versions behind the current release.
Or the software is the original version installed when the system was installed. These older
versions of software frequently have exploits and vulnerabilities that expose your system to
attack. It is critical you update your software on a regular basis to ensure your system has the
most recent and secure version of packages and applications.

Note 1 talk about how to find out when a security vulnerability is discovered in the “Keeping Informed
About Security” section.

The package management and update tools on the various distributions are powerful and
perform a variety of functions that do not have any security implications. I will focus on those
aspects of updating and package management on your system that do have security implica-
tions, such as verifying the integrity of a package or securely downloading an update.

CHAPTER 1 "/ HARDENING THE BASICS

Ensuring File Integrity

When you download packages and files from the Internet or install from CD/DVDs, a risk
exists that you are getting more than you bargained for. You have no guarantee that the file
you have downloaded contains the contents it claims to hold. The file or some of its contents
could have been replaced, altered, or intercepted and modified during transmission. You can
mitigate the risk of this by using integrity checking to validate the contents and the file. You
will learn about three methods of determining the integrity of packages you have downloaded
from the Internet. The first and second methods use the md5sum and shaisum commands to
validate a checksum to confirm the integrity of a package. The third uses the gpg application,
part of the GPG package, to verify a digital signature file that you would also download with
the package you want to verify.”

MD5 and SHA1 Checksums

Let’s look at MD5 hash checksums first. The MD5 checksum is a digital “fingerprint” of a file
that is frequently used by open-source software vendors and authors to prove the integrity of
files, ISO images, and the like that are available for download. MD5 is a message digest algo-
rithm. It takes a data string (in the case of a checksum, the data string is the file), and it pro-
duces a hash of that data string. The hash is unique for each data string. Listing 1-45 shows
what an MD5 hash checksum looks like.

Listing 1-45. A Sample MD5 Checksum
0a5f5f226e41ce408a895bec995e8c05

So how do you use this checksum? Let’s assume you have downloaded a file from a Web
site, iptables-1-2.11-tar.bz2. On the Web site next to the download link to this file is the fol-
lowing MD5 checksum 0a5f5f226e41ce408a895bec995e8c05. You use the md5sum command to
check the file to confirm this is the checksum of the file.

puppy# md5sum iptables-1-2.11-tar.bz2
0a5f5f226e41ce408a895bec995e8c05 iptables-1-2.11-tar.bz2

If the checksum matches the one displayed on the site, then the integrity of the file has
been confirmed to the extent possible using this sort of method. I say extent possible because
file checksums predispose that the site you are downloading the file from is secure and that
the file you have downloaded has not been replaced with another file entirely and the check-
sum generated from this replacement file.

Additionally, recent developments have suggested that there is a possibility that MD5
checksums are not always unique.8 With this potential insecurity in mind, you will also learn
about the similar checksum SHAL, or Secure Hash Algorithm. SHA1 is also a message digest
algorithm. It was designed by the National Security Agency (NSA) and uses a more secure
digest based on 160-bit digests. The SHA1 algorithm works on similar principles to MD5.
When downloading a file, you make a note of the SHA1 checksum. Then using the shaisum
command, check the file against the SHA1 checksum.

7. http://www.gnupg.org/
8. http://www.md5crk.com/

57

58

CHAPTER 1 " HARDENING THE BASICS

puppy# shalsum image.iso
1929b791088db2338c535e4850d49f491b3c7b53 image.iso

So where you have the option of using a SHA1 checksum, I recommend using these over
MD5 checksums.

The SHA1 checksums of course still does not address the issue of a total replacement of
the file and substitution of a new checksum based on the substituted file. The only way to
address this is via using a digital signature.

Digital Signatures and GNU Privacy Guard

Digital signatures rely on the principles of public-key encryption, which I will discuss in more
detail in Chapter 3. Public-key encryption depends on two keys: a public key and a private key.
You publish your public key to anyone who wants to exchange encrypted information with you
and keep your private key secret. You encrypt the information with the recipient’s public key,
and the recipient of that information uses their private key to decrypt the information. You can
also do this encryption in reverse and encrypt the information with your private key and have
your public key able to decrypt it. It is this second model that digital signatures use to ensure
file integrity.

Digital signatures are created by combining hashes and public-key encryption. A hash is
generated of the information (in this case, a package or file) that an author wants to confirm
as valid. Like the checksum hashes I have just discussed, this hash is unique to the file; if the
contents of the file change, then so does the hash. This hash is then encrypted, or signed, with
the package author’s private key. This creates the digital signature.

Now the author of the package distributes the file with its digital signature and also makes
available their public key. When you download the package, you also download the signature
and the author’s public key. You import this public key into your keyring. Your keyring is a col-
lection of the public keys that your system knows about, which is managed by whatever tool
you are using for public-key encryption, in this case gpg. You can then verify the file with the
digital signature by using the author’s public key to decrypt the checksum hash and then ver-
ify that the hash matches the hash of the downloaded file. You now know the file is valid because
you know the author must have used their private key to encrypt the digital signature; other-
wise you would not have been able to use their public key to decrypt it.

Let’s look at an example of this at work. Download the GPG package, its digital signature,
and the public key of the author and use them to verify the integrity of the package. First, down-
load the package and its signature.

puppy# wget ftp://ftp.gnupg.org/gcrypt/gnupg/gnupg-1.2.4.tar.bz2
puppy# wget ftp://ftp.gnupg.org/gcrypt/gnupg/gnupg-1.2.4.tar.bz2.sig

Second, download and import the GPG group’s public key into your public keyring.

puppy# wget ftp://ftp.gnupg.org/gcrypt/gnupg/gnupg.asc
puppy# gpg --import gnupg.asc

gpg: key 57548DCD: public key imported

gpg: Total number processed: 1

gpg: imported: 1

To do the import, you use the gpg --import option.

CHAPTER 1 "/ HARDENING THE BASICS

Now that you have imported the public key, you can use the same gpg command to vali-
date the file you have downloaded. To do this, you use the gpg option --verify and provide the
name of the signature you have downloaded; it is gnupg-1-2.4.tar.bz2.sig, as you can see in
Listing 1-46.

Listing 1-46. Verifying a File Using gpg

puppy# gpg --verify gnupg-1.2.4.tar.bz2.sig

gpg: Signature made Wed 24 Dec 2003 07:24:58 EST using DSA key ID 57548DCD
gpg: Good signature from "Werner Koch (gnupg sig) <dd9jn@gnu.org>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Fingerprint: 6BD9 050F D8FC 941B 4341 2DCC 68B7 AB89 5754 8DCD

The gpg command will take the contents of this digital signature and look for the contents of
a file of the same name with the suffix of . sig removed from the filename. Thus, in this example,
the gpg command will be looking for a file called gnupg-1.2.4.tar.bz2. If the filename is different
from the signature file; you can specify the file you want to verify after the signature file on the
command line.

puppy# gpg --verify gnupg-1.2.4.tar.bz2.sig gnupg.tar.gz

As you can see from Listing 1-46, the file was signed with the author’s private key and the
signature is valid. The warning message that appears tells you that this validation is not 100
percent complete, though, because the trust ends with the key used to sign the signature. This
means the gpg has no way of confirming that the author is the actual owner of the key used to
sign the signature. I will talk about this concept of trusted relationship further in Chapter 3. For
the purposes of verifying the integrity of the package you have downloaded, I suggest this level
of validation is suitable for most instances.

Tip Though I do not show the process every time you download a file or package during the chapters of
this book, | strongly urge you to verify all files you download using whatever means are available to you. Be
extremely wary of files that offer no means of verifying their integrity.

RPM and Digital Signatures

Most recent releases of the RPM package (including those with recent versions of Red Hat and
Mandrake) handle digital signature checking internally and transparently to you with some ini-
tial setup. The RPM file itself holds the digital signature and a variety of checksums. You then
verify those checksums and digital signatures using the rpm command. To do this, you need to
import the RPM provider or vendor’s public key into your RPM public keyring.

Your RPM public keyring is different from your GPG public keyring. If you have imported
a public key into your GPG keyring, this does not mean you can use that public key with RPM.
For example, Red Hat provides its public key in a variety of locations for you to add to your

59

60

CHAPTER 1 " HARDENING THE BASICS

RPM public keyring. You can find it at the Red Hat site at http://www.redhat.com/security/
db42a60e. txt. It is also located on your system when your distribution is installed at /usxr/share/
rhn/RPM-GPG-KEY.

To add a public key the RPM keyring, you use the rpm --import command. So, to add the
Red Hat public key, enter the following:

puppy# Ipm --import /usr/share/rhn/RPM-GPG-KEY

You can also download the public key from a keyserver using the gpg command and then
place it in the RPM keyring. To do this, you first need to use the gpg command to get the key,
specifying a keyserver and a key ID. The default keyserver for the Red Hat public key is
pgp.mit.edu, and the key ID is DB42A60E.9 Listing 1-47 retrieves the Red Hat public key from
a keyserver using the gpg command.

Listing 1-47. Using the gpg Command to Download a Key from a Keyserver

puppy# gpg --keyserver pgp.mit.edu --recv-keys DB42A60E
gpg: requesting key DB42A60E from HKP keyserver pgp.mit.edu
gpg: key DB42A60OE: public key imported

gpg: Total number processed: 1

gpg: imported: 1

As you can see from Listing 1-47, you have successfully downloaded the Red Hat public
key from the key server and imported it into the GPG keyring. Now you need to add it to the
RPM keyring. You can enter the following:

puppy# gpg -a --export DB42A60E > redhat.asc; rpm --import redhat.asc; \
m -f redhat.asc

In the previous line you have exported the key you just downloaded into the GPG keyring
by selecting it via its key ID and using the -a option to create ASCII armored output. You then
imported the resulting file into the RPM keyring and finally deleted the file you just used for
the import.

You can see all the public keys stored in your RPM public keyring using the following
command:

puppy# rpm -ga gpg-pubkey* --qf "%{version}-%{release} %{summary}\n"
db42a60e-37ea5438 gpg(Red Hat, Inc <security@redhat.com>)

As you can see, the only key you have is the Red Hat security key.

Tip You can find the Mandrake GPG key at http: //www.mandrakesoft.com/security/RPM-GPG-KEYS,
on the Mandrake CD/DVD or via the pgp.mit.edu using key ID 22458A98. Debian public keys are available
on the Debian release media or via the Debian FTP sites and mirrors.

9. This is the current Red Hat key ID, but you can check for a new or updated key ID at
http://www.redhat.com/security/team/key.html.

CHAPTER 1 "/ HARDENING THE BASICS

With the rpm command and the public key, you can now validate the digital signature.
Now if you download an RPM produced by Red Hat, you are now able to verify it. To do this,
you use the rpm command with the --checksig option (or the -K option, which performs the
same function).

puppy# rpm --checksig kernel-2.4.21-15.0.2.EL.src.rpm
kernel-2.4.21-15.0.2.EL.src.rpm: (shal) dsa shal md5 gpg OK

You can see the results of the --checksig option on the previous line. First the name of the
RPM being checked is displayed, and then the successful checks are displayed. The line before
the results shows that the RPM has valid dsa, sha1, and md5 checksums and is signed with a
valid gpg signature. The final OK confirms the validity of the RPM file. If you want to display
more detail of the validation, you can add the -v option to the rpm command.

puppy# Ipm --checksig -v kernel-2.4.21-15.0.2.EL.src.rpm
kernel-2.4.21-15.0.2.EL.src.rpm:
Header V3 DSA signature: OK, key ID db42a60e
Header SHA1 digest: OK (a0c3ab5a36016f398e0882a5416479612ae9044f)
MD5 digest: OK (ef590ee95255210aca8e2631ebaaa019)
V3 DSA signature: OK, key ID db42a60e

You can display even more information by using the -vv option.
If the RPM fails to validate, then the rpm --checksig command will return different results.
Any checks that have failed will be displayed in uppercase, and the results will end with NOT OK.

puppy# rpm --checksig kernel-2.4.21-15.0.2.EL.src.xpm
kernel-2.4.21-15.0.2.EL.src.rpm: size gpg MD5 NOT OK

You can see in the previous line that the size check has validated, but the MD5 checksum
has failed and the results display NOT OK. If the GPG digital signature fails to validate, then you
will see output similar to the following line. In this instance the GPG key is missing.

puppy# rpm --checksig kernel-2.4.21-15.0.2.EL.src.rpm
kernel-2.4.21-15.0.2.EL.src.rpm: (SHA1) DSA shal md5 (GPG) NOT OK w»
(MISSING KEYS: GPG#db42a60e)

You should verify all RPMs using the --checksig option before installing them, and do not
install an RPM package if any of these checks fail.

Downloading Updates and Patches

You can use a variety of automated tools for updating your system via the Internet. I will
briefly cover three of them: up2date, apt-get, and yum. Of the three, the only one that offers
real security is the up2date command, which uses SSL certificates to confirm you are down-
loading from a valid and verifiable update source in addition to verifying the file integrity of
the files downloaded. Unfortunately, up2date is a Red Hat—only solution. The remaining tools,
apt-get and yum, are capable only of verifying the file integrity of downloads using MD5,
SHA1, and GPG checks.

61

62

CHAPTER 1 " HARDENING THE BASICS

up2date

The up2date tool comes with Red Hat systems and allows you to retrieve updates from the Red Hat
Network. As mentioned, it uses SSL to verify it is connecting to a valid update source. The up2date
command does this SSL authentication transparently for you. For any Red Hat releases with a pur-
chase price (for example, Red Hat Enterprise Linux), you need to pay for an entitlement to down-
load updated patches. For the Fedora Core releases, you can download the updates for free. The
up2date client is a propriety Red Hat tool and does not work with any other distributions.

Tip An open-source variation of up2date, called NRH-up2date, is available at
http://www.nrh-up2date.org/. This tool also allows you to run a centralized Red Hat update server.

The up2date tool downloads RPMs from the Red Hat network and then passes them to the
rpm command to be processed and installed transparently to the user. As part of this transfer
to the rpm command, the standard rpm --checksig processing is performed on the RPM(s) to
be installed. This means the size, MD5, and SHA1 checksums as well as the GPG key are all
checked before installing the RPM(s). If any of these fail to validate, then the respective RPM
will not be installed.

You would usually configure up2date and the Red Hat Network when you first install your
Red Hat distribution. But you can reregister your system to the Red Hat Network using the fol-
lowing command:

puppy# rhn_register

If your system is registered, you can use the up2date command to retrieve RPMs from Red
Hat. To list all the available packages, enter the following:

puppy# up2date -1
Fetching package list for channel: rhel-i386-as-3...

And if you want to fetch and download the available updates, you can enter the following:
puppy# up2date -u

Finally, the up2date man page contains further information on how to use the up2date
command.

apt-get

The APT package-handling application is a front-end interface for the Debian dpkg command.

A version also exists that can act as a front-end to RPM.10 It fetches deb or RPM files from remote
repositories and uses either dpkg or rpm to install them. It is extremely easy to use. Each command
consists of the apt-get command followed by the required function to be performed and poten-
tially a package name.

puppy# apt-get update

10. http://freshrpms.net/apt/

CHAPTER 1 "/ HARDENING THE BASICS

For example, the command on the previous line updates the list of packages that are
available for download. The configuration for the apt-get command is held in the /etc/apt
directory. For Debian, review the contents of the apt.conf.d directory in /etc/apt; for the Red
Hat variation, review the apt. conf file to see how apt-get is configured to function. Both ver-
sions use a file called sources.list in the /etc/apt directory to store the list of repositories.
The repositories are generally HTTP or FTP sites that store the available updates.

To install a particular package using apt-get, use the install option, as follows, replacing
the packagename variable with the name of the particular package to be installed:

puppy# apt-get install packagename
To install all available updates, use the upgrade option. Enter the following:

puppy# apt-get upgrade

Caution Some older versions of apt-get continue to install packages even if the checksums or keys
have failed. | recommend upgrading to the latest version of apt-get.

Yum

Yum (Yellow dog Updater, Modified) is another update and patch tool that works with RPM pack-
ages. It functions much like the apt-get and up2date tools. Like these tools, Yum fetches RPMs
from remote repositories and uses the rpm command to check checksums and to perform the
installation. You can download Yum from http://1inux.duke.edu/projects/yum/download.ptml.
It comes in different versions depending on the version of RPM you have installed. Check your
RPM version before you choose a version of Yum to install. Enter the following:

puppy# rpm --version
RPM version 4.2.2

Yum performs much the same functions as the other tools you have seen in this chapter.
For example, to view a list of all the packages available to download, you would use the 1ist
option, as follows:

puppy# yum list

You can configure Yum using the file yum. conf located in the /etc directory. In Listing 1-48
you can see a sample of this file.
Listing 1-48. Sample yum.conf File

[main]
cachedir=/var/cache/yum
logfile=/var/log/yum.log
distroverpkg=redhat-release

63

CHAPTER 1 " HARDENING THE BASICS

[base]

name=Red Hat Linux $releasever - $basearch - Base

baseurl=
http://mirror.dulug.duke.edu/pub/yum-repository/redhat/$releasever/$basearch/
gpgcheck=1

The [main] configuration block shown in Listing 1-48 contains the global variables used
by Yum. You can read about those in the yum. conf man page. The [base] configuration defines
arepository to check for updated packages. I have added the option gpgcheck=1 to this reposi-
tory to make Yum check for valid GPG signatures. You need to add this option to the definitions
of all repositories defined to Yum if you want them to use GPG signature checking.

To install a package with Yum, use the install option, as follows, replacing the package-
name variable with the name of the particular package to be installed:

puppy# yum install packagename

To upgrade all available packages with Yum, use the upgrade option.

puppy# yum upgrade

You can see the additional options available with Yum in its man page.

Compilers and Development Tools

Compilers and associated development tools are incredibly useful to have on your system—that
is, they are handy for you and any potential attackers. If an attacker has access to development
tools, it makes the process of penetrating your system easier. An attacker can write their own
penetration programs on your system and then use your compilers and development tools to
compile them. Additionally, some root kits require the attacker compile them on your system.
Removing the compilers and development tools makes it that much harder for an attacker.

I recommend that on your production systems you remove the compiler packages and
associated development tools or at least restrict access to them to selected users or groups.
The easiest way to restrict access to them is to create a new group and restrict execute access
on all the compiler and development tool binaries to this group.

Removing the Compilers and Development Tools

Let’s now take you through an example of removing the compilers and development tools on
a Red Hat system. Listing 1-49 shows you how you can identify the packages you should
remove or restrict on Red Hat system using the rpm command.

Listing 1-49. Identifying the Compilers and Development Tools

puppy# rpm -qg Development/Languages Development/Tools
cpp-3.2-7

dev86-0.16.3-4

gcc-3.2-7

gce-g77-3.2-7

CHAPTER 1 "/ HARDENING THE BASICS

Tip On SuSE you can use the yast tool to do this or on Debian the dselect tool.

Using rpm with the -qg will query on a group of packages. In Listing 1-49 this will list all
the packages that are in the package groups Development/Languages and
Development/Tools. These groups contain the compilers and associated tools. On a Debian
system this package group is called devel. If you want to remove the individual packages, you
can do this using rpm. Enter the following:

puppy# rpm -e gcc

You may run into troubles with dependencies, as many of the compilers and develop-
ment tools are dependencies for other packages installed of their type. The easiest way to do
this is to remove the packages with the --nodeps option.

puppy# rpm -e --nodeps gcc

Caution One of the packages in the Development/Languages group is Perl. A lot of applications use Perl,
and you would probably be safer not removing this and looking at options for restricting access to the Perl
interpreter.

Restricting the Compilers and Development Tools

If you do not want to remove the packages and want to restrict access to them via permis-
sions, you can also do this. First you need to query individual packages to see what binaries
are contained in them. Then you need to restrict the permissions of these binaries.

puppy# rpm -q --filesbypkg gcc | grep 'bin'

gcc /usr/bin/c89
gcc /usr/bin/c99
gcc /usr/bin/cc

gcc /usr/bin/gcc
gcc /usr/bin/gcov

Here I have used rpm to show you the files provided by the gcc package. I have also used
grep to only select those files that are contained in binaries directories, /bin, /usr/bin,
/usr/sbin, and so on.

Now you need to create a group that will have access to the compiler binaries.

puppy# groupadd compiler

Then change the ownership of the binary you want to restrict. I have changed the binaries
group to compiler. Enter the following:

puppy# chown root:compiler /usr/bin/gcc

65

CHAPTER 1 " HARDENING THE BASICS

And finally you change its permissions to be executable only by the root user and mem-
bers of the compiler group. Enter the following:

puppy# chmod 0750 /usr/bin/gcc

Now unless the user running the gcc command belongs to the group compiler, they will
get a permission-denied message when they try to run the gcc compiler.

puppy$ gcc
bash: /usr/bin/gcc: Permission denied

Hardening and Securing Your Kernel

The Linux kernel is the core of your operating system. It provides the coordinating engine

for the rest of the operating system and organizes and manages the processes of your sys-

tem. It is unfortunately also subject to some weaknesses through which attackers can gain
control of system resources or your system itself. These weaknesses can allow attackers to

run attack tools such as root kits.

Note See Chapter 6 for more details on root kits and detecting them.

To combat these weaknesses and prevent their exploitation, you need to harden the ker-
nel. You do this by applying one or more of a series of available patches that address some of
these weaknesses. These patches are not perfect, though, but they will significantly reduce the
risk to your system from these exploits. I will cover one of the major kernel hardening patches:
Openwall. I will show you how you can apply this patch to your system, and I will explain the
various benefits, risks, and limitations created by using the patch. I will discuss the particular
features and fixes the Openwall patch offers in the section “The Openwall Project.”

Securing your kernel and hardening using available patches is not an easy process. Fun-
damentally perhaps one of the hardest Linux operating system activities that a system admin-
istrator can undertake is patching and rebuilding a kernel. This is not a reason not to do this!

I will take you through the steps you need to follow and the outputs you should expect to see
when doing this. At the end of this, you should be comfortable with doing this whenever you
need.

Getting Your Kernel Source

If you patch and harden your kernel for security purposes, then you need to work from a fresh
copy of the kernel, not the kernel that came with your distribution. You can download the lat-
est version of the Linux kernel from http://www.kernel.org. Most distributions currently
come with a version 2.4 kernel; for example, the currently supported kernel for Red Hat 3AS is
2.4.26. Run the uname -a command to find out what kernel is running on your system.

puppy# uname -a
Linux puppy.yourdomain.com 2.4.26-EL #2 Mon Jul 19 18:00:36 EST 2004 1686 1686 w»
1386 GNU/Linux

CHAPTER 1 "/ HARDENING THE BASICS

You can see in the previous line the current kernel is version 2.4.26-EL. (The EL indicates
a Red Hat-specific designation meaning Enterprise Linux.)

At the time of writing, the most recently released version of the kernel was 2.6.7. But at
this stage most distributions are supporting 2.4 release kernels, so I will base my explanation
of how to install them on this release of the kernel. Nothing, though, should fundamentally
differ between the installation process for version 2.4.x kernels and version 2.6.x kernels.

Download kernel version 2.4.26. You should download the most up-to-date version at the
time you are reading this. Replace the 2.4.26 version in the next few examples with the ver-
sion of the kernel you are downloading. So Listing 1-50 shows how to download the kernel.

Listing 1-560. Downloading the Kernel Source

puppy$ cd /usr/src

puppy$ wget ftp://ftp.kernel.org/pub/linux/kernel/v2.4/1linux-2.4.26.tar.gz
puppy$ wget ftp://ftp.kernel.org/pub/linux/kernel/v2.4/1inux-2.4.26.tar.gz.sign
puppy$ gpg --keyserver wwwkeys.pgp.net --recv-keys 0x517DOFOE

gpg: key 517DOFOE: public key "Linux Kernel Archives Verification Key w»
<ftpadmin@kernel.org>" imported

gpg: Total number processed: 1

gpg: imported: 1

Let’s look at Listing 1-50. The Linux kernel sources are generally stored in the /usxr/src
directory on your system. You have downloaded the most recent version of kernel source and
the signature file for this release of the kernel source to this directory. You have also down-
loaded from the pgp.net key server the gpg public key for http://www.kernel.org and
imported it into your gpg keyring.

Note You should check for the current key at http://www.kernel.org/signature.html.

Listing 1-51 shows how to use this public key and the signature file to verify the integrity
of the kernel source.

Listing 1-51. Verifying the Kernel Source

puppy$ gpg --verify linux-2.4.26.tar.gz.sign linux-2.4.26.tar.gz

gpg: Signature made Wed 14 Apr 2004 23:23:32 EST using DSA key ID 517DOFOE
gpg: Good signature from "Linux Kernel Archives Verification Key w»
<ftpadmin@kernel.org>"

gpg: aka "Linux Kernel Archives Verification Key w»
<ftpadmin@kernel.org>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: C75D C40A 11D7 AF88 9981 ED5B C86B A06A 517D OFOE

67

CHAPTER 1 " HARDENING THE BASICS

You have used the gpg command to verify the signature of the file and the downloaded file
together with the PGP public key downloaded in Listing 1-50. The response in Listing 1-51
shows this is a good signature. Do not worry about the last lines claiming the key is not certi-
fied with a trusted signature. This merely means you do not have the full trust chain for this
signature.

Now that you have verified the integrity of the file, you can unpack it. A lot of patches and
other related items look for the source in the directory /usr/src/1linux, so you will create a sym-
bolic link to this directory using the unpacked source directory as the source of the link. You can
see this Listing 1-52.

Listing 1-52. Unpacking and Creating the Linux Symbolic Link

puppy$ tar -zxf linux-2.4.26.tar.gz
puppy$ 1n -s linux-2.4.26.tar.gz linux

You now have a fresh copy of kernel source available to work with and on which to apply
the hardening patches.

The Openwall Project

The Openwall Project is a collection of security features, patches, and fixes designed to harden
and secure your kernel. You can configure the individual security features during the kernel
complication process after patching your kernel source; I will take you through doing that in
the following sections. So, what security features does Openwall introduce?

Provides a nonexecutable user stack area: The nonexecutable user stack area is
designed to reduce the risk of buffer overflows. Most buffer overflows are based on over-
writing a function’s return address on the stack to point to some malicious code. This
code is put on the stack and executed. By making the stack nonexecutable, the code is
prevented from functioning and your system is protected. This is not a perfect solution
to the threat of buffer overflows, but it does reduce the risk that a major group of exploits
that function in this way can take advantage of the weaknesses in your system.

Restrict links in /tmp: The /tmp directory (or other +t directories) are popular spots for
exploits to be executed in and from because of the openness of the directory. Several of
these types of exploit methods involve using hard links. For example, one form of hard
link attack is based on hard linking setuid or setgid binaries to a directory such as /tmp.
An exploit is discovered in one of these binaries. You update or patch the binary, but a
hard linked version still exists in another directory that the attacker can use to compro-
mise your system. Other forms of hard link attack include using hard links to cause Denial
of Service attacks by overwriting critical files or by overflowing disk space or quotas using
hard links of temporary files.

The Openwall patch stops hard links being created by users to files they do not own
unless they have read or write permissions to the file (usually permissions provided
through group membership). This may potentially impact some poorly designed applica-
tions and stop them from functioning. I recommend you test this option after implemen-
tation with any applications that utilize hard links in temporary directories.

CHAPTER 1 "/ HARDENING THE BASICS

Restrict FIFOs in /tmp: This restricts writes to first in/first out (FIFO) named pipes in +t
directories such as /tmp. This disallows writing to named pipes that are not owned by the
user unless the owner of the pipe is the same as the owner of the directory. This prevents
the use of untrusted named pipes to conduct attacks or for other malicious purposes.
Like the previous feature, this can also cause issues with applications. I recommend you
test this with any applications that create named pipes in temporary directories.

Restrict /proc: This function restricts the permission on the /proc directory so that users
can see only those processes they have initiated or that belong to their session. This adds
a layer of privacy and security to your system that stops potential attackers from seeing
other processes that could provide exploitable insights into your system.

Destroy shared memory segments not in use: This stops shared memory existing with-
out belonging to a process and destroys any shared memory segments after a process ter-
minates. Unfortunately, this breaks a lot of applications, including many databases (for
example, Oracle). I recommend not implementing this feature unless you understand
the implications of it.

Enforce RLIMIT_NPROC on execve(2): This allows you to control how many processes
the user can have with the RLIMIT _NPROC setting when executing programs using the
execve(2) function.

Installing Openwall

You first need to download the Openwall patch and a signature to verify the contents of the
patch. Each version of the patch is designed to match a kernel release version. You need to get
the Openwall patch that matches the kernel version you propose hardening and compiling.
Listing 1-53 shows you how to download the Openwall patch for kernel 2.4.26. Let’s download
the files to the /usr/src directory.

Listing 1-53. Getting the Openwall Patch

puppy$ cd /usr/src
puppy$ wget http://www.openwall.com/linux/linux-2.4.26-ow2.tar.gz
puppy$ wget http://www.openwall.com/linux/linux-2.4.26-ow2.tar.gz.sign

Once you have the Openwall patch, you need to verify the patch is authentic and the
integrity of the patch is maintained. This is similar to the process used with the kernel
source itself; you start by downloading and importing the Openwall gpg public key. Then
you use the signature you downloaded in Listing 1-53 to verify the patch file you down-
loaded. See Listing 1-54 for the commands you need to achieve this.

Listing 1-54. Verifying the Openwall Signature

puppy$ wget http://www.openwall.com/signatures/openwall-signatures.asc
puppy$ gpg --import openwall-signatures.asc
puppy$ gpg --verify linux-2.4.26-ow2.tar.gz.sign linux-2.4.26-ow2.tar.gz

69

70

CHAPTER 1 " HARDENING THE BASICS

gpg: Signature made Sun 06 Jul 2003 13:54:56 EST using RSA key ID 295029F1
gpg: Good signature from "Openwall Project <signatures@openwall.com>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 0C 29 43 AE 1E (D 24 EA 6E 0C B6 EE F5 84 25 69

If your patch has a good signature (and again ignore the last four lines about trusted sig-
natures as you did when downloading the kernel source), then you can unpack it and patch
your kernel source with it. Listing 1-55 takes you through the process of doing this.

Listing 1-55. Patching the Kernel Source

puppy$ cd /usr/src

puppy$ tar -zxf linux-2.4.26-ow2.tar.gz

puppy$ cp linux-2.4.26-ow2/1linux-2.4.26-ow2.diff .
puppy$ patch -p0 < linux-2.4.26-ow2.diff

patching file linux/Documentation/Configure.help
patching file linux/Makefile

patching file linux/arch/alpha/config.in

patching file linux/arch/alpha/defconfig

patching file linux/arch/alpha/kernel/osf sys.c

First, you change to the /usr/src directory. It is easiest to place your patch here for conti-
nuity’s sake for your kernel source. Then unpack the patch to create a directory linux-version-
owpatchnumber, in this case 1inux-2.4.26-ow2, where version is the version of the kernel to be
patched and patchnumber is the version of the Openwall patch for this kernel release.

Next copy the .diff file (which contains the instructions telling the patch command which
source files and lines to change in order to implement the patch) to the /usr/src directory. Now
from the /usr/src directory run the patch command, inputting the contents of the . diff file
with the < operator. This patches your kernel source using the .diff file to tell the patch which
source files and lines need to be changed.

You should see similar output to the patching lines in Listing 1-55, and if the patch is suc-
cessful, then you should be returned to the command line without any reports of FAIL’ed patch
lines or prompts. If the patch does fail, then check you have the right version of the patch for
your kernel and that you copied the .diff file into the right location, /usxr/src.

Now you have patched your kernel source, and you can start by compiling your new hard-
ened kernel. You need to make sure you are starting from a clean compile. Change to the
/usr/src/linux directory, and run the following command to confirm your kernel source
compile is going to be from a clean start.

puppy$ make mrproper

The make mrproper function clears out any leftover files from previous compilations and
old configuration files. When the process completes, then you can continue onto configuring
your kernel.

CHAPTER 1 "/ HARDENING THE BASICS n

Next you would normally be using the make config command (or its menu-based variation
make menuconfig) to configure the features of your new kernel. Kernel configuration involves
choosing the features, modules, and drivers your kernel will support. It can be a tricky and painful
process to conduct from scratch, with multiple recompilations potentially required to ensure all
your requirements are addressed.

But you have a simpler way to configure your kernel. You already have a kernel that was
been compiled as part of the installation process of your distribution. This is the kernel you
use every day to run your system, so you know it works. When this kernel was created, a con-
figuration file was produced that contains all the information about the kernel and the hard-
ware, drivers, modules, and features enabled. This configuration file is usually stored on Red
Hat and Debian systems in the /boot directory and called by config-version, where version is
the version of the kernel currently running. You can short-circuit the configuration process by
copying this config to /usr/src/linux as the file .config. The .config file would normally be
created by running the make config ormake menuconfig commands. See Listing 1-56 for the
process of copying this file.

Listing 1-56. Copying the Old Kernel Configuration
puppy$ cp /boot/config-2.4.26-EL /usr/src/linux/.config

You can then use a different command, make oldconfig, to pick up your old configuration
from the . config file rather than going through and selecting an entirely new configuration.
Now you can run the command in Listing 1-57 to configure your kernel.

Listing 1-567. Configuring the Kernel

puppy$ cd /usr/src/linux
puppy$ make oldconfig

You will find that instead of being prompted for the majority of kernel configuration
options, you will be prompted only for a few. These few will consist of any new features added
to your kernel (if upgrading to a more recent kernel version) and the Openwall configuration
options. If you are prompted for new features and options, they will appear similar to the
option on the next line.

Atmel at76c502/at76c504 PCMCIA cards (CONFIG PCMCIA ATMEL) [N/y/m/?] (NEW)

This example prompts you to compile support for some new hardware. You could also be
prompted to install new modules or software features. I recommend that unless you require
any of these features or functions for which you have been prompted, select N for No. This is
usually the default. If you require more information on the new item, then you can use the ?
option to get more information about the item.

Note If you really insist on totally reconfiguring your kernel (and | recommend against it unless you know
what you are doing), then you would run the make config command (for command-line-based configura-
tion of your kernel) or the make menuconfig (for a menu-based version of the kernel configuration) instead
of the make oldconfig command. | recommend the make menuconfig variation.

72

CHAPTER 1 " HARDENING THE BASICS

Let’s now look at the Openwall configuration options. Listing 1-58 shows the prompts you
will be asked to answer as part of the Openwall configuration. The Openwall configuration
options should appear at the end of the make oldconfig (or whatever variation of the kernel
configuration process you have chosen to use) process. In Listing 1-58 I have configured these
in line with the recommendations I made when discussing the various features of Openwall
previously. For these options by answering y, you enable a feature. Use N to disable a feature.

Listing 1-568. Openwall Configuration Prompts

*
* Security options
*
Non-executable user stack area (CONFIG HARDEN STACK) [N/y/?] (NEW) y

Autodetect and emulate GCC trampolines (CONFIG HARDEN STACK SMART) [N/y/?] (NEW) N
Restricted links in /tmp (CONFIG HARDEN LINK) [N/y/?] (NEW) y
Restricted FIFOs in /tmp (CONFIG HARDEN FIFO) [N/y/?] (NEW) y
Restricted /proc (CONFIG HARDEN PROC) [N/y/?] (NEW) y
Enforce RLIMIT NPROC on execve(2) (CONFIG HARDEN RLIMIT NPROC) [N/y/?] (NEW) y
Destroy shared memory segments not in use (CONFIG_HARDEN_SHM) [N/y/?] (NEW) N

The only option from Listing 1-58 I have not discussed is the Autodetect and emulate GCC
trampolines option, which is an extension of the nonexecutable user stack area feature. This
allows the use of a nonexecutable user stack area with the glibc version 2.0 nested function
extensions and predominantly with version 2.0 kernels. To check your version of glibc, enter
the command in Listing 1-59.

Listing 1-59. Checking the glibc Command

puppy# /1ib/libc.so.6
\GNU C Library stable release version 2.3.2, by Roland McGrath et al.

On most recent distributions it should be at least version 2. 3. If it is more recent than
version 2.0, then enter n to not install this option.

Now that you have configured your Openwall patch, you need to compile your kernel.
The commands in Listing 1-60 will do this for you.

Listing 1-60. Compiling the Kernel

puppy# cd /usr/src/linux
puppy# make dep bzImage modules modules install
puppy# make install

The first make line combines a number of compilation steps. First it makes all the required
dependencies using the dep option. Then it makes a new boot image using the bzImage option.
Then it compiles any modules required using the modules option. Finally it installs any modules
using the modules_install option. At the end of this first make line you should have a fully com-
piled kernel and new boot image. The next line, make install installs that new boot image in
your boot loader ready for you to reboot and use that new kernel.

CHAPTER 1 "/ HARDENING THE BASICS

Let’s just confirm the boot loader configuration has been suitably updated. Listing 1-61
shows what your lilo.conf entry for the new kernel should look like after being updated by
the make install action. You have added the password option to the 1ilo. conf file to secure
your new kernel, too. Remember to run the 1ilo command after adding the password to update
your boot loader configuration.

Listing 1-61. Confirming Yourlilo.conf Configuration

image=/boot/vmlinuz-2.4.26-ow2
password=secretpassword
label=linux 2.4.26 (Owl)
initrd=/boot/initrd-2.4.26-ow2.img
read-only
append="root=LABEL=/"

If you use Grub, you can see the updated entry for the grub.conf configuration file in
Listing 1-62. I have also added a password here, too.

Listing 1-62. Confirming your grub.conf Configuration

title Red Hat Enterprise Linux AS (2.4.26-ow2)
password --md5 $1$200$I6k7iy22wB27CrkzdVPe70
root (hdo,0)
kernel /vmlinuz-2.4.26-ow2 ro root=LABEL=/
initrd /initrd-2.4.26-ow2.img

After rebooting your system, selecting the new kernel, and booting it, you should be run-
ning with your new kernel. To confirm this, run the uname -a command after you have rebooted.

puppy# uname -a
Linux puppy.yourdomain.com 2.4.26-ow2 #2 Mon Jul 19 18:00:36 EST 2004 1686 1686 w»
1386 GNU/Linux

You can now see that the puppy system is running a new kernel, 2.4.26-ow2, which is the
Openwall patched kernel.

Testing Openwall

So you installed your Openwall patch and now you want to know if it does anything? Well, the
patch does come with some code you can use to test some functions. Inside the directory you
unpacked you will find the Openwall, which is a C program called stacktest.c. You will com-
pile this program and run some tests. Listing 1-63 shows how to compile the program.

Listing 1-63. Compiling the stacktest.c Program

puppy$ cd /usr/src/linux-.2.4.26-ow2/optional
puppy$ gcc -o stacktest stacktest.c

73

74

CHAPTER 1 " HARDENING THE BASICS

This compile uses gcc to produce a binary called stacktest in the /usr/src/linux-2.4.26-ow2
directory. You can run stacktest to simulate a buffer overflow by running the following
command:

puppy# ./stacktest -e
Attempting to simulate a buffer overflow exploit...
Segmentation fault

If the command execution ends in a Segmentation fault, then the buffer overflow attempt
has failed and the patch is functioning as intended.

If you have enabled the /tmp restrictions, you should also be able to test these by trying to
create hard links in /tmp to files that you do not own or trying to write to named pipes you do
not own. Do these tests as a normal user, not as the root user. Doing the tests as the root user
proves nothing.

Other Kernel-Hardening Options

Other “hardened” kernels and kernel-hardening patches are available, and I will briefly cover
some other available options. Many of the patches offer similar functionality, and I recommend
you carefully read the documentation that accompanies them to find the one that suits you best.

grsecurity

The grsecurity package available at http://www.grsecurity.net/ provides a collection of
detection, prevention, and containment modifications to the kernel. These include a role-
based access control system that allows you to add a finer granularity of access controls to
users, applications, and processes based on defining roles. Amongst other features it also adds
security to the chroot application, increases protection against buffer overflows, and provides
a security infrastructure to the kernel. This package takes a considerable effort to configure
and implement, and you need to design the role-based controls to suit your environment.

LIDS

The Linux Intrusion Defense System (LIDS) is another patch that offers access controls such
as SELinux and grsecurity. It also comes with a port scanner detector built into the kernel and
provides some further file system-hardening and network-hardening modifications that are
related to security. LIDS is available from http://www.1lids.org/, currently supports version 2.6
kernels, and is regularly updated.

RSBAC

The Rule Set Based Access Controls (RSBAC) project is one of the more fully featured kernel
security packages. It offers a number of different access control models that you can use sepa-
rately or together. It also offers process jails (a kernel-based version of the chroot command),
resource controls, and support for the PaX project!! (designed to reduce the risk of buffer
overflow and similar style of attacks). It is available at http://www.rsbac.org/, and it supports
version 2.4 and 2.6 kernels.

11. http://pax.grsecurity.net/

CHAPTER 1 "/ HARDENING THE BASICS

SELinux

The SELinux package is an initiative of the NSA and is available at http://www.nsa.gov/selinux/.
Similar in style to the grsecurity package, it provides role-based access control lists (ACLs) that
control what resources applications and processes are able to use. These ACLs are governed by

a central security policy. The package comes with a kernel patch, some patches to system tools,
and some administration tools. Like grsecurity this package also takes a considerable effort to
configure and implement. You also need to design the role-based controls to suit your environ-
ment though the SELinux package does come with a sample security policy that you can modify
for your purposes. SELinux also supports 2.6 kernels, and in the case of Red Hat Enterprise Linux
it is integrated into version 3 of this distribution.

Keeping Informed About Security

In the “Package Management, File Integrity, and Updating” section I talked about older releases
of packages and applications having exploits and vulnerabilities and the need to keep them up-
to-date. In the following sections I will cover some of the ways to find out about these exploits
and vulnerabilities and how to keep up-to-date with security issues in general. This allows you to
ensure you know what to update and upgrade your packages in a timely manner when exploits
are discovered. Doing so denies any potential attackers the opportunity to use those exploits on
your system.

Security Sites and Mailing Lists

The following are sites that contain information relevant to Linux security and security in
general:

CERT: CERT (http://www.cert.org/) is a coordination center and clearinghouse for
reporting incidents and vulnerabilities. It also runs the CERT advisory mailing list, which
consists of announcements of major vulnerabilities across a variety of operating systems
and applications as well as notifications of major virus attacks or notable security inci-
dents. You can subscribe at http://www.cert.org/contact_cert/certmaillist.html.

LinuxSecurity.com: The Linuxsecurity.com site (http://www.linuxsecurity.com/) con-
tains a variety of documents and resources that focus on Linux Security-related issues
including HOWTOs, FAQs, articles, and interviews. It also has a variety of mailing lists
you can subscribe to at http://www.linuxsecurity.com/general/mailinglists.html.

SANS: The SANS Institute (http://www.sans.org/) largely runs information security
training and oversees a variety of security certification programs. The site also con-
tains a large collection of documents regarding all aspects of information security. It
has a number of newsletters you can subscribe to at http://www.sans.org/sansnews.
It also runs its own early warning site called the Internet Storm Center, which you can
access at http://isc.sans.org/.

75

76

CHAPTER 1 " HARDENING THE BASICS

Security Focus: The Security Focus sitel2 (http://www.securityfocus.com) is a vendor-
neutral site containing a collection of security resources. These include the BugTraq mail-
ing list, which is probably the most comprehensive mailing list of security vulnerabilities.
You can subscribe to the mailing list at http://www.securityfocus.com/archive. The site
also contains the Security Focus Vulnerability Database. The database should be one of
your first ports of call when checking for vulnerabilities in an application, distribution, or
tool. You can find it at http://www.securityfocus.com/bid.

Vendor and Distribution Security Sites

These are sites maintained by the authors and vendors of a variety of Linux distributions that
focus on security and security-related announcements specific to that distribution. Many of
them also contain links to distribution specific mailing lists, such as Red Hat’s Watch-List
Advisories, which provide notifications of security-related material.

¢ Debian: http://www.debian.org/security/

* Gentoo: http://www.gentoo.org/security/en/glsa/

e Mandrake: http://www.mandrakesoft.com/security/

* Red Hat: http://www.redhat.com/support/errata/

* SuSE: http://www.suse.com/us/support/security/index.html

* Yellow Dog: http://www.yellowdoglinux.com/resources/updates.shtml

Resources

The following are some resources for you to use.

Mailing Lists
* PAM mailing list: https://listman.redhat.com/mailman/listinfo/pam-1ist
* Kernel traffic mailing list: http://zork.net/mailman/listinfo/ktdistrib
* grsecurity mailinglist: http://grsecurity.net/cgi-bin/mailman/listinfo/grsecurity
¢ LIDS mailing list: http://www.1ids.org/maillist.html
* RSBAC mailinglist: http://www.rsbac.org/mailman/listinfo/rsbac/
¢ SELinux mailing list: http://www.nsa.gov/selinux/info/subscribe.cfm

* GNU Privacy Guard mailing list: http://1lists.gnupg.org/pipermail/gnupg-users/

12. Symantec acquired the Security Focus site in 2002, but part of the sale agreement states the site must
remain vendor neutral.

CHAPTER 1 "/ HARDENING THE BASICS 7

Sites

¢ Chkconfig: http://www.fastcoder.net/~thumper/software/sysadmin/chkconfig/

* Vlock: http://1inux.maruhn.com/sec/vlock.html or
http://freshmeat.net/projects/vlock/

¢ Titan hardening script: http://www.fish.com/titan/
e PAM_passwdqc: http://www.openwall.com/passwdqgc/

* Accttools: http://www.ibiblio.org/pub/linux/system/admin/accounts/
acct-1.3.73.tar.gz

¢ General PAM: http://www.kernel.org/pub/linux/1ibs/pam/
¢ PAM modules: http://www.kernel.org/pub/linux/1ibs/pam/pre/modules/
e Openwall: http://www.openwall.com/1inux/

* Grsecurity: http://www.grsecurity.net/

e LIDS: http://www.lids.org/

e RSBAC: http://www.rsbac.org/

e SELinux: http://www.nsa.gov/selinux/

e PaX: http://pax.grsecurity.net/

e MD5 Crack: http://www.md5crk.com/

* GPG: http://www.gnupg.org/

e NRH-up2date: http://www.nrh-up2date.org/

e APT for RPM: http://freshrpms.net/apt/

* Yum: http://linux.duke.edu/projects/yum/

CHAPTER 2

Firewalling Your Hosts

Perhaps the most important element of your host’s defenses against attack is the firewall. In
many cases, the firewall is the first line of defense against attacks on your hosts. A firewall can
help you defend your hosts in three principal ways: dealing with unwanted incoming traffic,
dealing with unwanted outgoing traffic, and handling the logging of suspicious traffic or traf-
fic known to be of malicious intent. A firewall functions as both a defensive measure and an
early warning system.

So what is this firewall thing I am talking about? Well, a variety of firewalls are designed
to be deployed in different locations on your network. For example, most networks have a fire-
wall installed at the perimeter of the network to protect your entire network. These are often
hardware-based firewalls such as Cisco PIX devices, software-based firewalls such as Check
Point Firewall-1,1 or Linux-based solutions such as SmoothWall.2 Other firewalls, such as
iptables or Zone Alarm, are designed to protect individual hosts.

In this chapter, I focus on protecting individual hosts with Netfilter through its user space
interface iptables. I thus will not cover Netfilter’s capabilities as a dedicated firewall-router,
which includes functions such as packet forwarding and Network Address Translation (NAT).
The emphasis in this chapter is on building secure firewalls for stand-alone and bastion hosts
while not limiting the capabilities of your applications and services. This means I will not cover
every single feature of iptables and Netfilter; instead, I recommend some books and sites in
the “Resources” section that offer further information on the areas I have not covered in this
chapter.

The doctrine for setting up the securest possible host-based firewall reflects some of the
concepts I discussed in the book’s introduction: minimalism and vigilance. Your firewall should
be minimalist in design and managed by exception. The simplest, securest, and most minimally
configured possible firewall is one that denies everything: from everywhere and to everywhere.
Irecommend this should be your default firewall design. Any access to your host should be the
exception, not the rule—you create a wall and then carefully remove only those bricks that are
required for access.

This applies to network traffic in two ways: when you assess what a single host is expected
to receive and transmit on your local network and when you decide what traffic you want to
enter your bastion host from foreign networks. In the second case, I am deliberately not say-
ing the “Internet,” because the principle applies to all internetworking. You should be think-
ing about protecting and monitoring all your network borders whether they are shared with

1. http://www.checkpoint.com/products/firewall-1/
2. http://www.smoothwall.org/ 79

80

CHAPTER 2 " FIREWALLING YOUR HOSTS

subsidiaries, clients, service providers, and so on. This makes sense because you may not be
able to control the security policies of those connected networks, and therefore you may not
be able to trust them.

Vigilance also comes into your firewall design and management as it is going to be a key
aspect of firewall construction. They allow you to both see where you are going wrong and when
your rules are being effective in addition to providing information on what traffic is being gener-
ated on a host and who is generating it. | recommend getting a laptop and small hub that you can
use to connect to any host on your network to see what traffic it creates and consumes. Using this
combination, you can quickly see over which ports and to what networks a host communicates
and then adjust your firewall rules accordingly. Tools such as Ethereal and tcpdump are great for
snooping on network conversations (and I will show you how to use tcpdump in the “Testing and
Troubleshooting” section). Do not forget the ethical implications this has. You may need sign-off
from your organization’s management before you can legitimately monitor traffic on some or all
of your network.

I will show you how iptables-based firewalls work on a Linux host, how to construct
a firewalls for stand-alone and bastion hosts, and cover additional Netfilter modules and
kernel-tuning parameters, testing and troubleshooting your firewalling, and some tools you
can use with your firewalls and firewalling. In Appendix A, I provide you with a script for
a bastion host-based on the information in this chapter; you can edit and configure it to
provide a suitable firewall for your own hosts.

I will not explain basic networking to you. To understand this chapter, you should have
an understanding of IP addressing, subnetting, and the basic operation of TCP/IP traffic. You
should also be able to control the networking configuration of your host using the basic con-
figuration tools available such as ifconfig. Also, I will not cover network design in any great
detail because this book is aimed at host-level security, not network security in a broader con-
text. I will not examine NAT and routing using iptables. Books are available that better cover
those issues aimed at using Linux and iptables for firewalling and routing, and I list some of
them in the “Resources” section at the end of this chapter.

Note This chapter focuses on IPv4 networking. At this point, industry-spread acceptance of IPv6 net-
working is not sufficient to merit its coverage.

So, How Does a Linux Firewall Work?

The tools I will be using to provide firewall functions are built on the Netfilter framework
that exists in the Linux kernel. Netfilter was written by Rusty Russell3 and has been in Linux
since version 1.0 although at that stage it was a rewrite of pf from NetBSD. It allows the
operating system to perform packet filtering and shaping at a kernel level, and this allows

it to be under fewer restrictions than user space programs. This is especially useful for dedi-
cated firewall and router hosts.

3. http://ozlabs.org/~rusty/

CHAPTER 2 "' FIREWALLING YOUR HOSTS 81

Netfilter is a stateful packet-filtering firewall. Two types of packet-filtering firewalls exist:
stateful and stateless. A stateless packet-filtering firewall examines only the header of a packet
for filtering information. It sees each packet in isolation and thus has no way to determine if
a packet is part of an existing connection or an isolated malicious packet. A stateful firewall
maintains information about the status of the connections passing through it. This allows the
firewall to filter on the state of the connection, which offers considerably finer-grained control
over your traffic.

Netfilter is controlled and configured in user space by the iptables command. In previ-
ous versions of the Linux kernel, other commands provided this functionality. In kernel ver-
sion 2.2 it was ipchains, and in version 2.0 it was ipfwadm. I cover the iptables command in
this chapter, and I will frequently use this name to refer to the firewall technology in general.
Most Linux-based distributions will have an iptables package, but they may also have their
own tool for configuring the rules. Some of these may be worth looking into, but they may not
be easy to use for more complicated configurations or may make dangerous configuration
assumptions.

Note This chapter was written using iptables version 1.2.11, which was the most recent at the time of
writing. You can use the command, iptables -V, to find the version of the iptables command on your host.

Netfilter works by referring to a set of tables. These tables contain chains, which in turn
contain individual rules. Chains hold groups of like rules; for example, a group of rules govern-
ing incoming traffic could be held in a chain. Rules are the basic Netfilter configuration items
that contain criteria to match particular traffic and perform an action on the matched traffic.

Traffic that is currently being processed by the host is compared against these rules, and if
the current packet being processed satisfies the selection criteria of a rule, then the action speci-
fied by that rule is carried out. These actions, amongst others, can be to ignore the packet, accept
the packet, reject the packet, or pass the packet onto other rules for more refined processing. Let’s
look at an example; say the Ethernet interface on your Web server has just received a packet from
the Internet. This packet is checked against your rules and compared to their selection criteria.
The selection criteria include such items as the destination IP address and the destination port.
For example, you want incoming Web traffic on the HTTP port 80 to go to the IP address of your
Web server. If your incoming traffic matches these criteria, then you specify and action to let it
through. This is a simple example that shows how an iptables rule could work.

Each iptables rule relies on specifying a set of network parameters as selection criteria
to select the packets and traffic for each rule. You can use a number of network parameters to
build each iptables rule. For example, a network connection between two hosts is referred
to as a socket. This is the combination of a source IP address, source port, destination IP address,
and destination port. All four of these parameters must exist for the connection to be estab-
lished, and iptables can use these values to filter traffic coming in and out of hosts. Addition-
ally, if you look at how communication is performed on a TCP/IP-based network, you will see
that three protocols are used frequently: Internet Control Message Protocol ICMP), Transmis-
sion Control Protocol (TCP), and User Datagram Protocol (UDP). The iptables firewall can
easily distinguish between these different types of protocols and others.

82

CHAPTER 2 " FIREWALLING YOUR HOSTS

With just these five parameters (the source and destination IP addresses, the source and
destination ports and the protocol type), you can now start building some useful filtering
rules. But before you start building these rules, you need to understand how iptables rules
are structured and interact. And to gain this understanding, you need to understand further
some initial iptables concepts such as tables, chains, and policies.

Tables

I talked about Netfilter having tables of rules that traffic can be compared against and some
action taken. Netfilter has three built-in tables that can hold rules for processing traffic. The
first is the filter table, which is the default table used for all rules related to the filtering of
your traffic. The second is nat, which handles NAT rules, and the last is the mangle table, which
covers a variety of packet alteration functions. When constructing the iptables rules in this
chapter, I will focus on the filter table.

Chains

The iptables rules are broken down within the tables I have described into groupings called
chains. Each table contains default chains that are built into the table. You can also create chains
of your own in each table to hold additional rules. Let’s focus on the built-in chains in the filter
table. These are FORWARD, INPUT, and OUTPUT. Each chain correlates to the basic paths that packets
can take through a host. When the Netfilter logic encounters a packet, the first evaluation it
makes is to which chain the packet is destined. If a packet is coming into the host through a net-
work interface, it needs to be evaluated by the rules in the INPUT chain. If the packet is generated
by this host and going out onto the network via a network interface, then it needs to be evalu-
ated by the rules in the OUTPUT chain. The FORWARD chain is used for packets that have entered the
host but are destined for some other host (for example, on hosts that act as routers or software-
based firewalls at the perimeter of your network or between your network and the Internet).

Policies

Each chain defined in the filter table also can have a policy. A policy is the default action a chain
takes on a packet to determine if a packet makes it all the way through the rules in a chain with-
out matching any of them. The policies you can use for packets are DROP, REJECT, and ACCEPT.
When the iptables commands is first run, it sets some default policies for built-in chains. The
INPUT and OUTPUT chains will have a policy of ACCEPT, and the FORWARD chain will have a policy
of DROP.

The DROP policy discards a packet without notifying the sender. The REJECT policy also dis-
cards the packet, but it sends an ICMP packet to the sender to tell it the rejection has occurred.
The REJECT policy means that a device will know that its packets are not getting to their destina-
tion and will report the error quickly instead of waiting to be timed out, as is the case with the
DROP policy. The DROP policy is contrary to TCP RFCs and can be a little harsh on network devices;
specifically, they can sit waiting for a response from their dropped packet(s) for a long time. But
for security purposes it is generally considered better to use the DROP policy rather than the
REJECT policy, as it provides less information to the outside world.

The ACCEPT policy accepts the traffic and allows it to pass through the firewall. Naturally
from a security perspective this renders your firewall ineffective if it is used as the default policy.
By default iptables configures all chains with a policy of ACCEPT, but changing this to a policy of

CHAPTER 2 "' FIREWALLING YOUR HOSTS

DROP for all chains is recommended. This falls in line with the basic doctrine of a default stance
of denial for the firewall. You should deny all traffic by default and open the host to only the traf-
fic to which you have explicitly granted access. This denial can be problematic, because setting
a default policy of DROP for the INPUT and OUTPUT chains means incoming and outgoing traffic are
not allowed unless you explicitly add rules to allow traffic to come into and out of the host. This
will cause all services and tools that connect from your host that are not explicitly allowed to
enter or leave that host to fail.

Adding Your First Rules

The majority of our work will be on the INPUT and OUTPUT chains of the filter table, as I will be
defending hosts from the outside world by attempting to narrow down the incoming traffic to
only the bare minimum required for the host to perform its designated function. So I will cre-
ate some rules for the INPUT and the OUTPUT chains to demonstrate how iptables works. To create
anew rule, you can simply add one to a chain with the iptables command. Let’s add the rule
to deal with HTTP traffic on port 80 that I described earlier.

puppy# iptables -A INPUT -i etho -p tcp --dport 80 -d 192.168.0.1 -j ACCEPT

Note The iptables function is interactive. The rule will take effect immediately upon being added.
All rules exist in memory and will be lost when the system is rebooted. | will cover methods of saving rule
sets and starting and stopping iptables in the “Managing iptables and Your Rules” section.

So what does this command do? Well, in the next few paragraphs let’s break it down into
its component pieces. The first flag, -A, tells iptables that this is an addition and specifies to
which chain the new rule should be added.

Note By default, unless overridden, all new rules are added to the filter table, so you do not need
to define to which table you are adding it.

The -1 flag specifies which device the traffic will use to enter the host. I have indicated
etho, which would be the first Ethernet device on your host. If you do not specify a device
then iptables assumes the rule applies to all incoming network traffic from all devices.

The next flag, -p, specifies the protocol of the packets you are filtering, in this case tcp.

As HTTP is a TCP protocol, I have told iptables to select only TCP packets. If you were selecting
a protocol that used UDP or ICMP traffic, you would specify udp here for UDP traffic or icmp for
ICMP traffic, respectively. You could also select a particular protocol by number; for example,
you could use -p 50, which is the Authentication Header that is used for IPSec connections.*

4. You can see a list of all the protocol numbers at http://www.iana.org/assignments/protocol-numbers.

83

CHAPTER 2 " FIREWALLING YOUR HOSTS

The following flags are related to the destination of the packets that iptables is filtering. The
--dport flag tells iptables to select only packets destined for port 80, the standard port for HTTP
traffic. The -d selects only those packets destined for the specified IP address, 192.168.0.1. If you
do not specify a destination IP address, then iptables would apply this rule to all incoming HTTP
traffic on etho.

The last flag in the rule, - j, specifies the ultimate action or target of the rule. In this case
I am using the ACCEPT target, which accepts the packets. The ACCEPT target also indicates that
if the packet being filtered matches this rule, then no other rule matches are performed and
the packet can pass through the firewall. Several other targets exist. For example, you could
change the proposed target to DROP, as shown in the next line:

puppy# iptables -A INPUT -i ethO -p tcp --dport 80 -d 192.168.0.1 -j DROP

Then if the incoming packet matched this rule, it would be dropped and no other rules
would be checked. Targets offer similar functionality to the policies I have described. Indeed,
ACCEPT, DROP, and REJECT targets perform the same function as their policy namesakes. But
there are also more targets available to you than their policy counterparts, and I will describe
some of these targets in the coming sections.

Let’s say this is the first rule for a Web server. The example Web server also runs a secure
site using HTTPS, so you decide to add a rule to handle this traffic, too.

puppy# iptables -A INPUT -i etho -p tcp --dport 443 -d 192.168.0.1 -j ACCEPT

Here I have created an almost identical rule to the previous one except I have specified
that the rule will filter on the destination HTTPS port 443.

So now both HTTP and HTTPS traffic are allowed into the host and will be passed to the
Web server. But what happens if you want HTTP and HTTPS traffic to get back out of the host,
which would be required to allow the Web server to correctly function? All outgoing traffic is
handled by rules defined in the OUTPUT chain. So you need to add rules to handle the outgoing
traffic from the Web server to the OUTPUT chain.

puppy# iptables -A OUTPUT -o eth0 -p tcp --sport http -j ACCEPT
puppy# iptables -A OUTPUT -o eth0 -p tcp --sport https -j ACCEPT

While these new rules are similar to the rules you have already defined, they have some
important differences. The first is that the -A flag is now adding these rules to the OUTPUT chain
rather than the INPUT chain. I have also specified the device etho again, but I have specified it
using the -o flag. The -o flag indicates traffic outgoing on the specified device as opposed to
the -1 flag, which indicates incoming traffic on the specified device.

Like the previous rules, you are still specifying the TCP protocol using the -p flag but
instead of the destination port as indicated by the --dport flag, you are now using the --sport
flag, which defines the source port from which the HTTP or HTTPS traffic comes. You can also
specify both the --sport and --dport options in a rule to allow you dictate the ports at both
end of the connection, as you can see in the next line. Enter the following:

puppy# iptables -A INPUT -i ethO -p tcp --sport imap --dport imaps -j ACCEPT

In the rule on the previous line all incoming TCP traffic from the imap port is allowed to go
through to the imaps port.5

5. Ports 143 and 993, respectively

CHAPTER 2 ™ FIREWALLING YOUR HOSTS

In the last three rules you have also replaced the references to the numeric port numbers
with the name of the services being filtered, http and https and imap and imaps. These services
are defined in the file /etc/services. Listing 2-1 shows the service definitions for these proto-
cols from this file.

Listing 2-1. Service Definitions in the /etc/services File

http 80/tcp www www-http # WorldwideWeb HTTP
imap 143/tcp imap # IMAP
https 443/tcp # MCom
imaps 993/tcp imaps # IMAPS

I recommend using the service name rather than the port for your source and destination
ports, as it makes your rules easier to read and understand.

Finally, you have again used the target of ACCEPT as defined by the -j flag to indicate that
this traffic is allowed to leave the host.

In combination, the four rules you have defined allow a Web server to receive and send
HTTP and HTTPS traffic from a host. While not an ideal (or complete) configuration, this rep-
resents a limited-functioning iptables firewall. From this you will build more complicated
firewall configurations, but first you will examine how to identify what to filter on and look
at the iptables command and some of its options.

THE /etc/services FILE

It is important to secure the /etc/services file. It contains a list of network services and matching ports.
Listing 2-2 shows a sample of this file.

Listing 2-2. Sample /etc/services File

ftp 21/tcp

ftp 21/udp fsp fspd

ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp

telnet 23/udp

Although actually disabling services you do not use in this file can inconvenience attackers, it will not actively
stop them using the service you have disabled. But | recommend not allowing anyone to edit this file and
potentially add any services to your host. Use the following commands to secure the file:

puppy# chown root:root /etc/services
puppy# chmod 0644 /etc/services
puppy# chattr +i /etc/services

The chattr +i command makes the /etc/services immutable: it cannot be deleted, it cannot be
renamed, and no link can be created to this file.

85

86 CHAPTER 2 " FIREWALLING YOUR HOSTS

Choosing Filtering Criteria

Determining what an iptables rule is going to filter on is an important part of the configura-
tion process, and you need to understand the basic structure of a TCP/IP transaction. As I have
discussed, you can filter on source and destination IP addresses, source and destination ports,
protocols, and a variety of other options. The best method of choosing how to filter your traffic
is to make a map of your incoming and outgoing traffic. Table 2-1 provides an example of how
you do this.

Table 2-1. HTTP Traffic Flow Incoming

Interface Source Address Source Port Protocol Destination Address Destination Port
etho Any 32768 to 61000 TCP 192.168.0.1 80

For the example in Table 2-1. I have used incoming HTTP traffic and laid out all the infor-
mation I know about the incoming traffic. First I have highlighted the incoming interface, etho,
that will be handling the traffic. Then I have identified the potential source addresses that will
be the clients querying the Web server. The first question is now whether you can determine
who the client is. Most Web servers will be open to traffic from all source addresses, but in some
cases—for example, for an Intranet Web server used only in a local network—you may be able
to use the local network source address as a filtering criteria. In the example in Table 2-1. I will
be allowing traffic from any source address.

The next item is the source port of the incoming traffic. The source and destination ports
of a TCP connection are determined in one of two ways: the server end of a connection is gen-
erally assigned a predetermined port number for that particular service; for example, by default
DNS servers use port 53 and SMTP server use port 25. The Internet Assigned Numbers Author-
ity (IANA) assigns these numbers, and you can see the definitive list at http://www.iana.org/
assignments/port-numbers. At the client end, incoming requests from remote clients can come
in from a range of random source ports called ephemeral ports. The remote client assigns each
outgoing connection a port from this range. The exact range varies from operating system to
operating system. On Linux systems to see what the range of your ephemeral ports is, you can
review the contents of the file /proc/sys/net/ipv4/ip_local_port_range. For Red Hat Linux
systems this range is generally 32768 to 61000. For Debian systems the range is 1024 to 4099.
Unless you know the range of ephemeral ports being used by all your client systems I recom-
mend not using this as a filter for rules.

Next I have identified the protocol the traffic will be using, tcp, which is a filtering criteria
you should be able use in most rules to filter traffic. Finally, I have identified the destination
address and destination port; in this case for the incoming HTTB, traffic is the IP address of the
local Web server and the HTTP port 80. Again, for incoming traffic, these are going to be com-
monly used to filter your traffic.

You can list all your proposed incoming traffic this way (see Table 2-2).

CHAPTER 2 "' FIREWALLING YOUR HOSTS 87

Table 2-2. Incoming Traffic Flow

Interface Source Address Source Port Protocol Destination Address Destination Port
etho Any 32768 to 61000 TCP 192.168.0.1 80
etho Any Any TCP 192.168.0.1 25
etho Any Any TCP 192.168.0.1 22
eth1 192.168.0.0/24 Any TCP 192.168.0.1 53

Of course, you can also conduct this same exercise for the outgoing traffic (see Table 2-3).

Table 2-3. Outgoing Traffic Flow

Interface Source Address Source Port Protocol Destination Address Destination Port
etho 192.168.0.1 80 TCP Any 32768 to 61000
etho 192.168.0.1 25 TCP Any Any

etho 192.168.0.1 22 TCP Any Any

eth1 192.168.0.1 25 TCP 192.168.0.0/24 Any

You can model all the connections on your host this way to allow you to apply suitable
iptables rules to your incoming and outgoing connections. You can then combine these lists
of traffic into an overall test plan for your firewall rules. Then using a tool such as tcpdump, you
can identify whether your rules cover all the incoming and outgoing traffic on your host.

The iptables Command

The iptables command principally controls adding and removing rules to your chains. You
have already seen the -A flag, which adds rules to your firewall. When you use the -A flag to add
arule, it is appended to the end of the current rules in a chain. You can also add rules using the
-I flag, which adds rules to the top of the chain of current rules. So why do you need the differ-
ent types of flags to add rules to your firewall? Well, the sequence of your rules is important. The
rules in a chain are checked in sequence, in the order they are added, with the first rule added
to the chain being checked first and the last rule added to the chain being checked last.

With the -I flag you can also add a rule into a chain using a line number, which you can
specify to place that rule exactly where you require in the chain. Let’s look at the line numbers
of rules. Line numbers are important because, as I have described, your rules are checked in
a sequence in each chain. If you have a rule specifying all traffic is accepted into your host at
line number 1 of the rules in a chain, then all traffic will be accepted by this rule and any fol-
lowing rules that may restrict traffic will be ignored. For example, let’s look at the following
two rules:

puppy# iptables -I INPUT 1 -i etho -p tcp -j ACCEPT
puppy# iptables -I INPUT 2 -i eth0 -p tcp --dport 143 -j DROP

The first rule ACCEPTs all TCP traffic that enters the host from device etho, and the number
1 after the chain indicates it is the first rule in the INPUT chain. The second rule DROPs all traffic
that enters the host from device etho bound for port 143, or IMAP, and the number 2 after the

CHAPTER 2 " FIREWALLING YOUR HOSTS

chain indicates it is the second rule in the INPUT chain. As the rules are checked in sequence,
the second rule would be totally ignored because the first rule indicates all TCP traffic is to be
accepted. So you should ensure your rules make logical sense and do not contradict each other.

Each of your rules is assigned a line number in the chain to which they are assigned. You
can see this line number and the details of the rules in a chain by using the -L flag to list your
rules (see Listing 2-3).

Listing 2-3. Listing Your Rules

puppy# iptables -L INPUT -n --line-numbers
Chain INPUT (policy DROP)

num target prot opt source destination
1 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:80
2 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:443

In Listing 2-3 T have listed all the rules in the INPUT chain. I have used two flags; the first -n
tells iptables not to look up any IP addresses via DNS or port numbers via the /etc/services
file but rather display the raw numerics. This makes the listing faster as it stops iptables wait-
ing for DNS resolution and service lookups before displaying the rules. I have also specified
the --1line-numbers flag, which will show the rules with their line numbers.

If I had omitted the chain name from the -L flag, it would have displayed all the rules
from all chains.

puppy# iptables -L -n --line-numbers
Chain INPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:80
2 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:443
Chain FORWARD (policy DROP)

target prot opt source destination

Chain OUTPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:80
2 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp spt:443

So now you want to add a rule in the INPUT chain at line 3. To do this you must use the -I
flag with which you can specify the line number. The -A flag does not allow you to specify a
line number.

puppy# iptables -I INPUT 3 -i etho -p tcp --dport 22 -d 192.168.0.1 -j ACCEPT

You can see, you have specified the required line number after the name of the chain in
the -I flag. Now if you list the rules in the INPUT chain, you will see the new rule at line num-
ber 3 in Listing 2-4.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Listing 2-4. Listing After Inserting the New Rule

puppy# iptables -L INPUT -n --line-numbers
Chain INPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:80
2 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:443
3 ACCEPT tcp -- 0.0.0.0/0 192.168.0.1 tcp dpt:22

If you add a rule to the chain using a line number that already exists in the sequence, the
rule is inserted ahead of the existing line. So if you added another rule using the line number 3
into the INPUT chain, it would be inserted into the chain ahead of the existing line number 3 in
Listing 2-4.

If you have added a rule that you no longer want, you can delete rules from your chains
using the -D flag. You can see the -D flag in Listing 2-5.

Listing 2-5. Removing a Rule
puppy# iptables -D INPUT -i eth0 -p tcp --dport https -d 192.168.0.1 -j ACCEPT

The command in Listing 2-5 would delete the HTTPS rule you specified earlier. The -D flag
deletes rules by matching the filtering specifications of that rule. You must match the exact spec-
ifications of the rule to be deleted. If you do not specify the rule adequately, then the deletion
will fail.

puppy# iptables -D INPUT -p tcp --dport https -d 192.168.0.1 -j ACCEPT
iptables: Bad rule (does a matching rule exist in that chain?)

In the previous line you have tried to delete the HTTPS rule in the INPUT chain with the
command in Listing 2-5. This time, though, you have omitted the -1 etho from the iptables
command. Hence, iptables has failed to match it with the existing rule; thus, the deletion
has failed.

You can also delete rules via their line number. In Listing 2-6 you can see the deletion of
the third rule in the INPUT chain.

Listing 2-6. Removing Rules Using Sequence Numbers

puppy# iptables -D INPUT 3

You can also delete all the rules in a chain or all chains by using the -F flag. This is often
described as flushing.

puppy# iptables -F INPUT

If you omit the name of the chain, then all the rules in all chains will be flushed, as you
can see in the next line. Enter iptables -F to flush the rules and then iptables -L to list the
resultant empty chains.

89

90

CHAPTER 2 " FIREWALLING YOUR HOSTS

puppy# iptables -F
puppy# iptables -L
Chain INPUT (policy DROP)

target prot opt source destination
Chain FORWARD (policy DROP)
target prot opt source destination
Chain OUTPUT (policy DROP)
target prot opt source destination

You can see that after flushing all the rules in all chains that the listing of the chains reveals
they are all empty.

You can use some additional command-line flags with the iptables command. The most
obvious you have yet to look at is the -t flag, which when specified at the start of the command
indicates which table you are using. Listing 2-7 shows the rules contained in the nat table.

Listing 2-7. Specifying a Particular Table

puppy# iptables -t nat -L
Chain PREROUTING (policy DROP)

target prot opt source destination
Chain POSTROUTING (policy DROP)

target prot opt source destination
Chain OUTPUT (policy DROP)

target prot opt source destination

You can use the -t in front of all the possible command-line flags for iptables. AsI men-
tioned earlier, by default if you do not specify a table, then the iptables command defaults to
the filter table.

You can see the renaming command-line flags for iptables in Table 2-4.

Table 2-4. Additional iptables Command-Line Flags

Flag Description

-P policy Sets the default policy for a chain.

-R chain seq# rule Replaces an existing rule based on the sequence number.

-Z chain Zeros the byte and packet counts on a chains or chains.

-N chain Creates a new chain. The chain name must be unique.

-E oldchain newchain Renames a user-created chain. Built-in chains cannot be renamed.

-X chain Deletes a user-created chain. The chain must be empty (in other words,

have no rules) before it can be deleted. You cannot delete built-in chains.

The first flag ,-P, sets the default policy for built-in chains. I have described policies ear-
lier in the chapter. The -R flag allows you to replace a rule in your chain based on its line num-
ber. The -Z flag relates to the handling of the iptables byte and packet counter. Each rule has
an associated counter that tracks how many bytes and packets have been processed by that
rule. You can see these counters and a total for each chain when you list all your rules by
adding the -v flag to the -L flag (see Listing 2-8).

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Listing 2-8. Displaying Rules and Their Counters

puppy# iptables -L -v
Chain INPUT (policy ACCEPT 25897 packets, 2300K bytes)
pkts bytes target prot opt in out source destination

The -7 flag sets all counters back to zero.

The last flags from Table 2-4 relate to the creation of user chains. You can utilize user-
created chains to better structure your rules. For example, creating a new chain to hold all the
rules related to incoming ICMP traffic. You can then direct traffic to your user-created chains
by using them as a target with the -j flag (see Listing 2-9).

Listing 2-9. Redirecting Packets to a User-Created Chain
puppy# iptables -A INPUT -p icmp -j NEW_CHAIN
In Listing 2-9 all incoming ICMP traffic is redirected to the user-created chain NEW_CHAIN.
You can create this new chain using the -N flag (see Listing 2-10).
Listing 2-10. Creating a User Chain
puppy# iptables -N NEW_CHAIN
You can also rename your user-created chain using the -E flag.
puppy# iptables -E NEW_CHAIN OLD_CHAIN

And finally, you can delete a user-created chain (if it contains no rules and is not refer-
enced as a target by any other rules) using the -X flag.

puppy# iptables -X OLD_CHAIN

If you do not specify a particular chain to be deleted, then the -X flag will delete all user-
created chains. You cannot delete the built-in chains such as INPUT or OUTPUT.

Creating a Basic Firewall

One of the best ways to learn how to use iptables is to construct a basic firewall. I will do that for
a stand-alone host, puppy. This is a host that is not directly connected to the Internet and lives in
alocal network. Then I will expand on this basic configuration to include securing a bastion host,
which is frequently located in DMZs® and is directly connected to the Internet, to explain some of
the more advanced features and functions of iptables. I will start by describing the stand-alone
host I intend to firewall.

6. A demilitarized zone (DMZ) is an isolated segment of your network designed to hold hosts and serv-
ices that are at greater risk than others, for example, bastion hosts. The DMZ is generally more secure
than the other segments of your network.

91

92

CHAPTER 2 " FIREWALLING YOUR HOSTS

¢ The host has one IP address: 192.168.0.1 that is bound to interface etho. The host is in
the 192.168.0.0/24 subnet.

¢ I'want to allow HTTP traffic in and out because the host runs a Web server.
¢ I'want to allow DNS traffic in and out to allow the host to query remote DNS servers.
» I'want to allow outgoing SMTP traffic to allow the host to send e-mail.

¢ The host is administered using SSH, so I need to allow incoming SSH traffic.

I will start by flushing all the rules from the existing chains to get a fresh start.
puppy# iptables -F

Now I want to set the default policies of DROP I discussed earlier for each of the chains in
the filter table. You use the iptables command with the -P flag for this, and you can see how
to do it in Listing 2-11.

Listing 2-11. Setting Default Policies for Chains

puppy# iptables -P INPUT DROP
puppy# iptables -P OUTPUT DROP
puppy# iptables -P FORWARD DROP

Caution If you are remotely connected to the host you are setting your rules on, and you set a policy of
DROP for your INPUT chain while there are no other rules in your firewall, you will be disconnected from the
host because the default policy is now to drop all traffic. | have assumed you are signed onto the console of
your host to set your rules.

Do not worry too much about the FORWARD chain in the basic firewall, because for the most
part you will not be forwarding any packets, as this is more the job of a router. You really should
be interested only in conversations with the host itself. The forwarding policy will take care of
any packets that are trying to be forwarded through the host by dropping them immediately.

Now you want to address traffic using the loopback host, lo. This is the internal 127.0.0.1
address of the host, and in order for the host to correctly function, you need to allow all traffic
in and out on this interface. You can see the rules for this in Listing 2-12.

Listing 2-12. Enabling Loopback Traffic

puppy# iptables -A INPUT -i lo -j ACCEPT
puppy# iptables -A OUTPUT -o lo -j ACCEPT

Now add the rules to allow in and out HTTP traffic.

This will allow you to run a Web server on port 80 of the host. But I have also added a new flag
-m to the rules in Listing 2-13. The -m option enables the match function. This allows you to load
modules that can match a variety of additional packet characteristics and allows you to filter on

CHAPTER 2 "' FIREWALLING YOUR HOSTS

them. In Listing 2-13 I have enabled the state module using the flag -m state. This allows you to
perform state inspection and matching on the incoming packets, which is one of the key features
of a stateful packet-filtering firewall such as iptables.

Listing 2-13. Adding the HTTP Rules

puppy# ipables -A INPUT -i ethO -p tcp --dport http -d 192.168.0.1 -m state =
--state NEW,ESTABLISHED -j ACCEPT

puppy# iptables -A OUTPUT -o ethO -p tcp --sport http -m state =

--state ESTABLISHED -j ACCEPT

Note The state module is provided by the ipt_conntrack Netfilter kernel module, which should be
loaded by default with most recent iptables releases. If it is not, you can load it with the insmod command,
insmod ipt_conntack.

By enabling the state module, you can check if a packet is part of a connection that is in
one of four possible states: NEW, ESTABLISHED, RELATED or INVALID.

The NEW connection state indicates a freshly initiated connection where data has not
passed back and forth. You must allow the NEW connection state either incoming or out-
going if you want to allow new connections to a service. For example, if you do not
specify that the NEW connection state is accepted for incoming SMTP traffic on a mail
server, then remote clients will not be able use the mail server to send e-mail.

An ESTABLISHED connection state indicates an existing connection that is in the process
of transferring data. You need to allow ESTABLISHED connections if you want a service to
be able maintain a connection with a remote client or server. For example, if you want
to allow ssh connections to your host, you must allow NEW and ESTABLISHED incoming
traffic and ESTABLISHED outgoing traffic to ensure the connection is possible.

The RELATED state refers to a connection that is used to facilitate another connection.
A common example is an FTP session where control data is passed to one connection
and actual file data flows through another one.

The INVALID state is branded on a connection that has been seen to have problems in
processing packets: they may have exceeded the processing ability of the firewall or be
packets that are irrelevant to any current connection.

By specifying in your rules that traffic has to fit a certain state, you can eliminate poten-
tially harmful packets getting to the services that you do need to keep open by only allowing
traffic of a particular connection state. If you do not need to be able to make new connections
using a service, you can simply specify that only established or related connections can use
that service and preclude new connections from being made. By adding the connection state
you further enhance the principle of allowing only the bare minimum of access to our host.
The more closely you filter the traffic entering and leaving your host (by identifying it by as
many possible characteristics as you can, including the protocol, port, interface, source or

93

94 CHAPTER 2 " FIREWALLING YOUR HOSTS

destination address, and now state), the more you reduce the risk that the incoming traffic is
malicious and not intended for your host.

You can also add the connection state to the maps of the host’s traffic flow I discussed in
the “Choosing Filtering Criteria” section (see Table 2-5).

Table 2-5. Traffic Flow Incoming Including Connection State

Source Destination Destination
Interface Address Source Port Protocol Address Port States
etho Any 32768 t0 61000 TCP 192.168.0.1 80 NEW, ESTABLISHED

Another beneficial side effect is that the connection-tracking mechanism used for state
inspection also defragments packets. One form of attack seen in the past is the practice of
deliberately fragmenting communications so that a firewall may mistakenly allow it, but when
it comes to being assembled on the target host, the resulting packets are malevolent in nature.
I will further cover this sort of attack a little later in this chapter.

In Listing 2-13 you can see that I select the required states with the --state flag. am
allowing traffic that is in the NEW and ESTABLISHED connection state into the host. This means
incoming new and already established HTTP connections are allowed to be made to the host,
and I am allowing only traffic that is in the ESTABLISHED connection state out of the host. This
means new outgoing HTTP connections are not allowed to be made. If you tried to connect
to a remote Web site from this host, you would not be able to do so.

Now I will add in some rules to handle DNS traffic. The internal network has two DNS
servers, 192.168.0.10 and 192.168.0.11. You want only the host to connect to these DNS servers
and no others, and you can see the required INPUT rules to achieve this in Listing 2-14.

Listing 2-14. Adding the DNS INPUT Rules

puppy# iptables -A INPUT -i ethO -p udp -s 192.168.0.10 --sport domain ‘=
-m state --state ESTABLISHED -j ACCEPT
puppy# iptables -A INPUT -i ethO -p udp -s 192.168.0.11 --sport domain ‘=
-m state --state ESTABLISHED -j ACCEPT

To restrict which DNS servers the host can query I have specified them by IP addresses
with the -s flag. The - s flag allows you to specify the source IP address of the incoming traffic.
This flag is the opposite of the -d flag, which allows you to specify the destination IP address.
Using the -s flag increases the security of your host by allowing only the traffic from the spe-
cific IP addresses of the DNS servers. You could also specify an entire subnet using CIDR
notation with the -s flag.

puppy# iptables -A INPUT -i ethO -p udp -s 192.168.0/24 --sport domain ‘=
-m state --state ESTABLISHED -j ACCEPT

This would allow querying of any DNS server in the 192.168.0/24 subnet.

I have also enabled state inspection for these rules, and in Listing 2-14 I am allowing only
traffic that is in the ESTABLISHED connection state. This is because no incoming traffic from the
DNS servers should require establishing a new connection, and therefore you do not have to

CHAPTER 2 "' FIREWALLING YOUR HOSTS

allow traffic in the NEW connection state. The only incoming traffic should be in response to

a query from the host where traffic will be in the ESTABLISHED connection state. This prevents
a potential attack initiated by sending malicious DNS packets to the host because incoming
packets have to be part of an existing and established connection. Any traffic in a NEW connec-
tion state would be dropped.

Note The DNS traffic is UDP based, and UDP is a stateless protocol. So how does iptables track the con-
nection state? The iptables function records a connection pseudo-state for each connection that allows you
to use state inspection on UDP traffic. This pseudo-state is recorded in the state table. You can see the state
table at /proc/net/ip conntrack.

Listing 2-15 shows the OUTPUT rules you need to add to allow the host to query the DNS
Servers.

Listing 2-15. Adding the DNSOUTPUT Rules

puppy# iptables -A OUTPUT -o ethO -p udp -d 192.168.0.10 --dport domain ‘w
-m state --state NEW,ESTABLISHED -j ACCEPT
puppy# iptables -A OUTPUT -o ethO -p udp -d 192.168.0.11 --dport domain ‘=
-m state --state NEW,ESTABLISHED -j ACCEPT

Because I know the IP addresses of the DNS servers the host will be connecting to, I have
specified them with the -d flag. This limits the possible destinations of the DNS traffic, further
tightening outgoing access from the host. Additionally, I have allowed traffic in both NEW and
ESTABLISHED states to connect because the host will be querying the remote DNS servers, which
requires a new connection.

The rules in Listing 2-16 allow incoming and outgoing SMTP connections from the
host much like you have allowed DNS traffic. An SMTP server in the local network is called
192.168.0.20. I am allowing traffic in the NEW and ESTABLISHED connection state to connect
from the host to the SMTP server. This means you can initiate new and maintain existing
SMTP connections to the SMTP server from this host. The host will only accept incoming
traffic in the ESTABLISHED connection state. This is because there is no requirement for new
SMTP connections to be created by the host.

Listing 2-16. Adding the SMTP Rules

puppy# iptables -A INPUT -i etho -p tcp -s 192.168.0.20 --sport smtp =
-m state --state ESTABLISHED -j ACCEPT

puppy# iptables -A OUTPUT -o ethO -p tcp -d 192.168.0.20 --dport smtp =
-m state --state NEW,ESTABLISHED -j ACCEPT

Finally, you want to allow access via SSH to perform secure administration to the host.
For this you add some rules allowing incoming SSH access only from the local network.
Listing 2-17 shows these rules.

95

CHAPTER 2 " FIREWALLING YOUR HOSTS

Listing 2-17. Adding SSH Rules

puppy# iptables -A INPUT -i ethO -p tcp -s 192.168.0.0/24 --dport ssh =
-m state --state NEW,ESTABLISHED -j ACCEPT

puppy# iptables -A OUTPUT -o eth0 -p tcp -d 192.168.0.0/24 --sport ssh w
-m state --state ESTABLISHED -j ACCEPT

Here you have also enabled state inspection, and the SSH-related INPUT rule allows both
NEW and ESTABLISHED connections because you want to be able to connect remotely to the host
via SSH. This requires traffic in the NEW connection state to pass through the firewall. But you
have restricted the outgoing SSH traffic in the OUTPUT rule to ESTABLISHED connections only. This
means outgoing SSH connections from the host are not allowed.

Let’s now look at the full set of rules for the basic firewall. Listing 2-18 shows the listing of
the final firewall configuration.

Listing 2-18. The Basic Firewall

puppy# iptables -L --line-numbers
Chain INPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- anywhere 192.168.0.1 -
tcp dpt:http state NEW,ESTABLISHED

2 ACCEPT udp -- 192.168.0.10 anywhere -
udp spt:domain state ESTABLISHED

3 ACCEPT udp -- 192.168.0.11 anywhere -
udp spt:domain state ESTABLISHED

4 ACCEPT tcp -- 192.168.0.20 anywhere -
tcp spt:smtp state ESTABLISHED

5 ACCEPT tcp -- 192.168.0.0/24 anywhere -

tcp spt:ssh state NEW,ESTABLISHED

Chain FORWARD (policy DROP)
num target prot opt source destination

Chain OUTPUT (policy DROP)

num target prot opt source destination

1 ACCEPT tcp -- anywhere anywhere -
tcp spt:http state ESTABLISHED

2 ACCEPT udp -- anywhere 192.168.0.10 -
udp dpt:domain state NEW,ESTABLISHED

3 ACCEPT udp -- anywhere 192.168.0.11 -
udp dpt:domain state NEW,ESTABLISHED

4 ACCEPT tcp -- anywhere 192.168.0.20 -
tcp dpt:smtp state NEW,ESTABLISHED

5 ACCEPT tcp -- anywhere 192.168.0.0/24 -

tcp dpt:ssh state ESTABLISHED

This is a highly secure firewall from the point of view of securing your services and only
allowing access, both incoming and outgoing, to those services you require. But it is also

CHAPTER 2 "' FIREWALLING YOUR HOSTS

somewhat unwieldy from an operational perspective because of the default policies of the
chains. This is because your input and output chains by default deny all incoming and outgoing
traffic, which means processes and users on your local host cannot initiate any new connections
that you have not allowed them to initiate. If you think this is going to be a problem on your
host, you could, but I do not recommend doing this, use state inspection to do the following:

¢ Allow all traffic in the ESTABLISHED and RELATED connection states incoming access to
your host.

¢ Allow all traffic in the NEW, ESTABLISHED, and RELATED connection states outgoing access
from your host.

This means any connection incoming to your host that iptables think (using state inspec-
tion) is the result of a connection initiated on your host is allowed. Additionally, processes and
users are allowed to initiate new connections out of your host. Listing 2-19 shows the rules you
would need to add to achieve this.

Listing 2-19. Relaxing Your Firewall Rules Using State Inspection

puppy# iptables -A INPUT -i ethOo -m state --state ESTABLISHED,RELATED -j ACCEPT
puppy# iptables -A OUTPUT -i etho -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

This greatly reduces the overall security of your host, so I recommend you carefully con-
sider this before making this change.

Creating a Firewall for a Bastion Host

Bastion hosts are usually the most at-risk hosts on your network. They can be a firewall-type
host; for example, a Cisco PIX firewall operating between your network and an untrusted net-
work such as the Internet is considered a bastion host. It can also be a Web, DNS, mail, or FTP
server with an Internet-facing role. Much of the application-related configuration in this book
is aimed at securing hosts such as these to be suitable as bastion hosts and the level of threat
this entails. Thus, the focus in this section is on bastion hosts that perform an Internet-facing
server role such as a mail, DNS, or Web server. In the course of explaining how to secure bas-
tion hosts, I will also address some more advanced iptables functions such as logging. You
will also look at ways to address some of the direct threats to your hosts such as Denial of
Service, spoofing, and flood attacks in the course of securing the bastion host.

When you compare the design of the final firewall I have generated for the bastion host
and the firewall I generated previously for the stand-alone host, you will see that the differences
between them are not significant. Obviously, the bastion host firewall configuration has more
security, and I have introduced some more advanced concepts, but essentially the basic prem-
ises of denial by default and accepting traffic by exception are maintained. Although the threat
level is higher for bastion hosts, you should consider a firewall for your hosts inside your inter-
nal networks as being a critical component of your overall security. This is for two reasons. The
first is that not all threats are external. Some of threats against your hosts will come from inter-
nal sources, and the securest Internet-facing firewall or packet-filtering regime will do nothing
to safeguard your hosts from an internal attack. The second is that strong host-level security on
the hosts in your internal network stops the bastion hosts or firewalls between the internal net-

e.

97

98

CHAPTER 2 " FIREWALLING YOUR HOSTS

I am now going to create an iptables configuration for a bastion host, kitten. I will start
by describing the bastion host I intend to firewall.

¢ The host has two IP addresses: 220.240.52.228, which is bound to etho and is the link
to the Internet, and 192.168.0.100, which is bound to interface eth1 and is a link to the
internal network.

¢ Iwant to allow SMTP traffic in and out because the bastion host is a mail server, includ-
ing relaying e-mail to the internal network SMTP server.

» I'want to allow DNS traffic in and out because the bastion host is also a DNS server,
including sending zone transfers to the internal DNS servers.

¢ [want to allow NTP traffic in and out, both over the Internet and into the internal net-
work, as the bastion host will be the local NTP server and provide a time source for
internal hosts.

* The host is administered using SSH, so I need to allow incoming SSH traffic from the
internal network only.

First let’s get a start by flushing the existing rules and setting the default policies. First
flush the existing rules.

kitten# iptables -F
Then add the default policies. I will set all the chains to DROP all traffic by default.

kitten# iptables -P INPUT DROP
kitten# iptables -P OUTPUT DROP
kitten# iptables -P FORWARD DROP

Then you want to allow access to traffic on the loopback host, lo. This is the internal
127.0.0.1 address of the host, and in order for the host to correctly function, you need to allow
all traffic in and out on this interface. You can see the rules for this in Listing 2-20.

Listing 2-20. Enabling Loopback Traffic

kitten# iptables -A INPUT -i lo -j ACCEPT
kitten# iptables -A OUTPUT -o lo -j ACCEPT

Securing the Bastion Services

I will first handle the traffic to the services running on the bastion host. Start with the SMTP
traffic. You want incoming and outgoing new and established SMTP traffic to be allowed on
the bastion host on the Internet interface, etho. This allows remote SMTP servers to connect
to the local SMTP server and allows the local server to connect to remote servers. You achieve
this using the rules in Listing 2-21.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Listing 2-21. The External SMTP Rules

kitten# iptables -A INPUT -i etho -p tcp --dport smtp -m state =
--state NEW,ESTABLISHED - j ACCEPT
kitten# iptables -A OUTPUT -o etho -p tcp --sport smtp -m state =
--state NEW,ESTABLISHED -j ACCEPT

But you also want the internal SMTP server at 192.168.0.20 to be able to send mail to the
bastion host and receive e-mail from it. So set up some SMTP rules for the internal 192.168.0.100
IP address, which is bound to interface eth1 to handle this incoming and outgoing SMTP traffic.
These rules are in Listing 2-22.

Listing 2-22. The Internal SMTP Rules

kitten# iptables -A INPUT -i eth1l -p tcp -s 192.168.0.20 --sport smtp =
-m state --state NEW,ESTABLISHED -j ACCEPT
kitten# iptables -A OUTPUT -o eth1l -p tcp -d 192.168.0.20 --dport smtp =
-m state --state NEW,ESTABLISHED -j ACCEPT

Next you want to handle DNS traffic. You have two types of traffic, external traffic to and
from the Internet and internal traffic including zone transfers to and from the internal DNS
servers at 192.168.0.10 and 192.168.0.11. I have allowed new DNS queries into and out of the
Internet-facing interface in Listing 2-23.

Listing 2-23. The External DNS Rules

kitten# iptables -A INPUT -i etho -p udp --dport domain -m state w»
--state NEW,ESTABLISHED -j ACCEPT
kitten# iptables -A INPUT -i ethO -p tcp --dport domain -m state w»
--state NEW,ESTABLISHED -j ACCEPT
kitten# iptables -A OUTPUT -o ethO -p udp --sport domain -m state w»
--state NEW,ESTABLISHED -j ACCEPT
kitten# iptables -A OUTPUT -o ethO -p tcp --sport domain -m state w»
--state NEW,ESTABLISHED -j ACCEPT

The first two rules in Listing 2-23 allow NEW and ESTABLISHED incoming DNS traffic on
the etho interface. The second two rules allow NEW and ESTABLISHED outgoing DNS traffic
on the etho interface. This allows the bastion host to query remote DNS servers and receive
queries from remote DNS servers.

For the internal traffic you need to allow more than just queries of the DNS servers. You
also want to allow zone transfers, which use TCP traffic, but you want to restrict these zone
transfers and the TCP traffic to only the internal DNS servers. Listing 2-24 shows the required
INPUT chain rules.

100

CHAPTER 2 " FIREWALLING YOUR HOSTS

Listing 2-24. The internal INPUT DNS Rules

kitten# iptables
-m state --state
kitten# iptables
-m state --state
kitten# iptables
-m state --state
kitten# iptables
-m state --state

-A INPUT -i eth1l -p udp -s 192.168.0.10 --dport domain w»
NEW, ESTABLISHED -j ACCEPT
-A INPUT -i ethl -p udp -s 192.168.0.11 --dport domain w»
NEW, ESTABLISHED -j ACCEPT
-A INPUT -1 eth1l -p tcp -s 192.168.0.10 --dport domain w»
NEW, ESTABLISHED -j ACCEPT
-A INPUT -1 eth1l -p tcp -s 192.168.0.11 --dport domain w»
NEW, ESTABLISHED -j ACCEPT

The rules in Listing 2-24 allow incoming DNS queries and zone transfers between the bas-
tion host and the two internal DNS servers. I have shown the outgoing DNS rules in Listing 2-25.

Listing 2-25. The internal OUTPUT DNS Rules

kitten# iptables
-m state --state
kitten# iptables
-m state --state
kitten# iptables
-m state --state
kitten# iptables
-m state --state

-A OUTPUT -o eth1l -p udp -d 192.168.0.10 --sport domain ~CC
NEW, ESTABLISHED -j ACCEPT

-A OUTPUT -o eth1l -p udp -d 192.168.0.11 --sport domain ‘=
NEW, ESTABLISHED -j ACCEPT

-A OUTPUT -o eth1l -p tcp -d 192.168.0.10 --sport domain
NEW, ESTABLISHED -j ACCEPT

-A OUTPUT -o ethl -p tcp -d 192.168.0.11 --sport domain
NEW, ESTABLISHED -j ACCEPT

The rules in Listing 2-25 allow outgoing DNS queries and zone transfers between the
bastion host and the two internal DNS servers.

Now you want to add access for the Network Time Protocol (NTP), as the bastion host is
going to be the local network’s NTP server. NTP traffic uses UDP on port 123. First let’s allow
access to the Internet and to some selected remote NTP servers, clock3.redhat.comand

ntp.public.otago.

ac.nz. Listing 2-26 shows these rules.

Note | randomly selected these NTP servers, but you can find a list of public NTP servers at

http://www.eecis.

udel.edu/~mills/ntp/servers.html.

Listing 2-26. The External NTP Rules

kitten# iptables
-m state --state
kitten# iptables
-m state --state
kitten# iptables

-A INPUT -i ethO -p udp -s clock3.redhat.com --dport ntp =
ESTABLISHED -j ACCEPT

-A OUTPUT -o etho -p udp -d clock3.redhat.com --sport ntp w»
NEW, ESTABLISHED -j ACCEPT

-A INPUT -i etho -p udp -s ntp.public.otago.ac.nz =

--dport ntp -m state --state ESTABLISHED -j ACCEPT

kitten# iptables

-A OUTPUT -0 etho -p udp -d ntp.public.otago.ac.nz =

--sport ntp -m state --state NEW,ESTABLISHED -j ACCEPT

CHAPTER 2 "' FIREWALLING YOUR HOSTS

You have allowed only ESTABLISHED incoming connections from the two specified NTP
servers’ IP addresses with a destination of the NTP port 123. You have allowed outgoing traffic
of NEW and ESTABLISHED connections to allow you to query remote NTP servers, but again I have
limited the outgoing connections to the hostname of the selected NTP servers. Next you need
to add some rules to handle the internal NTP traffic (see Listing 2-27).

Listing 2-27. The Internal NTP Rules

kitten# iptables -A INPUT -i eth1l -p udp -s 192.168.0.0/24 --dport ntp =
-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o ethl -p udp -d 192.168.0.0/24 --sport ntp =
-m state --state ESTABLISHED -j ACCEPT

The rules in Listing 2-27 allow only hosts in the 192.168.0.0/24 subnet to connect to the
NTP server and requests time updates. All outgoing traffic on this port on the eth1 interface is
also limited to a destination of this subnet and to ESTABLISHED traffic only, as the bastion host
has no requirement to initiate a connection to any system in the internal network.

Finally, you want to be able to administer the bastion host using ssh. You want to provide
only ssh access to the bastion host from the internal network and not allow the bastion host to
initiate ssh connections back to the internal network to help protect the internal systems in the
event the bastion host is compromised. Listing 2-28 show the rules required to structure ssh
access as required.

Listing 2-28. The SSH Rules

kitten# iptables -A INPUT -i ethi -p tcp -s 192.168.0.0/24 --dport ssh =
-m state --state NEW,ESTABLISHED -j ACCEPT

kitten# iptables -A OUTPUT -o ethl -p tcp -d 192.168.0.0/24 --sport ssh =
-m state --state ESTABLISHED -j ACCEPT

Firewall Logging

With iptables you can log the traffic processed by the firewall to syslog. This is extremely use-
ful both for determining if your firewall is functioning and also to keep track of anomalous or
malicious traffic. Logging with iptables requires directing the traffic you want logged to a new
target I will introduce, the LOG target. You can see this target in Listing 2-29.

Listing 2-29. Logging iptables Traffic

kitten# iptables -A INPUT -p tcp --dport smtp -j LOG --log-prefix "IPT INPUT "

In Listing 2-29 I am logging all incoming TCP traffic on port 25 to the LOG target, as indi-
cated by the -j flag. The --1log-prefix flag specifies a prefix you can place in front of the log
message to help you identify the iptables traffic in your logs. This prefix can be up to 29 let-
ters long.

101

102 CHAPTER 2 " FIREWALLING YOUR HOSTS

Caution Because of a bug in the Netfilter code, you should add a trailing space (as you can see in
Listing 2-29) to stop the prefix field running into the next log field. This will make it easier to manipulate
your iptables log traffic.

You can add other flags after the LOG target (see Table 2-6).

Table 2-6. LOG Target Flags

Option Description

--log-level level Log level (in other words, info).

--log-tcp-sequence Logs the TCP sequence numbers. You should not log these unless you
are sure your log files are secure.

--log-tcp-options Logs TCP options from the IP packet header.

--log-ip-options Logs IP options from the IP packet header.

The --1log-1level flag allows you to specify with which logging level your iptables logs will
be generated. This defaults to info. The facility used by iptables logging is kernel. You can see
Chapter 5 for more details of syslog logging and log levels.

The --log-tcp-sequence logs the sequence numbers of the packets being logged to
syslog with the rest of the logging information. This can be dangerous if your logs are read-
able by non-root users (which they should not be!), as it may assist someone in a spoofing
or hijacking attack to guess possible sequence numbers and insert malicious traffic. Unless
you have a real use for this information, I recommend not logging it.

The --log-tcp-options and --1log-ip-options flags add the contents of the OPTIONS sec-
tion of the TCP and IP headers, respectively, to your logging output.

The LOG target is a nonterminating target, and any traffic passed to the LOG target will
simply continue to the next rule after being logged. This means you need to specify any
logging rules before any rules that may reject or drop traffic. In Listing 2-30 you can see
iptables logging UDP DNS traffic from a host, 192.168.0.100, in the first rule and then
dropping this traffic after it has been logged. If these rules were reversed, then no log
entries would be generated by this traffic.

Listing 2-30. Logging and Dropping Traffic with the LOG Target

kitten# iptables -A INPUT -p udp -s 192.168.0.111 --dport domain -j LOG w»
--log-prefix "IPT_BAD DNS"
kitten# iptables -A INPUT -p udp -s 192.168.0.111 --dport domain -j DROP

This is another instance where the sequence of your rules is important to ensure you
actually log the required traffic before it is accepted, dropped, or rejected.

So what do you see in your log entries? Well, Listing 2-31 shows a typical log entry from
the LOG rule in Listing 2-30.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Listing 2-31. A Typical iptables Log Entry

Aug 8 21:32:56 kitten kernel: IPT_INPUT IN=etho OUT=
MAC=00:01:02:89:ad:de:00:06:5b:cb:d8:b3:08:00 =
SRC=192.168.0.111 DST=192.168.0.1 LEN=92 TOS=0x00 'w»
PREC=0x00 TTL=128 ID=7301 DF PROTO=TCP SPT=3610 w»
DPT=53 WINDOW=65535 RES=0x00 ACK PSH URGP=0

I have dissected each portion of the sample line from Listing 2-31 in Table 2-7.

Table 2-7. Listing 2-31 iptables Log Entry

Field

Description

IPT_INPUT

IN=interface
OUT=interface

MAC=MAC address
SRC=IP address
DST=IP address
LEN=Iength
TOS=type
PREC=precedence
TTL=hops

ID=id

DF
PROTO=protocol
SPT=port
DPT=port
WINDOW=size
RES=bits

ACK

PSH

URGP=0

The prefix specified by the --log-prefix flag.

The incoming interface on which the packet was received. Blank if the entry
is for outgoing traffic.

The outgoing interface the packet was received on. Blank if the entry is for
incoming traffic.

The MAC address of the interface the packet used.

The source IP address of the packet.

The destination IP address of the packet.

The length of the packet in bytes.

The Type of Service Type field (deprecated usually).

The Type of Service Precedence field (deprecated usually).
The Time to Live in hops.

The unique ID number of this packet.

The “Don’t fragment” flag that tells the stack not to fragment the packet.
The protocol of the packet.

The source port of the packet.

The destination port of the packet.

The TCP Receive Window size.

The reserved bits.

The ACK (or Acknowledgment) flag is set.

The PSH (or Push) flag is set.

The Urgent Pointer (rarely used).

Most of the items are self-explanatory and should be clear to you from the packet and

filtering rules that have generated the log entry. Perhaps the most useful pieces of informa-
tion provided by the logging process that would normally not be readily apparent about the
packet being logged are the TCP flags, such as ACK or PSH, set for the packet. You can use
this information, for example, to help determine the structure of attacks based on inappro-
priate or malicious combinations of TCP flags being set. You will examine attacks based on
TCP flag combinations in the “iptables and TCP Flags” section.

103

104

CHAPTER 2 " FIREWALLING YOUR HOSTS

The log entries generated by using the LOG target can be separated from your other log
entries by controlling your syslog or syslog-ng configuration. Listing 2-32 shows two sample
logging rules that would log all incoming and outgoing traffic.

Listing 2-32. Sample Logging Rules

kitten# iptables -A INPUT -i etho -j LOG --log-prefix "IPT_INPUT " w»
--log-level warning

kitten# iptables -A OUTPUT -o etho -j LOG --log-prefix "IPT OUTPUT " w»
--log-level warning

Listing 2-33 shows the syslog.conf entry to trap these log entries into a separate file. This
is not precise and you may end up with entries not related to your iptables traffic, as the basic
syslog daemon does not have the full functionality to allow you to sort the iptables entries from
other kernel facility messages.

Listing 2-33. syslog.conf Entries for the Listing 2-32 Logging Entries
kern.warn /var/log/ipt_log

In Listing 2-34 I have provided the same configuration but for the syslog-NG daemon,
which allows considerably greater flexibility in selecting only those log entries from your
firewall logging.

Listing 2-34. Syslog-NG Configuration for Logging iptables Traffic

destination d ipti { file("/var/log/ipt input"); };

destination d ipto { file("/var/log/ipt output"); };

filter f filter in { facility(kernel) and level(warning) w»
and match(IPT_INPUT); };

filter f filter out { facility(kernel) and level(warning) w»
and match(IPT_OUTPUT); };

log { source(s sys); filter(f filter in); destination(d ipti); };
log { source(s_sys); filter(f filter out); destination(d ipto); };

In Listing 2-34 I have separated the incoming log entries from the outgoing log entries
and written them to two different files.

Tip You can find further information on logging and using other tools such as SEC to process your firewall
log files in Chapter 5.

I have not explicitly added any new rules to the bastion host firewall as a result of the
information described in this section but I will incorporate rules with the LOG target into the
overall bastion host firewall in the next few sections.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Caution You should be aware that firewall logging on a busy system can generate a lot of data, and
you should ensure you have sufficient disk space and a suitable log rotation regime to accommodate your
required level of logging.

Handling ICMP Traffic

Together with TCP and UDP, one of the most commonly used protocols is ICMP.7 ICMP
provides error, control, and informational messages such as the messages used by the ping
command. In the past, ICMP messages have formed an important component of network
troubleshooting and diagnostics. Unfortunately in recent years, the widespread use and
access granted to ICMP traffic has meant a variety of vulnerabilities and exploits, including
some serious Denial of Service attacks related to ICMP traffic, have emerged. Bastion hosts
are particular targets of these types of attacks. In the last five years more than 40 ICMP-
related vulnerabilities and potential attacks have been discovered.8 These have included
attacks such as the following:

¢ ICMP flood attacks where a storm of pings overwhelm a system and consume available
bandwidth resulting in a Denial of Service.

¢ ICMP “smurf” attacks where an attacker sends forged ICMP echo packets to network
broadcast addresses allegedly from a particular targeted host. The broadcast addresses
reply with ICMP echo reply packets, which are sent to the targeted host, consuming all
available bandwidth and killing the host with a Denial of Service attack.

* The “ping of death” in which an attacker sends an ICMP echo packet larger than the
maximum IP packet size. The packet is fragmented and because of bugs in the IP stack
attempts to reassemble the packets crash the system.

¢ ICMP “nuke” attack in which the ICMP packet contains information that the receiving
system cannot handle, which results in a system crash.

You can prevent all these attacks or mitigate the risk of attack using iptables by tightly
controlling how your hosts handle ICMP traffic. But this traffic is also used by some important
network diagnostic tools such as ping.

If you look at ICMP, you can see it consists of a whole series of message types with related
message codes. For example, the ping command generates an echo-request or an ICMP Type 8
message. The response to a ping is an echo reply or an ICMP Type 0 message. Table 2-8 pres-
ents all the ICMP message types.

7. The RFC for ICMP is RFC 792; you can review it at http://www.ietf.org/rfc/rfc0792. txt?number=792.
8. http://icat.nist.gov/icat.cfm

105

106

CHAPTER 2 " FIREWALLING YOUR HOSTS

Table 2-8. ICMP Message Types

Type Description

0 Echo Reply

3 Destination Unreachable
4 Source Quench

5 Redirect

8 Echo Request

11 Time Exceeded

12 Parameter Problem
13 Timestamp

14 Timestamp Reply

15 Information Request
16 Information Reply

The most frequently used and seen ICMP message types are Type 0 and 8 for ping, Type 3
(which is frequently used to indicate hosts that are down or that decline to respond to queries),
and Type 11 (Time Exceeded). For example, in addition to UDP packets, the traceroute com-
mand relies on ICMP Type 11 messages to map the route between the host and a remote host
and relies on Type 3 messages to indicate if the host at the end of the route is unreachable.

So how should you handle ICMP traffic? Well, there are two schools of thought on this.
The first suggests that ICMP traffic is acceptable if the source and destination of this traffic is
controlled—for example, if you allow only traffic to and from authorized hosts. I think this
is dangerous, because it assumes you can rely on the security of these authorized hosts. The
second school of thought believes that all incoming ICMP traffic should be barred except
responses to outgoing connections. For example, all incoming ping (echo-request) packets
are dropped, but incoming ping reply (echo reply) packets that are in reply to pings gener-
ated on the local host are accepted. I believe this model of barring all but clearly excepted
ICMP traffic is the most secure and suitable; I will show you how to configure this variation.
I will now articulate a policy for ICMP traffic that fits this model.

¢ Allow outbound echo messages and inbound echo reply messages. This allows the use
of ping from the host.

¢ Allow time exceeded and destination unreachable messages inbound, which allows
the use of tools such as traceroute.

To implement this policy, you want to create some chains to hold the ICMP-related rules.
I will create two chains. The first I have called ICMP_IN to handle incoming ICMP traffic. The
second I have called ICMP_OUT to handle outgoing ICMP traffic. User-created chains allow you
to better structure your rules and allow you to group related rules that handle specific traffic
types, protocols, or responses to particular threats or vulnerabilities. When traffic is redirected
to a user chain by a rule, it will be processed against all the rules in the new chain and then
return to the chain that redirected it to be processed by the next rule in sequence. You use the
iptables command-line option -N to create new chains. By default new chains are added to
the filter table.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

kitten# iptables -N ICMP_IN
kitten# iptables -N ICMP_OUT

Now let’s create some rules in the INPUT and OUTPUT chains to refer the ICMP traffic to the
newly created ICMP_IN and ICMP_OUT chains. You send traffic to the user-created chains by refer-
ring to them as a rule target using the - j flag. Listing 2-35 shows the two rules directing ICMP
traffic to the user-created chains.

Listing 2-35. Directing ICMP Traffic to the User-Created Chains

kitten# iptables -A INPUT -p icmp -j ICMP_IN
kitten# iptables -A OUTPUT -p icmp -j ICMP_OUT

Now when ICMP traffic is received by the INPUT chain, it is directed to be filtered by
the user-created chain ICMP_IN; and when it is received by the OUTPUT chain, it is handled
by the ICMP_OUT chain.

The iptables rules can target individual ICMP messages types by selecting only ICMP
traffic with the -p icmp flag in combination with the --icmp-type flag to select the particular
ICMP message type. The next line shows this selection in the rule:

kitten# iptables -A ICMP_IN -p icmp --icmp-type echo-request -j DROP

I have added this rule to the ICMP_IN chain, which I have specified will handle incoming
ICMP traffic. I have selected only ICMP traffic using the -p flag. Then I selected the type
of ICMP traffic using the --icmp-type flag. Within the ICMP traffic I have selected the mes-
sage type of echo-request, which indicates an incoming ping request, and I have opted to
drop this traffic. You could have also indicated the echo-request traffic with the type num-
ber of the ICMP message type.

kitten# iptables -A ICMP_IN -p icmp --icmp-type 8 -j DROP

You can now create the rules you need to address the required policy. Allow inbound echo
reply, time exceeded, and destination unreachable messages to the host (see Listing 2-36).

Listing 2-36. Incoming ICMP Traffic

kitten# iptables -A ICMP_IN -i etho -p icmp --icmp-type 0 -m state w»
--state ESTABLISHED,RELATED -j ACCEPT

kitten# iptables -A ICMP_IN -i etho -p icmp --icmp-type 3 -m state w»
--state ESTABLISHED,RELATED -j ACCEPT

kitten# iptables -A ICMP_IN -i etho -p icmp --icmp-type 11 -m state w»
--state ESTABLISHED,RELATED -j ACCEPT

kitten# iptables -A ICMP_IN -i etho -p icmp -j LOG_DROP

I have added these rules to the ICMP_IN incoming ICMP traffic chain and selected ICMP
Types 0, 3, and 11 that are in an ESTABLISHED or RELATED state, which indicates that this traffic
is in reply to a request generated on the bastion host. It does not allow NEW connections using
ICMP to be made. This means attempts to ping this host will result in an error.

Finally, I have added a last rule to ensure any other incoming ICMP traffic is logged and
dropped. I have done this by specifying the target of the last rule as a user-created chain called

107

108

CHAPTER 2 " FIREWALLING YOUR HOSTS

LOG_DROP. This chain is going to direct the ICMP traffic to a set of iptables rules that will log
the packets to be dropped and then drop the packets. First, create the LOG_DROP chain.

kitten# iptables -N LOG_DROP

Second, create a rule to log the incoming ICMP traffic. You will log the ICMP traffic to
syslog adding a prefix of IPT_ICMP_IN (with a trailing space) to the log entries to allow you
to identify them.

kitten# iptables -A LOG DROP -i etho -p icmp -j LOG --log-prefix "IPT ICMP_IN "
kitten# iptables -A LOG DROP -i etho -p icmp -j DROP

The last rule drops the traffic after it has been logged. This takes care of all the incoming
ICMP traffic.

Caution Be careful about logging your ICMP traffic. Large amounts of logging traffic can be generated
by ICMP traffic. You should ensure you have sufficient disk space and a suitable log rotation regime.

Now you add the rules to take care of the outbound ICMP traffic. You can see these rules
on the following lines:

kitten# iptables -A ICMP_OUT -o etho -p icmp --icmp-type 8 -m state w=»
--state NEW -j ACCEPT
kitten# iptables -A ICMP_OUT -o etho -p icmp -j LOG_DROP

I have allowed outgoing echo messages so that I can ping remote hosts; then you added
arule to log and drop all other outgoing ICMP traffic.

I'will also add two more rules to the user-created chain LOG_DROP to handle logging and
dropping the outgoing ICMP traffic.

kitten# iptables -A LOG _DROP -o etho -p icmp -j LOG --log-prefix "IPT _ICMP_OUT "
kitten# iptables -A LOG DROP -o etho -p icmp -j DROP

From this information and these rules, you should now be able to design and implement
some rules to handle incoming and outgoing ICMP traffic in your environment.

Note Some kernel parameters relate to ICMP traffic; | will cover them in the “Kernel Modules and
Parameters” section.

Spoofing, Hijacking, and Denial of Service Attacks

Attacks based on incoming traffic are not limited to ICMP-based traffic. Some of the other
common forms of attack on hosts are spoofing, hijacking, and Denial of Service attacks. In
this section I will provide some rules for defending against these types of attacks.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

These sorts of attacks can take three major forms (though all these forms can be com-
bined and used in conjunction with each other). In the first form, an attacker tries to subvert
the traffic between two hosts from a third host by trying to fool one of the hosts into believing
it is actually the other host in the conversation. The attacker can then connect to the targeted
host or insert some malicious information into packets sent to the targeted system to compro-
mise or penetrate it. This form of attack includes so-called man-in-the-middle attacks and
blind spoofing attacks.

In the second form, an attacker redirects routing information by using methods such
as ICMP redirect or by manipulating the host’s ARP table. The routing changes redirect
traffic from the original host to the attacker’s host. This allows the attacker to receive all
the traffic from the original host and potentially use this information to exploit the original
host or another host with which the original host communicates.

Caution Attacks based on manipulating or poisoning ARP tables are hard to defend against and hard
to detect. | recommend looking at a tool such as ARPWatch to monitor incoming ARP traffic. You can find
ARPWatch at ftp://ftp.ee.lbl.gov/arpwatch.tar.gz.

The third form of attack is similar in nature to the ICMP flood attack. An attacker spoofs
the target’s address and utilizes mechanisms such as network broadcasts to flood the target
with incoming connections and consume all available connection resources. This results in
a Denial of Service on the targeted host. This last form is often called smurfing or fraggling.

It can be hard to both detect and stop some of these sorts of attacks, but it is not impossi-
ble. One of the best ways to prevent these types of attacks is to explicitly deny traffic from hosts,
networks, and sources you know traffic should not or cannot be coming from. This includes
sources such as the following:

* Incoming traffic that has a source address of an IP address assigned to a local interface;
for example, if etho is bound to 192.168.0.1, then incoming traffic cannot have a source
address of 192.168.0.1, as the IP address should be unique in the subnet.

* Outgoing traffic that does not have a source address of an interface on your local host; for
example, this includes a process trying to send traffic with a source address of 10.0.0.1
when you do not have this address bound to a local interface.

¢ Traffic coming from the Internet on RFC 1918’s private IP address ranges. These are pri-
vate address ranges and should not be routable on the Internet.

e The Zeroconf IP address range, 169.254.0.0/16.
e The TEST-NET address range of 192.0.2.0/24.

¢ The reserved IP address Class D and E (Broadcast) addresses 224.0.0.0/4 and
240.0.0.0/5 and the unallocated address range 248.0.0.0/5.

* Loopback addresses in the range 127.0.0.0/8 should also be nonroutable on the Inter-
net and finally broadcast address range 255.255.255.255/32 and the older broadcast
address range, 0.0.0.0/8.

109

110

CHAPTER 2 " FIREWALLING YOUR HOSTS

So, I will show how to set some rules to reduce the risk that incoming traffic to your host is
malicious, and then later in the “Kernel Parameters section” I will introduce some kernel param-
eters that will also help further reduce the risk of these sorts of attacks.

The first set of rules you will add handle traffic that allegedly comes from your own
host. Incoming traffic with the source addresses of your system is going to be spoofed traffic
because you know it cannot be generated by the host or it would be outgoing rather than
incoming. You add a rule to handle packets allegedly from the internal LAN IP address and
then a rule to handle packets allegedly to the external IP address.

kitten# iptables -A INPUT -i ethi -s 192.168.0.100 -j DROP
kitten# iptables -A INPUT -i ethO -s 220.240.52.228 -j DROP

You can also add a rule saying that any outgoing traffic that is not from your source IP
address is incorrect. This is both useful to stop your host sending bad packets and also polite
as your host should not be generating packets that do not come from your IP address.

kitten# iptables -A OUTPUT -o ethi -s ! 192.168.0.100 -j DROP
kitten# iptables -A OUTPUT -o etho -s ! 220.240.52.228 -j DROP

These rule uses the negate symbol (!) together with the source address to indicate all out-
going traffic not from the specified IP address. For example, in the first rule, all traffic that is
not from IP address192.168.0.100 is dropped. This is because only traffic from the IP address
192.168.0.100 should be outgoing from this interface.

You can also use the negate symbol on most other iptables flags; for example, to select all
traffic except ICMP, you could use the following rule:

kitten# iptables -A INPUT -p ! imcp -J ACCEPT

As you were using iptables on a bastion host between your network and the Internet,
you will block the RFC 1918 private address space ranges. These address ranges, 10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16, are reserved for private IP networks and should be used
only as internal IP addresses ranges. These addresses are not routable on the Internet. You
should block these address ranges on any Internet-facing interfaces.

kitten# iptables -A INPUT -i etho -s 10.0.0.0/8 -j DROP
kitten# iptables -A INPUT -i etho -s 172.16.0.0/12 -j DROP
kitten# iptables -A INPUT -i ethO -s 192.168.0.0/16 -j DROP

You do not need to block this traffic on the internal network because these address ranges are
frequently used, including by the internal network you have specified, as internal address ranges.

Next you want to block incoming traffic from the Internet that is from the Zeroconf address
range.10 The Zeroconf address range is used primarily by hosts that use DHCP to acquire their
IP address. An address from this range is assigned when these hosts are unable to find a DHCP
server to provide them with an address. It is also being proposed to use this address range to
provide addressing when connecting two devices together with a crossover cable. Add a rule
to prevent any traffic on the Internet and the internal LAN interfaces.

kitten# iptables -A INPUT -s 168.254.0.0/16 -j DROP

9. http://www.fags.org/rfcs/rfc1918.html
10. http://www.zeroconf.org/

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Now you will restrict the TEST-NET 192.0.2.0/24 address range, which is used for test pur-
poses and, like the private address ranges of RFC 1918, should not be routable on the Internet.

kitten# iptables -A INPUT -i etho -s 192.0.2.0/24 -j DROP

Next you want to restrict any incoming traffic coming from the reserved Class D and E IP
address ranges and the unallocated address range, 248.0.0.0/5. These are designed for broad-
cast and experimental purposes only and should not be routed on the Internet.

kitten# iptables -A INPUT -i ethO -s 224.0.0.0/4 -j DROP
kitten# iptables -A INPUT -i etho -s 240.0.0.0/5 -j DROP
kitten# iptables -A INPUT -i etho -s 248.0.0.0/5 -j DROP

Additionally, restrict the loopback and zero addresses, which also should not be routable
on the Internet.

kitten# iptables -A INPUT -i etho -s 127.0.0.0/8 -j DROP
kitten# iptables -A INPUT -i ethO -s 255.255.255.255/32 -j DROP
kitten# iptables -A INPUT -i etho -s 0.0.0.0/8 -j DROP

Adding these rules to the overall iptables configuration should help keep the bastion
host somewhat secure from spoofing, hijacking, and a variety of Denial of Service attacks.

iptables and TCP Flags

Another series of attacks on your hosts that you will add iptables rules to address use either
malicious combinations of TCP flags or inappropriate volumes of packets with particular TCP
flags. Each TCP header has a TCP flag or flag set. These flags tell the receiving host what sort of
packets it is receiving. For example, when a new TCP is created, a process that is commonly
referred to as the three-way handshake occurs. Figure 2-1 shows Host A sending a packet to
Host B. If this is the initiation of the connection, then the first TCP package has the SYN flag set.
This is the first step of the three-way handshake. Host B responds with a packet of its own with
the SYN and ACK flags set. This is the second step. Lastly Host B should respond with a packet
with the ACK flag set as the third step of the handshake and completes the handshake.

Note All of these packets are assigned sequence numbers so that the hosts know which order they
should be processed in and to provide some security that this is the same connection.

HostA

Host B

L

Figure 2-1. An example of a TCP connection

1

112

CHAPTER 2 " FIREWALLING YOUR HOSTS

Table 2-9 describes all the TCP flags.

Table 2-9. TCP Flags

Flag Description

ACK This flag informs the receiving host that the field ACK number has a valid ACK number.
This helps the host trust the packet.

RST This flag asks the receiving host to recover (reset) the connection. Packets with RST
flags are generally sent when a problem occurs with a connection.

SYN This flag instructs the receiving host to synchronize sequence numbers. This flag
indicates the start of a new connection.

FIN This flag lets the receiving host know that the sender is finished sending data. The
receiving host should respond with a FIN flagged packet to complete and close the
connection.

URG This flag lets the receiving host know that the field of the Urgent Pointer points to

urgent data.

PSH This flag calls a PUSH. If this flag is set to on, then data in a packet is sent directly to
the target application. Normally incoming data would be stored in a buffer and then
passed to the target application. This flag is used for interactive services such as SSH
or Telnet to see responses without lag.

The SYN to SYN/ACK to ACK flag combination in your packets is something you will com-
monly see in your firewall logs, but many other TCP flag are not only illegal and invalid but
have the potential to compromise your system or assist a remote attacker in determining
information about your system. For example, tools such as nmap often use unusual TCP flag
combinations to aid in the process of scanning and operating system fingerprinting.

You can use iptables to select packets with particular TCP flags using the --tcp-flags flag.
The --tcp-flags flag has two parts to its selection of TCP flags. The first part selects which TCP
flags are to be examined in the packet, and the second part selects the flags that need to be set
on the packet for the rule to match. You can see this in Listing 2-37.

Listing 2-37. Selecting Packets with Particular TCP Flags
kitten# iptables -A INPUT -p tcp --tcp-flags ALL SYN -j DROP

In Listing 2-37 you are using the --tcp-flags flag with the first selector of ALL. The ALL setting
tells iptables to examine all possible flags (this is the same as saying SYN,ACK, FIN,RST, URG, PSH),
and the second selector is SYN flag, which indicates the SYN flag must be set for this rule to match
a packet. So Listing 2-37 would match packets containing ANY flag but with only the SYN flag
set and DROP them. You can also specify only a particular subset of flags, as you can see in the
following line:

kitten# iptables -A INPUT -p tcp --tcp-flags SYN,RST SYN,RST -j DROP

The rule in the previous line checks packets with the SYN and RST flags, and both these
flags have to be set in the packet for the packet to be matched by the rule and dropped. You
separate multiple flags in each option with commas, and you should not leave any spaces
between the specified flags. You can also use the special option NONE in your rules.

kitten# iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP

CHAPTER 2 "' FIREWALLING YOUR HOSTS

The rule in the previous line tests packets with any of the TCP flags and selects those
packets with no flags set at all and DROPs them.

Blocking Bad Flag Combinations

Now you will look at some combinations of flags that you want to block with your iptables
rules. Most of these are not actually attacks but rather more likely to be attempts by attackers
to determine more information about the host with tools such as nmap.

Tip You can see a fairly complete list of nmap scan forms at http://security.rbaumann.net/
scans.php?sel=1. Most other scanners use variations on this, and these rules should address most
of these scan forms.

For example, probably the best-known combination of illegal flags is SYN/FIN, which is used
by a variety of network scanners to perform operating system detection. The SYN flag opens a con-
nection, and the FIN flag closes a connection. In combination these flags make no sense in a sin-
gle packet. Thus, any occurrence of this combination of flags will be malicious traffic, and you will
start the TCP flag rules by blocking this traffic. But first I will start by adding a chain to hold the
bad TCP flag rules.

kitten# iptables -N BAD FLAGS

Then you place a rule toward the start of the bastion host rules to redirect all TCP traffic to
the bad TCP flags rules to be processed. The traffic that does not match these rules and is not
dropped will then proceed to be processed by the other rules.

kitten# iptables -A INPUT -p tcp -j BAD_FLAGS

Here you are putting all incoming TCP traffic through the BAD_FLAGS chain. As explained
earlier, when traffic is redirected to a user chain by a rule, it will be processed against all the rules
in the new chain and then return to the chain that redirected it to be processed by the next rule
in sequence. Thus, all the TCP traffic will pass through the rules in the BAD_FLAGS user chain and
then return to the INPUT chain.

You can now add the first rules to handle bad flags. I have added a rule that logs and
drops the SYN/FIN TCP flag combination, which you can see in Listing 2-38.

Listing 2-38. Blocking SYN/FIN packets

kitten# iptables -A BAD FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j LOG
--log-prefix "IPT: Bad SF Flag "
kitten# iptables -A BAD FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

You start with a logging statement, which logs all packets with this combination of TCP flags
to your log file. Unlike the ICMP traffic where you specified a single logging rule for the traffic, in
this instance you will log each type of TCP flag combination with its own log prefix. This will aid
you in determining from where particular types of attacks have originated. To further aid in this,

113

114 CHAPTER 2 " FIREWALLING YOUR HOSTS

you have added a log prefix that specifies exactly what sort of illegal packet you are seeing, with
SF indicating SYN/FIN. Then after logging the packets, you have dropped them.

Other variations on the SYN/FIN flag combination are used for similar purposes: SYN/RST,
SYN/FIN/PSH, SYN/FIN/RST, and SYN/FIN/RST/PSH. Let’s add some additional rules in Listing 2-39
to handle these variants.

Listing 2-39. Rules for SYN/FIN Variations

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j LOG w»
--log-prefix "IPT: Bad SR Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j DROP

kitten# iptables -A BAD FLAGS -p tcp --tcp-flags SYN,FIN,PSH SYN,FIN,PSH w»

-j LOG --log-prefix "IPT: Bad SFP Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,PSH SYN,FIN,PSH -j DROP
kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST SYN,FIN,RST w»

-j LOG --log-prefix "IPT: Bad SFR Flag "

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST SYN,FIN,RST -j DROP
kitten# iptables -A BAD_FLAGS -p tcp w=

--tcp-flags SYN,FIN,RST,PSH SYN,FIN,RST,PSH -j LOG --log-prefix "IPT: Bad SFRP Flag "
kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags SYN,FIN,RST,PSH SYN,FIN,RST,PSH w»
-j DROP

Next in Listing 2-40 you add a rule to address single FIN flag packets. You will never find a
packet that has only a FIN flag in normal TCP/IP connections; thus, any you do find are generally
being used for port scans and network probing.

Listing 2-40. Rules for FIN-Only Flag Packets

kitten# iptables -A BAD FLAGS -p tcp --tcp-flags FIN FIN -j LOG =
--log-prefix "IPT: Bad F Flag "
kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags FIN FIN -j DROP

These rules in Listing 2-40 select only those packets with a FIN flag, and only those pack-
ets with a FIN flag set then log and drop them.

Lastly you want to block so-called null packets, which have all flags present and set, and
any other related Xmas-style scanning packets. These are generally used for other forms of
network probing used by scanning tools such as nmap. Listing 2-41 shows how you can block
these using the ALL and NONE special flag selectors.

Listing 2-41. Rules for Null and Xmas Flag Packets

kitten# iptables -A BAD FLAGS -p tcp --tcp-flags ALL NONE -j LOG w»
--log-prefix "IPT: Null Flag "

kitten# iptables -A BAD FLAGS -p tcp --tcp-flags ALL NONE -j DROP
kitten# iptables -A BAD FLAGS -p tcp --tcp-flags ALL ALL -j LOG w»
--log-prefix "IPT: All Flags "

CHAPTER 2 "' FIREWALLING YOUR HOSTS

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL ALL -j DROP

kitten# iptables -A BAD_FLAGS -p tcp --tcp-flags ALL FIN,URG,PSH

-j LOG --log-prefix "IPT: Nmap:Xmas Flags "

kitten# iptables -A BAD FLAGS -p tcp --tcp-flags ALL FIN,URG,PSH

-j DROP

kitten# iptables -A BAD FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG

-j LOG --log-prefix "IPT: Merry Xmas Flags "

kitten# iptables -A BAD FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP

SYN Flooding

Another use of malicious TCP flags is the SYN flood attack. This Denial of Service attack is usually
aimed at e-mail or Web servers and relies on subverting the three-way handshake connection
process discussed earlier in this chapter. The attacker sends a packet with the SYN flag set to the
receiving host. The source address of this packet is a nonexistent or uncontactable machine.
The receiving host replies with a packet with the SYN/ACK flags set. As the source address of the
packet cannot be replied to, the send fails and no ACK packet is received to fully open the con-
nection. Eventually the connection timeout is reached, and the connection closes. This seems
harmless enough, but on the receiving host each new connection adds connection information
to a data structure in system memory. This data structure has a finite size. Normally failed con-
nections would time out, and the data structure would be purged of the connection information.
But in the SYN flood attack, the attacker continues to send connection requests from nonexistent
hosts until the data structure in memory overflows and no new connections are possible. Gener-
ally, until the incoming SYN flood ceases, no new connections to the host are possible. In some
cases, the system may even halt entirely.

You can reduce the risk of this sort of attack using another iptables match module. I dis-
cussed the state module earlier in this chapter, and now you will look at the 1imit module. The
limit module limits the rate and volume at which packets are matched to rules. It is commonly
used to limit traffic such as ICMP and to limit logging. For example, you can limit the rate at
which packets are logged (see Listing 2-42).

Listing 2-42. Limiting Logging with the 1limit Module
kitten# iptables -A INPUT -p tcp -m limit --limit 10/second -j LOG

Listing 2-42 shows all incoming TCP packets being logged, but the addition of the 1imit
module limits the logging to ten entries per second. All other packets are discarded until the aver-
age rate decreases to below the limit. You can also limit packets being processed to minute, hour,
and day intervals in addition to second intervals. The 1imit module also has a burst function.

kitten# iptables -A INPUT -p tcp -m limit --limit-burst 100 w»
--1limit 10/minute -j LOG

The --1imit-burst option in the preceding line tells iptables to log 100 matching pack-
ets; then if this number of packets is exceeded, apply the rate limit of ten packets per minute.
The burst limit is enforced until the number of packets being received has decreased below
the rate limit. The burst limit then recharges one packet for each time period specified in the

115

116

CHAPTER 2 " FIREWALLING YOUR HOSTS

limit option where the packet rate is maintained below the limit. So, in the preceding example,
the burst limit is recharged one packet for every minute where the rate of received packets is
less than ten per minute.

Let’s look at restricting SYN flooding now. You can use the rule in Listing 2-43 to limit the
number of incoming SYN packets on your Internet-facing port.

Listing 2-43. Limiting Incoming SYN Packets
kitten# iptables -A INPUT -i etho -p tcp --syn -m limit --limit 5/second -j ACCEPT

In Listing 2-43 you have used the special TCP option - -syn, which matches all packets with
the ACK and RST bits cleared and SYN flag set. It is the equivalent of setting the TCP flags option to
--tcp-flags SYN,RST,ACK SYN.You have limited the number of incoming SYN packets to five per
second. This would limit the number of incoming connections to five per second and should
(you hope) prevent an attacker from using a SYN flood attack on the bastion host. I recommend
you test a suitable connection rate for your system taking into consideration the volume of
incoming connections to your host and its size and performance when setting the limit.

Limiting the number of SYN packets connections to your host is not, however, an ideal
solution to SYN flood attacks because it does limit the number of potential incoming connec-
tions and does not do any checking of the connections it is dropping to ensure they are actu-
ally malicious connections. On a busy system this can cause bottlenecking and the dropping
of legitimate connections. A possible solution to this is the introduction of SYN cookies; I will
cover them in the “Kernel Parameters” section.

Some Final Bastion Host Rules

Now you will look at some final rules to catch some remaining potentially bad packets. The
first rule goes back to the state module introduced earlier. You will remember that one of the
potential states that is tracked by Netfilter is the INVALID state. Packets in the INVALID state are
not associated with any known connection. This means any incoming packets in the INVALID
state are not from connections on the host and should be dropped. On the bastion host you
will log and discard all incoming packets in this state (see Listing 2-44).

Listing 2-44. Logging and Discarding Packets in the INVALID State

kitten# iptables -A INPUT -m state --state INVALID -j LOG =
--log-prefix "IPT INV_STATE "
kitten# iptables -A INPUT -m state --state INVALID -j DROP

Like you did with the BAD_FLAGS chain, you specify this rule to cover all incoming packets
on all interfaces and log and drop them.

Lastly, you have added a rule to deal with packet fragments. Packet fragments occur when
a packet is too large to be sent in one piece. The packet is broken up into fragments that are
then reassembled on the receiving host. Fragments have some issues, though. Only the first
fragment contains the full header fields of the packet. The subsequent packets have only a sub-
set of the packet headers and contain only the IP information without any protocol informa-
tion. This means most packet filtering based on this information fails. Not only this, but packet
fragments have not only been responsible for a number of bugs in network servers and services
but can also be used in attacks designed to crash servers and services.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

This is mitigated if you are using connection tracking (using -m state), or NAT, as the
packets are reassembled before being received by the filtering rules. Most modern Netfilter
implementations should have connection tracking enabled by default, so fragments should
not appear. But you should add rules that log and block fragments in Listing 2-45 both as
a precaution and for completeness sake.

Listing 2-45. Fragmented Packets

kitten# iptables -A INPUT -f -j LOG --log-prefix "IPT Frag "
kitten# iptables -A INPUT -f -j DROP

The -f flag in Listing 2-45 tells iptables to select all fragments, and you have then logged
and dropped them.

With these rules you have completed the iptables rules section of the bastion hosts fire-
wall. You can see all these rules together with additional features such as kernel parameters
in a script in Appendix A that you can modify for your own purposes.

Kernel Modules and Parameters

Netfilter is constructed of two components: the Netfilter kernel code and the userland tools, of
which iptables is the principal tool. In addition to providing the standard packet-filtering rules,
Netfilter also has a series of patches you can apply to the kernel code, as well as additional mod-
ules that you can load to provide additional functionality. Furthermore, you can set a variety of
kernel parameters that allow you to tune and further configure iptables.

Patch-o-Matic

In the more recent releases of Netfilter, all the available patches and modules for Netfilter
have been bundled into a tool called Patch-o-Matic (Next Gen), or POM. POM is designed to
simplify the occasionally complicated process of applying patches to your kernel. The POM
tool is available to download from the Netfilter site; Listing 2-46 goes through the download
and verification process.

Listing 2-46. Downloading and Verifying the POM Archive

kitten# wget http://www.netfilter.org/files/patch-o-matic-ng-20040621.tar.bz2
kitten# wget http://www.netfilter.org/files/coreteam-gpg-key.txt

kitten# gpg --import coreteam-gpg-key.txt

gpg: key CA9A8D5B: public key "Netfilter Core Team <coreteam@netfilter.org>"

imported
gpg: Total number processed: 1
gpg: imported: 1

kitten# wget http://www.netfilter.org/files/patch-o-matic-ng-20040621.tar.bz2.sig
kitten# gpg --verify patch-o-matic-ng-20040621.tar.bz2.sig

gpg: Signature made Tue 22 Jun 2004 08:06:15 EST using DSA key ID CA9A8D5B

gpg: Good signature from "Netfilter Core Team <coreteam@netfilter.org>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

117

118

CHAPTER 2 " FIREWALLING YOUR HOSTS

gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 02AC E2A4 74DD 09D7 FD45 2E2E 35FA 89CC CA9A 8D5B

In Listing 2-46 I have downloaded the POM source, the GPG key of the Netfilter team, and
the signature of the POM source. I downloaded the version of POM (20040621) at the time of
writing, but you should check the Netfilter site for the most recent version. I then imported the
Netfilter GPG key and verified the source archive against it with the signature I downloaded.

You will also need a copy of your current kernel source and the source of the iptables
tool. See Chapter 1 for instructions on how to get the source of your current kernel. I will
assume you have followed the instructions in Chapter 1 and stored your kernel source in
/usr/src/linux. To get the source of iptables, you can download it from Netfilter. To check
the current version of iptables on your system, use the following command:

kitten# iptables -V
iptables vi1.2.11

If you have not got the latest version of the iptables userland tools, I recommend upgrad-
ing to the latest version. Download the source for your version of iptables or the latest version
if you have chosen to upgrade. You can see this process in Listing 2-47.

Listing 2-47. Downloading and Verifying the POM Archive

kitten# wget http://www.netfilter.org/files/iptables-1.2.11.tar.bz2

kitten# wget http://www.netfilter.org/files/iptables-1.2.11.tar.bz2.sig
kitten# gpg --verify iptables-1.2.11.tar.bz2.sig gpg: =

Signature made Tue 22 Jun 2004 07:48:54 EST using DSA key ID CA9A8DSB

gpg: Good signature from "Netfilter Core Team <coreteam@netfilter.org>"

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 02AC E2A4 74DD 09D7 FD45 2E2E 35FA 89CC CA9A 8D5B

In Listing 2-47 I have downloaded the iptables userland source archive and verified it with
its signature. As I have already downloaded the Netfilter GPG key, I do not need to download it
again and import it. Unpack the iptables source archive, and make a note of the location, as
you will need it later when you use the POM tool.

Tip 1 recommend installing your iptables source in the /usr/src directory.

Now that you have the POM, the kernel source, and the iptables source code, the prerequi-
sites for POM are complete. Unpack the POM archive, and change into the resulting directory.

The POM tool contains two types of patches are. The first are patches fixing or adjusting
iptables functionality. The second are patches and modules adding functionality to iptables.
In both cases, you will generally need to recompile your kernel and the userland tools. With

CHAPTER 2 "' FIREWALLING YOUR HOSTS

both types of patch or functionality, you are required to choose from a list of possible patches
and modules to install. This is much like the process of kernel configuration. The POM tool
has some built-in checking and does not let you install patches or modules that are already
compiled into your kernel.

CGaution The patches and modules contained within the Patch-o-Matic tool are new features that could
potentially seriously impact how Netfilter and iptables function. The Neffilter team considers many of the
patches and modules not stable enough to be included in the core Neffilter release. Install them with caution,
and test the functionality carefully.

If you want to just see the first type of patches for Netfilter, you can run POM using the
commands in Listing 2-48.

Listing 2-48. Applying the Latest patches for Netfilter with POM

kitten# cd patch-o-matic-ng-20040621

kitten# export KERNEL DIR=/path/to/kernel/source
kitten# export IPTABLES DIR=/path/to/iptables/source
kitten# ./runme

In Listing 2-48 replace the KERNEL_DIR path with the path to your kernel source and the
IPTABLES DIR path with the path to your iptables source. The runme script calls the POM
configuration script in the patching mode.

In you want to see the second type of patches and additional functionality for Netfilter,
you can access them by adding the extra variable to the runme script (see Listing 2-49).

Listing 2-49. Applying the Extra Functionality for Netfilter with POM

kitten# cd patch-o-matic-ng-20040621

kitten# export KERNEL DIR=/path/to/kernel/source
kitten# export IPTABLES DIR=/path/to/iptables/source
kitten# ./runme extra

Again in Listing 2-49, replace the KERNEL_DIR path with the path to your kernel source and
the IPTABLES DIR path with the path to your iptables source.

When you run the runme script, it displays a list of the available patches and/or modules
for Netfilter. Figure 2-2 shows the POM patching script.

As you can see in Figure 2-2, the patch script screen has four sections. The first at the top of
the screen displays your kernel and iptables versions and the location of your source files. The
second section displays all the patches and modules that have either been already installed in
the kernel or are not appropriate to your kernel version.

In the third section, the proposed patch or module to apply to your kernel appears with
a description, and in the last section you can select a series of actions to perform on the patch
that is being displayed. Table 2-10 describes the most useful actions available to you.

119

120 CHAPTER 2 " FIREWALLING YOUR HOSTS

Figure 2-2. The POM patching script

Table 2-10. POM Patching Options

Option Description

Tests that the patch will apply cleanly
Applies the patch

Applies patch even if the T option fails

t

t

N Skips a patch
£

q Quits
?

Displays help

Let’s apply a patch now. The patch in Figure 2-2 has the following description:
This patch fixes an oops while listing /proc/net/ip conntrack.

It also contains some further information on the patch. Read this carefully to determine
the potential impact of the patch.

If you decide to apply the patch, you first want to test that you can apply the patch cleanly
to the kernel source. You use the t option to do this, as you can see in the following line:

Do you want to apply this patch [N/y/t/f/a/x/b/w/q/?] t
Patch 04 linux-2.4.26-helper reassign.patch applies cleanly

Then you want to set the patch to be applied using the y option:
Do you want to apply this patch [N/y/t/f/a/x/b/w/q/?] y

This marks the patch to be added to your kernel source and proceeds to display the next
available patch. If you do not want to apply the displayed patch, you can continue to the next
patch using the n option.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Do you want to apply this patch [N/y/t/f/a/x/b/w/q/?] N

The POM tool will proceed to the next patch to be applied and display its description.
When you have selected all patches and modules you want, you can quit the POM tool using
the g option.

After you have quit from the POM tool, you should see lines similar to Listing 2-50.

Listing 2-50. Patching the Kernel with POM

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?] q
Excellent! Source trees are ready for compilation.
Recompile the kernel image.

Recompile the netfilter kernel modules.

Recompile the iptables binaries.

The list in Listing 2-50 may be different pending on the compilation requirements of the
patches or modules you have selected. You may not need to recompile all the items listed in
Listing 2-50 in all circumstances.

Now you need to recompile the kernel and the Netfilter kernel modules. The commands in
Listing 2-51 will do this for you. I have assumed you have followed the instructions in Chapter 1
and stored your kernel source in /usr/src/linux. I have also assumed you have copied and used
your old . config file to run the make oldconfig process also as described in Chapter 1.

Listing 2-51. Compiling the Kernel

puppy# cd /usr/src/linux
puppy# make dep bzImage modules modules install
puppy# make install

The first make line combines a number of compilation steps. First, it makes all the
required dependencies, dep. Second, it makes a new boot image, bzImage. Then it compiles
any modules required, modules, and finally it installs those modules, modules_install. The
modules and modules_install commands will recompile all your Netfilter modules. At the end
of this first make line you should have a fully compiled kernel and a new boot image. The next
line, make install, installs that new boot image in your boot loader ready for you to reboot
and use that new kernel together with the new patches or modules.

Next make the iptables binaries; to do this, use the commands in Listing 2-52.

Listing 2-52. Recompiling the iptables Binaries

kitten# cd /usr/src/iptables-1.2.11
kitten# make KERNEL DIR=/path/to/kernel/source
kitten# make install KERNEL DIR=/path/to/kernel/source

Replace the /path/to/kernel/source part with the location of your kernel source.

When you have recompiled your kernel and the iptables userland tools, you need to
reboot your system into the new kernel.

Now let’s look at some of the additional modules available in the POM tool. You will look
at three modules: the iprange module, the mport module, and the comment module.

121

122

CHAPTER 2 " FIREWALLING YOUR HOSTS

The iprange Module

The iprange module allows you to specify inclusive source and destination IP address ranges.
This means instead of only being able to specify a particular host or subnet as a source or des-
tination address, you can now specify a range of hosts inside a subnet or a range of subnets.

Before you can use the module, you need to load it using the insmod command exactly as
you would load any other kernel module. The names of Netfilter modules are usually prefixed
with ipt_ so that iprange becomes ipt_range. To load the module, enter the following:

kitten# insmod ipt_iprange
Using /lib/modules/2.4.26/kernel/net/ipv4/netfilter/ipt_iprange.o

Now that you have loaded the module, you can add the module to rules using the -m flag.
Let’s start with a rule that allows you to use a range of hosts like the rule in Listing 2-53.
Listing 2-53. Using a Range of Source Hosts with the iprange Module

kitten# iptables -A INPUT -p tcp -m iprange =
--src-range 192.168.0.1-192.168.0.20 -j ACCEPT

The rule in Listing 2-53 accepts all incoming TCP traffic from the source IP address range
192.168.0.1 to 192.168.0.20. You can also specify a destination range of IP addresses or subnets
as I have done in Listing 2-54.

Listing 2-54. Using a Range of Destination Subnets with the iprange Module

kitten# iptables -A FORWARD -p tcp -m iprange =
--dst-range 192.168.0.0-192.168.255.255 -j ACCEPT

Tip You can also negate the --dst-range or --src-range flag using the ! option.

You can see the help text for the iprange module using the command in Listing 2-55.

Listing 2-55. iptables Module Help

kitten# iptables -m iprange -h

irange match vi1.2.11 options:

[!] --src-range ip-ip Match source IP in the specified range

[!] --dst-range ip-ip Match destination IP in the specified range

You can also substitute the iprange module in Listing 2-55 for the name of any other
modules for which you want to see help text or syntax.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

The mport Module

The mport module provides an enhancement of the multiport module, which allows you to
specify multiple ports using the --sport and --dport flags. The multiport module allows only
comma-separated lists of individual ports and no ranges. The rule on the next line, for exam-
ple, shows the use of the multiport module:

kitten# iptables -A INPUT -i etho -p tcp -m multiport --dport 80,443 -j ACCEPT

The rule in the previous line selects all incoming TCP traffic on both port 80 and port 443.
This is pretty much the extent of the module’s functionality. The mport module takes this fur-
ther by allowing byte ranges as well as lists of single ports. To use the module, you first need
to load it using the insmod command, as shown on the next line:

kitten# insmod ipt_mport
Using /lib/modules/2.4.26/kernel/net/ipv4/netfilter/ipt mport.o

Once you have the module loaded, you can add it to rules. You can see an example rule on
the next line that uses the module:

kitten# iptables -A INPUT -p tcp -m mport --dport 80:85,8080 -j ACCEPT

This rule allows incoming TCP traffic and invokes the mport module using the -m flag to allow
traffic into the destination port range 80 to 85 and the individual port 8080. You can specify up to
15 ports or port ranges. A port range takes up two port slots.

The comment Module

POM also has a comment module that provides the ability to add comments to individual rules
explaining their purpose. You can add comments of up to 256 characters in length to a rule. Like
the other modules, first you need to confirm it is loaded; you use the insmod command again to

do this (see Listing 2-56).

Listing 2-56. Loading the comment Module

kitten# insmod ipt comment
Using /lib/modules/2.4.26/kernel/net/ipv4/netfilter/ipt comment.o
insmod: a module named ipt comment already exists

In Listing 2-56 I have shown the result that would occur if the comment module were
already loaded.

Now you want to add comments to your rules. Listing 2-57 shows a comment added to
one of the bastion host rules.

Listing 2-57. Using the comment Module

kitten# iptables -A INPUT -i ethi -p udp -s 192.168.0.10 --dport domain w»
-m state --state NEW,ESTABLISHED -m comment --comment "Allows incoming DNS w»
traffic" -j ACCEPT

123

124

CHAPTER 2 " FIREWALLING YOUR HOSTS

Using the -m flag you add the comment module to the rule; then using the only argument
for the comment module, - -comment, you provide a comment for the rule. Let’s take a look at
how the comment appears in the rule when you display your rules. Enter the following:

kitten# iptables -L INPUT

Chain INPUT (policy DROP)

target prot opt source destination

ACCEPT udp -- 192.168.0.10 anywhere -

udp dpt:domain state NEW,ESTABLISHED /* Allows incoming DNS traffic */

Kernel Parameters

Netfilter comes with a variety of kernel parameters that can be used to change its behavior, per-
formance, and other features. You will examine some of these parameters to further enhance
the security of your iptables firewall.

Note All changes you make to your kernel parameters are lost when you reboot your system. To miti-
gate this, most distributions have a file located in /etc, called sysctl.conf, in which you can set those
kernel parameters that you want automatically set at the bootup of the system. | recommend setting any
iptables-related kernel parameters in this file to ensure they are set at system startup.

The parameters you will be manipulating are stored in the /proc directory structure. The
/proc directory is a virtual file system that exists in memory and is created when the system
boots (and is why the settings are reset when you reboot). It contains a variety of data struc-
tures and files that contain information gathered from the kernel and other sources. Generally
each parameter correlates to a file in the /proc directory structure. These data structures and
files can be changed and manipulated like any other file on your system. I will focus on the
parameters contained in /proc/sys/net, which contains all the Netfilter-related settings.

Tip The /proc/net directory contains a variety of files that include information about your iptables
environment, including information such as the current connections and connection states being tracked.

You will use the sysctl command to manipulate these kernel parameters. The sysctl
command comes with all distributions. Let’s use it to view all your kernel parameters.
Listing 2-58 shows an abbreviated listing of all the available kernel parameters.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Listing 2-58. Display All Parameters

kitten# sysctl -a
abi/fake_utsname = 0

abi/trace = 0

abi/defhandler libcso = 68157441
abi/defhandler lcall7 = 68157441

You can also selectively list the setting of a particular parameter by specifying that param-
eter on the sysctl command line, as in Listing 2-59.

Listing 2-569. Display an Individual Parameter

kitten# sysctl net/ipv4/ip_forward

As mentioned, each parameter correlates to a file in the /proc directory structure. This
net.ipv4.ip_forward parameter correlates to a file called /proc/sys/net/ipv4/ip_forward.
The sysctl command automatically prefixes /proc/sys/ to the parameter location, so you
need to specify only its location from the net directory onward.

You can see all the sysctl command-line options in Table 2-11.

Table 2-11. The sysctl Command-Line Options

Option Description

-a Displays all kernel parameters.

-p file Loads the parameters from a file. If no file is specified, it defaults to
/etc/sysctl.conf.

-n Disables printing the parameter name when displaying the parameter
value.

-w parameter=value Sets a parameter to the specified value.

If you want to change a kernel parameter using sysctl, you can do it using the -w option.
Most kernel parameters are either numeric or Boolean values: with 0 indicating off and 1 indi-
cating on. Let’s change the ip_forward option you looked at in Listing 2-59 to demonstrate this
parameter change. Listing 2-60 demonstrates this change.

Note You need to be root or equivalent to change these parameters.

Listing 2-60. Changing a Kernel Parameters Using -w

kitten# sysctl -w net/ipv4/ip_forward="1"

125

126

CHAPTER 2 " FIREWALLING YOUR HOSTS

By default the ip_forward option is set off, or 0. In Listing 2-60 I have set it to on, or 1. You
can also change parameters by echoing values to them. For example, to change the ip_forward
value back to off, you would use the following command:

kitten# /bin/echo "0" > /proc/sys/net/ipv4/ip forward

Let’s now look at some of the relevant kernel parameters for iptables that can enhance
the security of your host.

Caution Be sure you totally understand what each parameter does before you change it. Changing
a parameter without a full understanding of its purpose can have unexpected results.

/proc/sys/net/ipv4/conf/all/accept_redirects

The accept_redirects parameter determines whether your system accepts ICMP redirects.
ICMP redirects are used to tell routers or hosts that there is a faster or less congested way to
send the packets to specific hosts or networks. Generally your hosts will not require this,
especially stand-alone and bastion hosts. Even firewalls using iptables should only rarely
have a use for redirects. Accepting redirects is also a security risk, because ICMP redirects
can be easily forged and can potentially redirect your traffic somewhere malicious. I recom-
mend you turn accept_redirects off, as in Listing 2-61.

Listing 2-61. Turning Off theaccept_redirects Parameter

kitten# sysctl -w net/ipv4/conf/all/accept redirects="0"

/proc/sys/net/ipv4/conf/all/accept_source_route

This parameter tells Netfilter if it should allow source-routed packets. Source-routed packets
have their paths between two hosts exactly defined, including through which interfaces those
packets are routed. In some instances this source routing can be subverted, which can allow
attackers to route packets through an untrusted or insecure interface. I recommend you turn
this parameter off, as in Listing 2-62.

Listing 2-62. Turning Off theaccept_source route Parameter

kitten# sysctl -w net/ipv4/conf/all/accept source route="0"

/proc/sys/net/ipv4/conf/all/log_martians

The log_martians parameter logs all packets from “impossible” addresses to the kernel. This
includes bad IP addresses (similar to what I described when I discussed IP spoofing attacks),
bad source routing, and the like. Many of these types of packets could indicate an IP address
spoofing attack on your host. With this enabled, you will have entries appear in your logs simi-
lar to Listing 2-63.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Listing 2-63. log_martians syslog Entry

Aug 3 00:11:41 kitten kernel: martian source 255.255.255.255 from =
192.168.0.150, on dev etho

I recommend you turn this on to keep track of these packets, which could potentially
indicate an attack on your host. You can see the log martians parameter turned on in
Listing 2-64.

Listing 2-64. Turning On the log_martians Parameter

kitten# sysctl -w net/ipv4/conf/all/log_martians="1"

/proc/sys/net/ipv4/conf/all/rp_filter

This parameter controls reverse path filtering, which tries to ensure packets use legitimate
source addresses. When it is turned on, then incoming packets whose routing table entry for
their source address does not match the interface they are coming in on are rejected. This can
prevent some IP spoofing attacks. If you have some unusual routing arrangements, such as
asymmetric routing where packets take a different route from your host to another host than
they take from that host to you, or if you have interfaces bound to more than one IP addresses,
then you should test this parameter carefully to ensure you are not going to reject legitimate
traffic.

You can set this parameter for each interface on your host individually. Each of your inter-
faces has a file called rp_filter that controls this parameter in the /proc/sys/net/ipva/conf/
directory, as you can see in Listing 2-65.

Listing 2-65. Listing of the /proc/sys/net/ipva/conf Directory

kitten#t 1s -1

total 0

dr-Xr-XI-X 2 root root 0 Aug 23 01:39 all
dr-xr-Xxr-x 2 root root 0 Aug 23 01:39 default
dr-Xr-XI-X 2 root root 0 Aug 23 01:39 etho
dr-Xr-XI-X 2 root root 0 Aug 23 01:39 eth1
dr-Xr-XI-X 2 root root 0 Aug 23 01:39 lo

Anrp filter file exists in each of the directories in Listing 2-65, and you can change each
of them to enable this function for individual interfaces. Or you could change all of them with
a simple script like Listing 2-66.

Listing 2-66. Enablingxp filter for All Interfaces

kitten# for interface in /proc/sys/net/ipva4/conf/*/rp_filter; do
/bin/echo "1" > ${interface}
done

127

128

CHAPTER 2 " FIREWALLING YOUR HOSTS

You can also set this parameter for all interfaces by changing the setting of the rp_filter
file in the /proc/sys/net/ipv4/conf/all directory. This file controls this setting for all your
interfaces.

Tip This is true of all the parameters that are interface specific. Changing the file located in the
/proc/sys/net/ipv4/conf/all directory will change that setting for all interfaces.

/proc/sys/net/ipv4/icmp_echo_ignore_all

If this parameter is turned on, then Netfilter will ignore all ICMP echo requests. This will
ignore all rules set to handle ICMP echo traffic. This is another method of handling ICMP
echo traffic. I personally prefer to have a finer granularity of control over the handling of
ICMP echo traffic and set up particular rules to address a variety of potential situations, for
example, denying ICMP echo traffic incoming on an Internet-facing interface whilst allowing
it on an internal network interface. You should consider what option best suits your environ-
ment. In Listing 2-67 I turn the parameter off.

Listing 2-67. Settingicmp_echo_ignore all Off

kitten# sysctl -w net/ipv4/icmp_echo_ignore_all="0"

/proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

This parameter works in the same manner as the icmp_echo_ignore_all parameter except that
it ignores only ICMP messages sent to broadcast or multicast addresses. This significantly
reduces the risk of a host being targeted by a smurf attack; I recommend you set it on, as in
Listing 2-68.

Listing 2-68. Sertingicmp_echo_ignore broadcasts On

kitten# sysctl -w net/ipv4/icmp_echo ignore broadcasts ="1"

/proc/sys/net/ipvd/icmp_ignore_hogus_error_responses

Some routers, switches, and firewalls do not behave in accordance with the standards set out
in RFC 112211 and send out incorrect responses to broadcasts. These incorrect responses are
logged via the kern logging facility. If you do not want to see these log entries, you can set this
parameter on. I recommend leaving this option on (as in Listing 2-69), because what may
appear to be a bogus error response may in fact be a sign of an attack or probe of your system.

Listing 2-69. Settingicmp_ignore bogus_error_responses Off

kitten# sysctl -w net/ipv4/icmp_ignore bogus error responses="0"

11. You can find requirements for Internet Hosts—Communication Layers at
http://www.fags.org/rfcs/rfc1122.html.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

/proc/sys/net/ipvd4/ip_forward

The ip_forward parameter turns IP forwarding on or off. With this off (which it generally is by
default), then packets will not be forwarded between interfaces. The ip_forward parameter is
generally needed only if iptables is being used for routing, for NAT, as a network firewall, or
for masquerading. For a bastion or stand-alone host, this should be set off, as you can see in
Listing 2-70.

Listing 2-70. Settingip forward Off

kitten# sysctl -w net/ipv4/ip_forward="0"

/proc/sys/net/ipv4/tcp_syncookies

In response to the SYN flooding attacks described earlier, a kernel method was developed to
mitigate the risk. When a host has SYN cookies enabled, it sends back encoded SYN/ACK pack-
ets. These encoded SYN/ACK packets have information about the connection state encoded
into the sequence number of the reply to the initial SYN packet. If a reply is received to one of
these packets, then its acknowledgement number will be one more than the sequence num-
ber sent. Netfilter then subtracts one from this number and decodes it to return and verify the
original connection information. Any nonencoded or packets without do not verify are dis-
carded. This process is conducted without consuming memory or connection resources. The
kernel is now insulated from a Denial of Service attack using a SYN flood. I recommend turning
it on, as I have in Listing 2-71.

Listing 2-71. Settingtcp_syncookies On

kitten# sysctl -w net/ipv4/tcp_syncookies="1"

Managing iptables and Your Rules

Many distributions come with tools to help you create your firewall. Gnome Lokkit on Red Hat
or Debian and third-party tools such as Firestarter,12 MonMotha,13 and GuardDogl4 are all
examples of these. These tools allow you to input configuration settings and variables, and
they output iptables rules. I will not cover any of these tools because they are dangerous and
encourage poor security. Gnome Lokkit is a good example of this. Its default policy is to ACCEPT
traffic by default and not by exception. This violates what I think is good firewall design and
leaves your system exposed whilst giving you the impression it is secure because you have
used Red Hat’s recommended tool.

Additionally, these tools often set extra configuration and firewall settings without con-
sulting you. This assumption that this default configuration will suit your host and environ-
ment is a dangerous risk. It is a much better approach to configure your own rules and have
a full understanding of how the various rules interact than to assume that a third-party tool

12. http://firestarter.sourceforge.net/
13. http://monmotha.mplug.org/firewall/index.php

14. http://www.simonzone.com/software/guarddog/

129

130

CHAPTER 2 " FIREWALLING YOUR HOSTS

will provide a suitable configuration. This chapter should have shown you that the configura-
tion of host firewalls with iptables is easy to master and that you do not require a third-party
tool to achieve secure and hardened firewalls.

iptables-save and iptables-restore

Even if I do not recommend using a tool to construct iptables firewalls, a large number of
rules and settings are still involved in the average iptables firewall. These can become cum-
bersome to manage and maintain and can be time consuming to reenter if you accidentally
flush your rules or if you need to duplicate firewall settings on multiple hosts. The iptables
package comes with some tools to assist in the process of managing your rules. These are
iptables-save and iptables-restore. The iptables-save command saves the iptables rules
currently in memory to STDOUT or to a file. The iptables-restore command allows you to
restore rules from a file or STDIN.

Start by saving some of your rules using iptables-save. The iptables-save command
without options outputs all current rules to STDOUT. You can see a sample of the output from
the command in Listing 2-72.

Listing 2-72. Sample iptables-save Output

kitten# iptables-save
*filter

:INPUT ACCEPT [2:184]
:FORWARD ACCEPT [0:0]
:0UTPUT ACCEPT [9:904]
:BAD_FLAGS - [0:0]

-A INPUT -i lo -j ACCEPT

-A ICMP_OUT -o etho -p icmp -j LOG --log-prefix "IPT: ICMP_OUT "
-A ICMP_OUT -o etho -p icmp -j DROP

COMMIT

The format of the file is not critical, as I recommend you do not change your rules and
configuration in the outputted file but rather use iptables to edit your rules as it was designed
to do. But to give you some brief information on the structure of the file, you can see that the
start of each table described in the iptables-save output is prefixed by the asterisk symbol (*)
and the end of the iptables-save output is indicated by the line COMMIT.

The iptables-save command had two flags; the first flag -t allows you to specify only
those rules from a particular table. To save only the filter table rules, enter the following:

kitten# iptables-save -t filter

If you omit the -t flag, the table selection defaults to the filter table.

The second flag, -c, saves your rules together with the values of the packet and byte coun-
ters for each chain and rule.

The best approach to storing your iptables configuration is to redirect the output of the
iptables-save command to afile, as shown in Listing 2-73.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Listing 2-73. Redirecting the iptables-save Output
kitten# iptables-save > kitten-iptables-rules-20040803

Once you have your saved rules and configuration, you can restore them using the
iptables-restore command. Listing 2-74 shows the restoration of the rules you saved in
Listing 2-74.

Listing 2-74. Restoringiptables Rules
kitten# iptables-restore < kitten-iptables-rules-20040803

In Listing 2-74 your existing rules will be flushed from the system and replaced with
the rules contained in the kitten-iptables-rules-20040803 file.

The iptables-restore has two flags; the first -c restores the values of your byte and
packet counters (if they were saved with your rules using the iptables-save -c command).
The second flag, -n, restores your rules without flushing the existing rules from your system.
This adds any restored rules to your current rules.

iptables init Scripts

The iptables firewall is not a daemon. Rules changes happen interactively. When you add a rule
to a chain, that rule is immediately active and no service or daemon needs to be restarted or
refreshed. When iptables is started and stopped using an init script, your script generally relies
on the iptables-save and iptables-restore commands to set up and take down your firewall.
You should examine the contents of your iptables init script, /etc/rc.d/init.d/iptables on
Red Hat and /etc/init.d/iptables on Debian, to see how this is done.

On Red Hat to start and stop your iptables, enter the following:

puppy# /etc/rc.d/init.d/iptables stop
puppy# /etc/rc.d/init.d/iptables start

Or you can use iptables restart to restart the firewall. You can use the same options on
Debian with the iptables init scriptin /etc/init.d.

On Red Hat and Debian systems the iptables init script also acts as an interface to the
iptables-save and iptables-restore commands, allowing you to save and restore your rules.
On Red Hat systems to save your rules, enter the following:

puppy# /etc/rc.d/init.d/iptables save

The rules are saved to the file /etc/sysconfig/iptables. The Red Hat init script reloads
these rules from this file when you restart the system.

On Debian systems you can use the init script to both load and save your rules. To save
your rules, enter the following:

kitten# /etc/init.d/iptables save ruleset

Replace ruleset with the name of a file to hold the saved rules. To load the saved rules,
enter the following:

kitten# /etc/init.d/iptables load ruleset

131

132

CHAPTER 2 " FIREWALLING YOUR HOSTS

Replace ruleset with the name of a rule set you previously saved that you now want to load.

The Red Hat init script also has another option, panic, which stops your firewall by flush-
ing all your rules and setting your default policies to DROP. This is useful in an emergency to
terminate access to your host, for example, if your host was under attack. To do this, enter the
following:

puppy# /etc/rc.d/init.d/iptables panic

Like Red Hat, Debian also has an emergency halt function, which you can use by entering
the following:

kitten# /etc/init.d/iptables halt

Note As mentioned in Chapter 1, you should start your iptables firewall before you activate the inter-
faces and networking, and you should stop the firewall after you deactivate your interfaces and networking.

Testing and Troubleshooting

One of the greatest difficulties with managing iptables firewalls is testing that your firewall is
allowing and blocking the traffic you want. In Chapter 6 I will talk about using nmap to scan
your system, and this is one way to ensure the correct ports are open and closed on your host.
But this does not tell you enough information about the specifics of your rules and their inter-
actions, for example, whether the controls are working correctly on which hosts or networks
may connect to and from your host. To do this, you need to monitor the traffic coming in and
out of your host, including the most detail possible about individual packets. You can do this
using the tcpdump command.

The tcpdump command prints the headers of packets being transmitted on your network
interfaces. It can display these headers on the screen in a terminal session or save them to
a file for later review or analysis using a variety of tools. You can also load and replay these
saved capture files. Most important, you can use tcpdump to select only those headers you
want to see using selection criteria, including selecting only traffic from particular hosts or
traffic on particular ports.

MAKING REMOTE iptables CHANGES

If you are changing configurations over a network, you may want to test them using a series of commands
such as the following:

kitten# iptables restart; sleep 10; iptables stop &

This will allow your changes to take effect for a short while and then completely turn off. Your session should
be able to recover in that time, and if it does not, you will still be able to login again. A better approach may
be to save the current configuration using iptables-save, load the new configuration, wait, and then load
the saved configuration. This way, you can still have a protected host as you test new configurations. Ideally,
though, you can do your testing in a nonproduction environment and will not have to resort to these types of
measures.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Note The tcpdump command in the process of gathering these packet headers will place the interface
it is capturing packets from into promiscuous mode unless you specifically specify otherwise.

Most distributions come with the tcpdump package installed; if not, it is usually available
on your distribution’s installation media, or you can download and install it from the tcpdump
home page at http://www.tcpdump.org/.

If you run tcpdump on the command line without any options, as you can see in Listing 2-75,
it will print all packet headers from all interfaces on your host to the screen until stopped with
a SIGINT signal such as Control+C.

Listing 2-75. Basic tcpdump

kitten# tcpdump

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on etho, link-type EN10MB (Ethernet), capture size 96 bytes
00:18:39.980445 IP puppy.yourdomain.com.ssh > kitten.yourdomain.com.3717: =
P 900077725:900077841(116) ack 260615777 win 9648

1 packets captured

1 packets received by filter

0 packets dropped by kernel

You can also display more information on the packet using the -v and -vv flags, which
increase the verbosity of the capture. You can also limit the number of packet headers captured
using the -c flag and specifying the number of packet headers you would like to capture. You
can see both these flags in operation in Listing 2-76.

Listing 2-76. Verbose tcpdump with Packet Count

kitten# tcpdump -v -c 1

tcpdump: listening on etho, link-type EN10OMB (Ethernet), capture size 96 bytes
00:28:09.202191 IP (tos 0x10, ttl 64, id 41395, offset 0, flags [DF], proto 6,
length: 92) puppy.yourdomain.com.ssh > kitten.yourdomain.com.3717: ‘=

P 900095437:900095489(52) ack 260624565 win 9648

1 packets captured

1 packets received by filter

0 packets dropped by kernel

In Listing 2-76 I have captured another packet showing a ssh connection from host puppy
to host kitten but with the verbose flag enabled and additional information contained in the
capture, including the TOS, TTL, and the packet’s flags.

Other flags are available to you on the tcpdump command line, and Table 2-12 describes
some of the more useful flags.

133

134

CHAPTER 2 " FIREWALLING YOUR HOSTS

Table 2-12. tcpdump Command-Line Flags

Option Description

-1 interface Listen on a particular interface. Use any to listen on all interfaces.

-N Do not print domain information (puppy instead of puppy . yourdomain. com).

-p Do not put the interface in promiscuous mode.

-q Quiet mode that prints less protocol information.

-r file Read in packets from a file.

-t Do not print a time stamp.

-w | -vwv More verbose and even more verbose. Prints increasing amounts of
information.

-w file Write the packets to a file; use - for writing to standard out.

With testing iptables using tcpdump, the objective is to monitor the incoming and outgoing
traffic on your host to ensure traffic is correctly being allowed and denied using your rules. Obvi-
ously, most interfaces generate a huge volume of traffic, so tcpdump offers the capability to filter
that traffic and display only those packets you want to monitor. The tcpdump command offers
three key filtering selection criteria: types, directions, and protocols. For example, Table 2-13 shows
the list of possible type-filtering criteria.

Table 2-13. tcpdump Type Selectors

Selector Description

host Selects only traffic from a particular host

net Selects only traffic from a particular network
port Selects only traffic on a particular port

I discuss some of the other filtering criteria shortly, or you can refer to the tcpdump man page
for more information.

Listing 2-77 shows tcpdump selection at its most basic—selecting only traffic from a partic-
ular host using the Type selector, host.

Listing 2-77. Basic tcpdump Selection

kitten# tcpdump -v -c 1 host puppy

In Listing 2-77 the tcpdump command selects only packets that contain a reference to the
host puppy. This will include both packets to and from the host puppy. In addition to single hosts,
you can also capture only that traffic from a particular network using the net selector. Enter the
following to capture traffic only from the 192.168.0.0/24 network:

kitten# tcpdump net 192.168.0.0 mask 255.255.255.0

The tcpdump command also allows Boolean operators to be used with its selectors. In
Listing 2-78 I am selecting all traffic between the host puppy and either the host kitten or the
host duckling using the and / or Boolean operators.

CHAPTER 2 "' FIREWALLING YOUR HOSTS

Listing 2-78. Boolean Selectors
kitten# tcpdump host puppy and kitten or duckling

Notice that I have not prefixed the kitten or duckling hosts with the host selector. If you
omit the selector, the tcpdump command will assume you meant to use the last selector utilized.
This means Listing 2-78 is equivalent to the filter on the next line:

kitten# tcpdump host puppy and host kitten or host duckling

In addition to and/or Boolean operators, you can also use the not operator. Enter the
following, which captures traffic from any host except puppy:

kitten# tcpdump not host puppy

With the tcpdump filtering selectors, you can also restrict the filtering to specific ports.
To select all ssh traffic from host puppy, enter the following:

kitten# tcpdump host puppy and port ssh

You can also further restrict Listing 2-78 to a traffic direction using the src and dst
direction selectors, as you can see in Listing 2-79.

Listing 2-79. Specifying Traffic Direction
kitten# tcpdump src host puppy and dst host kitten or duckling

In Listing 2-79 you are now selecting only traffic outgoing from the host puppy with a
destination of the hosts kitten or duckling.

In Listing 2-80 you can use the protocol selectors to select only that traffic from a
particular protocol type.

Listing 2-80. Selecting Traffic via Protocol
kitten# tcpdump tcp host puppy and port domain

In Listing 2-80 tcpdump selects only TCP traffic to and from the host puppy on port 53. You
can also use the ip selector to capture IP traffic, udp to select UDP traffic, and icmp to capture
ICMP traffic.

This was a brief introduction to tcpdump; you can do a lot more with the command. I rec-
ommend you read the tcpdump man page, which contains detailed and useful documentation
for the command.

Tip You should also look at some of the tools discussed at the end of Chapter 6, which should also prove
useful in troubleshooting, testing, and dissecting your network traffic.

135

136 CHAPTER 2 " FIREWALLING YOUR HOSTS

Resources

The following are some resources for you to use.

Mailing Lists
* Netfilter mailing lists: http://lists.netfilter.org/mailman/listinfo

¢ tcpdump mailing list: http://www.tcpdump.org/#lists

Sites
¢ Netfilter: http://www.netfilter.org/

¢ Netfilter Packet Filtering HOWTO:
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

¢ Netfilter NAT HOWTO: http://www.netfilter.org/documentation/HOWTO//
NAT-HOWTO. html

¢ Shorewall: http://www.shorewall.net/

 Firestarter: http://firestarter.sourceforge.net/

* MonMotha: http://monmotha.mplug.org/firewall/index.php
¢ GuardDog: http://www.simonzone.com/software/guarddog/

¢ tcpdump: http://www.tcpdump.org

Books
¢ McCarty, Bill. Red Hat Linux Firewalls. Indianapolis, IN: Red Hat, 2002.

¢ Zeigler, Robert. Linux Firewalls, Second Edition. Indianapolis, IN: Sams, 2001.

CHAPTER 3

Securing Connections and
Remote Administration

In Chapter 2 I talked about using firewalls, specifically iptables, to secure your system from
network threats. This principally allows you to block all connections to the system except those
you explicitly want to allow through your firewall. But what about those allowed connections?
Can you be sure they are going to be secure? They need to be secure from the perspective of
preventing penetrations of your system using those connections, and they also need to be secure
from the traffic itself running over those connections from attackers using tools such as sniffers
that try to obtain information from your systems, including passwords and other potentially
valuable data.

Additionally, many of the nonapplication connections to your system are going to be
administration related. It is unfortunate that securing your system from intrusion often makes
the job of administering your system more difficult. While it is not only harder for an attacker
to penetrate your system, it is also harder for you or another systems administrator to access
the system for legitimate purposes—especially if those administrative purposes require a higher
level of access (for example, root access) to the system than a normal user.

In this chapter, I will cover some methods of securing the incoming and outgoing connec-
tions to and from your systems, including both the connection and the traffic running across
that connection. I will also cover the basics of virtual private networks (VPNs) using IPSec and
provide you with a practical example of joining two subnets via a VPN tunnel over the Internet.
In addition, I will cover some methods of securely administering your system. My aim is to show
some practical examples of using particular applications securely and effectively while ensur-
ing they do not put your system at risk of attack. Some of the tools and applications I will cover
in this chapter you will put to further practical use elsewhere in this book. As a result of the
practical focus on this chapter, I will not delve into a great deal of the theory behind some of the
tools covered, with the exception of a brief discussion on public-key encryption that is impor-
tant for everyone to understand because of its widespread use in the Unix and networking
security arena.

Public-Key Encryption

Any connections using TCP/IP you have open from your system are at risk from a variety of
attacks. Often, your connections pass through many different networking devices and systems
before reaching their final destination, which further increases the risk that someone may be

137

138

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

able to use the connection to gain access to or disrupt your systems or use the information
flowing over that connection for nefarious purposes, such as acquiring credit card details from
an e-commerce site or banking details from an e-mail. The risks associated with running these
types of connections are as follows:

» Eavesdropping: Your information is monitored or intercepted.
e Tampering: Your information is changed or replaced.

¢ Spoofing or impersonation: Someone pretends to be the recipient of your information
or sends false or substituted information back to you.

However, a well-established methodology exists for securing connections against the risks
I have articulated; it is called public-key cryptography.l Public-key cryptography (in conjunction
with the use of digital signatures) provides a variety of functions, including the encryption and
decryption of information being transmitted, authentication of the information’s sender, detec-
tion of tampering, and an audit trail that allows both parties to see the information has been
sent. In combination, these can mitigate the risks I detailed previously. What follows is a
highly simplified description of public-key cryptography. I aim to give you a clear understanding
of the concepts involved without covering a great deal of theoretical information. For example,

I will not discuss widely the various ciphers you could use but instead focus on the well-known
and default RSA cipher, which should provide more than adequate security for most purposes.
My focus is on getting you running secured connections quickly. If you want more information,
I recommend Netscape’s “Introduction to Public-Key Cryptography.”2

In public-key cryptography you have two keys: a public key and a private key. The public
key is published (often in conjunction with a certificate), and the private key is kept secret. The
public key can be as widely distributed as you like without comprising security, but your pri-
vate key must be kept secure. The sender will encrypt the information they want to send with
the recipient’s public key. They then send the information. The recipient receives the informa-
tion and uses their private key to decrypt the information. This ensures your information is
protected from monitoring or eavesdropping.

Added to the public-key encryption is a digital signature that addresses the issues of tam-
pering and spoofing. The signature itself is called a one-way hash or message digest. A one-way
hash is a mathematical function that creates a number that is a unique representation of the
information to be sent. If the information is changed in any way, then the hash is no longer a
valid representation of the new information. When sent with the information, this allows the
signing mechanism at the receiving end to ensure the information has not been changed dur-
ing its transmission from the sender to the recipient. The one-way indicates that it is not pos-
sible to extrapolate the information being sent from the hash, thus preventing someone from
using the hash to determine the information.

To generate a digital signature, the encryption approach is reversed from the original
public-key encryption process. The signing mechanism generates the one-way hash, and
you use your private key to encrypt it. The encrypted hash together with some additional

1. The entire components of a public-key encryption system (including CAs, policies, procedures, and
protocols) are often referred to as public-key infrastructure (PKI).

2. http://developer.netscape.com/docs/manuals/security/pkin/index.html

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

information, most notably the hashing algorithm, is sent with the information to the recipient
as the digital signature. The signing mechanism at the recipient end then uses your public key
to decrypt the hash and uses it to verify the integrity of the information sent.

The final layer in the public-key encryption infrastructure I will cover is a certificate. A cer-
tificate is just like a passport. It binds certain identifying information, such as your name and
location or the name of a server or Web site to a particular public key. It also usually has an
expiry period and is valid only for that period. Most public certificates are valid for one year.
Most of the certificates you will deal with follow the X.509 standard, which is an ITU recom-
mendation3 adopted by a variety of developers.

Certificates are generally issued by a certificate authority (CA). A CA is usually a privately
run organization that guarantees to its customers and users it has verified the identity of the
owner or purchaser of a certificate. Some organizations run their own internal CAs using
products, such as Netscape Certificate Management System and Microsoft Certificate Server,
or using open-source products such as EJBCA.4

So how does this work? Well, let’s say you wanted to use public-key encryption using certifi-
cates to secure a Web site. You first create a signing request and a private key. A signing request is
a type of certificate. The signing request is then sent to a CA to be signed and therefore become
a fully fledged certificate. Your private key remains with you. The CA sends you a public certifi-
cate (which, as discussed previously, combines a public key and some associated identifying
information, in this case probably the hostname of the Web site to be secured) and a copy of its
public certificate, called a CA certificate. The CA certificate it has sent to you is like a receipt from
the CA. Every time the authenticity and validity of your public certificate is checked, the signing
mechanism checks your CA certificate to ensure your public certificate was signed by someone
valid and trusted. Sometimes you may have a chain of CA certificates. For example, it could be
that the CA certificate that signed your public certificate was in turn signed by another CA cer-
tificate. Each of these associated CA certificates would need to be verified in sequence to ensure
your public certificate is valid. You then install your new public certificate into your Web site and
server, and when users connect to your site, they will do so over an authenticated and encrypted
connection.5

Tip Of course, one of the great benefits of the open-source world is that you do not need to use com-
mercial CAs to sign all your certificates. This can considerably save on costs because commercial CAs can
sometimes charge steep fees for certificate signing. In the previous example, you are securing a Web site.
So you would almost certainly need a commercial CA involved to sign your certificate to ensure third parties
were comfortable and trusted your site. But for other sorts of connections (for example, a secure connection
between two syslog systems), you could use a CA you have created locally. You will look at this in the “SSL,
TLS, and OpenSSL” section.

http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.509-200003-1
You'll find links to these products in the “Resources” section.

Arguably, some risks are associated with PKI overall. An excellent document that details some of these
risks is available at http://www.schneier.com/paper-pki.html.

139

140

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

SSL, TLS, and OpenSSL

One of the most well-known examples of the use of public-key encryption and digital signa-
tures for securing connections are the Secure Sockets Layer (SSL) protocol and the Transport
Layer Security (TLS) protocol. In the example in the previous section, in which I talked about
securing a Web site using public-key encryption and certificates, the protocol securing your
Web site would be SSL, and you would have connected to the site by using the https prefix
instead of the standard http prefix.

Developed by Netscape, SSL is a protocol for handling the security of message transmis-
sion over networks and most specifically the Internet. SSL operates between the TCP/IP net-
work layer and the application layer. When you connect to a device or service running SSL,

a handshake takes places in which the device or service presents its public certificate to the
connecting party to authenticate its identity. This is called server authentication. If the server
and the connecting party authenticate, then all transmissions between the parties are now
authenticated and encrypted using whatever encryption method you have selected, for exam-
ple, RSA or DSA encryption. You can also configure SSL so that the connecting party must also
prove their bona fides to the device or service; this is called client authentication.

Similar in operation to SSL is TLS. TLS was also developed by Netscape and was based on
SSLversion 3.0. It is detailed in RFC 2246.6 It offers significant advantages over SSL version 2.0,
and it is slightly more secure than SSL version 3.0. Thus, I recommend using it over either ver-
sion of SSL if your application or service supports using TLS. In Chapters 8 and 9, when I dis-
cuss using SSL/TLS to secure SMTP and IMAP/POP, I focus on TLS. Unfortunately, few Web
browsers support TLS; most of them still use SSL rather than TLS.

To use SSL/TLS (hereafter just referred to as TLS) on your Linux system, I will show how
to implement the OpenSSL package. OpenSSL is an attempt to develop a secure and robust
open-source implementation of SSL (versions 2.0 and 3.0) and TLS (version 1.0). You can find
OpenSSL at http://www.openssl.org/. The implementation is well maintained and updated
frequently, and I recommend you look at it before considering an investment in a commercial
package that offers similar capabilities.

You can download OpenSSL from http://www.openssl.org/source/, and I will show you
how to install it.

Tip You should check the authenticity of the download using mds or gpg? to ensure you have an authentic
package. See Chapters 1 and 4 for details of how to do this.

Before you install OpenSSL, you should check whether you already have it installed and
what version it is. More so than other applications, you need to keep applications such as
OpenSSL up-to-date. It is a vital component of a large number of security-related solutions on
Linux systems. Vulnerabilities in OpenSSL could have spillover effects on multiple other appli-
cations and create a series of vulnerabilities and exploitable weaknesses in those applications

6. http://www.ietf.org/rfc/rfc2246.txt

7. md5 is the Message Digest algorithm developed by Prof. Ronald Rivest, and gpg is the GNU Privacy
Guard utility that you can see at http:// www.gnupg.org.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

that rely on the functionality of OpenSSL to secure them. To check what version of OpenSSL
you have, run the following:

puppy$ openssl version
You will get these results:
OpenSSL 0.9.7a Feb 19 2003

Then check the OpenSSL site to confirm the current version. If the version you have has
been superseded, I strongly recommend you download and install the latest version either
from the source package or via your package management tool if your vendor has a more up-
to-date package.

If you have downloaded OpenSSL in the form of a source package, then unpack it and
change into the resulting directory. OpenSSL relies on the config script to configure the basic
settings for OpenSSL. The major option of the config script is the specification of the location
in which to install OpenSSL. By default when installed from the source package, OpenSSL is
installed with a prefix of /usr/local and an OpenSSL directory of /usr/local/ssl. If you are
replacing an existing OpenSSL installation, you need to confirm where your current version is
installed and make sure you specify that location to the config script. Listing 3-1 shows how to
replace the existing OpenSSL installation on a Red Hat system.

Listing 3-1. Replacing OpenSSL on a Red Hat System

puppy$./config --prefix=/usr --openssldir=/usr/share/ssl shared

Tip The last option shared tells OpenSSL to create shared libraries as well as the static libraries. This is
not strictly necessary, and the shared libraries function is considered experimental until the version 1 release
of OpenSSL. However, on most Linux systems it is stable enough and may offer some performance enhance-
ments and better use of memory.

Then you need to make, make test to ensure all of OpenSSLs cryptographical functions are
working, and then finally make install to install OpenSSL onto your system.

puppy$ make 88 make test
puppy# make install

You saw the openssl command previously when you used it to check the version of your
OpenSSL installation. It also has a number of other functions that are useful to you such as
creating keys and certificates, testing SSL connections, and encrypting and decrypting items.
Table 3-1 details the features and functions you are most likely to use. These functions are
specified directly after the openssl command, as you can see in Listing 3-2 in which I generate
anew RSA private key.

14

142

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-2. Generating a New RSA Private Key Using openssl

puppy# openssl genrsa -out puppy_key.pem -des3 1024
Generating RSA private key, 1024 bit long modulus
.. ettt
................... -+

e is 65537 (0x10001)

Enter pass phrase for puppy key.pem:

Verifying - Enter pass phrase for puppy key.pem:

This command uses the genrsa option to specify a new private key identified by the -out
option as puppy_key.pem. You also specify the -des3 option to encrypt the key and prompt for
a passphrase to secure it. The last option on the line, 1024, is the number of bits in length of the
key to generated. I recommend a minimum of 1024 for most keys and 2048 for your CA keys.

Table 3-1. Theopenssl Command-Line Functions

ca Performs CA functions.

gendsa All creation of DSA-based certificates. Same options as the genrsa option.
req Performs X.509 certificate-signing request (CSR) functions.

rsa Process RSA keys and allows conversion of them to different formats.

rsautl An RSA utility for signing, verification, encryption, and decryption.

s_client Tests SSL/TLS client connections to remote servers.

S_server Tests SSL/TLS server connections from remote clients and servers.

smime S/MIME utility that can encrypt, decrypt, sign, and verify S/MIME messages
verify Performs X.509 certificate verification functions.

X509 Performs X.509 certificate data management functions.

Tip Al of the openss1 options have their own man pages. You can access them via man and the name
of the option. For example, for the openssl req options, use the command man req.

Creating a Certificate Authority and Signing Certificates

For the purposes of this explanation, I will cover only one type of certificate model. In this model
you are running your own CA and signing certificates with that CA. The reason I have chosen to
cover this model is because it is financially cost free and does not require you to purchase certifi-
cates. But there are some risks with having your own CA and signing your own certificates, and
you need to weigh those risks before proceeding and consult with any partners with which you
intend to authenticate.

The major risk for running your own CA is that you have to secure it. If you issue a large
volume of certificates, you need to ensure there is absolutely no possibility that your CA can
be compromised. If your CA is compromised, your entire certificate and key infrastructure is

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

CIPHERS, KEYS, AND KEY LENGTH

As | mentioned, | will not cover a lot of detail on cipher systems, as | recommend you use the default RSA
cryptosystem. To use RSA, though, it is important to have at least a limited understanding of the mechanics
of the cryptosystem. RSA is a public-key encryption system that provides encryption, decryption, and digital
signature functionality for authentication purposes. Ronald Rivest, Adi Shamir, and Leonard Adleman devel-
oped it in 1977, and the RSA acronym was taken from the first letters of the last names of its developers. The
RSA algorithm relies on prime-number factoring to provide security. Two large primes are taken, and their
product computed to produce a third number, the modulus. Two more numbers are chosen that are less than
the modulus and relatively prime to the original large primes. The combination of the modulus and one of the
relative primes make up the private and public keys, respectively.8 The two biggest threats to the RSA crypto-
system and to your PKI environment are if someone discovers a way to shortcut factoring or, far more likely, if
your PKI environment is not secure and an attacker manages to acquire your private key.

Your public-key encryption system is only as secure as your private keys. You must ensure that your private
keys are protected at all costs. Some basic rules should help with this.

e Ensure you set suitable ownership and set your permissions on the keys as tightly as possible.
e Use only secure mediums to transmit your private keys, especially any CA keys.

e | recommend you consider expiring your keys after a suitable period of use. This gives you the oppor-
tunity to also review your key length, as | talk about shortly.

Five years ago RSA Laboratories issued a challenge to crack a 140-bit RSA encryption key. It took one month
for someone to crack the key.2 More recently in December 2003, a team in Germany successfully cracked

a 576-bit RSA encryption key in three months.10 Admittedly, the team used a significant amount of process-
ing power (more than 100 workstations), but this emphasizes that any keys you create need to be of a suit-
able length. Additionally, as hardware performance increases, the time needed to crack short key lengths will
obviously decrease. So at this stage | recommend you use keys 1024 bits in length or longer as a minimum.
The RSA Laboratories claim these keys will be secure up until at least 2010. As you can see in Listing 3-2,

I have specified @ minimum key length using the openss1 command of 1024-bits, and you can also specify
a default in your openssl.cnf file.

But having longer key lengths has issues also. The major issue with having longer keys is the risk that
performance will suffer and that the time taken to encrypt and decrypt information will make encryption
detrimental to productive operations. Of course, the risk that increased hardware performance will allow keys
to be cracked faster also means improved performance for your cryptosystem, which means longer key
lengths are more feasible and will have less impact on the speed of operations. You will need to assess and
test the performance of your applications using the required key sizes.

10.

If you are interested in the mathematics involved, see the RSA Laboratories site at
http://www.rsasecurity.com/rsalabs/node.asp?id=2214.

http://www.rsasecurity.com/rsalabs/node.asp?id=2099

http://www.rsasecurity.com/rsalabs/node.asp?id=2096

143

144

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

at risk. If you are serious about becoming your own CA on a large scale, I recommend setting
up an isolated system that is not connected to your network and is physically secured. Also,

I recommend Tempest-shielding technology to prevent electronic monitoring.1! Obviously,
the associated cost of this probably will mean that a commercial CA is a cheaper option. Fur-
ther details on how to secure your CA are outside the scope of this book.

Lastly, using your own CA is generally not trusted by third parties and applications. Users
may not accept your certificates, and applications may generate error messages. For example, if
aWeb browser or mail program encounters a certificate that is signed by a CA that it believes it is
not a recognized CA (many browsers and e-mail clients come with a collection of “trusted” com-
mercial CA root certificates), then it will prompt the user with an error message or series of error
messages. However, if you were doing mail server authentication—for example, as opposed
to a Web page—I usually assume that you have a limited number of partners you are going to
authenticate with certificates (almost certainly all clients and systems you administer), which
means it is more likely those partners will accept a private CA rather than a commercial CA.

Caution By detailing this model | am not recommending it as the preferred option. If you operate
production systems, especially e-commerce—related systems that use SSL, | recommend you use a
commercial CA.

I will now quickly walk you through creating a new CA for your system. This walk-through
assumes you are going to create the CA on the local system on which you will use the certifi-
cates. You do not have to do it this way, but for the purposes of this explanation it is the easiest
approach. First, choose somewhere to store your certificates. I often use /etc/ssl/certs as the
location. For the purposes of the following examples, I will use /etc/ssl/certs.

Next, initialize your CA. The OpenSSL distribution comes with a script called CA, which
has a number of options, including creating a new CA. Listing 3-3 shows the commands and
process for creating a new CA.

Listing 3-3. Creating a New CA

puppy$ cd /etc/ssl/certs

puppy# /usr/share/ssl/misc/CA -newca

CA certificate filename (or enter to create)

Making CA certificate ...

Generating a 1024 bit RSA private key

vt

......................... HHHHH

writing new private key to './demoCA/private/./cakey.pem'
Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

11. See information on TEMPEST at http://searchwebservices.techtarget.com/sDefinition/
0,,51d26 gci522583,00.html.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:AU

State or Province Name (full name) [Berkshire]:New South Wales

Locality Name (eg, city) [Newbury]:Sydney

Organization Name (eg, company) [My Company Ltd]:yourdomain.com
Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:puppy

E-mail Address []:admin@puppy.yourdomain.com

In Listing 3-3 I have changed into the directory where I want to put the CA, /etc/ssl/
certs, and then run the CA script with the option -newca. This creates a new CA. Press Enter
to create a new CA and then fill in the required details for your new CA, including a pass-
phrase and details of your location, organization, and the system on which the CA is running.
Replace the information in Listing 3-3 with the information for your environment, for exam-
ple, replacing yourdomain. com and puppy with the domain name and hostname of the system
on which you are creating the CA.

Tip You should treat any CA or certificate passphrases with the same respect as you treat your other sys-
tem passwords—carefully and securely.

The CA script creates a directory called demoCA. Change this directory to something more
explanatory. I often use hostnameCA, replacing hostname with the name of the host on which
you are creating the CA.

puppy# mv demoCA puppyCA

Now you need to create a SSL . cnf file for your new CA. Copy the example, which is usu-
ally in /usr/share/ssl/openssl.cnf to a new file. Enter the following:

puppy# cp /usr/share/ssl/openssl.cnf /etc/ssl/certs/puppyCA/openssl.cnf
Then change the following line:

dir = ./demoCA # Where everything is kept

to the name and location of your new CA. In this case, enter the following:

dir = /etc/ssl/certs/puppyCA # Where everything is kept

Inside your new openssl.cnf you may want to adjust the defaults for your location. You may
also want to change the default_bits option in this file from 1028 to 2048 to increase the level of
encryption of your certificates, keeping in mind what I discussed earlier about key lengths.

145

146

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Also inside your new puppyCA directory will be the CA's certificate file, in this case called
cacert.pem. This is a particularly important file, and you need to do a couple of things to it.
Copy the CA’s certificate file to /etc/ssl/certs (or wherever you have placed your certificates).
You will need to define the CA’s certificate file to most of the applications you intend to enable
TLS for, so this is a good place to put it. You will also need to create a hash of the CA’s certifi-
cate file in your certs directory. A hash is used by OpenSSL to form an index of certificates in
a directory and allows it to look up certificates. Use the command in Listing 3-4, replacing the
cacert.pem filename with the name of your CA cert file.

Listing 3-4. Hashing Your CA Cert

puppy# 1n -s cacert.pem “openssl x509 -noout -hash < cacert.pem” .0

Tip If you have more than one CA certificate (for example, a self-created CA and one from a commercial
CA), you need to have hashes of each certificate.

After creating your new CA, you can start to create and sign your own certificates.

To create your first certificate, you need to create a certificate request that will then be
signed by the new CA. You will not create a certificate that is unencrypted and valid for one
year and a private key.

The certificate you create consists of several items, but the most important for the pur-
poses of using TLS is the distinguished name. This consists of a series of pieces of information
you provide during the certificate creation process, including your geographical location, the
hostname of the system, and an e-mail address. This information, in conjunction with the
validity of the certificate, identifies a valid certificate.

One of the most important pieces of information you need to provide for the certificate’s
distinguished name is the common name, which for the purposes of TLS is generally the host-
name of your system or, for example, the hostname of a Web site to secured with the certificate.
If you want this to work with your Mail Transfer Agent (MTA), for example, then this needs to be
the fully qualified domain name of the system for which the certificate is being created. In List-
ing 3-5, the common name will be puppy . yourdomain.com. So to create your first certificate, go
to your certs directory and run the command in Listing 3-5.

Listing 3-5. Creating a Certificate Request

puppy# openssl req -config /etc/ssl/certs/puppyCA/openssl.cnf -new =
-keyout puppy.yourdomain.com.key.pem -out puppy.yourdomain.com.csr
Generating a 1024 bit RSA private key

........... -t

......... -

writing new private key to 'puppy.yourdomain.com.key.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [New South Wales]:

Locality Name (eg, city) [Sydney]:

Organization Name (eg, company) [puppy.yourdomain.com]:

Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:puppy.yourdomain.com
Email Address []:admin@puppy.yourdomain.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

The last two prompts are for extra information. The first is the provision of a challenge
password. The challenge password is optionally used to authenticate the process of certificate
revocation. Certificate revocation allows you to revoke the validity of a particular certificate,
and I will cover that briefly shortly. In most cases you can simply leave this blank by hitting
Enter. You can also leave the second optional company name blank.

In Listing 3-5 you could also have used the -nodes option to create the certificate and pri-
vate key. This tells OpenSSL not to secure the certificate with a passphrase. This allows you to
use the certificate for authenticating services such as the Simple Mail Transfer Protocol (SMTP),
which have no scope to enter a passphrase, and a connection would simply hang waiting for
the passphrase to be entered.

Listing 3-5 will create two files, puppy.yourdomain.com.key.pem and
puppy . yourdomain.com.csr. These files consist of a key file for your system and a certificate
request for your system. With these files, now the final stage of your certificate creation is to
sign the certificate request using your new CA. In the event you used a commercial CA, this is
the point at which you would submit the puppy.yourdomain.com.csr certificate request to the
commercial CA for signing. Since you are using your own CA, you continue onto the signing
stage on your local system. You can see this stage in Listing 3-6.

Listing 3-6. Signing Your Certificate Request

puppy# openssl ca -config /etc/ssl/certs/puppyCA/openssl.cnf w»
-policy policy anything -out puppy.yourdomain.com.cert.pem -infiles w»
puppy.yourdomain.com.csr

Using configuration from /etc/ssl/certs/puppyCA/openssl.cnf

Enter pass phrase for /etc/ssl/certs/puppyCA/private/cakey.pem:

Check that the request matches the signature

Signature ok

147

148 CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Certificate Details:
Serial Number: 1 (0x1)
Validity
Not Before: Jun 19 02:35:17 2004 GMT
Not After : Jun 19 02:35:17 2005 GMT

Subject:
countryName = AU
stateOrProvinceName = New South Wales
localityName = Sydney
organizationName = puppy.yourdomain.com
commonName = puppy.yourdomain.com
emailAddress = admin@puppy.yourdomain.com

X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE
Netscape Comment:
OpenSSL Generated Certificate
X509v3 Subject Key Identifier:
7A:D2:26:2C:D2:19:79:F9:5E:51:53:2C:9E:89:1E:94:48:F5:DA:A2
X509v3 Authority Key Identifier:
keyid:50:27:56:92:74:26:FC:F1:3D:18:75:8D:49:D2:85:06:EA:15:C2:4E
DirName:/C=AU/ST=New South Wales/L=Sydney/0=ABC Enterprises Pty
Ltd/CN=James Turnbull/emailAddress=root@puppy.yourdomain.com
serial:00
Certificate is to be certified until Jun 19 02:35:17 2005 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

This will output a final file called puppy.yourdomain.com.cert.pem, which is your certifi-
cate file. You can now delete the certificate request file, puppy.yourdomain.com.csr.

Note You can use whatever naming convention you like for your certificates, keys, and requests. | just
use the previous convention because it represents a simple way to identify all of your SSL components and
to what system they belong.

Finally, change the permissions of the puppyCA directory and of the files in the directory to
ensure they are more secure.

puppy# cd /etc/ssl
puppy# chmod 0755 certs
puppy# cd certs

puppy# chmod -R 0400 *

Now you have your first set of keys and certificates and can use them to secure your TLS
connections.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Revoking a Certificate

In the event a certificate is compromised, you need to be able to stop people using it for encryp-
tion and authentication. Or you may want to schedule a particular certificate to expire on a par-
ticular date. In either case, one of the ways of doing that is to revoke the certificate. You can tell
your internal CA about certificate revocation by adding the revoked certificates to a special file
called a certificate revocation list (CRL). Listing 3-7 shows how to generate an empty CRL using
the openss]l command. You will store your CRL file in the CA itself (in this case in the directory
/etc/ssl/certs/puppyCA). The openssl.cnf file specifies the default CRL as crl.pemin the direc-
tory containing the CA. When prompted, enter the passphrase for the CA’s key.

Listing 3-7. Creating a CRL

puppy# cd /etc/ssl/certs/puppyCA/

puppy# openssl ca -gencrl -out crl.pem -config /etc/ssl/certs/puppyCA/openssl.cnf
Using configuration from /etc/ssl/puppyCA/openssl.cnf

Enter pass phrase for /etc/ssl/puppyCA/private/cakey.pem:

CRLs are generally valid for one month only. If you want to create one for a longer period,
use the option -crldays to specify the number of days for which you want the CRL to be valid.
Once you have your CRL file, you can revoke a certificate using the command in Listing 3-8.

Listing 3-8. Revoking a Certificate

puppy# openssl ca -revoke puppy.yourdomain.com.cert.pem \
-config /etc/ssl/puppyCA/openssl.cnf

Using configuration from /etc/ssl/puppyCA/openssl.cnf
Enter pass phrase for /etc/ssl/puppyCA/private/cakey.pem:
Revoking Certificate 01.

Data Base Updated

If you have specified a challenge password in your certificate when you created it, you will
be prompted for that password before you are allowed to revoke the certificate. If you do not
have the password, you cannot revoke the certificate.

After you have revoked a certificate, you should re-create the CRL from Listing 3-7. Now
if you attempt to use the certificate you have just revoked, the connection will fail and you will
get an error message indicating the certificate is revoked.

Caution If you have something (an e-mail, for example) encrypted with that certificate and you revoke
the certificate, you will not be unable to decrypt that information.

You also need to let your users and applications know that a certificate has been revoked.
In the openssl.cnf file, it references the location of your CRL files and the default directory for
them. By default this is the crl directory underneath the root directory of your CA and the file
crl.pem. Place your CRL in this directory. All users should have read permissions to this area,
but no users should have write permissions. You also need to create hashes of your CRLs as
you have with your CA certificates. You can use the command in Listing 3-9 to do this replac-
ing yourcrl.pem with the name of your CRL file.

149

150

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-9. Creating a Hash of Your CRL File
puppy# 1n -s yourcrl.pem “openssl crl -hash -noout -in yourcrl.pem™ .r0

Store your CRL hash in the crl directory also.

Testing Connections Using the openssl Command

The openssl command also allows you to test both client- and server-style connections using
the s client and s_server functions. The s_client function allows you to test connecting to
aremote SSL-enabled service or daemon. This is useful for testing connections and diagnos-
ing problems. Listing 3-10 shows an example of testing an MTA running SSL.

Listing 3-10. Testing an MTA Usingopenssl s _client
puppy$ openssl s client -connect puppy.yourdomain.com:25 -starttls smtp

The openssl s _client command in Listing 3-10 will connect to port 25 and try to start
TLS using the -starttls option. The smtp parameter tells OpenSSL that the target system
being connected to is a SMTP server. At this stage the only other option available to use with
the -starttls command is pop3, which you can use to connect to a POP3 server and do simi-
lar tests. The command will return the details of the connection, any certificates being used
and attempt to ensure all certificates and CA root certificates are verified.

You can also connect to a non-MTA client such as an IMAP server. Enter the following:

puppy$ openssl s client -connect puppy.yourdomain.com:993
You can provide some other options to the openssl s_client function. Table 3-2 shows

the most useful of these options.

Table 3-2. openssl s client Options

Option Description

-cert certname If you need to provide a certificate to the server, you can define it here.
By default one is not provided.

-key keyfile Provides a private key to use.

-verify depth Specifies the verify depth to use that indicates the depth to which
OpenSSL will check the certificate chain.

-reconnect Performs five reconnects using the same session ID to ensure session
caching is working.

-showcerts Displays the entire certificate chain not just the server certificate.

-state Prints the SSL session states.

-debug Provides extra debugging information including a hex dump of all the SSL
traffic.

-msg Shows all the protocol messages if you are performing the debug hex
dump.

-ssl2, -ssl13, -tls1, Enables and disables the available SSL and TLS protocols.

-no_ssl2, -no_ss13,
-no_tls1

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

The last option is extremely useful when diagnosing issues. Some older versions of SSL
implemented with applications will not function when connected to with newer versions of
the SSL/TLS protocols. For example, some servers require TLS to be disabled. Alternatively,
others servers require that you connect to a remote server that allows only one type of SSL
protocol.

The openssl s_server function allows you to set up a functioning SSL server that you can
connect to and test certificates and keys. Listing 3-11 shows how to start a test SSL server.

Listing 3-11. Starting a Test SSL Server Using the openssl s_server Function

puppy$ openssl s server -key puppy.yourdomain.com.key.pem \
-cert puppy.yourdomain.com.cert.pem

Using default temp DH parameters

Enter PEM pass phrase:

ACCEPT

The command in Listing 3-11 will start a server and bind it onto port 4433 and await
input from a remote application. The choice of port 4433 is the default, and you can override
that by specifying the -accept option and telling s_server to bind to another port. As you can
see from Listing 3-11, I have specified a key and certificate for the function to use. If you spec-
ify a certificate or key that has a passphrase, you will be prompted to enter the required pass-
word. You can also define the location of the CA certificate file and a path to the CA files using
the -CAfile option and the -CApath option, respectively.

You can also emulate a typical SSL Web server. To emulate a simple Web server, specify
the -WWW option on the command line. Any HTML files requested will be sourced relative to the
directory from which the openssl s_client function was started; in other words, a request for
index.html will assume the file is located at . /index.html. You can also add the -www option to
the command line to have the openssl command send back detailed status and response
information in the form of a HTML document to the requesting Web server.

While in the session, if it was not been initiated with the -www or -WhWW option, you can
send commands to the client from within the server session. Table 3-3 details the commands
available to you.

Table 3-3. SSL Commands Within anopenssl s_server Session

Command Description

P Sends some plain text to the client. This should disconnect the client by causing a
protocol violation.

q Ends the current SSL connection but still accepts new connections.

Q Ends the current SSL connection and ends the server.

Renegotiates the current SSL session.

Renegotiates the current SSL session and requests a client certificate from the client.

v O =

Prints the session cache status information.

151

152

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Tip A useful tool called SSLdump is available from http: //www.rtfm.com/ssldump/ and is designed
to function like tcpdump except it focuses on SSL/TLS traffic. This is a good tool for diagnosing connection
with SSL/TLS. If provided with keys and passwords, it can also decrypt the monitored traffic.

Stunnel

Stunnel provides an excellent example of how you can use OpenSSL to secure connections.
Many daemons that rely on connections for their functionality, such as a sendmail daemon or
the Apache Web server, either have built-in access controls and have encryption mechanisms
such as OpenSSL or have the ability to be integrated with an access control or encryption mech-
anism. Using Sendmail as an example, I will show in Chapter 8 how to incorporate OpenSSL and
Cyrus SASL to provide authenticated and encrypted message transfer using TLS and a variety of
potential authentication mechanisms. These types of connections generally do not require any
special additional security other than what is incorporated or integrated with them. The connec-
tions from applications and daemons do not offer any or not enough access controls or encryp-
tion that you need to consider securing them further. These types of connections (for example,

a network-enabled syslog daemon like in Chapter 5) require some kind of wrapper to provide
that access control and encryption. The ideal wrapper for those connections is provided with
the combination of OpenSSL and Stunnel.

Note Stunnel tunnels only TCP packets, not UDP packets. It also works only on connections that use single
connections. A service such as FTP requires two connections (a control channel and a data connection) and
therefore cannot be tunneled with Stunnel. If you do need to secure FTP, | will talk about that in Chapter 10.
Otherwise, if you want to transfer files, you can use secure tools such as sftp or scp, which | talk about in
the “scp and sftp” section later in this chapter.

Obviously, Stunnel relies on OpenSSL, and it needs to be installed before you install
Stunnel. You may also have an existing installation of Stunnel of your system. Run the Stunnel
command to check for its presence and version.

puppy# stunnel -version
stunnel 4.04 on i386-redhat-linux-gnu PTHREAD+LIBWRAP with w»
OpenSSL 0.9.7a Feb 19 2003

If installed by your distribution, the Stunnel binary is usually located in /usx/sbin with its
configuration located in the /etc/stunnel directory. Like OpenSSL, Stunnel is a package you
should ensure is kept as up-to-date as possible either through your distribution’s package
management system or via upgrading a source package.

Tip If you install Stunnel on Debian using apt-get, you should check the README . Debian file in the
directory /usr/share/doc/stunnel/ for further instructions on configuring Stunnel on Debian.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

You can download Stunnel from http://www.stunnel.org/download/stunnel/src/. Unpack
the source package, and change into the resulting directory. You need to configure Stunnel.
Listing 3-12 shows a basic configure.

Listing 3-12. Using the configure Script for Stunnel

puppy$./configure --with-tcp-wrappers --prefix=/usr \
--sysconfdir=/etc --localstatedir=/

This configure script specifies Stunnel should enable support for TCP Wrappers and use
an installation prefix of /usr, which would generally overwrite an existing installation of Stun-
nel if it has been installed as part of your base distribution. I have also specified the locations
of the Stunnel configuration files as /etc/ using the --sysconfdir option (with the install pro-
cess creating a subdirectory called stunnel) and the state files to be located in /var using the
--localstatedir option. Some other configuration options are available. Probably the most
commonly used is the --with-ss1 option, which allows you to specify the exact location of
your SSL libraries if they are installed in a nonstandard location.

puppy$./configure --with-tcp-wrappers --prefix=/usr \
--sysconfdir=/etc --localstatedir=/ --with-ssl=/usr/local/ssl

You can see any additional options available by running the configure script with the
--help option.

Once you have configured Stunnel, you need to make and make install it. When you make
Stunnel, you will be prompted to create a server certificate for the system on which you are
installing it. Stunnel uses the standard OpenSSL openssl command to do this, and you should
be able to easily follow the prompts to create the certificate.

The stunnel binary is designed to start Stunnel and by default looks for a file called
stunnel.conf in /etc/stunnel to find its configuration information. Enter the following:

puppy# stunnel

You can override this by specifying a different filename on the command line. This can
allow you to launch a number of individual Stunnel sessions using different configuration files
(for example, if you want to use different certificates and keys for different connections), or
you can place all your connections in one configuration file using the same certificate and key
for all of them. Enter the following:

puppy# stunnel /etc/stunnel/another config.conf

You can also use a couple of other options; -sockets prints the socket option defaults and
-help prints the Stunnel help screen. By default running the stunnel binary will start Stunnel
in daemon mode. Generally I recommend starting Stunnel via an init script. Stunnel includes
asample init script in the tools subdirectory in the source package. You can modify and copy
it to use it for your system. I recommend at least adjusting the location of the default process
identifier (PID) file in the top of the script, which generally points to an unsuitable location.

Tip Stunnel used to have command-line options available to it. This was changed in version 4 of Stunnel,
and now all configuration is handled via the configuration file. Command-line options will no longer work!

153

154

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

The stunnel. conf file controls Stunnel. The source package comes with a sample configura-
tion file called stunnel-sample.conf, which provides examples of a few options. It is installed into
the directory you have specified as the configuration directory using the --sysconfdir option.
The configuration file is divided into two types of options: global options and service options. The
global options specify settings and parameters that affect how Stunnel runs. The service options
allow you to define particular services, tunnels, and connections to Stunnel, which are the core
functionality of the application. Listing 3-13 shows a simple stunnel.conf file.

Listing 3-13. Sample stunnel.conf File

cert = /etc/stunnel/stunnel.pem
pid = /var/run/stunnel/stunnel.pid
setuid = stunnel

setgid = stunnel

[imaps]
accept = 993
connect = 143

The first two options specify the location of the default server certificate to use and the
PID file for the Stunnel process. By default Stunnel starts in server mode and requires you
specify a certificate to be used. You have already specified the certificate that was created by
default when you installed Stunnel (as shown in Listing 3-13). The next two options specify
the user and group that Stunnel will run as.

I recommend creating a user and group specifically for Stunnel. Enter the following:

puppy# groupadd stunnel
puppy# useradd -g stunnel -s /sbin/nologin -d /dev/null stunnel

You should also create the directory for the PID file and change its ownership and per-
missions to accommodate the new user and group. Enter the following:

puppy# mkdir /var/run/stunnel
puppy# chown stunnel:stunnel /var/run/stunnel
puppy# chmod 0755 /var/run/stunnel

In Listing 3-13 the third line shows a service option defined to Stunnel. This is a simple
wrapper for IMAPS. First, you see the name of the service defined in brackets, [], in this case
imaps. This is useful because Stunnel logs to syslog each service by this name, so you should
define it here. Also, if you are using TCP Wrappers, this identifies the service for it.

Second, the next two lines specify what Stunnel is listening for and where it is going to
send that connection. In this case, it is listening on port 993 (the accept statement) for an
SSL-enabled client to try to connect to the IMAP server. It then diverts all traffic from that port
to port 143 (the connect statement). As you have not included a hostname, Stunnel assumes
you are listening on the local host and connecting to the local host. This is the simplest form
of tunnel you can create, and now all traffic between port 993 and port 143 will be encrypted
using SSL/TLS.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION 155

Note A small note about firewalls and Stunnel. In Listing 3-13 | show Stunnel listening for connections
on port 993 and redirecting all those connections to port 143 all on the local host. It is not necessary to have
both ports open to the network in the iptables configuration. I would configure iptables so that it would
allow connections to port 993 from whatever local and/or remote sources | required and restrict port 143 to
connections only from local host or the local network depending on your requirements.

Let’s look at some other types of service connections. Stunnel is also capable of listening on
alocal port and forwarding that port to another port on a remote system. Enter the following:

[rsmtp]
accept = 1025
connect = kitten.yourdomain.com:25

In the service defined previously, rsmtp, Stunnel is listening on port 1025 on the local host
and forwarding all traffic on that port with SSL/TLS enabled to port 25 on the remote system
kitten.yourdomain.com. You can also do the reverse and listen to a port on a remote system
and forward that encrypted to a port on the local host. Enter the following:

[rsmtp2]
accept = kitten.yourdomain.com:25
connect = 1025

This listens to any traffic emerging from port 25 on the remote system kitten and for-
wards it to the local port of 1025.
You can define some other global options to Stunnel (see Table 3-4).

Table 3-4. Stunnel Configuration Global Options

Option Description

key = file Specifies the certificate private key.

CApath = path Defines the CA certificate directory.

CAfile = file Defines the CA certificate file.

CRLpath = path Defines the directory for CRLs.

(RLfile = file Defines the CRL file.

verify = level Specifies the level of certificate verification.

debug = facility.level Specifies the logging facility and level. The level 7 or debug will
produce the most logging output.

foreground = yes | no Stays in the foreground and does not daemonize.
output = file Specifies output logging to a file instead of syslog.
chroot = directory Specifies the directory to which to chroot the stunnel process.

client = yes | no Specifies enabling client mode.

156

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

The first five options allow you to specify the location of a variety of SSL infrastructure
items, including a private key you can use (the default key created during the Stunnel installa-
tion contains the private key and public certificate concatenated in the stunnel.pem file) and
the location of your CA and CRL paths and files.

Tip Remember for Stunnel to properly use your CA and CRL files, they need to be hashed, and the hashes
are located in the paths defined in the CApath and CRLpath options.

The verify option has three levels of peer certificate verification: Level 1, Level 2, and
Level 3. Peer certificate verification indicates Stunnel will attempt to verify any certificates
presented by remote connections to the local Stunnel daemon. Level 1 tells Stunnel to con-
nect if no certificate is present; but if a certificate is presented, then verify it, and if a verified
certificate does not exist, drop the connection. Level 2 requires a certificate be presented and
verifies that certificate. The connection is again dropped if the verification fails. Level 3 also
requires a certificate to be presented and verified, but additionally the presented certificate is
verified against a store of local certificates to confirm the remote system is authorized to con-
nect. By default Stunnel does not perform certificate verification.

By specifying the chroot option, you can run Stunnel inside a chroot jail. Listing 3-14
shows a portion of a stunnel. conf file with chroot enabled.

Listing 3-14. Stunnel with chroot Enabled

cert = /etc/stunnel/stunnel.pem
setuid = stunnel

setgid = stunnel

chroot = /var/run/stunnel

pid = /stunnel.pid

You leave the cert option alone because Stunnel loads any certificates or keys before
starting the chroot jail. So, the location of any of your SSL infrastructure would remain relative
to the normal root of the system. Stunnel will also start running as the defined user and group
before “chrooting” itself. The chroot option itself specifies the new root of the chroot jail, in
this case /var/run/stunnel. The next option, the location of the PID file, is specified relative
to the chroot jail. So in Listing 3-13 previously, the PID is located in /var/run/stunnel.

The last option of Table 3-4. client, allows Stunnel to function as a client of a server. You
can see how this works in Chapter 5 where I show how to use this function to secure a syslog-ng
logging connections to allow using a central log server.

Finally for Stunnel configuration, the service functions can have some additional options
defined (see Table 3-5).

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Table 3-5. Service-Level Options

Option Description

delay = yes | no Delays the DNS lookup for connects.

local = IP Address IP address to be used as source for remote connections.

protocol = protocol A protocol to negotiate before SSL initialization, which includes cifs,
nntp, pop3, and smtp.

TIMEOUTbusy = seconds Number of seconds to wait for expected data.

TIMEOUTclose = seconds Number of seconds to wait for close_notify.

TIMEOUTidle = seconds Number of seconds to keep idle connection open.

The delay option tells Stunnel to delay any DNS lookups until a connection is made if it is
set to yes. The protocol option allows Stunnel to negotiate a particular protocol before the SSL
session is initialized. This is particularly useful with SMTP services where they are expecting
some negotiation before initializing SSL. To provide negotiation for an SMTP service, set the
protocol option to smtp like this:

protocol = smtp

The last options offer timeout values to help manage your connections. The TIMEOUTbusy
option provides a timeout for a response from a remote connection, the TIMEOUTclose waits
for a busy connection close notification, and the TIMEOUTidle provides a length in seconds for
Stunnel to keep alive an idle connection. You will need to experiment with these values to
determine what best suits the type and purpose of your connections.

Let’s look at an example of how to use Stunnel. I will encapsulate a virtual network comput-
ing (VNC) session in a secure tunnel. VNC is remote-access software incorporating remote con-
trol, a screen viewer, and a Java-based viewer that can allow remote control from within a browser
window. It is a popular tool for systems administrators and remote user access. Unfortunately, it
is not very secure. Most of the information transmitted via VNC can be sniffed from the network,
including usernames and passwords. It is especially dangerous to use VNC across an Internet
connection. You will now look at securing VNC using Stunnel.

VNC comes in two portions: a client and a server. The server portion runs on the machine
you want to connect to and the client portion on your local machine. For the purposes of this
explanation, I will assume your server system is a Linux system and you are connecting to it
using a desktop system running Linux. So, set up the server end of Stunnel and VNC.

Listing 3-15 shows the server-side stunnel. conf file.

Listing 3-15. Server-Side stunnel.conf Configuration for the VNC Tunnel

cert = /etc/stunnel/stunnel.pem
chroot = /var/run/stunnel

pid = /stunnel.pid

setuid = stunnel

setgid = stunnel

[vnc]
accept puppy . yourdomain.net:5999
connect = 5901

157

158

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

I have already explained the first five options in Listing 3-15 in the previous section, but
note that I have enabled the chroot function so that any connections to the system will be to
the chroot jail. This may not be ideal if you are using the VNC connection for remote adminis-
tration. The service function defines a service called vnc, which accepts connections on host
puppy . yourdomain.com on port 5999 and then forwards those connections to the port 5901 on
the local host. Now start Stunnel to continue. Enter the following:

puppy# stunnel

The port 5901 is where the VNC is going to be listening for connections. Let’s start it now.
Enter the following:

puppy# vncserver :1

If this is the first time you have started the VNC server, you will be prompted for a pass-
word that will be required by any clients to be able to connect to your system. The :1 part
indicates the VNC server should start allocating displays to incoming clients from Display #1.
Display #1 equates to port 5901, Display #2 equates to port 5902, and so on.

On the client the configuration is similar, as you can see from Listing 3-16.

Listing 3-16. Client-Side stunnel.conf Configuration for the VNC Tunnel

cert = /etc/stunnel/stunnel.pem
chroot = /var/run/stunnel

pid = /stunnel.pid

setuid = stunnel

setgid = stunnel

[vnc]
accept = 5901
connect = puppy:yourdomain.com:5999

In this case, the defined service vnc is listening on the local host port 5901 for any connec-
tions and is configured to forward those connections onto the host puppy.yourdomain.com on
port 5999. You also need to start Stunnel on your client system.

With Stunnel and VNC running on the server system, and Stunnel running on the client
system, you can now try to connect to the server system securely using VNC over Stunnel.
Enter the following:

kitten# vncviewer localhost:1

On the sample client system, kitten, you launch the vncviewer binary and request a connec-
tion to localhost:1, which means Display #1 on the local system. This display equates to the port
5901, which Stunnel is listening on and forwarding to port 5999 on the puppy . yourdomain. com sys-
tem. From there the Stunnel daemon forwards the connection to port 5901 on puppy where the
VNC server is waiting for connections. You will be prompted for a password, and then, if authenti-
cated, you will then be connected to the puppy system via VNC.

You could also update this configuration as I will do with the syslog-ng secure connection
demonstrated in Chapter 5. This allows connections from specific systems and from systems
with valid certificates when you use the verify option in your stunnel.conf configuration file.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

IPSec, VPNs, and Openswan

IPSec is short for IP security and represents a collection of extension standards and protocols
for the original Internet protocol related to the secure exchange of IP packets. It was first
developed for IPv6 and then made backward compatible for IPv4. At the core of this collection
of standards is RFC2401.12 A variety of products and tools use IPSec to secure connections
between systems. IPSec works at a lower level than the SSL/TLS protocols. Whereas SSL oper-
ates between the network and application layers, IPSec encrypts traffic at the IP level and is
capable of encapsulating the entire IP datagram (tunnel mode) or just the data portion of the
IP datagram (transport mode). The tunnel mode allows the encapsulation of the entire origi-
nal IP datagram with a new encrypted datagram. While the transport mode encrypts only the
payload of the IP datagram, leaving the IP header unencrypted. With IPSec you could even
layer a protocol like SSL/TLS over the top of a connection, further enhancing your security.

You will now look at the S/WAN!3 implementation of IPSec. S/WAN can be best described
as a virtual private network (VPN) solution. S/WAN stands for secure wide area network and
was an initiative by RSA Security both to develop a standard for the use of IPSec to build VPNs
and to promote the deployment of Internet-based VPNs using IPSec. While S/WAN is no
longer being actively developed, a number of open-source packages have developed out of
the S/WAN project. One example of this is Openswan. Openswan is an open-source S/WAN
IPSec implementation principally for Linux and other *nix operating systems (though it also
supports Windows to some degree). It is available at http://www.openswan.org/. I will show
you how to install Openswan and create a VPN tunnel between two subnets over the Internet
using RSA encryption.!4 You can perform other tasks with Openswan, including a variety of
functions aimed at providing remote VPN connectivity for roving users. See the Openswan
wiki for further details.15

Tip Additionally, you do not have to only connect two systems. You could also connect a system to a
firewall or router. For example, instructions are available at http://www.johnleach.co.uk/documents/
freeswan-pix/freeswan-pix.html that should provide a starting point for connections between a
system and a Cisco PIX firewall using Openswan.

Openswan has a couple of prerequisites for installation. These are the GMP (GNU Multi-
Precision) libraries from http://swox.com/gmp/. These should probably be installed by default
on your distribution, but an up-to-date version is the safest. Openswan itself is available in
two branches of code, which you can download from http://www.openswan.org/code/. The
first, version 2, supports all current kernels up to version 2.6 and is the current path of devel-
opment of the Openswan package. The second, version 1, supports only kernel versions 2.0,
2.2, and 2.4. It contains a fixed feature set that is somewhat limited compared to the version 2

12. http://www.faqs.org/rfcs/rfc2401.html
13. Pronounced “swan”
14. You can also use shared secrets and X.509 certificate authentication with Openswan.

15. http://wiki.openswan.org/

159

160

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

branch. Openswan version 1 is well tested and stable, but given the lack of support for 2.6 ker-
nels it may have a limited life span as more people upgrade to more recent kernel versions.

I recommend going with the version 2 branch for this reason to avoid a potentially compli-
cated upgrade path as more distributions default to a version 2.6 kernel. For the purposes of
this explanation, I will assume you are going to download the version 2 branch of Openswan.

Caution Openswan works best with 2.4.x and 2.6.x kernels, and | recommend that all your systems run
at least version 2.4. Indeed, not only is support unpredictable for older versions of 2.0 and 2.2 kernels (2.0
earlier than release 2.0.39 and 2.2 earlier than release 2.2.20), but these versions of the kernel also suffer
from a variety of security issues.

Installing Openswan on kernel version 2.4 is not an easy task for a beginner because it
involves working with your kernel. If this worries you or you are not comfortable with activi-
ties such as working with your kernel or recompiling your kernel, I recommend you avoid
Openswan.

Tip Red Hat Enterprise Linux 3-0 (AS, WS, and ES) and Red Hat Fedora Core 2 do not require a kernel
recompilation; although they have version 2.4 kernels, they also have the IPSec modules from the version
2.6 kernel that is backward compatible.

Download Openswan from the Web site. If you are running Red Hat Enterprise 3 or Fedora
Core 2-based systems, you are able to install Openswan via RPM. If you have downloaded the
RPM, then install it using the following command and move onto the section talking about
Openswan configuration. Enter the following:

puppy# rpm -Uvh openswan-version.as3.i386.rpm

If you have downloaded the source package, then unpack the package and change to the
resulting directory.

For kernel version 2.4 systems, you need a clean copy of your kernel source either from
your distribution or downloaded via http://www.kernel.org. The best method to ensure your
installation goes smoothly is to compile your kernel from source prior to installing Openswan.
Once you have done this, make a note of the location of your kernel source package and you
can begin to install Openswan. If you require Network Address Translation Traversal (NAT-T)
support, you need to patch the kernel source. NAT-T allows IPSec traffic to work with NAT
devices such as routers and firewalls. From inside the Openswan source directory, run the fol-
lowing command replacing the /path/to/kernel/source with the location of your kernel source,
as follows. The last command make bzImage will make a new boot image for your system. You
will need to install this new boot image; I recommend you reboot after this to test the new
boot image.

puppy$ make nattpatch | (cd /path/to/kernel/source 8& patch -p1 &3 make bzImage)

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Now you need to build the userland tools and the ipsec.o module. Listing 3-17 shows the
required command.
Listing 3-17. Building the Openswan Userland and the IPSec module for Kernel Version 2.4
puppy$ make KERNELSRC=/path/to/kernel/source programs module

Again, replace /path/to/kernel/source with the location of your kernel source. Once this
is compiled, the last step is to install the tools and your new IPSec module. Use the command
in Listing 3-18 for this.

Listing 3-18. Building the Userland Tools and IPSec Module

puppy# make KERNELSRC=/path/to/kernel/source install minstall

Remember to replace /path/to/kernel/source with the location of your kernel source.
With version 2.6 kernels, Openswan relies on the built-in IPSec support and does not
need to compile a module.

Note This implies you have enabled the IPSec support in your 2.6 kernel. You also should be using at
least version 2.6.4 of the kernel because earlier versions have IPSec bugs that can result in system crashes.

From inside the Openswan source directory, use the commands in Listing 3-19 to compile
and install Openswan for version 2.6 kernels.

Listing 3-19. Compiling and Installing Openswan for Version 2.6 kernels

puppy$ make programs
puppy# make install

Once you have installed Openswan, you need to start it. Openswan comes with an init
script called ipsec that is installed with your other init scripts when you run the make install
process. I will start this script first (see Listing 3-20).

Listing 3-20. Starting the ipsec Script

puppy$ /etc/rc.d/init.d/ipsec start
ipsec_setup: Starting Openswan IPSec 2.1.3...

Next you should verify that all the required components for Openswan are available
using the verify function, which is run using the ipsec command. The ipsec command
provides an interface to Openswan and allows you to control it. Listing 3-21 shows the ipsec
verify function.

161

162

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-21. Theipsec verify Command

puppy$ ipsec verify

Checking your system to see if IPSec got installed and started correctly:
Version check and ipsec on-path [OK]
Linux Openswan U2.1.3/K2.4.21-4.EL (native) (native)

Checking for IPSec support in kernel [OK]
Checking for RSA private key (/etc/ipsec.secrets) [OK]
Checking that pluto is running [oK]
Checking for 'ip' command [0K]
Checking for 'iptables' command [0K]
Checking for 'setkey' command for native IPSec stack support [oK]
Opportunistic Encryption DNS checks:

Looking for TXT in forward dns zone: puppy.yourdomain.net [MISSING]

Does the machine have at least one non-private address? [FAILED]

The results of the command in Listing 3-21 show that all Openswan and IPSec options
are installed and started correctly. The last two options relate to using the Opportunistic
Encryption (OE) DNS checks that rely on DNS TXT records to authenticate VPN connec-
tions. I will not cover this, but if you are interested in looking at OE, then see this quick start
guide at http://www.freeswan.org/freeswan_snaps/CURRENT-SNAP/doc/quickstart.html.
The guide is for Openswan’s predecessor, FreeSWAN, but because Openswan is drawn from
the FreeSWAN code base, configuration is nearly identical.

The ipsec.conf File

Openswan connections are controlled via the ipsec.conf file. You will need to have a copy of
this file on both systems you want to connect with Openswan. Listing 3-22 shows an example
of an ipsec.conf file.

Listing 3-22. A Sample ipsec.conf File

version 2.0

config setup
interfaces="ipseco=etho"
klipsdebug=none
plutodebug=all

conn puppy_to kitten
auth=rsasig

left=203.28.11.1
leftsubnet=192.168.0.0/24
leftid=@puppy.yourdomain.net
leftrsasigkey=key
leftnexthop=%defaultroute

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

right=203.28.12.1
rightsubnet=192.168.1.0/24
rightid=@kitten.anotherdomain.com
rightrsasigkey=key
rightnexthop=%defaultroute

#Disable Opportunistic Encryption
include /etc/ipsec.d/examples/no_oe.conf

Tip The ipsec.conf file is occasionally highly temperamental when parsed. If you have issues with the
ipsec init script failing to start or connections failing to start because of parse errors in your configuration
file, then make sure you have the file properly indented, no extra spaces or special characters are present,
and all your sections starts in the first column. If all else fails, try to remove all comments and empty lines in
your ipsec. conf file.

Let’s go through the file line by line. The first option specifies the use of version 2.0 of
Openswan. The rest of the ipsec.conf file is divided into sections. The sections currently avail-
able for Openswan are the config and conn sections. The config section handles the general
configuration of Openswan, and the conn sections describe connections. You need to indent
the parameters under each section with a tab; otherwise the configuration file will not be
parsed correctly.

The section config setup refers to configuration options related to the startup of Openswan.
I have used three options on this section. The first specifies a matched pair of virtual and physical
interfaces to be used by Openswan for IPSec connections, in this case the virtual interface ipseco
matched with the physical interface etho. You can specify more than one interface here. You can
also use the variable %defaultroute, which finds the default route and uses the interface associ-
ated with that. Enter the following:

interfaces=%defaultroute

You will need at least two interfaces in both your systems for most VPN configurations.
This is because you need one interface for each end of the VPN tunnel in addition to an inter-
face or interfaces on each system for non-VPN tunnel traffic to use. For example, the simple
system-to-system tunnel you are creating here requires two interfaces on each system: one to
connect to the local internal network and the other to provide the interface for the VPN tunnel.

The last two options are both related to the output of debugging data. The klipsdebug
option handles the debugging output from the IPSec module of the kernel, which can be out-
putted to syslog as part of Openswan’s operation. I have set it to none, which will produce no
debug output. The plutodebug option handles the output from the Pluto IKE daemon, which
is started when you run the ipsec init script. The Pluto IKE (or IPSec Key Exchange) daemon
handles the low-level key negotiation daemon. You can read more about Pluto (and its related
control interface whack) viaman ipsec pluto. Table 3-6 describes some other useful options.

163

164

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Table 3-6. Useful Configuration Options for ipsec.conf

Option Description

syslog=facility.priority Specifies the facility and priority of syslog output.

dumpdir=dir A directory for core dumps. Specifies an empty value to disallow
core dumps.

plutoload=conn Specifies connections to load into Pluto’s internal database at

startup. You can specify the %search variable that loads all
connections with auto=route or route=add.

plutostart=conn Specifies connections to be started by Pluto at startup. You can
specify the %search variable that starts all connections with
auto=route, route=add, and auto=start.

nat_traversal=yes | no Allows or disallows NAT traversal.

The next section in Listing 3-22 is the conn section. Your VPN connections are defined in
this section. I show a simple subnet-to-subnet connection that is the most basic form of VPN
that Openswan is capable of generating. Specify the name of the connection puppy to_kitten.
The first option, auth, specifies how the connection will be authenticated. I have specified
authentication using RSA encryption. The VPN connection you are creating has two sides, the
left and right sides, with each side representing a system you want to connect. You will define
the left side first. The first thing you define is the public IP address of the left system you are
connecting from using the left parameter, in this case 203.28.11.1. You then specify the sub-
net of the left-side network using the leftsubnet parameter. This is the internal private subnet
of the left-side network you are connecting to, which is 192.168.0.0/24. Next you define how
the left-side connection is identified for authentication by specifying @puppy . yourdomain. com.
This should generally be set to @domain.name.

Next you need to define your RSA signatures. You can do this using the ipsec newhostkey
command. On each system you want to connect run the following command:

puppy# ipsec newhostkey --bits 2192 --hostname puppy.yourdomain.com
kittten# ipsec newhostkey --bits 2192 --hostname kitten.anotherdomain.com

This will create a file /etc/ipsec.secrets on each system, which contains a public and
private host key for each system. I have specified a bit size of 2192 and the hostname of the
system for which you are generating the key.

Once you have the keys, you need to add the public portion of the keys to the leftrsasigkey
and rightrsasigkey parameters on your ipsec.conf file. You can display the public portion of
the host key using the command in Listing 3-23.

Listing 3-23. Display the Public-Key Portion using the IPSec showhostkey Command

puppy# ipsec --showhostkey --left

RSA 2192 bits puppy.yourdomain.com Thu Jun 24 23:53:33 2004
leftrsasigkey=0sAQNk jDGFsIH6Kx1EhOE79BFxXwItZiSIFOohvZvhiPtNaWobvSbSmhqKAd+fYCInEbrp
zkos+qop7vt0B/JIpwxHF52UwdUQL920EaMOPbM4dIAgat/KkXxMaWmrwhfor Ix3WcppBwX7nuHfCx6f5FKdn
2FcD92yF9Xar1bET726WHINZ1R1idwNg8WtA7WUB4YSmH590L4v+bMWg01R5nM4COtN4SU/NCRITB50alWEPSsC
nbSjNuchogYNwTvj7jGmQSnnb/DC7Ay4rpaZzY8/HCeaiHKCTa+ZGsXEem6/7TSZmpkkx2sE4DxeshaPWHTDx
VHh3mMkGgLnAXev5JgIpkyanKifvPHa73jZ3rHauCpgm/Eh

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Lastly you need to specify a next hop for the VPN connection. This can be the IP address
of the next hop of that system, or you can use the variable %defaultroute to specify the next
hop using the default route of the system.

You then need to setup the right-side connection. Repeat the process of configuring the
right side using the appropriate IP addresses, subnets, next hop, and the correct public key
(obtained on the remote system with the ipsec showhostkey --right command).

Some other options are available in your conn sections, which can be useful (see Table 3-7).

Table 3-7. Additional ipsec.conf conn Options

Option Description

type=type The type of connection to be made, which defaults to tunnel but can also
include transport, passthrough, drop, and reject. See the man page for more
details.

auto=option This option governs behavior of the connection at startup. For example, use

add to add the connection to the Pluto database at startup and start to add
and start the connection

authby=auth_mech The authentication method that can include secret for shared secrets and
rsasig for RSA.

The last line of the ipsec.conf file in Listing 3-22 shows an include statement that allows
additional files to be included into the ipsec.conf file. In this case I have included an addi-
tional file no_oe.conf that disables using OE. But you can also include other files containing
any other Openswan configuration items or connections.

Now I have configured the ipsec.conf file I need to ensure it is present on both systems.
I recommend using the scp command to copy the configuration files. Listing 3-24 shows how
to do this.

Listing 3-24. Copying the ipsec.conf File to Another System

puppy# scp ipsec.conf root@kitten.anotherdomain.com:/etc/ipsec.conf

Firewalling for Openswan and IPSec

After configuring IPSec with Openswan, you need to ensure the firewall configuration
allows connections to pass through. To do this, you need to enable TCP protocol 50, the
Encapsulating Security Payload (which authenticates and encrypts VPN traffic), to and from
the systems you want to connect in your firewall configuration. You need to do this on both
of the systems you are connecting, as well as on any network devices such as firewalls or
routers between the two systems. The emphasis on the word protocol is important. You are
not enabling a port here. You are enabling the ESP encryption and authentication protocol
that is not bound to a particular port (using the iptables option -p).16 You also need to enable
UDP port 500 between the systems and other devices for the Internet Key Exchange (IKE),
which handles connection and key negotiation. Listing 3-25 shows some simple iptables
rules for this.

16. For more information, see Chapter 2.

165

166

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-25. iptables Rules for Openswan and IPSec

iptables -A INPUT -p 50 -j ACCEPT
iptables -A OUTPUT -p 50 -j ACCEPT
iptables -A INPUT -p udp --sport 500 --dport 500 -j ACCEPT
iptables -A OUTPUT -p udp --sport 500 --dport 500 -j ACCEPT

I recommend you further adjust these rules to allow only protocol 50 and UDP port
500 traffic from specific gateways (in other words, only from those systems to which you
want to connect). This is the basic configuration required for almost all Openswan configu-
rations. Some additional configurations also require the Authentication Header (AH) pro-
tocol, which handles packet authentication. If you do need the AH protocol, then you will
need to also enable protocol 51. The Openswan and IPSec documentation clearly indicates
in what circumstances this protocol is also required. Enter the following:

iptables -A INPUT -p 51 -j ACCEPT
iptables -A OUTPUT -p 51 -j ACCEPT

The ipsec Command

With copies of the ipsec.conf file on both systems, you want to connect, and with the fire-
walls rules right, you can now attempt to start the VPN tunnel. You use the ipsec auto com-
mand to start a VPN tunnel. Enter the following:

puppy# ipsec auto --up puppy to kitten

102 "puppy_to_kitten" #1: STATE_MAIN I1: initiate

104 "puppy_to_kitten" #1: STATE_MAIN_ I2: from STATE_MAIN_I1; sent MI2, expecting MR2
106 "puppy_to_kitten" #1: STATE_MAIN I3: from STATE_MAIN_I2; sent MI3, expecting MR3
004 "puppy_to_kitten" #1: STATE_MAIN I4: ISAKMP SA established

110 "puppy_to_kitten" #2: STATE_QUICK I1: initiate

004 "puppy_to kitten" #2: STATE QUICK I2: sent QI2, IPSec SA established

You only need to start the connection from one system. Once you have run this com-
mand, your IPSec tunnel should be up and connected. You can also use the ipsec auto com-
mand to shut down the connection. Enter the following:

puppy# ipsec auto --down puppy to kitten

The ipsec command comes with a variety of other useful functions. One of which is barf,
which outputs a considerable quantity of debugging and logging data that is often useful for
assisting in resolving issues and problems with Openswan. Listing 3-26 shows how to run
barf.

Listing 3-26. Debugging Openswan

puppy# ipsec barf > barf.log

Here I have directed the barf output to a file. Another useful command if you have
changed your IPSec configuration is the ipsec setup command, which you can use to stop
and restart IPSec. Enter the following:

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

puppy# ipsec setup --stop
puppy# ipsec setup --start

You can see details of the other ipsec commands by entering the following:

puppy$ ipsec --help

inetd and xinetd-Based Connections

In the previous section you looked at securing persistent connections in the form of always
active applications such as a mail server or a network-enabled syslog daemon. But other
types of connections exist also, most notably on-demand connections such as those initiated
and controlled by the inetd or xinetd daemons (sometimes called master daemons). As a
result of the number of systems that use inetd and xinetd, it is worth taking a brief look at
these daemons and decide whether you need to run them. These daemons monitor the ports
defined to them, and if they receive a connection on that port, then the daemons start the
required application. The inetd/xinetd daemons can also provide access control (including
using TCP Wrappers) and additional logging while they manage the applications and connec-
tions. In contrast, most persistent connections are started using init scripts and consist of
running a program and placing it in the background or in daemon mode. The daemon han-
dles binding itself to required ports and generally handles its own access controls and log-
ging. The Sendmail daemon, for example, binds itself to port 25, has the ability to control
who connects to it, and logs to the maillog log file.

The original daemon used on a lot of Linux systems was called inetd. These days many
Linux distributions—Red Hat, for example—use a more secure and advanced version called
xinetdl? that added better access controls, some protection from Denial of Service attacks,
and considerable further sophistication of potential configuration. Debian, though, still uses
inetd. The origin of inetd/xinetd-style functionality comes from a requirement to have a cen-
tral server to manage and control a variety of independent networked services. Some of the
services that inetd/xinetd traditionally handle are functions such as echo, chargen, and finger.
Debian also uses inetd by default to start telnet, smtp, and ftp. I recommend you disable
whichever of these your system uses and instead rely on individual init scripts to start those
services, daemons, and applications you require.

I recommend you do this for two reasons. The first is that most of the services that
inetd/xinetd controls are often unnecessary for many systems and can even pose a security
risk to your system. Review all the services started by inetd/xinetd carefully, but I suggest that
most of them are either not required or could be started equally securely using an init script.
One of the elements of good security is operating with the principle of minimalism in mind.
So stop and disable any service or application that is not 100 percent required for the function
of your secured system.

The second reason I recommend you disable inetd/xinetd is because both of these
daemons pose a security risk to your system in their own rights. This risk is both in the many
security vulnerabilities discovered in both daemons but also because it adds another potential
point of security failure. Indeed, many attackers can often use your inetd/xinetd daemon to
install or prime a backdoor on your system by penetrating the daemon. Any potential security

17. http://www.xinetd.org/

167

168

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

value-add or enhancement offered by either inetd or xinetd is outweighed by the additional
exposure created by using these daemons on your system.

To remove initd or xinetd, you need to first check whether init or xinetd is running on
your system and, if so, which of the daemons you are using. Listing 3-27 shows an easy way of
doing this.

Listing 3-27. Finding Out if Either inetd or xinetd Are Running

puppy$ ps -A | grep 'xinetd\|inetd'
2106 ? 00:00:00 xinetd

The inetd/xinetd daemon is usually started by an init script when your system starts.
The inetd daemon is controlled by the inetd.conf file and xinetd by the xinetd. conf file, both
located in /etc. With the inetd daemon, all the services and the programs initiated by it are
defined solely in the inetd. conf file, and the xinetd. conf file references a further directory,
xinetd.d, which contains a collection of files, each of which contains configuration control-
ling a particular service or application.

Tip Make sure you have added a means of starting any applications that inetd or xinetd currently han-
dle that you continue to want to run on your system before proceeding.

Once you know which daemon is running, then stop that daemon. To stop either inetd or
xinetd, the easiest way is to run the init script that starts the daemon and instruct it to stop
the daemon instead. You could also simply kill the process. Remember that this will generally
also kill any services that the daemons are running. Enter the following:

puppy$ /etc/rc.d/init.d/xinetd stop
On a Debian system you can use the invoke-rc.d command. Enter the following:
kitten$ invoke-rc.d inetd stop

Now you need to stop inetd/xinetd from starting when your system runs. On a Red Hat
system, simply use the chkconfig command.

puppy$ chkconfig --del xinetd
And on a Debian system, use the update-rc.d command. Enter the following:
kitten$ update-rc.d -f inetd remove

With the service stopped, you should neaten your system by deleting the associated
inetd/xinetd files. Listing 3-28 shows the files you need to remove for inetd, assuming a
Debian-style system.

Listing 3-28. Removing the inetd Files

kitten#t rm -f /etc/init.d/inetd
kitten#t rm -f /etc/inetd.conf

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

And for xinetd, Listing 3-29 shows the files you need to remove assuming a Red Hat-style
or Mandrake-style system.

Listing 3-29. Removing the xinetd Files

puppy# rm -f /etc/rc.d/init.d/xinetd
puppy# rm -f /etc/xinetd/conf
puppy# rm -fr /etc/xinetd.d

It is probably a good idea at this point to restart your system and test what connections
are open using the ps -Aand netstat -a commands to confirm all the services have been
stopped.

You can also remove the inetd and xinetd packages from your system using your chosen
package management tool. This will guarantee the daemons cannot be used to penetrate or
compromise your system.

Note As | have recommended removing inet.d and xinet.d from your system, this chapter will not
cover the use of TCP Wrappers.

Remote Administration

Most system administrators manage systems to which they need to remotely connect. Some-
times these connections are made over the Internet to a remote location. In the past, the only
tools available to administer your systems were telnet, ftp and the so-called r-tools, rcp, rlogin,
and rsh. These tools are highly insecure. If you are still using any of these tools to administer
your systems—STOP NOW. These tools transmit all their information, including any passwords
you input, in clear text with no encryption. Anybody sniffing on your network or monitoring
devices your traffic passes through on the Internet can grab this information and use it to
penetrate your systems. The r-tools would appear to offer marginal improvement on straight
telnet by using the rhosts file to check that the user and source machine for the connection is
valid and able to sign on. In reality this provides little or no comfort these days because it is
incredibly simple to “spoof” a system to believe a connection is coming from a valid system.

I will cover SSH, as implemented in the OpenSSH package, to replace these clear-text tools
and additionally secure some of the other tools you can use for remote administration such as
remote X-Windows, Webmin, and VNC. SSH stands for Secure Shell and is a command interface
and protocol for establishing secure connections between systems. I will cover the free imple-
mentation called OpenSSH.

Tip If you want to purchase a solution or feel more comfortable with a commercial product, | recommend
SSH Tectia from http://www.ssh.com/.

169

170

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

OpenSSH is not a single tool but rather a suite of tools including ssh, which replaces
telnet and rlogin; scp, which replaces rcp; and sftp, a secure replacement for ftp. It also
contains sshd, which is a SSH server, and ssh-agent, ssh-keygen, and ssh-add, which handle
key generation and management for OpenSSH. It is also capable of performing a variety of
secure tunneling functions, has a number of different forms of encryption, and uses a number
of authentication methods.

You can find OpenSSH at http://www.openssh.com/, and you can download it from a number
of FTP and HTTP mirrors listed at http: //www.openssh.com/portable.html. Most Linux distribu-
tions come with OpenSSH installed already, though, often an older version is present; you should
consider upgrading to the most recent version to ensure you are protected against any vulnerabil-
ities that have been discovered in OpenSSH. You can check if your system has OpenSSH installed
on Red Hat or Mandrake by running the following command:

puppy# rpm -q openssh
openssh-3-6.1p2-18

On Debian, run the following:
kitten$ dpkg --list openssh*

You can check the version of OpenSSH installed by entering the following command:
puppy$ ssh -V

This will show you the version, as follows:
OpenSSH_3-6.1p2, SSH protocols 1.5/2.0, OpenSSL 0x0090701f

I recommend downloading the latest version of OpenSSH and compiling it from source.
You will need a couple of prerequisites before installing OpenSSH. You will need Zlib at least
version 1.1.4 and OpenSSL version 0.9.6 or greater. Unpack the source package of OpenSSH,
and change into the resulting directory. You need to configure the package first; I list some of
the possible configure options in Table 3-8.

Table 3-8. OpenSSH configure Options

Option Description

--prefix=prefix Sets the prefix for the OpenSSH binaries and files
--with-pam Enables PAM

--with-ssl-dir=path Sets the location of the OpenSSL files
--with-kerberos5=path Enables Kerberos 5 support
--with-md5-passwords Enables MD5 passwords

The options in Table 3-8 are mostly self-explanatory. Listing 3-30 shows my configure
statement that uses the prefix of /usr, which will override your existing OpenSSH installation.
This way you do not need to remove any RPMs or packages and worry about any complex
dependency chains if OpenSSH is already installed. I have also enabled PAM.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-30. OpenSSH configure Statement
puppy$./configure --prefix=/usr --with-pam
You now need to make and install the OpenSSH package. Enter the following:

puppy# make && make install

ssh

Now that you have installed OpenSSH, you will learn about the functionality of the ssh com-
mand, which is the core of the OpenSSH suite. At its base level, the ssh command acts as a
replacement for telnet and rlogin, but it is capable of much more than just that. The first and
probably most useful task you can perform with ssh is connect to another system. Listing 3-31
shows the ssh command at work.

Note The remote system needs to have sshd running and have TCP port 22 open.

Listing 3-31. Connecting to Another System Using ssh

puppy$ ssh -1 bob kitten
bob@kitten's password:

The command in Listing 3-31 shows the simplest use of ssh by connecting the user bob
(as indicated by the use of the -1 option to specify a particular user, or you can use the struc-
ture user@remote. host) to the remote server kitten via the default SSH port of 22. If you do
not specify a user, then it will try to use the same username you are currently signed onto as
on the local system. Once connected, ssh then prompts the connecting user for the shell pass-
word of the user bob on the server kitten. If the correct password is inputted, then you will
have an active shell session on that remote system. Mostly important, the password you have
sent to the remote system will be encrypted and therefore considerably harder for an attacker
to sniff off your network and use to aid an attack.

You can use some additional command-line parameters with ssh (see Table 3-9).

Table 3-9. Additional ssh Command-Line Options

Option Description

-a Disables forwarding of the authentication agent connection.
-A Enables forwarding of the authentication agent connection.
-1 identity Selects a file with a particular private key.

-F configfile Specifies an alternative configuration file.

-0 option Gives options in the format used in the configuration file.

-p port Port to connect to on the remote host.

-C Requests compression of all data.

(Continues)

m

172

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Table 3-9. Continued

Option Description

-L port:host:hostport Specifies that the given port on the local (client) host is to be
forwarded to the given host and port on the remote side.

-R port:host:hostport Specifies that the given port on the remote (server) host is to be
forwarded to the given host and port on the local side.

-2 Forces ssh to try protocol version 2 only.

-4 Forces ssh to use IPv4 addresses only.

-6 Forces ssh to use IPv6 addresses only.

-X Disables X11 Forwarding.

-X Enables X11 Forwarding.

-q Quiet mode.

-v Verbose mode.

The -a and -A options control the use of Agent Forwarding, which I will talk about shortly
when I discuss ssh-agent. The -1 option allows you specify a particular private key to use with
this connection, and the -F option allows you to specify an alternative configuration file from
the default .ssh/ssh_config. The -0 option allows you to specify options that do not have a
command-line equivalent from the configuration file on the command line (for example,
-0 'ForwardAgent no').You can override the port you want to connect to on the remote sys-
tem (defaults to port 22) with the -p option. The -C option enables ssh compression, which
can greatly enhance performance on your connection.

The -L and -R options allow you to perform port forwarding or tunneling over SSH. I talk
about port forwarding in the “Port Forwarding with OpenSSH” section.

The -2 option forces ssh to use only version 2 of the SSH protocol. The -4 and -6 options
force ssh to use either IP version 4 or IP version 6. The -x and -X option either disables or
enables X11 Forwarding. I talk about X11 Forwarding in the “Forwarding X with OpenSSH”
section. The last two options control the verbosity of the ssh program.

Listing 3-31 showed a simple connection to a remote system, but there is more to this
process that is immediately apparent here. First, the connection to the remote system can rely
on more than just authentication via password. ssh is capable of three types of authentication.
The first will be familiar to most people who have used the r-tools and is a form of host-based
authentication. This is disabled by default because it suffers from the same security issues
I discussed with the use of telnet and the like. Second, you have public-key authentication,
which utilizes RSA or DSA encryption to verify authenticity. The last form of authentication is
what you saw previously, an encrypted password sent to the remote system. The authentica-
tion methods are tried in this sequence, and ssh makes the connection with the first authenti-
cation method that is successful. You can also require more than one form of authentication
(in other words, public-key authentication and password authentication).

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Note OpenSSH has two versions of the SSH protocol it can use, 1 and 2. | will focus on using version 2 of
the SSH protocol because it is considerably more secure and reliable than version 1. In the “Configuring ssh
and sshd” section, | will show you how to disable version 1 entirely. In the last paragraph where | discussed
different authentication methods, these were the methods that work with version 2 only.

Let’s look at each form of authentication. You will ignore the first simple host-based
authentication as insecure (and thus disabled), and I have pretty much covered the details
of the encrypted password-based authentication. The authentication based on public-key
encryption requires some more explanation, though. The authentication can be based on
RSA or DSA encryption. When you first install OpenSSH, it will create a set of public and pri-
vate keys for each of the available sets of encryption types: RSA1, RSA, and DSA. These keys
are usually stored in /etc/ssh. These are called host keys and do not have a passphrase.

But let’s look at creating your own public-private key combination. OpenSSH comes with
a command to assist in doing this called ssh-keygen. Listing 3-32 shows this command.

Listing 3-32. Running ssh-keygen

puppy# ssh-keygen -t rsa

Generating public/private dsa key pair.

Enter file in which to save the key (/root/.ssh/id dsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id dsa.
Your public key has been saved in /root/.ssh/id_dsa.pub.
The key fingerprint is:
be:0f:b9:41:37:ad:19:24:e9:6a:cc:61:ca:36:86:23 root@puppy

Listing 3-32 shows the creation of a RSA public and private key. The public key is stored in
/root/.ssh/id dsa.pub, and the private key is stored in /root/.ssh/id_dsa. The keys are nor-
mally stored in a directory called .ssh underneath the home directory of the user creating the
keys; but for this example, you created these keys as the root user, so they have been created
underneath the root directory. You indicated to ssh-keygen what type of key you would like to
generate using the -t option. You should add a good passphrase to the key utilizing the same
standards you would use to set your system passwords. You can also create a public-key pair
without a password by hitting Enter on the passphrase prompt. This is obviously less secure
than having a passphrase, but it allows you to use OpenSSH commands in cron jobs and
scripts without needing interactive intervention.

A few other useful options are available to the ssh-keygen command (see Table 3-10).

173

174

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Table 3-10. Additional ssh-keygen Command-Line Options

Option Description

-b bits Number of bits in the key that defaults to 1024.

-f keyfile Specifies a particular key file.

-e Exports a specified keyfile (using the -f option) in SECSH format to stdout.

-i Imports a SECSH or SSH2 key file and outputs an OpenSSH-compatible file to
stdout.

-1 Shows the fingerprint of a specified keyfile.

-t type Specifies the type of key generated, which can include rsai, rsa, and dsa.

-y Re:lds in a specified private key file and outputs an OpenSSH public-key file to std-
out.

The -b option allows you specify the number of bits. It defaults to 1024, and I recommend
not using a size smaller than that. The -f option is designed to be used in conjunction with
other options such as -y, -e, or -1 to specify a particular key file. The -e and -1i options allow
the export and import of keys into OpenSSH, respectively. The imported keys need to be in
SSH2 or SECSH format.18 The -1 option displays the fingerprint of a particular key specified
by the -f option. You can use the -t option to specify what type of encryption to use to create
the key. By default ssh-keygen uses RSA encryption, but you can specify DSA encryption using
the option dsa. I recommend you use RSA. Using the last option, -y, you can input an OpenSSH
private key and output the equivalent public key. You can use other options, which you can
find in the ssh-keygen man page.

Note In the last paragraph | recommend using RSA encryption over DSA encryption. This is a somewhat
subjective judgment; considerably debate takes place in cryptography circles about which is more secure. 9
That debate falls out of the scope of this book, but at this point until more information is available | recom-
mend going with the better-documented and better-researched cipher system, RSA. But as previously men-
tioned, you should be using SSH version 2 only.

So, you have keys on your local system, either created when you installed OpenSSH or
created using the ssh-keygen tool. Next you need to add your public key to the remote systems
lists of suitable keys. OpenSSH maintains a register of the public keys it will accept connec-
tions from in two places. The first is on a per-user basis in the file homedirectory/.ssh/
authorized keys.The second is a centralized register in the file /etc/ssh/authorized keys.

In either of these files, each key should be on a single line in the file. When a user logs into the
server, the remote ssh command tells the local sshd server what key pair it will use; this key is
checked against the central authorized keys file and then the user’s authorized keys file to
see if the key is permitted. It then sends the user a challenge, encrypted with the specified

18. http://www.openssh.org/txt/draft-ietf-secsh-publickeyfile-02.txt
19. Ifyou are interested in the debate, see http://www.rsasecurity.com/rsalabs/node.asp?id=2240.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

public key, which can be decrypted only by the proper private key. If the ssh command is able
to decrypt it, then the decrypted challenge is sent back to the remote sshd server and the con-
nection is authenticated. This happens all without the private key being disclosed across the
network or to the remote server.

Once you have authenticated to a remote system, you have both the option of signing
onto a shell session on the remote system, but you can also replicate the functionality of the
rsh, or remote shell command shell, which allows you to remotely execute commands on
another system. Listing 3-33 shows a remote command execution using ssh.

Listing 3-33. Remote Command Execution Using ssh

puppy$ ssh bob@kittten.yourdomain.com "ls -1 /etc/ssh"
bob@kitten's password:

total 124

-IW------- 1 root root 88039 Sep 18 2003 moduli
-IW-I--I-- 1 root root 1163 Jun 6 02:56 ssh config
scp and sftp

As mentioned earlier, OpenSSH is also capable of replicating the functionality of rcp and ftp.
The rcp command allows you to copy a file to a remote system from the command line. The
OpenSSH equivalent of rcp is called scp, and Listing 3-34 shows scp working.

Listing 3-34. Using scp for Remote Copy

puppy$ scp /root/example.txt bob@kitten:/root
root@kitten's password:
example.txt 100% |*****************************| 4711 00:00

Listing 3-34 shows sending via scp the file example. txt from the directory /root on the
local host to the /root directory on the remote system kitten. To do this, I signed on as the
user bob at kitten. You can send one file to multiple hosts as well by adding additional
user@remote.host:/path/to/destination statements to the scp command. You can use a few
additional options with the scp command (see Table 3-11).

Table 3-11. scp Command-Line Options

Option Description

-p Preserves modification times, access times, and modes from the original file
-T Recursively copies entire directories

-v Enables verbose mode

-B Enables batch mod

-i Specifies a particular private key

-q Disables the progress meter

-C Enables ssh compression

175

176

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

The first option, -p, tells scp to preserve the details including the modification time and
permissions of the original file and give those details to the copied file. If you specify the -r
option with a directory when using the scp command, then scp will recursively copy the entire
directory. The -v option enables verbose logging.

The -B option allows you to send files in batch mode, which is designed to allow you send
files without scp needing to prompt for passwords. You achieve this by using public-key encryp-
tion with public keys that do not have a passphrase, as discussed in the “ssh-agent and Agent
Forwarding” section. So you need to ensure the public key of the sending system is added to the
authorized keys file on the target system. Then when you use scp in batch mode (for example,
in a cron job), you are not prompted for a password and the cron job requires no interactive
input. Listing 3-35 shows this at work in a cron entry.

Listing 3-35. Using scp in Batch Mode in a crontab Entry

15 * * * * /ysr/bin/scp -q -1 /root/.ssh/nopasskitten id w»
-B /home/bob/example.txt bob@kitten:/home/bob/recvfile.txt

Listing 3-35 shows a crontab entry sending a file every hour to a remote server in batch
mode. I have also used the -1 option to specify a particular private key to use. This allows you
to have a separate set of keys for your batch transactions without a passphrase and another
key for purposes such as shell access.

Of the last two options, -q disables the progress meter that you can see in Listing 3-34,
and -C enables ssh compression.

The sftp command provides a secure version of the ftp command. It works in nearly
identical format to a standard FTP session. You enable the sftp server in the sshd_config file,
and it is started as a subsystem of the sshd daemon. You will see the configuration for this in
the “Configuring ssh and sshd” section a little later. Listing 3-36 shows starting an sftp con-
nection to a remote system.

Listing 3-36. Initiating an sttp Connection and an sttp Session

puppy$ sftp -C bob@kitten

Connecting to kitten...

bob@kitten's password:

sttp> cd /root

sttp> put example.txt

Uploading example.txt to /root/example.txt
sttp> exit

As you can see from Listing 3-36 you can also use the -C option to enable ssh compres-
sion. You can also see that you can use the standard FTP commands to perform functions
within the sftp connection. Additionally, you can use the -b option to specify a file containing
a series of commands that you can input in batch mode and the -v option to increase the log-
ging level.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

ssh-agent and Agent Forwarding

OpenSSH also comes with a set of tools for managing and caching keys. The primary tool
I will use in this example is called ssh-agent. It runs as a daemon and allows you to cache
keys in RAM so that you can use the keys for a variety of purposes, such as in a script or in an
automated process, and have to enter only the passphrase for the key once. You first need to
start the ssh-agent daemon and then add keys to it using an additional tool called ssh-add.
This may seem insecure to you. What is to stop the user bob from using a key the root
user has added to the ssh-agent daemon? Well, the ssh-agent daemon runs on a per-user
basis. Thus, if the root user started an ssh-agent and added keys to it, and then user bob
started another ssh-agent and added keys to it, these would be separate processes and the
keys in one process are not accessible in the other. Additionally, the ssh-agent is accessible
only locally—through a local socket. It is not directly connected to your network (though you
can read about authentication agent forwarding next). Listing 3-37 shows you how to start
ssh-agent.

Listing 3-37. Starting the ssh-agent Process

puppy$ ssh-agent

SSH_AUTH_SOCK=/tmp/ssh-UITsiD7123/agent.7123; export SSH_AUTH SOCK;
SSH_AGENT PID=7124; export SSH_AGENT PID;

echo Agent pid 7124;

This starts the ssh-agent daemon and forks it into the background. You will note it sends
an output of some commands to stdout. These are environment variables that need to be set in
order for you to use ssh-agent. The first, SSH AUTH_SOCK, indicates the location of the local socket
ssh-agent uses. The second is SSH_AGENT_PID, which indicates the process ID of ssh-agent that is
being started. The process of the commands being written out to stdout does not mean the envi-
ronment variables are being set. You need to cut and paste the commands into the shell, or you
can run the ssh-agent encapsulated in the eval function, which will set all of the environment
variables. Enter the following:

puppy$ eval “ssh-agent’

Agent pid 7183

puppy$ env | grep 'SSH'

SSH_AGENT_PID=7183
SSH_AUTH_SOCK=/tmp/ssh-SKxNXX7249/agent.7183

The ssh-agent binary also has a few additional command-line options (see Table 3-12).

Table 3-12. ssh-agent Command-Line Options

Option Description

-C Generates C-shell commands on stdout.

-s Generates Bourne shell commands on stdout.

-k Kills the current agent (which needs the SSH_AGENT_PID environment variable set).
-t life Sets a default value for the maximum lifetime of keys added to the agent in seconds.

Defaults to forever.

-d Debug mode.

177

178

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

The first two options, -c and -s, will output the commands for setting the environmental
variables in the form of csh and Bourne shell commands. The next option, -k, will kill the run-
ning ssh-agent daemon based on the process ID contained in the SSH _AGENT PID environmen-
tal variable. Enter the following:

puppy$ ssh-agent -k

The -t option allows you to set a lifetime for the keys you add to ssh-agent in seconds.
After that period the key will expire and be removed from RAM. You can override this using the
ssh-add command. The last option, -d, is debug mode that will start the ssh-agent but not fork
it to the background.

Now that you have ssh-agent running, you need to add keys to it. You do this using the
ssh-add command. Listing 3-38 shows the ssh-add command.

Listing 3-38. Adding Keys to ssh-agent Using the ssh-add Command

puppy$ ssh-add

If you run ssh-add without specifying a particular key file to load, the command will load
id rsa, id dsa, and identity from the .ssh directory of the current user. If these keys require
a passphrase, then you will be prompted to enter that phrase to successfully add that key to
the cache. You can use additional command-line options with ssh-add (see Table 3-13).

Table 3-13. ssh-add Command-Line Options

Option Description

-1 Lists fingerprints of all keys currently stored by the agent.

-L Lists public-key parameters of all keys stored by the agent.

-d Instead of adding the key, removes the key from the agent.

-D Deletes all keys from the agent.

-X Locks the agent with a password.

-X Unlocks the agent.

-t life Sets a default value for the maximum lifetime of keys added to the agent in seconds.

This defaults to forever.

The first options, -1 and -L, list the fingerprints and the public-key parameters of the keys
stored in the agent, respectively. The -d option allows you to remove a key you previously
added to the ssh-agent. Enter the following:

puppy$ ssh-add -d /root/.ssh/id rsa

You can also remove all keys from the agent by using the -D option. The next two options
allow you to lock and unlock the agent with a password to prevent anybody from making any
changes without the password. The -x option locks the agent, and the -X option unlocks the
agent. You will be prompted for a password for both options. The last option, -t, is the same as
the -t option for the ssh-agent command, which sets the life span of the keys in the agent in
seconds.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

The ssh-agent also allows authentication-agent forwarding. Authentication-agent for-
warding means that remote systems can use a local trusted ssh-agent daemon to perform
authentication. To do this, you need to ensure either the -A command line option is issued or
the ForwardAgent option in the ssh_config configuration file is set to yes. Let’s see an example.

1. You have a trusted secure system running ssh-agent on it called puppy.

2. You have two other systems, kitten and duckling. Both kitten and duckling have your
public key in their authorized keys file.

3. You have a terminal session on puppy, and you ssh to kitten. The ssh-agent takes care
of the authentication, and you sign on. You do what you need to on the kitten system.

4. Now you want to do something on duckling, so you need to ssh over there. But your
private key is stored on the ssh-agent on puppy, and the kitten system does not have
a copy of your private key.

5. But you have AgentForward enabled on the kitten and duckling systems. Your
ssh session has recognized this, and when you connect to duckling it connects to the
ssh-agent on puppy and passes your private key through to the duckling system. Thus,
you are able to be authenticated to the duckling system.

Caution This has risks, though. Never enable agent forwarding on a system where you do not control
root or do not trust the system. This is because your private key and passphrase are now in memory of the
systems you have agent forwarded to, and the root user can pluck them from the memory of the system.

The sshd Daemon

The last area of OpenSSH you will look at in this section is the sshd daemon itself. To allow
remote connections via ssh to your system, you need to have the sshd daemon running and by
default the TCP port 22 open (you can override this port in the sshd_config file, which I will
discuss shortly). The sshd daemon is usually started when your system is started through an
init script.

Tip You can find examples of init scripts for Red Hat (which will work for Mandrake, Yellow Dog, and
similar) and SuSE in the contrib directory of the OpenSSH source package.

You can also start it from the command line; Listing 3-39 shows this.

Listing 3-39. Srarting the sshd Daemon

puppy$ sshd -p 22

179

180

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-39 starts the sshd daemon, and the -p option tells the daemon to bind itself on
TCP port 22. You can also specify multiple ports after the -p option to have sshd listen on more
than one port. Table 3-14 describes some of the other command-line options available for
sshd.

Table 3-14. sshd Command-Line Options

Option Description

-d Debug mode. Can be used more than once to increase verbosity.

-D Do not detach and become a daemon.

-t Test mode.

-e When this option is specified, sshd will send the output to the standard
error instead of the system log.

-f configuration file Specifies the name of the configuration file. The default is
/etc/ssh/sshd_config.

-g grace time Gives the grace time for clients to authenticate themselves. Defaults to
120 seconds.

-h key file Specifies a file from which a host key is read.

-0 option Can be used to give options in the format used in the configuration file.

This is useful for specifying options for which there is no separate
command-line flag.

-q Quiet mode.

The first four options are useful for testing. The first -d enables debug output. You can
specify it up to three times in the command line to get more verbosity. The second -D tells sshd
not to detach and become a daemon, and the last, -t, tells sshd to test its configuration and
return any errors without starting. The -e option redirects output from sshd to standard error
and not to the syslog.

You can specify the location of a configuration file using the -f option; if this option is not
specified, then sshd defaults to using /etc/ssh/sshd_config. You can also specify the grace time
allowed for clients to authenticate themselves using the -g option. A setting of 0 means sshd will
wait forever. You can also specify a particular host key for the sshd daemon using the -h option.
The next option allows you to specify any of the configuration file options from the sshd_config
file that do not have a command-line equivalent. Enter the following:

puppy# sshd -p 22 -o 'PasswordAuthentication no'

The last option, -q, suppresses all sshd output and runs the daemon in quiet mode.

Configuring ssh and sshd

You can customize all the commands you have seen so far by configuring the OpenSSH envi-
ronment. The majority of this client-side configuration is controlled by the ssh_config file,
and the server-side configuration of the daemon is controlled by the sshd _config file. You will
look at the ssh_config file first. Usually two versions of this file exist: a local version that is
located in the . ssh directories of local users and a global version that is overridden by the con-
tents of the local ssh_config. The local ssh_config file is in turn overridden by any command-
line option with which you start ssh. Listing 3-40 shows a sample ssh_config file.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-40. A Sample ssh_config File

Host *

BatchMode no

Compression yes
CheckHostIP yes
StrictHostKeyChecking ask
ForwardAgent no
ForwardX11 no

The configuration file is easy to understand. The first entry, Host, defines the scope of the
configuration items beneath it. In Listing 3-40 the Host statement is followed by an asterisk
(*), which indicates all hosts. If you define a particular hostname with the Host statement, the
configuration items following it will apply to connecting to that host only. You can have multi-
ple Host statements defined in the file.

Tip The hostname after the Host statement refers to the argument entered on the command line—
not a resolved or canonical hostname. If you use a complete hostname on the command line,
puppy . yourdomain.com, and have Host puppy in your ssh_config file, then it will not recognize
that you are referring to the same system.

The next option, Batchmode, enables or disables the use of ssh in batch mode (equivalent to
using the -b option on the command line). The Compression option enables OpenSSH compres-
sion if set to yes. The CheckHostIP option tells ssh to check the IP address of the target system for
DNS spoofing. I recommend you always have this on. If set to yes, the StrictHostKeyChecking
never prompts you to add the host key of a new system to the known_hosts file when you first
connect. It also will not allow connections to systems if their host key has changed from the key
contained in the known_hosts file.

I have discussed the ForwardAgent option previously. Unless you are totally sure of what
systems you intend to allow agent forwarding on, and are aware of the risk involved, then keep
this off by setting it to no. The ForwardX11 option allows you to use ssh to forward X-Windows
sessions over SSH. I will cover this in the “Forwarding X with OpenSSH” section, but if you do
not intend to use SSH to forward X11 connections, I recommend setting this to no as it can
pose a security risk. The next two options control which port to connect to on the remote sys-
tem and the protocol you intend to use to connect. Port 22 is the default, and as I have previ-
ously discussed I recommend using version only 2 of the SSH protocol. Quite a few other
options are available to you in the ssh_config file; you can see them in the ssh_config man file.
Enter the following:

puppy$ man ssh _config

Listing 3-41 shows a sample of the sshd daemon configuration file, sshd_config, which is nor-
mally stored in /etc/ssh. Many of the options from ssh_config are identical in the sshd_config file;
where I have previously defined them, I have not redefined them in this section.

181

182

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-41. A sample sshd_config File

Port 22

Protocol 2

SyslogFacility AUTH
LogLevel INFO
PermitRootlLogin no
StrictModes yes
UsePrivilegeSeparation yes
PasswordAuthentication yes
RSAAuthentication yes
Compression yes
X11Forwarding no

Subsystem sttp /usr/libexec/openssh/sftp-server

Unlike the ssh_config file, no Host entry exists. The settings here apply to the sshd server
overall, not to a specific client connection. The first entries Port and Protocol explicitly spec-
ify the port sshd will bind to and the version of the SSH protocol to use. In this case, I am bind-
ing to the default TCP port of 22 and using only the SSH Version 2 protocol. The next two options
control how sshd logs to the syslog daemon; the SyslogFacility option allowing you to spec-
ify the facility you want to log to, and LoglLevel controls the verbosity of the output of the sshd
daemon.

The next options deal with the security of sshd. The first option, PermitRootLogin, is par-
ticularly important and something I recommend you always set to no. This prevents the root
user from logging into the system via ssh. With this set to no, you prevent an attacker from
even attempting connections to root using ssh. The next option, StrictModes, checks if the
files and directories in a user’s home directory are world-writable. If this option is set to yes
and any of the files or directories in a user’s home directory are world-writable, then the user
will not be allowed to log on. The final of these three options is UsePriviledgeSeparation. If
set to yes, the sshd process is divided into two processes, one of them a child process that is
unprivileged and that handles all incoming network traffic. Only when the incoming user has
been authenticated does the child process pass the user to a process with the authority of a
privileged user. This helps reduce the risk of a compromise of the sshd daemon allowing root
access to the system. The PasswordAuthentication and RSAAuthentication options, if set to
yes, tell sshd to allow these authentications mechanisms.

The last option enables the use of the sftp-server, which allows a remote user to connect to
the system using the sftp. The subsystem option spawns the additional command sftp-server
when sshd detects an incoming sftp request. You can also run other subsystems if you want.

You can add some additional options to the sshd_config file (see Table 3-15).

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Table 3-15. sshd_config Options

Option Description

AllowGroups Allows only those groups listed to connect to the system.

AllowUsers Allows only those users listed to connect to the system.

DenyGroups Denies connections from the listed groups to the system.

DenyUsers Denies connections from the listed users to the system.

LoginGraceTime The server disconnects after this time if the user has not successfully
logged in.

VerifyReverseMapping Specifies whether sshd should try to verify the remote hostname.

The first four options simply control who can sign into the system. This allows you to be
selective about what users and groups have permission to connect via ssh. The LoginGraceTime
option allows you to specify a time limit for users to log in. The default is 120 seconds after which
the session is disconnected. The VerifyReverseMapping option tells sshd to confirm that the
resolved remote hostname for the remote IP address maps back to the IP address from which
the connection has been initiated. The default is no.

Port Forwarding with OpenSSH

The OpenSSH package also has the capability to forward ports much like Stunnel does. You can
forward any TCP traffic such as POP3, SMTP, or HTTP traffic through the SSH tunnel. However,
any ports below 1024 are considered privileged; if you want to forward one of these, the user cre-
ating the tunnel must have root privileges. You will also need to have sshd running on the remote
system to make the initial connection and create the tunnel. You will also need to ensure you are
able to authenticate to the system you are creating the tunnel to and that you have sufficient priv-
ileges for the tunnel to be created.

OpenSSH is capable of two types of forwarding—local and remote. Local-port forward-
ing forwards any traffic coming into a specific local port to a specific remote port. Remote-
forwarding monitors a specific remote port and forwards the traffic from that port to
a specific local port. Listing 3-42 shows OpenSSH local-port forwarding of traffic from
port 25 on the local system to port 1025 on the remote system, 192.168.0.1.

Listing 3-42. Local Port Forwarding Using ssh

puppy# ssh -fN -L 25:192.168.0.1:1025 bob@192.168.0.1
bob@192.168.0.1"'s password:

The -L option is structured as localport:remotehost:remoteport, or in this example
25:192.1658.0.1:1025. I have also added the -fN options to the command to tell ssh to go into
the background after establishing the port forwarding. The connection will then exist as an
ssh process and forward the ports until the process is killed or the system restarted. Remote-
port forwarding works in a similar way. Listing 3-43 shows a remote-port forward.

183

184

CHAPTER 3 " SECURING CONNECTIONS AND REMOTE ADMINISTRATION

Listing 3-43. Remote Port Forwarding Using ssh

puppy# ssh -fN -R 995:1ocalhost:110 jim@kitten.yourdomain.com
jim@localhost's password:

The -R option is structured as remoteport: localhost:localport, so in Listing 3-43 you are lis-
tening to remote port 995 on kitten.yourdomain.com and forwarding it to port 110 on localhost.
You have also added the -fN options again to have the ssh command go into the background.

With the port forwarding I have demonstrated here, the user is prompted for a password
based on the user specified on the command line. You could also use a system that has been
authenticated via RSA key exchange or generate a key specifically for this connection. You can
specify the use of a particular private key using the -1i option. The matching public key obvi-
ously needs to be in the authorized keys file on the remote system. Enter the following:

puppy# ssh -fN -i /home/jim/.ssh/kitten_key -R 995:localhost:110
jim@kitten.yourdomain.com

This could potentially also allow you to incorporate the command into a script because it
does not require prompting for a password.

Another option you can add to the ssh port-forwarding command is the -g option. By default
OpenSSH does not allow remote hosts to connect to local forwarded ports. When you add the -g
option, remote hosts are able to connect to those local forwarded ports.

Forwarding X with OpenSSH

The last use of OpenSSH you will look at is the forwarding of X11 traffic over SSH. This allows
you to execute X applications on a remote system via a secure SSH tunnel. Normal X traffic is
unencrypted and easily sniffed across a network. But there are still risks with doing this, and
you should never enable X11 Forwarding on systems where you do not explicitly trust the
remote system. Also, X offers too many potential threats, even with an SSH tunnel, to forward
X11 traffic over the Internet. In fact, as I have mentioned elsewhere in this book, I recommend
not running X on a system that provides a server function because of the risks that X poses.

But if you do want to use remote X sessions, I will show you how to tunnel those X ses-
sions through an SSH tunnel. First, you need sshd running on the remote machine on which
you want to run X applications. Your sshd_config file on that remote machine needs to have
the option on the next line enabled:

X11Forwarding yes
Second, change your ssh_config file to add the option on the following line:
ForwardX11 yes

You could also enable X11 Forwarding on your ssh command by using the -X command-
line option.

CHAPTER 3 "/ SECURING CONNECTIONS AND REMOTE ADMINISTRATION

CGaution From OpenSSH version 3.8 onward, ssh will use untrusted X11 Forwarding by default. This more
secure untrusted forwarding will limit what you can change and control using a remote X11 connection. This
will be the default behavior when using the X11Forward, ForwardX11, and-X options with OpenSSH. If you
want to revert to the previous X11 Forwarding behavior, you can set the option ForwardX11Trusted to yes
in your ssh_config file or use the command-line option -Y.

Once you have configured this, then you can connect to the remote system and run an X
application; in this case, I have chosen to run xterm. Enter the following:

puppy# ssh -X bob@kitten
bob@kitten's password:
kitten# xterm

The X11 Forwarding option of OpenSSH will automatically define and assign a $DISPLAY
variable to your forwarded X connection.

Resources

The following are some resources for you to use.

Mailing Lists
¢ Openswan mailing lists: http://1ists.openswan.org/mailman/listinfo/

* OpenSSH mailing lists: http://www.openssh.org/list.html

¢ Stunnel mailing lists: http://www.stunnel.org/support/

Sites

¢ Certificate Service Provider: http://devel.it.su.se/projects/CSP/

e EJBCA: http://ejbca.sourceforge.net/

e IPSec HOWTO for Linux: http://www.ipsec-howto.org/

* Netscape Certificate Management System: http://wp.netscape.com/cms/v4.0/index.html
* Openswan: http://www.openswan.org/

* Openswan wiki: http://wiki.openswan.org/

e OpenSSH: http://www.openssh.org/

* RSA Laboratories: http://www.rsasecurity.com/

e Stunnel: http://www.stunnel.org/

* VNC: http://www.realvnc.com/

185

CHAPTER 4

Securing Files and
File Systems

In the past few chapters I have covered basic operating system security, firewalls, and the secu-
rity of your connections. In this chapter I will cover the security of your data itself—the files and
file systems that hold both user data and the files and objects used by the kernel, your operating
systems, and your applications. Your file systems and the files and objects stored on them are
your system’s assets. The data contained on these assets is often the ultimate target of attackers
who have the intention of stealing, tampering with, or destroying them.

Attacks on your files and file systems come in a number of forms. They can take the form
of vulnerabilities and exploits of applications, tools, or the kernel. These vulnerabilities and
exploits take advantage of security weaknesses or idiosyncrasies in Linux’s implementation of
files and file systems. Or they can take advantage of the functionality of your file attributes, for
example, through the malicious exploitation of setuid or setgid binaries. They can also occur
because attackers are able to circumvent your system security through inappropriately set
permissions or poorly managed or administered files and file systems.

I will take you through a series of explanations of various facets of file and file system
security. First, I will run through some basic permission and file attributes concepts. This will
include looking at some file attributes such as object ownership, setuid, and world-writable
permissions that could potentially offer attackers opportunities or leverage on your system.
Second, I will cover setting a secure umask for your system. Additionally, I will cover some ways
of protecting the files on your system, including making them immutable and encrypting them.
I take the same approach to addressing file systems by covering individual security-related
items such as securely mounting file systems, encrypting file systems, and using tools such
as Tripwire.

This chapter is not a detailed examination of how Linux and other Unix dialects files and
file systems work but rather covers security-related features, highlights areas of potential secu-
rity risk that result from certain types of file attributes, and covers some file and file-specific
security enhancements, tools, and functions that can assist you in securing your files.

187

188

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Note One significant area | have not covered is access control lists (ACLs). ACLs allow more advanced
file permissions to be applied to your files and objects. ACL access frameworks provide more granular per-
missions to objects, for example, granting multiple users and groups varying permission to a particular
object. | have not discussed ACLs because at this stage of their development, there are too many varying
approaches for different types of file systems and for different distributions to provide a simple and accurate
explanation of ACLs. | have included some URLs in the “Resources” section that will provide more informa-
tion on ACLs.

Basic File Permissions and File Attributes

Each file or object on a Linux system has a number of attributes including the type of object,
its ownership, the permissions users and groups have been granted to it, its size, and so on.

If you list the contents of a directory using the 1s command, you can see all of these attributes.
In Listing 4-1 I have used the 1s command with the options 1 and a to display in a longlisting
format all file attributes.

Listing 4-1. Listing a File

puppy$ 1s -la *
-IWXr-Xr-x 2 bob sales 4096 Apr 2 01:14 test.sh

I will briefly touch on each of the attributes of objects on Linux systems. As you can see
in Listing 4-1, the attributes are divided into seven columns. Listing 4-2 shows these seven
columns.

Listing 4-2. File Attributes

1 2 3 4 5 6 7
permissions file entries owner group size date/time object name

The first column indicates the permissions of the file or object. These are probably the most
important attributes of a file or object. The second column indicates the number of file entries.
This applies to directories and indicates how many files are contained in a directory. If the file is
an ordinary file, then the file entry will be 1. The third and fourth columns indicate the owner
and group to which the file or object is assigned. Of these remaining file attributes, you will most
closely be examining the first column of permissions and the third and fourth columns on own-
ership. The fifth, sixth, and seventh columns, respectively, indicate the size of the object in bytes,
the date and time of the last modification of the object, and the name of the object. These attrib-
utes are self-explanatory, so I will not cover them in any detail.

Access Permissions

Let’s look at the permissions column. This column has ten flags. It starts with a single flag indi-
cating the object type. In Listing 4-1 this is a hyphen, -, which indicates this is an ordinary file.
Table 4-1 lists all the possible flags in this first flag. These represent all the types of files and
objects available on a Linux system.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Table 4-1. File and Object Types

Flag Description
- Regular file
d Directory

1 Link

o Special file

s Socket

o Named pipe

The next nine flags indicate what the permissions of the object are. They are divided into
three groups, or triplets, of three flags each. Each triplet of flags is the permission settings for
a particular class of user. These classes of users are the owner of the object, the group assigned
to the object, and everyone.! The individual flags within each triplet represent the three basic
permissions used on Linux systems: read, write and execute. Let’s look at what access each
permission grants.

* Read: Allows you to read, view, and print a file
* Write: Allows you to write, edit, and delete a file

* Execute: Allows you to execute a file, such as a binary or script, and search a directory

So, if you look back at Listing 4-1, you can see the first triplet of flags is rwx. This indi-
cates that the owner of the object has the read, write, and execute permissions to the test.sh
object. The next group of flags indicates the permissions that the group the object is assigned
to have been granted to the object. In this case, it is r-x or read and execute. The - indicates
that write permissions have not been granted to the group of the object. The last group of
flags indicates the permissions that everyone on the system has to this object, in this case r-x
or read and execute. Again, the - indicates that the write permission is not granted to the
world.

These groups of permissions can also be indicated numerically, and I have used this form
of notation throughout this book. Listing 4-3 shows an example of this notation in conjunction
with the chmod command.

Listing 4-3. Numerical Permissions Notation
puppy# chmod 0755 test.sh

The notation 0755 is a number in octal mode. This number is the same as setting the nine
permission flags to rwxr-x-r-x. Or explained further, the owner has all three permissions to
this object, and both the members of the group that this object belongs to and everyone on
the system have been granted read and execute permissions for this same object. So where do
these octal-mode numbers come from?

1. Also known as world or other permissions. I will use the term world permissions throughout this
chapter.

189

190

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Well, the first digit, 0, in the mode number is used with setuid, setgid, or sticky bit per-
missions. I will talk more about it in the “Sticky Bits” and “setuid and setgid Permissions” sec-
tions later in this chapter. For the remaining three digits, each of the digits in 755 corresponds
to one of the triplets of permission flags: the owner, group, and world permissions, respectively.
The digits themselves are created by assigning a value to the possible permission types: 4 for r,
2 forw, and 1 for x. These values are then added to create the permissions triplet. So the triplet
rwx is equal to a value of 7, or 4 + 2 + 1. To represent the triplet r-x, you add 4 for r and 1 for x to
get 5. If you want to represent - - -, or no permissions to an object, you use the numeric nota-
tion of 0. Table 4-2 describes the possible mode numbers.

Table 4-2. Mode Numbers

Mode Number Description

0400 Allows the owner to read

0200 Allows the owner to writ

0100 Allows the owner to execute files and search in the directory

0040 Allows group members to read

0020 Allows group members to write

0010 Allows group members to execute files and search in the directory
0004 Allows everyone or the world to read

0002 Allows everyone or the world to writ

0001 Allows everyone or the world to execute files and search in the directory
1000 Sets the sticky bit

2000 Sets the setgid bit

4000 Sets the setuid bit

You can add these mode numbers together to provide the correct permissions for your
file. For example, 0600, commonly used for system files, allows the owner of the file write and
read permissions (4 + 2 = 6) and no permissions to the group or world (the 00 portion of the
mode number).

The chmod command can also use symbolic notation, and it can add permissions using a +
sign and remove them using a - sign. Listing 4-4 shows how to grant the write permission to
the owner of the object.

Listing 4-4. Using chmod Symbolic Notation

puppy# chmod u+w test.sh

The u flag indicates the owner of the object, and the w flag indicates the write permission.
You can also do multiple operations using this form of notation. The next line grants the write
permission to the owner of the object and the execute permission to the object’s group.

puppy# chmod u+w,g+x test.sh

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

To grant world read permissions to the test. sh file, you would use the following:
puppy# chmod o+r test.sh

where o indicates world or everyone permissions and r indicates read.
You can get more information on this style of notation in the chmod man page.

umask

By default on Linux systems, each file or object is created with default file permissions. You
need to ensure these default permissions are not overly generous and users and applica-
tions are granted an appropriate level of permissions to files and objects. To achieve this
Linux comes with the umask command. This command adjusts how the file and object per-
missions will be set when a file or object is created and is intended to ensure any new files
created by users, applications, or the system itself are not inadvertently granted excessive
permissions. Listing 4-5 shows a typical umask setting.

Listing 4-5. umask Settings
puppy# umask 022

The umask command works by applying a umask value to a series of default permissions for
different types of objects on your system. For example, the default file permissions for a new
directory or binary executable file are 777, and for an ordinary file they are 666. In Listing 4-5
the umask is set to 022. If you create a new binary file, you take the default file permissions of
777 and subtract the 022 from them (777 — 022) to get the permissions of the new file, 755. If
you were to create an ordinary file and umask was set to 022, you would subtract the 022 from
666 to get the new default permissions of 644.

You can set the umask on the command line, as demonstrated in Listing 4-5. The umask com-
mand also has a couple of command-line options. You can see the -S option on the next line:

puppy# umask -S
U=TWX, =TX,0=IX

The -S option prints the current umask in symbolic notation. On the previous line you can
see the symbolic notation for the octal-mode number, 755. The second option, -p, prints the
current umask in a form that can be reused as an input in a script or the like. Entering the com-
mand umask without any options will print the umask of the current user.

The umask command can be set by default at a few different points on your system. The
first, and most commonly utilized, is via the boot process in init scripts. For example, on Red
Hat systems the umask is set in the /etc/rc.d/init.d/functions init script, which is referenced
in most Red Hat init scripts. On Debian systems it is set in the /etc/rcS init script. Addition-
ally, each user on your system generally has the umask command set for them in their profile.
For example, if you use the bash shell, it is set in the .bash_profile file in the user’s home direc-
tory or globally for all user profiles in the /etc/bashzrc file. On some other distributions the umask
is setin the /etc/profile file.

Typical umask settings include 022, 027, and the most restrictive setting 077. I recommend
a default umask of at least 022, but you should look at increasing this to a setting such as 077 on
systems that will not have users creating large numbers of files (such as a bastion host) and

191

192

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

where the applications creating files are easily quantifiable. Like most permissions settings,
this will require some testing with your applications, and you should note that some users
(especially those that run processes to create files or objects) will require more lenient umask
settings than other users.

Note If you are using Red Hat, then the default umask for all users with a UID greater than 99 (in other
words, nonsystem users) is 002 rather than 022. The default umask of 022 would normally prevent other
users and members of the primary group to which a user belongs from modifying any files they create. But
because most users on a Red Hat system are created together with a group of the same name that is their
primary group (a convention generally called user private groups; see Chapter 1), they do not need this pro-
tection and a umask of 002 is adequate to protect their newly created files.

World-Readable, World-Writable, and World-Executable Files

As T have mentioned, the last triplet of access permissions is the access granted to everyone,
or world access. World access includes all users on your system. This means that if an attacker
were to compromise an ordinary user account on your system, they would have whatever
world access is granted to all your files and objects. This poses three significant risks.

¢ The first is what world-readable files and directories are on your system, and how could
their content benefit an attacker?

¢ The second is what world-executable files and directories exist on your system, and
what could running them gain an attacker?

» The last and arguably most significant risk is what world-writable files and directories
exist on your system, and how could changing, editing, or deleting them benefit or
assist an attacker in penetrating your system?

Irecommend you carefully audit the files and objects on your system for those with
world-readable, world-executable, and world-writable permissions. Find all those files and
directories on your system, and determine whether they require the world permissions; if
not, remove those permissions. Some files on your system will require world access permis-
sions such as some devices in the /dev and /proc directories or some files required for partic-
ular applications. I recommend you carefully conduct tests before you make changes to your
permissions in a production environment. In Listing 4-6, you can see a command to find all
files and objects with world access on your system.

Listing 4-6. Finding World Permissions

puppy# find / -perm -o=w ! -type 1 -1s

The find command is using the -perm option to search for files and objects with particular
permissions set. The -o=w flag for the -perm option selects files with at least world-writable access
(which includes lesser access such as readable and executable permissions). The ! -type 1 part

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

selects all file and object types except links, and the last option, -1s, outputs the list of files in the
same format as used when you execute the 1s command with the -dla options specified.

Tip The find command is a powerful tool for searching for particular files and objects on your system;
you can find further information on how to use it in the find man page.

Sticky Bits

Linux security permissions can be highly inflexible. If a user has the write permissions, or a group
they belong to has write permissions to a directory, the user will be able to delete the files in that
directory even if they do not own those files. This has some serious implications for directories to
which more than one user or application share write permissions. In Listing 4-7 user bob belong-
ing to the group sales can create a file in the directory /usr/sharedfiles.

Listing 4-7. Sticky Bits

puppy$ su bob

puppy$ cd /usr/

puppy$ 1s -1 sharedfiles

dTWXTWXT-X 2 root sales 4096 Sep 8 19:13 sharedfiles
puppy$ cd sharedfiles

puppy$ vi bobsfile

puppy$ 1s -1 bobsfile

-IW-IW-I-- 1 bob bob 5 Sep 8 19:25 bobsfile

User jane also belongs to the group sales. As the group sales has write permission to the
/usr/sharefiles directory, she can delete user bob’s file.

puppy$ su jane

puppy$ cd /usr/sharedfiles

puppy$ rm bobsfile

rm: remove write-protected regular file “bobsfile'? y

Obviously, bob may not be so happy about jane deleting his file. Sticky bits help solve this
issue. When the directory sticky bit is set, users will still be able to create and modify files within
the directory, but they will be able to delete only files that they themselves have created. The
sticky bit is set for a directory if a t or T is present in place of the x in the world permissions
triplet, like this:

drwxrwxrwt

Alowercase t indicates that the world permission of execute is set together with the sticky
bit. An uppercase T indicates that only the sticky bit is set and the world execute bit is not set.
You can set the sticky bit using the chmod command.

puppy# chmod 1775 sharedfiles
puppy# 1s -la sharedfiles
drwxrwxr-t 2 root sales 4096 Sep 8 19:29 sharedfiles

193

194

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Note Only the root user can set the sticky bit.

Now with the sticky bit set for this directory, the user jane would not be able to delete the
user bob’s file. To set the sticky bit without giving the world execute permission to the directory,
you would use the chmod command on the next line. Enter the following:

puppy# chmod 1774 sharedfiles
puppy# 1ls -la sharedfiles
drwxrwxr-T 2 root sales 4096 Sep 8 19:29 sharedfiles

Notice that the mode number is now 1774 rather than 1775, which indicates that the world
execute permission has not been granted.

I recommend you examine the option of setting the sticky bit for all world-writable direc-
tories. This prevents users from either accidentally or maliciously deleting or overwriting each
other’s files and limits the use of world-writable directories by attackers who are trying to pen-
etrate your system. Of course, like any permissions-related setting, you should carefully test
permission changes with all your applications.

Note Setting the sticky bit on files and symbolic links does not have a security impact but rather is
related to local paging and transition links.

setuid and setgid Permissions

You can set the setuid and setgid permissions on a binary to allow it to run with the privileges of
the owner or group of the binary rather than the user actually running the binary. You will look at
how this works and then see why this is a risk and how to mitigate this risk. Probably the best
example of setuid permissions is the passwd binary. Normally the access to the passwd file is lim-
ited to the root user and no other user. But all users on your system can use the passwd binary to
change their passwords. The setuid permission makes this possible. The passwd binary is owned
by the root user with setuid permissions set. When executed by a normal, unprivileged user on
your system, the passwd binary does not run as this user, as a normal binary would, but rather
adopts the privileges of its owner, the root user. In Listing 4-8 you can see the permissions of the
passwd binary.

Listing 4-8. setuid Permissions
-T-S--X--X 1 root root 16336 Feb 14 2003 passwd

The s specified in the execute flag of the owner permissions triplet indicates that this
binary has setuid set. Like the sticky bit, the lowercase s indicates that the owner of the file
also has execute permissions. If binary had an uppercase S instead of a lowercase s, then the
owner of the binary would not have the execute permission to the file. You can set the setuid
permission with the chmod command by prefixing the mode number with the digit 4.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

puppy# chmod 4755 test.sh
puppy# 1s -1 test.sh
-TWST-XT-X 1 root root 992 Aug 4 15:49 test.sh

Thus, the digit 4 in the 4755 sets the lowercase s in the execute flag of the owner permis-
sion triplet. To set the S setuid permission, you enter the following:

puppy# chmod 4655 test.sh
puppy# 1ls -1 test.sh
-YWST-XT-X 1 root root 992 Aug 4 15:50 test.sh

The setgid permission operates in a similar way to the setuid permission. But instead of
allowing the binary to run with the permissions of the owner, it allows the binary to run with
the permissions of the owning group. You can tell if the setgid permission is setifan s or S is
set in the execute flag of the group permissions triplet. Like the setuid permissions, you set
the setgid permissions with the chmod command. Instead of prefixing the mode number with
a 4, you prefix it with a 2. In Listing 4-9 you can see how setgid is set.

Listing 4-9. setgid Permissions

puppy# chmod 2755 test.sh
puppy# 1s -1 test.sh
-YWXT-ST-X 1 root root 992 Aug 4 15:50 test.sh

So why are setuid and setgid binaries a potential security risk on your system? Well, they
have two problems. The first problem is that a user can use an existing setuid binary’s greater
privileges to perform actions that could be malicious on your system. Of course, some setuid
and setgid files on your system actually require this functionality to operate, with the previ-
ously cited passwd command being one of these. The sendmail binary is another example.

The second problem is that setuid or setgid commands or binaries owned by privileged
users such as the root user can be easily created on your system by an attacker. This binary
can be used to run an attack or compromise your system. Indeed, many root kits (see
Chapter 6) use setuid or setgid binaries to compromise systems. So, the two aspects of
setuid and setgid permissions you need to monitor and manage are as follows:

¢ Limit the number of setuid and setgid binaries on your system to only those binaries
that require it.

* Regular checks for new and existing binaries that may have had setuid and/or setgid

permissions set without your approval or knowledge.

To do this, the first thing you need to do is identify all the setuid and setgid binaries on
your system. Listing 4-10 provides a find command designed to locate setuid binaries.
Listing 4-10. Finding setuid Files
puppy# find / -perm -4000 -ls

And Listing 4-11 provides a variation of this command for locating setgid binaries.

195

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Listing 4-11. Finding setgid Files

puppy# find / -perm -2000 -1s

Tip You can also use a tool such as sXid (available from http://1inux.cudeso.be/linuxdoc/
sxid.php) to automatically find setuid/setgid binaries. You could also look at the Debian command
checksecurity.

After using the commands in Listings 4-10 and 4-11 you need to review all the files found
and determine whether they all require setuid or setgid. If they can have the permissions
removed, then use the chmod command to remove them.

Note For a scanning tool that can scan for a variety of different file types, see the “Scanning for Files with
Adeos” sidebar.

SCANNING FOR FILES WITH ADEOS

The Adeos? tool is designed to automatically scan your system for files and objects in a variety of potential
states, such as world-writable or setuid files, and output a report that you can review. You can download
Adeos from http://1linux.wku.edu/~1lamonml/software/adeos/. The tool has not been updated for
some time, but its basic functionality remains suitable to use. Download the archive file containing the Adeos
scanner, and unpack it.

puppy$ wget http://1linux.wku.edu/~lamonml/software/adeos/adeos-1.0.tar.gz
puppy$ tar -zxf adeos-1.0.tar.gz

Change into the adeos-1. 0 directory created when you unpack the archive. The configuration and installa-
tion process for Adeos is a simple configure and make process.

puppy$./configure && make

The compilation process will create a binary called adeos. You can copy the binary to a location of your
choice or run it from the adeos-1. 0 directory. The binary can be run from the command line or via a cron
job. Table 4-3 lists the options it can use.

(Continues)

2. Adeos is the Roman goddess of modesty.

CHAPTER 4 ©° SECURING FILES AND FILE SYSTEMS

SCANNING FOR FILES WITH ADEOS (Continued)

Table 4-3. Adeos Command-Line Options

Option Description

-d Includes dynamic directories such as /tmp or /proc in the scan

-h Outputs the scan as a HTML file called results.html in the current working directory
- Formats the output as a collated report

--help Displays the Adeos help and usage information

Adeos supports three scan modes: normal, verbose, and paranoid. The normal mode scans for setuid
and setgid files, world-writable files, and directories. This is the default mode that Adeos will run in if you
do not provide a mode on the command line. The next mode is verbose mode, which looks for all the file
types in the normal scan mode plus files with the sticky bit set, unreadable directories, and inaccessible files.
The last mode, paranoid, is the most detailed and scans for all the types in the normal and verbose modes
and adds world-readable and world-executable objects.

Let’s first run Adeos in the normal mode. Enter the following:

puppy$./adeos

World-writeable file: /var/lib/mysql/mysql.sock
World-writeable directory: /var/tmp
World-writeable directory: /var/spool/vbox
World-writeable directory: /var/spool/samba
World-writeable directory: /tmp

SUID file: /usr/X11R6/bin/XFree86

SUID file: /usr/sbin/usernetctl

The adeos command will output a list of files will be outputted. This list may be quite long, and | recommend
you redirect the output of the command to a file. This will allow you to better use the results. You can also run
Adeos with the - option to output the results in a report format suitable for printing. Listing 4-12 runs Adeos
in verbose mode with the report option enabled.

Listing 4-12. Adeos in verbose Report Mode

puppy$./adeos -r verbose

You can also output the results of the Adeos scan as a HTML document using the -h option. Listing 4-13 runs
Adeos in paranoid mode with the HTML output option.

Listing 4-13. Adeos in paranoid Mode

puppy$./adeos -h paranoid

The -h option will create a HTML file called results.html in the current working directory.

Caution Occasionally when running in paranoid mode with the - option set, Adeos can consume
large quantities of memory and significantly slow your system. You should be careful when running
Adeos in this mode with this option.

197

198

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Ownership

Now I will go back to Listing 4-2 and the seven columns of attributes for the objects. The third
and fourth columns are the owner of the object and the group of the object, respectively. In
Listing 4-1 the test.sh object is owned by the user bob and belongs to the group sales. The
user bob, as the owner, is entitled to the first triplet of access permissions, rwx, as I have described
in the previous section, and the group sales is entitled to the second triplet of permissions,
1-X. As I stated earlier, everyone on the system has been granted the world permissions, r-x,
to the test.sh object.

One of the important characteristics of ownership is that all files and objects on your sys-
tem should have an owner. Unowned objects can often indicate that an attacker has penetrated
your system. Listing 4-14 provides a find command that will return all files that do not have an
Owner or a group.

Listing 4-14. Find Unowned Files and Objects
puppy# find / -nouser -o -nogroup -1ls

You should review any files and objects that are unowned by a user or do not belong to
a group and either remove them or assign them to the appropriate owner or group.

Immutable Files

Immutable files are one of the most powerful security and system administration features
available on Linux systems. Immutable files cannot be written to by any user, even by the root
user, regardless of their file permissions. They cannot be deleted or renamed, and no hard link
can be created from them. They are ideal for securing configuration files or other files to
which you want to prevent changes and which you know will not or should not be changed.

Note Immutable file functionality is available for ext2 and ext3 type file systems in kernel versions 2.4
and onward on most distributions. The chattr commands and associated functionality is provided by the
e2fsprogs package, which is usually installed by default on most Linux systems.

You can add or remove the immutable attribute using the chattr command. Only the
root user can use the chattr command to make files immutable. Listing 4-15 makes the
/etc/passwd file immutable. This would prevent any new users being created on the system,
because new users could not be written to the /etc/passwd file.

Listing 4-15. Setting the Immutable Attribute

puppy# chattr -V +i /etc/passwd
chattr 1.34 (25-Jul-2003)
Flags of /etc/passwd set as ----i--------

The chattr command is similar in function to the chmod command. Like the chmod com-
mand, you specify either a plus (+) sign or minus (-) sign and the required attribute. The plus

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

sign adds the specified attribute, and the minus sign removes it. So, to make a file immutable,
you use the option +i. To remove the immutable attribute, you use the - i option. Listing 4-15
also specifies the -V option to run the chattr command in the verbose mode and displays
more information about the attribute change. If you run the chattr command without the -V
option, it will complete without output, unless an error occurs.

Tip The chattr command has another attribute you can potentially use: a. If this attribute is set, then
a file can be opened only for append or update operations and cannot be deleted. This is useful for log files
or for files you want to be able to write to but not to delete. Like the i attribute, it can be set or removed by
the root user only.

Now the /etc/passwd file is immutable, you will not be able to delete or change it.
Listing 4-16 tries to delete the file.

Listing 4-16. Deleting an Immutable File

puppy# Im /etc/passwd
rm: remove write-protected regular file "/etc/passwd'? y
rm: cannot remove "/etc/passwd': Operation not permitted

As you can see from the error message in Listing 4-16, the file cannot be deleted without
removing the immutable attribute. In Listing 4-17 you can also see that you are unable to cre-
ate a hard link to the file.

Listing 4-17. Linking Immutable Files

puppy# 1n /etc/passwd /root/test
1n: creating hard link °“/root/test' to "/etc/passwd': Operation not permitted

Tip You can still create symbolic links to immutable files.

Immutable files are also useful for securing more than just individual configuration files.
On many hardened systems, a number of binaries that are not likely to change can be made
immutable. For example, the contents of the /sbin, /bin, /usr/sbin, and /usr/1ib directories
can be made immutable to prevent an attacker from replacing a critical binary or library file
with an altered malicious version.

Caution Obviously, upgrading applications and tools is not possible while the binaries or libraries you
need to update are marked immutable. You need to remove the immutable attribute to perform updates or
upgrades, such as installing a new version of Sendmail.

199

200

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Capabilities and Icap

As I previously mentioned, only the root user can add and remove the immutable (or append-
only) attribute to and from a file. This provides a certain degree of security to any files marked
with these attributes. But under some circumstances you may want to prevent even the root
user from removing these attributes. I will show you a way, using Linux kernel capabilities, of
doing this. Kernel capabilities were introduced in version 2.1 of the Linux kernel to provide
some granular control to the capabilities of the root user. Previously the authority granted to
the root user was universal, and it could not be allocated into smaller portions of authority or
capability, unlike the administrative accounts of other operating systems. The introduction

of capabilities provides the ability to allow or disallow particular pieces of the root user’s avail-
able authority and functionality.

Note This includes more than just the ability to add or remove the immutable attribute.

To control these capabilities, you need to utilize a userland tool called 1cap. You can down-
load 1cap in the form of an RPM, a source package, or a Debian package file. You can use the
RPM file to install 1cap. You can download the RPM from http://dag.wieers.com/packages/
lcap/ and install it using the rpm command.3

puppy# wget http://dag.wieers.com/packages/lcap/lcap-0.0.6-6.1.el3.dag.i386.1pm
puppy# rpm -Uvh lcap-0.0.6-6.1.el3.dag.i386.rpm

When you have installed the RPM, you can use the 1cap command to disable capabilities.
Running the 1cap command without options will list the capabilities that you can control and
their current status.

puppy# lcap
Current capabilities: OXFFFFFEFF

0) *CAP_CHOMWN 1) *CAP_DAC_OVERRIDE
2) *CAP_DAC_READ SEARCH 3) *CAP_FOWNER
4) *CAP_FSETID 5) *CAP_KILL
6) *CAP_SETGID 7) *CAP_SETUID
8) CAP_SETPCAP 9) *CAP_LINUX_ IMMUTABLE
10) *CAP_NET BIND SERVICE 11) *CAP_NET BROADCAST
12) *CAP_NET_ADMIN 13) *CAP_NET RAW
14) *CAP_IPC_LOCK 15) *CAP_IPC_OWNER
16) *CAP_SYS_MODULE 17) *CAP_SYS_RAWIO
18) *CAP_SYS_CHROOT 19) *CAP_SYS_PTRACE
20) *CAP_SYS_PACCT 21) *CAP_SYS_ADMIN
22) *CAP_SYS_BOOT 23) *CAP_SYS NICE
24) *CAP_SYS_RESOURCE 25) *CAP_SYS TIME
26) *CAP_SYS_TTY CONFIG 27) *CAP_MKNOD
28) *CAP_LEASE
ES

= Capabilities currently allowed

3. The source package is available from http://packetstormsecurity.org/linux/admin/lcap-0.0.3.tar.bz2,

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Capabilities marked with an asterisk (*) are currently allowed, and those without this
asterisk sign are disallowed. Disallowing a capability requires specifying it by name on the
lcap command line. The following line disallows the root user’s capability to add or remove
the immutable attribute:

puppy# lcap CAP_LINUX IMMUTABLE

Note To remove a capability, you must be the root user.

Now not even the root user can add or remove the immutable attribute.

Caution This means you or any user on your system will not be able to edit or delete any files marked
immutable. And you will not be able to remove the immutable attribute until the capability is restored through
a reboot of the system.

You can also use some other command-line options with 1cap. The first is the -v option,
which enables verbose mode and provides more information about what 1cap is doing. If you
rerun the previous command with the -v option, you can see a lot more detail about disallow-
ing the capability.

puppy# lcap CAP_LINUX IMMUTABLE
Current capabilities: OxFFFFFEFF
Removing capabilities:
9) CAP_LINUX IMMUTABLE immutable and append file attributes

If you want to disallow all capabilities, run 1cap with the -z option.

puppy# lcap -z

Be careful when you do this, as disallowing capabilities can cause your system to become
unstable. The 1cap command also comes with some built-in help, which you can access with
the -h option.

Once you have disallowed a capability, it cannot be allowed again without rebooting your
system. Only the init process resets the capabilities of your system. If you inadvertently disal-
lowed a particular capability, you will have to reboot your system to allow it again. Addition-
ally, if you want to ensure a capability is disallowed when you start your system, you should
include the 1cap command, disallowing that capability in your rc.local file for Red Hat and
your rcS file for Debian.

Tip To find out more about the other capabilities that can be controlled with the 1cap command, see the
contents of the /usr/include/capabilities.h file.

201

202

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Encrypting Files

Elsewhere in this book I have discussed using public-key encryption to manage a variety of
encryption tasks, such as encrypting your e-mail using TLS. But sometimes you may simply
want to encrypt a single file. To do this you use a cryptographic algorithm secured with a pass-
phrase. This is called symmetrical encryption and is not as strong or as flexible as asymmetri-
cal (public-key encryption) encryption.? It is not as strong, as it solely relies on the strength of
a single key used to encrypt the required data. It is not as flexible, as it makes the process of
key management more difficult. With symmetrical encryption, the single private key must be
totally protected. This limits the means by which the key can be communicated to any parties
who need to decrypt the required data. But sometimes you may need to quickly and simply
encrypt data on your systems where private-key encryption is the easiest choice or where key
management and distribution is not a priority (for example, if you do not need to distribute
the private key to many people).

To do this conventional symmetric encryption, you can use the gpg command discussed
in Chapter 1. In the model I am describing, the private key will be a passphase you will specify
when you encrypt the data. This private key will also be required when you decrypt the data.
To encrypt a file, you run the gpg command with the -c option to enable symmetric encryp-
tion. Listing 4-18 shows the encryption of a simple text file.

Listing 4-18. Symmetric Encryption with gpg

puppy# cat test.txt

This is a test document - please encrypt me.
puppy# gpg -c test.txt

Enter passphrase:

Repeat passphrase:

When you enter the gpg -c command, you will be prompted to enter a passphrase, which
will be the private key to protect your data. You will be prompted to enter it twice to ensure the
passphrase recorded is correct. You should carefully select a passphrase using similar rules to
how you would choose a suitable and secure password (see Chapter 1). In the case of private
key passphrases, you should choose a longer than normal passphrase than your other pass-
words. This will reduce the risk of subjecting your encrypted files to a brute-force attack. Do
not reveal this pass phase to anyone who does not need to know it.

At the completion of the gpg -c command, an encrypted version of the test. txt file will
be created called test.txt.gpg. If you no longer need or want the unencrypted version of your
file, you should delete it to prevent it from becoming a very fast shortcut for an attacker to
read your encrypted data.

In Table 4-4 you can see some options you can provide to gpg that you can use for sym-
metrical encryption.

4. Symmetric encryption is defined as encryption where the data is encrypted and decrypted with the
same key. It is sometimes called private-key encryption.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Table 4-4. gpg Symmetric Encryption Options

Option Description

-a Creates ASCII armored output.

--cipher-algo name Uses a particular cipher algorithm.

--version Displays the list of available cipher algorithms.

-0 file Writes the output to the specified file.

-v Enables the verbose mode. Uses twice to increase the verbosity.

The first option, -a, provides gpg with ASCII armored output. The current test.txt.gpg file
is not very screen friendly and contains a number of characters that cannot be displayed on the
screen. If you wanted to send this file via e-mail to someone else, you would need to send it in
the form of a file attachment, as it could not be placed inline in the message body of an e-mail.
If you had specified the -a option, then gpg would have produced a file called test.txt.asc,
which would be the same encrypted data but in ASCII armored format. Listing 4-19 shows
what this file looks like.

Listing 4-19. test.txt.asc

Version: GnuPG v1.2.3 (GNU/Linux)

JAOEAWMCzuPpG+gDInJgyUdnUU8TxWy40A0S4dPETY+4jPt6YaskKHUxkwOAoXNdH
G/yXyQ0rqitmGXc30jfbSLGGaUNOAGNPh/GOTXcIiIR5/v8WG+Bj9A===/keh
————— END PGP MESSAGE-----

This message can be pasted into the body of an e-mail and then cut out of it by the recipi-
ent and decrypted (or automatically decrypted if you had a GnuPG or PGP plug-in for your
mail client). This is a much friendlier way of outputting encrypted data, and I recommend you
use this.

The next option, --cipher-algo, allows you to specify the cryptographic algorithm to use
for encrypting your data. Symmetrical encryption using gpg can be done with a variety of dif-
ferent cryptographic algorithms depending on which you have installed on your distribution.
You can display all the available algorithms by running gpg with the --version option.

puppy# gpg --version
gpg (GnuPG) 1.2.3

Copyright (C) 2003 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

Home: ~/.gnupg

Supported algorithms:

Pubkey: RSA, RSA-E, RSA-S, ELG-E, DSA, ELG

Cipher: 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH
Hash: MD5, SHA1, RIPEMD160, SHA256

Compression: Uncompressed, ZIP, ZLIB

203

204

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

By default gpg installations will use 3DES as the cipher algorithm, but you can override this
using the --cipher-algo option, like this:

puppy# gpg -c -a --cipher-algo BLOWFISH test.txt

The previous line encrypted the test. txt file with the Blowfish cipher. The file outputted
by the command would remain test.txt.asc (.asc because you used the -a option).

The -0 option allows you to specify the name of the file that will be outputted when the
gpg -c command is run. For example:

puppy# gpg -c -a -o test2.encrypted test.txt

The previous line would output a file called test2.encrypted that contains the encrypted
contents of the test. txt file.

The last option, -v, enables verbose output from the encryption process. You can enable it
twice, -vv, to provide even more detail.

Securely Mounting File Systems

When your system starts, each of your file systems is mounted to allow you to access the data
stored on your system. Your file systems can be mounted using different options: ranging from
the ability to write to a file system to specifying what sort of files can be run on that file system.
These options allow you to lock down the capabilities and functionality of each of your file
systems. These options are controlled by the /etc/fstab file. This section is not going to be a
definitive breakdown of every setting in the fstab file (the man page will give details of the set-
tings I don’t cover), but it will cover several settings you can use to ensure your file systems are
mounted more securely.

In Listing 4-20 you can see a sample of the /etc/fstab file. The /etc/fstab file is generally
similar across most distributions.

Listing 4-20. /etc/fstab File

LABEL=/ / ext3 defaults 11
LABEL=/boot /boot ext3 defaults 12
none /dev/pts devpts gid=5,mode=620 0 0
none /dev/shm tmpfs defaults 00
none /proc proc defaults 00
none /sys sysfs defaults 00
/dev/hda3 swap swap defaults 00
/dev/cdrom /mnt/cdrom udf,is09660 noauto,owner,kudzu,ro 0 0

Each line in the /etc/fstab file is an entry defining a file system that can be mounted.
Each line consists of columns that define various facets of the file system. Let’s quickly look
at each column and what it does.

The first column is the name or label of the file system to be mounted. This is generally
a device name, such as /dev/cdrom, or a volume label, such as / for the root volume or /boot
for the boot volume. The second column is the mount point for the file system. This is the
directory or location on your system where you want to mount the file system. The third col-
umn is the type of file system that you are mounting (for example, ext3 or swap).

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

The fourth column allows you to specify options that define how your file systems are
mounted. This fourth column contains the major options you will be using to secure your file
systems. These options include how the file system is mounted (for example, being mounted
read-only) and exactly how users can interact with the file system (for example, what types of
files they can run or whether they can run files at all).

The fifth and sixth columns handle options for the dump and fsck commands, respectively.
You can read about these in the fstab man page.

Table 4-5 describes some of the security-related mount options that can be placed in the
fourth column of the /etc/fstab file.

Table 4-5. fstab Mount Options

Option Description

auto File system will be mounted automatically at boot time.

noauto File system will not be mounted automatically at boot time.

dev Allows interpretation of block or character special devices on this file system.
nodev Does notinterpret block or character special devices on this file system.
exec Execution of binaries is allowed on this file system.

noexec Execution of binaries is NOT allowed on this file system.

suid setuid bits are allowed to take effect on this file system.

nosuid setuid bits are not allowed to take effect on this file system.

user Normal users can mount this device.

nouser Only root users can mount this device.

owner Allows the owner of the device to mount the file system.

10 File system will be mounted read-only.

W File system will be mounted read-write.

defaults Sets this file system’s options as rw, suid, dev, exec, auto, nouser, and async.

Note Other options not explained here are described in the fstab man page.

As you can see from Table 4-5 you can specify a variety of different ways to control how
file systems are mounted. The first options in Table 4-5 are the auto and noauto options, which
tell your system whether to load to load a particular file system at boot time. This can allow
you to specify file systems that you want to mount in the event they are required, thus prevent-
ing casual discovery of them. The next two options, dev and nodev, control the functioning of
character and block devices on your file systems. When the nodev option is specified, these
devices will not be interpreted and thus will not function. You need to ensure that only file
systems where you know you do not need these types of devices are mounted in this way—
so check your file systems for the presence of device files first. You can do this using the find
command on the next line:

puppy# find / -type b -or -type c

205

206

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

The exec and noexec options allow you to control whether binary execution is allowed on
a particular file system. If you specify noexec on a file system, then no binaries or executable
files will be allowed to run. Be careful setting this option on some file systems, especially oper-
ating system—focused file systems such as /boot or /, as the potential exists to prevent your
system from operating because your operating system cannot execute a required binary.

I discussed setuid files earlier in this chapter and emphasized how important it is to limit
their numbers and track their purposes. The suid and nosuid options control the functioning
of binaries with the setuid or setgid bits set on your file systems. When binaries are executed
on a file system with the nosuid option, their setuid and setgid bits will be ignored. With this
setting being ignored, most setuid binaries will fail because they do not have the required
level of permissions to function.

The user, nouser, and owner options are all interrelated and provide control over who is
allowed to mount your file systems. By default only root users can mount file systems. If you
have file systems with the user option specified, then any user can mount (or unmount) these
file systems. If the owner option is specified, then the owner of the device can mount the device
as well as the root user. I recommend you never allow non-root users to mount your file sys-
tems and that all your file system devices are owned by the root user.

The next mount options in Table 4-5 are ro and rw, read-only and read-write, respectively.
These allow you to control whether your users and applications can write to a particular file
system. When you specify the ro option, a file system’s contents cannot be changed by any
user, including the root user. This is useful for mounting file systems with static contents. Any
applications requiring write access to objects on that read-only file system will not function.

The last option in Table 4-5 is defaults. You can see in Listing 4-20 that most of the file sys-
tems contain the option, defaults. The defaults option specifies that the 1w, suid, dev, exec,
auto, nouser, and async options should be applied to the file system being mounted. You will
need to remove this and replace it with the mount options you require; otherwise, your selec-
tion of mount options will be overridden by the defaults option.

Let’s look at some examples of how you could use these mount options. For example,
many systems have a /home file system that contains the users’ home directories. You know
what you want to allow your users to be able to do in their home directories, so you can
enforce some controls when you mount the file system using the mount options. You deter-
mine that you do not want your users to execute any binaries, that any device files should not
be interpreted, and that any setuid files should have their bits ignored, thus preventing the
binaries from executing with those permissions. In Listing 4-21 you can see a /etc/fstab line
where I have added the mount options to achieve all this.

Listing 4-21. Example of Mounting /home Securely
/dev/hda8 /home ext2 noexec,nodev,nosuid 0 2

You can now see in the fourth column that I have added the noexec, nodev, and nosuid
options. Each option is listed in this column and separated by a comma. Now when this file
system is next mounted, your policy for the /home file system will be enforced.

Another common method of securing your file systems is to mount all those file systems that
do not require write access as read-only. This is commonly also used with network-mounted file
systems to export read-only shares. To do this, you add the ro option to the mount options for the
file systems you want to mount read-only.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

In Listing 4-22 I have specified that the /usr file system will be mounted with ro, the read-
only option, and nodev, the option to stop block or character devices being interpreted.

Listing 4-22. Mounting a Read-Only File System
/dev/hda7 /usy ext2 ro,nodev 0 2

These are merely two examples of how you could combine the available options to manage
your file system mounting and control how and what users can do in your file systems. I recom-
mend you determine if you can restrict how your file systems are mounted using these options
and ensure only the activities you want can be performed. Where you do not need particular
functionality and can apply restrictions such as nodev and nosuid, you should apply these. But,
like immutable files, the mount options should also be used with caution, as they can cause
issues on your system if improperly used; for example, marking your /boot file system as noexec
will result in your system being unable to boot.

Securing Removable Devices

One of the ways your system can be penetrated is through viruses or the introduction of com-
promised files onto your system through removable media such as floppy or CD drives. More
recently, various other removable devices, such as memory cards and sticks or removable USB
devices, have created alternative methods for attackers to introduce malicious files onto your
system. I will show you two ways of reducing the risk of introducing malicious files through
your removable devices.

The first way is to restrict who can mount removable devices. For most purposes on your
systems there should be no reason for any users other than the root user to mount floppy disks
or CDs. On most distributions this is the default setting and is achieved through the nouser
option in the /etc/fstab file, as discussed in the previous section. You should confirm that all
your removable devices in the /etc/fstab file have the nouser option set.

Additionally on Red Hat systems, non-root users can mount devices if they are signed onto
the console. This is managed by the file console.perms located in the /etc/security directory
(see Chapter 1). This file allows non-root users logged into the console to mount CDs or floppy
disks (and a variety of other removable devices such as Jaz or Zip drives). Listing 4-23 shows
a sample of the contents of the console.perms file that you can use to control the mounting of
removable devices.

Listing 4-23. console.perms Mounting Options

<console> 0660 <floppy> 0660 root.floppy

<console> 0600 <cdrom> 0660 root.disk
<console> 0600 <jaz> 0660 root.disk
<console> 0600 <zip> 0660 root.disk

<console> 0600 <memstick> 0600 root
<console> 0600 <diskonkey> 0660 root.disk
<console> 0600 <rem ide> 0660 root.disk
<console> 0600 <fb> 0600 root

207

208

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

You can restrict removable devices that non-root users can mount from the console by
commenting out the lines in Listing 4-23 that refer to particular devices. Listing 4-24 disables
the mounting of CD and floppy drives by non-root users. I recommend you disable the mount-
ing of all removable devices by these users.

Listing 4-24. Disabling Non-root Mounting

#<console> 0660 <floppy> 0660 root.floppy
#<console> 0600 <cdrom> 0660 root.disk

The second way of reducing the risk of having your removable devices introduce malicious
files is to limit what files you can utilize on removable devices using the nosuid and nodev options
and potentially the noexec option in the /etc/fstab file. Listing 4-25 shows a CD drive with these
mount options specified.

Listing 4-25. Mounting Removable Devices
/dev/cdrom /mnt/cdrom udf,i1s09660 noauto,ro,nodev,nosuid,noexec 0 0

In Listing 4-25 the CD-ROM is mounted read-only, will not allow any binaries to run
(including setuid binaries), and will not interpret block or character device files. This will pre-
vent most potential infiltrations of malicious files from this removable device. Of course, it will
also make it difficult for you to install software from a CD, and you would need to adjust the
mounting options to do this.

Creating an Encrypted File System

I demonstrated earlier the capability to encrypt files on your system but, I can extend this
principle to include the encryption of entire file systems. This allows you to encrypt and pro-
tect entire volumes of data (for example, backups), logging data, or private files. Encryption
also means that even if an attacker has penetrated your system, the attacker is not able to read
any file systems that you have encrypted. Many roving users with critical data on devices such
as laptops also use file system encryption to further secure data that is physically insecure (for
example, when the user is traveling).

File system encryption was not a feature that was available out of the box with most Linux
distributions but rather was provided by a number of different third-party solutions such as
CFS? or loop encryption file systems such as Loop-AES.6 These third-party solutions required
patching the kernel to support them. More recently with the version 2.6 kernel release, some
progress has been made toward incorporating this functionality directly into the kernel, first
with Cryptoloop and then with dm-crypt.? I will cover using dm-crypt to encrypt a file system.
The dm-crypt functionality was incorporated into release 2.6.4 of the kernel, so you need at
least this version of the 2.6 kernel. This minimum level of kernel release is provided by a num-
ber of current distributions: Red Hat Fedora Core 2, SUSE Linux 9.1, Mandrake 10, and Debian

5. http://www.crypto.com/software/
6. http://loop-aes.sourceforge.net/
7. http://www.saout.de/misc/dm-crypt/

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Sarge. Most other distributions are also moving toward providing this level of kernel release.
Or if you need this functionality, you can upgrade your kernel to the required version yourself.
To do this, you can start with the instructions provided in Chapter 1.

I'will cover using dm_crypt to create a loop encryption file system. A loop encryption file sys-
tem allows you to create an encrypted file system from an image file. This allows you to store pri-
vate files in a single encrypted file system rather than encrypting all the individual files. This is
the simplest use of dm_crypt, and you can extend the principles demonstrated next to encrypt
entire partitions or disks.

Installing the Userland Tools

First, though, you need to ensure you have all the tools required to perform the encryption.

If you have confirmed you have the required kernel version, you need to install the userland
tools that allow you to manipulate the dm_crypt functionality. These are provided by a package
called cryptsetup, which is available for Red Hat and Debian via those distribution’s update
tools. In Listing 4-26 you use yum to install it.

Listing 4-26. Installing cryptsetup

puppy# yum install cryptsetup

This will also prompt you to install the additional required packages: libgcrypt and
libgpg-error. Install all three packages.

Tip These packages should also be on the distribution media for your distribution, but it is a good idea to
ensure you have the latest versions.

Enabling the Functionality

Most distributions have provided the dm_crypt functionality in the form of loadable kernel
modules. You will need to load these modules before being able to use dm_crypt. You can use
the modprobe command to load the required modules like this:

puppy# modprobe aes dm_crypt dm_mod

The first module, aes, enables support for AES encryption, which is the default cipher
used by dm_crypt.8 I will show you how to use dm_crypt with this cipher, but you can also
enable alternative ciphers, such as Blowfish, by ensuring they have been compiled into your
kernel and then load them via modules.

You can check the contents of your kernel configuration file in /boot for which ciphers are
available by using the following command:

puppy# cat /boot/config-version | grep 'CRYPT'

8. Read about AES at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

209

210

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Replace version with the version of the kernel you are running. In Listing 4-27 you can
see a partial list of the kernel options produced by the previous command. Those options pre-
fixed by CONFIG_CRYPTO are the ciphers compiled into your kernel.

Listing 4-27. Ciphers Available in Your Kernel

CONFIG_CRYPTO BLOWFISH=m
CONFIG_CRYPTO TWOFISH=m
CONFIG_CRYPTO SERPENT=m
CONFIG_CRYPTO AES 586=m
CONFIG_CRYPTO CAST5=m
CONFIG_CRYPTO_CAST6=m
CONFIG_CRYPTO TEA=m

The =m suffix indicates that this kernel functionality is provided via a loadable module.
As you did with the AES cipher, you can load these ciphers with the modprobe command.

puppy# modprobe blowfish

You can see what other ciphers are currently loaded and available on your system by
looking at the contents of the /proc/crypto file. In Listing 4-28 you cat this file.
Listing 4-28. Viewing Available Ciphers

puppy# cat /proc/crypto

name : md5
module : kernel
type : digest
blocksize T 64
digestsize : 16
name . aes
module : aes
type : cipher
blocksize 1 16

min keysize : 16
max keysize : 32

Finally, the additional modules, dm_crypt and dm_mod, provide the file system encryption
functionality itself.

If you want to automatically enable this functionality, you can add these modules (includ-
ing any additional ciphers you would like to enable) to your /etc/modules.conf file. This will
load these modules when your system is started.

Encrypting a Loop File System

Now that you have enabled all the required modules and have installed the userland tools, you
can create your encrypted file system. You need to create an image file to hold your encrypted
file system. Listing 4-29 uses the dd command to create an empty file of a suitable size.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Listing 4-29. Creating an Empty Image File
puppy# dd if=/dev/urandom of=/home/bob/safe.img bs=1k count=10024

The dd command converts and copies files, but here I am using it to populate an empty
image file. The if option specifies the input file, dev/urandom. This device is a randomness
source and allows you to populate the imagine file with random data. The of option specifies
the output file; I have created a file called safe. img in the /home/bob directory. The next options
control the size of the file to be created. The bs option indicates that the size of the file will be
measured in kilobytes, 1k, and the count option tells dd how many kilobytes to add to the file.
In this case I have created a 10 megabyte (MB) file to hold the encrypted file system.

Now that you have your image file, you need to create a loop device from it. Loop devices
allow images files to be mounted as block devices as if they were a normal hard disk drive or
floppy disk.? Listing 4-30 shows how you use the command to create the loop device.

Listing 4-30. Creating a Loop Device
puppy# losetup /dev/loop0O /home/bob/safe.img

The losetup command creates the loop device /dev/loop0 from the file safe.img.

Now you need to create the encrypted device on your loop device. Installing the cryptsetup
package will have provided a command called cryptsetup that you will use to create that
encrypted device. Listing 4-31 uses the cryptsetup command to create an encrypted device
in your loop device.

Listing 4-31. Creating Encrypted File System

puppy# cryptsetup -y create safe /dev/loop0
Enter passphrase:
Verify passphrase:

Listing 4-31 maps the /dev/loop0 device to a special kind of encrypted block device,
which I have called safe. This device is created in the /dev/mapper directory. You can now for-
mat a file system on this device and then mount it. If you list the contents of the /dev/mapper
directory, you will see this newly created device.

puppy# 1s -1 /dev/mapper

total 0
CIW------- 1 root root 10, 63 Sep 2 18:18 control
brw-r----- 1 root root 253, O Sep 19 13:17 safe

The cryptsetup command also prompts you to enter the passphrase that will secure your
file system. Like when choosing other passphrases discussed in the “Encrypting Files” section
earlier in this chapter (and in Chapter 1 when I discussed passwords), you should choose a
secure and suitable passphrase. You will need to remember this passphrase. If you forget it,
you will not be able to access your encrypted file system. The -y option in Listing 4-31 tells

9. You canread further about loop devices at http://people.debian.org/~psg/ddg/node159.html.

211

212

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

cryptsetup to prompt for the passphrase twice; the second time is to add some validity check-
ing and ensure you enter the correct passphrase. After you have inputted the password,
cryptsetup will hash the passphrase and use it as the key for the encrypted file system.10
By default your passphrase will be hashed with the ripemd1160 hashing algorithm.

Let’s break the cryptsetup command down a bit further; I will show some details of each
of the functions it can perform. The command is structured like this:

cryptsetup options action name device
I'will now cover the combinations of options and actions you can perform with cryptsetup.

Table 4-6 describes some of the more useful options of the cryptsetup command.

Table 4-6. cryptsetup Options

Option Description

-Cc cipher Cipher used to encrypt the disk. Defaults to aes.

-h hash Hash used to create the encryption key from the passphrase. Defaults to
ripemd160.

-s keysize Specifies the key size in bits. Defaults to 256 bits.

-y Verifies the passphrase by asking for it twice.

-v Verbose mode.

-? Shows the help and usage information.

Note Currently cryptsetup does not have a man page.

The -c and -h options control how your file system is encrypted. The -c option specifies
the cipher that will be used to encrypt the file system. As mentioned earlier, the default cipher
for dm_crypt is AES, but you can specify any suitable cipher available on your system; for exam-
ple, you earlier enabled Blowfish.

puppy# cryptsetup -c blowfish create safe /dev/loop0

The choice of cipher really depends on the required performance and cipher standards by
which you want to abide. For some information about some of the available ciphers that can
be used with dm_crypt, including their relative performance, see http://www.saout.de/
tikiwiki/tiki-index.php?page=UserPageChonhulio.

Caution | recommend you avoid using DES encryption, as it is not secure.

10. I'will talk about hashing in Chapter 3.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

The -h option specifies what form of hashing is used to create an encryption key from
your passphase. By default dn_crypt uses the ripemd1160 hash, but you can use any digest
hash available on your system (for example, sha1).

puppy# cryptsetup -c blowfish -h shal create safe /dev/loopo

The - s option allows you to specify the size of the encryption key to be used. The size is
expressed in bits. The default key size is 256 bits. The larger the key size you use, then gener-
ally the more secure your encrypted file system will be, but the larger key sizes can also have
negative performance impacts on your system. I recommend that for most purposes 256 bits
is suitable, but depending on the speed of your disk, memory, and CPU you may want to
experiment with larger key sizes.

You can enable the -v option to provide more information when the cryptsetup com-
mand runs. Lastly, the -? option provides help, usage, and information.

Next are the actions that the cryptsetup command can perform. You have already seen
the create option, which you have used to create an encrypted file system. Table 4-7 shows
some of the other possible actions.

Table 4-7. cryptsetup Actions

Action Description

create Creates a device

remove Removes a device

reload Modifies an active device
resize Resizes an active device
status Shows the device status

The remove option you will look at when you examine unmounting an encrypted file sys-
tem; it reverses the process of mapping the encrypted block device that the create option pro-
duces. The reload option allows you to reload the device mapping, and the resize option allows
you to resize the device. The last option, status, provides you with useful status information on
your mapped devices.

puppy# cryptsetup status safe
/dev/mapper/safe is active:
cipher: aes-plain
keysize: 256 bits
device: /dev/loop0
offset: 0 sectors
size: 20048 sectors

After selecting options and associated actions, you need to specify the name of the
encrypted file system for an action to be performed on. In the previous command you specified
the name safe. This will be the name of the mapped device created in the /dev/mapper directory.

Then lastly on the cryptsetup command line you need to specify the actual device that
will be used to create the file system. In this explanation I have used a loop device, /dev/1loopo,
but you could also use a normal block device such as a disk or another type of device such as
memory stick or USB drive.

213

214

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

I have now created an image file, mounted that image file as a loop device, and created
an encryption device using the cryptsetup command. Now you need to create a file system on
that device to allow you to mount and write files to it. I have decided to create an ext3 type file
system on the device I have created, /dev/mapper/safe, using the mkfs.ext3 command.

puppy# mkfs.ext3 -j /dev/mapper/safe

This now gives you a disk space of 10MB for the ext3 file system on which to place the
files you want to encrypt.

Now let’s create a mount point (a directory) to mount your new file system. I have created
the image file, safe.img, in /home/bob, so I will create a mount point off that directory for con-
sistency. You could create the mount point anywhere.

puppy# mkdir /home/bob/safe
Finally, you mount the new file system using the mount command.
puppy# mount -t ext3 /dev/mapper/safe /home/bob/safe

I have mounted the file system, specifying its type, ext3, and the device to mount,
/dev/mapper/safe, to the mount point I have just created, /home/bob/safe.

You can now add whatever files you want to this file system. But is this it? Not quite.
You also need a process for unmounting and remounting your new encrypted file system.

Unmounting Your Encrypted File System

When you shut down your system or no longer require access to the encrypted file system,
you need to unmount it. This process basically consists of a reversal of some of the steps you
used to create the file system.

First you need to unmount your file system using the umount command.

puppy# umount /home/bob/safe
Then you need to unmap the device you created with the cryptsetup command.
puppy# cryptsetup remove safe

The command’s remove action is used to unmap the /dev/loop0 device. Do not panic,
though; this has not deleted any of your data. It merely removes the mapping of the device.
All your data is intact in the loop device and the associated image file. But to protect your data
you must run the cryptsetup remove action; otherwise, anybody can remount your device
without providing the passphrase.

Lastly you need to stop your loop device. You again use the losetup command but with
the -d option that indicates you want to detach the /dev/loop0 device.

puppy# losetup -d /dev/loopo

The encrypted data is now contained in the safe. img file you created at the start of the
previous section.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Remounting

To remount, you follow an abbreviated version of the process you used to create the encrypted
file system. You again need to create a loop device from your image file. You use the same image
file, safe.img, and the same loop device, /dev/1loop0.

puppy# losetup /dev/loop0 safe.img

Next you need to reestablish your encrypted file device map using the cryptsetup com-
mand. For this you will need the passphrase you used to create the original file system device
mapping. If you do not have this passphrase, you will not be able to mount your encrypted file
system. Listing 4-32 maps the device with the same name, safe, and from the same device,
/dev/loopo, that you did previously.

Listing 4-32. Remapping the Encrypted Device

puppy# cryptsetup -y create safe /dev/loop0
Enter passphrase:
Verify passphrase:

Disconcertingly, if you put into the wrong passphrase when entering the cryptsetup com-
mand, then the command will not fail but rather will complete without error. You will not,
however, be able to mount the encrypted file system, as I will demonstrate next.

Now that you have re-established the device mapping, you can mount your device. You
again mount it to the /home/bob/safe mount point.

puppy# mount -t ext3 /dev/mapper/safe /home/bob/safe

If you had entered the incorrect pass in Listing 4-32, then your mount attempt would fail
with the following error:

mount: wrong fs type, bad option, bad superblock on /dev/mapper/safe, w»
or too many mounted file systems

Unfortunately, this error message is generic and can result from a number of error condi-
tions. I recommend you carefully enter your passphrase. Use the cryptsetup -y option to be
prompted for your passphrase twice to reduce the risk of entering the wrong passphrase.

Tip As you can see, the creating, unmounting, and remounting process is quite complicated. | recom-
mend you automate the process with a script. You can find some examples of this at the dm_crypt wiki at
http://www.saout.de/tikiwiki/tiki-index.php.

Maintaining File Integrity with Tripwire
Once you have hardened and secured your files and file systems, you need to ensure they stay

that way. One of the biggest threats to security hardening is entropy—over time changes are
introduced to the environment that could expose you to risk of attack. The security and integrity

215

216

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

of your files is no different. As things change on your systems, so can the permissions and con-
tent of your files and objects. Additionally, one of the key indicators of an attack or penetration
of your system is unexpected changes in permissions, attributes, and the contents of files and
objects.

To mitigate the risk of these sorts of changes and to detect any malicious changes to your
files and objects, several checksum and integrity scanners exist. These scanners take a base-
line of your system and then run regular, usually scheduled, scans of your system and com-
pare the results against the baseline. I will cover the most well-known scanner, Tripwire.

Tripwire works on a policy-compliance model. You need to configure a policy covering all
the objects you want to monitor and the changes to these objects in which you are interested.
Taking this policy, Tripwire then initializes and generates a baseline database of all the file and
objects covered by this policy. You next schedule a regular scan of the system, and if Tripwire
detects a variation from the baseline, then it will be reported.

Tripwire is available in a number of different forms and variations. Many distributions have
created their own branches of Tripwire. This is in addition to the open-source version available
athttp://sourceforge.net/projects/tripwire/ and the commercial version available at the
Tripwire site, http://www.tripwire.com. These branched versions of Tripwire tend to have subtle
differences. Usually these differences are aimed at addressing the idiosyncrasies of a particular
distribution; for example, the Tripwire version available for Red Hat moves and renames some
commands to bring Tripwire in line with Red Hat’s conventions. I recommend you look at the
package available for your distribution first. This package is likely to be easier to configure for
your system than other versions.

Tripwire is available via Apt for Debian, as an RPM for Red Hat Enterprise Linux and
Mandrake on those distributions’ media, and for Red Hat Fedora Core.!! It is also available
from SourceForge as a source tarball. The source tarball is often difficult to compile. I recom-
mend installing Tripwire via an RPM; the following line installs the Fedora RPM.

puppy# rpm -Uvh tripwire-2.3.1-20.fdr.1.2.1386.rpm

Tip So, when do you install and initialize Tripwire? Well, | recommend you install and initialize Tripwire
after you have installed your operating system and applications and have applied any updates or patches
but before you have connected your system to a production network. This ensures Tripwire can be config-
ured with all the required files and binaries being monitored and reduces the risk that an attacker could
penetrate your system before you enable Tripwire.

Configuring Tripwire

In this section, you will see the base Tripwire configuration, and then I will show you how to ini-
tialize and run Tripwire. As you are going to configure Tripwire using the Red Hat Fedora RPM,
some of the configuration options, especially their naming conventions, may differ from other
versions of Tripwire. This is especially true of the source tarball version where many configura-
tion options differ. I will try to address this where I can.

11. Via http://download.fedora.us/

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

After installing Tripwire, the configuration for the tool will be installed into the
/etc/tripwire directory in the form of two files: twcfg. txt and twpol.txt. The twcfg.txt file
contains the default configuration for Tripwire, including the location of the Tripwire binaries
and policies. The twpol.txt file contains the Tripwire policy that tells Tripwire what to moni-
tor. I will talk about it in the “Explaining Tripwire Policy” section.

Listing 4-33 shows a sample of the twcfg. txt file.

Listing 4-33. Tripwiretwcfg.txt

ROOT =/usr/sbin

POLFILE =/etc/tripwire/tw.pol

DBFILE =/var/1ib/tripwire/$(HOSTNAME).twd

REPORTFILE =/var/1lib/tripwire/report/$(HOSTNAME)-$(DATE) . twr
SITEKEYFILE =/etc/tripwire/site.key

The file consists of directives and answers (for example, RO0T=/usr/sbin), which indicates
where the Tripwire binaries are located. Most of the directives in twcfg. txt are self-explanatory.
Table 4-8 describes some of the other directives and their functions.

Table 4-8. Tripwire twcfg.txt Directives

Directive Description

LATEPROMPTING=true | false Limits the time the Tripwire password is in memory by
delaying prompting for it. Defaults to false.

LOOSEDIRECTORYCHECKING=true | false If true, then report iffiles in a watched directory change
but do not report on the directory itself. Defaults to

false.

SYSLOGREPORTING=true | false Specifies whether Tripwire logs to syslog.

EMAILREPORTLEVEL=number Specifies the verbosity of Tripwire e-mail reports.
Defaults to 3.

REPORTLEVEL=number Specifies the verbosity of Tripwire printed reports.
Defaults to 3.

MAILMETHOD=SENDMAIL | SMTP Specifies how Tripwire sends e-mail. Defaults to
SENDMAIL.

MAILPROGRAM=program Specifies the Sendmail binary for Tripwire. Defaults to

/usr/lib/sendmail -oi -t.Valid only if the mail method
is SENDMAIL.

SMTPHOST=SMTP Host Specifies the SMTP host to use. Valid only if the mail
method is SMTP.

SMTPPORT=port Specifies the SMTP port to use. Valid only if the mail
method is SMTP.

MAILNOVIOLATIONS=true | false Sends a notification when a Tripwire report is run even if

no violations were found.

Note Most of these variables are present in all versions of Tripwire, but in some versions, most notably the
source tarball, these options are prefixed with the letters TW. So, MATLPRORAM becomes TWMAILPROGRAM.

217

218

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

The defaults in twcfg. txt should be suitable for most Tripwire installations, but some of
the options in Table 4-8 may be useful to tweak. If the first option, LATEPROMPTING, is set to true,
then Tripwire delays the prompting of the user for passwords as long as possible to limit the
time the password spends in memory. If the second option, LOOSEDIRECTORYCHECKING, is set to
true, then it reports on changed files and objects in a watched directory but does not report the
directory change itself. This stops Tripwire from reporting two changes, one for file and one for
the directory, which reduces redundant reporting. It defaults to false.

If you want Tripwire to log violations to syslog, then set the SYSLOGREPORTING directive to
true. You can control the verbosity of Tripwire’s reporting with the two report-level options,
REPORTLEVEL and EMAILREPORTLEVEL. The verbosity ranges from 0 to 4, with 0 as minimal detail
and 4 as the most verbose.

The last five options relate to how Tripwire notifies you via e-mail if it detects a violation.
The first is the MATLMETHOD, which determines how Tripwire will send e-mails. Tripwire can
send e-mail directly via the Sendmail binary or can connect to an SMTP host. Specify SENDMAIL
to send via the binary and SMTP to send to an SMTP host. If you specified SENDMAIL as the mail
method, then the location and options of the Sendmail binary are set with the MAILPROGRAM
directive. If you specified SMTP, then you can designate the SMTP host and port you want to
send e-mails to using the SMTPHOST and SMTPPORT directives, respectively.

If the last of these options, MAILNOVIOLATIONS, is set to true, then Tripwire generates an
e-mail report when it is run, even if no violations are found. If you do not want to receive
areport when Tripwire is run and does not find any violations, then set this option to false.
The default is true.

Additionally, some variables are available to you in the twcfg. txt file, such as $ (HOSTNAME)
for hostname and $(DATE) for the current date.

Explaining Tripwire Policy

The twpol. txt file is the input file for the Tripwire policy for your host. This file will be used to
create a proprietary file called a policy file. The policy determines what files and objects Trip-
wire will monitor for changes. It also specifies exactly what changes to those files and objects
it will monitor. The RPM you have installed comes with a default policy. This policy is designed
to monitor Red Hat Fedora systems. If you are running Tripwire on a different distribution, it
may have come with a sample policy of its own. Either way you will need to change the policy
to reflect exactly what objects you want to monitor on your system. I recommend you at least
monitor important operating system files and directories, logging files, and the configuration
files and binaries of your applications.

Let’s look at the twpol. txt file. The file contains two types of items. It contains the direc-
tives and the rules that identify the individual files, and it contains the objects Tripwire is
monitoring. I will break the sample twpol. txt file into these items to demonstrate its content
and then show how to structure your Tripwire policy file.

Tripwire Policy Global Variables

The global Tripwire variables define the location of Tripwire-specific objects and directories
and the hostname of the system on which Tripwire is running. These variables are contained
in a special section of the policy file called a directive. This directive is entitled @@section
GLOBAL and is located toward the start of the policy file. Listing 4-34 shows a sample of the
global variables section of the default twpol.txt file created when I installed Tripwire.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Listing 4-34. Tripwire Global Variables

@@section GLOBAL

TWROOT=/usr/sbin;

TWBIN=/usr/sbin;
TWPOL="/etc/tripwire";
TWDB="/var/lib/tripwire";
TWSKEY="/etc/tripwire";
TWLKEY="/etc/tripwire";
TWREPORT="/var/lib/tripwire/report";
HOSTNAME=puppy . yourdomain.com;

Each variable is terminated by a semicolon. If the semicolon is missing, then the policy
file will not parse correctly, so loading the policy into Tripwire (as I will demonstrate in the
“Initializing and Running Tripwire” section) will fail. Most of the variables in Listing 4-34 are
self-explanatory and specify the directories that Tripwire will use. The last variable is HOSTNAME.
You need to set HOSTNAME to your system’s fully qualified domain name (FQDN) to ensure Trip-
wire functions correctly. In this case, this is puppy . yourdomain.com.

Note In the sample twpol. txt file installed by the RPM, you also have the FS directive section, which
contains some predefined property summaries and other variables used by the example policy. | discuss
these property summaries and variables briefly in the “Tripwire Rules” section.

Tripwire Rules

A Tripwire ruleis defined as a file or directory name and a property mask separated by the
symbols ->. Additionally, it can have some optional rule attributes. In Listing 4-35 you can
see the structure of a Tripwire rule.

Listing 4-35. Tripwire Rule Structure
filename -> property mask (rule attribute = value);

Let’s look at each part of the Tripwire rule. The first portion of the rule is the file or object
you want to monitor. This could be a single file or an entire directory. If you specify a directory,
then Tripwire will monitor the properties of that directory and the entire contents of that direc-
tory. You can have only one rule per object or file. If an object has more than one rule, Tripwire
will fail with an error message and not conduct any scanning.

The file or object is then separated from the property mask by a space or tab and the ->
symbols, followed by another space or tab. The property mask tells Tripwire exactly what change
about the file or object you want to monitor. For example, you could monitor for a change to the
user who owns the file, the size of the file, or the file’s permissions. Each property is indicated by
a letter prefixed with either a plus (+) sign or a minus (-) sign. For example, the following line
monitors the ownership of the /etc/passwd file:

/etc/passwd -> +u;

219

220

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

The u is the Tripwire property for object ownership, and the plus (+) sign indicates you want
to monitor this property. You can add further properties to be monitored by adding property let-
ters to your Tripwire rule. On the next line you add the property, s, which indicates file size:

/etc/passwd -> +su;

Now Tripwire will monitor for any changes to the /etc/passwd file’s ownership and its size.

Note You must terminate all rules with a semicolon (;).

Table 4-9 lists all the properties you can monitor for in Tripwire.

Table 4-9. Tripwire Property Masks

Property Description

Access time stamp.
Number of blocks.

Inode time stamp.

o QL

ID of the device on which the inode resides.
Owning group.

Inode number.

— R 0O o 0

File increases in size.
m Modification time stamp.
n Number of links to the object.

p Permissions.

~

ID of the device pointed to by inode. Valid only for device type objects.
File size.

File type.

Object owner.

CRC-32 hash value.

Haval hash value.

MDS5 hash value.

SHA hash value.

+ wn

w =T T N <

These properties are generally fairly self-explanatory file system attributes. The only prop-
erty that needs further explanation is 1. The 1 property is designed for files that will only grow.
Tripwire thus monitors to see if the file shrinks in size but ignores the file if it grows in size.

The minus (-) sign prefixing a property indicates that you do not want to monitor for that
property. In the next line I am monitoring the /etc/passwd file for its ownership and size, but
I have explicitly told Tripwire that I do not care about its last modification time stamp.

/etc/passwd -> +su-m;

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

In addition to the individual properties you can monitor for, you can also use property
summaries. These property summaries are variables that represent particular combinations of
properties. For example, Tripwire has a built-in property summary called $(Device), which
contains the recommended properties for devices (or other types of files that Tripwire should
not try to open). On the next line you can see the $(Device) property summary in a rule:

/dev/mapper/safe -> $(Device);

As I have described, each property summary represents different combinations of prop-
erties. The $(Device) property summary is equivalent to setting the properties in the follow-
ing rule:

/dev/mapper/safe -> +pugsdr-intlbamcCMSH;

The previous line indicates that any rule that uses the $(Device) property summary will
monitor files and objects for changes to their permissions, ownership, group owner, size and
device, and inode ID monitored, but all other changes will be ignored. Table 4-10 lists all the
default property summaries, the property mask value they are equivalent to, and what they
are designed to monitor.

Table 4-10. Property Summaries

Summary Mask Value Description

$(Device) +pugsdr-intlbamcCMSH Devices or other files that Tripwire should not
attempt to open

$(Dynamic) +pinugtd-srlbamcCMSH User directories and files that tend to be dynamic

$(Growing) +pinugtdl-srbamcCMSH Files that should only get larger

$(IgnoreAll) -pinugtsdrlbamcCMSH Checks for the file presence or absence but does not
check any properties

$(IgnoreNone) +pinugtsdrbamcCMSH-1 Turns on all properties

$(ReadOnly) +pinugsmtdbCM Files that are read-only

Two of the most useful of these property summaries are $(IgnoreAll) and $(IgnoreNone).
The $(IgnoreAll) summary allows you to simply check if a file is present and report on that.
The $(IgnoreNone) summary is a good starting point for custom property masks. By default it
turns on all properties to be monitored. Using the - syntax you then deduct those properties
you do not want to monitor.

/etc/hosts.conf -> $(IgnoreNone) - CHn;

This is a much neater syntax that using the full property mask +piugtsdrbamcMS-CHnl.

Note The $(IgnoreNone) summary does not set the 1 property.

221

222

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Because property summaries are simply preset variables, you can also declare your own.
You can declare a variable using the following syntax:

variable = value;

Thus, you can declare a variable to create a property summary for objects whose owner-
ship and permissions should never change.

STATIC PO = +pug;
The STATIC_PO variable could then be used in a rule, like so:
/home/bob/safe -> $(STATIC PO);
In the example twpol. txt file, some of these variables have already been declared.

In Listing 4-36 you can see several of these predefined variables.

Listing 4-36. Property Summary Variables in twpol.txt

SEC_CRIT $(IgnoreNone)-SHa; # Critical files that cannot change
SEC_SUID $(IgnoreNone)-SHa; # Binaries with the SUID or SGID flags set
SEC_INVARIANT = +tpug; # Directories that should never change w»
permission or ownership

You can use variables for a variety of other purposes, too. You can substitute any text in
the variable declaration. For example, you can declare an object name as a variable at the start
of your policy file.

BOB_DIR = /home/bob;
Then you can refer to it using a variable when defining rules.
$(BOB DIR); -> +p;

The last parts of Tripwire rules are rule attributes. These attributes work with your rules to
modify their behaviors or provide additional information. One of the most commonly used
attributes is emailto. The emailto attribute allows you to specify an e-mail address (or addresses)
to be notified if a rule is triggered.

/etc/host.conf -> +p (emailto=tripwire@yourdomain.com);

In the previous line, if the permissions of the /etc/host.conf file changed, then an
e-mail would be sent (using the mail method you specified in the twcfg.txt file) to the
tripwire@yourdomain.com e-mail address. Listing 4-37 specifies multiple e-mail addresses
by enclosing them in quotes.

Listing 4-37. Multiple E-mail Addresses

/etc/hosts.conf -> +p (emailto="tripwire@yourdomain.com admin@anotherdomain.com");

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Tip You can test your e-mail settings using the command /usr/sbin/tripwire --test --email
email@yourdomain.com, replacing the email@yourdomain.com with the e-mail address to which you
want the test message sent.

The other attributes available to Tripwire are recurse, severity, and rulename. The recurse
attribute is specified for directories and specifies whether Tripwire should recursively scan a
directory and its contents.

/etc -> +p (recurse=false);

Using the rule in the previous line Tripwire normally would scan the /etc directory and
all its contents. With the recurse attribute set to false, Tripwire will now scan only the /etc
directory itself for changes. You can also use the recurse setting to specify the depth to which
Tripwire will recurse. A setting of recurse=0 will scan only the contents of the directory and
not recurse to any lower directories. On the other hand, a setting of recurse=1 will scan the
contents of the specified directory and recurse one directory level lower, and so on.

The severity and rulename attributes allow you to group files in the Tripwire report
according to classification. The severity attribute allows you to define a severity to the file
being monitored.

/etc/host.conf -> +p (severity=99);

In your Tripwire report, all the results from rules, which have been specified as severity 99
using this attribute, will be grouped, which allows you to better sort your results. The rulename
attribute provides similar functionality by allowing you to describe a particular rule.

/etc/host.conf -> +p (rulename="Network Files");
You can also assign multiple attributes to a rule. Listing 4-38 adds both severity and
rulename attributes to a rule.
Listing 4-38. Multiple Attributes
/etc/host.conf -> +p (severity=99, rulename="Network Files");

You can also specify rule attributes for a group of rules. Listing 4-39 demonstrates this.

Listing 4-39. Attributes for Groups of Rules

(rulename="Network files", severity=99, emailto=tripwire@yourdomain.com)
{

/etc/host.conf -> +p;

/etc/hosts -> +p;

/etc/nsswitch.conf -> +p;

/etc/resolv.cont -> +p;

}

223

224

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

You specify your attributes first. You enclose them in brackets, and then place your rules
below them and enclose them in brackets, { }. This allows you to group similar rules for ease
of update and reporting.

Finally, you can specify a special type of rule called a stop rule. This allows you to specify
files within a directory that you want to exclude, which will stop Tripwire from scanning those
files. Listing 4-40 specifies that you want to monitor the /etc directory for permissions changes
but you specifically want to exclude the /etc/fstab and /etc/mstab files from being monitored.

Listing 4-40. Stop Rules

/etc/hosts -> +p;
I /etc/hosts;
I /etc/hosts;

The ! prefix indicates that the file should be excluded. Each stop rule must be terminated
with a semicolon (;).

Tip You can also add comments to your Tripwire policy file by prefixing lines with a pound sign (#).

Initializing and Running Tripwire

After you have configured Tripwire and created a suitable policy for your system, you need to
set up and initialize Tripwire. Tripwire comes with a command, tripwire-setup-keyfiles, that
you can use to perform this initial setup. The command is usually located in the directory
/ust/sbin.

Tip Running this command performs the same actions as running the script twinstall. sh that came
with earlier releases of Tripwire.

This command will create two keyfiles: the site key that signs your configuration and pol-
icy and the local key that protects your database and reports. You will be prompted to enter
passphrases for both. Listing 4-41 shows the results of this command.

Listing 4-41. Thetripwire-setup-keyfiles Command

puppy# /usr/sbin/tripwire-setup-keyfiles

The Tripwire site and local passphrases are used to sign a variety of
files, such as the configuration, policy, and database files.
Passphrases should be at least 8 characters in length and contain both
letters and numbers.

See the Tripwire manual for more information.

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Creating key files...

(When selecting a passphrase, keep in mind that good passphrases typically
have upper and lower case letters, digits and punctuation marks, and are
at least 8 characters in length.)

Enter the site keyfile passphrase:

Verify the site keyfile passphrase:

Caution You need to take good care of these passphrases, as you will be forced to reinstall Tripwire if
you lose one or both of them.

The tripwire-setup-keyfiles command will also create encrypted versions of your
twcfg. txt and twpol. txt files, called tw.cfg and tw.pol, respectively. These files will be signed
with your new site key and are located in the /etc/tripwire directory. Listing 4-42 shows the
contents of the /etc/tripwire directory after you run the tripwire-setup-keyfiles command.

Listing 4-42. The /etc/tripwire Directory

puppy# 1s -1

-IW-T----- 1 root root 931 Sep 26 17:03 puppy.yourdomain.com-local.key
-IW-T----- 1 root root 931 Sep 26 17:02 site.key

-IW-T----- 1 root root 4586 Sep 26 17:03 tw.cfg

-IW-T--r-- 1 root root 603 Jun 16 11:31 twcfg.txt

-IW-T----- 1 root root 12415 Sep 26 17:03 tw.pol

-Tw-r--I-- 1 root root 46551 Sep 21 15:44 twpol.txt

You now need to either encrypt or delete the twcfg. txt and twpol.txt files to prevent an
attacker from using them for information or using them to compromise Tripwire. Either use
gpg to encrypt them and store them on removable media or delete them altogether. You can
re-create your Tripwire policy and configuration using the twadmin command, as I will demon-
strate in a moment.

Now that you have created your signed configuration and policy files, you need to create
the baseline Tripwire will use to compare against. Listing 4-43 initializes the Tripwire database
with the tripwire command.

Listing 4-43. Initializing the Tripwire Database

puppy# /usr/sbin/tripwire --init

Please enter your local passphrase:

Parsing policy file: /etc/tripwire/tw.pol

Generating the database...

*#%k Processing Unix File System ***

Wrote database file: /var/lib/tripwire/puppy.yourdomain.com.twd
The database was successfully generated.

225

226

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

The --init option initializes your Tripwire database, and you will be prompted to
enter your local key passphrase to continue. The tripwire binary then parses the /etc/
tripwire/tw.pol file and creates a baseline state for all the objects on your system you
want to monitor. In Listing 4-43 this baseline is stored in the database file /var/1ib/
tripwire/puppy.yourdomain.com.twd. You can set the location of your Tripwire database
in the Tripwire global variables, as shown in Listing 4-44.

Now that you have your database, you can run your first check using the tripwire binary.

Listing 4-44. Tripwire Integrity Check

puppy# /usr/sbin/tripwire --check
Parsing policy file: /etc/tripwire/tw.pol
*** Processing Unix File System ***
Performing integrity check...

Wrote report file: /var/lib/tripwire/report/puppy.yourdomain.com-20040926-172711.twr

The Tripwire integrity check will display the results of the check to the screen and save it
as a Tripwire report file. In Listing 4-44 the report was saved as /var/lib/tripwire/report/
puppy . yourdomain.com-20040926-172711.twr. Each report filename contains the date and time
it was run. Like the Tripwire database location, you can override this location in the twcfg. txt
file.

Tip You should schedule Tripwire to run regularly using a cron job. If you have installed Tripwire from
a Red Hat RPM, then it will also have installed a cron job to run a daily Tripwire check.

You can view the results of each Tripwire report using the twprint command. Listing 4-45
prints the report you generated.

Listing 4-45. Printing Reports with twprint

puppy# twprint --print-report --twrfile
/var/lib/tripwire/report/puppy.yourdomain.com20040926-172711.twr
Note: Report is not encrypted.

Tripwire(R) 2.3.0 Integrity Check Report

Report Summary:

Host name: puppy . yourdomain.com

Host IP address: 127.0.0.1

Host ID: None

Policy file used: /etc/tripwire/tw.pol

Configuration file used: /etc/tripwire/tw.cfg

Database file used: /var/lib/tripwire/puppy.yourdomain.com.twd

Command line used: /usr/sbin/tripwire --check

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Total objects scanned: 45606
Total violations found: 1

Rule Name: Tripwire Data Files (/var/lib/tripwire)
Severity Level: 100

Modified Objects: 1

Modified object name: /var/lib/tripwire/puppy.yourdomain.com.twd
Property: Expected Observed

* Mode -IW-T--T-- -IWXI-XI-X

Tip You may want to run the twprint command through the more or less commands to display it more
effectively.

The --print-report option prints the report specified by the --twrfile option. In
Listing 4-45 you can also see an abbreviated extract of the Tripwire report. I have removed
some of the output of the Tripwire report but have kept the key sections: the summary of the
parameters used, the total objects scanned, and the violations recorded. Only one violation
is recorded, a modification of the puppy.yourdomain.com.twd file located in the /var/1ib/
tripwire directory. You can see that the permissions of this file have been modified from
-IW-T--I-- to -Twxr-xr-x. The report displays the rule name, Tripwire Data Files, for the
rule covering the /var/lib/tripwire directory and the severity level of 100.

You can also use the twprint command to display a Tripwire database entry for a file or
object on your system. Listing 4-46 demonstrates this.

Listing 4-46. Printing Tripwire Database Entry

puppy# twprint --print-dbfile /etc/passwd
Object name: /etc/passwd

Property: Value:
Object Type Regular File
Device Number 770

Inode Number 607017

Mode -IW-T--T--
Num Links 1

uiD root (0)

GID root (0)

I have displayed the database entry for the file /etc/passwd using the --print-dbfile
option. If you use twprint --print-dbfile without an individual file specified, it will output
the entire contents of the Tripwire database.

If you find violations in your report, you should first check if these are normal occur-
rences. During normal operations some files may change, be added to, or be removed from

227

228

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

your system. You can adjust your Tripwire policy to reflect these normal changes using the
tripwire command with the -update option. This option allows you to read in a report file,
indicate which violations are in fact normal operational changes, and update the Tripwire

policy to prevent it being triggered by these again. Listing 4-47 demonstrates this.

Note 0f course, some changes may not be normal operational changes; you should always investigate
any and all violations in your Tripwire reports.

Listing 4-47. Updating Tripwire Policy

puppy# /usr/sbin/tripwire --update \
--twrfile /var/lib/tripwire/report/puppy.yourdomain.com20040926-172711.twr

Listing 4-47 will launch a special editor window that contains the Tripwire report file
specified by the --twrfile option. Inside the editor window you can use the standard vi com-
mands to move around and edit. For each violation detailed in the report, you have the option
to either update the database with the new change or not update it. If you update the change
in the Tripwire database, then it will no longer register as a violation when you run integrity
checks. Listing 4-48 demonstrates this.

Listing 4-48. Tripwire Database Updates

Rule Name: Tripwire Data Files (/var/lib/tripwire)

Severity Level: 100

Remove the "x" from the adjacent box to prevent updating the database
with the new values for this object.

Modified:

[x] "/var/lib/tripwire/puppy.yourdomain.com.twd"

To update the Tripwire database with the new change, leave the x next to each violation.
If you do not want to update the database with the new change, delete the x from the brackets,
[1. As Tripwire will update the database by default with all the new changes, you should go
through each violation to make sure you actually want Tripwire to update the database with
the change. When you have updated the file with all the changes you want to make, use the vi
command, :wgq, to exit the editor window. You will be prompted to enter the local site password.

Please enter your local passphrase:
Wrote database file: /var/lib/tripwire/puppy.yourdomain.com.twd

After entering the password, your database will be updated with the new changes.

You can also make changes to the policy file and update the Tripwire database with the new
policy. For this you need a copy of the current policy. You can output a copy of the current policy
file using the twadmin command.

puppy# twadmin --print-polfile > /etc/tripwire/twpol.txt

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Tip The twadmin command also has other options that can help you administer Tripwire. See the
twadmin man file.

You can then edit your policy file to add or remove rules. Once you have finished your
editing, you need to use the tripwire command with the --update-policy option to update
your policy file.

puppy# /usr/sbin/tripwire --update-policy /etc/tripwire/twpol.txt
Please enter your local passphrase:

Please enter your site passphrase:

======== Policy Update: Processing section Unix File System.

== Step 1: Gathering information for the new policy.
======== Step 2: Updating the database with new objects.

======== Step 3: Pruning unneeded objects from the database.
Wrote policy file: /etc/tripwire/tw.pol

Wrote database file: /var/lib/tripwire/puppy.yourdomain.com.twd

You will be prompted for your local and site passphrases; when the process is completed,
your Tripwire database will be updated with your new policy. You then need to either encrypt
or delete your plain-text twpol. txt file to protect it.

Network File System (NFS)

Sun designed the Network File System (NFS) protocol in the mid-1980s to provide remote net-
work share functionality to Unix systems. Much like Microsoft Windows’ file system sharing, it
uses a client-server model, with a system hosting the shared data and “sharing” it with a series
of clients who can connect to the shared file system. NFS describes this process as “exporting”
a file system, and the remote clients connecting to the exported file system are “importing.”
The NFS protocol runs over either TCP or UDP and uses Sun’s Remote Procedure Call (RPC)
protocol to communicate with and authenticate clients.

NFS is vulnerable to three major forms of attack: eavesdropping, penetration, and substitu-
tion. The eavesdropping vulnerability appears because NFS broadcasts its information across the
network, potentially allowing an attacker to listen in or sniff that data as it crosses the network.
The penetration vulnerability appears because of the potential for an attacker to compromise and
penetrate the NFS file system and thus gain unauthorized access to the data. A substitution attack
occurs when an attacker intervenes in the NFS data transmission process to change or delete
information traveling across the network.

My recommendation with NFS is simply to not use it. In the past, NFS has proven vulner-
able to a variety of types of attack, its vulnerabilities are common, it is technically and opera-
tionally complicated to secure (or encrypt) NES data, and the authentication of remote users
to NFS file systems lacks the resiliency required to share files in a production environment.

229

230

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Note A new version of NFS has been proposed. NFS 4 proposes considerably stronger security, including
strong authentication and encryption. You can read about it at http://www.nfsv4.org/. At this stage,
though, it is still in RFC form and not ready for deployment.

If you decide to use NFS (and I really think you should not!), I recommend you mitigate
the risk as much as possible by following these guidelines:

» Keep your version of NFS and its associated applications such as portmap or rpcbind
up-to-date and ensure you install any NFS-related security patches.

¢ Export file systems only to those hosts you need. Restrict your file systems to only
those hosts and users who need them. Do not publicly export file systems.

* Install NFS file systems on different hard disks or partitions other than your other file
systems.

¢ If possible, export your file systems as read-only to help reduce the risk attackers
could manipulate or delete your data.

¢ Disable setuid files on your NFS file systems using the nosuid option in the
/etc/fstab file.

 Ifpossible, use SSH to tunnel NFS traffic.

¢ Block the NFS TCP and UDP ports 2049 and 111 from any of your Internet-facing
hosts or any hosts or networks that you do not trust or are unsure whether they are
secure.

Tip A couple of tools are available to you that can help monitor and secure NFS. The first is nfsbug,'2
which checks NFS installations for bugs and security holes. It is a little dated these days but still offers
some insights. Also available is the nfswatch!3 command, which can be used to monitor NFS traffic on
your network.

12. Available from http://ftp.nluug.nl/security/coast/sysutils/nfsbug/
13. Available from http://ftp.rge.com/pub/networking/nfswatch/

CHAPTER 4 " SECURING FILES AND FILE SYSTEMS

Resources

The following are some resources for you to use.

Mailing Lists

dm_crypt: Send empty e-mail to: dm-crypt-subscribe@saout.de

Tripwire: http://sourceforge.net/mail/?group id=3130

Sites

Adeos: http://1linux.wku.edu/~lamonml/software/adeos/
dm_crypt: http://www.saout.de/misc/dm-crypt/

dm_crypt wiki: http://www.saout.de/tikiwiki/tiki-index.php
NFS: http://nfs.sourceforge.net/

NES 4: http://www.nfsv4.org/

sXid: http://1linux.cudeso.be/linuxdoc/sxid.php

Tripwire: http://www.tripwire.org/

Sites About ACLs

Red Hat Enterprise Linux and ACLs: http://www.redhat.com/docs/manuals/
enterprise/RHEL-3-Manual/sysadmin-guide/ch-acls.html

Linux ACLs: http://www.vanemery.com/Linux/ACL/1linux-acl.html

Debian ACLs: http://acl.bestbits.at/

231

CHAPTER 5

Understanding Logging and
Log Monitoring

One of the key facets of maintaining a secure and hardened environment is knowing what
is going on in that environment. You can achieve this through your careful and systematic use
of logs. Most systems and most applications, such as Apache or Postfix, come with default log-
ging options. This is usually enough for you to diagnose problems or determine the ongoing
operational status of your system and applications. When it comes to security, you need to
delve a bit deeper into the logging world to gain a fuller and clearer understanding of what is
going on with your systems and applications and thus identify potential threats and attacks.

Logs are also key targets for someone who wants to penetrate your system—for two rea-
sons. The first reason is that your logs often contain vital clues about your systems and their
security. Attackers often target your logs in an attempt to discover more about your systems.
As aresult, you need to ensure your log files and /var/log directory are secure from intruders
and that log files are available only to authorized users. Additionally, if you transmit your logs
over your network to a centralized log server, you need to ensure no one can intercept or divert
your logs.

The second reason is that if attackers do penetrate your systems, the last thing they want
to happen is that you detect them and shut them out of your system. One of the easiest ways
to prevent you from seeing their activities is to whitewash your logs so that you see only what
you expect to see. Early detection of intrusion using log monitoring and analysis allows you to
spot them before they blind you.

I will cover a few topics in this chapter, including the basic syslog daemon and one of its
successors, the considerably more powerful and more secure syslog-NG. I will also cover the
Simple Event Correlation (SEC) tool, which can assist you in highlighting events in your logs.
I'will also discuss logging to databases and secure ways to deliver your logs to a centralized
location for review and analysis.

Syslog

Syslog is the ubiquitous Unix tool for logging. It is present on all flavors of Linux and indeed
on almost all flavors of Unix. You can add it using third-party tools to Windows systems, and
most network devices such as firewalls, routers, and switches are capable of generating Syslog
messages. This results in the Syslog format being the closest thing to a universal logging stan-
dard that exists.

233

234

CHAPTER 5 " UNDERSTANDING LOGGING AND LOG MONITORING

Tip RFC 3164 documents the core Syslog functionality.!

I will cover the Syslog tool because not only is it present on all distributions of Linux, but
it also lays down the groundwork for understanding how logging works on Linux systems. The
syslog utility is designed to generate, process, and store meaningful event notification messages
that provide the information required for administrators to manage their systems. Syslog is both
a series of programs and libraries, including syslogd, the syslog daemon, and a communica-
tions protocol.

The most frequently used component of syslog is the syslogd daemon. This daemon runs
on your system from startup and listens for messages from your operating system and applica-
tions. It is important to note that the syslogd daemon is a passive tool. It merely waits for input
from devices or programs. It does not go out and actively gather messages.

Note Syslog also uses another daemon, klogd. The Kernel Log Daemon specifically collects messages
from the kernel. This daemon is present on all Linux systems and starts by default when your system starts.
[will talk about that in some more detail in the “syslog-NG” section.

The next major portion of the syslog tools is the syslog communications protocol. With
this protocol it is possible to send your log data across a network to a remote system where
another syslog daemon can collect and centralize your logs. As presented in Figure 5-1, you
can see how this is done.

—
=
> =]l < =
A A
syslogd Central syslogd Server syslogd
514/UDP

Figure 5-1. Remote syslogd logging

But my recommendation, though, is that if you have more than one system and either
have or want to introduce a centralized logging regime, then do not use syslog. I make this

1. Seehttp://www.fags.org/rfcs/rfc3164.html. Also, some interesting work is happening on a new RFC
for Syslog; you can find it at http://www.syslog.cc/ietf/protocol.html.

CHAPTER 5 " UNDERSTANDING LOGGING AND LOG MONITORING

recommendation as a result of syslog’s reliance on the User Datagram Protocol (UDP) to
transmit information. UDP has three major limitations.

¢ On a congested network, packets are frequently lost.
» The protocol is not fully secure.

* You are open to replay and Denial of Service (DoS) attacks.

If you are serious about secure logging, I recommend the syslog-NG package, which I will
discuss later in the “syslog-NG” section.

The syslog communications protocol allows you to send syslog messages across your
network via UDP to a centralized log server running syslogd. The syslogd daemon usually
starts by default when your system boots. It is configured to collect a great deal of information
about the ongoing activities of your system “out of the box.”

Tip Syslog traffic is usually transmitted via UDP on port 514.

Configuring Syslog

The syslog daemon is controlled by a configuration file located in /etc called syslog.conf.
This file contains the information about what devices and programs syslogd is listening for
(filtered by facility and priority), where that information is to be stored, or what actions are
to be taken when that information is received. You can see in Listing 5-1 that each line is
structured into two fields, a selector field and an action field, which are separated by spaces
or a tab.

Listing 5-1. syslog.conf Syntax
mail.info /var/log/maillog

This example shows a facility and priority selector, mail.info, together with the action
/var/log/maillog. The facility represented here is mail, and the priority is info. Overall the
line in Listing 5-1 indicates that all messages generated by the mail facility with a priority of
info or higher will be logged to the file /var/log/maillog. Let’s examine now what facilities,
priorities, and actions are available to you on a Linux system.

Facilities

The facility identifies the source of the syslog message. Some operating-system functions and
daemons and other common application daemons have standard facilities attached to them.
The mail and kern facilities are two good examples. The first example is the facility for all mail-
related event notification messages. The second example is the facility for all kernel-related
messages. Other processes and daemons that do not have a prespecified facility are able to log
to the local facilities, ranging from localo to local7. For example, I use local4 as the facility
for all messages on my Cisco devices. Table 5-1 lists all Syslog facilities.

235

236

CHAPTER 5 " UNDERSTANDING LOGGING AND LOG MONITORING

Table 5-1. Syslog Facilities on Linux

Facility Purpose

auth Security-related messages

auth-priv Access control messages

cron cron-related messages

daemon System daemons and process messages

kern Kernel messages

localo-local7 Reserved for locally defined messages

lpr Spooling subsystem messages

mail Mail-related messages

mark Time-stamped messages generated by syslogd
news Network News-related messages (for example, Usenet)
syslog Syslog-related messages

user The default facility when no facility is specified
uucp UUCP-related messages

Tip On Mandrake and Red Hat systems local7 points at /var/log/boot.log, which contains all the
messages generated during the boot of your system.

The mark facility is a special case. It is used by the time-stamped messages that syslogd gen-
erates when you use the -m (minutes) flag. You can find more on this in the “Starting syslogd and
Its Options” section.

You have two special facilities: *, which indicates all facilities, and none, which negates
a facility selection. As shown in the following example, you can use these two facilities as
wildcard selectors. See Listing 5-2.

Listing 5-2. syslog.conf * Wildcard Selector

*.emerg /dev/console

This will send all messages of the emerg priority, regardless of facility, to the console. You
can also use the none wildcard selector to not select messages from a particular facility.

kern.none /var/log/messages

This will tell syslog to not log any kernel messages to the file /var/log/messages.

Priorities

Priorities are organized in an escalating scale of importance. They are debug, info, notice,
warning, err, crit, alert, and emerg. Each priority selector applies to the priority stated and all
higher priorities, so uucp.err indicates all uucp facility messages of err, crit, alert, and emerg
priorities.

CHAPTER 5 " UNDERSTANDING LOGGING AND LOG MONITORING

As with facilities, you can use the wildcard selectors * and none. Additionally, you can use
two other modifiers: = and !. The = modifier indicates that only one priority is selected; for
example, cron.=crit indicates that only cron facility messages of crit priority are to be selected.
The ! modifier has a negative effect; for example, cron. I crit selects all cron facility messages
except those of crit or higher priority. You can also combine the two modifiers to create the
opposite effect of the = modifier so that cron. !=crit selects all cron facility messages except
those of crit priority. Only one priority and one priority wildcard can be listed per selector.

Actions

Actions tell the syslogd what to do with the event notification messages it receives. Listing 5-3
lists the four actions syslogd can take, including logging to a file, device file, named pipes (fifos)
and the console or a user’s screen. In Listing 5-2 you saw device logging at work with all the
emerg messages on the system being sent to the console.

Listing 5-3. File, Device, and Named Pipe Actions

cron.err /var/log/cron
auth.!=emerg /dev/1pr3
auth-priv root,bob
news.=notice | /var/log/newspipe

In the first line all cron messages of err priority and higher are logged to the file
/var/log/cron. The second line has all auth messages except those of emerg priority being
sent to a local printer 1pr3. The third line sends all auth-priv messages to the users root
and bob if they are logged in. The fourth sends all news messages of notice or greater prior-
ity to a named pipe called /var/log/newspipe (you would need to create this pipe yourself
with the mkfifo command).

Caution When logging to files, syslogd allows you to add a hyphen (-) to the front of the filename like
this: -/var/log/auth. This tells syslog to not sync the file after writing to it. This is designed to speed up
the process of writing to the log. But it can also mean that if your system crashes between write attempts,
you will lose data. Unless your logging system is suffering from performance issues, | recommend you do
not use this option.

You can also log to a remote system (see Listing 5-4).

Listing 5-4. Logging to a Remote System
mail @puppy . yourdomain.com

In this example all mail messages are sent to the host puppy.yourdomain.com on UDP port
514. This requires that the syslogd daemon on puppy is started with the -r option; otherwise,
the syslogd port will not be open.

237

238

CHAPTER 5 " UNDERSTANDING LOGGING AND LOG MONITORING

Caution Opening syslogd to your network is a dangerous thing. The syslogd daemon is not selective
about where it receives messages from. There are no access controls, and any system on your network can
log to the syslogd port. This opens your machine to the risk of a DoS attack or of a rogue program flooding
your system with messages and using all the space in your log partition. | will briefly discuss some methods
by which you can reduce the risk to your system, but if you are serious about remote logging | recommend
you look at the “syslog-NG” section. | will also discuss secure logging using the syslog-NG tool in conjunc-
tion with Stunnel in the “Secure Logging with syslog-NG” section.

Combining Multiple Selectors

You can also combine multiple selectors in your syslog.conf file, allowing for more sophisti-
cated selections and filtering. For example, you can list multiple facilities separated by com-
mas in a selector. See Listing 5-5.

Listing 5-5. Multiple Facilities

auth,auth-priv.crit /var/log/auth

This sends all auth messages and all auth-priv messages with a priority of crit or higher
to the file /var/log/auth.

You cannot do this with priorities, though. If want to list multiple priorities, you need to
list multiple selectors separated by semicolons, as shown in Listing 5-6.

Listing 5-6. Multiple Priorities

auth;auth-priv.debug;auth-priv. I=emerg /var/log/auth

This example shows you how to send all auth messages and all auth-priv messages with a pri-
ority of debug or higher, excluding auth-priv messages of emerg priority to the file /var/log/auth.

Tip Just remember with multiple selectors that filtering works from left to right; syslogd will process
the line starting from the selectors on the left and moving to the right of each succeeding selector. With this
in mind, place the broader filters at the left, and narrow the filtering criteria as you move to the right.

You can also use multiple lines to send messages to more than one location, as shown in
Listing 5-7.

Listing 5-7. Logging to Multiple Places

auth /var/log/auth
auth.crit bob
auth.emerg /dev/console

CHAPTER 5 " UNDERSTANDING LOGGING AND LOG MONITORING

Here all auth messages are logged to /var/log/auth as previously, but auth messages of
crit or higher priority are also sent to user bob, if he is logged in. Those of emerg priority are
also sent to the console.

Starting syslogd and Its Options

The syslogd daemon and its sister process, the klogd daemon, are both started when your sys-
tem boots up. This is usually in the form of an init script; for example, on Red Hat the syslog
scriptin /etc/rc.d/init.d/ starts syslogd and klogd. You can pass a number of options to the
syslogd program when it starts.

Tip On most Red Hat and Mandrake systems the sys1log file in /etc/sysconfig/ is referenced by the
syslog init script and contains the options to be passed to syslogd and klogd when it starts.

The first option you will look at is the debug option (see Listing 5-8).

Listing 5-8. Running syslogd with Debug
puppy# syslogd -d

This will start syslogd and prevent it from forking to the background. It will display a large
amount of debugging information to the current scree