
this print for content only—size & color not accurate spine = 0.875" 376 page count

Books for professionals By professionals®

Beginning Ubuntu Server Administration:
From Novice to Professional
Dear Reader,

For the past few years, many have hailed Ubuntu Linux as the best chance to
finally sway the computing masses toward the Linux desktop. And it’s easy to
see why: it offers an amazingly user-friendly interface, intuitive installation
and configuration process, and an enormous choice of applications. Indeed,
it’s become so popular that system administrators are rapidly adopting Ubuntu
Server Edition to configure, deploy, and manage network services more effective-
ly than ever before.

Whether you’re interested in using Ubuntu within a Fortune 500 environment
or just managing your home network, you hold in your hands the only book
you need. While writing it, I kept your daily administration tasks constantly
in mind, and I’ve included chapters on how to set up and run Ubuntu Server
as a file and print server, a virtualization server, and a web server. I also show
you how to perform many other tasks that you’ll frequently encounter as an
Ubuntu Server administrator, such as automating installation, configuration,
and deployment processes, and managing the kernel.

Along the way, this book will help you become a more proficient administra-
tor as you learn to take advantage of little-known shell-related features, tips,
and tricks. Efficiency is a major theme of this book, and you’ll also learn how to
optimize, troubleshoot, and remotely manage your server.

Reading this book will help you master every aspect of Ubuntu Server, from
both the command line and the graphical interface. Whether you’re about to
manage your first server or are interested in expanding your knowledge of
Ubuntu Server, this is the book for you!

Sander van Vugt

Author of

The Definitive Guide to SUSE
Linux Enterprise Server

Pro Novell Open Enterprise
Server

US $39.99

Shelve in
Operating Systems/Linux

User level:
Beginner–Intermediate

van Vugt
Ubuntu Server Adm

inistration

The eXperT’s Voice® in open source

Beginning

Ubuntu Server
Administration
From Novice to Professional

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Sander van Vugt

Companion
eBook Available

www.apress.com

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-923-5
ISBN-10: 1-59059-923-3

9 781590 599235

53999

Everything you need to know to manage Ubuntu Server

Beginning

THE APRESS ROADMAP

Beginning SUSE Linux,
Second Edition

Beginning Ubuntu,
Second Edition

The Definitive Guide to
Samba 4, Second Edition

The Definitive Guide to
SUSE Linux Enterprise Server

From Bash to Z-Shell:
Conquering the Command Line

Beginning Ubuntu
Server Administration

Practical MythTV: Building
a PVR and Media Center

Sander van Vugt

Beginning Ubuntu
Server Administration
From Novice to Professional

9233fm.qxd 11/13/07 2:51 PM Page i

Beginning Ubuntu Server Administration: From Novice to Professional

Copyright © 2008 by Sander van Vugt

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-923-5

ISBN-10 (pbk): 1-59059-923-3

ISBN-13 (electronic): 978-1-4302-0509-8

ISBN-10 (electronic): 1-4302-0509-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jason Gilmore, Tom Welsh
Technical Reviewer: Curtis Smith
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Kylie Johnston
Copy Editor: Tom Gillen
Associate Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Molly Sharp, ContentWorks
Proofreader: April Eddy
Indexer: Brenda Miller
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

9233fm.qxd 11/13/07 2:51 PM Page ii

f7670b088a34e6aa65a5685727db1ff4

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

This book is dedicated to Alex.

9233fm.qxd 11/13/07 2:51 PM Page iii

9233fm.qxd 11/13/07 2:51 PM Page iv

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvii

Introduction . xix

■CHAPTER 1 Installing Ubuntu Server . 1

■CHAPTER 2 Getting the Most Out of the Command Line . 25

■CHAPTER 3 Performing Essential System Administration Tasks 47

■CHAPTER 4 Performing File System Management Tasks . 73

■CHAPTER 5 Configuring Your Server for Security. 107

■CHAPTER 6 Setting the System to Your Hand . 151

■CHAPTER 7 Running It Anyway You Like . 185

■CHAPTER 8 Making Connection . 217

■CHAPTER 9 Configuring Network Infrastructure Services 255

■CHAPTER 10 Using Ubuntu Server As a File and Print Server 287

■CHAPTER 11 Setting Up Web Services . 313

■CHAPTER 12 Multiplying Your Server . 329

■INDEX . 343

v

9233fm.qxd 11/13/07 2:51 PM Page v

9233fm.qxd 11/13/07 2:51 PM Page vi

Contents

About the Author . xv

About the Technical Reviewer . xvii

Introduction . xix

■CHAPTER 1 Installing Ubuntu Server . 1

Preparing for the Installation . 1

Starting the Ubuntu Server Installation Process. 2

Configuring the Server’s Hard Drive . 8

Completing the Installation. 22

Summary . 24

■CHAPTER 2 Getting the Most Out of the Command Line 25

Working As root? . 25

Working with the Shell . 26

Using Bash to Best Effect . 26

Managing Bash with Key Sequences . 29

Performing Basic File System Management Tasks 30

Working with Directories . 30

Working with Files . 31

Viewing the Content of Text Files . 33

Finding Files That Contain Specific Text. 35

Creating Empty Files . 36

Piping and Redirection . 37

Piping . 37

Redirection . 37

Finding Files . 40

Working with an Editor . 40

Vi Modes . 41

Saving and Quitting . 42

Cut, Copy, and Paste . 42

Deleting Text . 42

vii

9233fm.qxd 11/13/07 2:51 PM Page vii

Getting Help . 43

Using man to Get Help . 43

Using the --help Option . 45

Getting Information on Installed Packages . 46

Summary . 46

■CHAPTER 3 Performing Essential System Administration Tasks 47

Software Management . 47

Software Repositories and Package Databases 48

Package Management Utilities . 49

Installing Software from Tarballs. 57

Configuring a Graphical User Interface . 58

Creating Backups . 60

Making File Backups with tar . 60

Making Device Backups Using dd. 63

Configuring Logging . 64

Configuring syslog . 64

Logging in Other Ways . 69

Rotating Log Files . 69

Summary . 72

■CHAPTER 4 Performing File System Management Tasks 73

Mounting Disks . 73

Using the mount Command . 73

Unmounting Devices . 77

Automating Mounts with /etc/fstab . 78

Checking File System Integrity . 81

Working with Links . 82

Why Use Links? . 82

Working with Symbolic Links. 82

Working with Hard Links. 84

Configuring Storage . 85

Comparing File Systems. 85

Creating File Systems . 94

Working with Logical Volumes. 97

Doing Magic on Your File Systems with dd . 102

Summary . 105

■CONTENTSviii

9233fm.qxd 11/13/07 2:51 PM Page viii

■CHAPTER 5 Configuring Your Server for Security . 107

Setting Up User Accounts. 107

Commands for User Management . 108

Managing Passwords . 110

Modifying and Deleting User Accounts . 112

Behind the Commands: Configuration Files 112

Creating Groups. 117

Commands for Group Management . 117

Behind the Commands: /etc/group . 117

Managing the User’s Shell Environment . 118

Configuring Permissions. 119

Read, Write, and Execute: The Three Basic Linux Permissions . . . 119

Permissions and the Concept of Ownership 119

Working with Advanced Linux Permissions. 122

Setting Permissions. 124

Using umask to Set Default Permissions. 125

Working with Access Control Lists . 126

Preparing the File System for ACLs . 127

ACL Limitations . 129

Applying File Attributes . 130

Apply Quota to Allow a Maximum Amount of Files 131

Installing the Quota Software. 132

Preparing the File System for Quota. 132

Initializing Quota. 132

Setting Quota for Users and Groups . 133

Understanding Pluggable Authentication Modules 134

Creating a Default Policy for Security. 136

Discovering PAM Modules . 136

Configuring Administrator Tasks with sudo. 140

An Introduction to Setting Up the Netfilter Firewall with iptables 141

Netfilter Building Blocks . 142

Using iptables to Create a Firewall . 144

Summary . 149

■CHAPTER 6 Setting the System to Your Hand. 151

Process Monitoring and Management . 151

Different Kinds of Processes . 151

Foreground and Background . 152

Managing Processes . 154

Other Tools to Monitor System Activity. 157

Setting Process Priority. 160

■CONTENTS ix

9233fm.qxd 11/13/07 2:51 PM Page ix

Executing Processes Automatically . 161

Configuring cron. 161

Executing Once with at . 163

Tuning the Boot Procedure. 164

Managing the GRUB Boot Loader . 164

The GRUB Configuration File . 165

Installing GRUB. 167

Working with the GRUB Boot Menu . 168

Upstart . 169

Runlevels. 171

Making Service Management Easier . 173

Managing Hardware . 174

Kernel Management . 174

Installing Your Own Custom Kernel . 178

Hardware Management with udev . 180

Summary . 183

■CHAPTER 7 Running It Anyway You Like. 185

Before You Even Start . 185

To Script or Not to Script? . 185

What Shell?. 186

Basic Elements of a Shell Script . 187

Making It Executable . 188

Making a Script Interactive . 190

Working with Arguments . 191

Working with Variables . 194

Command Substitution . 194

Changing Variables . 195

Substitution Operators . 195

Pattern-Matching Operators . 197

Performing Calculations in Scripts . 199

Using Flow Control . 203

Using if then else . 204

Case . 207

Using while . 209

Using until . 209

Using for . 210

Using a Stream Editor . 211

Working with Functions . 212

A Complex Scripting Example . 213

Summary . 215

■CONTENTSx

9233fm.qxd 11/13/07 2:51 PM Page x

■CHAPTER 8 Making Connection . 217

Configuring the Network Card. 217

Using ifup, ifdown, and Related Tools. 219

Using ifconfig . 219

Using the ip Tool. 221

Managing IPv6 . 224

Managing Routes . 227

Configuring the DNS Resolver . 228

Configuring Network Card Properties with the ethtool
Command. 230

Troubleshooting Network Connections . 230

Testing Connectivity . 231

Testing Routability . 232

Testing Availability of Services . 234

Monitoring the Network Interface . 238

Monitoring Network Traffic . 240

Connecting Remotely with SSH. 243

Working with Public/Private Key Pairs . 244

Working with Secure Shell . 244

Configuring SSH. 245

Using Key-Based Authentication. 247

A Short Introduction to Cryptography . 248

Using Public/Private Key–Based Authentication in an SSH
Environment . 248

Setting Up SSH for Key-Based Authentication 249

Caching Keys with ssh-agent . 250

Tunneling Traffic with SSH . 251

X Forwarding. 251

Generic TCP Port Forwarding . 252

Summary . 253

■CHAPTER 9 Configuring Network Infrastructure Services 255

Configuring DNS . 255

Methods of Name Resolution. 255

Structure of the DNS Hierarchy . 257

Introducing Forward and Reverse DNS . 260

Configuring DNS. 261

Configuring Reversed Lookup . 267

Testing Your Name Server . 268

■CONTENTS xi

9233fm.qxd 11/13/07 2:51 PM Page xi

Configuring DHCP . 269

Understanding the DHCP Protocol. 269

Creating the DHCP Server Configuration . 269

The DHCP Process . 270

The /etc/dhcpd.conf Configuration File . 270

Advanced DHCP Configuration Options . 273

The DHCP Relay Agent . 275

Configuring NTP. 276

How NTP Works . 276

Configuring a Stand-Alone NTP Time Server 277

Pulling or Pushing the Time . 278

Configuring an NTP Client . 279

Checking NTP Synchronization Status . 279

Customizing Your NTP Server . 280

Applying NTP Security. 281

Starting Services with xinetd. 282

Setting up xinetd by Hand . 282

Tuning Access to Services with TCP Wrapper. 284

Summary . 286

■CHAPTER 10 Using Ubuntu Server As a File and Print Server 287

Setting Up a CUPS Print Server . 287

Adding Printers. 288

Sharing Printers . 290

Managing Printers . 291

Accessing CUPS Printers . 292

Sharing Files with NFS . 293

Using the NFS Server . 294

Understanding How the NFS Works . 294

Configuring an NFS Server. 296

Configuring an NFS Client . 298

Monitoring the NFS Server . 299

Sharing Files with Samba . 299

Samba Server Possibilities and Impossibilities. 300

Configuring the Samba Server . 300

Integrating CUPS with Samba . 305

Setting Up Samba As a Domain Controller . 307

Client Access to the Samba Server. 309

Summary . 311

■CONTENTSxii

9233fm.qxd 11/13/07 2:51 PM Page xii

■CHAPTER 11 Setting Up Web Services . 313

Setting Up Apache . 313

Apache Components . 314

Starting, Stopping, and Testing the Apache Web Server 314

Exploring the Configuration Files. 316

The Structure of the Apache Configuration Files 317

Checking the Configuration . 318

Working with Virtual Hosts . 318

Configuring Virtual Hosts . 319

Managing Access to the Web Server . 320

Configuring Host-Based Access Restrictions 320

Configuring User-Based Access Restrictions 322

Some Words on Apache Performance Tuning. 323

Using PHP . 324

Setting Up MySQL . 325

Setting the MySQL Root Password . 325

Creating a MySQL Database . 326

Setting Up FTP . 326

Configuring the pure-ftpd Server . 326

Summary . 328

■CHAPTER 12 Multiplying Your Server. 329

Understanding Virtualization . 329

Virtualization Solutions . 329

Approaches to Virtualization. 330

Installing Virtual Machines with KVM . 332

Setting Up KVM on Ubuntu Server . 332

Installing Windows As a Guest Operating System on KVM 333

Installing Ubuntu Server As a Guest Operating System on KVM . . 334

Setting Up Networking in KVM Virtual Machines 334

Installing Virtual Machines Using Xen . 335

Setting Up Xen on Ubuntu Server . 336

Installing Windows As a Guest Operating System on Xen. 338

Installing Ubuntu Server As a Guest Operating System on Xen . . . 340

Using Xen Management Commands . 341

Ubuntu Server in a VMware Environment . 342

Summary . 342

■INDEX . 343

■CONTENTS xiii

9233fm.qxd 11/13/07 2:51 PM Page xiii

9233fm.qxd 11/13/07 2:51 PM Page xiv

About the Author

■SANDER VAN VUGT is an independent trainer and consultant, living in
the Netherlands and working in the extended EMEA (Europe, Middle
East, and Africa) area. He specializes in Linux High Availability and
Storage solutions and has successfully implemented Linux clusters
across the globe. Sander has written several books about Linux-related
subjects, including The Definitive Guide to SUSE Linux Enterprise Server
(Apress, 2006).

His articles can also be found on several international web sites and
in magazines such as Linux Journal and Linux Magazine. Sander works

as a volunteer for the Linux Professional Institute (LPI), contributing topics for the different
certification levels. Most importantly, Sander is the father of Alex and Franck and the loving
husband of Florence. For more information, consult his web site at www.sandervanvugt.com.
The author can be reached by email at mail@sandervanvugt.com.

xv

9233fm.qxd 11/13/07 2:51 PM Page xv

http://www.sandervanvugt.com
mailto:mail@sandervanvugt.com

9233fm.qxd 11/13/07 2:51 PM Page xvi

About the Technical Reviewer

■CURTIS SMITH is a professional systems and network administrator living
in Westerville, Ohio. His experience includes designing, building, and
maintaining open source e-mail and web solutions for an Internet service
provider and the Max M. Fisher College of Business at The Ohio State
University. He earned his BA from Ohio State, majoring in philosophy.
Curtis is the author of Pro Open Source Mail: Building an Enterprise Mail
Solution (Apress, 2006).

Curtis is active in local community user and volunteer groups, both
technical and nontechnical. He also enjoys photography, camping, canoeing, and hiking when
not stuck indoors behind the keyboard.

xvii

9233fm.qxd 11/13/07 2:52 PM Page xvii

9233fm.qxd 11/13/07 2:52 PM Page xviii

Introduction

This book provides a complete introduction to Ubuntu Server. I’ve written this book for people
who are new to Ubuntu Server administration. The target readers are Windows administrators
as well as people who are used to managing other flavors of Linux (or UNIX). It was the goal of
this book to give a no-nonsense introduction to working with Ubuntu Server, and so this book
should provide all the basics that are needed to get you going. It also includes many useful tips
that help you in doing your work in a more efficient manner.

Many books about Ubuntu are presently available, but you can’t do Ubuntu Server justice
by covering both the desktop and the server version in one book. The needs of a server admin-
istrator are incredibly different from the needs of a desktop administrator. So I’ve chosen an
approach that makes sense for the server administrator, and all topics are selected and organ-
ized to make sense for your day-to-day work as a server administrator.

The book starts by describing Ubuntu Server with a special focus on storage configura-
tion, which is an especially important concern when dealing with server environments. After
that, you’ll find a quick introduction to driving Ubuntu Server from the command line, in case
you haven’t done this before. The third chapter tackles some of the common generic tasks of a
server administrator, including managing software packages and configuring a graphical user
interface. Next are chapters about file system management, Ubuntu Server security, managing
processes, and the boot procedure. The last chapter dealing with stand-alone server function-
ality explains Bash shell scripting: in fewer than 30 pages, you’ll learn everything you ever
needed to know about this complex topic.

The second part of the book teaches you all about network services. First, you’ll learn
how to configure and troubleshoot a network interface. Next, you’ll read how to set up infra-
structure services such as time services, name services, and DHCP. Following that, you’ll find
chapters about managing file services, the Apache web server (including performance tuning
hints and a section on virtual hosts), and related packages such as MySQL. Finally, the last
chapter provides an overview of the approaches to running virtualization on Ubuntu Server.

Who This Book Is For
This book is written for Linux administrators, whether novice or experienced, who are looking
for a quick, thorough, and authoritative introduction to daily Ubuntu Server management.

Prerequisites
To get the most out of this book, you should have a computer that you can use to install
Ubuntu Server. Any Pentium-based system with 128 MB of RAM and a hard disk with at least
2 GB of free space will do fine. You of course also need the Ubuntu Server software, which you

xix

9233fm.qxd 11/13/07 2:52 PM Page xix

can download from www.ubuntu.com. Apart from these simple elements, there are no further
prerequisites. This book assumes no preliminary knowledge of Linux or Ubuntu.

Downloading the Code
The source code for this book is available to readers at www.apress.com in the Downloads sec-
tion of this book’s home page. Please feel free to visit the Apress web site and download all the
code there. You can also check for errata and find related Apress titles.

Contacting the Author
The author can be reached via his web site www.sandervanvugt.com and by mail at
mail@sandervanvugt.com.

■INTRODUCTIONxx

9233fm.qxd 11/13/07 2:52 PM Page xx

http://www.ubuntu.com
http://www.apress.com
http://www.sandervanvugt.com
mailto:mail@sandervanvugt.com

Installing Ubuntu Server

You probably chose Ubuntu as a server solution because of either your gratifying experience
using it on the desktop or the raves you’ve heard from others about its user-friendly approach.
Accordingly, you might expect the general Ubuntu Server installation process to be fairly easy,
and indeed it is. Nevertheless, because your ultimate goal is to deploy the server in a produc-
tion environment, it’s a good idea to follow some key aspects of the installation process with
rigor, and this chapter is intended to help you do exactly that.

To keep things as simple as possible, you’ll read how to complete the installation on a real
server, with no virtualization involved. You’ll explore the different options presented to you
while installing Ubuntu, as well as the best choice to make to ensure that your installation is
successful.

Preparing for the Installation
Before starting the installation, you have to do a bit of preparation. First, you must make sure
that the required hardware is available. At the most basic, any PC will do, but, if you are inter-
ested in putting a real server to work, I recommend using server-grade hardware because that
kind of hardware is optimized for the tasks that servers typically perform. On such hardware,
you can install Ubuntu directly or virtualized. If you don’t have server-grade hardware avail-
able, a standard PC is fine.

In this chapter you won’t learn how to install Ubuntu Server on a computer that already
has some Windows installation. The reason for this is simple: on a real server you want only
your server operating system and nothing else. Creating a dual-boot machine is cool for a
desktop operating system, but you just don’t want that for a real server. So at this point, make
sure that you have the hardware available to start the installation of a dedicated server.

Also make sure that you have the installation CD, which can be downloaded from
www.ubuntu.com. (Make sure that you select the server version of Ubuntu.) In this book, I’m
working with Ubuntu Server 7.04, simply because it’s the most recent version of Ubuntu
Server that is currently available. I’m sure that, by the time this book is in your hands, a more
recent version will be available, but most of the information presented here will still apply.
However, if you want to be sure that everything works in exactly the same way as it is
described here, I recommend that you download the 7.04 version of Ubuntu Server.

1

C H A P T E R 1

9233ch01.qxd 10/31/07 3:29 PM Page 1

http://www.ubuntu.com

Starting the Ubuntu Server Installation Process
Have everything ready? Time to go! Insert the installation CD in your server’s optical drive and
boot your server. Make sure the server boots from the CD-ROM and follow these steps to com-
plete the installation.

1. In the installation menu that appears once the CD spins up, specify what you want
to do. Often, it will be enough to select Install to the hard disk, but in certain cases
other options are required as well. This is especially the case if you want to install in
a language other than English and you’re using a keyboard different from a US key-
board. If this is the case, use the F2 and the F3 keys to specify your language settings.
The other options are rarely used. Make sure that you have selected everything you
need, select Install to the hard disk as in Figure 1-1 and then press the Enter key to
start the installation.

Figure 1-1. In many situations, you just have to press the Enter key to start the installation.

■Note If your graphical hardware doesn’t support displaying the full graphical menu, you might get an
installation screen that looks a little different. In that case, press F1 to see the options that are mentioned
before.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER2

9233ch01.qxd 10/31/07 3:29 PM Page 2

2. In case you did not choose your installation language in the first step of this procedure,
you get another chance in the next screen. In this book we’ll use English; if you want to
install in another language, select it from the menu that you see in Figure 1-2.

Figure 1-2. If you did not specify the installation language in the boot screen, you have
another chance of selecting the language here.

3. Based on the language that you selected, you’ll see a list of countries (see Figure 1-3).
Select your country to make sure that other settings are applied automatically. If your
country is not in the default list, browse to the bottom of the list and select Other,
which supplies a larger list.

■Tip Ubuntu Server makes some choices for you automatically. If you want to make these choices your-
self, use the Go Back button that appears in almost every screen of the installer. This will display a more
detailed list of options that are relevant to that particular stage of the installation, and you can choose what
you want to do yourself.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 3

9233ch01.qxd 10/31/07 3:29 PM Page 3

Figure 1-3. If your country doesn’t appear in the default list of countries, select Other to
choose from a larger list of countries.

4. Next, you can have the installer automatically detect the keyboard that you are using.
If you don’t want to use this feature, click No from the screen that you see in Figure 1-4,
and select your keyboard type.

Figure 1-4. The installation program can automatically detect the keyboard layout that
you are using.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER4

9233ch01.qxd 10/31/07 3:29 PM Page 4

5. If you want the program to detect the keyboard automatically, select Yes. Next, the
installer will ask you to hit a specified key (see Figure 1-5), by which it can detect the
right keyboard layout in a matter of seconds.

Figure 1-5. Based on the keys that you pressed, the installation program will quickly
detect the proper keyboard layout.

6. After the keyboard is configured, most hardware is detected and configured automati-
cally. Some hardware—such as WiFi network cards or graphical adapters—may require
later configuration. Among the most important settings is the network configuration.
If a DHCP server is available in the network to automatically assign IP addresses, your
server will be provided with an IP address and ask you only for a name for the server. If
you don’t have a DHCP server, the network configuration program will start automati-
cally. For a server, it is always a good idea to work with a fixed IP address, because you
wouldn’t want your services to suddenly switch to a different IP address suddenly. So
it’s a good idea to click the Go Back button now and manually configure the network
card. You’ll see a list of the available options. In the next step, you manually configure
the IP address of your server.

7. After selecting the Go back option, move your cursor to Configure network manually
(see Figure 1-6) and press Enter.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 5

9233ch01.qxd 10/31/07 3:29 PM Page 5

Figure 1-6. In almost every step of the installation procedure, you can click the Go Back
button to see a more detailed list of options.

8. Enter the IP address that you want to use for your server, select Continue and press
Enter. Not sure what information you need here? Then either return to step 6 and have
DHCP automatically assign an IP address, or ask your service provider or network
administrator for the proper address configuration.

9. Every IP address needs a netmask, and most IP addresses can use the netmask that is
assigned to them by default. If this doesn’t work in your situation, enter the proper net-
mask in the screen shown in Figure 1-7 and then select Continue and press Enter.

Figure 1-7. On most networks, the default netmask can be used.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER6

9233ch01.qxd 10/31/07 3:29 PM Page 6

10. In this step you’re asked to enter the IP address of the default gateway. This is the IP
address of the router that is connected to the rest of the Internet. Ask your network
administrator what to use here and then proceed to the next step.

11. Enter the IP address of the DNS server that you want to use (see Figure 1-8). This server
allows you to reach other computers on the Internet by their names instead of their IP
addresses. If you are on a small network, this is probably the address of a server at your
Internet service provider. If you are on a larger network, the network administrator
may have configured a separate DNS server. Ask what IP address you should use and
then proceed to the next step. You would normally enter two IP addresses for DNS
name servers to ensure that names will still be resolved if the first DNS server is down.
To enter a second IP address for a DNS server, just enter the address with a space as the
separator between the two addresses. Use the actual IP addresses here and not names
(because using names requires a means for them to be resolved, and setting up that
mechanism is just what you’re doing here).

Figure 1-8. The IP address of the DNS server is necessary to contact other computers on
the Internet by their names instead of their IP addresses.

12. Now you are asked for the name you want to use for your computer. By default, the
installer assigns a host name automatically. In Figure 1-9, you can see that this host
name is assigned on your server’s MAC address, which is the unique address of your
server’s network card. There’s nothing wrong with this, but you may want to use a
name that provides a little more information or individuality. Also, the name typically
has to conform to the naming scheme of your network.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 7

9233ch01.qxd 10/31/07 3:29 PM Page 7

Figure 1-9. The default host name is assigned on the MAC address of your server. You may
want to change that to something that provides more information.

Configuring the Server’s Hard Drive
You’ve now completed the first part of the installation, but basically nothing has changed
on your computer yet. So, if you want to stop the installation of Ubuntu Server and install
Windows NT anyway, you can. If you want to continue, it’s time to do some thinking. The
installer is going to ask you how you want to lay out your server’s hard drive. You have a couple
of choices here, and you better make them now because they’ll be very difficult to change later.

The first choice you have to make is between traditional partitions or more flexible
Logical Volume Manager (LVM)–based volumes. Using logical volumes can make your server
more flexible and more secure. If, for example, you put all data on one large storage unit (like
one root partition), a user or a process can fill that partition completely by accident, thus
making your server completely unusable. It’s useful to use more than one partition for the
following reasons, as well:

• Working with more than one partition makes it possible to mount partitions with differ-
ent properties while mounting. For example, a partition where things normally wouldn’t
change can be mounted as read-only, thus increasing the security of your server.

• Using more than one partition makes it easier to work with external storage like a
storage area network (SAN). For example, you could put all the system data on the
server’s local hard drive, and all the user data could reside on the SAN.

• Working with more than one partition is necessary in some situations. For example, to
make sure that your server will always be able to start up, you could create a separate
partition to boot from.

So before continuing, let’s talk about what this really involves.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER8

9233ch01.qxd 10/31/07 3:29 PM Page 8

Working with Traditional Partitions
Partitions have been used since the very first days of the personal computer. To create parti-
tions, you use the partition table in the master boot record of your server’s hard disk. Because
this partition table is only 64 bytes, you can create only four partitions here. In some cases,
four is not enough, and so you can define partitions as either primary or extended. A primary
partition can contain a file system directly. This is not the case for extended partitions. An
extended partition functions like an empty box that allows you to create logical partitions
inside of it. The number of logical partitions that can be created depends on the hardware and
software that you are using, but it is never more than 16. So, using the traditional partitioning
scheme, a maximum of 20 partitions can be created. This may seem enough, but in some situ-
ations it isn’t.

The next characteristic of a traditional partition is that it is not very flexible. If, after
some time, you learn that one of the partitions is almost full, it is very difficult in a traditional
partitioning scheme to increase the size of one partition while decreasing the size of another
partition. It can be done, but the work is really best left to the experts, because you could lose
all data on all partitions involved.

Advantages of Logical Volumes
The LVM system can be used to avoid the disadvantages of traditional partitions. If you use an
LVM layout, you format the logical volumes instead of the partitions. The logical volume has
more or less the same functionality as the partition, but LVMs have some important benefits:

• You can create an unlimited number of logical volumes.

• Logical volumes are very easy to resize.

• A logical volume does not have a one-to-one relationship with the storage device that
it’s created on. Thus, it’s possible to create a logical volume that uses three hard disks at
the same time. (This is certainly not recommended however, because, if you lost one
hard disk, you would loose your complete volume.)

• Logical volumes support working with snapshots. A snapshot allows you to freeze the
state of a volume at a given point in time, which makes backing up data on a logical vol-
ume very convenient. This is done in a very clever way, so that the snapshot uses only a
fraction of the disk space of the original volume.

■Note Really want to understand how LVM is working? The LVM-HOWTO at http://tldp.org/HOWTO/
LVM-HOWTO has some good in-depth information.

Apart from all the good news, LVMs have one drawback: you can’t boot from a logical vol-
ume. Therefore, even if you’re using LVMs, you’ll always need at least one traditional partition
to boot your server.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 9

9233ch01.qxd 10/31/07 3:29 PM Page 9

http://tldp.org/HOWTO

Creating an Efficient Hard Disk Layout on the Server
When installing a Linux server, it’s common not to put all files on one huge partition or logi-
cal volume for the reasons just discussed. Because Linux servers normally contain many
different files, some different partitions or volumes are created to store these files. Each of
these partitions or volumes is assigned to (mounted on) a specific directory. Of course, you
can put everything on one partition only, but you may run into troubles later, such as if, for
example, a user completely fills this partition. Before starting the actual installation of your
server, you should decide on the most appropriate way to use your hard drive. The following
list of directories normally have their own partition or logical volume on the file system.

• /boot: Because the information in the /boot directory is needed to start a server, it’s a
rather important directory. For that reason and especially to protect it from everything
else that is used on your server, /boot often has its own partition. This directory cannot
be on a logical volume because booting from logical volumes is currently not supported
out of the box. Because this directory is the first thing that is needed when booting a
server, it’s a very good idea to put it at the beginning of your server’s hard drive. Doing
so will prevent time-out issues while booting the server. Also, if working on a server
with an older BIOS, it is a good idea to have a separated /boot partition, as it should be
at the beginning of your hard disk. Typically, it is more than enough to allocate the
/boot directory to 100 MB partition.

• /: The root directory of the file system always has its own file system, which is also
referred to as the root file system. The root file system is rather simple: it contains
everything that hasn’t been split off to another partition. If no data files are stored here,
8 GB is typically large enough.

• /var: The /var directory is used by lots of processes that need to create files on your
server dynamically (such as printer spool files). However, because the /var directory is
so very dynamic, it has an increased chance of problems. So it’s always a good idea to
put it on its own partition. In a normal environment, 4 GB is a reasonable amount of
disk space to assign to this partition.

• /home: The /home directory belongs to the user and is where he or she will store files if
the server is a file server. Because it also is very dynamic and users are accessing it all
the time, make sure that it also has its own partition. The amount of disk space you
reserve for this partition depends on how much space you want to grant to your users.

• /srv: The /srv directory is used by servers such as the Apache web server and the FTP
server to store data. Because files in this directory can be accessed by users that make
a connection from the Internet, it should have some extra security. A simple way to
do this is to place it in its own partition. The amount of disk space on this partition
depends on how you are going to use your server. If it is a public FTP server, assign it
the maximum space; if your servers serve web or FTP files only occasionally, you can
keep the disk space in this directory quite moderate.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER10

9233ch01.qxd 10/31/07 3:29 PM Page 10

File Systems
Because it’s a Linux server, Ubuntu offers a choice from many file systems. When creating disk
partitions or volumes, you have to tell the partitioning utility what type of file system you want
to use on that volume. The following file systems are available for Ubuntu Server.

• Ext3: This is the default file system on almost all Linux distributions. Although it is a
very stable file system with many debug tools available, there is a major drawback: Ext3
isn’t the best file system to handle many files on one volume. It also isn’t the fastest if
you have to write many small files to your volume.

• Ext2: Ext2 and Ext3 are largely the same, except that Ext3 uses a journal to make it easier
to recover a corrupted file system. This isn’t the case for Ext2. Despite the absence of a
journal, Ext2 is still a good choice for small volumes where the services of a journal aren’t
necessarily needed (because, for example, the files are not supposed to be opened for
writing anyway). For instance, if you create a 100 MB /boot partition, the Ext2 file system
is an excellent choice for it.

• ReiserFS: ReiserFS is a very advanced file system with great features. These features
include journaling, advanced indexing, and many others. ReiserFS is particularly strong
if many small files have to be written. However, it has two drawbacks: its main developer
is currently facing myriad legal issues, and the file system is not particularly known for
its stability and active community support. Use it if you want to write intensively or if
you want to store many files in one directory, but make sure that you make a good
backup at the same time.

• XFS: XFS was developed by SGI as a special-purpose open source file system. It is espe-
cially meant to be used when the server will see lots of usage or when the files are very
large. So use it if you want to stream lots of media files, or if you have an FTP server with
multiple terabytes of data. XFS is not the best file system for an average server because
it is quite the heavyweight (its driver alone is four times as big as the driver needed for
Ext3 support). Therefore, XFS is relatively slow when compared to other file systems.

• Ext4: As you can probably guess from its name, Ext4 is the next generation of the Ext file
systems. At the time of this writing, the first code was just available and it was far from
being a usable file system. By the time you are reading this, Ext4 is probably already
offered as a choice when installing your server. Ext4 is supposed to address all the
shortcomings in Ext2 and Ext3, and it probably will be presented as an installation
option, so there is no harm in using it for all your needs.

• FAT: FAT, vfat, and NTFS file systems allow you to create a multiboot environment for
a computer on which both Windows and Linux are installed. The purpose of these file
systems is to access files stored in Windows partitions. You don’t need them on a
Linux-only server.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 11

9233ch01.qxd 10/31/07 3:29 PM Page 11

Continuing the Installation of Ubuntu Server
Now that you know some more about the choices that are offered when installing Ubuntu
Server, let’s continue. You now have to specify how you want to partition your server’s hard
disk. Because the partitioning of a hard disk is one of the most important parts of the server
installation process, we will cover all three choices.

• Guided - use entire disk: This is the easiest option. It offers a guided installation of your
hard disk, based on traditional partitions.

• Guided - use entire disk and set up LVM: This configuration option is a bit more com-
plex. It offers you a wizard that allows you to create an LVM-based disk configuration.

• Manual: Use this procedure if you’re sure you know what you are doing and you don’t
need the help of any wizard.

Using the Guided Partitioning Procedure
Let’s first talk about the guided procedure to set up a server hard disk. Your starting point is
the screen shown in Figure 1-10.

Figure 1-10. You have three choices for configuring your server’s hard disk.

1. From the screen shown in Figure 1-10, select Guided - use entire disk.

2. The installation shows an overview of all the available hard disks (see Figure 1-11).
Choose the disk that you want to use and press the Enter key.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER12

9233ch01.qxd 10/31/07 3:29 PM Page 12

Figure 1-11. Choose the hard disk that you want to partition.

3. Now the installation program shows you what it wants to do with your server’s hard
disk (see Figure 1-12). The program isn’t very verbose about this, as it just shows that
it wants to create a swap partition and an Ext3 partition. But you probably don’t care
because this option is meant to offer a simple partitioning for your server. So select Yes
and then press Enter to continue.

Figure 1-12. The default partitioning scheme is rather basic.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 13

9233ch01.qxd 10/31/07 3:29 PM Page 13

Using the Guided LVM-Based Setup
The procedure for an LVM-based disk layout is a lot like the simple guided disk setup. Choosing
the guided LVM-based setup also brings you to a screen from which you can select the disk or
disks that you want to use. Press Enter to select your disk. The partitioning program next tells you
that it wants to write a basic partitioning scheme to disk before it can continue (see Figure 1-13).
This is needed because an LVM environment is created on top of a traditional partition.

Figure 1-13. Before the logical volumes can be created, some traditional partition
setup has to be written to disk.

Once the default partitioning has been set up, the installation program makes a proposi-
tion for two logical partitions that are set up on top of that (see Figure 1-14.) By default, this is
a root partition, formatted as Ext3 and a swap partition. Select Yes and press Enter to continue
with the installation.

Figure 1-14. Two logical volumes are created on top of the partitions.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER14

9233ch01.qxd 10/31/07 3:29 PM Page 14

Manually Setting Up Your Hard Drive
If you want to set up your server’s hard drive manually, that’s perfectly fine, but you need to do
some thinking before you start. First, you need to decide if you want to use LVM or traditional
partitions only. Once you have made this decision, you need to choose between the different
file systems that are available for Linux. I recommend making a small overview like the one in
Table 1-1. While making such an overview, don’t forget to assign some swap space as well. In
Linux, swapping happens to a partition or volume, so you must consider it while setting up
your server. In general, there is no need to make your swap space larger than 1 GB, with the
exception of servers with special applications such as Oracle. If that is the case for your envi-
ronment, consult your application documentation to find out what amount of swap space is
reasonable for your situation.

Table 1-1. Hard Disk Configuration Overview

Directory Type File System Size

/boot Primary partition Ext2 100 MB

/var LVM ReiserFS 4 GB

/home LVM ReiserFS 200 GB

/ LVM Ext3 50 GB

swap LVM Swap 1 GB

Once you have made up your mind about the hard disk usage, follow these steps to apply
your decision.

1. From the Partition disks interface, select Manual.

2. You now see a screen like the one in Figure 1-15. In this screen, select the hard disk that
you want to configure.

Figure 1-15. Select the hard disk on which you want to create partitions and volumes.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 15

9233ch01.qxd 10/31/07 3:29 PM Page 15

3. Because you have just selected an entire hard disk to configure, the installation pro-
gram warns you, stating that continuing will remove all existing partitions on the hard
drive. If you are sure you want to do this, select Yes and press the Enter key.

4. You now see an overview of all available unconfigured disk space on the selected hard
drive (see Figure 1-16). Select this free space and press Enter.

Figure 1-16. Select the available disk space and press Enter.

5. Now the installer asks how to use the available disk space. To create the setup detailed
in Table 1-1, you first have to set up two partitions. One of them will be used by the
/boot partition, and the other will contain all available disk space on the hard drive.
This second partition is used to create a partition of the type 0x8e (LVM), which will be
used to set up logical volumes later. To set up the /boot partition first, select Create a
new partition (see Figure 1-17) and press Enter.

6. Next, enter the size that you want to assign to the partition, select Continue and press
the Enter key.

7. Now you have to enter the type of partition you need, and the installation program
offers a choice between a primary and a logical partition. If you choose a logical parti-
tion, the program will automatically create the necessary extended partition. Because
you need only two partitions in this scenario, you can choose the primary partition
type for both of the partitions.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER16

9233ch01.qxd 10/31/07 3:29 PM Page 16

Figure 1-17. You first have to create two traditional partitions, even if you want to create
an LVM-based setup.

8. Now specify where the new partition should start. Choose Beginning to create the par-
tition at the beginning of the available disk space, or choose End to create it at the end
of the available disk space. It makes sense to create the first partition at the beginning,
so select Beginning and then press the Enter key.

9. Next, you see a screen that contains all the default properties for the new partition (see
Figure 1-18). Make sure you enter the following values, select Done setting up the par-
tition, and press the Enter key to continue.

• Use as: Ext2 file system. You are going to create a very small file system with files
that will rarely change, so it doesn’t make sense to use a journaling file system here.

• Mount point: /boot

• Mount options: defaults

• Label: none

• Reserved blocks: 5%

• Typical usage: standard

• Bootable flag: off

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 17

9233ch01.qxd 10/31/07 3:29 PM Page 17

Figure 1-18. Make sure your boot partition uses these settings.

10. In the screen shown in Figure 1-19, select the available free space to create the LVM
partition.

Figure 1-19. Select the available free space again to create the LVM partition.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER18

9233ch01.qxd 10/31/07 3:29 PM Page 18

11. Select Create a new partition and accept the default in which all available disk space is
assigned to the new partition. Then specify that the new partition should be a primary
partition. Next, in the screen with the partition settings, make sure you set the follow-
ing options as shown.

• Use as: physical volume for LVM

• Bootable flag: off

■Tip Did something not work out the way it should have? Take a look at the syslog screen. You’ll be able to
see exactly what the installation program is trying to do and if it succeeds. You can access the syslog screen
by using Alt+F4. To return to the main installation screen, use Alt+F1.

12. Now select Done setting up the partition, and press the Enter.

13. Once back in the main screen (see Figure 1-20), select Configure the Logical Volume
Manager and press Enter.

Figure 1-20. After setting up the partitions, you must create the LVM environment.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 19

9233ch01.qxd 10/31/07 3:29 PM Page 19

14. You’ll now get a message (see Figure 1-21) that the current partitioning scheme has to
be written to disk before setting up LVM. Select Yes and press Enter.

Figure 1-21. You must write the changes in the partitioning to hard disk before you can
create logical volumes.

15. As the first step in the setup of an LVM environment, you must now assign all usable
disk space to a volume group. From the screen shown in Figure 1-22, select Create
volume group.

Figure 1-22. An LVM setup is based on one or more volume groups.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER20

9233ch01.qxd 10/31/07 3:29 PM Page 20

16. Next, enter a name for the volume group. In this example setup, I’ll use “system”. After
specifying the name, select Continue and press Enter. You next see a list of all devices
that are available for the LVM environment, which, in this case, is just one device.
Select the device and select Continue once more to return to the main screen of the
LVM setup program.

17. From the LVM main screen, select Create a logical volume. Next, select the volume
group that you have just created and enter a name for the first logical volume that you
want to use (see Figure 1-23). I recommend using the name of the file system you are
going to mount on the logical volume, so root is a decent name for the root file system,
var is good if you are going to mount the /var directory on it, and so on.

Figure 1-23. Every logical volume needs a unique name.

18. Now enter the size that you want to assign to the logical volume. Even if logical vol-
umes are quite flexible, you should try to specify a realistic size here. Next, specify the
file system sizes that you want to use on your logical volumes and finalize the LVM
setup procedure.

■Tip If you run into problems while writing the new partitioning scheme to disk, this is probably due to a
conflict with some already existing setup. In this case, it may be a good idea to wipe your server’s master
boot record (MBR). From the installation program, use Alt+F2 to display a console window. Press Enter
to activate the console and enter the following command: dd if=/dev/zero of=/dev/sda bs=512
count=1. This will wipe your server’s MBR so that you can start all over again. You’ll have to restart the
installation as well.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 21

9233ch01.qxd 10/31/07 3:29 PM Page 21

Completing the Installation
Now that you have created the partitioning scheme for your server’s hard drive, it’s time to
finalize the installation of your server. In this part of the installation, you enter some generic
properties (like your server’s time zone and some user information), and you specify what
software packages to install.

1. Based on the country information you entered before, you now have to enter the time
zone of your server. If your time zone isn’t listed here, you probably specified the wrong
country. You can’t change that here, so forget about it for the moment and change it
later.

2. After setting up the time zone, the installer asks how your computer’s clock is config-
ured (see Figure 1-24). Servers commonly use Coordinated Universal Time (UTC),
which is a generic time format that is the same worldwide, with the local time being
calculated as an offset from UTC. However, many PC-based systems use plain local
time instead of UTC. Select the appropriate setting here and then press Enter.

Figure 1-24. Make sure that you select the right clock setting for your server.

3. Next, the installer asks you to create a user account. This is the user account that you
will normally be working with, instead of using the root user account by default. Enter
the name of the user account and then enter (twice) the password for this user. The
installation of the base system now begins. In this phase, some basic packages that are
needed at all times are copied to your server. Hang on because this can take a couple
of minutes.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER22

9233ch01.qxd 10/31/07 3:29 PM Page 22

4. After the core system is installed, the installer asks if you want to use an HTTP proxy.
If this is the case, enter its details now.

5. Next, you can choose additional software to install. The default choices allow you to
install a DNS server and a LAMP server (see Figure 1-25). A DNS server allows your
server to participate in the DNS hierarchy and translate computer names into IP
addresses. Selecting the LAMP (Linux, Apache, MySQL, and PHP server) option will
set up a versatile web server for you. However, because I’ll be addressing these kinds
of services later in the book, you might as well wait to install them. And that’s it for
installation choices! If you need additional software to be started on your server, you
need to install that software later. See Chapter 4 for more details on that.

Figure 1-25. The installation program lets you choose between a DNS and a LAMP server.

5. Once all software packages have been copied to your server, the system is ready for
use. You just have to press the Enter key once more to restart the server, and it will be
usable.

Once the server has been restarted, you will see the text-based login prompt of your
server. Text-based? Yes, this is a server, and a server is generally locked behind doors in an air-
conditioned room. Therefore, there is no need to set up a graphical user environment in most
cases. But, because many people consider a GUI quite useful anyway, you’ll learn how to set it
up in Chapter 3. For now, though, you’ll learn in Chapter 2 how to manage Ubuntu Server
from the command line.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 23

9233ch01.qxd 10/31/07 3:29 PM Page 23

Summary
You learned in this chapter how to set up Ubuntu Server. Because the file system layout is a
very important part of a server configuration, special attention was paid to configuring your
server’s file system with LVM or traditional partitions. At the end of this chapter, you ended up
with a text-based console that’s not so user friendly. In Chapter 2, you will learn to work with
the most important commands needed for Linux server administration.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER24

9233ch01.qxd 10/31/07 3:29 PM Page 24

Getting the Most Out of the
Command Line

You may know the workstation versions of Ubuntu as very accessible graphical desktops.
This is not the case, however, for Ubuntu Server! You can’t manage a server properly without
using the command line, so it’s absolutely necessary that you can find your way around the
Bash interface. Once you have mastered the command line, you will find it so much more
powerful and flexible that you may not miss the graphical interface at all. For command-line
newbies, this chapter offers an introduction.

Working As root?
By default, every Linux system installation creates a user with the name root. Many Linux
distributions ask you to enter a password for this user during the installation. Ubuntu Server
doesn’t, and it instead takes a radically different approach to performing privileged tasks.

Ubuntu Server takes a different approach for several good reasons. The powers of the user
root are limitless within the confines of that operating system. As root, you can bypass all sys-
tem security and do anything at all. And you will not be given a warning screen if, for instance,
you log in as root and then mistakenly type in a command that destroys all the files.

This is why Ubuntu Server handles privileged access in a different way. By default, the
user root does not have a password, so you cannot log in and work as root in the conventional
way, but you still need to perform many tasks that require root privileges. For this purpose,
Ubuntu offers the sudo mechanism, which is explained in detail in Chapter 5. With sudo,
normal users can perform tasks that require root privileges. And it’s very simple: for every
command that needs root permissions, you type sudo first. For example, whereas user root
could just type passwd linda to change the password of user linda, a normal user enters sudo
passwd linda.

■Note Want to work as root? Use the command sudo su, and you’ll be root. Alternatively, you can change
the password of user root as well, which allows you to log in as user root directly. Don’t want the possibility
to log in as root ever? In that case, you should change the default shell for this user to /bin/false. In
Chapter 5, you’ll read how to do that.

25

C H A P T E R 2

9233ch02.qxd 10/25/07 12:56 PM Page 25

In a default installation, any user can use sudo to perform tasks as root. As you can guess,
this doesn’t make for a very secure situation. So one of the first things that you should do is
limit this privilege. In Chapter 5, you can read how to do that.

■Tip You don't like sudo and want to work as root anyway? You can do that, but you need to first set a
password for user root. To give root a password, as a normal user, use the command sudo passwd root.
Next, you can enter the new password that you want to set for the user root.

Working with the Shell
Ubuntu Server uses the kernel to address and control the machine’s hardware. The kernel can
be considered the heart of the operating system. Ubuntu Server gives users the shell interface
to tell this kernel and the services running on top of it what they should do. This interface
interprets the commands that users type and translates them to machine code.

Several shells are available. The very first shell that was ever created for UNIX, back in the
1970s, was the Bourne shell. It is still available in Linux as the program file /bin/sh. Another
popular shell available with Ubuntu is Bash (short for the Bourne Again Shell). The Bash shell
is completely compatible with the original Bourne shell, but it has many enhancements. Bash
is used as the default shell for the user root, but not for normal users. You can, however, make
sure that all users get it by default as well, which I would highly recommend because it offers
such great features. You’ll read how to do that in Chapter 5, but you should be aware that other
shells are available as well. Some people prefer using other shells, three of which I’ll merely
mention here:

• tcsh: A shell with a scripting language that works like the C programming language
(and thus fairly popular with C programmers).

• zsh: A shell that is compatible with Bash, but offers even more features.

• sash: The stand-alone shell. This is a very minimal shell that runs in almost all environ-
ments. It is thus very well suited for troubleshooting systems.

Using Bash to Best Effect
Basically, in the Bash environment, an administrator is working with text commands. An
example of such a command is ls, which can be used to display a list of files in a directory.
Bash has some useful features to make working with these line commands as easy as possible.

Some shells offer the option to complete a command automatically. Bash has this feature,
but it does more than just complete commands. Bash can complete almost everything: not
just commands, but also file names and shell variables.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE26

9233ch02.qxd 10/25/07 12:56 PM Page 26

Using Automatic Command Completion
Using this feature is as simple as pressing the Tab key. For example, the cat line command
is used to display the contents of an ASCII text file. The name of this file, which is in the cur-
rent directory, is this_is_a_file. So, to open this file, the user can type cat thi and then press
the Tab key. If the directory has only one file that starts with the letters t-h-i, Bash automati-
cally completes the name of the file. If the directory has other files that start with the same
letters, Bash will complete the name of the file as far as possible. For example, let’s say that
there is a file in the current directory with the name this_is_a_text_file and another
named thisAlsoIsAFile. Because both files start with the text this, Bash will complete only
up to this and no further. To display a list of possibilities, you then press the Tab key again.
This allows you to manually enter more information. Of course, you can then use the Tab
key again to use the completion feature once more.

■Tip Working with the Tab key really makes the command line interface much easier. Imagine that you
need to manage logical volumes on your server and you remember only that the command for that starts
with lv. In this case, you can type lv and press the Tab key twice. The result will be a nice list of all com-
mands that start with lv, from which you’ll probably recognize the command that you need.

Working with Variables
A variable is simply a common value that is used often enough by the shell that it is stored
with a name. An example of such a variable is PATH, which stores a list of directories that
should be searched when a user enters a command. To refer to the contents of a variable, pre-
fix a $ sign before the name of the variable. For example, the command echo $PATH displays
the content of the current search path that Bash is using.

On any Linux system, you’ll get quite a few variables automatically. For an overview of all
of them, you can use the env (short for environment) command. Listing 2-1 shows the result of
this command.

Listing 2-1. The env Command Shows All Variables That Are Defined in Your Shell Environment.

root@RNA:~# env
TERM=xterm
SHELL=/bin/bash
SSH_CLIENT=192.168.1.71 1625 22
SSH_TTY=/dev/pts/1
USER=root
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd ➥

=40;33;01:
or=40;31;01:su=37;41:sg=30;43:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz ➥

=01;31:*.arj=0
1;31:*.taz=01;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01; ➥

31:*.deb=01;31:*.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 27

9233ch02.qxd 10/25/07 12:56 PM Page 27

rpm=01;31:*.jar=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01; ➥

35:*.pgm=01;35:
.ppm=01;35:.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01; ➥

35:*.mov=01;3
5:*.mpg=01;35:*.mpeg=01;35:*.avi=01;35:*.fli=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01; ➥

35:*.xwd=01;35:
.flac=01;35:.mp3=01;35:*.mpc=01;35:*.ogg=01;35:*.wav=01;35:
MAIL=/var/mail/root
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
PWD=/root
LANG=en_US.UTF-8
SHLVL=1
HOME=/root
LOGNAME=root
VISUAL=vi
SSH_CONNECTION=192.168.1.71 1625 192.168.1.70 22
LESSOPEN=| /usr/bin/lesspipe %s
LESSCLOSE=/usr/bin/lesspipe %s %s
_=/usr/bin/env

Normally, as a user, you’ll get your variables automatically when logging in to the system.
The most important source of new variables is the /etc/profile file, a script that is processed
for every user who logs in to the system. Want to add a new variable? Add it to the bottom of
the /etc/profile file to make sure it is available for all users.

Working with Bash History
Another useful feature of the Bash shell is the history feature, which remembers and lets
you reuse commands you have recently used. By default, the last 1,000 commands are
remembered. This feature is useful for sessions beyond even the current one. A file, named
.bash_history, is created in the home directory of every user, and this file records the last
1,000 commands that that user has entered. You can see an overview of these commands by
typing history at the Bash prompt. Listing 2-2 is an example of this list.

■Note In addition to the history command, you can also use the up/down arrow keys, page up/down
keys, and Ctrl+p/Ctrl+n to browse the history.

Listing 2-2. The history Command Shows a List of All Commands That You Recently Used.

sander@RNA:~$ history
1 clear
2 dpkg -l "*" | grep ^un
3 aptitude search xen
4 aptitude show xen-source

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE28

9233ch02.qxd 10/25/07 12:56 PM Page 28

5 aptitude show xen-source-2.6.16
6 exit
7 apt-get install xen
8 sudo apt-get install xen

This is where the history feature becomes especially useful because you can reissue any
command from this list without typing it all over again. If you want to run any of the listed
(and numbered) commands again, simply type its number preceded by an exclamation mark.
In this example, typing !5 would run aptitude show xen-source-2.6.16 again.

A user can also erase his or her history by using the history command. The most impor-
tant option offered by this Bash internal command is the option -c, which clears the history list
for that user. This is especially useful because everything that a user types at the command
line—such as passwords—is recorded. So use history -c to make sure your history is cleared if
you’d rather not have others knowing what you’ve been up to. Once using this option, however,
you can’t use the arrow up key to access previous commands, because those are all erased.

Because everything you enter from the command line is saved, I recommend never typing a
plain-text password in the first place, even if you regularly erase the history. The commands that
do require you to enter a password will prompt you anyway if you don't enter one right away.

Managing Bash with Key Sequences
Sometimes, you’ll enter a command from the Bash command line and either nothing happens
at all or else something totally unexpected happens. In such an event, it’s good to know that
some key sequences are available to perform basic Bash management tasks. Here are some of
the most useful key sequences.

• Ctrl+C: Use this key sequence to quit a command that is not responding (or simply
takes too long to complete). This key sequence works in most scenarios where the com-
mand is operational and producing output to the screen. In general, Ctrl+C is also a
good choice if you absolutely don’t have a clue as to what’s happening and you just
want to terminate the command that’s running in your shell. If used in the shell itself,
it will close the shell as well.

• Ctrl+D: This key sequence is used to send the “end of file” (EOF) signal to a command.
Use this when the command is waiting for more input, which is indicated by the sec-
ondary prompt (>). You can also use this key sequence to close a shell session.

• Ctrl+R: This is the reversed search feature. It will open the “reversed I-search” prompt,
which helps you locate commands that you used previously. The Ctrl+R key sequence
searches the Bash history, and the feature is especially useful when working with longer
commands. As before, type the first characters of the command and you will see the last
command you’ve used that started with the same characters.

• Ctrl+Z: Some people use Ctrl+Z to stop a command that is running interactively on the
console (in the foreground). Although it does stop the command, it does not terminate
it. A command that is stopped with Ctrl+Z is merely paused, so that you can easily start
it in the background using the bg command or in the foreground again with the fg
command. To start the command again, you need to refer to the job number that the
program is using. You can see a list of these job numbers using the jobs command.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 29

9233ch02.qxd 10/25/07 12:56 PM Page 29

Performing Basic File System Management Tasks
On a Linux system such as Ubuntu, everything is treated as a file. Even a device like your hard
disk is addressed by pointing to a file. Therefore, working with files is the most important task
when administering Linux. In this section, you’ll learn the basics of managing a file system.
The following subjects are covered:

• Working with directories

• Working with files

• Viewing text files

• Creating empty files

Working with Directories
Because files are normally organized in directories, it is important that you know how to han-
dle these directories. This involves a few commands:

• cd: This command changes the current working directory. When using cd, make sure to
use the proper syntax. First, names of commands and directories are case sensitive;
therefore, /bin is not the same as /BIN. Next, you should be aware that Linux uses a for-
ward slash instead of a backslash for directory paths. So use cd /bin and not cd \bin to
change the current directory to /bin.

■Tip Switching between directories? Use cd - to return to the last directory you were in.

• pwd: The pwd command stands for print working directory. Although you can usually see
the directory you are currently in from the command-line prompt, sometimes you
can’t. If this is the case, pwd offers help.

• mkdir: If you need to create a new directory, use mkdir. With mkdir you can create a
complete directory structure in one command as well, which is something you can’t do
on other operating systems. For example, the command mkdir /some/directory will fail
if /some does not already exist. In that case, you can force mkdir to create /some as well:
do this by using the mkdir -p /some/directory command.

• rmdir: The rmdir command is used to remove directories. However, this isn’t the most
useful command, because it works only on directories that are already empty. If the
directory still has files and/or subdirectories in it, use rm -r.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE30

9233ch02.qxd 10/25/07 12:56 PM Page 30

Working with Files
An important task from the command line is managing the files in the directories. Four impor-
tant commands are used for this purpose:

• ls lists files.

• rm removes files.

• cp copies files.

• mv moves files.

Listing Files with ls
Before you can manage files on your server, you must first know what files are there, and for
that you’d use the ls command. If you just use ls to show the contents of a given directory, it
displays a list of files. Of course, these files have properties as well, such as a user who is the
owner of the file, some permissions, and the size of the file. To list all of the files along with
their properties, use ls -l. See Listing 2-3 for an example.

Listing 2-3. Example Output of ls -l

root@RNA:/boot# ls -l
total 10032
-rw-r--r-- 1 root root 414210 2007-04-15 02:19 abi-2.6.20-15-server
-rw-r--r-- 1 root root 83298 2007-04-15 00:33 config-2.6.20-15-server
drwxr-xr-x 2 root root 4096 2007-07-29 02:51 grub
-rw-r--r-- 1 root root 6805645 2007-06-05 04:15 initrd.img-2.6.20-15-server
-rw-r--r-- 1 root root 94600 2006-10-20 05:44 memtest86+.bin
-rw-r--r-- 1 root root 812139 2007-04-15 02:20 System.map-2.6.20-15-server
-rw-r--r-- 1 root root 1763308 2007-04-15 02:19 vmlinuz-2.6.20-15-server
-rw-r--r-- 1 root root 240567 2007-03-24 10:03 xen-3.0-i386.gz

Apart from the option -l, ls has many other options as well. An especially useful one is
the -d option, and the following example shows why. When working with the ls command,
wildcards can be used. So, ls * will show a list of all files in the current directory, ls /etc/*a.*
will show a list of all files in the directory /etc that have an “a” followed by a dot somewhere in
the file name, and ls [abc]* will show a list of all files whose names start with either an “a,”
“b,” or “c” in the current directory. But something strange happens without the option -d. If a
directory matches the wildcard pattern, the entire contents of that directory are displayed as
well. This doesn’t really have any useful application, so you should always use the -d option
with ls when using wildcards.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 31

9233ch02.qxd 10/25/07 12:56 PM Page 31

■Tip If you really are sure that you want to use a given option every time you issue a certain command,
you can redefine the command by making an alias for it. If you put the definition of this alias in the system
generic “login script” /etc/profile, it will be available to all users after they log in. To do this, open the
profile file for editing with a command like sudo vi /etc/profile. Next, use the o command to open a
new line and enter alias ls='ls -d' on that line. Now press Esc to return to Vi command mode and use the
command :wq! to save your changes. The redefined ls command will now be available to all users who log
in at your server. If the alias is intended for only one user, you can also make sure that it is executed when
logging in by including it in the file .bash_profile in the user’s home directory.

One last thing you should be aware of when using ls, is that it will normally not show any
hidden files. If you want to see hidden files as well, use the -a option.

■Note A hidden file is a file whose name starts with a period. Most configuration files that are stored in
user home directories are created as hidden files to prevent the user from deleting the file by accident.

Removing Files with rm
Cleaning up the file system is another task that needs to be performed regularly, and for this
you’ll use the rm command. For example, rm /tmp/somefile removes somefile from the /tmp
directory. If you are root or if you have all the proper permissions on the file, you will succeed
without any problem. (See Chapter 5 for more on permissions.) Removing files can be a deli-
cate operation (imagine removing the wrong files), so it may be necessary to push the rm
command a little to convince it that it really has to remove everything. You can do this by using
the -f (force) switch (but only if you really are quite sure). For example, use rm -f somefile if
the command complains that somefile cannot be removed for some reason. Conversely, to stay
on the safe side, you can also use the -i option to rm, which makes the command interactive.
When using this option, rm will ask for every file that it is about to remove if you really want to
remove it.

The rm command can be used to wipe entire directory structures as well; in this case the
-r option has to be used. If this option is combined with the -f option, the command will
become very powerful and even dangerous. For example, use rm -rf /somedir to clear out the
entire content of /somedir, including the directory /somedir itself.

Obviously, you should be very careful when using rm this way, especially because a small
typing mistake can have serious consequences. Imagine, for example, that you type rm -rf /
somedir (with a space between / and somedir) instead of rm -rf /somedir. The rm command
will first remove everything in / and, when it is finished with that, it will remove somedir as
well. Hopefully you understand that the second part of the command is no longer required
once the first part of the command has completed.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE32

9233ch02.qxd 10/25/07 12:56 PM Page 32

■Caution Be very careful using potentially destructive commands like rm. There is no good undelete
mechanism for the Linux command line, and, if you ask Linux to do something, it doesn't ask whether you
are sure (unless you use the -i option).

Copying Files with cp
If you need to copy files from one location in the file system to another, use the cp command.
This command is straightforward and easy to use; for example, use cp ~/* /tmp to copy all
files from your home directory to the /tmp directory. As you can see, in this example I intro-
duced a new item: the tilde (~). The shell interprets that as a way to refer to the current user’s
home directory. If subdirectories and their contents need to be included in the copy com-
mand as well, use the option -r.

You should, however, be aware that cp normally does not copy hidden files. If you need to
copy hidden files as well, make sure to use a pattern that starts with a dot; for example, use cp
~/.* /tmp to copy all files whose names start with a dot from your home directory to the /tmp
directory.

Moving Files with mv
As an alternative to copying files, you can move them. This means that the file is removed from
its source location and placed in the target location, so you end up with just one copy instead of
two. For example, use mv ~/somefile /tmp/otherfile to move the somefile file to /tmp.

If a subdirectory with the name otherfile already exists in the /tmp directory, somefile
will be created in this subdirectory. If /tmp has no directory with this name, the command will
save the contents of the original somefile under its new name otherfile in the /tmp directory.

The mv command also does more than just move files. You can use it to rename files or
directories, as well, and regardless of whether there are any files in those directories. If, for
example, you need to rename the directory /somedir to /somethingelse, use mv /somedir
/somethingelse.

Viewing the Content of Text Files
When administering your server, you will find that you often need to modify configuration
files, which take the form of ASCII text files. Therefore, it’s very important to be able to browse
the content of these files. You have several ways of doing this:

• cat: Displays the contents of a file

• tac: Does the same as cat, but displays the contents in an inverse order

• tail: Shows just the last lines of a text file

• head: Displays the first lines of a file

• less: Opens an advanced file viewer

• more: Like less, but not as advanced

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 33

9233ch02.qxd 10/25/07 12:56 PM Page 33

First is the cat command. This command just dumps the contents of a file on the screen
(see Listing 2-4). This can be useful, but, if the contents of the file does not fit on the screen,
you’ll see some text scrolling by and, when it stops, you’ll only see the last lines of the file dis-
played on the screen. As an alternative to cat, you can use tac as well. Not only is its name
opposite to cat, its result is too. This command will dump the contents of a file to the screen,
but with the last line first and the first line last.

Listing 2-4. The cat Command Is Used to Display the Contents of a Text File.

root@RNA:/boot# cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 RNA.lan RNA

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Another very useful command is tail. If no options are used, this command will show
the last ten lines of a text file. The command can also be modified to show any number of lines
on the bottom of a file; for example, tail -2 /etc/passwd will display the last two lines of the
configuration file in which user names are stored. Also very useful for monitoring what hap-
pens on your system is the option to keep tail open on a given log file. For example, if you use
tail -f /var/log/messages, the most generic log file on your system is opened, and, when a
new line is written to the bottom of that file, you will see it immediately. The opposite of tail
is the head command, which displays the top lines of a text file.

The last two files used to view the contents of text files are less and more. The most
important thing you need to remember about them is that you can do more with less. Con-
trary to common sense, the less command is actually the improved version of more. Both
commands will open your configuration file in a viewer as you can see in Listing 2-5. In this
viewer you can browse down in the file by using the Page Down key or the spacebar. Only less
offers the option to browse up as well. Also, both commands have a search facility. If the less
utility is open and displays the content of your file, use /sometext from within the less viewer
to locate sometext in the file. To quit both utilities, use the q command.

Listing 2-5. The less Command Can Be Used As a Viewer to View File Contents.

127.0.0.1 localhost
127.0.1.1 RNA.lan RNA

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE34

9233ch02.qxd 10/25/07 12:56 PM Page 34

ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
/etc/hosts (END)

Finding Files That Contain Specific Text
As a Linux administrator, you’ll sometimes need to search for a specific file by some word or
phrase within the file. Because most configuration files created on your server are ASCII text
files (in the /etc directory or one of its subdirectories), it is rather easy to search for text within
them using the grep utility, which is one of the Linux’s most useful utilities. Let’s start with a
rather basic example in which you want to get a list of all files that contain the text “Linda” in
/etc. You can just use grep linda /etc/*, and, if you want to make sure that you can search
files that are readable for root only, use sudo grep linda /etc/*. Notice that the grep com-
mand is case sensitive. If you want it to be case insensitive, you should include the -i option:
grep -i linda /etc/*. This command will produce a list of file names, followed by the line in
which the text you were looking for is shown; see Listing 2-6.

Listing 2-6. The grep Utility Is Useful for Searching Files That Contain a Certain Word or Phrase.

sander@RNA:~$ sudo grep linda /etc/*
/etc/group:linda:x:1001:
/etc/gshadow:linda:!::
/etc/passwd:linda:x:1001:1001::/home/linda:/bin/sh
/etc/shadow:linda:!:13671:0:99999:7:::

If the output gets a little longer, you may find it confusing to see the lines that contain the
text you were looking for as well. If that’s the case, use the -l (list) option. You’ll see only file
names when using this option. Another disadvantage is that grep does not search subdirecto-
ries by default, but you can tell it to do so by using the -r option. If, however, you want fast
results, be careful with the -r option because searching an entire directory tree structure for
the occurrence of some word in a file is very labor intensive.

Using Regular Expressions
When you get more experience with grep, you’ll find it is a very powerful and versatile com-
mand. Particularly useful is the option to work with regular expressions, which let you search
for very specific text patterns in a file. Imagine, for example, that you want to find files that
contain the text string “nds”, but only if that string occurs as a separate word. You wouldn’t
want to retrieve all files that contain the word “commands” for instance. So you would use reg-
ular expressions, and they offer a wide range of options. Four of them are particularly useful:

• ^text searches for text at the beginning of a line.

• text$ searches for text at the end of a line.

• \<text searches for text at the beginning of a word.

• text>\ searches for text at the end of a word.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 35

9233ch02.qxd 10/25/07 12:56 PM Page 35

When using any of these regular expressions, it is always a good idea to put the search
pattern between single quotes. The single quotes tell the shell not to interpret anything in the
regular expression, so that grep can do the interpretation. So use grep '\<linda' * and not
grep \<linda *. Let’s examine some examples with this. To show how it works, consider the
name poem file in Listing 2-7.

Listing 2-7. Example Text File

blah ra dala ma na
na blahra dala ma nana
narablah naka dala ma
ka ka radalamanablah

Listing 2-8 shows the result of the different regular expressions.

Listing 2-8. Example of Regular Expression Usage

sander@RNA:~$ grep '^blah' poem
blah ra dala ma na
sander@RNA:~$ grep 'blah$' poem
ka ka radalamanablah
sander@RNA:~$ grep '\<blah' poem
blah ra dala ma na
na blahra dala ma nana
sander@RNA:~$ grep 'blah\>' poem
blah ra dala ma na
narablah naka dala ma
ka ka radalamanablah
sander@RNA:~$ grep '\<blah\>' poem
blah ra dala ma na

As you can see, in the first example line (grep '^blah' poem), grep locates only those lines
that start with the text “blah”, which produces one match only. Next, grep 'blah$' poem is
used to find lines that end with the text “blah”. Following that, grep '\<blah' poem is used to
find all lines that contain a word that starts with the string “blah”. Next, you can see that grep
'blah\>' poem finds all words that end with the poem string. Finally, the command grep
'\<blah\>' poem finds only those lines in which “blah” occurs as a word on its own.

Creating Empty Files
The last file management task discussed in this section is the option to create empty files,
which can be very useful for testing purposes when you need a file to exist but without neces-
sarily having any contents. The touch command will do just that. For example, touch somefile
will create a zero-byte file with the name somefile in the current directory.

You should be aware that it was never the purpose of touch to create empty files. The
main purpose of the command is to open a file so that the last access date and time of the file
that are displayed with ls are modified to the current time. For example, touch * will set this
time stamp to the present date and time on all files in the current directory. If, however, touch

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE36

9233ch02.qxd 10/25/07 12:56 PM Page 36

is used with the name of a file that doesn’t exist as its argument, it will create this file as an
empty file.

Piping and Redirection
Piping and redirection are some of the most powerful features of the Linux command line.
Piping sends the result of a command to another command, and redirection sends the output
of a command to a file. You can also use redirection to send the contents of a file to a com-
mand. The file doesn’t have to be a regular file; for example, it can be a device file. So you
could send output directly to a device, as you will see in the following examples.

■Note Every device present on your server is represented by a device file. One of the cool things of Linux
is that you can talk to these device files directly.

Piping
The goal of piping is to execute one command and send its output to a second command so
that the second command can do something with it. For instance, a common scenario is when
the output of a command doesn’t fit on the screen, in which case the command can be piped
to less, thus allowing you to browse the output of the first command screen by screen. This is
useful when working with ls -lR, which normally displays a list of files with all properties as
well as all subdirectories of the current directory. To view the output of this command screen
by screen, you can use ls -lR | less to send the output from the first command (ls -lR) to
the second command (less).

Another very useful command that can be used in a pipe construction is grep. You’ve
already seen grep as a way of searching files for a given string, but it can also be used to filter
information. This technique is often used to find out if a given process is running or to check
if a certain network port is offered by your server. For example, the command sudo ps aux |
grep http will show you all lines in the output of the command ps aux (which produces a list
of all processes active at your server) that contain the text “http”. Another example is sudo
netstat -tulpen | grep 22 in which the output of netstat -tulpen (which produces a list of
all processes that are offering network connections on your server) is examined for the occur-
rence of the number 22 (the SSH port). You can see what this looks like in Listing 2-9.

Listing 2-9. Filtering Command Output by Piping to grep

sander@RNA:~$ sudo netstat -tulpen | grep 22
tcp6 0 0 :::22 :::* LISTEN 0 15332 4321/sshd

Redirection
Whereas piping sends the result of a command to another command, redirection sends
the result of a command to a file or the contents of a file to a command. As I mentioned,
this file can be a text file, but it can also be a special file like a device file. An easy example

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 37

9233ch02.qxd 10/25/07 12:56 PM Page 37

of redirection is shown in the command ls -l > list_of_files. In this command, the
redirector (>) sign will make sure that the result of the ls -l command is redirected to the
file list_of_files. If list_of_files doesn’t exist yet, this command creates it. If it did
already exist, this command overwrites it.

If you don’t want to overwrite the content of existing files, you should use the double redi-
rector sign (>>) instead of the single redirector sign (>). For example, who > myfile will put the
result of the who command (which displays a list of users currently logged in) in the file myfile.
If you want to append the result of the free command (which shows information about mem-
ory usage on your system) to the same file (myfile), then use free >> myfile.

Apart from redirecting output of commands to files, the inverse is also possible when
using redirection. In this case, you are redirecting the content of a text file to a command that
will use that content as its input. For example, the command mail -s "Hi there" root < .
sends a mail to root with the subject line “Hi there.” Because the mail command always needs
a dot at a separate line to indicate the end of the message, in this command the construction
< . is used to feed a dot to the mail command.

■Tip The mail command is a very useful command to send messages to users on your system. I also use
it a lot in shell scripts to send a message to the user root if something goes wrong. To see a list of the mes-
sages that you’ve received this way, just type mail on the command line.

When using redirection, you should be aware that you can do more than redirect output
(technically referred to as STDOUT). Commands may produce error output as well. This error
output is technically referred to as STDERR. It is possible to redirect STDERR as well, and
you’d do this with the 2> construction, which indicates that you are interested in redirecting
only error output. For example, the command grep root * 2> err.txt would perform the
grep command to find the text root in all files in the current directory. Now the redirector 2>
err.txt will make sure that all error output is redirected to the file err.txt that will be created
for this purpose, whereas STDOUT will be written to the console where the user has issued
this command.

■Note The STDIN, STDOUT, and STDERR can be referred to by numbers as well; STDIN = 0, STDOUT = 1,
and STDERR = 2.

That’s also the reason why you are using 2> to redirect error output. Similarly, you could use 1> to
redirect the standard output.

It’s also possible to redirect both STDOUT as STDERR as well. This would happen if you
use the command grep root * 2> somefile > someotherfile.

As I mentioned previously, one of the interesting features of redirection is that you can
use it to redirect output to regular files and you can also redirect output to device files. One
of the nice features of a Linux system is that any device connected to your system can be

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE38

9233ch02.qxd 10/25/07 12:56 PM Page 38

addressed by addressing a file. Before discussing how this works, take a look at this short and
incomplete list of some important device files that can be used:

• /dev/null: The null device is a special software routine that helps with testing. It throws
away all data written to it (while reporting success) and immediately returns EOF when
read from. Use this device to redirect to “nowhere.”

• /dev/ttyS0: The first serial port.

• /dev/lp0: The first legacy LPT printer port.

• /dev/hda: The master IDE device on IDE interface 0 (typically your hard drive).

• /dev/hdb: The slave IDE device on IDE interface 0 (not always in use).

• /dev/hdc: The master device on IDE interface 1 (typically your optical drive).

• /dev/sda: The first SCSI or serial ATA device in your computer.

• /dev/sdb: The second SCSI or serial ATA device in your computer.

• /dev/sda1: The first partition on the first SCSI or serial ATA device in your computer.

• /dev/tty1: The name of the first text-based console that is active on your computer
(from tty1 up to tty12).

• /dev/fd0: The diskette drive in your PC.

One way of using redirection together with a device name is by redirecting error output
of a given command to the null device. You would use a command like grep root * 2>
/dev/null to do this. Of course, there’s always the risk that your command is not working
properly because it’s been prevented and for a good reason. In this case, use (for example)
the command grep root * 2> /dev/tty12, which would log all error output to tty12. This can
also be activated with the key sequence Alt+F12 (use Ctrl+Alt+F12 if you are working from a
graphical environment).

Another cool feature you can use with redirection is sending the output from one device
to another device. To understand how this works, let’s first look at what happens when you are
using cat on a device, as in cat /dev/sda. This command would display the complete content
of the sda device on the standard output.

The interesting thing when displaying the contents of a storage device like this is that you
can redirect it. Imagine a situation in which you have a /dev/sdb as well, and this sdb device is
at least as large as /dev/sda and is empty at the moment. You can clone the disk just by using
cat /dev/sda > /dev/sdb! However, this redirecting to devices can be very dangerous. Imag-
ine what would happen if you were foolish enough to issue the command cat /etc/passwd >
/dev/sda; it would just dump the content of the passwd file to the beginning of the /dev/sda
device. And, because you’re working on the raw device here, no file system information is
used, and this command would overwrite all important administrative information that is
stored at the beginning of the device that is mentioned. And you would never be able to boot
the device again! In Chapter 4, you will learn about the dd command, which can be used to
copy data from one device to another device in a way that is much more secure.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 39

9233ch02.qxd 10/25/07 12:56 PM Page 39

Finding Files
Another useful task you should be able to perform on your server is finding files, and find is
the most powerful command to use for that. The find command helps you find files based
upon any property a file can have. For starters, you can find files by their names; the access,
creation, or modification date; the user who created them; or the permissions set on the file.
If you want to find all files whose name begins with hosts, use find / -name "hosts*". I rec-
ommend always putting the string that refers to the file you are looking for between quotes
because doing so ensures that find knows where the argument starts and where it stops.

■Note When analyzing a command, the shell parses the command to see what exactly you want to do.
While doing this, it will interpret signs that have a special meaning for the shell, like *, which is used to refer
to all files in the current directory. To prevent the shell from doing this (so that the special character can be
interpreted by something else, for example by the command you are using), you should tell the shell not to
interpret the special characters. You can do this by escaping them using any of three methods. If it is just
one character that you don't want interpreted, put a \ in front of it. If it is a series of characters that you don't
want interpreted, put them between single quotes. If it is a string that contains certain elements that you do
want to be interpreted, use double quotes. Between double quotes, many special signs like * and $ are still
interpreted. Chapter 7 deals with shell scripting and you’ll find more details there.

Another way of locating files is by the name of the user who created the file. The com-
mand find / -user "alex" will find all files created by user alex. The fun thing about find is
that you can execute a command on the result of the find command by using the -exec
option. For example, if you want to copy all files of user alex to the directory /groups/sales,
use find / -user "alex" -exec cp {} /groups/sales \;. In such a command, you should
pay attention to two specific elements. First is the {} construction, which is used to refer to the
result of the find command that you’ve started with. Next is the \; element, which is used to
tell find that this is the end of the part that began with -exec.

To illustrate how this rather complex construction works, let’s have a look at another
example. In this example you want to search all files owned by user susan to check if the word
“root” occurs in it. So the first thing you’d need to do is find all files that are owned by user
susan, and you’d do this by typing find / -user "susan". Next, you need to search these files
to see if they contain the word “root”. To do this, you’d need a construction like grep root *.
However, that construction is not the right way of doing it, because the grep command would
search all files in the current directory. Therefore, you first need to combine the two com-
mands using -exec. Next, you need to replace the * from the grep root * example by {}, which
refers to the result of the find command. So the final construction would be find / -user
susan –exec grep root {} \;.

Working with an Editor
For your day-to-day management tasks from the command line, you’ll often need a text editor
to change ASCII text files. Although many editors are available for Linux, Vi is still the best and

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE40

9233ch02.qxd 10/25/07 12:56 PM Page 40

most popular. It is a rather complicated editor, however, and Ubuntu Server fortunately
includes Vim, which is Vi Improved, the user-friendly version of Vi. To make sure that you use
vim and not vi, use the following command: echo alias vi=vim >> /etc/profile. When talk-
ing about vi in this book, I'll assume that you are using vim.

Every Linux administrator should be capable of working with Vi. Why? You’ll find it on
every Linux distribution and every version of UNIX. Another important reason why you
should get used to working with Vi is that some other commands are based on it. For example,
to edit quota for the users on your server, you would use edquota, which is just a macro built
on Vi. If you want to set permissions for the sudo command, use visudo which, as you likely
guessed, is another macro that is built on top of Vi.

■Note Well, to tell you the truth, there is a variable setting. The name of the variable is VISUAL. Only when
this variable is set to vi (VISUAL=vi), the commands like edquota and visudo will use Vi. If it is set to
something else, they will use that something else instead.

In this section, I’ll provide the bare minimum of information that is needed to work with
Vi. The goal here is just to get you started. You’ll learn more about Vi if you really start working
with it on a daily basis.

Vi Modes
One of the hardest things to get used to when working with Vi is that it uses two modes: the
command mode that is used to enter new commands, and the insert mode (also referred to
as the input mode) that is used to enter text. Before being able to enter text, you need to enter
insert mode, because, as its name suggests, command mode will just allow you to enter com-
mands. Notice that these commands also include cursor movement. The nice thing about Vi is
that it offers you many choices. For example, you can use many methods to enter insert mode.
I’ll list just four of them:

• Press i to insert text at the current position of the cursor.

• Use a to append text after the current position of the cursor.

• Use o to open a new line under the current position of the cursor (my favorite option).

• Use O to open a new line above the current position of the cursor.

After entering insert mode, you can enter text and Vi will work just like any other editor. Now
if you want to save your work, you should next get back to command mode and use the appropri-
ate commands. The magic key to return to command mode from insert mode is Escape.

■Tip When starting Vi, always give as an argument the name of the file you want to create with it, or the
name of an existing file you would like to modify. If you don't do that, Vi will display a help text and you will
have the problem of finding out how to get out of this help text. Of course, you can always just read the
entire help desk to find out how that works.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 41

9233ch02.qxd 10/25/07 12:56 PM Page 41

Saving and Quitting
After activating command mode, you can use commands to save your work. The most com-
mon method is to use the :wq! command, which performs several tasks at once. First, a colon
is used, just because it is part of the command. Then, w is used to save the text you have typed
so far. Because no file name is specified after the w, the text will be saved under the same file
name that was used when opening the file. If you want to save it under a new file name, just
enter the new name after the w command. Next in the :wq! command is q which makes sure
that the editor is quit as well. Lastly, the exclamation mark tells Vi that it shouldn’t complain,
but just do its work. Vi has a tendency to get smart with remarks like “a file with this name
already exists,” so you are probably going to like the exclamation mark. After all, this is Linux,
and you want your Linux system to do as you tell it, not to second-guess you all the time.

As you have just learned, you can use :wq! to write and quit Vi. You can also use the parts
of this command separately. For example, use :w if you just want to write the changes while
working on a file without quitting it, or use :q! to quit the file without writing changes. The
latter option is a nice panic key if something has happened that you absolutely don’t want to
store on your system. This is useful because Vi will sometimes work magic with the content of
your file when you hit the wrong keys. Alternatively, you can recover by using the u command
to undo the most recent changes you made to the file.

Cut, Copy, and Paste
You don’t need a graphical interface to use cut, copy, and paste features; Vi could do this back
in the seventies. But you have two ways of using cut, copy, and paste: the easy way and the
hard way. If you want to do it the easy way, you can use the v command to enter the visual
mode, from which you can select a block of text by using the arrow keys. After selecting the
block, you can cut, copy, and paste it.

• Use d to cut the selection. This will remove the selection and place it in a buffer.

• Use y to copy the selection to the area designated for that purpose in your server’s memory.

• Use p to paste the selection. This will copy the selection you have just placed in the
reserved area of your server’s memory back into your document. It will always paste the
selection at the cursor’s current position.

Deleting Text
Deleting text is another thing you’ll have to do often when working with Vi, and you can use
many different methods to delete text. The easiest, however, is from insert mode: just use the
Delete key to delete any text. This works in the exact same way as in a word processor. As
usual, you have some options from Vi command mode as well:

• Use x to delete a single character. This has the same effect as using the delete key while
in insert mode.

• Use dw to delete the rest of the word. That is, dw will delete everything from the cursor’s
current position of the end of the word.

• Use dd to delete a complete line. This is a very useful option that you will probably like a lot.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE42

9233ch02.qxd 10/25/07 12:56 PM Page 42

That’s enough of Vi for now because I don’t want to bother you with any more obscure
commands. Let me show you how to get help next.

Getting Help
Linux offers many ways to get help. Let’s start with a short overview:

• The man command offers documentation for most commands that are available on your
system.

• Almost all commands accept the -help argument. Using it will display a short overview
of available options that can be used with the command.

• For Bash internal commands, you can use the help command. This command can
be used with the name of the Bash internal command that you want to know more
about. For example, use help for to get more information about the Bash internal
command for.

■Note An internal command is a command that is a part of the shell and does not exist as a program file
on disk. To get an overview of all available internal commands, just type help on the command line.

• The directory /usr/share/doc/ has extensive documentation for almost all programs
installed on your server.

Using man to Get Help
The most important source of information about commands on your Linux system is man,
which is short for the System Programmers Manual. In the early days, these where nine differ-
ent volumes that documented every aspect of the UNIX operating system. This structure of
separate books (nowadays called sections) is still present in the man command. Here is a list of
the available sections and the type of help you can find in these sections.

0 Section 0 contains information about header files. These are files that are typically in
/usr/include and contain generic code that can be used by your programs.

1 Executable programs or shell commands. For the user, this is the most important sec-
tion because it normally documents all commands that can be used.

2 System calls. As an administrator you will not use this section on a frequent basis. The
system calls are functions that are provided by the kernel. It’s all very interesting if you
are a kernel debugger, but normal administrators won’t need this information.

3 Library calls. A library is a piece of shared code that can be used by several different
programs. Typically, a system administrator won’t need the information here.

4 Special files. In here, the device files in the directory /dev are documented. This section
can be useful to learn more about the working of specific devices.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 43

9233ch02.qxd 10/25/07 12:56 PM Page 43

5 Configuration files. Here you’ll find the proper format you can use for most config-
uration files on your server. If, for example, you want to know more about the way
/etc/passwd is organized, use the entry for passwd in this section by issuing the com-
mand man 5 passwd.

6 Games. On a modern Linux system, this section contains hardly any information.

7 Miscellaneous. This section contains some information on macro packages used on
your server.

8 System administration commands. This section does contain important information
about the commands you will use on a frequent basis as a system administrator.

9 Kernel routines. This is documentation that isn’t even installed standard and option-
ally contains information about kernel routines.

So the information that matters to you as a system administrator is in sections 1, 5, and 8.
Mostly you don’t need to know anything about the other sections, but sometimes an entry can
be found in more than one section. For example, information on an item called passwd is
found in section 1 as well as section 5. If you just type man passwd, you’ll see the content of
the first entry that man finds. If you want to make sure that all the information you need is dis-
played, use man -a <yourcommand>. This makes sure that man browses all sections to see if it
can find anything about <yourcommand>. If you know what section to look in, specify the sec-
tion number as well, as in man 5 passwd, which will open the passwd item from section 5
directly.

The basic structure for using man is to type man followed by the command you want infor-
mation about. For example, type man passwd to get more information about the passwd item.
You’ll then see a page displayed by the less pager as can be seen in Listing 2-10.

Listing 2-10. Example of a man Page

PASSWD(1) User Commands PASSWD(1)

NAME
passwd - change user password

SYNOPSIS
passwd [options] [LOGIN]

DESCRIPTION
passwd changes passwords for user accounts. A normal user
may only change the password for his/her own account, while
the super user may change the password for any account.
passwd also changes account information, such as the full
name of the user, the user’s login shell, or his/her
password expiry date and interval.

Password Changes
Manual page passwd(1) line 1

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE44

9233ch02.qxd 10/25/07 12:56 PM Page 44

Each man page consists of the following elements.

• Name: This is the name of the command. It describes in one or two lines what the
command is used for.

• Synopsis: Here you can find short usage information about the command. It will show
all available options and indicate if an option is optional (shown between square brack-
ets) or mandatory (not between brackets).

• Description: The description gives the long description of what the command is doing.
Read it to get a clear and complete picture of the purpose of the command.

• Options: This is a complete list of all options that are available, and it documents the
use of all of them.

• Files: If it exists, this section provides a brief list of files that are related to the command
you want more information about.

• See also: A list of related commands.

• Author: The author and also the mail address of the person who wrote the man page.

Now man is a very useful system to get more information on how to use a given command.
On its own, however, it is useful only if you know the name of the command you want to read
about. If you don’t have that information and need to locate the proper command, you will
like man -k. The -k option allows you to locate the command you need by looking at keywords.
This option often produces a very long list of commands from all sections of the man pages,
and in most cases you don’t need to see all that information; the commands that are relevant
for the system administrator are in sections 1 and 8. Sometimes, when you are looking for a
configuration file, section 5 should be browsed as well. Therefore, it’s good to pipe the output
of man -k through the grep utility that can be used for filtering. For example, use man -k time
| grep 1 to show only lines from man section 1 that have the word “time” in the description.

■Tip It may happen that man -k provides only a message stating that there is nothing appropriate. If
this is the case, run the mandb command. This will create the database that is necessary to search the man

indexes.

Using the --help Option
The --help option is pretty straightforward. Most commands accept this option, although
not all commands recognize it. But the nice thing is that, if your command doesn’t recognize
the option, it will give you a short summary on how to use the command anyway because it
doesn’t understand what you want it to do. You should be aware that, although the purpose of
the command is to provide a short overview of the way it should be used, the information is
very often still too long to fit on one screen. If this is the case, pipe it through less to view the
information page by page.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE 45

9233ch02.qxd 10/25/07 12:56 PM Page 45

Getting Information on Installed Packages
Another nice source for information that is often overlooked is the documentation that is
installed for most software packages in the directory /usr/share/doc/. Beneath this directory
you’ll find a long list of subdirectories that all contain some usage information. In some cases,
the information is really short and not very good, but, in other cases, thorough and helpful
information is available. Often this information is available in ASCII text format and can be
viewed with less or any other utility that is capable of handling clear text.

In many cases, the information in /usr/share/doc is stored in a compressed format. You
can recognize this format by the extension .gz. To read files in this format, you can use zcat
and pipe the output of that to less, which allows you to browse through it page by page. For
example, if you see a file with the name changelog.gz, use zcat changelog.gz | less to read it.

In other cases, you will find the documentation in HTML format, which can only be dis-
played properly with a browser. If this is the case, it is good to know that you don’t necessarily
need to start a graphical environment to see the contents of the HTML file because Ubuntu
Server comes with the w3m browser, which is designed to run from a nongraphical environ-
ment. In w3m you can use the arrow keys to browse between hyperlinks. To quit the w3m utility,
use the q command.

Summary
This chapter has prepared you for the work you will be doing at the command line. Because
even a modern Linux distribution like Ubuntu Server still relies heavily on its configuration
files and the commands to manage them, this is all important information. The real work,
though, starts in Chapter 3, where you’ll learn how to perform some of the most important
administration tasks.

CHAPTER 2 ■ GETTING THE MOST OUT OF THE COMMAND LINE46

9233ch02.qxd 10/25/07 12:56 PM Page 46

Performing Essential System
Administration Tasks

So you have your server up and running, and you’ve just learned how to get your work done
from the command line. This is where the real work starts! Next, you need to learn how to tune
your server so it does exactly what you want it to. First, you need to know how to manage soft-
ware. Next, even if many in the Linux community will flame you for it, you probably want to
work with a graphical interface on your server to accomplish common tasks. Even if Ubuntu
Server is a command line–oriented server, in some situations the graphical interface just
makes things much easier. So I’ll explain how to install that at your server. Once the server
starts to take shape, you’ll want to make sure that it is properly backed up. And, finally, if
something goes wrong, you’ll need logging to find out what happened. All these are consid-
ered essential system administration tasks, and you’ll learn about them in this chapter.

Software Management
As on any other computer, you’ll need to install software on Ubuntu Server on a regular basis.
You can approach software installations in two ways. First and most important are the software
packages containing programs that are ready to install and that integrate easily with Ubuntu
Server. The server keeps a list of all software packages that are installed, which makes managing
them much easier. The second approach to software installation is the tarball, which is basi-
cally just an archive that contains files. These files can be really anything (for example, a backup
of your server’s data is stored in a tarball), but the tarball can also be used to deliver software
to install.

You should be aware of two important differences between the two methods of software
installation. One is that your server keeps track of everything that is installed only if that soft-
ware is installed from a package. Software installed from tarballs is not tracked. The second
difference between tarballs and packages is that some software needs other software to be
present before it can be installed. (This is called a dependency.) Imagine a graphical applica-
tion that would need a graphical user interface (GUI) to be present before you can use it. Both
the tarball and the software package have installation programs that can check if all depend-
encies have been met, but only the software package interacts via the package manager
software with a database of packages that are installed and packages that are available at your
server. Because of this interaction, the package manager can install missing dependencies for

47

C H A P T E R 3

9233ch03.qxd 10/25/07 1:35 PM Page 47

you automatically, and this is why, on modern Linux distributions, software packages are
preferred over tarballs.

Currently, software packages can be created with two different formats. On Red Hat,
SUSE, and many similar Linux distributions, the RPM Package Manager (RPM) format is the
way to go. Ubuntu and Debian, however, currently use the Debian Package (DEB) format.
Although the formats can be converted, you typically don’t want to install RPM on Ubuntu
Server, and the available management utilities will check for DEB by default.

Software Repositories and Package Databases
To understand a Linux package manager, you need to know about software repositories. A
software repository can be considered a source of installation for software. On your server, a
list of all these installation sources is kept in the file /etc/apt/sources.list. As an administra-
tor, it is important to be aware of this list. Although the most important software repositories
are added to this file automatically, you may occasionally want to add other software reposito-
ries to this list.

In all repositories, you’ll always find the following five package categories:

• main: The main category portion of the software repository contains software that
is officially supported by Canonical, the company behind Ubuntu. The software that is
normally installed to your server is in this category. By working with only this software,
you can make sure that your system remains as stable as possible and—very important
for an enterprise environment—that you can get support for it at all times.

• restricted: The restricted category is basically for supported software that uses a license
that is not freely available, such as drivers for specific hardware components that use a
specific license agreement, or software that you have to purchase. You’ll typically find
restricted software in a specific subdirectory on the installation media.

• universe: The universe category contains free software that is not officially supported.
You can use it and it is likely to work without problems, but you won’t be able to get
support from Canonical for software components in this category.

• multiverse: The multiverse component contains unsupported software that falls under
license restrictions that are not considered free.

• backports: In this category, you’ll find bleeding-edge software. If you want to work with
the latest software available, you should definitely get it here.

When installing software with the apt-get utility, it will look for installation sources in the
configuration file /etc/apt/sources.list. Listing 3-1 shows a part of its contents.

Listing 3-1. Definition of Installation Sources in sources.list

deb http://security.ubuntu.com/ubuntu feisty-security main restricted
deb-src http://security.ubuntu.com/ubuntu feisty-security main restricted
deb http://security.ubuntu.com/ubuntu feisty-security universe
deb-src http://security.ubuntu.com/ubuntu feisty-security universe
deb http://security.ubuntu.com/ubuntu feisty-security multiverse
deb-src http://security.ubuntu.com/ubuntu feisty-security multiverse

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS48

9233ch03.qxd 10/25/07 1:35 PM Page 48

http://security.ubuntu.com/ubuntu
http://security.ubuntu.com/ubuntu
http://security.ubuntu.com/ubuntu
http://security.ubuntu.com/ubuntu
http://security.ubuntu.com/ubuntu
http://security.ubuntu.com/ubuntu

As you can see, the same format is used in all lines of the sources.list file. The first
field in these lines specifies the package format to be used. Two different package formats are
used by default: deb for binary packages (basically precompiled program files) and deb-src
for packages in source file format. Next, the Universal Resource Identifier (URI) is mentioned.
This typically is an HTTP or FTP URL, but it can be something else as well. For instance, it can
refer to installation files that you have on an installation CD or in a directory on your server.
After that you’ll see the name of the Ubuntu Server distribution that is used, and you’ll always
see the current server version there. Last, every line refers to the available package categories.
As you can see, most package categories are in the list by default. Only installation sources for
security patches have been included in the partial listing of sources in Listing 3-1. For a com-
plete overview, take a look at the configuration file itself.

Now that you understand how the sources.list file is organized, it follows almost auto-
matically what should happen if you want to add some additional installation sources to this
list: make sure that all required components are specified and add any line you like, referring
to an additional installation source. Once an additional installation source has been added, it
will be automatically checked when working on software packages. For example, if you should
use the apt-get update command to update the current state of your system, the package
manager will check your new installation sources as well.

A second important management component used by package managers on your server is
the package database. The most fundamental package database is the dpkg database, which is
managed by the Debian utility dpkg. On Ubuntu, however, the Advanced Packaging Tools (apt)
set is used for package management. These tools add functionality to package management
that the traditional dpkg approach typically cannot offer. Because of this added functionality,
the apt tools use their own database, which is stored in /var/lib/apt. By communicating with
this database, the package manager can query the system for installed software, and this
enables your server to automatically solve package-dependency problems.

Every time a package is installed, a list of all installed files is added to the package data-
base. By using this database, the package manager can even see if certain configuration files
have been changed, which is very important if you want to update packages at your server!

■Caution Because working with two different package management databases can be confusing,
I suggest that you choose the package management system that you want to work with and stick to it.
In this book, I will cover only the apt utilities.

Package Management Utilities
You can use any of several package management utilities on Ubuntu Server. The most impor-
tant of these interact directly with the package database in /var/lib/apt. You would typically
use the apt-get command for installation, updates, and removal of packages, and so you’ll
find yourself working with that utility most of the time. You should also know of the aptitude
utility, which works in two ways. You can use aptitude as a command-line utility to query your
server for installed packages, but aptitude also has a menu-driven interface that offers an
intuitive way to manage packages. If this still isn’t easy enough, you can use the graphical

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 49

9233ch03.qxd 10/25/07 1:35 PM Page 49

utility Synaptic as an alternative. Before you can use that, though, you need to install a GUI.
You can read more about that later in this chapter.

Another approach to managing packages is the Debian way. Because Ubuntu package
management is based on Debian package management, you can use Debian package man-
agement tools like dpkg as well. However, these do not really add anything to what Ubuntu
package management already offers, and so I will not cover the Debian tools in this book.

Understanding apt
Before you start working on packages on Ubuntu Server, it is a good idea to decide what tool
you want to use. It’s a good idea because many tools are available for Ubuntu Server and each
of them uses its own database to keep track of everything installed. To prevent inconsistencies
in software packages, it’s best to choose your favorite utility and stick to that. In this book I’ll
focus on the apt-get utility, which keeps its database in the /var/lib/apt directory. This is my
favorite utility because you can run apt-get as a very easy and convenient tool from the com-
mand line to perform tasks very quickly. The apt-get utility works with commands that are
used as its argument, such as apt-get install something. In this example, install is the
command you use to tell apt-get what you really want to do. The following four package man-
agement commands are the most important building blocks when working with apt-get:

• update: This is the first command you want to use when working with apt-get. It
updates the list of packages that are available for installation. Use it to make sure that
you install the most recent version of a package.

• upgrade: Use this command to perform an upgrade of your server’s software packages.

• install: This is the command you want to use every time you install software. It’s rather
intuitive. For example, if you want to install the Xen software package, you would just
type apt-get install xen.

• remove: You’ve probably guessed already, but you’ll use this one to remove installed
packages from your server.

Showing a List of Installed Packages
Before you start managing packages on Ubuntu Server, you probably want to know what
packages are already installed, and you can do this by issuing the dpkg -l command. It’ll
generate a long list of installed packages. Listing 3-2 shows a partial result of this command.

■Note The apt-get utility is not the most appropriate way to list installed packages because it can see
only those packages that are installed with apt. If you have installed a package with dpkg (which I would
not recommend), you won’t see it with apt-get. So, to make sure that you don’t miss any packages, I rec-
ommend using dpkg -l to get a list of all installed packages.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS50

9233ch03.qxd 10/25/07 1:35 PM Page 50

Listing 3-2. The dpkg -l Command Shows Information About Installed Packages.

$ dpkg -l
ii xvidtune 1.0.1-0ubuntu1 X client - xvidtune
ii xvinfo 1.0.1-0ubuntu1 XVideo information
ii xwd 1.0.1-0ubuntu1 X client - xwd
ii xwininfo 1.0.1-0ubuntu1 X client - xwininfo
ii xwud 1.0.1-0ubuntu1 X client - xwud
ii yelp 2.18.1-0ubuntu Help browser for GNOME 2
ii zenity 2.18.1-0ubuntu Display graphical dialog boxes from shell sc
ii zip 2.32-1 Archiver for .zip files
ii zlib1g 1.2.3-13ubuntu compression library - runtime
ii zlib1g-dev 1.2.3-13ubuntu compression library - development

The result of the dpkg command shows information about packages and their status.
The first character of the package shows the desired status for a package, and this status indi-
cates what should happen to the package. The following options are available for this status
indicator:

• i: You’ll see this option in most cases, indicating that the package should be installed.

• h: This option (for “hold”) indicates that the package cannot be modified.

• p: This option indicates that the package should be purged.

• r: This option indicates that the package is supposed to be removed without removing
associated configuration files.

• u: This option indicates that the current desired status is unknown.

The second character reveals the actual state of the package. You’ll find the following
options:

• I: The package is installed.

• c: Configuration files of the package are installed, but the package itself is not.

• f: The package is not guaranteed to be correctly installed.

• h: The package is partially installed.

• n: The package is not installed.

• u: The package did install, but the installation was not finalized because the configura-
tion script was not successfully completed.

The third character indicates any known error state associated with the package. In most
cases you’ll just see a space (so, basically, you don’t see anything at all), indicating that nothing
is wrong. Other options are as follows:

• H: The package is put on hold by the package management system. This means that
dependency problems were encountered, in which case some required packages are
not installed.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 51

9233ch03.qxd 10/25/07 1:35 PM Page 51

• R: Reinstallation of the package is required.

• X: The package requires reinstallation and has been put on hold.

The dpkg command can be used to show a list of packages that are already installed in
your system, but you can also use it to display a list of packages that are available to your sys-
tem. The only difference is that you have to provide some information about the package.
For example, the command dpkg -l "samba*" would provide information about the current
installation status of the Samba package. Listing 3-3 shows the result of this command.

Listing 3-3. Dpkg Can Be Used to Display a List of Packages That Are Available.

sander@RNA:~$ dpkg -l "samba*"
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description
+++-==============-==============-==
un samba-common <none> (no description available)

As you can see in the output that is provided for each package, the first two positions
show that the package status is currently unknown. In combination with some smart use of
the grep command, you can even use this construction to find out what packages are available
for installation on your server. In the command dpkg -l "*" | grep ^un, the grep command
is used to filter out all packages that show a result that starts with the letters “un,” which is
very typical for a package that is not installed.

You can also use the dpkg utility to find out what package owns a certain file. This is very
useful information. Imagine that a file is broken and you need to refresh the package’s installa-
tion. To find out what package owns a file, use dpkg --seach /your/file. The command will
immediately return the name of the package that owns this file.

Using aptitude
On Ubuntu, a few commands are available for package management. One of these is aptitude.
The major benefit of this command is that it is somewhat more user friendly because it can
work with keywords, which are words that occur somewhere in the description of the package.
For example, to get a list of all packages that have “xen” (the name of the well-known Linux
virtualization product) in their description, you would use aptitude search xen. Listing 3-4
shows the result of this command.

Listing 3-4. Showing Package Status Based on Keywords

sander@RNA:~$ aptitude search xen
p ubuntu-xen-desktop - Xen software for running on servers.
p ubuntu-xen-server - Xen software for running on servers.
p xen-doc-2.6.16 - Linux kernel specific documentation
p xen-docs-3.0 - documentation for XEN, a Virtual Mac
v xen-headers -

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS52

9233ch03.qxd 10/25/07 1:35 PM Page 52

v xen-headers-2.6 -
p xen-headers-2.6.16 - Header files related to Linux kernel
p xen-headers-2.6.19-4 - Common header files for Linux 2.6.19
p xen-headers-2.6.19-4-gener - Common header files for Linux 2.6.19
p xen-headers-2.6.19-4-serve - Common header files for Linux 2.6.19
v xen-hypervisor -
v xen-hypervisor-3.0 -
p xen-hypervisor-3.0-i386 - The Xen Hypervisor for i386
p xen-hypervisor-3.0-i386-pa - The Xen Hypervisor for i386 (pae ena
v xen-hypervisor-i386 -
v xen-hypervisor-i386-pae -
p xen-image-2.6.19-4-generic - Linux 2.6.19 image on PPro/Celeron/P
p xen-image-2.6.19-4-server - Linux xen 2.6.19 image on x86.
p xen-ioemu-3.0 - XEN administrative tools
p xen-restricted-modules-2.6 - Non-free Linux 2.6.17 modules on x86
v xen-source -
v xen-source-2.6 -
p xen-source-2.6.16 - Linux kernel source for version 2.6.
p xen-tools - Tools to manage debian XEN virtual s
v xen-utils -
p xen-utils-3.0 - XEN administrative tools
p xen-utils-common - XEN administrative tools - common fi
p xengine - A benchmark program for the X Window
p xenman - A graphical Xen management tool
v xenx-doc-2.6 -

Once you have found a package using the aptitude command, you can also use it to
show information about the package. To do this, you’ll use the show argument. For example,
aptitude show xen-source will show you exactly what the package xen-source is all about
(see Listing 3-5). As you can see, in some cases very useful information is displayed.

Listing 3-5. The aptitude show Command Shows What Is Offered by a Package.

sander@RNA:~$ aptitude show xen-source
No current or candidate version found for xen-source
Package: xen-source
State: not a real package
Provided by: xen-source-2.6.16
sander@RNA:~$ aptitude show xen-source-2.6.16
Package: xen-source-2.6.16
State: not installed
Version: 2.6.16-11.1
Priority: optional
Section: universe/devel
Maintainer: Chuck Short <zulcss@ubuntu.com>
Uncompressed Size: 42.6M

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 53

9233ch03.qxd 10/25/07 1:35 PM Page 53

mailto:zulcss@ubuntu.com

Depends: binutils, bzip2, coreutils | fileutils (>= 4.0)
Recommends: libc-dev, gcc, make
Suggests: libncurses-dev | ncurses-dev, kernel-package, libqt3-dev
Provides: xen-source, xen-source-2.6
Description: Linux kernel source for version 2.6.17 with Ubuntu patches
This package provides the source code for the Linux kernel version
2.6.17.

You may configure the kernel to your setup by typing "make config"
and following instructions, but you could get ncursesX.X-dev and try
"make menuconfig" for a jazzier, and easier to use interface. There
are options to use QT or GNOME based configuration interfaces, but
they need additional packages to be installed. Also, please read the
detailed documentation in the file
/usr/share/doc/linux-source-2.6.17/README.headers.gz.

If you wish to use this package to create a custom Linux kernel,
then it is suggested that you investigate the package
kernel-package, which has been designed to ease the task of creating
kernel image packages.

If you are simply trying to build third-party modules for your
kernel, you do not want this package. Install the appropriate
linux-headers package instead.

Adding and Removing Software with apt-get
The best tool to perform package management from the command line is apt-get. It provides
a very convenient way to install, update, or remove software packages on your machine. It
requires root permissions, so you should always start the command with sudo.

Before you do anything with apt-get, you should always use the apt-get update command
first. Because apt-get gets most software packages online, it should always know about the lat-
est available versions of those packages. The apt-get update command makes sure of this, and
it caches a list of the most recent version of packages that are available on your server. Once the
update is performed, you can use apt-get to install and remove software. Installation is rather
easy: to install the package blah, use apt-get install blah. The advantage of the apt-get com-
mand is that it really tries to understand what you are doing. This is shown in Listing 3-6, where
the apt-get command is used to install the Xen virtualization software.

Listing 3-6. The apt-get Command Tries to Understand What You Want to Do.

sander@RNA:~$ sudo apt-get install xen
Password:
Reading package lists... Done
Building dependency tree

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS54

9233ch03.qxd 10/25/07 1:35 PM Page 54

Reading state information... Done
Package xen is not available, but is referred to by another package.
This may mean that the package is missing, has been obsoleted, or
is only available from another source
However the following packages replace it:
xen-utils-common

E: Package xen has no installation candidate

As you can see from this example, the apt-get command does have a problem in under-
standing what you mean by “xen.” However, it does note that another package refers to Xen,
and, as a result, it asks you if you want to install this other package. If you want to do that, just
run apt-get again, referring to the name of this other package. Even if this works to install
packages on your machine, you should always be aware that apt-get may miss the point here.
So always remain alert and check if it has really installed the packages you needed.

You can also use apt-get to remove software, upgrade your system, and much more. The
following list provides an overview of the most important functions of the apt-get command.
Be aware that you should always run the command with root permissions, so use sudo to start
apt-get (or set a root password and work as root directly).

• Install software: Use sudo apt-get install package.

• Remove software: Use sudo apt-get remove package. This option does not remove con-
figuration files. If you need to remove those as well, use sudo apt-get remove --purge
package.

• Upgrade software: To upgrade your complete operating system, use sudo apt-get
update first so that you’re sure that apt-get is aware of the most recent version of the
packages. Then use sudo apt-get dist-upgrade.

Making Software Management Easy with Synaptic
I know, Ubuntu Server is not supposed to be a graphical operating system, but, as you’ll see,
it is perfectly possible—and sometimes even preferable—to install a graphical system. A GUI
makes administering your Ubuntu Server a lot easier. One of the tools that come with the
graphical interface is the Synaptic package manager. As you can see in Figure 3-1, it offers a
very intuitive interface to help you install and manage software packages.

In Synaptic, the Sections button is a good starting point, because clicking it allows you to
see all available software, organized by software category. To see what’s inside a category, click
it and a list of available packages will be displayed in the right part of the Synaptic window.
Clicking an individual package will provide a description of the package, allowing you to see
exactly what is in it. Next, select the Mark for Installation option and click Apply. You’ll then
see the window in Figure 3-2, asking you if you really want to install this package. Click Apply
to start the installation.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 55

9233ch03.qxd 10/25/07 1:35 PM Page 55

Figure 3-1. The Synaptic package management tool really makes software management easy.

Figure 3-2. Click Apply to start installation of the selected package.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS56

9233ch03.qxd 10/25/07 1:35 PM Page 56

Another very useful option from the Synaptic interface is the Search feature. Click Search
and, from the window that’s displayed, select the software you are looking for. Click Search
again and you’ll see a list with all matching packages. If you want to use these packages, mark
these for installation and click Apply.

Installing Software from Tarballs
Most software for Ubuntu is available from the normal Ubuntu installation channels. Some-
times, however, you’ll encounter software in other formats, such as source files that are delivered
in the .tar.gz format. These packages have been archived with the tar utility and then com-
pressed with gzip, and so they’re known as tarballs.

Extraction will reveal that the tarball contains one of two types of files: source files and
binary files. If the tarball contains binary files, it’s normally enough to run the installation pro-
gram and install them. Just look at the name of the files in the tarball, and you’ll probably
immediately see what you have to run to perform the installation. If the tarball contains
source files, you first have to compile them.

Before starting to install software by compiling its source files, you need to be aware of
something. Although you’ll probably end up with perfectly working software, all of the soft-
ware that you install in this way is unmanaged. This means that it will not be updated when
you update everything else on your server, simply because the software is not in the databases
maintained by software management programs such as apt-get. Therefore, I always recom-
mend that you try to install software using the regular Ubuntu software installation methods
first. If that doesn’t work (and only then), use the method described next.

■Caution The procedure described here works in many cases, but it doesn’t work all the time for the
simple reason that it is all dependent on the person who created the package. I always recommend that you
read the readme file that comes with most source files to see if the software installation has any specific
instructions or requirements.

1. Before starting to compile the source files, you need to make sure that the required
compiler is installed on your server. The command dpkg -l | grep gcc would be an
excellent choice to do that. If you don’t see the gcc compiler, use apt-get install gcc
to install if before you proceed.

■Tip To describe this procedure, I’ve downloaded the latest version of nmap from http://insecure.org/
nmap/download.html. If you want to follow this procedure, download this file as well.

2. Once you have downloaded the software you want to install into your home directory,
check how the file is compressed. If the file has the .bz2 extension, it has been com-
pressed with the bzip2 utility. To uncompress it, you need the tar command-line
switch -j. If the file has the .gz extension, it has been compressed with the gzip utility,

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 57

9233ch03.qxd 10/25/07 1:35 PM Page 57

http://insecure.org

and the tar utility needs the -z switch to extract it. Our example file is compressed
with bzip2, so run the tar -jxvf nmap* command to extract the archive. In this com-
mand, the option x is used to extract the tar archive, the option v does that in a
verbose way so that you’ll see what happens, and the option f nmap* specifies that the
name of the file you want to extract is anything that starts with “nmap.” This creates a
subdirectory in your current directory in which all source files are installed. Now acti-
vate this subdirectory with the cd command.

3. From the directory that was created while extracting the tarball, run the ./configure
command. This command will verify that everything required to install the selected
software is present on your server. If the utility fails, it is usually because some required
software component was not installed. If this is the case, you’ll see an error message
stating what exactly is missing. Read what software component that is, and install it
before you proceed. When ./configure runs without errors, continue with the next step.

4. Compiling software is a lot of work and involves very complex commands. However,
the make utility is available to make the compiling process easier. This utility reads a file
with the name Makefile that has to be present in the directory with the source files;
based on the instructions in that file, it compiles the software. Depending on the soft-
ware that you want to install, the compiling process can take a long time. Once it’s
finished, though, continue with the next step.

5. You should now have all the program files that you need. But you’re not quite done,
because you still have to make sure that these files are copied to the appropriate paths
on your server. To do this, you must run the make install command as root. Type sudo
make install and press Enter. This completes the installation of the source files for
your machine, and they’re ready for use.

Configuring a Graphical User Interface
Using a GUI on a server can be a very sensitive subject for some people. Some system admin-
istrators feel that the GUI is merely a waste of system resources and that there is no need for it
on a professional server.

These people are basically right, but doing everything at the command line can be quite
a chore if you have no Linux experience. Personally, I believe in freedom of choice. You want
to use a graphical interface to get familiar with Ubuntu Server? That’s fine with me. However,
if you are an experienced Linux server administrator and you don’t want to waste system
resources on a useless graphical interface, please skip ahead to the section “Creating Back-
ups.” That’s fine with me as well. Do you still hesitate whether or not to install a GUI? If so,
Table 3-1 lists some advantages and disadvantages for you to consider.

Table 3-1. GUI Advantages and Disadvantages

Advantages Disadvantages

Makes administration easier Security risks

Slows down your server

GUIs are often rather limited

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS58

9233ch03.qxd 10/25/07 1:35 PM Page 58

Are you still with me? Good, because that means you want to install a GUI. As you saw in
the preceding section, installing software is easy with Ubuntu Server. When installing a graph-
ical interface, however, you need to make some choices, the first of which is what kind of
graphical interface you want to use. You basically have two different options: the window
manager and the desktop environment.

In general, a window manager is a lightweight graphical interface that manages windows
on your server, and a desktop environment is a complete graphical workspace that not only
creates windows for you, but also offers a wide range of applications. If you have worked with
Ubuntu on the desktop, you are probably familiar with the GNOME desktop manager, which
is the default graphical user environment for the desktop.

Mainly because you probably want to install a graphical desktop to make managing
Ubuntu Server easier, in this section you’ll learn how to set up the GNOME desktop. I chose
GNOME because it is the most complete graphical desktop environment available for Linux.
Installing it is rather easy with apt-get, you just have to know what to install. To install every-
thing that is needed, enter the following command:

sudo apt-get install xserver-xorg xfonts* gnome

This command makes sure that all required software is copied to your system. Some of
the software has to be downloaded from the Internet, and it can take a while before everything
is installed. After that, you will have a complete graphical user environment, like the one
shown in Figure 3-3.

Figure 3-3. It doesn’t come by default, but you certainly can manage Ubuntu Server from a
graphical interface.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 59

9233ch03.qxd 10/25/07 1:35 PM Page 59

■Note Even if the graphical interface that you have just enabled makes system administration a lot easier,
installing it doesn’t make Ubuntu Server a graphical system. At some points, it makes sense to use a graphi-
cal interface, such as if you need a browser to look up some information on the Internet or if you want to
install software packages using the Synaptic package management program. In essence, however, system
administration on Ubuntu Server happens from the command line. Where relevant, though, I’ll indicate what
graphical programs can make administration tasks easier for you.

Creating Backups
One thing always seems to be true about computers: one day they’ll fail. If the computer in
question is a server, the failure can cause huge problems. Companies have gone bankrupt
because their vital data was lost. Therefore, making decent backups of your data is essential.
In this section, I’ll cover three different methods of creating backups, all of which are native
Linux solutions. Apart from these solutions, quite a few commercial backup solutions are
available that fit into the backup infrastructure that is often used at the enterprise level in a
company. Those solutions are very specific, and I do not include them in this book. I’ll discuss
two backup solutions: making file backups with tar, and making device backups using dd.

Making File Backups with tar
The command-line utility tar is probably the most popular Linux backup utility. It functions as
a stand-alone utility to write backups to an archive. This archive can be tape (hence the name
tar which stands for tape archiver), but it can also be anything else. For instance, tar-based
backups are often written to a file instead of a tape, and, if this file is compressed with a com-
pression utility like bzip2 or gzip, you’ll get the famous tarball, which is a common method to
deliver software installation archives. In this section, you’ll learn how to create tar archives and
how to extract files from them. I’ll also provide some tips and tricks to help you get the most out
of the tar utility.

Creating an Archive File
In its most basic form, tar is used to create an archive file. The typical command to do so is
tar -cvf somefile /somedirectory. This tar command has a few arguments. First, you need
to indicate what you want to do with the tar command. In this case, you want to create an
archive. (That’s why the option c is used; the “c” stands for create.)

After that, I’ve used the option v (verbose). Although it’s not required, it often comes in
handy because verbose output lets you see what the tar command is actually doing. I recom-
mend always using this option because sometimes a tar job can take a really long time. (For
instance, imagine creating a complete archive of everything that’s on your hard drive.) In cases
such as these, it’s nice to be able to monitor what exactly happens and that’s what the option v
is meant to do.

Next, you need to specify where you want the tar command to send its output. If you
don’t specify anything here, tar defaults to the standard output (STDOUT). In other words, it

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS60

9233ch03.qxd 10/25/07 1:35 PM Page 60

simply dumps all the data to your server’s console. This doesn’t accomplish much, so you
should use the option f (file) to specify what file or device the output should be written to.

In this example I’ve written the output to a file, but, alternatively, you can write output to
a device file as well. For example, the command tar -cvf /dev/mt0 /somedir will write the
result of the tar command to the /dev/mt0 device, which typically is your tape drive.

The last part of the tar command specifies exactly what you want to put into your tar
archive. In the example, the directory /somedir is archived. It’s easy to forget this option, but,
if you do, tar will complain that it is “cowardly refusing to create an empty archive.”

And you should know a couple of other things about tar. First, the order of arguments
does matter. So there is a difference between tar -cvf /somefile /somedir and, for example,
tar -f /somefile -vc /somedir. The order is wrong in the last part, and tar won’t know what
you want it to do. So, in all cases, first specify what you want tar to do. In most cases, it’s either
c (to create an archive), x (to extract an archive), or t (to list the contents of the archive). Then
specify how you want tar to do that; for example, you can use v to tell tar that it should be
verbose. Next, use the f option to indicate where you want tar to write the backup, and then
specify what exactly you want to back up.

Creating an archive with tar is useful, but you should be aware that tar doesn’t compress
one single bit of your archive. This is because tar was originally conceived as a tape streaming
utility. It streams data to a file or (typically) a tape device. If you want tar to compress the con-
tents of an archive as well, you must tell it to do so. And so tar has two options to compress
the archive file:

• z: Use this option to compress the tar file with the gzip utility. This is the most popular
compression utility, because it has a pretty decent compression ratio and it doesn’t take
too long to create a compressed file.

• j: Use this option to compress the tar file with the bzip2 utility. This utility compresses
10 to 20 percent better than gzip2, but at a cost: it takes as twice as long.

So, if you want to create a compressed archive of the directory /home and write that
backup to a file with the name home.tar.gz, you would use the following command:

tar -czvf home.tar.gz /home

■Note Of course you can use the bzip2 and gzip utilities from the command line as well. Use gzip
file.tar to compress file.tar. This command produces file.tar.gz as its result. To decompress that
file, use gunzip file.tar.gz, which gives you the original file.tar back. If you want to do the same
with bzip2, use bzip2 file.tar to create the compressed file. This creates a file with the name
file.tar.bz2, which you can decompress using the command bunzip2 file.tar.bz2.

Extracting an Archive File
Now that you know how to create an archive file, it’s rather easy to extract it. Basically, the
command-line options that you use to extract an archive file look a lot like the ones you

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 61

9233ch03.qxd 10/25/07 1:35 PM Page 61

needed to create it in the first place. The important difference is that, to extract a file, you need
the option x (extract), instead of c (create). Here are some examples:

• tar -xvf /file.tar: Extracts the contents of file.tar to the current directory.

• tar -zxvf /file.tar.gz: Extracts the contents of the compressed file.tar to the
current directory.

• tar -xvf /file.tar C /somedir: Extracts the contents of /file.tar to a directory with
the name /somedir.

Moving a Complete Directory
Most of the time, tar is used to write a backup of one or more directories to a file. Because of
its excellent handling of special files (such as stale files that are used quite often in databases),
tar is also quite often used to move the contents of one directory to another. Some people
perform this task by first creating a temporary file and then extracting the temporary file into
the new directory. This is not the easiest way because you need twice the disk space taken by
the directory whose contents you want to move: the size of the original directory plus the
space needed for the temporary file. The good news is that you don’t have to do it this way.
Use a pipe, and you can directly blow the contents of one directory to another directory.

To understand how this works, first try the command tar -cC /var. In this command, the
option c is used to tell tar that it should create an archive. The option C is used to archive the
contents of the directory /var and not the complete directory. This means that, in the archive
itself, you won’t see the original directory name /var. So, if there’s a file called /var/blah, you
will see blah in the archive, and not var/blah, which would have been the case if you omitted
the option C (a leading / is always stripped from the pathname in a tar archive). Now, as you
may have noticed, in the tar -cC /var example, the option f /somefile.tar isn’t used to
specify where the output goes, and so all the output is sent to STDOUT, which is your console.

So that’s the first half of the command, and you ended up with a lot of output dumped
on the console. Now, in the second part of the command, you’ll use a pipe to redirect all that
output to another command, which is tar -xC /newvar. This command will capture the tar
archive from STDOUT and extract it to the directory /newvar (make sure that newvar exists
before you run this command). You’ll see that this method allows you to create a perfect copy of
one directory to another. So the complete command that you need in this case looks like this:

tar -cC /var . | tar -vxC /newvar

Creating Incremental Backups
Based on the information in the previous section, you can probably see how to create a
backup of one or more directories. For instance, the tar -cvf /backup.tar /var /home /srv
command creates a backup of three directories: /home, /var, and /srv. Depending on the size
of these directories, this command may take some time. Because such large backups can take
so long, it’s often useful to make incremental backups, which is a backup in which the only
files that get written to the backup are those that have changed since the last backup. To do
this, you need the option g to create a snapshot file.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS62

9233ch03.qxd 10/25/07 1:35 PM Page 62

An incremental backup always follows a full backup, and so you have to create the full
backup first. In this full backup, you should create a snapshot file, which contains a list of all
files that have been written to the backup. The following command would do that for you
(make sure that /backup exists before running the command):

tar -czvg /backup/snapshot-file -f /backup/full-backup.tar.gz /home

The interesting thing about the snapshot file is that it contains a list of all files that have
been written to the backup. If, two days after the full backup, you want to make a backup of
only the files that have been changed in those two days, you can repeat essentially the same
command. This time, the command will check the snapshot file to find out what files have
changed since the last full backup, and it’ll back up only those changed files. So your Monday
backup would be created by the following command:

tar -czvg /backup/snapshot-file -f /backup/monday-backup.tar.gz /home

These two commands created two files: a small file that contains the incremental backup,
and a large file that contains the full backup. Now, if you want to restore all files from backup,
you need to restore every single file, starting with the first file that was created (typically the
full backup) and ending with the last incremental backup. So, in this example, the following
two commands would restore the file system back to the status at the time that the last incre-
mental backup was created:

tar -xzvf /backup/full-backup.tar.gz
tar -xzvf /backup/monday-backup.tar.gz

Making Device Backups Using dd
You won’t find a more versatile utility than tar to create a file system–based backup. In some
cases, however, you don’t need a backup based on a file system; instead, you want to create a
backup of a complete device, or parts of it. This is where the dd command comes in handy. The
basic use of the dd command is rather easy because it takes just two arguments: if= to specify
the input file, and of= to specify the output file. The arguments to those options can be either
files or block devices. So, the command dd if=/etc/hosts of=/home/somefile can be used as a
complicated way to copy a file.

■Note dd is, strangely enough, short for “convert and copy.” Unfortunately, the cc command was already
being used by something else and the developers choose to use dd instead.

More interesting is the use of dd to copy a complete device. What would you think, for
example, of the command dd if=/dev/cdrom of=/mycd.iso? It would help you create an ISO
file of the CD-ROM that’s in the drive at that moment.

You may wonder why not just copy the contents of your CD-ROM to a file with the name
/mycd.iso. Well, the reason is, a CD-ROM, like most other devices, typically contains informa-
tion that cannot be copied by a mere file copy. For example, how would you handle the boot

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 63

9233ch03.qxd 10/25/07 1:35 PM Page 63

sector of a CD-ROM? You can’t find that as a file on the device because it’s just the first sector.
Because dd copies sector by sector, on the other hand, it will copy that information as well.

■Tip Did you know that it’s not hard to mount an ISO file that you created with dd? The only thing that
you need to know is that you have to use the -o loop option, which allows you to mount a file like any
normal device. So, to mount /mycd.iso on the /mnt directory, you would need sudo mount -o loop

/mycd.iso /mnt.

Making a backup of a CD-ROM with dd is one option. And any other similar device can be
copied as well. How would you go about making a complete copy of your entire hard disk? It’s
easy, but I recommend that you first boot your server using the rescue option that you can
find on the installation CD. Doing this gives you a complete Linux system that doesn’t use any
of the files on your server’s hard disk, which ensures that no files are in use at that moment.
Before you start, make sure you know what device is used by your server’s hard drive. The best
way to find out is by using the sudo fdisk -l command, which provides a list of all partitions
found on your server, with the local hard disk coming first.

In most cases, the name of your hard drive will be /dev/sda, but it may be /dev/hda or
something completely different. Let’s assume that your server’s hard drive is /dev/sda, and you
now have to attach a second hard drive to your server. Typically, this second drive would be
known as /dev/sdb. Next, you can use the dd command to clone everything from /dev/sda to
/dev/sdb: dd if=/dev/sda of=/dev/sdb. This command takes quite some time to complete,
and it also wipes everything that currently exists on /dev/sdb, replacing it with the contents
of /dev/sda. Unfortunately, it often takes several hours to dd everything from one hard disk to
another.

Configuring Logging
The last essential system administration task covered in this chapter is logging. It’s obviously
very important to understand where certain information is recorded on your server. Knowing
this helps you troubleshoot when something doesn’t work out the way you expect. Also, under-
standing how logging works may help prevent your entire server from filling up with log files.
On Ubuntu Server, syslog is used to configure logging. You’ll learn now how to configure it and
where its associated log files are written.

Configuring syslog
Logging on to Ubuntu Server is handled by the syslogd process. The process reads its configu-
ration file /etc/syslog.conf and based on the instructions it finds there, it determines what
information is logged to what location. You can even define different destinations for different
logs. For example, information can be logged to files or a terminal, or (if it is very important) a
message can be written to one or more users who are logged in at that moment. Listing 3-7
shows the default contents of /etc/syslog.conf.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS64

9233ch03.qxd 10/25/07 1:35 PM Page 64

Listing 3-7. Contents of syslog.conf

root@RNA:~# cat /etc/syslog.conf
/etc/syslog.conf Configuration file for syslogd.
#
For more information see syslog.conf(5)
manpage.

#
First some standard logfiles. Log by facility.
#

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
uucp.* /var/log/uucp.log

#
Logging for the mail system. Split it up so that
it is easy to write scripts to parse these files.
#
mail.info -/var/log/mail.info
mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err

Logging for INN news system
#
news.crit /var/log/news/news.crit
news.err /var/log/news/news.err
news.notice -/var/log/news/news.notice

#
Some `catch-all' logfiles.
#
*.=debug;\

auth,authpriv.none;\
news.none;mail.none -/var/log/debug

.=info;.=notice;*.=warn;\
auth,authpriv.none;\
cron,daemon.none;\
mail,news.none -/var/log/messages

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 65

9233ch03.qxd 10/25/07 1:35 PM Page 65

#
Emergencies are sent to everybody logged in.
#
*.emerg *

#
I like to have messages displayed on the console, but only on a virtual
console I usually leave idle.
#
#daemon,mail.*;\
news.=crit;news.=err;news.=notice;\
.=debug;.=info;\
.=notice;.=warn /dev/tty8

The named pipe /dev/xconsole is for the `xconsole' utility. To use it,
you must invoke `xconsole' with the `-file' option:
#
$ xconsole -file /dev/xconsole [...]
#
NOTE: adjust the list below, or you'll go crazy if you have a reasonably
busy site..
#
daemon.*;mail.*;\

news.crit;news.err;news.notice;\
.=debug;.=info;\
.=notice;.=warn |/dev/xconsole

You can see from this listing that different rules are specified to define logging, and each
of these rules has different parts. The first part of a log definition is the facility, which provides
a basic idea of what part of the system the log message came from. The following available
facilities are predefined:

• auth: Generic information, related to the authentication process.

• authpriv: See auth.

• cron: Information that is related to the crond and atd processes.

• daemon: Generic information used by different system processes (daemons) that don’t
have a log facility of their own.

• kern: Everything that is related to the kernel. To log this information, a helper process
named klogd is used. This process makes sure that information generated during the
boot procedure is also logged.

• lpr: Information related to the printing subsystem.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS66

9233ch03.qxd 10/25/07 1:35 PM Page 66

• mail: Everything related to the mail system. Pay special attention to this because a
misconfigured log line for the mail facility may cause lots and lots of information to
be logged.

• mark: This is a marker that can be periodically written to the log files automatically.

• news: All events related to a news server (if such a server is used).

• syslog: Internally used by the syslogd process.

• user: Generic facility that can be used for user-related events.

• uucp: Messages that are related to the legacy UUCP system.

• local0-7: Local log facilities available for customized use. This facility can be used to
assign a log facility to specific processes.

Apart from these specific facilities, a * can also be used to refer to all facilities. You can see
an example of this in the last line of Listing 3-7, in which *=warn is used to handle warnings
that are generated by whatever service.

For each facility, a priority is used to specify the severity of an event. Apart from *, which
refers to all priorities, the following priorities can be used:

• none: Use this to ensure that no information related to a given facility is logged.

• debug: This priority is used only for troubleshooting purposes. It logs as much informa-
tion as it can and is therefore very verbose. (Don’t ever switch it on as a default setting.)

• info: This priority logs messages that are categorized as informational. Don’t use this
one as a default setting either because it generates lots of information.

• notice: Use this priority to log normal system events. This priority keeps you up to date
about what specific services are doing.

• warning: This priority should be switched on by default for most services. It logs
warnings related to your services.

• err: Use this priority to log serious errors that disrupt the process functionality.

• crit: This priority is used to log critical information that is related to programs.

• alert: Use this priority to log information that requires immediate action to keep the
system running.

• emerg: This priority is used in situations in which the system is no longer usable.

These priorities are shown in increasing order of severity. The first real priority (debug)
relates to the least important events, whereas the emerg priority should be reserved for the
most important. If a certain priority is specified, as in *.warn, all priorities with a higher
importance are automatically included as well. If you want to refer to a specific priority, you
should use the = sign, as in *.=warn. Using the = sign allows you to log events with a specific

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 67

9233ch03.qxd 10/25/07 1:35 PM Page 67

news:All

priority to specific destinations only, which happens for example for the mail process, which
by default has a log file for warnings, both for errors and for informational purposes.

The last part of the syslog configuration is the specification of the log destination. Most
processes log to a file by default, but other possibilities exist:

• To log to a file, specify the name of the file. If you anticipate large numbers of log mes-
sages, it’s a good idea to prepend the name of the file with a -, as in news.* -/var/log/news.
Using the hyphen ensures that messages are cached before they are written to a log file.
This decreases the workload caused by logging information, but, if the system crashes
and the cache isn’t written to disk, messages will be lost.

• To log to a device, just specify the name of the device that you want to log to. As can
be seen from the example log file in Listing 3-7, important messages are logged to
/dev/xconsole by default. It may also be a good idea to log important messages, such as
those that have a priority of warn and higher, to an unused tty.

• To send alerts to users who are logged in, just specify the name of the user. In the exam-
ple *.alert root,linda, all messages with at least an alert priority are written to the tty
in which users linda and root are logged in at that moment.

• To send log messages to a specific log server, include the name of the server, preceded
by an @. This server has to be configured as a log server by starting the log process with
the -r option.

• For the most serious situations, use * to ensure that a message is written to all users
who are logged in at that moment.

By default, syslog writes log messages to log files in the /var/log directory, where you
can find log information that is created in many different ways. One of the most important
log files that you’ll find in this directory is /var/log/messages. Listing 3-8 shows some lines
from this file.

Listing 3-8. Some Lines from /var/log/messages

Jun 7 03:14:58 RNA gconfd (root-5150): Resolved address "xml:readwrite:/root/.gconf
" to a writable configuration source at position 1
Jun 7 03:14:58 RNA gconfd (root-5150): Resolved address "xml:readonly:/etc/gconf/gc
onf.xml.defaults" to a read-only configuration source at position 2
Jun 7 03:14:58 RNA gconfd (root-5150): Resolved address "xml:readonly:/var/lib/gcon
f/debian.defaults" to a read-only configuration source at position 3

All lines in /var/log/messages are structured in the same way. First, you see the date and
time that the message was logged. Next, you see the name of the server that the message
comes from. In the example lines in Listing 3-8, you can see that the three log messages all
come from the same server (RNA), and you can see the name of the process that generated the
message. This process name is followed by the unique process ID and the user who runs the
process. Finally, the message itself is written.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS68

9233ch03.qxd 10/25/07 1:35 PM Page 68

The files that are created on your server really depend on the services that are installed.
Here’s a list of some of the important ones:

• apache2: This subdirectory contains the access log and error log for your Apache web
server.

• auth.log: Here you’ll find a list of authentication events. Typically, you’ll see when user
root has authenticated to the server.

• dmesg: This file has a list of messages generated by the kernel. Typically, it’s quite helpful
when analyzing what has happened at the kernel level when booting your server.

• faillog: This is a binary file that contains messages about login failures that have
occurred. Use the faillog command to check its contents.

• mail.*: These files contain information on what happened on the mail service that may
be running at your server. These logs can become quite big if your server is a mail
server because all mail activity will be logged by default.

• udev: In this file you can see all the events that have been generated by the hardware
plug-and-play manager udev (see Chapter 6 for more information about this). The
information in this file can be very useful when troubleshooting hardware problems.

Logging in Other Ways
Many processes are configured to work with syslog, but some important services have their
own log configuration. For example, the Apache web server handles logging itself by specify-
ing the names of the files that information has to be logged to in the Apache configuration
files. And many other similar services don’t use syslog, so, as an administrator, you always
have to take a careful look at how logging is handled for each specific service.

■Tip If you need logging from shell scripts, you can use the logger command, which writes log messages
directly to the syslog procedure. It’s a useful way to write a failure in a shell script to a log file. For example,
use logger this script completed successfully if you want to write to the log files that a script has
completed successfully.

Rotating Log Files
Logging is good, but, if your system writes too many log files, it all can become rather prob-
lematic. Log files grow quite large and can rapidly fill your server’s hard drive. As a solution to
this, you can configure the logrotate service. This runs as a daily cron job, which means that it
is started automatically and checks its configuration files to see if any rotation has to occur. In

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 69

9233ch03.qxd 10/25/07 1:35 PM Page 69

these configuration files, you can configure when a new log file should be opened and, if so,
what exactly should happen to the old log file: should it be compressed or just deleted? And, if
it is compressed, how many versions of the old file should be kept?

You can use logrotate with two different kinds of configuration files. The main configura-
tion file is /etc/logrotate.conf. In this file, generic settings are defined to tune how logrotate
should do its work. Listing 3-9 shows the contents.

Listing 3-9. Contents of the logrotate.conf Configuration File

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

uncomment these to switch compression to bzip2
compresscmd /usr/bin/bzip2
uncompresscmd /usr/bin/bunzip2

former versions had to have the compresscommand set accordingly
#compressext .bz2

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

no packages own wtmp -- we'll rotate them here
#/var/log/wtmp {
monthly
create 0664 root utmp
rotate 1
#}

system-specific logs may be also be configured here.

In this example, some important keywords are used, and Table 3-2 describes them.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS70

9233ch03.qxd 10/25/07 1:35 PM Page 70

Table 3-2. Options for logrotate

Option Description

weekly This option specifies that the log files should be created on a weekly basis.

rotate 4 This option makes sure that four old versions of the file are saved. If the
rotate option is not used, old files are deleted.

create The old file is saved under a new name and a new file is created.

compress Use this option to make sure the old log files are compressed.

compresscmd This option specifies the command that should be used for creating the
compressed log files.

uncompresscmd Use this command to specify what command to use to uncompress
compressed log files.

include This important option makes sure that the content of the directory
/etc/logrotate.d is included. In this directory, files exist that specify how
to handle some individual log files.

As you have seen, the logrotate.conf configuration file includes some very generic code
to specify how log files should be handled. In addition to that, most log files have a specific
logrotate configuration file in /etc/logrotate.d/.

The content of the service-specific configuration files in /etc/logrotate.d is generally
more specific than the content of the generic logrotate.conf. Listing 3-10 shows the configu-
ration script for files that are written by Apache to /var/log/apache2/.

Listing 3-10. Example of the logrotate Configuration for Apache

/var/log/apache2/*.log {
weekly
missingok
rotate 52
compress
delaycompress
notifempty
create 640 root adm
sharedscripts
postrotate

if [-f /var/run/apache2.pid]; then
/etc/init.d/apache2 restart > /dev/null

fi
endscript

}

This example uses some more important options. Table 3-3 provides a description of
these options.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 71

9233ch03.qxd 10/25/07 1:35 PM Page 71

Table 3-3. Options in Service-Specific logrotate Files

Option Description

dateext Uses the date as an extension for old versions of the log files.

maxage Specifies the number of days after which old log files should be removed.

rotate Used to specify the number of times a log file should be rotated before being
removed or mailed to the address specified in the mail directive.

size Log files that exceed the size limit are specified here.

notifempty Do not rotate the log file when it is empty.

missingok If the log file does not exist, go on to the next one without issuing an error
message.

copytruncate Truncate the old log file in place after creating a copy, instead of moving the
old file and creating a new one. This is useful for services that cannot be told
to close their log files.

postrotate Use this option to specify some commands that should be executed after
performing the logrotate on the file.

endscript This option denotes the end of the configuration file.

Like the previous example for the Apache log file, all other log files can have their own
logrotate file. Some more options are available when creating such a logrotate file. Check the
man pages for a complete overview.

Summary
As the administrator of a Linux server, you will be doing certain tasks on a regular basis. In this
chapter you have read about the most important of these tasks: managing software, creating
backups, scheduling services to start automatically, and configuring logging. In Chapter 4,
you’ll learn how to configure a secure environment on Ubuntu Server.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS72

9233ch03.qxd 10/25/07 1:35 PM Page 72

Performing File System
Management Tasks

In Chapter 2, you learned how to perform basic management tasks related to the file system
of your server. For example, you read about file copying and navigating between directories.
In this chapter, you’ll learn about some more elementary file system management tasks. The
concept of a mount will be discussed, and you will find out how to perform mounts automati-
cally by using the /etc/fstab configuration file. You will learn about the purpose of hard and
symbolic links and how you can create them. Last but not least, you will see more about how
the Ext3 file system is organized and how knowledge of that organization may come in handy,
using advanced tools such as dd.

Mounting Disks
On a Linux server such as Ubuntu Server, devices are not always mounted automatically. They
are if you’re using the GUI, but otherwise you must know how to mount a device manually.
Before you can access a device, you have to mount it, and in this section you’ll learn every-
thing you need to work with this command.

Using the mount Command
To mount devices manually, you use the mount command. The structure of this command is
easy to understand: mount /what /where. For the “what” part, you specify a device name, and,
for the “where” part, you provide a directory. In principle, any directory can be used, but it
doesn’t make sense to mount a device (for example on /usr) because doing so will temporarily
make all other files in that directory unavailable.

Therefore, on Ubuntu Server, two directories are created as default mount points. The
first of these directories is the directory /mnt. This is typically the directory that you would use
for a mount that happens only occasionally, such as if you want to test whether some device is
really mountable. The second of these directories is /media, where you would mount devices
that are connected on a more regular basis. You would mount a CD-ROM or DVD in that direc-
tory with the command mount /dev/cdrom /media/cdrom. To make life easier for some of the
veterans who aren’t used to a /media in which a CD-ROM is mounted, a third directory is avail-
able, /cdrom, which is really just a symbolic link to /media/cdrom.

73

C H A P T E R 4

9233ch04.qxd 10/31/07 3:31 PM Page 73

The mount command lets you mount devices like CD-ROMs or DVDs, but network shares
can also be mounted with this command. You just have to be more specific. If, for example,
you want to mount a share named myshare that is offered by a Windows computer named lor,
you would use the command mount -t cifs -o username=yourname //lor/myshare /mnt.

You’ll notice in this command that some extra information is specified. First, the file sys-
tem to be used is mentioned. The mount command is perfectly capable of determining the file
system for local devices by looking at the superblock that exists in the beginning of every file
system. But, if you’re using a network device, you really need to specify the file system. This is
because the mount command needs to know what type of file system it is before being able to
access it.

In the example of the share on a Windows machine, because you want to mount on a
Windows file system, the cifs file system type is used. Next, the name of the user who per-
forms the mount must be specified. This must be the name of a valid user account on the
other system. Then the name of the share is given. In the prior example, a computer name
(lor) is used, but, if your system has problems working with computer names, an IP address
can be used just as well. The computer name is followed by the name of the share. Finally,
the name of the directory where the mount has to be created is given. In this example, I’ve
mounted it on /mnt, because this is a mount that you would perform only occasionally. If it
were a mount you used on a more regular basis, you would create a subdirectory under /media
(/media/lor would make sense here) and create the mount in that subdirectory.

In Table 4-1, you can see a list of some of the most popular devices that you typically want
to mount on a regular basis.

Table 4-1. Mounting Popular Devices

Device Address As Remarks

Floppy disk /dev/fd0 Because modern servers rarely have more than one
floppy device drive, the floppy drive (if present) will
be fd0. If more than one drive is available, use fd1,
and so on.

USB drives /dev/sdX USB drives (including USB keys) appear on the SCSI
bus. Typically, you’ll see them as “the next” SCSI disk.
So, if you already have an sda, the USB device will
appear as sdb.

Optical drives /dev/sr0, /dev/hdX If the optical drive is installed on the IDE interface, it
is typically /dev/hda or /dev/hdc, depending on other
IDE devices already present. On modern servers, you’ll
find the optical drive more often as /dev/sr0.

Hard drives /dev/hdX, /dev/sdX Depending on the bus the hard drive is installed on,
you will see it as /dev/hdX (IDE) or /dev/sdX (SCSI and
SATA). X is replaced by “a” for the first drive, “b” for the
second drive, and so on. Notice that normally you
don’t mount a complete hard drive, but a file system
on a partition on the hard drive. The partition on the
drive is referred to by a number, /dev/sda1 for the first
partition on an SCSI hard drive, and so on.

Tape drives /dev/st0 Typically, a tape drive is installed at the SCSI bus and
can be mounted as /dev/st0.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS74

9233ch04.qxd 10/31/07 3:31 PM Page 74

Device Address As Remarks

Windows Shares //server/share Use // followed by the server name, followed by the
share. Additional options are required, such as -t
cifs to indicate the type of file system to be used and
-o username=yourusername to specify the name of the
user account that you want to use.

NFS Shares server:/share Add -t nfs to indicate that it is an NFS server.

Options for the mount Command
The mount command offers many options, and some of these are rather advanced. For exam-
ple, to perform the mount using the backup of the superblock that normally sits on block
8193, you can use the command mount -o sb=8193 /dev/somefilesystem /somedirectory.

■Note The superblock is where all administrative data of a file system is kept. On an Ext2/Ext3 file sys-
tem, a superblock is stored at the beginning of the file system, but some backup superblocks are created
automatically as well. You’ll learn more about this later in the chapter.

Although these are options you would use only in an emergency, some of the more
advanced options are really useful. For example, when troubleshooting your server, you may
find that the root file system is automatically booted read-only. When the system is mounted
read-only, you cannot change anything, so, after successfully starting in read-only mode, you
would want to mount read/write as soon as possible. To do that, use the command mount -o
remount,rw / to make your root file system readable/writeable without disconnecting the
device first. In fact, the -o remount option allows you to change any parameter of a mounted
file system without unmounting it first. It’s very useful to change a parameter without losing
your connection to the file system.

One of the most important options for mount is the -t option, which specifies the file system
type you want to use. Your server normally would detect what file system to use by itself, but
sometimes you need to help it because this file system self-check isn’t working properly. Table 4-2
lists some file systems that you may encounter on your server (or other Linux systems).

Table 4-2. Linux File System Types

Type Description

Minix This is the mother of all Linux file systems. It was used in the earliest Linux version.
Because it has some serious limitations, like the inability to work with partitions
greater than 32 MB, it isn’t used much anymore. Occasionally, it can still be seen
on very small media, like boot diskettes.

Ext2 This has been the default Linux file system for a very long time, and it was first
developed in the early 1990s. The Ext2 file system is a completely POSIX-compliant
file system, which means it supports all the properties of a typical UNIX environ-
ment. However, it has one serious drawback: it doesn’t support journaling and
therefore is being replaced by journaling file systems like Ext3 and ReiserFS.

Continued

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 75

9233ch04.qxd 10/31/07 3:31 PM Page 75

Table 4-2. Continued

Type Description

Ext3 Basically, Ext3 is Ext2 with a journal added to it. The major advantage of Ext3 is
that it is completely backward-compatible with Ext2. Its major disadvantage is that
it is based on Ext2, an elderly file system that was never designed for a world in
which partitions of several hundreds of gigabytes are used. It is, however, the most
stable file system we have today and therefore is used as the default file system on
Ubuntu Server.

ReiserFS ReiserFS is another journaling file system. It was developed by Hans Reiser as a
completely new file system in the late 1990s. ReiserFS was used as the default file
system on SUSE Linux, but even SUSE has changed to Ext3 as its default because
there just isn’t enough community support for ReiserFS.

Ext4 Ext4 is the successor to Ext3, and it fixes some of the most important shortcomings
of Ext3. For example, Ext4 will use a strong indexing system that helps you work
with lots of files in one single directory. At the time of writing, Ext4 is still experi-
mental, so I will not discuss it in this book.

XFS The XFS file system was created as an open-source file system by supercomputer
manufacturer SGI. It is a bit slow for generic purposes, but it is excellent if you
have to work with very large files.

msdos If, for example, you need to read a floppy disk with files on it that were created on
a computer using MS-DOS, you can mount it with the msdos file system type. This
is, however, something of a legacy file system that has been replaced with vfat.

vfat The vfat file system is used for all Windows and DOS file systems that use a FAT file
system. Use it for accessing files from a Windows-formatted diskette or optical media.

ntfs On Windows systems, NTFS is now the default file system. Linux does not have any
stable open-source solution for writing to NTFS. However, it is possible to read
from an NTFS file system. To do this, mount the medium with the ntfs file system
type. Some people even trust it to write files as well, but there have been problems
with that, so I wouldn’t recommend it.

iso9660 This is the file system that is used to mount CD-ROMs. Normally, you don’t need
to specify that you want to use this file system as it will be detected automatically
when you insert a CD-ROM.

cifs When working on a network, the cifs file system is very important. This file system
allows you to make a connection over the network to a share that is offered by a
Windows server, as in the previous example. In the past, the smbfs file system type
was used to do the same, but, because cifs offers a better solution, it has replaced
smbfs on modern Linux distributions.

nfs NFS (Network File System) is used to make connections between two UNIX
computers.

Apart from -t, the mount command has many other options as well, which can be prefixed
by using the -o option. Most of these options are file-system dependent, so no generic list of
these options is provided here.

■Tip More than just partitions and external media can be mounted. For example, it’s also possible to mount
an ISO file. To do this, use the command mount -t iso9660 -o loop nameofyouriso.iso /mnt. This will
mount the ISO file on the directory /mnt, which allows you to work on it like you work on real optical media.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS76

9233ch04.qxd 10/31/07 3:31 PM Page 76

Getting an Overview of Mounted Devices
Every device that is mounted is recorded in the configuration file /etc/mtab. You can browse
the content of this file with a utility like cat or less. You can also use the mount command to
get an overview of file systems that are currently mounted. If this command is used without
any other parameters, it reads the contents of /etc/mtab and displays a list of all mounted file
systems that it can find, as seen in Listing 4-1.

Listing 4-1. The mount Command Gives an Overview of All Devices Currently Mounted.

sander@ubuntu:~$ mount
/dev/mapper/ubuntu-root on / type ext3 (rw,errors=remount-ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
/sys on /sys type sysfs (rw,noexec,nosuid,nodev)
varrun on /var/run type tmpfs (rw,noexec,nosuid,nodev,mode=0755)
varlock on /var/lock type tmpfs (rw,noexec,nosuid,nodev,mode=1777)
procbususb on /proc/bus/usb type usbfs (rw)
udev on /dev type tmpfs (rw,mode=0755)
devshm on /dev/shm type tmpfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda1 on /boot type ext3 (rw)

Unmounting Devices
On a Linux system, a device not only has to be mounted, but, when you want to disconnect
the device from your computer, you have to unmount it first. Unmounting devices ensures
that all of the data that is still in cache and has not yet been written to the device is written to
the file system before it is disconnected. You’ll use the umount command to do this. The com-
mand can take two arguments: either the name of the device, or the name of the directory
where the device is mounted. So umount /dev/cdrom and umount /media/cdrom will both work.

When using the umount command, you may get the message “Device is busy” and the
dismount will fail. This is likely because a file on the device is open, and the reason you’re not
allowed to disconnect the device is probably obvious: disconnecting a mounted device may
lead to data loss. So first make sure that the device has no open files. The solution is some-
times simple: if you want to dismount a CD-ROM, but you are currently in the directory
/media/cdrom, it is not possible to disconnect the device. Browse to another directory and try
again. Sometimes, however, the situation can be more complex, and you’ll need to first find
out which processes are currently using the device.

To do this, you can use the fuser command. This command displays the PIDs of processes
using specified files or file systems. For example, fuser -m /media/cdrom displays a list of all
processes that currently have open files in /var. The fuser command also allows you to kill
these open files automatically. For open files on /media/cdrom, use fuser -km /media/cdrom.
Be careful when using the option: if you are root, it may blindly kill important processes and
make your server unreadable.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 77

9233ch04.qxd 10/31/07 3:31 PM Page 77

As an alternative to the fuser command, you can use lsof as well. This also provides a list
of all processes that currently are using files on a given file system, but it provides more infor-
mation about these processes. Whereas fuser just gives the PID of a process, lsof also gives
information like the name of the process and the user who owns the process.

After using fuser with the -k switch to kill active processes, you should always make sure
that the process is really terminated by using fuser -m /var again, as this will show you if
there are still processes with open files.

Another way of forcing the umount command to do its work is to use the -f option. You can
force an umount with umount -f /somemount. This option is especially intended for use on an
NFS network mount that has become unreachable, and does not work on other file systems.
So you will not have much success if you try it on a local file system. Another nice option,
especially if you don’t like to hurry, is the -l option, which performs a “lazy umount,” by
detaching the file system from the file system hierarchy and cleaning up all references to the
file system as soon as it is no longer busy. Using this option lets you do an umount right away,
even if the file system is busy. But it may take some time to complete.

■Tip The eject command is a very easy way to dismount and eject optical media. This command will
open the CD or DVD drive and eject the optical media that is currently in the drive. All you have to do is
remove it. And then you can use eject -t to close the optical drive drawer.

Automating Mounts with /etc/fstab
When starting your server, some mounts need to be issued automatically. For this purpose,
Ubuntu Server uses the /etc/fstab file to specify how and where these file systems must be
mounted. This file contains a list of all mounts that have to occur on a regular basis. In
/etc/fstab, you can state per mount if it has to happen automatically when your system
starts. Listing 4-2 shows the contents of the /etc/fstab file on a test server that uses LVM.

In the listing, you can see that it is not only real file systems that are specified in /etc/fstab.
The /proc file system is defined here as well. This file system offers an interface to the kernel
from the file system. You can read more about this in Chapter 6.

■Note The /etc/fstab file is used at system boot, but you can also use it from the command line: enter
the mount -a command to mount all file systems in /etc/fstab that are currently not mounted and have
the option set to mount them automatically. Also, if a device is defined in /etc/fstab with its most common
mount options, you don’t need to specify all mount options on the command line. For example, if the
/dev/cdrom device is in /etc/fstab, you can mount it by using a shortened mount /dev/cdrom
command instead of the complete mount /dev/cdrom /media/cdrom command.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS78

9233ch04.qxd 10/31/07 3:31 PM Page 78

Listing 4-2. The /etc/fstab File Makes Sure That File Systems Are Mounted During System Boot.

sander@ubuntu:~$ cat /etc/fstab
/etc/fstab: static file system information.
#
<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/mapper/ubuntu-root / ext3 defaults,errors=remount-ro 0 1
/dev/sda1
UUID=62ec320f-491f-44cb-a395-1c0ee5c4afb2 /boot ext3 defaults 0 2
/dev/mapper/ubuntu-swap_1 none swap sw 0 0
/dev/hda /media/cdrom0 udf,iso9660 user,noauto 0 0
/dev/fd0 /media/floppy0 auto rw,user,noauto 0 0

In fstab, each file system is described on a separate line, and the fields in these lines are
separated by tabs or spaces. The following fields are always present:

• fs_spec: This first field describes the device or the remote file system to be mounted.
Typically, you will see names like /dev/sda1 or server:/mount on this line. As you can
see in the example, some /dev/mapper devicenames are used. These refer to the LVM
logical volumes that have been created on this system (you’ll find more information on
logical volumes later in this chapter). You can also see that the device /dev/sda1, which is
mounted on the directory /boot, uses its Universal Unique ID (UUID). Every disk device
has a UUID, and the advantage of using it instead of a device name is that the UUID
always remains the same, whereas the device name itself may change, especially in a SAN
environment. UUIDs are generated automatically. In the directory /dev/disk/by-uuid,
you can see the names of all existing UUIDs. If you use the ls -l command from this
directory (see Listing 4-3), you can see to what device a certain UUID relates.

Listing 4-3. In the Directory /dev/disk/by-uuid, You Can See What Device a UUID Relates to.

sander@ubuntu:/dev/disk/by-uuid$ ls -l
total 0
lrwxrwxrwx 1 root root 26 2007-07-01 23:23 2ec482ed-2046-4e99-9a4d
-583db1f31ef4 -> ../../mapper/ubuntu-swap_1
lrwxrwxrwx 1 root root 10 2007-07-01 23:23 62ec320f-491f-44cb-a395
-1c0ee5c4afb2 -> ../../sda1
lrwxrwxrwx 1 root root 24 2007-07-01 23:23 901533ec-95d5-45d7-80f2
-9f6948e227d2 -> ../../mapper/ubuntu-root

■Tip On most file systems, the device name can be replaced with a label, like “ROOT”. On an Ext2 or Ext3
file system, these labels can be created with the tune2fs -L command, or with xfs_admin on an XFS sys-
tem. Using labels makes the system more robust and avoids the situation in which adding a SCSI disk adds all
the device names. Labels are static and are not changed automatically when a disk is added. Although labels
are more obvious than the UUIDs generated by the system, you should consider working with UUIDs anyway
because a UUID is in the device itself, and a label is in the file system. Therefore, a UUID is more direct.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 79

9233ch04.qxd 10/31/07 3:31 PM Page 79

• fs_file: The second field is used to describe the mount point for the file system. This is
normally a directory where the file system must be mounted. Some file systems (such
as the swap file system) don’t work with a specific directory as their mount point. In the
case of swap partitions, just swap is used as the mount point instead.

• fs_vfstype: The third field is used to specify the file system type you can use. As seen
above, many file systems are available for use on Linux. No specific kernel configura-
tion is needed to use them, as most file systems can be activated as a kernel module
that is loaded automatically when needed. Instead of the name of a file system, you can
also use ignore in this field. This is useful to show a disk partition that is currently not in
use. To determine the file system type automatically, use the option auto. This is what
you want to use on removable media like CDs and diskettes. Don’t use it however on
fixed media like partitions and logical volumes because it may lead to a failure in
mounting the file system when booting your server.

• fs_mntops: The fourth field is used to specify the options that should be used when
mounting the file system. Many options are available and of these, many are file-system
specific. For most file systems, the option default is used, which makes sure the file
system is mounted automatically when the server boots and normal users are not
allowed to disconnect the mount. Also, the options rw, suid, dev, exec, and async are
used. The following list is some of the most used options:

• async: Does not write to the file system synchronously but through the write cache
mechanism. This ensures that file writes are performed in the most efficient way,
but you risk losing data if contact with the file system is suddenly lost.

• dev: Treats block and character devices on the file system as devices and not as reg-
ular files. For security reasons, it’s a good idea to avoid using this option on devices
that can be mounted by ordinary users.

• exec: Permits execution of binary files.

• hotplug: Do not report errors for this device if it does not currently exist. This
makes sense for hot-pluggable devices like USB media.

• noatime: Do not update the access times on this file system every time a file is
opened. This option makes your file system somewhat faster if many reads are
performed on it.

• noauto: The file system will not be mounted automatically when the system
boots or if a user uses the mount -a command to mount everything in /etc/fstab
automatically.

• mode: Used to set a permission mode (see Chapter 5) for new files that are created
on the file system.

• remount: Remounts a file system that is already mounted. It only makes sense to
use this option from the command line.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS80

9233ch04.qxd 10/31/07 3:31 PM Page 80

• user: Allows a user to mount the file system. This option is normally used only for
removable devices like diskettes and CD-ROMs.

• sync: Makes sure the content of the file system is synchronized with the medium
before the device is dismounted.

• fs_freq: This field is for use of the dump command, which is a primitive way of making
backups of your file system. The field determines which file systems need to be dumped
when the dump command is called. If the value of this field is set to 0, it will not be
dumped; if set to 1, it will be dumped when dump is invoked. Make sure that the value is
set to 0 on all file systems that contain important data that should always be included
when making backups.

• fs_passno: This last field in fstab determines how a file system needs to be checked
with the fsck command. At boot time, the boot loader will always check if a file system
has to be checked with fsck or not. If this is the case, the root file system must always
be checked first and therefore has the value 1. Other file systems should have the num-
ber 2. If the file systems have the same fsck number, they will be checked sequentially.
If the files are on different drives, they can be checked in parallel. If the value is set to 0,
no automatic check will occur.

Checking File System Integrity
When a system crashes unexpectedly, any file systems that are open can be damaged. If this
happens, the consistency of these file systems needs to be checked, and you’d do this with the
fsck command. You can start this command with the name of the device you want to check as
its argument: for example, use fsck /dev/hda1 to check files on /dev/hda1. If you run the com-
mand without any options, fsck will check the file systems in /etc/fstab serially, according to
the setting in the fs_passno field in /etc/fstab. Normally, this will always happen when boot-
ing your system.

Nowadays, a system administrator does not have to regularly use fsck because most
modern file systems are journaling file systems. If a journaling file system gets damaged, the
journal is checked and all incomplete transactions can easily be rolled back. To offer some
protection regardless, an Ext2 or Ext3 file system is checked automatically every once in a
while.

■Tip On a non-journaling file system, the fsck command can take a very long time to complete. In
that case, the -C option can be used when performing a manual check. This option displays a progress
bar… which doesn’t, of course, make it go any faster, but it at least lets you know how long you still
have to wait for the process to complete. Currently, the -C option is supported only on Ext2 and Ext3
file systems.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 81

9233ch04.qxd 10/31/07 3:31 PM Page 81

Working with Links
A very useful option—although one that is often misunderstood—is the link. A link can be
compared to a shortcut: it’s basically a pointer to another file. On Linux (as on any UNIX sys-
tem), two different kinds of links are supported: the hard link and the symbolic link.

Why Use Links?
Basically, a link makes it easier to find files you need. Links can be created for the operating
system and program files that are used on that operating system, and they can be used to
make life easier for users as well. Imagine that some users belong to the group account and
you want the group members to create files that are readable by all other group members in
the directory /home/groups/account. To do this, you can ask the users to change to the proper
directory every time they want to save a file. Or you can create a link for each user in his or her
home directory. Such a link can have the name account and can be placed in the home direc-
tory of all users who need to save work in the shared directory for the group account, and it’s
easy to see how this link makes it a lot easier for the users to save their files to the proper
location.

Another example of why links can be useful comes from the world of FHS, the Filesystem
Hierarchy Standard. This standard prescribes in which directory a Linux system should store
files of a particular kind. In the old days, the X Windowing System had all its binaries installed
in the /usr/X11 directory. Later, the name of the directory where the X Windowing System
stored its configuration files was changed to /usr/X11R6. Now imagine what would happen if
an application referred to the /usr/X11 directory after this change. It would naturally fail
because that directory no longer exists. A link is the solution here as well. If the administrator
just creates a link with the name /usr/X11 that points to the /usr/X11R6 directory, all applica-
tions that still refer to /usr/X11 can still be used.

On a Linux system, links are everywhere. After Ubuntu Server is installed, several links
already exist, and, as an administrator, it’s easy for you to add new ones. To do so, you should
understand the difference between a symbolic link and a hard link, which is explained in the
next two sections: “Working with Symbolic Links” and “Working with Hard Links.”

Working with Symbolic Links
A link can refer to two different things. A symbolic link is a link that refers to the name of a file.
Its most important advantage is that it can be used to refer to a file that is anywhere, even on
a server on the other side of the world. The symbolic link will still work. However, the biggest
disadvantage is that the symbolic link is naturally dependent on the original file. If the original
file is removed, the symbolic link will no longer work.

To create a symbolic link, use the ln command with the option -s. When using the ln
command, make sure that you first refer to the name of the original file and then to the name
of the link you want to create. If, for example, you want to create a symbolic link with the
name computers in your home directory which refers to the file /etc/hosts, use the command
ln -s /etc/hosts ~/computers. As a result, a shortcut with the name ~/computers will be cre-
ated in your home directory. This shortcut refers to /etc/hosts. Therefore, any time you open
the ~/computers file, you would really be working in the /etc/hosts file.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS82

9233ch04.qxd 10/31/07 3:31 PM Page 82

Understanding Inodes
To understand the difference between a hard link and a symbolic link, you should understand
the role of inodes on a Linux file system. Every Linux file or directory (from a technical point of
view, there’s no real difference between them) has an inode, and this inode contains all of the
file’s metadata. (That is, all the administrative data needed to read a file is stored in its inode.)
For example, the inode contains a list of all the blocks in which a file is stored, the owner infor-
mation, permissions, and all other attributes that are set for the file. In a sense, you could say
that a file really is the inode, and names are attached to these inodes to make it easier for
humans to work with them.

If you want to have a look at inodes, on an Ext2 or Ext3 file system you can use the (poten-
tially dangerous!) command debugfs. This opens a low-level file system debugger from which
you can issue advanced repair commands. You can also just check the properties of the file
system and files that are used in it (which is not dangerous at all). The following procedure
shows how to display the inode for a given file using this file system debugger.

1. Use the command ls -il to find the inode number of the file /etc/hosts. As you can
see in Listing 4-4, the inode number is the first item mentioned in the output of this
command.

Listing 4-4. The Command ls -il Shows the Inode Number of a File.

sander@ubuntu:/$ ls -il /etc/hosts
15024138 -rw-r--r-- 1 root root 253 2007-06-05 00:20 /etc/hosts

2. Using root permissions, open the file system debugger. While starting it, use as an argu-
ment the name of the Ext2 or Ext3 file system on which your file resides. For example,
our example file /etc/hosts is on a logical volume with the name /dev/ubuntu/root, so
the command would be sudo debugfs /dev/ubuntu/root. This opens the debugfs inter-
active prompt.

3. Now use the debugfs command stat to display the contents of the inode that you want
to examine. For example, in this case you would type stat <15024138>. The result of
this command is similar to what you see in Listing 4-5.

Listing 4-5. Showing the Contents of an Inode

Inode: 13 Type: regular Mode: 0644 Flags: 0x0 Generation: 5
84821287
User: 0 Group: 0 Size: 1763308
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 3460
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x4664e51e -- Tue Jun 5 00:22:54 2007
atime: 0x4664e51e -- Tue Jun 5 00:22:54 2007
mtime: 0x4621e007 -- Sun Apr 15 04:19:19 2007
BLOCKS:

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 83

9233ch04.qxd 10/31/07 3:31 PM Page 83

(0-11):5716-5727, (IND):5728, (12-267):5729-5984, (DIND):5985, (IND):
5986, (268-523):5987-6242, (IND):6243, (524-779):6244-6499, (IND):650
0, (780-1035):6501-6756, (IND):6757, (1036-1291):6758-7013, (IND):701
4, (1292-1547):7015-7270, (IND):7271, (1548-1721):7272-7445
TOTAL: 1730

(END)

4. Use the quit command to close the debugfs interface.

Understanding the Differences Between Hard and Symbolic Links
When comparing the symbolic link and the original file, you will notice a clear difference
between them (see Listing 4-6). First, the symbolic link and the original file have different
inodes: the original file is just a name that is connected directly to the inode, and the symbolic
link refers to the name. The latter can be seen from the ls -il (-i displays the inode number)
output: after the name of the symbolic link, an arrow is used to indicate what file you are really
working on. Also you can see that the size of the symbolic link is significantly different from
the size of the real file. The size of the symbolic link is the number of bytes in the name of the
file it refers to, because no other information is available in the symbolic link. Also, you can
see that the permissions on the symbolic link are completely open. This is because the per-
missions are not managed here, but on the original file instead. Finally, you can see that the
file type of the symbolic link is set to l, which indicates that it is a symbolic link.

Listing 4-6. Showing the Differences Between Symbolic and Hard Links

root@ubuntu:~# ln -s /etc/hosts symhosts
root@ubuntu:~# ln /etc/hosts hardhosts
root@ubuntu:~# ls -il /etc/hosts hardhosts symhosts
15024138 -rw-r--r-- 2 root root 253 2007-06-05 00:20 /etc/hosts
15024138 -rw-r--r-- 2 root root 253 2007-06-05 00:20 hardhosts
13500422 lrwxrwxrwx 1 root root 10 2007-07-02 05:45 symhosts -> /etc/hosts

You may ask what happens to the symbolic link when the original file is removed. Well,
that isn’t hard to predict! The symbolic link fails. Ubuntu Server will show this when displaying
file properties with the ls command; you’ll get a “File not found” error message when you try
to open it.

Working with Hard Links
Every file on a Linux file system has an inode. As explained earlier, all of a file’s administrative
data is kept in its inode. Your computer actually works entirely with inodes, and the file names
are only a convenience for people who are not too good at remembering numbers. Every
name that is connected to an inode can be considered a hard link. So, when you create a hard
link for a file, all you really do is add a new name to an inode. To do this, use the ln command
without any options; ln /etc/hosts ~/computers will create such a hard link.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS84

9233ch04.qxd 10/31/07 3:31 PM Page 84

The interesting thing about hard links is that there is no difference between the original
file and the link: they are just two names connected to the same inode. The disadvantage of
using them is that hard links must exist on the same device, which is rather limiting. But, if
possible, you should always create a hard link instead of a symbolic link because they are
faster.

Figure 4-1. Relation Between Inodes, Hard Links, and Symbolic Links

Configuring Storage
At the beginning of this chapter, you learned how to perform some of the most common file
system management tasks. However, there’s more to managing storage on your server. In
Chapter 1, you saw how to install your server using LVM and how to use different file systems
for your server. I will now go into more depth with regard to these subjects. First, differences
between file system types will be discussed in depth. Then you will learn about the creation of
file systems, which involves creating and formatting partitions and logical volumes. Next, you
can read how to set up a software RAID solution.

Comparing File Systems
An important goal of this chapter is to learn about setting up the best file storage for your
server. Because everything on Linux is available as a file, setting up file storage space is one of
the most important tasks on a Linux server. This goes for programs and regular text files, but
also for more advanced things such as devices. Your server is probably going to host lots of dif-
ferent applications that all create their own files: some will create a few huge files, and others
will require the fastest possible access to no matter what files, and others may be something
like a mail server, creating thousands and thousands of small files. Ubuntu Server provides
you the flexibility to choose the best file system for all these different needs because many file
systems are supported right out of the box. Before diving in to the details that are needed to

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 85

9233ch04.qxd 10/31/07 3:31 PM Page 85

create the partitions hosting the different file systems, let’s first compare the most important
file systems that you can use. The next subsections will cover the following file systems:

• Ext2

• Ext3

• ReiserFS

• FAT

• XFS

Ext2
Version 2 of the Extended File System has been the de facto standard for Linux for many years.
It was the first stable file system that had all elements of a POSIX file system. The only reason
why it doesn’t see much use anymore is because it doesn’t offer journaling.

■Note POSIX stands for Portable Operating System Interface, and its aim is to provide a standard level of
UNIX compatibility. If any element running on Linux or any other UNIX version is POSIX compliant, it will run
without problems on any flavor of UNIX. The POSIX standard is not just limited to Linux and UNIX operating
systems; most versions of Windows (up to and including Vista) are POSIX compliant.

For modern file systems, journaling is an important option. In a journal, all transactions
on open files can be tracked. The advantage is that, if anything goes wrong while working with
a system, all you have to do to repair damage to the file system is to do a roll-back based upon
the information in the journal. Ext2 doesn’t have a journal, and therefore it isn’t a good choice
for very large volumes: larger volumes will always take longer to check if no journal is present.
If, however, a small (less than 500 MB) volume is created, Ext2 is still a good choice. The first
reason is mainly that it doesn’t make sense to create a journal on a small file system because
the journal itself will occupy space. An average journal can be about 40 MB. Other good rea-
sons to use Ext2 include the facts that it is a very mature file system, everyone knows how it
works, it works on many distributions, and many utilities are available for management of an
Ext2 file system. Some advanced utilities are available for tuning and troubleshooting as well.
A short overview of some of them is provided next. You should notice that these commands
are all available for Ext3 (Ext2’s successor) as well.

• e2fsck: This utility is run automatically when an administrator issues the fsck com-
mand. It has some options that are specific for an Ext2 file system, one of which is the
-b option that allows you to repair the file system in case the first sectors are damaged.
In an Ext2 file system, the critical information about the file system is written to the
superblock. A backup superblock is always present, and its exact location depends on

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS86

9233ch04.qxd 10/31/07 3:31 PM Page 86

the blocks size that is used. If 1 KB blocks are used, the backup superblock is in block
8193; if 2 KB blocks are used, it is in 16384; and, if 4 KB blocks are used, you can find it
in 32768. By running the e2fsck -s 8193 command for example, you may be able to
repair a file system that cannot be mounted anymore by using its backup superblock.
Another very interesting use is e2fsck -D, which causes e2fsck to optimize directories.
It can do this by trying to index them, compress them, or by using other optimization
techniques.

• tune2fs: The Ext2 file system has some tunable parameters. For example, there is the
maximum mount count option (which can be set using the -C option). By using this
option, you can force e2fsck to run automatically every once in a while by forcing an
integrity check. This option may sound good, but, on a server where a file system is
sometimes rarely remounted, it can make more sense to use the -i option to set an
interval defined as a time period. For example, tune2fs -i 2m will force an e2fsck on
your Ext2 file system every two months. The options to check the consistency of your
Ext2 file system automatically are not the only options you can use with tune2fs. For
example, the option -l will list all information from the file system’s superblock.
Another interesting option is -L label, which allows you to set a volume label. This
can be very useful if device names on your system do change on a regular basis: by
using volume names, you can use the name of the volume when mounting the file sys-
tem in /etc/fstab instead of the name of the device where the file system was created.
The last interesting option is -m, which you can use to set a percentage of reserved
blocks for your Ext2 file system. By default, the last 5 percent of available disk space is
always reserved for the user root to prevent users from filling up the file system by
accident. Use the e2fsck -m 2 command to decrease the amount of reserved disk
space.

• dumpe2fs: Every file system maintains a lot of administrative information, and Ext2
stores this in the file system superblock. Also, in Ext2, the block groups that are used as
groups of data files can be administered as one entity. If you need to see the informa-
tion about this file system administration, use dumpe2fs followed by the name you
want to dump the administrative information for. Listing 4-7 shows the result of this
command.

■Note When using a tool like dumpe2fs, you will see information about available inodes. Every file on
every POSIX-compliant file system needs an inode to store its administrative information. On Ext2 and Ext3,
inodes are created only when you are creating the file system. Normally one inode is created for about every
four data blocks. If, however, you create many very small files, you can run into a situation in which free disk
blocks are still available but there are no more available inodes. This will make it impossible to create new
files. As an administrator, you can use the dumpe2fs command to get an overview of available inodes on
your Ext2 file system.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 87

9233ch04.qxd 10/31/07 3:31 PM Page 87

Listing 4-7. The dumpe2fs Command Displays Properties of the Ext2 File System.

root@ubuntu:~# dumpe2fs /dev/sad1
dumpe2fs 1.40-WIP (14-Nov-2006)
dumpe2fs: No such file or directory while trying to open /dev/sad1
Couldn't find valid filesystem superblock.
root@ubuntu:~# dumpe2fs /dev/sda1
dumpe2fs 1.40-WIP (14-Nov-2006)
Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID: 62ec320f-491f-44cb-a395-1c0ee5c4afb2
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal resize_inode dir_index filetype
needs_recovery sparse_super
Filesystem flags: signed directory hash
Default mount options: (none)
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 62248
Block count: 248976
Reserved block count: 12448
Free blocks: 224527
Free inodes: 62218
First block: 1
Block size: 1024
Fragment size: 1024
Reserved GDT blocks: 256
Blocks per group: 8192
Fragments per group: 8192
Inodes per group: 2008
Inode blocks per group: 251
Filesystem created: Mon Jun 4 22:56:35 2007
Last mount time: Mon Jul 2 03:22:21 2007
Last write time: Mon Jul 2 03:22:21 2007
Mount count: 3
Maximum mount count: 26
Last checked: Mon Jun 4 22:56:35 2007
Check interval: 15552000 (6 months)
Next check after: Sat Dec 1 21:56:35 2007
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128
Journal inode: 8
Default directory hash: tea

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS88

9233ch04.qxd 10/31/07 3:31 PM Page 88

Directory Hash Seed: 0f4e7f5e-c83c-491b-85ca-a83d7c06f1b5
Journal backup: inode blocks
Journal size: 4114k

Group 0: (Blocks 1-8192)
Primary superblock at 1, Group descriptors at 2-2
Reserved GDT blocks at 3-258
Block bitmap at 259 (+258), Inode bitmap at 260 (+259)
Inode table at 261-511 (+260)
993 free blocks, 1993 free inodes, 2 directories
Free blocks: 4640-5632
Free inodes: 16-2008

Group 1: (Blocks 8193-16384)
Backup superblock at 8193, Group descriptors at 8194-8194
Reserved GDT blocks at 8195-8450
Block bitmap at 8451 (+258), Inode bitmap at 8452 (+259)
Inode table at 8453-8703 (+260)
7221 free blocks, 2008 free inodes, 0 directories
Free blocks: 9164-16384
Free inodes: 2009-4016

• debugfs: The debugfs utility allows you to open the Ext2 file system debugger, from
which you can perform powerful tasks. These tasks are performed using the special
debugfs commands that can be started from the debugfs interactive shell. One of them
is the lsdel command, which lists files that were recently deleted from your file system.
After finding the inodes of these recently deleted files, you can use the debugfs dump
command (not to be confused with the generic Linux dump command), followed by the
number of the inode. For example, use dump <17468> /somefile to dump everything the
inode refers to in the file /somefile that is created automatically. However, be aware
that this works only if you are acting very fast: when a file is removed on any Linux file
system, the inode and blocks that were used by the file are flagged as available, and, the
next time data is written to the volume, the inode and blocks can be overwritten. You
should also be aware of the primary disadvantage of the debugfs method: it doesn’t
know anything about file or directory names. Therefore, you can see the inode number
of a deleted file but not its name, and that can make recovery rather difficult. Currently,
however, it is the only way to recover deleted files from an Ext2 or Ext3 file system.

To summarize Ext2, it offers some advantages and disadvantages. It is the file system to
use for small volumes. If the size of a volume grows up to several gigabytes, though, it’s best
not to use Ext2 because it can take ages to complete a file system check.

Ext3
The Ext3 file system is just Ext2 with a journal added to it—nothing more, nothing less. There-
fore, Ext3 is completely compatible with Ext2. As compared to other journaling file systems,
however, Ext3 has some important disadvantages, most of which are based on the fact that Ext3
uses tables for storage of information about the files and not a B-tree database, as is the case in

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 89

9233ch04.qxd 10/31/07 3:31 PM Page 89

ReiserFS and XFS file systems. Because these tables have to be created and are accessed in a
linear way, Ext3 is slow when dealing with large volumes or large amounts of data. Here are the
most important disadvantages of using Ext3:

• It takes a relatively long time to create a large Ext3 file system.

• Ext3 isn’t good in handling large numbers of small files in the same directory.

• Ext3 has no option to create new inodes after the file system has been created. This
leaves a possibility in which disk space is still available but cannot be used because no
inodes are available to address that disk space.

And, on the other hand, Ext3 has two important advantages. Most important, it is a stable
file system that has wide community support. Also, it is easy to convert an existing Ext2 file
system to a journaling file system. The following procedure describes how to do this:

1. Make a complete backup of the file system you want to convert.

2. Use the tune2fs program to add a journal to a mounted or an unmounted Ext2 file sys-
tem. If you want to do this on /dev/sdb1, use tune2fs -j /dev/sdb1. After creating the
journal, a file with the name .journal will be created on the mounted file system. This
file indicates that the conversion was successful.

3. Change the entry in /etc/fstab where your file system is mounted. Normally, it would
be set to the Ext2 file system type, so change the type to Ext3.

4. Reboot your server and verify that the file system was mounted successfully.

The journal is the most important item in an Ext3 file system, and this journal can be
configured in different ways. These journaling options are specified when mounting the file
system, so you have to put them in /etc/fstab.

Before discussing the different journaling options, you need to know how data is written to
a hard drive. In each file-write operation, two different kinds of information need to be written:
the data blocks themselves and then the metadata of a file. This includes all administrative
information about the file. You can basically think of the file metadata as the information that
is displayed when using the ls -l command (but some more information is added as well).

When tuning the use of an Ext3 journal, you can specify if both metadata and blocks need
to be written to the journal, or just the metadata. Two options are available to you: activate
them by using mount -t ext3 -o data=xxxx /yourdevice /yourmountpoint, or put the
data=xxxx option in fstab:

• data=journal: In this option, both the data and metadata of the file that is written are
written to the journal. This is the safest option, but it’s also the slowest.

• data=ordered: In this option, only the file’s metadata is journaled. However, before
updating the metadata with information about the changed file, a data write is forced.
This ensures consistency within the file system with minimal performance impact. This
is the default option when creating an Ext3 file system on Ubuntu Server.

• data=writeback: This option ensures that only metadata is written to the journal and
that nothing happens to the data blocks themselves. This is a rather insecure option
with a serious risk of corruption of the file system.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS90

9233ch04.qxd 10/31/07 3:31 PM Page 90

ReiserFS
Hans Reiser developed the ReiserFS file system in the late 1990s as a completely new file sys-
tem, no longer based on file system tables but on a balanced tree database structure. This
database makes locating files very fast as compared to older file systems like Ext2 and Ext3.
And ReiserFS offers other advantages as well, one of which is that it has a better disk utiliza-
tion. This is because it is capable of using disk suballocation, in which it is not necessary to
use a complete block when writing a very small file. More than one small file can be written to
the same disk block, using one leaf node in the B-tree database. Therefore, ReiserFS is more
efficient in writing many small files.

ReiserFS is also more flexible because it allows for dynamic inode allocation: if a file sys-
tem runs out of available inodes, new inodes can be created dynamically. Because small files
are stored with their metadata in the same database record, ReiserFS is fast in handling small
files. Of course, ReiserFS has some minor disadvantages as well: it’s relatively slow in heavy
write environments, and it also gets slow if it is more than 90 percent full.

Unfortunately, ReiserFS has one hugely important disadvantage: the lack of community
support. It was because of this that Novell—traditionally the most important Linux distribu-
tion that uses ReiserFS—decided to drop ReiserFS as the default file system and turned to
Ext3 instead. In the long term, this doesn’t bode well for ReiserFS, nor does the fact that Hans
Reiser is currently in jail, facing some serious charges. Therefore, even if ReiserFS has some
nice technical features, you should not depend on it too much.

Like Ext2 and Ext3, ReiserFS also has some management utilities. Here’s a short descrip-
tion of these tools, including some of the most interesting options:

• reiserfsck: The reiserfsck tool is used to check the consistency of a Reiser file system,
and it has some powerful repair options. One of them is --rebuild-sb, which stands for
rebuild superblock. Use this option when you get the error “read super_block: can’t find
a reiserfs file system.” Another option is the --rebuild-tree option, which hopefully
you won’t see too often. This option is required when reiserfsck wasn’t able to repair
the file system automatically because it found some serious tree inconsistencies. Basi-
cally, the --rebuild-tree option will rebuild the complete B-tree database. Before using
this option, always make a backup of the complete partition where you are running it
and never interrupt the command; doing so will definitely leave you with an inaccessi-
ble file system.

• reiserfstune: The reiserfstune command can be used for several purposes. Basically,
you use it to tune options with regards to the Reiser journal, but you can also use it to set
a UUID and a label that allow you to mount the file system without being dependent on
the name of the device where it resides. This command has some interesting options as
well. One of them is the -j option that allows you to specify the journal device you want
to use. This option makes it possible to separate the Reiser journal from the actual file
system; it’s a very useful option if you want to avoid a situation where a single-point fail-
ure can render your system inaccessible. Another interesting option that can be used
with reiserfstune is the option -l that allows you to specify a label for the file system.
This label can be used when mounting the file system and thus increases your flexibility
when working on the file system.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 91

9233ch04.qxd 10/31/07 3:31 PM Page 91

• resize_reiserfs: As its name suggests, the resize_reiserfs utility is used to resize a
Reiser file system. You should be aware that resizing a file system involves two steps:
you first need to resize the device where the file system is created, and only then can
you resize the file system itself. There’ll be more on resizing devices later in this chapter.
And using resize_reiserfs is rather simple: for example, use resize_reiserfs -s
/dev/sdb2 to resize the Reiser file system on sdb2 so that it fills this device completely.
Alternatively, you can specify the size to resize it with in kilobytes, (-K), megabytes (-M),
or gigabytes (-G). If you want to shrink a file system by 500 MB, use resize_reiserfs -M
500 /dev/sdb2.

• debugreiserfs: The debugreiserfs command allows you to dive into the ReiserFS
administrative information to see if all is set according to your expectations. If you run
it without options, you’ll just get an overview of the superblock. Several options are
available to tune its workings. For example, debugreiserfs -j /dev/sdb2 prints the
contents of the journal. It’s also possible to dive into specific blocks when using the -l
option, which takes as its argument the block you want to see the contents of. Using
this option can be useful if you want to do a block-by-block reconstruction of a file that
was destroyed by accident.

Summarized, ReiserFS is a robust file system that offers many advantages. Because of its
current lack of support and the unpredictable future of the company, it’s not a very good idea
to depend too heavily on it.

XFS
For very large environments, the XFS file system is probably the best choice. It was, after all,
developed by SGI for use on supercomputers. Like ReiserFS, it is a full 64-bit file system, and
its major benefit is that it works great on very large files. One of the key factors of XFS is that
it uses allocation groups, which are like file systems in a file system. The advantage of using
these allocation groups is that the kernel can address more than one group at the same time
and each group has its own administration of inodes and free disk space. Of course, XFS is
capable of creating new inodes dynamically when this is needed. All of this makes the XFS file
system very flexible and robust.

The XFS file system consists of three different sections: data, log, and real-time. User data
and metadata are written in the data section. The log section contains the journaling informa-
tion for XFS, and the real-time section is used to store real-time files. These files are updated
immediately. Each XFS file system is identified by a UUID, which is stored in the header of
each allocation group and helps you distinguish one XFS file system from the other. For this
reason, never use a block-copying program like dd to copy data from one XFS volume to
another XFS volume; use xfsdump and xfsrestore instead.

A unique feature of XFS is its delayed allocation, which makes sure that a pending write
is not written to hard disk immediately, but to RAM first. The decision to write is delayed to
the last minute. The advantage is that, when the file doesn’t need to be written after all, it isn’t
written. In this way, XFS reduces file system fragmentation and simultaneously increases write
performance. Another great feature of XFS is preallocation, which makes sure that space is
reserved before the data blocks are actually written. This feature increases the chances that a
complete file can be written to a series of consecutive blocks and thus avoids fragmentation.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS92

9233ch04.qxd 10/31/07 3:31 PM Page 92

When creating an XFS file system with the mkfs.xfs command, some specific options are
available:

• Block size in bytes: This option allows you to set the block size you want to use. By
default, the block size is set to 4,096 bytes, but you can also set it to 512, 1,024, or 2,048.

• Inode size: Use this option to specify the size of inodes you want to create on the file
system. This option is needed only if you have to do very specific things on your file sys-
tem, like working with files that have lots of extended attributes.

• Percentage of inode space: If so required, you can limit the percentage of the file system
that can be used for storage of inodes. By default, there is no maximum setting.

• Inode aligned: Make sure this option is always set to “yes” so it will ensure that no frag-
mentation occurs in the inode table.

Like all other file systems, XFS also has its own management tools, and, because it’s a
rather complex file system, many utilities are available. Here’s an overview of these utilities
with a short description:

• xfs_admin: Changes the parameters of an XFS file system.

• xfs_logprint: Prints the log (journal) of an XFS file system.

• xfs_db: Serves as the XFS file system debugger.

• xfs_growfs: Expands the XFS file system.

• xfs_repair: Repairs an XFS file system.

• xfs_copy: Copies the content of an XFS file system while preserving all of its attributes.
The main advantage of using xfs_copy instead of normal cp is that it will copy data in
parallel and thus will work much faster than a normal copy command.

• xfs_info: Shows generic administrative information on XFS.

• xfs_rtcp: Copies files by placing them in the real-time section of the XFS file system,
which makes sure that they will be updated immediately.

• xfs_check: Checks the consistency of an XFS file system.

• xfs_quota: Allows you to work with quotas on an XFS file system.

• xfs_io: Debugs the input/output path of an XFS file system.

• xfs_bmap: Prints block mapping for an XFS file system. The command allows you to see
exactly what extents are used by a file.

■Note An extent is a group of blocks. Working with extents speeds up administration and file handling on
file systems that work with large files. Also, because every file is initially written to its own extent, working
with extents prevents fragmentation of your file system.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 93

9233ch04.qxd 10/31/07 3:31 PM Page 93

• xfs_ncheck: Generates pathnames for inode numbers for XFS. Basically, it displays a list
of all inodes on the XFS file system and the path to where the file with the given inode
number is stored.

• xfs_mkfile: Creates an XFS file. This command is used to create files of a fixed size to an
XFS file system. By default, these files are filled with zeroes.

Summarized, XFS is the most feature-rich file system of all. But, because it is developed
for mainframe environments, it may therefore not be the best solution if you’re using i386 or
i64 architectures.

Creating File Systems
You probably have an idea now as to what file system best fits the needs of your application.
The next step is to create these file systems, which involves two steps. First, you need to cre-
ate the device where you want to store the files. This can be a partition, but it can also be an
LVM logical volume. After creating the device, you can use the mkfs command to create the
file system of your choice. I’ll first explain how to create the devices where you want to store
your files.

Creating Traditional Partitions
You can use many utilities to create partitions on a server, but one utility can be considered
the mother of all other utilities: fdisk. In this section, you’ll learn how to use fdisk to create
partitions on your disk.

1. From the command line as root, use the fdisk command followed by the name of the
device where you want to create the partition. If you want to create a partition on
/dev/sdb, use fdisk /dev/sdb to open the partitioning utility.

2. The fdisk utility now opens its prompt. It may complain about the number of cylin-
ders being greater than 1,024, but this dates from when many boot loaders were not
able to handle hard drives with more than 1,024 cylinders, and so you can ignore this
message. A good start is to press the m (menu) key to tell fdisk to show a menu with
all available options (see Listing 4-8).

Listing 4-8. Working with fdisk

root@ubuntu:~# fdisk /dev/sdb

The number of cylinders for this disk is set to 36483.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK)

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS94

9233ch04.qxd 10/31/07 3:31 PM Page 94

Command (m for help): m
Command action

a toggle a bootable flag
b edit bsd disklabel
c toggle the dos compatibility flag
d delete a partition
l list known partition types
m print this menu
n add a new partition
o create a new empty DOS partition table
p print the partition table
q quit without saving changes
s create a new empty Sun disklabel
t change a partition's system id
u change display/entry units
v verify the partition table
w write table to disk and exit
x extra functionality (experts only)

Command (m for help):

3. Press the p key to print the current partition table, which will provide an overview of
the size of your disk in cylinders, the size of a cylinder, and all partitions that exist on
that disk. Then fdisk asks again what you want to do. Press the n key on your keyboard
to create a new partition.

Listing 4-9. When Working with fdisk, Use the p Key Often So That You Can See the Current
Partitioning.

Command (m for help): p

Disk /dev/sdb: 300.0 GB, 300090728448 bytes
255 heads, 63 sectors/track, 36483 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

4. After pressing n to create a new partition, fdisk will ask what kind of partition you want
to create. On a hard disk you can create a maximum of four primary partitions. If you
need more than four, you have to create one extended partition in which logical parti-
tions can be created. In this example, I’ll show you how to create an extended partition,
so press the e key to start the interface that helps you create an extended partition.

5. The utility now asks what partition number you want to use. It will also show the num-
bers that are available.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 95

9233ch04.qxd 10/31/07 3:31 PM Page 95

6. Now you have to enter the first cylinder. By default, fdisk offers you the first cylinder
that is still available. It’s often a good idea to accept this choice, so press Enter.

7. Next, fdisk asks for the last cylinder that you want to use for your partition. Instead
of entering a cylinder number, you can also enter a size in megabytes or gigabytes.
However, because this is an extended partition that serves only as a repository where
logical partitions are created, you can press Enter to accept the default value that will
use all available disk space to create the partition. Listing 4-10 is an overview of what
has happened so far.

Listing 4-10. Creating an Extended Partition with fdisk

Command (m for help): n
Command action

e extended
p primary partition (1-4)

e
Partition number (1-4): 1
First cylinder (1-36483, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-36483, default 36483):
Using default value 36483

Command (m for help):

8. The extended partition is now created. By itself, an extended partition is useless: it’s
just an empty box that you can use to create logical partitions. Use the n key again to
create a logical partition in the extended partition. The partition number of any logical
partition is always 5 or greater, regardless if lower partition numbers are already in use.
You can follow the same guidelines for creating logical partitions as the ones you fol-
lowed for creating the extended partition. When finished, press p to print the partition
table you have created so far.

■Note When creating a partition, Linux fdisk will flag the partition as a Linux partition with ID 83 auto-
matically. If you are planning on doing something else with it, you can press the t key to change the partition
ID of your partition. A list of all available partition types is displayed by using the l key from the fdisk menu.

9. Until now, nothing has really been written to the partition table. If you want to back
out, you can still do that by pressing the q key. If you are sure that you are happy with
what you have done, press w to write the changes to the partition table on disk and exit
the partitioning utility.

10. The partition table has now been updated, but your kernel currently does not know
about it; you can see that by comparing the result of the command fdisk -l /dev/sdb
(which shows the current contents of the partition table) with the file /proc/partitions
(which shows the partitions that the kernel currently sees). To update the kernel with
this new information, as root type partprobe /dev/sdb.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS96

9233ch04.qxd 10/31/07 3:31 PM Page 96

Now that you have created a new partition, the next step is to create a file system on it.
This isn’t too hard if you know what file system you want to create. You just have to create the
file system with the proper utility, and fsck is a perfect wrapper utility to create any type of
file system. Just remember to use the -t option to specify the type of file system you want to
create. Before explaining how to create a file system, let’s first take a look at logical volume
management.

Working with Logical Volumes
There’s one major disadvantage when working with fixed-size partitions. Imagine a system
with multiple partitions, and you are running out of available disk space on one partition but
there’s more than enough disk space available on another partition. When using fixed-size
partitions, there’s really nothing you can do.

■Note “There’s really nothing you can do?” Well, that’s not completely true. You can do something: delete
and re-create the partitions from the partition table and resize the file systems that are in use on them, but
this is a difficult procedure in which you risk loosing all data. Alternatively, you can use utilities like Partition
Magic or the parted utility (which is a common Ubuntu utility), but partitions were never meant for easy
resizing. Therefore, if you want to be able to resize partitions in an easy way, use logical volumes.

If logical volumes are used, you can easily resize them and their file systems to make
some more space. Another advantage of using logical volumes is that you can create snapshot
volumes of them. These snapshot volumes allow you to create backups in a flexible way, and
I’ll explain how it works later in this chapter. Therefore, for a flexible environment, it’s best to
work with logical volumes.

In a system that uses logical volumes, all available disk space is assigned to one or more
volume groups (basically pools from which volumes can be created). The advantage of working
with volume groups is that a volume group can include several storage devices and is therefore
not limited to one physical device. Even better, if you run out of disk space in a volume group,
you can just simply add a new device to it to increase the amount of usable disk space.

Currently, two systems are available for working with logical volumes. The first is Logical
Volume Manager (LVM). It’s been around for some time and can be considered mature tech-
nology. The other option is Enterprise Volume Manager System (EVMS), a volume manager
that was created by IBM and then open-sourced. Although LVM is the more mature volume
manager, EVMS functions better in a cluster environment in which volumes have to swap over
from one node to another (because volumes can be marked as shareable). Although the per-
fect volume manager system for such a system, EVMS is not very common on Ubuntu Server,
and so I’ll focus on working with LVM in the rest of this chapter.

Creating LVM Volumes
Creating LVM logical volumes is a simple procedure that can be performed by using a few
different commands. If you understand the way an LVM environment is organized, creating
logical volumes from the command line is not difficult. The bottom layer of the LVM setup is
the layer of the physical volumes (pv). These include complete hard disks, or partitions that

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 97

9233ch04.qxd 10/31/07 3:31 PM Page 97

were created with the partition type 0x8e. Based on the physical volumes, a volume (vg) group
is created. From there, one or more logical volumes (lv) are created. To work with LVM, the
lvm-binaries package must be installed, so run apt-get install lvm-binaries before you start.

Figure 4-2. Schematic of LVM structure

■Tip If you understand the role of pv, vg, and lv, the rest is peanuts. All relevant commands start with
either pv, vg, or lv and are followed by the specific task you want to perform. For example, if you want
to create a pv, a vg, or an lv, use pvcreate, vgcreate, or lvcreate. If you want to extend them, use
vgextend or lvextend (a pv cannot be extended). You want to show the current setup? Display it with
pvdisplay, vgdisplay, or lvdisplay. Some more commands are involved, and a good way of getting to
know them all is to type the first two letters of the command that you are interested in at the Bash prompt,
for example vg. Then, press the Tab key twice. The automatic command-completion feature displays a list
of all commands that start with “vg”, which makes it rather easy to pick the right one.

1. Before you start, you have to decide what exactly you want to do. If you want to use a
complete hard drive, no extra preparation is required. However, if you want only to add
a partition to an LVM setup, create the partition with the partition type 0x8e and make
sure not to format it.

2. Use the pvcreate command to mark the devices that you want to use for usage in an
LVM environment. For example, use pvcreate /dev/sd{b,c,d} to assign devices sdb,
sdc, and sdd to be used by LVM.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS98

9233ch04.qxd 10/31/07 3:31 PM Page 98

3. Next, create the volume group. If you have used pvcreate before to assign the physical
volumes, you can now use vgcreate to create the volume group. For example, use the
command vgcreate somegroup /dev/sd{b,c,d} to create the volume group. Note that,
in this command, somegroup is the name of the volume group that is created. When
making volumes from the volume group, you have to refer to this volume group name.

4. Now use lvcreate to create the logical volumes. For example, lvcreate -n somevol -
L150M somegroup will create the volume somevol as a new volume with a size of 150 MB
from logical volume group somegroup.

■Tip If you want to include a complete hard disk in a volume group, no partition table can be present on
that hard disk. To wipe an existing partition table, use the command dd if=/dev/zero of=/dev/sdx, after
which the hard disk will be ready for use by LVM.

Managing LVM
After you’ve created logical volumes in this manner, you’ll manage them with their associated
commands. For example, you can add new devices to the volume group after the device has
been installed in your computer. If you have created a physical volume /dev/sde, use vgextend
somegroup /dev/sde to add the /dev/sde device to the somegroup volume group.

As long as the physical volume media is not in use, you can remove it from the volume
group as well by using the vgreduce command. For example, vgreduce somegroup /dev/sde
would remove sde from the volume group again. Be aware that you risk loosing data if you
issue this command on a disk that currently is in use. Another important task is to monitor the
status of the volume group or the volume. Use the vgdisplay somegroup command to display
the properties of the volume group, and, if you want to show properties of a logical volume,
use lvdisplay somevol instead. It speaks for itself that somegroup is the name of the volume
group you want to monitor the properties of, and somevol is the name of the volume you want
to inspect. Listing 4-11 shows what the result of the vgdisplay command looks like.

Listing 4-11. Use the vgdisplay Command to Show the Properties of a Volume Group.

root@ubuntu:~# vgdisplay
--- Volume group ---
VG Name ubuntu
System ID
Format lvm2
Metadata Areas 1
Metadata Sequence No 3
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 2
Open LV 2
Max PV 0

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 99

9233ch04.qxd 10/31/07 3:31 PM Page 99

Cur PV 1
Act PV 1
VG Size 279.23 GB
PE Size 4.00 MB
Total PE 71484
Alloc PE / Size 71484 / 279.23 GB
Free PE / Size 0 / 0
VG UUID kl304T-T8Qx-gQiE-b8So-1LWo-SfiP-ctS6z1

Depending on what you’re looking for, vgdisplay gives useful information. For example, if
you were thinking about creating another logical volume, you would first have to be sure that
some physical extents (the building blocks of both vg and lv) are available. As you can see in
the example in Listing 4-11, this is not the case, so you have to add a physical volume first
before you can proceed.

Using Advanced LVM Features
You can easily resize existing volumes in an LVM environment. It’s also possible to create a
snapshot of a volume. Let’s explore how to do that.

Resizing Logical Volumes

When resizing logical volumes, you should be aware that the procedure always involves two
steps: you need to resize both the volume as well as the file system that is used on the volume.
Of all the different file systems, ReiserFS and Ext3 support resizing with the fewest problems.
The following procedure details how the volume is first brought offline and then the file sys-
tem that sits on the volume is resized. It is presumed that the volume you want to shrink is
called data and it is using an Ext3 file system. It is mounted on the directory /data.

■Caution Online resizing of a file system is possible in some cases. For example, the command
ext2online makes it possible to resize a live file system. However, because resizing file systems is very
labor intensive, I wouldn’t recommend doing it this way. There’s always a risk that it won’t work out sim-
ply because all of the work that has to be done. So, to stay on the safe side, umount your volume before
resizing it.

1. Use umount /data to unmount the volume from the directory /data.

2. Before shrinking the volume itself, you must shrink the file system used on it. Use
resize2fs /dev/system/data 2G to make it a 2 GB file system.

3. Now you have to resize the volume itself: use lvreduce -L -1G /dev/system/data.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS100

9233ch04.qxd 10/31/07 3:31 PM Page 100

4. Finally, you can mount the volume again. Use mount /dev/system/data /data.

5. Use the df -h command to show the current size of the file system. It should be a
gigabyte smaller than it was before.

In this procedure, you learned how to shrink a volume, and of course you can increase its
size as well. When increasing a volume, you just have to invert the order of the steps. First, you
need to extend the size of the volume, and then the size of the file system can be increased as
well. After dismounting the volume, this is a two-step procedure:

1. Use lvextend -L+10G /dev/system/data to add 10 GB of available disk space from the
volume group to the volume.

2. Next, use resize_reiserfs -f /dev/system/data. This command will automatically
increase the Reiser file system that is sitting in the volume to the maximum amount of
available disk space.

You now know how to resize a volume with a Reiser file system in it. Of course, you can
resize Ext3 and Ext2 as well. To increase the size of an Ext3 file system, you would use
resize2fs -f /dev/system/data.

Creating LVM Snapshots

One of the best features of LVM is the possibility to make snapshots. A snapshot is a new block
device that functions as a complete copy of the original volume. This works without a com-
plete copy being made: only changes are written to the snapshot and therefore a snapshot can
be very efficient in its use of disk space.

A snapshot captures the file system metadata that is used to provide an overview of all
existing files on a device and the blocks on a device that are occupied or free. So, initially, the
snapshot records only administrative information that is used to tell what file is at what loca-
tion. Because of the close relation between the original device and its snapshot, all reads to
the snapshot device are redirected to the original device.

When writing anything to the original device, a backup of the old data is written to the
snapshot device. Therefore, the snapshot volume will contain the original status, whereas
the original volume will always include the changed status. The advantage of this technique is
that it requires a very limited amount of disk space. For example, if you create a snapshot of a
100 GB volume to exist only for an hour, it must be large enough to keep the file system’s meta-
data as well as all data that is changed within that hour. In most cases, this means that a 5 GB
snapshot is more than enough. If, however, your snapshot has to exist for a longer period, the
amount of disk space that is used by the snapshot will be larger.

Using snapshot technology can also be very convenient for making backups of volumes
that cannot be closed. Imagine, for example, the data volume of a mail server: you cannot just
take the mail server down for a couple of hours to make a backup. The solution then is to
make a snapshot of the original volume, back up the snapshot volume (which contains the
frozen state of the logical volume at the moment the snapshot was made) and, when the
backup is finished, remove the snapshot again. This is even something that you can put in

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 101

9233ch04.qxd 10/31/07 3:31 PM Page 101

a shell script and configure with cron so that it runs automatically every night. The procedure
described next shows you how to create a snapshot of an existing LVM volume.

1. In the first step, you are using the lvcreate command to make a snapshot volume for the
original volume /dev/system/data. The snapshot gets the name databackup. Because the
original volume is in the system volume group, the snapshot will be created from that
group as well. Do this by using the command lvcreate -L500M -s -n databackup
/dev/system/data. Here, the option -L500M makes the snapshot 500 MB, -s makes it a
snapshot volume, and -n uses the name databackup. Finally, /dev/system/data refers to
the original volume that will be captured in the snapshot.

■Tip Problems creating the snapshot volume? Make sure that the kernel module dm_snapshot is loaded!
Check this with the lsmod command, and, if it isn’t loaded, load it manually with modprobe dm_snapshot.

2. If next you want to create a backup of the volume, first mount it. Do this the same way
that you would mount any other volume, such as with mount /dev/system/databackup
/somewhere.

3. To create a backup from the snapshot volume, use your regular backup, or for example
tar. To write a backup to a rewindable tape device, you would use tar -cvf /dev/rmt0
/somewhere.

4. Finished making the backup? Then you can remove the snapshot with lvremove
/dev/system/databackup. Of course, this works only after you have unmounted the
snapshot device.

Doing Magic on Your File Systems with dd
In your life as a system administrator, it is often necessary to copy data around. If it’s ordinary
data, an ordinary command like cp works well enough. But if the data is not ordinary, cp just
isn’t powerful enough. We’ll now discuss some of the options that the dd command has to
offer.

■Caution If the file system metadata contains important information, like a UUID which makes it possible
for you to uniquely identify a file system, dd can cause some unpredicted results. If you are using dd to copy
the complete file system, you will copy information like the UUID as well, and thus you’ll be unable to differ-
entiate the old file system from the new one.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS102

9233ch04.qxd 10/31/07 3:31 PM Page 102

Speaking in generic terms, the nice thing about the dd command is that it doesn’t just copy
files; it can copy blocks as well. As a simple example, I’ll show you how to clone your complete
hard drive. Assuming that /dev/sda is the drive that you want to clone and /dev/sdb is an
empty drive that can be used as the target, the dd command is rather easy: dd if=/dev/sda
of=/dev/sdb. In this example, dd is used with two parameters only: if is used to specify an
input file, and of is used to specify the output file (both of which are device files in this case).
Next, wait until the command is finished, and you will end up with an exact copy of the origi-
nal hard drive.

In this example, the contents of one device were copied to another device. A slight varia-
tion is the way that dd is used to clone a DVD or CD-ROM and write it to an ISO file. To do that,
in case your optical drive can be accessed via /dev/cdrom, you can clone the optical disk using
dd if=/dev/cdrom of=/tmp/cdrom.iso. And of course you can mount that ISO file as well using
mount -o loop /tmp/cdrom.iso /mnt. Next, you can access the files in the ISO file from the
directory where the ISO is mounted.

So far we have used dd only to do things that can be done with other utilities as well.
It becomes really interesting if we go beyond that. What do you think of the following exam-
ple, where a backup of the master boot record (MBR) is created? Just make sure that the
first 512 bytes of your hard drive, which contains the MBR, is copied to some file, as in dd
if=/dev/sda of=/boot/mbr_backup bs=512 count=1. In this example, two new parameters
are used. First, the parameter bs=512 specifies that the block should be 512 bytes. Next, the
parameter count=1 indicates that only one such block has to be copied. Without this param-
eter, you would copy your entire hard drive, which I don’t recommend. The backup copy of
your MBR may be useful if some day you can’t boot your server anymore because of a prob-
lem in the MBR. If this happens, just boot from a rescue disk and use the command dd
if=/boot/mbr_backup of=/dev/sda bs=446 count=1. As you notice, in this restore command,
only 446 bytes are written back. This is because you may have changed the partition table
since you created the backup. By writing back only the first 446 bytes of your backup file,
you don’t overwrite the original partition table which is between bytes 447 and 511.

Now I’ll show you how to extend your swap space by adding a swap file. This is useful if,
in the middle of the night, you get an alert that your server is almost running completely out
of memory because of a memory leak you hadn’t discovered so far. All you have to do is to cre-
ate an empty file and specify that it should be added to the swap space. Creating this empty
file is an excellent task for the dd command. In the following command you are using dd to
create a file that is filled with zeros completely by using the /dev/zero device: dd if=/dev/zero
of=/swapfile bs=1024 count=1000000. This would write a file of 1 GB that can be added to the
swap space using mkswap /swapfile and swapon /swapfile.

In the next example of the marvelous things you can do with dd, let’s use it to recover the
superblock on an Ext2 or Ext3 file system. To access a file system, you need the superblock,
which is a 1 KB block that contains all metadata about the file system. It normally is the sec-
ond 1 KB block on an Ext3 file system. In Listing 4-12, you can see a part of the contents of the
superblock as displayed with the debugfs utility.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 103

9233ch04.qxd 10/31/07 3:31 PM Page 103

Listing 4-12. Partial Contents of the Superblock

Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID: 09979101-96e0-4533-a7f3-0a2db9b07a03
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal ext_attr filetype needs_recovery
sparse_super large_file
Default mount options: (none)
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 5248992
Block count: 10486428
Reserved block count: 524321
Free blocks: 3888202
Free inodes: 4825213
First block: 0
Block size: 4096
Fragment size: 4096
Blocks per group: 32768
Fragments per group: 32768
Inodes per group: 16352
Inode blocks per group: 511

If, due to some error, the superblock isn’t accessible anymore, you have a serious chal-
lenge. Fortunately, some backup copies of the superblock are written on the Ext3 file system
by default. Using these backup copies, you can still mount a file system that you may have
otherwise considered lost. And, as you can guess, the dd command is an excellent help.

The actual position on disk of the first backup of the superblock depends on the size of
the file system. On modern large file systems, you will always find it at block 32768. To try if it
really works, you can mount from it directly using the mount option -o sb. The issue, how-
ever, is that mount expects you to specify the position of the superblock in 1,024 byte blocks,
whereas the default block size for a modern Ext3 volume or partition is often 4,096 bytes. (Use
dumpe2fs if you want to be sure about that.) Therefore, to tell the mount command where it
can find the superblock, you have to multiply the position of the superblock by 4, which in
most cases results in a block value 131072. If, for example, your /dev/sda5 file system should
have a problem, you can try mounting it with the command mount -o sb=131072 /dev/hda5
/somewhere.

Did the file system mount successfully? If so, the problem really was in the superblock. So
let’s fix that problem by copying the backup superblock back to the location of the old superblock.
You can do this using dd if=/dev/hda5 of=/dev/hda5 bs=1024 skip=131072 count=1 seek=1.
Once finished, your file system is accessible again, just as it was before.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS104

9233ch04.qxd 10/31/07 3:31 PM Page 104

Summary
In this chapter, you learned about the most important file system management tasks. In the
first part of the chapter, you read how to mount and unmount file systems. You also learned
how links can make your life easier. The second part of this chapter concerned the organiza-
tion of a file system. You learned how to use partitions or logical volumes to set up a file
system, and you read how to use the dd command to perform some advanced file system
management tasks. In Chapter 5, you’ll find out how to secure your server with user and
group accounts, permissions, sudo, and many more.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 105

9233ch04.qxd 10/31/07 3:31 PM Page 105

9233ch04.qxd 10/31/07 3:31 PM Page 106

Configuring Your Server
for Security

No matter what you want to use your server for, it’ll be useless if it isn’t secure. In this chap-
ter, you’ll learn about the different security-related items that you’ll encounter when setting
up your server. First, I’ll talk about the configuration of users and groups, because most of the
security you’ll be using on your server will be bound to users and groups. Next, I’ll cover the
Linux permissions that you can use to restrict access to your server’s file system. Following
that, I’ll discuss some security mechanisms that aren’t so obvious, like the sudo mechanism
and the system of pluggable authentication modules (PAMs). Finally, at the end of this chap-
ter, I’ll give you a short introduction to configuring the iptables firewall.

■Note In this section you’ll learn all about securing services on your server, but also know that none of
your software skills will do you any good unless your hardware—and I mean the server itself—is physically
secured. So, before you start securing your server, make sure that it is locked in a restricted-access room.

Setting Up User Accounts
You have two approaches when creating users from a command-line environment: you can
use the useradd command, or you can add users to the relevant configuration files by manu-
ally editing these files. Although this second approach—editing the configuration files—may
be useful in an environment in which users are added from a custom-made shell script, it gen-
erally is not recommended. The reason for this is probably obvious: an error in the main user
configuration files might make it impossible for every user to log in to the server. In this sec-
tion, I’ll discuss how to manage users from the command line using useradd and other related
commands such as usermod and userdel. You can edit related configuration files to make cre-
ating users easier.

107

C H A P T E R 5

9233ch05.qxd 10/31/07 2:36 PM Page 107

Commands for User Management
If you want to add users from the command line, useradd is just the ticket. And the other
commands for user management are just as convenient:

• useradd: Adds users to the local authentication system

• usermod: Modifies properties for users

• userdel: Deletes users properly from a system

• passwd: Modifies passwords for users

Using useradd is simple. In its easiest form, it just takes the name of a user as its argument;
thus, useradd zeina creates a user called “zeina” to the system. However, you better use the
option -m as well, because, if you don’t, that user will be without a home directory. In most
cases, a user should have a home directory because it allows that person to store files some-
where. Unfortunately, if you create a user without a home directory, there’s really no easy way
to correct this problem later (but see the following tip for the not-so-easy way).

■Tip Did you forget to create a home directory for user zeina and want to create one now? First, use
mkdir /home/zeina to make the directory itself. Then use cd /etc/skel to activate the directory that
contains all files that normally need to be present in a user’s home directory. Use tar cv . | tar xvC
/home/zeina to copy all files including hidden files from this directory to the user’s home directory. Next,
use chown -R zeina.users /home/zeina to set proper file ownership for all these files. You’ve now
created a home directory, but wouldn’t it have been easier just to use -m?

You have a few options with the useradd command. If an option isn’t specified, useradd
will read its configuration file in /etc/default/useradd, where it finds some default values
such as what groups the user should become a member of and where to create the user’s
home directory. But let’s have a look at the most important options, which are listed next.
(For a complete list of available options, use man useradd or useradd --help for a summary.)

• -c comment: Allows you to enter a comment field to the user. Information set this way
can be requested with the finger command, and this comment field typically is used
for the user’s name.

• -e date: Sets the expiration date for the user. Use this option to automatically disable
the user’s account on the specified date. This can be entered in the YYYY-MM-DD for-
mat or as the number of days since January 1, 1970. You’ll probably prefer to specify
the date.

• -G groups: Makes the user a member of some additional groups. By default, the user
becomes a member of only those groups listed in /etc/default/useradd.

• -g gid: Sets the primary group of a user (see the section “Group Membership” later
in this chapter for more details).

• -m: Creates a home directory automatically.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY108

9233ch05.qxd 10/31/07 2:36 PM Page 108

When setting up user accounts, the user is added to two configuration files: /etc/passwd
and /etc/shadow. The /etc/passwd file contains generic user-related information, such as the
groups the user belongs to and the unique ID assigned to the user. The /etc/shadow file con-
tains password-related information about the user. In the following subsections, you’ll find
information about the properties used in these files.

UID
The user ID (UID) is another major piece of information when creating a user. For your server,
this is the only way to identify a user; usernames are just a convenience for humans (who can’t
quite handle numbers as well as a computer does). In general, all users need a unique UID.
Ubuntu Server starts generating UIDs for local users at 1000, and a total of 16 bits is available
for creating UIDs. This means that the highest available UID is 65535, and so that’s also the
maximum number of local users that your server will support. If you go exceed this limit,
you’ll need a directory server such as OpenLDAP. Typically, UIDs below 500 are reserved for
system accounts that are needed to start services. The UID 0 is also a special one: the user
with it has complete administrative permissions to the server. UID 0 is typically reserved for
the user root.

That said, you may want to give the same ID to more than one user in one situation: to
create a backup root user. If you want to do this with useradd, use the options -o and -u 0. For
example, to make user stacey a backup root user, use useradd -o -u 0 stacey.

■Tip Want to use some specific settings for all users that you are creating on your server? If so, you might
be interested in the /etc/default/useradd file, which contains default settings that are used all the time
when using useradd. Check the other files in this directory as well; many commands read configuration
files from it.

Group Membership
In any Linux environment, a user can be a member of two different kinds of groups. First,
there’s the primary group, which every user has. (If a user doesn’t have a primary group setting,
he won’t be able to log in.) The primary group is the group that is specified in the /etc/passwd
file. By default, on an Ubuntu Linux system, all users get their own private groups as their pri-
mary groups, and this private group has the same name as the user. A user can be a member
of more than just the primary group and will automatically inherit the rights granted to these
other groups. The most important difference between a primary group and other groups is
that the primary group will automatically become group owner of any new file that a user cre-
ates. Because every user has his or her own private group, this won’t be a great challenge for
your server’s security settings (as the user is the only member). I’ll discuss file permissions and
ownership in detail later this chapter, but I’ll provide an example just to give you an idea of
how it works.

Imagine that user zeina is a member of the private group zeina, and also of the group
sales. Now user zeina wants to create a file to which only members of the group sales have
access. If she does nothing to change her primary group and creates a file, the default group

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 109

9233ch05.qxd 10/31/07 2:36 PM Page 109

zeina will become group owner of the file, and all users who are members of this group (in
other words, just zeina) will have access to the file.

One solution is to use the newgrp command to set the primary group to sales on a tempo-
rary basis. If user zeina creates the file after using newgrp sales, the group sales will be owner
of that file and all other files that the user creates until she uses newgrp zeina to switch the pri-
mary group setting back to users. This is just one way of using groups, and I discuss other
methods later in the chapter.

As you can see, group membership in a stand-alone Linux file system environment isn’t
that sophisticated. The method sounds primitive, but it hardly ever causes problems because
permissions are just set at another level, such as when the user is accessing the server through
a Samba share. (See Chapter 10 for more on that.)

You now know some more about the relation between the primary group and the other
groups that a user belongs to. In the sections about group management later in this chapter,
you’ll learn how to apply this knowledge.

Shell
Any user who needs to log in to your server needs a shell. (Conversely, users who don’t need to
work on your server directly generally don’t need a shell; they just need a connection.) The shell
will enable the user’s commands to be interpreted. The default shell in Ubuntu is /bin/sh, but
several other shells are available. One of the more common alternatives is /bin/bash, a shell
that offers many more features than /bin/sh does.

However, you should know that not every user needs a shell. A user with a shell is allowed
to log in locally to your system and access any files and directories stored on that system. If
you’re using your system as a mail server (and so all that your users need is to access their
mail boxes with the POP protocol), it makes no sense at all to give them a login shell. There-
fore, you could choose to specify an alternative command to be used as the shell. For example,
use /bin/false if you don’t want to allow the user any local interaction with your system. Any
other command will do as well. If, for example, you want the Midnight Commander (a clone of
the once very popular Norton Commander) to be started automatically when a user logs in to
your system, make sure that /usr/bin/mc is specified as the shell for that user.

■Tip Make sure that you include the complete path to the command you want to execute as the shell
environment for a user. If you don’t know the complete path for your favorite command, use the whereis
command. For example, whereis mc shows the exact location of the program file you’re looking for. Not
installed yet? Use apt-get install mc to install it now.

Managing Passwords
If your user really needs to do something on your system, she needs a password. By default,
login for the users you create is denied, and no password is supplied. Basically, your freshly
created user does not have any permissions on your server. However, the simple passwd com-
mand will let her get to work. If the user uses the command to change her password, she will

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY110

9233ch05.qxd 10/31/07 2:36 PM Page 110

be prompted for the old password and then the new one. It’s also possible for the root user
to change passwords as well. Only root can add the name of a user, for whom root wants to
change a password, as an argument to the passwd command. For example, root can use the
command passwd linda to change the password for user linda, which is always useful in case
of forgotten user passwords.

The passwd command can be used in three generic ways. First, you can use it for pass-
word maintenance (such as changing a password, as you have just seen). Second, it can also
be used to set an expiration date for the password. Third, the passwd command can be used
for account maintenance. For example, an administrator can use it to lock a user’s account so
that login is temporarily disabled. In the next subsection, you’ll learn more about password
management.

Performing Account Maintenance with passwd
In an environment in which many users use the same server, it’s crucial that you perform some
basic account maintenance. These tasks include locking accounts when they are unneeded for
a longer time, unlocking an account, and reporting password status. Also, an administrator can
force a user to change his password after he logs in for the first time. To perform these tasks, the
passwd command has the following options:

• -l: Enables an administrator to lock an account (for example, passwd -l jeroen locks
the account for user jeroen)

• -u: Unlocks a previously locked account

• -S: Reports the status of the password for a given account

• -e: Forces the user to change his or her password upon next login

Managing Password Expiration
Although not many people are aware of this feature, it allows you to manage the maximum
number of days that a user can use the same password. The passwd command has four options
to manage expirations:

• -n min: This rarely used option is applied to set the minimum number of days that a
user must use his password. If this option is not used, the user can change his password
anytime he wants.

• -x max: With this option, you can set the maximum number of days that the user can
use his password without changing it.

• -c warn: Use this option to send a warning to the user when his password is about to
expire. The argument of this option specifies how many days the user is warned before
his password expires.

• -i inact: Use this option to make an account expire automatically if it hasn’t been used
for a given period. The argument of this option specifies the exact duration in days of
this period.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 111

9233ch05.qxd 10/31/07 2:36 PM Page 111

■Caution By default, a password can be used for 99,999 days. So, if you do nothing, a user may use his
password for 273 years without changing it. If you don’t want that, make sure you use the –x option.

Modifying and Deleting User Accounts
If you know how to create a user, modifying an existing user account is no big deal, and the
usermod command has many options that are exactly the same as those used with useradd. For
example, use usermod -g 101 linda to set the new primary group of user linda to the group with
the unique ID 101. For a complete overview of the options that usermod shares with useradd,
consult the man page of usermod, but some of the useful and unique options are listed here:

• -a, --append: Adds the user to some new groups. This option is followed by the group
ID of the groups you want to add the user to.

• -L, --lock: Disables the account temporarily.

• -U, --unlock: Unlocks an account.

Another command that you’ll occasionally need is userdel, which you’ll use to delete
user accounts from your server. Basically, userdel is a very simple command: userdel lynette
deletes user lynette from your system. However, if used this way, userdel leaves the home
directory of your user untouched. This may be desired (such as to ensure that your company
still has access to the work a user has done), but you may just as well wish to delete the user’s
home directory. For this purpose, you can use the option -r; for example, userdel -r lynette
deletes the home directory of user lynette. However, if the home directory of user lynette con-
tains files that are not owned by user lynette, userdel can’t remove the home directory. In this
case, use the option -f, which removes every file from the home directory, even those not
owned by the given user. So, to make sure that user lynette and all the files in her home direc-
tory are removed, use userdel -rf lynette.

You now know how to remove a user along with all the files in his home directory. But
what about other files the user may have created in other directories on your system? The
userdel command won’t automatically find and remove these. In such a case, the find com-
mand is very useful. You can use find to search for and remove all files owned by a given user.
To locate and remove all files on your system that are created by user lynette, you can use find
/ -user "lynette" -exec rm {} \;. However, this may lead to problems on your server in
some circumstances. Let’s say lynette was a very active user of the group sales and created
many important files in the directory /home/sales that are used by other members of the
group. So, rather than immediately removing the files, it’d be better to copy them to a safe
place instead. If no one has complained after a couple of months, you can remove them safely.
To move all files owned by user lynette to a directory called /trash/lynette (which you must
create beforehand), use find / -user lynette -exec mv {} /trash/lynette \;.

Behind the Commands: Configuration Files
In the previous section, you learned about the commands to manage users from a console
environment. All of these commands put the user-related information into what are known as

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY112

9233ch05.qxd 10/31/07 2:36 PM Page 112

configuration files, and a configuration file is also used for default settings that are applied
when managing the user environment. The aim of this section is to give you some insight into
the following configuration files:

• /etc/passwd

• /etc/shadow

• /etc/login.defs

/etc/passwd

The first and probably most important of all user-related configuration files is /etc/passwd,
which is the primary database for user information: everything except the user password is
stored in this file. Listing 5-1 should give you an impression of what the fields in this file look like.

Listing 5-1. Contents of the User Database file /etc/passwd

root@RNA:~# cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd:/bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534:nobody:/nonexistent:/bin/sh
dhcp:x:100:101::/nonexistent:/bin/false
syslog:x:101:102::/home/syslog:/bin/false
klog:x:102:103::/home/klog:/bin/false
mysql:x:103:106:MySQL Server,,,:/var/lib/mysql:/bin/false
bind:x:104:109::/var/cache/bind:/bin/false
sander:x:1000:1000:sander,,,:/home/sander:/bin/bash
messagebus:x:105:112::/var/run/dbus:/bin/false
haldaemon:x:106:113:Hardware abstraction layer,,,:/home/haldaemon:/bin/false
gdm:x:107:115:Gnome Display Manager:/var/lib/gdm:/bin/false
sshd:x:108:65534::/var/run/sshd:/usr/sbin/nologin
linda:x:1001:1001::/home/linda:/bin/sh
zeina:x:1002:1002::/home/zeina:/bin/sh

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 113

9233ch05.qxd 10/31/07 2:36 PM Page 113

news:x:9:9:news:/var/spool/news:/bin/sh

You can see that /etc/passwd uses different fields, and all of them are separated with a
colon. Here’s a short explanation of these fields:

• Loginname: This is the first field, and it stores the user’s login name. In older UNIX ver-
sions, the field was limited to eight characters. Fortunately, Ubuntu Server does not
have this limitation.

• Password: In the old days of UNIX, this file stored the encrypted passwords. The only
problem was that everyone—including an intruder—was allowed to read the /etc/passwd
file. This poses an obvious security risk, and so passwords are now stored in the configu-
ration file /etc/shadow, which is discussed in the next section. The “x” in the password
field denotes the use of shadow passwords.

• UID: As you already learned, every user has a unique user ID. Ubuntu Server starts
numbering local user IDs at 1000 and typically the highest number that should be used
is 65535.

• GID: As discussed in the previous section, every user has a primary group, and its group
ID (GID) is listed here. This is the numeric ID of the group that the user uses as his pri-
mary group. For ordinary users, the GID defaults to 100 (which belongs to the group
users).

• GECOS: The General Electric Comprehensive Operating System field is used to include
some comment to make it easier for the administrator to identify the user. However, the
GECOS field is optional, and it’s often not used at all.

• Home directory: This is a reference to the directory that serves as the user’s home direc-
tory. Note that it’s only a reference and has nothing to do with the real directory: just
because you see a directory listed here doesn’t mean that it actually exists.

• Shell: The last field in /etc/passwd refers to the program that should be started auto-
matically when a user logs in. Most often, it’s /bin/sh, but, as discussed in the preceding
section, every binary program can be referred to here, as long as the complete path
name is used.

As an administrator, you can manually edit /etc/passwd and the related /etc/shadow. If
you intend to do this, however, don’t use any editor. Use vipw instead. This tailored version of
the Vi editor is specifically designed for editing these critical files. Any error can have serious
consequences, such as no one being able to log in. Therefore, if you make manual changes to
any of these files, you should check their integrity. Besides vipw, another way to do this is to
use the pwck command, which you can run without any options to see if there are any prob-
lems you need to fix.

/etc/shadow

Encrypted user passwords are stored in the /etc/shadow file. The file also stores information
about password expiration. Listing 5-2 shows an example of its contents.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY114

9233ch05.qxd 10/31/07 2:36 PM Page 114

Listing 5-2. Example Contents of the /etc/shadow File

root:$1$15CyWuRM$g72U2o58j67LUW1oPtDS7/:13669:0:99999:7:::
daemon:*:13669:0:99999:7:::
bin:*:13669:0:99999:7:::
sys:*:13669:0:99999:7:::
sync:*:13669:0:99999:7:::
games:*:13669:0:99999:7:::
man:*:13669:0:99999:7:::
lp:*:13669:0:99999:7:::
mail:*:13669:0:99999:7:::
news:*:13669:0:99999:7:::
uucp:*:13669:0:99999:7:::
proxy:*:13669:0:99999:7:::
www-data:*:13669:0:99999:7:::
backup:*:13669:0:99999:7:::
list:*:13669:0:99999:7:::
irc:*:13669:0:99999:7:::
gnats:*:13669:0:99999:7:::
nobody:*:13669:0:99999:7:::
dhcp:!:13669:0:99999:7:::
syslog:!:13669:0:99999:7:::
klog:!:13669:0:99999:7:::
mysql:!:13669:0:99999:7:::
bind:!:13669:0:99999:7:::
sander:1Qqn0p2NN$L7W9uL3mweqBa2ggrBhTB0:13669:0:99999:7:::
messagebus:!:13669:0:99999:7:::
haldaemon:!:13669:0:99999:7:::
gdm:!:13669:0:99999:7:::
sshd:!:13669:0:99999:7:::
linda:!:13671:0:99999:7:::
zeina:!:13722:0:99999:7:::

Just as in /etc/passwd, the lines in /etc/shadow are divided into several fields as well, but
only the first two fields matter for the typical administrator. The first field stores the name
of the user, and the second field stores the encrypted password. Note that, in the encrypted
password field, the ! and * characters can be used as well. The ! denotes that login is currently
disabled, and the * denotes a system account that can be used to start services but that is not
allowed for interactive shell login. Also note that an encrypted password is stored here by
default, but it’s perfectly possible to store an unencrypted password as well. The /etc/shadow
file uses the following fields:

• Login name

• Encrypted password

• Days between January 1, 1970, and the date when the password was last changed

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 115

9233ch05.qxd 10/31/07 2:36 PM Page 115

• Days before password may be changed (this is the minimum amount of time that a user
must use the same password)

• Days after which password must be changed (this is the maximum amount of time that
a user may use the same password)

• Days before password expiration that user is warned

• Days after password expiration that account is disabled (if this happens, administrator
intervention is required to unlock the password)

• Days between January 1, 1970, and the date when the account was disabled

• Reserved field (this field is currently not used)

/etc/login.defs

The /etc/login.defs file is a configuration file that relates to the user environment but is used
only in the background. This file defines some generic settings that determine all kinds of
things relating to user login. The login.defs file is a readable configuration file that contains
variables. The variable relates to logging in or to the way in which certain commands are used.
This file must exist on every system because you would otherwise experience unexpected
behavior. The following list contains some of the more interesting variables that can be used
in the login.defs file (for a complete overview, consult man 5 login.defs):

• DEFAULT_HOME: By default, a user will be allowed to log in, even if his home directory
does not exist. If you don’t want that, change this parameter’s default value of 1 to the
Boolean value 0.

• ENV_PATH: This variable contains the default search path that’s applied for all users who
do not have UID 0.

• ENV_ROOTPATH: This variable works in the same manner as ENV_PATH, but for root.

• FAIL_DELAY: After a login failure, it will take a few seconds before a new login prompt is
generated. This variable, set to 3 by default, specifies how many seconds it takes.

• GID_MAX and GID_MIN: Specify the minimum and maximum GID used by the groupadd
command (see “Commands for Group Management” in the next section).

• LASTLOG_ENAB: If enabled by setting the Boolean value to 1, LASTLOG_ENAB specifies that
all successful logins must be logged to the file /var/log/lastlog. This only works if the
lastlog file also exists. (If it doesn’t, create it by using touch /var/log/lastlog.)

• PASS_MIN_LEN: This is the minimum number of characters that must be used for new
passwords.

• UID_MAX and UID_MIN: These are the minimum and maximum UIDs to be used when
adding users with the useradd command.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY116

9233ch05.qxd 10/31/07 2:36 PM Page 116

Creating Groups
As you’ve already learned, all users require group membership. You’ve read about the differences
between the primary group and the other groups, so let’s have a look at how to create these groups.
We’ll discuss the commands that you can run from the shell and the related configuration files.

Commands for Group Management
Basically, you manage the groups in your environment with three commands: groupadd,
groupdel, and groupmod. So, as you can see, group management follows the same patterns as
user management. And, there’s some overlap between the two as well. For example, usermod
as well as groupmod can be used to make a user a member of some group. The basic structure
for the groupadd command is simple: groupadd somegroup, where somegroup of course is the
name of the group you want to create. Also, the options are largely self-explanatory: it proba-
bly doesn’t surprise you that the option -g gid can be used to specify the unique GID number
you want to use for this group.

Behind the Commands: /etc/group
When a group is created with groupadd, the information entered needs to be stored some-
where, and that’s the /etc/group file. As seen in Listing 5-3, this is a rather simple file that has
just two fields for each group definition.

Listing 5-3. Content of /etc/group

plugdev:x:46:sander,haldaemon
staff:x:50:
games:x:60:
users:x:100:
nogroup:x:65534:
dhcp:x:101:
syslog:x:102:
klog:x:103:
scanner:x:104:sander
nvram:x:105:
mysql:x:106:
crontab:x:107:
ssh:x:108:
bind:x:109:
sander:x:1000:
lpadmin:x:110:sander
admin:x:111:sander
messagebus:x:112:
haldaemon:x:113:
powerdev:x:114:haldaemon
gdm:x:115:
linda:x:1001:
zeina:x:1002:

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 117

9233ch05.qxd 10/31/07 2:36 PM Page 117

The first field in /etc/group is reserved for the name of the group. The second field stores
the password for the group (an ! signifies that no password is allowed for this group). You can
see that most groups have an “x” in the password field, and this refers to the /etc/gshadow file
where you can store encrypted group passwords. However, this feature isn’t used now. The
third field of /etc/group provides a unique group ID, and, finally, the last field presents the
names of the members of the group. These names are only required for users for whom this is
not the primary group; primary group membership itself is managed from the /etc/passwd
configuration file. However, if you want to make sure that a user is added to an additional
group, you have to do it here.

Managing the User’s Shell Environment
As a system administrator of a server that users access directly, you have to do more than just
create users and make them members of the appropriate groups. You also have to give them
login environments. Without going into detail about specific shell commands, this section
provides an overview of what is needed for that. I’ll first explain about the files that can be
used as login scripts for the user, and next you’ll learn about files that are used to display mes-
sages for users logging in to your system.

Creating Shell Login Scripts
When a user logs in to a system, the /etc/profile configuration file is used. This generic shell
script (which can be considered a login script) defines environment settings for users. Also,
commands can be included that need to be issued when the user first logs in to a server. The
/etc/profile file is a generic file processed by all users logging in to the system. It also has
a user-specific version (~/.profile) that can be created in the home directory of the user. The
user-specific ~/.profile of the shell login script is executed last, so, if there is a conflict in set-
tings between the two files, the settings that are user specific will always be used. In general, it
isn’t a good idea to give a login file to too many individual users; instead, work it all out in
/etc/profile. This makes configuring settings for your users as easy as possible.

Now /etc/profile is not the only file that can be processed when starting a shell. If a user
starts a subshell from a current environment, such as by executing a command or by using the
command /bin/sh again, the administrator may choose to define additional settings for that.
The name of this configuration file is /etc/bashrc, and it also has a user-specific version,
~/.bashrc. Although some distributions use this file to manage the user environment, Ubuntu
Server does not use it by default. This is also because Ubuntu Server uses /bin/sh instead of
Bash as its default shell.

Displaying Messages to Users Logging In
As an administrator, it’s sometimes necessary to display messages to users logging in to your
server. Two files can be used for this: /etc/issue and /etc/motd. The first, /etc/issue, is a text
file whose content is displayed to users before they log in. To process this file, the /sbin/getty
program, which is responsible for creating login terminals, reads it and displays the content.
You may, for example, use the file to display a message instructing users how to log in to your
system, or include a message if login has been disabled on a temporary basis. Related to this
file is /etc/motd, which can be used to display messages to users after they have logged in.
Typically, this file can be used to display messages related to day-to-day system maintenance.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY118

9233ch05.qxd 10/31/07 2:36 PM Page 118

Configuring Permissions
At first glance, it seems easy to manage permissions in a Linux environment: instead of the
many permissions some other operating systems work with, Linux has just three. However,
upon closer examination, you’ll see that the system that was invented somewhere in the 1970s
is only the foundation for a system that can be pretty complex. The following subsections are
overviews of all subjects relevant to permission management.

Read, Write, and Execute: The Three Basic Linux Permissions
The three elementary permissions—read (r), write (w), and execute (x)—are the foundation to
working with permissions in a Linux system. The use of these permissions is not hard to under-
stand: read allows a user to read the file or the contents of the directory the permission is
applied to; write allows the user to change an existing file if applied to a file and to create or
remove files in a directory it is applied to; and execute is used to allow a file to execute exe-
cutable code. If applied to a directory, it allows a user to activate that directory with a command
like cd. Therefore, the execute permission is applied as a default permission to all directories on
a Linux system. Table 5-1 summarizes the workings of these three basic permissions.

Table 5-1. Overview of Linux Basic Permissions

Permission Applied to Files Applied to Directories

read Read contents of a file See files existing in a directory by using
the ls command

write Modify existing files and their properties Create or delete files from a directory

execute Execute files that contain executable code Activate a subdirectory with the cd
command

Permissions and the Concept of Ownership
To determine the permissions that a given user has on a file or directory, Linux works with the
concept of ownership. Ownership is set on every file and on every directory, so, when working
with the three basic Linux permissions, there’s no such thing as “inheritance” such as with
some other operating systems.

■Note In fact, on Linux, inheritance can be applied when working with SGID permissions and access
control lists, both of which I’ll cover later in this chapter.

Linux works with three entities that can be set as the owner of a file or directory. First is
the user who is owner. By default, the user who creates a file becomes the owner of that file
(but an administrator can change ownership later using the chown command). Next is the
group owner. By default, the primary group of the user who is owner of a file will also become
the group owner of that file.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 119

9233ch05.qxd 10/31/07 2:36 PM Page 119

■Note When in this section I refer to a file, I also refer to a directory, unless stated otherwise. From a file-
system point of view, a directory is just a special kind of file.

Last is the others entity. Typically, this refers to the rest of the world: permissions granted
to the others entity apply to everyone who is able to access the given file. The ownership of
files and the permissions that are set for the three different file owners can be reviewed with
the ls -l command as seen in the following line:

-rw-rw-r-- 1 linda users 145906 2006-03-08 09:21 somefile

In this output, the name of the file is somefile. The first character refers to the type of file.
In this case, it’s just an ordinary file, therefore the - character is displayed. The next three
groups of three characters refer to the permissions applied to the user, group, and others,
respectively. As you can see, the user has read as well as write permission, the group has read
as well as write, and all others just have read. The next important pieces of data are the names
linda and users: these refer to user linda (who is owner) and the group users (which is group
owner). Note that, in the basic Linux permission scheme, just one user and just one group can
be assigned as owner of a file.

With regards to Linux rights, ownership is the only thing that really matters. An example
shows why this is important: imagine the home directory of user linda. Typically, the permis-
sions on a home directory are set as in the following output line of the ls command:

-rwxr-xr-x 1 linda users 1024 2006-03-08 09:28 linda

■Note In the examples that you can read here, the users talked about are all members of the group
user, which has group ID 100. This is not default behavior on Ubuntu. If you want all new users created
with useradd to automatically become members of this group 100 (which is actually the GID for the group
user), make sure that you have the line GROUP=100 in the /etc/default/useradd file.

Ownership is naturally very important when determining what a user can do to a file.
Imagine that a file is created by the user root in the user linda home directory and that the
permissions on this file are set as follows:

-r--r----- 1 root root 1 537 2006-03-08 10:15 rootsfile

The big question is what can user linda do to this file. The answer is simple, but there is a
caveat. Because user linda is not the owner of the file and also is not a member of the group
that owns the file, she has no permissions at all to this file. The fact that the file is in her home
directory doesn’t mean much because Linux has no such thing as inheritance of permissions.
However, user linda has the write right on her home directory and therefore she can remove
the file from her home directory. This is not inheritance; it’s simply because the write permis-
sion in a directory applies to the things that a user can do to files in that directory. What you
should remember from this example is that, to determine what a user can do to a file, the most

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY120

9233ch05.qxd 10/31/07 2:36 PM Page 120

important question to ask is “Is the user owner of the file?” The fact that a file is in the user’s
directory is just not relevant here. It’s ownership that counts.

Changing File Ownership
To change the ownership of a file, use the chown command. The structure of this command is
as follows:

chown {user|.group} file

For example, to make user linda owner of rootsfile, the command chown linda rootsfile
must be used. To change the group owner of somefile to the group sales, the chown .sales
somefile command is used. Note that, for changing group ownership, the chgrp command
can be used as an alternative. Therefore, chown .sales somefile does the same thing as chgrp
sales somefile. When using chgrp, the name of the group does not need to be preceded by
a dot.

By default, chown and chgrp apply only to the file or directory on which they are used.
However, you can use the commands to work recursively as well: chown -R linda somedir
makes user linda owner of all files in somedir and all subdirectories of that.

Group Ownership
When working with group ownership, you should be aware of how group ownership is han-
dled. By default, the primary group of the user who creates a new file becomes the group
owner of that file. If, however, the user is a member of more than one group, this default set-
ting can be manipulated. When a user issues the newgrp command, he can change the primary
group setting on a temporary basis. The following steps show what happens next:

1. Log in as some normal user on your computer. Then, from a console window, use the
groups command to get an overview of all groups that you are currently a member of.
The primary group is listed first. If you haven’t modified anything for this user, it will
have the same name as your user account. Listing 5-4 is an example of this output.

Listing 5-4. The groups Command Always Shows Your Primary Group First.

sander@RNA:~$ groups
sander adm dialout cdrom floppy audio dip video plugdev scanner lpadmin admin

2. Now, from the console window, issue the touch newfile command to create a new
file with the name newfile. Then use ls -l newfile to display the ownership infor-
mation for newfile. You will see that the primary group is set as the owner of the file
(see Listing 5-5).

Listing 5-5. The User’s Primary Group Will Always Be Set As Its Owner.

sander@RNA:~$ ls –l newfile
-rw-r--r-- 1 sander sander 0 2007-07-28 10:05 newfile

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 121

9233ch05.qxd 10/31/07 2:36 PM Page 121

3. Next, use su to become root. Then use groupadd to create a new group (for example,
use groupadd -g 901 sales to create a group with the name sales and group ID 901).
Next, as root, use usermod -g 901 youruser to make youruser (the user you used in
step 1) a member of that group. After changing this group information, use exit to
close the su session and become the normal user account again.

4. As the normal user, use groups again to get an overview of all groups you are currently
a member of. The new group should appear now, probably as the last group in the list.

5. Now, as the normal user, use newgrp yournewgroup to set the primary group to your
new group on a temporary basis. You can use the groups command to check this; the
new group should now be listed first. You’ll also see that, if you create a new file (use
touch somenewfile), the new group will be group owner of the new file. This ensures
that all users who are members of the same group can do the same thing to this file.

Working with Advanced Linux Permissions
Until now, I’ve covered just the three basic Linux permissions. But there are more. To start
with, Linux has a set of advanced permissions, and this section describes the working of these
permissions. Before diving into detail, the following list provides a short overview of the
advanced permissions and the way they’re used:

• SUID: If this permission is applied to an executable file, (also known as “Set User ID” and
“setuid”), the user who executes that file will have the permissions of the owner of the
file while he is executing it. You can see, then, that SUID is a very dangerous permission
that, if wrongly applied, creates serious backdoors on your server. On the other hand,
some applications—/usr/bin/passwd, for example—can’t function without it because
these applications need the permissions of their owner root to be able to do their job.

• SGID: This permission is also known as the Set Group ID (also commonly known as
“setgid”) permission. It is applied in two ways. First, if applied to executable files, the
user who executes the file will get the permissions of the group who is owner of the file
upon execution. Next, the permission can be used to set the default group owner of
files created in a given directory. If applied on a directory, all files and directories cre-
ated in this directory and even in its subdirectories, will get the group owner of the
directory as its group owner. Imagine all members of the group sales normally save the
files they create in /data/salesfiles. In that case, you would want all files created in
that directory to be owned by the group sales as well. This goal can be accomplished
when setting sales as the group owner for salesfiles and next applying the SGID per-
mission bit to this directory.

• Sticky bit: If the sticky bit is used, users can remove files only if one of the following
conditions is met:

• The user has write permissions on the file.

• The file is in a directory of which the user is owner.

• The user is owner of the file.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY122

9233ch05.qxd 10/31/07 2:36 PM Page 122

The sticky bit permission is especially useful in a shared data directory. Imagine user
linda creates a file in the directory /data/sales. She wouldn’t want her coworkers from
the group sales who also have write permissions in that directory to remove her file
by accident (normally they’d be able to because they have the write permission on the
directory). If the sticky bit is applied, however, other users can remove the file only if
one of those listed conditions has been met.

Some comments on these permissions may be helpful. First, you should realize the dan-
gers of the SUID and SGID permissions if they are applied improperly. Imagine, for example,
that a given application has a security issue that allows users with the right knowledge to
access a shell environment and, at the same time, the user root owns this application. This
would make the user misusing the security issue root and give him permissions on your entire
system! So you should be extremely careful when applying SUID or SGID to files. On the other
hand, you may notice that some files have SUID set by default. For example, the program file
/usr/bin/passwd cannot work without it. This is because a user who changes his password
needs to write information to the /etc/shadow file. Only the user root can write data to this file,
and normal users cannot even read its contents. The operating system solves this problem by
applying the SUID permission, which temporarily grants users root permissions to change
their passwords.

■Tip Someone using a back door to get access to your server may use SUID on some obscure file to get
access the next time as well. As an administrator, you should regularly check your server for any occurrence
of the SUID permission on unexpected files. You can do this by running find / -perm +4000, which will
display all files that have the SUID permissions set.

The Set Group ID (SGID) permission has a dangerous side because it gives the user who
runs a command that has this permission the same permissions as the group owner of the
command. However, the SGID permission can be very useful. You may apply it on directories
where members of some user group need to share data with each other. The advantage of the
SGID permission, if it is applied to a directory, is that all files created in that directory will get
the same group owner. This allows all members of that group to read the file. Even if the group
just has read rights on files that are created in this directory, the SGID permission may create a
workable situation by allowing a user who is a member of the group to read the original file.
Without the write permission she cannot change its contents, but she can save the file with a
new name in the same directory. With the SGID permission applied to the directory, all files
created in the complete tree structure under this directory will get the same group as owner,
so the file will always be accessible for all members of the group. Thus, all users can work
together in a shared group-data directory in an efficient way.

However, in the scenario I’ve just described, there is still the problem that one user can
remove the files created by another user who is a member of the same group: both have write
permissions in the directory, and that’s enough to remove files. This can be prevented by
applying the sticky bit as well. When this permission is set, a user cannot remove a file if he
has only write permissions to the directory the file is in, without being the owner of the file.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 123

9233ch05.qxd 10/31/07 2:36 PM Page 123

Setting Permissions
Okay, that’s enough on how the permissions can be used. It’s time to set them. You’ll use two
commands to set and manipulate permissions: the chmod command to initially set permis-
sions, and the umask command to set default permissions.

Using chmod to Change Permissions
The chmod command is used to set permissions on existing files. The user root or the owner
of a file can use this command to change permissions of files or directories. It can be used
in either an absolute or a relative mode. When using chmod in a relative way, the entity (user,
group, or others) to which permissions are granted is specified, following by the + (add), ?
(remove), or = (set) operator, and then followed by the permissions you want to apply. In the
absolute mode, a numeric value is used to grant the permissions.

Using chmod in Relative Mode

If working in relative mode, the following values have to be used for the permissions that are
available:

• read: r

• write: w

• execute: x

• SUID: u+s

• SGID: g+s

• Sticky bit: t

The relative mode is useful when you want to add or remove one permission in an easy
and convenient way. For example, you can easily make a script file executable by using chmod
+x myscript. Because no u, g, or o is used in this command to refer to the entity the permis-
sions are applied for, the file will be made executable for everyone. You can, however, be
more specific and, for example, just remove the write permission for the other entity by using
chmod o-w somefile.

As for the special permissions, SUID is set with u+s and SGID is set with g+s. As the result,
you will see the SUID permission at the position of the x for users and the SGID permission at
the position of the x for groups. Listing 5-6 shows where the first file has SUID applied and the
second file has SGID applied. Both permissions really make sense only in combination with
the execute permission, and so I won’t discuss the hypothetical situation in which a file has
SUID applied but not executed for the owner, or SGID applied but not executed for the group.

Listing 5-6. Displaying SUID and SIGD with ls -l

-rwsr-xr-x 2 root root 48782 2006-03-09 11:47 somefile-withSUID
-rwxr-sr-x 2 root root 21763 2006-03-09 11:48 someotherfile-withSGID

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY124

9233ch05.qxd 10/31/07 2:36 PM Page 124

Using chmod in Absolute Mode

Although the chmod relative mode is easy to work with if you just want to set or change one
permission, it can get complicated if you need to change more than that. In such a case, the
absolute mode is more useful because it offers a short and convenient way to refer to the per-
missions that you want to set. In the absolute mode, you work with numeric values to refer
to the permissions that you want to set. For example, chmod 1764 somefile can be used to
change the permissions on a given file. Of these four digits, the first refers to the special per-
missions, the second indicates permissions for the user, the third for the group permissions,
and the last for the permissions for others.

Of the four digits that are used in absolute mode, the first can be omitted in most
instances. If this is the case, no special permissions are set for this file. When working with
chmod in absolute mode, you have to be aware of the values for the permissions you are work-
ing with:

• Read: 4

• Write: 2

• Execute: 1

• SUID: 4

• SGID: 2

• Sticky bit: 1

For example, to set permissions to read, write, and execute for others, to read and execute
for group, and nothing for others, you would use chmod 750 somefile. In this example, the
digit 7 refers to the user permissions. Because 7 is equal to 4 + 2 + 1, the user has read, write,
and execute permission. The group has 5, which equals 4 + 1. The others just have no permis-
sions.

As an alternative, you can use the command but with a 0 preceding the value (chmod 0750
somefile). However, it makes no sense in this case to use the initial 0 because no special per-
missions are used here.

Using umask to Set Default Permissions
You have probably noticed that default permissions are set when creating a new file, and these
permissions are determined by the umask setting. This is a shell setting that is set for all users
when logging in to the system. The default umask makes sure that all users have read access to
all new files. Because this isn’t very secure, it makes sense to restrict the default umask a little.

A numeric value is used in the umask setting, and this value is subtracted from the maxi-
mum permissions that can be set automatically; the maximum settings are 666 for files and
777 for directories. Of course, some exceptions to this rule make it all quite hard to under-
stand, but you can find a complete overview of umask settings in Table 5-2.

Of the digits used in the umask, as with the numeric arguments for the chmod command,
the first digit refers to user permissions, the second digit refers to the group permissions, and

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 125

9233ch05.qxd 10/31/07 2:36 PM Page 125

the last digit refers to the default permissions for others. The default umask setting of 022 gives
644 for all new files and 755 for all new directories that are created on your server.

Table 5-2. umaskValues and Their Results

Value Applied to Files Applied to Directories

0 read and write everything

1 read and write read and write

2 read read and execute

3 read read

4 write write and execute

5 write write

6 nothing execute

7 nothing nothing

You can change the umask setting for all users or for individual users. If you want to set the
umask for all users, you must make sure the umask setting is entered in the /etc/profile config-
uration file. If the umask is changed in this file, it applies to all users logging in to your server.

An alternative to setting the umask in /etc/profile (where it is applied to all users logging
in to the system) is to change the umask settings in a file with the name .profile that is created
in the home directory of an individual user. Settings applied in this file are applied for only the
user who owns the home directory, and so this is a nice method to create an exception for a
single user. You could, for example, create a .profile in the home directory of the user root
and in there apply the umask setting of 027, whereas the generic umask setting for ordinary
users is set to 022 in /etc/profile.

Working with Access Control Lists
Up to now, you’ve just read about the basic model to apply permissions on a Linux system.
When an advanced file system like Ext3 is used, it’s possible to add some options to this default
model. You’d do this by using the access control list (ACL) feature. In this section, you’ll learn
how this technique can be applied to allow for a more flexible security mechanism.

The main reason behind the development of the Linux ACL system was to compensate for
the shortcomings of default Linux permissions. Basically, the system had two problems:

• Default Linux permissions do not allow more than one entity to be set as user or group
owner of a file.

• In a default Linux permissions scheme, there is no option to set default permissions.

ACLs offer an optional system that can be used to compensate for these shortcomings. In
this section you’ll learn how to apply this system.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY126

9233ch05.qxd 10/31/07 2:36 PM Page 126

Preparing the File System for ACLs
Before you can use ACLs on a file system, you must add an option to /etc/fstab for all file
systems that must support ACLs. The following procedure describes how:

1. Open /etc/fstab with an editor.

2. Select the column with options. Add the option acl. Repeat this procedure for all file
systems where you want to use ACLs.

3. Remount all partitions where ACLs have been applied (or restart your server). For
example, to remount the root partition so that new settings are applied, use mount -o
remount /.

Using ACLs to Grant Permissions to More than One Object
The idea of an ACL is that connected to a file or directory, a list of users and groups is created
that has permission on a file or directory. By default, in the inode that is used for the complete
administration of files and directories, there simply isn’t enough room and you can’t easily
change this because of backward compatibility. As a result, you must specify for all devices
with which you want to use ACLs that ACLs have to be enabled for that device. Only then can
ACLs be set. ACLs can be used on most modern Linux file systems.

■Note The /etc/fstab file on Ubuntu server uses UUIDs instead of the device names of your file system.
Remember, a UUID is a unique ID that can be assigned to a file system. In the case of an Ext3 file system, for
example, this is done with the tune2fs command. For better readability, I’ve chosen to omit the UUIDs from
the examples in this book, and I’ll just refer to the device name of the file system.

If ACLs are enabled for a given device, you can use the setfacl command to set them. If
this command isn’t available, run apt-get install acl first. The use of setfacl is not too hard
to understand: for example, setfacl -m u:linda,rwx somefile can be used to add user linda
as a trustee (someone who has rights to a file) on the file somefile. This command does not
change file ownership, though; it just adds to the access control list a second user who also has
rights to the file. The normal output of the ls -l command does not show all users who have
rights by means of an ACL, but the + character appears behind the permissions list on that file.
To get an overview of all ACLs currently set to a given file, use the getfacl command. The fol-
lowing procedure gives you an opportunity to try it:

1. Make sure you are root and then create a file somewhere in the file system. You can use
the touch command to create an empty file; for example, use touch somefile to create
the file somefile.

2. Now use getfacl somefile to monitor the permissions that are set for this file. You will
see an overview as in Listing 5-7, indicating only the default permissions that are
granted to user, group, and others.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 127

9233ch05.qxd 10/31/07 2:36 PM Page 127

Listing 5-7. Before Applying an ACL, getfacl Just Displays Normal User, Group, and Others
Information.

myserver:~# touch somefile
myserver:~# getfacl somefile
file: somefile
owner: root
group: root
user::rw-
group::r--
other::r--

3. Now use the command setfacl -m g:account:rw somefile (you must have a group
with the name account for this to work). The group will now be added as a trustee to
the file, which can be seen when you use getfacl on the same command again.
Listing 5-8 provides an example of this.

Listing 5-8. After Adding Another Trustee, getfaclWill Show Its Name and the Rights You Have
Granted to This Trustee.

myserver:~# touch somefile
myserver:~# getfacl somefile
file: somefile
owner: root
group: root
user::rw-
group::r--
group:account:rw-
mask::rw-
other::r--

Working with ACL Masks
In the example in Listing 5-8, you can see what happens when a simple ACL is created. Not
only is a new entity added as the trustee of the object, but a mask setting is also added. The
mask is the summary of the maximum of permissions an entity can have on the file. This mask
is not very important because it is modified automatically when new permissions are set with
the ACL. However, the mask can be used to reduce the permissions of all trustees to a com-
mon denominator. Because it’s set automatically when working with ACLs, I recommend that
you just ignore the ACL masks: it makes things very complicated if you try to modify them in a
useful way.

Using Default ACLs
A default ACL can be applied on a directory. When using a default ACL, you can specify the
permissions that new files and directories will get when they are created in a given directory.
Therefore, you can consider default ACLs as a umask setting that is applied on a directory only.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY128

9233ch05.qxd 10/31/07 2:36 PM Page 128

If a directory has a default ACL, all files will get the permissions specified in that default ACL.
Also, subdirectories will get the permissions from the default ACL, and these permissions will
be set as their own permissions as well. If a default ACL exists for a directory, the umask setting
is not used for that directory.

To set a default ACL, the setfacl command must be used with the -d option. Otherwise, it
can be used with parameters as seen earlier. The following example will apply a default ACL to
somedir:

setfacl -d -m group:account:rwx somedir

Because this command uses the -d option, a default ACL is set for all entities that currently
are listed as trustees of the directory. You can see in Listing 5-9 that the command getfacl is
used to display the permissions currently applied to that directory.

Listing 5-9. Displaying the Default ACL for a Directory

myserver:~# getfacl somefile
file: somedir
owner: root
group: root
user::rwx
group::r-x
other::r-x
default:user::rwx
default:group::r-x
default:group:account:rw-
default:mask::rwx
default:other::r-x

The nice thing about working with default ACLs is that the rights that are granted in a
default ACL are automatically added for all new files and directories created in that directory.
However, you should be aware that, when you apply a default ACL to a directory, files and
directories that currently exist within that directory are not touched by this default ACL. If you
want to change permission settings in ACLs for existing files and directories, use the setfacl
command with the option -R (recursive).

ACL Limitations
You should also be aware of the limitations of working with ACLs, such as the fact that ACLs
are not cumulative (which is also the case for the normal Linux permissions). Let’s imagine
the not-so-realistic situation in which user stacey is the owner of a file and has only read per-
mission. She is also a member of the group sales, which is a trustee of the same file and has
read-write permission. So, when the permissions for this user are calculated, she will not have
both read and write. When determining the effective permission, the operating system will
check if she is the owner of the file. She is, and so the operating system will look no further
and the permissions for the owner are applied. The permissions for the group are ignored.

The problem of nonaccumulation becomes even more complex if a process belongs to
more than one group. When determining group rights, the group from which the process will
get its rights is selected randomly.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 129

9233ch05.qxd 10/31/07 2:36 PM Page 129

Another problem when working with ACLs is that many applications still don’t support
them. For example, most backup applications cannot handle ACLs, and your database
probably doesn’t either. However, changes are coming, and some applications have begun
supporting ACLs. One of these is the Samba file server, which uses ACLs extensively to emu-
late the working of Windows rights (check Chapter 10 for complete coverage of this server).
Also, some of the basic Linux utilities such as cp, mv, and ls currently support ACLs. How-
ever, you should always check that the utility you want to use supports ACLs before you
start using it.

Applying File Attributes
When working with permissions, there’s always a combination between a user or group object
and the permissions that these user or group objects have on a file or directory. An alternate
but seldom used method of securing files on a Linux system is to work with attributes. Attrib-
utes do their work regardless of the user who accesses the file. Of course, the difference is that
the owner of a file can set file attributes, whereas other users (except for the almighty root)
cannot.

For file attributes as well, an option must be provided in /etc/fstab before they can be
used. This is the user_xattr option that can be seen in the fstab example in Listing 5-7. Here’s
a list of the useful attributes that can be applied:

• A: This attribute ensures that the file access time of the file is not modified. Normally,
every time a file is opened, the file access time must be written to the file’s metadata,
which slows system performance. So, on files that are accessed on a regular basis, the A
attribute can be used to disable this feature.

■Tip You don’t like the access time being modified at all? In this case, use the noatime option in
/etc/fstab to specify that this feature be disabled for all files on a volume.

• a: This attribute allows a file to be modified but not removed.

• c: If you are using a file system that supports volume-level compression, this file attrib-
ute makes sure the file is compressed the first time the compression engine is activated.

• D: This attribute makes sure that changes to files are written to disk immediately and
not to cache first. This is a useful attribute on important database files to make sure
that they don’t get lost between file cache and hard disk. Using this option decreases
the risk of losing data due to a power failure, for instance.

• d: This attribute ensures that the file is not backed up in backups when the dump utility
is used.

• I: This attribute enables indexing for the directory where it is enabled. You’ll thus enjoy
faster file access for primitive file systems like Ext3 that don’t use a B-tree database for
fast access to files.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY130

9233ch05.qxd 10/31/07 2:36 PM Page 130

• j: This attribute ensures that, on an Ext3 file system, the file is first written to the jour-
nal and only after that to the data blocks on hard disk.

• s: This attribute overwrites the blocks where the file was stored with zeros after the file
has been deleted. This makes sure that recovery of the file is not possible after it has
been deleted.

• u: This attribute saves undelete information. A utility can then be developed that works
with that information to salvage deleted files.

■Note Although you can use quite a few attributes, you should be aware that most of them are rather
experimental and are useful only if an application is used that can work with the given attribute. For exam-
ple, it doesn’t make sense to apply the u attribute if no application has been developed that can use this
attribute to recover deleted files.

Use the chattr command if you want to apply attributes. For example, use chattr +s
somefile to apply the attribute s to somefile. Need to remove the attribute again? Use chattr
-s somefile. For an overview of all attributes that can be used, use the lsattr command.

Apply Quota to Allow a Maximum Amount of Files
User quota is a completely different way to apply restrictions to control how users can create
files and directories. By using quota, the amount of space that a user can occupy is limited.
Configuring user quota is a simple five-step procedure:

1. Install the quota software.

2. Prepare the file system where you want to use quota.

3. Initialize the quota system.

4. Apply quota to users and groups.

5. Start the quota service.

Before starting to apply quota, you should first realize how it must be applied. Quotas are
always user or group related and apply to a complete volume or partition. That is, if you have
one disk in your server, with one partition on it that holds your complete root file system, and
you apply a quota of 100 MB for user zeina, this user can create no more than 100 MB of files,
no matter where on the file system.

When working with quotas, you need to apply a hard limit, a soft limit, and a grace period.
The soft limit is a limit that cannot be surpassed on a permanent basis. (The user can create
more data than the quota allows on a temporary basis.) The grace period is the length of time
that the user can temporarily exceed the soft limit. The hard limit is an absolute limit, and,
after it’s reached (or when the grace period elapses, whichever is sooner), the user will not be
permitted to create new files.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 131

9233ch05.qxd 10/31/07 2:36 PM Page 131

Working with soft and hard limits is confusing at first glance, but it has some advantages:
if a user has more data than the soft limit allows, she still can create new files and isn’t stopped
in her work immediately. She will, however, get a warning to create some space before the
hard limit is reached.

Installing the Quota Software
To work with quotas, it makes sense that the quota software must be installed. You’ll do this
with the apt-get install quota command, and you’ll notice soon enough whether you need
to run it. If you try to use one of the quota management utilities (such as edquota) when the
quota software has not been installed yet, you’ll see a message that it has to be installed first.

Preparing the File System for Quota
Before you can use the quota software to limit the amount of disk space that a user can use on
a given file system, you must add an option to /etc/fstab for all file systems that must sup-
port quota. Here’s the procedure:

1. Open /etc/fstab with an editor.

2. Select the column with options. Add the option usrquota if you want to apply quota
to users and grpquota for groups. Repeat this procedure for all file systems where you
want to use quota.

3. Remount all partitions in which quota has been applied (or restart your server). For
example, to remount the root partition so that new settings are applied, use mount -o
remount /.

Initializing Quota
Now that you’ve finished the preliminary steps, you need to initialize the quota system. This is
necessary because all file systems have to be searched for files that have already been created,
and for a reason that’s probably obvious: existing files count towards each user’s quota, and so
a report must be created in which the quota system can see which user owns which files. The
report generated by this quota initialization is saved in two files: aquota.user is created to reg-
ister user quotas, and aquota.group is created for group quotas.

To initialize a file system for the use of quotas, you need to use the quotacheck command.
This command can be used with some options, and I’ll list only the most important ones here:

• -a: This option ensures that all file systems are searched when initializing the quota
system.

• -u: This option ensures that user information is searched. This information will be writ-
ten to the aquota.user file.

• -g: This option ensures that group information is searched as well. This information is
written to the aquota.group file.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY132

9233ch05.qxd 10/31/07 2:36 PM Page 132

• -m: Use this option to make sure that no problems will occur on file systems that are
currently mounted.

• -v: This option ensures that the command will work in verbose mode to show exactly
what it is doing.

So, the best way to initialize the quota system is to use the quotacheck -augmv command,
which (after a while) creates the files aquota.user and aquota.group to list all quota informa-
tion for current users.

Setting Quota for Users and Groups
Now that the quota databases have been created, it’s time for the real work because you’re
ready to apply quota to all users and groups on your system. You’ll do this with the edquota
command, which uses the nano editor to create a temporary file. This temporary file is where
you’ll enter the soft and hard limits you’ve decided upon for your users and groups. If, for
example, you want to apply a soft limit of 100,000 blocks and a hard limit of 110,000 blocks
for user florence, follow these steps:

■Tip The edquota command works only with blocks and not bytes, kilobytes, or anything else. So, to set
quota properly, you need to know the block size that’s currently used. To find that, use the dumpe2fs |
less command. You’ll find the block size in the second screen.

1. Issue the command edquota -u florence.

2. In the editor screen, six numbers specify the quota for all file systems on your com-
puter. The first of these numbers is the number of blocks that are currently being used
by the user you’re creating the quota file for. The second and third numbers are impor-
tant as well: the second number is the soft limit for the number of blocks, and the third
number is the hard limit on blocks in kilobytes. The fifth and sixth numbers do the
same for inodes, which roughly equal the number of files you can create on your file
system. The first and fourth numbers are used to record the number of blocks and
inodes that are currently being used for this user.

3. Close the editor and write the changes in the quota files to disk.

In this procedure, you learned that quota can be applied to the number of inodes and
blocks. If quotas are used on inodes, they specify the maximum number of files that can be
created. Most administrators think it doesn’t make sense to work that way, and so they set the
values for these to 0. A value of 0 indicates that this item currently has no limitation.

After setting the quota, if the soft limit and hard limit are not set to the same value, you
need to use the edquota -t command to set the grace time. This command opens another
temporary file in which you can specify the grace time you want to use, either in hours or in
days. The grace time is set per file system, so there’s no option to specify different grace time
settings for different users.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 133

9233ch05.qxd 10/31/07 2:36 PM Page 133

Once you have set quotas for one user, you may want to apply them to other users.
Instead of following the same procedure for all users on your system, you can use the edquota
-p command. For example, edquota -p florence alex copies the quotas currently applied for
user florence to user alex.

■Caution To set quotas, the user you are setting quotas for must be known to the quota system. This is
not done automatically. To make sure that new users are known to the quota system, you must initialize the
quota system again after creating the new users. I recommend setting up a cron job (see the “Setting the
System to Your Hand” section in Chapter 6 to do this automatically at a reasonable interval).

When all the quotas have been set the way you want, you can use the repquota command
to monitor the current quota settings for your users. For example, the repquota -aug com-
mand shows current quota settings for all users and groups on all volumes. Now that you’ve
set all the quotas you want to work with, you just have to start the quota service, and you’ll do
this with the /etc/init.d/quota start command.

Understanding Pluggable Authentication Modules
In the normal situation, the local user database in the Linux files /etc/passwd and /etc/shadow
is checked at login to a Linux workstation. In a network environment, however, the login pro-
gram must fetch the required information from somewhere else (for example, an LDAP
directory service such as OpenLDAP). But how does the login program know where it has to
search for authentication information? That’s where the pluggable authentication modules
(PAM) come in, and PAMs are what makes the login procedure on your workstation flexible.
With PAM you can redirect any application that has to do anything related to authentication
to any service that handles authentication. A PAM is used, for example, if you want to authen-
ticate with a private key stored on a USB stick, to enable password requirements, to prevent
the root user from establishing a telnet session, and in many other situations. The only thing
you need is a PAM that supports your authentication method.

The main advantage of a PAM is its modularity. In a PAM infrastructure, anything can be
used for authentication, provided there’s a PAM module for it. So, if you want to implement
some kind of strong authentication, ask your supplier for a PAM module and it will work. PAM
modules are stored in the directory /lib/security, and the configuration files specifying how
these modules must be used (and by which procedures) are in /etc/pam.d. Listing 5-10 is an
example of just such a configuration file, in which the login procedure learns that it first has to
contact an LDAP server before trying any local login.

Listing 5-10. Sample PAM Configuration File

auth sufficient /lib/security/pam_ldap.so
account sufficient /lib/security/pam_ldap.so
password sufficient /lib/security/pam_ldap.so
session optional /lib/security/pam_ldap.so

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY134

9233ch05.qxd 10/31/07 2:36 PM Page 134

auth requisite pam_unix2.so
auth required pam_securetty.so
auth required pam_nologin.so
#auth required pam_homecheck.so
auth required pam_env.so
auth required pam_mail.so
account required pam_unix2.so
password required pam_pwcheck.so nullok
password required pam_unix2.so nullok use_first_pass use_authok
session required pam_unix2.so
session required pam_limits.so

The authentication process features four different instances, and these are reflected in
Listing 5-10. Authentication is handled in the first instance; these are the lines that start with
the keyword auth. During the authentication phase, the user login name and password are
first checked, followed by the validity of the account and other account-related parameters
(such as login time restrictions). This happens in the lines that start with account. Then, all
settings relating to the password are verified (the lines that start with password). Last, the set-
tings relating to the establishment of a session with resources are defined, and this happens in
the lines that start with session.

The procedure that will be followed upon completion of these four instances is defined by
calling the different PAM modules. This occurs in the last column of the example configuration
file in Listing 5-10. There is, for example, the module pam_securetty that can be used to verify
that the user root is not logging in to a Linux computer via an insecure terminal. The keywords
sufficient, optional, required, and requisite are used to qualify the degree of importance
that the conditions in a certain module are met. Except for the first four lines (which refer to the
connection a PAM has to make to an LDAP server), conditions defined in all modules must be
met; they are all required. Without going into detail, this means that authentication will fail if
one of the conditions implied by the specified module is not met.

When enabling a server for logon to an LDAP server (as in example in Listing 5-10), four
lines are added to the default PAM configuration file in /etc/pam.d/login. These are the first
four lines, and they offer an alternative for valid authentication by using the pam_ldap.so mod-
ule. Passing the conditions imposed by these first four modules is sufficient to authenticate
successfully, but it is not required. (Sufficient in this context means that if, for example, the
instance auth passes all the conditions defined in pam_ldap.so, that’s enough for local authen-
tication. The local Linux authentication mechanism will no longer be used because the user
can authenticate against the LDAP server in this case. For this to work, you of course need a
valid user account that has all of the required Linux properties on the LDAP server. Configur-
ing that is beyond the scope of this book, but have a look at www.padl.com, for example, for
more information about this subject.

A nice thing about this example PAM configuration file is that it first checks if the LDAP
server can be used to authenticate to the network. Only if this doesn’t work is the default Linux
login mechanism used. The workings of this default mechanism are defined from the fifth line
on in the example configuration file.

By default, many services on Ubuntu Server are PAM enabled, and you can see this from a
simple ls command in the directory /etc/pam.d, which will show you that there is a PAM file
for login, su, sudo, and many other programs. I won’t cover all of them here, but will explain a

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 135

9233ch05.qxd 10/31/07 2:36 PM Page 135

http://www.padl.com

bit about some when the time is relevant. The true flexibility of PAM is in its modules which
you can find in /lib/security. Each of these modules has a specific function. The next section
provides a short description of some of the more interesting modules. But, before we dive into
that, you’ll quickly learn how to set a secure default policy.

Creating a Default Policy for Security
In a PAM environment, every service should have its own configuration for PAM. However, the
world isn’t perfect, and a given service may not have a PAM configuration. In this case, I rec-
ommend creating /etc/pam.d/other as a PAM configuration file. This file is processed by all
PAM applications that don’t have their own configuration file. If you really want to know if
your system is secure, give it the contents as detailed in Listing 5-11.

Listing 5-11. Configuring PAM for Security in /etc/pam.d/other

auth required pam_warn.so
auth required pam_deny.so
account required pam_warn.so
account required pam_deny.so
password required pam_warn.so
password required pam_deny.so
session required pam_warn.so
session required pam_deny.so

All four phases in the authentication process call two modules: pam_warn and pam_deny.
The pam_warn module generates a warning and writes that to your log environment (/var/log/
messages by default). Next, for all of these instances, the module pam_deny is called. This simple
module will just deny everything. The results? All modules will handle authentication properly,
as defined in their own configuration file, but, when that file is absent, this generic configura-
tion will make sure that all access is denied.

■Tip Want to know if a program is PAM enabled? Use ldd programname. For example, use ldd
/usr/bin/passwd to find the library files used by this command. If the modules libpam_misc and libpam
are listed, the module is PAM enabled. And so it should have its own configuration file for handling user
authentication.

Discovering PAM Modules
The usefulness of a system like PAM is entirely determined by its modules. Some of these
modules are still experimental, and others are pretty mature and can be used to configure a
Linux system. I’ll discuss some of the most important modules.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY136

9233ch05.qxd 10/31/07 2:36 PM Page 136

Pam_deny

As seen in Listing 5-11, the pam_deny module can be used to deny all access. It’s very useful if
used as a default policy to deny access to the system.

Pam_env

The module pam_env is used to create a default environment for users when logging in. In this
default environment, several system variables are set to determine what the environment a
user is working in looks like. For example, there is a definition of a PATH variable in which
some directories are included that must be in the search path of the user. To create these
variables, pam_env uses a configuration file in /etc/security/pam_env.conf. In this file, sev-
eral variables are defined, each with its own value to define essential items like the PATH
environment variable.

Pam_limits

Some situations require an environment in which limits are set to the system resources that
a user can access. Think, for example, of an environment in which a user can use no more
than a given number of files at the same time. To configure these limitations, you would
modify the /etc/security/limits.conf file. To make sure that the limitations that you set
in /etc/security/limits.conf are applied, use the pam_limits module.

In /etc/security/limits.conf, limits can be set for individual users as well as groups. The
limits can be applied to different items, some of which are listed here:

• fsize: Maximum file size

• nofile: Maximum number of open files

• cpu: Maximum CPU time in minutes

• nproc: Maximum number of processes

• maxlogins: Maximum number of times this user can log in simultaneously

The following code presents two examples of how these limitations can be applied. In
the first line, the user ftp is limited to start a maximum of one process simultaneously. Next,
everyone who is a member of the group student is allowed to log in four times simultaneously.

ftp hard nproc 1
@student - maxlogins 4

When applying these limitations, you should remind yourself of the difference between
hard and soft limits: a hard limit is absolute, and a user cannot exceed it. A soft limit can be
exceeded, but only within the settings that the administrator has applied for these soft limits.
If you want to set the hard limit to the same as the soft limit, use a - character as seen in the
previous code example for the group student.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 137

9233ch05.qxd 10/31/07 2:36 PM Page 137

Pam_mail

This useful module looks at the user’s mail directory and indicates if there is any new mail. It is
typically applied when a user logs in to the system with the following line in the relevant PAM
configuration file:

login session optional pam_mail.conf

Pam_mkhomedir

If a user authenticates to a machine for the first time and doesn’t have a home directory yet,
pam_mkhomedir can be applied to create this home directory automatically. This module will
also make sure that the files in /etc/skel are copied to the new home directory. This module is
especially useful in a network environment in which users authenticate through NIS or LDAP
and do not always work on the same machine. However, it’s recommended in such situations
to centralize user home directories on an NFS server so that, no matter where a user logs in to
a server, a home directory will always be present. Chapter 8 contains more information about
configuring an NFS server. The disadvantage of pam_mkhomedir is that, if the module is not
applied correctly, a user may end up with home directories on many different machines in
your network.

Pam_nologin

If an administrator needs to conduct system maintenance like installing new hardware and
the server must be brought down for a few moments, the pam_nologin module may prove
useful. This module makes sure that no users can log in when the file /etc/nologin exists. So,
before performing any maintenance, make sure to create this file. The user root will always be
allowed to log in to the system, regardless of this file existing or not.

Pam_permit

Pam_permit is by far the most insecure PAM service available. It does only one thing, and that’s
to grant access—always—no matter who tries to log in. All security mechanisms will be com-
pletely bypassed in this case, and even users who don’t have a valid user account can use the
services that are configured to use pam_permit. The only sensible use of pam_permit is to test
the PAM awareness of a certain module or to disable account management completely and
create a system that is wide open to everyone.

Pam_rootok

This module lets user root access services without entering a password. It’s used, for example,
by the su utility to make sure the user root can su to any account, without having to enter a
password for that user account.

Pam_securetty

In the old days when telnet connections were still very common, it was important for the user
root never to use a telnet session for login because telnet sends passwords in clear text over
the network. For this purpose, the securetty mechanism was created: a file /etc/securetty

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY138

9233ch05.qxd 10/31/07 2:36 PM Page 138

can be created to provide a list of all TTYs from which root can log in. By default, these only
include local TTYs 1 through 6. On Ubuntu Server, this module is still used by default, which
means that you can limit the TTYs where root can log in by manipulating this file.

Pam_tally

This very useful module can be used to keep track of attempts to access the system. It also
allows the administrator to deny access if too many attempts fail. The PAM module pam_tally
works with an application that uses the same name pam_tally that can be used to set the
maximum amount of failed logins that are allowed. All attempts are logged by default in
the /var/log/faillog file. If this module is called from a configuration file, be sure to at least
use the options deny=n and lock_time. The first determines the maximum number of login
attempts a user can make, and the second determines how long an account will be locked
after that number of login attempts has been reached. The value given to lock_time is
expressed in seconds by default.

Pam_time

Based upon the configuration file /etc/security/time.conf, the pam_time module is used to
limit the times between which users can log in to the system. You can use this module to limit
the access for certain users to specific times of the day. Also, access can be further limited to
services and specific TTYs that the user logs in from. The configuration file time.conf uses
lines with the following form:

services;ttys;users;times

The next line is an example of a configuration line from time.conf that denies access to all
users except root (the ! character in front of the times is used to deny access). This might be a
perfect solution to prevent users from breaking into a system that they shouldn’t be trying to
log in to anyway.

login ; tty* ; !root ; !Al0000-2400

Pam_unix

This is probably the most important of all modules: it is used to redirect authentication
requests through the /etc/passwd and /etc/shadow files. The module can be used with several
arguments, such as nullok and try_first_pass. The nullok argument allows a user with an
empty password to connect to a service, and the try_first_pass argument will always try the
password a user has already used (if a password is asked for again). Notice that many PAM
configuration files include a line to call the common configuration file common-auth. The
pam_unix file is called from here.

Pam_warn

The pam_warn module is particularly useful with log errors: its primary purpose is to enable
logging information about proposed authentication or password modification. For example, it
can be used in conjunction with the pam_deny module to log information about users trying to
connect to your system.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 139

9233ch05.qxd 10/31/07 2:36 PM Page 139

Configuring Administrator Tasks with sudo
Once upon a time, if the system administrator wanted to perform his administration tasks, he
would do that as root. However, this has some security risks, the most important of which is
that you might make a mistake and thus by accident remove everything from your server.
Therefore, on Ubuntu Server, the root account is disabled by default. It doesn’t even have a
password, so you cannot log in as root after a default installation. To perform tasks for which
root privileges are required, use the sudo mechanism instead.

The idea of sudo is that specific administrator tasks can be defined for specific users. If
one such user wants to execute one of the sudo commands that she has been granted access
to, she has to run it with sudo. For example, where normally the user root would type shutdown
–h to shut a machine down, a random user with sudo privileges would type sudo shutdown –h
now. Next, the user enters his password and the machine shuts down.

Because sudo is the basic mechanism on Ubuntu to perform tasks that normally are
reserved for root only, after a normal installation every administration tasks is performed that
way. As discussed in Chapter 2, if you first run as an ordinary user the sudo passwd root com-
mand, you can then set a password for the user root and do your work as root anyway. This
technique can be quite handy for administration of a server for which root privileges are
required all the time. After all, you have to work in the way that you like best.

To create a sudo configuration, you need to use the editor visudo. This editor is used to
open a temporary file with the name /etc/sudoers. In this file, you can define all sudo tasks
that must be available on your server. You should never open the /etc/sudoers file for editing
directly because that involves the risk of completely locking yourself out if you make an error.

■Tip On Ubuntu Server, visudo uses the text editor nano by default. If you are a Linux veteran who is
used to Vi, you’ll probably won’t like this. Want to use Vi instead of nano? Then use the command export
VISUAL=vi. Like what you see? Put it as the last line in /etc/profile and, from now on, every time that
you use either visudo or edquota, Vi is started instead of nano. In this book, I’m using the Vi alternative
because it automatically saves all files in the locations where they have to be saved.

As you can see in Listing 5-12, the default configuration in /etc/sudoers is rather simple.

Listing 5-12. Default Configuration in /etc/sudoers

root@RNA:/etc# cat sudoers
/etc/sudoers
#
This file MUST be edited with the 'visudo' command as root.
#
See the man page for details on how to write a sudoers file.
Host alias specification
User alias specification

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY140

9233ch05.qxd 10/31/07 2:36 PM Page 140

Cmnd alias specification

Defaults

Defaults !lecture,tty_tickets,!fqdn

User privilege specification
root ALL=(ALL) ALL

Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

It’s really just two lines of configuration. The first line is root ALL=(ALL) ALL, which speci-
fies that user root has the right to run all commands from all machines. Next, you can see that
the same is true for all users who belong to the user group admin. Typically, this is only the user
you have created during the installation of Ubuntu Server. If, for example, you would like to
specify that user linda is allowed to run the command /sbin/shutdown, no matter what host
she is connecting from, add the following line:

linda ALL=/sbin/shutdown

This line consists of three parts. In the first part, the username is entered. Instead of the
name of a specific user, you can refer to groups as well, but, if you do that, make sure to put
a % sign before the group name. The second part—ALL in this example—refers to the name
of the host where the user is logged on. Here, that host name has no limitations, but you can
specify the name of a specific machine to minimize the risk of abuse by outsiders. Next, the
command that this user is allowed to use (/sbin/shutdown, no options) is specified. This
means that the user is allowed to run all options that can be used with this command. If you
want to allow the user just one option, you need to include that option in the command line.
If that’s the case, all options that do not match the pattern you have specified in sudoers are
specifically denied.

Now that the sudo configuration is in place, the specified user can run his commands. To
do this, the complete command should be referred to because the directories that typically
house the root commands (/sbin, /usr/sbin) are not in the search path for normal users. So,
user linda should use the following command to shut down the machine:

sudo /sbin/shutdown -h now

An Introduction to Setting Up the Netfilter Firewall
with iptables
Most settings discussed so far involve security measures that make your server internally
secure. You must also consider, however, that something or someone from the outside world
will try to connect to your server, and so you need some security at that level, too. The best
way to achieve this security is with a firewall.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 141

9233ch05.qxd 10/31/07 2:36 PM Page 141

■Note Netfilter is a firewall that is implemented in the Linux kernel. The Netfilter firewall is manipulated by
using the iptables command. In day-to-day use, both names get confused frequently, but both refer to the
same firewall.

All Linux distributions come with the Netfilter firewall by default. As we mentioned, this
firewall is implemented in the Linux kernel, which makes it very fast, and you manipulate the
firewall with the iptables command. In this subsection I’ll give you a short introduction to the
workings of iptables.

Configuring a firewall without the proper preparation is a very bad idea. Before you start
configuring, you should be very clear what exactly it is that you want and need your firewall to
do. For a server that has a public as well as a private network card, you could make a table like
the example in Table 5-3.

Table 5-3. Overview of Required Services for Your Firewall

Interface Service Inbound/Outbound

private SSH outbound, inbound

public HTTP inbound

public, private ping outbound

public, private DNS outbound, inbound

Once you have a simple setup matrix like this, you can start configuring the firewall. But,
before you start, you should know something about the way a Netfilter firewall is organized.

Netfilter Building Blocks
The most elementary building blocks for a Netfilter firewall are the chains, which are basically
sets of rules that are applied to a certain traffic flow on your server. When setting up a Netfilter
firewall, you start with three chains that by default are empty. To use these chains, you must
add rules to them. Table 5-4 provides a short description of the three default chains.

Table 5-4. Chains Are the Basic Building Blocks for a Netfilter Firewall.

Chain Description

INPUT This chain applies to all incoming traffic that is destined for the server itself. It
does not apply to traffic that needs to be routed.

OUTPUT This chain applies to all traffic that comes from a process on the server. It does
not apply to traffic that comes from the routing process.

FORWARD This chain applies to all traffic that comes in from a network interface but is not
destined for the local machine and has to be routed.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY142

9233ch05.qxd 10/31/07 2:36 PM Page 142

Figure 5-1 is a schematic that provides an overview of the place where the three default
chains are functioning. The NIC positions in the figure indicate that the network interface
card is involved. As you can see in the figure, the INPUT chain applies to incoming traffic
before it encounters server processes, the OUTPUT chain involves outgoing traffic after it
leaves the server processes, and the FORWARD chain involves traffic that goes from one net-
work board directly to another.

Figure 5-1. Overview of the Use of Netfilter Chains

The next requirement in a Netfilter configuration is a set of rules. In these rules, different
packet types are defined, and a default action is defined for each of them as well. Three things
may happen when a packet matches a rule: it can be accepted (ACCEPT), it can be dropped
(DROP), and it can be logged (LOG). Note that, instead of DROP, which silently discards a
packet, you can also use REJECT. In this case, a message is sent to the source of the packet.
The rules are evaluated from top to bottom, and, as soon as a rule matches a packet, the rule
is applied and no other rules are evaluated. The one exception to this is if the packet matches
a LOG rule, in which case it is logged and continues to go on to the next rule.

At the end of all rule sets, a policy must be defined. You must make sure that the default
policy is always set to DROP, so you can make sure that only packets that specifically match a
rule are allowed and that everything else is dropped.

To define the rules, you’ll use the iptables command. Be aware that nothing you config-
ure with iptables is stored automatically, so you need to store the rules that you create in a
configuration file so that they are executed automatically the next time your server boots. You
can, for example, put them in /etc/init.d/boot.local to ensure that they are activated at the
earliest possible stage in the boot process.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 143

9233ch05.qxd 10/31/07 2:36 PM Page 143

Using iptables to Create a Firewall
When creating your own firewall with iptables, the first thing you need to do is to set some
default policies. Do note, however, that the policy will become effective immediately, so, if you
are configuring your firewall from an external connection, you will be locked out immediately.
In this section, I’ll assume that you are configuring iptables from the machine itself (after all,
you wouldn’t connect an unsecured server to the network, would you?). So start by creating
some policies, entering the following commands:

iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT DROP

Your server is now completely secure; in fact, it is so secure that even your graphical envi-
ronment won’t come up anymore if it is installed, so don’t save this configuration and reboot
your server yet. Let’s first do some additional tuning to allow for some minimal functionality.

Now that the default policy for every chain has been specified, you need to define the
rules themselves. All rules must involve certain elements, and these are the matching parts,
the target and the position in the chain. Basically, every iptables command uses the following
generic structure:

iptables <position in the chain> <chain> <matching> <target>

The next subsections describe how these are used.

Defining Matching Rules
An important part of every rule is the matching part, and the following list comprises the most
popular elements that can be used for matching. Note that you don’t have to use all of them in
a rule: if one of these elements isn’t specified, the rule is simply applied to all. For example, if
you don’t specify a source IP address but you do specify a source port number, the rule applies
to the source port number, coming from no matter what source IP address. The following ele-
ments can be used for matching in a rule:

• Interface: Use this to specify the network interface to which the rule applies. The -o
option is used to refer to an output interface, and -i is used for the input interface. It
may not surprise you that -o isn’t used in the INPUT chain (because it refers to incom-
ing packets only) and -i isn’t used in the OUTPUT chain (which refers to outgoing
packets only).

• Source/destination IP address: You can use -s (source) or -d (destination) to refer to an
IP address. Both IP addresses for individual hosts and IP addresses for complete net-
works can be used. For example, use -s 192.168.0.1 to refer to one host only, or -s
192.168.0.0/16 for all hosts that have a network address starting with 192.168.

• Protocol: Use this to refer to protocols as defined in the file /etc/protocols. Protocol
numbers as well as protocol names as used in this file can be used here. For example, -p
TCP refers to all packets in which TCP is used.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY144

9233ch05.qxd 10/31/07 2:36 PM Page 144

• Ports: Another very popular method to filter, this one is based on TCP or UDP port
numbers. You can use --sport to refer to a source port or --dport to refer to a destina-
tion port. Any port number can be used, so check /etc/services for a complete list of
services and their default ports if you need more details. For example, use --sport
1024:65535 if you want to refer to all ports above port 1024, or use --dport 25 to refer to
the SMTP port. Note that, when using a port specification, you should always use a pro-
tocol specification as well. So don’t just use --dport 25; use -p TCP --dport 25.

Specifying the Target
After specifying the matching criterion, a second part of all rules is the so-called target: the
action that has to be performed when a rule matches a packet. All rules have a target, and the
following targets are available:

• ACCEPT: The packet is accepted.

• REJECT: The packet is rejected, and a message is sent to its sender.

• DROP: The packet is discarded and no message is sent to the sender.

• LOG: The packet is logged. Note that this is the only target that doesn’t stop the packet
from further evaluation.

Specifying the Position in the Chain
The very first thing you need to do is to specify where exactly in the chain you need to add a
rule. Imagine, for example, that you want to disallow all traffic that has destination port 80,
but you do want to allow all traffic coming from IP address 1.2.3.4. If you first create the rule
that specifies the destination port and then create the rule for IP address 1.2.3.4, packets from
1.2.3.4 that have destination port 80 would be rejected as well. Order does matter. When creat-
ing a rule, the following options can be used to specify where in the chain you want the rule to
appear:

• -A: Add the rule to the end of the chain.

• -D: Delete the rule from the chain.

• -R: Replace a rule.

• -I: Insert the rule at a specific position. For example, use iptables -I INPUT 2 to place
the rule on the second position in the INPUT chain.

Stateful Rules
When creating a rule to match packets that always use the same port numbers, everything is
easy. Of course, this isn’t always the case. For example, a user who connects to a web server
will always connect to that web server on port 80, but the packets sent back from the web

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 145

9233ch05.qxd 10/31/07 2:36 PM Page 145

server use a randomly chosen port number above 1024. You could create a rule in which out-
going packets on all ports above 1024 are opened, but that’s not ideal for security reasons.
A smart way of dealing with this problem is by using stateful packet filters. A stateful packet
filter analyzes if a packet that goes out is part of an already established connection, and, if it
is, it allows the answer to go out. Stateful packet filters are useful for replies that are sent by
web servers and for FTP servers as well because, in the case of an FTP server, the connection
is established on port 21, and, once the session is established, data is sent over port 20 to
the client.

By using the --state option you can indicate what state a rule should look at. This func-
tionality, however, is not a part of the core Netfilter modules, and an additional module has to
be loaded to allow for state checking. Therefore, in every rule that wants to look at the state
that a packet is in, the -m state option is used first, followed by the exact state the rule is look-
ing at. For example, -m state --state RELATED,ESTABLISHED would look at packets that are
part of related packets that are already allowed, or packets that are a part of an established
session.

The state module isn’t the only module that can be used, and many other modules are
available for more advanced configurations. For example, the nth module allows you to have
a look at every nth packet (such as every third for example). Further discussion of modules
is out of the scope of this book, so check the documentation page of the Netfilter web site at
www.netfilter.org/documentation for more in-depth information.

Creating the Rules
Based on this information, you should be able to create some basic rules. Let’s assume that
you have a server that has only one NIC. On this network card, you want to allow requests to
the web server to come in and replies from it to go out. Also, you want to allow SSH traffic. For
the rest, no other services are needed.

Like any other Netfilter configuration, you would start this configuration by creating some
policies. Every chain needs its own policy. The following commands make sure that no packet
comes in or out of your server by setting the policy for each chain to DROP:

iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT DROP

Now that everything is blocked, you can start by allowing some packets to go in and out.
First and foremost, you have to enable the loopback interface because the policies that you’ve
just defined also disable all traffic on the loopback interface and that’s not good (because
many services rely on the loopback interface). Without loopback interface, for example, you
have no way to start the graphical environment on your machine, and many other services
will fail as well. Imagine that the login process queries an LDAP server that runs on the local-
host. Now open the loopback interface using the following two rules:

iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY146

9233ch05.qxd 10/31/07 2:36 PM Page 146

http://www.netfilter.org/documentation

In these two rules, the -A option is used to refer to the chain the rules have to be added
to. You are using -A, and so the rule is just appended to the INPUT and the OUTPUT chains.
This would make the rule the last rule that is added to the chain, just before the policy that
is always the last rule in a chain that is evaluated. Next, -i lo and -o lo are used to indicate
that this rule matches to everything that happens on the loopback interface. As the third and
last part of these two rules, the target is specified by using the -j option (which is short for
“jump to target”). In this case, the target is to accept all matching packets. So, now you have
a server that allows nothing on the external network interfaces, but the loopback interface is
completely open.

Next, it’s time to do what you want to do on your server: allow incoming SSH and HTTP
traffic and allow replies to the allowed incoming traffic to be returned. Note that these two
requirements consist of two parts: a part that is configured in the INPUT chain and a part
that is configured in the OUTPUT chain. Let’s start with some nice rules that define the
input chain:

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -m state --state NEW -j ACCEPT
iptables -A INPUT -j LOG --log-prefix "Dropped illegal incoming packet: "

The first rule in this INPUT chain tells Netfilter that all packets that are part of an already
established or related session are allowed in. Next, for packets coming in on SSH port 22 that
have a state NEW, the second rule indicates that they are allowed as well. Thirdly, packets that
are sent to TCP destination port 80 (notice the combination between -p tcp and --dport 80 in
this rule) and have a state NEW are accepted as well. The last rule finally makes sure that all
packets that didn’t match any of the earlier rules are logged before they are dropped by the
policy at the end of the rule. Note that logging all dropped packets as a default may cause big
problems.

■Caution Use logging only if you need to troubleshoot your firewall. It’s generally a bad idea to switch on
logging by default, because, if not done properly, it can cause huge amounts of information to be written to
your log files.

Now that you have defined the INPUT chain, let’s do the OUTPUT chain as well. No spe-
cific services have to be allowed out, with the exception of the replies to incoming packets
that were allowed, and so creating the OUTPUT chain is rather simple and consists of just
two rules:

iptables -A OUTPUT -m state RELATED,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -j LOG --log-prefix "Dropped illegal outgoing packet: "

The use of these two rules should be clear from the explanation earlier in this section.
Note that it is a good idea to turn on logging for the OUTPUT rule (unlike for the INPUT rule).

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 147

9233ch05.qxd 10/31/07 2:36 PM Page 147

This is because, if an illegal packet should leave your server, that would indicate that some
rogue service is active on your server and you would absolutely need to know about it.

To make it a little easier to create your own Netfilter rules, Table 5-5 lists some of the port
numbers that are commonly configured in a Netfilter firewall. For a complete list of all port
numbers and the names of related services, check the contents of the /etc/services file,
which lists all known services with their default ports.

Table 5-5. Frequently Used Port Numbers

Port Service

20 FTP data

21 FTP commands

22 SSH

25 SMTP

53 DNS

80 WWW

88 Kerberos authentication

110 POP3

111 RPC (used by NFS)

118 SQL databases

123 NTP Time

137–139 NetBIOS ports (used by the Samba server)

143 IMAP

161 SNMP (network management)

389 Unsecure LDAP

443 HTTPS

524 NCP (used by some native Novell services like eDirectory)

636 Secure LDAP

Let’s stop talking about Netfilter. On a server that uses Netfilter as a kind of personal
firewall, this is probably all you need to know. Notice, however, that much more can be
done with iptables. But discussion of all that goes beyond the scope of this book, so
check www.netfilter.org/documentation for very complete and overwhelmingly in-depth
information.

■Tip Were you looking for information on how to configure your server as a NAT firewall? Although that’s
also outside the scope of this book (most people use dedicated routers for this purpose), I’d like to share
the rule to do that anyway. Use iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source
yourserverspublicIPaddress to make your server a NAT router. Have a lot of fun with it!

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY148

9233ch05.qxd 10/31/07 2:36 PM Page 148

http://www.netfilter.org/documentation

Summary
In this chapter, you learned how to secure your server, and we covered the most important
aspects of Linux security. I began by talking about users, groups, and permissions. After that, I
introduced some advanced file-system security options: access control lists and user-extended
attributes. Next, you read about some important internal mechanisms: PAM and sudo. Finally,
in the last part of this chapter, you got an introduction to the configuration of a Netfilter fire-
wall. Your server ought to be secure now, so let’s proceed with Chapter 6, where you’ll learn how
to let the system do exactly what you want it to do. I’ll cover topics like process management,
the boot procedure, and kernel management.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 149

9233ch05.qxd 10/31/07 2:36 PM Page 149

9233ch05.qxd 10/31/07 2:36 PM Page 150

Setting the System to Your Hand
Management of Processes,
Boot Procedure, Kernel,
and Hardware

After reading the first five chapters of this book, your server should be up, running, and
secure as well. However, up to now, the server has mostly been left to its own devices, which
isn’t what you typically want for a server. So, in this chapter, you will learn how to customize
and optimize your server.

We'll have a look at some important aspects of your server that can be tuned and modi-
fied to increase its efficiency. First, I’ll talk about process monitoring and management. Then,
I’ll talk about cron and how you can use it to automate process execution. After that, you’ll
learn about the system boot procedure, followed by kernel and hardware management.

Process Monitoring and Management
Everything you do on a Linux server is handled as a process by that server, and so it’s very
important that you know how to manage these processes. In this section, you'll learn how to
start and stop processes, what different processes are available for your system, and how to
run and manage processes in both the foreground and background. You will also learn how
to use cron and to schedule processes for future execution.

Different Kinds of Processes
It depends on the way you look at them, but you could say that Linux basically has two dif-
ferent kinds of processes: automatic and interactive. First are the services that are started
automatically when you boot your server. These processes are known as daemons. The start
process that is responsible for an important part of your server’s boot procedure takes care
that these processes are started properly. Daemons are service processes that run in the back-
ground; in other words, they do not write their output directly to the standard output. The

151

C H A P T E R 6

9233ch06.qxd 10/25/07 4:14 PM Page 151

second kind of process is the interactive process. These processes are started by users from
a shell. Any command started by a user and producing output on the standard output is an
interactive process.

To start an interactive process, a user needs to type the corresponding command. The
process then runs as a child process from the shell in which the user entered the command.
The process will do its work and will terminate when it’s finished. While terminating, it will
write its exit status to its parent (which is the shell if the process was an interactive process).
Only after a child process has told its parent that it has terminated can it be closed properly.
In case the parent is no longer present (which is generally considered an error condition), the
child process will become a so-called zombie process, and it won’t be possible to perform any
management on the process, except for trying to restart the parent process. In general, zombie
processes are the result of bad programming. You should try to upgrade (or maybe rewrite)
your software if you see too many of them.

The concepts of parent and child processes are universal on your system. The init
process is started by upstart (which we’ll cover later) as the first process and from there, all
other processes are started. You can get an overview of the hierarchical process structure by
using the pstree command, which provides a result such as in Listing 6-1.

Listing 6-1. The pstree Command Shows Relations Between Parent and Child Processes.

init ----apache2----5*[apache2]
|--atd
|--cron
|--dd
|--dhclient3
|--events/0
|--5*[getty]
|--khelper
|--klogd

Although interactive processes are important to users working on your machine,
daemon processes are more important on a server that is providing services. Daemon
processes typically run in the background and normally don't send any output to the termi-
nal. To see what they are doing, you must check the log files to which the daemon processes
write. Generally speaking, it’s a good idea to start with /var/log/messages if you are looking
for daemon output. From a perspective of process management, it doesn't really matter if
you’re working with daemon or interactive processes: both can be handled the same way
using the same commands.

Foreground and Background
When working with interactive processes, it can be useful to know that processes can run in
the foreground and in the background. Before talking about the way you can start and manage
processes that run in the background, let's talk about some process details so that we can
understand what's happening.

A process always works with three standard file handlers that determine where the process
should send its output and accept its input. They are the standard input (STDIN), the standard
output (STDOUT), and the standard error (STDERR). Normally, when a process is running in

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND152

9233ch06.qxd 10/25/07 4:14 PM Page 152

the foreground, the STDIN is your keyboard, the STDOUT is the terminal the process is work-
ing on, and the STDERR is also the terminal that the process is working on. As you learned in
Chapter 2, you can change them all by using redirection.

It can be a little confusing that the three file descriptors don’t change when you decide
to run a process in the background. When it starts, the STDIN, STDOUT, and STDERR for
a process are set, and, once they are set, they stay like that no matter what you do to the
process. Therefore, you can run a long command like find / -name "*" -exec grep -ls
something {} \; as a background job, but you’ll still see its output and errors on your screen.
If you don’t want that, you should use redirection to send STDOUT and STDERR somewhere
else: by putting > /somewhere after the command, you are redirecting the standard output to a
file called /somewhere and by using 2> /dev/null, you can arrange for all errors to be redi-
rected to the null device.

■Tip Want to know what’s really happening? In the /proc file system, you can see how STDIN, STDOUT,
and STDERR are defined. Check the directory with the PID of the process as its name (see the section
“Managing Processes” later in this chapter for more details on process IDs). In this directory, activate the
subdirectory fd (short for “file descriptors”). You’ll see a list of all files the process currently has open, and
these are the so-called file descriptors. Number 0 is STDIN, 1 is STDOUT, and 2 is STDERR. Use the com-
mand ls -l to check what they are linked to, and you will know how STDIN, STDOUT, and STDERR are set
for this process. If the subdirectory fd is empty, you’re probably dealing with a daemon process that has no
file descriptors.

Now that you know what to expect when working with processes in the background, it’s
time to learn how you can tell a process that it should be a background process. Basically, you
can do this in one of two ways:

• Put an & after the name of the command when starting it. This makes it a background
job immediately. For example, use nmap 192.168.1.10 > ~/nmap.out & to run the nmap
command as a background process. What’s the advantage of this? While waiting for the
command to produce its output, you can do something else.

• Interrupt the process with the Ctrl+Z key sequence and then use the bg command to
restart it in the background.

Once the command is running as a background job, you can still control it. Use the jobs
command for an overview of all current background processes. You’ll see a list of all interac-
tive processes that have been started from the same shell environment. In front of each of
these processes, you can see their current job number, and this job number can be used to
manage the process with the fg command. For example, if jobs gives you a result such as

RNA:~# jobs
[1]- Running cat /dev/sda > /dev/null &
[2]+ Running find / -name "*" -exec grep -ls help \; > /dev/null &

and you want to be able to terminate the cat command with Ctrl+C, use fg 1 to bring the cat
command to the foreground again.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 153

9233ch06.qxd 10/25/07 4:14 PM Page 153

Managing Processes
As a Linux administrator, process management is a major task. If, for example, your server is
reacting very slowly, you can probably find a process that’s causing the problem. If this is the
case, you need to know how to terminate that process, or maybe how you can reset its priority
so that it can still do its work while not stopping other processes. The following subsections
describe what you need to know to perform daily process management tasks.

Tuning Process Activity
If something isn’t going well on your server, you want to know about it. So, before you can con-
duct any process management, you need to tune process activity. Linux has an excellent tool
that allows you to see exactly what’s happening on your server: the top utility. From this utility
you can see everything you need to know. It is very easy to start top: use the top command.
When the utility starts, you’ll see something like Figure 6-1.

Figure 6-1. The top utility gives you everything you need to know about the current state of
your server.

Using top to Monitor System Activity

The top window consists of two major parts. The first (upper) part provides a generic overview
of the current state of your system. These are the first five lines in Figure 6-1. In the second
(lower) part of the output, you can see a list of processes, with information about the activity
of these processes.

The first line of the top output starts with the current system time. This time is followed by
the “up” time; in Figure 6-1, you can see that the system has been up for only a few minutes.
Next, you see the number of users currently logged in to your server. The end of the first line

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND154

9233ch06.qxd 10/25/07 4:14 PM Page 154

contains some very useful information: the load average. This line shows three different num-
bers. The first is the load average for the last minute, the second is the load average for the last
5 minutes, and the third is the load average for the last 15 minutes.

The load average is displayed by a number that indicates the current activity of the
process queue. The value here is the number of processes that are waiting to be handled by
the CPU on your system. On a system with one CPU, a load average of 1.00 indicates that the
CPU is completely occupied, but there are no processes waiting in the queue. If the value
increases past 1.00, the processes are lining up and users may experience delays while com-
municating with your server. It’s hard to say what exactly a critical value is. On many systems,
a value anywhere between 1 and 4 indicates that the system is just busy, but, if you want your
server to run as smoothly as possible, make sure that this value exceeds 1.00 only rarely.

If an intensive task (such as a virus scanner) becomes active, the load average can easily
rise to a value of 4. It may even happen that the load average reaches an extreme number like
254. In this case, it’s very likely that processes will wait in the queue for so long that they will
die spontaneously. What exactly indicates a healthy system can be determined only by doing
some proper baselining of your server. In general, 1.00 is the ideal number for a one-CPU sys-
tem. If your server has hyperthreading, dual-core, or two CPUs, the value would be 2.00. And,
on a 32-CPU system with hyperthreading enabled on all CPUs, the value would be 64. So the
bottom line is that each (virtual) CPU counts as 1 toward the overall value.

The second line of the top output shows you how many tasks currently are active on your
server and also shows you the status of these tasks. A task can have four different statuses:

• Running: In the last polling interval, the process has been active. You will normally see
that this number is rather low.

• Sleeping: The process has been active, but it was waiting for input. This is a typical sta-
tus for an inactive daemon process.

• Stopped: The process is stopping. Occasionally, you’ll see a process with the stopped
status, but that status should disappear very soon.

• Zombie: The process has stopped, but it hasn’t been able to send its exit status back to
the parent process. This is a typical example of bad programming. Zombie processes
will sometimes disappear after a while, and will always disappear when you have
rebooted your system.

The third row of top provides information about current CPU activity. This activity is sep-
arated into different statistics:

• us: CPU activity in user space. Typically, these are commands that have been started by
normal users.

• sy: CPU activity in system space. Typically, these are kernel routines that are doing their
work. Although the kernel is the operating system, kernel routines are still often con-
ducting work on behalf of user processes or daemons.

• id: CPU inactivity, also known as the idle loop. A high value here just indicates that your
system is doing nothing.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 155

9233ch06.qxd 10/25/07 4:14 PM Page 155

• wa: For “waiting,” this is the percentage of time that the CPU has been waiting for new
input. This should normally be a very low value; if not, it’s time to make sure that your
hard disk can still match up with the other system activity.

• hi: For “hardware interrupt,” this is the time the CPU has spent communicating with
hardware. It will be rather high if, for example, you’re reading large amounts of data
from an optical drive.

• si: For “software interrupt,” this is the time your CPU has spent communicating with
software programs. It should be rather low on all occasions.

• st: This parameter indicates the time that is stolen by the virtualization hypervisor (see
Chapter 12 for more details about virtualization and the hypervisor) from a virtual
machine. On a server that doesn’t use any virtualization, this parameter should be set to
0 at all the times. In a virtual machine that sees a lot of activity, the parameter will rise
from time to time.

The fourth and fifth lines of the top output display the memory statistics. These lines
show you information about the current use of physical RAM (memory) and swap space.
(Similar information can also be displayed using the free utility.) The important thing that
you should see here is that not much swap space is in use. Swapping is bad, because the disk
space used to compensate for the lack of physical memory is approximately a thousand times
slower than real RAM.

If all memory is in use, you should take a look at the balance between buffers and cache.
Cache is memory that can be freed for processes instantaneously, and buffer memory is mem-
ory that is actually used by processes and that cannot be freed without stopping the processes
that are consuming it. A healthy server should have a relatively high value for cache and a rela-
tively low value for buffers. On a busy workstation, you should expect the opposite.

The lower part of the top window provides details about the process that’s most active
in terms of CPU usage. It’ll be the first process listed, and the line also displays some usage
statistics:

• PID: Every process has a unique process ID (the so-called PID). Many tools such as kill
need this PID for process management.

• User: This is the name of the user ID the process is using. Many processes run as root,
so you will see the username root rather often.

■Note For well-programmed processes, it’s generally not a problem that they’re running as root. It’s a dif-
ferent story though for logging in as the user root.

• PRI: This is the priority indication for the process. This number is an indication of when
the process will get some CPU cycles again. A lower value indicates a higher priority so
that the process will have its share of CPU cycles sooner. The value RT indicates that it
is a real-time process and is therefore given top priority by the scheduler.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND156

9233ch06.qxd 10/25/07 4:14 PM Page 156

• NI: The nice value of the process. See “Setting Process Priority” later in this chapter for
more details on nicing processes.

• VIRT: This is the total amount of memory that is claimed by the process.

• RES: The resident memory size is the memory that the process is actually using at the
moment.

• SHR: The amount of shared memory is what the process shares with other processes.
You’ll see this quite often, as processes often share libraries with other processes.

• S: This is the status of the process, and they’re the same status indications as the ones in
the second line of the top screen.

• %CPU: This is the amount of CPU activity that the process has caused in the last polling
cycle (which is typically every 5 seconds).

• %MEM: This is the percentage of memory the process has used in the last polling cycle.

• TIME+: This indicates the total amount of CPU time that the process has used since it
was first started. You can display this same value by using the time command, followed
by the command that you want to measure the CPU time for.

• Command: This is the command that started the process.

As you have seen, the top command really provides a lot of information about current
system activity. Based upon this information, you can tune your system so that it works in the
most optimal way.

Other Tools to Monitor System Activity
Although top is not the only tool that you can use for process monitoring, it’s the most impor-
tant. Its major benefit is that it shows you almost all you need to know about your system’s
current activity, but you should be aware that top itself takes up system resources as well, thus
skewing the parameters that it shows. Some other good performance-monitoring tools are
available as well:

• ps: This tool gives a list of processes.

• uptime: This tool shows how long the server is up and gives details about the load aver-
age as well. Basically, it displays the same output as the first line of output of the top
command.

• free: Use this tool to show information about memory usage.

Terminating Processes
In your work as an administrator, you’ll need to terminate misbehaving processes on a regu-
lar basis. When terminating a process, you’ll send it a predefined signal. In general, the three
important ones are SIGHUP, SIGKILL, and SIGTERM.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 157

9233ch06.qxd 10/25/07 4:14 PM Page 157

If you send the SIGHUP signal to a process, it doesn’t really terminate the process but just
forces it to reread its configuration files. This is very useful to make sure that changes that you
made to configuration files are applied properly. Next is SIGKILL, which is sent to a process
when someone uses the infamous kill -9 <PID> command to terminate a process. In this
command, the -9 is a numerical representation for the SIGKILL signal. (Check the signal(7)
man page for more details about signals and their numerical representations.) The SIGKILL sig-
nal doesn’t terminate a process nicely: it just cuts it off, and the results can be severe because
the process doesn’t have an opportunity to save open files. Therefore, SIGKILL will definitely
damage any open files and possibly even lead to system instability. So use it only as a last
resort.

SIGTERM is the third signal that a process will always listen to. When a process receives
this signal, it shuts down gracefully. It closes all open files and also tells its parent that it’s
gone. Using SIGTERM is the best way to terminate processes you don’t need anymore.

Commands for Process Termination
You can use different commands to terminate a process. The following list provides a short
description of the most important ones:

• kill: This is one of the most commonly used commands to terminate processes. It
works with the PID of the process you need to kill. If a special signal needs to be sent to
a process, the signal is commonly referred to with its numeric argument (for example
kill -9 1498), but you can use kill --sigkill <pid> instead. If no signal is referred
to, the default SIGTERM signal (15) is sent to the process.

• killall: The major disadvantage of kill is that it works with one or more PIDs and
thus isn’t the best solution to kill more than one process at once. If you need to kill
more than one process, you better use killall, which works with the name of the
process. For example, killall httpd kills all instances of the Apache web server that
are currently active on your server. By default, killall sends SIGTERM to the processes
you want to kill. If you need it to do something else, add the name or number of the sig-
nal you want to send to the process. For example, use killall -SIGKILL httpd to kill all
instances of the Apache web server.

■Tip The killall command works with processes that have exactly the name you’ve specified. It doesn’t
work for processes that have that name somewhere in the command line that was started to invoke them.
Thus, killall won’t kill these processes. To kill these processes anyway, you’ll need to issue a somewhat
more complex command. The following command kills all processes that have the text “evolution” somewhere
in the command line: kill `ps aux | grep evolution | grep –v grep | awk '{ print $2 }'`.
The technique used in this line is referred to as command substitution, which means that the result of a com-
mand is used as input for another command. In this example, the command ps aux | grep evolution |
grep –v grep | awk '{ print $2 }' results in a list of PIDs of all processes that have the text
“evolution” somewhere in the command line. This list is next used by the kill command to terminate all
these processes. You do want to be very sure about what you’ve typed before you run this command, because
a typo will kill processes that you maybe don’t want to.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND158

9233ch06.qxd 10/25/07 4:14 PM Page 158

• top: Killing a process from top is easy. From the top interface, press the k key. You’ll first
be asked for the PID of the process you want to kill. Enter it, and then you’ll be asked
what signal to send to the process. Specify the numeric value of the signal and press
Enter. This terminates the process.

• pkill: The pkill command is useful if you want to kill a process based on any informa-
tion about the process. This command is related to the pgrep command, which allows
you to find process details easily. For example, you can use pkill to kill all processes
owned by a certain user: pkill -U 501 kills all processes owned by the user with UID
501. Because it knows many ways to refer to processes that you want to terminate,
pkill is a very convenient command.

Using ps to Get Details About Processes
Before killing a process, you most likely want some more information about it. Of course, you
can use top to do this, but the utility has the disadvantage that it shows only the most active
processes. If you need to manage a process that isn’t amongst the most active processes, the
ps utility is very useful. By using the right parameters, this command will show all processes
that are currently active on your server, and, combined with grep, it offers a flexible way to
find exactly what you were looking for.

If you don’t use any options with ps, it will just show you the processes that are interactive
and that you own. Normally, this will be a rather short list. As a system administrator, you
probably want to see a complete list of all processes. Now there is something funny with the ps
command: you can use it in the BSD-style UNIX syntax but also with the System V-style syntax
as well.

■Note In the history of UNIX, two different flavors of UNIX developed, the BSD style and the System V style.
Both flavors had different ways of doing things. In some Linux commands, Linux tries to make both users
happy by implementing both flavors in one command. Therefore, the ps command has two different styles
you can use.

You probably don’t care what kind of syntax you’re using, and you just want to see a list of
active processes. This can be done by using the ps -ef command. Alternatively, ps -aux does
this as well; check Listing 6-2 for an example of the output of this command. Both commands
provide a complete list of all processes that are running on your system, and it’s just a matter
of taste as to which you prefer. Now ps by itself has some options to do sorting, but, instead of
remembering what these options do, you can use grep as well to do some filtering. For exam-
ple, ps -ef | grep httpd shows detailed information, but only about the output line where
the httpd string occurs.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 159

9233ch06.qxd 10/25/07 4:14 PM Page 159

Listing 6-2. The ps –aux command displays a complete list of all processes on your server.

root@ubuntu:~# ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.3 2908 1844 ? Ss 11:43 0:01 /sbin/init
root 2 0.0 0.0 0 0 ? S 11:43 0:00 [migration/0]
root 3 0.0 0.0 0 0 ? SN 11:43 0:00 [ksoftirqd/0]
root 4 0.0 0.0 0 0 ? S 11:43 0:00 [watchdog/0]
root 5 0.0 0.0 0 0 ? S< 11:43 0:00 [events/0]
root 6 0.0 0.0 0 0 ? S< 11:43 0:00 [khelper]
root 7 0.0 0.0 0 0 ? S< 11:43 0:00 [kthread]
root 30 0.0 0.0 0 0 ? S< 11:43 0:00 [kblockd/0]
root 31 0.0 0.0 0 0 ? S< 11:43 0:00 [kacpid]
root 32 0.0 0.0 0 0 ? S< 11:43 0:00 [kacpi_notify]
root 90 0.0 0.0 0 0 ? S< 11:43 0:00 [kseriod]
root 115 0.0 0.0 0 0 ? S 11:43 0:00 [pdflush]
root 116 0.0 0.0 0 0 ? S 11:43 0:00 [pdflush]
...
root 4202 0.0 0.1 5084 968 ? Ss 11:44 0:00 /usr/sbin/sshd
root 4213 0.0 0.4 7864 2472 ? Ss 11:44 0:00 sshd: root@pts/
root 4215 0.0 0.3 4048 1780 pts/0 Ss 11:44 0:00 -bash
root 4237 0.0 0.1 2564 996 pts/0 R+ 12:02 0:00 ps aux

Setting Process Priority
Killing a process may improve the performance of your server, but what if you still need that
process? In this case, resetting its priority (renicing) may be an option. To understand what the
commands nice and renice are doing, we first need to have a look at how the process sched-
uler works.

Every system uses a process queue. All processes sit in this queue to wait for some CPU
cycles. So, if three processes are named A, B, and C, they will each get an equal number of CPU
cycles. If a process still needs more cycles after the process has been handled, it reenters the
queue. Because it was the last process that was handled, it rejoins the process queue at the end.

This all sounds pretty fair to all processes, but it just doesn’t work in some cases. Imagine
that process A is the company database that causes 90 percent of all work load on your server
and processes B and C are less important. In this case, you’d like to give process A a higher pri-
ority and a slightly lower priority to the other two processes. This is exactly what the nice and
renice commands do. Both commands work with a numeric argument from –20 up to 19. If a
process has the nice value –20 (which in fact means that it is not nice at all to other processes),
it gets the most favorable scheduling (highest priority), and, if it gets 19, it gets the least favor-
able scheduling.

Giving a nice value of –20 to a very important process may look like a good solution.
But you should never do this. A very busy process that gets a nice value of –20 will exclude
all other processes. Because, for example, kernel processes such as writing to disk also need
to enter the process queue, you could give your database the highest priority, but then the

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND160

9233ch06.qxd 10/25/07 4:14 PM Page 160

database wouldn’t be able to write its data to disk. So that wouldn’t work. Let’s just say that –20
is a nice value you should never use. If you want to renice a process, do it carefully, such as by
increasing or decreasing the nice value of a process in increments of 5.

Several methods are available to renice processes:

• nice: The nice command can be used to start a process with a given nice value. For
example, nice 10 find / -name "*" -exec grep -ld help {} \; starts the find com-
mand with a lower priority. The disadvantage of this command is that you have to know
beforehand that you are going to want to adjust the nice value of a process.

• renice: The renice command is used to change the priority of a running command.
This command normally works with the PID of the process you want to renice. For
example, renice -10 1234 increases the priority of process 1234.

• top: A very convenient way to renice a process is to use the top interface. From this
interface, press the n key. You’ll then be asked to enter the PID of the process you
want to renice. After entering this PID, enter the new nice value you want this process
to have.

Executing Processes Automatically
On a server system, it’s often important that processes are executed at a regular predefined
time, and Linux offers the cron facility to do this. It works with two parts: a daemon called
crond and some configuration files which the administrator can use to specify when the
processes should be started. Both parts ensure that the command is executed at regular times.
Apart from cron, the at command can be used to run a command just once.

Configuring cron
The cron service is activated by default. It checks its configuration files every minute to see if
something needs to be done. The cron process looks for configuration data in different places:

• The generic file /etc/crontab can contain lines that tell cron when to execute a given
command.

• In the directory /etc/cron.d, an administrator can put a file that defines what should
happen, and when.

• Every user can have its own cron configuration file, telling the system when to execute
certain tasks.

• The directories /etc/cron.hourly, cron.daily, cron.weekly, and cron.monthly are used
to activate jobs once an hour, a day, a week, or a month, respectively. These directories
contain files that are activated every hour, day, week, or month.

Working with the cron time activation mechanisms makes it very easy for an administra-
tor to start jobs on a regular basis. The scripts in these directories are just regular shell scripts
that make sure the job gets done. So all you have to do is include a shell script that activates

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 161

9233ch06.qxd 10/25/07 4:14 PM Page 161

the job you want to start. These scripts can be very simple: just a line that starts the service is
enough.

■Note Some daemons need to be restarted to make sure that changes are activated, but this isn’t true for
cron, which rereads its configuration every minute to check if any new jobs have been scheduled.

cron User Jobs
You can set up your system to allow individual users to start their cron jobs. Such a con-
figuration starts with the files /etc/cron.allow and /etc/cron.deny. A user who is listed
in /etc/cron.allow or who isn’t listed in /etc/cron.deny is capable of adding cron jobs. If
/etc/cron.allow exists, only this file is evaluated and settings in /etc/cron.deny are ignored.
If both files don’t exist, only root can create cron jobs. The cron configuration files for indi-
vidual users are stored in the directory /var/spool/crontabs. The crontab command can be
used to edit this file. Next we’ll look at some examples of the crontab command in action.

■Note By default, the crontab command uses the nano editor to do its work. The problem with nano,
however, is that it doesn’t by default write its configuration files to the right location. To fix this, as root add
the following line to the end of /etc/profile: export VISUAL=vim. After logging in again, vim will be
used as the default editor for crontab and some other editor-related commands as well. The advantage?
The right file will be created at the right location automatically.

• crontab -e: This creates or edits cron jobs for the user who executes the command.
Again, nano is used as the editor to modify these files.

• crontab -l: This command displays a list of all jobs that are scheduled for the
current user.

• crontab -r: This command deletes all jobs for the current user.

In the cron files, you use lines to define what should happen, and each line specifies one
command. The lines consist of six fields each: the first five specify when the command should
be activated, and the last field specifies what command should be activated. The following
code is an example of such a line:

*/5 8-18 * * 1-6 fetchmail mailserver

The easiest part to understand in this line is the actual command: fetchmail mailserver.
This command makes sure that incoming mail is fetched from mailserver. Then, in the first

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND162

9233ch06.qxd 10/25/07 4:14 PM Page 162

five fields, you can see an indication of the times that it should happen. These fields have the
following meanings:

• Minutes: This field specifies the minute when the command should be executed. It has
a range from 0 to 59. Always specify something for this field; if you don’t, the command
will run every minute. In the example, the construct */5 is used to specify that the com-
mand should run every 5 minutes.

• Hours: This field specifies the hour that the command should run. Possible values are
between 0 and 23. In the example, you can see that the command will run every hour
between 8 and 18.

• Day of the Month: Use this field to execute a command only on given days of the
month. This field is often not specified.

• Month: Use this field to specify in which month of the year the command should run.

• Day of Week: This field specifies on which day of the week the command should run.
The range is 0 to 7, and both of the values 0 and 7 should be used to specify that the
command should run on Sunday.

■Note You normally will not use it, but, if you ever want to work with the /etc/crontab file, be aware
that, between the time setting and the command you want to execute, the name of the user whose account
should be used to execute the command is entered. For example, 0 17 * * * root /sbin/shutdown -h
now would make sure the system shuts down automatically every day at 5 p.m. by using the permissions of
the user root.

Executing Once with at
The cron mechanism is used to execute commands automatically on a regular basis. If you
want to execute a command just once, at is the solution you need. The at mechanism com-
prises different parts:

• The service atd: Make sure it is started if you want to schedule commands to run once.

• The files /etc/at.allow and /etc/at.deny: Used to specify which users can and cannot
schedule commands with at.

• The at command: Used to schedule a command.

• The atq command: Used to display an overview of all commands that currently have
been scheduled.

• The atrm command: Used to delete jobs from the at execution queue.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 163

9233ch06.qxd 10/25/07 4:14 PM Page 163

Scheduling a job with the at command is not hard: just use the at command followed by
the time when you want to run the command, for example at 17:00. This command opens
the interactive at prompt where you’ll enter the commands you want to schedule for execu-
tion at the specific time. When you’ve finished entering the names of commands, use the
Ctrl+D key sequence to close the interactive at prompt and the commands will be scheduled.

The at command has different options to specify when exactly a command should be
executed. Some of the most useful options are listed here:

• HH:MM: In its most elementary form, time is indicated in an HH:MM format; for example
an entry of 17:00 will execute the command the next time it is 17:00 hours.

• am/pm: If you don’t like the HH:MM notation, use am/pm instead, for example: at 5 pm.

• DDMMYY HH:MM: To run a command at a specific time on a specific day, you can use a full
day specification as well.

Other options are available as well. You can, for example, use words as well, to tell at when
to run a command. For example, at teatime tomorrow would run the command at 4 p.m. the
next day. Check the at man page for more details.

Tuning the Boot Procedure
It’s important that you know what happens during the boot procedure of your computer for
two reasons. First, you need to know how it works to be able to perform troubleshooting. Sec-
ond, you need to be aware of what happens if you want to make sure that a service is activated
automatically. In the Linux boot procedure, the following phases can be distinguished:

• The boot loader GRUB is executed.

• The upstart process is started.

• The initial boot phase is executed.

• The runlevel is activated.

In the next subsections, you’ll learn in detail how these work and how you can modify the
boot procedure.

Managing the GRUB Boot Loader
The BIOS of every computer has a setting for the device that should be used for booting by
default. Often, the server will try to initiate the boot procedure from its hard drive. It reads
the very first sector of 512 bytes (the master boot record, or MBR), in which it finds the GRUB
primary boot loader in the first 446 bytes. After that are the 64 bytes where the partition table
is stored, and, to finish, in the last 2 bytes are where a magic code is written. Upon installing
your server, the installation program writes the GRUB boot code onto the hard drive. This
code makes sure that your server is started automatically. However, you can also interrupt
the automatic startup by pressing the Esc key. Figure 6-2 shows the menu that you’ll see in
this case.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND164

9233ch06.qxd 10/25/07 4:14 PM Page 164

Figure 6-2. The GRUB boot menu allows you to interrupt the boot procedure.

The GRUB Configuration File
GRUB has a text configuration file—/boot/grub/menu.lst—that defines all options from the
boot menu. Here, you can specify the different boot options on your server. Listing 6-3 shows
the data that is normally in the GRUB configuration file just after installation of Ubuntu
Server. For better readability, I’ve removed all the comment sections from this file.

Listing 6-3. Default GRUB menu.lst File

default 0
timeout 3
hiddenmenu

title Ubuntu, kernel 2.6.20-15-server
root (hd0,0)
kernel /boot/vmlinuz-2.6.20-15-server root=UUID=1aa61aba-4b23-4e9d-9718-
289f1c84a3a ro quiet splash
initrd /boot/initrd.img-2.6.20-15-server
quiet
savedefault

title Ubuntu, kernel 2.6.20-15-server (recovery mode)
root (hd0,0)
kernel /boot/vmlinuz-2.6.20-15-server root=UUID=1aa61aba-4b23-4e9d-9718-

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 165

9233ch06.qxd 10/25/07 4:14 PM Page 165

e289f1c84a3a ro single
initrd /boot/initrd.img-2.6.20-15-server

title Ubuntu, memtest86+
root (hd0,0)
kernel /boot/memtest86+.bin

This file consists of several parts. The first is the general section, which defines some
options that determine how the menu is used. Next are three sections, each devoted to one of
the three different boot-menu options.

The first part of the GRUB boot menu are the generic options. The example file shown in
Listing 6-3 has three of them. The option default 0 specifies that the first section in menu.lst
should be executed as the default section. Next, timeout 3 is used to give the user 3 seconds
to interrupt the startup procedure. If the user doesn’t do anything during these 3 seconds, the
server will continue with the boot process. The last generic boot option is hiddenmenu. As you
can guess, this option causes the boot menu to be hidden by default. If the user presses the
Esc key at this moment, the menu in Figure 6-2 will be displayed.

In the second part, the first item in the boot menu is specified. This item has the title
Ubuntu, kernel 2.6.20-15 server, which is defined with the title option. Next, everything that
is needed to start the server is defined. First is the name of the root device that should be read.
This line is needed for GRUB to know where it can find the kernel that it should load. In this
example, this is the device root (hd0,0), which corresponds to /dev/sda1 or /dev/hda1. How-
ever, because the device names are not known at this stage in the boot procedure, it’s not
possible to refer to these device names and that’s why (hd0,0) is used.

After specifying the root device, the kernel itself is referred to in the line that starts with
kernel /boot/vmlinuz. This line also specifies all the options that are required to load the ker-
nel properly. Some of the more common options are as follows:

• root: This option refers to the device where the root file system is found. It’s possible
to refer to common device names such as /dev/sda1 here. To add increased flexibility,
however, file system UUIDs are used. Check Chapter 4 for more details about them,
or use the dumpe2fs command to see parameters that are set for your Ext2/Ext3 file
systems.

• ro: Use this option to make sure that the root device is mounted read-only at this stage.
This is necessary so that you’ll be able to perform a file system check later during the
system boot.

• quiet: This option suppresses most messages that are generated while booting. If you
want to see exactly what happens, remove this option from the menu.lst.

• splash: Use this option to show a splash screen. In general, this is a graphical screen
that is shown to the user during the boot process.

• vga: Use this option to specify the VGA mode as a hexadecimal argument when booting.
This line determines the number of columns and lines used when starting your system.
As an alternative to a value like 0x314, you can use the option ask. In that case, you can
enter the mode you want to use when booting.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND166

9233ch06.qxd 10/25/07 4:14 PM Page 166

• ide: You can use this option to specify the mode that should be used for starting the IDE
device. Use ide=nodma if you suspect that your server might have problems initializing
IDE in DMA mode.

• acpi: The advanced configuration and power interface (ACPI) option allows you to
specify what to do with this sometimes problematic technique. By default, ACPI is on.
Use acpi=off if you suspect that it’s causing some problems.

• noresume: If your system was suspended, this option will just ignore that fact and start a
new system. While starting this new system, the suspended system is terminated.

• nosmp: Use this option if symmetric multiprocessing (SMP) is causing you any trouble.
But be aware that you’ll be using only one CPU if this option is used.

• noapic: The advanced programmable interrupt controller (APIC) allows you to use
interrupts with much more outputs and options than when using normal interrupts.
However, this option can cause problems; so use noapic if you think that your system
can’t properly handle APICs.

• maxcpus: This option tells your kernel how many CPUs to work with. Use maxcpus=0 to
force all except the primary processor off.

• edd: This option specifies whether enhanced disk drive (EDD) support should be used.
If you suspect it’s causing problems, switch it off here.

• single: This option is used only in recovery mode. It starts single-user mode, in which
a minimal amount of services is started so that the administrator can perform trouble-
shooting.

The following line specifies what to load as the initial RAM drive (initrd). The use of an
initrd is very important on modern Linux systems because it’s used to load the kernel mod-
ules that are needed to boot the system.

The other menu items that are defined in this boot menu work in more or less the same
way: each starts with a specification of the root device and then a referral to the kernel that
should be loaded.

One of the nice features of GRUB is that it reads its configuration dynamically, which
means that, if you made any modifications to the options used in menu.lst, you don’t have to
recompile or reinstall GRUB. This is a huge advantage as compared to LILO, where you had to
run the lilo command after all changes or modifications to the configuration. Any changes
that you make to menu.lst will show immediately the next time you restart your server.

Installing GRUB
Installing GRUB is not something that you’ll do very frequently, as it’s installed by default.
However, if your GRUB ever causes a problem when booting your server, you may reinstall it.
Before you do this, however, you’ll have to boot your server from the installation CD. From
the boot menu on the CD, select the option to rescue a broken system. After answering some
generic questions about your server, a menu will offer different options (see Figure 6-3).
From this menu, you can choose to reinstall the GRUB boot loader to reinstall GRUB directly.
Or you may choose to select a shell in either your root device or your installer’s environment.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 167

9233ch06.qxd 10/25/07 4:14 PM Page 167

When choosing this latter option, you can use the command grub-install /dev/sda to
reinstall GRUB.

Figure 6-3. It’s relatively easy to reinstall GRUB from the rescue environment.

Working with the GRUB Boot Menu
When GRUB runs, it displays a boot menu. (Remember to press the Esc key when booting
your server in silent mode.) From the boot menu, you will normally have a choice between the
three different sections that are defined in /boot/grub/menu.lst. Normally you will select the
first option to boot the server. If you want to use your server for XEN virtualization, select the
XEN option from the boot menu. (This option is available only if you selected the XEN soft-
ware when installing your server. See Chapter 12 for more on XEN.) The failsafe option is the
one you need if you run into trouble, and, finally, you can select the Memory Check option if
you suspect that you have problems with your server’s RAM.

■Note The failsafe option is more than just a single-user mode. A minimal number of services is loaded in
single-user mode, but the kernel is loaded in the normal way. Selecting the failsafe option from the boot
menu starts the single-user mode, but the kernel is also started with minimal options to increase chances
that you can boot successfully.

If the default startup option from the GRUB menu is not good enough, select the item
that you want to start and press the e key. You’ll next see a window like the one in Figure 6-4.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND168

9233ch06.qxd 10/25/07 4:14 PM Page 168

Figure 6-4. After pressing the e key, you can choose from more details when booting your server.

You’ll now see the selected boot item in more detail. Every line in the selected item can be
edited from this interface. From this interface, you can perform the following tasks:

• Press b to boot: Use this option if you want to boot your computer with the selected
settings.

• Select a line and press the e key to edit the selected line. This option is very convenient
if you know that you have made an error in a certain line and you want to fix it.

• Press c to open the GRUB command line. This not-so-intuitive interface allows you to
type GRUB-specific commands to tell your server what you want to do. If GRUB still is
capable of showing you some boot options, you probably won’t use this option much.

• Press o or O to open a new line. On this line, you can add new options that you want to
pass to GRUB while starting your machine. For example, if you want to start your server
in troubleshooting mode instead of its normal startup mode, type single to start single-
user mode.

• Press d to remove a line from the menu.

• Press Esc to return to the main menu. From there, you can press Enter to continue
booting.

Upstart
After GRUB, the kernel is loaded. In the old days, the kernel loaded the init process that read
its configuration file /etc/inittab. Since Ubuntu 7.04, however, a new program is used
instead. The program, Upstart, is responsible for the remainder of the boot procedure. To

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 169

9233ch06.qxd 10/25/07 4:14 PM Page 169

start your computer, it still uses a boot method that looks a lot like the one that was used in
the old days.

The most important part of Upstart is found in the /etc/event.d directory. It’s here that
Upstart looks for a definition of all the jobs it has to start, and there’s a file for every job. Next,
you’ll find a description of all the available jobs:

• control-alt-delete: This job defines what should happen when a user presses the
Ctrl+Alt+Del key sequence. The default behavior is that the system will reboot. If you
don’t like that, open the /etc/event.d/control-alt-delete file and replace this shut-
down command with something else.

• logd: This job makes sure that the log process /sbin/logd is started. This process
ensures that all log messages generated by daemons on your server can be logged.

• rc0-rc6: A Linux computer uses the concept of runlevels which are used to define what
services have to be started when booting your server. The scripts with the names rc0 up
to rc6 define what should happen in the corresponding runlevels. Typically, Ubuntu
Server is started in runlevel 2. Later in this chapter you’ll learn how to define what hap-
pens in a given runlevel.

• rc-default: This script determines the default runlevel, which is normally runlevel 2 on
Ubuntu Server. If you want to use something else for the default runlevel, you should cre-
ate a file with the name /etc/inittab that contains the following line: id:N:initdefault:.
In this line, N refers to the number of the runlevel that you want to activate.

• rcS: This script is used to ensure compatibility with System V startup scripts. Ubuntu
Server still uses these old scripts to start services, and you can read in more detail how
to configure them in the section “Runlevels” later in this chapter.

• rcS-sulogin: Normally, single-user mode is used for troubleshooting, and no administra-
tor password is asked for. Of course, this is a serious security issue, and some measures
have to be taken. The rcS-sulogin service makes sure that the root password has to be
provided every time the single-user mode is entered.

• sulogin: In this script, the administrator can specify the message that a user should see
when entering single-user mode.

• tty1-tty6: On Ubuntu Server, virtual terminals are used. To activate a virtual terminal,
the key sequences Ctrl+Alt+F1 up to Ctrl+Alt+F6 have to be used. The services files in
/etc/event.d specify what needs to be done when activating one of these virtual termi-
nals. If you want to have more than six virtual terminals, copy one of these files to (for
example) a file with the name tty8 (never use tty7, because it is by default used for the
graphical environment). Next, change the last line of this file to reflect the name of the
TTY it is related to. See Listing 6-4 for an example.

Listing 6-4. The TTY Files Specify What Should Happen on a Virtual Console.

root@ubuntu:~# cat /etc/event.d/tty1
tty1 - getty
#

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND170

9233ch06.qxd 10/25/07 4:14 PM Page 170

This service maintains a getty on tty1 from the point the system is
started until it is shut down again.

start on runlevel 2
start on runlevel 3
start on runlevel 4
start on runlevel 5

stop on runlevel 0
stop on runlevel 1
stop on runlevel 6

respawn
exec /sbin/getty 38400 tty1

As you have seen, the Upstart service activates services as specified in the different files
in /etc/event.d. This is pretty much the same as what happened on older versions of Ubuntu
Server that still used the init process. One of the most important tasks of Upstart is that it’s
also responsible for starting all the services that are needed on your server. To do this, it uses
the concept of runlevels.

Runlevels
The default runlevel on Ubuntu Server is runlevel 2, in which all the services that have to be
started are referred to. Before entering runlevel 2, Ubuntu Server passes through runlevel S. In
this runlevel, all the essential services that are always required on your server are started. The
configuration of both works in more or less the same way.

To understand the working of a runlevel, you need to understand two components: the
service scripts and the scripts that execute these service scripts. All of the service scripts are
found in the /etc/init.d directory, and they are used to start fundamental services such as
the mounting of file systems as well as network services like your Apache server. To specify
which of these scripts have to be executed when starting your server, two runlevel-related
directories are used. The first of these directories is /etc/rcS.d, and, on a system that follows
a default installation, the second of them is /etc/rc2.d. In the /etc/rcS.d directory, services
are started that are always needed, whereas, in the /etc/rc2.d directory, services are started
that are specific to a given runlevel.

To make sure that a service starts automatically during system initialization, a symbolic
link is created in the /etc/rcS.d directory. The name of this link starts with an S, followed by a
two-digit number, followed by the name of the script in /etc/init.d that the link refers to. All
these links are processed when booting your server, and they are processed in alphabetical
order. So S01blah is processed before S99blah.

The same thing happens for the runlevel directories, with the difference that, when work-
ing with runlevels, there is an option to change the current runlevel. When changing a runlevel,
some scripts may have to be started as well. To do this, more symbolic links are created. The
name of these links starts with K, followed by a two-digit number. Listing 6-5 shows an example
of the default runlevel 2.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 171

9233ch06.qxd 10/25/07 4:14 PM Page 171

Listing 6-5. To Determine What Is Started and What Is Stopped in a Runlevel, Some Symbolic
Links Are Processed.

root@ubuntu:/etc/rc2.d# ls -l
total 4
-rw-r--r-- 1 root root 556 2007-04-10 17:46 README
lrwxrwxrwx 1 root root 18 2007-07-29 07:34 S10sysklogd -> ../init.d/sysklogd
lrwxrwxrwx 1 root root 15 2007-07-29 07:34 S11klogd -> ../init.d/klogd
lrwxrwxrwx 1 root root 15 2007-07-29 07:36 S15bind9 -> ../init.d/bind9
lrwxrwxrwx 1 root root 23 2007-07-29 07:36 S17mysql-ndb-mgm -> ../init.d/mysql-ndb-mgm
lrwxrwxrwx 1 root root 19 2007-07-29 07:36 S18mysql-ndb -> ../init.d/mysql-ndb
lrwxrwxrwx 1 root root 15 2007-07-29 07:36 S19mysql -> ../init.d/mysql
lrwxrwxrwx 1 root root 17 2007-07-29 07:32 S20makedev -> ../init.d/makedev
lrwxrwxrwx 1 root root 15 2007-07-29 07:36 S20rsync -> ../init.d/rsync
lrwxrwxrwx 1 root root 13 2007-07-29 11:44 S20ssh -> ../init.d/ssh
lrwxrwxrwx 1 root root 13 2007-07-29 07:36 S89atd -> ../init.d/atd
lrwxrwxrwx 1 root root 14 2007-07-29 07:36 S89cron -> ../init.d/cron
lrwxrwxrwx 1 root root 17 2007-07-29 07:36 S91apache2 -> ../init.d/apache2
lrwxrwxrwx 1 root root 18 2007-07-29 07:33 S99rc.local -> ../init.d/rc.local
lrwxrwxrwx 1 root root 19 2007-07-29 07:33 S99rmnologin -> ../init.d/rmnologin

If you want to make sure that a given service is started automatically, it follows that you
first need to make sure that it has a service script in /etc/init.d. If it does, you next need to
make a symbolic link for this service. If it is a service that has to be started when your server is
booting, you just need a start link in /etc/rcS.d. If it is a service that you want to be included
in your server’s runlevels, you need to create a start link as well as a stop link in the directory of
the default runlevel, which would be /etc/rc2.d in most cases. So let’s see how this works for
the imaginary service blahd.

1. To include blahd in system startup, make sure that it has a start script in /etc/init.d.
If blahd was developed to be used on either Debian or Ubuntu Linux, it will have such
a script. Let’s say that the name of this script is /etc/init.d/blah.

2. If blahd is a nonessential service, you should include it in the default runlevel. There-
fore, you’re going to create two symbolic links in /etc/rc2.d, and, to put the service
in the right place, you should first analyze its dependencies. If it depends on some
other service to be started first, give it a relatively high number after the S, such as
S50. If it doesn’t depend on anything, you can give it a relatively low number. The
inverse is true for the kill scripts that make sure that the service is stopped once you
quit the runlevel: scripts that depend on many other services but don’t have depend-
encies themselves get a low number; scripts that don’t depend on other services get a
high number.

3. Now create the links. To create the start link, first use cd /etc/rc2.d and then ln -s
../init.d/blah S10blahd. Next, to create the kill link, use ln -s ../init.d/blah
K90blahd. When restarting your server, the service will now be executed automatically.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND172

9233ch06.qxd 10/25/07 4:14 PM Page 172

■Tip When determining the proper load number for a script, on Ubuntu Server you can always assume that
all device drivers are initialized, local file systems have been mounted, and networking is available after the
S40 scripts have been processed. So, in case of doubt, use S41 or higher.

Making Service Management Easier
When reading the information about starting services in the preceding section, maybe you
began to suspect that it’s not really easy. And you know what? You’re right. Even with the
modern Upstart system, Ubuntu Server is still compatible with the old way of starting services
(System V); you can use one of the many tools available for System V service management to
make service configuration easier. One of these tools is sysv-rc-conf. Use apt-get install
sysv-rc-conf to install it. Once installed, you can start it with the command sysv-rc-conf, and
what follows is an interface similar to that shown in Figure 6-5. From this interface, you’ll see
all the services available on your server. To make sure that a given service is started, move the
arrow key to the right location in the runlevel columns for the runlevel where you want the
service started and then press the space bar to select it. All required symbolic links will be
automatically created for you.

Figure 6-5. The sysv-rc-conf tool makes service management a lot easier.

■Tip Don’t worry about service management too much. You will find that, after installing a package with
apt-get, all service management tasks are often accomplished automatically. So you just have to check if
the required link is really created as well.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 173

9233ch06.qxd 10/25/07 4:14 PM Page 173

Managing Hardware
One of the hardest challenges when working with Linux is making your hardware do what you
want it to do. Many times, the real cause for not being able to get your hardware to work is the
lack of the right drivers. Many hardware vendors still think that Windows is the only operating
system on Earth and so don’t offer any Linux drivers for their devices. This means that it’s up
to the open source community to do the work. Often this goes very well, especially if the spec-
ifications of the hardware are clear. However, in some cases, hardware vendors think that their
product is unique and therefore are unwilling to share their code specifications with the rest
of the world, which makes it sometimes nearly—and in other cases completely—impossible to
produce the right drivers.

In this subsection you’ll learn what you can do to get your hardware working. To begin
with, we’ll have a look at the kernel and its ability to add load modules to get your hardware
working. Related to the kernel, we’ll also talk of the initial RAM drive (initrd) and how you can
configure it to load additional modules while booting. Next, we’ll talk about udev and the way
that it has changed hardware management on modern Linux distributions. At the end of this
chapter, you’ll learn how the lspci and lsusb commands may be useful to find out, at least,
what kind of hardware you are using.

Kernel Management
The kernel is the heart of the operating system: it is the software layer that sits directly on
top of the hardware and makes it possible to do something useful with that hardware. With
Ubuntu Server, you are working with a default kernel in which certain functionality is enabled
and other functionality is not. I’ll now explain how the kernel is organized and what you can
do to tune it to your needs.

Working with Modules
On all modern Linux distributions, kernels are modular—which means that the core of the
operating system is in the kernel file itself, but lots of drivers that aren’t needed by default are
dynamically loaded as modules. The idea of this modularity is an increased efficiency: if a
driver is needed, its module is loaded, and, if it isn’t needed, the module isn’t loaded either.
It’s really as simple as that.

As an administrator, you’ll find that module management is an important task. With
Ubuntu Server, modules are installed in the directory /lib/modules/`uname –r`. As you can
see, command substitution is used in this directory name: the command uname –r gives the
correct version of the current kernel, and, by using this command in the directory path, you
can be sure always to refer to the right path where kernel modules can be found. Under this
directory, you can find a directory structure where all modules are stored in an organized way,
according to the type of module. You can recognize the kernel modules in this directory struc-
ture by their file name: all kernel modules have the extension .ko.

You should be aware how modules are loaded. The good thing is that, on a default instal-
lation, most of your hardware is detected automatically and the required modules are loaded
automatically as well. So in most cases there is no need to do anything. There can however be
situations where it is required to do some tuning of the load process of modules. In the next
subsection you can read how.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND174

9233ch06.qxd 10/25/07 4:14 PM Page 174

Loading Modules
You can load modules in one of three methods: manually, from initrd, or by udev.

Tuning initrd

As soon as your system boots, it immediately needs some modules, such as the modules nec-
essary to access the root device on your server. These modules are loaded by the initial RAM
drive (initrd), which is loaded from GRUB. Normally, this initial RAM drive is created auto-
matically and you don’t have to worry about it. However you may need to tune your own
initrd in some situations, and in this case the mkinitrd command can be used.

To create your own initrd, the first thing that you should tune is the file /etc/mkinitrd/
mkinitrd.conf. This file is used to specify generic options that should be used on your initrd,
such as a time-out parameter that specifies how long you’ll have to interrupt the boot proce-
dure. Normally, it’s not necessary to change anything in this file. Also, there is the /etc/
mkinitrd/modules file in which you refer to the modules that you want to be loaded automati-
cally. Next, in /etc/mkinitrd/scripts, you can create scripts that allow the mkinitrd command
to find the proper modules. Done all that? Then it’s time to run the mkinitrd command to cre-
ate your own initrd.

When using mkinitrd, the command needs the option -o to specify the name of the out-
put file it needs to create, for example: mkinitrd -o newinitrd. Once created, it is a good idea
to copy newinitrd to the /boot directory; everything your kernel needs to boot the system
must be in this directory. Next, tune /boot/grub/menu.lst to make sure the new initrd is
included in one of the GRUB sections:

1. Open /boot/grub/menu.lst with your favorite editor.

2. Copy the default section that is used to boot your system in the file. This will result in
this section occurring twice in the menu.lst file.

3. Change the title of the default boot section to something else (“test with new initrd”
would be a decent name while you are still testing) and make sure the initrd line
refers to the new initrd that you just created. This would result in something like the
following lines:

title Test with new initrd
root (hd0,0)
kernel /boot/vmlinuz-2.6.20-15-server root=/dev/sda1 ro quiet splash
initrd /boot/newinitrd

4. Reboot your server, and, while rebooting, select the new GRUB menu item to test if the
new initrd is working properly. If it does, change /boot/grub/menu.lst to make the
test section permanent.

Loading Modules on Boot

Normally, the kernel ensures that all modules you need when booting your server are loaded
when the hardware that requires them is detected. In some situations, though, this doesn’t
work out. If not, you can make sure that the module is loaded anyway by including it in the
/etc/modules configuration file. The structure of this file is not complicated: just specify the

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 175

9233ch06.qxd 10/25/07 4:14 PM Page 175

names of all the modules that you want to load, one per line, and they will be loaded when
you reboot your server. The following listing shows an example of the contents of this file:

root@RNA:/etc# cat modules
/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.

lp

Need to add a new module? Make sure that it is listed under the lp module and it will be
loaded when your server restarts.

Loading Modules Manually

Modules can be managed manually as well. Here are the commands:

• lsmod: This command displays a list of all currently loaded modules. In this list, you’ll
also see the current status of the module. The output of lsmod is given in four columns
(as can be seen in Listing 6-6). The first column provides the name of the module. The
second column shows its size. In the third column, a 1 or a 0 indicates if the module
currently is used or not, respectively, and the last column shows the name of other
modules that require this module to be loaded.

Listing 6-6. Output of lsmod

root@ubuntu:/etc/init.d# lsmod
Module Size Used by
ipv6 273344 20
lp 12324 0
af_packet 23688 2
snd_ens1371 27552 0
gameport 16520 1 snd_ens1371
snd_ac97_codec 97952 1 snd_ens1371
ac97_bus 3200 1 snd_ac97_codec
snd_pcm_oss 44416 0
snd_mixer_oss 17408 1 snd_pcm_oss
snd_pcm 79876 3 snd_ens1371,snd_ac97_codec,snd_pcm_oss
snd_seq_dummy 4740 0
snd_seq_oss 32896 0
snd_seq_midi 9600 0
snd_rawmidi 25472 2 snd_ens1371,snd_seq_midi
snd_seq_midi_event 8448 2 snd_seq_oss,snd_seq_midi
snd_seq 52464 6
snd_seq_dummy,snd_seq_oss,snd_seq_midi,snd_seq_midi_event
snd_timer 23684 2 snd_pcm,snd_seq
...
capability 5896 0
commoncap 8192 1 capability

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND176

9233ch06.qxd 10/25/07 4:14 PM Page 176

• modprobe: If you want to load a module by hand, the modprobe command is the way to
do it. The importance of this command is that it will do a dependency check. Some
modules need another module to be present before they can do their job, and modprobe
makes sure that these dependencies are fulfilled. To load the dependent modules, it
looks in the configuration file modules.dep, which is created automatically by the depmod
command (see later in this section). Loading a module with modprobe isn’t hard: if, for
example, you want to load the module vfat by hand, just use the modprobe vfat com-
mand. In the early days, modprobe had an alternative: the insmod command. But insmod
has the disadvantage that it doesn’t check for dependencies, so you probably shouldn’t
use it anymore.

• rmmod: An unused module still consumes system resources. It usually won’t be much
more than 50 KB of system memory, but some heavy modules (such as the XFS module)
can consume up to 500 KB. On a system that is short on memory, this is a waste, and
you can use rmmod followed by the name of the module you want to remove (for exam-
ple rmmod ext3). This command will remove the module from memory and free up all
the system resources it was using. A more modern alternative for rmmod is the modprobe
-r command. The major difference is that modprobe -r takes dependencies into consid-
eration as well.

• modinfo: Have you ever had the feeling that a module was using up precious system
resources without knowing exactly what it was doing? Then modinfo is your friend. This
command will show some information that is compiled in the module itself. As an
example, you can see how it works on the pcnet32 network card driver in Listing 6-7.
Especially for network cards, the modinfo command can be very useful because it shows
you all the parameters the network card is started with (for instance, its duplex settings),
which can be handy for troubleshooting.

Listing 6-7. The modinfo Command Shows Information on What a Module Is Used for.

myserver # modinfo pcnet32
root@ubuntu:/etc/init.d# modinfo pcnet32
filename: /lib/modules/2.6.20-15-server/kernel/drivers/net/pcnet32.ko
license: GPL
description: Driver for PCnet32 and PCnetPCI based ethercards
author: Thomas Bogendoerfer
srcversion: 8C4DDF304B5E88C9AD31856
alias: pci:v00001023d00002000sv*sd*bc02sc00i*
alias: pci:v00001022d00002000sv*sd*bc*sc*i*
alias: pci:v00001022d00002001sv*sd*bc*sc*i*
depends: mii
vermagic: 2.6.20-15-server SMP mod_unload 686
parm: debug:pcnet32 debug level (int)
parm: max_interrupt_work:pcnet32 maximum events handled per interrupt
(int)
parm: rx_copybreak:pcnet32 copy breakpoint for copy-only-tiny-frames
(int)
parm: tx_start_pt:pcnet32 transmit start point (0-3) (int)

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 177

9233ch06.qxd 10/25/07 4:14 PM Page 177

parm: pcnet32vlb:pcnet32 Vesa local bus (VLB) support (0/1) (int)
parm: options:pcnet32 initial option setting(s) (0-15) (array of int)
parm: full_duplex:pcnet32 full duplex setting(s) (1) (array of int)
parm: homepna:pcnet32 mode for 79C978 cards (1 for HomePNA, 0 for
Ethernet, default Ethernet (array of int)
root@ubuntu:/etc/init.d#

• depmod: The depmod command is used to generate the modules dependency file in
/lib/modules/`uname -r`. The name of this file is modules.dep, and it simply contains
a list of all dependencies that exist for modules on your system. As can be seen from
Listing 6-7, modules normally know what dependencies they have (indicated by
the depends field). The depmod command just analyzes this data and makes sure the
dependency file is up to date. There’s normally no need to run this command manually
because it’s started automatically when your system boots. If, however, you’ve installed
new kernel modules and you want to make sure the dependency file is up to date, run
depmod manually.

Installing Your Own Custom Kernel
In general, it’s not a good idea to tune the kernel on your system. The reason is simple: Ubuntu
Server comes with a tuned kernel. The Ubuntu Server is a working kernel, and the entire sys-
tem is built around it. If you’re going to upgrade or modify that kernel, it will become more
difficult to deliver support. Therefore, in all situations, make sure that you don’t lose support
from the party that currently supports you.

The kernels that are used on Ubuntu Linux (no matter what version of the operating sys-
tem you’re using) are pretty close to the official Linux kernels as found on ftp.kernel.org.
Ubuntu distinguishes between the Linux kernel (the so-called vanilla kernel) and the kernel
that Ubuntu uses, which is installed automatically for the hardware platform that you are
using. When using special software, such as XEN (see Chapter 12), an additional kernel may
be installed as well. To use them, the GRUB boot menu will be automatically modified as
necessary.

You can create your own binary kernel from the kernel sources. This is referred to as
compiling the kernel, and it’s a five-step procedure:

1. Install the kernel sources for your platform.

2. Configure the kernel using a command such as make menuconfig.

3. Build the kernel and all its modules.

4. Install the new kernel.

Installing the Kernel Source Files
In some situations—say, if you want to build a custom kernel—the kernel sources may
have to be present. This is mainly the case if you need to be able to add new functionality

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND178

9233ch06.qxd 10/25/07 4:14 PM Page 178

to the kernel, such as to compile a module for a certain piece of hardware for which you have
only the source code and no compiled version. To install the kernel sources, use the following
procedure:

1. Use the command apt-cache search linux-source to see a list of all kernel sources
that are suitable for your server. See Listing 6-8 for an example.

2. Now, as root, use the apt-get install command to install the sources that you want to
use; for instance, use apt-get install linux-source-2.6.20. If this command causes
an error message, run apt-get update before you start.

3. After downloading the kernel sources, an archive file is placed in /usr/src/. Now you
need to extract this file by using tar -jxvf linux-source-2.6.20.tar.bz2. This com-
mand will create a subdirectory and put the new kernel sources in it.

4. To make sure that you don’t run into problems later, you now need to create a symbolic
link to the directory that was just created in /usr/src. The name of this link is linux: ln
-sf linux-source-2.6.20 linux. The kernel sources are now ready and waiting for you
to do anything you want.

Listing 6-8. Before Installing Kernel Sources, Use apt-cache search to Find Out What Sources Are
to Be Used on Your Server.

root@ubuntu:/# apt-cache search linux-source
xen-source-2.6.16 - Linux kernel source for version 2.6.17 with Ubuntu patches
linux-source - Linux kernel source with Ubuntu patches
linux-source-2.6.20 - Linux kernel source for version 2.6.20 with Ubuntu patches

Configuring the Kernel
You should compile your own kernel if some modifications to the default kernel are required
or if some new functionality has to be included in your default kernel. This latter scenario is
the more realistic because the default kernel on Ubuntu Server is flexible enough to meet
most situations. Because of its modularity, it will do the right things in almost any circum-
stances. But, in general, you would want to recompile a kernel for four reasons:

• You need access to a new type of hardware that isn’t yet supported by the kernel. This
option is pretty rare now that most hardware is supported by loading kernel modules
dynamically.

• You need some specific feature that isn’t available in the default binary kernel yet.

• You really need to strip the kernel to its essential components, removing everything
that isn’t absolutely necessary.

• You are running Ubuntu Server on old hardware that the default binary kernel doesn’t
support.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 179

9233ch06.qxd 10/25/07 4:14 PM Page 179

To tune a kernel, you need to create a new configuration for it, and you can choose among
several methods of tuning what you do and don’t need in your kernel:

• Run make config if you want to create the .config file that is needed to compile a new
kernel completely by hand. The one drawback is, if you realize that you’ve made a mis-
take in the previous line after entering the next line, there’s no going back.

• Use make oldconfig after installing patches to your kernel. This command makes sure
that only the settings for new items are prompted for.

• Use make menuconfig if you want to set all kernel options from a menu interface.

• Use make xconfig to tune kernel options from an X-windows interface.

If you are configuring kernel settings with make menuconfig, you’re working from a menu
interface in which kernel functionality is divided into different sections. Each of these sections
handles different categories of kernel options. For example, the File Systems section handles
everything related to the available file systems, and Networking is the place to activate some
obscure networking protocol.

After opening the selection of your choice, you’ll get access to the individual parameters.
For many of these parameters, you won’t necessarily see immediately what it’s used for. If so,
use the Tab key to navigate to the Help button while the parameter is selected and then press
Enter. You’ll be provided with a description of the selected option that in most cases will be
very informative as to whether this is a reasonable option to use. Most options have three
possibilities. First, it can be selected with an * character, which means that the selected func-
tionality is hard-coded in the kernel. Second, it can be selected with an M (not available for
all options), which means that the selected component will be available as a kernel module.
Third, you can of course choose not to select it at all.

Build the New Kernel
After specifying what you need and what you don’t in the new kernel, you must build the new
kernel. This involves running the gcc compiler to write all the changed kernel source files to
one new kernel program file. To do this, you’ll use the make-kpkg kernel-image command.
This reads all the changes that you made to your kernel and writes the new kernel to a Debian
package with the name kernel-image-<version>.deb, which is then placed in /usr/src.

Install the New Kernel
After creating the Debian package with make-kpkg kernel-image, you have to install it. Use
the command dpkg -i kernel-image-<version>.deb which not only installs the new kernel
but updates your GRUB configuration as well. Next, reboot your server, and the new kernel
will be used.

Hardware Management with udev
When earlier kernel modules were loaded by specifying them in /etc/modules.conf and later
/etc/modprobe.conf, on a recent Ubuntu Server, the udev system is the most common way of
loading kernel modules; in fact, udev is the central service to handle hardware initialization on

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND180

9233ch06.qxd 10/25/07 4:14 PM Page 180

your server. It’s implemented as the daemon udevd, which is started at a very early stage in the
boot process.

When the kernel detects a device by some event that occurs on one of the hardware
busses, it tells udev about the device. After receiving a signal from the kernel that a device has
been added or removed, udev initializes this device. Then it creates the proper device files in
the /dev directory. This all is a major improvement in the way that devices are handled on a
Linux system. In older versions of Linux, a device file existed for all devices that could possibly
exist. Now, a device file is created only for devices that are really present. This is the task of
udev. After initializing the device, udev informs all applications about the new device through
the hardware abstraction layer (HAL).

One problem with udev is that it loads at a stage when some devices have already been
initialized. Think, for example, about the hard disk your system is working from. To initialize
these devices properly, udev parses the sysfs file system, which is created in the directory /sys
when the kernel is starting. This file system contains configuration parameters and other
information about devices that have already been initialized.

As an administrator, it is useful to know that udev can be monitored using the udevmonitor
tool. Listing 6-9 shows what happens in the udevmonitor when a USB stick is plugged in the
system.

Listing 6-9. In udevmonitorYou Can See Exactly What Happens When a Device Is Connected to
Your System.

SFO:/ # udevmonitor
udevmonitor prints the received event from the kernel [UEVENT]
and the event which udev sends out after rule processing [UDEV
]

UEVENT[1158665885.090105] add@/devices/pci0000:00/0000:00:1d.7
/usb4/4-6
UEVENT[1158665885.090506] add@/devices/pci0000:00/0000:00:1d.7
/usb4/4-6/4-6:1.0
UEVENT[1158665885.193049] add@/class/usb_device/usbdev4.5
UDEV [1158665885.216195] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6
UDEV [1158665885.276188] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6/4-➥

6:1.0
UDEV [1158665885.414101] add@/class/usb_device/usbdev4.5
UEVENT[1158665885.500944] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6/4-6.1
UEVENT[1158665885.500968] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6/4-➥

6.1/4-6.1:1.0
UEVENT[1158665885.500978] add@/class/usb_device/usbdev4.6
UDEV [1158665885.604908] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6/4-6.1
UEVENT[1158665885.651928] add@/module/scsi_mod
UDEV [1158665885.652919] add@/module/scsi_mod
UEVENT[1158665885.671182] add@/module/usb_storage
UDEV [1158665885.672085] add@/module/usb_storage
UEVENT[1158665885.672652] add@/bus/usb/drivers/usb-storage

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 181

9233ch06.qxd 10/25/07 4:14 PM Page 181

UDEV [1158665885.673200] add@/bus/usb/drivers/usb-storage
UEVENT[1158665885.673655] add@/class/scsi_host/host0
UDEV [1158665885.678711] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-➥

6/4-6.1/4-6.1:1.0
UDEV [1158665885.854067] add@/class/usb_device/usbdev4.6
UDEV [1158665885.984639] add@/class/scsi_host/host0
UEVENT[1158665890.682084] add@/devices/pci0000:00/0000:00:1d.7/usb4/4- 6/4-➥

6.1/4-6.1:1.0/host0/target0:0:0/0:0:0:0
UEVENT[1158665890.682108] add@/class/scsi_device/0:0:0:0
UDEV [1158665890.858630] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-6/4 -6.1/4-➥

6.1:1.0/host0/target0:0:0/0:0:0:0
UEVENT[1158665890.863245] add@/module/sd_mod
UEVENT[1158665890.863971] add@/bus/scsi/drivers/sd
UDEV [1158665890.864828] add@/module/sd_mod
UDEV [1158665890.865941] add@/bus/scsi/drivers/sd
UEVENT[1158665890.875674] add@/block/sda
UEVENT[1158665890.875949] add@/block/sda/sda1
UEVENT[1158665890.880180] add@/module/sg
UDEV [1158665890.880180] add@/class/scsi_device/0:0:0:0
UEVENT[1158665890.880207] add@/class/scsi_generic/sg0
UDEV [1158665890.906347] add@/module/sg
UDEV [1158665890.986931] add@/class/scsi_generic/sg0
UDEV [1158665891.084224] add@/block/sda
UDEV [1158665891.187120] add@/block/sda/sda1
UEVENT[1158665891.413225] add@/module/fat
UDEV [1158665891.413937] add@/module/fat
UEVENT[1158665891.427428] add@/module/vfat
UDEV [1158665891.436849] add@/module/vfat
UEVENT[1158665891.449836] add@/module/nls_cp437
UDEV [1158665891.451155] add@/module/nls_cp437
UEVENT[1158665891.467257] add@/module/nls_iso8859_1
UDEV [1158665891.467795] add@/module/nls_iso8859_1
UEVENT[1158665891.489400] mount@/block/sda/sda1
UDEV [1158665891.491809] mount@/block/sda/sda1

The interesting part of this rather lengthy listing is that you can see exactly how udev
interacts with the /sys file system that contains information about devices. First, the kernel
detects the new device. At that moment, almost nothing is known about the nature of the
device; udev sees only the PCI ID for the device (you can reveal these IDs with the lspci com-
mand as well). Based on this PCI information, udev can communicate with the device and it
finds out what kernel modules need to be loaded to communicate with the device. You can see
this in the lines where the scsi_mod and usb_storage modules are added. Based on that infor-
mation, udev finds out that an sda and sda1 are present on the device. After finding that out,
it’s able to read the file system signature and load the proper modules for that as well; in this
case, these are the fat and vfat modules. Once the proper file system drivers are loaded, some
support modules can be used to read the files that are on the stick and, finally, the file system
on the device is mounted automatically. As you can see, working with udev makes “automagic”
loading of modules a lot less magical than it was.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND182

9233ch06.qxd 10/25/07 4:14 PM Page 182

Working with udev has one other major advantage as well: the subsystem allows you to
work with persistent names for an interface. Normally, a device gets its device name (/dev/sda
and so on) based on the order that it is plugged in to the system: the first storage device gets
/dev/sda, the second storage device gets /dev/sdb, and so on. When activating a device, udev
generates more than just the device name /dev/sda and so on. For storage devices, some links
are created in the directory /dev/disk. These links are in the following subdirectories and all
contain a way to refer to the disk device:

• /dev/disk/by-id: This sudirectory contains information about the device based on the
vendor ID and the name of the device. Because this name never changes during the life
of a device, you can use these device names as an alternative to the /dev/sda devices
that may change in an uncontrolled way. The only disadvantage is that the /dev/disk/
by-id names are rather long.

• /dev/disk/by-path: This sudirectory contains links with a name that is based on the bus
position of the device.

• /dev/disk/by-uuid: In this sudirectory, you can find links with a name that is based on
the serial number (the UUID) of the device.

Because the information in /dev/disk won’t change for a device the next time it is plugged
in, you can create udev rules that work with that information and make sure that the same
device name is always generated. The udev rules for storage devices are in /etc/udev/rules.d/
65-persistent-storage.rules, in which you can create a persistent link that makes sure that
a device is always initialized with the same device name. This solution can be used for disk
devices and other devices as well. Just have a look at the files in /etc/udev/rules.d to check
how the different device types are handled.

Summary
In this chapter, you learned how to manage and customize your server. In the first part of this
chapter, you learned how to manage processes with utilities like top, ps, and kill. After that,
you learned how to schedule processes to run in the future. Next, we had a section about the
boot procedure, which may help you when troubleshooting or optimizing your server’s boot
procedure. In the last part of this chapter, you read about the kernel and hardware manage-
ment. In Chapter 7, you’ll learn how to create shell scripts on Ubuntu Server.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 183

9233ch06.qxd 10/25/07 4:14 PM Page 183

9233ch06.qxd 10/25/07 4:14 PM Page 184

Running It Anyway You Like
An Introduction to Bash
Shell Scripting

Knowing your way with commands on Linux is one thing. But, if you really want to under-
stand what is happening on Ubuntu Server, you must at least be able to read shell scripts. On
Ubuntu Server, many things are automated with shell scripts. For example, the entire startup
procedure consists of ingenious shell scripts that are tied together. As an administrator, it’s
very useful to know how to do some shell scripting yourself.

For these reasons, this chapter will give you an introduction to shell scripting. After a
short introduction, you’ll learn about the most important components that you’ll see in most
shell scripts, such as iterations, functions, and some basic calculations. Notice that this chap-
ter is meant to give a basic overview of the way that a shell script is organized and should help
you in writing a simple shell script yourself. It’s not meant to be a complete tutorial that dis-
cusses all elements that can be used in a script.

Before You Even Start
If you know how to handle your Linux commands properly, you can perform magic. But
imagine the magic when combining multiple Linux commands in a shell script. Shell script-
ing is a fine art, and you aren’t going to learn it by just studying this chapter: you need to do it
yourself, again and again. Expect to spend a few frustrating hours trying it without success.
You should know that that is only part of the fun because you’ll get better bit by bit. It takes
practice, though. I hope you’ll find the examples in this chapter inspiring enough to start
elaborating or improving on them, and converting them to your own purposes.

To Script or Not to Script?
Before you start writing shell scripts, you should ask yourself if a shell script is really the best
solution. In many cases, other approaches are available and maybe even preferable. Instead of
using the Bash shell as your scripting language, you can use Perl or write a complete program
in C. Each of these solutions has its advantages and disadvantages.

185

C H A P T E R 7

9233ch07.qxd 10/25/07 1:33 PM Page 185

That said, Bash offers some important advantages as a scripting language:

• Bash scripts are relatively easy to understand and to write.

• You don’t have to compile a Bash script before you can start using it. The only thing you
need on the computer where you are going to run your shell script is the shell for which
the script is written. The Bash shell is omnipresent, and so it’s no problem performing
tasks with your script on other Linux computers as well.

• A shell script is platform independent. You can run the same script on a Solaris
machine, a Power PC, or an Intel machine. It just doesn’t matter.

• Although Bash is almost always present, you can get even greater portability by using
the Bourne shell (/bin/sh) instead of Bash. Bourne shell scripts run on any flavor of
Linux and even different brands of UNIX, without the need to install anything else on
your server.

The most important disadvantage of using Bash to create your script, however, is that it is
relatively slow. It’s slow because the shell always has to interpret the commands that it finds in
the script before it can do its job. For contrast, a C program is compiled code, optimized to do
its work on the hardware of your computer directly and therefore is much faster. Of course, it’s
also much more difficult to create such a program.

What Shell?
Many shells are available for Linux. When writing a shell script, you should be aware of that
and choose the best shell for your script. A script written for one shell will not necessarily run
on another shell as well. Fortunately, the choice is relatively easy because Bash (/bin/bash) is
the default shell on Linux. Bash is compatible with the UNIX Bourne shell /bin/sh, which has
been used on UNIX since the 1970s. The good thing about that compatibility is that a script
that was written to run on /bin/sh will work on Bash as well. However, the opposite is not
necessarily true because many new features have been added to Bash that don’t exist in the
traditional UNIX Bourne shell.

You’ll likely occasionally encounter Linux shells other than Bash. The most important of
these are the Korn shell (/bin/ksh), which is the default shell on Sun Microsystems’ Solaris. An
open source derivative of that shell is available as the Public Domain Korn Shell /bin/pdksh.
Another popular shell is the C shell, which on Linux exists as /bin/tcsh. The C shell is espe-
cially popular among C programmers because it has a scripting language that closely resembles
the C programming language. You’ll sometimes encounter C shell users in a Linux environ-
ment. The Korn shell, however, is not used often in Linux environments because almost all of
its important features are offered by Bash as well.

Both the Korn shell and the C shell are incompatible with Bash, and this incompatibility
could prevent you from running a C shell script in a Bash environment. However, there is a
solution, and that’s to include the so-called shebang in your shell script. This is an indicator of
the program that must be used when executing the script. The shebang consists of the pound
sign (#), followed by an exclamation mark, followed by the name of the required command
interpreter. If the program that is referred to by the shebang is present on your system, the

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE186

9233ch07.qxd 10/25/07 1:33 PM Page 186

script will run, no matter what shell environment you’re currently in as a user. Listing 7-1
shows an example of a script that starts with a shebang.

Listing 7-1. Shell Scripts Should Always Start with the Shebang.

#!/bin/bash
#
myscript [filename]
#
Use this script to....

Basic Elements of a Shell Script
Some elements should occur in all shell scripts. First, as you’ve just read, every shell script
should start with the shebang. After this, it’s a good idea to add some comment lines to explain
what the script is for. A comment line starts with a pound sign, which ensures that the line is
not interpreted by the shell. Of course, how you create your scripts is entirely up to you, but
starting every script with some comment that explains how to use the script will make your
scripts much easier to use. It’s really a matter of perspective: you know exactly what you’re
doing at the moment you’re writing the script, but months or years later you might have for-
gotten what your shell script is all about.

The first line in a good comment shows the exact syntax to be used for launching it. After
the syntax line, it’s normally a good idea to explain in two or three lines what exactly your
script is doing. Such an explanation makes it much easier for others to use your script the
right way. If the script starts growing, you may even add comments at other places in the
script. It’s not a bad idea to start every new chunk of code with a short comment, just to
explain what it’s doing. One day you’ll be glad that you took the few extra seconds to add a
comment or two.

Apart from the comments, your script naturally includes some commands. All legal
commands can be used, and you can invoke Bash internal commands as well as work with
external commands. An internal command is loaded into memory with Bash and therefore
can execute very fast. An external command is a command that is somewhere on disk, and
this is their main disadvantage: they need to be loaded first and that takes time. Listing 7-2
is a shell script that, although rather simple, still includes all of the basic elements.

Listing 7-2. Example of a Simple Shell Script That Contains All Basic Elements

#!/bin/bash
#
This is just a friendly script. It echoes "Hello World" to the person
who runs it.

Usage: hello
#
echo 'Hello World!'
exit 0

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 187

9233ch07.qxd 10/25/07 1:33 PM Page 187

In the example script, you can see some things happening. After the comment, the com-
mand echo is used to greet the user who runs the script. Notice that the text to be echoed to
the screen is placed between single quotes. These are also called “strong quotes,” and they
make sure that the shell does not actually interpret anything that appears between them. In
this example, it’s a good idea to use them because the exclamation mark has a special mean-
ing for the shell.

Also note that, after the successful termination of the script, the command exit 0 is used.
This command generates the so-called exit status of the script: it tells the parent shell whether
or not the script executed successfully. Normally, the exit status 0 is used to indicate that
everything went well. If some problems were encountered executing the script, an exit status
value of 1 can be used. Any other exit status can be used at the discretion of the programmer.
Using more than just 0 and 1 as values for exit status can make troubleshooting much easier.
Using an exit status is important in more complex shell script because, based on the success
or failure of your script, you can decide that something else needs to happen.

■Tip Did you know that you can request the exit status of the last command executed by the shell? Typing
echo $? displays the exit status of that command as a numerical value.

Making It Executable
Now that you’ve created your shell script, it’s time to do something with it. You can execute it
with several different options:

• Activate it as an argument of your shell.

• “Source” the script.

• Make it executable and run it.

If you just need to check that the script works, the easiest way to test it is as a shell argu-
ment. To do this, you’ll have to start a new shell that starts the script for you. If the name of
your script is hello, you can start the script with the command bash hello.

This method starts a subshell and executes the script from there. If a variable is set in this
subshell, though, it’s available within that subshell only and not in the parent shell. If you
want to set a variable from a shell script and make sure that that variable is available in the
parent shell as well, use the source command to run the shell script. You’ll learn more about
variables later in “Changing Variables.”

■Tip Want a variable that’s set in a script to be available in all subshells? Use the export command when
defining the variable. However, there’s no way to define a variable in a subshell that will be set in the parent
shell as well.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE188

9233ch07.qxd 10/25/07 1:33 PM Page 188

The second method to execute a script is with the source command. This command is
referred to by entering a dot, followed by a space and the name of the script. For example, our
script with the name hello can be started with . hello.

The important difference with the source command is that no subshell is started and the
script runs directly from the current shell. The result is that all variables that are defined when
running the script are available after running the script as well. This can be both useful and
confusing. The source method is often used to include another script in a generic script. In
this other script, for example, some system variables are set. Listing 7-3 shows how this works
in the script that starts networking: /etc/init.d/networking. As you can see in about the
approximate middle of the listing, the command . /lib/lsb/init-functions is included to
set some generic functions that should be used in this script.

Listing 7-3. The Sourcing Method Is Used to Included Scripts Containing Variables in Many
Startup Scripts.

#!/bin/sh -e
BEGIN INIT INFO
Provides: networking
Required-Start: mountkernfs ifupdown $local_fs
Required-Stop: ifupdown $local_fs
Default-Start: S
Default-Stop: 0 6
END INIT INFO

PATH="/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin"

[-x /sbin/ifup] || exit 0

. /lib/lsb/init-functions

case "$1" in
start)

log_action_begin_msg "Configuring network interfaces"
type usplash_write >/dev/null 2>/dev/null && usplash_write "TIMEOUT 120"

|| true
if ["$VERBOSE" != no]; then

if ifup -a; then
networking

The last and possibly the most frequently used method to run a script is to make it an
executable first. Do this by adding the execute permission to your script, as in the following
command:

chmod +x hello

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 189

9233ch07.qxd 10/25/07 1:33 PM Page 189

Next, you can simply run the script:

./hello

Notice that, in this example, the script is executed as ./hello and not just hello (assum-
ing the script is in the current directory). This is because you need to indicate that the script
must run from the current directory. As a default security feature, no Linux shell looks for exe-
cutable code in the current directory. Excluding the current directory from the search path
ensures that a user or an administrator who runs a command always runs the proper com-
mand from the search path and not some rogue command that was installed in the current
directory. Without the ./, Bash would search for hello in its current PATH setting and would
probably not find it.

■Note The shell PATH variable is used to specify a list of directories that should always be searched for
executable files. You can see its contents by using the echo $PATH command.

One last remark before diving into real scripting: always be careful about what you name
your script and try to avoid names that already exist. For example, you might be tempted to
use test as the name of a test script. This would, however, conflict with the test command
that’s installed on all Linux systems by default. Want to check if the name of your script is
already used by some other command? Use the which command to search all directories set
in the PATH variable for a binary with the name you’ve entered. Listing 7-4 shows the result of
this command issued for the test command.

Listing 7-4. Checking if a Command with a Given Name Already Exists with whereis

root@RNA:/# which test
/usr/bin/test

Making a Script Interactive
It’s cool if your script can execute a list of commands, but it’ll be much better if you can make
it interactive. This way, the script can ask a user for input and the user decides how the script
should be run. To make a script interactive, use the read command followed by the name of a
variable. This variable is used as a label to the input of the user, but the cool thing is that you
can use it later in the script to check exactly what the user entered. Listing 7-5 is an example of
an interactive script. You’ll also learn a new method to display script output on the screen.

Listing 7-5. Making Your Script Interactive

#!/bin/bash
#
Send a message to the world
#
Usage: ./hello

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE190

9233ch07.qxd 10/25/07 1:33 PM Page 190

cat << EOF
Tell us, what message do you want to tell the world today? Don't hesitate, anything
is allowed, just tell me what friendly message you want to enter.
EOF

read MESSAGE
echo "$MESSAGE"

In the script of Listing 7-5, the first new item that you see is the so-called here document,
which is an alternative way to echo text to the user’s screen. It’s particularly useful if you want
to display some lines of text on the user’s screen. The advantage of using this construction is
that you open it by using cat << followed by anything. In this example, I’ve used EOF (end of
file), but, if you want to use “mydoggie” instead, that’s fine as well. Just make sure that the
opening statement for the here document is on a line of its own. Next, enter all the text you
want to enter and close the here document by referring to the text that you’ve entered to open
the here document on a single line. In the example from Listing 7-5, this means that you just
put EOF on a line by itself.

After the here document, the read command asks the user for some input. The input is
placed in the temporary variable MESSAGE, which is echoed in the last line of the script. Also
notice that no $ character is required to define the variable, but one is necessary to display the
contents of the variable. Otherwise, echo would have no way of knowing that you are referring
to a variable. One more remark about the use and definition of variables: I like to write them
all uppercase. Why? It makes a script more readable. Listing 7-6 shows what exactly this script
will do when you run it.

Listing 7-6. Running the Interactive Script

SFO:~/bin # ./hello
Tell us, what message do you want to pass to the world today? Don't hesitate,
anything is allowed, just tell me what friendly message you want to enter
Good morning folks
Good morning folks

Working with Arguments
Although making a script interactive is a good way to get user input, it does have a disadvan-
tage: it requires a user who provides input to your script. This is not ideal because many scripts
are created to run automatically. Instead, such scripts can be started with specific parameters
that are specified as arguments when the script is launched. For example, you would run the
hello script from the previous section, just as ./hello hi to let it output the text hi. In this
example, hi is the argument used by this script.

To work with arguments that are provided when activating the script, you need names for
them. The first argument is named $1, the second argument is $2, and so forth, up to $9 ($10
would be interpreted as $1, followed by a 0). So you’re basically limited to the use of only nine
arguments. If you need more than nine, use $@ as explained next in the “Referring to Argu-
ments” section. The name of the script itself is referred to by using $0. Listing 7-7 is a simple
example of a script that can work with arguments.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 191

9233ch07.qxd 10/25/07 1:33 PM Page 191

Listing 7-7. Working with Arguments

#!/bin/bash
#
Script that allows you to greet someone
Usage: ./hello [name]

echo "Hello $1, how are you today"

Let’s imagine that you activate this script by entering ./hello linda on the command
line. This means that when calling the script, $1 is filled with the value linda. When called in
the actual code line, the script will therefore echo “Hello linda, how are you today” on the
screen of the user. When working with arguments, you must be aware that every single word
you enter is interpreted as a separate argument. You can see this if you execute the example
script by entering ./hello mister president. As the result, only the text “Hello mister, how are
you today” is displayed. This is because your script has no definition for $2.

Do you want to make sure that cases like this are handled correctly? Use the construction
$* to denote an unknown number of arguments. So, to handle any number of arguments,
without knowing beforehand how many arguments are going to be used, edit the script in
Listing 7-7 as shown in Listing 7-8.

Listing 7-8. Handling an Unknown Number of Arguments

#!/bin/bash
#
Script that allows you to greet one or more persons
Usage: ./hello [name1] [name2] ... [namen]
echo "Hello $*, how are you today"

Referring to Arguments
In Listing 7-8, you saw that $* is used to refer to a number of arguments that is unknown at
the time of running the script. And you can refer to other arguments that you may be using in
other ways:

• $*: Refers to all arguments, treating them as one string

• $@: Refers to all arguments, treating each argument as a string on its own

• $#: Shows how many arguments were used when first running the script

Sounds complicated, doesn’t it? Let’s have a look at an example to show how it works.
In Listing 7-9, I’m using the for i in ... do ... done construction to show the difference
between $* and $@. I’ll explain in more detail later how the for i in construction works, but
all you have to know for now is that it looks at its arguments and performs an action for every
element that it sees.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE192

9233ch07.qxd 10/25/07 1:33 PM Page 192

Listing 7-9. Showing the Difference Between $* and $@

#!/bin/bash
Script that shows the difference between $* and $@
Usage: ./showdifference [arguments]

echo "\$* shows $*"
echo "\$# shows $#"
echo "\$@ shows $@"
echo "The name of the script itself is $0"

echo showing the interpretation of \$*
for i in "$*"
do

echo $i
done

echo showing the interpretation of \$@
for i in "$@"
do

echo $i
done

Listing 7-10 shows what this script does when activated.

Listing 7-10. Showing the Working of the Script from Listing 7-9

root@RNA:~/scripts# ./showdifference a b c d e f
$* Shows a b c d e f
$# shows 6
$@ shows a b c d e f
The name of the script is ./showdifference
showing the interpretation of $*
a b c d e f
showing the interpretation of $@
a
b
c
d
e
f
root@RNA:~/scripts#

Now let’s try to understand all of this. In the first part of the script (the lines that start with
echo), we show the result of using the different items when running this script. You may notice
that the lines start with a / before the $. This / makes sure that the $ is not interpreted the first
time. The second time the same $ is referred to, I’m not using the / because we actually want
to see a real result.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 193

9233ch07.qxd 10/25/07 1:33 PM Page 193

Next, in the for i in ... loops a temporary variable with the name i is defined. You can
understand the use of this variable as “for each element in... ,” whereby every element in turn
is temporarily put in the variable i. Now, for every element encountered in $* in the first loop,
the command echo $i is executed. The result of this is that the name of the element (which is
an argument in this script) is echoed to the screen.

The difference between $* and $@ becomes clear from this example. Where just one ele-
ment is seen in the first loop, every argument is treated as an element on its own in the loop
that uses $@. So, to make sure that from a range of arguments every argument is treated as an
argument on its own, use $@.

Working with Variables
Variables play an important role in creating a good working shell script. In the previous section,
you learned how variables are used to store the arguments that are entered when activating a
script. And you can define variables in other ways as well. In this section we’ll explore more of
the possibilities when working with variables.

Command Substitution
One way of handling variables automatically is to use command substitution, which is a tech-
nique that puts the result of a command in a variable that can be used in a script (or on the
command line). This technique is especially useful if you need to work with information that
changes often or automatically, such as the version of the kernel that you’re using. To use
command substitution, put the command you want to use between backquotes, for example
echo `whoami` would put the result of the whoami command in the echo command. An alterna-
tive way of writing this is echo $(whoami). Notice that there’s really no difference between
these two.

An example could be a script that refers to the directory in which kernel modules are
installed. The name of this directory changes with every kernel update that is installed, so it’s
not really a good idea to use hard references to this directory in your scripts. Command substi-
tution is an ideal solution.

The name of the current kernel version can be displayed with the uname -r command. So,
instead of referring to the directory /lib/modules/2.6.20 (or whatever the name of the mod-
ule directory for the currently loaded kernel is), you can refer to /lib/modules/`uname -r`
instead. The example script in Listing 7-11 shows how command substitution is used.

Listing 7-11. Example of Command Substitution

#!/bin/bash
#
Copy a kernel module to the appropriate directory
Usage: ./modcop

echo Enter the full path name of the file that you want to copy
read FILE
cp $FILE /lib/modules/`uname -r`

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE194

9233ch07.qxd 10/25/07 1:33 PM Page 194

In this example, the script first asks the user to input the complete name of the file that
should be copied. Next, it will copy the file to the directory where the current kernel stores its
kernel modules.

Changing Variables
Sometimes, the name of a variable needs to be changed. To do this, you need to define a
new variable that’s based on the value of an old variable. This may be useful, say, to change
the argument that a user has entered when starting the script. When changing a variable,
you should be aware that you can redefine all variables except arguments that were entered
when starting the script ($1, $2, and so on). So, if you need to do something to the value that
is assigned to an argument, put the current value of the argument in a new variable and
change that. The example in Listing 7-12 shows how to put the result of an existing variable
in a new variable.

Listing 7-12. Assigning the Value of Existing Variables to New Variables

#!/bin/bash
#
Greet the user in a friendly way
Usage: ./hello <firstname> <surname>

NAME="$1 $2"
echo hello $NAME

If, for example, a user named Linda Thomson starts the script by using the ./hello Linda
Thomson command, the script will output “hello Linda Thomson” to the screen. Now put in this
way, it is not extremely useful to put the current values of $1 and $2 in a new variable called
NAME. If, however, you want to change the value currently assigned to a variable, it can be very
useful to assign the value of old variables to a temporary new variable. The next section makes
this clear.

Substitution Operators
Within a script, it may be important to check if a variable really has a value assigned to it
before the script continues. To do this, Bash offers substitution operators. By using substitu-
tion operators, you can assign a default value if a variable doesn’t have a value currently
assigned, and much more. Table 7-1 provides an overview of the substitution operators with
a short explanation of their use.

Table 7-1. Substitution Operators

Operator Use

${parameter:-value} Show value if parameter is not defined.

${parameter=value} Assign value to parameter if parameter does not exist at all. This
operator does nothing if parameter exists, but doesn’t have a value.

Continued

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 195

9233ch07.qxd 10/25/07 1:33 PM Page 195

Table 7-1. Continued

Operator Use

${parameter:=value} Assign value if parameter currently has no value, or if parameter
doesn’t exist at all.

${parameter:?value} Show a message that is defined as value if parameter doesn’t exist or is
empty. Using this construction will force the shell script to be aborted
immediately.

${parameter:+value} If parameter does have a value, the value is displayed. If it doesn’t have
a value, nothing happens.

Substitution operators can be hard to understand. To make it easier to see how they
work, Listing 7-13 provides some examples. In all of these examples, something happens to
the $BLAH variable. You’ll see that the result of the given command is different depending on
the substitution operator that’s used. To make it easier to discuss what happens, I’ve added
line numbers to the listing. Notice that, when trying this yourself, you should omit the line
numbers.

Listing 7-13. Using Substitution Operators

1. sander@linux %> echo $BLAH
2.
3. sander@linux %> echo ${BLAH:-variable is empty}
4 variable is empty
5. sander@linux %> echo $BLAH
6.
7. sander@linux %> echo ${BLAH=value}
8. value
9. sander@linux %> echo $BLAH
10. value
11. sander@linux %> BLAH=
12. sander@linux %> echo ${BLAH=value}
13.
14. sander@linux %> echo ${BLAH:=value}
15. value
16. sander@linux %> echo $BLAH
17. value
18. sander@linux %> echo ${BLAH:+sometext}
19. sometext

The example of Listing 7-13 starts with the echo $BLAH command, which reads the vari-
able BLAH and shows its current value. Because BLAH doesn’t have a value yet, nothing is shown
in line 2. Next, a message is defined in line 3 that should be displayed if BLAH is empty. As you
can see, the message is displayed in line 4. However, this doesn’t assign a value to BLAH, which
you see in lines 5 and 6 where the current value of BLAH is asked again. In line 7, BLAH finally
gets a value, which is displayed in line 8. The shell remembers the new value of BLAH, which
you can see in lines 9 and 10 where the value of BLAH is referred to and displayed. In line 11,

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE196

9233ch07.qxd 10/25/07 1:33 PM Page 196

BLAH is redefined but it gets a null value. The variable still exists; it just has no value here. This
is demonstrated when echo ${BLAH=value} is used in line 12; because BLAH has a null value at
that moment, no new value is assigned. Next, the construction echo ${BLAH:=value} is used to
assign a new value to BLAH. The fact that BLAH really gets a value from this is shown in lines 16
and 17. Finally, the construction in line 18 is used to display sometext if BLAH currently does
have a value. Notice that this doesn’t change anything to the value that is assigned to BLAH at
that moment; sometext just indicates that it has a value and that’s all.

Pattern-Matching Operators
You’ve just seen how substitution operators can be used to do something if a variable does
not have a value. You can consider them a rather primitive way of handling errors in your
script. A pattern-matching operator can be used to search for a pattern in a variable and, if
that pattern is found, modify the variable. This can be very useful because it allows you to
define a variable exactly the way you want. For example, think of the situation in which a
user enters a complete pathname of a file but only the name of the file itself (without the
path) is needed in your script.

The pattern-matching operator is the way to change this. Pattern-matching operators
allow you to remove part of a variable automatically. Listing 7-14 is an example of a script that
works with pattern-matching operators.

Listing 7-14. Working with Pattern-Matching Operators

#!/bin/bash
#
script that extracts the file name from a filename that includes the complete path
usage: stripit <complete file name>

filename=${1##*/}
echo "The name of the file is $filename"

When executed, the script will show the following result:

sander@linux %> ./stripit /bin/bash
the name of the file is bash

Pattern-matching operators always try to locate a given string. In this case, the string is */.
In other words, the pattern-matching operator searches for a /, preceded by another charac-
ter. In this pattern-matching operator, ## is used to search for the longest match of the
provided string, starting from the beginning of the string. So, the pattern-matching operator
searches for the last / that occurs in the string and removes it and everything that precedes the
/ as well. You may ask how the script comes to remove everything in front of the /. It’s because
the pattern-matching operator refers to */ and not to /. You can confirm this by running the
script with /bin/bash/ as an argument. In this case, the pattern that’s searched for is in the last
position of the string and the pattern-matching operator removes everything.

This example explains the use of the pattern-matching operator that looks for the longest
match. By using a single #, you can let the pattern-matching operator look for the shortest
match, again starting from the beginning of the string. If, for example, the script in Listing 7-14

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 197

9233ch07.qxd 10/25/07 1:33 PM Page 197

used filename=${1#*/}, the pattern-matching operator would look for the first / in the com-
plete file name and remove that and everything before it.

You should realize that in these examples the * is important. The pattern-matching opera-
tor ${1#*/} removes the first / found and anything in front of it. The pattern-matching operator
${1#/} removes the first / in $1 only if the value of $1 starts with a /. However, if there’s anything
before the /, the operator will not know what to do.

In these examples, you’ve seen how a pattern-matching operator is used to start search-
ing from the beginning of a string. You can start searching from the end of the string as well. To
do so, a % is used instead of a #. This % refers to the shortest match of the pattern, and %% refers
to its longest match. The script in Listing 7-15 shows how this works.

Listing 7-15. Using Pattern-Matching Operators to Start Searching at the End of a String

#!/bin/bash
#
script that isolates the directory name from a complete file name
usage: stripdir <complete file name>

dirname=${1%%/*}
echo "The directory name is $dirname"

While executing, you’ll see that this script has a problem:

sander@linux %> ./stripdir /bin/bash
The directory name is

As you can see, the script does its work somewhat too enthusiastically and removes
everything. Fortunately, this problem can be solved by first using a pattern-matching opera-
tor that removes the / from the start of the complete file name (but only if that / is provided)
and then removing everything following the first / in the complete file name. The example in
Listing 7-16 shows how this is done.

Listing 7-16. Fixing the Example from Listing 7-15

#!/bin/bash
#
script that isolates the directory name from a complete file name
usage: stripdir <complete file name>

dirname=${1#/}
dirname=${1%%/*}
echo "The directory name is $dirname"

As you can see, the problem is solved by using ${1#/}. This construction starts searching
from the beginning of the file name to a /. Because no * is used here, it looks for a / only at the
very first position of the file name and does nothing if the string starts with anything else. If it
finds a /, it removes it. So, if a user enters usr/bin/passwd instead of /usr/bin/passwd, the

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE198

9233ch07.qxd 10/25/07 1:33 PM Page 198

${1#/} construction does nothing at all. In the line after that, the variable dirname is defined
again to do its work on the result of its first definition in the preceding line. This line does the
real work and looks for the pattern /*, starting at the end of the file name. This makes sure that
everything after the first / in the file name is removed and that only the name of the top-level
directory is echoed. Of course, you can easily edit this script to display the complete path of
the file: just use dirname=${dirname%/*} instead.

So, to make sure that you are comfortable with pattern-matching operators, the script in
Listing 7-17 gives another example. This time, though, the example does not work with a file
name, but with a random text string.

Listing 7-17. Another Example with Pattern Matching

#!/bin/bash
#
script that extracts the file name from a filename that includes the complete path
usage: stripit <complete file name>

BLAH=babarabaraba
echo BLAH is $BLAH
echo 'The result of ##ba is '${BLAH##*ba}
echo 'The result of #ba is '${BLAH#*ba}
echo 'The result of %%ba is '${BLAH%ba*}
echo 'The result of %ba is '${BLAH%%ba*}

When running it, the script gives the result shown in Listing 7-18.

Listing 7-18. The Result of the Script in Listing 7-17

root@RNA:~/scripts# ./pmex
BLAH is babarabaraba
The result of ##ba is
The result of #ba is barabaraba
The result of %%ba is babarabara
The result of %ba is
root@RNA:~/scripts#

Performing Calculations in Scripts
Bash offers some options that allow you to perform calculations from scripts. Of course, you’re
not likely to use them as a replacement for your spreadsheet program, but performing simple
calculations from Bash can be useful. For example, you can use calculation options to execute
a command a number of times or to make sure that a counter is incremented when a com-
mand executes successfully. The script in Listing 7-19 provides an example of how counters
can be used.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 199

9233ch07.qxd 10/25/07 1:33 PM Page 199

Listing 7-19. Using a Counter in a Script

#!/bin/bash
counter=1
while true
do

counter=$((counter + 1))
echo counter is set to $counter

done

As you can see, this script uses a construction with while (which is covered in more detail
in the “Using while” section). The construction is used to execute a command as long as a given
condition is met. In this example, the condition is simple: you must be able to execute the true
command successfully. This won’t be a problem: the name of the command is true because it
always executes successfully. That is, true always gives an exit status of 0, which tells the shell
that it has executed with success, just like the false command always gives the exit status of 1.

What has to happen if the condition is met is specified between the do and done. First, the
line counter=$((counter + 1)) takes the current value of the variable counter (which is set in
the beginning of the script) and increments that by 1. Next, the value of the variable counter is
displayed with the line echo counter is set to $counter. Once that’s happened, the condi-
tion is checked again and the command is executed again as well. The result of this script will
be that you see a list of numbers on your screen that’s updated very quickly. Does it go too
fast? Just add a line with the command sleep 1 in the loop. Now the calculation of the new
value of counter is performed only once a second.

Although the previous example explains how a simple calculation can be performed from
a script, it isn’t very useful. Listing 7-20 provides a more useful one. I once had to test the dura-
bility of USB sticks for a computer magazine. As you have probably heard, some people think
that the life of flash storage is limited. After a given number of writes, according to some peo-
ple, the stick dies. Such a claim called for a test, which can be performed through the following
shell script with the name killstick:

Listing 7-20. Script to Test USB Sticks

#!/bin/bash
#
Script to test USB sticks
#
usage: killstick <mountpoint of the stick>
#
counter=0
while cp /1MBfile $1
do

sync
rm -rf $1/1MBfile
sync
counter=$((counter + 1))
echo Counter is now set to $counter

done
echo Your stick is now non-functional

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE200

9233ch07.qxd 10/25/07 1:33 PM Page 200

The script again starts with a little explanation of how it works. To run this script, you first
need to mount the stick on a certain mount point, and this mount point needs to be declared
by specifying it as an argument to the script. Next, a while loop is started. The command that
needs to execute successfully is cp /1MBfile $1. You can use this script on a stick of any size,
but, before starting it, make sure that all of the available disk space on the stick is used with
the exception of 1 MB. Next, create a file with a size of 1 MB (or just a little smaller). This way
you’ll make sure that the controller of the stick isn’t playing any tricks on you and the write
always occurs at the same spot.

As long as the file copy is successful, the commands in the do loop are executed. First,
the file is synchronized to the stick using the sync command to make sure that it isn’t just
kept somewhere in memory. Next, it’s immediately removed again, and this removal is syn-
chronized to the physical storage media. Finally, the calculation is used again to increment
the counter variable by 1. This continues as long as the file can be copied successfully. When
copying fails, the while loop is terminated and the command echo Your stick is now non-
functional is displayed, thus allowing you to know exactly how often the file could be copied
to the stick.

■Note Would you like to know how many writes it takes to kill a stick completely? As it turns out, flash
memory has improved enormously over the last few years, and you can expect the memory chip to support
at least 100,000 writes. In many cases, however, more than 1,000,000 writes can be performed without any
problem.

So far, we’ve dealt with only one method to do script calculations, but you have other
options as well. First, you can use the external expr command to perform any kind of calcula-
tion. For example, the following line produces the result of 1 + 2:

sum=`expr 1 + 2`; echo $sum

As you can see, a variable with the name sum is defined, and this variable gets the result of
the command expr 1 + 2 by using command substitution. A semicolon is then used to indi-
cate that what follows is a new command. After the semicolon, the command echo $sum shows
the result of the calculation.

The expr command can work with addition, and other types of calculation are supported
as well. Table 7-2 summarizes the options.

Table 7-2. expr Operators

Operator Meaning

+ Addition (1 + 1 = 2)

- Subtraction (10 - 2 = 8)

/ Division (10 / 2 = 5)

* Multiplication (3 * 3 = 9)

% Modulus; this calculates the remainder after division. This works
because expr can handle integers only (11 % 3 = 2).

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 201

9233ch07.qxd 10/25/07 1:33 PM Page 201

When working with these options, you’ll see that they all work fine with the exception of
the multiplication operator *. Using this operator results in a syntax error:

linux: ~> expr 2 * 2
expr: syntax error

This seems curious but can be easily explained. The * has a special meaning for the shell,
as in ls -l *. When the shell parses the command line, it interprets the * and you don’t want
it to do that here. To indicate that the shell shouldn’t touch it, you have to escape it. Therefore,
change the command as follows:

expr 2 * 2

Another way to perform some calculations is to use the internal command let. Just the
fact that let is internal makes it a better solution than the external command expr: it can be
loaded from memory directly and doesn’t have to come all the way from your computer’s hard
drive. Using let, you can make your calculation and apply the result directly to a variable, as
in the following example:

let x="1 + 2"

The result of the calculation in this example is stored in the variable x. The disadvantage
of working this way is that let has no option to display the result directly as can be done when
using expr. For use in a script, however, it offers excellent capabilities. Listing 7-21 shows a
script in which let is used to perform calculations.

Listing 7-21. Performing Calculations with let

#!/bin/bash
#
usage: calc $1 $2 $3
$1 is the first number
$2 is the operator
$3 is the second number
let x="$1 $2 $3"
echo $x

If you think that we’ve now covered all methods to perform calculations in a shell script,
you’re wrong. Listing 7-22 shows another method that you can use.

Listing 7-22. Another Way to Calculate in a Bash Shell Script

#!/bin/bash
#
usage: calc $1 $2 $3
$1 is the first number
$2 is the operator
$3 is the second number
x=$(($1 $2 $3))
echo $x

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE202

9233ch07.qxd 10/25/07 1:33 PM Page 202

You’ve seen this construction already, when you read about the script that increases the
value of the variable counter. Note that the double pair of parentheses can be replaced by one
pair of square brackets instead, assuming the preceding $ is present.

Using Flow Control
Up until now, you haven’t read much about the way in which the execution of commands can
be made conditional. The technique for enabling this in shell scripts is known as flow control.
Bash offers many options to use flow control in scripts:

• if: Use if to execute commands only if certain conditions were met. To customize the
working of if some more, you can use else to indicate what should happen if the con-
dition isn’t met.

• case: Use case to work with options. This allows the user to further specify the working
of the command when he runs it.

• for: This construction is used to run a command for a given number of items. For
example, you can use for to do something for every file in a specified directory.

• while: Use while as long as the specified condition is met. For example, this construc-
tion can be very useful to check if a certain host is reachable or to monitor the activity
of a process.

• until: This is the opposite of while. Use until to run a command until a certain condi-
tion has been met.

The following subsections cover flow control in more detail. Before going into these
details, however, you can first read about the test command. This command is used to per-
form many checks to see, for example, if a file exists or if a variable has a value. Table 7-3
shows some of the more common test options. For a complete overview, consult its man page.

Table 7-3. Common Options for the test Command

Option Use

test -e $1 Checks if $1 is a file, without looking at what particular kind of file it is.

test -f $1 Checks if $1 is a regular file and not (for example) a device file, a
directory, or an executable file.

test -d $1 Checks if $1 is a directory.

test -x $1 Checks if $1 is an executable file. Note that you can test for other
permissions as well. For example, -g would check to see if the SGID
permission (see Chapter 5) is set.

test $1 -nt $2 Controls if $1 is newer than $2.

test $1 -ot $2 Controls if $1 is older than $2.

test $1 -ef $2 Checks if $1 and $2 both refer to the same inode. This is the case if one
is a hard link to the other (see Chapter 4 for more on inodes).

test $1 -eq $2 Sees if the integers $1 and $2 are equal.

Continued

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 203

9233ch07.qxd 10/25/07 1:33 PM Page 203

Table 7-3. Continued

Option Use

test $1 -ne $2 Checks if the integers $1 and $2 are not equal.

test $1 -gt $2 Gives true if integer $1 is greater than integer $2.

test S1 -lt $2 Gives true if integer $1 is less than integer $2.

test $1 -ge $2 Sees if integer $1 is greater than or equal to integer $2.

test $1 -le $2 Checks if integer $1 is less than or equal to integer $2.

test -z $1 Checks if $1 is empty. This is a very useful construction to find out if a
variable has been defined.

test $1 Gives the exit status 0 if $1 is defined.

test $1=$2 Checks if the strings $1 and $2 are the same. This is most useful to
compare the value of two variables.

test $1 != $2 Sees if the strings $1 and $2 are not equal to each other. You can use !
with all other tests as well to check for the negation of the statement.

You can use the test command in two ways. First, you can write the complete command
as in test -f $1. This command, however, can be rewritten as [-f $1]. Most of the time
you’ll see the latter option only because people who write shell scripts like to work as effi-
ciently as possible.

Using if then else
Possibly the classic example of flow control consists of constructions that use if ... then ...
else. Especially if used in conjunction with the test command, this construction offers vari-
ous interesting possibilities. You can use it to find out if a file exists, if a variable currently has a
value, and much more. Listing 7-23 provides an example of a construction with if ... then
... else that can be used in a shell script.

Listing 7-23. Using if to Perform a Basic Check

#!/bin/bash
if [-z $1]
then

echo You have to provide an argument with this command
exit 1

fi

echo the argument is $1

The simple check from the Listing 7-23 example is used to see if the user who started your
script provided an argument. If he or she didn’t, the code in the if loop becomes active, in
which case it displays the message that the user needs to provide an argument and then ter-
minates the script. If an argument has been provided, the commands within the loop aren’t

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE204

9233ch07.qxd 10/25/07 1:33 PM Page 204

executed, and the script will run the line echo the argument is $1, and in this case echo the
argument to the user’s screen.

Also notice how the syntax of the if construction is organized. First, you have to open it
with if. Then, separated on a new line (or with a semicolon), then is used. Finally, the if loop
is closed with an fi statement. Make sure all those ingredients are used all the time or your
loop won’t work.

■Note You can use a semicolon as a separator between two commands. So ls; who would first execute
the command ls and then the command who.

The example in Listing 7-23 is rather simple, and it’s also possible to make if loops more
complex and have them test for more than one condition. To do this, use else or elif. By using
else within the loop, you can make sure that something happens if the condition is met, but
it allows you to check another condition if the condition is not met. You can even use else in
conjunction with if (elif) to open a new loop if the first condition isn’t met. Listing 7-24 is an
example of the latter construction.

Listing 7-24. Nesting if Loops

if [-f $1]
then

echo "$1 is a file"
elif [-d $1]

echo "$1 is a directory"
else

echo "I don't know what \$1 is"
fi

In this example, the argument that was entered when running the script is checked. If it
is a file (if [-f $1]), the script tells the user that. If it isn’t a file, the part under elif is exe-
cuted, which basically opens a second loop. In this second loop, the first test performed is to
see if $1 is perhaps a directory. Notice that this second part of the loop becomes active only if
$1 is not a file. If $1 isn’t a directory either, the part after else is run and the script reports that
it has no idea what $1 is. Notice that, for this entire construction, only one fi is needed to
close the loop.

You should know that if .. then ... else constructions are used in two different ways.
You can write out the complete construction as in the previous examples, or you can use con-
structions that use && and ||. These so-called separators are used to separate two commands
and establish a conditional relationship between them. If && is used, the second command is
executed only if the first command is executed successfully (in other words, if the first com-
mand is true). If || is used, the second command is executed only if the first command isn’t
true. So, with one line of code, you can find out if $1 is a file and echo a message if it is:

[-f $1] && echo $1 is a file

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 205

9233ch07.qxd 10/25/07 1:33 PM Page 205

Note that this can be rewritten differently as well:

[! -f $1] || echo $1 is a file

■Note This example only works as a part of a complete shell script. Listing 7-25 shows how the example
from Listing 7-24 is rewritten if you want to use this syntax.

In case you don’t quite follow what is happening in the second example: it performs a test
to see if $1 is not a file. (The ! is used to test if something is not the case.) Only if the test fails
(which is the case if $1 is indeed a file), it executes the part after the || and echoes that $1 is a
file. Let’s have a look (see Listing 7-25) at how you can rewrite the script from Listing 7-24 with
the && and || tests.

Listing 7-25. The Example from Listing 7-24 Rewritten with && and ||

([-z $1] && echo please provide an argument; exit 1) || (([-f $1] && echo $1 is\
a file) || ([-d $1] && echo $1 is a directory || echo I have no idea what $1 is))

■Note You’ll notice in Listing 7-25 that I used a \ at the end of the line. This slash makes sure that the
carriage return sign at the end of the line is not interpreted and is used only to make sure that you don't type
two separated lines. I've used the \ for typographical reasons only. In a real script, you’d just put all code on
one line (which wouldn’t fit on these pages without breaking it, as I’ve had to do). I'll use this convention in
some later scripts as well.

Understanding what the example script from Listing 7-24 does, it is not really hard to
understand the script in Listing 7-25 because it does the same thing. However, you should
be aware of a few things. First, I’ve added a [-z $1] test to give an error if $1 is not defined.
Next, the example in Listing 7-25 is all on one line. This makes the script more compact, but
it also makes it a little harder to understand what is going on. I’ve used brackets to increase
the readability a little bit and also to keep the different parts of the script together. The parts
between brackets are the main tests, and within these main tests some smaller tests are used
as well.

Let’s have a look at some other examples with if ... then ... else. Consider the follow-
ing line for example:

rsync -vaze ssh --delete /srv/ftp 10.0.0.20:/srv/ftp || echo "rsync failed" | mail
admin@mydomain.com

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE206

9233ch07.qxd 10/25/07 1:33 PM Page 206

mailto:admin@mydomain.com

Here, the rsync command tries to synchronize the content of the directory /srv/ftp with
the content of the same directory on some other machine. If this succeeds, no further evalua-
tion of this line is attempted. If something happens, however, the part after the || becomes
active and makes sure that user admin@mydomain.com gets a message.

Another more complex example could be the following script that checks whether avail-
able disk space has dropped below a certain threshold. The complex part lies in the sequence
of pipes used in the command substitution:

if [`df -m /var | tail -n1 | awk '{print $4} '` -lt 120]
then

logger running out of disk space
fi

The important part of this piece of code is in the first line, where the result of a command
is used in the if loop by using backquoting and that result is compared with the value 120.
If the result is less than 120, the following section becomes active. If the result is greater than
120, nothing happens. As for the command itself, it uses the df command to check available
disk space on the volume where /var is mounted, filters out the last line of that result, and
from that last line filters out the fourth column only, which in turn is compared to the value
120. And, if the condition is true, the logger command writes a message to the system log file.
This example isn’t really well organized; the following rewrite does exactly the same, but
makes it somewhat more readable:

[`df -m /var | tail -n1 | awk '{print $4}'` -lt $1] && logger running out of
disk space

This shows why it’s fun to write shell scripts: you can almost always make them better.

Case
Let’s start with an example this time (see Listing 7-26). Create the script, run it, and then try to
explain what it’s done.

Listing 7-26. Example Script with Case

#!/bin/bash
Your personal soccer expert
usage: soccer

cat << EOF
Enter the name of the country you think will be world soccer champion in 2010.
EOF

read COUNTRY
translate $COUNTRY into all uppercase
COUNTRY=`echo $COUNTRY | tr a-z A-Z`

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 207

9233ch07.qxd 10/25/07 1:33 PM Page 207

mailto:admin@mydomain.com

perform the test
case $COUNTRY in

NEDERLAND | HOLLAND | NETHERLANDS)
echo "Yes, you are a soccer expert "
;;
DEUTSCHLAND | GERMANY | MANNSCHAFT)
echo "No, they are the worst team on earth"
;;
ENGLAND)
echo "hahahahahahaha, you must be joking"
;;
*)
echo "Huh? Do they play soccer?"
;;

esac

In case you didn’t guess, this script can be used to analyze the next World Cup champi-
onship (of course you can modify it for any major sports event you like). It will first ask the
person who runs the script to enter the name of the country that he or she thinks will be
the next champion. This country is put in the $COUNTRY variable. Notice the use of uppercase
for this variable; it’s a nice way to identify variables easily if your script becomes rather big.
Because the case statement that’s used in this script is case sensitive, the user input in the first
part is translated into all uppercase using the tr command. Using command substitution with
this command, the current value of $COUNTRY is read, translated to all uppercase, and assigned
again to the $COUNTRY variable using command substitution. Also notice that I’ve made it
easier to distinguish the different parts of this script by adding some additional comments.

The body of this script consists of the case command, which is used to evaluate the input
the user has entered. The generic construction used to evaluate the input is as follows:

alternative1 | alternative2)
command
;;

So, the first line evaluates everything that the user can enter. Notice that more than one
alternative is used on most lines, which makes it easier to handle typos and other situations
where the user hasn’t typed exactly what you were expecting him to type. Then on separate
lines come all the commands that you want the script to execute. In the example, just one
command is executed, but you can enter a hundred lines to execute commands if you like.
Finally, the test is closed by using ;;. Don’t forget to close all items with the double semi-
colons; otherwise, the script won’t understand you. The ;; can be on a line by itself, but you
can also put it directly after the last command line in the script.

When using case, you should make it a habit to handle “all other options.” Hopefully, your
user will enter something that you expect. But what if he doesn’t? In that case, you probably
do want the user to see something. This is handled by the *) at the end of the script. So, in this
case, for everything the user enters that isn’t specifically mentioned as an option in the script,
the script will echo "Huh? Do they play soccer?" to the user.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE208

9233ch07.qxd 10/25/07 1:33 PM Page 208

Using while
You can use while to run a command as long as a condition is met. Listing 7-27 shows how
while is used to monitor activity of an important process.

Listing 7-27. Monitoring Process Activity with while

#!/bin/bash
#
usage: monitor <processname>

while ps aux | grep $1
do

sleep 1
done

logger $1 is no longer present

The body of this script consists of the command ps aux | grep $1. This command moni-
tors for the availability of the process whose name was entered as an argument when starting
the script. As long as the process is detected, the condition is met and the commands in the
loop are executed. In this case, the script waits 1 second and then repeats its action. When the
process is no longer detected, the logger command writes a message to syslog.

As you can see from this example, while offers an excellent method to check if something
(such as a process or an IP address) still exists. If you combine it with the sleep command,
you can start your script with while as a kind of daemon and perform a check repeatedly. For
example, the script in Listing 7-28 would write a message to syslog if due to an error the IP
address suddenly gets lost.

Listing 7-28. Checking if the IP Address Is Still There

#!/bin/bash
#
script that monitors an IP address
usage: ipmon <ip-address>

while ip a s | grep $1/ > /dev/null
do

sleep 5
done

logger HELP, the IP address $1 is gone.

Using until
Whereas while does its work as long as a certain condition is met, until is used for the opposite:
it runs until the condition is met. This can be seen in Listing 7-29 where the script monitors if the
user, whose name is entered as the argument, is logged in.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 209

9233ch07.qxd 10/25/07 1:33 PM Page 209

Listing 7-29. Monitoring User Login

#!/bin/bash
#
script that alerts when a user logs in
usage: ishere <username>

until who | grep $1 >> /dev/null
do

echo $1 is not logged in yet
sleep 5

done

echo $1 has just logged in

In this example, the who | grep $1 command is executed repeatedly. In this command,
the result of the who command that lists users currently logged in to the system is grepped for
the occurrence of $1. As long as that command is not true (which is the case if the user is not
logged in), the commands in the loop will be executed. As soon as the user logs in, the loop is
broken and a message is displayed to say that the user has just logged in. Notice the use of
redirection to the null device in the test, ensuring that the result of the who command is not
echoed on the screen.

Using for
Sometimes it’s necessary to execute a series of commands, whether for a limited or an unlim-
ited number of times. In such cases, for loops offer an excellent solution. Listing 7-30 shows
how you can use for to create a counter.

Listing 7-30. Using for to Create a Counter

#!/bin/bash
#
counter that counts from 1 to 9
for ((counter=1; counter<10; counter++)); do

echo "The counter is now set to $counter"
done
exit 0

The code used in this script isn’t difficult to understand: the conditional loop determines
that, as long as the counter has a value between 1 and 10, the variable counter must be auto-
matically incremented by 1. To do this, the construction counter++ is used. As long as this
incrementing of the variable counter continues, the commands between do and done are exe-
cuted. When the specified number is reached, the loop is left and the script will terminate and
indicate with exit 0 to the system that it has done its work successfully.

Loops with for can be pretty versatile. For example, you can use it to do something on
every line in a text file. The example in Listing 7-31 illustrates how this works.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE210

9233ch07.qxd 10/25/07 1:33 PM Page 210

Listing 7-31. Displaying Lines from a Text File

#!/bin/bash
for i in `cat /etc/passwd`
do

echo $i
done

In this example, for is used to display all lines in /etc/passwd one by one. Of course, just
echoing the lines is a rather trivial example, but it’s enough to show how for works. If you’re
using for in this way, you should notice that it cannot handle spaces in the lines. A space
would be interpreted as a field separator, so a new line would begin after the space.

One more example with for: in this example, for is used to ping a range of IP addresses.
This is a script that one of my customers likes to run to see if a range of machines is up and run-
ning. Because the IP addresses are always in the same range, starting with 192.168.1, there’s no
harm in including these first three bits in the IP address itself. Of course, you’re free to work
with complete IP addresses instead.

Listing 7-32. Testing a Range of IP Addresses

#!/bin/bash
for i in $@
do

ping -c 1 192.168.1.$i
done

Notice the use of $@ in this script. This operator allows you to refer to all arguments that
were specified when starting the script, no matter how many there are.

Using a Stream Editor
In scripting, some fixed Bash functionality can be used, such as if ... then ... else, for, read,
and others that you’ve read about in this chapter. To make a script really powerful, external
utilities can be used as well. One of these is the stream editor sed. In this section, I’ll introduce
you to some sed basics.

The stream editor sed can be compared with grep. Whereas grep is merely used to find
patterns in files, the purpose of sed is to do something to these patterns as well. To accomplish
this, a sed command consists of different parts. In the first part, you indicate what exactly you
want the command to do. Then you specify what it has to search for. Next, a pattern can be
specified to indicate the replacement text, and, finally, you can specify how a replacement has
to take place. You can see an example of this in the following line:

sed "s/english/french/g" languages.txt

In this example, the action that has to be performed is a substitution (s). The text that has
to be located is english and its replacement text is french. Finally, the letter g indicates that
the command has to be executed until matches are found. Also notice that the command that

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 211

9233ch07.qxd 10/25/07 1:33 PM Page 211

sed has to execute is always between quotes; this is to prevent the shell from interpreting the
text string.

The last part that you have to be aware of when working with sed is that this command
will never modify the original file. Instead, it will write any modifications that it makes in the
original text to STDOUT. If you want these modifications to be saved somewhere, you need to
write it to a new file. The most common way to do this is by redirection to a temporary file. If
required, the temporary file can be used later to overwrite the original file. To accomplish this,
the preceding example would be modified in the following way:

sed "s/english/french/g" languages.txt > languages2.txt

Next, you can copy the new output file over the old file.
Another useful task that can be accomplished with sed is to remove text from a file. In that

case, you just add empty replacement text, as seen in the following example:

sed "s/something//g" list.txt

Of course you’d then have to make sure that the result is then written to some tempo-
rary file.

Also very useful is the option to remove from a file any lines that match a certain pattern.
For example, the following command would remove user sander from the /etc/passwd file:

sed "/sander/d" /etc/passwd

Notice that no substitution is used in this example; instead, the d (delete) command
removes the line. You can even make it somewhat more complicated by removing an empty
line. In this case, you would need to use a regular expression. The next example shows how:

sed "/^$/d" /myfile

The special construction used here is a regular expression that searches for the beginning
of the line, indicated by a ^ which is followed immediately by the end of the line, which is indi-
cated by a $. Because there’s nothing between the two of them, this construction helps you to
find empty lines.

Working with Functions
The function is an element that can be very useful in longer shell scripts. A function is a sub-
routine in a script that is labeled with a name. Using functions makes it easier to refer to
certain command sequences that have to be used more than once in a script. For instance,
you could create a generic error message if something went wrong. You can define functions
in two ways. You can use something like:

function functionname
{

command1
command2
commandn

}

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE212

9233ch07.qxd 10/25/07 1:33 PM Page 212

Or you could do it this way:

functionname ()
{

command1
command2
commandn

}

To increase the readability of a script, it’s a good idea to use functions if certain code
sequences are needed more than once. Listing 7-33 is an example of a script in which a func-
tion is used to display an error message. This script is a replacement for the file command,
with the difference that the script displays a more elegant error message.

Listing 7-33. Displaying Error Codes Using Functions

#!/bin/bash
This script shows the file type
#
usage: filetype $1
function noarg
{

echo "You have made an error"
echo "When running this script, you need to specify the name of the file"
echo "that you want to check"
exit 1

}

if [-z $1]; then
noarg

else
file $1

fi
exit 0

In Listing 7-33, the function has the name noarg. In it, some text is specified that has to
be echoed to the screen when the function is called. The function basically defines an error
message, and so it makes sure that the script terminates with an exit status of 1. As you can
see, the function is called just once in this script, when a user forgets to enter the required
argument.

A Complex Scripting Example
Let’s discuss one more script, one that provides a rather complex example in which process
activity is monitored (see Listing 7-34). To do this, the script will periodically check the most
active process and, if this script’s activity rises above a threshold, it will send an e-mail to the
user root.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 213

9233ch07.qxd 10/25/07 1:33 PM Page 213

Listing 7-34. Complex Scripting Example

#!/bin/bash
Script that monitors the top-active process. The script sends an email to the user
root if utilization of the top active process goes beyond 80%. Of course, this
script can be tuned to do anything else in such a case.
#
Start the script, and it will run forever.

while true
do

Check if we have a process causing high CPU load every 60 seconds
sleep 10
BLAH=`ps -eo pcpu,pid -o comm= | sort -k1 -n -r | head -1`
USAGE=`echo $BLAH | awk '{ print $1 }'`
USAGE=${USAGE%.*}
PID=`echo $BLAH | awk '{print $2 }'`
PNAME=`echo $BLAH | awk '{print $3 }'`

Only if we have a high CPU load on one process, run a check within 7 sec.
In this check, we should monitor if the process is still that active
If that's the case, root gets a message
if [$USAGE -gt 70]
then

USAGE1=$USAGE
PID1=$PID
PNAME1=$PNAME
sleep 7
FIX MIJ

BLAH2=`ps -eo pcpi,pid -o comm= | sort -k1 -n -r | head -1`
USAGE2=`echo $BLAH2 | awk '{ print $1 } '`
USAGE2=${USAGE2%.*}
PID2=`echo $BLAH2 | awk '{print $2 }'`
PNAME2=`echo $BLAH2 | awk '{print $3 }'`

Now we have variables with the old process information and
with the new information

[$USAGE2 -gt 70] && [$PID1 = $PID2] && mail -s "CPU load of\
$PNAME is above 70%" root < .

fi
done

Again, you can see that this script comprises several parts. The first thing that happens is
that a variable with the name BLAH is defined. In this variable, three values are stored for the
most active process: the first value indicates CPU usage, the second value indicates the PID of
that process, and the third value refers to the name of the process. These three values are

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE214

9233ch07.qxd 10/25/07 1:33 PM Page 214

stored in the variables USAGE, PID, and PNAME. Notice that the script performs a pattern-match-
ing operation on the variable USAGE. This is to make the value of this variable a whole number,
such as 81 instead of a fractional number like 81.9. (This is necessary because Bash cannot
perform calculations on fractional numbers.) Also notice the use of the awk command, which
plays an essential role in the script, and that’s to strip the value of the different fields that are
stored in the variables BLAH and BLAH2.

In the second part, the script looks to see if the CPU utilization of the most active process
is higher than 70 percent. If it is, a second check is made to get the usage, name, and PID of
that process at that time. These values are stored in the variables USAGE2, PID2, and PNAME2.

In the third part, the script determines if the script that has a CPU utilization greater than
70 percent in the first run is the same as the script with the highest CPU utilization in the sec-
ond run. If so, a message is sent to the user root.

Summary
In this chapter, you learned about some basic ingredients of shell scripts. This chapter is in
no way a complete overview of everything that can be used in a shell script; it’s just meant to
familiarize you with the basic ingredients of a script, so that you can analyze scripts that are
used on your server, or write simple scripts yourself to simplify tasks that you have to perform
repeatedly. In Chapter 8, you’ll learn how to set up networking on Ubuntu Server.

CHAPTER 7 ■ RUNNING IT ANYWAY YOU L IKE 215

9233ch07.qxd 10/25/07 1:33 PM Page 215

9233ch07.qxd 10/25/07 1:33 PM Page 216

Making Connection
Configuring the Network
Interface Card and SSH

What is a server without a network connection? Of no use whatsoever. We’ve already explored
the possibilities of the Linux operating system itself, and now we need to talk about the net-
work. In this chapter, you’ll learn how to configure the network card. Also, I’ll talk about setting
up remote connections using SSH. And, in addition, you’ll also learn about some basic steps to
troubleshoot a network connection.

Configuring the Network Card
When installing your server, the installer automatically configures your server’s network board
to get its IP configuration from a DHCP server. As you read in Chapter 1, you can configure it
to use a static IP address instead. Also, after installing a server, it’s possible to change the IP
address assignment of your server’s network card. Let’s see how this works.

When your server boots, it starts the networking script from /etc/init.d. The script reads
the configuration that is stored in the /etc/network directory, paying particular attention to
the /etc/network/interfaces file. This configuration file stores the entire configuration of the
network board. Listing 8-1 shows an example configuration for an Ethernet network card that
gets its configuration from a DHCP server.

Listing 8-1. Example Configuration for a Network Board

root@ZNA:~# cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

217

C H A P T E R 8

9233ch08.qxd 10/31/07 2:37 PM Page 217

The primary network interface
auto eth0
iface eth0 inet static

address 192.168.1.33
netmask 255.255.255.0
network 192.168.1.0
broadcast 192.168.1.255
gateway 192.168.1.254
dns-* options are implemented by the resolvconf package, if installed
dns-nameservers 193.79.237.39
dns-search lan

As you can see from the configuration file, the server has activated two network cards.
The first is lo, and this is the loopback interface. It’s required for many services to function,
even if your server has no network connection at all. Typically, it uses the IP address 127.0.0.1.

In most cases, an Ethernet network board is used to connect with the rest of the world.
This network board is represented by the name eth0. Because this network board has no
fixed configuration for the server to use for it, you have to configure one yourself. To show the
current network configuration of your server, use the ifconfig command. Listing 8-2 is an
example of the output of this command. Especially notice the address given by the inet addr
parameter, which is the IP address your server uses to connect to the rest of the world.

Listing 8-2. The ifconfig Command Is Used to Show the Current Network Configuration.

root@RNA:/etc/network# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:03:C4:1C

inet addr:192.168.1.70 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe03:c41c/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2627 errors:0 dropped:0 overruns:0 frame:0
TX packets:335 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:282945 (276.3 KiB) TX bytes:35050 (34.2 KiB)
Interrupt:16 Base address:0x2000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:14 errors:0 dropped:0 overruns:0 frame:0
TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:700 (700.0 b) TX bytes:700 (700.0 b)

Now that you know where the server stores its network configuration, you can also change
it directly in this file. This is useful if, for example, you want to change the IP address of your
network card fast. Next, you can restart the network card with the ifdown and ifup commands,
after which the new configuration is activated.

CHAPTER 8 ■ MAKING CONNECTION218

9233ch08.qxd 10/31/07 2:37 PM Page 218

Using ifup, ifdown, and Related Tools
The ifup and ifdown commands make managing a network board easy, and these tools are
simple: call the tool followed by the name of the network board that you want to manage. For
example, ifup eth0 starts network card eth0 and ifdown eth0 stops it again.

Another useful tool to manage the network card is ifplugstatus, which shows the state of
a network interface. As seen in Listing 8-3, this utility shows if a link is detected on a network
interface. (If the ifplugstatus utility hasn’t been installed yet, use apt-get install ifplugd.)

Listing 8-3. The ifplugstatus Tool Shows the Current Connection State of a Network Board.

root@RNA:/# ifplugstatus
lo: link beat detected
eth0: link beat detected

Using ifconfig
The ifconfig command is used to manage a network interface card. The command has been
around for years and so it’s not the most flexible command, but it’ll still do the job. If you just
use the ifconfig command without any parameters, you’ll see information about the current
configuration of the network cards in your server. You saw an example of this in Listing 8-2.

Displaying Information with ifconfig
The ifconfig command provides different kinds of information about a network card. It
starts with the name of the protocol used on the network card. The protocol is indicated by
(for example) Link encap: Ethernet, which states that it is an Ethernet network board. Then,
if applicable, the MAC address is given as the HWaddr (hardware address). This address is fol-
lowed by first the IPv4-related address information and then the IPv6 address information.
Then several statistics about the network board are given. Pay special attention to the RX
packets (received packets) and TX packets (transmitted packets) because you can see from
these statistics what the network board is doing and if any errors have occurred.

Apart from the information about the physical network boards that are present in your
server, you’ll also always see information about the loopback device (lo), which is the network
interface that’s used for internal purposes on your server. You need this loopback device
because some services depend on it; for example, the graphical environment that’s used on
Linux is written on top of the IP stack offered by the loopback interface.

Configuring a Network Card with ifconfig
Although the server is provided with an IP address upon installation, it’s important for you to
be able to manage IP address configuration on the fly, using the ifconfig command. Fortu-
nately, it’s relatively easy to configure a network board in this way: just add the name of the
network board you want to configure followed by the IP address you want to use on that net-
work board (for example, ifconfig eth0 192.168.1.125). This command will configure eth0
with a default class C subnet mask of 255.255.255.0, which indicates that the first three bytes
of the IP address are a part of the network address and that the last byte is the unique host
identifier within that network.

CHAPTER 8 ■ MAKING CONNECTION 219

9233ch08.qxd 10/31/07 2:37 PM Page 219

If you need something other than a default subnet mask, add an extra parameter. An
example of this is the command ifconfig eth0 172.16.18.18 netmask 255.255.255.0
broadcast 172.16.18.255, which configures the eth0 device with the given IP address and a
24-bit subnet mask. Note that this example uses a nondefault subnet mask. If this happens,
you have to specify the broadcast address that’s used to address all nodes in the same net-
work as well; the ifconfig command just isn’t smart enough to realize that you’re using a
nondefault IP address and to calculate the right broadcast address accordingly.

Bringing Interfaces Up and Down with ifconfig
Apart from adding an IP address to a network board, you can use the ifconfig command to
bring a specific network board up or down. For example, ifconfig eth0 down shuts down the
interface, and ifconfig eth0 up brings it up again with its default settings as specified in the
configuration file /etc/network/interfaces.

Instead of using ifconfig to manipulate your network card, you can also use ifup and
ifdown. These commands allow you to bring a network card up or down easily, and without
changing the configuration of a given network board. For example, to bring a network board
down, use ifdown eth0; to bring it up again, use ifup eth0. In both cases, the default configu-
ration for the network board as specified in /etc/network/interfaces is applied.

Using Virtual IP Addresses with ifconfig
Another rather useful way of using ifconfig is to add virtual IP addresses, which are just
secondary IP addresses that are added to a network card. A network board with virtual IP
addresses can listen to two different IP addresses, which is useful if you are configuring serv-
ices on your server that all need their own IP address. Think, for example, of different virtual
Apache web servers.

You can use the virtual IP address either within the same address range or on a different
one. To add a virtual IP address, add :n where n is a number after the name of the network
interface. For example, ifconfig eth0:0 10.0.0.10 adds the address 10.0.0.10 as a virtual IP
address to eth0. The number after the colon must be unique, so you can add a second virtual
IP address with ifconfig eth0:1 10.0.0.20, and so on. When you use the ifconfig tool to
display the current configuration of your server, you’ll see all virtual IP addresses that are con-
figured, as shown in Listing 8-4.

Listing 8-4. The ifconfig Tool Shows Virtual IP Addresses As Well.

root@ZNA:~# ifconfig eth0:0 10.0.0.10
root@ZNA:~# ifconfig eth0:1 10.0.0.20
root@ZNA:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80

inet addr:192.168.1.33 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fea0:a580/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3035 errors:0 dropped:0 overruns:0 frame:0
TX packets:199 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:240695 (235.0 KiB) TX bytes:19035 (18.5 KiB)
Interrupt:18 Base address:0x1400

CHAPTER 8 ■ MAKING CONNECTION220

9233ch08.qxd 10/31/07 2:37 PM Page 220

eth0:0 Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80
inet addr:10.0.0.10 Bcast:10.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
Interrupt:18 Base address:0x1400

eth0:1 Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80
inet addr:10.0.0.20 Bcast:10.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
Interrupt:18 Base address:0x1400

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Using the ip Tool
The ifconfig tool can still be used to display information about the configuration of a net-
work card, but it’s not the only tool available. A more flexible (but also more difficult) tool is
ip. The ip tool has many options that allow you to manage virtually all aspects of the network
connection. For example, you can use it to configure an IP address, but it manages routing as
well, which is something that ifconfig can’t do.

■Note So, the ip tool offers more than ifconfig. Its syntax is also more difficult, and so many people
stick to using ifconfig instead. And, to be honest, it doesn’t really matter, because they can both be used
for the same purposes. It’s just a different approach.

The first option you use after the ip command determines exactly what you want to do
with the tool. This first option is a reference to the so-called object, and each object has differ-
ent possibilities. The following objects are available:

• link: Used to manage or display properties of a network device

• addr: Used to manage or display IPv4 or IPv6 network addresses on a device

• route: Used to manage or display entries in the routing table

• rule: Used to manage or display rules in the routing policy database

• neigh: Used to manage or display entries in the ARP cache

• tunnel: Used to manage or display IP tunnels

CHAPTER 8 ■ MAKING CONNECTION 221

9233ch08.qxd 10/31/07 2:37 PM Page 221

• maddr: Used to manage or display multicast addresses for interfaces

• mroute: Used to manage or display multicast routing cache entries

• monitor: Used to monitor what happens on a given device

Each of these objects has options of its own. The easiest way to learn about these options
is to use the ip command followed by the object followed by the keyword help. For example,
ip address help provides information on how to use the ip address command, as shown in
Listing 8-5.

Listing 8-5. The ip address help Command Gives Help on Configuring IP Addresses with
the ip Tool.

root@ZNA:~# ip address help
Usage: ip addr {add|del} IFADDR dev STRING

ip addr {show|flush} [dev STRING] [scope SCOPE-ID]
[to PREFIX] [FLAG-LIST] [label PATTERN]

IFADDR := PREFIX | ADDR peer PREFIX
[broadcast ADDR] [anycast ADDR]
[label STRING] [scope SCOPE-ID]

SCOPE-ID := [host | link | global | NUMBER]
FLAG-LIST := [FLAG-LIST] FLAG
FLAG := [permanent | dynamic | secondary | primary |

tentative | deprecated]

It can be quite a challenge to find out how the help for the ip tool works, so I’ll give you
some help on this help feature. To understand what you need to do, you must first analyze the
Usage: lines. In this output, you see two of them: a usage line that starts with ip addr {add|del}
and another that starts with ip addr {show|flush}. Let’s have a look at the first one.

The complete usage line is ip addr {add|del} IFADDR dev STRING. So, you can add or
delete an IP address that is referred to by IFADDR from a device (dev) that is referred to by
STRING. Now, a string is just a string, and that can be anything, but that’s not the case for the
IFADDR part. Therefore, you can find an explanation of that part in the next section of the
help output: IFADDR := PREFIX | ADDR peer PREFIX [broadcast ADDR] [anycast ADDR]
[label STRING] [scope SCOPE-ID]. In this line, the help explains that you have to use a
PREFIX or an ADDR statement, which may be followed by several options like the broadcast
address, the anycast address, a label, or a SCOPE-ID. Now that you understand how the help
works, let’s have a look at some examples.

Displaying IP Address Setup Information with the ip Tool
A common use of the ip tool is to display information about the use of IP addresses for a given
interface. The command to use is ip address show. Note that, if it is clear exactly what you
want and there can be no confusion between options, you can specify the options used with
the ip command in short form, such as ip a s, which accomplishes the same thing as ip
address show. This command displays the information in Listing 8-6.

CHAPTER 8 ■ MAKING CONNECTION222

9233ch08.qxd 10/31/07 2:37 PM Page 222

Listing 8-6. Showing ip Address Configuration with ip address show

root@ZNA:~# ip address show
1: lo: <LOOPBACK,UP,10000> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,10000> mtu 1500 qdisc pfifo_fast qlen 1000

link/ether 00:0c:29:a0:a5:80 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.33/24 brd 192.168.1.255 scope global eth0
inet 10.0.0.10/8 brd 10.255.255.255 scope global eth0:0
inet 10.0.0.20/8 brd 10.255.255.255 scope global secondary eth0:1
inet6 fe80::20c:29ff:fea0:a580/64 scope link

valid_lft forever preferred_lft forever

If you look hard enough, you can see that the result of ip address show is almost the same
as the result of ifconfig. It’s just presented differently.

Monitoring Device Attributes
Another simple use of the ip tool is to show device attributes, which you can do with the ip
link show command. This command shows usage statistics for the device you’ve specified but
no address information. Listing 8-7 provides an example of its output.

Listing 8-7. Use the ip link show Command for an Overview of Link Attributes.

root@ZNA:~# ip link show
1: lo: <LOOPBACK,UP,10000> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,10000> mtu 1500 qdisc pfifo_fast qlen 1000

link/ether 00:0c:29:a0:a5:80 brd ff:ff:ff:ff:ff:ff

The information displayed by ip link show is related to the activity on the network board.
Of particular interest are the device attributes returned for each of the devices (they’re dis-
played in brackets right after the name of the device). For example, in most cases, you can see
the attributes BROADCAST,MULTICAST,UP for a normal network interface card. The BROADCAST
attribute indicates that the device is capable of sending broadcasts to other nodes in the net-
work, the MULTICAST attribute indicates that the device can also send multicast packets, and UP
indicates that the device is working. The command also shows all IP protocol attributes, such
as the maximum transmission unit (mtu) that is used on the interface.

Setting the IP Address
Just as with the ifconfig tool, you can use the ip tool to assign an IP address to a device. To do
this, you could use a command like ip address add 10.0.0.10/16 brd + dev eth0. This com-
mand sets the IP address to 10.0.0.10 for eth0. With this IP address, a 16-bit subnet mask is
used, which is indicated by the /16 directly behind the IP address. The broadcast address is

CHAPTER 8 ■ MAKING CONNECTION 223

9233ch08.qxd 10/31/07 2:37 PM Page 223

calculated automatically, which is indicated with the brd + construction. Once you have set
the IP address with the ip tool, you can use the following command to check if it’s set cor-
rectly: ip address show dev eth0.

As with the ifconfig command, you can add more than one IP address to a network inter-
face when using the ip tool as well. And it isn’t hard: just use ip address add 10.0.0.20/16
brd + dev eth0 and 10.0.0.20 with its specified properties is added as a second IP address to
eth0. You should, however, note the difference between the secondary IP addresses that are
added with ifconfig and the IP addresses that are added with the ip tool. An address added
with ip won’t show up when you use ifconfig. So, when using secondary IP addresses, make
sure you use the right tool to check their properties.

Managing IPv6
Currently, IPv4 is the default protocol on most servers. However, because it has some serious
shortcomings, a new version of the IP protocol began development a few years ago. Because
this draft for IP version 5 just didn’t make it, the new generation of Internet protocol is referred
to as IPv6, and it’s this version that’s installed by default on Ubuntu Server, so you can use it
as an alternative to IPv4. In this section, you’ll learn about the properties of IPv6 and how to
configure it on your server. This section isn’t meant as an in-depth coverage of IPv6 and all its
properties. Instead, it aims to help you configure IPv6 on a server and see if it’s useful in your
environment.

IPv6 Addressing
Before you start the actual implementation of IPv6, you should know about its peculiarities,
of which the first and most important is the address length. Whereas IPv4 has to work with
32-bit addresses that are grouped in four groups of eight bits (such as 192.168.1.13) and that
theoretically allow for approximately 4,000,000,000 unique addresses, IPv6 offers a 128-bit
address space, which yields more than enough IP addresses to assign one to every square
meter of the Earth’s surface, including the oceans. Opposite to the decimal-written IPv4
addresses, the IPv6 addresses are written in hexadecimal and split into 16-bit groups. An
example of such an address is 2bad:babe:5655:8812:0BFC:1234:0:1234. Not really something
you would care to memorize.

If an IPv6 address has more than one group of 16 bits with the value of 0, you can abbreviate
this using the double colon (::). For example, the IPv6 address 2bad:0:0:0:0:1234:5678:90ab
can also be written as 2bad::1234:5678:90ab, and 0:0:0:0:0:0:0:1 is just ::1. This clever
shortcut makes working with IPv6 addresses much easier. Another nice feature of IPv6 is that
you can share an IP address among different NICs so that several network boards listen to the
same IP address. This easy-to-implement method is for load balancing.

Because more than enough bits are available in an IPv6 address, there’s a default division
between the network part of the address and the node part of the address. This is an impor-
tant advantage of IPv4, in which you must use a subnet mask to specify which part of the
address refers to the network and which part refers to the node on that network. So, with IPv6,
you don’t need to struggle with subnet masks any more.

The last 64 bits of an IPv6 address are normally used as the node ID. This node ID is a so-
called IEEE EIA-64 ID, which on Ethernet consists of the 48-bit MAC address with FFFE added

CHAPTER 8 ■ MAKING CONNECTION224

9233ch08.qxd 10/31/07 2:37 PM Page 224

between the vendor identifier and the node identifier. If a network interface doesn’t have a
MAC address, the node ID is randomly generated.

Because the IPv6 address includes the MAC address, something important follows: the
node in an IPv6 network can determine its own IPv6 address. All that a node must do is listen
on the network to check for the address that’s in use. Next, it can add its own MAC address,
transform that to an IEEE EIA-64 ID, and it’ll be able to communicate with the rest of the net-
work automatically. So there goes the need for the DHCP server that was required for automatic
address configuration in IPv4 as well.

If you really need it, an IPv6 address can work with a subnet mask. By default, this subnet
mask for all addresses is /64 (64 bits), which specifies that the first half of the IPv6 address
refers to the network, but you can use something other than this default subnet mask as well.
However, the last 64 bits of an address are always reserved for the node address, so you can’t
use them in the subnet mask.

Address Types
In IPv6, you can use different types of addresses:

• Link local addresses: These IP addresses are used if no specific information about the
network configuration could be found. They’re intended for local use only, and they
always start with FE80 in the first two bytes. They aren’t routable, but they are necessary
for neighbor discovery (see the next section, “The Neighbor Discovery Protocol”). Link
local addresses are always created automatically if IPv6 is enabled.

• Site local addresses: These are similar to addresses that are defined in the private
address ranges for IPv4. They cannot be addressed from nodes outside this network.
Site local addresses always start with FEC0 and have a default 48-bit subnet mask. The
last 16 bits can be used for internal subnetting. Site local addresses are not created
automatically.

• Aggregatable global unicast addresses: These are the “normal” worldwide unique
addresses that are used on IPv6 networks. They are assigned by an administrator and
always start with a 2 or 3 (binary 001).

• Multicast addresses: These addresses are used to address groups of nodes. They always
start with FF.

• Anycast addresses: This is the IPv6 alternative for a broadcast address. When using any-
cast, the IPv6 node gets an answer from any node that matches the anycast criteria.

• In IPv6, broadcast addresses are not used.

On a single Linux host that uses IPv6 (which by default is the case on Ubuntu Server),
you’ll always find more than one IPv6 address:

• A loopback address (::1) is used on the loopback interface.

• A link local address is generated automatically for every interface.

• If the administrator has configured it, every interface has a unicast address. This can be
a site local address, an aggregatable global unicast address, or both.

CHAPTER 8 ■ MAKING CONNECTION 225

9233ch08.qxd 10/31/07 2:37 PM Page 225

The Neighbor Discovery Protocol
One of the design goals of IPv6 was to make network configuration easier. For this purpose,
the neighbor discovery protocol was defined in RFC 2461 (see http://www.ietf.org/
rfc-rfc2461.txt). The purpose of this protocol is to provide an automatic IP address assign-
ment: neighbor discovery makes sure that a node can automatically find routers, addresses,
prefixes, and other required configuration information, just by looking at what happens on
the network.

In the neighbor discovery protocol, a router advertises all relevant information such as
the best next hop. Individual nodes check their neighbors and keep information about the
neighbors in the neighbor cache, so that they always have current and reliable information
about the rest of the network. In the neighbor cache, a node keeps information such as
addresses of neighbors, a list of prefixes (IPv6 addresses) that are in use by the neighbors,
and a list of routers that can be used as default routers. So, the neighbor discovery protocol
really makes IPv6 a plug-and-play protocol.

Assigning IPv6 Addresses in Ubuntu Server
On Ubuntu Server, you can use ip as well as ifconfig to configure an IPv6 address. All
required kernel modules are loaded by default, so, with regard to that, no extra work needs to
be done. Let’s look at the following examples of how to configure IPv6 on your server:

• ifconfig eth0 inet6 add 2000:10:20:30:20c:29ff:fec7:82f6/64: This command
configures eth0 with an IPv6 address that is an aggregatable global unicast address
(a worldwide unique address). Note that the second part of the address assigned here
is the IEEE EIA-64 ID of the network interface card that the address is added to. You
need to configure only one address per LAN in this way, and all other nodes will get the
aggregatable global unicast address assigned automatically by means of the neighbor
discovery protocol.

• ip address add 2000:10:20:30:20c:29ff:fec7:82f6/64 dev eth0: This is exactly the
same as the command used in the previous example, with the exception that the ip tool
is used instead of ifconfig.

• ip address add fec0:10:20:30:29ff:fec7:82f6 dev eth0: This command adds a site
address to interface eth0. Note that this also has to be performed for just one node per
LAN. Instead of using the ip tool, you can do the same with ifconfig eth0 inet6 add
fec0:10:20:30:29ff:fec7:82f6 dev eth0.

• route -A inet6: This command shows information about current IPv6 routes.

• route -A inet6 add 2000::/3 gw 3ffe:ffff:0:f101::1: This adds a route in which all
addresses that start with binary 001 (decimal notes as 2) will be sent to the specified
default gateway.

Once your IPv6 interface is set up, you’ll probably want to test its operation as well. You
can find some tools in the Linux iputils package such as the ping6 utility that you can use to
ping other hosts to check for their availability. Note that when using ping6, you always need to
specify the interface you want to send the ping packets from: for example, ping6 -I eth0
fe80::2e0:18ff:fe90:9205.

CHAPTER 8 ■ MAKING CONNECTION226

9233ch08.qxd 10/31/07 2:37 PM Page 226

http://www.ietf.org

Also in the same iputils package are the traceroute6 tool that can be used to trace the
route to a given destination and the tracepath6 tool, which does more or less the same but
without the need to use superuser privileges. You can read more about these tools in the
“Troubleshooting Network Connections” section of this chapter.

Managing Routes
You’ve read about how a network interface is provided with an IP address. But, to be com-
pletely functional on the network, you have to specify some routes as well. These routes allow
you to communicate with computers on other networks, and, conversely, they allow comput-
ers on other networks to communicate with your server.

As a minimal requirement, you need a default route. This route specifies where to send
packets that don’t have a destination on the local network. The router used for the default
route is always on the same network as your server; just consider it to be the door that helps
you get out of the local network. To set the default route, two tools can be used: the ip tool and
the route utility. The ifconfig utility was never meant to create or maintain routes, so you
can’t use it for this purpose.

Setting the Default Route with route
The old command to set the default route is route. If no options are used, it will display a list
of all routes that are currently defined on this host. Listing 8-8 provides an example. When
using the route command without options, it will always try to resolve the name for a given IP
address, which takes some time. If you don’t want any name resolution to be performed, use
the option -n, which makes the command a lot faster.

Listing 8-8. Use the route Command to Get an Overview of All Routes That Are Currently
Configured.

root@ZNA:~# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
localnet * 255.255.255.0 U 0 0 0 eth0
10.0.0.0 * 255.0.0.0 U 0 0 0 eth0
default 192.168.1.254 0.0.0.0 UG 0 0 0 eth0

Several columns are displayed in the output of the route command, as you can see in
Listing 8-8. The first column provides the destination, which is the network or host that a
route is defined for. Next is the gateway, which is the router that needs to be contacted to
reach the specified destination. An asterisk (*) in the gateway column indicates that the local-
host is the gateway for that destination. For external routers used as the destination, you’ll
see the IP address (or name) of that router. Next is the genmask, which is the subnet mask used
on the specified destination. Then come the flags, metric, ref, and use columns, all of which
reveal more detailed information about this route. Finally, the iface column reveals what net-
work interface is used to route packets.

To specify a route, you need to provide a minimum of two pieces of information: what
network you want to add an entry for, and what router is used as a gateway. All the other infor-
mation is added automatically. For example, if you want to specify that the router with IP

CHAPTER 8 ■ MAKING CONNECTION 227

9233ch08.qxd 10/31/07 2:37 PM Page 227

address 192.168.1.254 should be used as the default gateway, use the command route add
default gw 192.168.1.254.

If you need to change the default gateway, you should be aware that you first have to
remove the old route. Use the route del command to do this. For example, to remove the
current setting for the default gateway, use route del default gw.

Using the ip Tool to Specify the Default Gateway
If you know what information has to be entered when defining a route, it’s easy to do it with
either the ifconfig or the ip tool. The only differences are minor changes in the syntax that’s
used. To set the default gateway to 192.168.1.254 using the ip tool, use the ip route add
default via 192.168.1.254 command. This command makes sure that all packets sent to
non-local destinations are sent through 192.168.1.254. Likewise, you can delete the default
route with ip route del default.

Storing Routing Information
When you enter information, such as the default gateway, from the command line, it will be
lost the next time you reboot your server. To make sure that the information remains after a
reboot, store it in the /etc/network/interfaces file. This file is read every time the network is
activated. The entry used in this file to store the default route isn’t complex:

gateway 192.168.1.254

Configuring the DNS Resolver
If you want to manually configure a network connection as the last part, you need to specify
what DNS name server to use. This is the so-called DNS resolver. With Linux, you do this by
modifying the /etc/resolv.conf file. Typically, this file will contain the IP address of at least
two DNS name servers and a search domain. The name server specifications indicate what
DNS name server should be contacted to translate DNS names to IP addresses and vice versa.
Specify at least two name servers, so that, if the first one cannot be reached, the second one
can do the job. The search domain specifies what domain name should be appended if an
incomplete host name is used. On Ubuntu Server, this is typically set to lan. Listing 8-9 is an
example of the content of the /etc/resolv.conf file.

Listing 8-9. Example of the /etc/resolv.conf File

nameserver 192.168.1.10
nameserver 193.79.237.39
search lan

In this example, you see that name server 192.168.1.10 is used as the default name server,
and all DNS requests will be sent to it. If this server cannot be reached, only then will the sec-
ond server in the list (193.79.237.39) be contacted. Make sure to always specify the addresses
of two name servers. You can specify a third name server if you like, but it likely will never be
used (just because of the slim chance that the first and second name are both unavailable).

CHAPTER 8 ■ MAKING CONNECTION228

9233ch08.qxd 10/31/07 2:37 PM Page 228

You’ll see that the third line of the Listing 8-9 example specifies the search domain. For exam-
ple, if a user uses the command ping ftp, which includes an incomplete host name, the name
of the domain specified with the search option in resolv.conf is added automatically to it.

The Role of the nsswitch.conf File
Most people take it for granted that DNS resolves host names to IP addresses, but this isn’t
necessarily so. Every Linux box has the /etc/nsswitch.conf file that determines what exactly
should happen when translating a host name to an IP address and vice versa. This file speci-
fies many things, but only the following lines are important for resolving host names:

hosts: files dns
networks: files

These two lines specify that, when resolving host names as well as network names, the
files should be searched first, and that the DNS subsystem should be used only if the files have
no information about the given host. Thus, an administrator can make sure that frequently
accessed host names are resolved locally, with the DNS server being contacted only when the
files don’t have information about a particular host. The most important file used for resolving
names to IP addresses is the /etc/hosts file.

Using the /etc/hosts File
One of the oldest ways to resolve host names to IP addresses (and vice versa) is to use the
/etc/hosts file. It’s rather primitive because the file has to be maintained on every single host
where you need it, and no synchronization is established between hosts. But it’s also a very
efficient way to supply information that needs to be available locally. Using the /etc/hosts file
makes resolving names faster and reduces Internet traffic, and you can use it to add any host
names that need to be available only locally. Listing 8-10 shows the contents of this file as it is
created after a default installation of Ubuntu Server.

Listing 8-10. Example of the /etc/hosts File

root@ZNA:~# cat /etc/hosts
127.0.0.1 localhost
192.168.1.33 ZNA.lan ZNA

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
root@ZNA:~#

As you can see, the contents of this file are rather simple. First, you specify the IP address
of the host, which can be an IPv4 or an IPv6 address. Next, the fully qualified host name of the
host is specified. This is the name of the host itself, followed by its DNS suffix. Last, the short

CHAPTER 8 ■ MAKING CONNECTION 229

9233ch08.qxd 10/31/07 2:37 PM Page 229

host name is used. Alternatively, you can just provide the IP address followed by the name of
the host you want to add, such as in the following line:

192.168.1.180 RNA

On a modern Linux server, it’s not necessary to set up /etc/hosts except for local name
resolving. So you’ll always need your own host name and IP address in this file. This is config-
ured automatically when installing Ubuntu Server.

Configuring Network Card Properties with the ethtool Command
Up to now, we’ve talked about stuff related to IP addresses. But the network card itself has set-
tings that you may need to modify, and you’ll use the ethtool command to do this. With it, you
can change network board properties like link speed and duplex mode. Let’s start by display-
ing some information: use ethtool -i eth0 to see an overview of driver properties that are
currently used, as shown in Listing 8-11.

Listing 8-11. The ethtool -i Commands Provides an Overview of Driver Properties.

root@ZNA:~# ethtool -i eth0
driver: pcnet32
version: 1.33
firmware-version:
bus-info: 0000:00:11.0

To change duplex settings and link speed on your network board, you’ll use the -s option,
followed by one of these arguments:

• speed: This option changes the speed. Valid options are 10, 100, and 1000.

• duplex: This option changes the duplex settings. Set it to half or full.

• port: This specifies what port to use. This option is used for network interfaces with dif-
ferent ports available (which is not very common). Valid choices are tp, aui, bnc, mii,
and fibre.

• autoneg: This option indicates whether you want to use auto negotiation to discover the
settings that are used on the network.

So, for example, if you want to change the settings of your network card to full duplex and
a link speed of 1000 Mbps, use ethtool -s eth0 speed 1000 duplex full. You don’t need to
bother about configuration files because the settings you change with ethtool are stored in
the EEPROM of the network card.

Troubleshooting Network Connections
Once you have finished the setup tasks I’ve just described, you should have a working network
connection. But, even if it’s working fine right now, you may at some point need to perform
some tuning and troubleshooting, and that’s exactly what this section is about. Here, you’ll

CHAPTER 8 ■ MAKING CONNECTION230

9233ch08.qxd 10/31/07 2:37 PM Page 230

learn how to test that everything is working the way it should and how to monitor what is hap-
pening on the network itself, as well as on the network interface. The tools I’m talking about in
this section are the top-notch troubleshooting tools.

Testing Connectivity
After configuring a network card, you want to make sure it’s working correctly. For this, the ping
command is your friend, and more so because it’s easy to use: enter the command followed by
the name or address of the host you want to test connectivity to, such as ping www.ubuntu.com.
This forces ping to start continuous output, which you can interrupt by using the Ctrl+C key
sequence. You can also send a limited number of packets; for example, the command ping -c
3 192.168.1.254 sends just three packets to the specified host. If you use ping in a clever way,
you can test a lot of things with it. I recommend using it in the following order:

1. Ping the localhost. If you pass this test, you’ve verified that the IP stack on your local
machine is working properly.

2. Ping a machine on the local network by using its IP address: if this works, you’ve veri-
fied that IP is properly bound to the network board of your server and that it can make
a connection to other nodes on the network. If it fails, you need to check the informa-
tion you’ve entered with the ifconfig or ip commands; you may have made an error
entering the subnet mask for your network interface.

3. Ping a machine on the Internet using its IP address. A good bet is 137.65.1.1, which is a
name server that hasn’t failed me in the last 15 years. Of course, you can use any other
host as long as you know its IP address. If the ping is successful, you’ve verified that the
routers between the localhost and the destination are all working. If it fails, there’s an
error somewhere in the routing chain. Check route -n or ip route show on your local-
host to see if the default route is defined.

4. Ping a machine on the Internet using its DNS name. If this succeeds, everything is
working. If this step fails (but test 3 was successful), make sure you’ve entered the
name of the DNS server that should be used in /etc/resolv.conf. If this is okay, check
to see if your DNS server is working.

In many cases, you’ll use the ping command without options. But some options can be
useful, as seen in Table 8-1.

Table 8-1. Useful ping Options

Option Description

-c count Specifies the number of packets to be sent. The ping command terminates
automatically after reaching this number.

-l device Specifies the name of the network device that should be used. Useful on a
computer with several network devices.

-i seconds Specifies the number of seconds to wait between individual ping packets. The
default setting is 1 second.

-f Sends packets as fast as possible, but only after a reply comes in.

Continued

CHAPTER 8 ■ MAKING CONNECTION 231

9233ch08.qxd 10/31/07 2:37 PM Page 231

http://www.ubuntu.com

Table 8-1. Continued

Option Description

-l Sends packets without waiting for a reply. If used with the -f option, this
may cause a denial-of-service attack on the target host and the host may stop
functioning properly or even crash. Apart from the unknown harm that this may
do to the target server, you may find yourself blacklisted or even charged with a
criminal offense. Because this is such a very dangerous option, only the user root
is allowed to use it.

-t ttl Sets the time to live (TTL) for packets that are sent. This indicates the maximum
number of routers that each packet may pass through on its way to a destination.
The TTL is decremented by one by each router it passes until the TTL becomes 0,
which means that the packet won’t be routed any more.

-b Sends packets to the broadcast address of the network. This prompts a reply from
every host that’s up and allowed to answer to ping packets.

■Note To protect against a denial-of-service attack, many hosts are configured not to answer a ping
request. Therefore, when testing connectivity, make sure that you use a host that’s allowed to answer.

The ping command is not just used to test that a connection can be established; you
can also use it to check the roundtrip delay between your computer and a given host. The
elapsed time is an important indication of the quality of the network connection. To check
the roundtrip delay, have a look at the time parameter that’s listed in the result of the ping
command. Listing 8-12 provides an example in which ping is used to send four packets to
www.ubuntu.com.

Listing 8-12. Testing Connectivity to www.ubuntu.com

root@ZNA:~# ping -c 4 www.ubuntu.com
PING www.ubuntu.com (82.211.81.158) 56(84) bytes of data.
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp_seq=1 ttl=51 time=22.0 ms
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp_seq=2 ttl=51 time=10.7 ms
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp_seq=3 ttl=51 time=18.6 ms
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp_seq=4 ttl=51 time=20.8 ms

--- www.ubuntu.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3015ms
rtt min/avg/max/mdev = 10.741/18.092/22.057/4.417 ms

Testing Routability
If you can ping your default router but you can’t ping a given host on the Internet, it’s probably
obvious that something is wrong with one of the routers between your network and the desti-
nation host. You can use the traceroute command to find out exactly where things are going
wrong. The traceroute command uses the TTL value of the UDP datagrams it sends out.

CHAPTER 8 ■ MAKING CONNECTION232

9233ch08.qxd 10/31/07 2:37 PM Page 232

http://www.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com

■Note A datagram is a packet sent over the OSI model network layer.

The idea is that, when the TTL value reaches 0, the packet is discarded by the router and
a message is sent back to the sender. When starting, traceroute uses a TTL value of 0, which
causes the packet to be discarded by the very first router. This is how traceroute identifies the
first router. Next, it sends the packet to the target destination again, but with a TTL of 1, which,
as you can see, causes the packet to be discarded by the second router. Things continue in this
manner until the packet reaches its final destination.

To use traceroute, you normally put the host name as the argument, such as traceroute
www.ubuntu.com. It’s possible as well to use the IP address of a host, which will produce a result
as seen in Listing 8-13.

Listing 8-13. Testing a Network’s Route with traceroute

root@ZNA:~# traceroute www.ubuntu.com
traceroute to www.ubuntu.com (82.211.81.158), 30 hops max, 40 byte packets
1 192.168.1.254 (192.168.1.254) 72.668 ms 10.361 ms 176.306 ms
2 195.190.249.90 (195.190.249.90) 3.353 ms 9.199 ms 10.351 ms
3 42.ge-4-0-0.xr1.3d12.xs4all.net (194.109.5.49) 6.386 ms 7.237 ms 16.421 ms
4 0.so-6-0-0.xr1.tc2.xs4all.net (194.109.5.10) 11.407 ms 11.447 ms 9.599 ms
5 217.149.46.21 (217.149.46.21) 31.989 ms 29.321 ms 22.756 ms
6 sl-bb21-ams-8-0.sprintlink.net (217.149.32.41) 13.415 ms 13.244 ms 12.569 ms
7 213.206.131.46 (213.206.131.46) 11.147 ms 12.282 ms 11.222 ms
8 ae-0-56.mp2.Amsterdam1.Level3.net (4.68.120.162) 7.862 ms ae-0-54.mp2.Amster\
dam1.Level3.net (4.68.120.98) 11.796 ms ae-0-52.mp2.Amsterdam1.Level3.net\
(4.68.120.34) 11.000 ms
9 as-0-0.bbr2.London2.Level3.net (4.68.128.110) 21.047 ms ae-1-0.bbr1.London2.\
Level3.net (212.187.128.46) 35.125 ms as-0-0.bbr2.London2.Level3.net\
(4.68.128.110) 17.183 ms
10 ae-15-53.car1.London2.Level3.net (4.68.117.79) 18.917 ms 17.388 ms ae-25-52.\
car1.London2.Level3.net (4.68.117.47) 18.992 ms
11 tge9-3-146.core-r-1.lon2.\
mnet.net.uk (212.187.196.82) 14.699 ms 17.381 ms 15.293 ms
12 85.133.32.134 (85.133.32.134) 27.130 ms 33.310 ms 37.576 ms
13 82.211.81.76 (82.211.81.76) 16.784 ms 20.140 ms 17.556 ms
14 * * *
15 * * *
16 * * *
17 * * *

With the traceroute command, you’ll see every router that’s passed. For each router, the
name of the router is displayed, followed by its IP address and then the roundtrip times of the
three packets that were sent to that router. You’ll often see that a router replies with only a
string of three asterisks (* * *), which indicates that the router forwards packets normally but
is configured not to reply to ping packets for security reasons.

CHAPTER 8 ■ MAKING CONNECTION 233

9233ch08.qxd 10/31/07 2:37 PM Page 233

http://www.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com

Testing Availability of Services
When the ping and traceroute commands show that everything is working, you’re the proud
owner of a working network interface. Next you can test the availability of two kinds of serv-
ices: those on your computer itself and those on external computers. Because so many tools
are available to test service availability, I won’t try to cover them all, but I do want to discuss
two of the most popular. First is the netstat tool, which you can use to test for the availability
of services on the host where you run the command. And second is nmap, which is used to test
availability on other hosts.

■Caution Some administrators consider any use of nmap on their hosts or their network as an attack
against their security, and therefore won’t allow it. I once used it in a hotel room in the United States to see if
my server in Amsterdam was still offering all its services, and the hotel network shut me off immediately. In
these circumstances, it can be a real pain to get your connection back, so be careful.

Using netstat to Check Your Server
If you want to know what services are available on your server and what these services are
doing, the netstat command is an excellent choice. However, because many of its options
require you to be root, I recommend that you use netstat as root only. To see the most useful
information offered by netstat, use the -platune options, which make sure that you see infor-
mation about programs connected to ports (-p) and what ports are actually listening (-l).
Other options show you everything there is to show (-a), do that for TCP (-t) as well as UDP
(-u), without translating IP addresses to DNS names (-n), and with extended information (-e).

If you think that netstat -platune offers too much information, use netstat -tulp
instead. The results are slightly less verbose, which makes it easier to get the data you really
need. Listing 8-14 shows the first screen of output generated by netstat -platune.

Listing 8-14. The netstat -platune Command Provides an Exhaustive Overview of Everything
Happening on Your Computer.

root@ZNA:~# netstat -platune
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State User\

Inode PID/Program name
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 103\

12937 3839/mysqld
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 0\

13209 3965/apache2
tcp 0 0 10.0.0.20:53 0.0.0.0:* LISTEN 104\

13737 3737/named
tcp 0 0 10.0.0.30:53 0.0.0.0:* LISTEN 104\

13735 3737/named
tcp 0 0 10.0.0.10:53 0.0.0.0:* LISTEN 104\

13733 3737/named

CHAPTER 8 ■ MAKING CONNECTION234

9233ch08.qxd 10/31/07 2:37 PM Page 234

tcp 0 0 192.168.1.33:53 0.0.0.0:* LISTEN 104\
12821 3737/named

tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN 104\
12819 3737/named

tcp 0 0 127.0.0.1:953 0.0.0.0:* LISTEN 104\
12824 3737/named

tcp6 0 0 :::53 :::* LISTEN\
104 12816 3737/named

tcp6 0 0 :::22 :::* LISTEN\
0 13585 4150/sshd

tcp6 0 0 ::1:953 :::* LISTEN\
104 12825 3737/named

tcp6 0 0 ::ffff:192.168.1.33:22 ::ffff:192.168.1.6:4197 ESTABLISHED0\
13761 4229/1

tcp6 0 164 ::ffff:192.168.1.33:22 ::ffff:192.168.1.7:9688 ESTABLISHED0\
13609 4158/0

udp 0 0 0.0.0.0:1024 0.0.0.0:* 104\
12822 3737/named

udp 0 0 10.0.0.20:53 0.0.0.0:* 104\
13736 3737/named

udp 0 0 10.0.0.30:53 0.0.0.0:* 104\
13734 3737/named

udp 0 0 10.0.0.10:53 0.0.0.0:* 104\
13732 3737/named

udp 0 0 192.168.1.33:53 0.0.0.0:* 104\
12820 3737/named

udp 0 0 127.0.0.1:53 0.0.0.0:* 104\
12818 3737/named

udp6 0 0 :::1025 :::* 104\
12823 3737/named

udp6 0 0 :::53 :::* 104\
12815 3737/named

As you can see, the netstat command yields a lot of information when used with the
-platune options. Table 8-2 explains the information displayed in Listing 8-14.

Table 8-2. Information Offered by netstat -platune

Item Explanation

Proto The protocol that’s used. Can be TCP or UDP.

Recv-Q The number of packets waiting in the receive queue for this port at the
moment that netstat was used.

Send-Q The number of packets waiting to be sent from this port at the moment that
netstat was used.

Local address The local socket address (the local IP address followed by the port number
that’s used).

Continued

CHAPTER 8 ■ MAKING CONNECTION 235

9233ch08.qxd 10/31/07 2:37 PM Page 235

Table 8-2. Continued

Item Explanation

Foreign address The address of the foreign host (if any) that currently has an open
connection to this host.

State The current state of the protocol connected to the mentioned port.

User The numeric user ID of the user with whose permissions the process was
started.

Inode The inode(s) of files that currently are opened by the process.

PID/program name The PID and name of the program that has currently claimed the men-
tioned port.

As you can see, netstat provides a complete overview of what’s happening on your server.
It’s especially useful if you get error messages like “port already in use.” In combination with
the grep utility, it’s easy to learn what port program is currently holding a port open and, if
required, to terminate that program. For example, to find out what program is currently occu-
pying port 80, use netstat -platune | grep 80. This returns a line like

root@ZNA:~# netstat -platune | grep 80
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 0\

13209 3965/apache2

From this line, you can see that an Apache web server with a PID of 3965 is currently lis-
tening on port 80. Want to remove it? Use kill 3965 and it’s gone.

Using nmap to Check Service Availability on Remote Servers
The netstat command is a useful tool, but it works only on the host where you run it. Some-
times, when you cannot connect to a given service on a given host, you’d like to know if the
service is available at all. You can do this with the nmap command. (Use apt-get install nmap
to install it.) Like most powerful network tools, nmap also works best if you are root.

The nmap command is an expert tool that helps you find out exactly what’s happening at
another host. If you use it properly, the owner of that host will never even know that you were
there. However, you should be aware that running a so-called port scan to monitor open ports
on a given host is considered an intrusion by many administrators, so be careful what you’re
doing with it because you may run into trouble if you use nmap on a host that isn’t yours and
you haven’t notified its owner.

If you really want to keep things simple, just use nmap without arguments. For example,
nmap 192.168.1.69 performs a basic scan on host 192.168.1.69 to find what common ports are
open on it. This gives good results for day-to-day use; see Listing 8-15 for an example.

Listing 8-15. The nmap Command Shows You What Services Are Offered by a Host.

root@ZNA:~# nmap 192.168.1.69

Starting Nmap 4.20 (http://insecure.org) at 2007-08-01 11:08 EDT
Interesting ports on 192.168.1.69:
Not shown: 1693 closed ports

CHAPTER 8 ■ MAKING CONNECTION236

9233ch08.qxd 10/31/07 2:37 PM Page 236

http://insecure.org

PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 00:18:8B:AC:C9:54 (Dell)

Nmap finished: 1 IP address (1 host up) scanned in 0.626 seconds

A very common reason why the test shown in Listing 8-15 could fail is that nmap normally
tries to ping its targets first. On many hosts, ping commands are administratively prohibited,
dropped, or ignored. And these hosts won’t reveal anything when you issue nmap on them. To
make sure that they’re working even when you cannot ping, use the -P0 option to disable ping.
Another useful option is -O, which tries to guess the operating system that is on the target
host. And, if you want to make sure that both TCP and UDP ports are scanned, you should
include -sT and -sU as well. So the command becomes somewhat longer: nmap -sT -sU -P0
-O 192.168.1.69 would scan the target host with all those options. You’ll notice that, because
nmap has to do a lot more work with these options, it takes considerably longer for the com-
mand to complete. Listing 8-16 shows the result of this scan.

Listing 8-16. You Have Lots of Options to Specify How nmap Should Do Its Work.

root@ZNA:~# nmap -sT -sU -P0 -O 192.168.1.69

Starting Nmap 4.20 (http://insecure.org) at 2007-08-01 11:11 EDT
Interesting ports on 192.168.1.69:
Not shown: 3176 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
68/udp open|filtered dhcpc
111/udp open|filtered rpcbind
631/udp open|filtered unknown
5353/udp open|filtered zeroconf
32768/udp open|filtered omad
MAC Address: 00:18:8B:AC:C9:54 (Dell)
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.14 - 2.6.17
Uptime: 0.176 days (since Wed Aug 1 07:23:05 2007)
Network Distance: 1 hop

OS detection performed. Please report any incorrect results at http://insecure.org/
nmap/submit/ .
Nmap finished: 1 IP address (1 host up) scanned in 1482.860 seconds

CHAPTER 8 ■ MAKING CONNECTION 237

9233ch08.qxd 10/31/07 2:37 PM Page 237

http://insecure.org
http://insecure.org

In the last command, you’ll most likely get a better result, but there’s still a problem: the
scan is rather noisy, and so the target host may log messages to tell its owner that you’re using
nmap on it. There’s nothing wrong with that in most cases, but, if you really want to put nmap
through a thorough security test, you should use some stealth options like -sF (FIN-scan), -sX
(X-mas tree scan), or -sN (NULL-scan). All of these use specific properties of the IP protocol to
perform a stealth scan so that the target host never knows you were there. The disadvantage of
these scan options is that they don’t always work! On many modern operating systems, you’ll
find that the operating system ignores them, so you’ll end up waiting a long time without a
result.

Monitoring the Network Interface
Two useful tools are available to monitor what’s happening on your servers’ network cards.
IPTraf offers a menu-driven interface from which you can monitor protocol activity, and the
iftop utility shows how much bandwidth is used by a given connection.

Monitoring Protocol Activity with IPTraf
IPTraf is another useful tool to see what’s happening on the network. It’s not, however,
installed by default, so make sure that it’s installed before you try to launch it from the com-
mand line with the iptraf command. (If it’s not installed yet, use apt-get install iptraf.)
After launching it as root, you’ll see the menu interface (see Figure 8-1). You have several
options in this interface:

• IP traffic monitor: This option tells IPTraf to monitor what’s happening on the network
interfaces in your server. You can select one particular network interface, but it’s possi-
ble to check all the interfaces as well. When a connection is established, you’ll see the
connection happening in real time, indicating with what other node the connection is
established and how many packets are flowing across that connection.

Figure 8-1. The IPTraf tool offers different menu options to see what’s happening
on your server.

CHAPTER 8 ■ MAKING CONNECTION238

9233ch08.qxd 10/31/07 2:37 PM Page 238

• General interface statistics: This option provides generic information on what’s happen-
ing on a network board. You’ll see information like the number of packets sent and
received by the network interface, which is a good statistical overview of what’s hap-
pening on a network board.

• Detailed interface statistics: As you would guess, this option provides more detail, like
the number of sent packets of a specific protocol type (see Figure 8-2).

Figure 8-2. If you choose to view the detailed interface statistics, you’ll see how
many packets of a given protocol type are sent on an interface.

• Statistical breakdown: This option lets you divide the incoming information into differ-
ent columns, sorted by the protocols in use.

• LAN station monitor: This option provides an overview of the most active stations on
the LAN. However, be aware that only those packets coming in on the host where you
are running IPTraf are seen, unless you’re connected directly to the monitoring port of
a switch.

Apart from these options that you can use to specify how IPTraf should do its work,
you also have a filter option and a configure option. The filter option is used to specify what
kind of packets you want to see, and the configure option is used to configure IPTraf itself.
For example, there’s an option that allows you to specify what colors are used in the IPTraf
interface.

Monitoring Bandwidth Usage with the iftop Utility
The iftop utility is simple but efficient. It shows you who has an open connection to your
server and how much bandwidth they’re consuming. It displays a summary total of transmit-
ted and received packets, but a progress bar also provides a visual indication of the actual
bandwidth usage of the given connection. As root, run iftop from the command line (if it’s

CHAPTER 8 ■ MAKING CONNECTION 239

9233ch08.qxd 10/31/07 2:37 PM Page 239

not installed yet, use apt-get install iftop to install it), and it’ll display the results window
shown in Figure 8-3.

Figure 8-3. The iftop utility displays actual bandwidth usage on your server.

Monitoring Network Traffic
So, you’ve seen the tools that will help you monitor the local network boards of your server,
but there are also some excellent tools to see what’s happening on the network. The mother of
all of these tools is tcpdump, which just dumps IP packets on the console you run it from. This
tool is for the hardcore system administrator because it provides lots of information that nor-
mally scrolls by much too fast to see what’s happening. Listing 8-17 shows the results of the
tcpdump command.

Listing 8-17. When Using tcpdump, You’ll See Packet Headers Flying by on Your Server’s Console.

root@RNA:/ # tcpdump
16:00:21.044803 IP ida.lan.9603 > RNA.lan.ssh: . ack 2705288 win 64503
16:00:21.044856 IP RNA.lan.ssh > ida.lan.9603: P 2705420:2705632(212) ack 12377 win\
13936
16:00:21.044945 IP RNA.lan.ssh > ida.lan.9603: P 2705632:2705844(212) ack 12377 win\
13936
16:00:21.045023 IP ida.lan.9603 > RNA.lan.ssh: . ack 2705632 win\
64159
16:00:21.045076 IP RNA.lan.ssh > ida.lan.9603: P 2705844:2705976(132) ack 12377 win\
13936
16:00:21.045166 IP RNA.lan.ssh > ida.lan.9603: P 2705976:2706188(212) ack 12377 win\
13936

CHAPTER 8 ■ MAKING CONNECTION240

9233ch08.qxd 10/31/07 2:37 PM Page 240

16:00:21.045220 IP RNA.lan.ssh > ida.lan.9603: P 2706188:2706320(132) ack 12377 win\
13936
16:00:21.045267 IP ida.lan.9603 > RNA.lan.ssh: . ack 2705976 win 65535
16:00:21.045336 IP RNA.lan.ssh > ida.lan.9603: P 2706320:2706452(132) ack 12377 win\
13936
...
23826 packets captured
24116 packets received by filter
288 packets dropped by kernel

Wireshark is built on top of tcpdump and can be used to view network packets from a
graphical interface. This allows you to see what protocols are used, who is sending the pack-
ets, and even what is inside them. Before starting with these tools, however, you should know
one thing: you can monitor only what you can see. If you’re on a shared network in which
every node sees every packet coming by, it’s easy to monitor everything sent by all hosts on
the network. But this isn’t the case on modern switched networks.

If your computer is connected to a switch, you can see only those packets that are
addressed to the host from where you run the monitoring software. To see the packets sent
by others, you need a specialized tool, like the ARP poisoning tool Ettercap. (This is a very
dangerous tool that can severely disturb network communications, and I won’t be covering it
in this book.) Another way of seeing all packets that are sent on the network is to connect the
computer on which you’re capturing packets to your switch’s management port. This allows
you to see all the packets sent on the network.

Using tcpdump
Because tcpdump is a very straightforward tool; it does exactly what its name promises: dumps
TCP packets on the console of your machine so you can see all packets received by the net-
work board of your server. By default, it shows the first 96 bytes of every packet, but, if you
need more details, you can start it with the -v or even with the -vv option so that it will be
more verbose.

On a very busy server, tcpdump isn’t very useful. The information passes by way too fast to
see what’s happening, and so it makes sense to pipe its output to a file and grep that file for
the information that you really need. Although tcpdump is an excellent tool for capturing pack-
ets, it isn’t the best solution if you want to do something with the captured packets afterward.
That would be Wireshark.

Analyzing Packets with Wireshark
Wireshark provides a graphical interface that you can use to capture and analyze packets,
so it won’t work directly on a server that’s running without X. To start it, run the wireshark
command from the run command box which you can open from the graphical console with
Ctrl+F2. To start a Wireshark capture session, select Capture ➤ Interfaces. From the pop-up
window, select the interface that you want to use to perform your packet capture (see
Figure 8-4). Next click Start to start the packet capture.

CHAPTER 8 ■ MAKING CONNECTION 241

9233ch08.qxd 10/31/07 2:37 PM Page 241

Figure 8-4. Before starting a Wireshark packet capture, select the interface you want to perform
the packet capture on and then click Start.

Wireshark will now start filling its buffers. You won’t see any packet contents while this is
happening. To see the content of the packet buffer, you need to click the Stop button. As a
result, you’ll see the window shown in Figure 8-5. From this window you can sort packets and
see packet details. To sort packets, click on one of the columns. By default, they’re sorted on
the number they came in with, but, for examples, if you click the Source column, you can sort
the packets by their source address, and if you click the Protocol column, you can sort the
packets by the protocol that was used. Any of the columns in the result window can be clicked
to filter the information.

CHAPTER 8 ■ MAKING CONNECTION242

Figure 8-5. You can browse the contents of packets from this results window.

9233ch08.qxd 10/31/07 2:37 PM Page 242

Click one of the packets to display more detail. For every packet that’s captured, you can
analyze all its layers. The top part of the Wireshark capture result window displays just the list
of packets, but, after selecting a packet in the lower part, you’ll see the packet’s different head-
ers. If you really need to see details of any of these parts, click the part you want to zoom in on
to display its contents. You may even see passwords being sent in plain text over the network.

Connecting Remotely with SSH
The essence of SSH is its security, and public and private keys naturally play an important
role in it. On first making contact, the client and the server exchange public and private keys.
In this communication, the server creates a key based on its private key—the so-called host
key—and uses this as its proof of identity. When connecting, the server sends its public key to
the client. If this is the first time the client has connected to this host, the host replies with the
message that shown in Listing 8-18.

Listing 8-18. Establishing an SSH Session with an Unknown Host

root@ZNA:~# ssh 192.168.1.70
The authenticity of host '192.168.1.70 (192.168.1.70)' can't be established.
RSA key fingerprint is fd:07:f6:ce:5d:df:6f:a2:84:38:c7:89:f1:3a:a6:34.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.70' (RSA) to the list of known hosts.
Password:
Last login: Tue Jul 31 15:34:15 2007 from ida.lan
root@RNA:~#

If the client trusts that this is really the intended host, it should answer yes to the
request, in which case the host is then added to the .ssh/known_hosts file in the home direc-
tory of the user who initiated the SSH session. The next time the client connects to the host,
this file is checked to see if the host is already known. The check is based on the public key
fingerprint of the host, which is a unique checksum related to the public key of the host. The
connection is established only if this check matches the name and public key of the server
that the client is connecting to. If these two pieces of data don’t match, it’s very likely that the
host the client is trying to connect to isn’t the intended host and the connection is refused.

Once the identity of the server you want to connect to is established, a secured channel is
set up between the client and server. These secured channels are established by a session key,
which is an encryption key that’s the same on both the server and the client and that encrypts
all data sent between the two machines. The client and the server negotiate this session key
based on their public keys. One of the things determined in this negotiation is the protocol
that should be used. For example, session keys can use different encryption protocols like
3DES, Blowfish, or IDEA.

After establishing the secured channel, the user on the client is asked for credentials: if
nothing is configured, a prompt asks the user to enter his user name and password. Alterna-
tively, the user can authenticate with his public/private key pair, thus proving that he really is
the user that he says he is, but some more things have to be configured before that can happen.

All this may sound pretty complicated, but the nice thing is that the user doesn’t notice
any of it. The user just has to enter a user name and a password. If, however, you want to move
beyond simple password-based authentication, it’s necessary to understand what’s happening.

CHAPTER 8 ■ MAKING CONNECTION 243

9233ch08.qxd 10/31/07 2:37 PM Page 243

Working with Public/Private Key Pairs
The security of SSH relies on the use of public/private key pairs. By default, the client tries to
authenticate using RSA or DSA key pairs. To make this work, the server must have the client’s
public key, which is something that you have to configure by hand, as we’ll see later. When
the client has a public/private key pair, it generates an encrypted string with its private key.
If the server is able to decrypt this string using the client’s public key, the client’s identity is
authenticated.

When using public/private key pairs, you can configure different things. First, the user
needs to determine what cryptographic algorithm she wants to use. For this purpose, she can
choose between RSA and DSA (between which DSA is considered stronger). Next, she has to
decide if she wants to protect her private key with a passphrase.

Using a passphrase is important because the private key really is used as the identity of
the user. Should anyone steal this private key, it would be possible to forge the identity of the
key’s owner, and, for that reason, it’s a very good idea to secure private keys with a passphrase.

Working with Secure Shell
Basically, Secure Shell is a suite of tools that consists of three main programs and a daemon,
sshd. Before being able to use it, of course, you have to install it using apt-get install
openssh-server. The tools are ssh, scp, and sftp. The first, ssh, is used to establish a secured
remote session. Let’s say that it’s like telnet but cryptographically secured. The second, scp,
is a very useful command that’s used to copy files to and from another server where the SSH
process is running. The third, sftp, is a secure FTP client interface. Using it establishes a
secured FTP session to a server that’s running the sshd.

Two of the best things of all of these tools are that they can be used without any prepara-
tion or setup, and you can set them up to work entirely according to your needs. They are at
once easy-to-use and very specialized tools.

Using the ssh Command
The simplest way to work with SSH is to just enter the ssh command, followed by the name of
the host you want to connect to. For example, to connect to the host AMS.sandervanvugt.com,
use ssh AMS.sandervanvugt.com.

Depending on whether you’ve connected to that host before, it may check the host cre-
dentials or just ask for your password. The ssh command doesn’t ask for a user name because
it assumes that you want to connect to the other host with the same identity that you’re
logged in with locally. If you’d rather log in with another user account, you can indicate this
intention in one of two ways: you can specify the user name and follow it with an ampersand
when establishing the connection to the remote host, or you can use the -l option followed
by the name of the user account you want to use to connect to the other host. So, basically,
ssh linda@AMS.sandervanvugt.com and ssh -l linda AMS.sandervanvugt.com accomplish the
same thing. After establishing a session, use the exit command (or Ctrl+D) to close the ses-
sion and return to your own machine.

Now, it seems a lot of trouble to log in to a remote host if you just need to enter one or
two commands. If you face this situation often, it’s good to know that you can just specify the
name of the command at the end of the ssh command: ssh -l linda@AMS.sandervanvugt.com

CHAPTER 8 ■ MAKING CONNECTION244

9233ch08.qxd 10/31/07 2:37 PM Page 244

mailto:linda@AMS.sandervanvugt.com
mailto:linda@AMS.sandervanvugt.com

ls -l provides a long listing of files that user linda has in her home directory at the other host.
Of course, this isn’t the most realistic example of how to use “one command only” sessions to a
host, but you probably can see its value when working from shell scripts.

Using scp to Copy Files Securely
The scp command is another part of the SSH suite that you’ll definitely like. It’s used to copy
files securely. If you know how the cp command works, you’ll know how to handle scp. The only
difference is that it requires a complete network pathname including the names of the host and
the file you want to copy, also if you don’t want to use the name of the user you are currently
logged in as, a user name should be included as well. Consider the following example:

scp /some/file linda@AMS.sandervanvugt.com:/some/file

This easy command copies /some/file to AMS.sandervanvugt.com and places it in the
directory /some/file on that host. Of course, it’s possible to do the opposite as well: scp
root@SFO.sandervanvugt.com:/some/file /some/file copies /some/file from a remote host
with the name SFO.sandervanvugt.com to the localhost. You’re going to like the -r option as
well, because it allows you to copy a complete subdirectory structure.

Using sftp for Secured FTP Sessions
As an alternative to copying files with scp, you can use the sftp command. This command is
used to connect to servers running the sshd program and to establish a secured FTP session
with it. From the sftp command, you have an interface that really looks a lot like the normal
FTP client interface. All the standard FTP commands work here as well, with the only differ-
ence that, in this case, it’s secure. For example, you can use the ls and cd commands to browse
to a directory and see what files are available and, from there, use the get command to copy a
file to the current local directory.

Configuring SSH
In an SSH environment, a node can be client and server simultaneously. So, as you can
imagine, there’s a configuration file for both of these aspects. The client is configured in
/etc/ssh/ssh_config, and the server uses /etc/ssh/sshd_config. Setting options for the
server isn’t hard to understand: just put them in the configuration file for the daemon
/etc/ssh/sshd_config. For the client settings, however, the situation is more complicated,
because there are several ways of overwriting the default client settings:

• The generic /etc/ssh/ssh_config file is applied to all users initiating an SSH session. An
individual user can overwrite these if he creates a .ssh_config file in the .ssh directory
of his home directory.

• An option in /etc/ssh/ssh_config has to be supported by the sshd_config file on the
server you are connecting to. For example, if you’re allowing password-based authenti-
cation from the client side but the server doesn’t allow it, it won’t work.

• Options in both files can be overwritten with command-line options.

CHAPTER 8 ■ MAKING CONNECTION 245

9233ch08.qxd 10/31/07 2:37 PM Page 245

mailto:linda@AMS.sandervanvugt.com:/some/file
mailto:root@SFO.sandervanvugt.com:/some/file

Table 8-3 is an overview of some of the most useful options that you can use to configure
the client in ssh_config.

Table 8-3. Useful options in ssh_config

Option Description

Host This option restricts the following declarations (up to the next Host
keyword) to a specific host. Therefore, this option is applied on a
host that a user is connecting to. The host name is taken as specified
on the command line. Use this parameter to add some extra security
to specific hosts. You can also use wildcards such as * and ? to refer to
more than one host name.

CheckHostIP If this option is set to yes (the default value), SSH will check the host
IP address in the known_hosts file. Use this as a protection against
DNS or IP address spoofing.

Ciphers This option, which takes multiple arguments, is used to specify the
order in which the different encryption algorithms should be tried
to use in an SSHv2 session (version 2 is the default SSH version
nowadays).

Compression The yes/no values for this option specify whether to use
compression. The default is no.

ForwardX11 This very useful option specifies if X11 connections will be
forwarded. If set to yes, graphical screens from an SSH session can
be forwarded through a secure tunnel. The result is that the DISPLAY
environment variable that determines where to draw graphical
screens is set correctly. If you don’t want to enable X forwarding by
default, use the -X option on the command line when establishing
an SSH session.

LocalForward This option specifies that a TCP/IP port on the local machine is
forwarded over SSH to the specified port on a remote machine. (See
“Generic TCP Port Forwarding” later in this chapter for more details.)

LogLevel Use this option to specify the level of verbosity for log messages.
The default value is INFO. If this doesn’t go deep enough, VERBOSE,
DEBUG, DEBUG1, DEBUG2, and DEBUG3 provide progressively more
information.

PasswordAuthentication Use this option to specify whether or not you want to use password
authentication. By default, password authentication is used. In a
secure environment in which keys are used for authentication, you
can safely set this option to “no” to disable password authentication
completely.

Protocol This option specifies the protocol version that SSH should use. The
default value is set to 2,1 (which indicates that version 2 should be
used first and, if that doesn’t work, version 1 is tried). It’s a good idea
to disable version 1 completely because it has some known security
issues.

PubkeyAuthentication Use this option to specify whether you want to use public key–based
authentication. This option should always be set to the default value
(yes) because public key–based authentication is the safest way of
authenticating.

CHAPTER 8 ■ MAKING CONNECTION246

9233ch08.qxd 10/31/07 2:37 PM Page 246

The counterpart of ssh_config on the client computer is the sshd_config file on the server.
Many options that you can use in the ssh_config file are also available in the sshd_config file.
However, some options are specific to the server side of SSH. Table 8-4 gives an overview of
some of these options.

Table 8-4. Important Options in sshd_config

Option Description

AllowTcpForwarding Use this option to specify whether you want to allow clients
to do TCP port forwarding. This is a very useful feature, and
you’ll probably want to leave it at its default value (yes).

Port Use this option to specify the port that the server is
listening on. By default, sshd is listening on port 22. If the
SSH process is connected directly to the Internet, this will
cause many people to try a brute-force attack on your
server. Consider running the SSH process on some other
port for increased security.

PermitRootLogin Use this option to specify whether you want to allow root
logins. To add additional security to your server, consider
setting this option to the no value. If set to no, the root user
has to establish a connection as a normal user and from
there use su to become root or use sudo to perform certain
tasks with root permissions.

PermitEmptyPasswords Use this option to specify if you want to allow users to log
in with an empty password. From a security perspective,
this isn’t a very good idea, and so the default no value is
suitable in most cases. If, however, you want to run SSH
from a script and establish a connection without entering
a password, it can be useful to change the value of this
parameter to yes.

ChallengeResponseAuthentication This option specifies whether users are allowed to log in
using passwords. If you want to add additional security to
your server by forcing users to log in with public/private
key pairs only, give this parameter the value no.

X11Forwarding Use this option to specify if you want to allow clients to use
X11 forwarding. On Ubuntu Server, the default value for
this parameter is yes.

Using Key-Based Authentication
Now that you know all about the basics of SSH, let’s look at some of the more advanced
options. One of the most important is key-based authentication, which SSH uses via
public/private key–based authentication. Before diving into the configuration of key-based
authentication, let’s first have a look on how these keys are used.

CHAPTER 8 ■ MAKING CONNECTION 247

9233ch08.qxd 10/31/07 2:37 PM Page 247

A Short Introduction to Cryptography
In general, you can use two methods for encryption: symmetric and asymmetric. Symmetric
encryption is faster but less secure, and asymmetric encryption is slower but more secure. In a
symmetric key environment, both parties use the same key to encrypt and decrypt messages.
With asymmetric keys, a public and a private key are used, and this is the important technique
that’s used for SSH.

If asymmetric keys are used, every user needs his own public/private key pair and every
server needs a pair of them as well. Of these keys, the private key must be protected at all
times: if the private key is compromised, the identity of the owner of the private key is com-
promised as well. In short, stealing a user’s private key is like stealing their identity. Therefore,
a private key is normally stored in a very secure place where no one other than its owner can
access it; typically this is in ~/.ssh. The public key, on the other hand, is available to everyone.

Public/private keys are generally used for three purposes: encryption, authentication, and
non-repudiation.

To send an encrypted message, the sender encrypts the message with the public key of
the receiver who can decrypt it with the matching private key. This scenario requires that,
before sending an encrypted message, you have the public key of the person you want to
send the message to.

The other options are to use public/private keys for authentication or to prove that a mes-
sage has not changed since it was created. This method is known as non-repudiation. In the
example of authentication, the private key is used to generate an encrypted token, the salt. If
this salt can be decrypted with the public key of the person who wants to authenticate, then
that proves that the server really is dealing with the right person and access can be granted.
However, this technique requires the public key to be copied to the server before any authenti-
cation can occur, which is also the case when keys are used to prove that a message hasn’t
been tampered with.

Using Public/Private Key–Based Authentication in an SSH
Environment
When SSH key-based authentication is used, you must make sure that, for all users who need
to use this technology, the public key is available on the servers they want to log in to. When
logging in, the user creates an authentication request that’s signed with the user’s private key.
This authentication request is matched to the public key of the same user on the server where
that user wants to be authenticated. If it matches, the user is allowed access; if it doesn’t, user
access is denied.

Public/private key–based authentication is enabled by default on Ubuntu Server, so it’s only
when no keys are present that the server prompts users for a password. The following steps pro-
vide a summary of what happens when a user tries to establish an SSH session with a server:

1. If public key authentication is enabled (the default), SSH checks the .ssh directory in
the user’s home directory to see if a private key is present.

2. If a private key is found, SSH creates a packet with some data in it (the salt), encrypts
that packet with the private key, and sends it to the server. The public key is also sent
with this packet.

CHAPTER 8 ■ MAKING CONNECTION248

9233ch08.qxd 10/31/07 2:37 PM Page 248

3. The server now checks if a file with the name authorized_keys exists in the home
directory of the user. If it doesn’t, the user can’t be authenticated with his keys. If the
file does exist and the public key is an allowed key (and also is identical to the key that
was previously stored on the server), the server uses this key to check the signature.

4. If the signature is verified, the user is granted access. If the signature can’t be verified,
the server prompts the user for a password instead.

All this sounds pretty complicated, but it really isn’t. Everything happens transparently, if
it has been set up right. Also, there’s hardly any noticeable delay when establishing a connec-
tion. It normally takes no more than a second.

Setting Up SSH for Key-Based Authentication
The best way to explain how to set up SSH for key-based authentication is by working through
an example. In the following procedure, key-based authentication is enabled for the user root.

1. On the desktop where root is working, use the command ssh-keygen -t dsa -b 1024.
This generates a public/private key pair of 1,024 bits. Listing 8-19 shows what happens.

Listing 8-19. Generating a Public/Private Key Pair with ssh-keygen

workstation # ssh-keygen -t dsa -b 1024
Generating public/private dsa key pair.
Enter file in which to save the key (/root/.ssh/id_dsa) :
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_dsa.
Your public key has been saved in /root/.ssh/id_dsa.pub.
The key fingerprint is:
59:63:b5:a0:c5:2c:b5:b8:2f:99:80:5b:43:77:3c:dd root@workstation

I’ll explain what happens. The user in this example uses the ssh-keygen command to gen-
erate a public and a private key. The encryption algorithm used to generate this key is DSA,
which is considered more secure than its alternative, RSA. The option -b 1024 specifies that
1024-bit encryption should be used for the key. You’re possibly aware that, the longer this
number, the more secure it is. Notice, however, that a many-bits encryption algorithm also
requires more system resources to use it. After generating the keys, the command prompts you
to save it somewhere. By default, a directory with the name .ssh is created in your home direc-
tory, and, within this directory, a file with the name id_dsa. This file contains the private key.

Next, you’re prompted to enter a passphrase, which is an important extra layer of protec-
tion that can be added to the key. Because anyone who has access to your private key (which
isn’t that easy) can forge your identity, your private key should always be protected with a
passphrase. After entering the same passphrase twice, the private key is saved and the related
public key is generated and saved in the file /root/.ssh/id_dsa.pub. Also, a key fingerprint is
generated. This fingerprint is a summary of your key, a checksum that’s calculated on the key

CHAPTER 8 ■ MAKING CONNECTION 249

9233ch08.qxd 10/31/07 2:37 PM Page 249

to alert you if the key has been changed. Make sure that your passphrase is not too easy to
guess; a weak passphrase makes a strong key useless.

2. After creating the public/private key pair, you must transfer the public key to
the server. The ultimate goal is to place the contents of the id_dsa.pub file in the
/root/.shh/authorized_keys file on the server. But you can’t simply copy the file to
the destination file authorized_keys because other keys may already be stored there.
Therefore, first use scp to copy the file to a temporary location. The command scp
/root/.ssh/id_dsa.pub root@server:/root/from_workstation_key.pub would do
the job.

3. Now that the public key is on the server, you have to put it in the authorized_keys file.
Before doing this, though, make sure that the .ssh directory exists on the server in the
home directory of the user root, and that it has user and group root as its owner and
permission mode 700. Then, on the server with the directory /root as your current
directory, use cat from_workstation_key.pub >> .ssh/authorized_keys. This com-
mand appends the content of the public key file to the authorized_keys file, thus not
overwriting any file that may have been there already.

4. Hopefully, no errors have occurred, and you’ve been successful. Go back to your work-
station and start an SSH session to the server where you just copied your public key to
the authorized_keys file. You’ll notice that you are no longer prompted for a password,
but for a passphrase instead. This proves that everything worked. Do notice, however,
that you need to repeat this procedure for every key-secured server with which you
want to be able to establish a session.

Working with keys as described in these steps is an excellent way to make SSH authentica-
tion more secure. But there’s a drawback: if you need to establish an SSH session automatically
from a shell script or cron job, it’s not very handy if you’re first prompted for a key. Therefore,
some method is needed to execute such jobs automatically. One solution is to create a special
user account with limited permissions and without a passphrase on its private key. Another
solution is to run ssh-agent, which caches the keys before they are used, and you’ll learn how
to do this in the next section.

Caching Keys with ssh-agent
You can use ssh-agent to save yourself from constantly having to enter private keys. With this
program, you can cache keys for a given shell environment. After starting ssh-agent from a
shell prompt, you need to add the passphrase for the private key that belongs to it. This is
something that you’ll do for a specific shell, so, after you close that specific shell or load
another shell, you’ll need to add the passphrase to that shell again.

After adding a passphrase to ssh-agent, the passphrase is stored in RAM, and only the
user who added the key to RAM is able to read it from there. Also, ssh-agent listens only to ssh
and scp commands that you’ve started locally, so there’s no way that you can access a key that
is kept by ssh-agent over the network. So you can be sure that using ssh-agent is pretty secure.
Apart from being secure, it’s pretty easy as well. Enabling ssh-agent and adding a passphrase
to it is a simple two-step procedure:

CHAPTER 8 ■ MAKING CONNECTION250

9233ch08.qxd 10/31/07 2:37 PM Page 250

mailto:root@server:/root/from_workstation_key.pub

1. From the shell prompt, use ssh-agent followed by the name of the shell you want to use
it from. For example, use ssh-agent /bin/bash to activate ssh-agent for the Bash shell.

2. Now type ssh-add. You’ll be prompted for the passphrase of your current private key,
and you’ll then see the message identity added, followed by the private key whose
passphrase is added to ssh-agent.

■Tip Secure Shell is a great way of accessing other hosts. But did you know that you can also use it to
mount a file system on a remote computer? All modern versions of SSH support this feature: just use sshfs
for access to all the files and directories on the remote server, just like a local user on that server. If you
know how to mount a directory with the mount command, working with sshfs is easy. For example, the
command sshfs linda@AMS:/data /mnt allows access to the /data directory on the remote server and
connects that directory to /mnt on the local server. Secure Shell is not installed by default, so use apt-get
install sshfs to install it on your server.

Tunneling Traffic with SSH
Apart from establishing remote login sessions, copying files, and executing commands on
remote hosts, you can also use SSH for TCP port forwarding. When used like this, SSH is a sim-
ple VPN solution with the capability of tunneling to almost any unsecured protocol over a
secured connection. In this section, I’ll first talk about X forwarding and then you’ll see how to
forward almost any protocol using SSH.

X Forwarding
Wouldn’t it be useful if you could start an application on a server, where all the workload is
performed by the server, while you control the application from your client? Well, you can
with SSH X forwarding. To use X forwarding, you first must establish an SSH session to the
server you want to connect to. Next, from this SSH session, you start the graphical application,
which will draw its screen on your workstation while doing all the work on the server itself.

Sounds good? Establishing such an environment has only two requirements:

• Make sure the X11Forwarding option is set to yes in /etc/ssh/sshd_config on the server.

• Connect to the server with the ssh -X command from your client. Alternatively, you can
set the X11Forwarding option in the client configuration file /etc/ssh/ssh_config,
which allows you to forward graphical sessions by default. This poses a minor security
problem, however, and so this setting is not enabled by default on Ubuntu Server.

Now that you have established the SSH session with your server, start your favorite graph-
ical program. The program itself will be executed at the remote host, and you’ll see the screen
locally.

CHAPTER 8 ■ MAKING CONNECTION 251

9233ch08.qxd 10/31/07 2:37 PM Page 251

■Note X-forwarding sessions with SSH is really cool, but there is a limitation: you need an X server on the
client from which you are establishing the SSH session. This X server is used as the driver for your graphical
hardware, and the application that you want to run on your client needs it to display its screens. On Linux,
UNIX, or Macintosh machines, this won’t be a problem because an X server is present by default. It’s a prob-
lem on Windows, however. The most common SSH client for Windows is PuTTY, which, although very useful,
doesn’t contain an X server. A good X server for Windows is Xming, which is a free X server that you can
download from the Internet.

Generic TCP Port Forwarding
X is the only service for which port forwarding is hard coded in the SSH software. For every-
thing else, you need to do it by hand, using the -L (local forwarding) or the -R (remote port
forwarding) options. Let’s have a look at the example in Figure 8-6.

Figure 8-6. Example network

This example network has three nodes: AMS is the node where the administrator is work-
ing, ATL is the node in the middle, and AMS has a direct connection to ATL, but not to SLC
which is behind a firewall. ATL does have a direct connection to SLC and is not obstructed by
any firewall.

The following command illustrates a simple case of port forwarding:

linda@AMS:~> ssh -L 4444:ATL:110 linda@ATL

In this example, user linda forwards connections to port 4444 on her localhost to port 110
on the host ATL as user linda on that host. This is how you would establish a secure session to
the insecure POP service on that host, for example. The localhost first establishes a connec-
tion to the SSH server running on ATL. This SSH server connects to port 110 at ATL, whereas
ssh binds to port 4444 on the localhost. Now an encrypted session is established between local
port 4444 and server port 110: everything sent to port 4444 on the localhost really goes to port
110 at the server. If, for example, you configured your POP mail client to get its mail from local
port 4444, it would really get it from port 110 at ATL.

Notice that a nonprivileged port is used in this example. Only user root can connect to a
privileged port with a port number lower than 1024. No matter what port you are connecting

CHAPTER 8 ■ MAKING CONNECTION252

9233ch08.qxd 10/31/07 2:37 PM Page 252

to, you should always check in the services configuration file /etc/services, where port num-
bers are matched to names of services, what the port is normally used for (if anything), and
use netstat -platune | grep <your-intended-port> to make sure that the port is not already
in use.

A little variation on local port forwarding, as just seen, is remote port forwarding. If you
want to try it, forward all connections on a remote port at a remote server to a local port on
your machine. To do this, use the -R option as in the following example:

linda@AMS:~> ssh -R 4444:AMS:110 linda@ATL

In this example, user linda connects to host ATL (see the last part of the command). On
this remote host, port 4444 is addressed by using the construction -R 4444. This remote port is
redirected to port 110 on the localhost. As a result, anything going to port 4444 on ATL is redi-
rected to port 110 on AMS. This example would be useful if ATL is the client and AMS is the
server running a POP mail server that user linda wants to connect to.

Another very useful instance is when the host you want to forward to cannot be reached
directly, perhaps because it is behind a firewall. In this case, you can establish a tunnel to
another host that is reachable with SSH. Imagine that, in Figure 8-6, the host SLC is running a
POP mail server that our user linda wants to connect to. This user would use the following
command:

linda@AMS:~> ssh -L 4444:SLC:110 linda@ATL

In this example, linda forwards connections to port 4444 on her localhost to server ATL
that is running SSH. This server, in turn, forwards the connection to port 110 on server SLC.
Note that, in this scenario, the only requirement is that ATL has the SSH service activated; no
sshd is needed on SLC for this to work. Also note that there is no need for host AMS to get in
direct contact with SLC, as that’s what ATL is used for.

In these examples, you’ve learned how to use the ssh command to accomplish port for-
warding, but this isn’t the only way of doing it. If a port-forwarding connection needs to be
available all the time, you can put it in the ssh configuration file at the client computer. Put it
in .ssh/config in your home directory if you want it to work for your user account only, or in
/etc/ssh/ssh_config if you want it to apply for all users on your machine. The parameter that
should be used as an alternative to ssh -L 4444:ATL:110 would be LocalForward 4444
ATL:110.

Summary
In this chapter you’ve learned how to set up a network connection. First, we explored how an
IP address is assigned to a network interface card. We covered IPv4 addresses as well as IPv6
addresses. Following that, you read how to troubleshoot a network connection using basic
commands such as ping and traceroute, or advanced tools like nmap and Wireshark. In the
last part of this section, you’ve learned how to create a remote session with SSH. In the next
chapter, you’ll find out how to set up networking services like NTP, DHCP, and DNS on your
server.

CHAPTER 8 ■ MAKING CONNECTION 253

9233ch08.qxd 10/31/07 2:37 PM Page 253

9233ch08.qxd 10/31/07 2:37 PM Page 254

Configuring Network
Infrastructure Services
Using DNS, DHCP, and NTP

Linux servers are often used to configure services that help make networking happen. These
include DNS for name resolution, DHCP for IP address configuration, and NTP for time serv-
ices. In this chapter, you’ll read how to configure them. You’ll also read how to enable some
common Linux services using xinetd.

Configuring DNS
As you would expect, IP (Internet protocol) is used for all communications on the Internet.
This protocol specifies unique IP addresses that computers use to talk to one another. To con-
tact a computer, you just need to know its IP address. One of the most important reasons why
DNS (domain name system) was developed is because computers work better with numbers
than humans do, and humans tend to prefer names. So, DNS translates IP addresses to DNS
names (and back from DNS names to IP addresses). In this chapter, you’ll learn how to config-
ure DNS on Ubuntu Server.

Methods of Name Resolution
Before going into detail about configuring DNS servers, you first need to learn exactly what
DNS is and how it works. In this section, you’ll read about the differences between DNS and
other methods of resolving names. You’ll also find out how the DNS hierarchy is structured
and what roles the different types of DNS servers play in this hierarchy.

DNS is not the only solution that you can use for name resolving. Let’s have a quick
look at two of the alternative methods: the /etc/hosts file and Sun’s Network Information
System (NIS).

255

C H A P T E R 9

9233ch09.qxd 11/1/07 12:02 PM Page 255

Managing Host Name Information with the /etc/hosts File
Before centralized systems such as NIS and DNS were introduced, every host kept its own file
that mapped IP addresses to names. In the days when the Internet was called (D)ARPANet and
was still a very small network, this was a feasible solution, although the administrator had to
make sure that these files were updated properly. Today, such a mechanism still exists, but in
the form of the /etc/hosts file. In this file, you can keep a list of commonly used names and
their IP addresses. Ubuntu Server creates this file by default to make sure that the localhost
can be resolved. Listing 9-1 shows an example of the file. Note that you can still use this file
as an addition to DNS. Depending on the settings in /etc/nsswitch.conf, its contents will be
checked first, before any DNS lookup.

Listing 9-1. Displaying the Contents of /etc/hosts

root@RNA:~# cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 RNA.lan RNA

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Using NIS to Manage Name Resolution
A more convenient method that you can use to keep mappings between host names and
IP addresses is Sun’s NIS, also known as the yellow pages. This system uses a database for
important configuration files on a server, such as the /etc/hosts file, the /etc/passwd file,
and /etc/shadow. As an administrator, you can determine for yourself what files to manage
with NIS. These files are converted to NIS maps, which are the indexed files that compose the
NIS database. In NIS, one server is configured as the master server, which maintains the NIS
database. All nodes are configured as NIS clients and send their name resolution requests to
the NIS master. To provide redundancy, NIS can also use slave servers, which offer a read-
only copy of the NIS master database. However, the master server is the single point of
administration.

Although NIS was a good solution to manage relevant information within a network, it
never became very popular as an Internet-level name service mainly because NIS does not
provide a hierarchical solution, only flat databases. All of these flat databases are managed by
local administrators, and there’s no relation among the databases that are used in different
NIS domains.

The large amount of information on the Internet today makes it impossible to get quick
results from a structure like NIS. For this reason, most organizations that still use NIS are
phasing it out and configuring DNS to resolve host names to IP addresses, and LDAP to man-
age user information.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES256

9233ch09.qxd 11/1/07 12:02 PM Page 256

Managing Search Order with the /etc/nsswitch.conf File
Although DNS is the main system used for name resolution, it’s not the only one. You can set
it up in parallel with a NIS system and the /etc/hosts file. If you do this, the order in which
the different systems are searched is important. The search order is determined by the
/etc/nsswitch.conf file; see Listing 9-2 for an example.

Listing 9-2. Contents of the /etc/nsswitch.conf File

root@RNA:~# cat /etc/nsswitch.conf
/etc/nsswitch.conf
#
Example configuration of GNU Name Service Switch functionality.
If you have the `glibc-doc-reference` and `info` packages installed, try:
`info libc "Name Service Switch"` for information about this file.

passwd: compat
group: compat
shadow: compat

hosts: files dns
networks: files

protocols: db files
services: db files
ethers: db files
rpc: db files

netgroup: nis

For all of the important information on your server, the nsswitch.conf file contains an
indication where it should be searched for. In the case of hosts and network information, the
example file is pretty clear: it first checks local configuration files and only after that does it
check the DNS hierarchy. This means that you can use /etc/hosts to override information as
defined in DNS.

Structure of the DNS Hierarchy
The most important advantage offered by DNS is the fact that it’s organized in a hierarchical
manner. This makes the system very scalable because it can be extended by simply adding
another branch to the tree-like hierarchy.

On top of the hierarchy are the root servers, which have one purpose only: provide infor-
mation about the top-level domains (TLDs). Some fixed domain names are used for top-level
domains, including .com, .org, and .info. Top-level domains exist for all countries as well,
such as .nl, .uk, .fr, and so on. Within these top-level domains, persons and organizations can
create their own domains, which may contain subdomains as well. For example, an organiza-
tion could create a domain called example.com and, within the structure of example.com, it could
create some subdomains as well, such as east.example.com and west.example.com.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 257

9233ch09.qxd 11/1/07 12:02 PM Page 257

The number of subdomains is virtually unlimited, although it becomes hard to work
with more than four or five levels of domains. No one wants to type www.servers.east.nl.
sandervanvugt.com all the time, do they? Figure 9-1 provides an example of the partial DNS
hierarchy.

Figure 9-1. Example of a part of the DNS hierarchy

Master and Slave Servers
Within the DNS hierarchy, different servers are responsible for the data in specific domains and
sometimes subdomains as well. These are the so-called name servers and the part of the hierar-
chy that they are responsible for is the zone. A zone can include more than just one domain; for
example, if one name server is responsible for everything in sandervanvugt.nl, including the
subdomain’s servers and workstations, then the complete zone is sandervanvugt.nl. If, how-
ever, there’s a subdomain called sales.sandervanvugt.com that has its own name server, that
subdomain would be a zone by itself which is not part of sandervanvugt.com. Speaking in a very
generic way, a zone is just a branch of the DNS hierarchy.

All zones should have at least two name servers. The first is the master name server, which
is ultimately responsible for the data in a zone. For fault tolerance and to make the informa-
tion more accessible, it’s a good idea to use one or more slave servers as well. These slave
servers will periodically get an update of all the data on the master server by means of a zone
transfer: this is the process the master server uses to update the database on the slave server.

Note that DNS uses a single-master model: updates are performed on the master server
and nowhere else, and the databases on the slave servers are read-only. You should also know
that the name servers do not need to be in the zone that they are responsible for. For exam-
ple, the name server of a given domain will often be hosted by the Internet provider that (of
course) has its own domain. You can maintain your own DNS server, and it’s useful to do so if
your organization is larger than average, but you don’t have to. You can also just purchase a
domain and have your Internet server do the name server maintenance work.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES258

9233ch09.qxd 11/1/07 12:02 PM Page 258

http://www.servers.east.nl

Connecting the Name Servers in the Hierarchy
Because DNS uses a hierarchy, the servers in DNS need to know about each other, and this,
by its very nature, is a two-way process. First, all servers in subordinate zones need to know
where to find the root servers of the DNS hierarchy. Equally, the servers of the upper-level
zones need to know how to find the servers of lower-level zones. You can very well create your
own DNS domain called mynicednsdomain.com and run your DNS server in it, but it doesn’t
make sense if the DNS server that’s responsible for the .com domain doesn’t know about it.
This is because a client trying to find your server will first ask the name server of the domain
above your zone if it knows where to find authoritative information for your domain.

This is why DNS domain names need to be registered. Only then can the manager of
the domain above yours configure your name server as the responsible name server for your
domain. This is the delegation of authority.

It also helps to understand what happens when a user tries to resolve a DNS name that it
doesn’t know about already. The next procedure describes what happens:

1. To resolve DNS names, you need to configure the DNS resolver on the user’s worksta-
tion or on the server that needs to be part of the DNS hierarchy. The DNS resolver is
the part of the workstation where the user has configured how to find a DNS server.
On a Linux system, this happens in the file /etc/resolv.conf.

2. Based on the information in the DNS resolver, the client contacts its preferred name
server and asks that server to resolve the DNS name, no matter what server it is
and where on Earth the server is running. So, if the client tries to resolve the name
www.sandervanvugt.nl, it first asks its preferred name server. The advantage is that the
client’s name server can consult its cache to find out if it has recently resolved that
name for the client. If it knows the IP address of the requested server, the DNS name
server returns that information to the client immediately.

3. If the name server of the client doesn’t know the IP address of the requested server, it
checks if a so-called forwarder is configured. (A forwarder is just a server that a name
server contacts if it can’t resolve a name by itself.)

4. If no forwarder is configured, the DNS name server contacts a name server of
the root domain and asks that name server how to contact the name server of the
top-level domain it needs. In the example in which you want to reach the host
www.sandervanvugt.nl, this is the name server for the .nl domain.

5. Once the name server of the client finds the name server address of the top-level
domain, it contacts it and asks for the IP address of the authoritative name server
for the domain it’s looking for. In our example, this would be the name server for
sandervanvugt.nl.

6. Once the name server of the client finds out how to reach the authoritative name server
for the domain the client asks for, it contacts that name server and asks to resolve its
name. In return, the name server of the client receives the IP address it needs.

7. Ultimately, the IP address of the desired server is returned to the client and contact can
be established.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 259

9233ch09.qxd 11/1/07 12:02 PM Page 259

http://www.sandervanvugt.nl
http://www.sandervanvugt.nl

Resource Records
To answer all name resolution requests, your DNS server needs to maintain a database in
which it maintains what are known as the resource records. Resource records contain different
types of data to find specific information for a domain. Table 9-1 presents some of the most
important types of data that can be maintained in that database. Later in this chapter you’ll
learn how to add these resource records to the DNS database.

Table 9-1. Using the Important Resource Records

Resource Record Use

MX This resource record finds the mail servers for your domain. In the first
column, you’ll find the name of the domain they are used for, and the
fourth column reveals the primary mail server. The number 10 indicates
the priority of this mail server. If more than one mail server is present in
the domain, the mail server with the lowest priority number is used first.
Following the priority number is the DNS name of the mail server.

NS This resource record provides a list of name servers for this domain.
Typically, you must have this resource record for all master and slave name
servers of the domain. The first column reveals the name of the domain,
and the fourth column provides the name of the server itself. Notice the
dot at the end of the server name, which indicates this as an absolute
name (a name that refers to the root of the DNS hierarchy directly).

A The A resource record is used to define the relation between a host name
and an IP address. The first column mentions the name of the host as it
occurs in this domain, and the fourth column provides the IP address of
this host.

CNAME The CNAME (“common name”) resource record is used to define an alias,
which is just a nickname that is used for a host. A CNAME should always
refer to the real name of the host. Aliases can be useful if one server hosts
many DNS names. In that case, use an A resource record for “myserver”
and create CNAMEs that refer to the A resource record for all services pro-
vided by your server. This way, if you have to change the IP address of your
server, you’ll change it only once.

Introducing Forward and Reverse DNS
Before I start talking about the actual configuration of DNS, you need to know about reverse
DNS. Translating names into IP addresses is one task of the DNS server, and its other task is
translating IP addresses to names. This translation from address to name is called reverse DNS,
and it’s necessary if you want to find the real name that is used by a given IP address. This fea-
ture is useful if you want names in your log files instead of IP addresses, but, if you want all IP
addresses translated to names, you should realize that this comes at a cost in performance.
For this reason, many services and commands allow you to specify whether to use reversed
name resolution. To make name resolution for your domain possible, you should always con-
figure it when setting up a DNS hierarchy.

To create a reverse DNS structure, you need to configure a zone in the in-addr.arpa
domain, under which a structure is created that contains the inverse IP addresses for your net-
work. If, for example, you’re using the class C network 201.10.19.0/24, you should create a DNS

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES260

9233ch09.qxd 11/1/07 12:02 PM Page 260

domain with the name 19.10.201.in-addr.arpa. Within this zone, you next have to create a
pointer (PTR) resource record for all of the hosts that you want to include in the DNS hierarchy.

When working with reverse DNS, you should be aware of one important limitation: it
doesn’t know how to handle non-default subnet masks. In other words, it works only if you
have the complete network, and it doesn’t work if you’ve registered a couple of IP addresses
only with your Internet provider. If you have only one (or very few) IP addresses out of a com-
plete range, you should ask your Internet provider to set up reverse DNS for you.

Configuring DNS
When setting up DNS, you have to configure a series of configuration files, and in this section
you’ll learn how these relate to each other. At this point, make sure that the DNS server is
installed by using apt-get install bind9 as root.

/etc/bind/named.conf

The /etc/bind/named.conf file is the master configuration file for your DNS server. Listing 9-3
provides an example. The named.conf file is a master configuration file that contains all you
need to get a working DNS set up. To set up your own additional zones, you have to use the
/etc/bind/named.conf.local file.

Listing 9-3. Default /etc/bind/named.conf File

root@RNA:~# cat /etc/bind/named.conf
// This is the primary configuration file for the BIND DNS server named.
//
// Please read /usr/share/doc/bind9/README.Debian.gz for information on the
// structure of BIND configuration files in Debian, *BEFORE* you customize
// this configuration file.
//
// If you are just adding zones, please do that in /etc/bind/named.conf.local

include "/etc/bind/named.conf.options";

// prime the server with knowledge of the root servers
zone "." {

type hint;
file "/etc/bind/db.root";

};

// be authoritative for the localhost forward and reverse zones, and for
// broadcast zones as per RFC 1912

zone "localhost" {
type master;
file "/etc/bind/db.local";

};

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 261

9233ch09.qxd 11/1/07 12:02 PM Page 261

zone "127.in-addr.arpa" {
type master;
file "/etc/bind/db.127";

};

zone "0.in-addr.arpa" {
type master;
file "/etc/bind/db.0";

};

zone "255.in-addr.arpa" {
type master;
file "/etc/bind/db.255";

};

// zone "com" { type delegation-only; };
// zone "net" { type delegation-only; };

// From the release notes:
// Because many of our users are uncomfortable receiving undelegated answers
// from root or top-level domains, other than a few for whom that behavior
// has been trusted and expected for quite some length of time, we have now
// introduced the "root-delegations-only" feature which applies delegation-only
// logic to all top-level domains, and to the root domain. An exception list
// should be specified, including "MUSEUM" and "DE", and any other top-level
// domains from whom undelegated responses are expected and trusted.
// root-delegation-only exclude { "DE"; "MUSEUM"; };

include "/etc/bind/named.conf.local";

Several other files are called from the main configuration file (/etc/bind/named.conf).
Before starting to configure your own DNS server, let’s look at how these files relate to each
other.

• /etc/bind/named.conf.local: This file contains the DNS zones that you set up on your
server.

• /etc/bind/named.conf.options: In this file you’d put generic options that define the
working of your DNS server.

• The db files: These are database files that store the information for specific zones. For
example, the following code lines that come from /etc/bind/db.local refer to the data-
base for the localhost zone:

zone "localhost" {
type master;
file "/etc/bind/db.local";

};

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES262

9233ch09.qxd 11/1/07 12:02 PM Page 262

When setting up your own DNS server, it can be quite hard to configure the right files in
the right way. So let’s do a setup for the example.com zone.

1. Don’t touch the /etc/bind/named.conf file. It contains default settings, and you never
need to modify it on Ubuntu Server.

2. Open the /etc/bind/named.conf.local file with an editor and use the following code:

zone "example.com" in {
allow-transfer { any; };
file "/etc/bind/db.example.com";
type master;

};

3. In this example configuration, the zone "example.com" statement is used as a definition
of the zone that you want to use. After the definition of the zone itself and between
brackets, specify the options for that zone. In this example, these are as follows:

• allow-transfer { any; };: This option specifies what name servers are allowed to
synchronize their databases with the information in this database.

• file "/etc/bind/db.example.com";: This line indicates what file contains the
specific configuration for this zone.

• type master;: This option indicates the definition of the master name server for
this zone.

4. You’ve now defined the file in which the DNS server can find the specific configuration for
example.com. Next, you need to set up reversed name resolution as well. If example.com
is using the IP network 201.100.100.0, you should open /etc/bind/named.conf.local
once more and enter the following code:

zone "100.100.201.in-addr.arpa" {
type master;
file "/etc/bind/db.100.100.201";

};

5. Now that you’ve set up the basic structure for DNS, you need to create the database
files in /etc/bind that contain the actual configuration of the DNS zones. I’ll explain
how to do this and all your available options in the next few sections.

Using named.conf Options
Before you create the database files that you refer to in the named.conf file and its related files,
let’s have a look at some of the options that you can use in the /etc/bind/named.conf file and
its related /etc/bind/named.conf.local and /etc/bind/named.conf.options files.

Ubuntu Server uses the file /etc/bind/named.conf.options to include options in the DNS
configuration. This file is included with the line include "/etc/bind/named.conf.options"; in
/etc/bind/named.conf. Listing 9-4 shows the file as it is by default.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 263

9233ch09.qxd 11/1/07 12:02 PM Page 263

Listing 9-4. The /etc/bind/named.conf.options File Contains Generic Options for Your bind
Name Server

root@RNA:~# cat /etc/bind/named.conf.options
options {

directory "/var/cache/bind";

// If there is a firewall between you and name servers you want
// to talk to, you might need to uncomment the query-source
// directive below. Previous versions of BIND always asked
// questions using port 53, but BIND 8.1 and later use an unprivileged
// port by default.

// query-source address * port 53;

// If your ISP provided one or more IP addresses for stable
// name servers, you probably want to use them as forwarders.
// Uncomment the following block, and insert the addresses replacing
// the all-0's placeholder.

// forwarders {
// 0.0.0.0;
// };

auth-nxdomain no; # conform to RFC1035
listen-on-v6 { any; };

// By default, name servers should only perform recursive domain
// lookups for their direct clients. If recursion is left open
// to the entire Internet, your name server could be used to
// perform distributed denial-of-service attacks against other
// innocent computers. For more information on DDoS recursion:
// http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0987

allow-recursion { localnets; };

// If you have DNS clients on other subnets outside of your
// server's "localnets", you can explicitly add their networks
// without opening up your server to the Internet at large:
// allow-recursion { localnets; 192.168.0.0/24; };

// If your name server is only listening on 127.0.0.1, consider:
// allow-recursion { 127.0.0.1; };

};

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES264

9233ch09.qxd 11/1/07 12:02 PM Page 264

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0987

As you see in the example file in Listing 9-4, you have quite a few options. In the example
file, many options are disabled by default and others are just not available. Let’s have a look at
some of the more common options:

• options { };: Use this statement to indicate the start and the end of the section
that contains the options. All generic options need to be in this section, so notice the
structure used by this statement. It starts with a bracket, it ends with a bracket, and all
specific options are defined between the brackets. When putting this in manually, do
not forget the semicolon after the last bracket.

• directory "/var/cache/bind";: You can use this parameter to define the location where
all DNS configuration files are stored. If an incomplete file name is used anywhere in
one of the DNS configuration files, the DNS name server looks for it in this directory. If,
however, an absolute file name is used, it just follows the absolute file name. Also note
the semicolon at the end of the line; this is an important syntax feature.

• notify no;: This option indicates that slave servers should not be notified of changes,
which leaves it completely to the slave server to make sure that it is up to date. If you
want an alert to be sent to a slave server when a change occurs, change this setting to
notify yes;.

• forwarders;: By default, if your DNS server gets a request to resolve a name for which
it is not responsible itself, it starts querying a root server of the DNS hierarchy to find
the required information. You can change this behavior by using a forwarder, which is
another DNS name server that typically has a large cache that it uses to resolve names
very quickly. You could, for example, use your Internet provider’s DNS name server as
a DNS forwarder.

Zone Definition in /etc/bind/named.conf.local
Among the most important DNS server options is the definition of zones. As you can see in the
example in Listing 9-3, the first zone that is defined is the zone “.”. This refers to the root of the
DNS domain. The definition is required to hook up your DNS server to the rest of the DNS
hierarchy. To do this, the zone definition in /etc/bind/named.conf indicates that a list of name
servers for the root domain can be found in the db.root file. Listing 9-5 is a portion of the con-
tents of that file.

Listing 9-5. The db.root File Makes Sure That Your DNS Server Can Contact Other Servers in the
DNS Hierarchy.

root@RNA:~# cat /etc/bind/db.root

; <<>> DiG 9.2.3 <<>> ns . @a.root-servers.net.
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18944
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 265

9233ch09.qxd 11/1/07 12:02 PM Page 265

mailto:@a.root-servers.net

;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:
. 518400 IN NS A.ROOT-SERVERS.NET.
. 518400 IN NS B.ROOT-SERVERS.NET.
...
. 518400 IN NS L.ROOT-SERVERS.NET.
. 518400 IN NS M.ROOT-SERVERS.NET.

;; ADDITIONAL SECTION:
A.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.4
B.ROOT-SERVERS.NET. 3600000 IN A 192.228.79.201
...
L.ROOT-SERVERS.NET. 3600000 IN A 198.32.64.12
M.ROOT-SERVERS.NET. 3600000 IN A 202.12.27.33

;; Query time: 81 msec
;; SERVER: 198.41.0.4#53(a.root-servers.net.)
;; WHEN: Sun Feb 1 11:27:14 2004
;; MSG SIZE rcvd: 436

The db Files
The zone files of your DNS server are stored in the /etc/bind directory, and the name of these
files typically starts with “db” (although nothing says that you have to name them this way).
The file named.conf specifies where to look for these database files. The next part you need
to understand is how this file is structured to define your DNS zone. Listing 9-6 provides an
example.

Listing 9-6. Contents of the example.com Zone File

RNA:/ # cat /etc/bind/db.example.com
$TTL 2D
@ IN SOA SFO.example.com. root.SFO.example.com. (

2006080700 ; serial
3H ; refresh
1H ; retry
1W ; expiry
1D) ; minimum

example.com. IN MX 10 mail.example.com.
example.com. IN NS lax.example.com.
sfo IN A 201.100.100.10
lax IN A 201.100.100.40
web IN CNAME sfo.example.com.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES266

9233ch09.qxd 11/1/07 12:02 PM Page 266

As you can see, the zone file starts with generic settings. First, the TTL 2D parameter speci-
fies a validity of 2 days if your slave server cannot synchronize with the master. Next to be
defined are the SOA settings for your server, which are the settings for the authoritative name
server of this domain. Notice the mail address for the administrator of your DNS server:
root.SFO.example.com. After that, you see the following synchronization settings:

• serial: This number should be changed every time that you change the database on
the master server. By changing it, a slave server that wants to synchronize with the mas-
ter server can see that an update has occurred and start the zone transfer. Notice that
the serial number typically consists of the current year, current month, and current day,
followed by two digits that indicate the event number. For example, after the third
change on December 12, 2007, the serial number would be 07121202.

• refresh: This indicates the interval used on a slave server between updates from the
zone information at the master server.

• retry: If the update fails the first time the slave server tries to synchronize, this interval
specifies how long it should wait before trying again.

• expiry: If a slave server fails to contact the master server for a longer period, this setting
indicates how long before the information at the slave server expires. After expiration,
the slave server no longer answers DNS queries.

• minimum: This is the length of time that a negative response is cached on this server.

Following the generic information, you can see the definition of the resource records. In
the previous example, only the four most common resource records are used. (A more com-
plete overview was provided in “Resource Records” earlier in this chapter.)

Configuring Reversed Lookup
Until this moment, we’ve looked at just normal name resolution in which a name is resolved
into an IP address. As I’ve mentioned, on a DNS server, you need reversed name resolution as
well. To configure reversed lookup, you first need to set up the /etc/bind/named.conf.local
file with the information about the zone you want to configure it for. As discussed earlier, this
part of the configuration should look like the following lines:

zone "100.100.201.in-addr.arpa" {
type master;
file "/etc/bind/db.100.100.201";

};

Next, you need to set up the zone file for reverse lookup as well. Listing 9-7 shows a typical
reverse lookup file. As instructed in the named.conf.local file, this definition comes from the
file /etc/bind/db.100.100.201.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 267

9233ch09.qxd 11/1/07 12:02 PM Page 267

Listing 9-7. Example of a Reverse Lookup DNS Zone File

$TTL 2D
@ N SOA SFO.example.com. root.SFO.example.com. (

2006080700 ; serial
3H ; refresh
1H ; retry
1W ; expiry
1D) ; minimum

" IN NS lax.example.com.
10 IN PTR sfo.example.com.
40 IN PTR lax.example.com.

You can see that Listing 9-7 uses one resource records type that’s specific for a reverse
DNS zone: the PTR record. As shown in the earlier Table 9-1, this record is used to connect a
partial IP address (10 and 40 in Listing 9-7) to a complete DNS name.

Testing Your Name Server
After setting up the DNS name server, it’s time to (re)start and test it. First, use the
/etc/init.d/bind9 restart command (or start it if it wasn’t started yet). Next, use ps aux |
grep named to check if the named process is really running. Then make sure that your local
named process on your server is used for name resolving. Next, use the ping command to any
host name to check if you can contact a server by its name. If this succeeds, your DNS server
is working properly. If it fails, make sure that all your configuration files are set up properly.

If the ping command fails, you can use the host command for detailed testing of your
DNS server. The general syntax of this command is host computer nameserver. For example,
use host myhost 193.79.237.39 to query the specific name server 193.79.237.39 about the
records it has for host myhost. Next, the host command reveals the IP address that’s related
to that host (according to the name server). The opposite is possible as well: for example, the
command host 82.211.81.158 provides the name of the host you’ve queried. You can use
the host command without referring to a specific DNS server as well, in which case the DNS
servers as mentioned in /etc/resolv.conf are used. Listing 9-8 shows three examples of the
host command in action.

Listing 9-8. Using the host Command to Test a DNS Server

root@RNA:~# host www.ubuntu.com 193.79.237.39
Using domain server:
Name: 193.79.237.39
Address: 193.79.237.39#53
Aliases:

www.ubuntu.com has address 82.211.81.158
root@RNA:~# host 82.211.81.158
158.81.211.82.in-addr.arpa domain name pointer arctowski.ubuntu.com.
root@RNA:~# host www.ubuntu.com
www.ubuntu.com has address 82.211.81.158

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES268

9233ch09.qxd 11/1/07 12:02 PM Page 268

http://www.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com

Configuring DHCP
Your network probably has a lot of computers that need an IP address and other IP-related
information in their configuration. You can, of course, enter all of this information by hand
on each individual workstation, but it’s much easier to automate this process with a DHCP
(dynamic host configuration protocol) server. Let’s see how to set this up on Ubuntu Server.

Understanding the DHCP Protocol
DHCP is a broadcast-based protocol. A client that’s configured to obtain an IP address via DHCP
sends a broadcast on startup to try to find one or more DHCP servers in the network. The client
uses the DHCPDISCOVER packet to do this. If a DHCP server sees the DHCPDISCOVER packet
coming by, it answers with a DHCPOFFER packet, in which it offers an IP address and related
information.

If the client receives a DHCPOFFER from more than one DHCP server, it chooses only
one. It’s very difficult to determine beforehand with what IP configuration information the
client will work, which is one of the reasons why you should take care that no more than one
DHCP server is available per broadcast domain to offer a configuration to the DHCP clients.

To indicate that the client wants to use the IP address and related information offered by
a DHCP server, it returns a DHCPREQUEST, thus asking to work with that information. The
DHCP server then indicates that that’s okay by returning a DHCPACK (acknowledgement) to
the client. From this moment on, the client can use the IP address.

A lease time is associated with each offering from a DHCP server, and this lease time
determines how long the client can use an IP address and associated information. Before the
lease ends, the client has to send another DHCPREQUEST to renew its lease. In most cases,
the server answers such a request by extending the lease period and sending the client a
DHCPACK. If, for some reason, it’s not possible to extend the lease, the client receives a
DHCPNACK (negative acknowledgement). This indicates that the client cannot continue its
use of the IP address and associated information. If this happens, the client has to start the
process all over again, beginning with the DHCPDISCOVER packet.

When the client machine is shut down, it informs the server that it no longer needs the IP
address by sending a DHCPRELEASE over the network. That IP address then becomes avail-
able for use by other clients.

One of the things that you should keep noting in all of this is that DHCP is a broadcast-
based protocol, which means that, if the DHCP server is on a different subnet than the DHCP
client, the client cannot reach it directly. If this is the case, a DHCP relay agent is needed that
forwards DHCP requests to a DHCP server. You’ll learn how to configure all this in the “The
DHCP Relay Agent” section.

Creating the DHCP Server Configuration
To operate a DHCP server on your network, you need to configure two components: the
DHCP service itself and the /etc/dhcpd.conf configuration file. You’ll learn how to operate
these components in the next subsections.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 269

9233ch09.qxd 11/1/07 12:02 PM Page 269

The DHCP Process
The first part of the DHCP server is the DHCP process itself. Its name is dhcpd and it resides in
the /usr/sbin directory after you’ve installed it using the command apt-get install dhcpd as
root. Of course, it has some startup scripts in /etc/init.d as well: you can use /etc/init.d/dhcp
start to start it, and the options stop, restart, and force-reload work as well.

The /etc/dhcpd.conf Configuration File
The main configuration file for the DHCP server is /etc/dhcpd.conf. Everything is configured
in this file except startup parameters for the DHCP server. Listing 9-9 is an example configura-
tion file that contains some of the most important options from the example file that’s copied
to your server after installation of the DHCP server.

Listing 9-9. The DHCP Server’s Main Configuration File is /etc/dhcpd.conf.

root@RNA:~# cat /etc/dhcpd.conf
#
Sample configuration file for ISC dhcpd for Debian
#
$Id: dhcpd.conf,v 1.4.2.2 2002/07/10 03:50:33 peloy Exp $
#

option definitions common to all supported networks...
option domain-name "fugue.com";
option domain-name-servers toccata.fugue.com;

option subnet-mask 255.255.255.224;
default-lease-time 600;
max-lease-time 7200;

#subnet 204.254.239.0 netmask 255.255.255.224 {
range 204.254.239.10 204.254.239.20;
option broadcast-address 204.254.239.31;
option routers prelude.fugue.com;
#}

The other subnet that shares this physical network
#subnet 204.254.239.32 netmask 255.255.255.224 {
range dynamic-bootp 204.254.239.10 204.254.239.20;
option broadcast-address 204.254.239.31;
option routers snarg.fugue.com;
#}

#subnet 192.5.5.0 netmask 255.255.255.224 {
range 192.5.5.26 192.5.5.30;
option name-servers bb.home.vix.com, gw.home.vix.com;
option domain-name "vix.com";

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES270

9233ch09.qxd 11/1/07 12:02 PM Page 270

option routers 192.5.5.1;
option subnet-mask 255.255.255.224;
option broadcast-address 192.5.5.31;
default-lease-time 600;
max-lease-time 7200;
#}

Hosts which require special configuration options can be listed in
host statements. If no address is specified, the address will be
allocated dynamically (if possible), but the host-specific information
will still come from the host declaration.

#host passacaglia {
hardware ethernet 0:0:c0:5d:bd:95;
filename "vmunix.passacaglia";
server-name "toccata.fugue.com";
#}

Fixed IP addresses can also be specified for hosts. These addresses
should not also be listed as being available for dynamic assignment.
Hosts for which fixed IP addresses have been specified can boot using
BOOTP or DHCP. Hosts for which no fixed address is specified can only
be booted with DHCP, unless there is an address range on the subnet
to which a BOOTP client is connected which has the dynamic-bootp flag
set.
#host fantasia {
hardware ethernet 08:00:07:26:c0:a5;
fixed-address fantasia.fugue.com;
#}

If a DHCP or BOOTP client is mobile and might be connected to a variety
of networks, more than one fixed address for that host can be specified.
Hosts can have fixed addresses on some networks, but receive dynamically
allocated addresses on other subnets; in order to support this, a host
declaration for that client must be given which does not have a fixed
address. If a client should get different parameters depending on
what subnet it boots on, host declarations for each such network should
be given. Finally, if a domain name is given for a host's fixed address
and that domain name evaluates to more than one address, the address
corresponding to the network to which the client is attached, if any,
will be assigned.
#host confusia {
hardware ethernet 02:03:04:05:06:07;
fixed-address confusia-1.fugue.com, confusia-2.fugue.com;
filename "vmunix.confusia";
server-name "toccata.fugue.com";
#}

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 271

9233ch09.qxd 11/1/07 12:02 PM Page 271

#host confusia {
hardware ethernet 02:03:04:05:06:07;
fixed-address confusia-3.fugue.com;
filename "vmunix.confusia";
server-name "snarg.fugue.com";
#}

#host confusia {
hardware ethernet 02:03:04:05:06:07;
filename "vmunix.confusia";
server-name "bb.home.vix.com";
#}

The configuration file also starts with some generic options that aren’t included in a
particular section of the configuration file and therefore apply to all sections that are defined.
The first of these is option domain-name "fudge.com";. This line sets the default domain
name. Then the names of DNS servers are referred to with option domain-name-servers
toccata.fudge.com;. Notice that there’s no need to use an IP address here; assuming that the
DNS resolver is set up as it should be, you can use names here.

When editing the DHCP configuration file by hand, make sure that each line is terminated
with a semicolon, or your DHCP server will complain and refuse to start. Next, the following
three lines specify a non-default subnet mask and define the leases:

option subnet-mask 255.255.255.224;
default-lease-time 600;
max-lease-time 7200;

By default, a lease is specified in minutes, so the default lease time expires after 10 hours
and the maximum lease time is 120 hours. Following the generic options, some example sub-
nets are specified. Let’s have a look at one of them:

#subnet 192.5.5.0 netmask 255.255.255.224 {
range 192.5.5.26 192.5.5.30;
option name-servers bb.home.vix.com, gw.home.vix.com;
option domain-name "vix.com";
option routers 192.5.5.1;
option subnet-mask 255.255.255.224;
option broadcast-address 192.5.5.31;
default-lease-time 600;
max-lease-time 7200;
#}

A range of five IP addresses is defined in this subnet, which is on the network with IP
address 192.5.5.0. Then the specific options for this subnet are defined. Some options were
already defined in the global part of the configuration file, and, if that’s the case for your
options, the subnet-specific option just overwrites the global option. One option in this exam-
ple needs some explanation, though: broadcast-address is needed here because a non-default

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES272

9233ch09.qxd 11/1/07 12:02 PM Page 272

address class is used on the subnet. Every time that non-default address classes are used, you
must specify the broadcast address for that network as well.

Next are two host definitions that contain settings for specific hosts:

host passacaglia {
hardware ethernet 0:0:c0:5d:bd:95;
filename "vmunix.passacaglia";
server-name "toccata.fugue.com";

}

host fantasia {
hardware ethernet 08:00:07:26:c0:a5;
fixed-address fantasia.fugue.com;

}

To make sure that the setting is applied to the right host, the MAC address is referred to
for every host definition. This happens with the definition of the hardware ethernet address.
Then three other options are used. The option filename is used to refer to a boot file that is to
be loaded by a client. This file can be offered by a Trivial FTP (TFTP) server, which is just a very
simple FTP server that you can configure to hand out files in a convenient way to nodes on the
network.

Just enable the TFTP server as a part of your xinetd configuration (see “Starting Services
with xinetd” later in this chapter), and then put the file with the name mentioned here in the
directory /tftpboot (which you’ll have to create manually) and the host will be capable of
downloading this file. The filename option is useful for diskless workstations, as it allows them
to download a boot image.

If a client is booting from a boot image file that has been delivered by a server, it can be
useful for the client to know what server it’s dealing with. To specify this, the server-name
option is used in the host definition for passacaglia. It should contain the name of your DHCP
server. The last new option that you see here is fixed-address, which is used to pass a fixed IP
address to the client. If DNS is set up correctly, a resolvable DNS name can be used as well.

Advanced DHCP Configuration Options
Based on the information so far, you’re able to set up a DHCP server that doesn’t use any com-
plicated options, but some advanced configuration options may be interesting as well. You’ll
read about three of them in this section. First, “Integrating DHCP and DNS” discusses how to
set up dynamic DNS, so that the DHCP server tells the DNS server when it has handed out a
new configuration. Then the DHCP relay agent describes how you can let one DHCP server
serve all subnets in your network.

Integrating DHCP and DNS
If you want clients to be accessible by their names, you need to tell the DNS server whenever
the DHCP server has handed out a new IP address to the client. To make this work, you need
to configure the configuration files for both DNS and DHCP. The first thing you need to do is

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 273

9233ch09.qxd 11/1/07 12:02 PM Page 273

create a cryptographic key that can be used to authorize the update. You can generate this key
with the dnssec-keygen command (which is installed automatically when installing a DNS
server), as in the following example:

dnssec-keygen -a HMAC-MD5 -b 128 -n HOST ddns

This command generates two keys in the current directory. To make sure that they are
secure, it’s a good idea to create a dedicated directory for these files, such as in /var/lib/
named/keys. You should also make sure that the private key file is accessible by only root.
A part of the key name is a random number. The names could be, for example:

Kddns.+157+03212.key
Kddns.+157+03212.private

These two files contain the key that has to be used in clear text:

RNA:~ # cat Kddns.+157+03212.key
ddns. IN KEY 512 3 157 WVf7JaWqrfoIe4AtT9GGug==

Now first edit the DNS named.conf.local configuration file to include this key. The
example in Listing 9-10 shows how to use the key for the zone example.com and its associated
reverse DNS zone.

Listing 9-10. Securing named.conf.local with a Key for Dynamic DNS Updates

key ddns {
algorithm HMAC-MD5;
secret WVf7JaWqrfoIe4AtT9GGug==;

};

zone "example.com" in {
type master;
file "example.zone";
allow-update { key ddns ;};

};

zone "1.168.192.in-addr.arpa" in {
type master;
file "1.168.192.zone";
allow-update { key ddns ;};

};

As you can see in this example, a new section is created for the key, specifying its algo-
rithm as well as the key that’s used. (Make sure that the named.conf.local file is readable for
root only if you include a key in it!) Next, the allow-update (key ddns ;}; statement is used
for all zones that need this key for dynamic DNS updates. Note that ddns is just the name of
the key, and you can choose any name you like here.

Next, make sure that the appropriate DDNS code is added in the dhcpd.conf file. The
example in Listing 9-11 works with the example DNS configuration just shown, but feel free
to customize it to your own configuration.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES274

9233ch09.qxd 11/1/07 12:02 PM Page 274

Listing 9-11. Including DDNS code in the dhcpd.conf File

ddns-update-style interim;
ddns-updates on;

key ddns {
algorithm HMAC-MD5;
secret WVf7JaWqrfoIe4AtT9GGug==;

}

zone 100.100.201.in-addr.arpa. {
key ddns;

}

zone example.com. {
key ddns;

}

You should take note of a few things in this example. First, when referring to a DNS zone,
make sure that you put a dot after the name of the zone, because it won’t work without one.
So, example.com. is good, and example.com isn’t. Then, the ddns-update-style parameter is
used to specify how the updates need to take place. You have two options—interim and
ad-hoc—but ad-hoc is deprecated, so you should only use interim here. Then the parameter
ddns-updates on is used to activate DDNS. Last, as in the named.conf configuration file, the key
must be specified in this configuration file as well. Of course it must be the same as the key
that’s specified in the named.conf file. Now start the DHCP server and the DNS server, and
dynamic DNS is working.

■Note If the client gets its host name from the DHCP server, you have some more work to do. It’s
important that the client always gets the same host name, and you can ensure this by including the option
host-name in the definition of the specific host in the dhcpd.conf configuration file. In this same definition
of the client, you must specify the MAC address for each client equally, using the hardware parameter. An
example of this follows:

host somehost.example.com {
hardware ethernet 00:0C:29:E8:35:5A;
ddns-hostname "somehost";
ddns-domainname "example.com";
option host-name "somehost";

The DHCP Relay Agent
A DHCP broadcast is received only by clients on the local network because they cannot cross
routers. But it’s impractical to install a DHCP server on every single network. As an alternative,
you can of course install the DHCP server on a server that’s configured with more than one

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 275

9233ch09.qxd 11/1/07 12:02 PM Page 275

network board (a multi-homed server), so that it can serve all the networks it’s connected to.
An alternative is to use a DHCP relay agent, which is a service that forwards packets to the
DHCP server. You can run it on any server on the network or on a router. Almost every hard-
ware router has embedded functionality that lets it act as a DHCP relay agent.

If you want to install a relay agent on a Linux server, you need the dhcp-relay package;
use apt-get install dhcp-relay to install it. After its installation, you can configure the relay
agent from the /etc/default/dhcp-relay file in which you’ll find the INTERFACES parameter.
Use this to specify on which network cards the relay agents should listen for DHCP broad-
casts. You can configure it to listen on eth0 and eth1 by adding INTERFACES="eth0 eth1" to the
dhcp-relay file.

Next, you need to specify the IP address of the DHCP server. To do this, add it as a
parameter to the DHCP_SERVERS parameter. After configuring these options, use /etc/init.d/
dhcrelay start to start the relay agent.

Configuring NTP
For many networked applications, knowing the correct time is essential for proper operation.
On the Internet, the network time protocol (NTP) is the de facto standard for time synchro-
nization. In this section, you’ll learn how to configure your server as an NTP time server as
well as an NTP client. I’ll cover the following subjects:

• The working of NTP

• Configuring a stand-alone NTP time server

• Configure your server to fetch its time from a time reference source

• Tuning NTP operation

How NTP Works
The basic idea of NTP is that all servers on the Internet can synchronize time with one another.
In this way, a global time can be established so that only minimal differences exist in the time
setting on different servers. To reach this goal, all servers communicate the same time, no mat-
ter what time zone they are in. This time is known as Universal Time Coordinated (UTC): a
server receives its time in UTC and then calculates its local time from that by using its time
zone setting.

To specify what time your server is using, you have to edit the /etc/default/rcS configu-
ration file, where you’ll find the UTC= setting. To use UTC on your server, make sure its value is
set to yes, and, if you don’t want to use UTC, set it to UTC=no.

The local time zone setting is maintained in the /etc/localtime binary file, which is
created upon installation and contains information about your local time zone. To change it
afterward, you need to make a link of the configuration file that contains information on your
local time zone. You can find these files in /usr/share/zoneinfo. Next, link the appropriate file
to the /etc/localtime file, for example: sudo ln -sf /usr/share/zoneinfo/MET /etc/localtime.
This will change your local time zone setting to the MET time zone.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES276

9233ch09.qxd 11/1/07 12:02 PM Page 276

Synchronizing time with other servers in an NTP hierarchy uses the concept of stratum.
Every server in the NTP hierarchy has a stratum setting between 1 and 15, but with a stratum
of 16 being used to signify that a clock is not currently synchronized at all. The highest stratum
level that a clock can use is 1. Typically, this is a server that’s connected directly to an atomic
clock with a very high accuracy. The stratum level that is assigned to a server that’s directly
connected to an external clock depends on the type of clock that’s used. In general, though,
the more reliable the clock is, the higher the stratum level will be.

A server can get its time in two different ways: by synchronizing with another NTP time
server or by using a reference clock. If a server synchronizes with an NTP time server, the stra-
tum used on that server will be determined by the server it’s synchronizing with: if a server
synchronizes with a stratum 3 time server, it automatically becomes a stratum 4 time server.

If, on the other hand, a reference clock is used, a server does not get its time from a server
on the Internet but instead determines its own time. Again, the default stratum used is deter-
mined by the type and brand of reference clock that’s used. If it’s a very reliable clock, such as
one synchronized via GPS, the default stratum setting will be high. If a less reliable clock (such
as the local clock in a computer) is used, the default stratum will be lower.

If a server gets its time from the Internet, it makes sense to use Internet time and use a
very trustworthy time server. If no Internet connection is available, use an internal clock and
set the stratum accordingly (which means lower). If you’re using your computer’s internal
clock, for example, it makes sense to use a low stratum level, such as 5.

Configuring a Stand-Alone NTP Time Server
Just two elements are needed to make your own NTP time server: the configuration file and
the daemon process. First, make sure that all required software is installed, running apt-get
install ntp-server as root. The name of the daemon process is ntpd, and you can start it by
using the /etc/init.d/ntpd startup script. After making all proper settings to its configuration
file /etc/ntp.conf, you can start the daemon process manually by using /etc/init.d/ntpd
start.

The content of the NTP configuration file /etc/ntp.conf really doesn’t have to be very com-
plex. Basically, you just need three lines to create an NTP time server, as seen in Listing 9-12.

Listing 9-12. Example ntp.conf Configuration

server 127.127.1.0
fudge 127.127.1.0 stratum 10
server ntp.yourprovider.somewhere

The first line in Listing 9-12 specifies what NTP should use if the connection with the
NTP time server is lost for a longer period: this line makes sure that the local clock in your
server will not drift too much by making a reference to a local clock. Every type of local clock
has its own IP address from the range of loopback IP addresses. The format of this address is
127.127.<t>.<i>; the third byte refers to the type of local clock that is used and the fourth byte
refers to the instance of the clock your server is connected to. The default address to use to
refer to the local computer clock is 127.127.1.0. Notice that all clocks that can be used as an
external reference clock connected locally to your server have their own IP address. The doc-
umentation of your clock tells you what address to use.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 277

9233ch09.qxd 11/1/07 12:02 PM Page 277

■Tip Even if your server is connected to an NTP server that’s directly on the Internet, it makes sense to use
at least one local external reference clock on your network as well. This way you can ensure that time syn-
chronization continues if the Internet connection fails for a longer period.

The second line defines what should happen when the server falls back to the local exter-
nal reference clock mentioned on the first line. This line starts with the keyword fudge to
indicate an abnormal situation. Here, the local clock should be used, and the server sets its
stratum level to 10. By using this stratum, the server indicates that it’s not very trustworthy,
but ensures that it can be used as a time source if necessary.

The last line in Listing 9-12 shows what should happen under normal circumstances. This
line normally refers to an IP address or a server name on the network of the Internet provider.
This line will always be used if nothing strange is happening.

Pulling or Pushing the Time
An NTP time server can perform its work in two different ways: by pushing (broadcasting)
time across the network, or by allowing other servers to pull the time from it. In the default
setting, the NTP server that gets its time from somewhere else regularly asks this server what
time is used. When both nodes have their times synchronized, this setting will be incremented
to a default value of 1,024 seconds. As an administrator, you can specify how often time needs
to be synchronized by using the minpoll and maxpoll arguments on the line where the NTP
time server is referred to as in Listing 9-13.

Listing 9-13. Configuring the Synchronization Interval

server 127.127.1.0
fudge 127.127.1.0 stratum 10
server ntp.provider.somewhere minpoll 4 maxpoll 15

The minpoll setting determines how often a client should try to synchronize its time if
time is not properly synchronized, and the maxpoll value indicates how often synchronization
should occur if time is properly synchronized. The values for the minpoll and maxpoll parame-
ters are kind of weird logarithmically: they refer to the power of 2 that should be used.
Therefore, minpoll 4 is actually 24 (which equals 16 seconds), and the default value of 1,024
seconds can be noted as 210. Any value that lies between the values of 4 and 17 can be used.

If you are configuring an NTP node as a server, you can use the broadcast mechanism as
well. This makes sense if your server is used as the NTP time server for local computers that
are on the same network (because broadcast is not forwarded by routers). If you want to do
this, make sure the line broadcast 192.168.0.255 (use the broadcast address for your net-
work) is included in the ntp.conf file on your server and that the broadcastclient setting is
used on the client computer.

If you want to configure a secure NTP time server, you should think twice before configur-
ing broadcast. Typically, a broadcast client takes its time from any server in the network, as
long as it broadcasts NTP packets on the default NTP port 123. Therefore, someone could

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES278

9233ch09.qxd 11/1/07 12:02 PM Page 278

introduce a bogus NTP time server with a very high stratum configured to change the time on
all computers in your network.

Configuring an NTP Client
The first thing to do when configuring a server to act as an NTP client is to make sure that the
time is more or less accurate. If the difference is greater than 1,024 seconds, NTP considers the
time source to be bogus and refuses to synchronize with it. Therefore, it’s recommended to
synchronize time on the NTP client manually before continuing. To manually synchronize the
time, the ntpdate command is very useful: use it to get time only once from another server
that offers NTP services. To use it, specify the name or IP address of the server you want to
synchronize with as its argument:

ntpdate ntp.yourprovider.somewhere

By using this command, you’ll make a once-only time adjustment on the client computer.
After that, you can set up ntpd for automatic synchronization on the client computer.

■Caution Too often, ntpdate is used only for troubleshooting purposes when the administrator finds
out that ntpd isn’t synchronizing properly. In this case, the administrator is likely to see a “socket already in
use” error message. This happens because ntpd has already claimed port 123 for NTP time synchronization.
You can verify this with the natstat -platune | grep 123 command, which displays the application cur-
rently using port 123. Before ntpdate can be used successfully in this scenario, the administrator should
make sure that xntpd is shut down on the client by using /etc/init.d/ntp stop.

If the time difference between server and client is greater than 1,000 seconds, ntp.conf
can be configured on the NTP client. A typical NTP client configuration is very simple: you just
need to specify the server you want to get the time from, as in the following example:

server 192.168.0.10

You may also prefer to set a backup option by using the fudge option as displayed in
Listing 9-13, but this is optional. Normally, I recommend that you don’t set this option on every
single server in the network that’s using NTP. As an administrator, you might prefer to set this
on one server in your network only and let all other NTP clients in your network get the time
from that server. So, to make an NTP hierarchy, I recommend letting one or two servers in the
network get their time from a reliable time source on the Internet, such as pool.ntp.org. Next,
to ensure that an NTP time source is still available when the Internet connection goes down,
use the fudge option on the same servers. Doing so ensures that they will still be the servers
with the highest stratum level in your network, and time services will not be interrupted.

Checking NTP Synchronization Status
After you’ve started the NTP service on all computers in your network, you probably want to
know if it’s working correctly. The first tool to use is the ntptrace command, which provides an
overview of the current synchronization status. When using it, you should be aware that it will

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 279

9233ch09.qxd 11/1/07 12:02 PM Page 279

always take some time to establish NTP synchronization. The delay occurs because an NTP
client normally synchronizes only every 16 seconds, and it may fail to establish correct syn-
chronization the first time it tries. Normally, however, it should take no longer than a cup of
coffee to establish NTP time synchronization.

Another tool to tune the working of NTP is the ntpq command, which offers its own inter-
active interface from which the status of any NTP service can be requested. As when using the
FTP client, you can use a couple of commands to do “remote control” on the NTP server. In
this interface, you can use the help command to see a list of available commands.

As an alternative, you can run ntpq with some command-line options. For example, the
ntpq -p command gives an overview of current synchronization status. Listing 9-14 provides
an example of the result, in which several parameters are displayed:

• remote: The name of the other server

• refid: The IP address of the server you are synchronizing with

• st: The stratum used by the other server.

• t: The type of clock used on the other server (L stands for local clock; u for an Internet
clock)

• when: The number of seconds since the last poll

• poll: The number of seconds used between two polls

• reach: The number of times the other server has been contacted successfully

• delay: Indicates the time between an NTP request and the answer

• offset: The difference in seconds between the time on your local computer and that on
the NTP server

• jitter: The error rate in your local clock, expressed in seconds

Listing 9-14. Use the ntpq -p Command to Slow the Current Synchronization Status on Your
Server.

root@RNA:~# ntpq -p
remote refid st t when poll reach delay offset jitter

==
fiordland.ubunt 192.36.133.17 2 u 10 64 1 2.247 -357489 0.002

Customizing Your NTP Server
I have explained the basic NTP time configuration so far, but you can also conduct some fine-
tuning. First are the files that are created automatically by the NTP daemon, and then there
are some security settings that you can use in ntp.conf to limit what servers are allowed to get
time from your server. In this section, you’ll read about the NTP drift file, the NTP log file, and
NTP security.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES280

9233ch09.qxd 11/1/07 12:02 PM Page 280

The NTP Drift File
No matter how secure the local clock on your computer, it’s always going to be slightly off:
either too fast or too slow. For example, a clock may have lag 2 seconds every hour: this differ-
ence is referred to as the clock’s drift factor, and it’s calculated by comparing the local clock
with the clock on the server that provides NTP time to the local machine. Because NTP is
designed also to synchronize time when the connection to the NTP time server is lost, it’s
important that the NTP process on your local computer knows what this drift factor is. So, to
calculate the right setting for the drift factor, it’s very important that an accurate time is used
on the other server.

Once NTP time synchronization has been established, a drift file is created automatically.
On Ubuntu Server, this file is created in /var/lib/ntp/ntp.drift, and the local NTP process
uses it to calculate the exact drifting of your local clock, which thus allows it to compensate for
it. Because the drift file is created automatically, you don’t need to worry about it. However,
you can choose where the file is created by using the driftfile parameter in ntp.conf:

driftfile /var/lib/ntp/ntp.drift

■Note Remember that NTP is a daemon. Like most daemons, it reads its configuration file only when it’s
first started. So, after all modifications, use /etc/init.d/ntpd restart to make sure that the modifica-
tions are applied to your current configuration.

The NTP Log File
The NTP log file is another file that’s created automatically for you. Like all other log files, this
is a very important file that allows you to see exactly what happens. If time is synchronized
properly, it’s not the most interesting log file on your system: it just tells you that synchro-
nization has been established and what server is used for synchronization. After installation,
Ubuntu Server is not set up to use its own log file, but you can change that using the logfile
statement in /etc/ntp.conf:

logfile /var/log/ntp

Applying NTP Security
If your server is connected to the Internet, it may be interesting to notice that restrictions can
be used. If no restrictions are applied, the entire world can access your NTP server. If you don’t
like that idea, add some lines to ntp.conf, as shown in Listing 9-15.

Listing 9-15. Applying Security Restrictions to Your NTP Time Server

restrict default noquery notrust nomodify
restrict 127.0.0.1
restrict 192.168.0.0 mask 255.255.255.0

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 281

9233ch09.qxd 11/1/07 12:02 PM Page 281

■Note Some Linux distributions configure their NTP service in such a way that no one can access it.
Having problems getting time from a server? Make sure that no restrictions have been applied.

The restrictions settings prevent inappropriate conduct of clients. In the first line of
Listing 9-14, you can see what exactly is considered inappropriate. In this line, first the default
settings for accessing the server are allowed. Then three types of packets are disallowed using
noquery, notrust, and nomodify. These make sure that no contact whatsoever is allowed for
NTP clients. Then an exception to these settings is created for the local NTP service and all
computers in the network 192.168.0.0. Add a restrictions line like the one in Listing 9-14 for
every IP address or range of IP addresses that has to be allowed to use the NTP server this way.

Starting Services with xinetd
There are two methods to start services. First, you can fire up the service when your system
boots, in which case the service occupies its port and waits for incoming connections all the
time. But, if the service is needed only occasionally, starting it at system boot and keeping it
available all the time is a waste of system resources. This is exactly when the second method is
preferred: the xinetd process (and its predecessor inetd) were developed to listen on behalf of
other processes to see if a connection comes in. If it does, xinetd starts the process, thus mak-
ing optimal use of system resources. In this section you’ll learn how to configure it.

■Note On Ubuntu Server, xinetd is not installed by default. Instead, the legacy inetd service is available.
Because xinetd offers the same capabilities but with much more flexibility, I’m covering just xinetd in this
section. Make sure that you have it installed by using apt-get install xinetd.

Setting up xinetd by Hand
The xinetd service consists of three different parts:

• The xinetd daemon

• The default configuration file /etc/xinetd.conf

• The configuration files for individual services in the /etc/xinetd.d directory

Managing the xinetd Daemon
The xinetd service is implemented by the daemon process xinetd, which has a script in
/etc/init.d that allows you to start and stop this process automatically. Be aware that xinetd

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES282

9233ch09.qxd 11/1/07 12:02 PM Page 282

is not activated by default, so start it first using /etc/init.d/xinetd start. This command
reads all service configuration files and makes sure that all services that have their enabled
status set to on are reachable from that moment on.

From time to time, you’ll have to restart the xinetd service because it doesn’t automatically
check its configuration files for changes. So, if you’ve made any modifications to the services
files, be sure to activate them by using the /etc/init.d/xinetd reload or /etc/init.d/xinetd
restart command.

Setting Default Behavior
The configuration of xinetd occurs in two locations. First, there’s the /etc/xinetd.conf file
that contains generic settings, and then there’s the /etc/xinetd.d subdirectory that can con-
tain files to configure individual xinetd services. It can contain service-specific settings as
well, but that’s not the default way to go on Ubuntu Server: every individual service has its
own configuration file in /etc/xinetd.d. On Ubuntu Server, xinetd.conf is not used and all
configuration is in the individual configuration files in /etc/xinetd.d.

Tuning the Individual Services
Every service that works with xinetd has its own configuration file in /etc/xinetd.d. In these
configuration files, you’ll find options that specify how a service must be started. An example
of this is in the configuration file in Listing 9-16. The most important of the options is disabled
= yes, which is on by default. Because it’s on by default, the service won’t run until you remove
the option or change it to disabled = no. Listing 9-16 shows the configuration file for the time
service.

Listing 9-16. Default Configuration File for the time Service

root@RNA:~# cat /etc/xinetd.d/time
default: off
description: An RFC 868 time server. This protocol provides a
site-independent, machine-readable date and time. The Time service sends back
to the originating source the time in seconds since midnight on January first
1900.
This is the tcp version.
service time
{

disable = yes
type = INTERNAL
id = time-stream
socket_type = stream
protocol = tcp
user = root
wait = no

}

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 283

9233ch09.qxd 11/1/07 12:02 PM Page 283

This is the udp version.
service time
{

disable = yes
type = INTERNAL
id = time-dgram
socket_type = dgram
protocol = udp
user = root
wait = yes

}

Of the options used in this configuration file, only two are really important because the
rest of them are set automatically. The first option that you have to tune is the disable option.
This option by default has the value yes, which means that the service is not active. To activate
the service, set it to disable = no. The second option is user, which specifies what user per-
missions the option should be started with. Many services are started as root by default. If you
can, change it to some other user with not so many permissions.

Tuning Access to Services with TCP Wrapper
If a service runs from xinetd, it can be secured with TCP Wrapper. To ensure that you can use
it, install TCP wrapper using apt-get install tcpd as root. Stated in a more general way, if a
service is using the libwrap.so library module, you can secure it with TCP Wrapper. Because
xinetd uses this module, you can secure it this way. Other services that aren’t started with
xinetd but do use this library can be secured with TCP Wrapper as well. To check if a service is
capable of working with TCP Wrapper, use the ldd command followed by the complete name
of the service you want to check. If libwrap.so is listed, TCP Wrapper works for the service. If it
isn’t, use a generic firewall such as iptables. See Listing 9-17 for an example.

Listing 9-17. Checking If a Service Can Be Secured with TCP Wrapper

root@RNA:~# ldd /usr/sbin/xinetd
linux-gate.so.1 => (0xffffe000)
libwrap.so.0 => /lib/libwrap.so.0 (0xb7fd0000)
libnsl.so.1 => /lib/tls/i686/cmov/libnsl.so.1 (0xb7fb9000)
libm.so.6 => /lib/tls/i686/cmov/libm.so.6 (0xb7f91000)
libcrypt.so.1 => /lib/tls/i686/cmov/libcrypt.so.1 (0xb7f63000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e22000)
/lib/ld-linux.so.2 (0xb7fe3000)

TCP Wrapper was developed before xinetd existed and when only its predecessor inetd
was available. This service didn’t include any way of regulating access to services, and so inetd
could be used to start tcpd, TCP Wrapper, which in turn could be configured to start the neces-
sary service. The task of tcpd was to check if a host trying to connect to the service was allowed
access or not. The nice thing about tcpd is that it sits between (x)inetd and the service a client
is connecting to. Therefore, from the outside it’s not possible to see whether tcpd is blocking
access to a service or if the service simply isn’t there.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES284

9233ch09.qxd 11/1/07 12:02 PM Page 284

Working with the /etc/hosts.allow and /etc/hosts.deny Configuration Files
TCP Wrapper works with two configuration files to determine if access is allowed or not:
/etc/hosts.allow and /etc/hosts.deny. The first has a list of all hosts that can access a service,
and the second contains a list of hosts for which access is denied. TCP Wrapper always first
reads the /etc/hosts.allow file. If the host that tries to connect is in there, access is allowed.
Only if the name of the hosts is not in /etc/hosts.allow does tcpd check /etc/hosts.deny. If
the host is in there, access is blocked; if it isn’t, access is allowed. Access is also allowed if one of
the two configuration files is empty or does not exist.

■Caution Test before you trust that TCP Wrapper is really protecting your services. A small error in the
configuration can have the result that TCP Wrapper doesn’t work.

The generic syntax of the lines that you can include in the /etc/hosts.allow and
/etc/hosts.deny files is not hard to understand:

daemon:host[:option : option ...]

Of these, daemon is the process involved, host is the list of hosts that you want to allow or
deny access to, and option is a list of options you want to include. Note that, instead of refer-
ring to a specific host or daemon, some generic keywords can be used as well. Table 9-2
summarizes these TCP Wrapper keywords.

Table 9-2. TCP Wrapper Keywords

Keyword Description

ALL Refers to all daemons or all hosts. Note that you can define an exception to ALL
by using the keyword EXCEPT.

LOCAL This option can be used for host names only and refers to all host names that
do not have a dot in their name.

UNKNOWN All host names for which tcpd cannot identify the name.

KNOWN All host names that could be identified by their name and matching IP
address.

PARANOID All hosts for which the host name does not match the given IP address.

Let’s start with the example shown in Listing 9-18.

Listing 9-18. Simple Example of /etc/hosts.allow and /etc/hosts.deny

RNA: ~ # cat /etc/hosts.allow
ALL: LOCAL
RNA: ~ # cat /etc/hosts.deny
famd, netstatd, ps: ALL

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 285

9233ch09.qxd 11/1/07 12:02 PM Page 285

In this example, incoming hosts are first matched against the /etc/hosts.allow file.
In there, access to all services is granted for everything coming in from the localhost.
Local processes look no further. For connections coming in from remote hosts, now the
/etc/hosts.deny file is checked. In this file, you can see that access is denied to the famd,
netstatd, and ps services for all hosts. So, in this example, all other services that are controlled
by tcpd can also be accessed by all external hosts. As you notice, this example doesn’t show
anything very secure, but it’s possible to create a more secure configuration (see Listing 9-19).

Listing 9-19. More Complex Example of /etc/hosts.allow and /etc/hosts.deny

RNA: ~ # cat /etc/hosts.allow
ALL: SFO.sandervanvugt.com
in.telnetd: 192.168.1.1
ALL EXCEPT in.telnetd: 192.168.
RNA ~ # cat /etc/hosts.deny
ALL: ALL

In this example, you should first notice that a policy is set to specifically deny access for
all hosts to all services in /etc/hosts.deny. This is good because it creates a mechanism to
control access: if the host doesn’t have an entry in /etc/hosts.allow, it doesn’t get access to
the services that are controlled by tcpd.

Three different lines are specified in the /etc/hosts.allow file in Listing 9-18. The first
line grants access to all services for the host SFO.sandervanvugt.com. Then, 192.168.1.1 gets
access to only the telnet service, and, in the third line, all other hosts whose IP address starts
with 192.168 get access to all services except telnet. Note that order matters in this example:
the TCP Wrapper works on a “first match” basis. If line 2 and line 3 of /etc/hosts.allow had
been reversed, the host with IP address 192.168.1.1 would also see a match in the ALL EXCEPT
in.telnetd line and would look no further.

Why You Shouldn’t Use TCP Wrapper
If a service listens to tcpd, you can build an efficient protection for it. However, this protection
is far from perfect. The most important problem is that the service is used only for certain
kinds of services. The line ALL:ALL in /etc/hosts.deny could give you a false sense of security,
making you believe that everything is secure now. A much better way to implement protection
for your server is to use the iptables firewall. Check Chapter 5 for more information on its
configuration.

Summary
In this chapter, you learned how to set up some of the most common network infrastructure
services. You’ve seen how to configure name resolution using DNS, and you read about the
configuration of the DHCP server and the NTP time server. In the last part of this chapter, I cov-
ered the configuration of xinetd as a generic way to start services on your Linux server. In the
next chapter, you’ll learn how to set up Ubuntu Server as a file server, using Samba and NFS.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES286

9233ch09.qxd 11/1/07 12:02 PM Page 286

Using Ubuntu Server As
a File and Print Server
Configuring Cups, NFS,
and Samba

File servers allow users to store important files at a central location in the network from
which it’s easy to add security and to allow users to share files. In this chapter, you’ll learn how
to set up Ubuntu Server as a file server.

A file server also typically offers a print service, which provides an easy and convenient
way to share printers on the network. You’ll also learn how to set up print services as well.

When using any Linux distribution as a file server, you have to choose the type of file
server you want to use. Many options are available, but NFS and Samba are the two most pop-
ular. The type of file server you’re going to use depends on the kind of client that’s going to use
it. If in your network most people work from Windows clients, it makes sense to configure a
Samba file server because Samba emulates the Windows server message blocks (SMB) proto-
col. This means that the Windows user won’t see any difference between the Samba server
and a Windows server. If, on the other hand, your user is on a Linux workstation and needs an
easy-to-configure and very fast protocol to connect to your Samba server, NFS is the way to
go. In this chapter, you’ll learn how to set up both of these configurations.

Setting Up a CUPS Print Server
The CUPS (common UNIX printing system) server is a service that you’re going to really want
to use a graphical interface for. Although this server uses a set of configuration files that aren’t
always that easy to configure, it provides a web page that allows you to perform almost all the
tasks necessary to manage a print server.

287

C H A P T E R 1 0

9233ch10.qxd 11/1/07 12:03 PM Page 287

Adding Printers
To configure your server as a print server, you must first add a printer. If your network doesn’t
have many printers, you can add the printers individually. For a larger number of printers, you
can organize them into groups (classes) to make it easier to manage them. Let’s go through the
steps to add a printer in CUPS:

1. Install CUPS using apt-get install cupsys. This command installs all required CUPS
components (including the web management interface) and starts the CUPS service.

2. Open a browser and go to http://yourserver:631. By default, the CUPS print server
listens on port 631, and, when accessing it from a browser, you see the management
interface shown in Figure 10-1.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER288

Figure 10-1. CUPS offers an easy-to-use web management interface on port 631 of your server.

3. From this interface, click Add Printer. Now enter the following information, and click
Continue when finished:

• Name: This is the name you want to use to share the printer. You won’t be allowed
to use spaces in the name of this printer.

9233ch10.qxd 11/1/07 12:03 PM Page 288

http://yourserver:631

• Location: Enter the physical location of your printer.

• Description: Provide a description of your printer. Although this field isn’t manda-
tory, the added information does make it easier for a user to connect to the right
printer.

4. Next, specify what device the printer is connected to. This is an important option
because it relates to the device that your print server has to address when communi-
cating to the printer. This does not have to be a local device, and you can use a remote
device over the network. If your printer is attached to your server with USB, you’ll see
the USB printer listed automatically. Apart from the USB interface, the following
devices are available by default:

• AppSocket/HP JetDirect: Use this device to communicate to an HP Jet Direct or
AppSocket-compatible print server.

• Internet Printing Protocol (http): You can use the Internet printing protocol to
address a printer that’s shared over the Internet. Use this option to address such a
printer over HTTP.

• Internet Printing Protocol (ipp): Use this option to address an IPP printer using the
IPP protocol.

• LPD/LPR Host or Printer: LPD/LPR is the classic way to connect to printers shared
by a UNIX or Linux machine. Use this option to address such a printer.

• LPT#1: Choose this option to communicate to a printer that’s installed at the paral-
lel printer port LPT1.

• SCSI Printer: This is for printers that are connected to the print server using the
SCSI bus.

• Serial Port #1 / #2: This is for printers that are connected via a serial interface.

5. After selecting the printer port your printer is attached to, you’ll see a list of available
printer drivers. If your printer is listed here, select it and click Continue. Otherwise, you
can specify which printer you want to use by referring to its PPD file, which describes
how CUPS has to communicate with the printer. You can compare the PPD file to a
driver. A limited list of PPD files is installed in /usr/share/ppd/cups-included. If your
printer is not listed there, check the printer page at www.openprinting.org to see what
the current support status is for your printer. If it’s supported, you’ll find a link to the
best driver for your printer. Click this link and make sure the driver is installed in
/usr/share/ppd/custom. Next, from the Make/Manufacturer interface, click the Browse
button to add this driver (see Figure 10-2). Then click Add Printer to add the printer.
When asked for a user name and password, enter the credentials for the user root. Your
printer is now added.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 289

9233ch10.qxd 11/1/07 12:03 PM Page 289

http://www.openprinting.org

6. Once the printer has been added, you’ll see a page with the printer’s properties. Make
sure that you select the right printer features, such as paper size, resolution, and many
other details. After making changes to this page, click the Set Printer Options button to
apply the changes. This updates your printer configuration immediately.

Sharing Printers
Once you’ve added a printer, you’ll probably want to share it. By default, only the host localhost
has access to your printer. To change this, follow these steps:

1. As root, open the /etc/cups/cupsd.conf file with an editor.

2. Search the line Listen localhost:631 and add a listen line just after it. For example,
to add a line that opens the CUPS print server for all nodes at the network 192.168.1.0,
add Listen 192.168.1.0/24.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER290

Figure 10-2. Click the Browse button to browse to the location where you have selected the PPD file for
your printer.

9233ch10.qxd 11/1/07 12:03 PM Page 290

3. Next, from the same configuration file, search the section that starts with <Location />.
Here you’ll find some lines that start with Allow. These lines are also required to indi-
cate what remote hosts are allowed to use your CUPS print server. Make sure that you
include a line that allows access for all nodes that need it. For example, add Allow
192.168.1.* to make sure that all nodes in the specified network can print to your
server.

4. If you want to be able to administer your print server from other nodes as well, go
to the section that begins with <Location /admin> and add an Allow line that grants
access for the administrator from all required machines as well, such as Allow
192.168.1.65.

5. Restart the CUPS print server by issuing the /etc/init.d/cupsys restart command
as root.

Managing Printers
Once the CUPS printer is installed, you can manage it as well, and the easiest way to do this is
from the web interface. Clicking the Printers tab (see Figure 10-3) provides an overview of all
available printers, and you’ll also see different buttons to manage properties of the printer as
well as the jobs handled by that printer. I’ll list the most important options offered from this
page here:

• Print Test Page: Use this to test your printer.

• Start Printer: Activates a printer that has been deactivated by the Stop Printer button.
As you can see, only one of these buttons is available at any given moment.

• Reject Jobs: Tells the printer to temporarily stop accepting new jobs. This may be a
useful option when troubleshooting a printer.

• Move All Jobs: Moves all jobs to another printer that’s known at this server.

• Cancel All Jobs: Stops all jobs that are currently being served.

• Unpublish Printer: Removes the printer from the list of available printers.

• Modify Printer: Allows you to change the location and description properties of the
printer.

• Set Printer Options: Changes printer options such as paper size and DPI.

• Delete Printer: Removes the printer from the list of available printers.

• Set As Default: Makes the printer the default for this machine.

• Set Allowed Users: Controls user access to the printer.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 291

9233ch10.qxd 11/1/07 12:03 PM Page 291

Also available from the Printers page is the queue or job list for your printer. You can acti-
vate it from Jobs ➤ Show All Jobs, after which you can choose to reprint, hold, cancel, or move
individual print jobs.

Accessing CUPS Printers
You have probably set up a CUPS print server because you want to access it as well. In this
section, I’ll discuss three different ways to access printers:

• Accessing a local CUPS printer from Linux

• Accessing a remote CUPS printer from Windows

• Accessing a remote CUPS printer from Windows using Samba

The first two are covered in the next two sections, but we’ll wait until later in this chapter
to configure the Samba server to provide access to a CUPS print server (see “Integrating CUPS
with Samba”).

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER292

Figure 10-3. The Printers page provides you all the management options for your printer.

9233ch10.qxd 11/1/07 12:03 PM Page 292

Accessing a Local CUPS Printer from Linux
Access a local CUPS printer from Linux is easy because all CUPS printers appear in your appli-
cations automatically. The only minor disadvantage is that, after setting up a CUPS printer
from the web interface, it doesn’t automatically become the default printer. That said, though,
it’s easy to make your CUPS printer the default printer: from the web management interface
that you find at port 631 on your server, select the Printers tab and click Set As Default.

Another useful way of accessing CUPS printers is the command line. You can use the lpr
command to send a file to a CUPS printer, but you first have to make sure that the command
is available on your server (by default it isn’t) by typing apt-get install cupsys-bsd. Next, as a
test, use lpr -Pnameofyourprinter /etc/hosts to send the file /etc/hosts to the printer that is
referred to by using the -P option.

Accessing a Remote CUPS Printer from Windows
Because CUPS uses a standard that Windows understands as well, you’ll normally have no
problem accessing a CUPS printer from Windows. Again, you can access a CUPS printer in
two ways: you can add a new printer with the Add Printer wizard and refer to the name of
the printer directly, or you can use Samba to access a CUPS printer that’s shared by a Samba
server. In this section, you’ll read how to set it up using the Add Printer wizard in Windows.
Although I’ve used Windows XP to set up the CUPS printer, the installation on other Windows
versions will be more or less the same.

1. In Windows, select Start ➤ Settings ➤ Printers and Faxes.

2. Click Add a Printer.

3. Specify that you want to create a remote printer and click Next.

4. Select Connect to a printer on the Internet or on a home or office network, and
specify the URL of your printer. This URL consists of three parts. First, there is
http://yourserver. Use the name or the IP address of your server. Next, /printers
refers to the location on your server where your printers are defined. Next, you
should use the printer queue name as it is defined in the CUPS web administration
page and as you see it on the Printers page. For example, the complete URL to enter
here is something like http://myserver/printers/BrotherHL1430.

5. After making contact with the printer, Windows displays an interface for you to select
the manufacturer and model of your printer. Now complete the wizard to install the
CUPS printer on Windows.

Sharing Files with NFS
If you’re looking for a service that can offer access to shared files in a fast way, the network file
system (NFS) is an excellent choice. NFS is a very convenient way to share files, especially in
an environment where the clients are mainly Linux. It’s not uncommon to store the home
directories of all users on an NFS server. In this section, we’ll cover the following topics:

• Using the NFS server

• Understanding how the NFS server works

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 293

9233ch10.qxd 11/1/07 12:03 PM Page 293

http://yourserver
http://myserver/printers/BrotherHL1430

• Configuring an NFS server

• Configuring an NFS client

• Monitoring the NFS server

Using the NFS Server
You can use the NFS server to share files with UNIX/Linux servers and clients because every
version of UNIX and Linux has native NFS support in the kernel of the operating system. NFS
is particularly useful when certain directories must be stored on a central location in the net-
work. You can, for example, use it for access to shared home directories; just make sure that
the home directory is stored in a central location on a server and lets users access it when they
log in to their workstations. NFS is also very useful in sharing large data directories, such as an
installation repository, with other servers using NFS.

One of the most important things to remember about NFS is that its security is rather lim-
ited in version 3 of the protocol. Version 4 offers Kerberos to secure the NFS server, but setting
up this version is far more difficult. Therefore, I’ll focus here on version 3 only.

The security that can be applied in NFS version 3 is based on host names or IP addresses.
Once another host has been granted access to your NFS server, all its users get access to the
shared directories as well. It’s possible to limit that by granting file permissions to only the
user and group owners of a file and by avoiding permissions for others, but that doesn’t make
for a decent security setting, does it?

To determine the permissions of a user from one machine at another machine, the NFS
server checks user IDs. For example, if you have user ID 611 at your client desktop and you
access your company’s server, you’ll automatically get the permission of the user who has UID
611 on the server. To prevent problems with this, you should use NFS in an environment in
which user management is centralized with a service such as an NIS or LDAP server.

Understanding How the NFS Works
A couple of components are involved in offering NFS services. First, there’s the NFS server
itself, which is provided by the kernel of Ubuntu Server. NFS is one of the services that works
with the RPC port mapper, which uses its own port numbers.

Most modern services have their own TCP or UDP port numbers, but this isn’t the case
with NFS (at least by default). NFS was created a long time ago, when the TCP and UDP port
numbers as we know them now weren’t very common. Therefore, NFS uses its own kind of
port numbers, the so-called RPC (remote procedure call) program numbers. On a modern sys-
tem, these numbers must be converted to an Internet port number, and this task belongs to
the RPC port map program which is implemented by a process on its own.

When an RPC-based service such as NFS is started, it tells the port mapper what port
number it’s listening on and what RPC program numbers it serves. When a client wants to
communicate to the RPC-based service, it first contacts the port mapper on the server to find
out the port number it should use. Once it knows the port number, its requests can be tun-
neled over the Internet port to the correct RPC port. To find out which RPC program numbers
your server is currently listening on, use the rpcinfo -p command. Listing 10-1 shows the

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER294

9233ch10.qxd 11/1/07 12:03 PM Page 294

results of this command. (Make sure to install the kernel NFS server first, using apt-get
install nfs-kernel-server.)

Listing 10-1. Displaying RPC Program Numbers with rpcinfo -p

SFO:~ # rpcinfo -p
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100003 4 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 tcp 2049 nfs
100003 4 tcp 2049 nfs
100024 1 udp 1147 status
100021 1 udp 1147 nlockmgr
100021 3 udp 1147 nlockmgr
100021 4 udp 1147 nlockmgr
100024 1 tcp 2357 status
100021 1 tcp 2357 nlockmgr
100021 3 tcp 2357 nlockmgr
100021 4 tcp 2357 nlockmgr
100005 1 udp 916 mountd
100005 1 tcp 917 mountd
100005 2 udp 916 mountd
100005 2 tcp 917 mountd
100005 3 udp 916 mountd
100005 3 tcp 917 mountd

As you can see in this output, NFS is listening to Internet port 2049 for NFS protocol
version 2, 3, and 4 calls. Internally, it’s using RPC port 100003 as well. Before the NFS server
is started, you must make sure that the port mapper is started. (This happens automatically
when the NFS software is installed.) When the port mapper is started, two service scripts are
created. The first is /etc/init.d/nfs-common. Some of the common services are started from
this script, such as rpc.lockd, which takes care of proper NFS file locking. Next, the nfs-kernel-
server is started. From this service script, the file-sharing services are activated. In total, the
NFS server consists of the services in the following list. The names in parentheses are the
scripts in /etc/init.d that make sure that the service is started.

• rpc.statd (nfs-common): This helper process is used by rpc.lockd. It keeps track of all
file locks that are allocated by kernel lock process or rpc.lockd and makes sure that
they’re restored after a crash of the NFS server.

• rpc.lockd (nfs-common): This process isn’t normally needed anymore. It was used to
make sure that files were locked properly, but now its function is implemented in the
Linux kernel. It doesn’t harm to start the process anyway, and, for that reason, you’ll
find the rpc.lockd process activated most of the time.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 295

9233ch10.qxd 11/1/07 12:03 PM Page 295

• rpc.idmapd (nfs-common): The rpc.idmapd process is used in NFS version 4 only. It
makes sure that user IDs are not matched only at the UID level (does a user have the
same UID) but also at the user name level. By using this process, the NFS version 4
server can map users with the same name but different UIDs on the machines
involved in the NFS setup.

• rpc.gssd (nfs-common): This service and its helper process rpc.svcgssd make sure that
a secure connection is established between the NFS client and server before any infor-
mation is exchanged.

• rpc.nfsd (nfs-kernel-server): This is the core NFS process, as it ensures that NFS serv-
ices are offered. You need it at all NFS servers. The service is implemented by loading
the nfsd.o kernel module.

• rpc.svcgssd (nfs-kernel-server): See rpc.gssd.

• rpc.mountd (nfs-kernel-server): This is the client process that’s required to create an
NFS mount.

The last part of the NFS server consists of its three configuration files:

• /etc/default/nfs-common: This file contains parameters that tune the working of the
services started from the /etc/init.d/nfs-common script when started.

• /etc/default/nfs-kernel-server: This file contains parameters required by the services
started from /etc/init.d/nfs-kernel-server when started.

• /etc/exports: This file specifies the NFS shares.

Configuring an NFS Server
The NFS shares are defined in /etc/exports. The generic structure of the lines where this
happens is as follows:

directory allowed-hosts(options)

In this example, directory is the name of the directory you would like to share (for exam-
ple /share). Next, hosts refers to the hosts that you want to have access to that directory. The
following details can be used for the host specification:

• The name of an individual host, either its short name or its fully qualified domain name

• The IP address of an individual host

• A network referred to by its name, such as *.mydomain.com

• A network referred to by a combination of IP address and subnetmask, such as
192.168.10.0/255.255.255.0.

• All networks, referred to by an asterisk

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER296

9233ch10.qxd 11/1/07 12:03 PM Page 296

After indicating which hosts are granted access to your server, you need to specify the
options with which you want to give access to the NFS share. Table 10-1 lists some of the more
popular options.

Table 10-1. Commonly Used NFS Options

Option Meaning

ro The file system is exported as a read-only file system. No matter what local
permissions the user has, writing to the file system is denied at all times, even
if the user who makes the connection is root.

rw The file system is exported as a read-write file system. Users can read and
write files to the directory if they have sufficient permissions on the local file
system.

root_squash The user ID of user root is mapped to the user ID 65534, which is mapped to
the user nobody by default. This default behavior ensures that a user who is
mounting an NFS mount as user root on the workstation does not have root
access to the directory on the server. Always use this to secure shares at a
server that are frequently accessed by clients.

no_root_squash With this option, there’s no limitation for the root user. He will just have root
permissions on the server as well.

all_squash Use this option if you want to limit the permissions of all users accessing the
NFS share. With these options, all users will have the permissions of user
nobody on the NFS share. Use this option if you want extra security on your
NFS share.

sync This option ensures that changes to files have been written to the file system
before others are granted access to the same file. Although this option doesn’t
offer the best performance, you should always use it to avoid losing any data.

■Tip After making changes to the /etc/exports file, you must restart the NFS server because NFS is
one of those older UNIX services that reads its configuration only on startup. To restart the NFS server, use
/etc/init.d/nfs-kernel-server restart. You don’t need to restart the /etc/init.d/nfs-common
script after making modifications to /etc/exports.

Tuning the List of Exported File Systems with the exports Command
When the NFS server is activated, it keeps a list of exported file systems in the /var/lib/nfs/xtab
file. This file is initialized with the list of all directories exported in the /etc/exports file by invok-
ing the exportfs -a command when the NFS server initializes. With the exportfs command,
it’s possible to add a file system to this list without editing the /etc/exports file or restarting the
NFS server. For example, the following line exports the /srv directory to all servers in the net-
work 192.168.1.0:

exportfs 192.168.1.0/255.255.255.0:/srv

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 297

9233ch10.qxd 11/1/07 12:03 PM Page 297

The exported file system will be created immediately, but it will be available only until the
next reboot of your NFS server. If you also want it to be available after a reboot, make sure to
include it in the /etc/exports file, too.

Configuring an NFS Client
Now that the NFS server is up and running, you can configure the clients that need to access
the NFS server, and you can mount the NFS share either by hand (with the mount command)
or automatically from fstab.

Mounting an NFS Share with the mount Command
The fastest way to get access to an NFS shared directory is to issue the mount command from
the command line. Just specify the file system type as an NFS file system, indicate what you
want to mount and where you want to mount it, and you have immediate access. The follow-
ing command shows how to get access to the shared directory /opt on server STN via the local
directory /mnt:

mount -t nfs STN:/opt /mnt

Notice the colon after the name of the server; this is a required element to separate the
name of the server from the name of the directory that you want to export. Although you can
access an NFS shared directory without using any options at all, some options are often used
to make it easier to access an NFS mounted share. Table 10-2 summarizes these options.

Table 10-2. Common NFS Mount Options

Option Meaning

soft Use this option to tell the mount command not to insist indefinitely on mounting
the remote share. If the directory could not be mounted after the default time out
value (normally 60 seconds), the mount attempt is aborted. Use this option for all
noncritical mounts.

hard Use this option to tell the mount command that it should continue trying to access
the mount indefinitely. But be aware that, if the mount is performed at boot time,
this option may cause the boot process to hang. Therefore, use this option only on
directories that are really needed.

fg This default option tells the mount command that all mounts must be activated as
foreground mounts. The result is that you can do nothing else on that screen as long
as the mount could not be completed.

bg This option performs the mount as a background mount. If the first attempt isn’t
successful, all other attempts are started in the background.

rsize=n This option specifies the number of bytes that the client reads from the server at the
same time. For compatibility reasons, this size is set to 1,024 bytes by default. NFS
version 3 and later can handle much more than this. To increase the performance
of your NFS server, set it to a higher value, such as 8,192 bytes.

wsize=n Use this option to set the maximum number of bytes that can be written
simultaneously. Again, the default is 1,024, but NFS 3 and later can handle much
more, so specify 8,192 to optimize the write speed for your NFS server.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER298

9233ch10.qxd 11/1/07 12:03 PM Page 298

Option Meaning

retry=n This option specifies the number of minutes a mount attempt can take. The default
value is 10,000 (which is 6.94 days). Consider setting it lower to avoid waiting on a
mount that can’t be established.

nosuid This security option specifies that the SUID and SGID bits cannot be used on the
exported file system.

nodev This option specifies that no devices can be used from the imported file system. This
also is a security feature.

noexec Use this option to avoid starting executable files from the exported file system.

Mount an NFS Share Automatically from fstab
Mounting an NFS share with the mount command is fine for a mount that you need only occa-
sionally. If you need the mount all the time, you can automate it by using /etc/fstab. If you
know how to add entries to /etc/fstab, it isn’t difficult to add an entry that mounts an NFS
share as well. The only differences with normal mounts are that you have to specify the com-
plete name of the NFS share instead of a device, and that some NFS options must be specified.
When mounting from fstab, you should always include the options _netdev, rsize, wsize, and
soft for optimal performance. To refer to the server, its name as well as its IP address can be
used. Next is an example of such a line:

myserver:/myshare /mylocalmount nfs
_netdec,rsize,wsize,soft 0 0

Monitoring the NFS Server
At the end of this section about NFS, it’s time for some information about monitoring the NFS
server. You can use two very useful commands: rpcinfo -p and showmount -e. First, the rpcinfo
-p command displays a list of all services that are currently registered at the port mapper serv-
ice on your NFS server. If you can’t connect to the NFS server for some reason, this command
provides a good check to see if the server is running properly. Next, the showmount -e command
displays a list of all file systems that are exported by a remote server. It typically is a utility that
you would run from a workstation acting as an NFS client to check a server to see if the share
you intend to connect to is really offered by that server.

Sharing Files with Samba
Sharing files with NFS is useful in a Linux/UNIX environment. If you have many Windows
users in your network, they probably won’t appreciate your NFS server much because it isn’t
supported natively by Windows. For those users, we’ll have to use the Samba server. Samba is
more than just an alternative for NFS; it’s an actual replacement for Windows servers. The per-
formance of a Samba server is as good as an average Windows server, and, if you need only
file-sharing services, Samba provides an excellent alternative. In this section, you’ll learn how
to configure a Samba server.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 299

9233ch10.qxd 11/1/07 12:03 PM Page 299

Samba Server Possibilities and Impossibilities
In the late 1990s, Microsoft published the specifications of its protocols for file and printer
sharing. Based on these specifications, the common Internet file system (CIFS) was defined,
and the Samba project team started its free service to provide file and print services to
Microsoft clients.

But many things have changed since then. First, Microsoft networking has changed a lot,
and Microsoft hasn’t published the specifications of its networking protocols since 1998. As a
result, the Samba team has had to reverse-engineer these protocols, which means that they
had to analyze all new functionality added by Microsoft networking components and then try
to build something like it. Sometimes the Samba team succeeded right away, and other times
it doesn’t work as fast. For example, as of this writing, Samba developers were still struggling to
implement Active Directory Domain Controller functionality in Samba.

The Samba server offers many options that people commonly use in Windows networks,
and, because it was developed from scratch, Samba is often even faster than the original
Microsoft protocols. Also, because it has been ported to many different operating systems,
it’s used in all environments. Ubuntu Server with a Samba server installed offers an excellent
replacement for a Windows NT server.

Configuring the Samba Server
The most important role of Samba is as a file server that offers access to shared directories.
After installing the Samba server with apt-get install samba, you’ll need several elements
to configure it:

• A directory to share on the local file system.

• One or more local users who have local Linux permissions on that file system.

• A share that provides network access to the shared directory.

• A user database so Windows users can authenticate with their Windows credentials
(which aren’t compatible with Linux credentials).

• Services that give access to the shared directory. Check if you have a configuration file
with the name /etc/samba/smb.conf; if you don’t, run apt-get install samba to install
everything you need.

Preparing the Local File System
The first element of a successful Samba file server is a local directory that contains files you
want to share. If the main function of your server is to be a file server, you should consider giv-
ing this directory its own partition or logical volume to separate it from the other files on your
server. I personally like putting Samba shared directories in /srv and creating a logical volume
for /srv.

Besides creating the directory, you shouldn’t forget about the right permissions. The secu-
rity for your shared directory is configured partly on the share, but more so on the local Linux
file system. So, to make it all work, just create a Linux group, grant permissions to that group,
create some users and make them members of the group, and make the group owner of the

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER300

9233ch10.qxd 11/1/07 12:03 PM Page 300

shared directory. (You can return to Chapter 5 for a refresher on how this all works.) Here are
some hints on how to organize the permission part of your Samba:

• Use ACLs if you want to give read access to members of one group but read-write
access to members of another group.

• Set the SGID permission on the shared directory to make the group that is owner of the
directory the owner of everything created in that directory and its subdirectories.

• Use the sticky bit to prevent users from accidentally deleting each other’s files from the
shared directory.

It’s a good idea to configure access on the local Linux file system before you do anything
else on your Samba server. (Many people tend to forget about it otherwise.)

Creating the Share
The second step in the configuration of a Samba server is to configure the share. For this pur-
pose, Samba works with a configuration file with the name /etc/samba/smb.conf. This file
configures almost the complete Samba server: general options as well as shares. Listing 10-2
provides an example of a configuration file for the Samba server. I won’t discuss it line by line,
but you should review it to see how it’s organized.

Listing 10-2. Example of the smb.conf Configuration File

[global]
workgroup = Samba server
printing = cups
printcap name = cups
printcap cache time = 750
cups options = raw
map to guest = Bad User
include = /etc/samba/dhcp.conf
logon path = \\%L\profiles\.msprofile
logon home = \\%L\%U\.9xprofile
logon drive = P:

[homes]
comment = Home Directories
valid users = %S, %D%w%S
browsable = No
read only = No
inherit acls = Yes

[profiles]
comment = Network Profiles
path = %H
read only = No
store dos attributes = Yes
create mask = 0600
directory mask = 0700

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 301

9233ch10.qxd 11/1/07 12:03 PM Page 301

[users]
comment = All users
path = /home
read only = No
inherit acls = Yes
veto files = /aquota.user/groups/shares/

[groups]
comment = All groups
path = /home/groups
read only = No
inherit acls = Yes

[printers]
comment = All Printers
path = /var/tmp
printable = Yes
create mask = 0600
browsable = No

[print$]
comment = Printer Drivers
path = /var/lib/samba/printers
write list = @ntadmin root
force group = ntadmin
create mask = 0664
directory mask = 0775

The smb.conf configuration file is always divided into different sections. First are the global
settings. In the old days you needed the section [global] to define them, but that’s no longer
the case. In this section, settings are configured that apply to the complete Samba server. Some
settings can be configured only here. For example, the definition of the workgroup in workgroup
= Samba server is a setting that applies to everything that’s offered by your Samba server.

Apart from the global section, some shares are defined as well. Of the shares from the
example configuration file, the homes share gives access to the home directories of users, the
profiles share allows you to work with Windows profiles, and the printers and print$ shares
are created to configure the printing environment. The shares in the example file look at the
CUPS printing environment and share it completely with the Samba server. The users and
groups shares offer nice examples of how a generic share can be configured.

To add your own share, you need to define a new section in the Samba configuration file.
It doesn’t matter what name you use for this section, as long as it’s unique. Next, specify the
parameters that you want to use for the section. Listing 10-3 provides an example in which a
share is created for members of the sales group.

Listing 10-3. Example of a Share with Some Additional Security Features Configured

[sales]
comment = Share for the sales department
path = /srv/samba/sales
valid users = @ sales
force user = zeina
force group = sales

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER302

9233ch10.qxd 11/1/07 12:03 PM Page 302

read only = no
inherit acls = yes
veto files = *.mp3
create mask = 660

You’ll probably recognize some parameters that are often used on shared directories.
Table 10-3 provides an overview of these parameters.

Table 10-3. Useful Parameters for Shared Folders

Parameter Meaning

comment The text that’s used as the value for this parameter is displayed to a user
who queries the server for available shares. Use it to explain what the
share is used for.

path This option indicates the path of the local shared Linux directory. In
the example, the path is in /srv/samba/. It’s a good idea to put all
directories shared by the Samba server under one main directory so
you can keep a better eye on what exactly is shared on your server. The
/srv directory is meant for just that, so use it!

valid users You read earlier in this chapter that Linux permissions must be
configured for the file system on which you keep your shared directory.
This doesn’t mean that you secure the share only by applying
permissions. The valid users parameter is an example of additional
security: this parameter can specify a comma-separated list of users
who are allowed access to the share. This parameter is empty by
default, which allows anyone to connect. It’s a good idea to use this
parameter followed by the name of a group, as you can see in the
example. This allows access only to users who are members of the group
you’ve specified. If you work with group names, make sure to put the
@ character before the name of the group to indicate that it is a group.
If you want to make sure that some users absolutely don’t have access
as well, you can use the (rather paranoid) option invalid users to
make sure that the specified users are excluded. You could use this
option to create an exclusion for a limited number of users who are
members of the group that you’ve granted access.

force user This parameter can be used to ensure that all files created in this
directory get the specified user (zeina in Listing 10-3) as its Linux
owner. Don’t use this option if you need to see what user created what
file in the share.

force group This option is the equivalent of using the SGID Linux permission
on the directory that is shared: it ensures that the specified group
becomes the owner of all files that are created in the share. Using
either this or the force user option makes sharing files among users
in a group really easy.

read only Without this option, users can’t write to the share. By specifying read
only = no, you’re actually meaning writeable = yes and thus allowing
users to write files to the share.

inherit acls If ACLs are used on the Linux file system, this option makes sure that
they are applied to everything created under the directory with the ACL
as well. Using this option is a very good idea because you can apply
Windows ACLs from the Windows management utilities, and these
ACLs integrate perfectly with Linux ACLs. Make sure that you’ve
enabled Linux ACLs for your file system when using this option.

Continued

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 303

9233ch10.qxd 11/1/07 12:03 PM Page 303

Table 10-3. Continued

Parameter Meaning

veto files A veto file is a file that is always denied creation on the share. By using
veto files, you can ensure that certain files just cannot be created. As in
the example, you should use patterns to indicate exactly what files you
don’t want to be created. Alternatively, you can specify the names of the
files you don’t want to exist as well.

create mask This useful parameter specifies the default permission mode for files
that are created in this directory.

directory mask Use this parameter to set default permissions for new directories.

Configuring User Access
The next important step in the configuration of the Samba server is to specify how user accounts
should be handled. Basically, the issue here is that the user connecting to a Samba share is nor-
mally a Windows user. Being a Windows user, he comes in with Windows credentials, such as a
password that is encrypted with the Windows NTLM password hash. Unfortunately, this method
of password encryption isn’t compatible with the Linux method, so something must be done to
allow Windows users to log in with their Windows password. Basically, this means that some
additional authentication service needs to be configured. The following list provides an overview
of the available options.

• Configure an additional file in which the names of the Windows users are stored.

• Don’t use user authentication at all but work with share-level security.

• Centralize management of Windows user credentials on one server in the network.

• Hook the Samba server up with a Windows domain to handle user authentication.

• Make the Samba server a Windows NT–style domain controller.

• Set up an LDAP directory service and put the local Linux users as well as the Samba
users in that.

I won’t discuss all of these options here because that would require a book on its own.
Instead, I’ll discuss in this section the easy method of creating a separate user database. Later
in this section, you’ll also read how to configure your Samba server as an Windows NT–style
domain controller.

To set up a local Samba user database, you’ll use the smbpasswd command to create a local
database containing Samba user names and passwords. You need to create an entry in this file
for every user who needs access to the Samba server. Before doing this, however, you must
make sure that the user already exists in the local Linux user database. If he doesn’t, smbpasswd
gives an error indicating that it’s impossible to create the user. After verifying that the user you
want to create as a Samba user already exists as a local user, use smbpasswd -a username to cre-
ate the Samba user as well. After creating the user with smbpasswd, he’ll be able to connect to
Samba shares.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER304

9233ch10.qxd 11/1/07 12:03 PM Page 304

Starting the Services
Three different main services are involved with the Samba software:

• smbd: This is the process that allows for the actual file sharing.

• nmbd: This service provides NetBIOS naming services, allowing Windows clients to work
with their own naming mechanism. For example, this service allows you to browse the
network neighborhood and find all Samba services as well.

• winbind: This service allows you to bind your Linux environment to a Windows envi-
ronment that uses Active Directory. With it, you can log in to Active Directory as a
Linux user.

To make your Samba server fully operational, you have to make sure that these three
services are started when your machine is booted. After installation, a script with the name
/etc/init.d/samba is created. From this script, nmbd and smbd are started automatically when
rebooting your server. Because winbind is not installed automatically, you need to install it
separately using apt-get install winbind. This adds the winbind script to /etc/init.d to
ensure that the winbind service is started automatically after a reboot of your server.

Integrating CUPS with Samba
Printers can be shared in Samba as well, but you first need to set up your Linux printing
environment. You read earlier how to do this with CUPS. After setting up the CUPS environ-
ment, you need the right parameters in the smb.conf file to make sure that your printers are
shared. Listing 10-4 provides an example of a configuration that shares your CUPS printers
automatically.

Listing 10-4. You Need Some Specific Parameters in smb.conf to Make Sure That Your Printers
Are Shared.

[global]
printing = cups
printcap name = cups
printcap cache time = 750
cups options = raw

[printers]
comment = All Printers
path = /var/tmp
printable = Yes
create mask = 0600
browsable = No

[print$]
comment = Printer Drivers
path = /var/lib/samba/printers
write list = @ntadmin root
force group = ntadmin
create mask = 0664
directory mask = 0775

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 305

9233ch10.qxd 11/1/07 12:03 PM Page 305

As you can see, the Samba printing environment consists of three different parts: [global],
[printers], and [print$].

First, the [global] section contains four parameters to determine how to handle printing:

• printing = cups: This option sets CUPS as the default printing system. Alternatively,
you could use the legacy LPD print system, but CUPS is so much more advanced that
modern Linux systems don’t use LPD anymore.

• printcap name = cups: This parameter indicates that the file containing printer defini-
tions is not the legacy /etc/printcap that was used by LPD printing, but the CUPS
subsystem.

• printcap cache time = 750: This option specifies the number of seconds before Samba
checks the CUPS configuration again to see if any new printers were defined.

• cups options = raw: This option specifies how print jobs offered to the CUPS server are
handled. Because CUPS can’t understand the data format generated by the Samba
server, you should set this option to raw.

After the generic options in the [global] section, you must define two shares for the
printers as well. The share [printers] sets up an environment in which all printers can store
their temporary print jobs, and the [print$] share is used to store printer drivers. In both
shares you refer to a directory where the temporary files and printer drivers are stored. Make
sure that you refer to an existing directory here.

In the example in Listing 10-4, all printers on the server are shared, but it’s possible to
share just one printer as well, as shown in Listing 10-5.

Listing 10-5. Sharing Only One Printer

[laserprinter]
printable = yes
printer = hl1430
path = /var/tmp

Here, a share with the name laserprinter is defined, and this share needs just three
options. The first option is printable = yes, which indicates that this is a printer and not a
shared directory. The most important line is printer = hl1430, which refers to the queue as it
is defined in the CUPS subsystem. Make sure that a queue with this name exists in CUPS, or it
won’t work. Lastly, the path = /var/tmp option indicates what directory CUPS should use for
the temporary spooling of printer jobs.

When sharing printers with your Samba server, you have to take care of the drivers as
well. You can install the drivers at the Windows workstation locally, but the disadvantage of
this approach is it forces you to maintain them on each individual workstation, which is not
an ideal situation for centralized network administration. Therefore, it’s easier to install
printer drivers on the Samba server. To do this, you need the share [print$], as shown in the
example in Listing 10-6.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER306

9233ch10.qxd 11/1/07 12:03 PM Page 306

Listing 10-6. The [print$] Share Allows for Storage of Printer Drivers at the Samba Server.

[print$]
comment = Printer Drivers
path = /var/lib/samba/printers
write list = @ntadmin root
force group = ntadmin
create mask = 0664
directory mask = 0775

Some important options are used in this example. First, there’s the name of the directory
where Samba stores the printer drivers. Next is the write list option that specifies which
users are allowed to write to this directory; it should be write-accessible for root and members
of the group ntadmin only. With these settings in place, you can set up the printer in your Win-
dows environment, as described in the following procedure:

1. On Windows, start the Add Printer wizard.

2. Indicate that you want to add a network printer and then browse to the shared printer.
When prompted, choose to install a new printer driver.

3. Now select the printer model for which you want to install the drivers. This installs the
drivers automatically in the /var/lib/samba/printers directory.

■Tip Make sure that you’re installing the printer drivers from your Windows workstation as a user with
sufficient permissions to the printer. By default, only the user root and members of the Linux group ntadmin
have permissions to write new printer drivers to the /var/lib/samba/drivers directory.

Setting Up Samba As a Domain Controller
In a Windows environment, a domain is used to manage users for a group of computers. The
only option to do this in a centralized way in NT4 is by using domains. Windows 2000 intro-
duced Active Directory as a system that sits above that. Although Samba can’t be configured as
an Active Directory environment yet (although this functionality will likely be available soon),
the best thing you can do if you want to work with a domain-like environment is to configure
Samba as an NT4-style domain controller. This section gives you some tips on how to do that.

Be aware that setting up a well-tuned scalable domain environment requires extensive
knowledge of the working of Microsoft networks, which goes far beyond the scope of this
book. In this section, you’ll learn just about the basic requirements needed to set up a Samba
domain. Consider this section an introduction to the subject matter only; for more informa-
tion, consult the man pages or the documentation at www.samba.org.

Modifying the Samba Configuration File
The first step in setting up a domain environment is to modify the Samba configuration file
properly. Listing 10-7 reveals the settings required in the [global] section in /etc/samba/
smb.conf.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 307

9233ch10.qxd 11/1/07 12:03 PM Page 307

http://www.samba.org

Listing 10-7. Samba Domain Controller Settings

[global]
netbios name = STN
workgroup = UK
security = user
passdb backend = ldapsam:ldap://HTR.mydomain.com
logon script = %U.bat
domain master = yes
os level = 50
local master = yes
preferred master = yes
domain logons = yes

[netlogon]
path = /netlogin

Let’s have a look at the different parameters that are used in this example. Table 10-4
summarizes all parameters that I haven’t covered earlier.

Table 10-4. Parameters Specifically for Domain Configuration

Parameter Meaning

netbios name This is the name your server will have in the Microsoft network.

security This option specifies how security should be handled. If you want to
configure your server as a domain controller, set it to security = user.

passdb backend Use this parameter to specify in what kind of database you want to store user
and group information. The most common values for this parameter are
smbpasswd, tdbsam, and ldapsam. The easiest way to configure your server is to
use the tdbsam option, which creates a local database on your Samba server.
The most flexible way to configure it is to use the ldapsam option. However,
this option requires the configuration of an LDAP server as well and makes
things more complicated. If you want to set up your Samba environment with
PDCs as well as BDCs, make sure to use the ldapsam option and make sure
that you have an LDAP server configured as a backend.

logon script In a Windows environment, a user can have his own login script, which
is a batch file that’s executed automatically when the user logs in. In this
example, the Samba server checks if there is a script for your user that has the
name of the user account, followed by .bat. You should put this script in the
directory specified with the path parameter in the [netlogon] share.

domain master This option tells the nmbd process that’s responsible for name services that
this server must be responsible for maintaining browse lists in the complete
network. These browse lists allow others in the network to view a complete
list of all members of the Windows network. A domain controller should
always be the domain master for your network.

local master A domain master browser communicates with local master browsers.
These servers are responsible for maintaining browse lists on local network
segments. Apart from being the domain master, your Samba servers should
be local master browser as well.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER308

9233ch10.qxd 11/1/07 12:03 PM Page 308

ldap://HTR.mydomain.com

Parameter Meaning

os level Even if you specify that your server should be local master and domain
master, this doesn’t really guarantee that they also will be the master browser.
In a Windows network, the master browser is selected by election. To increase
chances that your server will be the master browser, make sure that you use a
value greater than 32 for the os level parameter. The highest value in the
network is the most likely to win the browser elections.

preferred master Normally, browser elections happen only occasionally. Use this option to
immediately force a new browser election when the Samba server comes up.

domain logins Set this parameter to yes to make the server a domain controller.

Creating Workstation Accounts
Now that you have your domain environment, you should add workstations to it. You need a
workstation account on the Samba server for every workstation that is going to be a member
of a domain, and this account gives the required permissions to the workstation in the domain.
Setting up a workstation account is just like setting up a user account.

First, you add the account to the local user database on your server. Next, you add the
workstation account as a workstation to the Samba user database. Notice that the name of
the workstation should end with a $ sign to indicate that it is a workstation. To create a work-
station with the name ws10, first use useradd ws10$ to create it in /etc/passwd. Next, add the
workstation to the smbpasswd database by using the smbpasswd -a -m ws10 command. Notice
that, in the smbpasswd command, there’s no need to use the $ to specify that it’s a workstation;
the -m option takes care of this.

Client Access to the Samba Server
Almost all operating systems can connect to your Samba server. In this subsection, you’ll learn
how to test your Samba server from a Linux workstation. Three different utilities can be used
to test if the server is working properly:

• Use the mount command to make a connection to a Samba share.

• Use the nmblookup utility to resolve NetBIOS names into IP addresses.

• Use the multipurpose smbclient utility to test many aspects of the Samba server.

Mounting Shares with the mount Command
The mount command is a fast and easy way to test if your server is providing the services you
were expecting it to. All you need to do is specify the cifs file system type and the options
that are required to authenticate against the Samba share. You can use the following com-
mand to test access to a local share with the name share by connecting it to the /mnt
directory temporarily:

mount -t cifs -o username=someone //localhost/share /mnt

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 309

9233ch10.qxd 11/1/07 12:03 PM Page 309

Note that the only option that’s really required in this command is the username option,
which tells the Samba server what user you wish to be authenticated as. You can enter a
password as well, but it’s not a very good idea to provide that at the command line because
everything entered at the command line is stored in your local history file.

As an alternative to the mount command followed by the -t cifs option, the smbmount
command can be used as well. Basically, this command offers the same options; check its man
page for more details.

Using nmblookup to Test Samba Naming
You can use the nmblookup command to test if Samba name services are fully operational.
For example, nmblookup lax searches the network for a host with the NetBIOS name lax and
returns its IP address. To return the IP address of the given host name, the utility first uses a
NetBIOS broadcast on the local network. If no WINS server is configured, it won’t go any fur-
ther. If NetBIOS nodes are present on other networks as well, a WINS server must be configured
to manage the names for these hosts as well. Because WINS configurations aren’t very common
anymore, I won’t discuss them here.

Testing and Accessing the Samba Server with smbclient
The versatile smbclient utility can be used to test a Samba server. It can check availability of
shares on a server, but, with its FTP-like interface, it can also move files to and from the Samba
server. Probably the most useful check that you can perform with smbclient is listing the
shares offered by a given server. For example, use smbclient -L //localhost to see what shares
are offered by the localhost. Listing 10-8 is an example of this command’s output.

Listing 10-8. Example of smbclient Output

SFO:~ # smbclient -L //localhost
Password:
Domain=[SFO] OS=[Unix]

Sharename Type Comment
--------- ---- -------
profiles Disk Network Profiles Service
users Disk All users
share Disk my files
groups Disk All groups
print$ Disk Printer Drivers
IPC$ IPC IPC Service
ADMIN$ IPC IPC Service

Domain=[SFO] OS=[Unix]

Server Comment
--------- -------

Workgroup Master
--------- -------

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER310

9233ch10.qxd 11/1/07 12:03 PM Page 310

As you can see, the smbclient command first prompts for a password, which is required
for privileged options only. Because only a list of available shares is requested in this example,
no password is needed, so you can just press the Enter key. Next, smbclient displays a list of all
available shares. This list shows the type of share, as well as the comment that was added to it.

You can also use the smbclient utility to upload and download files from a share. To do
this, you’ll use the same commands that are offered from an FTP client interface. The most
important of these commands are ls (list files), cd (change directory), get (download files),
and put (upload files). However, it’s not the most practical way of working because the Samba
file system is not integrated in the local file system at all.

Summary
In this chapter, you learned how to configure file and printer sharing on your server. You first
read about the configuration of the CUPS print environment, which is used as the native way
to share printers, especially in an environment in which only Linux or UNIX clients are used.
Next, you read about the configuration of the NFS server, which is used to share files with
other computers that can handle the NFS protocol. They typically are Linux and UNIX clients
as well. In the last part of this chapter, you learned how to configure a Samba server to offer
Windows-native file and print services. In the next chapter, you’ll read how to configure Inter-
net services such as FTP and Web.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 311

9233ch10.qxd 11/1/07 12:03 PM Page 311

9233ch10.qxd 11/1/07 12:03 PM Page 312

Setting Up Web Services
Configuring Apache, MySQL,
PHP, and FTP

The Internet is the environment where Linux has its greatest popularity. Fortunately, Ubuntu
Server makes a very good Internet server. In this chapter, you’ll learn how to set up your server
as an Apache web server, including support for PHP and MySQL. We’ll also set Ubuntu up as
an FTP server. Although the focus in this chapter is on Apache, you’ll also learn how to enable
the MySQL server so that the database administrator can create new databases in it. Creating
MySQL databases is a rather specialized job, however, and so I won’t go into great detail about
that here.

Setting Up Apache
From a technical perspective, you could say that a web server is just a special kind of file server:
all it does is offer files that are stored in a dedicated directory structure. The root of this struc-
ture is called the document root, and the file format that offers the files is HTML, the hypertext
markup language. But a web server can provide more than just HTML files. In fact, the web
server can serve just about anything, as long as it is specified in the HTML file. Therefore, a web
server is a very good source for streaming audio and video, accessing databases, displaying ani-
mations, showing photos, and much more.

Apart from the web server where the content is stored, the client also has to use a spe-
cific protocol to access this content as well, and this protocol is HTTP (the hypertext transfer
protocol). Typically, a client uses a web browser to generate HTTP commands that retrieve
content, in the form of HTML and other files, from a web server.

You’ll likely encounter two different versions of Apache web server. The most recent
version is 2.x, and this is the one installed by default on Ubuntu Server. You may, however,
encounter environments that still use the earlier 1.3. This often happens if, for instance, cus-
tom scripts have been developed for use with 1.3, and those scripts aren’t compatible with 2.x.
As the 1.3 version is becoming increasingly rare, I won’t cover it in this chapter.

313

C H A P T E R 1 1

9233ch11.qxd 11/8/07 12:59 PM Page 313

To manage an Apache web server, you need to know—at the very least—exactly what’s
installed on your server. Therefore, in this section you’ll first read about the Ubuntu Server
components that contain Apache software. Next, you’ll learn how to start, stop, and test the
Apache web server. In the third part of this chapter, I’ll explore the Apache configuration files
to see what must be managed where.

Apache Components
Apache is a modular web server, which means that the core server (whose role is essentially
to serve up HTML documents) can be extended using a variety of optional modules. For
example, the libapache2-mod-php5 module allows your Apache web server to work with
scripts written in PHP 5. Likewise, many other modules are available for Apache. To give you
an initial impression, I’ll list some of the most useful modules:

• libapache2-mod-auth-mysqld: This module tells Apache how to handle user authentica-
tion against a MySQL database.

• libapache2-mod-auth-pam: This module instructs Apache how to authenticate users,
using the Linux PAM mechanism.

• libapache-mod-frontpage: This module instructs Apache how to handle web pages
using Microsoft FrontPage extensions.

• libapache2-mod-mono: This module tells Apache how to interpret ASP.NET code.

This is a short and incomplete list of all the modules you can use on the Apache web
server: http://modules.apache.org currently lists more than 450 modules. It’s important that
you determine exactly which modules you need for your server so that you can extend its
functionality accordingly. Now, let’s move on to the configuration of the Apache web server
itself.

Starting, Stopping, and Testing the Apache Web Server
Like almost all other services you can use on Ubuntu Server, the Apache web server is not
installed automatically. The two packages that are available to install Apache are the apache
package and the apache2 package. At present, apache2 is the more common, and only in spe-
cific situations does it make sense to use the older apache package. To check if Apache has
already been installed, use dpkg -l | grep apache. If this command doesn’t show an Apache
server, install it using apt-get install apache2.

The most important part of the Apache web server is the HTTP daemon (httpd) process.
This process is started from the script /etc/init.d/apache2; to run it from the command line,
use /etc/init.d/apache2 start. If this command finishes without any errors, your web server
is up and running, which you can check with the ps aux | grep apache command. As shown
in Listing 11-1, this command shows that different instances of the Apache web server are
ready and waiting for incoming connections.

CHAPTER 11 ■ SETTING UP WEB SERVICES314

9233ch11.qxd 11/8/07 12:59 PM Page 314

http://modules.apache.org

Listing 11-1. By Default, Several Instances of the httpd Process Are Started Automatically.

root@RNA:~# ps aux | grep apache
root 4535 0.0 1.1 20020 6012 ? Ss 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4581 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4582 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4583 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4584 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4585 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
root 4824 0.0 0.1 2880 748 pts/1 R+ 09:58 0:00 grep apache

As you can see from the output of ps aux in Listing 11-1, the first Apache process started
(the one with PID 4535) has root as its owner. This process, under control of the mod_prefork
module, immediately forks five other processes that listen to incoming connections.

These child processes are automatically launched by the Apache parent process, as
needed, so that the right number of processes is always available for incoming connections.
Later, in the section “Some Words on Apache Performance Tuning,” you’ll learn how to man-
age the minimum number of child processes that are always ready and waiting for new
connections, as well as the maximum number of processes that can be started.

After starting the Apache web server, you can test its availability in several ways. The best
way, however, is to just try to connect, because, after being installed, a default web server is lis-
tening for incoming requests. So wait no longer: launch a browser and connect to HTTP port
80 on your local host. It should show you a page as seen in Figure 11-1. It doesn’t look very
nice, but that’s only because you haven’t configured anything yet.

Figure 11-1. To verify the working of the Apache server, just connect to it.

CHAPTER 11 ■ SETTING UP WEB SERVICES 315

9233ch11.qxd 11/8/07 12:59 PM Page 315

Exploring the Configuration Files
On Ubuntu Server, the Apache server uses a few configuration files that define its operations,
and these files are in the /etc/apache2 directory. Let’s start with a short overview:

• /etc/apache2/apache2.conf: This is the main configuration file for your Apache server.
It contains the generic configuration for your server, such as the specification of the
directory where the server can find its configuration files (the so-called ServerRoot) and
much more. If you want to tune the performance of your Apache server, this is the file
that you should look in. From this file, Include directives are used to include all other
configuration files.

• /etc/apache2/httpd.conf: This file is empty by default. If you want to create additional
configuration parameters that by default are not in the apache2.conf file, put them here.

• /etc/apache2/envvars: You can place in this file the environment variables to tune the
operation of your Apache server.

• /etc/apache2/ports.conf: This file contains the port numbers that the Apache server
will listen on. By default, the server listens on just port 80.

• /etc/apache2/conf.d/: You can put additional Apache configuration files in this direc-
tory. After a default installation, the directory contains only the charset file, which
specifies the character set to use. Additional files can be placed here as well. From
/etc/apache2/apache2.conf, all files that are in this directory are included in the
Apache configuration automatically.

• /etc/apache2/mods-available/: As stated before, you can extend the functionality of
your Apache web server by using modules. In this directory, you’ll find all the modules
that are installed for your server. These are just the available modules, and not all of
them are necessarily used by default.

• /etc/apache2/mods-enabled/: To enable a given module, you have to create a symbolic
link in this directory that refers to the module file in /etc/apache2/mods-available. So,
if in /etc/apache2/mods-available you have a module by the name ldap.load and you
want to include it in your Apache configuration, create a symbolic link by first using cd
/etc/apache2/mods-enabled and then ln -s ../mods-available/ldap.load ldap.load.
This loads the module automatically the next time you restart your Apache web server.

• /etc/apache2/sites-available/: This directory stores all the configuration files for the
web sites serviced by your Apache server. After a default installation, it contains just the
file default that’s used by the default web site. Configuration files for additional sites
serviced by your Apache server are stored here as well, but the files stored here are not
activated automatically.

• /etc/apache2/sites-enabled/: If you want to enable a web site for which you have cre-
ated a configuration file in /etc/apache2/sites-available/, create a symbolic link in
/etc/apache2/sites-enabled/ that refers to this configuration file:

1. cd /etc/apache/sites-enabled

2. ln ../sites-available/mysite mysite

CHAPTER 11 ■ SETTING UP WEB SERVICES316

9233ch11.qxd 11/8/07 12:59 PM Page 316

• /etc/default/apache2: This file contains the NO_START variable. By default, this variable
has a value of 0, which makes sure that the Apache server is not started automatically. If
you want to start the Apache server automatically when booting your server, use an edi-
tor to change this parameter to NO_START=1.

The Structure of the Apache Configuration Files
To tune the Apache web server, it’s important that you understand the structure of its configu-
ration files. The basic element of the configuration files is the directive, which is used to group
a set of options so that they apply only to a specific item. As an example, Listing 11-2 includes
the directive that’s created to specify the options for the directory where the web server starts
looking for its documents, the so-called document root. This document root is very important
because all other file names and directory names are relative to it. This configuration comes
from the /etc/apache2/sites-available/default configuration file. Note that, to increase
readability, I’ve removed all comment lines from the example file.

Listing 11-2. Specification of the Document Root in the Default Server Configuration File

DocumentRoot "/var/www"
<Directory "/var/www">

Options None
AllowOverride None
Order allow,deny
Allow from all

</Directory>

This example first starts with the specification of the DocumentRoot. As you can see, it’s in
/var/www/ by default. Next, for this directory a directive is started to specify its options. Note
that the directive starts with the line <Directory "/var/www/"> and it ends with </Directory>.
This is a generic rule for creating directives: if it starts with <Something>, it is closed with
</Something>. When tuning directives by hand, don’t forget this closing statement! Between
this start and end of the directive are its options.

■Tip The /var directory by default contains files that your server creates automatically, such as the log
files. It’s a rather dynamic directory, so there’s always some risk of it being filled up very fast by some
process that’s gone crazy. To separate dynamic files like log files from more static files like the Apache docu-
ment root, I think it’s a good idea to use the /srv directory to store the Apache document root. Under /srv
you can create a subdirectory with the name www for all web-related stuff. And, if you start using an FTP
server later, you can also put its configuration in /srv. If you wish, you can keep it on a separate partition to
further reduce the risk of some process that goes wild in /var trashing your precious web data in /srv.

The first option, Options None, indicates that no specific options are applied to this direc-
tory. Next, the AllowOverride None option makes sure that the settings made here can’t be

CHAPTER 11 ■ SETTING UP WEB SERVICES 317

9233ch11.qxd 11/8/07 12:59 PM Page 317

overwritten at a lower level in the directory structure. Without this option, a user can activate
his own settings by creating a file with the name .htaccess in any subdirectory of the docu-
ment root. If that file exists and the AllowOverride None option doesn’t, the settings from
.htaccess will be applied.

Next, the Order allow,deny option indicates that allow statements must be evaluated first
and only then should the server check to see if anything is denied. This is what you would typ-
ically want for an unsecured directory. Then, the Allow from all statement confirms that this
server is open to anyone: it grants access to this directory to all, which in most cases is reason-
able for a document root. Directives for other directories do look very similar, although some
directories may have specific options. For example, there’s the cgi-bin directory. This direc-
tory is used to refer to the location of the CGI scripts that can be executed by your server.
Because it contains scripts, this directory may require some additional options to make sure
that no insecure scripts can be executed.

Checking the Configuration
After tuning configuration files, you should make sure they work. The first thing you need to
do is to run the apache2ctl command. This helps you test your configuration. To do this, run
apache2ctl configtest. You’ll be told if everything is okay or not.

After verifying that everything is working as it should, you need to activate the changes by
running the /etc/init.d/apache2 reload command. This command just activates the changes
that you’ve made. That is, it will not unload and reload the Apache web server. Sometimes,
however, this just isn’t enough, and you need to restart the Apache server anyway. In this case,
use /etc/init.d/apache2 restart.

Working with Virtual Hosts
If you’re installing the Apache web server to host several small web sites, the concept of the
virtual host is very useful. Virtual hosts allow you to serve several sites from one instance of
the Apache web server. For example, you could host www.mydomain.com, www.yourdomain.com,
and www.someoneelsesdomain.com on the same machine. To make this work, you need to set up
DNS, which we covered in Chapter 9.

When working with virtual hosts, the following process is what happens when a user
accesses the virtual host through her browser:

1. The user enters the URL in her browser.

2. The DNS server redirects the user to your web server, based on the IP address that’s
assigned by the name of the server at the requested URL.

3. The request arrives at your server, which analyzes the port address the request is
addressed to.

4. Based on the port information, the request is sent to the Apache server, which analyzes
the request.

5. Apache matches the name used in the URL and forwards the packet to the right virtual
server.

CHAPTER 11 ■ SETTING UP WEB SERVICES318

9233ch11.qxd 11/8/07 12:59 PM Page 318

http://www.mydomain.com
http://www.yourdomain.com
http://www.someoneelsesdomain.com

Configuring Virtual Hosts
To configure a virtual host, you need a configuration file for every virtual host in the directory
/etc/apache2/sites-available and a link in /etc/apache2/sites-enabled to activate this
configuration. To make it easier, I advise you to copy the default configuration file in
/etc/apache2/sites-available and modify this copy.

If you know how to configure an Apache web server, you should be comfortable with con-
figuring virtual hosts as well. Most of the directives in the default file speak for themselves, so
all you need to do is give them the right value and restart Apache so that the virtual host can
be accessed. Table 11-1 provides an overview of the most important of these directives.

Table 11-1. Important Directives for Virtual Host Configuration

Directive Meaning

ServerAdmin The mail address of the administrator of your virtual host.

ServerName The host name of the virtual host. Make sure that it matches the host name as
used in DNS. This is a very important directive because it allows your Apache
process to find the right virtual server.

DocumentRoot Every virtual host needs its own document root, and this is not the same as
the document root used by your main Apache web server! It’s a good idea
to create a separate directory for every virtual server you’re running. Don’t
create these directories under the document root of your main web server;
instead, make a subdirectory for every virtual server that you want to run at
the same level. Make sure that all files in the directory you’re referring to are
readable by the user www-data.

ErrorLog The file where this virtual host logs its errors. Typically, this is a file in the
/var/log/apache2 directory. Make sure that this file is writeable by the user
www-data.

CustomLog The file that’s used for generic log messages.

HostnameLookups This parameter has a default value of Off, which makes sure that your server
does not try to resolve the host name for every IP address that comes in. This
is very useful, as the reverse name lookup normally takes a lot of time.

ScriptAlias This sets the directory that contains the CGI script files. If your web server
doesn’t need to do any scripting, make sure that you disable this setting:
allowing scripts to be executed by your server always carries a certain risk.

Apart from these important directives used in the virtual host file, other directives spec-
ify the options for the directories offered by your virtual hosts. These directives do not differ
from directives with the same purpose on “real” Apache web servers. Listing 11-3 provides
an example.

Listing 11-3. Example of a Directive in a Virtual Host File

<Directory "/var/www/vhosts/myvirtualhost/cgi-bin">
AllowOverride None
Options +ExecCGI -Includes
Order allow,deny
Allow from all

</Directory>

CHAPTER 11 ■ SETTING UP WEB SERVICES 319

9233ch11.qxd 11/8/07 12:59 PM Page 319

This example should be pretty clear; maybe the only new item is the Options +ExecCGI -
Includes line. Its purpose is to allow the user to active any script that is in the /var/www/vhosts/
myvirtualhost/cgi-bin directory.

Managing Access to the Web Server
In most situations, a web server is publicly available so everyone can access all of its offered
information. In some situations, though, you may need to add an extra layer of security and
protect some directories on your web server. Without using additional modules, Apache offers
two methods to restrict access: user based and host based. In this section, you’ll learn how to
configure both of these.

If you think these methods are too limited, you have to include other modules that offer
more advanced user authentication (check http://modules.apache.org for a complete list
of modules). To include other modules, first make sure that the module you want to use is
installed. Next, make a symbolic link to activate the module. Then include it in the configura-
tion of your (virtual) Apache server and tune the specific configuration for that module.

Configuring Host-Based Access Restrictions
Apache offers three directives to configure host-based access restrictions:

• allow: Hosts or networks listed after this directive are allowed access to the web server.

• deny: Hosts or networks listed after this directive are denied access to the web server.

• order: This directive determines how allow and deny are applied.

The example in Listing 11-4 shows you how allow and deny can be set to protect a direc-
tory on a server. Note that the document root will always have its own settings, which can be
overwritten at a lower level. Also note how the default access permissions for the document
root are set.

Listing 11-4. Default Access Restrictions for the Document Root

<Directory "/var/www/documents">
Order allow,deny
Allow from all

</Directory>

In this example, you can see that the order in which access restrictions are evaluated is
set first. In this case, it is set to allow,deny. With this setting, the allow directives are evaluated
before the deny directives. Access is denied by default, which means that all clients that do not
match either an allow directive or a deny directive are denied access. So, in Listing 11-5, access
is allowed only for hosts whose IP address starts with 192.168.

CHAPTER 11 ■ SETTING UP WEB SERVICES320

9233ch11.qxd 11/8/07 12:59 PM Page 320

http://modules.apache.org

Listing 11-5. Allow Access to Only Some Hosts

<Directory "/var/www/documents">
Order allow,deny
Allow from 192.168.0.0/8

</Directory>

Instead of Order allow,deny, you can also use Order deny,allow. If you use this option,
access is allowed by default and deny directives are evaluated before the allow directives. Any
client that doesn’t match a deny directive or does match an allow directive is therefore allowed
access. The example in Listing 11-5 can be rewritten using these directives as well, as shown in
Listing 11-6.

Listing 11-6. Allow Access to Only Some Hosts with Order deny,allow

<Directory "/var/www/documents">
Order deny,allow
Deny from all
Allow from 192.168.0.0/8

</Directory>

As you can see, the effect of the example in Listing 11-6 is the same as the result of the
example in Listing 11-5; it just uses one more line of code. Also the idea of allowing access by
default doesn’t please everyone. Therefore, to make your web server really secure, it’s better to
choose the Order allow,deny directive.

As an alternative to Order allow,deny, you may also encounter the Order Mutual-failure
option. This is an old option, and you shouldn’t use it. The alternative options—Order allow,deny
and Order deny,allow—do the same work, but better. You probably won’t see it very often, but
I mention it in case you do.

Note that, when allowing or denying access to directives, you have different options to
specify the hosts you want to limit access for:

• all: Use this to apply an option to all hosts.

• Complete IP addresses: This speaks for itself: use it to allow or deny access to one
specific host.

• Partial IP addresses: If this is used, the option applies to everything starting with the
given partial IP address. For example, 192.168.0.0/16 can be rewritten as simply
192.168 as well.

• A network in CIDR notation: CIDR notation specifies the number of bits that should be
used in the subnet mask. For example, 192.168.0.0/16 indicates that the setting applies
to everything that matches the first two bytes of the IP address. This can be rewritten as
192.168.0.0/255.255.0.0.

• A network address and a subnet mask. This is a network address with the full subnet
mask written out (for example 192.168.0.0 255.255.255.0).

CHAPTER 11 ■ SETTING UP WEB SERVICES 321

9233ch11.qxd 11/8/07 12:59 PM Page 321

Configuring User-Based Access Restrictions
Configuring access restrictions based on IP addresses may be useful if you want to grant
access to an internal network and deny access to everyone else (although a firewall is a much
better way to do this). For an access control mechanism that’s more flexible, it’s a good idea to
work with user-based access restrictions. In this chapter, you’ll learn how to configure simple
user-based authentication.

Working with Simple Authentication
Working with basic authentication is the easiest solution. To use this, a simple password file
needs to be created with the htpasswd command. Basically, this file can be anywhere, but
make sure that it’s not in a location where other users can read it. For example, storing the
password file in the document root (or anywhere beneath that) is a very bad idea. The default
location on Ubuntu Server is the /etc/apache2 directory, and that’s a fine place for it. If you
want to put it somewhere else, make sure that it’s readable by the user www-data.

The first time you use the htpasswd command, make sure that you use the -c option with
it to make sure that a new password file is created. For example, the following command can
be used to do this:

htpasswd -c /etc/apache2/htpasswd linda

Next, the command prompts you to enter this user’s password twice, and it then creates
an entry in the file you specified. Of course, a simple hashing algorithm is used to encrypt this
password. When you add more users to the Apache password file, you won’t have to use the -c
option again: the file exists and you can just add new users to it. The htpasswd command also
allows you to remove users from the password file; to do this, use it with the -D option. For
example, htpasswd -D /etc/apache2/htpasswd stacey removes user stacey from the file.

Just creating a user isn’t enough, however, you have to configure Apache to prompt for a
password when a user tries to access restricted data. To do this, some code needs to be included
in the directory that you want to protect, as shown in Listing 11-7.

Listing 11-7. Protecting a Directory with Basic Authentication

<Directory protected>
Authtype Basic
AuthName "Restricted directory"
AuthUserFile /etc/apache2/htpasswd
Require user linda

</Directory>

In this example, the directory protected is protected with a password. Because there’s no
absolute directory path, the directory is relative to the document root of this server. Also note
that the authentication type Basic is enabled. Next, a label is given to this directory with the
AuthName "Restricted directory" directive, after which the file containing the user informa-
tion is declared. In the final line, one specific user is granted access to this directory. As an
alternative, you can use the option Require user valid-user as well, which is useful if you just
want to grant access to any user listed in the password file that you’re using.

CHAPTER 11 ■ SETTING UP WEB SERVICES322

9233ch11.qxd 11/8/07 12:59 PM Page 322

Some Words on Apache Performance Tuning
If you’re running a very busy web server, it makes sense to do some performance tuning because
the default settings are really for web servers with only an average workload. If you’re hosting a
very busy web server, the performance parameters may require some adjustment. You can find
all performance tuning parameters in the configuration file /etc/apache2/apache2.conf.

To understand Apache performance tuning, you should know that Apache can run in two
different modes. One of these is the prefork mode, in which a process is started for every incom-
ing client. The alternative is the worker mode, which gives you a limited number of Apache
processes, each of which creates threads for incoming user connections. To determine what
mode your server starts in, you have to activate the corresponding module: mpm_prefork_module
for prefork mode and mpm_worker_module for worker mode. Listing 11-8 shows the code from
/etc/apache2/apache2.conf that’s used to tune the performance for either of these modes.

Listing 11-8. Performance Optimizing Parameters in apache2.conf

Server-Pool Size Regulation (MPM specific)
##

prefork MPM
StartServers: number of server processes to start
MinSpareServers: minimum number of server processes which are kept spare
MaxSpareServers: maximum number of server processes which are kept spare
MaxClients: maximum number of server processes allowed to start
MaxRequestsPerChild: maximum number of requests a server process serves
<IfModule mpm_prefork_module>

StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0

</IfModule>

worker MPM
StartServers: initial number of server processes to start
MaxClients: maximum number of simultaneous client connections
MinSpareThreads: minimum number of worker threads which are kept spare
MaxSpareThreads: maximum number of worker threads which are kept spare
ThreadsPerChild: constant number of worker threads in each server process
MaxRequestsPerChild: maximum number of requests a server process serves
<IfModule mpm_worker_module>

StartServers 2
MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0

</IfModule>

CHAPTER 11 ■ SETTING UP WEB SERVICES 323

9233ch11.qxd 11/8/07 12:59 PM Page 323

Let’s have a look at some of the most important parameters.

• StartServers: This setting specifies the number of Apache processes that should always
be started. The advantage of starting some processes in advance is that they are ready
and listening for incoming clients and can thus respond quickly to new connections.
Five servers are started by default. If you anticipate heavy use of your web server, it’s a
good idea to set this value higher.

• MinSpareServers: This is the minimum number of servers that should always be ready
and waiting for new incoming connections. By default, five servers are always listening
for new connections.

• MaxSpareServers: If too many server processes are waiting for new client connections
that don’t actually materialize, it may be reasonable to tune the MaxSpareServers set-
ting. Its default value of 10 means that, if more than 10 servers are waiting for new
incoming connections, they should be closed down automatically.

• MaxClients: This is the maximum number of clients that Apache allows at the same
time. The default is set to 150, which is reasonable for many web servers.

• MaxRequestPerChild: Use this parameter to specify the limit for the maximum number
of requests that one instance (either a thread or a subprocess) of Apache can handle.
The value of 0 indicates that there’s no limit.

By now, you should know all that’s needed to get an Apache web server up and running.
The rest of its configuration is up to the web developers. Now let’s have a look at how MySQL
integrates with Apache.

Using PHP
PHP is one of the most popular programming languages used in a web environment. The lan-
guage’s most important advantage is that you can integrate it smoothly into an HTML page.
Also, PHP works together easily with MySQL to get and put data in a database. The only thing
you have to do as an administrator to integrate PHP in your Apache web server is call the
mod_php5 Apache module.

To confirm that PHP is properly installed on your server, write a simple script that
includes the following line:

<?php phpinfo(); ?>

Write this text to a file with the name test.php and put the file in the document root of
your web server. Next, open a web browser to http://yourserver/test.php. This should dis-
play a window with information about the current status of your PHP installation. Make sure
that PHP is installed and responds properly to this page, as many current web pages include
PHP code.

Installing PHP is easy: just make sure that the PHP module is included in the Apache con-
figuration. If you’ve selected to install a LAMP server when installing your server (see Chapter 1
for details about this), this is already set up. If it isn’t, use apt-get install php to install the

CHAPTER 11 ■ SETTING UP WEB SERVICES324

9233ch11.qxd 11/8/07 12:59 PM Page 324

http://yourserver/test.php

PHP software and next create a symbolic link in /etc/apache2/mods-enabled that refers to
/etc/apache2/mods-available/php5.conf.

The biggest advantage of PHP is that you can use it to make your web pages dynamic.
PHP is like Bash shell scripting: it can perform calculations based on certain conditions and
execute a command only if a certain condition is true. If you’re interested in learning how to
code in PHP, I recommend the excellent book Beginning PHP and MySQL 5: From Novice to
Professional, Second Edition by Jason Gilmore (Apress, 2006).

Setting Up MySQL
The combination of Apache, MySQL, and PHP is very popular with web developers. Apache
serves pages that read scripts written in PHP, which query databases written in MySQL.

Setting up MySQL involves more than just enabling a module. MySQL is a service process
on its own that you need to install and configure. If you’ve already installed MySQL, your
server starts it automatically. You can check if it’s there by using the command ps aux | grep
mysql. If you can’t see anything, use dpkg -l | grep mysql to check if the MySQL packages are
installed. If you don’t see the mysql-server package in the output (check Listing 11-9 to see
what it looks like if it is installed), install it by using apt-get install mysql-server-5.0.

Listing 11-9. Use dpkg -l to Check if MySQL Has Been Installed on Your Server

root@RNA:~# dpkg -l | grep mysql
ii libdbd-mysql-perl 3.0008-1build1 A Perl5\
database interface to the MySQL data
ii libmysqlclient15off 5.0.38-0ubuntu1 mysql\
database client library
ii mysql-client-5.0 5.0.38-0ubuntu1 mysql\
database client binaries
ii mysql-common 5.0.38-0ubuntu1 mysql\
database common files (e.g. /etc/mysql
ii mysql-server 5.0.38-0ubuntu1 mysql\
database server (meta package dependin
ii mysql-server-5.0 5.0.38-0ubuntu1 mysql\
database server binaries
ii php5-mysql 5.2.1-0ubuntu1 MySQL\
module for php5

Setting the MySQL Root Password
Because a database such as MySQL is typically managed by a database administrator (Linux
admins generally don’t care about databases), MySQL has its own root user. Before you can do
anything with MySQL, however, you must set a password for this user, and you’ll do this with
the mysqladmin command:

mysqladmin -u root password secret

CHAPTER 11 ■ SETTING UP WEB SERVICES 325

9233ch11.qxd 11/8/07 12:59 PM Page 325

Now at least you can do something with your MySQL server. By the way, it’s not a very
secure idea to type the root password for your database server in clear text on the command
line like this. You can also use the option -p to have mysqladmin prompt for a password:

mysqladmin -u root -p password

Next, your server will ask for you to input a password twice.

Creating a MySQL Database
Another task that a Linux administrator has to occasionally perform is to create a database.
You will sometimes install applications that want to use a MySQL database, and, to use such
applications, you need to create that database first. To do this, you’ll use the mysqladmin com-
mand again. In the following example, you’ll create a database with the name DBASE1:

mysqladmin -p create DBASE1sudo

Normally, this is where your responsibilities as a Linux administrator end. The rest of the
work on MySQL involves creating tables and populating the database with data, which is typi-
cal work for the database administrator and so is not covered here.

Setting Up FTP
FTP is another service that’s quite popular on the web. It’s popular because it makes sharing
files so easy, and you can use several FTP servers on Ubuntu Server. One of the easiest and
fastest of these is pure-ftpd. Let’s have a look at how to set it up, but (as usual!) first make sure
that it’s installed: use the apt-get install pure-ftpd command, which also automatically
starts the pure-ftpd server using its default settings.

Configuring the pure-ftpd Server
Running a pure-ftpd server is easy: it runs all by itself once you have installed it. By default, it
uses PAM authentication to give authenticated users FTP access to your server. It has a few
settings that you can change, though.

The first part of the pure-ftpd configuration is in the startup file in /etc/default/pure-
ftpd-common. In this script, you’ll find a few parameters, which are explained in Table 11-2.

Table 11-2. Configuration Parameters for pure-ftpd

Parameter Use

STANDALONE_OR_INETD This parameter determines how you want to run the pure-ftpd process.
It runs as a stand-alone process by default, but you can also run it from
(x)inetd. For fast response, it’s better to run it as a stand-alone process.

VIRTUALCHROOT To secure the pure-ftpd server, you can start the process in a chroot
jail, which means that the process is restricted to the contents of one
directory instead of the complete file system of your server. By default,
the pure-ftpd process runs without chroot restrictions. If you enable
chroot restrictions by setting this parameter to true, all users who
access the FTP process will see only their home directories.

CHAPTER 11 ■ SETTING UP WEB SERVICES326

9233ch11.qxd 11/8/07 12:59 PM Page 326

Parameter Use

UPLOADSCRIPT When uploading files, you can determine how the uploading should
take place by creating an upload script. For more information on how
to format such a script, consult the man page for pure-uploadscript(8).

UPLOADUID, UPLOADGID If you want to use an upload script, these parameters set the UID and
the GID that’s used when running this script.

You can set other options apart from the startup parameters in /etc/default/pure-ftpd-
common. You’ll find these in /etc/pure-ftpd/conf. The configuration is stored by default in six
different configuration files, each of which sets one configuration parameter. Table 11-3 pro-
vides an overview.

Table 11-3. Configuration Files for pure-ftpd

File Use

AltLog Contains a complete path to the directory where pure-ftpd logs its transfer
data. The default value is set to /var/log/pure-ftpd/transfer.log.

MinUID Indicates the minimal user ID used by pure-ftpd.

NoAnonymous Specifies if anonymous users are accepted. By default, the file contains
the value yes, which means that anonymous users are not allowed.
Change to no if you want to allow anonymous users. Notice that you can
also enable anonymous user access via PAM.

PAMAuthentication This file has the contents yes or no to indicate if PAM authentication is
used. If the value is set to yes (the default), the PAM configuration file
/etc/pam.d/pure-ftpd is read to determine how the login procedure
should proceed.

PureDB Names the file that’s used as the pure-ftpd authentication database.
The default file is /etc/pure-ftpd/pureftpd.pdb, which you can use
to authenticate users as an alternative to PAM-based authentication.
Because PAM is a more versatile means of authentication, I recommend
that you don’t use the pureftpd.pdb file.

UnixAuthentication Give this file the contents yes if you want to enable authentication based
on /etc/passwd and /etc/shadow without using PAM.

As you can see, pure-ftpd offers a few options to handle authentication. Of these options,
I recommend using the default value which is set to PAM, as this gives you the most flexibility in
setting up how user authentication is handled. Listing 11-10 shows the default PAM configura-
tion file that’s used when PAM authentication is enabled.

Listing 11-10. The Default pure-ftpd PAM Configuration File

PAM config for pure-ftpd

allow anonymous users
auth sufficient pam_ftp.so
auth required pam_unix_auth.so shadow use_first_pass

CHAPTER 11 ■ SETTING UP WEB SERVICES 327

9233ch11.qxd 11/8/07 12:59 PM Page 327

/etc/ftpusers contain user list with DENIED access
auth required pam_listfile.so item=user sense=deny\
file=/etc/ftpusers onerr=succeed

Uncomment next line to allow non-anonymous ftp access ONLY for users,
listed in /etc/ftpallow
#auth required pam_listfile.so item=user\
#sense=allow file=/etc/ftpallow onerr=fail

standard
auth required pam_shells.so
account required pam_unix.so
session required pam_unix.so

As you can see, the first thing handled by the pure-ftpd PAM configuration file is anony-
mous user authentication: the line auth sufficient pam_ftp.so specifies that anonymous users
are welcome if the conditions defined in pam_ftp.so are met. This PAM module defines that a
user who’s mentioned in /etc/ftpusers will get access. So, you need to list the user anonymous in
this file to enable anonymous user access. Next, in the /home/ftp directory, create a structure of
all the files you want these users to have access to.

By using the sufficient statement in the PAM rule that allows users to come in via
pam_ftp.so, you give user anonymous access without further restrictions. For all other users,
the specifications in pam_unix_auth.so are used. This configuration file allows regular users
to authenticate using their user name as it exists in /etc/passwd and /etc/shadow. The other
lines in the PAM file are not as important for user authentication.

Summary
In this chapter, you learned how to set up a web server (and related services like PHP and
MySQL) on Ubuntu Server. You read how to configure Apache and how to make it cooperate
with MySQL and PHP by including their modules in the Apache configuration. You also
learned how to set up MySQL and enable the root account for this service. You also read how
to create a database in MySQL. Finally, I spent some time on the pure-ftpd server. In the last
chapter of this book, you’ll learn how to set up an environment in which virtualization is used.

CHAPTER 11 ■ SETTING UP WEB SERVICES328

9233ch11.qxd 11/8/07 12:59 PM Page 328

Multiplying Your Server
Ubuntu Server and
Virtualization

One of the hottest new technologies for servers is virtualization, which allows you to install
multiple instances of one or more operating systems on one machine. This is ideal especially
for servers with a low average load because, instead of configuring a separate physical box for
every single instance of an operating system you need, you just run multiple instances of one
or more operating systems on one machine. Unfortunately, it’s a jungle out there: there are
many different and competing virtualization options. This chapter will provide an overview
of the possibilities that virtualization offers. You’ll also learn how to set up Ubuntu Server for
virtualization.

Understanding Virtualization
In this section you’ll read about the different solutions that offer virtualization, and you’ll
explore its two main approaches: full virtualization and paravirtualization.

Virtualization Solutions
Currently, many solutions are available to work with virtualization, but three of them are
particularly important:

• VMware

• Xen

• KVM (Kernel-based Virtual Machine)

As for the other solutions, you won’t often find them in a data center because of their con-
siderable limitations, which include a lack of support, a limited selection of operating systems
that can be installed as virtual machines, and a severe performance penalty when using them.
For these reasons, I’ll ignore them here.

329

C H A P T E R 1 2

9233ch12.qxd 11/12/07 10:50 AM Page 329

Of the three important technologies, VMware is probably the current market leader, prob-
ably because it offers a commercial solution to virtualize many different operating systems.
The most important VMware version in the data center is VMware ESX, which offers a tuned
Linux kernel that integrates Virtual Machine Manager. However, if you want to use VMware
ESX as a virtualization platform today, you’ll have to do it by running Ubuntu Server as a virtu-
alized “guest” operating system within the VMware environment. There’s currently no way to
combine VMware ESX and Ubuntu Server as a virtualization “host” platform.

■Note In the Xen community, the words host and guest are avoided when discussing operating system.
I’ll explain why in “Installing Virtual Machines Using Xen” later in this chapter. However, for clarity’s sake, I’ll
use these words anyway, but with the following definitions. The host is the physical machine that offers vir-
tualization services, and the host may or may not run a specialized operating system to offer these services.
A guest is a virtual machine without any management responsibilities with regard to virtualization.

The second important player in the field of virtualization is KVM, which offers virtual-
ization support in the Linux kernel itself. To use it, you’ll need the kvm.ko kernel module for
Linux, a CPU that has built-in virtualization support, and of course a kernel that supports
KVM virtualization. (The 2.6.20 kernel is the first Linux kernel to do this.) To create virtual
machines with KVM, you’ll use the /dev/kvm interface, and this functionality requires a
modified version of the QEMU program. QEMU was originally developed as an open source
virtualization product, but it never became very successful. However, its tools are still very
useful, and QEMU tools and solutions are used in both KVM and Xen environments. Cur-
rently, most operating systems are supported on a KVM virtual host, provided the operating
system runs on the same processor architecture.

The third major player in the Linux virtualization market is Xen, which began as a
research project at the University of Cambridge (see http://www.cl.cam.ac.uk/research/
srg/netos/xen). Its core component is its hypervisor, the layer that makes it possible to create
virtual machines. When used on a virtual machine host, the hypervisor replaces the normal
Linux kernel, which is loaded only after the Xen hypervisor. Xen is currently one of the best
virtualization platforms available on Linux, mainly because of its strong developer commu-
nity, which includes hardware vendors such as Intel, HP, and AMD, and software vendors such
as Novell and Red Hat. Since Ubuntu Server 7.10, Ubuntu has become a strong choice as a
host virtualization platform for Xen.

Approaches to Virtualization
Both Xen and KVM offer two approaches to virtualization: full virtualization and para-
virtualization. Before starting to build a virtualization solution, you should understand the
differences between the two.

Paravirtualization
Paravirtualization requires a modified version of the guest operating system, and this modi-
fied version generates instructions that are easier to handle for the hypervisor, which is the

CHAPTER 12 ■ MULTIPLYING YOUR SERVER330

9233ch12.qxd 11/12/07 10:50 AM Page 330

http://www.cl.cam.ac.uk/research

component that interprets virtualized instructions and passes them to the physical hardware.
Because the operating system generates modified instructions in paravirtualization, it’s the
most efficient approach to virtualization. These modified instructions mean that the virtual
machine manager doesn’t need to change the normal instructions coming from the virtual
machine to a format that works in a virtualized environment. Also, paravirtualization doesn’t
require any specialized hardware, but the big disadvantage is that it does require a specially
modified version of the guest operating system. For competitive reasons, some operating sys-
tems (such as Windows) just don’t offer such a tuned version.

Full Virtualization
The alternative to paravirtualization is full virtualization, which lets you use an ordinary,
unmodified, straight-out-of-the-box operating system as a guest. The downside is that it
requires special hardware support, which is offered as a special feature in recent CPUs from
both AMD and Intel. Because of this built-in support within your server’s CPU, fully virtual-
ized machines can work as efficiently as possible, despite the fact that the instructions coming
from the virtualized operating system need to be translated by the virtual machine manager.
Because the guest operating system has no idea that it is virtualized, it generates normal
instructions. However, this can cause difficulties when there’s a virtualization layer between
the guest operating system and the hardware. Instructions addressed to the CPU are hard to
virtualize, especially with the i386 architecture, and so the CPU’s hardware virtualization sup-
port makes sure that the performance penalty isn’t too great.

Which Is Best for You?
After reading this, you may wonder which of the two approaches is best for your situation.
Unfortunately, you can’t always choose the ideal solution. If your operating system doesn’t
offer paravirtualization support, full virtualization is the only way to go. But, if both your CPU
and your operating system have virtualization support, it’s always better to use paravirtualiza-
tion because the virtualized operating system generates instructions that are optimized for a
virtualized environment. In this way, the performance loss due to virtualization is kept to a
bare minimum.

If you can’t use paravirtualization because your operating system doesn’t support it, you
can check if paravirtualized drivers are available. Such drivers are supplied in many cases,
and they can help increase the performance of particular devices such as your network
interface card. Often, however, you’ll find that full virtualization is the only solution because
the operating system you want to virtualize doesn’t give you a choice or—as with KVM
virtualization—paravirtualization for complete operating systems is not yet supported.
Therefore, the hands-on parts in this chapter assume that you have a CPU with virtualiza-
tion support.

■Tip Most modern Pentium IV and Xeon processors offer support for virtualization. If you’re not sure about
your CPU, just check the system’s BIOS. If virtualization is supported, the BIOS will include a virtualization
option. As an alternative, you can also check the /proc/cpuinfo file for the VMX flag for your CPU. If it’s
there, your CPU supports full virtualization.

CHAPTER 12 ■ MULTIPLYING YOUR SERVER 331

9233ch12.qxd 11/12/07 10:50 AM Page 331

Installing Virtual Machines with KVM
If your CPU supports virtualization, KVM-based virtualization is the easiest to use (although
this is a very recent development). In this section, you’ll read how to prepare your machine as
a KVM virtualization host, and then you’ll learn how to install Windows and Ubuntu as virtual-
ized operating systems in the KVM-virtualized environment.

■Caution When using virtualization, it’s a very good idea to differentiate between the host operating sys-
tem and the others. The host operating system is the first operating system that your server boots. It also
has some very specific responsibilities for the other operating systems, such as managing access to drivers
and managing the virtual machines themselves. To make sure that it can perform these tasks in the most
efficient way, don’t run any services (other than virtualization services) in the host operating system!

Setting Up KVM on Ubuntu Server
Perform the following steps to set up your server for virtualization (the procedure described
here is supported on Ubuntu Server 7.04 and later):

1. Install all software necessary (the KVM and QEMU packages) for KVM virtualization.
As root, use the command apt-get install kvm qemu.

2. After installing these software packages, make sure that the required drivers are
loaded. As root, use modprobe kvm-intel if you’re using an Intel CPU, or use modprobe
kvm-amd if you have an AMD CPU.

■Tip Are you getting the “Operation is not supported” message while loading the kernel module? If so,
this means that you have the wrong CPU. Either upgrade your CPU to one that offers virtualization support,
or use Xen as your virtualization solution with an operating system that supports paravirtualization.

3. As an interface to the kernel kvm.ko module, the /dev/kvm file is created in the /dev
directory. You must make sure that your user has complete access to this file, so use
chmod 777 /dev/kvm.

And that’s it! Your Ubuntu Server is now ready for the installation and operation of guest
operating systems. The next section describes how to install Windows as a guest operating
system.

CHAPTER 12 ■ MULTIPLYING YOUR SERVER332

9233ch12.qxd 11/12/07 10:50 AM Page 332

Installing Windows As a Guest Operating System on KVM
Before installing Windows as your first guest operating system, you should ask yourself exactly
what you want to do with the virtualized machines. Is your server running in a data center and
are you accomplishing all tasks (including installation of the virtual machines) remotely? If so,
you can run it without a graphical user interface, but, if you want to be able to manage the vir-
tual machine(s) from the physical server itself, it’s a good idea to install a GUI. Read Chapter 3
to find out how to set up a GUI on your server.

1. To install Windows as a virtualized operating system, you first need to set up storage.
The simplest way of trying out virtualization is by using a disk image file. You can cre-
ate this by using dd or qemu-img as in the following command that creates an 8 GB disk
image file with the name:

qemu-img create windows.img -f qcow 8G

2. Now that you’ve created the disk image file, you can use the kvm command to install
Windows. Make sure that the Windows installation CD is in the drive (or use an ISO
file) and run the following command to start the installation, creating a Windows vir-
tual machine with a total of 512 MB of RAM. This command uses the windows.img disk
file in the current directory. Boot from CD-ROM to install Windows. Want to use an ISO
file instead of a physical CD-ROM? Just replace /dev/cdrom by a complete path to the
ISO file. The -no-acpi option used in this example isn’t really required, but it’s highly
recommended to prevent problems using ACPI:

kvm -no-acpi -m 512 -cdrom /dev/cdrom -boot d windows.img

3. This opens a QEMU window in which you’ll see the Windows installer loading.
Complete the Windows installation from this interface.

Figure 12-1. With the required CPU support, KVM allows you to run virtual Windows
machines.

CHAPTER 12 ■ MULTIPLYING YOUR SERVER 333

9233ch12.qxd 11/12/07 10:50 AM Page 333

4. Once the installation of virtualized Windows is finished, you can run it in the same
way you installed it. Use the kvm command again, but omit the option -boot d which
ensures that you’re booting from CD-ROM first. So, the following command runs an
installed instance of Windows that is on the windows.img file:

kvm -no-acpi -m 512 -cdrom /dev/cdrom windows.img

You now have your virtualized Windows machine. That was easy, wasn’t it? Next, we’ll have
a look at how to install Ubuntu as a guest on top of your Ubuntu Server virtualization host.

Installing Ubuntu Server As a Guest Operating System on KVM
After reading the previous section about installing Windows as a guest operating system in
KVM, you probably can already guess how to install an instance of virtualized Ubuntu. Funda-
mentally, there are no differences between installing Windows or Ubuntu: you create a virtual
disk and install Ubuntu Server on that. Assuming that the installation CD is in an ISO image
with the name ubuntu.iso, you can use the following procedure:

1. Create the disk file:

qemu-img create ubuntu.img -f qcow 4G

2. Use the kvm command to start the installation from the Ubuntu ISO file:

kvm -m 256 -cdrom /isos/ubuntu.iso -boot d ubuntu.img

■Tip Are you having problems installing Ubuntu or another Linux distribution as a guest operating system?
That’s because of the graphical menu that most boot loaders display nowadays before starting the installa-
tion. Try a nongraphical installation program such as the Ubuntu netboot mini.iso file instead. This will help
you install any Linux distribution without problems.

3. Boot the virtual Ubuntu Server you’ve just installed with the following command, and
you’re done:

kvm -m 256 ubuntu.img

Setting Up Networking in KVM Virtual Machines
The most convenient way to ensure that your virtual machines are reachable on the network
is to create a virtual bridge on the host machine. This virtual bridge allows the machines to
communicate with one another and also with other nodes on the network. To configure it,
create the /etc/network/interfaces file as follows:

CHAPTER 12 ■ MULTIPLYING YOUR SERVER334

9233ch12.qxd 11/12/07 10:50 AM Page 334

auto lo eth0 br0

iface lo inet loopback

iface br0 inet dhcp
bridge_ports eth0
bridge_maxwait 2
up /sbin/ifconfig eth0 inet 0.0.0.0 promisc

In this configuration, the first line specifies the network interfaces that you need on
your machine. Following that, the lo interface is defined as the loopback interface. Next,
the interface br0 is defined as a new interface that uses DHCP to connect to other machines.
Next, the line bridge_ports eth0 tells the system that only the local network interface (eth0)
is connected to the bridge. The bridge itself gets 2 seconds to become available in the line
bridge_maxwait 2. Finally, the last line enables the network card eth0.

In this configuration, eth0 is the interface that talks directly to the physical network
board. No IP address is required for this because the IP address is assigned to the bridge inter-
face. However, the eth0 interface does have the promisc option which tells us it is to be used in
promiscuous mode. This is a requirement because, without this option, the virtual network
interfaces in the virtual machine can’t share the same driver to communicate with the bridge.
Within the host operating system, the bridge is assigned an IP address, which is the same as
the IP address used by the host.

After configuring all this, you must start the virtual machines with a network interface
card. For example, the following line starts the virtual machine which is on the disk image
windows.img, using a network card:

kvm -no-acpi -m 512 -net nic -net tap windows.img

Installing Virtual Machines Using Xen
A second way of using Ubuntu Server as a virtualization host is to configure Xen. In general,
Ubuntu Server 7.10 has drastically improved support for Xen. In this section, you’ll read how to
set up Ubuntu Server as a host for Xen virtualization. You’ll also read how to install Windows
and another instance of Ubuntu Server as guests in a Xen environment.

Before starting the hands-on part of this section, you should know a bit about Xen ter-
minology. In Xen, there’s no difference between a host and a guest operating system. This is
because the words host and guest suggest a hierarchical relation that doesn’t exist. Instead,
Xen talks about the domain 0 operating system and the other operating systems. These other
operating systems are referred to as domain U machines. The domain 0 (or just dom0) is the
first operating system that loads on a physical machine, and it has some specific responsibili-
ties in the Xen environment, including driver management. In other environments, the dom0
machine would be referred to as the host operating system.

The domain U (or just domU) machines are virtualized machines that do not have a
special responsibility with regard to virtualization. In other virtualized environments, these
machines would be referred to as guest operating systems.

CHAPTER 12 ■ MULTIPLYING YOUR SERVER 335

9233ch12.qxd 11/12/07 10:50 AM Page 335

Setting Up Xen on Ubuntu Server
You need to install a few packages to configure Ubuntu Server as a Xen host. All of these are
installed automatically when using the ubuntu-xen-server package, so to start using Xen, sim-
ply issue the following command:

apt-get install ubuntu-xen-server

Because Xen uses a special kernel that’s loaded before the normal Linux kernel, you have
to check the /boot/grub/menu.lst file to make sure that the Grub boot configuration is changed
to boot the Xen kernel as its default. To make sure that you’re running a Xen kernel, use the
uname –r command. Its result gives a kernel name like 2.6.22-12-xen, indicating that you’re
using a Xen kernel. Now reboot your server to load this specific Xen kernel.

After booting this kernel, the normal Linux kernel is booted and, following that, your
Ubuntu Server installation loads. Technically, by installing Xen, the Ubuntu Server instance
itself becomes a virtual machine, but a special virtual machine that has specific management
tasks in the Xen environment. To make sure that it can perform all of these in the most opti-
mal way, make sure that no regular services (such as web or file servers) are started from your
Ubuntu installation.

After installing the Xen packages, you need to configure Xen networking, and you’ll do
this by editing the generic Xen configuration file, /etc/xen/xend-config.sxp. Xen offers dif-
ferent methods to create the virtualized network, but the network bridge is currently the
most stable. To enable the network bridge, you need to change three lines in /etc/xen/
xend-config.sxp so that they look like the lines in Listing 12-1.

Listing 12-1. Enabling Networking in /etc/xen/xend-config.sxp

...
(network-script network-bridge)
(vif-script vif-bridge)
#(network-script network-dummy)

These lines ensure that the dummy network device (which is on by default) is disabled,
and it enables the network-bridge script. This script creates a device br0 and several other
network devices as well, as you can see in Listing 12-2.

Listing 12-2. Networking in a Xen Environment

root@lor:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:14:22:FA:6F:22

inet addr:192.168.1.82 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::214:22ff:fefa:6f22/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:310 errors:0 dropped:0 overruns:0 frame:0
TX packets:59 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:27634 (26.9 KB) TX bytes:7812 (7.6 KB)

CHAPTER 12 ■ MULTIPLYING YOUR SERVER336

9233ch12.qxd 11/12/07 10:50 AM Page 336

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

peth0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF
inet6 addr: fe80::fcff:ffff:feff:ffff/64 Scope:Link
UP BROADCAST RUNNING NOARP MTU:1500 Metric:1
RX packets:308 errors:0 dropped:0 overruns:0 frame:0
TX packets:61 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:28822 (28.1 KB) TX bytes:8298 (8.1 KB)
Interrupt:18

vif0.0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF
inet6 addr: fe80::fcff:ffff:feff:ffff/64 Scope:Link
UP BROADCAST RUNNING NOARP MTU:1500 Metric:1
RX packets:59 errors:0 dropped:0 overruns:0 frame:0
TX packets:311 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:7812 (7.6 KB) TX bytes:27704 (27.0 KB)

xenbr0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF
UP BROADCAST RUNNING NOARP MTU:1500 Metric:1
RX packets:266 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:19042 (18.5 KB) TX bytes:70 (70.0 b)

After modifying this script, use the following command as root to restart the xend process,
which is responsible for management of the virtual network infrastructure:

/etc/init.d/xend restart

If, for some reason, after restarting the xend process, the ifconfig command doesn’t show
you all the network interfaces that you see in Listing 12-2, you better restart the entire machine.

In the Xen network environment, all virtualized operating systems (including the domain
0 virtualization host) use a virtualized driver to address the network card. This driver can be
recognized as eth0 in the virtualized operating system. This eth0 is represented in the domain
0 operating system by an interface with the name vifx.y. In this name, x represents the ID
of the virtualized operating system and y represents the number of the virtualized network
board. For example, the eth0 network card in domain 0 (which has ID 0) is represented as

CHAPTER 12 ■ MULTIPLYING YOUR SERVER 337

9233ch12.qxd 11/12/07 10:50 AM Page 337

vif0.0, and, likewise, if a virtualized Windows server that has ID 4 (use the xm list command
to learn the ID of a virtualized operating system) has four virtualized network boards, the sec-
ond of them would be represented by vif4.1 in domain 0.

Now in the domain 0 system, all vif interfaces are attached to the virtual bridge, which is
thus behaving like a real bridge or switch. This bridge in turn communicates with the repre-
sentation of the physical network board, which is peth0 and talks directly to the network board
in your server. Check Figure 12-2 for a graphical representation of how all this is organized.

Figure 12-2. The virtual bridge in a Xen environment

After creating the virtual network, you have a bit more preparation work: edit the
/etc/modules file and add the line loop max_loop=64. This is necessary to ensure that you can
create enough virtual disks for your virtual machines. To confirm that this new setting works,
reboot your machine before starting to create virtual machines.

Installing Windows As a Guest Operating System on Xen
To install Windows as a guest operating system in a Xen environment, you need a CPU that
supports virtualization because Windows itself doesn’t exist in a version that understands par-
avirtualization. So the only way to virtualize it is to use a CPU that has hardware virtualization

CHAPTER 12 ■ MULTIPLYING YOUR SERVER338

9233ch12.qxd 11/12/07 10:50 AM Page 338

support. To check your CPU, use the xm dmesg command to see an overview of all features that
are relevant for Xen virtualization:

root@lor:~# xm dmesg | grep VMX
(XEN) HVM: VMX enabled
(XEN) VMX: MSR intercept bitmap enabled

If you see a result such as this one, you can continue creating your instance of virtualized
Windows. If you don’t get a result, your CPU doesn’t support virtualization, which means that
you can’t virtualize Windows. Sorry!

So, if your processor has VMX, let’s start virtualizing Windows.

1. To install Windows or any other virtualized operating system, it’s a good idea to enable
a VNC server. This lets you connect to the console of the virtualized machine while
installing it. Without this VNC server, your only option is headless installation, which
isn’t easy at all. So make sure that the /etc/xen/xend-config.sxp configuration file
includes the following line and, after changing it, restart the xend process:

(vnc-listen '0.0.0.0')

2. Now you need to make sure that the guest system has a hard disk to use, and the easi-
est way to create such a disk is to use disk image files. The /var/lib/xend/storage
directory is a convenient place to put such a file. Use the following line to create a 4 GB
disk image file in this directory:

dd if=/dev/zero of=/var/lib/xend/storage/windows.img bs=1024 count=4000000

3. Next, you need to create a configuration file for the guest system. This file will contain
all the settings used by the guest system, such as the amount of RAM it can use, the
hard disk, and so on. The configuration shown in Listing 12-3 can be used to create
a Windows XP virtual machine that uses 512 MB of RAM and a 4 GB hard disk, and
accesses the optical disk in /dev/cdrom as the optical drive. Create this file with the
name /etc/xen/windowsxp.

Listing 12-3. Example Configuration File to Create a Windows XP Virtual Machine

kernel = '/usr/lib/xen-ioemu-3.0/boot/hvmloader'
device_mode1 = '/usr/lib/xen-ioemu-3.0/bin/qemu-0dm'
builder = 'hvm'
memory = '512'
disk = ['file:/var/lib/xend/storage/windows.img,ioemu:hda,w'\
, 'phy:/dev/cdrom,ioemu:hdc,r']

name = 'winxp'
vif = ['type=ioemu, bridge=xenbr0']
boot='d' # use boot='c' to boot from harddisk
vnc=1
vncviewer=1
sd1=0

CHAPTER 12 ■ MULTIPLYING YOUR SERVER 339

9233ch12.qxd 11/12/07 10:50 AM Page 339

4. Now it’s time to run the virtual machine and start its installation process. To do that,
use the following command:

xm create -c /etc/xen/windowsxp

Installing Ubuntu Server As a Guest Operating System on Xen
A different way of creating Xen images is to use the Xen-tools option. This solution consists of
two elements: the xen-create-image command and the xen-tools.conf configuration file. You
can use xen-create-imag with lots of command-line options, but an easier solution is to tell it
to read the configuration file /etc/xen-tools/xen-tools.conf. Your result is a Xen virtual
machine configuration file, just like the one you created manually based on the information
from the preceding section.

In this section, you’ll read how to install a Xen virtual machine using Xen tools. Before
you start building this solution, think carefully about where you want to manage settings. The
xen-tools.conf file functions as a template file that contains default settings, but these set-
tings can also be specified as command-line options using xen-create-image. In this section,
I’ll show you how to apply both solutions.

1. Open the /etc/xen-tools/xen-tools.conf file with an editor and include the following
settings:

dir = /home/xen # directory where the virtual disk files are created
install-method = debootstrap # specifies how to boot the virtual machine
dist = etch # specifies what distribution to install, check the
configuration file for information about supported distributions.
dhcp = 1 # use this to set up networking via DHCP
passwd = 1 # you need this to set the root password interactively
kernel = /boot/vmlinuz-`uname -r` # the kernel to use
initrd = /boot/initrd.img-`uname -r` # the initrd to use
boot = 1 # this allows the new virtual machine to boot after installation
mirror = http://de.archive.ubuntu.com/ubuntu/ # the mirror site
to perform the installation

2. Now that some of the basic settings for installing the virtual machine are in place, use
the xen-create-image command to create the virtual machine. Because many options
are already in the /etc/xen-tools/xen-tools.conf file, the xen-create-image com-
mand needs relatively few options:

xen-create-image --hostname=ubuntu.example.com --size=4Gb --swap=256Mb\
--ide --memory=128Mb --debootstrap

3. The installation procedure now starts. Go have a cup of coffee; it takes some time to
copy all the files to the virtual machine to perform the installation.

CHAPTER 12 ■ MULTIPLYING YOUR SERVER340

9233ch12.qxd 11/12/07 10:50 AM Page 340

http://de.archive.ubuntu.com/ubuntu

Because you told the installer to prompt for a password, after copying all files to the
virtual machines, the installer asks for one. Once you’ve entered it, you’ll see the “All done”
message indicating that the virtual machine is now installed. You’ll also see that the installer
created a log file with details about this virtual machine. This file is in the /var/log/xen-tools
directory. The installer also created the configuration file that’s used by the virtual machine.
This configuration file performs the same function as the virtual machine configuration file
that you created manually for the Windows virtual machine in the previous section.

Now that the installation is finished, it’s time to launch the virtual machine. To do this, use
the following command:

xm create /etc/xen/ubuntu.example.com.cfg

Once the virtual machine has launched successfully, you can attach to its console using

xm console ubuntu.example.com

This command brings you to the console of the virtual machine. Want to go back to the
console of the host machine? Use the Ctrl+] shortcut. From the console of the host machine,
you can use the xm command to perform virtual machine management tasks. The next section
provides an overview of the important management commands.

Using Xen Management Commands
After starting the installation of your virtual machines, you also need some minimal knowl-
edge on how to manage these machines, and to do this you’ll use the xm command. This is
a very versatile command that uses subcommands to specify exactly what you want to do.
Table 12-1 is an overview of some of the most useful xm commands.

Table 12-1. Overview of the Most Important Xen Management Commands

Command Explanation

xm create -c /path/to/configfile Runs a virtual machine. To run it, you need a configuration
file like those created in the two subsections dealing with
installation of Windows and Ubuntu virtual machines.

xm list Gives a list of all virtual machines.

xm console <name> Starts a console for the virtual machine <name>. Use xm
list to find out what name to use. Without this command,
you won’t see anything about your virtual machine.

xm shutdown <name> Shuts down a virtual machine in a clean way.

xm destroy <name> Kills a virtual machine instantaneously without shutting it
down properly. This can lead to destruction of virtual
machine configuration files.

xm top Gives an overview that allows you to monitor performance
of virtual machines.

xm help Gives an overview of all xm subcommands that you can use.

CHAPTER 12 ■ MULTIPLYING YOUR SERVER 341

9233ch12.qxd 11/12/07 10:50 AM Page 341

Ubuntu Server in a VMware Environment
VMware offers several virtualization products that you can use with Ubuntu Server. The most
important of these, from the point of view of a data center, is VMware ESX. In VMware ESX,
paravirtualization can be used as well. However, to benefit from this solution, the virtualized
operating system must be aware that it’s being used in a paravirtualized environment. This is
realized by the VMI support that Ubuntu Server has offered since version 7.04.

The VMI support ensures that the Linux kernel knows that it’s being used in a paravirtu-
alized environment. So Ubuntu Server generates instructions that are easier to handle in a
virtualized environment. The good news is that this support comes out of the box. Immedi-
ately upon installation of Ubuntu Server, the installer detects that it’s installed in a virtualized
environment and VMI support is activated automatically.

Summary
Virtualization is one of the most dynamic areas of interest in the modern data center. In this
chapter, you learned how virtualization is used in current versions of Ubuntu Server. But be
aware that the available options may change fast. New versions of Ubuntu Server can be
expected to offer enhanced support for virtualization, with more-advanced and user-friendly
management tools, too.

CHAPTER 12 ■ MULTIPLYING YOUR SERVER342

9233ch12.qxd 11/12/07 10:50 AM Page 342

Numbers
2> construction, 38

symbols
$ indicating end of line, 21
$@ operator, 211
<. construction, 38
> single redirector sign, 38
>> double redirector sign, 38
& ampersand, 153
&& separator, 205
‘ ’ single quotes, 36
^ indicating beginning of line, 212
` ` backquotes, 194
|| separators, 205
~ tilde, 33

A
A resource record, 260
absolute mode, chmod command and, 125
ACCEPT rule, 143, 146
access control lists (ACLs), 126–130

default, 128
limitations of, 129
Samba file sharing and, 301

ACL masks, 128
administrator tasks, configuring, 140
Advanced Packaging Tools (apt), 49
aggregatable global unicast addresses, 225
allow file, 162, 163
ampersand (&), indicating background

processes, 153
AMS node, 252
anycast addresses, 225
Apache web server, 313–325

configuring, 313–318
logging and, 69, 71
managing access to, 320–322
performance tuning for, 323
starting/stopping, 314
testing, 315
versions of, 313

apache2 file, 69, 317
apache2 reload command, for activating

Apache server changes, 318
apache2 restart command, for restarting

Apache web server, 318
apache2.conf file, 316, 323
apache2ctl command, for Apache web server

testing, 318

apt (Advanced Packaging Tools), 49
apt-get update command, for most recent

version of software packages, 54
apt-get utility, 48–50

adding/removing software with, 54
GNOME desktop manager, installing via, 59
package management commands and, 50

aptitude utility, 49, 52
archive files, 60
arguments, shell scripts and, 191
ASCII text files. See text files
asymmetric encryption, 248
at command, for running commands, 161, 163
at mechanism, 163
atd service, 163
ATL node, 252
atq command, for displaying schedules

commands, 163
atrm command, for deleting jobs from at

execution queue, 163
auth.log log file, 69
authentication

basic, 322
key-based, 247–251
PAM and, 134–139, 326

automatic command completion, 27
automatic processes, 151

B
background processes, 152
backing up master boot record, 103
backports category, of software repository, 48
backquotes (` `) for command substitution, 194
backups

creating, 60–64
user ID and, 109

bandwidth usage, monitoring, 239
Bash shell, 26–29

Bash scripts and, 186
history command and, 28

bashrc configuration file, 118
basic authentication, 322
/bin/bash (Bash shell), 110, 186, 197
/bin/ksh (Korn shell), 186
/bin/pdksh (Public Domain Korn Shell), 186
/bin/sh (Bourne shell), 26, 110, 186
/bin/tcsh (C shell), 186
boot directory, 10, 175
boot procedure, 164–173, 175
Bourne shell (/bin/sh), 26, 110, 186

Index

343

9233index.qxd 11/16/07 9:18 AM Page 343

bridges, virtual, 334
broadcast addresses, 225
browsing text files, 34
buffer memory, 156

C
C, scripts and, 186
C shell (/bin/tcsh), 186
cache memory, 156
caching keys, 250
calculations, performing from scripts, 199–203
case statement, 203, 207
cat command

for displaying contents of text files, 27, 34
jobs command and, 153

cd command, for changing current directory, 30
chains, Netfilter firewall and, 142
chattr command, for applying attributes, 131
chgrp command, for changing group

ownership, 121
child processes, 152
chmod command, for setting permissions, 124
chown command, for changing file ownership,

119, 121
CIFS (common Internet file system), 300
clock configuration, 22
CNAME resource record, 260
command line, 25–46, 108
command mode, for Vi text editor, 41
command substitution, 194, 207
commands

at, 161, 163
automatic completion for, 27
for basic file system management, 30–37
calculations and, 199–203
cat, 153
command substitution and, 194, 207
crontab, 162
depmod, 178
df, 207
echo, 188
exit 0, 188, 210
expr, 201
flow control and, 203–211
for group management, 117
history, 28
insmod, 177
internal/external, 187
jobs, 153
key sequences for, 29
kill, 158
killall, 158
let, 202
logger, 207, 209
lsmod, 176
lspci, 182
make-kpkg kernel-image, 180
mkinitrd, 175
modinfo, 177

modprobe, 177
nice, 160
piping/redirection for, 37
pkill, 159
ps aux, 209
pstree, 152
read, 190
renice, 160
rmmod, 177
rsync, 207
separators for, 205
shell scripts and, 185, 187
sleep, 209
source, 188
test, 190, 203, 204
time, 157
top, 159
uname, 174
umask, 124
for user management, 108
which, 190
who, 210
Xen management and, 341

comments, for shell scripts, 187
common Internet file system (CIFS), 300
common UNIX printing system. See CUPS
compiling the kernel, 178–180
compressing archive files, 61
conf.d file, 316
configuration files, 109, 112

Apache web server and, 316
cron facility and, 161
default server configuration file and, 317
DHCP and, 274
DNS and, 261–275
NTP and, 277
PAM modules and, 134
Samba server and, 301, 305, 307
Xen and, 340
xinetd and, 283

./configure command, for software installation,
58

configuring
administrator tasks, 140
Apache web server, 313–318, 320
boot procedure, 164–173
cron facility, 161
CUPS, 287–293
DHCP, 269–276
DNS resolver, 228
DNS, 255–268
domain controllers, Samba as, 307
FTP, 326
graphical user interface, 58
IPv6 protocol, 226
logging, 64–72
MySQL, 325
Netfilter firewall, 141–148
network cards, 217–230

■INDEX344

9233index.qxd 11/16/07 9:18 AM Page 344

NFS, 296–299
NTP, 276–282
permissions, 119–122, 124
quotas, for users/groups, 133
Samba file server, 300–305
services, 255–282
SSH, 245
storage, 85–102
Ubuntu Server’s hard drive, 8–21
Ubuntu Server, 2–11, 107–149
user accounts, 107–116
virtual hosts, 319
web services, 313–328

control-alt-delete job, 170
Coordinated Universal Time (UTC), 22, 276
copying

data, 102
files, 33
text, 42

counters, shell script calculations and, 199
country selection, 3
cp command, for copying files, 33, 102, 245
CPU

activity and, 155–160
Xen virtualization and, 338

creating
archive files, 60
backups, 60–64
empty files, 36
file systems, 94
files, 36, 121, 127
groups, 117
hard links, 84
logical volumes, 97
MySQL databases, 326
partitions, 94
rules, for Netfilter firewall, 146
snapshots, 102
user accounts, 22
XFS file systems, 93

cron facility, 151, 161
crond daemon, 161
crontab command, for cron jobs, 162
crontab file, 163
cryptographic keys, 274
cryptography, 248
Ctrl+Alt+F1 key sequence, 170
Ctrl+Alt+F6 key sequence, 170
Ctrl+C key sequence, 29, 153
Ctrl+D key sequence, 29
Ctrl+R key sequence, 29
Ctrl+Z key sequence, 29, 153
CUPS (common UNIX printing system)

configuring, 287–293
integrating with Samba, 305

current directory, changing, 30
customizing Ubuntu Server, 151–183
cutting text, 42

D
d command, for cutting text, 42
daemons, 151, 152
data section (XFS file system), 92
datagrams, 232
db-files, 262, 266
db.root file, 265
dd command

for copying data, 102
for creating disk image files, 333
for device backups, 63

dd option, for deleting complete lines, 42
DDNS (dynamic DNS), 273
DEB (Debian Package), 48
debugfs utility, 92

Ext2 file system and, 89
inodes and, 83
superblock contents and, 103

defaults
access control lists, 128
environment, 137
gateway, 228
permissions, 125
route, 227
runlevel, 171
server configuration file, 317

delayed allocation, XFS file system and, 92
Delete key, 42
deleting

files/directories, 30–33
modules, 177
packages, 50, 54
text, 42
user accounts, 112

deny file, 162, 163
dependencies, software installations and, 47
depmod command, for generating

modules.dep file, 178
destination, logging and, 68
/dev/… files, 39
device attributes, displaying, 223
device backups, 63
device files, 30, 37, 39
devices. See hardware
df command, for checking available disk space,

207
DHCP

configuring, 269–276
dynamic DNS and, 273

DHCP relay agents, 269, 275
DHCPACK packet, 269
dhcpd process, 270
dhcpd.conf configuration file, 270–275
DHCPDISCOVER packet, 269
DHCPNACK packet, 269
DHCPOFFER packet, 269
DHCPRELEASE packet, 269
DHCPREQUEST packet, 269

■INDEX 345

9233index.qxd 11/16/07 9:18 AM Page 345

directories. See also files
creating, 30
moving contents of, 62
ownership and, 119
removing, 30
renaming, 33
Ubuntu Server installation and, 10

disk space, limiting amount occupied by users,
131–134

displaying
current search path, contents of, 27
files, 26, 31, 33
inodes, 83
installed software packages, 50
lines of text files, 34
login messages to users, 118
text files, contents of, 27, 33
variables, 27

dmesg log file, 69
DNS, 255–268

configuration files and, 261–266
configuring, 255–268
dynamic, 273
forward/reverse, 260, 267
hierarchy of, 257–260
methods of name resolution and, 255
server installation and, 23
testing, 268

DNS resolver, configuring, 228, 259
dnssec-keygen command, for generating

cryptographic keys, 274
do loop, 200, 210
domain controllers, Samba as, 307
domains, 257
done loop, 200, 210
dpkg command, 49

for Apache server installation, checking for,
314

for gcc complier, checking for, 57
for displaying installed software packages, 50
for kernel installation, 180
for MySQL server, checking for, 325

drift factor, NTP and, 281
drivers, 174
DROP rule, 143, 146
DSA key pairs, 244
dual-boot configurations, 1
dumpe2fs utility, 87
duplex mode, configuring for network cards,

230
dw option, for deleting remainder of words, 42
dynamic DNS (DDNS), 273

E
e2fsck utility, 86
echo $PATH command, for displaying content

of current search path, 27, 190
echo command, for displaying text to user’s

screen, 188

editors. See text editors
edquota command, for setting/editing quotas,

41, 133
EFS (Extended File System), 86
eject command, for optical media, 78
encryption, 248
end of file (EOF), Ctrl+D key sequence for, 29
Enterprise Volume Manager System (EVMS), 97
env command, for displaying variables, 27
environment, default, 137
envvars file, 316
EOF (end of file), Ctrl+D key sequence for, 29
error output, 38
errors/error messages

Operation is not supported message and, 332
STDERR error and, 38, 152

ethtool command, for configuring network card
properties, 230

event.d directory, 170
EVMS (Enterprise Volume Manager System), 97
execute (x) permission, 119
exit 0 command, for scripts, 188, 210
exit statuses, for scripts, 188
exportfs command, for exported file systems

list, 297
expr command, for performing calculations,

201
Ext2 file system, 11, 86–89
Ext3 file system, 11, 89
Ext4 file system, 11, 76
Extended File System (EFS), 86
extended partitions, 96
external commands, 187
extracting archive files, 61

F
facilities, logging and, 66
faillog log file, 69
failsafe option, 168
FAT file system, 11
fdisk utility, 94
FHS (Filesystem Hierarchy Standard), 82
file handlers, 152
file server, Ubuntu Server as, 293–311

NFS and, 293–299
Samba and, 299–311

file systems, 11
checking integrity of, 81
compared, 85–94
creating, 94
exported, NFS and, 297
local, preparing for Samba, 300
management tasks for, 30–37, 73–105
mounting on remote computer, 251
NFS, 293–299
obtaining overview of, 77
preparing for ACLs, 127–129
specifying type, 75
sys, 182

■INDEX346

9233index.qxd 11/16/07 9:18 AM Page 346

sysfs, 181
user quotas and, 131–134

files
copying, 33, 102, 245, 250
creating, 36, 121, 127
deleting, 32
displaying, 26, 31, 34
finding, 40
links and, 82–85
listing contents of, 27, 33
moving, 33
ownership and, 119
permissions and, 119–131
redirection for, 37
setting attributes for, 130
text strings in, finding, 35
user quotas and, 131–134

Filesystem Hierarchy Standard (FHS), 82
find command, for files, 40, 112
firewalls, 141–149
floppy disks, mounting, 74
flow control, 203–211
for loop, 203, 210
foreground processes, 152
FORWARD chain, for Netfilter firewall, 142
forward DNS, 260
free utility, 156, 157
fsck command, for checking file systems

integrity, 81
fstab command, for mounting NFS shares

automatically, 299
fstab configuration file, 73, 78, 127
FTP, configuring, 326
functions, shell scripts and, 212
fuser command, 77

G
gcc complier, 57
getfacl command, 127, 129
getty program, 118
GNOME desktop manager, 59
graphical adapter configuration, 5
graphical user interface (GUI), 55, 58
grep command

piping and, 37
vs. pkill and ps commands, 159
vs. sde, 211
for text string searches, 35

group entity, 119
group file, 117
groupadd command, 117, 122
groups

creating, 117, 122
ownership and, 121
setting quotas for, 133
user membership in, 109

groups command, 121
GRUB, 164–169
gshadow file, 118

guests, 330, 335
GUI (graphical user interface), 55, 58
guided hard drive partitioning, 12
guided LVM-based hard drive partitioning, 14
gzip utility, 57

H
HAL (hardware abstraction layer), 181
hard drives

configuring, 8–21
mounting, 74
partitioning manually, 15–21

hard links, 82, 84
hardware

checking integrity of, 81
managing, 174–183
mounting, 73–81
naming, 183
requirements for, 1
unmounting, 77

hardware abstraction layer (HAL), 181
hardware interrupt (hi), 156
head command, for displaying top lines of text

files, 34
help command, 43
help functionality, 43–46
-help option, 43, 45
here document, 191
hi (hardware interrupt), 156
hidden files, cp command and, 33
history command, for retracing commands, 28
home directory, 10, 138
host-based access restrictions, Apache web

server and, 320
host command, for DNS server testing, 268
host operating system, 332
hosts file, 229, 256, 285
hosts, 318, 330, 335
hosts.allow configuration file, 285
hosts.deny configuration file, 285
htpasswd command, basic authentication and,

322
HTTP protocol, 147, 313
HTTP proxies, 23
httpd process (HTTP daemon), 314
httpd.conf file, 316
hypervisor, 156, 330

I
id (idle loop), 155
if loop, 203
if…then…else loop, 204–207
ifconfig command

for assigning IPv6 addresses, 226
for managing network cards, 219–221
for displaying network configuration

information, 218, 337
ifdown command, for bringing down network

cards, 219, 220

■INDEX 347

9233index.qxd 11/16/07 9:18 AM Page 347

ifplugstatus command, for displaying status of
network cards, 219

iftop command, for bandwidth usage
monitoring, 239

ifup command, for bringing up network cards,
219, 220

incremental backups, 62
inetd service, 282
inheritance, 119
init process, 152, 169 171
init.d directory, 171
initrd (initial RAM drive), 175
inittab configuration file, 169
inodes, 83–85, 87
INPUT chain, for Netfilter firewall, 142, 147
insert mode, for Vi text editor, 41
insmod command, 177
install command, apt-get utility and, 50
installing

DNS servers, 23
GNOME desktop manager, 59
GRUB boot loader, 167
kernel modules, 175
LAMP servers, 23
lvm-binaries package, 98
software packages, 47–58
software, 23
Ubuntu Server, 1–24
virtual machines, 332–341

interactive shell scripts, 190
interactive processes, 151
interfaces configuration file, 217, 220, 228
internal commands, 187
Internet server, 313–328
ip address add command, 223
ip address show command, 222, 224
IP addresses, 220–227

assigning, 220, 223
configuring, 6
DNS and, 255–268
IPv6 protocol and, 224
neighbor discovery protocol and, 226
virtual, 220

ip command, 221
for assigning IPv6 addresses, 226
for setting routes, 227
for specifying default gateway, 228

ip link show command, 223
IP protocol attributes, displaying, 223
iptables command

configuring Netfilter firewall via, 141–148
vs. TCP wrappers, 286

iptraf command, for monitoring protocol
activity, 238

iputils tools, 226
IPv4 protocol, 224
IPv6 protocol, 224–227
issue file, 118

J
jobs command, 153
journaling, 86, 89

K
kernel

creating your own, 178–180
managing, 174

Kernel-based Virtual Machine (KVM), 330, 332
kernel modules, 167, 174–182
key-based authentication, 247–251
key fingerprints, 249
key pairs, 244
key sequences

Bash shell and, 29
interrupting processes and, 153
terminating cat command and, 153
virtual terminals and, 170

keyboard configuration, 5
keys, caching, 250
keywords, 52
kill command, 158
killall command, 158
Korn shell (/bin/ksh), 186
KVM (Kernel-based Virtual Machine), 330, 332
kvm command, for guest operation

installations, 333
kvm.ko kernel module, 330, 332

L
labels, file systems and, 79
LAMP servers, installing, 23
language selection, 3
less command, for browsing text files, 34
let command, for calculations, 202
limits

on system resources, 137
on user quotas, 131, 133

link local addresses, 225
link speed, configuring for network cards, 230
links 82–85

symbolic, 171, 179
udev service and, 183

Linux kernels, 178
ln command, for links, 82, 84
load average, 155
local forwarding, 252
localtime binary file, 276
log files, NTP and, 281
LOG rule, 143
log section (XFS file system), 92
logd job, 170
logger command, for writing log messages, 69,

207, 209
logging

configuring, 64–72
firewall troubleshooting and, 147
pam_warn module and, 139
rotating log files and, 69

■INDEX348

9233index.qxd 11/16/07 9:18 AM Page 348

logical partitions, 96
Logical Volume Manager (LVM), 8, 97

advantages/disadvantages of, 9
manual hard drive partitioning and, 18

logical volumes, 97–102
advanced features and, 100
creating, 97

login messages, 118
login prompt, text-based, 23
login.defs configuration file, 116
logrotate service, 69
logrotate.conf configuration file, 70
logrotate.d configuration file, 71
ls command

ACLs and, 127
for displaying files, 26, 31
for finding inode number of files, 83
file ownership and, 120

lsmod command, for displaying list of currently
loaded modules, 176

lsof command, for displaying list of processes,
78

lspci command, for revealing PCI IDs, 182
lv command prefix, 98
LVM. See Logical Volume Manager
lvm-binaries package, 98

M
MAC addresses, 224
mail command, 38
mail, pam_mail module and, 138
mail.* log file, 69
main category, of software repository, 48
maintenance, pam_nologin module and, 138
make install command, to check software

package installation, 58
make utility, 58
make-kpkg kernel-image command, 180
man command, for command information,

43–45
managing

Apache web server, access to, 320–322
file systems, 30–37, 73–105
hardware, 174–183
kernel, 174
network cards, 219–224
packages, 49–57
passwords, 108–113
processes, 151–161
services, 173
software, 47–60
user accounts, 111

manual hard drive partitioning, 15–21
master boot record (MBR), backing up, 103
master name server, 258
matching part, of server rule, 144
maximum transmission unit (mtu), 223
/media directory, 73
memory, 156, 157

menu.lst file, 165–169, 175
messages

log, 69, 207, 209
to users at login, 118

messages log file, 68
metadata, 83, 90
mkdir command, for creating directories, 30
mkfs command, for creating file systems, 94
mkfs.xfs command, for creating XFS file

systems, 93
mkinitrd command, for tuning initrd, 175
mkinitrd.conf file, 175
/mnt directory, 73
modinfo command, for revealing module

information, 177
modprobe command, for loading modules

manually, 177
modules

Apache web server and, 314, 316, 320, 323
kernel, 167, 174–182
kvm.ko kernel, 330, 332

modules configuration file, 175
monitoring

network interface, 238–240
network traffic, 240–243
NFS file server, 299
processes, 151–161

more command, for browsing/searching text
files, 34

motd file, 118
mount command, 73–77

for mounting NFS shares, 298
for Samba server testing, 309

mount points, 73
mounting disks, 73–81
moving

contents of directories, 62
files, 33

mtab configuration file, 77
mtu (maximum transmission unit), 223
multicast addresses, 225
multiverse category, of software repository, 48
mv command, for moving/renaming files, 33
MX resource record, 260
MySQL, 325, 326
mysqladmin command

for creating MySQL databases, 326
for setting MySQL root password, 325

N
name resolution/name servers. See DNS
named command, to check for named process,

268
named.conf file, 261–266

db-files and, 266
zone definitions and, 265

named.conf.local file, 261, 263
dynamic DNS and, 274
reverse DNS and, 267

■INDEX 349

9233index.qxd 11/16/07 9:18 AM Page 349

named.conf.options file, 262, 263
naming shell scripts, 190
nano text editor, 140, 162
NAT firewall, 148
neighbor discovery protocol, 226
Netfilter firewall, 141–148
netstat command, for testing availability of

services, 234
network cards

configuring, 5
managing, 219–224
monitoring, 238
properties for, configuring, 230
starting/stopping, 219, 220
status of, 219
testing, 231

network connections, 217–253
neighbor discovery protocol and, 226
network card configuration and, 217–230
SSH and, 243–251
testing, 231
troubleshooting, 230–243

network file system. See NFS
Network Information System (NIS), 256
network services. See services
network shares, mounting, 74
Network Time Protocol. See NTP
network traffic, monitoring, 240
newgrp command, 110
NFS file sharing, 293–299

how it works, 294
monitoring and, 299
services and, 295

NFS Shares, mounting, 75
NI (nice value), 157
nice command, for processes, 160
nice value (NI), 157
NIS (Network Information System), 256
nmap command, for testing availability of

services, 234, 236
nmblookup command, for Samba name

services testing, 310
nomodify setting, NTP security and, 282
noquery setting, NTP security and, 282
notrust setting, NTP security and, 282
NS resource record, 260
nsswitch.conf file, 229, 257
NTFS file system, 11
nth module, 146
NTP

checking synchronization status and, 279
configuring, 276–282
customizing servers and, 280
drift factor and, 281
log file and, 281
pushing/pulling time and, 278
security for, 281

ntp.conf file, 277
ntpd daemon, 277
ntpdate command, for synchronizing time, 279

ntpq command, for checking status of NTP
services, 280

ntptrace command, for checking
synchronization status, 279

O
operating systems

host, 332
installing multiple instances of, 329–342

“Operation is not supported” error message, 332
optical drives

eject command for, 78
mounting, 74

optimizing Ubuntu Server, 151–183
others entity, 120
OUTPUT chain, for Netfilter firewall, 147, 142
ownership, 119, 121

P
p command, for pasting text, 42
package databases, 49
packages, 47

adding/removing, 54
installed, displaying list of, 50
installing, 47–58
management utilities for, 49–57
unmanaged software and, 57

packets, analyzing, 241
PAM (pluggable authentication modules),

134–139
PAM authentication, 326
pam_deny module, 136, 137
pam_env module, 137
pam_limits module, 137
pam_mail module, 138
pam_mkhomedir module, 138
pam_nologin module, 138
pam_permit module, 138
pam_rootok module, 138
pam_securetty module, 138
pam_tally module, 139
pam_time module, 139
pam_unix module, 139
pam_warn module, 136, 139
paravirtualization, 329, 330
parent process, 152
parted utility, 97
Partition Magic, 97
partitions, 8, 9

creating, 94
extended, 96
logical, 96
traditional, 94

passphrases, 244, 249
passwd command, 108, 110, 111
passwd configuration file, 109, 113
passwords, 108–113

basic authentication and, 322
managing, 110

■INDEX350

9233index.qxd 11/16/07 9:18 AM Page 350

root, MySQL and, 325
Samba file sharing and, 304

pasting text, 42
PATH variable, 27, 190
pattern-matching operators, 197
pausing commands, Ctrl+Z key sequence for, 29
permissions

ACLs and, 126–130
advanced, 122–131
basic, 119
changing, 124
concept of ownership and, 119
configuring, 119–122, 124
default, 125
NFS file sharing and, 294
Samba file sharing and, 300

pgrep command, for finding process details,
159

PHP, 324
PID (unique process ID), 156
ping command, for testing network

connectivity, 231
disabling, 237
DNS name servers and, 268

ping6 utility, 226
piping, 37
pkill command, 159
pluggable authentication modules (PAM),

134–139
pointer record, 261, 268
policies, for chains, 143
port forwarding, 252
port numbers, Netfilter firewall and, 148
port scans, 236
ports.conf file, 316
position, of server rule, 145
POSIX file system, 86
preallocation, XFS file system and, 92
prefork mode, Apache web server and, 323
PRI (priority indication), 156
primary groups, 109
print server, Ubuntu Server as, 287–293, 305
priorities, logging and, 67
priority indication (PRI), 156
private groups, 109
private keys, 243, 247–251
process queue, 155, 160
processes

automating, 161
background, 152
displaying list of, utility for, 157, 159
foreground, 152
interrupting, 153
monitoring/managing, 151–161
real-time, 156
resetting priority for, 160
terminating, 157
types of, 151

profile configuration file, 118

protocol activity, monitoring, 238
ps aux command, 209

for checking Apache web server, 314
for checking MySQL service process, 325

ps utility, 157, 159
pstree command, for showing parent and child

process relationships, 152
PTR record, 261, 268
Public Domain Korn Shell (/bin/pdksh), 186
public keys, 243, 247–251
pure-ftpd servers, 326
pv command prefix, 97, 98
pwd command, for printing working directory,

30

Q
qemu-img command, for creating disk image

files, 333
quitting

commands, Ctrl+C key sequence for, 29
Vi, 42

quotacheck command, 132
quotes (‘ ’), regular expressions and, 36

R
RAM, 156
rc-default script, 170
rc0-rc6 scripts, 170
rc2.d directory, 171
rcS script, 170
rcS-sulogin service, 170
rcS.d directory, 171
read (r) permission, 119
read command, for script interactivity, 190
real-time process (RT), 156
real-time section (XFS file system), 92
redirection, 37
redirector sign (>), 38
regular expressions, 35
Reiser, Hans, 91
ReiserFS file system, 11, 91
reiserfsck utility, 91
REJECT rule, 143
relative mode, chmod command and, 124
remote network connections, 243–251
remote port forwarding, 252
remote procedure call (RPC) program numbers,

294
remove command, for packages, 50
removing software packages, 50, 54
renaming files/directories, 33
renice command, for processes, 160
repquota command, for monitoring current

quota settings, 134
RES (resident memory size), 157
resize_reiserfs utility, 92
resizing logical volumes, 100
resolv.conf file, 228, 268
resource records, 260, 267

■INDEX 351

9233index.qxd 11/16/07 9:18 AM Page 351

resources for further reading
Apache modules, 314
logical volumes, 9
neighbor discovery protocol, 226
Netfilter firewall, 146
PHP, 325
Samba, as domain controller, 307
test command, 203

restart command, for DNS servers, 268
restricted category, of software repository, 48
reverse DNS, 260, 267
reverse searches, Ctrl+R key sequence for, 29
rm command, for deleting files, 32, 33
rmdir command, for deleting directories, 30
rmmod command, for deleting modules, 177
root directory, 10
root file system, troubleshooting, 75
root privileges, 25
root user, user ID and, 109
route command, for setting default route, 227
routers, testing, 232
routes, 227
RPC program numbers, 294
rpcinfo command

for displaying RPC program numbers, 294
for NFS file server monitoring, 299

RPM Package Manager (RPM), 48
RSA key pairs, 244
rsync command, 207
RT (real-time process), 156
rules, for Netfilter firewall, 142–148
runlevels, 170, 171
running processes, 155

S
S (status of process), 157
Samba file sharing, 299–311

configuring, 300–305
domain controller configuration and, 307
testing and, 309

SANs (storage area networks), 8
sash shell, 26
saving data, 42
scp command, for copying files securely, 245,

250
scripts

service, 171
shell. See shell scripts

scripts file, 175
search order, managing with nsswitch.conf file,

257
searching

Ctrl+R key sequence and, 29
text files, 34

Secure Shell. See SSH
security

Apache web server and, 320–322
Netfilter firewall and, 141–148
NFS and, 281, 294

PAM configuration and, 136
Ubuntu Server configuration and, 107–149

sed (stream editor), 211
separators, for commands, 205
service scripts, 171
services, 151, 167–173

configuring, 255–282
facilitating management of, 173
NFS file sharing and, 295
Samba and, 305
starting, 282–286
testing for availability of, 234, 236

services file, 148
setfacl command, for setting ACLs, 127
sftp command, for secured FTP sessions, 245
SGID permission, 122, 124

caution for, 123
Samba file sharing and, 301

sh (Bourne shell), 26, 110, 186
shadow configuration file, 109, 114
shared directories, Samba and, 300
shared memory (SHR), 157
shebangs, 186
shell scripts, 185–215

basic elements of, 187
complex, example of, 213
executing, 188
flow control and, 203–211
functions and, 212
interactive, 190
logging and, 69
naming, 190
performing calculations from, 199–203
reasons for using/not using, 185
running as executable, 189
stream editor and, 211

shells, 26–29, 110
shortcuts. See links
showmount command, for NFS file server

monitoring, 299
SHR (shared memory), 157
SIGHUP signal, 158
SIGKILL signal, 158
SIGTERM signal, 158
site local addresses, 225
slave servers, 258
SLC node, 252
sleep command, 209
sleeping processes, 155
smb.conf file, 301, 305, 307
smbclient command, for Samba server testing,

310
smbmount command, for Samba server testing,

310
smbpasswd command

for Samba passwords/usernames, 304
for workstations, 309

snapshots
backups and, 63
logical volumes and, 101

■INDEX352

9233index.qxd 11/16/07 9:18 AM Page 352

software
documentation for in /usr/share/doc/

directory and, 43, 46
installing, 23
management tasks for, 47–60

software packages. See packages
software repositories, 48
source command, for shell scripts, 188
sources.list configuration file, 48
/srv directory, 10
SSH (Secure Shell)

allowing traffic and, 146, 147
configuring, 245
key-based authentication for, 248–251
network connections and, 243–251
tunneling traffic and, 251

ssh-agent program, 250
ssh command, 244, 250
ssh-keygen command, for SSH key-based

authentication, 249
sshd daemon, 244
sshd_config file, 245
ssh_config file, 245
st (stolen time), 156
standard error (STDERR), 38, 152
standard input (STDIN) process, 38, 152
standard output (STDOUT) process, 38
starting services, 282–286
state module, 146
stateful packet filters, 146
status of process (S), 157
STDERR (standard error), 38, 152
STDIN (standard input) process, 38, 152
STDOUT (standard output) process, 38, 152
sticky bit permission, 122, 301
stolen time (st), 156
stopped processes, 155
stopping (pausing) commands, Ctrl+Z key

sequence for, 29
storage, configuring, 85–102
storage area networks (SANs), 8
stream editor (sed), 211
subdomains, 258
substitution operators, 195
sudo mechanism, 25, 140
sudo passwd root command, 26
sudo su command, 25
sudoers file, 140
sufficient statement, 328
SUID permission, 122–123
sulogin script, 170
superblocks, 75, 91, 103
swap space, 103, 156
sy (system space), 155
symbolic links, 82–85, 171, 179

creating, 82
vs. hard links, 84, 85

symmetric encryption, 248
Synaptic package manager, 55

synchronizing time. See NTP; time
synchronization

sys file system, 182
sysfs file system, 181
syslog.conf configuration file, 64
syslogd process, 64–69
system administration, essential tasks for, 47–72
system maintenance, displaying messages

about, 118
system space (sy), 155
system time, 154
System V service management, 173
sysv-rc-conf utility, 173

T
Tab key, for automatic command completion, 27
tail command, for displaying last 10 lines of text

files, 34
tape drives, mounting, 74
tar utility, backups via, 60
tarballs, 47, 57
target, of server rule, 145
tasks, on server, 155
TCP port forwarding, 252
TCP wrappers (tcpd), 284
tcpdump command, for network monitoring,

240
tcsh shell, 26
test command, 190, 203, 204
testing

Apache web server, 315, 318
creating empty files for, 36
DNS servers, 268
IPv6 protocol configuration, 226
network connections, 231–238
routers, 232
services, availability of, 234

text-based login prompt, 23
text editors, 40–43, 140
text files

contents of, displaying, 27, 33
last 10 lines of, displaying, 34
top lines of, displaying, 34

text strings, finding in files, 35
tilde (~), referring to current user’s home

directory, 33
time, pam_time module and, 139
time command, 157
time synchronization, 276–282

checking, 279
pulling/pushing time and, 278

time zone configuration, 22, 276
TIME+ (total CPU time used by a process), 157
time (system), 154
TLDs (top-level domains), 257
tools. See utilities
top command

for killing processes, 159
for starting top utility, 154

■INDEX 353

9233index.qxd 11/16/07 9:18 AM Page 353

top-level domains (TLDs), 257
top utility, 154–157, 161
touch command, for creating files, 36, 121, 127
tracepath6 tool, 227
traceroute command, for testing routability, 232
traceroute6 tool, 227
troubleshooting

boot procedure and, 164–173
network connections, 230–243

tty1-tty6 files, 170
TTYs, pam_securetty module and, 138
tune2fs command, for Ext2 file system

management, 87, 127
tuning Ubuntu Server, 151–183
tunneling traffic with SSH, 251

U
u command, for undoing changes, 42
Ubuntu Server

boot procedure and, 164–169
configuring, 107–149
customizing/optimizing, 151–183
as file server, 293–311
installing, 1–24
KVM virtualization on, 332
monitoring activity via top utility, 154
as print server, 287–293
securing, 107
Vmware and, 342
Xen virtualization on, 336

udev log file, 69
udev service, 180
udevmonitor utility, 181
UID (user ID), 109
umask setting, 125, 128
uname command, for kernel management, 174,

194, 336
unique process ID (PID), 156
Universal Time Coordinated (UTC), 22, 276
universe category, of software repository, 48
UNIX

Bourne shell and, 186
pam_unix module and, 139
ps command and, 159

unmanaged software, tarballs and, 57
umask command, for setting default

permissions, 124
unmounting devices, 77
until loop, 203, 209
up time, 154, 157
update command, for packages, 50
upgrade command, for packages, 50
Upstart, 169
uptime utility, 157
us (user space), 155
USB drives, mounting, 74
user accounts

configuring, 107–116
creating, 22

deleting, 112
managing, 111
Samba server and, 304

user-based access restrictions, Apache web
server and, 322

user entity, 119
user ID (UID), 109, 156
user quotas, 131–134
user root, 25, 138, 156
user space (us), 155
useradd command, 107–109, 116
userdel command, 108, 112
usermod command, 108, 112
users

basic authentication and, 322
cron jobs and, 162
managing, 107–116
membership in groups, 109
setting quotas for, 133
sudo commands and, 140
who command and, 210

/usr/share/doc/ directory, software
documentation and, 43, 46

UTC (Universal Time Coordinated), 22, 276
utilities

Advanced Packaging Tools (apt), 49
apt-get. See apt-get utility
aptitude, 49, 52
debugfs, 83, 89, 103
debugreiserfs, 92
dumpe2fs, 87
e2fsck, 86
for Ext2/Ext3 file systems, 86
fdisk, 94
free, 156, 157
getty, 118
grep. See grep command
gzip, 57
iputils, 226
make, 58
package management, 49–57
parted, 97
Partition Magic, 97
ping6, 226
ps, 157, 159
reiserfsck, 91
resize_reiserfs, 92
stream editor, 211
Synaptic package manager, 55
sysv-rc-conf, 173
tar, 60
top, 154–157
tracepath6, 227
traceroute6, 227
troubleshooting, 230–238
tune2fs, 87
udevmonitor, 181
uptime, 157
w3m, 46
for XFS file system, 93

■INDEX354

9233index.qxd 11/16/07 9:18 AM Page 354

xfs_admin, 93
xfs_bmap, 93
xfs_check, 93
xfs_copy, 93
xfs_db, 93
xfs_growfs, 93
xfs_info, 93
xfs_io, 93
xfs_logprint, 93
xfs_mkfile, 94
xfs_ncheck, 94
xfs_quota, 93
xfs_repair, 93
xfs_rtcp, 93

UUIDs, 127

V
v command, for entering visual mode, 42
/var directory, 10
/var/log directory, 68
variables, for scripts, 27, 188, 194–199
vfat file system, 11
vg command prefix, 98
Vi text editor, 40, 140
Vim text editor, 41, 162
VIRT (total amount of memory), 157
virtual bridges, 334
virtual hosts, 318
virtual IP addresses, 220
virtual machines, 329–342

KVM virtualization for, 332
VMware and, 342
Xen virtualization for, 335–341

virtual terminals, 170
virtualization, 329–342

hypervisor and, 156, 330
paravirtualization vs. full virtualization, 331

VISUAL variable, 41
visudo command, for setting sudo permissions,

41
visudo text editor, 140
VMware ESX, 342
VMware, 330, 342

W
w3m utility, 46
wa (waiting), 156
web services, configuring, 313–328
whereis command, for finding commands, 110,

190

which command, for finding commands, 190
while loop, 200, 203, 209
who command, for displaying logged in users,

210
Window Shares, mounting, 75
Windows, installing as guest operating system,

333, 338
wireshark command, for analyzing network

packets, 241
worker mode, Apache web server and, 323
working directory, printing, 30
workstations, Samba domain environment and,

309
:wq! command, for saving and quitting, 42
write (w) permission, 119

X
X forwarding, 251
x option, for deleting single characters, 42
Xen virtualization, 168, 330, 335–341
xen-create-image command, 340, 341
xen-tools.conf configuration file, 340
XFS file system, 11, 92
xfs_admin utility, 93
xfs_bmap utility, 93
xfs_check utility, 93
xfs_copy utility, 93
xfs_db utility, 93
xfs_growfs utility, 93
xfs_info utility, 93
xfs_io utility, 93
xfs_logprint utility, 93
xfs_mkfile utility, 94
xfs_ncheck utility, 94
xfs_quota utility, 93
xfs_repair utility, 93
xfs_rtcp utility, 93
xinetd service, 273, 282–284
xinetd.conf file, 283
xm commands, for Xen management, 341
xm dmesg command, for displaying Xen-

related features, 339

Y
y command, for copying text, 42

Z
zombie processes, 152, 155
zone definitions, 265
zsh shell, 26

■INDEX 355

9233index.qxd 11/16/07 9:18 AM Page 355

	Beginning Ubuntu Server Administration: From Novice to Professional
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Who This Book Is For
	Prerequisites
	Downloading the Code
	Contacting the Author

	Installing Ubuntu Server
	Preparing for the Installation
	Starting the Ubuntu Server Installation Process
	Configuring the Server’s Hard Drive
	Working with Traditional Partitions
	Advantages of Logical Volumes
	Creating an Efficient Hard Disk Layout on the Server
	File Systems
	Continuing the Installation of Ubuntu Server
	Using the Guided Partitioning Procedure
	Using the Guided LVM-Based Setup
	Manually Setting Up Your Hard Drive

	Completing the Installation

	Summary

	Getting the Most Out of the Command Line
	Working As root?
	Working with the Shell
	Using Bash to Best Effect
	Using Automatic Command Completion
	Working with Variables
	Working with Bash History

	Managing Bash with Key Sequences

	Performing Basic File System Management Tasks
	Working with Directories
	Working with Files
	Listing Files with
	Removing Files with
	Copying Files with
	Moving Files with

	Viewing the Content of Text Files
	Finding Files That Contain Specific Text
	Using Regular Expressions

	Creating Empty Files

	Piping and Redirection
	Piping
	Redirection

	Finding Files
	Working with an Editor
	Vi Modes
	Saving and Quitting
	Cut, Copy, and Paste
	Deleting Text

	Getting Help
	Using
	to Get Help
	Using the
	Option
	Getting Information on Installed Packages

	Summary

	Performing Essential System Administration Tasks
	Software Management
	Software Repositories and Package Databases
	Package Management Utilities
	Understanding
	Showing a List of Installed Packages
	Using
	Adding and Removing Software with
	Making Software Management Easy with Synaptic

	Installing Software from Tarballs
	Configuring a Graphical User Interface

	Creating Backups
	Making File Backups with
	Creating an Archive File
	Extracting an Archive File
	Moving a Complete Directory
	Creating Incremental Backups

	Making Device Backups Using

	Configuring Logging
	Configuring
	Logging in Other Ways
	Rotating Log Files

	Summary

	Performing File System Management Tasks
	Mounting Disks
	Using the
	Command
	Options for the
	Command
	Getting an Overview of Mounted Devices

	Unmounting Devices
	Automating Mounts with

	Checking File System Integrity
	Working with Links
	Why Use Links?
	Working with Symbolic Links
	Understanding Inodes
	Understanding the Differences Between Hard and Symbolic Links

	Working with Hard Links

	Configuring Storage
	Comparing File Systems
	Ext2
	Ext3
	ReiserFS
	XFS

	Creating File Systems
	Creating Traditional Partitions

	Working with Logical Volumes
	Creating LVM Volumes
	Managing LVM
	Using Advanced LVM Features

	Doing Magic on Your File Systems with
	Summary

	Configuring Your Server for Security
	Setting Up User Accounts
	Commands for User Management
	UID
	Group Membership
	Shell

	Managing Passwords
	Performing Account Maintenance with
	Managing Password Expiration

	Modifying and Deleting User Accounts
	Behind the Commands: Configuration Files

	Creating Groups
	Commands for Group Management
	Behind the Commands:
	Managing the User’s Shell Environment
	Creating Shell Login Scripts
	Displaying Messages to Users Logging In

	Configuring Permissions
	Read, Write, and Execute: The Three Basic Linux Permissions
	Permissions and the Concept of Ownership
	Changing File Ownership
	Group Ownership

	Working with Advanced Linux Permissions
	Setting Permissions
	Using
	to Change Permissions

	Using
	to Set Default Permissions
	Working with Access Control Lists
	Preparing the File System for ACLs
	Using ACLs to Grant Permissions to More than One Object
	Working with ACL Masks
	Using Default ACLs

	ACL Limitations
	Applying File Attributes

	Apply Quota to Allow a Maximum Amount of Files
	Installing the Quota Software
	Preparing the File System for Quota
	Initializing Quota
	Setting Quota for Users and Groups

	Understanding Pluggable Authentication Modules
	Creating a Default Policy for Security
	Discovering PAM Modules

	Configuring Administrator Tasks with
	An Introduction to Setting Up the Netfilter Firewall with
	Netfilter Building Blocks
	Using
	to Create a Firewall
	Defining Matching Rules
	Specifying the Target
	Specifying the Position in the Chain
	Stateful Rules
	Creating the Rules

	Summary

	Setting the System to Your Hand
	Process Monitoring and Management
	Different Kinds of Processes
	Foreground and Background
	Managing Processes
	Tuning Process Activity

	Other Tools to Monitor System Activity
	Terminating Processes
	Commands for Process Termination
	Using
	to Get Details About Processes

	Setting Process Priority

	Executing Processes Automatically
	Configuring
	User Jobs

	Executing Once with

	Tuning the Boot Procedure
	Managing the GRUB Boot Loader
	The GRUB Configuration File
	Installing GRUB
	Working with the GRUB Boot Menu
	Upstart
	Runlevels
	Making Service Management Easier

	Managing Hardware
	Kernel Management
	Working with Modules
	Loading Modules

	Installing Your Own Custom Kernel
	Installing the Kernel Source Files
	Configuring the Kernel
	Build the New Kernel
	Install the New Kernel

	Hardware Management with
	Summary

	Running It Anyway You Like
	Before You Even Start
	To Script or Not to Script?
	What Shell?
	Basic Elements of a Shell Script
	Making It Executable
	Making a Script Interactive
	Working with Arguments
	Referring to Arguments

	Working with Variables
	Command Substitution
	Changing Variables
	Substitution Operators
	Pattern-Matching Operators

	Performing Calculations in Scripts
	Using Flow Control
	Using
	Case
	Using

	Using a Stream Editor
	Working with Functions
	A Complex Scripting Example
	Summary

	Making Connection
	Configuring the Network Card
	Using
	,
	, and Related Tools
	Using
	Displaying Information with
	Configuring a Network Card with
	Bringing Interfaces Up and Down with
	Using Virtual IP Addresses with

	Using the
	Tool
	Displaying IP Address Setup Information with the
	Tool
	Monitoring Device Attributes
	Setting the IP Address

	Managing IPv6
	IPv6 Addressing
	Address Types
	The Neighbor Discovery Protocol
	Assigning IPv6 Addresses in Ubuntu Server

	Managing Routes
	Setting the Default Route with
	Using the
	Tool to Specify the Default Gateway
	Storing Routing Information

	Configuring the DNS Resolver
	The Role of the
	File
	Using the
	File

	Configuring Network Card Properties with the
	Command

	Troubleshooting Network Connections
	Testing Connectivity
	Testing Routability
	Testing Availability of Services
	Using
	to Check Your Server
	Using
	to Check Service Availability on Remote Servers

	Monitoring the Network Interface
	Monitoring Protocol Activity with IPTraf
	Monitoring Bandwidth Usage with the
	Utility

	Monitoring Network Traffic
	Using
	Analyzing Packets with Wireshark

	Connecting Remotely with SSH
	Working with Public/Private Key Pairs
	Working with Secure Shell
	Using the
	Command
	Using
	to Copy Files Securely
	Using
	for Secured FTP Sessions

	Configuring SSH
	Using Key-Based Authentication
	A Short Introduction to Cryptography
	Using Public/Private Key–Based Authentication in an SSH Environment
	Setting Up SSH for Key-Based Authentication
	Caching Keys with

	Tunneling Traffic with SSH
	X Forwarding
	Generic TCP Port Forwarding

	Summary

	Configuring Network Infrastructure Services
	Configuring DNS
	Methods of Name Resolution
	Managing Host Name Information with the
	File
	Using NIS to Manage Name Resolution
	Managing Search Order with the
	File

	Structure of the DNS Hierarchy
	Master and Slave Servers
	Connecting the Name Servers in the Hierarchy
	Resource Records

	Introducing Forward and Reverse DNS
	Configuring DNS
	Using
	Options
	Zone Definition in
	The db Files

	Configuring Reversed Lookup
	Testing Your Name Server

	Configuring DHCP
	Understanding the DHCP Protocol
	Creating the DHCP Server Configuration
	The DHCP Process
	The
	Configuration File
	Advanced DHCP Configuration Options
	Integrating DHCP and DNS

	The DHCP Relay Agent

	Configuring NTP
	How NTP Works
	Configuring a Stand-Alone NTP Time Server
	Pulling or Pushing the Time
	Configuring an NTP Client
	Checking NTP Synchronization Status
	Customizing Your NTP Server
	The NTP Drift File
	The NTP Log File

	Applying NTP Security

	Starting Services with
	Setting up
	by Hand
	Managing the
	Daemon
	Setting Default Behavior
	Tuning the Individual Services

	Tuning Access to Services with TCP Wrapper
	Working with the
	and
	Configuration Files
	Why You Shouldn’t Use TCP Wrapper

	Summary

	Using Ubuntu Server As a File and Print Server
	Setting Up a CUPS Print Server
	Adding Printers
	Sharing Printers
	Managing Printers
	Accessing CUPS Printers
	Accessing a Local CUPS Printer from Linux
	Accessing a Remote CUPS Printer from Windows

	Sharing Files with NFS
	Using the NFS Server
	Understanding How the NFS Works
	Configuring an NFS Server
	Tuning the List of Exported File Systems with the
	Command

	Configuring an NFS Client
	Mounting an NFS Share with the
	Command
	Mount an NFS Share Automatically from

	Monitoring the NFS Server

	Sharing Files with Samba
	Samba Server Possibilities and Impossibilities
	Configuring the Samba Server
	Preparing the Local File System
	Creating the Share
	Configuring User Access
	Starting the Services

	Integrating CUPS with Samba
	Setting Up Samba As a Domain Controller
	Modifying the Samba Configuration File
	Creating Workstation Accounts

	Client Access to the Samba Server
	Mounting Shares with the
	Command
	Using
	to Test Samba Naming
	Testing and Accessing the Samba Server with

	Summary

	Setting Up Web Services
	Setting Up Apache
	Apache Components
	Starting, Stopping, and Testing the Apache Web Server
	Exploring the Configuration Files
	The Structure of the Apache Configuration Files
	Checking the Configuration

	Working with Virtual Hosts
	Configuring Virtual Hosts

	Managing Access to the Web Server
	Configuring Host-Based Access Restrictions
	Configuring User-Based Access Restrictions
	Working with Simple Authentication

	Some Words on Apache Performance Tuning
	Using PHP
	Setting Up MySQL
	Setting the MySQL Root Password
	Creating a MySQL Database

	Setting Up FTP
	Configuring the
	Server

	Summary

	Multiplying Your Server
	Understanding Virtualization
	Virtualization Solutions
	Approaches to Virtualization
	Paravirtualization
	Full Virtualization
	Which Is Best for You?

	Installing Virtual Machines with KVM
	Setting Up KVM on Ubuntu Server
	Installing Windows As a Guest Operating System on KVM
	Installing Ubuntu Server As a Guest Operating System on KVM
	Setting Up Networking in KVM Virtual Machines

	Installing Virtual Machines Using Xen
	Setting Up Xen on Ubuntu Server
	Installing Windows As a Guest Operating System on Xen
	Installing Ubuntu Server As a Guest Operating System on Xen
	Using Xen Management Commands

	Ubuntu Server in a VMware Environment
	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

